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CHAPTER I
INTRODUCT ION

1. The Adams spectral sequence [1] (see Chapter 2, section 1 for a sumary)
is the most powerful tool presently available for studying the stable homo-
topy of spheres. The Adams theory is essentially a stable one, in its present
. form, and so gives information about ﬂj(Sn) only for j < 2n-1.

- The next block of n~-1 groups, i.e., for 2n-1< j < 3n=-2, is called the
netastable range and it too has many regular properties. But stable arguments
do not in general apply. The main result now available for this range of
groups is the following theorem of Toda.

. THEOREM I [25;11.7]. The following sequence is exact for j < 2n-2 and is

‘exact on the two component for j < 3n-3:

1.1 Syn

- nj_'_n(sn) _— . (Sn+k) I—k-’% n

13
zn—anﬂ:-l k,n n
jtktn ( n ) 2 “3_1(5 3>

j=1*n
where P2+k-l = pP-1/p=1 3 P” i3 the real n-dimensional projective space.
| +k ~1n+k=1
Note that if X >n+1 and j < n=-2 then ﬂj,,,k(sn ) and "j—l(zn oL
are stable groups.
Our cbject is to bring to Toda's theorem the power of stable methods
~ developed by Adams. One main result is
. THEOREM A. Assume k > n+1. There is a map between Adams spectral sequences

- wWhich on the E, level gives
! 2

I 8=1,t 2, pRthk-1
ExtSr¥(2,,2,) B> mxti I U (E(E, T ),2,)

for t-s < 2n~-2 and projects in E_, to the same map to which Ik,n of Toda's
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theorem projects for the same range. In addition if we restrict t-s to e
- +* ¥*,

greater then n-1, Ik"";n is & mapping of H¥(A) modules. (H¥(A)=Ext}(1,2))

(Note that , .3 ; Ext§?™(5y,2,) is an H¥(4) module.)

One can think of I‘k,n in theorem I as a generalized Hopf homomorphism
and our primary interest will always center on the case where k > n+1, i.e,,
where we map the cokermel of the suspension from an unstable group to a
stable group. The map Pk,n in theorem I is a generalized Whitehead product
and there have been several efforts to get general results about it[10],[11],
and [19]. Theorem A gives a quick proof of all the results of [19] and sub-
stantial generalizations.

2. It is quite clear from theorem I that a detailed study of the homotopy
of stunted projective spaces is central in the metastable homotopy of il
second major object of this paper 1s to develop a technique which renders
this a comparatively easy job if one knows Ext for a sphere. The details
of the computation of m +p(Pk) for p £ 29 are given in Chapter III, The use
of a large computer was importent in this work; compere III section 8.*
Table 4.l tabulates these results. Detailed tables are given in Chapter III
section 8.

Together with a proof of theorem A, Chapter II introduces a map between
stable objects, A: P, —> s, (P:f1 = RP/RP™™L yhere RPX is a real k-dimen-
sional projective space.) It is conjectured that this map is onto in homo-
topy (II.4.2) and this conjecture is verified as far as we have gone (Chep-
ter IV).

In [4], Adams defines a collection of direct sumands in certein stable
stems. Table 1 gives a listing of them with names for the generators.

L OE R -1 0 1k 2 3
S
As d
ummand of wy ZA(.'I) 22 22+ Z, 22 Z8
2
Neme of generator Pj 'qu** Mepky MRy EJ
Table 1.

*Dr. D. MacLaren did the programming using Cogent, a programming lan-

guage developed by John Reynolds. Ar d
the machine time; compare EB]. gonne National Laboratories supplie

*le actually will work with an element which is npy modulo 2,,8:]5',
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) et 2(3) be defined by 83 = 2P(I-VR(D)) | 1 gy 1 Ay = oKD,
We will give particular representations of these elemn’c.s in Chapter IV,
our representations are defined in such a way that 'T Pj€imJ for all
j> 1 and some multiple of psisin imJ if j = 2P for each p. The second
statement 1s not proved here btut will be discnseed in another place and is

not used here. It is believed that Py npj, n ;:t.1 and Ej generate the real
image of J. In particular we will prove

THEOREM B. It is possible to choose generators P (j >0)y p, and E (for

§20) in stems given in table 1 so that they have the following propert.iea.
i) pg has filtration > 4j - p(j).

! i) n Py bas filtration 2 4] for j > 1.
1i1) Rj has filtration > 43 +1.

3

iv) &4 bas filtration > 4j+ 1.
v) slpy) = 27P(3)-1 (g 27 P(3)y,
) &(py) # 0.
= s
vi1) e '(z,) = §(mod ).

We will also investigate the Whitehead product structure for all these.
THEOREM C. Iet a be an element in table 1. Suppose [1,,a,] 1s in m (s?)
and k < /n=-3. Then the order of [1,,a,] is given by table 2 except if i =
€py n=pj; i=8p-2, a =Ry i=8p~-3,a =npy and 1 = 8p-4, a = E4. For
these cases we require

i= l 8p [ 8p -2 | 8p-3 | 8p-4

8§< | sp-év+2 | Bp-bv-2  l. Sp-tw=5 | ep-6v-7
were v is defined by 8(p+j) = 2V(2"1).

Before we state theorem D we need some notation. Let n be an integer
w16t o and b Bedsrined by S A B, 0 SD £ 30 Iavigln)=daaat
let

Pn = Pa+1 B
=Ea b 2
b = 0.

=npg



a= Py P TPy Py MRy Ej
150 | Acgy [P smf » R 55 ool
1. | 2 2 2 2 2 Lo
L) SR o iy s (.
O 0 0 0 0| x
2
it B¢ | e % - 1a % o
5 2 2 x 2 2 0
6 A(j) x 0 2 0 4
e 0 0 0 o' i
Table 2.

S

Notice that ﬁn E ﬂcp(n)-»l'
1

THEOREM D. If n+g(m)+1 = 2 (2™1), where 3 < m! < m, then (1,080 = 0.
If n+9(m)+1 = 0 (mod 22*1), then [tn,ﬂm] is either zero or of order 2.
Conjecture, [In’ﬁm] £0 if n+op(m)+1 =0 (mod Zmﬂ') but n+o(m) +1 # z"’"l,
and [Ln,ﬂm] =0, ntp(m)+1 = 2m+1, iff {%2} is a permanent cycle in the
Adams spectral sequence. In particular, we conjecture that if hm2 projects

to a non-zero homotopy class a in the Adems spectral sequence then in the
diagram

I
11"3'2:.1+1_2 Fhy) W1 o 4 (z“‘an)
i

*
Tt g, (877
where I, is as in theorem I, iis a generator and n = 2% L o(m) -1,
Ih(am) = i*Bm'
Partial results supporting this conjecture are known but they will not
be discussed here. In particular the conjecture is true for m £ 4o
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3. In addition to the above information we get detailed results on the first
tventy or so unstable stems. In particular we give a table 4e2 which gives
11j(s“) for < J <40 if n> (j+3)/3. These results follow easily from the
collected calculations, and no detailed proof is given. We also can get
rather gta:ong statements about what the homomorphisms look 1like if J > 40,
282 Jj-n2 -l. These are collected in tables 4.3 and 4eke Propositions
vhich make this explicit are given in Chapter V. The results there are suf-
ticlent to compute [1_,a] for most a € nj(So), Jj < 21. The results would
really be quite satisfying if e specific conjecture about ExtS?¥(z,,2,)
could be verified, V.2.4. This conjecture is almost certainly true and it
seems within range of present techniques. When verified the Whitehead
product question for any element in m.(S®) < 29 with the exception of {eq}
would be settled in the sense that mfzk,n) could be given.

4+ This section contains the tables which collect the calculations made in
the paper. The first table gives m, (Pn) o~ nm(vnm’m) form > k+1. By
(8] ve see that m, (BOS(n)) x m,,(BSO)(n+m) @ meyy(Vyyy o) for m > k+1,
n>13, k<n=1l. Thus table 1 also gives a table of the unstable homotopy
groups of BOS(n).
in element in table 1 consists of some powers of some integers. For

example, for n = 1, k = 19 we have 8,2 as the entry. This means that
Ts19(By) = lg®Z, if n=1 (mod 16). In addition some entries contain the

syibol A or B or C. If for a given k and n valus the table lists C,2° this
meens that the group is C(k,n) @ 2, ® Z,, where C(k,n) (and A and B) are given
by the following result.
PROPSTTION 4.1, a) Let m(n,k) be defined by n+k+1 = 2%mod 2%'1). Let q
te defined by ¢(q) < k < p(a+1). Let i(n,k) = max(q~-m(n,k),0). Then
Alkyn) is & cyclic group of order 21(n,k) | 1
b) B(k,n) = B(k,n) @ Z, if m(n,k) = 4 and B(k,n) = B(kx,n) if m = 4. B(k,n)
is a cyclic group of order 79 ie q -n(nyk) > 0 and the order of 1, in
tables ITT.8.4, 1 = 2y..4,16.
¢) Clkyn) = Z, if m(n,k) > 4 and C = 0 If n(n,k) = 4.

Tables 2, 3 and 4 are quite clear. The xernel of the unstable J-homo-
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morphism can be easily detected. In particular if the unstable group in ope
of these tables does not contain m(P ) then the unstable J-homomorphism bes
a kernel. Comparison with table 1 gives the kermel. The groups in paren
theses in table 3 refer to undeeided cases. Conjecture V.2.,4 if true would
decide in favor of the group not in parentheses. In addition the reader
should be warned that not all the group extensions have been settled. This
applies particularly to table 4.1.

5. The author would 1ike to express his thanks to A. Luilevicius for many
profitable conversations on the material of this paper.
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CHAPTER II
THE ADAMS SPECTRAL SEQUENCE

. INTRODUCTION. The purpose of this chapter is to summarize the Adams
spectral sequencs, aec‘h:l.on 2; to prove theorem A, section 3; and to introduce
the map A: Pl - S s section 4.

2, THE ADAMS SPECTRAL SEQUENCE. (See also [1].)

Suppose X is an n-1 comnected space. By a resolution of X we will
nesn a system of fiber spaces

P P
33 e —>P, B ... —>p —2)P1-—>X
? -
Ay 4, A
together with the system induced by 2.1 over a point
2.2 ‘..%BB_—?.II _9B2 ""‘>A1_'9*
t 1
As A2

Each space of 2.3 is the fiber of a composite map of 2.1, i.e.

Bs e Ps e
is a fiber space. The Puppe sequence gives a map fs: OX = Bs' 1t 48
clear that the system 2.2 together with the maps fs define 2.1. Because of
this we frequently will call 2.2 together with {fs} a resolution.

Associated with a resolution is a spectral sequence defined by the exact
couple

2.3 Zu (p)——+2n (2)

e

;‘.’ﬂ*( A )

Of course in this generality nothing much can come from 2.3. There are
several useful specializations. The first leads to
DEFINITION 2.4. A resolution (mod p) is called admissible through dimension
T<2n-1 if
1) Each A  is a product of Eilenberg Maclene spaces (K(Z4q) or K(Zp,q)) of
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dimensions less than T;
2) ker(f *: n(2X) = n(B)) is strictly monotonically decreasing,

The most important resolution has this
DEFINITION 2.5. A resolution is called an Adams resolutiop mod p if
1) it is admissible through dimension 2n-1; and
2) each A  is a product of K(Zp,q)'s;
3) p* is zero for each s with Zp for coefficients through dimension T (in
(2.1).

Because of 2.4.2 the spectral sequence associated with an admissible
resolution of & n-1 commected space with finitely generated homotopy con-
verges to a graded group associated with ,12<:T ﬂJ(X), filtered by 2.1. Using

both the s filtration and the q filtration of Ay we see that 2.3 is alwyps
begraded. In the case of an Adams resclution the E5?* = Ext®~Lo(ix(x) )
for t=-8 < T=1; for details see [1].

Related to the above is another notion which will be useful. ILet
D CH*(Xizp) such that D is a vector space over Zp'
DEFINITION 2.6. We say X represents D if
1) Xp 18 a product of Eilenberg MacLane spaces;
2) there is a 1-1 correspondence with fundamental classes {a} of Xpendea
homogenecus basis of D such that if a € D N BI(X) then a, & BI"X(xp).
3) there is a map f: X —> X such that £*(a,) = a.

Given a subspace D < H*(X) there is always a fiber space
247 XD =Y -
with 'c(a.a) =a for each a € D. For more details see [2; chapter 3].

3. THE CONSTRUCTION. ILet Q-Y n be the fiber of the 2n-2 comnected fiber
n
space over S That is, there is a map f: S™ > ¥ % such that 5 “j(sn) =
J(Y ") is an isamorphism for Jj<Zn-landn (xn) 0 for j 2 2n-1, Since
" has homotopy only through tha stable ra.nga we can define an ()-spectrm
ba.sed on Y, i.e., .C)_Yk+1 = k for all k > n. Let ¥ial Jk be the fiber for
the following map:
n

R 29" >yl N
Note that n is & fixed integer and Y2, depends on n. We will keep n fixed
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throughout the remainder of this section and thus suppress the superscript n.
It will be understood throughout this section.

