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CHAPTER I 

INTRODUCTION    

    

    
   

     

    
   

     

   

‘1. The Adams spectral sequence [1] (see Chapter 2, section 1 for a summary) 
_is the most powerful tool presently available for studying the stable homo- 

- topy of spheres. The Adams theory is essentially a stable one, in its present 

form, and so gives information about 1,(S") only for j < 2n-1. 
_ The next block of n-1 groups, i.e., for 2n-1< j < 3n-2, is called the 

metastable range and it too has many regular properties. But stable arguments 

do not in general apply. The main result now available for this range of 

groups is the following theorem of Toda. 

‘THEOREM I [25;11.7]. The following sequence is exact for j < 2n-2 and is 

exact on the two component for j < 3n-3: 
Paol skyn a - P 

ee). Bae! (ertpetiel Jon, , 18) > "5-1 

here Sela = potk-ljpo-l ona PF” is the real n-dimensional projective space. 
4 —! +k: Note that if k >n+1 and j <n-2 then 15,,(S™"*) and m4 (2 apn et) 
are stable groups. 

Our object is to bring to Toda's theorem the power of stable methods 

developed by Adams. One main result is 

THEOREM A. Assume k > n+l. There is a map between Adams spectral sequences 

which on the E, level gives 
F 2 

z 8-1, t/q, patk-1 Ext§?*(z,,2,) Ke > Ext? *(i(RD ) 25) 
t 

for t-s < 2n-2 and projects in E,, to the same map to which Ton of Toda's 

  

j This work was supported by a grant from the U.S. Army Research Office 
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theorem projects for the same range. In addition if we restrict t-s tot 

greater than n-1, Ty is a mapping of H*(A) modules. (H(A) =Exts)"(Z,,2))) 

(ote that , ,.2_, Extg?"(Z2,Z,) is an H¥(A) module.) 

One can think of Tign in theorem I as a generalized Hopf homomorphisn 

and our primary interest will always center on the case where k > ntl, i 280, 

where we map the cokernel of the suspension from an unstable group to a 

stable group. The map PB kn in theorem I is a generalized Whitehead product 

and there have been several efforts to get general results about it[10],[1], 

and [19]. Theorem A gives a quick proof of all the results of [19] and sub- 

stantial generalizations. 

2. It is quite clear from theorem I that a detailed study of the homotopy 

of stunted projective spaces is central in the metastable homotopy of seek 

second major object of this paper is to develop a technique which renders 

this a comparatively easy job if one knows Ext for a sphere. The details 

of the computation of Tp Pe ) for p < 29 are given in Chapter III. Th use 

of a large computer was importent in this work; compare III section 8.” 

Table 4.1 tabulates these results. Detailed tables are given in Chapter III 

section 8. 

Together with a proof of theorem A, Chapter II introduces a map betwen 

stable objects, A: P, > 8°. (PK = RPK/ppMl vere RPK is 2 real k-dinon- 
sional projective space.) It is conjectured that this map is onto in homo- 

topy (II.4.2) and this conjecture is verified as far as we have gone (Chap 
ter IV). 

In [4], Adams defines a collection of direct summands in certein stetle 
stems. Table 1 gives a listing of them with names for the generators. 

i 3305 -1 ° a 2 2 
s A summand of Ty 245) 2 2+ 25 25 2 

2 Name of generator P5 np n P52P; 1B; 5 

Table 1. 

  

“Dr. D. MacLeren did the programming using Cogent, a programming Jan- guage developed by Jolm Reynolds. Ar; Ni a 
ene co fests gonne National Laboratories supplie 

**We actually will work oe an element which is 1p; modulo amas 6
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let (3) be defined by 83 = 2P(5)-1(2P(3)), an tepte 1, ACj) = 2003), 
We will give particuler representations of these perenents in Chapter IV. 

dur representations are defined in such a way that n* Pz e imJ for all 
j> land some miltiple of p; is in imJ if j= 2P for each p. The second 
statement is not proved here but will be asnaesd in another place and is 
not used here. It is believed that P3 "Ps n ys and 55 generate the real 
image of J. In particular we will prove 

THOREM B. It is possible to choose generators P5 (j > 0), p, and 5 (for 
j2 0) in stems given in table 1 so that they have the following scaae 

4) py has filtration > 4j - p(j). 
ii) tho; has filtration > 4j for j>1. 

444) py has filtration > 4j+1. 

2 

iv) §; has filtration > 4j+1. 

) e(p3) = o-P(5)-1 (aoa 2P(3)), 

vi) 4,(p5) # 0. 

= 2 vid) ep'(E,) = R(moa 2). 

We will also investigate the Whitehead product structure for all these. 

THROREM C. Let a be an element in table 1. Suppose [1,,a,] is in 1,(S") 
andk < 4n=3. Then the order of [2,,a,] is given by table 2 except if i = 

8p, a= p35 i=8p-2,a= B55 i= 8p-3,4 = "Rp; and i = 8p-4, a = 3. For 

these cases we require 

i= | 8p | Sp =-2 8p-3 | 8p-4 
  

  83< | 8p-6v+2 | ép-6r-2 Sev 5u) | epee 7 

viere vy is defined by &(p+j) = 2%(2%"7). 
Before we state theorem D we need some notation. Let n be an integer 

mi let a and b be defined ty H’= lath, 0<b <3. let q(n) = Ba +2". 
let 

Bn = Pat1 Diz 

= be b=2 

=np, bp=1 

b=0.



  

  

  

  

  

  

                
  

a= P; 1P; Tas Bs IPs gy 

L=0 C5) 2 2 2 2 8 

4, 2 2 2 2 2 0 

0 Shall: GG) fo tn : 
3 2 ° 0 ° 0 x 

2 2 2 8 tet 
5 2 2 x 2 2 0 

6 As) x oO 2 0 4 

71x oO 0 0 o%| #0 

Table 2. 

Notice that B, & SL tau 

THEOREM D. If n+o(m)+1= 2"'(2™1), where 3 <m! <u, then LtysB,] = 0- 
If n+9(m)+1= 0 (mod 2*1), then (t,,,8,,] is either zero or of order 2. 

Conjecture. [1,58] #0 if nto(m)+1 = 0 (moa 27) wut ntg(m) +122", 
and [1,58,] = 0, n+(m) +1 = ae aff {au a} is a permanent cycle in the 
Adams spectral sequence. In particular, we conjecture that if h,” Projects 
to a non-zero homotopy class a, in the Adams spectral sequence then in the 
diagram 

TSntl_p ms Tmt (oP) 

i, 

Tal 54, (8) 
where 1, is as in theorem I, iis a generator and n = pete 9(m) -1, r,(a,) = i,8,- 

Partial results supporting this conjecture are know but they will not 
be discussed here. In particular the conjecture is true for m< 4.
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3, In addition to the above information we get detailed results on the first 
twenty or so unstable stems. In particular we give a table 4.2 which gives 
(8) for 23 < J < 40 if n> (j+3)/3. These results follow easily from the 
cae calculations, and no detailed proof is given. We also can get 
rather strong statements about what the homomorphisms look like if j > 40, 
%2j-n2-1. These are collected in tables 4.3 and 4.4. Propositions 
which make this explicit are given in Chapter V. The results there are suf- 

ficient to compute [1 nl for most a € 1; (s° ), J <2]. The results would 
really be quite satisfying if a case conjecture about Ext??*(Z5,2) 
could be verified, V.2.4. This conjecture is almost certainly true and it 

seems within range of present techniques. When verified the Whitehead 

product question for any element in 1,(S°) < 29 with the exception of {ey} 
would be settled in the sense that ant, could be given. 

4. This section contains the tables which collect the calculations made in 

the paper. The first table gives ny (2) 2 Than (V ao =) form>ktl. By 

[8] we see that Then (BOS (nn) ) 2 Th +n (BSO) (n + m) ® Mein Vaan) for m>k+1, 

n>13,k<n-1. Tims table 1 also gives a table of the unstable homotopy 

groups of BOS(n). 
4n element in table 1 consists of some powers of some integers. For 

example, forn = 1, k = 19 we have 8,2 as the entry. This means that 

Ty19(Py )= Ze ©2, if n=l (mod 16). In addition some entries contain the 

symbol A or B or GC. If for a given k and n value the table lists Ce this 

mans that the group is C(k,n) © Z, © Z, where C(k,n) (and A and B) are given 

by the following result. 

PROPOSITION 4e1. a) Let m(n,k) be defined by n+k+1 = 2%(mod 27), Leta 
be defined by 9(a) $k < p(at1). Let i(n,k) = max(q-m(n,k),0). Then 

A(kyn) is a cyclic group of order gila,k x), 

>) B(kyn) = B(kyn) © Z, if m(n,k) = 4 and B(iyn) = Bk,n) if m= 4. B(k,n) 

is a cyclic group of ia aul sp q-m(n,k) 2 0 and the order of 1, in 

tables III.8.4, 1 = 2).00,16. 

e) G(kyn) = 2, 4f m(n,k) > 4 and C = 0 1f m(n,k) = 4e 

Tables 2, > and 4 are quite clear. The kernel of the unstable J-homo-
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morphism can be easily detected. In particuler if the unstable group in on 

of these tables does not contain (P,) then the unstable J-homomorphisn hag 

a kernel. Comparison with table 1 gives the kernel. The groups in paren. 

theses in table 3 refer to undeeided cases. Conjecture V.2.4 if true would 

decide in favor of the group not in parentheses. In addition the reader 

should be warned that not all the group extensions have been settled. This 

applies particularly to table 4.1. 

De The author would like to express his thanks to A. Luilevicius for many 
profitable conversations on the material of this paper.
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CHAPTER II 

THE ADAMS SPECTRAL SEQUENCE 

- INTRODUCTION. The purpose of this chapter is to summarize the Adams 
eee sequence, Bectilan 23 to prove theorem A, section 33 and to introduce 

the map A: Pj) > 3° > Section 4. 

2, THE ADAMS SPECTRAL SEQUENCE. (See also [1].) 
Suppose X is an n-1 connected space. By a resolution of X we will 

mean a system of fiber spaces 

P. Pp. 201. tee > PL E>... > P, —2> Px 
f fos esnait 
ae AS aa 

together with the system induced by 2.1 over a point 

202 soe > BL > «ses B => hp 

t ' 
AS A, 

Each space of 2.3 is the fiber of a composite map of 2.1, i.e. 

Be —> Po —— > x 

is a fiber space. The Puppe sequence gives a map £5: OXY > Bo. It is 

clear that the system 2.2 together with the maps iss define 2.1. Because of 

this we frequently will call 2.2 together with {f,} a resolution. 

