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2 Yu.I. Manin

Introduction

1. The concept of a Lie group in its present-day form is the result of
combining two structures: a real or complex analytic manifold G and a
group law of composition G χ G - G on the set of points of G, (x,y) -> xy'

1
,

represented by an analytic mapping. It is well known that the theory of
Lie groups is fairly sharply divided into two parts. The first part is
devoted to the study of local properties of groups. The three classical
theorems of Lie allow us to reduce these questions to questions on the
structure of Lie algebras: as we should say now, the transformation
associating with any local Lie group its Lie algebra is an equivalence of
categories. The second part of the theory deals with the connection
between local Lie groups and global Lie groups: the central places are
occupied by the theorem stating that a simply connected Lie group can be
uniquely reconstructed from its Lie algebra (or by what we have said, its
local Lie group), and by the notion of a fundamental group, which allows
us to develop the exact analogue of Galois theory for the description of
the possible global Lie groups having one and the same Lie algebra.

Of the three basic notions studied in the theory of Lie groups - Lie
algebras, local Lie groups and global Lie groups - the first is purely
algebraic and was studied as such practically the moment it had been form-
ulated. The third concept is not algebraic, because it depends on the
notion of an analytic manifold. However, in algebraic geometry there
exists the parallel concept of an algebraic variety, on which we can de-
fine algebraic groups in the same way as we have defined Lie groups. While
algebraic geometry goes beyond the frame-work of real or complex coeffi-
cient fields, algebraic groups may be studied as a special case of Lie
groups by classical means.

This study was begun by Maurer and was completed in recent years by
the work of Chevalley [ίο], leading to the classification of algebraic Lie
algebras, i.e. Lie algebras for which there exists a global algebraic Lie
group. The well-known principle of Lefschetz, according to which algebraic
geometry over an algebraically closed field of characteristic zero agrees
in all respects with algebraic geometry over the complex numbers, allows
us even to conclude that the occurrence of new phenomena can be expected
only for fields of characteristic ρ > 0.

The study of such groups was begun relatively recently, and for a long
time was stimulated by the immediate number-theoretical needs, namely the
efforts to prove the Riemann hypothesis for zeta-functions on algebraic
curves over finite fields. In these studies a quite exceptional role was
played by one class of commutative algebraic groups - the so-called
abelian varieties, which form the precise analogue of commutative tori in
the classical theory (A. Weil). Later, in papers by C. Chevalley, Barsotti,
M. Rosenlicht, A. Borel, linear algebraic groups were studied, realized as
matrix groups, and a general structure theorem was proved, according to
which every algebraic group is an extension of an abelian variety by a
linear group. This cycle of papers clearly confirmed the circumstance
noticed earlier that Lie algebras are unsuitable for a complete study of
algebraic groups, when one is not dealing with the case of characteristic
zero. It was shown that although the concept itself of a Lie algebra of an
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algebraic group could be defined in the same general context and the re-
sulting correspondence was functorial, a non-commutative group could cor-
respond to a commutative Lie algebra, a Lie subalgebra need not correspond
to a subgroup etc. In place of the apparatus of Lie algebras certain
global techniques were developed by A. Weil and A. Borel which enabled
them to obtain a number of classical and new results for algebraic groups
by purely algebraic means and for any characteristic.

In this connection the attempt, based on habits from classical mathe-
matics, to identify Lie algebras with local Lie groups, had taken such
firm root that it needed a certain time to realize that differences
between these concepts existed in finite characteristic and that it might
be advantageous to algebraicise the latter of the two. This, in very gen-
eral lines, was the path of the different theories of algebraic groups,
rising from its beginnings around 1954 to the concept of a formal Lie
group, or simply a formal group. Their investigation was begun roughly at
the same time in the papers of M. Lazard [5l]-[53] and J. Dieudonne' [24],
and the first results were summarized in the report by Dieudonne' at the
Amsterdam Mathematical Congress (cf. [33]). During the past eight years
the theory of formal groups has brought forth a wealth of results, prob-
lems and perspectives as a branch of algebraic geometry, interest in which
shows no signs of flagging (in particular, two reports at the Brussels
Colloquium on algebraic groups in June 1962 were devoted to this theory).
The connection with the algebraic apparatus (algebras with a diagonal
mapping) and that of algebraic topology (cf. Dieudonne' [28]), was dis-
covered in current work on the number-theoretical interpretation of the
structure of algebroid formal groups; finally the general cohomology
theory in algebraic geometry, established by the school of Grothendieck,
in which commutative formal groups and their variants appear as coefficient
groups, - all these examples show that the theory of formal groups is a
living and developing branch whose attraction depends on the interlacing
of ideas of analysis and algebra, classical analogies and new technical
tools, so characteristic of modern mathematics.

2. The topic of this article is the theory of commutative formal
groups over fields of finite characteristic. The papers by Dieudonne' in
which the basic results on the structure of formal groups were first
obtained show clearly that the commutative and non-commutative cases
differ sharply in the nature of the results, the methods used, and the
degree of parallelism with classical theories.

As we have said, the central part of the classical theory of non-
commutative Lie groups - the classification of semisimple Lie algebras -
was taken over practically unchanged to the case of formal groups of
finite characteristic. This is true at least with respect to the results
on the existence of the usual four infinite series and the finite number
of exceptional simple algebras (cf. Dieudonne' [29]). In the course of
these results, long and technical additions, whose derivation was essen-
tially based on the global variant of this classification, were obtained
by C. Chevalley for algebraic groups by combining the classical techniques
of Killing, E. Cartan, H. Weyl and the algebraic-geometric tools of A.Weil,
A. Borel and Chevalley himself.

By contrast, the theory of commutative Lie groups in the classical
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case is almost trivial. After the proof of Lie' s three theorems on the
local part of the theory it reduces to the observation that for each di-
mension there exists up to isomorphism just one commutative Lie algebra,
and globally to the simple description of the discrete subgroups of a
vector space. In each case, a local commutative Lie group is determined by
its dimension and is isomorphic to a direct sum of additive local groups.
For fields of finite characteristic this simple situation no longer holds,
and the diversity of commutative formal groups is far greater, as is
easily seen by examples. First, however, we must give an exact definition
of a formal group. The 'naive' definition, used by Dieudonne' and Lazard,
is obtained as follows. If in the neighbourhood of the identity of an
ordinary Lie group we choose an analytic coordinate system and write down
the coordinates of the point ζ = xy as analytic functions of the coordin-
ates of χ and y, lying sufficiently close to the origin, we obtain the
system of power series

Si = Φι (ζι. ····, x
n
; Vu ···> y

n
) (i = l,...,n), (0.1)

in terms of which the group axioms may be written as identical relations

(for brevity we use vector notation φ = (Φ{), χ = (xi) etc.)

φ (.r, φ (ζ/, ζ)) = φ (φ (χ, y), ζ) (0.2)

(associativity axiom) and

φ (0, τ) = <f (./•, 0) = χ (0.3)

(axiom of a neutral element). The existence of inverses, as is easily
seen, follows from (0.3) and the analyticity of the functions.

The commutativity of the group is expressed by the law

φ (a·, !/) = cp(y, x). (0.4)

The system of power series (0.1), convergent in a neighbourhood of the
origin of coordinates and satisfying the above axioms, defines a local
group law. Two such group laws are said to be equivalent if we can pass
from one to the other by an invertible analytic transformation of co-
ordinates near the origin:

χ\=Σαίαχ
α, α = (α,, . . . , α η )6Ζ», xa = xfi, ..., a%n. (0.5)

α

Now a local Lie group is defined to be an equivalence class of local group
laws.

It is clear that with this definition we retain all essentials, when
we replace the field of real or complex numbers by any normed field, for
example the p-adic numbers (cf. Dynkin [3] and Igusa [48]). The resulting
beautiful theory is useful in certain arithmetical questions, but
(in the case of algebraically closed fields of characteristic zero) runs
parallel to the classical theory. The definition of a formal group in which
we are interested is obtained by discarding the requirement of convergence
of the power series occurring and merely regarding them as formal series.
It is known that over a field of characteristic zero this relaxation also
gives nothing new. Therefore, in what follows we shall exclusively consider
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the case when the coefficients of the power series (0.1) belong to a
given field of characteristic ρ > 0.

In the first place we shall describe the correspondence between alge-
braic groups and formal groups, which is analogous to the correspondence
between global and local Lie groups. It rests on the fact that the unit
element (like any point) of an algebraic group G is a non-singular point.
Therefore any algebraic function on the group which is regular at the
unit element can be expressed as a formal power series in η = dim G
' local parameters'. Thus, we obtain a group law in the algebraic group;
the formal group G so defined is called the completion of the algebraic
group G. Formal groups of this form will be called algebroid.

For every dimension η > ο there exists a commutative algebraic group
W

n
 - the group of additive Witt vectors of length η - whose completion is

not only not isomorphic to a direct sum of η additive groups, but which,
in general, is indecomposable. This fact already shows that the theory of
commutative formal groups differs essentially from the classical theory.
Many striking phenomena were discovered independently by Lazard and
Dieudonne' even in the study of one-dimensional formal groups: they
showed that there exist countably many pairwise non-isomorphic such groups
whose corresponding algebroid groups reduce to three: the additive group,
the multiplicative group and the completion of the one-dimensional abelian
variety containing no points of order ρ (apart from zero).

Later on Dieudonni [27], [3θ] developed an apparatus which in the
theory of commutative formal groups plays the same role as that played by
Lie algebras in the theory of local Lie groups. Namely he showed that
every commutative formal group G over a field k of finite characteristic
corresponds to a module over a certain fixed ring E, which depends only on
the field k. The ring £ is a complete local ring of characteristic zero
with residue class field k. The correspondence mentioned is functorial,
non-isomorphic groups have non-isomorphic modules, and although not every
^-module corresponds to a group, the modules that do so correspond are
fairly readily described. This part of the theory may be used in place of
Lie's three theorems.

We thus arrive at the problem of studying ^-modules. The difficulty of
this problem lies in the fact that the ring Ε is non-commutative and of
(Krull) dimension two; there is little the general theory can say in this
case. Dieudonne' [3θ] has remarked that if we pass from Ε to a certain ring
of fractions, the classification problem becomes considerably easier,
since the new ring is a principal ideal domain. It turns out that non-
isomorphic modules may become isomorphic over the new ring, so the corres-
ponding equivalence relation - isogeny - is much weaker than the usual
isomorphism, and this permits an invariant interpretation from the point
of view of formal groups. Namely the category of commutative formal groups
in the accepted sense is additive, but not abelian: it contains bijective
morphisms that are not isomorphisms.

It turns out that the ^-modules of two formal groups are isogenous if
and only if there is a bijective morphism between the corresponding groups.

In this case the groups themselves are said to be isogenous.
In the paper by Dieudonne' [30] a complete classification of commutative
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formal groups up to isogeny is given. The result is that for every dimen-

sion there exists a countable set of indecomposable groups and every group

. is isogenous to a direct sum of indecomposable ones. The indecomposable

groups (or rather, their modules) and their endomorphism rings are des-

cribed up to isogeny in full detail.

After the paper [3θ] there remained the following unsolved basic

problems in the theory of commutative formal groups:

A. The classification of commutative formal groups up to isomorphism.

(Raising this question in [30], Dieudonne' comments that this is a

problem 'whose complexity defies analysis'.)

B. Description of algebroid groups.

In connection with Β there naturally arises the following problem

C. The determination of the completion of algebraic groups (up to

isogeny).

(It may be noted that it is easy to obtain an invariant of an alge-

braic group - its Lie algebra -, but this is not enough to determine its

completion.)

The aim of the present paper is the solution of these three problems.

Our results are almost best possible. Very briefly and in general outline

the results are obtained in the following way.

In problem A we confine ourselves to the classification of those

groups for which multiplication by ρ is an isogeny. (This limitation is

analogous to considering only semisimple Lie algebras in the classical

theory; in the study of abelian varieties we only come across such groups).

The result states that in each isogeny class of groups the classification

up to isomorphism is carried out by means of parameters from the field k;

the space of these parameters is algebraic and finite-dimensional; the

dimension of the parameter space and the number of connected components

tend to infinity with the dimension of the groups of the class. The con-

struction of the parameter space is carried out completely effectively; in

particular, for two-dimensional groups all calculations are carried out in

full and the explicit form of the parameter space is obtained.

A qualitative answer to question Β is as follows: all commutative

formal groups occur as direct summands of algebroid groups.

Much more than this cannot be said: for every dimension there are

infinitely many non-algebroid groups.

Question C is non-trivial only for abelian varieties. The basic result

is that the structure of the completion of an abelian variety can always

be calculated; thus, one obtains a global invariant of the variety, namely

its zeta-function. Previously this was known only for dimension one; the

first partial results in this direction were obtained by the author [β].

3. The paper consists of four chapters. The first gives the founda-

tions of the theory of formal groups and introduces Dieudonne' modules. In

the second chapter we carry out the classification of modules up to iso-

geny; in the main we follow the account by Dieudonne' with variations by

Gabriel. The second important result of this chapter is Theorem 2, which

is used in Chapter IV for the study of algebroid groups. The third and

fourth chapters contain the basic results of this paper concerning the

classification of commutative formal groups and the determination of the

structure of algebroia groups. We shall not here enter into the content of
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the paper in greater detail, since each chapter opens with a brief survey
of the basic results and points out novelties.

The last section of each chapter is devoted to comments of a biblio-
graphical character and a comparison with the non-commutative case.

The basic results of the last two chapters were briefly announced in
notes by the author [4]-[*>].

For an understanding of the first chapter the reader should have some
acquaintance with the theory of categories, to the extent of the first
chapter of the paper by Grothendieck [44], and with the definition of
schemata; the language of schemata is described for example in the report
by Grothendieck at the Edinburgh Congress. Beyond this we only presuppose
standard concepts from modern linear algebra and elementary properties of
the Witt group.

The reader who wishes to become acquainted with the basic results of
the second chapter may confine himself to scanning the fourth section
(with a look at the definition of the ring Ep at the beginning of the
chapter). The third chapter in those parts where a detailed discussion of
the structure of Dieudonne' modules is carried out requires only a know-
ledge of the classification obtained in the second chapter. In the third
and seventh sections we obtain the algebraic-geometric structure of the
Witt group (cf. the corresponding reference in the text). The fourth chap-
ter is of a more specialized character and presupposes a knowledge of the
theory of abelian varieties.

Chapter I

FORMAL GROUPS AND DIEUDONNE MODULES; BASIC CONCEPTS

S c Ιι π 1 ο r. Kann Euch niclit oben
ganz verstchen.

Μ ο ρ Ιι i s t ο ρ h e 1 e s. Das wird
liiiolisteiis sclion besser gohen,
Wo 1111 Ilir lernt alles rednzipren
L'nil goliorig klassifizieren.

GOETHE, FAUST

This chapter has essentially the character of a survey; its basic aim
is to give a definition of formal groups and related concepts within the
framework of algebraic geometry in the spirit of A. Grothendieck [39], as
well as to formulate the basic results giving the relation between commuta-
tive formal groups and Dieudonne' modules.

The definition of formal groups given in the introduction is unsatis-
factory from the conceptual and technical point of view; only the language
of schemata allows one to introduce the basic notions of the theory of
formal groups in a natural and general manner. The description of these
concepts occupies the first two sections; we take our definition of formal
group in a sense that does not quite agree with that of Dieudonne', because
we allow our local rings to have nilpotent elements. The third section is
devoted to a description of the category of commutative artinian groups,
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following Gabriel [37]. In contrast to Gabriel we employ the 'geometric'

language. Propositions 4 and 5 play a role in the interrelation between

the classical Witt operators F and V and give rise to a fundamental

duality, cf. Barsotti tl3]. In the fourth section an important theorem is

stated, giving the reduction of the study of commutative formal groups to

the problem of classifying their modules. The results of this section play

a fundamental role in the following chapter.

§1. Groups in categories

1. The definition of a group in an abstract category stated below

represents a particular case of the concept of an algebraic structure

on the objects of a category and may be given under more general con-

ditions (cf. Grothendieck [39], Chapter O m ) . We shall not develop the

theory from a few primitive definitions, but confine ourselves to the case

needed for the applications, which is considered here to serve as model

and motivation for the later more special considerations.

2. Let C be a category and S an object. Consider the class Cs consis-

ting of all pairs (X,f), where X is an object of C and f:X-S a morphism

in C. By a morphism from the pair (X, f) to the pair (Y, g) we understand

any morphism h-.X-Ύ such that the diagram

commutes. With this definition of morphism the class Cs becomes a category

which is called the category of objects over the object S or the category

of S-objects.

Sometimes it is useful to'consider the following more general situa-

tion. Let Γ C Horn (S,S) be a certain monoid with unit element, i.e. a sub-

set of the set of endomorphisms of the object S that contains with any

pair of morphisms their product and contains the identity morphism. Let

σ e Γ. Then a σ-morphism from (X, f) to (Y, g) is a morphism h-.X— Υ such

that the diagram

η ο ι>
S-+S

commutes. The product of a π-morphism by a τ-morphism in an obvious sense

is a τ ο σ - morphism. Therefore we may turn the class Cg into a category by

defining Hom
r
((X,/),(Y, g)) as the set of all σ-morphisms of (X, f) into

(Y, g), where σ ranges over Γ. In the particular case when Γ consists only

of the identity morphism we obtain the definition of the category Cs given

earlier (for which we retain the notation Cs).

The situation described arises, in particular, when we consider linear

spaces (possibly provided with additional structure) and their multilinear

mappings. Any deviation from linearity in this case is described by an

automorphism of the ground field.

Suppose that Cs is a category with a product (to denote the product in
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an abstract category we shall use the sign n, and for the sum we use the

signu). In this category put (X,f) κ (Υ,
 g
) = (Ζ, h) (in an obvious nota-

tion). Then the object Ζ is called a fibre product of the objects Χ, Υ in

the category C and is denoted by XnY. If for each object »S there is a pro-
5

duct defined on Qs, we shall say that C is a category with fibre products.

The object e e C is called a final object in C if for each X e C the

set Hom(A", e) consists of a single element. All final objects are iso-

morphic, and we may therefore consider the final object to be unique (if

there is one). In the category Qg there is a final object: this is the

pair (S, I5) (the symbol 1χ or simply 1 denotes the identity morphism of

the object X). If e e C is a final object, then the category C
e
 is equi-

valent to C.

In what follows we shall assume that categories satisfy two axioms.

I. There exists a final object e in the category C.

II. C is a category with a product.

3. An internal law of composition on the object X e C is a morphism

c: XnX- X; sometimes we denote this by the symbol οχ.

The law of composition is said to be associative if it satisfies the

following

ASS0CL477Vr7Y AXIOM. The diagram

°^l XnX

> χ

commutes.

In the formulation of the following axioms we denote by d:X — ΧκΧ the

diagonal morphism; ε: Χ -> e the uniquely determined morphism; and

s: XnX- X K X the morphism interchanging the factors.

An associative law of composition cy is called a group law if it

satisfies the following two axioms.

AXTCM OF A LEFT NEUTRAL. There exists a morphism η: e -. X such that

the diagram

XnX ^UL\ XaX

X >X
commutes.

AXIOM OF A LEFT INVERSE. There exists a morphism a:X - X such that
the diagram

XnX -\ XnX

-Γ l·
χ >χ

commutes.
We leave as an exercise the formulation in terms of commutative

diagrams and the proof of the usual elementary properties of groups: the
' le f t neutral ' morphism is also 'right neutral' and is uniquely determined;
the ' le f t inverse' morphism is also ' r ight inverse' and i s unique.

A group law c i s said to be commutative or abelian i f i t satisfies the
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COMMUTATTVm AXIOM. The diagram.

XnX-^XnX

X
commutes.

The object X e C together with a group law c defined on i t i s called
a C-group (commutative if c is commutative). For brevity we shall denote
the C-group so defined simply by X, where the group law c is understood to
be fixed.

A morphism of C-groups (Χ, οχ) into (Y,cy) i s a morphism f:X — Υ such
that the diagram

4 W
χ >γ

1
commutes. The class of C-groups with these morphisms constitutes a cate-
gory; the class of commutative C-groups form a subcategory. Starting from
the axioms we can show that a morphism of C-groups commutes not only with
the group law, but also with the neutral morphism and the inverse.

Groups in categories of sets, topological spaces, analytic manifolds
are represented by general groups, topological groups, Lie groups. Groups
in categories of proximity spaces, of which examples (in categories of
schemata and formal schemata) will occur in profusion below, form an
essential extension of the concept of a group.

Another example is given by the //-spaces of Hopf: they are groups in
the category whose objects are topological spaces and whose morphisms are
the homotopy classes of continuous mappings.

Let X be a C-group; for any object Υ e C the set Homc(y,^) i s i tsel f a
group relative to the composition law /g = cxo(fng), and moreover, this
group structure depends functorlally (in an obvious sense) on X. If,
however, Υ i s also a C-group, then the set of group morphisms Υ -· X is,
generally speaking, not a group; this is clear already from the example of
ordinary non-commutative groups. Nevertheless, if X is commutative, then
the set R<M(Y,X) (in the category of C-groups) is an abelian group rela-
tive to the composition law / + g = cx°(fng).

P R O P O S I T I O N 1.1. The category of commutative C-groups is an
additive category.

The proof consists in a verification of the axioms, which may be left
to the reader. We remark that by axiom I the class of C-groups is non-
empty: i t contains in any case the group e (with the only possible com-
position law).

4. PROPOSITION 1.2. The category of (all, or only commutative)
C-groups is a category with a product.

PROOF. Let (X.cx), (Y,cy) be two C-groups and put Ζ = ΧπΥ;
cz = SO(CXTICY), where s: (XnY) π (ΧκΥ) -· (XnX) κ (ΥκΥ) is the natural mapping.

We claim that (Z, cz) is a C-group, the projections p^:2~*X and p?:Z—Y
are C-group morphisms and define the group (Z(cz) as a product
(X, ex) κ (Υ, cy) in the category of C-groups (all these statements remain
true if we assume that all groups occurring are commutative).
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The first two statements hold automatically. Now let (T, CT) be a

C-group and f:T — X, g: Τ - Υ any C-group morphisms. To establish that

(Z, cz) is the product of (X, ex) and (Y, cy) we must show that there exists

one and only one C-group morphism k:T -· Ζ such that / = Pi°h, g = p
2
°h.

But such a morphism exists and is unique in the category C, because

Ζ = ΧκΥ. The commutativity with the group law follows immediately.

5. The following - and last - general result which we prove gives a

convenient description of the kernel in an additive category of commuta-

tive groups.

P R O P O S I T I O N 1.3. Let C be a category with fibre products. Then the
additive category of commutative C-groups is a category with kernels: the
kernel of the morphism f:X ~* Υ is p:Xue ~> X (where ρ is the projection);

the fibre product being taken relative to the morphisms f:X -* Υ, η : e -· Y.

PROOF. We may define a commutative C-group structure on X ree such that

Υ

ρ becomes a C-group morphism; we show that ρ i s a monomorphism and f inal ly
verify t h a t for every C-group morphism g:Z -* X such that f°g = εγ ο τ\χ,
there ex i s t s a C-group morphism h:Z~* XKe such that g = ρ ° h.

To begin with the monomorphy of p: i t i s enough to verify t h i s in the
category C. Let hlt /i2 e Hom(Z,X e) and assume that ρ ° h± = ρ ο h2 €Hom(Z,X),

Then /ii = h2, for i t follows from the definit ion that the
mapping h - ρ ο h defines a one-to-one correspondence between the set
Horn (Ζ, Λ" re e) and the subset of a l l morphisms g e Hom(Z.A') such that the

square in the diagram

,ζΛβ

/ I' W (i.i)
γ

commutes.
This shows ρ to be monomorphic. The same diagram shows that ρ = ker /,

provided only that a group structure is defined on Xne.

Υ

The group law c' on the object Xne may be defined by the commutative
diagram

χπχ J.—> χ

(Xne) η {Xne) —> Xne
γ γ γ

Since ρ i s a monomorphism, c' i s uniquely defined if i t exists at a l l . To
prove the existence i t i s enough to verify the commutativity of the dia-
gram (1.1), where we have put Ζ = (Λ"re e) re (A"re e), g = c ο (ρ πρ), i . e., we

must verify that /o C o (prep) = η ο ε. But / is a C-group morphism, hence
foc = cyo(fnf). Thus, i t i s enough to verify that cy°(fn.f) ° (prtp) =
= η ο ε, for which in turn i t i s enough to check the commutativity of the
diagram
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Xne —> e

x—>y

which follows from the fact that in (1.1) the commutativity of the tri-
angle and the square are equivalent.

To show that Xne with the composition law c is a C-group it is enough

to define morphisms ε':β — Xne and a':Xne — Xne and show that they
Υ Υ Υ

satisfy the axioms. We confine ourselves to the definitions and leave the
verification to the reader. The morphism ε' is obtained from the diagram
(1.1) if we put Ζ = e, g = ε (the commutativity of the square follows
because the group morphism / maps the neutral element to the neutral
element). The morphism a' is obtained from the diagram

p| , Ϊ Ρ

Xne -U Xne
Υ Υ

by commutativity, for the proof of which we need only check the commuta-
tivity of the square in (1,1), when Ζ = Xne, g = α op; since

foaop = α ο/op, it follows from this that fop = η ο ε. Here we have

used the fact that group morphisms always commute with a.
This completes the proof.

We remark that with appropriate changes in the definition of kernel
this proposition remains true in much more general situations, for
instance in the category of all C-groups.

§2. Algebraic and formal groups. Bialgebras

1. Below we shall make use of the language and elementary properties
of schemata, which is presented in the first chapter of the book by
Grothendieck and Dieudonne' [39].