PROPOSITION 3.1. There is a homotopy equivalence through the 3n+k =2
+ F
skeleton between Fn+k,k and =% kPnn k-1,
Proof. Consider
1
QU > 5, > 1.
This fibration has & cross-section o: Y, —> o5 ZkIn given by cp(y)(sl,...,s )
n
= (y,al,...,sn) where (y,sl,...,sn) is a point in z‘kxn in the standard represen-
tation. We can make @ into a fiber map giving
Ve > T, = Q_kzkrn

where Q is defined as the fiber. In any fibration F —> E —> B the boundary
homomorphism in homotopy can be realized by a map f: Q0B —> F. Using this
map we have

k+ & k+ I
Q J’Fn+k,k 4> oy L> Lo i

Since nj(In) =0for j 2 2n-1, fi induces an isomorphism in homotopy for
all dimension. Thus Q*'IF, ., o 1s homotopicably equivalent to Qg kv
Now consider the following diagram of fibrations:

n nt+k
Chy 28 >as

3.1 |4 liz {4y
Q

Lol 7 T {8

n
k=1 James [14] showed that Q,, ; = s20-1 tyrough hamotopy dimension
2 2 = g2n+2
3n-3. While Barcus and Meyer [6] showed that Fp4y 3 = Y, %Y, =
through dimension 3n. Since Qn*‘l,l = _Q_an+l,1 and il corresponds to
gt = .‘2122252'1_1 we see that i, is a homotopy equivalence through 3n-3.
We now proceed by induction. Consider

Qn+l,1 Xy QI

\ lgky
Qe x 7 Tar e
! .
DG e T, = e

and
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.O.ZS
Qn'*‘l,l —>Sn -

i "
Qn'+k L —>8, —> Q_kaS

-1.n+l
nqn+k oy S o_k}:k o et
The natural maps between the two diagrams give

m5(Qay 1) > Qi) > T Cpneka) > "G d)

Izi* TJQ* ']‘33* Tsl*
M@l 1) = Qg ) " Qe 1) > "5 (Gn,0)

By hypothesis jl* and 33* are isomorphisms for j < 3n-3 and J < 3n-2 re-
spectively. Hence ;]2* will be an isomorphism too for j < 3n=-3. Theoren I
completes the proof.

COROLLARY 3.2. nj(zh:n) = (T )+ nj(z“+kP§+k‘1) for § < 3n+k-3.

Note that either one or the other group is zero in the range of interest.
Let A: mi(2) > my(37*kpI*%"1) ve the projection map. Of course it is de-
fined only for j < 3n+k -3 and is not generated by any geometric map.

The following is an important corollary of the proof of 3.l.
PROPOSITION 3.3. The composite

ny(s™E) > (2T ) 2> n (T

is just
-1 a1y 2L +k ntk-1
T 2 W

where I is the Toda map of theorem 1.

Proof. The proof is immediate from diagram 3.1.1.

Proposition 3.3 is the key to the proof of theorem A. The only thing
left is to construct a suitable resolution of the cohomology of Z.J‘I 80 as to

be able to identify the copy of Zn+k¥"1+k'l which is present there.
Let

I
“j(sn"'k) Xy g

DO 4 N, e =
k 85k Ps,k —>X pzkxlk

be an Adams resolution of Y, through dimension 2n+k-1 (Def. 2.5). We re-
quire that 'Q-X's,k-i'l = xs,k'

—— > x(})
P1,x
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The rest of this section will be devoted to proving the existence of the
following diagram with the properties we will require (and show) it to have.

ZEJ_,YI‘ > e > zk’is,n e zkxs_l’n e s z“‘xl,n — T%(2,n)

H s
xDa —>AS+1 = eee = isﬂ'
s s-1
XDs_l-—>As — ass '—>As -AAB

Iy Sh =S Al S

v
iy

! ! l L d
5

Ipy>h >4 a3l ~> a0

l y | y

In"'k _> LY _"> Is’n_'_kéxs_l’n_}k "}oo- _>' Kl,n,._k—) K(Z,n-l-k)
Disgram 3.4

The resolution of ZkIn, which will give a proof of theorem A, is the
diagonal one in this diagram, i.e.,
8 1
A T T e (I

Hence the tower induced by the left hand column over a point must be an Adams
resolution of Fn+k,k' We will describe in detail the lower right cormer and
the general case involving the parameters s and s-1l. In everything that
follows we will only consider cohomology through dimension 3n+k-1. H*(X)

Al ey i "I(X).
0<j<3n+k

First we need a lemma.

B0 3.4.1. et Ff, o be the fiber of Z%g > Xg,pvi 20d 1ot

. s *
£ Fn+k,k = Fn"'k,k be the natural map. For each s f_* is surjective in
dimension less than 3n + k.

Proof. We proceed by induction. We need only show it for F°. We have

the following diagram:



5 Pl o
-1 _0 a s o > F
= an"'l,l F o,k ntk,k-1

]
Ty, T8
~1p LW
g n+l,1 Fn+k,k ntk,k-1"

Since FO,, ; = K(Z,n) xK(2,n) [6] £'* 1s surjective. The bottom cohomology
n+l,

sequence splits into a short sequence. By induction suppose f '* is surjec-
tive. Then (pzfo')* is surjective in dimension for which p,* is. Since

2n +k connected il* is surjective in dimension 2n+Xk, which con-

Pk, k-1 18
pletes the proof.
First the lower right corner. Consider the following diagram:
i
F 2 2 =T,

ntk,k

P

o 1, H(k(2,n)) = K(Z,0%%).
Let H*(F:+k,k) = ker £ + D where D is defined by this equation (although
not uniquely). First observe that
3.5 T: Dy > B*(K(Z,n*k))

is a monomorphism. Indeed if a & D, satisfies 0¥%a = O, then there is an a!
such that il*a' = a. But then iz*g*a' = f*a # 0 but g* is clearly zero in
dimension # n+k. Let XDO be a product of Eilenberg MacLane spaces which

represents D (2.6). We can form the fiber space
6 < *
3 Xpy, > 4 K(Z,n+k)

where the image of Dy under transgression is given by 3.5.
The second row of 3.4 is induced by 3.6.

Now consider
gy 3w
N
b
i:kYn —7\"19 Z?l’n —-A? ZkK(Z,n)
X”o"”il ¥ At “}T:[l-> 3
v

Tork Ko X100 Rgr K(Zsntk).
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4L
Let B¥(F") = ker £* + D) where Dy is defined by this equation. Let Xy bea

5 1
representation of Dl and define xDl s “2 - Al by requiring the trans-
gression on D to be the same as for the fibration Fl - kal Mot All' The
b
third row of 3.4 is induced by this fibration. In order to show that X, 18

the correct fiber for the second stage of a resolution of F

n*k,k e mist show
f* is onto. First observe that i* is zero. To see this consider the follow-
ing diagram:

1

e s L

1,n+k
Since g* is onto (because £ _* is onto according to 3.4.1), q* is zero
and thus i* is zero. Now consider the diagram

Zl T 5 Fl

e b S e b I
xl P,
Xp,
vhere Fl:_'m,n and Fk?m’k are the fibers of zkxl,n > Xy e 20d x(2,n) =

K(Zyn+k) respectively. Now ker j,* = ker (3;3)*. Indeed, H*(F;n’k) is
composed of the cohomology of ZK(Z,n) which is not in im H¥(K(Z,n+k)),

(i.e. suspension of cup product terms) together with the kernel of the map
B¥K(Z,n +k)) —> H*(Z¥K(Zyn)), i.e., those classes with an excess of greater
than n in the Cartan basis representation [23]. Clearly j;* maps to zero all
cup product terms and all classes which transgress to classes with excess
greater than n except those classes which transgress to Sqi, i>n. But
these classes which transgress to Sqi are also mapped nontrivially by j*jl*.
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Hence if there is an a & H*(XDO) such that p*a = O, then p,*a is zero too,

Since q* = O this shows that £* is onto.

The pattern of the above argument is repeated in each successive squars,
While it is clear that ker j,* = ker( 313)* in this setting it is less clear
later on because one does not have & hold on H*(Xa’q), qQ = n and n+k,
we will do the general case. Consider the following diagram:

Now
-1
37 fs —i:-& fs . i‘s
zkrn T Z}kX o Hg-1,n
i — ib 8 — 51
W1~ J’a f °
T X g0tk > xa—l,nﬂc'

The fiber Qg_;, in the induction hypothesis, is the s -1 space in a resolutim
of Fnﬂc,k’ thrcmgh 3n+k-3, i.ee

3.8 Fore i > 000 > oy > eee > Bprnilig
i 0
X X
Dga Dl

where 3,8 is an Adams resolution of Fn+k k through dimension 3n +k=-1. Iet
’

Dy be defined by H¥(F®) = ker £* + D_. As before, let Xp, be a product of

Eilenberg MaclLane spaces which represents Ds and form the fiber space

s 8
e XDs Rl As;-'-l -> As

where the image of Dg under transgression is the same as in the fiber space
8
el zkxs,n —> 4%,

The s+1 row of 3.4 is induced by 3.9. All that remains is to show that Xp
is the correct s'h fiber in 3.8 and this requires only that £* be onto. For
this we go to the previous stage obtaining the diagram below where the top rov
is dofined in 3.7 while the middle row is the fiber from %y 3 > Ke-mb
and so forth. The following lemma implies that £* is onto as above.

LEMMA 3.10. In this diagram ker 3g* = ker(§_ 3)*.
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Proof. Consider the tower of fiber spaces
Po = Pk_!
zk?s 5.1 E Ek J?s,n*-l WAl z:Illr{ss.,n+l‘:--1 o xs,nﬂc
CO Cl ck—l

Just a8 2,3 is associated with 2.1 there is a cohomology spectral sequence

associated with this tower whose El term is

o 3
El— }g H*(C™)

and vhose E  is a graded group associated with H*(F:-Fk k)' Barcus and Meyer
’

(6] prove that ¢t = Ekﬂixs,n-fi*xs,n*i at least through 3n+k-1 dimensions,
viere C' 18 the fiber of Pty . > VR L 10,y are
e B¥(Xg_g png) then I *(Bs*vy) = (pg%1p,)* p % (v;) = O unless By = v3 = oy
vhere a; is the fundsmental class of xs-l,n—i' But ;]*js*(ai*ui) # Oifor each
i, hence the lemma holds for E, in this spectral sequence. Now (e~ ui*ui)
projects to a non-zero class in Eoo and j*js* on these classes in Em is an
isomorphism. This implies the lemma.

The proof of this lemma completes the proof of the existence of 3.4 with
3.8 being a resolution of Fn+k,k‘

Now consider the resolution

8 1
311 Y, > oo > A% > w0 > 4T > K(Z,00k).

At each stage the fiber is a product of Eilenberg-MacLane spaces since in
going from 4.° to As.,_l the fiber consists of Eilenberg-MacLane spaces in

: ; a S*l the dimensions of the
dimensions above 2n +k while in going from Agyy to A4

homotopy in the fiber are all less then 2n +k. Thus this is an admissible
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resolution. Let Ei’t be the spectral sequence assoclated with it. Notig

that £ 5.t
Eg, = Ext”? (zz,zz), t-s <n-1
Ext®? S(E(PPE1),2,), n  t-8 <n-2.

Hence the spectral sequence based on 3.11 splits into 'bllzslAdams spectral ge-
+—

quence for a sphere if t-s <n-1 and 'bhe+one for P for n < t-s< L,

resolution of SP'¥ into the resolution of 3.11

There is a map of an Adams o A
which induces a map between spectral sequences A: Ei’ (s”) = E:’ . The mp

of the theorem is obtained by just considering the portion of E:!t for
t-8 >n-1, This gives
r, .8yt 0 s,t,pntk-1
1N ET) > B (TSR

The module statement is clear by considering the entire spectral sequence es
mapped by A. Proposition 3.3 shows that 1“1': is the map associated with I of
theorem 1 and this completes the proof of theorem A.

L. THE MAP A.

Adems [5] has shown that K(P,") = where @(n) is a well defined

Z(ch(n))
function whose exact value is not important here. ILet H, be the generator of
this group. It is well known that H, can be chosen as the Hopf bundle over

P,. Let T(jH;) be the Thom complex of jH . It is easily seen that T(J,) =

Pj;”. Hence (2%(B)_ 1)E, = ng Ei;"lm. By Jemes periodicity [13] ﬁ%ﬁ%‘“

< I‘.2°P("'1)P1:1—l
= o Where Py =P, U {pt.} if n satisfies: n' < n implies o(n?) <
¢(n). Consider the Puppe sequence

gl %Ezg‘i‘“ > 2 (n)rg'l PURR .
n-1

The map A : clearly defines a map in the stable category of Adams giving
A': Py = S°. Generally we will find the map At Pl-—>SO more useful whers
A is the restriction.
There is anothe 7
T such map. James [15] has constructed e map P, < 0
so(n_;ﬂ. The Whitehead J-homomorphism is induced by a map so(mt1)e 275"
Let A7~ be the adjoint of the composition, i.es A 1: z:“ﬂ?ln - s, mis
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glso defines a map in the stable category A.
Conjecture 4.l. a) A and A are the same.,
b) Ay (or Ay) is an epimorphism in both homotopy and in Ext.

In Chapter IV we will verify the conjecture as far as the computations
20+
PROPOSITION 4.2. The following diagram is commtative:

I
o™ B o @ Do, elgen B

J
s e
re B> "j(zpplf-l) £ "j+k(zn+k?;+k-l) <> “3-1(zn- n+k-1) o

for j < in=-3 where a, b, and ¢ are suspensions or desuspensions of corres-
ponding maps in

PPl 5 Rl pnpatel

vhich is a fibration for our range of dimensions.

Proof. We will first prove the proposition for k = 1. Let g: ™% —
?g'l be the attaching map for the n-cell of P,". ILet £: P{™1 —> BSO(n-1) be
the classifying map for any n- 1 plane bundle which is stably (2P(%)- 1)H, ;.

We have the diagram

v__, 2> BSo(n-1) £5 B0

Te il Th

n-1 -1 L om

gt Baleps R

viere h is the classifying map of 2¢P(1'1)__1 (as a2 stable bundle). If fgo O

then b would exist but since h¥W, # O, it camnnot happen. But pfg =~ O and so

there is a map I: gl V,1- If n is even, then [F] generates m-1Va1)s
if n is odd, then f can be chosen so that [£] generates m,_;(V,_ ;). Hence the
bmdls corresponding to £g 1is just the tangent bundle of S°71,

This gives

& ) _ on=1 sApn=2
Sn 1 U[Ln_l,ln_l] 3211 = T(f) =8 UAn..l 0
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g3 T zn']?n"g

N

This gives

g?n=3 et tp 5 sl Sn—l/szn-B

f t
T e g,

James has shown that SP1/82=3 _ 0P through the 3n -5 skeleton and if w
replace 871523 1y 0 5™ the resulting sequence in homotopy is exact throu:
dimension 4n-7. This gives the proposition for k = 1. The induction arg-
ment is the same kind of argument as used to prove 3.l.