Associated with a resolution is a spectral sequence defined by the exact 

couple 

243 2m. (,) > on, (P.) 

oe wide 
2m, (45) 

Of course in this generality nothing mich can come from 2.3. There are 

several useful specializations. The first leads to 

DEFINITION 2.4. A resolution (mod p) is called admissible through dimension 

T<m-1 if 

1) Each A, is a product of Eilenberg MacLane spaces (K(Z,q) or K(Z,,4)) of
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dimensions less than Tj 

2) ker(f£,*2 1, (Qk) > m,(B,)) is strictly monotonically decreasing. 

The most important resolution has this 

DEFINITION 2.5. A resolution is called an Adams resolution mod p if 

1) it is admissible through dimension 2n-15 and 

2) each A, is a product of K(Z,49) '85 

3) p,* is zero for each 5 with Zz, for coefficients through dimension T (in 

(2.1). 

Because of 2.4.2 the spectral sequence associated with an admissible 

resolution of a n-1 connected space with finitely generated homotopy con- 

verges to a graded group associated with Zz * 75%), filtered by 2.1. Using 

both the s filtration and the q filtration of A, we see that 2.3 is alwys 

begraded. In the case of an Adams resolution the £5?* = mxtf4¥%(fix(x),z,) 
for t-s <T-1; for details see [1]. 

Related to the above is another notion which will be useful. let 

D c H*(X52,) such that D is a vector space over Z, 

DEFINITION 2.6. We say Xp represents D if 

1) Xp is a product of Eilenberg MacLane spaces; 

2) there is a 1-1 correspondence with fundamental classes {a} of Xp anda 

homogeneous basis of D such that if ae Dn H(x) then a, e W(x), 
3) there is a map f: X > Xp such that f£*(a,) = a. 

Given a subspace D C H*(X) there is always a fiber space 

207 He>YrSx 

with t(a,) =a for eachaeD. For more details see [2; chapter 3]. 

3. THE CONSTRUCTION. Let 2X, be the fiber of the 2n-2 connected fiber 

space over S", That is, there is a map f: S2 > Y," such that f,: 1, (5") > 
OW *) is an isomorphism for j < 2n- ~1 and 9,(¥,") = 0 for j 2 an- 1, Since 

* has homotopy only through Ate stable range we can define an (-spectrm 
based on Yq dees, OYA, =¥7 for alk >n. let Fray,yc b2 the fiber for 
the following map: 

Fatk, ik = = ex, Te 
Note that n is a fixed integer and Y5,, depends on n. We will keep n fixed
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throughout the remainder of this section and thus suppress the superscript n. 
It will be understood throughout this section. 
PROPOSITION 3.1. There is a homotopy equivalence through the 3n+k~=-2 
skeleton between F c,k and oa SP? n*k-1, 

Proof. Consider 

WF 2> HY > x, 
This fibration has a cross-section 9: ¥, > 2 i ey given by (y)(s, 28,,) 
= (¥,8,)-+-)8,,) where (y98z 500058, ) is a point in =a in the standard represen- 
tation. We can make p into a fiber map giving 

Rg ee oot. 

where Q is defined as the fiber. In any fibration F > E +B the boundary 

homomorphism in homotopy can be realized by amap f: QB —>F, Using this 

map we have 
kt a eee ay ge Set 

Since ms (x, ) =O for j > M-1, fi induces an isomorphism in homotopy for 

all ieee Thus Q: ee , is homotopicably equivalent to Qntk, ke 

Now consider the following diagram of fibrations: 

n ntk 
Srngk ats 

3eiat Ae Je 1a 
Que, x — ty oar ESE. n* 

Ifk=1 James [14] showed that rt 1 = s20-l through homotopy dimension 

3n-3. While Barcus and Meyer [6] ahd that Fatt, po ye gente 

through dimension 3n. Since Qq+3,1 = 2Fp+1,1 and = r Svea te 

stl _, 9?5@590-] ve see that i, is a homotopy equivalence through 3n-3. 

We now proceed by induction. Consider 

Ree scott’ “a > 2, 

a. > y, > US, 

26,51 > iy > PE ae 
and
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Ba 
gene Se oye 

J 4 ¥ a 
Gitte State ia 

+ relga, 2 ae > Spe > Yue 

The natural maps between the two diagrams give 

7;(Qi43,2) —_ 15 (Qraie ie) ma T51Qnate xen) aoa 1%, +1, p 

Pir fat on 2 Pt a alee 
my(Qtey 1) > 75 Rta) > Ty (Qtr cea) > "5-26Sea, a) 

By hypothesis j,* and j3* are isomorphisms for j < 3n-3 and j < 3n-2 re- 

spectively. Hence jp* will be an isomorphism too for j < 3n-3. Theorem I 

completes the proof. 

COROLLARY 342. m4(2'Y,) = my(Layy) + Wy(2"MPD*E)) for J < Jat k-3. 

Note that either one or the other group is zero in the range of interest, 

Let A: 1 (22,) > 1,(20*Kpn*k-1) be the projection map. Of course it is de- 
fined only for j < 3n+k-3 and is not generated by any geometric map. 

The following is an important corollary of the proof of 3.1. 

PROPOSITION 3.3. The composite 

nj(SP"*) > nT) AS a (Brae 

is just 
+) I, —. +e +1 +) —, ea ed a ce 

where I, is the Toda map of theorem 1. 

Proof. The proof is immediate from diagram 3.1.1. 

Proposition 3.3 is the key to the proof of theorem A. The only thing 

left is to construct a suitable resolution of the cohomology of a so as to 

be able to identify the copy of Na oie which is present there. 
let 

Yi. 2 oS CT ——- 
k Syk Psyk ee Pay yk 

be an Adams resolution of XY, through dimension 2n+k-1 (Def. 2.5). We re- 
quire that OXs 441 = Xp x. 

——> K(Z,k) 
Pik
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The rest of this section will be devoted to proving the existence of the 

following diagram with the properties we will require (and show) it to have. 

2, Po PE is, as Pu ae 2% —> 2K(z,n) 
+ 

Xp > Age Pree DA 

a1 Lye eS ee iain S98 
Deo S 

ee a at lS 8 

l L, ie ty Bp A ee A! ee ay et 

1 t { 1 { 
Tae > tt > Xp nse Sea ate Pees > Sy pea > KZ nr) 

Diagram 3.4 

The resolution of 2, which will give a proof of theorem A, is the 

diagonal one in this diagram, i.e., 

s ae BY, Do. Sal >... Sanz). 

Hence the tower induced by the left hand colum over a point mst be an Adams 

resolution of Fatk,k* We will describe in detail the lower right corner and 

the general case involving the parameters s and s-1. In everything that 

follows we will only consider cohomology through dimension 3n+k-1. H*(X) 

vill man I(x). 
0<j<3ntk 

First we need a lemma. 

8 IMA 3.4.14 Let Fy y be the fiber of 2g in > X5,n4, ond let 
: 8 * fy: Fitk,k => Favicyie be the natural map. For eachs f,* is surjective in 

dimension less than 3n+k. 

Proof, We proceed by induction. We need only show it for F°, We have 

the following diagram:
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- PL ° -1,0 1 ° >F 
= deer 7 ae Patk,k ntk,k-1 

t ee tees P2 
2 

Since F,, , = K(Zyn) *K(Z,n) [6] £,"* 4s surjective. The bottom cohomology 
nt: 9 

sequence splits into a short sequence. By induction suppose LS is surjec- 

tive. Then (pit')* is surjective in dimension for which p,* is. Since 

Ae eal 4s 2n+k connected i\* is surjective in dimension 2n+k, which co 

pletes the proof. 

First the lower right corner. Consider the following diagram: 

4 
F => SY Tay ntk,k 

geo i te 
Fat 3y x(x(2,n)) > K(Z,n*k). 

Let HCE rc 1) = ker £* + D, where D, is defined by this equation (although 

not uniquely). First observe that 

3.5 tT? Dy > H*(K(Z,n*k)) 

is a monomorphism. Indeed if ae Do satisfies 5%a = 0, then there is ana! 

such that ij*a! =a. But then ip*g*at = f*a 4 O but g* is clearly zero in 

dimension #n+k. Let =, be a product of Eilenberg MacLane spaces which 

represents Dy (2.6). We can form the fiber space 

26 0 + 3 Xp, PAL > K(Z,ntk) 

where the image of Dy under transgression is given by 3.5. 

The second row of 3.4 is induced by 3.6. 

Now consider 
a 2S rt 
ese ae aie = ak(Z,n) 

4 J “ 

tle TEP ayn Tee? Be ymte.
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le let H¥(F") = ker £* + D where D, is defined by this equation. Let Xp, bea 

a representation of Dy and define Xp, -> A, > a, ty requiring the trans~ 
gression on Dy to be the same as for the fibration FY —> , -> a}. the 
third row of 3.4 is induced by this fibration. In order to show that Xp is 
the correct fiber for the second stage of a resolution of Frat, We must show 

f* is onto. First observe that i* is zero. To see this conbdase the follow- 

ing diagram: 

ee eat 
Futk,k : By, oD 2, 1,n 

1 yr) wee ie 
XD, 3 . Daa 

ees Yak X) atk 
Since g* is onto (because £,* is onto according to 3.4.1), q* is zero 

and thus i* is zero. Now consider the diagram 

£, zy fi, pl a 

Pine ak see Fien,k 

at oe 
Xp, 

where Fa, and Pon yk are the fibers of ee n 7? Xa nex 204 =k(Z,n) > 

K(Z,n+k) respectively. Now ker j,* = ker we Indeed, EMEP se is 

composed of the cohomology of shx(Z,n) which is not in im reine +k), 

(ie. suspension of cup product terms) together with the kernel of the map 

H(K(Z,n+k)) —> H*(2*K(Zyn)), iee-, those classes with an excess of greater 

thn n in the Cartan basis representation [23]. Clearly j,* maps to zero all 

cup product terms and all classes which transgress to classes with excess 

greater than n except those classes which transgress to Sqi, i>n. But 

these classes which transgress to Sat are also mapped nontrivially by j*5,*-
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Hence if there is an a € HX(Xp,) such that p*a = 0, then p,*a is zero too, 

Since q* = 0 this shows that f* is onto. 

The pattern of the above argument is repeated in each successive squar, 

While it is clear that ker j,* = ker(j,j)* in this setting it is less o1 

because one does ot have a hold on H*(X, a? q =nandntk, 
later on 

Now we will do the general case- Consider the following diagram: 

3.7 te ad e = rik 

2 Te Paya s-l, 

a> A > 4 ast 
s-1 iN t 1 

Yyee > Xeyntx > *s-aynte’ 

The fiber Q,_), in the induction hypothesis, is the s-1 space in a resolutin 

of FPotk,k? through 3n+k-3, i.e. 