Let k be a field. A schema over Spec k will be called a k-schema. We
recall that a k-schema is said to be algebraic if there exists a finite
covering by affine k-schemata, each of which is isomorphic to the spectrum
of a finitely generated k-algebra. Algebraic fe-schemata differ from ordi-
nary algebraic varieties over the field k as defined by Serre in this
fundamental respect : that their structure sheaf may admit nilpotent ele-
ments: a schema without nilpotent elements in its structure sheaf is said
to be reduced. An affine fe-schema is said to be artinian if it is iso-
morphic to the spectrum of a finite-dimensional k-algebra. Artinian
k-schemata, affine fe-schemata, algebraic k-schemata all form categories
with a fibred product and final object Spec k. Hence we may apply the
results and definitions of the last section. A group in such a category is
correspondingly called an artinian k-group, affine fe-group or algebraic
fe-group. (In the sequel we shall sometimes omit the reference to the field
k.) All these three categories of commutative fe-groups are additive
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categories with kernel.
Let A be a noetherian complete local ring with residue class field k;

assume also that k and A have the same characteristic. By a formal k-schema
we shall understand here the formal spectrum Spf A (this usage, consider-
ably more restricted than in Grothendieck, i s justified by the fact that
we shall never have to consider formal schemata other than these). Formal
^-schemata again form a category with fibre product and final object. A
group in this category is called a formal fe-group. The category of com-
mutative formal fc-groups i s an additive category with kernel. (Prom
results of Gabriel mentioned below i t follows that owing to the admission
of nilpotent elements in the coordinate rings this category is even
abelian. The reduction of commutative formal fc-groups considered by Dieu-
donne' results in a non-abelian sub-category.)

2. With every algebraic fc-group X a corresponding formal fc-group X can
be associated. This correspondence is functorial and forms the precise
analogue of the correspondence between a global Lie group and a local Lie
group in the classical theory. I t i s realized as follows. The structural
morphism η:Spec k - X defines a certain closed point χ in the space X (the
neutral element in the group of geometric points of this space). The local
ring of the structure sheaf of X over this point i s denoted by the symbol
ox. Let X = Spf ox be the formal spectrum of the completion of the ring ox

relative to the topology defined by the powers of the maximal ideal. X i s
called the formal completion of X (along the point x). The composition law

Α Λ A

ΧπΧ— X induces a composition law XnX — X (defined so that the comple-

tion O(
XiX
) of the local ring at the point (x, x) e ΧκΧ is naturally iso-

morphic to o
x
 <S>o

x
), which is a group law. The mapping X=$X is a co-

variant functor on the category of algebraic ^-groups with values in the

category of formal k-groups. A formal group of the form X is said to be

algebroid.

By the dimension of a formal group Spf A vie understand the (Krull)

dimension of the ring A.

The basic aim of this paper is to study the structure of commutative

formal groups and, in particular, algebroid groups. We recall that in the

classical case a eommutative local Lie group is completely defined by its

dimension, and every local group (not necessarily commutative) is obtained

from a certain global Lie group. Both these statements can be carried over,

with certain reservations, to ̂ -groups, where k is algebraically closed of

characteristic zero, but break down completely when k has finite character-

istic, which is essentially the one we shall consider. In particular, in

each dimension there exists an infinite set of continuous systems of non-

isomorphic commutative formal groups. In general they are non-algebroid,

but they contain algebroid groups as direct summands.

3. Let X = Spec A be an affine ^-schema and put ΧκΧ = Spec(4 ® A ) . It

ft

follows that the given composition law on X i s equivalent to a fe-algebra
homomorphism c:A — A (gM. The associativity axiom for this law consists in

*.
the commutativity of the diagram
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A® A® A ——> A® A
ι ®c | c I c (1·2)

A ®A < A

The axiom of a left neutral element asserts the existence of a homomor-

phism η:Λ ~* k such that the diagram (where ε:& - A is the canonical embed-

ding and d:A®A - A the homomorphism of multiplication)

A® A

commutes. Finally, the axiom of a left inverse element asserts the exist-

ence of an automorphism a:A — A such that the diagram

J\. QO *i. •̂ — x\. Qy *x

"I ,, t
c ( 1

·
4 )

A< A
commutes. The diagrams (1.2)-(1.4) represent the axioms of a group law of

composition on X = Spec A, translated into the language of the coordinate

ring A. In the same way the affine group structure on X is equivalent to

the provision of the linear space A over k with two linear mappings d and

c:
 d c

A®A—>A—>A®A, (1.5)

l i n e a r homomorphisms ε and η:

and a mapping
k-,A~,k, (1.6)

a:A-*A, (1.7)

together with the axioms imposed on the pair (d,ε) (giving the algebra

structure on A) and on the pair (c,rt) (giving a coalgebra structure on A

induced by the composition law of the schema X), which are mutually dual,

since each is obtained from the other by reversing all arrows, while the

axiom for α is self-dual. If we take only the case when A is a commutative

fe-algebra, it follows that complete symmetry prevails only for commutative

affine groups, for which the mapping c is symmetric.

In view of this symmetry we define a bialgebra to be an object con-

sisting of a linear space A, provided with the structure consisting of the

mappings (1.5)-(1.7), which satisfy the axioms for the laws of composition

of the algebra and the coalgebra and the axiom (1.4); we shall also say

that the composition laws c,d commute. The class of bialgebras over a

field k constitutes a category whose morphisms are linear mappings of the

underlying spaces that commute with all the mappings defining the bialgebra

structure. The correspondence that associates with the affine fe-group

X = Spec A its coordinate ring A with the diagonal mapping (we shall some-

times call A simply the ring of the group X) is a functor, which defines a
1
 This term was suggested to the author by M. Lazard in a private conversation.
Different variants of this concept, arising from the absence of the commutative
law and the introduction of a grading and a filtration, appear in the litera-
ture under the names of Hopf algebra and hyperalgebra.
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duality between the category of commutative affine fe-schemata and the
category of bialgebras. In this correspondence artinian groups correspond
to finite-dimensional bialgebras and vice versa.

4. In a completely analogous manner i t can be shown that there is a
correspondence between group laws of composition and the rings of formal
^-groups Spf A = X. The only difference consists in this: that the product
of formal schemata corresponds to the completion of the tensor product of
their rings and in the diagrams (1.2)-(1.5) the sign 0 has to be replaced
by the sign <8> denoting completion of the product.

5. Let A be a finite-dimensional bialgebra and denote by A* = L(A, k)
the space of linear forms on A. We consider the diagrams of linear map-
pings dual to (1.5)-(1.6)

A* <g) A* J l A* i*> A* © A*, (1.5*)
ft h

k X A* ̂  k. (1.(5*)

We noted in 3. that the symmetry of the axiom relating α to the pairs

(d, e) and (ο,η) allows us to conclude that the space A* with the mappings

c*, d*, r\*, ε* constitutes a bialgebra. We shall call this the (linear)

dual of the bialgebra A.

Let X = Spec A be an artinian fe-group. We shall sometimes call the bi-

algebra A the ring of the group X and the bialgebra A* the algebra of the

group X. This usage agrees with that generally accepted in the particular

case when A = Map(G,k), where G is any finite group and the diagonal of A

is induced by the group law of composition G χ G — G. Clearly in this

case A* is isomorphic to the group algebra k[G],

The artinian group X* = Spec A* will sometimes be called the group

(linearly) dual to X.

6. Let k be a perfect field of characteristic ρ Φ- ο. In algebraic

geometry the places where artinian groups occur are as kernels and co-

kernels of ordinary algebraic groups, as coefficients in different coho-

mology groups etc. For us they are important, because a formal group over

a field of characteristic ρ / 0 can be expressed as the union of its

artinian subgroups.

LEMMA 1.1. Let X = Spf A be a formal k-group and m the maximal

ideal of the algebra A. Write X
n
 = Spec A/mP

n
, i

n
:X

n
 -* Χ the canonical

embedding of k-schemata (X
n
 may be considered either as formal or as

affine schema). Then there exists a composition law c
n
:X

n
uX

n
 -· X

n
 which

turns X
n
 into an artinian group and such that i

n
 is an injective morphism

of k-groups. The formal group X with the morphisms i
n
:X

n
 -" X is the induc-

tive limit of the system of artinian formal groups X
n
 and homomorphisms

%n ~* ̂m (n > m), induced by the algebra homomorphisms A/mP
n
 ~* A/mp"

1
.

PROOF. We have to define a diagonal homomorphism c
n
:A

n
 -· A

n
 ® A

n
,

where A
n
 = A/mP

n
, so that the diagram

A _1. A <g> A

remains commutative. (Here c is the composition law of the coalgebra A,
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ρ:A — An is the natural projection.) For any element a e A vie must there-
fore set cn(a) = (p ,g) p) o c o p " 1 ( a ) . To verify that the result i s inde-
pendent of the choice of p~l(a) amounts to verifying the inclusion
c(ker p) c ker(p g) p). Now ker(p ® p) = mpn <g)A + A <g> mpn; on the
other hand, if χ e mpn, then χ = Σα^ιΡ", where α,· e Α, χι e m, so that
c(x) = Ec(ai)c(xi)P" € mPn (g) A + A <§> mPn, because
c(*i) - *i <g) 1 - 1 «S^xi e m ® m. (Clearly we have
c(*) = % ® *i + *2 <S> a2 + Syj <g> yy, where a1( ĉ  e fe; x^x^yfe e m. Prom
the axiom of left and right neutrals i t then follows that ê  = a? = 1,
Xj = X2 = X. )

The remaining assertions of the lemma are obtained by verifying the
definitions.

7. The lemma just established allows us to define the notion of an
algebra for an arbitrary (not necessarily artinian) formal group. Thus let
X = Spf A, A = lim An, where An = A/mpn. We put A* = lim(A/mpn)* and ca l l
the bialgebra A* the algebra1 of the formal group X. Clearly A* is the
union of finite-dimensional bialgebras. Following Gabriel [37] we shall
call a bialgebra with these properties a Dieudonne' bialgebra.

8. Let X = Spec A be an affine fe-schema and k' a field containing k.
The affine schema XftSpec k' = Spec(A 0 k')t considered as fe'-schema, is

k k
denoted by X ® k'. Similar definitions apply to algebraic and formal
schemata. The transition from the fc-schema X to the k'-schema X <S> k' is
called change of base field. Similar definitions apply to formal groups.
The operation of change of base field is a covariant functor that pre-
serves tensor products, kernels and cokernels of mappings of linear spaces
and thus commutes with the operation A =£• A*. Hence i t follows that the
change of base field takes fe-groups to k'-groups and commutes with taking
direct products, kernels and cokernels of morphisms of commutative fe-
groups. Further, we can change the base field of a group by taking the
tensor product of i t s algebra by k'. Finally, changing the base field com-
mutes with taking the completion of a local ring and hence with passing
from an algebraic group to i t s completion.

§3. The structure of commutative artinian groups

1. We now give a brief account of the fundamental result of P. Gabriel
on the structure of commutative artinian groups over a perfect field k.

Let X = Spec A be a commutative artinian fe-algebra, QZDfe the alge-
braic closure of k, and Γ the Galois group of Ω over fe with the Krull
topology. The set Hom(Spec Ω, Χ) = ϋχ i s a commutative group; this group i s
finite: for in any artinian fe-algebra A there are only a finite number of
maximal ideals m, and the field A/m i s an extension of finite degree over
fe. Moreover, the group Γ acts on Οχ: for any elements g e ΰχ and γ e Γ the
element g r e ΰχ i s defined as the composite morphism Spec Ω 21 Spec Ω Μ. Χ.
The resulting operation X =* Gx is a covariant functor from the category A
of artinian commutative groups to the category of finite right Γ-modules.
I t i s not hard to see that this functor is additive.

Conversely, let G be a finite Γ-module. We consider the set
1 In the literature called hyperalgebra.
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AQ = M&pr(G,Q) consisting of all functions f on G with values in Ω, sub-
ject to the condition f(gy) = / ( g ) r for any g e G and γ e Γ. Clearly this
set AQ is a k-algebra. I t i s finite-dimensional, for given any g e G, the
values fig), for all /, l ie in a finite extension of the field k, corres-
ponding to the stabilizer of g in Γ. The diagonal mapping AQ — AQ ® AQ

induces a composition law G χ G — G and we shall make the identification
^CxG = AQ 0 AQ. i t is easily verified that XQ = Spec AQ i s a commutative

k
artinian group. Clearly this group i s reduced. The covariant additive
functor G => XQ from the category of finite right Γ-modules to the cate-
gory of reduced commutative artinian groups Ared is an equivalence of
these categories.

This construction provides a description of reduced groups and shows
in particular that the category Ared i s abelian.

2. We recall that for any schema X the symbol Xred denotes the maximal
reduced subschema Xred CZ X.

Since over a perfect field (ΧκΥ)Γβά = Xred
K^red, i t follows that for

any group X the schema Xred i s a subgroup; Gabriel shows that this sub-
group is a direct factor: X - Xred^^loc· where Xioc i s the spectrum of a
bialgebra which qua algebra i s local;this decomposition i s unique and gives
rise to a natural identification Horn (A", Y) =Eom(Xred,Yreci) xHom(Xioc,Yioc).
This proves that the category A i s equivalent to the direct product of the
category Ared and the category Aioc of local groups (the spectra of locally
finite-dimensional bialgebras).

Let X = Spec A e Ared\ we consider the linear dual group X*. I t s de-
composition into reduced and local components X* = X*ed

n^ioc induces a
dual decomposition X = XrnXT\, where the groups Xr and Xri are defined so
that Xr e Ared, X* € Ared and Xri e Arej, X*i e Aioc. Similarly, for any
group X e A\oc we obtain a canonical decomposition X = XirnXi, where
X\r e Aioc, X*r e Are(i, and Χι e Aioc, X* e Aioc.

Summing up we have the following result: the category A i s equivalent
to the product of four subcategories:

Ar - the category of reduced groups X e A such that X* i s reduced,
Ari - the category of reduced groups X e A such that X* i s local,
Air - the category of local groups X e A such that X* i s reduced,
Αι - the category of local groups X e A such that X* is local.
The structure of the first three categories is obtained by the con-

struction under 1. Ar is equivalent to the category of finite Γ-modules
whose order is prime to the characteristic ρ of the field k; Ari is equi-
valent to the category of finite Γ-modules whose order i s a power of p;
ΑιΓ i s equivalent to A°i (the equivalence being defined by the functions
of the linear dual). All three categories are abelian.

EXAMPLE. Let k be an algebraically closed field. Then the group Γ is
t r iv ia l . I t follows that Ar consists of the spectra of group algebras of
finite groups of order prime to p, and A\r of the spectra of group algebras
of p-groups. The unique simple object in Air i s Gp = Spec k[Z/Zp] =
= Spec k[x]/(xP), with composition law c(x) = x ( g ) l + l ® x . Every object
in Ari has a composition series whose factors are isomorphic to Gp.

3. Let A, B be finite-dimensional bialgebras over k and cs an
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automorphism of fe; then a σ-morphism of bialgebras f:A-B i s a multilinear
mapping of linear spaces satisfying

/(αα) = ασ/(α), α ζ Λ, α ζ Α;

and compatible with multiplication and the diagonal mapping:

/ (ab) = / (a) f (b), (f 0 /) (cA (a)) - cB (f (a)).

For any ^-morphism / we define the dual σ"1-morphism f*\B*-*A* by
setting

(a, /*(*>)> = </(a), b)°~\ αζΑ, b£B*,

where the brackets ( ) denote the canonical bilinear form defined by

duality on A, A* and 6, B*. The verification that the correspondence f*(b)

so defined is a linear function on B, i.e. an element of B*, and that /*

is compatible with multiplication and the diagonal mapping on B* and A*.

is an exercise in duality.

Let m > 0 be an integer and A a bialgebra. The endomorphism mix of

multiplication by m in the group X = Spec A is defined as the composite

mapping

X U5. Xn ...nX fu
1
, X,

m factors

where cim i s the diagonal in the m-fold product and cm the (m-l)-fold
iteration of the composition law c = C2:XKX -* X.

The endomorphism mix induces on A an endomorphism ml̂  of the bialgebra
A:

A :m> .4®_.. . jpj4 ±1 A,

m factors

where ^ ( o ^ ® . . . ® am) = a t . . . am is the product, and cm i s defined by
induction by

m-1 factors

Let ρ > 0 be the characteristic of the field fe and σ:χ->χ
ρ
 the

Probenius automorphism of fe. For every bialgebra A over fe we define a

o-morphism F^:A -* A by the formula

F
A
(a) = aP, α ζ A,

and a a"
1
-morphism V^A - A by duality:

PROPOSITION 1.4. For any finite bialgebra A the morphism p i A of
multiplication by ρ can be expressed as the product of the a-morphism FA

and the n'1-morphism VA, taken in either order.
PROOF. Firstly we have, for any elements a e A, a' e A*,

••=<dP(o'® . . . ® o ' ) , a»> 1 / r ' = <a'(g> . . . 0 a ' ,

Let a1 a^ be a fe-basis of A. Then
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where « ^ . . . i = « s ( i 1 . . . i p ) f ° r a n y permutation s of the indices, because
the composition law is commutative. The number of different permutations
i s one if i± = ... = ip and otherwise i s divisible by p. Hence

Λ 7

Cp(a) — Σ ai iai ® · · · ® ai
t = I

and

{a' (g) . . . ® a ' . ( c ; / / ) p ) 1 / J ' = ( « ' (g) . . . ® « ' , Σ α Γ . . i a f

— Σ a i . . . i (« ' . «'.'} = («', ( ^ °cP) «) = («', (plA)a>·

Thus, K4 oi^ = pi^; hence ^4* 0F4* = plA* and so by duality, FA ° VA = pl4,
which establishes the proposition.

4. The result just proved may be used to give a simple description in
terms of groups of the categories Ar, Ar\, A\r, A\ introduced under 2. The
morphism Spec k — Spec k induced by σ will be denoted by the same le t ter σ
and the a±i-morphisms of the group X = Spec A induced by F4 and VA will be
denoted by Fx and Vx respectively. We shall say that the τ-morphism f:A—A
i s nilpotent if for sufficiently high η > 0 we have /"(Λ) = k c A in the
set-theoretical sense. (We say in this case that f annihiliates A or X =
= Spec A respectively.) Similarly we say that the τ-morphism / is an auto-
morphism i f f(A) = A.

PROPOSITION 1.5. (a) The group X e A lies in Ar if and only if
Fx and Vx are both automorphisms.

(b) The group X e A lies in Ari if and only if Fx is nilpotent and Vx
is an automorphism.

(c) The group X e A lies in A\r if and only if Fx is an automorphism
and Vx is nilpotent.

(d) The group X e A lies in Αχ if and only if Fx and Vx are both nil-
potent.

The verification of these statements is not difficult and may be left
to the reader.

We note the following important fact: when the group X i s defined over
the prime field, then Fj and Vx are ordinary endomorphisms.

§4. The Dieudonne module of a formal group

1. In what follows we shall be concerned chiefly with the categories
Ar and Αι, both of which consist of formal artinian groups. The first, as
we have seen, is abelian and i t s structure, at any rate over an algebraic-
ally closed field, is fairly clear.

Gabriel proved f irst of al l that the category Αι is also abelian. The
proof is of a rather technical character: with the help of Proposition 1.3
we can explicitly determine the image and co-image of any morphism in the
category of bialgebras, and from the specific properties of the groups in
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Αι we can immediately infer the isomorphism of the image and the coimage.
Lemma 1.1 shows that any formal group is an inductive limit of

artinian formal groups. The category Aioc i s not closed with respect to
inductive limits; however, there is a general construction that allows us
to embed an arbitrary abelian category C in an abelian category Ind C in
which inductive limits exist and the limit of an exact sequence is an
exact sequence (cf. Grothendieck [46], Gabriel [35], [37]). In particular,
if the category C is equivalent to the product of two abelian subcategories
Ci and C2, then Ind C is equivalent to the product of Ind C± and Ind C2.
The application of this general argument to the category Aioc = AirnAi
yields the following result, which in a much weaker form was first proved
by Dieudonne' [25]. To formulate i t we require the following definition.

A commutative formal group X i s called a toroidal group if X belongs
to the category Ind A\r. A group X that belongs to the category Ind Αι is
called a Dieudonne' group.

We note that if we change the field of constants, a toroidal group goes
over into a toroidal group and a Dieudonne' group into a Dieudonne' group,
as long as we limit ourselves to perfect fields.

THEOREM 1.1. The category of commutative formal k-groups is
equivalent to the product of the category of toroidal groups and the
category of Dieudonne groups. All are abelian categories.

This shows, in particular, that every commutative formal group is
essentially uniquely decomposable into a direct product of a toroidal
group and a Dieudonne' group, and that there are no non-trivial morphisms
between Dieudonne' groups and toroidal groups.

Every subgroup of a toroidal group and every product of toroidal groups
is again toroidal.

If the field k is algebraically closed, then by the results under 1.
and 2. the category ΑχΓ i s equivalent to the category of finite abelian
p-groups. The structure of the latter is well known; if we translate the
information on finite p-groups and their projective limits into the lan-
guage of the category of toroidal formal groups we reach the following
conclusions.

Set X = Spf k[[x]] and let the composition law be defined by the dia-
gonal mapping c(x) = χ{£)1 + 1ξξ>χ + χ&χ. The formal group Τ thus
described is said to be multiplicative. If the field k i s algebraically
closed, then Τ is just the injective hull of the simple artinian group Gp

(cf. § 3. 2 example). Further we have
THEOREM 1.2. Every toroidal group over an algebraically closed field

is isomorphic to a subgroup of a direct sum of a finite number of multipli-
cative groups. A reduced toroidal group over an algebraically closed field
is isomorphic to a direct sum of a finite number of multiplicative groups.

This result justifies the use of the word ' toroidal ' . I t was first
obtained by Dieudonne'.

2. I t remains to investigate formal Dieudonne' groups. They constitute
a subcategory of Ind Αι, and for a description of the la t ter Gabriel has
introduced a general technique for reducing abelian categories to cate-
gories of modules.

As already stated, Ind Αι is an abelian category admitting inductive
limits, and the inductive limit of an exact sequence is again an exact
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sequence. Moreover, Ind A\ has a class of generators of finite length (the

objects of Αι). Gabriel calls an abelian category with these properties

locally finite. (We note that Ind Αι admits a convenient realization as

the category of Dieudonne' bialgebras; cf. § 2.7)

A general result of Gabriel [37] states that on a locally finite cate-

gory a certain variant of Pontrjagin duality can be defined.

Namely, let C be a locally finite category, (S
a
) the family of all

simple objects of C (in which each simple object occurs just once) and I
a

the injective hull of S
a
. We set / = ul

a
; I represents in a certain sense

a 'universal' injective object. Denote by Ε the endomorphism ring of I. In

Ε we can introduce a natural topology by taking as a base of neighbour-

hoods of zero the system of all left ideals I C Ε of finite colength

(longgE/l < co). £ is complete with respect to this topology. We denote by

Mg the category of complete topological left £-modules, whose topology is

linear and has a base of neighbourhoods of zero consisting of all sub-

modules of finite colength. Then Gabriel' s result can be formulated as

follows:

T H E O R E M 1.3. The contravariant functor X^>Hom(X,I) defines a

duality between the categories C and Mg.

3. To apply Gabriel's theorem to the category Ind Αι we have

to compute the ring Ε = Ε^ (where k is the base field).

Firstly, in Ind A\ there is just one simple object Sk, which occurs

as kernel of the Probenius endomorphism of the additive group. Explicitly,

S
k
 = Spec k [x]l{x

p
), c (x) ---- χ <g> 1 + 1 <g) x.

The object Sk i s obtained from the analogous object S defined over the
prime field by changing the field of constants. The injective hull Ik of
Sk i s isomorphic to I ® k, where I i s the injective hull of S. The object
I can be computed explicitly. Thus, consider the formal group Wn = Spec An

(completion of the algebraic group of additive Witt vectors of length n).
Let mn C An be the maximal ideal. Denote by W^n' the artinian formal group
Spec ^n/%n and consider the morphism

where χη i s induced by the composition of the morphism V of Wn+1 (we
recall that Vln is defined over the prime field ! ) and the natural mapping
An+1 -> An of the rings of the Witt groups (restriction). Clearly H^1* - S;
i t can be shown that the injective hull I of S is isomorphic to the in-
ductive limit lim W^n) with respect to the morphisms γη. After this the
complete calculation of the ring Ek presents no difficulties.

We summarize the result obtained for formal groups.
THEOREM 1.4. (1) The ring Ek is isomorphic to the ring of non-

commutative formal power series of the form
CO CO

a^w+Σ irFr + Σ W*, w, a, b£W(A)
r = l 3 = 1

with multiplication rules

p, Fw = uPF, wV = Vwa,
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where W(fe) is the ring
1
 of infinite Y/itt vectors over the field k

(wu w2, w3, . . . ) σ = (^> ^ ? . wh • • ·)·

(2) The functor Χ =Φ Hom(X, ife) defines a duality between the category
of Dieudonne' k-groups and the category of finitely generated left E-
modules Μ for which the module M/FM has finite length. The group X is re-
duced if and only if Fx = 0, χ e M(X), implies that χ = 0.

(3) If k' C k is any perfect field, then Xk< = X ® k'. The functor
X =/ Xfc· changing the field of constants is dual to the functor
Μ ~ Efci <E> Μ changing rings. (In other words, there is an isomorphism

M(X ® k') » £(;' ® M(X) which is compatible with morphisms)
Ek

We shall not give a complete proof of this theorem, but confine our-
selves to some comments. Firstly, on the determination of the ring £&. The
elements F, V of this ring are defined so that on the group Υ/(-η"> = X they
induce the corresponding endomorphisms Fx, Vx (cf. end of §3). W(fe) acts
on ^ " ^ ® k by multiplication of Witt vectors. Further, on every group
ft^ = X the endomorphisms Fx, Vx are nilpotent. Therefore, in Ek the
powers F", V" tend to zero in the topology generated by the ideals
Horn(Τ ® fe/^(rl) <g> fe, Τ <g> fe) C Horn(Γ <g) k, Τ ® k), consisting of the
endomorphisms whose kernels contain the canonical image of ff(n^ ® fe in
Τ <8> fe. Thus, the ring Ε = V/(k)o-[[F, V]] with the given commutation rule is
represented in a natural way in Ey, this representation turns out to be a
ring isomorphism.