Note that this proposition is trivial for X

where O o [ln—l’ In-l]'

REMARK. If conjecture 4.l.b were valid then this proposition would suffice
for providing the kind of map described in theorem A. Since we do not haws it
we can use 4.2 for computation involving early stems (up to 44) and we use
theorem A for any general result.

COROLLARY 4.3. Suppose a € m, (8%, k large, § < 4n-3, anda e ik} ",
Then I, (a) # O iff c(a) # O for any a such that AR*E(T) = a

This result suggests the following definition.
DEFINITION 4e4e Let a be an element of either Ext or m, for a sphere. let
i: " > P, the inclusion onto the bottem cell. Suppose there is a j such
that for P, _, 2> P i,(a)  im p, stably. Let j be the smallest imteger uith
this property. Then consider

n-j P>
S
P Ray R 41
5
Pn

By the root of ay+/a we mean a,(a) for any a satisfying pl*; = 4%, Thenn-|
is the dimension of the root.

PROP@ITEON 4e5. Let a be as in 4.4, If a € im I and if there is an:SIICh
= oy +
that Ik(ﬁ) = aand a € im A& k then a has an imaginary root, 1.5,’ j2n



—

THE METASTABIE HOMOTOFY OF S™ 25
This is clear from 4.2 and the definition.
PROPOSITION 4.6. Suppose a & ﬂq(Sn), and o has a root of dimension q! such
that 3g'=2 > q+n then Pk(u.) # 0.
Proof. Consider the dlagram

let j = 2n+q, then i, € “j_l(zn-ng'*k-l). The restriction on q' which
is important is 4q'=3 > j-n+q'=1 or 3q'-2>g+n. Then ia £ im Ik

since i,a ¢ im p,T ,. Hence P, (a) # O.
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CHAPTER III
THE CALCULATION OF ’&<+p(Pk) FOR p £ 29

1. In this chapter we introduce a spectral sequence which leads to an easy
calculation of Ext for H¥(P). We then compute all the differentials in thig
sequence and in Adams's spectral sequence which are needed to give the home-
topy groups of P in a range of dimensions. The results are complete modulg
group extensions through p = 27. Almost complete resulis are obtained for

p = 28 and 29, Tables at the end of the chapter summarize these calculations,
The explanation of the tables is in section 8. Frequent reference is mads to
the tables during the calculations and so some familiarity with section 8 is
required to follow these arguments. These calculations extend the results
announced in [12]. The method of calculation there is totally different.

2. Consider the collection of cofibrations
%
-1 1k +k P . .ntk
B R Ey
for a fixed n. The cohomology sequence of these cofibrations all break into

short exact sequences of length 3.

Hence Ext, applied to the cohomology gives a long exact sequence
[25 2.6.31,

- Exti’t(ff*(ff’k"l) yZ,) —=> Extz’t(ﬁ*( Pfk) +2,)
a~ -+ ~ —
— Extyr Y(Hix(s™),2,) - BxtS DT 7)) >

The entire system gives rise to the following exact couple

3 i
s ExtSEx(P,z) £ 5 Ext? S(ix(P25) ,2,)
k20 = k>0
2.1 Eﬁk& A Byex
t,m. 0tk
kzz Extiy? " (fx(s? )42,)

whose E term is a group associated with Exts’t(H*(P ),Z

2) Since both are
vector spaces over Z 59 the E_

term is 1somorphic, as a vector space, o
(H*(P ) 22). 4s a module over H*(A) the two are not isomorphic. We ar®
-able to recover much of the module structure by a more careful amalysis of ¢
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couple together with some geometric considerations.
For the remainder of thigs chapter we take n to be fixed. It is con-

venient for notational purposes to decrease the t-filtration of each term of
2.1 by n. Then the E; term of 2.1 is

S8,t _ 8,t
ES? = 2 Ext) (Ex(s¥) 2

Clearly Exty? "(8%(5%),2,) » B%9%%(4) and so ES1k = gBatl g

Let
a e D%, tren o is identified witn ¥ A 1 H ). e w0l uke b

name of @ as given in table 8.1 together with the additional subseript k.

For example the non-zero element in Ei K*2,k is written hl K * Hence generi-

cally a, is in EP¥9K usien o boing the label of an element in E*'*(a).

The differentials 6 of this spectral sequence are maps 5 : B bk =y
E*‘ﬂ"t kT Bach class in Es Yok pos o representation whe:ne ara Hs’t"'k(A)
e.nd we will describe 8 a, by giving an operation 5. 1RS,TK(4) 5 gStLytkr(y),
It is clear that he ! describes completely ar.

1 —
PROPOSITION 2.1. 61 % hoak-l n+k = 0(2)

1

= 0 n+k = 1(2).
Proof. The definition of a differential in an exact couple asserts that
87 is the composite P Bk which we can think of as coming from the gecmetric
meps SOk Tky % 2Pn+k"1 Pely sk, put consider

Pl Pn+k _sgnte S ot
Ln+k—l G / \l
? P§+k.1
e % ]
Henoe 8, is just d,. But PI.r . =T U, o™ if n+k = 0(2) and 4t 1s

a wvedge otherwise. [2: 2,6,1] completes the proof.
PROPOSITION 2.3. B % = dya o ol wrikez 0,1(4)
= 0 2,3(4).
Proof. As in proof of 2.2 we get the diagram below. If o € E, then
3 - = £ ome P and 8 = B, o+ To determine
P0ya, = 0 and s0 e, = 1,8, , for s S o% = By

i i d the
*In many places it is more convenient to index by a prefix an
symbol o, and K@ are to be identified. The latter appears in the tables.
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+k-1 +k n+k an*k—l
2,34 J}:: - jg ;’ 5 > f
) i
= X kel B i
P',i?é.% > Prap-2 e
Ter o
nt+k-1 =
2 2P 2
By_p Observe that if n+k = 0(2) we have
-1 +k ntk
s = Yges 28
IT Jj (n*+k)/. fl +k Vel
n+k-2 ntk)/2 n ntk-
) e CP(n+k-2)/2 ;}S —5-9 ) 3

and 189 f is just 3 of 2.3.1 restricted to image of 1. But d,a =ho i
n+k = 0(4) and O if n+k = 2(4) by [2:2.6.1]. On the other hand, if n+k=z
1(4) we have the James map [15] giving

= e
Pnf;_%-épn“kz—>sn+k—>zpnkl

n ntke ntk=2
T T( /;/ R Til
n+k=-2 n+k-1)/2 n+k-
S — 20P(n+k-2)/2 S
Now 10 = 3 and so ﬁz’ak = bhjay 5y ntk = 114)
=i .0y n+k = 3(4)
and this completes the proof.
PROPOSITION 2.4. 83'ay = <hphjyad, 5 k+n = 0(4)
= <hphgeax . k+n = 2(4)
= 0 k+n = 1,3(4).

Proof. Consider the sequence
+k + Y
P:+k~3 Ez 5 po k 2 3 Pn*'k Py > sn*’k

T ntke2 nt+k-1
Sn+k—3 L/a

Applying Ext to this di.a.grmn we get the following diagram.

If 9 € Ext52Y(gR k) is in E; of the spectral sequence then there is an
= 8,t otk ==
o & Ext®I MBI ) such that PixPox® = o . Also it is clear from the
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ExtSﬂ‘ 5 t.(sn+k-3 )
P e P3x s,t, otk | Pax t, _ntk #
Exty’ (H*(Pg'i'k-B)’ZZ) T s (P§+k-2) = Ext® (P§+k-1)pl$ Ext®r¥(s7")

Ext® ,t(Sn"'k—B) :

definition that Bala.k = b;k. Now suppose n+k = 2(4). Then S I TR
=a and the Massey product is defined since houk = Gl'uk = 0 because

o € Ez. There is a class lk—l such that pz* .ty lk—l and holk.—l =0 and

T s,tpntk =
so we can form the product <1, ,,hj,a> & Ext® (I“n‘+k_2). Now 8<T__,,hya>

= <a'f_k_1,ho,u> = <byyhysa> 5 by the argument used in the proof of 2.3.

2 Now suppose n+ k_z 0(4). Then Py *<1 jshpa> = a.. As above ther: is
a 1 _, such that p,*¥1, 5 =1 - but a simple direct calculation shows bholy g
=hl, _, #0 since this formila is an immediate consequence of Sq20n+k-2 =
Sqlu.n+k'1 = an+k, n+k 0( 4) »

1

1e-1,hy
P »* ? ,U- = < 19 ’G>
2" o, 2> L1080
and the left side exists since o is in E3. Now

T‘k—l,ho, i ‘ﬁk-l,ho, o
8a, gm0 2 el i Sl 3>

<h0,h1,u> .

#k  _ ontk=3 |, ontk-ly, gntk LA T R
Since P§+k-3 =8 v Pz'*k—l Vs if n+k = 3(4), 3

this congruence. Finally suppose n+k = 1(4). We have, using the James map,

i o e
1?4'].&—3 \/ stk s = nfc_j__fl
sep(m*k-1)/2 T gntk-l
(n+k=2)/2
Now 8, is defined by looking st i gotk—2 zpﬁiﬁ;% and comparing
ini, vith im d,., Since im i, N im I, = {0} and 3, = (i9),, we see that

i3, nimi, = {0} or 8,' = 0. This completes the proof.

]
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PROPOSITION 2.5. 8,'a = hya  k¥n 0,1,2,3(8)
= 0 k+n = 4,5,6,7(8).
The proof of this proposition follows closely the proof of 2.3 anj

leave it to the reader.
This much of the computation is sufficient to get all of the ca, A,

of Paechter [22].

3, SOME ALGEBRA EXTENSIONS.

Rather than continuing the step by step computations of the preceding
section it is useful to recover some of the module structure and to use it t,
get further differentials.

=]
PROPOSITION 3.1, Let n+k = 0(4). Then in Ex‘bi’n k l(n*(pf::;-z),zz) 5
an element, 1, , and byl 4 = bl ..

Proof. It is easy to see that a basis of the Steenrod algebra for

~ +k e, -
fHx(PRHE ) 15 given by o™ F7% and ™5, The class represented by &'y

ntk=2
+k = -
Rt (BX(PUE ,),2,) 48 1. Sinos 5q7a™*"1 = 57 = = U

Byl g = Byh oo
PROPOSITION 3.2. Let n+k = 0(2), Then in
2 n%k+s, +k
Ext®? (PR 2=
(( n+k—1)’zz)’ lk-l!h1 Ay <:"k:-l'hof'hf ll0
The proof is obvious in this context,

PROPOSITION 3.3. Let n+k = 1(4). Then in Ext™™ " "C(H(ERX ) 7)) there s
a class p such that hp # O and ngoy o

we see

s +k n+k
a) under p: P‘1;+k—2 B Ny PP ]'kh12

b) under p: PP'K n+k n+k-1
e R i ]'k-lh13'

Proof. Consider the sequence

ntk=2 +
s > PR gty g

Ap the Ext
: Plyifg flmctO;‘ ;:?.kggt a long exact sequence where &, = Loh o
L1 = L ohy since Sq7a™H2 = n¥k g o 1ontke-2 o ntk-l g O

8( o 2 =
Le-aBols * 1,1m") =0 and this defines p which satisfies the proposttio:
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RESTTION 3ode ot mtk = 1(4). Lot ay € Bxt, (Hx(s™*),2,) satisty:
i g = 0. Then e +
B LI <lk__2,hl,n> projects to @ under PE*‘k-?. -, gtk
and (lk_25h1!“'>h0 5 <h1’°'!h0>k'
The proof is clear in view of the argument used for b A {8
2PSITION 3.5, Let n+k = 0(8). In Ext(Hx(P*'k -
AS S o reeg) 220y Lty = 3y,
Proof. As before this follows directly from Sqla*k-1 = goéntk=4 o .
the given congruence.,
= = T +it
FOPSIIION 3.6, If n+k = 5(8) then Lh, = 1, h in Ext for i b k) Ly
Proof. It is sufficient to verify that Sqba®*k = gq2 n*k*2
FROPGSITION 3.7. &) If n = 3(4) there is a class ir e Ext7’n+k+33(H*(P§+2),Zz)
+2 +2
ch that 40 8% > B => 8%, p(3,) =3 and ny(3) = 1,7%.
b) oz 3(4) there 1s a class i, € Ext’ "™ ¥ 30(mx(F1*2) 7 y quch that pod
= 2 o 9% AR Py
=1 and By(4,) = 4,Ple .
RORSTIION 3.8, a) In Ext for P22, n
n n+3
et > By => 577, py(nghog),

2

1

1(4) there is a class (hnhzg)3 such

Bohog and hy(hghog)s = 1,(3).
t) Wth the same data there 1s a class (h,g), such that Py(By %), = By’ and
ity 7e)y = 1,(2).