3.8 Fang Pott 2 Ma > FY PH, 
it * 
x x, 
Peet Dy 

where 3.8 is an Adams resolution of Futk, a through dimension 3n+k-1. let 

D, be defined by H*(FF) = ker f* + DS . As before, let Sy be a product of 

Eilenberg MacLane spaces which represents Ds and form the fiber space 

3.9 iy > a ag 

where the image of D, under transgression is the same as in the fiber space 

Ss pos di >’. 

The s+1 row of 3.4 is induced by 3.9. All that remains is to show that Xp, 
is the correct.sth fiber in 3.8 and this requires only that £* be onto. For 
this we go to the previous stage obtaining the diagram below where the top ro! 
is defined in 3.7 while the middle row is the fiber from 2,1, n > Xs nt 
and so forth. The following lemma implies that f* is onto as above. 

TEMMA 3.10, In this diagram ker j,* = ker(j, j)*.
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z £5. x fe. pel 

j s s—-1 
Frm Pome ~ Flom 

P. ee 1 8 ‘96 _ 
8-1 

Proof. Consider the tower of fiber spaces 

re fog “oh al x pm oe pee ie X, otk 

co ct ck-1 

Just as 2.3 is associated with 2.1 there is a cohomology spectral sequence 

associated with this tower whose E) term is 

i £ E, = z H*(C*) 

and whose E,, is a graded group associated with EAPO. xs Barcus and Meyer 
- ? 

[6] prove that ci = 5k Fah e e at least through 3n+k-1 dimensions, 

vere O° 4s the fiber of atx, op okt, sa. If BysYy are 
€ BAK 7 neg) then 5,*(B;*ry) = (Ps*1B5)* Pony (vy) = 0 unless By = vy = a3 

vbere a, is the fundamental class of X51 4 4- But j*J,*(o,*a,) # soa each 
i, hence the lemma holds for Ej in this spectral sequence. Now (sk a,*a,) 

projects to a non-zero class in EQ and stg 5% on these classes in EQ is an 

isomorphism. This implies the lemma. 

The proof of this lemma completes the proof of the existence of 3.4 with 

3.8 being a resolution of Patk,k* 

Now consider the resolution 

3.11 BEY > nee > age > eee > AQ) > K(Z,n4k). 

At each stage the fiber is a product of Eilenberg-MacLane spaces since in 

going from A_* to Aga the fiber consists of Eilenberg-MacLane spaces in 

‘ i a S*l the dimensions of the dimensions above 2n+k while in going from A,+, to A,,) 

homotopy in the fiber are all less than 2n+k. Thus this is an admissible
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By¥ ce associated with it. 
resolution. Let EB? be the spectral sequen 

Notice 

that t aad 1 

ES’ = Ext”? (Zo925)9 t-8 <n- 

Ext? 9t(fia( PEt) 25), ngt-s<n-2. 

Hence the spectral sequence based on 3.11 splits into a Spectral se- 

quence for a sphere if t-s <n-1 and the one for ies for n ¢ t-s< 2-1, 

There is a map of an Adams resolution of S®*E into the resolution of 3.11 

which induces a map between spectral sequences A: B89%(s°) > Best, The mp 

of the theorem is obtained by just considering the portion of Beat for 

t-s >n-l. This gives 

1,7 8?*(s°) > Bert PO 

The module statement is clear by considering the entire spectral sequence as 

mapped by A. Proposition 3.3 shows that ace is the map associated with I, of 

theorem 1 and this completes the proof of theorem A. 

4. THE MAP A. 

Adams [5] has shown that K(P,*) = 2 o@(n)) where p(n) is a well defined 

function whose exact value is not important here. Let H, be the generator of 

this group. It is well known that H, can be chosen as the Hopf bundle over 

P,- Let T(jH,) be the Thom complex of jH,. It is easily seen that T(3H,) = 

(n)_. pi Hence (292) _ 1H, = = fk By James periodicity [13] a 
o(n) a = x2" “pil were P) =P, U {pte} if n satisfies: n' <n implies 9(n') < 

0 ° z 

p(n). Consider the Puppe sequence 

2p(n we n n 2 s ) 1 aS pat ae 52 ) pel A's 52" t 

n=1 The map A’ clearly defines a map in the stable category of Adams giving 
At: P) >S°. Generally we will find the map A: P, > S° more useful where 

A is the restriction. 

There is another such map. James [15] has constructed a map 2 = 
SO(n+1). The Whitehead J-homomorphism is induced by a map so(nt1)c 0" 3, 

ntl Let AN" be the adjoint of the composition, ice. At; stp ® > sh, mis
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also defines a map in the stable category J. 
Conjecture 4.1. a) A and X are the same. 
b) A, (or A,) is an epimorphism in both homotopy and in Ext. 

In Chapter IV we will verify the conjecture as far as the computations 
B0~ 

PROPOSITION 402. The following diagram is commtative: 

ve > 0 (8") Bs emi a ety oe 

Wey tek cecal 
vee Bon (20PT) Be ny at) 12, ie aed ca ae 

for J < 4n-3 where a, b, and c are suspensions or desuspensions of corres— 

ponding maps in 

De alg > Ss > a a 

vhich is a fibration for our range of dimensions. 

Proof. We will first prove the proposition fork =1. let g: s™is 
we “l be the attaching map for the n-cell of Pi*. Let £: Pol > Bso(n-1) be 
the classifying map for any n-1 plane bundle which is stably (2°(")-1)H, 4. 

We have the diagram 

V,,-1 => B80(n=1) E> Bso 
te e Taepticfa 

n-1 1 LS et suv Bs EF p> Be 

vere h is the classifying map of 2(")_1 (as a steble bundle). If fg~0 
then nt would exist but since h*W, # O, it cannot happen. But pfg ~ 0 and so 

there is a map f: sos Vp-1- If n is even, then [f] generates 1, _,(V,_1)5 

ifn is odd, then f can be chosen so that [F] generates Manan) Hence the 

bundle corresponding to fg is just the tangent bundle of ot 

This gives 

ee aD) _ en=1 DE 
s® - Ufiy-2? tna on > T(£) =s Uyne-2
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s23 By ple? 
}, Kor 

gaol A 

where dw fo tea: This gives 

g2ne3 Metiotl, onel _y gnel p23 
* t 

ote oa pei? > Pe 

James has shown that S®~1/s*8-3 ~ Os" through the 3n-5 skeleton and if w 
replace S"-1/5°"-3 by OS" the resulting sequence in homotopy is exact trout 

dimension 4n-7. This gives the proposition for k=1. The induction arg. 

ment is the same kind of argument as used to prove 3.1. 

Note that this proposition is trivial for A. 

REMARK. If conjecture 4.1.b were valid then this proposition would suffice 

for providing the kind of map described in theorem A. Since we do not have it 

we can use 4.2 for computation involving early stems (up to 44) and we use 

theorem A for any general result. 

COROLLARY 4.3. Suppose a € m,,,(S™*), k large, j < 4-3, anda inky 
Then 1,(a) # 0 iff c(a) # 0 for any a such that antk(g) =i 

This result suggests the following definition. 

DEFINITION 4.4. Let a be an element of either Ext or 1, for a sphere. let 
i: S" > P,, the inclusion onto the bottom cell. Suppose there is a j such 
that for P,, > Piy(a) ¢ im p, stably. Let j be the smallest integer vith 
this property. Then consider 

gh-J P2 Racy Se 

|? 
Pa 

By the root of a,+/a we mean a,(a) for any a satisfying p,*a = 1%. Thenn-j 
is the dimension of the root. 

PROPOSITION 4.5. Let a be es in 4.4. If ae im J, and if there is eno sith aay | co a 
. + I(e) =a anda ¢ im aR then a has an imaginary root, i.¢., j 22
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This is clear from 4.2 and the definition. 

| PROPOSITION 426. Suppose a € 7,(8"), and a has a root of dimension q' such 

that 3q'-2 >q+n then P,(a) # 0. 

Proof. Consider the diagram 

(st**) 3s, fae fe 
ate 

et I qa a 
Myentg t— <1 

(8) —t 

lie a°) 

Tyentq (5°) 

let j = ®Mt+aq, then i,a € he el The restriction on q! which 

is important is 4q'-3 > j-n+q'-1 or 3q'-~2>q+n. Then i,a ¢ im q, 

since i,a ¢ im Pyl,1- Hence Pa) #0.
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CHAPTER III 

THE CALCULATION OF Trp’ Pie) FOR p < 29 

1. In this chapter we introduce a spectral sequence which leads to an easy 

calculation of Ext for H*(P,). We then compute all the differentials in this 

sequence and in Adams's spectral sequence which are needed to give the homo 

topy groups of P, in a range of dimensions. The results are complete modulo 

group extensions through p = 27. Almost complete results are obtained for 

p = 28 and 29. Tables at the end of the chapter summarize these calculations, 

The explanation of the tables is in section 8. Frequent reference is made to 

the tables during the calculations and so some familiarity with section 8 is 

required to follow these arguments. These calculations extend the results 

announced in [12]. The method of calculation there is totally different, 

2. Consider the collection of cofibrations 

i +k tk +k Pe. gntk 
Sa, cuss, See 

for a fixed n. The cohomology sequence of these cofibrations all break into 

short exact sequences of length 3. 

Hence Ext, applied to the cohomology gives a long exact sequence 

[25 2.6.2.1, 

> wth? (HERE) 25) > Eth *(ie( Pm") 2.) 
S,tyay¢qntk st1,t/~. tk=1 > Ext '(He(S9) 425) > Exty 9 (H(P 25) > 

The entire system gives rise to the following exact couple 

= ips 

1 obttg (P92) «*, Jo Extg?*(fix(Po"*) 2) 

2.1 os hea\ i Pox 

Bo Exta CS") 25) 
whose E,, term is a group associated with Ext$?*(fie(P ),Z5)- Since both are 

sector Spaces over Zo, the E, term is torus as @ cee space, to 
*Gie(P ) 225) As a module over H*(A) the two are not isomorphic. We a 

a. to recover mich of the module structure by a more careful analysis of tl
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couple together with some geometric considerations. 