The assertion that for the formal group X the module M/FM i s of finite
length i s equivalent to the ring of X being noetherian. For if X = Spf A
and m C Μ i s the maximal ideal, then i t i s easily verified that
M/FM = Hom(Spec A/mP, I). The module Hom(Spec A/mP, I) has finite length
if and only if the algebra A/mP i s finite-dimensional; this last condition,
as i s well known, is equivalent to A being noetherian. We remark here that
if X i s reduced, then i t s dimension agrees with the length of the E-module
M/FM.

If the group X i s not reduced, then i t follows from the exact sequence
0 - %red - % — %/Xred — 0 that the module M(X) has a submodule
Rom(X/Xred, ffe) of finite length, because X/Xreci i s artinian. Such a sub-
module is annihilated by a certain power of F. Conversely, let Fx = 0,
x e M(X), x i 0, then the submodule £fe* of M(X) has finite length, and we
find that X has an artinian factor group; but then the ring of this factor
group is embedded in the ring of X, and therefore X cannot be reduced.

The final statement of the theorem can be verified without difficulty.
4. Theorem 1.4 shows that fi^-modules play the same role in the theory

of commutative formal groups that Lie algebras play in the theory of local
Lie groups.

A large part of the subsequent exposition i s devoted to the study of
Dieudonne' modules: the further basic results can without difficulty be
ι W(k) i s a complete local ring of zero characteristic with maximal ideal pW(k)

and residue class field W(k)/pW(k) = fe. These properties of tC(fe) determine i t
uniquely; σ is the unique automorphism inducing the automorphism of raising to
p-th powers in the residue class field fe.
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translated into the language of formal groups. We shall provide here a
small dictionary for such a translation.

The general principle of the terminology consists in this: that we
employ the same word to denote corresponding concepts of groups and their
Dieudonne' modules.

In particular, the dimension of a module is the dimension of the cor-
responding group; a module is said to be reduced if the corresponding
group is reduced; a module is unipotent if the group is unipotent etc.
Following Barsotti [l3], we shall call a formal group X equidimensional if
the kernel of the endomorphism of multiplication by ρ on I is artinian.
Thus, a Dieudonne' module Μ is equidimensional if and only if M/pM has
finite length (and is therefore artinian).

In the sequel an important role will be played by the category of for-
mal groups over modules of the subcategory Ai

oc
, consisting of artinian

formal groups. We shall not define here the concept of a factor category,
which is described in the works of Grothendieck [44] and Gabriel [36], but
confine ourselves to the following remarks. We shall call the formal
groups Χ, Υ isogenous if their images in the factor category mod A\

oc
 are

isomorphic. A morphism X -> Υ is called an isogeny if its image in the fac-
tor category mod A\

oc
 is an isomorphism.

In terms of the category of formal groups, to say that X and Υ are
isogenous amounts to asserting the existence of subgroups X

o
 C X, X' C X

and Y
o
 C Y, Y' C Υ satisfying the following conditions:

(a) the groups X
o
, Y

o
 and Χ/Χ', Υ/Υ' are artinian,

(b) the groups X'/XQ and Y'/Yo are isomorphic.
It is clear that isogeny is an equivalence relation. The formulation

of the corresponding concept for Dieudonne' modules may be left to the
reader. The relation of isogeny (modules and groups) will henceforth be
denoted by the symbol ~, and the relation of isomorphism by =.

The notion of isogeny for algebraic groups is defined in exactly the
same way as for formal groups. A morphism between algebraic groups is an
isogeny if and only if the corresponding morphism between formal groups is
an isogeny. Algebroid formal group may be isogenous (and also isomorphic)
without the corresponding algebraic groups being isogenous. Nevertheless
we have the following result on the extension of 'local' isogenies to
global isogenies (which is known to be false for general morphisms of for-
mal groups).

P R O P O S I T I O N 1.6. Let Xbe the completion of an algebraic group X and
φ:Χ -* X' an isogeny-epimorphism of formal groups. Then there exists an iso-
geny f:X -· Υ of algebraic groups such that X' is isomorphic to the comple-
tion Υ and the isogeny φ is the isomorphic completion f of f.

In the case when X is reduced this result follows from the Barsotti-
Serre theory of inseparable isogenies. In the general theory it is a con-
sequence of the theorem on the existence of a factor-group X/X

o
, where

Xo C X is an algebraic subgroup (in particular, a locally artinian sub-
group; cf. the report by Grothendieck [43] and the paper by Cartier [ΐβ]).
For the locally artinian subgroup X

o
 - ker Φ of the formal group X may also

be regarded as a subgroup of X, and setting Υ = X/X
o
 it is sufficient to

consider the natural epimorphism f:X - Y.
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§ 5. Comments

The fundamental working tool in the series of papers by Dieudonne' is

the algebra of a formal group (called a hyperalgebra there). Dieudonne'

introduced it in [33] as the algebra of invariant differential operators

in analogy with the classical case. Cartier [ΐδ]-[2θ] characterized hyper-

algebras axiomatically and was the first to turn his attention to the

fundamental role of the linear duality. A full 'symmetrization' of the

theory from this point of view was first achieved in the paper by Gabriel

[37] (cf. also the report by Cartier [20] in Brussels), where not only the

hyperalgebras of reduced formal groups were studied, as Dieudonne' had done,

but also artinian bialgebras and their inductive and projective limits,

which lead to a considerable simplification of the theory.

In the paper [13] by Barsotti and also in his report [14] there is an

interesting study of duality on the level of Dieudonne' modules. In the

application to abelian varieties this provides a 'symmetry condition'

which is established by other methods in the fourth chapter of the present

paper. Besides, Barsotti introduces new variants of the Witt formalism and

new operations on generalized Witt vectors, and he states that in this way

he can transfer the classical theory of differentials of the third kind to

the case of a base field of finite characteristic.

In the papers of Gabriel and Barsotti only commutative groups are con-

sidered; while non-commutative groups are indispensable for various

theories, results on their bialgebras are given only in the paper [29] by

Dieudonne', and at an inadequate technical level. Apparently the complica-

tion of the study of non-commutative bialgebras is connected with the fact

that in place of the diagonal mapping of the algebra into the tensor pro-

duct with itself, the natural object of study in this case is the diagonal

mapping of the algebra into its free product which is much less amenable.

(Cf. the construction of the Hausdorff formula in finite characteristic in

the paper [28] by Dieudonne'.) All the same, the study of non-commutative

bialgebras, which includes as particular cases finite groups (possibly

with operators) and restricted Lie algebras, presents a definite interest.

New facts can be obtained here even near the surface: thus, in the note

[7] the author has shown that the translation of Cayley' s theorem to the

case of non-commutative bialgebras is obtained immediately from the

theorem on the embedding of restricted Lie algebras in Jacobson algebras;

the latter play here the role of the symmetric group.

Dieudonne' modules were introduced by Dieudonne' in the papers [27] and

[30], where he also established the fundamental theorem on the connection

between modules and groups. It should be noted that the Dieudonne' module

appears here as covariant and not as contravariant functor, because

instead of an injective object he considers a projective object ( 'free

commutative hyperalgebra'). In the paper [13] Barsotti gives a connected

account of this part of the theory from a point of view very close to that

of Dieudonne'.

The results on the multilinear duality of the operators F and V are

not clear in the Barsotti duality [l3], while they make the classification

of artinian abelian groups by Gabriel and the structure of the ring £fe

considerably more transparent.
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A question that arises naturally i s the study of formal groups over
rings, and not merely over fields. In this direction there are only some
results by Lazard [5l]-[53] concerning the case of commutative groups. His
fundamental result, which is not covered in the subsequent investigation,
consists in the proof of the existence of a 'universal group law*. Namely,
there exists a ring A and a diagonal mapping

c: Al[xu ..., xn\) -* A[[xx, ..., xn}]®A[[xu ..., xn]},
A

such that for any integral domain Β with a 'group law*

c'\ Β [[xu . . ., xn]\ - » Β [[art, . . ., a;,,]] ® Β [[xu ..., xn]\,
Β

on the schema Spf B[[x
lt
 x

n
]] over Spec B, the law c is obtained as

the image of c under a certain homomorphism A — B. in other words, the

functor on the category of reduced affine schemata Spec Β that associates

with every schema the set of formal group laws over this schema is repre-

sentable (cf. Grothendieck [4l]). Unfortunately, the discussion of group

laws (i.e. groups with a 'fixed coordinate system') instead of the groups

themselves makes this result almost inapplicable.

In the paper [52] Lazard shows that all one-dimensional reduced formal

groups are commutative.

§ Chapter II

DIEUDONNE MODULES; CLASSIFICATION UP TO IS06ENY

The basic aim of this chapter is the classification of ̂ -modules up to

isogeny. For this purpose the ring Ε can be replaced by a certain principal

ideal ring Ep (cf. § 1) over which the classification of modules can be

carried out completely. In the first section we shall carry out the reduc-

tion to the ring Ep, and in the second the classification of modules (over

a certain more general ring, which is necessary for technical reasons). The

second basic result of this chapter - Theorem 2.2 in§ 3 - is new. It will

only be needed in the fourth chapter and may be omitted on a first reading.

In the fourth section we summarize the results of the classification in

the language of formal groups.

§1. Reduction of the problem

1. Let Ε be the ring defined in the preceding chapter; we shall take
the field k to be fixed, unless the contrary is expressly stated, and we
may therefore omit the index k. A finitely generated ^-module Μ with the
further condition that M/FM is of finite length, is called a Dieudonne'
module. The basic aim of this chapter is the classification of Dieudonne'
modules up to isogeny. The method of classification is due to Dieudonne'
and rests on the fact that the isogeny of modules is equivalent to the iso-
morphism of the extended modules relative to a certain other ring. This new
ring turns out to be a principal ideal ring.
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More precisely, consider the ring Ep - Y/(k)a ((F)) consisting of all
formal series of the form

with multiplication rule Fa = a
a
F. The ring Ep is a right £-module; for

any Ε-module Μ the tensor product Mp - Ep® Μ may be considered as a left

Ε

Ep -module.
P R O P O S I T I O N 2.1. (1) The Dieudonnt E-modules Μ', It" are isogenous if

and only if the Ep-modules Mp, Mp are isomorphic. (2) For any Dieudonne
Ε-module Μ the Ep-module Mp is periodic.

PROOF, (l) Let M' ~ M"; we shall show that M'p = M'p. It is sufficient
to consider two cases: (a) M' is a submodule of finite colength in M";
(b) M' = M"/M

o
, where M

o
 is a submodule of finite length. In case (a) it

is clear that MpCZMp·. The opposite inclusion follows from the fact that
for a certain k *%. 1 we have F

k
M"CZM' (because long Μ"/Μ' < co) and so

M"CMp. In case (b) the epimorphism h:M" -> M' induces an epimorphism
hp-.Mp - Mp. Let χ e ker hp, χ = F'

k
y, y e M", k > 0; then hp(x) = F"

fe
h(y) =

= 0, hence F
l
h(y) = ο and so F

l
y e M

o
. since M

o
 has finite length, y is

annihilated by a certain power of F and so χ = F~
k
y = o, which shows that

hp is an isomorphism.
(Clearly the proof consists in repeating the argument used to show

that localization is an exact functor.)
Conversely, let Mp « Mp, where the modules M' and M" may be taken to

be reduced, because every noetherian ^-module is isogenous to its maximal
reduced factor-module. Then the natural mappings M' -> Mp and M" -> M'p are
inclusions. We shall identify Mp and Mp by means of the given isomorphism
and regard M' and M" as submodules of M'p. Since M' and M" are finitely
generated, it follows that there exist integers k, I such that F

k
M'CZ M"

and F
l
M"C M'. (For let (x

it
...,xs) be any finite generating set of M";

any element of this set may be written in the form %i = F~
l
iyt, where

yi e M'; put Ζ = max l{. The existence of k follows similarly.) Prom the
inclusions F

k
M'd M", F

l
M"d M' there follows the isogeny of the modules

M' and M" because long M'/F
k
M < oo and long M"/F

k
M' 4 long M"/F

k+l
M' < oo.

(2) Let us show that the £f-module Mp is periodic. Clearly it is
enough to show that for any element χ belonging to the image of Μ in Mp
there exists an element g e Ep such that gx = 0. We shall denote this
image by the same letter M. Since FV - p, it follows that (pF~

1
)MCZM. Now

assume that the annihilator of the element χ vanishes. We denote by Ep the
ring of all series with non-negative exponents for F. The set M' of all
elements a e Ep for which ax e Μ is an £^-submodule of Ep isomorphic to
the £f-module Μ (the isomorphism being given by the mapping a -· ax). But Μ
is a finitely generated Ep-module; it is generated by the inverse images
of the non-zero elements generating M/FM over E. It follows that M' is
finitely generated. Since (pF'

1
)

1
 e M', we have for some η > 1,

and so p" e FEp, which is impossible.

Hence Mp is a periodic module and the proposition is established.
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§2. Modules over the ring A

1. In this section we denote by A a ring of a more general form than
Ep in §. 1. The precise definition follows.

Let k be a perfect field of characteristic ρ > 0, W(k) the ring of in-
finite Witt vectors over k, e > 1 an integer, U = W(k)[n]t where ne = p,
a:U - U an automorphism of U such that π°" = κ, and Λ = ϋσ((Τ)) the ring of
Hilbert power series with coefficients from U; this consists of all ele-
ments of the form 2 a i^ 1 · ai e U> with the multiplication of terms

carried out by the commutativity rule Τα = ασΤ, where a e U.
The aim of this section is to study finitely generated ^-modules; i t

turns out that A is a principal ideal ring, and in the case of an algebra-
ically closed field k this enables us to obtain a complete classification
of Λ-modules. These results, concerning the case of a finite field k, will
be needed later on for computations on the formal structure of abelian
varieties.

2. PROPOSITION 2.2. All right and left ideals of the ring A are
principal.

PROOF. Vie confine our attention to left ideals; the case of right

ideals is precisely analogous. For any element f - 2J a{Tl, a{ e U, <zm / 0,
i—m

we put s(f) = v(am), where ν is the π-adic exponent in the ring U. We
shall prove that A is euclidean relative to the function s. This means
that for any pair of elements /, g e A there exist q, r e A such that

f = gq + r, s(r)<s(g) or r = 0.

For the proof we can restr ict ourselves to the case s(f) > s(g) and assume
that f i gA. Set d(f) = m (suffix of the first non-zero coefficient); then
there exists ςΊ such that d(f - gqx) > m + l. For we may put / = / ' + /",
where

and the element e is invertible and d(e) = 0; similarly we put g = g' + g",

where g' = n
s
^s)Td(g)h, h is invertible and d(h) =0; moreover d(f") >d(f) +1

and d(g") %, d(g) + 1. Then /' = g q
x
 for some q

lt
 and it is not hard to

see that d(f - gq
x
) 5. m + 1. Now if s(f - gg

t
) 5. s(g), the process may be

repeated; it cannot continue indefinitely, because d(qi
+1
) 5. d(qi) + l;

therefore the series Sqi converges in A and by an unlimited repetition of
i

the process we would obtain g Σ q{ = f, which was excluded.

i
COROLLARY 1. The ring A is noetherian (Jacobson [2], Ch. 3, 2).
COROLLARY 2. Every finitely generated periodic left Α-module is iso-

morphic to a direct sum. of cyclic Α-modules of the form A/Aq, where either
q = Til, i > 1, or

h-i

? = Σ aiP + cT1', c£A, </(c) =0, s(c) = 0, a^nU (2.1;
i=0

PROOF. In fact every periodic module over a principal ideal ring is a
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direct sum of cyclic modules. It therefore suffices to show that the gen-

erators can be chosen to have the form indicated.

Let Μ = A/Aq; if d(q) t 0, q = T
d(
-
(
i
)
q , then A/Aq' is isomorphic to M,

so we may assume that d(q) = 0. Put q = n
m
q

1
, where q

1
 e A and m ̂  0 is

the greatest integer for which such a decomposition is possible. The ele-

ment c/i can then be expressed in the form subject to the given condition:
OD CO

in the decomposition qx = 2J αχΤ" we put h = min{i|v(ai) =θ}, c= 2Λ etjT1 .
i=0 >=Λ

Therefore it is enough to show that

A/An'"^ ̂  A/An"'

(Direct sums in the category of modules will be denoted by the symbol 0 .

This follows from Fitting's Lemma (cf. Jacobson [2], Ch.l, 5), applied to

the endomorphism of multiplication by Tt (we recall that κ belongs to the

centre of A). Thus, Corollary 2 is established.

3. The module A/K
m
A = Μ is indecomposable, and any submodule of Μ is

of the form K
l
M, 0 ̂  i 4 m. This follows from the fact that every divisor

of n
m
 is of the form π

1
, to within unit factors.

The modules A/Aq, where q is of the form (2.1), yield to further ana-

lysis. We shall make use of the fact that if u e A is any invertible

element, then A/Auq is isomorphic to A/Aq. We shall show now that by such

a transformation q may be reduced to the form (2.1), where c = 1; this is

analogous to the well known 'Weierstrass preparation theorem' .

L E M M A 2.1. There exists an invertible element u £ A such that

PROOF. If we put % = c"
1
, then u^q = 7* mod nA. Suppose that we have

already found an element u
n
 e A such that

u
n
q s= Σ b'^r + T

h
 mod n»l,

where b^ enU. We try to determine u
n+
 = u

n
 + κ

η
ν from the conditions

h-l

(un + πην) σ - Σ bT+1)Tl + Th mod nntlA, bf+v = i f modπ\

For this purpose i t i s sufficient to find ν mod η from the equation
fi-i

π " η (u«9 - 2 6ΓΤ* - 2*) + UCJ" = <h_t (Γ) mod π,
i=0

where th-i(T) is a polynomial of degree h - l in T, but otherwise arbitrary.

This congruence can always be solved, because c is invertible. Thus the

lemma is established.

A polynomial of the form Z. aiT
1
 + 7", where a^ = 0 mod 7t, is said to

i=0

be distinguished. A further reduction of a cyclic Α-module whose annihi-

lator is generated by a distinguished polynomial can be obtained if we
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assume that the field k is algebraically closed and the automorphism σ is
induced by a certain non-zero power of the Probenius endomorphism

(a,, a2, . . . ) f f = ( a f \ af, . . . ) , k φ 0.

The f irst result states that a non-commutative distinguished poly-
nomial can then be decomposed into linear factors over a certain purely
ramified extension ring. For the proof we shall make use of the Newton
polygon.

4. LEMMA 2.2. Let the field k be algebraically closed and let
fi—1

q = 2. a^T1 + 7" be a distinguished polynomial. Then there exists an

integer m > 0 such that over the ring U' = [/[π1/™], (Κ1/Μ)σ = η1/"1 (in the
ring Aln1'"1], by definition, Τη1'"1 = n1'^), we have an equation of the
form

where the elements u{ e {/[τι1'"1] are invertible.
PROOF. I t is sufficient to show that over the given purely ramified

extension of U any distinguished polynomial has a linear factor: the
assertion then follows by induction on the degree of the polynomial.

A splitting criterion can be given in the following form: the equation

q(T)=Y.aiT
i = qi{T){T-a) (2.2)

t=0

is equivalent to the relation
h

2
Λ | α
1+σ+...+σ*-1

=
() (

α
1+...+σ<-1

=1 f o r i = 0
) .

The proof follows by equating coefficients in (2.2) and eliminating the

coefficients of q\(T) from the resulting system of equations.

Using this criterion we shall show that if the integer s defined by

the condition

i s 1, then a linear factor can be found already in A itself. For this pur-
pose i t is enough to prove the solubility of the equation

h

j 2ai ix 1 V + ( T + ---+ a i ~ 1 =0 (2.3)

for an invertible element χ e U. We have ν(α;) > r(h - i); if we put

a; = τΐ
Γ
^

!
~

ι )
6;, then (2.3) is equivalent to the relation

τ ί + · · · + σ ί ~ 1 = 0, b,£U, (2.4)

in which at least two coefficients bi do not l ie in KU. The equation (2.4)
has a non-zero solution mod π. Assume that we have already found an in-
vertible solution of this equation mod κη:

h

Σ Μ»*? · · · rf~X = nnc, xn $ aU, c g U.
i=0
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Put Xn+ί = Xn = Kny, clearly

Π *£. = U *? + «n Ϊ *» · · • *,<f ~ W + 1 • • • 2-Γ1

fe=0 h=0 h=0

(we recall that xn 4 0 mod 7t). Therefore the condition

h

.Σ M»i+i*2+i . . . χ^Τ - 0 mod π' ι + 1

gives

c + Σ δι 'Ϊ1 xu · · · a:f~ W + 1 · · · «S*"1 = 0 mod π.
i=0 h=0

This is a non-linear equation in y and the coefficient of the power •f

is not zero. Its solubility therefore follows from the fact that k is

algebraically closed. Consequently q(T) is divisible on the right by a

factor of the form Τ - n
r
u, where u e U is invertible.

r (ai)
If however— = min . is not an integer, we reach our object by

s η — ι

going over to the ring Uin1'3] (v is understood to be the normalized ex-
ponent taking al l integer values). The lemma follows.

REMARK. For the applications i t i s convenient to have the following
somewhat more precise variant of the condition for the splitting into
linear factors. Namely, in the notation of the proof of Lemma 2.2, let

(ai)
s = 1 and let j be the least value for which : : = r. Then we may at

h - )

once split h - j linear factors from <j(T) with the same exponent for the

root:

q = q'(T-n
T
x
1
)...(T-n

r
x

h
-j),

where x{ e U is invertible.

For the proof it is enough to verify that if

i=0 i=0

v(fai) v(6i)
then min — - — . = r and - — r < r for ι < j, and the required result

n — 1 — ι h — 1 — ι

is now obtained by induction on h. Indeed,

a
i
=b

i
-

l
—bin

r
x

at
 (t>l), a

0
 — — n

r
b

a
x,

so that v(b
0
) = V(a

0
) - r s- r(q - 1). Using the fact that ν(α;) > r(q - i)

and that strict inequality holds for i < j, we may proceed by induction on

i. Suppose that we have shown that v(faj_
1
) 5. r(q - i) (with strict in-

equality for i < j); then V(bi) >, r(q - i - 1) (with strict inequality for

i < j). But then we obtain an equality for i = j, because this holds for

the coefficients α
ίφ
 Thus, everything is proved.

5. LEMMA 2.3 . Let Μ = Α/Αρ(Τ), where
/. — ι
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Denote by Κ the quotient field of U. Then there exists on Μ a vector space
structure over Κ which is compatible with the U-module structure. This
structure is unique and the dimension of Μ over Κ is h. (Here we do not
assume that the field k is algebraically closed.)

PROOF. For the existence proof it is sufficient to define multiplica-
tion by n'

1
·^ - Μ and to show that this is compatible with the action of U.

Let us put

-p(T) = T
h
(nq(T)-l), q(T)£A.

It is clear that q(T) is uniquely defined by this condition. Then
rtg(T) = 1 mod Ap(T). We put π'1χ = q(T)x for the generating element
χ = 1 mod Ap(T). i t is not hard to convince oneself that this gives the
required result. The uniqueness of the linear space structure is clear.
The dimension of this space is h, because we may take as basis the images
of the elements 1, T, .... I*1'1.

6. LEMMA 2.4. Let M = A/AbcDN = Ac/Abe. Then the submodule Ν is a
direct summand, Μ - Ν®Ρ, if and only if the equation xb + cy = 1 is sol-
uble (in the ring A). Tn this case P « A(l - yc)/Abc = A/Ac.

PROOF. We verify f i r s t that Ν = A/Ab. Let e = 1 mod Abe e M. Then the
ideal Abe i s the annihi lator of £, Μ = A?,, N = Ac*. The annihi lator of eg
i s the ideal Ab, so that Ν =· A/Ab.

Let Μ = Ν © Ρ, Ζ = ZN + Zp the corresponding decomposition, and
ζρ = d!i, where d e A. Then the element Β,ρ generates Ρ and aZp = 0, i . e .
aZ e N, so that α e Ac, and i t follows that Ρ = A/Ac.

Put % = ycZ, then 1 - yc - d e Abe, because Ζ = ycZ + dZ, and the
element d i s defined up to all element from Abe, so that we may assume that
d = 1 - yc. Prom the equation c( l - yc)B, - 0 i t follows that c( l - yc) =
= xbc, so that 1 - cy = xb. The reasoning may also be reversed: from the
equation xb + cy = 1 i t follows that Ν + AdZ, = M, where d = 1 - yc; i f
zci, = vdZ e Ν Π AdZ and zc - vd = wbc, zc - ν + vyc = wbc, ν e Ac, then
cd e Acd = A(c - eye) = Axbc, i . e . vdZ = 0, so that Ν f] AdZ = 0. Thus the
lemma i s proved.

7. The next step consists in the study of modules of the form
A/A(T - a).

LEMMA 2.5. The module A/A(T - a) is simple and isomorphic to the
module A/A(T - Kr), where r - V(a). Moreover, any extension of two such
modules is trivial.

PROOF. Consider the module A/A(T - a); i t i s zero i f v(a) = 0, so l e t
v(a) -f 0. We denote the quotient f ield of U by Κ and on Κ define a l e f t
4-module s tructure by putt ing Tx = χσα (cf. Lemma 2.3). The mapping
A/A(T -a) -> Κ in which 1 mod A(T - a) corresponds to the unit element of
Κ i s an Α-module isomorphism. Now Κ and A/A(T - b) are isomorphic as A-
modules i f and only i f there exis t s an element y e Κ such that Ty = by,
i . e . yaa = by. If t h i s equation has a solution, then ν(α) = ν(6); the con-
verse also holds, namely that the given extension has a solution mod κ, as
in the preceding lemma.