Proof of 3.7 and 3,8, Consider the sequence

e . 4 959

I [
23

4 5 9 9
3 E?PB ?PB 1-3—)...179?3 'ﬁs

vere the integers are intended to represent congruence classes mod 4 of n +Xk.
Iy the computations made already and by the proof of the first part of propo-
sition 4e2 (which does not use these propositions) we see that there j.'s a

class (h12)9 such that i*(h12)9 - h12 s h02(h12)9 = 16"'12*< ]3,1,0 ,h3>.

e class <1,k %h> has the property that if hya = O then <1ghtb>a =

'l

1P I w mltigly (h12)9 % o e (h12)9h02g = 14...4,%(Flg). 0F

]
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acxires e canniot be sure: thmt (h %) . %g # 0. In Bt e P,° there 15 & i,
(h13)8 such that 5'6*(17‘13)3 = (h12 )9h0. Now (hl )Bhog = 15"'11*(1’18) and by
inspection this map is non—Zero, since only j € E7’39(86) could "ki1n (Plg)3
and it kills hyj. But this implies 15...11*(P1g) can be divided by h. iy
by inspection only js satisfying 15%35 = could satisfy 15...13*(35)1,0 =
. ...il*Plg. This proves 3.7 a) and in a similar fashion using ey instead of
g proves 3.8 a)e 2

We have shown that Qge..dg*] = hogP *(hy )q’ 1eeey Qgeeelg*] canbe
divided by hy. A quick inspection of table 8.1 shows that the only possibil-
ity is (hghog)g. This gives 3.7 b) and the same argument using e; and i show

3.8 b).

PROPOSITION 3.9. If n+k = 15(16) then hyl, = hyl . (together with hat 3.5
implies) in Ext for PZ:E:%.

Proof. This is clear since quanﬂc—'? = 01 - Sqlun+k for this con-

gruence.

PROPOSITION 3.10. hy(hyhy)y = (]:301:32)1{._6 for k+n = 6(8).

Proof. Consider the sequence
Sn+k--'7 o Pn+k+e p; Pn+l:+t»:

n+k=7 n+k-6’
; = = +k+2 _ _n+k-6 k=2 2
with € = 0 or 2, and for k+n = 6(15). Now P§+k-6 =8 v P:+k-5’ 8, 4=

holy g and 8L,y = hol, . Hence 8(hgh;l ., + h21 ) = 0. Let P satisy
Pab = (ghboy * Byl o). Then pyngp = hohy®1y (. Stnos gyl = (i)
the proposition is established for n+k = 6(15). Since it only involves six
cells periodicity completes the proof.
PROPOSITION 3.11. If n+k = 3(8), then h,°L_ = b (hy)y, -

Proof. Consider the sequence

+
P§+11§+1 _1_9 PE:EQ P Sn+k+2.

Then p,< 1,hy,h> = h, so <l,by,h> = (hz)k' Now <1,,b,,b0h = i*hzz'
PROPOSITION 3.12. If n+k = 7(8) then By (h%) L = ()
Proof. Consider the sequence



THE METASTABLE HOMOTOFY OF SP 33

P1r1+k+1 ptkts p o Pk,

nt+k n+k n+k+2°
By 2.5 we see leﬂ,: h,l, while 81,45 = b1, . Hence 5(113 )k+1;,—' (1;12 )
(hlhB)k+2) Hence 5[(h2 )k+4 + (h1h3)k+21 O. This class will represent
(h2 )k+4 in the spectral sequence and hl[(h )k+4 + (h'J.hB)k+2] = (hlzhj)k+2
= () epe
PROPOSITION 3.13. If k+n = 5(8) then (h32)k+4h1 = (o
Proof. Consider the sequenoe

lom 1, gents B pemed,

kin+l*

Then By < Lyhy,hy™> = (ny? Dry, VBile <L hyhoShy = 4,<hyyh > = o
An argument similar to 3.11 gives
FROPOSITION 3.14. If n+k = 3(8), then hy(cy)y,, = = (nyeq), -

PROPOSITION 3.15. a) If k+n = 3(8) then 110(113 )k (cl k5"

b) If k+n = 6(8) then hy(e;), = (hyeq)y 5.
Proof. Consider the sequence

i S A o e

Then B,p, <1 +k_4,h2,h3% h3 . Now <1, 4,1:2,1:3% = <1, sbyshphy and
LIRS l,’hz’h3> <1 im59h09 h3>. Multiplication by h, completes the
proof. The proof of b is easy and similar.

L. The determination of 65' seems to be more complicated and some special
attention is required. By inspection of table 8.1 we see that the only pos-
sibilities are:

(@ iy > (Fntin) .
() (PInPny), = (Pny), s

() (nghs)y, = (hoPhoh))y s
(@ (aghy®)y = (Fo)ys

TR e e =
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(£) (Pley), —> (Pne) s
Because of the parity either one side or the other of (a) and (e) is zero 7
cach k = E; hence (&) and (c¢) contribute nothing. A check of the previms
propositions shows that both sides of (b) are present in Eg only if n+kz

4(8). Again a check of the previous propositions shows that both sides of ()
are defined when k+n = 0,2,4(8). Both sides of (e) are defined when n+k =

3(4) and finally both sides of (f) are present only if n+k = 1(2),
With these data we will prove

PROPOSITION 4.l. i) 65'(Pjh03h3)k = (Pjhz)k_y k+n = 4(8);
11) 85'(hgh®), = (fo) 5 k*n = 2,4(8);

111) 85'(pla,), (P'ugfo) sy k*n = 3(8);
i) ot (Ple,), (F'hyg), g, k+n = 1,3(8);

34

I
1 /]

i

n

and 65' is zero on all other classes.

Proof. i) Consider the sequence
nt+k

P
wikel 4. ¥, P ap
g = B s 2

ar + =
In Ext for #¥(PE ) we can form <1, 3sby%yh> = B and B8 = h’hy. Sine
Bylyo1 = L sy or zero if n+k = 4(8) or = 0(8) respectively i) is estab-
1§_sh§d for j = 0. The periodicity operator is defined on B giving ;*Pjﬁ =
P'hy hy. Thus i) is established.

ii) Consider the diagram

soplntk=4)/2 —> soplntk-2)/2 —s gotk-1

V (n+k=6)/2 ' (n+k=6)/2
Sn+k—5 +k=3 +k +k
i P§+k-5 2 P§+k-5 > P§+k-2
7
3n+k

) +k f

In Ext for B(E L 5) e can form <L_3hy Iy he> = B and By = by’ Tiere
are thre il

e cases. If n+k = 0(5) then 6*]1_1 in the top sequence is zero and
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g) B°h > h, NENE SN
W) £, > g ¥) 1> Py
1) Byfy => hohae

Next, by checking both sides against earlier differentials we get th
following table.

Formula occurs when
a nTE=2 mod &
by, 1=0 never
by 150 n+k =3 mod 8
] never
a n+k = 3,5 (mod 8)
e and f n+k =2 mod 4
4 n+k=1mod 8
h n+k = 3 mod 8
1 n+k = 0,2,4 (mod 8)
i n+k = 0,1,4 (mod 8)
k n+t+k =1 mod 2
PROPOSITION 442, 1) 8'h; = h22 n+k = 2(g)
o o
% "1 = by &
e
8gtyh, = by
1) 66'h32 =0, n+k = 58)
i11) 8,'%, = hg n+k = 3(8)
iv) 8,'hyfy = hoh.g n+k = 0,2(8)
v) 84'Ph, = Pi"'lhldo = 1?1(1111:13):I>0 n+k = 3(8)
vi) 8 'hg = h22g n+k = 0,1(8)
V]i) 56'1 = Plg ntk 53,5(8)'

The rest are zero.
Froof. The three parts of i) are equivalent. Consider the sequence

+k-1 ++2 +H+2
Patlong = Pt > B
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it +k+2 £
where n+k = 2(8). In Ext for Pgtk » bolyyy = b1, by 3.1. In the long
exact sequence of Ext for this cofibration 6].k+1 = hzlk 3¢ Now in Ext for

P 6803 = Bolpy.g BY 3.5, Hemoe Shil .. = 8(n1) = Pof2le3 =

2
b, L+ ThiS 15 1) but since hy’g = hy%d; and b, = n,%n, thts implies
the other cases too. For cases ii) and iv) the congruence n +k = 6(8) is
+k=2
sasily settled since 1., pulls back to Ext for P2,X"2 and so hydl ,, pulls
1 = =
back, This implies that 8 (h.ldo) 56'(1:11:4) 0.
This is also a good time to verify that 56'("12“4)1: =0 if n+k = 1(8).
From the above discussion and 3.2 it is clear that 56'(1:12114)1{ = h(8,'hh)
: gl :
We now will prove ii).

*k B3 o ontk - P % - P - ntk
D 6 /P:ﬂ:-s - e O
”~

Sn+k-6'

B sl B
It n+k = 5(8) them p*p*< 1, oomn®> = b2 But 8<1 L ohy %> =
Cupig
<h2,b1,h32> =G. If n+k = 3(8), them pyppy*<L /o0y, h?> = hy® and so
66'h32 = 0 in this case.
To see iii) consider
+k=-5
o
s x P .otk
+k 5 n
s o e il
b hosfa = = .6
If n+k = 3(8) then B*s 1k-4,hi:go>" £, since hyg = h,f,. Now using 3.6 we

£
see that a<1k_4,z:g°> = gt ntk = 7(8)cthen ] o pulls BaDs £0

E(2E ) and so 8,f, 15 zero. vi) is similer using 3.2 end < hyybypy PRy >

= by e
To see iv) observe that if n+k = 2(8) iv) follows from 1), indeed hyf,
= = p 2 below.
hlfa0 and hih.g h,%eq. Consider the diagram

l — —_
If n+k = 0(8) then p*<lt 1:1;.;,hleo> = hie, by 3.5. Finally,
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+k
Pnmﬁ»k--é e
N
Pyeic 6
lk-l’hOJ =< = =5 2 S
ML mstyn? 3 ShlpBise? =Byt

we get zero.

Py gwe

On the other hand if n+k = /(g)

To see vi) we argue in a similar fashion using < hl’h2’h1> = h22.
The last one, vii), requires a new argument. Consider the sequence

+i=3
P >

with n+k = 5(8). By 3.7(b) there is a class

i PR

n+k-2
g 9
in Ext for Pz +3 and hOjk =

(Pleo)k_2. By 4.l.iv 65(171e:0)k_2 7 (thlg)k_,, = hozkk_.,- Hence 0,(1) =a

where hoa. =

P'hg, . Using 3.1 this gives a = (Plg),_ which camplstes te

proof. The same argument shows that 8,'(i) = 0 if n+k = 1(8). A sinilar
discussion handles the cases n+k = 3 and 7(8).

A check of table 8.1 together with a comparison of the earlier differ-
entials gives the following table as the only possible for 57'.

2
a) By 0

b) h13 - h100
) Mahy =Sligh”
d) By~ d0

) Bjoy > hyd,
£) hohy'> ¢

g) 85 i hzg
h) £, — bih e,

—>c

1) by’ >
PROPOSITION 4.3. 1) 57'h12 =0

0
th 3 =
14) 8 ™m?” = nye,
iii) 571(-,0 = dO

n+k = 1(4)
n+k = 0(4)
never

6(8)

5(8)

6(8)

never
never
0,6(8)
n+k = 1(8)
o(8)
6(8)

nt+tk

n+k
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iv) 8,'h o) = h,d, n+k = 5(8)
v) 67'h0h32= g n+k = 6(8)
vi) &,h%g= j n+k = 6,0(8)

Proof. The proofs of all of these are similar and are based on "milti-
plication by h0“ considerations. We will prove only i). Consider the se-
quence

k-1 Hct] i+l

P = o = Posk
ith n+k = 1(8). The = (n,2 = (n.?
mth: k = 1(8) n ho(hl)ksl (B;%)y+ Since 8,'(n), .. (h,"),_s and
= T —

by(By s = Cg BY 3edy  8;1(n)3), = e
5. It is now convenient to group together all the differentials from 68' to
51'5. Table 5.1 gives the listing of all possible differential homomorphisms
as they would appear in ES of the spectral sequence.

8 9 10 1
by 3 > by Byl g2 g hohs” o => e,
h3f3 7 h33 h13‘10,0 > ple,
1R
% B by
he >y
®0,5 —> hlh,!,,cﬂ
by, > 1
12 13 1 15
g Ul B L "1 > o
hihy 5 = ¢ hydy = hye b3, = e
hy'hy 0 > Byeg Bt . Saru R
hyhy ¢ => by’
Plhl‘;as > 1
Table 5.1

All possible differentials between 8 and 15.
The second subscript indicates the congruence class of n+ k mod 8.
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PRDPOSITION 5.2. i) ﬁslak — q,k-shs k+tn = 0,1,-¢-,7(16)
= 6
li) 58 0 k (Goh1h4)k-8 k*nis 13(1 )
% = +n= g
111) GB'hl dO x ik—a k+n 1( )
12 IO,
and.#il.ether 68 R n+k n+k+8

Proof. Part i) follows immediately since 5q%% =g if n+k satis-
fies the required congruence and is zero otherwise.
Tn order to prove ii) we need a little more.

LEMMA 5.3. 1) 84, (hyhy), = h33 if n+k = 6(15)
2 = i — &
i1) 8 (hohy?) =h0y if ntk= o(15)

Proof. Consider the seguence

+k-6 +k +k
Pn+k—15 T Pn"'k -14 s P2+k-5’

where n+k = 7(8). Now hph,l, = hohjl, . and since 8g'l, = hply gy O3'hl, =
byl g end 8g'(hghsl)y = L ghgs® by 3.9 Bgh g = Byl 5. Multdplsing
both sides by hy we have hoh?l, o = b3l .. This proves 1).

Consider the sequence

+k-7
Pg"'k—l PE"'k 16 g P§+k-6

= . e

for n+k = 6(25). Now 8;'(hyhg), = (ny7), ., ut hy(hcq)y o = (byhcg) g
Hence ho(hOhB )y+3 # 0- The only possibilities are (e ), and (hl Byt
Sinee hy 3(n )k 5= (hl h )k 1 the latter choice is incompatible with the otber

requirements.