For the remainder of this chapter we take n to be fixed. It is con- 
venient for notational purposes to decrease the t-filtration of each term of 
2.1 by n. Then the Ej term of 2.1 is 

Sot _ s,t, Ac, 
Ey? = eee? (H*(s ),25)- 

Clearly Ext??*(fix(s*) 9%) pooh) andi Eeytsk = Beals let 
ae Ei'sK, then a is identified with d, gage H2**(a).. We will use the 
name of @ as given in table 8.1 tonethen itil the additional subscript k. 
For example the non=zero element in el ante ok is written hy x°* Hence generi- 
cally a, is in ete with a being the label of an element in HY9*(a) 

The differentials Bs of this spectral sequence are maps 8 ESatyk > 
Beta Each class in BEst yk has a representation where a € H®?*K(q) 
and we will describe 6a, by giving an operation oF HS>t-K(q) _» ystl tk +r), 
It is clear that 6t describes completely se, 

PROPOSITION 2.1. 8, "a, = hot) n+k = 0(2) 

= 0 n+k=1(2). 
Proof. The definition of a differential in an exact couple asserts that 

8; is the composite Py 8, which we can think of as coming from the geometric 

maps gn*k ops apes Peis gt*k, put consider 

patel _, pntk 4 gntk Oe ppntk-1 
n n — n 

4 Nt ntk-1 +k a ntk s ees s 

: tk _ gntk-1 ntk is Hence 8, is just 0,. But Se =s Us, e if n+k = 0(2) and it is 

a wedge otherwise. [2: 2,6,1] completes the proof. 

PROPOSITION 2.3. 8,t, =ha» ntke 0,1(4) 

= 0 253(4)- 

Proof. As in proof of 2.2 we get the diagram below. If a € E, then 

Py ath, = 0 and so yay = 1,8, for some Py and 535, = Byip* To determine 

i d the *In many places it is more convenient to index by a prefix an 

symbol a, and yo are to be identified. The latter appears in the tables.



MAHOWALD 28 
+k-1 

fiend. Hot eS one See 2.3.1 P > E o \ : : 

= +e kel P. gntk 
Hoe ? ee rae? 

rt Sr ot 
+k-1 = 
ee 

Pyi2 observe that if n+k = 0(2) we have 

+k-1 +k ntk 

Pei? > Feo. 8 

| 

al ! (ntk)/2 +k ntk-2 nt n 
Ss — CPC +e-2)/2 Race 7 

and idf is just 0 of 2.3.1 restricted to image of I. But 0,a=ho if 
n+k = 0(4) and O if n+k = 2(4) by [2:2.6.1]. On the other hand, if n+k= 

1(4) we have the James map [15] giving 

a +kel Pes > PK > sek > ot 

ntk=1 
s : 

ntk=; n ntk-2 

i t K i 
seers ae su 

Now 19 = 0 and so b,'a, = hya, 5, n+ k = 1/4) 

= 0, nes 3(4) 
and this completes the proof. 

PROPOSITION 2.4. S3'4 = <hoyh,a> 5 k+n= 0(4) 

<byyhoah, =k +n = 2(4) 

0 k+n = 1,3(4). 
Proof. Consider the sequence 

+ +k = Po te By ntk os Feo > i ee 
ae Be ry 

Applying Ext to this diagram we get the following diagram. 
ig a, € Ext§st(gn*ky is in E3 of the spectral sequence then there is a a, © Ext®s "(pak 4) such that PxPox%, = a,. Also it 4s clear from the
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Ext®*2 : * gntk-3 ) 

tray one P3x i ner) Pox 
Ext? (B*(Pay 3) s25) => Ext®? (eres) ca ext ho t(petk |) a Ext®9t(gn*ky 

Ext82t(gn*k-3) : 

definition that 5 toy, = 6a,- Now suppose n+k = 2(4). Then PY*< Ly hoya 

= a, and the Massey product is defined since hoa, = 8) ta, = 0 because 

a,€E,. There is a class 1,_, such that Po*4y = Uy and hol,_, = 0 and 

T t¢pntk T so we can form the product <1, _j,h,,a> © Ext®o"(PRUf 4). Now 8<1_,,hp,a> 

= < 8, qa8g99> = <h),hy,a>,_4 by the argument used in the proof of 2.3. 

Now suppose n+k = O(4). Then Py*<1,_y2hps¢> = a,- As above there is 

a qe such that Po*h = aa but a simple direct calculation shows Byles 

= bles #0 since this formila is an immediate consequence of Sq7ottk-2 om 

sqlan*k-L = co nt+k = 0(4). 

ca 
Di o> = < > 

a 2 *e-arHor® 

and the left side exists since a, is in E’, Now 

Te-a,hy, : Sash, ee ito 

Bas 4 2, 2 i Sakon 5 <a syae” 

<hoshy 22> - 

He <2 gntk-3 Fk] nk 2s t 
Since sb =s Vv Py Vs if ntk = 3(4), 8, is zero in 

this congruence. Finally suppose n+k =1(4). We have, using the James map, 

pr seo 
+k-3 87  ntk-3 

fe ene, Boos recht 
sor 2/2 singe ge 

+k-2 +kel 
Now 55 is defined by looking at i: s Wee 2g and comparing 

ini, with im0,. Since imi, imi, = {0} and 0, = (79),, we see that 

in 0, N im a, = {0} or 8," = 0. This completes the proof.
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hoo, ktn 0,1,2,3(8) 

= 0 k+n = 4,5,6,7(8)- 

The proof of this proposition follows closely the proof of 2,3 ani yw 

30 
1 PROPOSITION 2.56 5, IG). " WwW

 

leave it to the reader. 

This mch of the computation is sufficient to get all of the cal os 

of Paechter [22]. 

3. SOME ALGEBRA EXTENSIONS. 

Rather than continuing the step by step computations of the Preceding 

section it is useful to recover some of the module structure and to use it tp 

get further differentials. 

zg O,ntk-1;% +k 
ete + -— . ? PROPOSITION 3.1, Let n+k = 0(4). Then in Ext, (CP een) 1%) thee 4a 

an element, 1) and holy = hho 

Proof, It is easy to see that a basis of the Steenrod algebra for 
~ +k tk—2 = 
fix(Pe ed) is given by a” and a1, the class represented by ok 

+k - = 
Ext, (H*(PO 5) sZa) is 4° Since sqhan* se sq7an** Bx ae 

Bohan. Byteas 
PROPOSITION 3.2. Let n+k=0(2). Then in 

2yntkth; 2. +k 
Ext“? By 2 = (MP1) 929) 9 egy” = <A g sBgslhy? Byy 

The proof is obvious in this context, 

we see 

PROPOSITION 3.3. Letn+k=1(4). Then in act 97K gpa 1) 25) there is 
a class B such that hop # O and — 

ntk- 

b) under p: Patk ntk ntk-1 a Po nee | NS 9 PxBby = yn 
Proof. Consider the sequence 

gntke2 He otk yy gntk-1 ; 7? Fauee > ONE cae mi the Ext ‘ plying oe = a long exact sequence where 51, = 1, gh and 
4-1 = Laghy since Sq*a = ab ana sqlamtk-2 = gB*K-1 ~ pence 

8( - 2 = 
T-rhohe + U.,°) = 0 and this derines B which satisfies the proposition. 

soph ntk 
a) under p: P™ 275 > PP = 1h,"  
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RIRSTIM Iuho Lot m+k 2 1(4). Let a, © Ext,(fe(s""*),7,) satiety: 
iy, = byt, = 0. Then <4_p 2h ,a> projects to a, under ps => gotk 

ad <1, ptys¢? By = <b) ,a,h>,- 
The proof is clear in view of the argument used for 3.3. 

ROPGITION 3.5. Letn+k=0(8). In Ext(H*(potx 
tien) 9%2)9 Lah = 1 phy. 

Proof, As before this follows directly from SqlgM*k-1 = gq4gntk-4 egy 
the given congruence « 

RROPOSITION 3.6. If n+k = 5(8) then Bo = Lyy oh in Ext for ie), 

Proof. It is sufficient to verify that Sq4a®*k = gq2ntkt2, 

HOMSITION 3.7. 2) If n = 3(4) there is a class j, € Exct 77 °K*33 (pac por, 7.) 
+2 +2 such that in S" > PO“ > S™**, p(j,) = J and hy(3,) = 4,F'g. 

») nz 3(4) there is a class 4, c Bact 99*K*30(ra( pat?) 7.) such that p,i 
=i ond bp(d)) = 4,P4e,. 

PROPOSITION 3.8. a) In Ext for m2, n= 1(4) there is a class (hyhog), such 
n nt3 = = tat im SE PB, FP SM Ms Paltighae)s = ptigg and bo(tghoe)s = 44(5). 

b) With the same data there is a class (tip e) such that Px(hp 8), = hye and 

aylty?e), = 44(4)- 
Proof of 3.7 and 3.8. Consider the sequence 

Bo cn oe P,” 

Ip ft 3 4 5 9 9 e P,* => P eee P37 =>Ss 
oe ta TP Pa 

Were the integers are intended to represent congruence classes mod 4 of ntk. 

3y the computations made already and by the proof of the first part of propo- 

sition 442 (which does not use these propositions) we see that there a a 

ass (by) such that i,(h,7)g = hy? and by"(hy")q = Ag+++dngS Lga8g ‘ohg?- 

tie class <1yjhy'yhy> has the property that if h,a = 0 then <Lyshotshs> a = 

Le. If we mitiply (1,7), by g then (1) ghg*e = i,.-.4,(Plg). of 

2
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8 
course we cannot be sure that (4,”) 22 #0. Pan Py there is a class 

= a = ips. thle much: that Sealy Dg = (by gig: Now (hy 'sYof o 4,*(P'e) and by 

inspection this map is non-zero, since only j € E'77(S°) could "ki11" a, 

and it kills hyj. But this implies ize+e4,*(Pg) can be divided by hy. dgsin 

by inspection only jz satisfying ig*S, = J could satisfy ise +04, *(Ie)h) = 

‘ o+ol*P ge This proves 3.7 a) and in a similar fashion using e) instead of 

g proves 3.8 a). , 

We have shown that do++-4¢*j = hoePg*( by go LsOey AgeeedeXJ can be 

divided by hy. A quick inspection of table 8.1 shows that the only possibil- 

ity is (hghog)g. This gives 3.7 b) and the same argument using eg and i shovs 

3.8 b). 

PROPOSITION 3.9. If 15(16) then hol, = bly (together with what 3.5 
tI 

implies) in Ext for PRAT 7. 
come! +] 

Proof. This is clear since sqea*® 7 get = Squat a for this con- 

gruence. 

PROPOSITION 3410. ho (hyhy),, = (lighy”), ¢ for k+n = 6(8). 
Proof. Consider the sequence 

ghtk-7 Ss patkte 2s patkte 
ntk-7 ntk-6? 

j = = +k+2 _ ontk-6 tk-2 = with € = 0 or 2, and for k+n = 6(15). Now Pee V Pee fg = 

Poti 94 ees = Bgl Renee Oighelya + Hy Tye) Oe eee eee 
Pxb = (Bghglyy + hy dg)» Then pyhop = highs h,¢* Sdnce Tgbgheey = (by), 
the proposition is established for n+k = 6(15). Since it only involves six 
cells periodicity completes the proof. 