Now l e t 0 -> Mx - Μ - ^ - O be an exact sequence of 4-modules, and l e t
Mx = A/A(T - a), M9 = A/A(T - b). Let χ ε Mt be the image of the unit ele-
ment of A and y e Μ an element such that f(y) represents the image of the
unit element of A in M2. I t i s clear that x,y form a /i-basis for the
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space M. To establish the result i t i s enough to find an element χ such
that the pair χ, χ i s a /(-basis for Μ and Tx' = bx'. We shall write χ
in the form χ - y + Ex, where 5 e /f; then

7V = J ? y + ξσβχ = by 4- ex -1- laax =

Hence ? must satisfy the equation b
5
; - *

σ
α = c, where a, 6, c are given

elements of the field K. This equation can always be solved by the method

of successive approximations.

The lemma is now proved.

COROLLARY. Letp(T) = [] ( Γ - KrUi); then
i

A/Ap(T) *, ®A/A(T -ar).
i

LEMMA 2.6. Every cyclic module A/Aa, a i TiA, is semisimple.
PROOF. In any case the module A/Aa becomes semisimple i f we replace

the ring A by A [ W S ] , since the equation xb + cy = 1 (cf. Lemma 2.4),
where b,c e A, i s soluble in Α [ π 1 / 8 ] . We set

s-l s-1

i=0 i=0

then xob + cy0 = ι and x0, y0 e A; by Lemma 2.4 this establishes the
result.

8. The final result i s a consequence of the preceding ones.
LEMMA 2.7. Let M- A/Ap(T), where p(T) is a distinguished polynomial.

Then W = © A / A ( i l - κ l ) , where ( s i , r i ) = 1 and S J , r j a r e i n t e g e r s .
i

The modules A/A(TS - Kr) are simple and for different pairs (s,r) are
pairwise non-isomorphic.

PROOF. Put As = Aijt 1/ 5], For a given s the As-module Ms = As (g> Μ
A

i s isomorphic to the direct sum © AS/AS(T - rc r/ s). Let χ e Ms be an
r s - l

element such that (T - W 5 ) * = ο, χ ~ Σ nl//sxi, xt e M. Then
7=0

(Ts - nr)x = ο and hence (Ts - Ttr)x{ = 0, because the submodule Axid Μ
i s a factor module of A/A(TS - nr). We shall show that the la t ter module
is simple if (s,r) = l. For otherwise we have a simple submodule
M' d A/A(TS - Kr), where Μ' ~ A/Aq(T), with a distinguished polynomial
q(T). The degree of q(T) must be less than s, because the dimension of M'
as K-space is less than that of A/A(TS - Kr), which is equal to s (cf.
Lemma 2.3). Therefore over some ring A* the decomposition of Μ will con-
tain a factor of the form At/At(T - τΐΓ /s ) , s 4 s. which is impossible,
because AS/AS(T - Kr's) remains simple over any extension of A of the form
A [W"].

I t has already been shown that an extension of simple modules is t r i -
vial. Thus the lemma is established.

We can now formulate the classification theorem for periodic A-modules.
THEOREM 2.1. Let k be an algebraically closed field of characteristic

ρ > 0,.Tie = p, r>:W(k)[n] -. W(k) [π] an automorphism that leaves n fixed and
on k induces a certain non-zero power of the Frobenius endomorphism; and
let A = W'(fe) Wcr((T)) . Then any periodic Α-module is isomorphic to a
direct sum of modules of the form © A/Anki © A/A(TrJ - Ksj). The module
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A/Aftr is indecomposable; the modules A/A(Tr - Ks) are simple and pairwise
non-isomorphic for (r,s) = 1; if (r,s) = d, r = rod, s = sod, then

Α/Α (Γ - ns)^dA/A (Tr° - π* 0 ) .

(Here and in the sequel we shall use the symbol dM to indicate the
direct sum of d modules isomorphic to M.)

§3. A technical result

1. With the same assumptions as before, let Μ be an 4-module without
π-torsion of the form A ® Mo, where Mo i s a (periodic) Vi(ka) [π]σ((Γ))-
module, kadk being the field of pa elements. Let Ka be the quotient
field of the ring W(ka)bi]. Since T° l ies in the centre of the.ring
W(ka)[π]σ((Τ)), i t follows that multiplication by Γ° induces a certain

7 1 - 1

endomorphism Λ on the l inear space Mo over Ka. Let Ρ(λ) = ZJ α>λι + λ η be
i=0

the characteristic polynomial of Λ , where a; = 0 mod κ. We shall assume
that Ρ(λ), as commutative polynomial, splits into linear factors over a
ring of the form W(kt,) [ W

f e
] , where b = 0 mod a, k > 1: Ρ(λ) = ft (λ - Tj)

Ti e W(kb) [n
1
^]. Under these conditions we have

T H E O R E M 2.2. Let r
c
 be the number of roots tj of Ρ(λ) such that

= ic (V is the exponent for which V(7t) = 1). Set a
c
 = cr

c
. Then

2. We preface the proof by the following lemma.

LEMMA 2.8. For k,a> 1, put Ak. «- V(k) [^^^((T ")). Tax = χσαΤα,
Δ = ̂ ι , ι · If two Α-modules without n-torsion Mlt M7 are such that the
Akia-

m°dules Λ/χ [π 1/*] and Μ2[τί1' ] are isomorphic, then Μί ^ MQ, qua A-
modules (where we have put Mln1'*) in place of Α[η1'*] ® Μ)•

A
PROOF. Clearly i t i s sufficient to examine the cases k = 1 and α = l.
1) k = 1. Let Μ = A/A(Tr - ns), (r,s) = 1. By the classification theo-

rem the 41<a-module Μ is isomorphic to © Ait α/Αχ> a(Tari-nsi). We shall now
i

compute t h e (ri,si). Let (a, r) = d, a = aod, r = rod. The elements χι = Tl

mod A(V - Ks) of Μ at any rate generate i t as Ala-module, On the other
hand, Txi = Ksxit whence Taorxi = π α ο* Λ ί . Therefore (Taro - π ^ ) ^ = ο,
and so the /41<a-module Μ is periodic and homogeneous (= isotypic) of type
4 , aMi, a(Tar° - Ka°s), (ro,aos) = 1. The dimension of this simple module,
as space over the quotient field of W(k)[n], is r0, therefore the number of
components is rro1 = d. Thus,

M~Al<a/AUa(Tar-n«*)^dAliaiAlta(T<"-°-n«<>°) (2.5)

(isomorphism of Alt a-modules). Now the assertion of the lemma in the case
when Μ i s simple i s an immediate consequence. The general case i s obtained
if we observe that the equation Μ = Mt © M2 for Λ-modules remains true
when we regard i t as an equation for Alta-modules, and that homogeneous
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modules of a given type remain homogeneous of a given type under passage
to the ring Ala, as follows from the relation (2.5).

2) a = l. The argument is very similar, but even simpler. Put
n1 = π 1 /*, (r,k) = d, r = rod, k = kod; then the Α̂ _ χ-module M ^ ] , where
Μ = A/A(V" - ns), i s isomorphic to Akil/Ak>1(Tr - TT*S). clearly the Afe>1-
module Λί^] is generated by the element χ = 1 mod A(V - KS), for which
( j r 0 _ πξο«)χ = 0 > therefore MfaJ = dAki i/Aki i(T r° - π^ο«). The r e s t of
the argument i s as for the case k = l.

3. Proof of Theorem 2.2. By the preceding lemma i t i s enough to esta-
blish the isomorphism for Afl) b-modules:

Note that we may assume that b = a, because α can be replaced by any mul-

tiple of itself without changing the statement of the theorem.

Over the ring V/(k
a
) [π]((Τ°)) = Β the module M

o
 is isomorphic to

©B/BPiiT
0
), where Π Pi (λ) = Ρ(λ) is the given decomposition of the com-

i i

mutative polynomial Ρ(λ) into its factors. Hence the 4
l a
-module Μ is iso-

morphic to ©A
iia
/A

lia
P
i
{T

a
). We adjoin remand decompose PiiT

0
-) into

i

(commuting) linear factors: PiiT
1
) = Π (Τ

α
 - i n ) , where in are the roots

of Pj(X). Now the essential point is that any non-commutative factorization
under our assumptions coincides with the commutative factorization, because
T° lies in the centre of the ring W(k

a
)[u

1
/
k
]
a
((T)). Hence it follows that

the Afe
Q
-module iMfW*] is isomorphic to a direct sum

(Γ-τ
1
)^θ'ν4*,αΜ

i c

by Lemma 2. 5, i. e.

I t only remains to verify that after the adjunction of TT1/* the module
A/A(Trc -nsc), qua. Akj a-module, remains isomorphic to Aĵ  JA-k, a(

T<irc -
but this can be established as in the proof of Lemma 2.8.

§1. Classification of formal groups up to isogeny

1. We shall now summarize the results of § 2 and apply them to the
ring Ef. in this case u = ρ, Τ = F and any periodic £f-module is isomorphic
to a direct sum of the form

Μ' - @EF/EF (Fri - psi)®EFlEFp\ (r i ( s,) = 1.
i t

We shall show that M' is isomorphic to Mp, where Μ is a given Dieudonne'
Ε-module, if and only if rj > SJ for all i. The sufficiency of the condi-
tion follows from the fact, which is easily verified, that for r > s
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EFIEF (Fr-ps).^EF@(E/E (Fr's - V'))

and
EF/EFp'^EF@(E/EV').

Ε

This condition is also necessary. In fact, assume that M' = Mp, MCZ M'.
Let Γ! «: slt say, and let F'hx(xeM) be the image of 1 mod Ef(Fri - p s i )
in the first direct summand of the decomposition M'. Let
o! = l _F si~ riV si e E; then i t i s easy to see that ax = 0, which is impos-
sible, because χ £ 0 and α is invertible. This contradiction shows that
r{ 4 S{ cannot hold.

2. Denote by C ^ , the formal group whose Dieudonne'module is isomor-
phic to E/E(Fm - Vn) = Mn>m. Clearly this group is reduced. For (n,m) = 1
it is simple in the sense that any epimorphism is either an isogeny or the
trivial mapping Gn>n -» Spec k. This group is defined over the prime field.
Its dimension is given by a simple calculation:

dim Gn, m = long ker FG^ m = longMn> m/FMn, m = n.

Further, i t is convenient to denote the multiplicative group by the symbol
G 1 0 and the group of the Dieudonne' module E/EV" by Gn>a> i t is not hard
to verify that G n c o represents the completion of the algebraic group Wn of
Witt vectors of length η under addition. We shall confine ourselves to
verifying this up to isogeny. In fact, Wn is annihilated by the homomor-
phism of multiplication by p

n, but not by p " " 1 . The same holds for Wn, and
hence Wn ~ © Gn. m> where the equality η = ni holds for at least one i.

But the dimension of Hn is n, therefore Wn ~ Gn < c o. Thus, we have obtained
the following result.

CLASSIFICATION THEOREM FOR FORMAL GROUPS UP TO
ISOGENY. (a) Any formal commutative group is isogenous to a direct sum of
its maximal toroidal subgroups, unipotent groups and groups in which multi-
plication by ρ is an isogeny. This decomposition is unique up to isogeny.

(b) Any toroidal group is isogenous to a group of the form

(c) Any unipotent group is isogenous to a direct sum of indecomposable

unipotent groups G
n C O j
 η > 1.

(d) Any group in which the morphism of multiplication by ρ is an iso-

geny, is isogenous to a direct sum of simple groups G
n m:
 η >\, m ~z. 1,

(n,m) = 1.

REMARK. The introduction of the unifying notation G
n>m
 is convenient,

because for arbitrary values of η and m subject to the conditions

1 < η < oo, 0 < m < oo, (n, m) = 1

(we take (n,co) = 1 for a l l n) the group Gn>m i s determined up to isogeny
by the following conditions:

(a) the dimension of Gnm i s n;
(b) G n m i s indecomposable up to isogeny;
(c) the degree of the endomorphism of mult ipl icat ion of G by ρ i s pn+m

(where p0 0 = 0).
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§ 5. Comments

For non-commutative formal groups no analogue of the Dieudonne' module

is known, and the whole apparatus set up here does not carry over to the

non-commutative case. Regarding this case see also the comments to Ch. IV.

The classification of periodic £f-modules was given by Dieudonne' [3θ];

it has been reprinted without essential changes in the papers by Barsotti

[l3] and Gabriel [37]. We have followed the version of Gabriel, in which

it is technically more convenient to state and prove our Theorem 2.2. The

basic aim of Theorem 2.2 consists in replacing the determination of non-

commutative factorizations of polynomials by commutative factorizations.

Its interest lies in the fact that it makes it possible to carry out an

analogous replacement without having to presuppose that the roots of the

commutative factorization are 'not too badly' ramified. See also Theorem

4.1 of Ch. IV.

Chapter III

DIEUDONNE MODULES; CLASSIFICATION UP TO ISOMORPHISM

The basic aim of this chapter is the construction of the "module space'

(in the terminology of Riemann) for equidimensional commutative formal

groups. A fundamental role in the construction of this space is played by

the concept of a special Ε-module to be introduced in § 2. A special module

serves as point of support for the classification: every module Μ can be

regarded as the extension of a module of finite length by a maximal special

submodule M
o
dM. If we first confine ourselves to modules Μ with a fixed

special submodule M
o
 and such that the length long M/M

o
 does not exceed a

given constant, then it can be shown that these modules are classified by

the orbits of a finite group that acts on a constructive algebraic set

over the base field; this is established in § 3. In §§4,5,6 it is shown that

in any isogeny class of modules there are only a finite number of special

modules up to isomorphism (first finiteness theorem) and that long M/M
o
 is

bounded by a constant depending only on the class (second finiteness

theorem). The representation of a simple module Mp as the tensor product of

the ring W(k) with the endomorphism ring of this module, which will be in-

troduced in § 4, occupies an important place in the proofs. The end of § 6"

contains an extension of the finiteness theorems to the widest possible

class of modules; these turn out to be the reductive modules, isogenous to

a direct sum of equidimensional modules and a module annihilated by V.

The representation of the module Mp to be introduced in §4 also turns

out to be very useful for the better determination of the module space in

certain special cases. In §7 such a determination is carried out for

cyclic isosimple modules, and in § 8 for all two-dimensional modules, which

can be completely classified.

It should be remarked that we are constantly using the algebraic and

quasi-algebraic structure on rings of the form Wh(k) (Witt vectors of

length h over k) and modules over rings of this form. The necessary tech-

nical introduction to these structures is set out in the papers of
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Greenberg [38] and Serre [57], [58].
Throughout this chapter the base field k i s assumed to be algebraically

closed.

§1. Statement of the problem

1. The basic result obtained in Ch.II states that every £-module of a
Dieudonne' group i s isogenous to an ^-module of the form

@E/E (Fmi - Vni)@ElEVTJ,
i j

where (ni,ni) = 1 and mi, rij, ry are natural numbers. The module E/VE i s
the Dieudonne' module for the completion of the additive group of Witt
vectors of dimension r. This group i s unipotent; therefore an £-module
isogenous to a module of the form Q)E/VE will also be called unipotent,

Γ

while an fi-module isogenous to a module without components of the form
E/VE is called a module without unipotent components, or an equidimen-
sional module (cf. Ch.I, §4,4).

2. The task of classifying ^-modules up to isomorphism is solved in
this chapter for modules without unipotent components. This limitation is
due to the fact, already mentioned, that the basic result of the classifi-
cation, according to which the reduced ^-modules without unipotent compo-
nents that are isogenous to a fixed ^-module are parametrized by the
orbits of a finite group acting on a constructive algebraic set over the
base field, in general no longer holds for modules with unipotent compo-
nents. Prom the global point of view our limitation may be expressed by
saying that we discuss only completions of abelian varieties, leaving
aside the unipotent (commutative) linear groups, which form a class about
which little appears to be known. An analogous situation obtains in the
classical theory, where semisimple Lie algebras lend themselves to a com-
plete classification, which is very much more than can be said for
algebras with a radical.

§ 2. Auxi1iary results

(The word "module' always refers to a Dieudonne' ̂ -module here, unless

the contrary is expressly stated.)

1. For every module Μ the symbol Mp denotes the Ep-module Ep ® Μ
Ε

defined in Ch.II, §1. Let us agree to define the action of the automor-

phism ο on Ε by putting F
y
 = F, V = V. The elements of Mp are the

expression.
0
 F~

k
x, χ e M, with which we operate according to the following

natural rules:

•iF-tz = F-'iaohx, αζΕ; F~hx + F']y = /"* (x + Fkly), k >l; F-kx = F~ly

i f and only if T s (Flx - Fky) = 0 for some s > 0.
An ί-submodule M' of Mp i s said to be dense if Mp coincides with Mp;

sometimes we shall also say that M'd Μ is & dense submodule; this means
that Mp = Mp.
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LEMMA 3.1. A reduced Ε-module M' is isogenous to an Ε-module Μ if
and only if it is isomorphic to a dense E-submodule of Mp.

PROOF. The sufficiency of the condition follows immediately from
Proposition 2.1. The necessity follows by considering the composition

mapping M' -> Mp -> Mp, where i i s the canonical homomorphism, which i s an
embedding if M' i s reduced, and j i s an isomorphism whose existence fol-
lows from the isogeny of M' and Μ by Proposition 2.1. Thus the lemma i s
proved.

In order to classify the reduced modules isogenous to Μ i t i s there-
fore enough to consider the dense submodules of Mp.

REMARK. Lemma 3.1 can be strengthened as follows: under the conditions
of the lemma there always exists an embedding M' — Up such that the image
of M' contains MdMp (or an embedding such that M' i s contained in M).
For we may confine ourselves to the case when M« ®E/E(Fmi - Vn^)@E/EVJ.
In th i s case the submodule FkM of Mp i s isomorphic to M, for any integer k,
and so the assertion follows.

2. In the sequel we shall simply write W instead of W(k).
LEMMA 3.2. Let Μ = ® E/EiF™1 - V"1). Then an E-submodule Μ' of Mp is

ι
dense if and only if its rank, as W-module, is E(mi + n{).

PROOF. The W-module E/E(Fm - V") i s free and i t s rank i s m + n, because
the elements x0 = 1 mod E/E(Fm - Ψ1), Fx0 Fm-1x0, Vx0 Ψχ0 form a
W-basis. On the other hand, for any dense submodule M' of Mp and any given
integers k, I » ο we have the inclusions pkM'd Μ and ρ MCZM' (cf. the
proof of Prop. 2.1), hence Μ and M' have the same IV-rank. This proves the
necessity.

Now l e t M'd Mp have the rank Y(mi + n{), as W-module. Choose k such
i

that p
k
M' d M. The factor module M/p

k
M' has finite length as (V-module, and

a fortiori as ̂ -module. Therefore ρ Μ is a dense submodule and the lemma

follows.

REMARK. The limitation to equidimensional modules is essential: in

fact, the li'-module E/EV, r > 1, has infinite rank.

C O R O L L A R Y . Equidimensional modules that are isogenous have the

same rank.

In what follows all modules are assumed to be reduced, unless the con-

trary is expressly stated.

3. DEFINITION. An equidimensional module Μ isogenous to a module of

the form fe£/£(F
m
 - V

71
), (m, n) = l (such a module will for brevity be called

homogeneous of type (m,n)) is said to be special if F
m
M = VW.

An arbitrary equidimensional module Μ is said to be special if it is

isomorphic to a direct sum of homogeneous special modules.

EXAMPLE. The module ®E/E(F
m
i - V*i) is special.

i

DEFINITION. Let Μ be a homogeneous module of type (m, ή). An element

χ e Μ is said to be special if F^x = Vi.

An element χ of an arbitrary equidimensional module Μ is said to be

special if its components in the homogeneous components of Μ are special

in the latter.
L E M M A 3. 3. A homogeneous module Μ of type (m, n) is special if and only
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if, as W-module, it has a basis consisting of special elements (called a
special basis). Ν

PROOF. Let xlt...,xpi be a special W-basis and y =Σαίχί, ai e W any

element of M. Clearly

Fmy = Σ ufFmZi = Σ afVn

Xi = Vn Σ af+nxt ζ VnM.
i i t

and similarly V"y e FmM. Therefore Μ i s special.
Conversely, let Μ be a homogeneous special module. Starting from an

arbitrary free W-basis χ^Κ,.,χ^1^ we construct a special W-basis by
the following simple method. The operator V^F" induces a am+"-semilinear
automorphism on the factor module M/pM, considered as ^-linear space of
dimension N. I t i s well known (Pitting) that for such an automorphism
there always exist Ν linearly independent eigenvectors for the eigenvalue
1. We may therefore assume that

F - " Fm 4 1 ' = 4 U mod pM (i = \,...,N).

Now assume that we have already found elements xW such that

v-nFmx{k) Ξ x[k) m o d pkM^ W e a r e l o o k i n g f o r ^ element x(

i

k+1) of the form

x(k+i) = x(k) + php^ I n v e c t o r n o t a t i o n we have x(k) = (x\k)), t = ( S j ) .

y-npmx(k) _ x(k) _ pky^ ^ e condition on t can be written as

y-n pm ^ ( f t ) + ph | ) = x(h) + ph

whence

y -j- V'n F'" 1 = 1 mod pM.

I t i s easy to see that this congruence is soluble: put ζ =
y = x^B, where A and Β are Ν χ Ν matrices with elements in W; then
V-nFnZ = x(k)Aam+n mod pM, and the equation for A = || a i j ||

A-A°m+n = B mod ρ

reduces to N
2
 non-linear equations for the elements a±j mod p, which have

a solution, because k is algebraically closed.

This completes the proof of the lemma.

THEOREM 3. li Let Μ be an equidimensional module. Then among the special

submodules of Μ there exists a unique maximal one, MQCZM. The factor

module M/M
o
 is of-finite length.

PROOF. We express Mp as a direct sum of submodules of the form

© (Mi)f
1
, where Λ/j are the homogeneous components of pairwise different

types. The submodules (Μι)ρ of % are defined uniquely up to order. We

embed Μ in Mp.

The module Μ Π (Mi)p is homogeneous. Let M
O
id Μ Π (Mt)p be the W-

module generated by all the special elements of this intersection. Then it

is clear that A/
O
i is a homogeneous special module, and hence M

o
 =^Μ.

ο
ι is a

ι i

special module. Let M' = © M\ be any special submodule of M, where
M'i = Μ' Π (Mi)p. By Lemma 3.3, M\ i s generated by special elements over W,
and so M'i CZMoit Therefore M' CZ Mo and Mo i s the required maximal special
submodule.
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The module © E/E(F
m
i - V > ) is special, therefore in any case Μ con-

tains a dense special, submodule (cf. the remark to Lemma 3.1). A fortiori

the maximal special submodule M
o
 is dense in M, hence M/M

o
 has finite

length. This proves the theorem.

REMARK. It is not hard to see that the notion of a special element

for any equidimensional module Μ (not necessarily homogeneous) can be

characterized as follows. Let M
0
CL^ be the maximal special submodule,

Mo = ® M
O
i its decomposition as a direct sum of special homogeneous sub-

i

modules (of pairwise different types). Then the element χ of Μ is special

if it belongs to one of the M
0
{ and is special in it. With this definition

Lemma 3.3 remains true for not necessarily homogeneous modules.

§3. The algebraic structure on the module space

1. Let M
o
 be a special module. We shall say that a given module Μ

belongs to M
o
 if the maximal special submodule of Μ is isomorphic to M

o
.

When M
o
 is already a submodule of M, the terminology "M belongs to M

o
"

signifies that M
o
 is the special submodule of M.

Any module Μ belonging to M
o
 can be realized as a certain dense sub-

module of (M
0
)f containing M

o
. For every such submodule there exist

natural numbers h and g such that

M0CZMcZp'hMo, MoC

Let χ e Mp; then the p-height (respectively, F'-height) of χ over the
dense submodule M' of Mp i s defined as the least number h such that
phx e M' (Fhx e M'); the height of a module M"ZDM' i s defined as the max-
imum of the heights of the elements of M" over M'.

For any special module Mo we consider the class of modules Μ belonging
to Mo and isomorphic to modules MZDM0 of p-height at most h over Mo.
Later we shall show that for sufficiently large h this class contains all
modules belonging to Mo. The aim of this section is to introduce into this
class the structure of an algebraic set (for a more precise formulation
see below).

2. THEOREM 3.2. There is a one-to-one correspondence between the set.
of all Ε-modules Μ belonging to a fixed special module Mo "and satisfying
the condition

-
h
Mo, (3.1)

where h > 1 is a fixed natural number, and the points of a certain con-
structive algebraic set 1 over the field k.

PROOF. We shall construct the required algebraic set in several steps.
Let Ν be the rank of the (f-module Mo. As a f irst step we shall para-

metrize the set of al l If-modules Μ satisfying (3.1). For each such module
there exist a W-basis (% *#) of Mo and integers 0 « e^ ^ e2 ^ . . .
ζ ep/ 4 h such that the elements ρ~βίχ1,... ,p'eNxff constitute a W-basis for
M. The system of numbers e = (e1 ejy) defines the module Μ uniquely; we
ι By a constructive algebraic set we understand the union of a finite number of

subsets of a projective space that are locally closed in the Zariski topology.
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shall call i t the index of Μ over Mo. There exists only a finite number
of admissible indices (but the number increases with h).