Consider the sequence

+k-1 +k+1 +k+1
P§+k-8 rex Pn+k..3 => P§+k

for n+k = 1(8). For this congruence we have 8g(hydy)yy = (hozg)k-ﬁ by 42

By 3.8.6 ho(hy%e), 5 = 4, o and by 3.2 Bo(hydglysy = (hy3dg)y. Hence

Omg(hydg)ysy = 8(hy%dy), = ny(hy%e)y 5 = 4 _g.

PROPOSITION 5.4+ 85!(h,3) = e, and 85" (n,3a), = Pe, for k+n = 0(8).
Proof. Consider the sequence
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patk=1 +ic+] ++]
ntk-9 = Py o —> PE

forn+k = 0(8). By 5.2.1i4, a(h12a0)k+l = (1)) o+ Combining 3.7b and 3.3

one easily obtains the result for h13d0. Noticing that Plh23 = h13d0 poetd
pletes the proof.

Observe that Lemma 5.3 settles 6'0 and there is no &1..

1 31,
FROPOSITION 5.5. a) 8(hy)y = by? k+n = 5(16)
b) aiz(hlhB)k =0 k+n = 2(16)
e) 6]:&(1122)k = e k+n = 3(16)

Q) 8f,(n2), = nye; k +n = 1(16).

Proof. By inspection we have seen that all entries in the equation of
5.5 are present in E;, (and for those that pertain to it, in EM). Proposi-
tions 3.13, 14 and 15 relate the right hand sides by multiplication by h, and
hy which corresponds exactly to the way 3.11, 12 and h3 mltiplied by the
result of 3.2 relate the left hand side. Hence to prove all the formulas we
mst only start it someplace. But 83'(h;), = h32 if k+n = 3(16) does start
ity i.e.y consider

> I ok n+k = 3(8).

ow 8(hg ) = (), g hemce ohy(hy), = 8(hyhy)y o = h(h?) o = (o7)y 5
Similar arguments work for the other cases too.

femark, A computation such as this is needed to compute the entire 23-stem as
Barratt or Toda do it. From this point of view the result was difficult and
vas settled using [19]. In particular (a) implies [121,v] # 0. (More general
celculations of this sort are given in Chapter V.)

PROPOSITION 5.6, a) 51'3(1‘12)1; = hoh32 n+k = 5(16)
b) 8P =1 n+k = 13(16)
o) bis(n?), = Ple, n+k = (4+18)(16)

(o+ i8)(16)
(6+18)(16).

a) 81,P (b hy), = Pi(hl"o}k_lz n+k
e) sl'zPi(hl)k = 1="‘“1(1102g)k_12 n+k
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Proof. These follow immediately from multiplication by hy. Indeed,

ho(hy ey = (8 2)k if n+k = 5(16). But 8g'(hy)iey = (hyhylyg but
ho(byhy)y g = h0h32 by 3.10 and this gives (a). To prove (b) one uses 3.8(1)
and so forth. Tables 8.2 -8.16 give copies of E16° The tables are explainsg

in section 8.
6. THE ADAMS DIFFERENTIALS, 1.

Recall again that the tables are not really copies of Ext for the stunteg
projective spaces but just Ej4 of a pre-spectral sequence whose E temm is
associated with Ext. We will call them Ext anyway. The composite last dif-
ferential of this pre-spectral sequence is called 8;. The task of evaluating
the Adams differentials is not as extensive as it might seem at first. The
pre-spectral sequence has the additional advantage of grouping elements to-
gether into families. We will evaluate the differentials by making much use
of this interplay between the various stunted projective spaces.

First observe that if two classes, a and B, in Ext for a sphere are re-
lated by an Adems differential and their image in Ext for P, under i, induced
by SX > P, is non-zero, then their images under i, will be related by an
Adams differential too. This occurs frequently when k = 0(2).

PROPOSITION 6.1, a) 62(h0h32)k = (hd4,), - n+k = 4(8)
b) 8,(h%) = (Plag), , n+k = 6(8)

o) 8,02), =[P, n+k = 3(8)

Proof. These three are grouped together because results of section 3
imply that whenever both sides are present in Ext the following equations
hold:

ho(hohsz)k = (eg)ys n+k = 4(8)
ho(Pleg), = Pl(ner), . n+k = 1(8)
Bo(hyeg)y, = (ny%e), n+k= 0(e)
ho(hge)y = 1., il
ho(d), = [Fheol n+k = 3(8)

Multiplying do on both sides of the equations given in 3.1, 2 and 3 we get
g ar module extensions for the right side of the equations in 6.1. Hence
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we mst only prove a similar result someplaoe in the sequence to get every-

thing else by naturality. But 623 = by do in a sphere and this completes
the proof. (Compare Ext for Pl )
PROPOSITION 6.2. a) (hlg) =4 3 n+k = 0(8)

b) 8y(hohag), = (Pre, K3 n+k = 6(8)

Proof. The argument for these is similar to the above. The two families
which are related by multiplication by hy in a fashion similar to the above
are:

b, hohog, I, Plg and byeqs hozg! i, Pl*’o: P]hf’o
with the first beginning with hyg s n+k = 0(8) and the second beginning with
{h.leo)k, n+k = 2(8). Again all we mist do is to prove a result someplace in
the sequence to get the proposition. To do this we need the following lemma,

PROPOSITION 6.3. In P nt) for ntk = 6(8) & (hlg)2+k (Pldo)

Proof. In [19] it is shown that {Pd.} =n°{g}. Since i, = 21, in
my n+k) where 1:50 = z-(n*k)p n+k @nd 1 is a generator of m (2‘. (n*k)p nvk) s
*r} g = 0. This implies that either i,P;dg =0 or i xF19y is & bcundary There
are two possibilities, 53(h1g) 5> or b 4(3'.'0) 5. Consider the sequence

g6

vs73—->P68—>P8-P—->ss.
In the hcmo‘bopy exact sequence 6*18 =+ 217. Hence there is a class in Ext
for P6 which maps to h,g under p,. Call this class (hjg)y. (It clearly cor-
responds to (hyg), in homotopy, hence (hyg), camnot be a cycle for all r.) The
only possibility is 53(h1g)2 = 5.*(P1d0). By naturality this completes the
proof of 6.3.

Now we return to 6.2. Consider the map

< 22N P6.
which contradicts 6.3. Hence & (hlg)3 hy (h0f0)5 = i in Ext for P.. This

completes the proof of 6.2.
PROPOSITION 6u4e &) & (hozg) = (P "nydg)y n+k = 0(8)
p) 83(hefoly = (Prdglis n+k = 2(8).
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Proof. These two are further consequences of the peculiar group exten-
= ~ant
sion in n23(SO). By [20] 4v{g} = {hP1dg}, since M*Eg} 0 where i:50%
s nitk = (8] 18 T npmal inclusion. 1,{P;h;d;} = 0. Hence (Pjhidy), is
a.nboundary and the only possibility is 53(h02g) 4 The argument for b) is
gimilar.
PROPOSITICN 6.5. a) 62(Pi+1h1h3)k =(Pih1do)k_7 n+k = 0(8)
b) 52(h12d0)k = (Pydg)y n+k = 1(8).

Proof. e will first prove 8,(Pohyhy), = (Pyhydg)y ;. Clearly,
1,(4vig}) = O where i: S1 > P;. Hence 1Py d; is a boundary for sme
Adams differential. The only possibility is the one claimed. Since
h,o“?(luozg)5 = Pl(eo)o and 62le30 = Plhlad0 we can conclude:

2 B
6464 by (hy?h,d.), = Plleg), , end
2 = =
b, (b, *hy), = (eg)y o if k+n = 0(8).
Tndeed the first statement is now clear but since Pl(h12h3) = b %4, the secan
is clear too. Using the second we complete the proof of a). The argument for
b) follows 6.3 in concept.

Implicit in the above calculations are a few other module extensions such
as 6.6. Most of them are indicated in the tables.

PROPOSITION 6.7. &) O,(h,g ) = Plg,_, n+k = 6(8)

b) 8,(hohye), = Plg, s n+k = 0(8).
Proof. Both of these involve arguments "off the page" in the sense that
we will need to look at Ext for t-s = 29. First observe that hy(hyg)y =
hgzgk_g where k+n = 0(8). Indeed consider the map

8 A 4

By construection A*(ho(hlg)s) = Ax(hghog) 6= (We where the barred classes
indicate elements in Ext for CPy*. Hence Ax(hygg) = hogg and Achy(bygg) =
%8y but this implies hy(hyglg = (hy%g); in Ext for Ps°. Also by similar
arguments one can show hz(hozgk) = ho(hOth)k for n+k = 0(8). Putting these
together with 6.2 completes the proof of a). Using 3.1 we see that

hOB(h0h2g)k = (8y°K),,_¢ sinee b P.g = hy%k. Now part b) follows by naturality
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7. ADAMS DIFFERENTIALS, 2.

Let m be an integer and let a and b be defined by m = 4a+b, 0<b< .

2 b
let p(m) = 8a + 2°. Notice that To(m)-2 0(t) # 0 for t large and each non-

zero group appears for a suitable m.

We will prove several very general propositions in this section which
will give the remaining Adams differentials. Indeed we essentially prove
theorem C of the introduction but need some additional information first.
This discussion is in Chapter IV,

It Z=8" L et anddai s’ Sag Ba ol ng b L B S
Elements in Ext for X are either in the image of iy or else map under p, to
a non-zero class. Let o be any class in Ext for X such that Pyl = G

FROPOSITION 7.1. The following table identifies the element in Ext for X
which projects in E_, to the element to which ﬁm projects.

m= 1 2 3 4 5
Ly = fo} for a =4 Lbh, Lh ihh 107
2(4) =3(4) =0(4) =1(4)
:1.,(_1“&'112 P‘Thz2 i *Pa—lc oy *Pa'—lhlc 0

where the last four entries require that m > 6.

Proof. The first five entries are obvious. Next notice that in
Ext4$12(H*(X),22) there is a class -h?h;. This class behaves like a periodic—
ity operater in the sense that if we miltiply hy’hs by o where h03h30. =0 we
get 1,(Pla). As a homotopy class E.?i; projects to <i,1,21,80> where L gen-
erates the l-stem, and C generates the seven stem. By the Bott periodicity
ve see <1,1,21,80> By = 1,8, (1, (2 -1 =18 ,,. Hence if we
identify the elements corresponding to i*Bm for 6 <m < 9 we will be finished.
The argument fails to apply to the first five cases since the periodic copies
for m = 4 are not permanent cycles, the image of the periodic copy of m = 3
and 5 ig zero in Ext for X (since it is h,:J of something) and the image of the
periodic copy of h, is exceptional for several reasons. Also there is some
dfficulty if m = 3(4) since the element in Ext is not in im i,. We will

discuss this in a moment.
Since the ll-stem contains only Pth, :l_,‘,Plh2 mist represent the image of

Il
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J. This settles all m = 2(4), m 2 6.
To see the next case we look at Ext for t-8 = 14, 15 and 16 for X,

2
14 hy %
—-——2 T
15 hy hobs v (4R o =
16 h,dg ¢ Bo'h,
0 ik 2 3 4 5 6 7 8

Since 1.8, = {h03h3} {h3}, the s filtration of 1,p, must be at least 5 (and
equal to 5 only 1f P'hy # 0) and hence greater than 5. Thus the only possi-
2 o 2 u

bility is hy°dy = Pthy2. Now <i,1,h,hy"dy> by = 1, <hoshy dgphy> = plco o
since NP, = Bg and TNBg = Pg we have completed the proof of the proposition
for m = 0, 1(4).

We must be a little more careful with the case m = 3(4). By induction
suppose 1,8 } Then there is a map S B U, e, such that
(Pg}_g_h2 ) = p*(l), i.e., {p} is in the homotopy class of i, . Claarly

hj(Pm.3h2 ) =0 and d(i*pm) = 0. (Note that neither statement follows frem
TR

the other but both follow from the fact that P, _3h2:! is on the Adams edge and

0
so the composition can be checked.) Hence we can form

g0
e
s2Y o 2m*9 U s _4 0 O g
161 o P .
5 e 0

By :;ha Bott periodicity we know that B o =B R’i(16n2m+9(s )) and hence
Plev=1p ., 4c But in Ext the map 161 raises the s filtration by 4 and s0
leaves as the only possibility i*ﬁn;+ { 1h,“}. This completes the proof
of Tels

In order to get the remaining differentials we will use this result to-
gether with the following theorem vwhich uses this diagram:

T wM1nwmmm
P . *

g Vv 2, 0m)) o Mgy ()
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« Then there is a class 1
weh At Pullvg(n)) = L a0y ooy = B

This is just a recast of 4.3.2 of [19] which was a recast of a theorem of
Toda [26] and Adams [5]. The following proof is included for completeness.
Froof. Let k = n+p(m) and consider the following diagram:

P];‘:Lﬂ)P‘;-% sk

7.2.1 1’]' gT Ti.

1
s® > s¥y. KB gk
P

47

n+p(m)

where p' is the obvious projection. If we can prove that 7.2.1 exists with if,
the identity map, then in the stable range at least 10,1 = al(z) and clearly
321 = ﬁm’ where 61 refers to the boundary homomorphism in the top sequence.
This implies the theorem except if k+1 = 16. A detailed hand calculation is
needed and can be found in Todae [25]. Using Spanier Whitehead duality* we see
that 7.2.1 exists with i' the identity map if and only if the dual diagram

: ]y o =1y _ n Jengris
exists. Now .ﬁ'(P}.{l Y =tpiK 49 .‘D'(Pﬁ ) = Pz';a_l and D(s U1~ )=
Sam Uf3 e, where k= 2% + o(m).* Thus the dual diagram is

m

P

72,2 lﬁ(i') lﬂ(g) lﬁ(i)

a2 —332“’"1 6% —> §*
T(pr P

with 0(i') and J(1i) being maps of degree 1. Clearly Pz’jn_l is the Thom Com-
plex of 2*™L times the cancnical 1line bundle over P‘P{m). Since this bundle is
trivial over the @(m) -1 skeleton the classifying map factors through P‘Pl(m) e
5P 5 so ;1 where the first map is the usual projection and the second
map generategm;cp(m)(BSO). Passing to Thom complexes we have 7.2.2 and this
completes the proof of 7.2.