PROPOSITION 3.11. If n+k = 3(8), then ho*1, = by (hy) pos 
Proof. Consider the sequence 

pe a poate By gntkt2 

Then Py <1,,h),h.> = hy so <Tyohysh> = (ho). Now <1,,h),h>b, = ip 
PROPOSITION 3.12. If n+k = 7(8) then hy (neg 2 eee 

Proof. Consider the sequence
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patktl Ay patk+4, By ptkt, 

ntk ntk ntk+2° 

By 2.5 we see O1,,, = hol, while 01,,,= bl, Hence 8b), = (n,7), = 
6( (hy b3 yey) Hence Lay), + (byb3) 40] = 0. This class will represent 

(0 Ns in the spectral sequence and wl ESA iay + (yb), 40] = One) a) 

= (hy yeas 
PROPOSITION 3413. If k+n = 5(8) then (h,”),,/m) = (c,),« 

Proof. Consider the sequence 

kein 4, pJctnty, mth 
Bt ea es = aie 

Then Py <Iyyhyshy > = (y”), 4, while < Ay yhyyhg Pb, = 44 <hyyhy”,h,> = 0). 
4n argument similar to 3.11 gives 

PROPOSITION 3.144 If n+k = 3(8), then h\(c,), 45 = (hyey),- 

PROPOSITION 3.15. a) If k+n = 3(8) then nay = (0), 5 

bd) If k+n = 6(8) then by(e,), = (ayey)y_ 3+ 

Proof. Consider the sequence 

ntk-5 i +k we Dp ntk s => Pale > ae B> sn, 
= ee a 

Then Fibs gh shih = h; - Now en: fe =< Jyic-42 2 9837hg and 

hy< Jiti-422o2hg? a <Ani52Bo2hy b> Multiplication by h, completes the 

proof. The proof of b is easy and similer. 

4. The determination of 6,' seems to be more complicated and some special 

attention is required. By inspection of table 8.1 we see that the only pos- 

sibilities are: 

(a) (Phy'n,), > (#4 Bg yeas 
(b) (Ping), > (Ph), 5 

(e) (gh), > (ap bob, yes 
(4) (ghy”)y, > (Fg)yeus 

(e) (Pa), > gies
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(2) (Pte); > (Pas) 

Because of the parity either one side or the other of (a) and (c) 4s zero tor 

each k = Ej hence (a) and (c) contribute nothing. A check of the previous 

propositions shows that both sides of (b) are present in B, only if n+k= 

4(8). Again a check of the previous propositions shows that both sides of (a) 

are defined when k+n = 0,2,4(8). Both sides of (e) are defined when ntk= 

3(4) and finally both sides of (f£) are present only if nt+k =1(2), 

With these data we will prove 

PROPOSITION 4o1. 1) 85'(PUn hy), = (Peis k+n = 4(8); 

44) 85'(hohy*), = (Els, k+n 5 2,4(8); 

Hai) 6,0(P*a,) (P'hgf oh. 5s ktn = 3(8); 

tv) 8,1(P%e (Ping), 52 k*n 5 1,3(8); 

34 

ok 

and 55% is zero on all other classes. 

Proof. i) Consider the sequence 
ntk 

Pp 
ntk-5 4, ont Pp. tk 

S #> Fis ine 
In Ext for fix(PNS ) we can form <A rby'yhy> = B and B,B = hohy. Since 
Syda = sho or zero if nt+k = 4(8) or = 0(8) respectively i) is estab 
lished for j= 0. The periodicity operator is defined on B giving BP Ip = 
Py Phy. Thus i) is established. 

ii) Consider the diagram 

woPiBtk-4)/2 __. sop (ntk-2)/2 —> gotel 
1" (n+k-6)/2 (ntk-6)/2 

ntk-5 +3 He +k 
ies > as ee 

1 
gatk 

~. +i oe In Ext for BaP) we can form < Tyg ahp hy yh,> = B and p,f = igh’. There 
are three cases. If n+k = 0(5) then 34 in the top sequence is zero and
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2) hy7h, > h0, J) ne > hy’ 
n) £, > hos k) i> Pg 

i) Nofo > Hohgs 
Next, by checking both sides against earlier differentials we get tp 

following table. 

Formula occurs when 

a nt+k=2mod8 

by i=0 never 

by 25.0 n+k = 3 mod 8 

c never 

a n+k = 3,5 (mod 8) 
e andf n+k=2 mod 4 

g nt+k=1 mod 8 

h n+k = 3 mod 8 

4 n+k = 0,2,4 (mod 8) 
J nt+k = 0,1,4 (mod 8) 
k n+k = 1 mod 2 

PROPOSITION 4.2. i) 8h, = hy” nt+k = 2(8) 

26"lin dy = hg’ B 
Seth, = hy? 

ii) 8g th,® =O, n+k = 5(8) 

iii) 8g'f) = hog ntk = 3(8) 

iv) 6,'hof) = hog ntk = 0,2(8) 

v) 0,!Pin, = Pha, = rts) ntk = 3(8) 

vi) 8gthg = hog ntk = 0,1(8) 

vii) 6,14 = pee ntk = 3,5(8). 
The rest are zero. 

Proof. The three parts of i) are equivalent. Consider the sequence 

patel +H+2 Hct2 
nti > Pyeic-6 > Pay
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= +k+2 bss 

vnere n+k = 2(8). In Ext for Pe 2 Boh = byl, by 3.1. In the long 

porte ye gis of Ext for this cofibration Slay = hols: Now in Ext for 
po - 

n wo oheg = Hahangg HY 305+ Homes Sighs = Olly) = byl s = 
2 

hye ge This is i) but since ho g= n7a, and h? = hy*h, this implies 

the other cases too. For cases ii) and iv) the congruence n+k = 6(8) is 

sasily settled since 1,,, pulls back to Ext for PRIET? and so hodol, 4, Pulls 
pack. This implies that 8¢'(hyd)) = 8¢'(byh,) =0. 

This is also a good time to verify that 8g'(hy7b, Dye =0 if nt+k=1(8). 
2 a From eo discussion and 3.2 it is clear that 8g" (ay! by = hy ( both) 

and hyhy =0. 

We now will prove ii). 

fo +k Po +k PL ntk mk, oe ey mk es 
7 

gh*k-6 = 

sauce SS If n+k = 5(8) then py*Ps*< Ay 5ykghy> = hy. But 6<1. 4, opm hy > = 
S & ReeD 

< bgyhy hy’ > =). If nt+k = 3(8), then ppop,*< Ta ste49bo98y > = h,* and so 

8g'hy” = 0 in this case. 
To see iii) consider 

+k-5 
Fan é 

VA ne « Syoer 
+k 7 n° 

Pape 7 aa 

beit, e 
If n+k = 3(8) then BFS a ae f, since hg = h,f,. Now using 3.6 we 

£, 
see that ae? = hogs If n+k = 7(8): then 14) pulls back to 

ix.) and so Of is zero. vi) is similar using 3.2 and < hyshy pF > 

= hype 
To see iv) observe that if n+k = 2(8) iv) follows from i), indeed hf, 

= = h,% below. hey and hohog ho“ep: Consider the diagram 

Ty-12ho 2 
If n+k = 0(8) then < e.> = he, by 3.5. Finally, 

2 (8) Pet depiot Oe
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P ntk +k +k 

a Fated Trae 
Ng vd 

He 5 
Fate 

2 
8 meg? = <hyyho,bey> = hey. On the other hand if ntk = /(s) 

nh "2 

we get zero. : 

To see vi) we argue in a similar fashion using < hy ghyyh)> = h, i 

The last one, vii), requires a new argument. Consider the sequence 

+k-3 He tk 
Pie? > Paee6 > Paec2 

with n+k = 5(8). By 3.7(b) there is a class 4, in Ext for ee and hy, = 
(P45) ae By 4.1.iv 85(Prep)y 9 = (Pye), = hy he ps Hence 6,(1,) =a 
where hpa = Pls. 4s Using 3.1 this gives a= (Pig), ¢ which completes the 

proof, The same argument shows that 6,'(i) = 0 if n+k=41(8). A similer 

discussion handles the cases n+k = 3 and 7(8). 

A check of table 8.1 together with a comparison of the earlier differ- 

entials gives the following table as the only possible for by". 

2 a) hy” >e, n+k = 1(4) 
b) i? > hye, nt+k = 0(4) 

©) yy > gy” ate 
a) ey >a, 6(8) 

e) hye, > hd 5(8) 

£) hh > 6(8) 
Bic Op => hog never 

h) £9 —> byhjeg never 
i) by’g> j 0, 6(8) 

PROPOSITION 4.3. i) 0,th,? = & n+k = 1(8) 
41) 8,th,? = hy ey nt+k = 0(8) 

7, * 45 n+k = 6(8)
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iv) 8,!hy ce, = hd, n+k = 5(8) 

v) 8,thoh,?= g ntk = 6(8) 
vi) By "hy*e Sj n+k = 6,0(8) 

Proof. The proofs of all of these are similar and are based on "milti- 
plication by 4," considerations. We will prove only i). Consider the se- 
quence 

Some a 
with 4 =1(8). Then ho(hy 44 = (ny Since 0'(hy yoy = (ng aid 

Bldg Meus = Oo WY Zehy 8,1(h,7), = cp. 
5, It is now convenient to group together all the differentials from bg! to 
B56 Table 5.1 gives the listing of all possible differential homomorphisms 
as they would appear in Eg of the spectral sequence, 

8 9 10 11 

by9 > hy. Bg,0 > & Bobs50 > ye Re Mircpire nome 
1 > hy 
by > Bs” 
hh 6 > Buby 
9,5 > byhyeg 

my7dy >A 
R 13 4 a5 

tas eS a Ee cian Dee eae byhg 9 > ey hey > bee, ny, uo 

tig? o > Bye pelea Piatt Ee 
Iyhy 4 > by? 
Pin ?s >i 

Table 5.1 

d 15. All possible differentials between § an 

The second subscript indicates the congruence class of n+k mod 8.
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PROPOSITION 5.2. 1) Bg'a, = o shy k+n = 0,1,.+-,7(16) 

ii) Bytey y= (Comb, yg KDE 13(16) 

= 1(8) 5 2 = + 
i44) 8g!) “do = tg <a 

and all other 5,178 are zeTOs 

Proof. Part i) follows immediately since Sq 

fies the required congruence and is zero otherwise. 

In order to prove ii) we need a little more. 

LEMMA 5.3. i) 54, (nbs ye = hs? if nt+k = 6(15) 

41) Oyp(hgh;")y= hep if n+ k = 0(15). 