Any module Μ such that M0CMCL p~hM0 i s completely determined by i t s
image in p'hM0/M0 under the natural homomorphism Μ — M/Mo — p"hM0/M0. The
index of Μ i s (elt... ,ejf) if and only if the corresponding submodule of

p-hM0/M0 i s isomorphic to © Wh(k)/(pei), where Wh(k) is the W-module of

Witt vectors of length h. On the space Ae of such modules the group of
automorphisms of p'hM0/M0 acts transitively; by choosing a basis of this
module we can identify this group with Gk = GL(N,Wh(k)). This group Ĝ
represents the group of geometric points of a certain linear algebraic
group G defined over the prime field of characteristic p; this follows
from well-known facts on the composition law of Witt vectors. (In this
connection cf. the paper [38] by Greenberg and the beginning of the paper
[58] by Serre.) The action may be transferred to Μ as follows: let MZDM0

and g e Gfe. We fix a right action of Gfe on the factor module p'hM0/M0;
then

Mg = {x | χ mod Mo ζ (M/Mo) g}·

We shall show that the stabilizer G
0
CZ G of any given module Μ of

index e is closed. Indeed, let (x
lt
..., xp{) be a W-basis of M

o
,

(p~
e
ix

1
...,p-

eN
XN) a W-basis of M, and x

i
 = pc^oa M

Q
. Let g^

}
(g), 1 4 i,

j4 N, 1 4 k 4 h, be functions on G determined by the conditions

To say that g belongs to the stabilizer G
o
 of Μ means that

ft e -
 N

 It c

ρ ~et<-xhg= 2 p'~ekghiXi€M/M0,

i.e., that

vP(P
h~e>t ght) = vp(gki) +h-eh>h-et.

This condition is equivalent to the system of equations

0, l<ek-ei,
defining a closed subgroup in G whose set of geometric points coincides
with Go.

It follows that there is a natural structure on Ae, and this allows us
to identify this set with the set of geometric points of the homogeneous
space of right cosets G/Go (it is not hard to see that our construction is
formed by analogy with flag manifolds in an ordinary affine space; cf.
Grothendieck [4β]). This concludes the first step.

The second step consists in selecting from the set A
e
 those W-modules

that are also ^-modules. It remains to show that this is an algebraic con-
dition. Let F

o
 and V

o
 be the semilinear mappings of the (f-module M

o
 into

itself that are induced by multiplication by the elements F and V,
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respectively, of the ring E. Let e be a given index and Μ H)M
0
 a module

of index e with basis (ρ'
6ι
Χχ p'

eN
xff). We shall identify F

o
 and V

o

with the matrices that describe their action relative to the basis

\x
N

The conditions expressing that Mg is an Ε-module read

F(Mg)dMg, V(Mg)CZMg. (3.2)

As before, let)j gij ||be the matrix corresponding to g e Gk in the basis

(% XN). We have

F (Mg) = (FM) g», F (Mg) = (VM) g°~
l
;

Now condition (3.2) means that (M)g
CT
g"

1
ZIM, (VM)f

1
g'

i
 C1M, i.e.

M/Mo; || gt,· ΙΓ1 !| g-T111 VA \ Cl Μ/Λ/ο.

Let us denote by G the variety of a l l Ν χ Ν matrices with elements in
Ityi(fe), identify Gk with a subset of G, and denote by Go the closure of Go

in G. Then % i s an £-module i f and only i f

The mappings m^. G - G and ro
2
: G -. G defined by the equations

φι (II ?υ II) H k d r *

are morphisms of the quasi-algebraic structure
1
 of G. Therefore the set

H
k
 = cpj

l
 (G

0
)r]

(
P2

I
 ((*O) C^Cft represents the set of geometric points of a

certain closed subvariety ΗdG, The image of Η under the projection

G - G/G
e
 is a constructive algebraic set whose geometric points are in

one-to-one correspondence with the set of ̂ -modules tfUM
Q
 of index e.

This concludes the second step.

The third and last step consists in choosing from the set Pk the

points corresponding to those modules that contain no special elements

apart from those belonging to M
o
.

Let χ e p~ M
o
 be a special element. The condition that this lies in Mg

means that

(x mod Λ/ο) g'
1
6 M/M

o
.

But the mapping of fe-varieties q\: G -. p"hM0/M0 defined by the formula

Ψχ(8) = (χ mod Mo) g"1,

i s a morphism2. Now Mg contains χ i f and only i f g belongs to
ι For the definition of a quasi-algebraic structure see the paper [57] by Serre.
2 We regard here p" MQ/MQ as an affine variety whose geometric points are in one-

to-one correspondence with the elements of this factor module.
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F
x
 =

 r
o~

1
(.W/M

0
). This set is closed, as inverse image of the closed set

y/Mod p'
h
¥/M

0
. From H^ we have to discard the points contained in the

union U F
x
, taken over all special elements χ e p" M

o
, χ £ M

o
. The image

X

of /' \ u F
x
 under the projection G -> G/G

o
, by what has been said above,

X

is in one-to-one correspondence with the set of ^-modules MZDM0 of height
at most h, index e, and belonging to ¥0. To complete the proof of the
theorem i t remains to verify that [J Fx is closed.

LEMMA 3.4. The special elements χ β p~ Mo belong to a finite number
of cosets mod Mo.

PROOF. Clearly i t is enough to verify the lemma in the case when Mo i s
a homogeneous module of type (m,n). Let (ylt... ,yN) be a special basis of

p'hM0. The element χ = y atylt a; e W, i s special if and only if
i — i

F'm\mx = x, i .e. if <f[ = a^. Now the cosets of special elements xmoaMQ

are in one-to-one correspondence with the sets (%,.,.,%) of elements of
satisfying the condition afm = a;. Clearly these sets are finite

in number; thus the lemma is established.
The proof of Theorem 3.2 is now complete.
3. Let us denote by A(M0>h) the constructive algebraic set obtained in

the proof of Theorem 3.2. I t s points are in one-to-one correspondence with
the ^-modules M, Mn CI/WCZ p'hM0, belonging to the given special submodule
Mo. Clearly any two ^-modules belonging to non-isomorphic special sub-
modules cannot be isomorphic. I t therefore remains to clarify the dis tr i-
bution of the points in A(M0,h) that correspond to isomorphic f-modules.

THEOREM 3.3. There exists a finite groupY(M0,h) of automorphisms of
A(11r>,h) such that two points correspond to isomorphic Ε-modules if and
only if they belong to the same orbit relative to T(M0,h).

PROOF. Let us identify each module with the corresponding point.
We first define the action of the group Γ of automorphisms of Mo on

A(M0,h). The group Γ acts in an obvious way on the set Ae (with the same
meaning as in the proof of Theorem 3.2). We need only verify that i t maps
A(M0,h) into itself; but this is clear, because the condition for Μ to
belong to A(M0,h) i s invariant under the action of Γ. Moreover, any mod-
ules transformed into each other by Γ are clearly isomorphic.

Conversely, let Μ', Μ" e A(MOlh) be isomorphic modules. Any isomor-
phism Ί' -. i f" induces an isomorphism of the corresponding special sub-
modules. Now ,1/', M" have the same maximal special submodule, namely Mo,
therefore any isomorphism M' — ,W" induces a certain automorphism of Mo.

As we shall see below, the group Γ is infinite. However, i t s action on
A(M0,h) is very ineffective, and there is a normal subgroup of finite index
leaving A(M0,h) elementwise fixed. Clearly any element of Γ that does not
move the coset of χ mod Mo for all special elements χ e p~ A/o, leaves all
points of A(M0,h) fixed. But by Lemma 3.4 there are only finitely many
such cosets. Hence we may take for T(M0, h) the permutation group of these
cosets induced by the action of Γ.

I t only remains to verify that the action of Γ(Μ0, h) i s compatible
with the algebraic set structure on A(M0,h). This is a routine argument
similar to that which was used in the proof of Theorem 3.2. We allow
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ourselves to omit the details.
This completes the proof of Theorem 3.3.
4. We shall now summarize in qualitative terms the structure of the

set of isomorphism classes of modules, isogenous to a fixed equidimensional
module M. First, however, we formulate the two finiteness theorems which
will be proved below.

THEOREM 3.4 (First finiteness theorem). The number of non-
isomorphic special modules isogenous to a fixed module is finite.

THEOREM 3.5 (Second finiteness theorem). The height of a module Μ
over its maximal special submodule MQ is bounded by a number Η that depends
only on the isogeny class of the module M.

CLASSIFICATION THEOREM. Every equidimensional Ε-module Μ
is determined by the following collection of invariants:

1) the system of pairs of coprime integers ((mi, nt)) which define
the isogeny class of M:

2) the maximal special submodule MQ C Μ (this is a discrete invariant

to which we may adjoin, for example, the index of Μ over A/
o
, changing

slightly the formulation of the following point);

3) the T(M
0
, H)-orbit of the space A(M

Q
, H), where Η by the second

finiteness theorem depends only on the collection ((mi, n{)).

Two Ε-modules are isomorphic if and only if all these invariants

coincide.

5. We add a few remarks on the nature of the results obtained. First

of all we note that they provide an effective construction
1
 of a complete

system of invariants in the sense that it is possible in principle to

construct, for any isogeny class of equidimensional modules, a finite set

of algebraic systems of modules, containing up to isomorphism all modules

of the given class, and containing any given module only a finite number

of times. The identification of isomorphic modules, as we shall see later,

is also fully effective.

This construction enables us, for example, to carry out the explicit

classification in a very clear form for all modules corresponding to two-

dimensional formal groups. The results so obtained will be given later,

in §9 of this chapter.

Further, for cyclic modules isogenous to simple ones a complete

enumeration will be obtained for the components of the highest dimension

of the space corresponding to this class. This result and a number of

others, of a more partial nature, on the structure of the module space,

will be given below.

In all cases that have been checked the space A(M
0
, H) with a 'good'

subdivision turned out to be the union of affine varieties invariant

under the action of the group Γ(Λί
0
, Η), so that the quotient space

A(M
0
, H) /T(M

0
, H) is an algebraic (even affine) variety. We have not

been able to prove this in the general case.

Because as we shall see below, both finiteness theorems allow in principle
an effective enumeration of the special modules and the bound for //.
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The space A(M
0
, H) can be interpreted as the solution of a certain

universal problem a la Grothendieck [42]: the assignment of a special

basis ofM/M
o
 amounts to introducing 'rigidity*. We shall not enter

into the details. Nor are we able to touch on the question of specializa-

tions in the module space. The possible 'jumps ' from one component to

another under specializations seem to possess a very complex character.

With some definitions, specialization may even change the isogeny class of

the group; thus, the group G
it 0
 = X specializes to the group G

lt x
 under

the passage to the super-singular invariants of the elliptic curve X

(cf. Ch. IV, §5).

§4. The structure of isosimple modules; subsidiary reduction

I. Let m, η be coprime natural numbers, km+n C k the subfield of
pm+n elements, and En<m the 'cyclic local algebra1 defined as
En>m = Η (&„,+„) [Θ], where θ is an element satisfying the following com-
mutation law for the coefficients:

Or = r..n-("-*-'') Θ, c 6 W (km±n), am — bn = 1,

as well as satisfying the identity Q
n+n
 - p.

The quotient field of the algebra E
n> m
 is denoted by K

n> m
.

Consider the left W(k)-module

M
n
,

m
 = W(k) ® K

n<m

(W(k) is a right Η(k
m+n
)-module relative to the inclusion W(k

m+n
) C W(k),

while K
n
+
n
 is a left W(k

m+n
)-module by definition).

Let Κ be the quotient field of the ring W(k). Then the module M
n
+

n

can be regarded as a linear space over K, by putting

ρ'
1
(α®ζ) = α^ιρ'

1
^,. The dimension of M

n> m
 is m + n; as a basis we may

take the elements 1 ® 1, 1 ® θ 1® Θ "
+
" -

1
. Henceforth we shall

sometimes omit the sign® and use an expression of the ίοπηΣαίθ
1
,

α; e W(fe), for the elements of U
n> m
.

We now introduce two further structures on M
n>m
.

In the first place M
n>m
 can be regarded as a right /^

n>m
-module by

setting

Secondly, we define an £p.-module structure on M
n< m
. Since the action

of H on M
n>m
 has already been given, it only remains to specify the

action of F. We shall put

/-'θ
ί
 = θ

ί
+

η
 (i any integer).

2. LEMMA 3.5. 1) Mn>m » (E/E(FM - V1))^ qua. EF-modules.
2) Any finitely generated non-zero E-submodule of Μη> m is dense.
PROOF. The required isomorphism Mn> m -* (E/E(Fm - V"))F can be def-

ined, for example, thus: 1 -» 1£ mod E(Fm - Vn). The verification of the
remaining statements i s quite mechanical.

The second statement follows from the fact that Mn> m i s simple.
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3. LEMMA 3.6. Let TC H(fe) be a 'multiplicative system of
representatives' for the residue class field k (including zero). Any
element χ of Mn> m can be uniquely expressed in the form

•t^.YjiV1, e, € T. ( 3 . 3 )

An element χ in this form is special if and only if the coefficients 6j
satisfy the conditions ε^ = 6^, i.e. if they are contained in the
multiplicative system of representatives for the subring W(k

n
+
n
) of W(k).

PROOF. Clearly every element χ can be expressed in the form
ni+n—1

Σ £ijPl Σ θ'' ^ Σ 8i;0<m+"M+i, so that a representation of
i> —co j=0 i > —oo

0 < j < m + n - l

the form (3.3) is always possible. Its uniqueness is immediate. The condi-
tion for χ to be special is that rmVnx = x, i.e. Σ ε ; θ { = Σ ε?"* 1 '"θ* ,
from which the last assertion of the lemma follows by the uniqueness of
(3.3).

Ί. LEMMA 3.7. The multiplication of the elements of Mn>m on the
right by any non-zero element of Kn<m is an Ep-module automorphism of
Mn.m· Conversely, any non-zero Ep-module endomorphism of Μη>Μ is induced
by right multiplication by a certain element of ΚΆιΒ which is uniquely
determined. An automorphism leaving all special elements fixed is the
identity.

PROOF. The only part of the first statement that is not completely
obvious is the verification that the action of F commutes with right
multiplication by any element α of Kn,m· I t i s enough to verify this in
the case when α = ε β7 ^ 0, 6 e Tfl W(km+n)· Then we have

On the other hand,

β1)} εθ' =

a(mn)

But - (a + b)n = 1 - a(m + n) and ε = 1 and from this the assertion
follows. Now let φ: Mn> m -» Μη>η be a given £f-endomorphisn?. If this leaves
the unit-element fixed,' φ(1) =' 1, then <p(FfeW . 1) = FkVl y(l) = 9fen + i m ,
V = pF'1, so that φ leaves all elements Θ1 fixed and hence is the identity.
Otherwise let φ(1) = α= Σ ε ί θ 1 ; considering α as element1 of Kn>m we see
that the automorphism φοοΓ1 defined by φοοΓ1(χ) = φ(χ) ο α"1, leaves the
unit-element fixed. Hence φ reduces to right multiplication by α and so
the lemma is proved.

§5. The structure of isosimple modules; proof of the
first finiteness theorem

I. LEMMA 3.8. Let m and η be two coprime positive integers. Then

1 This is possible because a, like 1, i s a special element, so that 6{ e K'(fem+n)
by Lemma 3. 6. ν
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the integer Ν can be expressed in the form am + bn, where a, b are integers
~Z 0, if and only if mn - m - η - Ν cannot be expressed in this form.

COROLLARY 1. All integers Ν > (m - 1) (n - 1) can be expressed in
the form am + bn, a, b ^ 0, but (m - 1) (n - 1) - 1 = mn - m - η cannot be
expressed in this form.

COROLLARY 2. The number of integers N, satisfying
0^.N^.mn-m-n and representable as am + bn is equal to the number of
integers not representable in this form and is %(m - 1)(n - 1).

PROOF. Let Ν > (m - 1) (n - 1), and put Ν = am + bn, where a, 6 are
integra l , but not necessari ly non-negative. We express α in the form
OQ + en, 0 4 a0 ζ. η - 1, and consider the representation Ν = a^m + bon,
where b0 - b + me. We have

, Ν — αοιη Ν — (η — I) in . η—I

η η η

so that b
0
 ̂  0, because 6

0
 is an integer. Then Ν - αφ + b

Q
n is the

required representation.

Now let 0 ̂  Ν ̂  mn - m - n. It Ν is representable, then mn - m - η - Ν

is not representable. For otherwise mn - m - η would be representable, but

from the equation mn - m - η = am + bn it follows that a = - 1 mod n,

b = - 1 mod m, hence a > n - l , 6 >. m - 1, which is a contradiction.

Conversely, if /V is not representable, then mn - m - η - Ν is

representable. For otherwise we should have Ν = am - bn, 0 ζ α ζ. η - 1,

b > 0, but then mn-m-n-N= ( n - 1 - a)m + (6 - l)n. This completes

the proof of the lemma.

2. Let Μ be an isosimple
1
 module. We embed Μ in Μψ = W(k) ®K

n>m
.

Every element χ of Μ can be written in the form χ = Σ ε; θ
1
 . Let us

i > - oo

put v(x) = min i, subject to the condition ε^ 4 0. We choose an element

χ = Σ ε; θ
1
 for which i

0
 = v(x) has the least possible value (for the

given embedding), and consider a new embedding Μ -* Mp for which

1 + Σ η·θ
ι
 elf (this is the composition Μ -> Mf -» Mf, where φ is right

i> ο
 l

multiplication by θ~'° e K
Ui m
 and ψ is the original embedding). We

identify Μ with its image under this embedding. Then Μ coincides with the

submodule W(fe)® £
n > m
 and contains an element that is = 1 mod Yl(k) ®E

n-m
Q

Let J = J(M) be the set of all integers of the form v(x), χ e M. It is

easy to see that v(Fx) = \i(x) + n, v(Vx) = V(x) + m. Therefore the set J

is invariant under translations of the form am + bn, a, b > 0, and more-

over, 0 e J (because 0 = v(l + Σ η.θ
1
)). It follows from Lemma 3.8 that

i> 0 l

for JV ̂ - (m - l ) ( n - 1) we have Ν e J and the set J = Z+\J contains at
most !/2(m - 1) (" - 1) elements.

3. LEMMA 3.9. Let Μ be an isosimple module of type (m, n) satis-
fying the above conditions. Consider the finite set of integers J defined
above.

That is, isogenous to a simple module.
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a) The set J does not depend on the choice of the embedding1 and is
an invariant of the module M.

b) For the given embedding Μ C W(k) (g) En> m the module Μ contains a
system of elements of the form

Here j
i
 runs over all numbers of J such that j

i
 - m e J, j

i
 - η e J. The

system \ ZJ . I is uniquely determined and coincides with a minimal

generating set of the Ε-module M. It will be called a standard system. The

module Μ is special if and only if all elements Zj . are special.

PBOOF. a) Any embedding Μ C V/(k) ® E
n> m
, containing * such that

v(x) = min v(y) = 0, differs from another such embedding by right multi-
y e Μ

plication by a unit in E
n>ni
 for which v(y), y e M, is invariant.

b) The existence of systems of the form described is evident; the

elements may be constructed successively, by choosing at the j'-th step,

j e J, any element z' e Μ of the form z' = fV + Σ ε;,·θ
ι
 and then putting

i> j

if /€ U {j
ik<i

2 χ\,μ), if / $ U {/ft +
 am
 +

where the elements η· · e W(k) are chosen so that the decomposition of ZJ

has the form given in the lemma.

Let us show now that the elements ZJ form a minimal generating system

of the £-module M. In fact, from the equality J = U I j,· + am + bn I it
i
 l

follows that Μ = Σβ
ζ
,· . The minimal number of generators of Μ agrees

i J i

with the dimension of the fe-linear space M/(FM + VM), by Nakayama's

Lemma. But the images of ZJ . in this linear space are clearly linearly

independent; since the ZJ . generate M, i t follows that they form a minimal

system.

The elements z,· are uniquely determined, because otherwise

v(z, . - zy.) e J, which is impossible, because ζ ,·. - ζ] . e Μ.

If Μ i s special, then the elements ZJ . are special. For otherwise
F~mVnZi = z'i = zi , z'i e M, has the same form as z,., which contradictsJ i J i J i J i J ι
the uniqueness. Conversely, i t is clear that if the ZJ . are special, then

Μ i s special.
This completes the proof of the lemma.
4. COROLLARY 1 (First finiteness theorem for isosimple modules).

There exist only a finite number of non-isomorphic special modules

1 We have in mind only embeddings for which miniv(x) \ χ e ΜΪ = 0.
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isogenous to a fixed simple module.

PBOOF. Indeed, every special submodule Μ C W(k)<g) E
n
,

m
, 0 e J, is

defined by the finite collection of coefficients ε·, e Τ f] (t'(fe
m
+
n
), satis-

fying the conditions z
ik
 = E

ik
, that occur as coefficients in the

standard system of generators. The number of coefficients in such a col-

lection in every case cannot exceed %r(m - l)(n - 1), where r is the num-

ber of elements of J, and this gives for the number of non-isomorphic

special modules isogenous to Ε /E(F
m
 - V

1
) the upper bound

p
Kr(m-l)(n-l)(* + n)

t r
 ^

 n
,i

n
(

W ( n ) t
 because ;'

 i
 J j

k
 mod m and mod n.

This bound is of course much too large, besides we have not taken into

account the fact that different choices of coefficients may give isomorphic

modules.

C O R O L L A R Y 2 (Second finiteness theorem for isosimple modules). Let

Μ be an isosimple module of type (m, n), and M
o
 C M its maximal special

submodule. Then F
m
-

X
M C M

o
.

PFOOF. In fact, F*' M/ C W(k)<8> Ε
ηιΜ
θ

ία
 ~

 1)η
Γ\ Μ, but by Lemmas 3.8

and 3.9, Μ D W(k) <8> Ε
η>α
θ

(ιη
 ~

 1)n
, because all elements χ e M

F
 for which

v(x) >„ (m - l)(n - 1) belong to M. But the module W(k) ® £
η
.»θ

(/η
 "

 1 ) n
 is

special.

EXAMPLE 1. Let us show that any module Μ isogenous to a module of the
form E/E(F - V") is isomorphic to such a module. The same holds for modules
isogenous to E/E(F

m
 - V). _

Indeed, if m = 1 or η = 1, then J must be empty. Therefore the standard
system of generators constructed in Lemma 3.9 consists of the single
element 1.

It follows that Μ = Ε. 1 = E/E(F - V) (respectively, E/E(F
m
 - V)).

EXAMPLE 2. Let us describe all special modules isogenous to

The set of natural numbers J whose complement contains 0 and is mapped
into itself by all translations of the form 2a + (2m + 1)6, a, 6 > 0j_
clearly must have the form (1, 3, 5 2i - 1), where 0 ζ i ζ m (J is
empty if i = 0). The complement of such a set is

J
i
 = {2a + (2m-

T
l)b}\J{2i-~l-2a^(2m~l)b}, a, 6>0.

By Lemma 3.9 the special submodule Μ C W(k) <S>E
2m
+i,2 containing 1 is

generated by the elements 1, θ
2 ι + 1

 if the set J(M) = I v(x) \ χ e Ml
coincides with Jj. By Lemma 3.9a), all these modules are non-isomorphic.
Thus, we have obtained a complete classification of such modules.

It is clear that an entirely analogous investigation can be carried
out in the case

We note the following general symmetry principle: the classification
of modules isogenous to©E/E(F

n i
 - V

ni
) differs from the classification

of modules isogenous t o ® £/£(F"
1
 - V"

1
) only in the replacement of σ by

i

σ"
1
 in all the calculations.



50 Ya.I. Manin

5. A description of the special isosimple modules can also be given

in classical terms.

Consider a non-principal order E
(

n< m
 = W(k

m+n
) [ θ", Θ* ] C E

n%
 „; by a

(fractional) left ideal α of E%,
 m
 we understand a finitely generated left

E°,
 m
-module consisting of elements of K

n> m
. Two ideals a, a' are said to be

equivalent if there exists an element α of K
n
,

m
 such thata=<»'a.

Equivalent ideals are combined into one class.

T H E O R E M 3.6. The isomorphism classes of special modules of type

(m, n) can be put into one-to-one correspondence with the classes of

(fractional left) ideals of the order £ °
> m
.

PROOF. We may establish a correspondence between the special modules

Μ C H(fe)® K
n
,
m
 and the sets M

s
 of special elements in M. Then M

s
 is a

M(k
n
+n)!X V]-submodule of Μ and, moreover, F

m
 - V

n
 belongs to the

annihilator of M
s
. Hence there is a natural left

Y/(k
m+n
)[F, V]/\\(k

m+n
) [F, V](F

m
 - V")-module structure on M

s
. Now the ring

W(k
n
+

n
)[F, V]/P, where Ρ = (F

m
 - Ψ

1
), is isomorphic to E°

n
,
 m
. Therefore Μ

corresponds to an £°
>m
-ideal: the image of M

s
 under the identification

mapping \\(k
m+n
) 0K

Him
 -> K

n> m
.

Any other embedding of Μ in H(fe)& K
n
,

m
 differs from the one chosen

before only by right multiplication by an element α e K
n>m
 which maps

special elements to special elements.

Finally, the Ε-module Μ can clearly be uniquely reconstructed (up to

isomorphism) from the £^
im
-module M

s
.

Thus the theorem is proved.

REMARK. It would be interesting to calculate the number of classes

mentioned in the theorem. The following arguments allow us to estimate

this number from below and to show that in every case it increases in-

definitely with max (m, n), provided min (m, n) ̂ . 2. Likewise, the number

of components of the module space isogenous to E/E(F
m
 - K") increases in-

definitely.

According to Lemma 3.9 every class may be described in an invariant

manner by means of a system of non-negative integers J, containing zero

and mapped into itself by all translations to the right by m and n. Such

a system J in turn corresponds uniquely to a collection of integers

0 = /Ό < /i < · · · < - fr,

defined by the conditions j
i
 e J, j

i
 - m i J, j

i
 - η i J, and from which

J can be uniquely reconstructed.

Let us show first that to each system J there corresponds at least

one ideal class. Indeed, let \j^\ be the corresponding collection; then

the ideal

satisfies the condition J = {v(x) \ χ e M
s
[. For clearly J C iv(x) | χ £ M

s

On the other hand, M
s
 represents the free M(fe

m+n
)-module generated by

elements of the form θ , where k e J, and the values of k are pairwise in-

congruent mod (m + n). Hence the assertion follows.