In our language 7.2 becomes

*See, for example, E. Spanier, Algebraic Topology, McGraw-Hill, New York,
1966, p. 462 and in particular Ex. F and Ex. F-6.
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+1
PROPOSITION 7.3. Suppose n+o(m)+1 = 2°(2" 7). Then in the Adams spectral

sequence for Pn we have

a) m> 5, arln‘*qJ(m) =0 forr <m-1 and 6m—1(1n+q>(m)) = Jyo, vhere

je Prl — Pn and & is the entry in the table of 7.1 corresponding to m,

Yarg(s) = 02 T < 4 and Bdg(s) = dultbiegls

Oln
c) m = 4, 621n+cp(4) = i*hlhB where i: S® = Pn'
Proof., Theorem 7.2 implies that i,8! # O where i: i pg*v(m)-l s
: s > P , satisfies 1,%py = 0. Hence look at S/ U, el P:'*‘P(m)-l
2*1 e see that o, ie on the edge

b) m =5,

1

a8
—> P_. Suppose m > 5. In Ext for iy, o
or one below it and so its image in Pg"‘*’(m)"l is well defined and must repre-
sent P . Therefore a is a surviving permanent cycle. The only change possi-

ble in Ext for ?g*q’(m)‘l and Ext for P, in the n+p(n) stem 1s the addition of
1 representing the n+¢(m) cell. Hence the differential must behave as de-
scribed in the proposition, part a.

Now suppose m = 5 and consider

i: s®u en+1

—> P for n = 21(64).

A glence at table 8.6 shows 1*(}:121;3) = 0. Yet theorem 7.2 implies 1,8 #0.
Hence the class which represents B 5‘ has filtration higher than h12h3, 184,
highe; than 3. There are two possibilities, 8,(1);4 = (hyep)y or 85(1) =
(Plhl )1+ The second would imply the corresponding differential in the spec-
tral sequence for P ,,, contradicting 7.2. Hence & 4(110) = (Byeg)y in the
sequence for Pp.

The case for m = 4 proceeds just like the case for m > 5, using the ap-
propriate part of 7.1.

The most important corollary of 7.3 is the following result.

Let n be fixed and let 1, be a class in Ext for P, (Ext here means E;¢
of the pre-spectral sequence). Suppose n+k +1 = 2%(28*1), This gefines
m(n,k). Let q be defined by 9(q) < k < ¢(q+1) and let i(n,k) =
max(q - m(n,k),0).

THECREM 7.4« Suppose m > 3 and if m = 3, k>9orm=4, k > 10. Suppose
also that k-o(q) = 0 if q # 3(4) and k-g(q) = 1 if q = 3(4). Let
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+1
js Pg —> P, be the usual inclusion. Then hoj'ﬂ'lk is a surviving cycle and
a1 =
8, 1(hg L) = Jx%q where o, is given by table 7.1 and i = i(nk).
Proof. We will prove the theorem by induction. Fix n+k and the induc—
tion will be done on q. First observe that for q < m the theorem follows

directly from 7.3. Now suppose m > 5. Then for m = 9y 1 =0 and again 7.4
is just 7.3. Now suppose 7.4 is true for q > m. Consider

Pro(a+1) i Pro(a)

g
gk—p(q+1) gk-9(q)

il*aq # 0 and there is a class y such that PyY = Gy Using one of 3.1, 3.2,
3.4 or 3.5 we see that iz*cq +1 = hyYe Naturality of Adams differentials with
respect to mltiplication now completes the proof.

Now suppose m = 4. If we require k > 10 the induction argument is iden-
tical with the above. There is a difficulty starting because 7.3 is not quite
the right statement. On the other hand consider

Ppa > P, > P ., withn+10 = 15(32).
Let 61* be the boundary homomorphism into P‘r:+9 and 32* into P::z. Now 7.2
says al*ln*'lo = mMo1l,. Now consider

+9 p +9
P“n_l L

n
=) ‘ig\Til
gn-1 gn

From table 8.6 we see that i,*n € im py and if p,y = 1,%7 then 13*1'F
= 2y. Hence p*oy = il*rp and 20y = 13*1'[?'0. By inspection of table 8./ we see
that 13*}112}13 = 0 and so the class representing 13*1120 must have filtration
greater than 3. It is not hard to see that 13h100 mist represent 13*1]2 O This
begins the induction and the argument is completed as above. The argument for
n =3 is similar and we leave it to the reader. This completes the proof of
Tod

Theorem 7.4, of course, is a very general proposition holding for stems
of all orders. In this section we will use it to complete the discussion of
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the Adams differentials for our calculations. Quite directly 7.4 gives the
order of direct swmand of homotopy generated by h,™l . Obviously it gives
the order of what is subtracted from the k-1 stem for each Pn' The only re-
maining statement to verify is simply what happens when k+n = 15(32), i
this case if k > 16, 8,1, = h4 and whatever this implies. Putting all of i,
together we have the following proposition which defines A, B and C. We i)
==]]. e
alvays have A, c m (27 F ), B © m (2 l:"Pl,l).‘-:;&_nd Cy € nk,,_l(z"n?n)- We will
always use m(k,n) defined by n+k+1 = 2%(2™7) and i(n)k) = mex(q-n(n,k),0),

PROPOSITION 7.5.
A, is cyclic group of order 2% where 1 = i(n,k).
B, =B, + 2, if m > 4 and B, = B, if m = 4 with B, being a cyelie grayp
of order 21 if q-m > 0 end of the order of 1, as given in the tatls

if gq-m < 0.
Ck=22form>4and=0form=4.
This completes the calculation of ﬂ*(Pn) except for Proposition 7.6.
PROPOSITION 7.6. 63(1101‘0)1£ = Plg n+k = 12(64),
LB %
8,(h)),y, =hny” n+k= 7(16).

We do not have a natural proof of this nor do we kmow what happens in the
other congruences. We will deduce this from a general proposition in the mext
chapter. We have tried to avoid using this general proposition for the calou-
lations. It seems clear that this differential could easily be settled if Ext
were computed further. With this one exception we are finished!

8. In the pages which follow are 16 tables. The first table gives a copy of
BT % Y for t—8 < 44, Slanting limes te the right indicate miltipli-
cation by hy and vertical lines indicate multiplication by h,. Slanting limes
to the left indicate Adams differentials. The first table is included for
reference and the details are to be found in [20], [21] and [24].

The next fifteen tables are print outs of Eqg of the pre-spectral se-
quence. The only missing differential is 81¢ which is handled as a §; in the
Adems spectral sequence. The tables are given for P, k = 1y000,15(16), Since

Elés’t(Pk) x E"ti’t(zz’zz) B, S
for k = 0(16) no table is given for this case. Also m(P,) is a group exter-
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sion of my(P, ,,) and m (s ) if k = 0(32) and deviates from this by the &, in

the case k = 16(32). Table 16 has the groups for both P ? X =15 and 16(16)

Above each table is a sequence of groups. This sequence is just the

homotopy sequence of

k
S —>Pk—> Pk"'l

with the image of 8, written as a fourth line. Using [8] this sequence is
just the homotopy sequence of SO(n) ~> SO(n+ 1) = S® in the metastable range.

From the EHP sequence it is also clsar that these homomorphisms represent just
E, H, and P too, i.e.,

R B 6 B (P R

’[Pn ’I‘Pnﬂ ]‘22
f-'lp ZPy. O 2n-1, 1x
G ) P o (e ) B (62 Iy

By careful inspection of the tables it is possible to identify elements and
to verify just which classes map non-trivially and which map to zero. There
is a hazard in this though since the representation of elements by their name
in Ext does not correspond with any other naming system. Those readers who
need such detailed information will have to acguire the dexterity at trans-
lating back and forth. The reader should also keep in mind the fact that not
all group extensions have been settled. The guestionable ones can usually be
read off the tables.
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TABLE 8.1
Ext(Z,,Z,)
a4, =16 i s,t s,t-1, ~
ENE (2 PRg) =Ext? (2,,2,) +E;37 (2 1‘Pl)
Homotopy groups of P, k = 0(16) are easily obtained from this splitting,
g
Py PPhy
12
Fent S cho //
10 / /, /<
b P2h; | Py R R
..._8.... L Pld(} ‘\ \Plen \ PIB \
1=
sl P o 3 i
_...é.- /< 2
L o ™\ | by’
A e fo g hge, |hycy
3
_.‘.§ / b h3
—2 / hohy
paiLes

g by
-0l

15 17 19 21 23 25 27 | &8
6| ]
et Plh,”| Plh, ;
Al L~ g /]
A0 1 €0 // )F
21 / h22 B2
7/ i v ]

2 hy
A
0 2
4 g 8 10 12 "l
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TABLE 8.2
kx = 1(16)
. \as 722 | 2 7 7 0 o lzz.l 2 988 =
162 0 2 4 8 4 4lg 2 2 | Ly | 4 Jn,
Py 1)
. g T
[ Ly Usk T3 Lty |ZoZals Zily 284 (DifeZ2 2324016 Ta® |21 | 2% | Zg | 22 | 1, )
”*(Pk} '
| 28 | 25 |27, |22, | 2g2e | 2° Budi® BaiZeZi 25° | 22 B0 Zg |2y [0 |y
50
Zolgol Zo® | Zob |ZoZg | Zo2Zg | Z4 z3 23 [oZgZis Zo? | Z,? z,? |z, Z, |o
14- _/ /I ?
- 3 -
P
12— L! 2hghs |22
10| //l 10
1 1
;i 1hghy 3hihy Q 8
7 5P1°0 4i
-112 // N 2 N -
1hodg 5808 5hohag
5 il 2hog 5
4 N j}. 3 (0% oe, 2o .5 A
2 3 27 3
11ph3 r?/}ly)l 5hohy 1| |29
2 i
< 10b3 |2hy 6hy
0_ ¢
15 16 17 18 19 20 21 22 23 24 1125 26 27 28
8 zZ Z =
. & 2 7L Ha ] O Zy |hete | Z° | 2t (22, | 7 0 o |z (&3
6
5 / /l
-~
4 1o kg 3hchy P
3_ Y e 5cu
h. 2 -] g
e o 11 1!
1 h 1
4 // 0P2 2hy /43/ ohy 6h3
of1 sl 3 u!
0 £k
3 4 516 7 g | 9 | .30k g3 tiaais
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1)
TABLE 8.3
k = 2(16)
0 %y Zy S T 0 0 T | ZeRMT AR A N Ty |25
Ttipk+1}
12.2] 2g22|225% | 2325 205 |Za2R| 2025 | Zo | Zo  |ZaZo® |ZeZa| 27 | Zp | Z,%A Z3B
ﬂ'c(Pk)

2 2 3
178y Loy |Zslela| Zaly | Zo¥y [rcleln Zil1s Zo” |Zalns | 22" | Zg | Zo° | Za |Zy°A [Z3B
(50
| 27 | Zo* |2s |ZoZa | Zg | 222 | 25" ZEelie| 27 | 27| %" | Zp | Zp | O
: |
12 aPshycq

3
6FP2hy 4P2cp
10 , R R S\
8 2P meg R oF1do 0P =g oF s
5p1h0252 4P1cp \\ ) >| \\ ] oi
6 11P1hi 7'&"0/41'025 choe” |4hohog
obze  |1hze 2h1hye 1ohofo
i (‘ |//] 3 hoc
4 \‘ﬂ o0 “plo 1o 08"| 18 5|02l 6hihy 6h2c1
2
hﬁ's 2hph3 4h, 32I 01 1€1 26103 |~
N 2 5112
g aha” | ohohg [ Hnghy | 1A
ohy |9"s 1hg 5h4
0
15 | 16 17 18 19 20 21 22 23 24 25 26 27 28 5
5 2 = z
Till ZER o0 7 | % lzs {28 (Bl %4 %8 |0 Zg 22408 B 9
4
67 l
4 | 2h1cp ! d 7
2
ho by 4°0
: B bl g o
big
h 1h ohs | 1h3
/l 0hgy 2 i 131/
b 5"
7.4 156
0 1 2 3 4 5 6 7 8 9 1o [ 11 | 12 13| L
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TABLE 8.4
x = 3(16)
1
i 0 |25,2, | 2% | Z | ZiZo| Zg Zy Zy 2y? Lyl 2.8 | Zf e % 1z,