8 ntk +t 
a =a" oe if n+k satis. 

Proof. Consider the sequence 

+k-6 +k +k 

Faas > Paeke14 — Pntiens? 

where n+k = 7(8). Now hohyl, = hyhjl,_, and since 6,11, = hl, 4, oth = 

Beg and Og"(ighgl), =, ghity” By 369 Boh g = Reh gse Miltlying 
both sides by hy? we have hh, “1, 37 bj71, 35° This proves i). 

Consider the sequence 

+ke7 +c 4c 
Poeelé > Pana > Poe 

for n+k = 6(15). Now 6,! = (h,? 2 nied Chgby)y, = (hs), ay but Bolbjeh. a = lyhjso).<: 
Hence hy (hobs Myeeg #0. The only possibilities are (eo), and (ay7n/),. i 

3 hg 2 Since ho*(h,),_, = (hy7h,), 1 the latter choice is incompatible with the other 
requirements. 

Consider the sequence 

patk-1 +kt+1 +k+1 

ntk-s 7 Pk-8 a Py 

for n+k=1(8). For this congruence we have 8,( ). = = ( Add 

By 3.8.6 h,(b)e), «= ee ofbo"B) 5 = yg and by 342 ho(hydy) 4) = (hy dp)y- Hence 

Bhp hy Ao) ja = 8(By7ay)ye = Bolly) 5 = Ay ge 
PROPOS ITI ohe = a - 8o"(hy3) = ep and 851(h,74,), = Prey for k+n = 0(8). 

: onsider the sequence
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patk-1 +kt] et] 

ntk-g > Po ae 
forn+k = 0(8). By 5.2.444, 8(y 7d) 49 = (4),.7+ Combining 3.7 and 3.3 
me easily obtains the result for h,?d). Noticing that rhe = hd, com 
pletes the proof, 

Observe that Lemma 5.3 settles 55 and there is no 61_, 1 i 
PROPOSITION 5.5. a) 8,4(ho), = hy? k+n = 5(16) 

b) 845(byhg), = 0, k+n = 2(16) 
c) 84,(no*), =e, k+n = 3(16) 
4) 81, (n3), = hye, k +n = 1(16). 

Proof. By inspection we have seen that all entries in the equation of 
5.5 are present in Ej (and for those that pertain to it, in Ei,)- Proposi- 
tions 3.13, 14 and 15 relate the right hand sides by multiplication by ho and 

hy which corresponds exactly to the way 3.11, 12 and hg multiplied by the 

result of 3.2 relate the left hand side. Hence to prove all the formas we 

mst only start it someplace. But 8,'(h,), = n,? if k+n = 3(16) does start 
it, i.e., consider 

a Pe cag Oa ntk = 3(8). 

tiow 0(hg,) = (ng), hence Bho(h,), = O(hyhs)y 4 = WCB,” g = (ey)y 93° 
Similar arguments work for the other cases too. 

Remark. A computation such as this is needed to compute the entire 23—stem as 

Barratt or Toda do it. From this point of view the result was difficult and 

was settled using [19]. In particular (a) implies Cin, ,%] #0. (More general 

calculations of this sort are given in Chapter V.) 

PROPOSITION 5.6. a) 8'3(h)”),, = high,” n+k = 5(16) 

b) 61,0?) =i nt+k = 13(16) 

0) 845(h,7), = Pe, n+k = (4+48)(16) 

(0+ 18) (16) 

(6+ 48) (16). 

I a) BfpPE mh ye = Pi(geo), ,, BY 
e) 6,PE(my), = PY i(ny?e), ,. ntk
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Proof. These follow immediately from mltiplication by ho: Indeed, 

hig(by yey = (ny2)k af n+k = 5(16). But 65'(by)y+a = (hyhg)g but 

ho (hy hy), 3 = igh,” by 3-10 and this gives (a). To prove (b) one uses 3,8(b) 

and so forth. Tables 8.2-8.16 give copies of Eig: The tables are explained 

in section 8. 

6. THE ADAMS DIFFERENTIALS, 1. 

Recall again that the tables are not really copies of Ext for the stunteq 

projective spaces but just Ej¢ of a pre-spectral sequence whose E, tem is 

associated with Ext. We will call them Ext anyway. The composite last dif- 

ferential of this pre-spectral sequence is called 6). Ths task of evaluating 

the Adams differentials is not as extensive as it might seem at first. The 

pre-spectral sequence has the additional advantage of grouping elements to- 

gether into families. We will evaluate the differentials by making mich use 

of this interplay between the various stunted projective spaces. 

First observe that if two classes, a and B, in Ext for a sphere are re- 

lated by an Adams differential and their image in Ext for P, under i, induced 

by S* > P, is non-zero, then their images under i, will be related by an 
Adams differential too. This occurs frequently when k = 0(2). | 

PROPOSITION 6.1. a) 85 (hy ”),, = (hyd), > n+k = 4(8) 

b) 85(ho*e), = (Play), n+k = 6(8) 
o) 20, = Fad, n+k 3 3(8) 

Proof. These three are grouped together because results of section 3 
imply that whenever both sides are present in Ext the following equations 
hold: 

tT]
 

Bo (igh, ”),, = (eo)yug ntk = 4(8) 

ho(PHeg)y, = PA en) a n+k = 1(8) 

Ro(hyeg),, = (hea) 5 n+k = 0(8) 

ho (hoe)), 2 k3 n+k = 6(8) 

Bo = (Eee > ntk = 3(8) 
Multiplying do on both sides of the equations given in 3.1, 2 and 3 we get similer module extensions for the right side of the equations in 6.1. Hence
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we mst only prove a similar result — in the sequence to get every— 
thing else by naturality. But bne5 = 7 745 in a sphere and this completes 
the proof. (Compare Ext for P. 3) 

PROPOSITION 6.2. a) 85(hyg),, ie - nt+k = 0(8) 

b) ,(hohog), = (Pyeg ke3 n+k = 6(8) 
Proof. The argument for these is similar to the above. The two families 

which are related by miltiplication by ho in a fashion similar to the above 

are? 

hg, hohog, J, Pe and he, g's 4, Peo; P'aye, 

with the first beginning with Bey» n+k = 0(8) and the second beginning with 
(Byeq)is n+k = 2(8). Again all we mst do is to prove a result someplace in 
the sequence to get the proposition. To do this we need the following lemna. 

6(8) 63 ( bye) ane = (Py 4p), 
Proof. In [19] it is shown that {P,d,} =7 fe}. Since i,n = 2t, in 

ny(Pyy,) where i: $0 > go(ntk)p ntk and t, is a generator of 1. 4 (ntk)p Pask)s 

an g= 0. This implies that either i. xP 149 = 0 or i,P)dy isa Pholelasye There 

are two possibilities, 83(hyg)> or 8, (£o)5- Consider the sequence 

s°v s7 is p& > pS Bs s® 

PROPOSITION 6.3. In Puy, for n+k 

In the Peweat oa ¢ exact sequence ol, = 7+ Zhi Hence there is a class in Ext 

for re which maps to h,g under p,. Call this class (hyg)o- (It clearly cor- 

responds to (hyg)2 in homotopy, hence (hyg)p cannot be a cycle for all r.) The 

only possibility is 83 (hye) 2 = i,(P)d))- By naturality this completes the 

proof of 6.3. 

Now we return to 6.2. Consider the map 

P, D> Pe. 

Clearly p,(hyg)3 = (hyg)a- If 89(hyg)z = 0 then p,(8,m2), = Px(0) # (Pydo)o 

which contradicts 6.3. Hence 6. 3 (hye), = hy 2(nofo) 5 = ip in Ext for P;. This 

completes the proof of 6.2. 

PROPOSITION 6ehe a) 8,(by°e)y = (Pyhydy)yy n+ k = 0(8) 
b) 83 (Bgf oye = (Pydo)yos n+k = 2(8).
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Proof. These two are further consequences of the peculiar group exter. 

= = sont} 

sion in 1,(S°). By [20] set = {haPidots since 44.{e} O where i:stk 

Piuy,ntk = 0(8) is the usual inclusion. i, {Pybydp} = 0. Hence (Pyhydp), is 

a te aa and the only possibility is 83 (h,7e) a The argument for b) is 

similar. 

PROPOSITION 6.5. a) 85(P44,h)h5);, = (Py do) 7 nt+k = 0(8) 

b) 8y(by7dy), = yd) yay nt+k = 1(8). 

Proof. We will first prove 8y(Poh,*hy )y, = (P,bjdy), 4° Clearly, 

i,(Av{g}) =O where i: S+—>P,. Hence 4,P)h)d) is 9 boundary for sone 

Adams differential. The only possibility is the one claimed. Since 

g*(hy“B) 5 = FUGA) 5 and 8Ple, = Pliny dp we can conclude: 

2 = 6.6. by (hip*hody),, = Peg) and 

2 = a by (by “h3), = (eg)yag if k+n = 0(8). 

Indeed the first statement is now clear but since P*(hy hy) = hia) the second 

is clear too. Using the second we complete the proof of a). The argument for 

b) follows 6.3 in concept. 

Implicit in the above calculations are a few other module extensions such 

as 6.6. Most of them are indicated in the tables. 

2 a 2 PROPOSITION 6.7. a) 6,(h"g ), = Peis n+k = 6(8) 

b)  Bp(hghyg),, = Pg, nt+k = 0(8). 

Proof. Both of these involve arguments "off the page" in the sense that 

we will need to lock at Ext for t-s = 29. First observe that ho(hyg), = 
2 ho*g,_o where k+n = 0(8). ‘Indeed consider the map 

SA 4 Ps “> CP." 

By construction A,(ho(hyg)g) = Ax(hghog) ¢ = (hope) g where the barred classes 

indicate elements in Ext for CP;. Hence Ay(hygg) = hoeg and Aghp(bygg) = 
ogg but this implies ho(hye)g = (ho*g), in Ext for P.®, Also by sintler 
arguments one can show ho(hy“g,,) = ho(hohog),, for n*+k = 0(8). Putting these 
together with 6.2 completes the proof of a). Using 3.1 we see that 

hg? (hghye),, = (497), 6 Since h,P,g = bok. Now part b) follows by naturality
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7. ADAMS DIFFERENTIALS, 2, 

let m be an integer and let a and b be defined by m = 4at+b, O<b<4. 
let 9(m) = 8a + De owotice that "o(m)=1 O(t) #0 for + large and each non- 
zero group appears for a suitable m. 

We will prove several very general Propositions in this section which 
will give the remaining Adams differentials. Indeed we essentially prove 
theorem C of the introduction but need some additional information first. 
This discussion is in Chapter IV. 