Thus, the number of classes cannot be less than the number of differ-

ent admissible sets \j
 i
 i. We shall give an estimate for this number. We
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have 0 < j
i
 < (m - 1) (n - 1), j

 i
 4 cm + bn, a, 6^-0. Therefore

j I = a^m - b^n, 0 ^ α ^ ^ η - 1 , 0 ^ 6 ^ $ m - l , and such a representation
is unique. Further a

i
 4 a

k
 for i 4 k, because otherwise j

i
 - j

k
= 0 mod n,

which is impossible (in particular a,· 4 0). Besides, if a- > a., then
b

i
 > b

k
, because otherwise j

 i
 - j

 k
 = (a

i
 - a

k
)m + (b

k
 - b^n, which is

impossible. Finally, e^m - 6
;
η > 0. Hence it follows that there is a one-

to-one correspondence between the admissible collections i j
:

i
 i and the

pairs of sets 1 a
lf
 .... a

r
j , {6

l t
 .... 6

r
i, consisting of positive

integers satisfying the conditions:

1) 1 < α ι < α
2
 < . - . < α

τ
 < η — 1,

2) Κ 6ι < h < ... < b
r
 < m — 1,

3) α^ — δ,-rc > 0, ί = 1, ...,r.

Now the geometric interpretation of the pair (aj, 6j) as a point with
integer coordinates lying below the diagonal of the m χ η rectangle
allows us to conclude that the number of such collections grows rapidly
with the size of max (m, n), when min (m, n) -̂ 2.

6. We pass on to the proof of the f irst finiteness theorem for homo-
geneous modules. We shall prove a weaker result which is analogous to
Lemma 3.9, and from which the required result will follow.

LEMMA 3. 10. Let Μ ~ kE/E(Fn - Vn) be a special Ε-module and Ms

the left E%tm-module of its special elements.

a) Ms is isomorphic to a certain E%t m-submodule of a free En>n-module
M's of rank k, containing a generating system (xlt . . . . xk) of M's qua £ n > m-
module.

b) Any E%tm-submodule Ms of M's containing the system (x1 x^)
possesses over £°,m α system of generators of the form

h rnn—m — n

z = ^ i Σ ε;;θ\ en € Τ Π, W (AWn).
i=l i=0

PROOF, a) For M's we may take En,m® Ms. The rank of t h i s module i s
c lear ly equal to k, and i t i s free, because En, m i s a principal ideal
domain. The required embedding i s Ms -> £ n , m ®MS : m -> 1 (& m.

b) From Lemma 3.8 i t follows that for Ν > (m - l)(n - 1) we have
xi^r e Ms for a l l ι = 1 k. Hence to obtain a generating system of
the form described in the conditions of the lemma we need only take any
generating system, write i t s elements in the form

h co

i=l j'=0

and omit superfluous terms. Thus the lemma is proved.
C O R O L L A R Y (First finiteness theorem). There exist only a finite

number of non-isomorphic special modules isogenous to a given one.

§6. The second finiteness theorem

I. In this section we shall prove Theorem 3.5, called above the
'second finiteness theorem', with certain supplements, which provide the
best possible result in this direction. For the constant Η we shall give



52 Yu.I. Martin

an effective, though not the best possible bound (the best possible bound
for isosimple modules was obtained in Corollary 2 of Lemma 3.9).

We begin by considering homogeneous modules. The following result is
a quantitative formulation of Theorem 3.5 for this case.

T H E O R E M 3.7. Let Μ - kE / E(F
n
 - V"

1
) and let M

o
 be its maximal

special submodule. Then F
m ( f e

" "
 l)
M C M

o
.

For the proof we make use of the following
L E M M A 3.11. There is a special basis of M

o
, qua Y/-module, which is

of the form (x
t
 **,„; Fyj. Fykm): *i. yi

 e
 M

a
.

PROOF. For %i xkn we take the elements of any special basis of
M

o
, qua fF-module, whose images form a basis of the fe-linear space M

0
/FM

0
,

and for yj. yk
m
 corresponding elements with respect to M

0
/VM

0
. This

is possible, because long M
o
 IFM

0
 = kn, long M

0
/VM

0
 = km. The images of

the elements χι, Fyj in the space M
o
 /pM

0
 are linearly independent. Hence

the elements XJ, Fyj form a f-basis of M
o
, because long M

o
 / pM

0
 = kn + km.

Proof of Theorem 3.7. Let χ € M. We recall that the F-height of the
element χ over M

o
 is the least number h such that F χ e MQ. Since M

o
 is

a dense submodule of M, such a number always exists. Now let us assume
that the theorem is false. Then there exists an element whose F-height is
greater than or equal to m(kn - 1) + 1. Let

hn km

) «*.
 b
i € W, (3.4)Σ

be an arbitrary element of the module M, where (xj.
Fyj Fykm) is a special basis of M, constructed as in the lemma. If
there is a coefficient a^ 4 0 mod p, then the height of the element χ is
equal to H, and conversely.

Every element χ can be uniquely expressed in the form (3.4), where Η
is the exact height of x; we shall call (3.4) a reduced representation for
x.

Let us show that if Η > m(kn - 1) + 1, then Μ contains a special ele-
ment not belonging to M

o
, which will contradict the definition of M

o
. We

shall construct such an element by the following algorithm starting from
an element χ of positive height.

ot) In the reduced representation (3.4) for the element * we choose
an index i, 0 < i 4 kn, for which at 4 0 mod p.

ΐαί\
σ
"
ι+η
 a-

β) If the congruence (—j s -I mod ρ is satisfied for all j,

1 < j < kn, then we look for an element ~a~j = J. mod ρ such that
a
i

~aj = acr.m*n, and construct the element

z = F-i{^a.Jxi).
3 = 1

Since the height Η is positive, the element ζ belongs to M, because

z
 = F

Hml
x + y, y e M

o
. Further, ζ i M

o
, because ά; 2 I mod p. Finally, it

is easily seen that ζ is special. In this case the algorithm is completed
with the construction of z.
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Y) If there exists an index j, 1 $ 7 £ kn, for which

( aj\o"
m+n
 a,·

-J.) ψ .A. mod p, then we consider instead of χ the element
Oi
 χ

x' = (F
m
 - V")—, write it out in the reduced representation, and apply1

 αϊ

a) to it, in case the height of χ is positive. In the contrary case the

algorithm fails completely.

We now show that with the help of this algorithm we are always able to

construct a special element that is not contained in MQ, provided we start

with an element of height Η £. m(kn - 1) + 1.

The transition from χ to x' will be called a complete step of the

algorithm, and the transition from χ to ζ (when (3) applies) an incomplete

step.

First of all we note that after a complete step has been carried out,

the F-height of x' is exactly m less than the height of x, because

z' ~. (/•'"· _v»)_-il —

1=1

and
"j
«i

•φ 0 mod p.

Further, denote by b{x) the number of indices i in the reduced

representation (3.4) for which aj 4 0 mod p. If β) is not fulfilled, then

δ(χ) > 2 and (3.5) is a reduced representation for χ', because

J. = (.1) 4 0 mod p. From (3.5) it is clear that after carrying out

the complete step, δ(χ) decreases by at least 1:

6 (.,:')< δ (χ) - 1 .

-m-π

For if α; Ξ 0 mod p, then — - (—)
σ
 = 0 mod p, and besides, the i-th

Oj \a.i/

coefficient comes to be zero.

Thus, since 1 4 δ(χ) 4 kn, after s 4 kn - 1 complete steps of the

algorithm we reach an element x^
s
^ e Μ for which a^

m
 = a; mod ρ or

6(x
( s )

) = 1. The height of x
( s )

 is precisely sm less than the height of χ

and is therefore positive, provided we start with Η > m(kn - 1) + 1. It

follows that β) is fulfilled for x'
s
\ and so we may apply a final incom-

plete step, giving us a special element not in M
o
.

So we have obtained a contradiction, and this completes the proof.

2. We now pass to the proof of Theorem 3. 5 in the general case. Let
s

Μ ~ @ kiE/E(F
mi
 - ν"ί), and M

o
 C Μ its maximal special submodule. We

i = 1

may assume that
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THEOREM 3.8. There exists an integer

Η -= Η (ki, mu «t; . . . ; ks, m s, ns),

such that F % C Mo. More precisely, we may take for Η the integer defined
inductively in the following way: If s = 1, then Η = m^k^n^ - 1). If
s > 2, then

where H' = ma.x H(kilt m^, n ^ ; . . . ; feir, mi r > n i r ) {the maximum being
taken over all proper subsystems ( i i ir) e (1, . . . , s ) ) .

PROOF. For s = 1 the r e s u l t follows from the previous theorem, so
l e t s > 2.

We put Mo = ®(MOi)F. where Moi ~ kiE/E(Fmi - V"i). Since
ι

(l')f = © (.>/oi)f, every element χ e Μ can be uniquely represented in the

i
form

where xi e M
0
i\FM

O
i or x^ = 0. If Xi = 0, we set Hi = -a-. The height of

χ over M
o
 is clearly equal to max Hi.

With every element χ e Μ vie associate a collection of integers,

consisting of all the positive numbers Hi ('partial height' ) defined by

the decomposition (3.6) taken in order of magnitude with the right multi-

plicities. I claim that the difference between two successive numbers

from this collection does not exceed H' (if the collection consists of a

single number, we take this number as the difference).

For let Hk - Hi > Η', and put

x = ,•, + .,„ .,,= Υ F-
U
ixt,

 a
-,= Υ F-"ixi.

Clearly the element Σ F
Hl
 ~

Ηί
χ, = F

lil
x - F

Hi
x

i
 belongs to the submodule

Ν = ( © Μοί)ί"Π Μ and has height > H' over
 H
. ® , Λ/οί· But this contra-

dicts the definition of //', because the module © M
O
i is the maximal

special submodule of N.

We now note that if Λ: ε M
O
i\FM

O
i, then for any natural number R we

have V
Rn
i
Xi
 e F

f i m
W

o i
V

/ i
"

l i + 1
Aioi. In particular, if S = (Η

χ
 //

β
) is

the collection of numbers from the decomposition (3.6) for x, then the

analogous collection for V
Rn
i· · -

n
s
x w

m be

S'
{
 = ι Hi — — Riii . . . ν ...,//, — ~ Bn, ... n

R
 ) .

V "i "* J

Let £+ be the positive part of this collection. If we start from an

element χ of height H, then in 5 the largest number is H
aSiX

 = Η and the

smallest number is H
m
±

a
 ^ Η - (s - \)H' (by the estimate obtained for the
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difference between successive positive numbers Hi).

Hence in S
R
 the largest number is > Η - (s - 1)H' - "^iRn^ ... n

s
,

m "
s

and the smallest is ̂ Η - — Rn
1
 ... n

s
. For the difference we obtain as

n
i

a lower bound

subject to the condition that Η - (s - 1)H' - — Rri! ... n
s
 > 0, the same

estimate applies to the difference between the largest and smallest

numbers in the collection S+ = S .

Now take R to be the least integer for which

JiL _ »>_*_ \
 Rni
...

 ns
 _ (« _ 1) ff' > (

S
 _ 1) //' + l. (3.7)

If with this condition we still have

ii ...n
e
>0, (3.8)

then we have a contradiction, because for the element V
 1-

' ~
ns
x the

difference between the maximal and minimal positive heights H{ is

^ (s - l)H' + 1, and hence this is a difference between consecutive partial

heights greater than Η', and this, as we have seen, is impossible.

To ensure that (3.7) holds it is enough to put

/η
 s

then (3.8) cannot also hold, and we obtain the following bound for H:

Η ;^- ••«.ί + ̂ ΐ ^ Η + ί»-̂ '·
n

t
 n

s
 J

Thus the theorem is established, and with it the proof of the second

finiteness theorem is complete.

The remainder of this section is devoted to the problem of clarifying

to what extent a similar result remains true for modules that are not

equidimensional.

3. Let us call a module Μ reductive if it is isogenous to a direct

sum of eauidimensional modules and a finite number of modules of the form

E/EV (corresponding to additive formal groups).

Let Μ be a reductive module. By a generalized maximal special sub-

module we understand a submodule M
o
 of Μ generated by the maximal special

submodule Mo in the usual sense and a maximal submodule Μ'ό satisfying the

condition VM'O = 0.

L E M M A 3.12. 1) M
o
 = Μό © Μ'ό.

2) Μ'ό = kE/VE.

3) Mo is a dense submodule of M.

PROOF. 1) We have M
Q
 = M

o
 + Μ'ό by definition and M'

o
 Π Μ'ό = 0.

2) Clearly Μ'ό is isogenous to kE/VE (this follows from the
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classification theorem up to isogeny). There exists a chain of finite

length of the form M'i D M
%
 D A/

2
 3 ... D Mg^D M

s
, where M

s
 = kE/VE,

long Mi/Mi+i = 1. We shall show that in such a chain Μ
5
.^ = M

s
. The

k
required result follows from this. Thus, let M

s
.

i
 = M

s
 + Ex, M

s
 = ©

i =

V*i = 0. Then

ft oo

and for at least one value of i we have ei
0
 4 0 mod p. I claim that

W
s
.i = £ x i ® ... @ £ x i .

1
@ £ x 0 £ x i +

1
© ... ©£xfe. The verification con-

sists in establishing equality with the direct sum replaced by an ordinary
sum, but this is obvious, because %i may be expressed by χ and { x

}
; !. j ¥ i

3) In any case Μ contains a dense submodule isomorphic to Mo © kE/EV.
Since M

o
 contains this submodule, M

o
 is also dense.

T H E O R E M 3.9. Let Μ be a reductive module and M
o
 its generalized

maximal special submodule. Then there exists a constant H, depending only
on the isogeny classes of the equidimensional components of M, such that
% C M

Q
. In the notation of Theorem 3. 8 vie may set

H(...; ki, mi, nf, ...) + max mi.
PROOF. Let

χ = F~Hlx' + F~HH",

x' 6 {M^FMD U {0}, x" 6 {M"a\FMl) \J {0}.

If x' = 0, then H
2
 <: 0 by the definition of MQ.

If *' 4 0, but x" = 0, then H
x
 < H(...; fej, mi, nj; ...) by Theorem

3.8.
If x' 4 0 and x" 4 0, then in the first place ff

2
 $ H

it
 because other-

wise the element F
iii
x - x' does not belong to Mo, which contradicts the

equation V^^x - x') = 0.
Further, Vx = F~

tti
Vx', and as is easily seen, the height of Vx' over

the equidimensional part is less than the height of x' by at most max m;.
Hence by the preceding theorem, ffi - max mj ̂  #(...; ki, mi, ni; . . . ) .

Thus the theorem is proved.
^. The last form of the second finiteness theorem is of interest in

that, combined with the first finiteness theorem, it may be used to give
a much stronger result, which turns out to be characteristic for reductive
modules.

We shall say that a class of isogenous modules has the if-property if
there exists a constant Η > 0 such that for any two (reductive) modules
of the given class there exists an isogeny (embedding) Mi C M

2
 such that

long MJMz < H.
T H E O R E M 3.10. An isogeny class of modules possesses the H-property

if and only if it consists of reductive modules.
PROOF. We show first that every class of reductive modules has the

if-property. Let M
t
 be any module of the given class. Its height over its

generalized maximal special submodule M
o
 is bounded by a constant h
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depending only on the class. We may embed all non-isomorphic generalized
special modules, of the given class in M

o
. Since the number of these modules

is finite, the height of M
o
 over each of these modules does not exceed a

certain constant hi depending only on the class. Conversely, M
2

 m a
y be

embedded in a special module whose height over M
2
 is bounded by h (e.g.

Λ/
2
 C F~

h
Mo, where M

o
 is the generalized maximal special submodule of M

2
).

We embed this special module in turn in M
t
 so that the height of M

±
 over

it is ̂ h
%
. Thus we obtain the required result.

Now we show that, conversely, any class possessing the //-property
consists of reductive modules.

For this purpose we shall, in any class of non-reductive modules,
effectively construct pairs of modules for which the least height for the
embeddings exceeds all bounds.

Any non-reductive module Μ is isogenous to a direct sum of the form

Μ ~ M,_ (!&kiE/EV
ri
, where M

x
 is equidimensional and max r{ > 2. For any

ί

i > 0 and any Μ we denote by M^f the submodule of Μ consisting of all

elements χ e Μ such that V^x = 0. It is easily seen that if Μ' ~ Μ", then
M
\i) ~

 M
\i)

 f o r a 1 1 i; i f M> i s a d e n s e s u b m o d u l e o f M
"> then M'

(i)
 is a

dense submodule of M'^y Further, the height of M" over M' in this case is
not less than the height of M%, over M',^.

For any integer h ̂  0 consider the module M(h) = Ex
0
 + Ex

lt
 where

V*x
0
 = 0. Vx

Q
 = F

h
x
1
. It is easy to see that M(h) ~ E/EV*. In every

isogeny class of non-reductive modules there exist modules Μ', Μ" such

that

M\
2)
 * kEjEV- + IE/EV, Ml * kM (ή) + IE/EV

(the numbers k and I are defined by the class, while h may be chosen
arbitrarily). The theorem will follow if we show that for any embedding

) C Λ/(2) the height of the bigger over the smaller module is > h.
For brevity let us write M' instead of M[

2
) and M" instead of M'(

2
)·

Let M' C M" be an arbitrary embedding. By definition the module M"
contains an element * of height h over VM" (i.e. F

h
x e VM", F

h
-
l
x 4 VM").

let us show that the height of χ over M' is not less than h. Indeed,
otherwise F

h
-
1
x e M' and V(F

h
-

1
x) = F^^x = 0. Now if y e M' and Vy = 0,

then y e VM', hence F
h
-
1
x e VM', which is impossible, because F

h
'
x
x ft VM".

This contradiction completes the proof of the theorem.

§7. Cyclic isosimple modules; the component of maximal dimension

I. In the remaining parts of this chapter we shall calculate the
module space in certain special cases. In particular, in this section we
shall describe the component of maximal dimension of the space of cyclic
isosimple modules.

Let Μ C W(k) ®£r,,
m
 be a cyclic £-module subject to the condition

0 e J = ί ν(χ)| χ e M\. By Lemma 3.9 such a module is generated over Ε by
an element of the form

2 = 1+ Ι]ε#, J = Z
+
\J, B

h
 = e

he./
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whose coeff icients 6fe(M) are uniquely determined by M. Consider the mapping
cp of the set of modules of the form jus t described intp_ the affine_space
As over the f ield k tha t associates with Μ the point (ε^Α/)), k e J,
ε^ = ε^ mod p. By Lemma 3.8 the dimension s of t h i s space i s %(m - l ) ( n - 1).

2. THEOREM 3.11. a) The mapping φ establishes a one-to-one cor-
respondence between the points of a certain dense constructive subset of
As and the cyclic modules Μ C W(k) (SjEn.m belonging to the special sub-
module Λ/ο = W(k) ® ΕηίΛβ<Λ·ι) ( η ' ι ) .

b) The index of any such module Μ over Mo is of the form

Here (d{) is a permutation of the numbers (0, m, 2m (n - l)m;

n, 2n mn) and (6{) is a permutation of the numbers ((m - l)(n - 1),

(m - 1)(n - 1) +
 1
, .... mn). These permutations are defined by the condi-

tions

a
t
 — bi mod(m-\-n), α

;
— b

t
 < a

j + i
 — b

i+i
.

c) The mapping φ is an isomorphism of the algebraic structure of the

constructive subset of the space A(Mo, H) corresponding to the index,(3.9)

and the number of Ε-generators of the identity, on the dense subset of

A
s
 described in a).

PROOF, a) Let us show first that the image Υ of the set of cyclic

modules Μ belonging to Λ/ο, under the mapping φ, is constructive in A
s
.

Thus, consider the mapping

ψ: E/m"xA
s
-^p-

h
M
0
/M

(1
; m = EF + EVClE, h>i, (3.10)

that associates_with the pair (a mod m
h
, ε), where a e E,

) e A
s
, ki e J, the element a(l + Σ_ε^θ*) mod M

o
. For

k j
this to be a correct definition it is necessary to choose h so as to satis-
fy the inequality min (mi + nj) > (m - 1)(n - 1). In this case the class
of elements a(l + Σ_ειθ^) mod M

o
 depends only on the class of a mod mr

k ej
and the image of this element automatically lies in p'

h
M

0
.

The mapping ψ is a morphism of the canonical quasi-algebraic structure
on the sets (3.10). (E/m

h
 is an artinian local ring with residue class

field fe, and M
o
 may be considered as W(k)-module.) For any element

ζ e p'
h
M

0
 the set Y

z
 of all points of the space A

s
 for which the corres-

ponding module contains ζ coincides with the projection on A
s
 of the

closed set ψ"
1
(ζ) e E/m

h
 χ A

s
. This projection is constructive in A

s
. By

definition Υ = A
S
\JY

Z
, where the union is taken for all special elements

ζ

ζ e p~
h
M

0
\Ma· Hence the set Υ is also constructive. (Thus, the union con-

sidered above may be regarded as consisting of only a finite number of
sets, because Y

z
 depends only on the class of ζ mod M

o
.)

It remains to show that the set Υ is dense in A
s
, i.e. that it contains

an open subset. For this purpose it is enough to show that for any special
element ζ e p'

h
M
0
\M

0
 the set A

s
\ y

z
 contains an open subset of A

s
.

Let ζ e W(k) ® E
Uim
 be a special element, v(z) e J = { am + bn I. We
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may confine ourselves to considering such elements, for if v(z) < 0 or

v(z) e J, then Y
z
 is empty. The condition ζ £ M

o
 signifies that

V(z) = 1 < 0» - l)(n - 1). We may assume that m < n. Let us show that Y
z

is contained in a certain proper closed subset of A
s
.

Since 1 < (m - 1)(n - 1) and I e J = { am_+ bn j, there exists an

integer i, 1 ̂ i 4 m - 1, such that I + i e J (otherwise J would contain

an interval of m consecutive integers starting with I, and hence all

integers > I would belong to J; but this is impossible by Lemma 3.8). We

choose the least i with this property.

Let ε^ Ξ ε^ mod ρ e k; suppose that we have the inclusion

ε = (ε^)^
 e
~J e Y

z
. This means that for a certain element

α = Σ XyV^F* e Ε, λ, e Τ, and the special element
j=cm+dn<(m-l)(n-l)

 J J

z = Σ η •θ-' we have the equality

k£j i;=j=cm+iin<(m-t)(n-i) j^l
 k
cj

==νη,·θ3' modW®En,mQl+i+1. (3.11)

(Here Oy = amd-cn i f j = cm + dn; c, ci ̂  0.) Since Ζ, ί + 1, . . . , l+i-1 e J,
i t i s not hard to see that for a fixed ζ and ε the coeff icients
λζ, λ^+i, . . . , Aj+i.i are defined by t h i s equation uniquely as functions
of Elt . . . . S i . i and η-. (We obtain a diagonal system of equations for the
λ^.) in p a r t i c u l a r , λ; = η ; 4 0, since ε 0 = 1. Now I + i £ J and moreover,
1, 2, . . . . i £ J. Therefore, by comparing the coeff icients of θ ι on the
right and left-hand s ides of (3.11) we find that (3.12)

The condition (3.12̂ _ for fixed ζ represents an_imposition of non-trivial

relations (because τ^ 4 0) on the coordinates e
l f
 ..., E; of ε in the

space A
s
. These relations are clearly algebraic. Therefore, the set Y

z
 in

every case is contained in a proper closed subset of A
s
. This completes

the proof of the first statement of the theorem.

b) Let Μ C W(k) <g) E
ni
 „ be any £-module. Since it is dense, its rank

over W(k) is m + n. We shall show that any collection of elements

z
it
 .... zk e Μ for which v(z{) 4 v(zj) when i 4 j and

fv (Zi))i=i,.... k = J\(J+m + n), J = {ν (χ) \ χ 6 Μ ) ,

constitutes a B'(fe)-basis for M. It is clear that the set of indices of the

^-module generated by zi, ..., z& coincides with J and that this W-module

is contained in M. Hence it follows that it coincides with M. It remains

to verify that k = m + n. Indeed, the set j\(J + m + n) can be obtained

as follows. We write out the elements of J in increasing order and cross

out those that are congruent mod (m + n) to an element written down before.

Since J contains all integers beginning with a given one, the numbers that

remain form a complete set of residues mod (m + n), so that k = m. + n.

In the notation of the theorem for the module Μ we have

Hence we may take as a W(k)-basis of Μ any collection of elements ZJ e Μ
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such that V(ZJ) = aj. Then

ν (p
e
iz

;
) = (m + n) e

t
 -

r
 aj = 6;.

In addition, p
ei
zi e M

o
, because bi ̂ (m - 1)(n - 1). Since (6j) coincides

with J
o
\(Jo

 +
 m - n), where J

o
 = ί v(x) | χ e if

0
 I, the elements p

e i
zj e Λ/

ο

constitute a f̂ -basis for M
o
. This proves the second statement.

c) The functions ε^ are single-valued onto the corresponding subset

of A(Mp. H)', also Μ is uniquely determined at the point (e^)fe
e
j. The fact

that Efe is algebraic is trivial to verify. Hence this statement is also

established.

The proof of the theorem is now complete.

Its value lies in the fact that it enables us to construct explicitly

an algebraic system of isosimple modules of type (m, n), with the property

that any one of the modules in the system is contained in only a finite

number of isomorphic modules (the number being bounded by a constant

depending on p, m and n). The dimension of this system is %(m - 1)(n - 1),

and this is the best possible value for the cyclic isosimple module of

type (ra, n). It seems plausible that the last assertion remains true for

any modules, not necessarily cyclic, of a given type.

§8. Classification of two-dimensional modules

I. In this section we shall show that by specializing the general

theory developed above we shall obtain a complete classification of two-

dimensional modules (up to automorphisms of the maximal special submodule

in the equidimensional case).