7=(Py 1)
I 7472 (26,273 782, | 2,8 Rala3Tade?d Zo | 22 |74 T02373| 2% | 28 |ZPAlmg o
W&(Pk) 5 : - 5
223 |Zg2,? | 2225 | 258 |Z0623 |Zagls | 22 | Zo | ZeZ3 |ZeZy | Zp | Z3° | AZD| 2B lcpy
:'7*(50)
ZyZgy| Zy* | Zy' | ZoZy | ZoZg | Zg Zo? | Zo? |ZgZgl1g Z5* | 2P | 2P 2y | 7, |0
LT L Pty 7]
¢ L
| 1 P2co 3Pacg
2
h
10 1 / 6P2h1 Y
1Pzh fp hydy
8 % g Q \
1Pjeq 3P1%0 N
6 6P’ ~ \\ shidy 5h.2e | [5bobog
1hdo”] 11P1hy s\orﬂ hog V4 sh1g  |ghgiy
4 | 0fo 08 i 1hyco 7] shacfehory
2
hoh 2
i g 3hohs / 0°1 191 |/ ehihy 901
his <71 johsh
2 2hg 1h3hy 4}132\9 4 V
/]
gh3 ohy by i : l12hs
4] %l
15 26 A7 18 19 | 20 21 22 | 23 24 25 26 21| 2
2 o 4
8 22 0 Zo Zs 216 Zoy Zo 22 Zg 222 222 AZ22 B ZZ 14222
-
6 g /
1P1h{
L g
J 5 (10 a1 3% iy’
2 // [ hy 1hyhg l /{:ﬁ
1hy ohs // Oh3 hy /
o! 41 e
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TABLE 8,5
k = 4(16)
1] 0 0 0 0 0 22 22 22 ZZ 0 0 Zz 0 0
m+(Py . 1)
12328 25" | 2 | 2 ZygZs| O zZy® ZyZy? ZoZy? Z} | 2,2 |AzZyt Bzgfaa zic ZZ,
:«(Pk)
2 5
Lty | 732, | & 2R3 2, | 297 2324 (2392323 Zo* | 2,% | Z3A BZL £, CZy |Z,Z,
:‘SO)
Togg | Z9° | Zo* | ZoZg | Zo2g| 2z 27 | 2,0 Bz 2.2 | 2,2 | 7.2 Zh /A S W
L
0Py
0Pghy ?
oP1g
[ 3
5"% nhohzs) h2e
5 N 4h]h4ci
Slie ngl 18 g shaecy 6e1hg
1% 8°1 9°1
=
1 -
'/ 1104 L~
271 {
16 17 18 19 20 P 22 23 24 25 26 27 28
z 2
82 | 28 |28 [Z2y5| Z, | O 0 |ZiZy | Zo* | Z0° | AZ*| BZ Zy | Ly |ZgZy
(3 /
0P1h1 7] / 0P1hy N
3 4
hgh ‘Io
4 /_2 et A W
0% 220 K
I / / 7h2
2 / 5hy [2eti- | by
/-1 i 5 1 1113/‘ 3hy // 7hy
3
/f// iz' nl
i 4 i 13 14
10 11 12
I I B o e R il W8 o e
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TABIE 8.6
k = 5(16)
l 0 Zie 0 Zs® | Z, | ZuZg| 24 Zy 2, | ZyZg| Z, Zy | 2y Zy 2,
ﬂ"(Pk+1)
l 2,2 |Z30Zy | 2y |Z16Zy | 2y |232g |ZaZ0Z)| Z3Zg | Z4Z, |ZigZg [AZ,2F|28:BlC2], Lol L,
ﬁ'*(Pk) l
28 | 75% |22, |2uZe] z,? | 2g2d | 223 | Z,° | Z,% | AZy* |BZEz| 7dc 2z, 17,
T (SO) ‘
% 222 224- 2 | Ty Z, Zs 222 ?"2287‘16 222 222 222 Zg Z, |o
/L‘
12 1P2hgh] /]
10 1f’1h§do/ l
/ 5Poh; 5P iy dy
-
8 1hghy OPId{)/
o ’/ \ 2
1hgdg 3“0"0\ N 1hoe
1 h
L~ N 5h1d0 \ sholo” | 3hye [ Fhofol [511€ |ahih
‘!" uhsh en h,c c
: ohs 08 4] 0h4cq haey [ghgey |5erhy
43
’ 1hghy ||2h23 '1nd 71 | g /j“l
h.'iz i 5hihy Fg
0hy ] 2h i dl -
2 i 10h4 /
251/
15 16 17 18 19 20 231 22 23 24 25 26 27 | 2
8|z 2 7 0 =
?Za2| Zg 2 0 1% | Z" | 2 [z2A] B | 20l SN
6 l
L1 1
5P
4 3 ’/ q
1hghy 0do
3
2 4 3h2 s
1h3 P 3h§ / 03
// o sty | ong ] 2![\ / H
5 = 3 \J 6h3
p v 10!
3 4 5 6 7 8 9 10 Ty 2pad h 1




THE METASTABLE HOMOTOPY OF S 59

TABIE 8,7
k = 6(16)

0 3 2 2|
‘ Zoti|t Zenll 2 AT R Zy: |2 Bl | 2R ey el ShiwE Mg
ﬂ!(Pk+1)

2 3 5 3|5
| ;:2 Ly |Taga| 220 | Z9® PaZeZ5|742,° | 2,2, | 2,0 |AZZ3|BZiZ,| Z,%C s
7P

2
!Sg)azzz Zy |Taefa | Zy | ZaZg |ZoZuZ,| T3Tg | 242y | Z0gZq NZ,23|232,B |22, Zglyly Tgly®|Z,

2 4 2
Ly | 2% | Zp* | Zo2g | Z5Zg | 24 | 2y 252 2,770 2,2 | 2,2 | Z2 Z5 Ze 210

10 I
| sPiks R £Bihs R 4 Phyd
8 oP'd 0P 1N 018

2P1hico 0 \
6 \ ol ¢ 5‘2
ghdg
% | \ b hl fahzg
5Pk gh1d) 1 N, abhofy [2h1z ShIB 4h1g | ohihgeq
4 0% h ‘33 08 3‘0 3 51’,0 2 2C‘7“0 3h2c1 ghocy
N N} gnZnb, ahoh3 oh3 | 3e; ¢ | 71+ g
14hohs | b = 2c1
2 Npnd A ohohy |13hs” " | ah1hy | 3hoby - /
\Oh/ 5 9h4/ / o] h3
4 1hg -~
0 251
151716 | a7 & 18 19 20 21 22 23 |- 9L 25 26 27 138
i : b
g% /5 0 44 0 Za Z; Zig |ZAZ,| BZ, | 2, |Zg25 | Zy Zy k2
6
| 4P1hy |
L phicy 0dp
" |
2 2
2 l l /’]2112 3hg //l oh3
A

h h h / 5hg
/l ohg gh) 3hg ob3 13 =

0! 1! .
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TABIE 8.8
x = 7(16)
2 2
'Zz ZaoZo | 25 | Zo' | ZgZy | ZgZy | Zg Zg 27 |Z9Z\gZg Z5%| L} 24 Z,
"*(Pk-!-l)
2 2
| Zo® (232,23 Z5° | 2P ZgLg3|7325% | 2928 | 2P (AL¥Zg Bnehzg CZy7| 23, | 24 2 |
”*(Pk)
3 3 3
| 28 1212 | 28 | Z& [BZZo! 22| Zo2g | 252 |AZZSIBESEE Czp | Z31, 23 A
75(50)
ZoZa | 2% | Zo* | Zog |ZaZg | Zg | Z9% | Zo® |Zolelyg 257 | L] 2| 7, |1,
, /I |
f/
4P3hy 3Pshy
12
//
1P2¢p
10 /’I
1P2h1’ 4 Pohy ' //<
8 -~ \ /
// 6P1h1co 4P
1Pjcq 3
6 )
1hge
h hig b5h
H - 2he| |[3hie fHhoe
4 6h1% \460 2% 2fy 4% 41, 1hoc) 123;4% ghoe;
3 2 291
13b7 |3bghg /l 11 2c] 3c; h0h2 o c /10
/, Ohphg{l 5¢1 |6°1 i |
2 o TR Ll 5 PR
101ty  [12ho 11h1hg 2hgny L~
1
ohy
8[:
0 4 // 20[13
LT o
e 17| 38 |29 |20 | = | 22| 23 | ap eI
e Z 2
2 2 Zy Zg Zy 0 Z8 |ZeZs | 23 zd |22 12 0o | 1
6 //l
-1
1P1hy 3Py
4
/
g 1% 7] 1hs’
2 2
. ///l 1hs 2h3 [1hyhy / oy
11 3h1 2]12 0h3
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TABLE 8.9
k = 8(16)
| o |0 o | o 0 0
0 z 0
Bl 5 0 0 0 0 0
3 5
bla | 2" | 227 |BgZyTg| 237 | ZgZo| Z,* |2,23AlBZYZ, |CZ$ 232, 2324 | 2g | 2, (B2,
f!Fk)
5 9 2 2
;7_322]622 Zp | 2y zZ223|7323 |2,.22| 2§ |AzZ3z, BZz,78 ZJC | 232, |Zg24 | 22 | 22
(50
2 4
22y | 28 | 23 |22, | 2,2, | Zg | 22 Zd |22, 27 | 28 | 22 | z, | 2,
opahsf / /lonhz
inihoha 4P2hihy
10 //\ \
1
oPshi / ]0P2h2
i -1
8 _ | 2Bohy abghy Plg
i 5i
6 2hdi e
2h04 ]
{1 el
3 anni? (881 ¢ 3| 0°1  Ghoh3
2N phohy  |1hohy
N /// 03| [ ighns 58
ohy  |1h4 3he
0
15| 16| 17| 18| 19 72
2| 72 ) o
PR s i e 0 ¢
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TABLE 8.10
k = 9(16)
|2 |Zaga| © | 28 | % |20 | Za |22 | O |Z%s| T2 |2 | 2 |3,
rrt(Pk 1)
& g 2 2
| 23 |2592,25 23 |BeliZo| ZgZy | ZgZs’ 22 7o BLYLS| C2g TagZily Zg23) 2y | 23 Iy 14,
ﬁ't(Pk) 2
| 23| 25 [2otit| 2325 | ZgZa | 23 |216Z3A|BZ3Zg| CZ9 | 232y | ZZg| Zy | 2, 2, [y
0
ﬂ«(S )
s 2 2
ZZa| 22 | T | 2925 | Zo25 | 2Zg | %3 ZP |ZoZglyg I3 | ZP | Z3 | 2y | 4, [0
14 /l
3’/ 3
12 1Pghph 3Pghghy
+
10 /l 1P1h3dg
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TABIE 8,11
k = 10(16)
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TABLE 8,12
k = 11(16)
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TABIE 8.13
k = 12(16)
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TABLE 8.15
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TABLE 8,16
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CHAPTER IV
SOME PROPERTIES OF A

1. The maln goal of this chapter is to verify the conjecture II.4.1 as far as
we can, Theorem 2.1, and to prove some more general results in the same direc—
tiony 3.3, 4.3 and 4.4. In addition Theorems B, C and D of the introduction

are proved. Actually all that remains after Chapter III in proving them is to

identify the elements in w (P ) which are necessary. This is done in sections

4 and 5 together with section 7 of the preceding chapter,
2, The principal result of this section is 2.1.
THEOREM 2.1. The map A: P —> SO induces epimorphism in homotopy through the
29-stem and a map
Ayt ExtlrYBX(P)),2,) —> ExtS L0t Y(z, 7.
wnich is also an epimorphism for t-s < 28,

Proof. The present proof is by inspection. Any hope to prove Conjecture
IIs4.1 by this method will fail, of course. In later sections we will derive
some general results. For the present we use the notation defining elements
in the two Ext's as given in tables €.1 and 8.2 of Chapter III. Clearly
A1) = hy. Hence the left most triangle of elements ma.ps monomorphically.

Next, observe that hy (500) = ,P,h, and so A,(h,° 5¢0) = Pyhoau(,1) =

= hy d.o Therefore A (500) dy. Since 53(110 141) = hy(seq) in the
ﬁﬁams spectrs.l sequence for P, and 8 (hoh ) = hyd, in the Adams spectra.l se-
qwaneafors wesee]\(ho )-hoh or A*ll» hA' Now&h h0h3 and
s A k) = 1° or A,(;1) = by Also jn,? = <1,h,hy%> and so A,(;h°)
<hyshoh,2> = 6. .

stace ho(78%) = Jdgs Au(hg ohs”) = Byd, = Beg.  Henoe A(5h7) = e

These give examples of how each individual case is handled. The rest of
the argument is similar.

COROLLARY 2.2, The Adams differentials given for Pl are just those induced
by SO.

The importance of this Corollary is the fact that all the differentials
in P, could be obtained independently of those for a sphere. It should be
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noted that the argument of Chapter III does not do this. There the result fo,
a sphere of 62(30) is used to start the induction. We will prove here

2y
REMARK 2e4e Ay 3h0b32) = f, and all the differentials for a sphere throughot
t-8 £ 29 not pertaining to 1"11:1;1 can easily be obtained from this,

Proof. First considsr

s is PB"’ - s,

Using [2:2.6.1] it is easy to construct Ext for P34 i.n homotopy dimension 18,
The following classes appear: 2 4, 3h0h3 ’ 2h1d0, 3h0 do The homotopy exact
sequence shows that <i, 21,002 4 <1, 2i4k>, i,MK and 1,p are all non-zero
classes in ma(Py®) with 2<1, 21,k> = i*TIh’- It 1s not hard to verify that

{3h0h3 } projects to <i,21,k> (particularly in view of 7.1). Now consider

s VSB—>P4-?SJ”.

In homotopy 3,K = ,MK since 3.1 -21]+121. The onlywa.yintln.&dm
spectral sequence to accomplish this is for 52(3!10113 ) = lhld[)) This com-
pletes the proof of the lemma.

This lemma and the discussion before it suggest strongly that all differ-
entials in the Adams spectral sequence are direct consequences of the Hopf in-
variant, one problem which, from our point of view, is just the vector fisld
problem.

3. Using the Adams periodicity we see that the edge of Ext for P; is contimsd
periodiecally. In particular, in each 8j-2 stem there is a collection of &t
least four elements connected by hy and ending with filtration 4j-1. For ex-
ampls, if t-s = 22, (12P1h12) generates such a family. A portion of this
family can be described using the periodicity theorem (theorem 5 of [3]).

Let @ be the periodicity operator raising t-s by 8j and s by 4i.

t
PROPOS TTION 3 1. In Exty?"(H%(P,),2,),

®k. ho L¢ J+31)

isnon—-zaroi‘orkZO,n?_OandOSi<23+2

Proof. The definition of A implies A( =h

j43° Naturality and

:1*3
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116,15 of [21] complete the proof.

DEFINITION 3.2. In Ext for Py with £-2 = 8k -2, 8k = 23(29*1), there 15

class by and an integer i such that hoj'bk = ®q(23'21) for an appropriate g
and by ¥ hya for any a.
THEOREM 3.3+ Ay # O.