Iet X= 8" VU, 9” end got. S° 2 > x E> st be the chyiche boriinuticn, 
Elements in Ext for X are either in the image of i, or else map under Py to 
anonezero class. Let a be any class in Ext for X such that Pxt = ae 

PROPOSITION 7.1. The following table identifies the element in Ext for X 
which projects in E,, to the element to which B, projects. 

m= 1 2 3 4 5 
4,8, ={a} fora =4yy i,h, a,b, i,byh 4,h,"h, 

2(4) 2 3(4) = 004) = 14) 

te, a Le oy 2 ie, 

where the last four entries require that m > 6. 

Proof. The first five entries are obvious. Next notice that in 

ext4e]2(Hx(x) ,Z5) there is a class hg?h3. This class behaves like a periodic- 

ity operator in the sense that if we miltiply ho%h, by a where hyPhgo =0 we 
get i,(Pha). As a homotopy class ho?h3 projects to <i,t,2t,80> where t gen- 

erates the l-stem, and oO generates the seven stem. By the Bott periodicity 

we see <1,1,21,80> ce TBneg (La 2M (m4,)-18°))) = LP ney Hence if we 

identify the elements corresponding to iB, for 6<¢m<9 we will be finished. 

The argument fails to apply to the first five cases since the periodic copies 

for m= 4 are not permanent cycles, the image of the periodic copy of m = 3 

and 5 is zero in Ext for X (since it is hy of something) and the image of the 

periodic copy of h, is exceptional for several reasons. Also there is some 

difficulty if m= 3(4) since the element in Ext is not in imi,. We will 

discuss this in a moment. 

Since the 1]l-stem contains only Ph, iP, mast represent the image of
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J. This settles allm= 2(4), m2 6. 

To see the next case we look at Ext for t-s = 14, 15 and 16 forX, 

2 

uu hg do 2a 
15 he bas = Ot ae ie 
16 Bio £0 ato oy 

0 ai 2 3 bs 5 6 isin ame 

Since 1,8, = {hp7h,} ih}, the s filtration of i,f, mst be at least 5 (and 

equal to 5 only if P'h, # 0) and hence greater than 5. Tims the only possi- 

a eo 2 2 _ 
bility is bj@d) = Plaj?. Now <4,1,hosby dy> by = 4y<hoshy dyyhy>= Plog a 

since "By = Bg and NBg = Bg we have completed the proof of the proposition 

for m= 0, 1(4). 

We must be a little more careful with the case m= 3(4). By induction 

suppose i,B. = {Pnzsh"}- Then there is a map S7™? > 5° Up, € such thet 

(Pmagh”) = py(1), ise.) {p} is im the homotopy class of 1,8. Clearly 

hg(Pn-ah, ) = 0 and o(i,p_) = 0. (Note that neither statement follows fron m3. a 

the other but both follow from the fact that P,, -3h, is on the Adams edge and 
rad 

so the composition can be checked.) Hence we can form 

g0 

ay Ne 
2mt9 0 Lt 

=> e s => S Us, e. 
Tét Us > 2 

By the Bott periodicity we Imow that 8, = By TEt(16n5,49(8°)) and hence 
B 16t = 1,8,+,° But in Ext the map 161 raises the s filtration by 4 and s0 

som? 

leaves as the only possibility 1,81.) = {Eaytho }- This completes the proof 
of 7.1. 

In order to get the remaining differentials we will use this result to- 
gether with the following theorem which uses this diagram: 

3 gntp(m)) Sx 
y ) @ Ta+p(m)-1 Vntg(m) situ)? 

( P 3,* i 
“ntp(m) Vntp(m)+1,9(m)) “> arep(m)—1 5) 

"hto( m
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THEOREM 7-2. Suppose n+o(m)+1 = am gmtly | Then there is a class 
such that Px(lnty(m)) = ut and 03" holm) = fe. 

This is just a recast of 4.3.2 of [19] which was a recast of a theorem of Toda [26] and Adams [5]. The following proof is included for completeness. 
Proof. Let k =n+¢(m) and consider the following diagram: 

iad n 
pot iy PERS sk 

7.201 af ef fs: 
1 

s™ > s®U 6 Ps gk 
By 

‘atp(m) 

where p! is the obvious projection. If we can prove that 7.2.1 exists with if, 
the identity map, then in the stable range at least iol = 3,(c) and clearly 
dot = Be where a5 refers to the boundary homomorphism in the top sequence. 
This implies the theorem except if k+1=16. A detailed hand calculation is 
needed and can be found in Toda [25]. Using Spanier Whitehead duality* we see 

that 7.2.1 exists with i! the identity map if and only if the dual diagram 
‘ ml) _ m1) _ n Jeyee existe. Now D(F) = PS, DUE) = PS, and DiS Ug, *) = 

so Us e“, where k= 22 + o(m).* Tims the dual diagram is m 

sat a) , phn 5(4"), Pied 

1:22 [nan | 20) [pa 
1 gn-1 K K oc RE, oe, Seioa Pied 

with D(i') and Di) being maps of degree 1. Clearly Pomel is the Thom Com 

plex of 2") times the canonical line bundle over P%™),” since this bundle is 
trivial over the ¢(m) -1 skeleton the classifying map factors through po(m) > 

59m) _5 B50 1 Where the first map is the usual projection and the second 

map gsearates p(n) (BSO). Passing to Thom complexes we have 7.2.2 and this 

completes the proof of 7.2. 

In our language 7.2 becomes 

  

*See, for example, E. Spanier, Algebraic Topology, McGraw-Hill, New York, 
1966, p. 462 and in particular Ex. F and Ex. F-6.
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PROPOSITION 7.3. Suppose n+o(m)+1= 22"). Then in the Adams spectra) 

sequence for P, we have 

a) m> 5, 61 6 4.+p(m) 
9: ae ng e and a, is the entry in the table of 7.1 corresponding to n, 

= 0 for r <m-1 and 8-3 (Latep(m)) = J,a,, where 

B) m= 5, Bdneg(5) =O F< 42 ad Mtneg(5) = dx(tahg%0)- 
c)m=4, Bohato(4) = i,hjh, where i: Ss > Pi 

Proof. Theorem 7.2 implies that i,B1 # O where i: ss S eee but 
+; |, 

: S" > P satisfies 1,*p!, = 0. Hence lock at S, Up, ently pato(n) 1 i ae 
nt] ve see that o,, is on the edge eka. Suppose m> 5. In Ext for ce Uns & 

or one below it and so its image in aes is well defined and mst repre- 

sent Pas Therefore a,, is a surviving permanent cycle. The only change possi- 

ble in Ext for erect and Ext for P, in the n+9(m) stem is the addition of 
1 representing the n+@(m) cell. Hence the differential mist behave as de- 

scribed in the proposition, part a. 

Now suppose m = 5 and consider 

i: S"u entl be ton a 21(64). 

A glance at table 8.6 shows 4,(h,7h,) = 0. Yet theorem 7.2 implies i,8,! # 0. 
Hence the class which represents Bp 5 has filtration higher than yh, 1.e., 

higher than 3. There are two possibilities, 8,(1)30 = (hyeg)9 or 8,(19) = 

(Ptny?)4- The second would imply the corresponding differential in the spec- 

tral sequence for P,,1, contradicting 7.2. Hence 8, (149) = (hjey), in the 
sequence for P). 

The case for m = 4 proceeds just like the case for m > 5, using the ap- 
propriate part of 7.1. 

The most important corollary of 7.3 is the following result. 
Let n be fixed and let 1, be a class in Ext for P, (Ext here means 5, 

of the pre-spectral sequence). Suppose n+k+1 = 2%(2m'l), his defines 
m(n,k). Let q be defined by p(q) < k < g(q+1) and let i(n,k) = 
max(q-m(n,k),0). 

THEOREM 7.4 Suppose m > 3 and if m= 3, k > 9 or m= 4, k > 10. Suppose 
also that k-o(q) = 0 if q # 3(4) and k-@(q) =1 Af q = 3(4). Let
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+1 ji ze > P, be the usual inclusion. Then ee, is a surviving cycle and 

a = 84 (Bp 1) = Jaq where a, is given by table 7.1 and i = i(nk). 
Proof. We will prove the theorem by induction. Fix n+k and the induc- 

tion will be done on q. First observe that for q <m the theorem follows 
directly from 7.3. Now suppose m > 5. Then for m= a, i = O and again 7.4 
is just 7.3. Now suppose 7.4 is true for q>m. Consider 

Fc-p(at2) > Pola) 

[& fa 
sk-p(a+1) sk-(a) 

ity 7 O and there is a class + such that Py¥ = aye Using one of 3.1, 3.2, 

3.4 or 3.5 we see that 19%, +1 = Bore Naturality of Adams differentials with 

respect to mltiplication now completes the proof. 

Now suppose m= 4. If we require k 2 10 the induction argument is iden- 

tical with the above. There is a difficulty starting because 7.3 is not quite 

the right statement. On the other hand consider 

Poa > Po > Pao with n+10 = 15(32). 

let 0)* be the boundary homomorphism into PO*? and 0% into PRY? Now 7.2 
says OO = 01,,- Now consider 

+9 P +9 Peg or 
n 

asf > fh 
gn-l gn 

From table 8.6 we seo that i,*y © im py and if p,y = 4,*7 then if 
= 2y. Hence p*0y = ne and 207 = i*rfo. By inspection of table 8.4 we see 

that ij*hy"hy = 0 and so the class representing i,*fo mist have filtration 

greater than 3. It is not hard to see that Azhco must represent info. This 

begins the induction and the argument is completed as above. The argument for 

n= 3 is similar and we leave it to the reader. This completes the proof of 

Tehe 

Theorem 7.4, of course, is a very general proposition holding for stems 

of all orders. In this section we will use it to complete the discussion of



MAHOWALD 50 

the Adams differentials for our calculations. Quite directly 7.4 gives tie 

order of direct summand of homotopy generated by h,’1,. Obviously it gives 

the order of what is subtracted from the k-1 stem for each PR The only re. 

maining statement to verify is simply what happens when k+n = 15(32), in 

this case if k 2 16, 6,1, = hy and whatever this implies. Putting all of ii, 

together we have the following proposition which defines A, B and C, We wu 
=n. i 

always have A, c m4 (2 Pads BL c 1,(& oe Cy, c Matt Be We will 

always use m(kyn) defined by nt+k+1 = 2%(2"~) and i(n,k) = max(q-n(n,x),0), 

PROPOSITION 7.5. 

A, is cyclic group of order 2? where i L(nyk) 

B, =B,+Z, if m>4 end B, = B, if m= 4 with B, being a cyclic grop 

of order 2™*1 ig q-m> 0 and of the order of 1, as given in the tebls 
ifq-m<0. 

Cy. = 2, form > 4 and = 0 form= 4. 