We begin with modules isogenous to E/E(F
2m+i
 - V

2
). In Example 2 of

§5, 4. we described all special modules of a given class. They were

enumerated by sets Jj for which there are m + 1 possibilities

Ji = {la + (2m + 1) 1} \J {2i + 1 + 2a + (2m +1) b}.

Any submodule Μ C W(fe) ® £2,2m+i satisfying the conditions of §5, 2. and
corresponding to the set ji has by Lemma 3. 9 two standard generators:

ζι = 1 + Σ εΛ-ιθ·1'"1, ζ2 = θ 2 ί + 1 . (3.13)
ft=l

Let us define a number j, 0 4 j $ i, by the conditions

{k
m+n
), ft<i /, 1

 3

j
Then we have the following assertion.

T H E O R E M 3.12. a) The numbers i and j coincide for isomorphic

E-modules.

b) For fixed i and j the nodule Μ belongs to the special submodule

EFhy + Ez
2
^EA + £02(*-i)+i = M

o
,

 m
-

i+J

and its index over this submodule is
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ej = (O, . . . , 0 , 1 , . . . , 1 ) .

c) The space of submodules W belonging to a fixed special submodule
Mo,m-i+j and of index ej over it has dimension j and is isomorphic to the
complement of the union of p2m 3 parallel hyperplanes

£i = α, α ζ A 2 m + 3 ,

in the space A
s
 = (ε^), after factoring out the finite group of automor-

phisms obtained by identifying isomorphic modules. In particular, this

group acts on an affine variety, and therefore the factor-space exists

and is an affine variety.

PROOF, a) The number i is defined invariantly, because it gives the

type of the maximal special submodule. The invariance of j follows from

the fact, which will be shown below, that it defines the index ej of the

module over its maximal special submodule.

b) Let i and j be fixed. Consider the module Μ generated by the

standard basis z
it
 z

2
 (cf. (3.13)). Since F

J
z

±
 is congruent to the special

element z[ mod H <g>£
2( 2 π

+ ι θ
2 ί + 1

 and Wig) £
2
, 2m+i6

2 i + 1
 CM, it follows that

the submodule

i + Ez
2
 d Μ

is special. To prove that it is maximal it is enough to verify that Μ

contains no special element ζ of index v(z) = 21 < 2/. Indeed, such a

special element would be congruent mod £z
2
 to an element of the form

( Σ X^F )z
lt
 and an argument similar to that which was used in the proof

of (3.8) shows that in this case the coefficient ε
2
(ι.^·) +

 1
 may be expressed

in terms of the ε&, k < 2(i - j) + 1, and the coefficients of a special

element ζ by means of certain universal formulae over the prime field. This

however is impossible, because

The module EF
]
z
x
 + Ez

2
 coincides with Ez[ + Ez

2
, where z[ is a certain

standard element, v(z^) = 2/'. Hence it is isomorphic to EQ
2
J + £θ

2 ι + 1
: the

required isomorphism is now obtained by multiplying the last module on the

right by a unit that maps θ
2
·

7
 to z[ (in the algebra E

2i2m + 1
).

Since pM C M
o
 (because v(p) = 2m + 3), the index of Μ over M

o
 consists

of zeros and ones. The number of ones is exactly equal to j, because the

linear space over kM/M
0
 is generated by the linearly independent images of

elements with the exponents 0, 2, .... 2j - 2.

c) The last assertion has in fact already been established. Consider

the module space parametrized by the residues mod ρ of the coefficients

(
ε
2(ί-;)+ι. e

2
(i_j)+3» ···, ε

2ΐ
·_ι), ε

Α
 6 W(k), e

2
(i_j)

+1
 (t W(k

2m+3
)

of the standard element z
x
. For Γ we may take the finite group

It only remains to note that by multiplying the standard generator on the

right by a suitable unit, we can always arrange it so that the coefficients
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S2fe-i. 1 ζ k ζ. i - j, become zero. Therefore different choices of these

coefficients do not give rise to further invariants of the system.

EXAMPLE. We shall carry out the calculations completely in the case

m = 1. We have two special modules: £. 1 and £.1 + £. Θ. To the first of

these there belongs no module other than itself; to the second there belongs

the algebraic system of modules £(1 + εθ), ε e Τ, ε i W(fe
B
). Put

xe = 1 + ε Θ. The modules Εχς. and Ex
v
 are isomorphic if and only if for

some element <x e £
2 3
 we have Ex^ct = Εχ-η. Let

2
; α,,,α^ W(h)[\T,

Then we have

χεα = (1 + εθ) (α0 + at&) = α0 + (eaf + αϊ) θ mod θ2

and hence

ExRa = Ε (1 + (eaf -1 + a^-" 3) θ).

Thus Εχε « Εχν if and only if, for some β0, f̂  e fe5, we have

η = β ρ 3 - ^ + β1) β ο_^Ο . (3.15)

The factor-space with respect to this group of automorphisms of a line

over k, with the points whose coordinates belong to k
s
 deleted, can be

described explicitly: the mapping
p5-l

defines an isomorphism of this factor-space with the multiplicative group

of k. I do not know whether the existence of a group structure on the

module space is accidental or whether it has an invariant significance.

This example was analyzed by Dieudonno [3θ] by means of somewhat

cumbersome calculations. Dieudonne- only showed the necessity of the condi-

tions (3.15) for a module isomorphism, and besides, in the paper [30] it

is not mentioned that the systems considered exhaust all modules isogenous

to £/£(F
s
 - K

2
).

2. T H E O R E M 3.13. Any module isogenous to E/EV
2
 is isomorphic to

one of the modules M(h) constructed in the proof of Theorem 3.10:

M(h) = Ex
Q
 + Ex

l
, F

2
;ro = O, Vx

0
 = F

h
x

l
 {h = Q, 1, 2, . . . ) .

For distinct values of h the modules M(h) are non-isomorphic.

PROOF. Let Μ ~ £/£K
2
 and take h to be the least integer for which

(
1
) C VM, where A ^

1
) = { x e A / | K x = 0 i . Such a number always exists,

because Mp = Efz
0
 + EfVz

0
, where V

2
z

0
 = 0, so that (Μ^))ρ = (VM)?.

Since W = E/EV, the module VM is cyclic. Let F
h

Xl
 (where x

x
 e l

( l )
)

be its generator and let x
0
 e A/ be an element such that Vx

0
 = F x

it
 Then

Μ = Ex
0
 + £je

lt
 because

E x
1
)

i i )
 and

Indeed, the first equation is clear. If the second equation did not hold,

then there would be an element χ e Μ, χ s F~ Xo mod M(i), k "%. 1, but then

Vx = F'
k
Vx

0
 ζ VMand F

h
-

k

Xi
 = F'

h
Vx

0
 6 VM,

which contradicts the minimality of h.

Thus the theorem is established.
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3. Let us summarize our results on the classification of indecom-
posable two-dimensional modules.

a) Class E/E(F2m+1 - V2), m < oo. There are m + 1 non-isomorphic
special modules

M',?° = ΕΛ+Ε· θ«π'-'1)+ι, 0 < k < m.

The modules belonging to M^ are distributed over h + 1 components,

corresponding to the index e^, 0 < k 4 h. The dimension of the component

with index e& is k.

b) The class E/EV
2
, m = 00. The modules in this class fall into a

countable set of zero-dimensional components M(h).

The module E/EV
2
 is in a certain sense a limit of the modules

E/E(V
2
 - F

2m+1
) for m •* 00. The space of modules isogenous to £/£K

2
 also

turns out to be the 'limit' (!) of the sequence of module spaces isogenous

to E/E(V
2
 - F

2 m + 1
) , leaving only the 'special' modules, and the continuous

components are annihilated by a large group of automorphisms.

4. We now turn to modules that are decomposable up to isogeny. Let us

begin with modules isogenous to E/E(F
m
i - V)@E/E(F

m
2 - V), where mj. ¥ m

2
.

We may assume that ntj < m
2
. Suppose first that m

lt
 m

2
 ¥ °° (

a
nd ̂ i, ̂ 2 ¥ 0,

because a module with m
1
m

2
 = 0 is decomposable and therefore uniquely

defined by its class).

For every pair (m
1
, m

2
) with these properties there exists a unique

special module in the given class (cf. §5, Example 1):

M
o
 = Ε jE (/-"'ι — V)@ Ε IE (F

m
* - V).

We shall use the representation

Λ/ο = W (*) <g> E
Umi
 ©W(k)<S)Ei,

mt
 = M

0i
@M

02

and we shall consider modules Μ containing M
o
 and contained in

Λ/ο/.· = W (A) ® ΛΓ, ,,,
n
 © H

7
 (k) ® ΑΊ.

 ms
.

Any module isogenous to M
o
 is isomorphic to one of tnese modules. We

shall keep the notation introduced in §4; the element θ in E
1>mi

 will be

denoted by θ
α
 and in the algebra £

2
,m

2
 ̂  ^2· By height we shall always

mean F-height.

L E M M A 3. 13. a) Let Μ be an Ε-module such that M
o
f 3 Μ D M

o
. If Μ

belongs to Mo, then the height of Μ over M
o
 does not exceed

m
1
 = min (m

lt
 m

2
).

b) Let Μ belong to M
o
, and let the height of Μ over M

o
 be h. The

factor nodule M/M
o
 is cyclic; as a generator we can take the image of an

element of the form
h

ζ = 0
Γ
"+ Υεβ-i, ε,ζΤ, ε

Η
φ0, (3.16)

and this element is uniquely determined by M.

c) For any h, 1 4 h ζ m
lt
 and any set (e

1
 ε/j) of elements

Si e Τ such that ε/, ¥ 0, the module Ez + M
o
, where z is defined by (3.16),

belongs to the special submodule M
o
 and its index over M

o
 is

(0 0, 1 1).
V

h
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PROOF, a) Let

x = F-hiXt + F-hiXiς Μ. ΧιζM0l\FM0l U {0}; x2ζ M02\FM02 (J {0}.

We may assume that Μ = Mo, χ 4 0 and ht > 0, h2 > 0. Then x2 4 0, for
otherwise £ F " ' 1 I J C 1 would be a special submodule of Μ not contained in Mo,
which i s impossible, because ΜΌ i s maximal. Similarly * ! 4 0. Further,
hi = /i2 = h; for if ht > h 2 , then the element

F^x — x2 = F-'^+^Xi ζ Μ

generates a special submodule not contained in M
o
. Similarly we obtain a

contradiction in the case where h
i
 < h

2
. Finally, h 4 m^ For if h > m

u

then there exists an integer g > 0 for which m
2
 ̂  h-g > m

l t
 and then the

element

VF'x = x' + x", x' 6 (Moi)
F
, x*£ (M

n
)p,

is such that x" e Λ/
02>
 but x' e M

01
. Therefore x' e Μ generates a special

submodule, which is impossible because x' e M
o
.

b) Consider an element of maximal height in U. By the result of a)

this may be taken in the form

h h

z = F~h (zj + x2) = 2 8f9f * + 2 ηίθΓ4 + *o. e,, η; 6 Γ, εΛηΛ ^ 0 , x0 6 Mo.
i=l i=l

(3.17)
We may assume that ε^ = 1. Let k = k(z) 4 h - 1 be the least integer for

which in the representation (3.17), εκ.
t
 = ... = ε& = 0, Ek.y. 4 0.

Consider the element z' = 2 - 8fe.
1
F

/l
'*

+1
z and write it in the form (3.17).

For this element it is clear that fe(z') < fe(z) - 1. Continuing in this

way, we obtain after at most h - 1 steps an element of the form (3.16).

Now suppose that there is already an element of the form (3.16) in

the module, say

If 2' / z, then there exists an integer k such that h > k ^ 1 and ε ι = εί
for i > k, Ek 4 efe. Then

(β* - t'k)'1 Z"" 1 (z - z') -= Θ"1 + z0, ζοζΜο,

and Θ
2

Χ
 is a special element of Μ not contained in M

o
. This contradiction

shows that ζ = z'.

Let χ e Μ be any element; we shall show that χ e Ez + M
o
. This is

true for elements of height ̂  0. Assume that it has already been established

for elements of height k - 1, 1 4 k 4 h; we shall then prove it for" elements

of height k. We have

I claim that the element χ - eFh'k ζ has height 4 k - 1. Indeed,

x _ zF
h-hz = (η - εη""-") 9r fe + *", F^x" g Mo,

but then η - εη£ = 0, for otherwise the element χ - EFh'kz would be
of the form F~hiXi + f"h2*2 with /H = h2, which is impossible. The result
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follows by induction.

c) We have to show that Μ - Ez + M
o
 contains no special elements of

height > 1, when ζ is defined by ^3.16). Clearly, since Vz e M
o
, F

h
z e M

o
,

any element of Μ is congruent mod !H
0
 to an element of the form

h-1

x = ( Σ XiF
l
)z, λ; e T. Let λ

0
 = ... = λ*.! = 0, λ ^ 0. Then

i - 0

x ~ K
k
Q
r

h
+
k
 + l

k
efQ-

h
+
k
 mod F^

h+1
M
0
,

and the element χ can be special only in the case when λ^ = 0 or ε/, = 0,

neither of which is true.

Thus, we see that Μ = Ez + M
o
 belongs to M

Q
; since pM C M

o
, the index

of Μ over M
o
 consists of zeros and ones only; the number of ones is equal

to the dimension h of the space M/M
o
 generated by the linearly independent

images of z, Fz, .... F
h
'

i
z. This completes the proof of the lemma.

T H E O R E M 3.14. The equidimensional Dieudonne modules isogenous to

a module of the form E/E(F
m
^ - V) φ E/E(F

m
* - V) split into m

1
 + 1

components A/,, 0 4 h ζ m^. The component Ah consists of modules having a

maximal special submodule of index (0 0, 1, .... 1) and is iso-

' h '

morphic to the space of orbits of a certain finite group Th acting on an

h-dimensional affine space with certain hyperplanes deleted.

PROOF. Essentially everything has already been proved; the space on

which Pfc acts is parametrized by the residues of (ε
ΐ2
_ ..., ε/,) mod ρ of

the coefficients of (3.16) subject to the condition ε/, 4 0. For Γ/, we can

take the group

E*
Umi
l(l + ®lE

u m i
) * X E\.

 ms
/(l + e ^

1 > m 2
) * .

5. Consider now the class of equidimensional modules isogenous to

M
o
 = 2E/E(F

m
 - V), m > 1. We shall continue with the notation introduced

in the previous point before the statement of Lemma 3.13, for the case

m
1
 = m

2
 = m; a result analogous to Lemma 3.13 applies here, but with

certain changes.

Let us call a submodule M, where M
o
p 3 Μ D M

o
, primitive if it does

not contain θ^
1
 and Θ2

1
. Any module isogenous to M

o
 is isomorphic to a

primitive submodule of M
o
p: for clearly, ϋθΐ

1
 + M

01
 = M

01
 and

ΕΘΖ,
1
 + M

02
 = M

02
. Hence it is enough to consider primitive submodules.

L E M M A 3.14. a) Any primitive submodule is isomorphic to a

primitive submodule whose height does not exceed m.

b) A primitive submodule Μ of height h ζ m has the following pro-

perties: the factor-module M/M
o
 is cyclic, a generator being given by the

image of an element of the form

k

2 = V + Σ ε«θ
2
-',

 Βι
ζΐ, επΦΟ, (3.18)

i = i

and such an element is uniquely determined by M.

PROOF, a) Just as in the proof of Lemma 3.13 a), it can be shown

that any element of a primitive module Μ not contained in M
o
 is of the

form
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γ ^ 0, χ
ο
ζΜ

ο
. (3.19)

Now assume that among all the modules M' D M
o
 isomorphic to Μ, Μ itself

has the following property: the length of M/M
o
 is minimal. In this case

we shall call Μ a minimal module. Let us show that then h ζ m. Thus,
assume that h > m; we may also assume that ε^ = 1. If ru i ^fem+i), then
the element (V - F

m
)x e M, represented in the form (3.19):

ft—m h — m

(
V - F*)x = Σ είθ

Γ
*+ Σ ηίθ

Γ
* + *;, χ'

ο
ξΜ

0
,

i = l i = l

has the property that s{l.m = 0, r\h-m ¥ 0, which contradicts the primitivity
of M. If η^ e H'(fen+i), then Μ contains the special element θ ϊ 1 + r\% ' Gj1

and the module

Ma = E (θ"1 + i\f -lB?) + MOi d Μ

is isomorphic to Mo; at the same time long M/Μό < long M/Mo, which contra-
dicts the minimality of M.

b) The same argument that led to the proof of Lemma 3.13, b) gives the
required result.

COROLLARY. Any special module isogertous to Mo is isomorphic to
Mo.

PROOF. Indeed, let Μ 3 M
o
 be a primitive special module and assume

that the length of M/M
o
 is minimal. If Μ 4 M

o
, then M

o
 contains an element

of the form (3.18). I claim that ε/, e W(k
n+1
), for otherwise, as in the

proof of a), we obtain

M D i ; = £ (θ'
1
 + EnQ;

1
) + M

o
 *> M

o
,

which contradicts the minimality of M/Mo.
Now M, being a special module, contains with ζ also the element F'mVz,

which has the form (3.18) but is not equal to z, provided ε^ e W(fem+i)·
This contradicts the uniqueness of z; thus Μ = Mo.

THEOREM 3.15. The equidimensional Dieudonne modules isogenous to
a module of the form 2E/E(Fm - V), m > 1, split into m + 1 components
Afo, 0 4 h ζ m. The component A^ consists of modules having a maximal
special submodule 2E/E(Fm - V) of index (0 0, 1, _.... 1 and is iso-

h
morphic to the space of orbits of a certain finite group Th acting on an-
h-dimensional affine space with the pm+1 hyperplanes

h
 , £

m + t

deleted.
PROOF. As was remarked above, any module isogenous to M

Q
 is isomorphic

to a certain minimal (and therefore primitive) module. Every minimal
module Μ = M

o
 belongs to itself as special submodule, because by the

Corollary to Lemma 3.14, any special module is isomorphic to M
o
. The

minimal modules of a given height h are parametrized by the points
(e

lt
 ..., ε"/,), where ε ^ the coefficients of ζ in (3.18), are in M. Prom

the minimality it follows that if/i i fe
B
+i (cf. proof of the Corollary).
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Conversely, if 1"̂  e k
m
+

lt
 then Ez + M

o
 = Μ is minimal over A/

o
. because it

contains no special elements of height > 1. For otherwise in the notation

of Lemma 3.13, a) we would obtain a special element

χ Ξ X
h
Q-

h
+
k
 + λ

Α
ε«"θ-

Λ
+* mod F^'^M ;

but the condition for F
m
V
1
x = χ to be special gives

whence ε/j e W(fem+i), which is not the case by hypothesis. The statement
about the index is verified in the same way as in Theorem 3.14. Thus the
theorem is proved.

6. i t remains to classify the reductive modules.
THEOREM 3.16. Any module isogenous to

M0 = Ex0@Exl, Vxo = O, (Fm-V)xi = 0,

is isomorphic to one of the modules of the form

The modules Mh for distinct h are pair-wise non- isomorphic.
PROOF. Let Mo = Exo®Ex1(Vxo = 0, (Fm - V)xx = 0) be a generalized

maximal special submodule of Λί (cf. §7, 3.) . F i r s t of a l l we show that the
height of Μ over Mo cannot exceed m. For otherwise Μ would contain an
element of the form

x = F-hlx' + r V , χ g (Exo\FExo) \J {0}, χ" ζ (Ex^FEzJ IJ {0},

hi > 0, h
2
 > 0. If x 4 0, then x' and x" are not zero; this follows from

the maximality of M
o
. Further, for the same reason, h

t
 = h

2
 = h. If h > m,

then Vx = F
m
'

h
x" e M

o
, but EKx ~ Ex

u
 which contradicts the maximality of

Λ/ο, because £x
0

 +
 EVx is a generalized special submodule containing M

o
,

but not equal to it.

As in Theorems 3.14 and 3.15, we obtain further that Μ = Ex + M
o
 if χ

is an element of maximal height. In the same way we find that χ can be

chosen in the form

where %Q e Ex
o
\FEx

o
. But because £x

0
 = Ex

Oi
 vre may replace the generator

xo by XQ. Thus, Μ is isomorphic to Mh.

The height of Mh over its generalized maximal special submodule is

exactly h. For no element of height k > 1 over M
o
 can be contained in a

generalized special submodule, because as we have shown, such an element

is of the form

x = F-
k
x' + F-

h
x", x', x"eM

0
\FM

0
,

and clearly Vx 4 0 or Vx" 4 0 and besides, (F
m
 - V)x 4 0, because

(F
m
 - V)x = F

m
-

k
x' + (F

m
 - V)r

k
x" and x' 4 0. It follows that the number

h is invariantly defined and hence the modules Mh are pairwise non-

isomorphic.

Thus, the theorem is established.
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§9. Comments

The basic results of this chapter were formulated in the papers [4]

and [5] of the author. The idea of classifying the modules Μ in a given

class to within isogeny by considering submodules of Mp was stated in

Dieudonne [30]; there he writes that he 'knows of no regular method of

forming and classifying these submodules'. Theorem 3.13 gives the local

analogue of the corresponding result for algebraic groups isogenous to

the two-dimensional Witt group (cf. Serre [56]).

Chapter IV

ALGEBROID FORMAL GROUPS AND ABEL I AN VARIETIES

The aim of this chapter is the study of algebroid commutative formal

groups. The method we adopt consists in the following: we start from the

theorem on the structure of commutative algebraic groups, obtained by

global means in algebraic geometry, and then study the completions of

algebraic groups, obtaining the properties of these groups 'globally'.

We shall at first assume the base field to be algebraically closed, except

when the contrary is stated.

In the first section it is shown that it Is sufficient to study

completions of algebraic varieties. The basic tool for their study is here

Theorem 2.2 whose application rests on the p-adic representation of the

endomorphism ring of the abelian variety construted in §§2 and 3. The

possibility of using a variant of such a representation is mentioned in a

remark by Cartier, but in explicit form it does not seem to occur in the

literature. After this, in §4 the main result of this chapter is estab-

lished, according to which every commutative formal group is weakly

algebroid (see the definition at the beginning of §4). The fifth section

deals with two problems. First we formulate two conjectures whose proof

would lead to a complete classification of algebroid groups, and we give

a number of examples on the use of these conjectures. Secondly we study a

generalization of the notion of the 'supersingular invariant of an elliptic

curve' of Deurlng [23] for the case of curves of genus 2.

§1. General results

1. Firstly we remark that a formal group is algebroid if and only if

every group isogenous to it is algebroid. This follows from Proposition

1.6, which shows that under any isogeny an algebroid group remains alge-

broid (in an obvious interpretation). Therefore we may confine ourselves

to the description of algebroid formal groups up to isogeny, and in

particular, to consider only reduced groups, algebraic as well as formal.

2. The completion of an algebraic group coincides with the completion

of its connected component of the identity. Further, the completion of a

non-commutative connected group is a non-commutative formal group. Thus,
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for our purpose we may confine ourselves to considering connected com-
mutative algebraic groups. The structure of such groups is described in
the following known result.

P R O P O S I T I O N 4.1. Let G be a connected commutative algebraic
group over an algebraically closed field k of arbitrary characteristic.
G contains a connected affine subgroup G

a
 whose factor-group X = G/G

a
 is

an abelian variety.

Every connected affine group G
a
 over a field k is isogenous to a direct

sum of a toroidal group and a unipotent group. A toroidal group is iso-
morphic to a direct sum of a finite number of multiplicative groups.

Every unipotent group is isogenous to a direct sum of Witt groups if
the characteristic of the base field is finite, and to a direct sum of
additive groups if the characteristic is zero.

C O R O L L A R Y . An algebroid formal commutative group is isogenous to
a direct sum of a complete abelian. variety, a toroidal group and a
unipotent group.

Clearly all toroidal and unipotent formal groups are algebroid and
are even isomorphic to completions of affine groups. It remains to examine
the question whether equidimensional Dieudonno groups, which can only occur
in completions of abelian varieties, are algebroid. The fact that com-
pletions of abelian varieties are equidimensional follows from Weil' s
theorem, that multiplication by an integer is an isogeny.

§2. The formal structure of abelian varieties; preliminary reduction

I. Let I be the injective hull of the simple artinian group
S = Spec k[x]/(xP), c(x) = 1 φ ϊ + ΐ φ 1 ; Τ the multiplicative formal
group over k (cf. § 3 of Ch. I).

For any formal group G the group of 'formal characters' Horn (G, T)
possesses a natural W(fei)-module structure. (Clearly, this group is
complete in the topology generated by the powers of p.) If the formal
group G is reduced, then this module is free and its rank agrees with the
dimension of the toroidal part of G.

We now recall the definition of the Tate group'. For any commutative
(abstract) group Γ and any prime number ρ we consider the projective
system formed by the groups ιΓ consisting of the elements of Γ annihilated
by multiplication by p

k
, and homomorphisms p

k
~
x
 : ^Γ-» jF, k > 1 (multi-

plication). The projective limit of this system is a W'(fei)-module and will
be denoted by J

ρ
( Γ ) . The mapping Γ=$*Γ

ρ
(Γ) clearly is a covariant

functor. In the case when X is an algebraic group, defined over a fixed
algebraically closed field k, we shall for brevity instead of
5p(Hom(Spec k, X)) simply write £ϊ

ρ
(Χ).

P R O P O S I T I O N 4.2. Let X be an abelian variety over the field k,
and X the dual variety. Let Μ be a contravariant functor from the cate-
gory of abelian varieties to the category of W(k)-modules, defined as
follows:
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= Horn (X, I),

, 7"), (4 1)

This functor is additive and has the following properties:

a) Let φ: X-*Y be an isogeny of abelian varieties. Then the module

homomorphism Μ(φ) : Μ (Υ) -* M(X) is infective and the length k of the

cokernel of Μ(φ) is the largest integer such that ρ divides deg φ.

b) The rank of M(X) is 2dim X.

c) If the morphism φ : X -» Υ is not an isogeny, then

long coker Μ(φ) = oo.