The proof is clear.

12 2
be In Exti*’ (H*(Pl ),22) there is a class ]_hOBh3 which is a permanent sur—
viving cycle and represents a coextension of 85 by 21. Let i: P.2c— P and

B ) 1
1st p‘_LI = 1*{11]03}]3}. (In table III 8.2 the symbol 1h03h3 represents ]11'.)

Define p, ' = <w.!1521,80> where the coextension of 80 is always taken to be
3 i
(g BgYe Tet py = Ay’
FROPOSITION 4.1. 1) m_ # O.
ii) th.l is a surviving permanent cycle and " = {thl}.
111) dp(p) = 3(1) where R 1is the Adams invariant.
2
iv) nwy, end g # O.

Proof., Clearly iii) will imply i). But P € <P _1521,80> and so if we
show ec(p.l) = 1/2 we are done. But A*{lhoz'hj} € <1421,80> and thus satis-
fies ec(p.l) = -32’ mod 1. By [4] 4, = e_ in this case.

Notice that our requirement that the coextension of 80 used always has
filtration (4,12) implies that the filtration of p ' is (4k,12k) and hence n
mst have filtration (4k+ 1,12k +2), which means that it must project to
thl’ proving ii).

Since our p,_ is essentially the same as Adams pg ., (they are defined by
the same Toda bracket), iv) follows from [4], 12.14 and 12,17. This completes
the proof.

Proposition 4.l.iv implies that {th13 } # 0 and hence {Pk”z} # 0. Let
g, = {Fnt.
PROPOSITION 4.2, Ny, = 4%, and &€ im A,.

2o
The proof is clear and this proves vii) of theorem B since e(n™p) = 1/2
and ¢ is a homomorphism.
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In Theorem III.7.4 let n = -1 and consider the sequence P Hid ;_)
P .* Suppose k = 2(Z" *1) m> 3. Then 4(-1,k) =%5-m-1 ana I’(hoilk
a permanent cycle. Let A*{i*ho 1k} = Py/g
PROPOSITION 4.3. i) Py # 0, indeed e(pj) =
= 2,
11) npy = {PI"2o,} modulo elements divisible by 2.

-m+2(mod 1) where 8j =k

iii) order Py = 22,

Proof. ILet a) € Ext ‘-'9(H*(Pl),2.2) be the non-zero class,. *{al} &
# 0. Also 8pl=3g. Let {a} <~[a.‘_l 1},21,86) where we use {1}:01:3}951;5,
particular coextension of 86. Clearly e(A*a.j} = 1/2 and therefore {a} Z0.
By a filtration consideration then {a,} = 2m'3{ho L} where k,j and m are
related as above. Hence e(A,{h 1 }) = 2™ 3(mod 1).

- A 0 - 0 1

Consider the map A: P; => S S U e . An argument essen‘l:ially
paralleling the proof of III.7.4 but in homotopy shows that A*{ho lk} =
P"j lh22 Since P‘] lh 2 = pi- lco, part ii) is established. Clearly 2{3

= 0 and so 2’“’2{110 L} =0 tut 2 3{plL} = ay # 0. This completes thsproo!

of the proposition.

This proposition completes the definition of the Adams collection of ele-
ments, table I.1 and the proof of theorem B.

5. We will now prove theorem C. The main tool is IT.4.6 and the results of
Chapter III. Notice that if n = 0(2) [; ,2Pp ]#04f p<m-3 and
[1,02%,] #0 4f p < 2 wnile 4f n = 1(2) [2 ,293] [1,9%4] = 0. Nov te
results of Chapter III prove theorem C except for the follow].ng cases:
1= 0(8), 2m-3p = 6(8), py5 1 = 5(8), npy; and 1 = 4(8); npj

First consider 2m- P for i = 8p. This produces a class in "33 1+8p( )
with s-filtration 4j. Suppose 8(j +p) = 2%(2"*1). Let q = v-1+4) and 1t
Py e as defined in Chapter I. Finally let n = 8p- p(q)+8j-1, Then the

*The complex P -1 &8 a stable object is the Thom complex of the bundle

over Z".P induced by the adjoint of Al, Az EPl —> B30.
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homotopy version of III 7.4 asserts that in the sequence

8
"8(:l+p)—-1(s R
(P.) B a1 P
"gj+8p-1Fn) = Tg(j+p)-1(Fap) a(gep)=2tn 9

Oy

"8(j3+p)-2(s")
a*d*(2m-3pj) = ¢,(B,)+ Thus by IT.4.6 if 3n-2 > 8(j+2p) -1 the theorem
holds. By an easy calculation this is 8p > 8j+ 6v—- 2., Now consider i = 8p-2
and By This produces a class in “8(j+p)—1(P8p-2) with s-filtration 4j+ 1.
let v be as above and let q = v+ 4j with an defined as above. Iet n =

gp-o(q) +8j-1. Then we have the same diagram as above with the same con-
clusion. The estimate again comes out 8p > 8j+6v+2.
The other two cases are done in a similar fashion, with the estimates
being 8p > 8j+6v+5 and (i =8p-3) 8p > 8j+6v+7 (i = 8p-4) respectively.
The above argument also completes the proof of theorem D.
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UNSTABLE GROUPS

1. The purpose of this chapter is to give the general results on ﬂbzn(sn)
for =1 < k < 27 that can easily be obtained from the calculations of Chapter
III. The results are not as sharp as one would like because of the lack of o
particular calculation in Ext for spheres, conjecture 2.4. It seems to ys
that the argument proving 2.6 is the most valuable contribution in this Chap-
ter.

Throughout this Chapter the maps Pk,n and Ik,n are the ones in the Toda
sequence

2y = P,
1Tj4_1‘;(511*'1"3) _I.ka.fl._.) nj_l(zn lP’;+k 1) Jn nj_l(Sn).

Using the propositions of section 3 and the tables of Chapter III almost all
Whitehead producte among elements in the first 20 stems can be determinsd,
There seems to be little point in tabulating them. Recall also that Pk’nis
essentially the unstable J-homomorphism.

In comnection with [19] one should compare 3.5 and 3.17 together with ths
observation that for all other congruence classes the tables of Chapter III
settle the Whitehead products discussed there. Also among unstable groups the
homomorphism described in the tables of Chapter III is just the cne for the
EHP sequence with exceptiocns as noted (compare section 3).

As a useful exercise we have the following table which is given without
proof. The details consist just of gathering together all that we have dome
in Chapter III and the latter section of Chapter II. The determination of the
stable groups is given in [20]. Let I : rrp(SO) = np_l(zn"lpn). The Toda se-
quence requires that n > (p+3)/3.

Table 1.1
The Hopf invariant of some stable homotopy classes through the 40 stem.
The element B which is the image of g under I, is defined by what it
locks like for the largest n for which In(a) # 0.
P=23,n29 Ih =0
P=24,n210 I =0
pi= 25,0 > 1D L,L=0



ter
of 2

ap-

bhe

p=26,n210
P=R27 n3 13
P=28,n>1
p=29,n_>_11

P=30, 03 12
P=31, n >'12

P32y n 312
P=33’ n213

P=34,n213

P=35,n> 33
P=36, n> 1,
P= 3T n >

P=38, n> 14

p=39,n215

P=40, n > 15

THE METASTABIE HOMOTOPY o g2

Lois'o
i

L 29

I =0

In({hf}) =no
In({hlh M = {nyn}
I,({n,* h5}) = {P2h1 }
L{ny ") = {Pn}
In({hlh-;;}) {hz'r
Rigp = 1o}

Ldep = {c 1}

I ({hl hs}) ={n; 3

Ta{mhsD = {n,}
Ta{{Bghong}) = {hlhg}

I ({hozhzhs}) = {5 °n;}

b

L=o0

Li{n,*n}) = {h3 3
In({x}) = {1,

L({ny? "3“5}) {hl
Tk hghs}) = {hl
WS E ="
TPy} = {nyn}
I ({hsco}) w05
L(b "y = {n,°n}
Tn(thseoh}) = {nye;}

222n>12

ni=A2s3
1 =22 13

n =12
92n312
n =13

n=l3,11+

272n > 13
272 n > 13
262>n3 13
25 2n > 13

2B 2n> 1

0=
2l 2> n > 1
20>n>1
172n2 14
2l2n 215
20 >n>15
192n215
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2. Consider the table of Ext for B, k= 3(16). We will study the followin
subset of that table: -
3
3 6 . il 3,
2

< g2 7M™ By SR

l 10h2 8h3 4114

g =t

£

t-s 12 13 14 15 16 17 18 19 20 Pl

Table 2.1

First we recall the results on multiplication by 1'1D and h,.

2 ¥ i B 12hi@ £l
8) 1200 = (o) = By(ghy?) = by’ = ;0 (ghy) = ho(hyhs) and
b)) = By = bt hy) = ghyhy
o) hy°(;h) =By (5hoh) = ol h,).
Then we will prove

2 1 by

PROPOSITION 2.2, h,“(;,1) = h3) (4h32)

Proof. That hy(;,1) = ha follows immediately from Sq¥al’ L0k =
5B L1416k 19+16k

Consider the diagram
ik

| li

k+4——-——->P
p‘Q\ /'po

~ By definition Poxlghs) = i;,hy. But clearly Pyx<ls A,hzhs > = 1,hy too
Now <1y.;shoyhy >hy = poy(hy(ghy)) = 45, <hyhoh,> = 12*113
PROPOSITION 2.3. Suppose k = 19(32). Then h3(121) = ,h, and hence By, 3

ohzh

The proposition follows immediately from qu SR

8

16‘!23"'3& # 0.
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From May's calculations it seems likely that the following is true.
Comjectons 2ol Fer k5 6 fh” ¥ 0 for b any fon-itro saskiot in h; with
t-8 £ 10.

If k = 6 Tangora has verified the conjecture (unpublished) while if k = 5
we have the following:

IEMMA 2.5 (Tangora [24])s If k = 5
hi with t-8 £ 3.
The main result of this section is the next theorem.

2
,phk # 0 for a any non-zero monomial in

THEOREM 2.6. Suppose k+13 = (21+ J)(zi 1), J=1(2), and j > 0. 1 Bhy 9!0

in B¥(4), for p € H¥(4) (t-s < 2% for B)y then ﬂ(lzl) is not in the image of
Py vhere

P P,
(3-1)28*aiey ™
Proof. The ma.p A: P = SO satisfies A w(pi=51) = h;. Hence A, (,1-h,)
—h Thusi.f(sh #O,thenﬁ(i- )7-'0. Hence in E_4 of the pre-

o
spectral sequence the same conclusion mnst hold. Now E i(P ) ~

E since as modules r A invol cohomol ti
21( (3-1)22*L + 21 +l) ce es ove v ving ohomology opara+ on
wiich raise dimension by less than 2T, HX(P,) o BY(E,) where q = (3-1)2*"1 +

2'+1. But in E,a(Ry)s 8,8(( 5141 5y1) = since

h A

(2i-2)"2
5
qu aq+2i'2 = ak+12.
Hence the theorem follows.
Using [2] we know that hihjz #£0if 1< j-3.

3. Using theorem 2.6 we will now investigate the first few unstable groups.
First we show oy
I2MA 3.1. a) Applying Ext to the sequence Pr_g —> P, g —> Py where k = 5(16)
and letting & be the coboundary in the resulting sequence we have a(scl) =d;
b) Applying Ext to the sequence Pkk a - Pk i Py with the other notation as
gbove we hawve B(ho(9 1)) hod, .

Proof. Recall dl = < h3,h2,hl,cl>. Consider the diagram



MAHOWALD
P <P s «2r <k i

(PQPB)*(Scl) = <L gehyiey > = <lk+6’h17<h2ah3,h1h3>>

= <K lygabyshy > ohyiyy> .
oW D < Tieps < sl sBp? phgsBhy > = <KDyl s >ylinyhb>, Fiaelly 1
the sequence for Pk1—>P_6—>P %haﬁﬁ*_,_‘—"hBor
85 < Lugsbybiyyhyyhyhy> = dj. Since byl ¢ = Byl g we get part b) of ihe
proposition while the seeond part of &) then follows from the module extensin
property given by 3.15.
IEMMA 3.2. a) Applying Ext to the sequence P]]; L - Pk 10 - Pk where k = 9(14
we have ﬁ(ho( %) =
b) If k= 10(16), 5(7113 ) = gq°
LEMMA 3.3. If k = 12(16) then go, = 191 Co-

These propositions are proved just as 3,.l.

oty i’lr‘l? ia.'l.culatlons tabulated in tables I.4.2 and I.4.3 now follow by
00. a
Pyt "j+29(Pj+k) - "j+29(P;])

and finding _
a) the smallest k such that p, is zero, or
b) a k such that the 1 1
) re is a k' for which pJ: ";]+29 ;]+k) > 7 j+29( jk')

is zero.

Inspection of the tables gives the first statement and Lemmas 3.1, 2 and}
together with 2.6 supply the answers to the second part. The tables give the
easy results possible by this method.

The details of this calculation are omitted but we give one case to il-
lustrate the procedure.

PROPOSITION 3ehs I k+n #2042, but k+n = 2(mod 16) then m a8
n+k @ 1 1+1(P,) for k < 6 and for k < 28 if 2,4 holds.

Proof. Consider the sequence

s Ipg : I



e
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for n = 6(16). Since Togin(Py) = Zg and by a simple check of the differen-
tials we see that

¥ .

Pt Togun(Pres) > Togun(By)

is zero. Thus 12 = 0.

9
Also by inspection we see that im(p*: rr28+n(Pn) - nzs,m(PmB)) is
generated by {18h3} = {221 h?_}. Conjecture 2.4 and theorem 2.6 show I, is

sero. Without 2.4 we know that im{I} could amly be {,,1, b, °h} , & 2,
group, since 2,4 is verified through s filtration 3.
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