PROOF. Every isogeny φ: X -» Υ is a product of 'elementary' iso-

genies, i .e. isogenies whose kernel is one of the following artinian

groups:

1) G
n
 = Spec klZ/nZ], (n, p) = 1,

2) G
p
 = Spec klZ/pZ],

3) G£ (the linear groups dual to G
p
) ,

4) s = Spec k[x]/(xP), c(x) = χ <g) 1 + 1 ® x.

An exact sequence of the form

0-»G-^X —>Y—>0 (4.2)

by the functorial correspondence X^X* induces a dual sequence

Ψ
1

0_>G'->y'—>Z'—>0, G'-kercp'. (4.3)

Results of Serre [55], combined with the 'duality theorem' of Cartier [2l],
show that if G is an artinian group of one of the types l)-4), then the
dual sequence (4.3) is exact and, moreover, the kernel G* of the isogeny
φ

4
 is isomorphic to the artinian group G*, the linear dual of G. (It

appears probable that the isomorphism between G* and G* holds for any
artinian group G that occurrs as kernel of an isogeny of abelian varieties,
but this variant of the duality of A. Weil apparently does not follow from
results in the existing literature.)

The truth of Proposition 4.2 a) for the product φ ο ψ of two isogenies
clearly follows from the statements for φ and ψ separately. It is there-
fore sufficient to verify these statements for elementary isogenies.

The exact sequences (4.2) and (4.3) induce exact sequences

0-^Hom(V*, 7 ) - > H o m ( X , /) —> Horn (G, I) —.> 0, (4.4)

0->W(k) ®Hom(y\ T)->W(k)<g) Hom(A", T) —> W (k) <g> Horn (G, T) —> 0,
(4.5)

0 _ > W (k) (8) ,rp (Ϋ') -> W (k) <g> .Fp (X') -> W (k) (g> ,7v (G*) - > 0. (4.6)

(The first two of these follow because the objects I and Τ are injective

if G = G
p
 or G = S, and from the fact that φ : X -> Ϋ is an isomorphism if

G = G
n
 or G = G£; the exactness of the third follows from the work-of
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Serre [55].)

It follows immediately that Μ(φ) is injective.

Let G = G
n
, (n, p) = 1. Then G* = G* = G

n
. In this case deg φ = η is

not divisible by p, and the third term of the exact seauences (4.4), (4.5)

and (4.6) is zero.

Let G = G
p
. In this case G

t
 = G*, deg φ = ρ, the third term of the

sequences (4.4) and (4.6) is zero and the third term of (4.5) is iso-

morphic to W(k)/pW(k), i.e. of length 1. A similar result holds if G = G*.

with this difference that here the third terms of (4.4) and (4.5) become

zero.

Finally, for G = S only the third term in (4. 4) is zero and

Horn (G, I) = Horn (5, I) = W(k)/pW(k), while deg φ = p.

Prom what was said above the truth of a) follows. The statement b)

follows from the fact that the isogeny p.ίχ representing multiplication by

ρ has degree p
2n
, where η = dim X, and the cokernel of Μ(ρΐχ) has length

r = rg M(X).

Let Ζ = Im φ C Y. If dim Ζ < dim X, then rg M(Z) < 2 dim X, whence c)

follows.

Thus the proposition is proved.

2. Prom this result we can already obtain a number of consequences on

the structure of algebroid formal groups. The following fact was obtained

in a different way in the author' s doctoral dissertation.

Let X be an abelian variety of dimension n, and put

^-/βι,ο+Σβ»,^· n
imi
>0.

Then

Υ η-, = V m
t
 •-= η — /. (4.7)

Indeed, since the varieties X and X
t
 are isogenous, the dimension of

the toroidal components of X and of X* has the same value /. Let us put

M(X) = /tfi©M
2
©M

3
 corresponding to the decomposition (4.1); then the

length of the cokernel of the restriction of Μ(ρΙχ) to M
2
@M

3
 is equal to

2/, and the length of the cokernel of the restriction of this homomorphism

to Mi is Σ(πί + mi). Therefore 2/ + Σ(π^ + WJ) = 2n. On the other hand,
i

f + 1/ii = n. Hence (4.7) follows. From it we immediately obtain the

following result:

C O R O L L A R Y . All homogeneous formal groups of the form kG
n m

,

where, mn > 1, are non-algebroid.

(For otherwise we should have kG
Uin
 ~ X, where X is an abelian

variety, but then by (4.7) it follows that m = n, which is impossible,

because mn > 1 and (m, n) = 1.)

Only the series of equidimensional homogeneous groups like G
x >
 j do

not satisfy the conditions of this corollary, and in fact they form an

exception: all such groups are algebroid. Indeed, G
x > ±

 ~ X, where X is an

elliptic curve (one-dimensional abelian variety) with vanishing Hasse

invariant. (If the Hasse invariant is different from zero, then X ~ G
1 > 0

,

so that toroidal groups can be realized as completions of an abelian

variety.) This result follows trivially from the proof of Theorem 4.1 below.
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Thus, the majority of commutative formal groups of a given dimension

are non-algebroid. Condition (4.7), representing a strict 'selection rule'

for algebroid formal groups, however, does not exclude the possibility of

any equidimensional formal group being contained in the completion of an

abelian variety together with other formal groups. Our main objective in

the next two sections consists in proving that such a possibility really

occurs.

§3. The formal structure of abelian varieties; the fundamental theorem

1. Following Serre [55], we shall deduce from Proposition 4.2 the

possibility of a p-adic representation for the endomorphism ring of a

variety X over the module M(X).

P R O P O S I T I O N . Let φ : X -» X be an endomorphism of an abelian

variety, and let Μ(φ) be the corresponding endomorphism of M(X). Then the

characteristic polynomial of Μ(φ) coincides with the characteristic poly-

nomial of φ in the sense of A. V/eil.

PROOF. We shall make use of the following lemma of A. Weil:

L E M M A 4.1. Let Ρ(λ), Q(\) be polynomials of the same degree with

coefficients in the ring W(k].) of p-adic numbers and highest coefficient

unity. Let 6i e
r
; η

1 (
 ..., η

Γ
 be the roots of Ρ and Q respectively.

Suppose that for any polynomial F(T) with integer coefficients we have

v
p
( Π F(8i)) = v

p
( Π F(T\i)). Then Ρ(K) = Q(k).

i - 1 i = 1

Since the characteristic polynomial Ρ(λ) of φ is defined by the

property Ρ(λ) = det (φ - λΐχ) for any integral λ, and the characteristic

polynomial Q(X) of Μ(φ) satisfies the corresponding condition

Q(k) = det (Λί(φ) - λ£) for all integral λ, we need only verify that for

any endomorphism φ : X -* X the highest powers of ρ by which det φ and

«/(φ) = det Λ/(φ) are divisible, coincide. By Weil' s Lemma this result

suffices if the coefficients of P(K) and Q(K) belong to the ring of

p-adic integers W(ki).

We begin by verifying the last statement. It is clearly satisfied for

Ρ (λ). For Q(X) it is enough to verify that οί(φ) is always contained in

the ring of p-adic integers. We have d(q>) = ά
ί
(φ)ά

ζ
(φ)ά

α
(φ), where ^ί(φ)

is the determinant of the restriction of Λ/(φ) to the component Mi

(i = 1, 2, 3) of M(X). It is clear that d
2
(qp) and d

3
(y) belong to Μ ^ ) .

Λ/ι.is an £-module, the restriction of φ to Mi is an £-module endomorphism

and in particular commutes with F. The determinant <ii(cp) on Μ coincides

with the determinant of the restriction of φ to FM
X
, which in turn equals

tf[(cp). Since ^(φ) = cF£(cp), we have p
k
d
1
(<p) e Ĥ fe].), where k is an integer.

But it is also clear that ν
ρ
(οί

1
(φ)) ̂ . 0.

It remains to verify the equality of the p-adic exponent of deg φ and

of d(q>). But this follows immediately from Proposition 4.2, because

v
p
(ci(cp)) coincides with the length of the cokernel of the homomorphism

Λ/).
Thus the proposition is established.
2. THEOREM 4.1. Let X be an abelian variety defined over a
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finite field ka of pa elements, Fa the Frobenius endomorphism of this
variety (induced by raising to the pa-th power), η = dim X and
P(K) = λ 2 η + . . . + pan the characteristic polynomial of Fa. Put

2 η

Ρ(λ)= Π (λ-τ,), Vp{ti) = act, 0 < C i < l ,

where the elements τ ; belong to a ring of the form (fffefa) [ p x ' e ] , b = 0(a),
e -̂ 1. Denote by rc the number of roots %i of Ρ(λ) satisfying ν ρ(τ) = ac
and let nc = crc, mc = rc - nc. Then

X — f"oGi!o+ \ (Gnc,me~rGmCi nc) + -y r Glti. (4-8)
ι «

0<c<-j-

PfiOOF. Let us put Ρ(λ) = Ρι(λ)Ρ
2
(λ)Ρ

3
(λ), where Pi(λ) is the char-

acteristic polynomial of the restriction of F
a
 to Mi. It is clear that the

degree of Ρ
2
(λ) is /, where / is the rank of the toroidal component of X.

Let us show that

P. (λ)- Ii (λ-τ,), Ρ
3
(λ)= Ι] (λ-τ,). (4.9)

ν(τ"
;
)=ι.ι. ν(τ

;
)=0

Indeed, the kernel of F
a
 on the toroidal component of X has a composition

series, whose factors are all isomorphic to G
p
. It follows that M(F

a
)

induces an automorphism of M
3
 (cf. proof of Prop. 4.2), and hence the

p-adic exponents of the characteristic roots of M(F
a
) on M

3
 are all zero.

Similarly the endomorphism p
a
Fa

1
 induces an automorphism on M

2
 whose

characteristic roots are all p-adic units. Therefore in any case the

equations (4.9) hold if we do not insist that the products are extended

over all roots with the corresponding exponent. But on M^ the endomorphism

M(F
a
) is topologically nilpotent (i.e. for any k > 0 there exists an e

such that M(F
a
)
e
M
1
 C ρ^Μ{). It follows that none of the characteristic

roots of M(F
a
) on M

±
 can be a p-adic unit. Hence every root τ with ν

ρ
(τ) = 0

is a root of Ρ
3
(λ). Now by the functional equation of the zeta-function on

an abelian variety, the polynomial Ρ(λ) has together with any root X{ also

a root p
a
T'T

1

>
so that the number of roots with v

p
(Ti) = α is the same as

the number with ν
ρ
(τ^) = 0. For the same reason Ρ

2
(λ) contains all

factors λ - fj with v
p
(Tj) = a and only these. In particular, / = r

0
 and

the equations (4.9) are proved. They imply the following relation which

is of great importance to us:

^ι(λ)= ΓΙ (λ-τ,)= U (λ-τ,)(λ-//ν) [} (λ_
τ )
. (4.10)

0<ν(
Τ ί
)<« xlr

t
)=,,c v(T;) = ;;

Pi (λ) represents the characteristic polynomial of ,'./(F
a
) on M

x
 and we are

now in a position to apply Theorem 2. 2. Thus, M
r
 is the Dieudonne module

of the corresponding component of X. This component is defined over k
a
,

and the corresponding module over the algebraic closure k D fe
a
 is iso-

morphic to W (k) <£> A/i. Further, M(F
a
) induces on M

i
 an endomorphism

which coincides with Λ in the notation of Ch. 2, §3. The required result
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on the structure of the £-module W(k) <^>M
1
 is now obtained immediately

from (4.10) by Theorem 2.2. This result is clearly equivalent to the

decomposition (4.8).

The theorem is now proved.

REMARK 1. The decomposition (4.8) shows that every simple group G
n>m

other than the multiplicative group is contained in the completion of an

abelian variety with the same multiplicity as G
m>n
 ('symmetry condition').

We have proved this result only for varieties over a finite field, and

only up to isogeny. Clearly it can also be obtained as a consequence of

the more general result, that the completions 1 and 1* of an abelian variety

and its Picard variety are connected by a certain duality of formal groups
1

(see the remarks below on Weil duality).

REMARK 2. As J. Tate has remarked, the decomposition (4. 8) may be

written in a more symmetric form:

c, Tic) Τ ^ i ^1.1·

if we interpret the group Go,
m
 for any m as the zero-dimensional group

k.

§4. Weakly algebroid groups

1. D E F I N I T I O N . A formal group is said to be weakly algebroid

if it is isogenous to a subgroup of an algebroid formal group.

We shall now Drove the fundamental result of this chapter.

T H E O R E M 4.2. Every commutative formal group is weakly algebroid.

2. PROOF. We shall effectively construct the totality of all abelian

varieties whose completions contain (up to isogeny) all possible groups

G
n
, m· P°

r t n
i

s
 purpose it is sufficient to consider the Jacobian variety

J
a
 of the Davenport-Hasse curves:

yP^y
 = X

p"-l (
a =
l, 2, 3, . . . ) .

The dimension of J
a
 is &(p - l)(p

a
 - 2). In the paper of Davenport and

Hasse [22] it is proved that the roots of the characteristic polynomial

Ρ
α
(λ) of the endomorphism F

a
 of J

a
 are trigonometric sums of the following

form:

τ(Ψ, χ)= Σ

Here ψ ranges over a certain set of additive characters of the field k
a

and χ ranges over a set of multiplicative characters, summed over all

products in the group of non-zero elements of the field. The arithmetic

of such sums was already studied by Stickelberger. Since we are interested

in the p-adic behaviour of such sums, the following interpretation (cf.

Dwork [l]) is particularly suitable for us. We set

This is stated more precisely in the report by Barsotti [l4]; no proof i s
given in this paper.
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Here ί is a multiplicative representative of the element t e £
a
 in the

ring W(fe
a
), and the character θ

α
 is defined as follows:

θα(ί) = ζ
Τ + Τ Ρ +

···+
Τ ρ α

-\ ζ" = ί,ζΦί. i4.ll)

It is well known that ζ e ffC&j) ip
1
'

6
], e = ρ - 1. According to Davenport

and Hasse, the decomposition of Ρ
α
(λ) into factors has the following form:

Clearly, τ(ψ
ί#
 χ .) e W(fe

a
) [ p

1
^ "

 l )
] , so that the conditions of Theorem

4.1 hold.

We shall now compute the p-adic exponents of the roots τ(ψί, χ •).

In the fi* st place

τ(ψό Χ;)= Σ ψ (»f) X> (0 = 8 ^ Σ Ψ(ιί)Χ;(«)=βΓ
ί
τ(ψ

1
, χ,),

where ε^ is a multiplicative representative of the element i mod ρ in the

ring W(k
a
). Next, we consider j = Σ j^p

1
, 0 ̂  j'

i
 Κ ρ - 1. the p-adic

decomposition of j, and write "*

By a relation due to Stickelberger (cf. Dwork [l]),

τ (ψι, %j) = - Υ ΟΥ
1
 λ

σ
 (») mod λ

σ
 ϋ)+ι, λ = 1 - ζ.

Since ν
ρ
(λ) = 1/(ρ - 1), we have

It is clear that o(j') assumes all values between 1 and a(p - 1) - 1, as j

ν(τ(ψί, χ ))

runs from 1 to ρ - 2. Therefore the set of numbers 1— includes

α

all rational numbers between zero and one whose denominator divides

a(p - 1). By Theorem 4.1 this means that the decomposition of the formal

group J
a
 includes homogeneous groups of all types (m, n) for which the

sum m + η divides a(p - 1) (indeed, by Theorem 4.1, the inclusion in J
a

of a group of type (m, n) is equivalent to the existence of a character-

on

istic root τ with exponent V
D
(T) = ).

r
 η + m

Hence, for any pair of coprime integers m, η the algebroid formal

group 3
n
+
n
 contains a component isogenous to rG

Uim
, r > 1.

This completes the proof of the theorem.
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§5. Reaarks and examples

I· The sequence of groups J
a
, while showing that all commutative

formal groups are weakly algebroid, unfortunately does not provide us with
the means of describing all algebroid formal groups. The groups
Gn,η

 +
 G

m > n
 are the smallest formal groups that satisfy the selection

rule (4.7) and the symmetry condition of Theorem 4.1 (from which the
relation (4.7) follows automatically). I should be inclined to state the
following conjectures:

CONJECTURE 1. The groups G
n # m
 + G

m
,
 n
 are algebroid.

The proof of this conjecture and a slight sharpening of Theorem 4.1
(proof of the symmetry condition for groups that are completions of
abelian varieties over not necessarily finite fields) could be deduced
from the following complete classification of algebroid commutative groups.

C O N J E C T U R E 2. A group G is algebroid if and only if it is iso-
genous to a group of the form

i
 ι ' • J' } ] J

For the proof of Conjecture 1 i t is necessary to know how to construct
an abelian variety in which the Frobenius endomorphism satisfies s t r ic t
arithmetical conditions. For we have the following variant of Theorem 4.1,
which deserves a separate formulation, because i t does not require the
calculation of the roots of Ρ(λ) and the verification that they are 'not
too badly ramified'.

THEOREM 4.1*. Let X be an abelian variety defined over a finite
field ka of pa elements, dim X = g, and let Fa and Ρ(λ) have the same
meaning as in Theorem 4.1. Then the formal group X is isogenous to
Gn, m + Gm, n (n < m, η + m = g, (n, m) = 1) if and only if the characteristic

polynomial Ρ(λ) = Σ aj λ1 satisfies the following conditions:
i = 0

Vp(aj) vp(ag) n

min —m r-
— /) ag m-{-n

PROOF. If Ρ(λ) satisfies the conditions of the theorem, then by the

remark to Lemma 2.2 and the functional equation

Ρ (/λ"
1
) λ

23
 = p

aiJ
 Ρ (λ)

a non-commutative decomposition of this polynomial over the ring
H k̂) [p 1 ' 8 ] (where kZDka i s the algebraic closure and g = η + m) has the
form

g on μ ton

where %i, yi e IC(fe) [p
1
'

8
] are invertible. If ο = 1, it follows immediately

that X ~ G
n > m
 + G

m>l
,; if ο > 1, then the result follows by the same

reasoning as in the proof of Theorem 2.2.

Now if Ρ(λ) does not satisfy the condition of the theorem, then either



The theory of commutative formal groups 77

> («/) r η
mill

n-\-m

or min — - — L _ = , but the least value of j for which this minimum

a(2g— j) η + m

is attained is greater than g. In the first case the completion X contains

a group G
r>s
 _

r
 and the second case is impossible, because then

X ~ G
n>m
 + G

m > n
 + G, where G is a group of dimension ̂ - 1, which contra-

dicts the equation dim X = g = η + m.

This proves the theorem.

I do not know how to construct abelian varieties with such properties

in the general case; the difficulty is increased by the fact that it is

clearly hopeless to try and obtain such varieties by reducing mod ρ an

abelian variety over a field of characteristic zero with the required

properties.

Therefore I shall confine myself to two examples that verify the con-

jectures for very small values of p, m, n, namely: ρ = 3, η = 1, and

m = 2, 3.

In both cases the example is furnished by the Jacobian variety of a

hyperelliptic curve of genus 3 or 4, respectively, over a field of three

elements.

The determination of curves whose Jacobian variety possesses a given

formal structure can only proceed by trial and error: with the help of the

Hasse-Witt matrix it is possible to select curves for which the completion

of the Jacobian variety contains no toroidal components, and then we can

immediately calculate the number of points on these curves in fields of 3,

3
2
, 3

s
 elements for genus 3 and even in fields of 3

4
 elements for genus 4.

The characteristic polynomial can then be constructed, by making use of the

well known formulae:

g

Ν
 a
 = 1 + <f — Σ (

T
? "I"

 (
/
a
'
C
i
a
) (

a
 = 11 •·••>&)•

(This formula is valid for any complete non-singular curve of genus g over

a field of q elements; Ν denotes the number of points on this curve over a

field of q
a
 elements, and Ρ(λ) = Π (λ - Tj)(X - στ'-

1
) is the character-

i= 1
 l

i s t i c polynomial of the Probenius endomorphism (x) -> (xq) on the
Jacobian variety of the curve.)

After these general remarks we come to our examples.1 Any details
which are omitted may easily be checked.

EXAMPLE 1. X is the Jacobian variety of the curve of genus 3

y2 = x1

over a field of q = 3 elements.
Here

= 37,

The hyperelliptic curve considered below has a singular point at infinity, but
this is a cusp which corresponds to a unique point on the non-singular model.
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whence

ρ (λ) = λ
β
 + 3λ

5
 + 6λ

4
 + Ι2λ

3
 + 18λ

2
 + 27λ + 27.

The Newton polygon gives

U T - 3 -
 3
 ·

Thus, X satisfies the condition of Theorem 4.1'. It follows that

X — G
i ?
2 + G

2
, ι·

EXAMPLE 2. X is the Jacobian variety of the curve of genus 4

y* = χ
9
 + χ

7
 + χ -+-1

over a field of q = 3 elements.

In this case

#1 = 7, TV
2
 = 13, #3 = 37, #4 = 85,

whence

The Newton polygon gives

Therefore by Theorem 4.1',

A <— Cri
5
 3 -f- 0r

3)
 (.

2. Another circle of questions on the structure of the completion of

algebraic groups is connected with the following circumstance. Consider a

given algebraic system of curves of genus 2 over a field of finite

characteristic. It can be shown that the points of the parameter space for

which the completion of the Jacobian variety corresponding to the curve

has a given isogeny type are constructible sets. What is the structure of

these sets and in particular their dimension? This problem is the widest

natural generalization of the problem of describing the 'supersingular '

invariants of an elliptic curve, solved by Deuring [23].

A complete answer to this question presupposes fairly precise informa-

tion on the module space of curves of a given genus.

For g = 1 the curve is defined by its absolute invariant j. Its

completion is isomorphic either to G
l)0
 or to G

1 ( 1 #
 The first case is

typical, the second is realized for the values

- r
p
, r

p
 = 0, 1 or 2,

of j that are roots of A
p
(j), the Hasse invariant, which can be described

explicitly. In this text see the papers by Deuring [23] and Igusa [49].

For g = 2 the question has apparently not been investigated. Here the

possible structure of the completion J is G
1 > 0

 +
 G

1 > 0
, Gi

> 0

 +
 G

l f
 j. and

Gi, ι + G
1 (
 !. They are all realized and correspond to the values 2, 1, 0

of the rank of the matrix ΑΑ
σ
, where A is the Hasse-Witt matrix of the

curve. This computation likewise makes use of the condition ρ > 2. From

the general formulae proved by the author [δ] it follows that for the

curve
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5

i=0

of genus 2 over a field of characteristic ρ the Hasse-Witt matrix has the

form

where the 6j are defined by the identity

p-l
 5

~ 2 ~

i-0

Therefore the choice of the structure on the completion J is equivalent

to the imposition of the following relations for the coefficients of the

polynomial F(x):

J~2G
lt0
<

These relations constitute an analogue to Deuring' s formulae [23] for

supersingular elliptic curves. They enable us to show that the dimension

of the locally closed subsets of the module space corresponding to the

three possible variants of the structure of J is equal to 3 ( 'general

case'), 2, and 1, respectively. For g = 1, all elliptic curves whose

completion is isomorphic to G
l f l t

 are isogenous among themselves

'globally'. Is this also true for g = 2 and the case J ~ 2G
ltl
?

For ρ = 2 the result can be obtained particularly simply. According

to Igusa [5θ], in this case every hyperelliptic curve of genus 2 can be

reduced to a normal form of one of three types. It turns out that this

decomposition corresponds exactly to the decomposition of the Jacobian

varieties of these curves into three types according to the structure of

their completions.

The precise results are as follows.

a) Normal form

2/2 _
 y = X

3
 + ax +

 β
χ
-ι + γ (ζ _ 1)-ι,

 α
βγ ψ 0.

In this case a basis for the space of differentials of the first kind

dx dx
of the curve consists of the differentials — a n d . Since they are

χ x +1

'logarithmic', we have according to Cartier and Barsotti

J ~ Gi

b) Normal form

if-y^xt + ax + fix-
1
, β Φ 0.
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Here the basis for the space of differentials of the first kind can be

taken to be of the form (dx, — ) . Only one of these differentials is
X

logarithmic, while the other is complete. Therefore

J ~ Gl,0 + Gl,l·

c) Normal form

y
2
 — y — x

5
 -\-ax

3
.

Here the differentials of the first kind are dx and xdx. No linear
combination of them can be a logarithmic differential, so that J has no
toroidal components. Therefore

§6. Comments

The first general result on the structure of completions of abelian
varieties is contained in the paper [δ] of the author, which arose from an
attempt to answer two questions raised by Barsotti [ll], [l2]. Already in
this paper there appears in embryonic form the connection between the
formal structure and the characteristic polynomial of the Frobenius endo-
morphism. The complete result (here Theorems 4.1 and 4.2) were formulated
in the author's note [β]. It would be interesting' to try to apply the
techniques of Barsotti [13] to a proof of the general 'symmetry condition'

In the case of non-commutative groups the study of the representation
of formal groups in algebroid groups is a basic tool in the classification
(cf. Dieudonne [29]). In contrast to the commutative case, here all simple
groups (and further all groups without a centre) turn out to be algebroid.
The fundamental investigation of extensions of formal groups was begun in
the paper of Dieudonn6 [3l]. Only partial results were obtained; in this
problem one can see particularly clearly the necessity of including the
theory of non-commutative groups in the general categorical frame-work,
similarly to that outlined in the first chapter of our paper, for the
application of standard homological techniques.

In the same paper [3l] Dieudonn6 constructs an interesting example
which shows that a non-commutative extension of an additive formal group
by another additive group may be a non-algebroid group. It seems likely
that this example is connected with the general 'pathological' properties
of the Witt group (in particular, the additive group). Perhaps formal ex-
tensions of algebroid groups are algebroid if we confine ourselves to the
consideration of groups without unipotent components.

Received by the editors 1st January 1963.
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