This completes the calculation of 1,(P) except for Proposition 7.6. 

2: el = PROPOSITION 7.6. 53(hofo), =Pg ntk = 12(64), 

8,(h), =h? ntk= 7(16). 
We do not have a natural proof of this nor do we know what happens in th 

other congruences. We will deduce this from a general proposition in the next 
chapter. We have tried to avoid using this general proposition for the cala- 
lations. It seems clear that this differential could easily be settled if Ext 
were computed further. With this one exception we are finished! 

8. In the pages which follow are 16 tables. The first table gives a copy of 
Bxth?*(Z9,Z) for t-s < 44. Slanting lines to the right indicate mltipli- 
cation by h, and vertical lines indicate mltiplication by hy- Slanting Lines 
to the left indicate Adams differentials. The first table is included for 
reference and the details are to be found in [20], [21] and [24]. 

the next fifteen tables are print outs of E4¢ of the pre-spectral se- 
quence. The only missing differential is 8)6 Which is handled as a 6, in te 
Adams spectral sequence. The tables are given for Pry k 5 1,++0,15(16). Sine 

BE, Sot sores 85 brs sjt* 
16 7 (A) & Bxty?"(Z9,22) +B, Srp) 

for k = 0(16) no table is given for this case. Also 1, (P,) is a group exten
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k sion of m,(P,,,) and 1,(S") if k = 0(32) and deviates from this by the 6, in 
the case k = 16(32). Table 16 has the groups for both P|, k = 15 and 16(16). 

Above each table is a sequence of groups. 

homotopy sequence of 

This sequence is just the 

k 
Ss oe ee Pred 

vith the image of 0, written as a fourth line. Using [8] this sequence is 
just the homotopy sequence of SO(n) > SO(n+1) — S" in the metastable range. 
From the EHP sequence it is also clear that these homomorphisms represent just 

E, H, and P too, ise., 

n. E n+l, H antl, P m,(S ) > yay (S ) +> T5418 —_- 

Re 
(ep) Ps = 0) ney 

By careful nce of the tables it is relaiess to identify elements and 

to verify just which classes map non-trivially and which map to zero. There 

is a hazard in this though since the representation of elements by their name 

in Ext does not correspond with any other naming system. Those readers who 

need such detailed information will have to acquire the dexterity at trans- 

lating back and forth. The reader should also keep in mind the fact that not 

all group extensions have been settled. The questionable ones can usually be 

read off the tables.
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TABLE 8.1 

Ext(Z5,Z5) 

= G S$ ,t-1/— 

Begtcarp, ¢) = ext®?*(29,29) + BUG UEP) 

Homotopy groups of P,, k = 0(16) are easily obtained from this splitting, 

ee 
PShy Phy 

12 
a = aye 

tol Lat | << 
als Phy Phy 

Bh Lom Pldo Pleo Pl 
os Ploy] [4 i ‘i 

6) L<| | hy?g 
Wa ] ie hog whe 

sy £0 fo g hge, |hgeo 
posi peer os hg? 
—a i hohg 

oss! hig I 
9 

15 17 19 21 23 25 27 | 2B 

$I ea r| } 
=] ae Phy Plhy 

At dy wl ole * 
Zi a | hy? hy? 

wer 

H i hg 
Oo} 

° 2 4 6 8 10 R 4                                
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TABLE 8.2 

k = 1(16) 

o | ee) ee em 0 | ZZql\ Ze \azealee % ly 

2 3 22. |Zate a |Z [0 Im 

  

4 
Zy Zohg 

3 
Pohohs 

  

  hoP iby? shoe Shiohze 

«| Sd roo [ee Re ahos 5 h pee} 2 lof 2fo 28] Ohgey (35 ofo oc 3 nd : Iohgco 4 
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2 4b3 gh. hh. 2 4h3 ohohg 088 Iohohy w 2 

0b3 |ohy 
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ii 

z Pe f| 222.4] 0 Za [2622 | Zo% | Zot | Zg2p | Ze | 0 0 | aA [ies 
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2| 4 2 
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TABLE 8.3 

k = 2(16) 

0 [fzg WP Zy oo oe, 0 0 Log ey Be Bes Ze | Zs 

m(Py, 1) 

Lflg2| ZZ o7|%g%o | 22%) Zo® [21622] 21624] Zo | Zo [Laho” |ZqZa| Za" | Zo? | Z2°A |Z3B 

74(P)) 
2 2 3 

Llp) Zig \LeZy2o| 242g | 22%—q |Zre2 922 ZZJig Le | ZLig | Ze” | Zy | Zo” | Ze | Zo°A eB 

#*Gq) 
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: | 
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10 | 
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3, 
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2 5h: 

ya ahs” | obabs |? Anon | ue 
hy [953 bal 5h4 0 

0 

15 | 16 ays 18 19 20 21 22 23 24 25 26 27 28 5 

5 2, B Zi 
El ele Za dy. {Zig U2" \oZig| 24 © fea | 28 Zp GA 1 B 2 

| 
4 | 2hico | dy 7 
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TABLE 8.4 

k = 3(16) 
L 

| 0 |ZgoZq | Za? | Zo? | 2422] Ze Zq | 22 Zq? Lyghgho| Za” | Zp? | 2, als, 

m(PL 1) 
9 \ 

Zl Lggh gl ZHZ, | Zo® Wg2reZ3Zrelela Zy | Zo? [23824 Zax%G25) Zo* | Zot | 25d ey gc; 

m(P,) 
3 2 2 

Zgh3 | Zglo? |ZP2%q| 22° |Z162Z3 \ZreZ2| Z2 | Zo | 2422 |%e%2 | Zor | Ze | ALS] 228|c7; 
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TABLE 8.5 

k = 4(16) 

0 0 0 0 0 0 Zp Zo | Zy 1 Bo 0 61% 0 0 re(Ph 4D) 
Ujlg | Zot | Zo" | Ze | Zigz| 0 Za? | ZeZa? | Z2.2 23 | Zo? |AZp4 [B22 | zic ZsLo 
wl) 

2 5 MeG8l|242,.| 79 Zehr Relat Zy | Ze? | 232, Weas2325 Z| Z* | ZS BAZ Z, CZs Zqlo 
(89) 
Ugly | Zp” | Zot | Zo%g| ZoZg] Zq | Za? | Z,? ste2ig Zo’ | Za.” | 252, | Z| Z | 0 

ew ea 
Poh) J oPa | oP thy 

j2Pohoh 3 
eG | we | Paco ] Le 

LL] sP*ny 2Pibo4G 10 4 j loPohy be oP aha L~] 
q bhghs 7 oPidg\ Thi Pido oPied oPig boa 

| loPico“| 2Pyc N| i N i | noe 
4 spin? | oneal N shi dy ahos hohoe |? 
7 ie. | obs aie’ POS. HhrPacy 10P ih} 4holo shis 
Ay] ‘0 Alea pro Pe ts 42 ey 1342 » on? 81 91 J 2hohg shrh, 

2 
\— 1hy aa ea lobby te 

Aa a nabs ~~ og” | phy aha 
0 at 

Tes (ag | OBST ag 2]. 20] ak Red ad Pho eee etre ee 
TR 2 2 8 25 hit) Nz eee th 0 0). Zhe) 2a% 1 Ze? | ADS} Be ty. | Ze ee 

6 se ee 
4 ds 

3 4 ne id bho 
L L—-T TEN 2 L-] shy | it ee hoa aks 3hg Oe 7hg, 

Lo By m Oly yi 1 

0 [eek ete 5 GRE Re a ee  



MAHOWALD 

TABLE 8.6 

k = 5(16) 
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TABLE 8.7 

k = 6(16) 
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TABLE 8.8 

k = 7(16) 
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TABLE 8.9 

k = 8(16) 
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TABLE 8.10 

k = 9(16) 
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TABLE 8.11 

k = 10(16) 
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TABLE 8.12 

k = 11(16) 
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TABLE 8.13 

k = 12(16) 
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k = 13(16) 
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TABLE 8.16 
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CHAPTER IV 

SOME PROPERTIES OF a 

1. The main goal of this chapter is to verify the conjecture II.4.1 as far as 
we can, Theorem 2.1, and to prove some more general results in the same direc- 
tion, 3.3, 4.3 and 4.4. In addition Theorems B, G and D of the introduction 
are proved. Actually all that remains after Chapter III in proving them is to 
identify the elements in m,(P,) which are necessary. This is done in sections 
4 and 5 together with section 7 of the preceding chapter. 

2, The principal result of this section is 2.1. 

THEOREM 2.1, The map A: P > S° induces epimorphism in homotopy through the 
29-stem and a map 

Ag? Bxt®?*(H*(P,),Z5) > Bate PP) 25) 

which is also an epimorphism for t-s < 28. 

Proof. The present proof is by inspection. Any hope to prove Conjecture 

Il.4.1 by this method will fail, of course. In later sections we will derive 
some general results. For the present we use the notation defining elements 

in the two Ext's as given in tables 8.1 and 8.2 of Chapter III. Clearly 

A,(1) = hy. Hence the left most triangle of elements cae monomorphically. 

ae observe that hy 7( 05) = = 5Pjh, and so A, ag 5 - wigee x(ol) = 

= hy a Therefore A,x(,¢) = dy. Since 6 (by yy: Ke) in the 

ee spectral sequence for P, and 6 5 (hgh, )= hod, in . Adams gi 9 se- 

veer see A,(h wD = high, oF Ag yl = hy. Now 6h, Se and 
80 Ag(shy) = hy” of Ay(,1) = hy. Also pho = <1,hp,h)”> and so A,(jho*) 

2 <hyyhp sho” > = ep. 

Since hig( 7h”) = doy Ay (ny ais 3 = hod, = hoey- Hence Aglghy”) = @& 

These give examples of how each individual case is handled. The rest of 

the argument is similar. 

COROLLARY 2.2. The Adams differentials given for PL are just those induced 

iy 8°. 

The importance of this Corollary is the fact that all the differentials 

in PB could be obtained independently of those for a sphere. It should be
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noted that the argument of Chapter III does not do this. There the result for 

a sphere of 84(e9) is used to start the induction. We will prove here 

Ry IEMMA 2.3. In Py, 89(ghoh,) = 7hydo- 

REMARK 2.4. Al ghigh,”) =f, and all the differentials for a sphere throughout 

t-s < 29 not pertaining to Pyhy can easily be obtained from this, 

Proof. First consider 

s? A> pt > st, 
Using [2:2.641] 4t 1s easy to construct Ext for pe in homotopy éisension 1, 
The following classes appear: 2 by» abot’ : ado, 3% Page The homotopy exact 

sequence shows that <i, 21,00>,<i, 21,k>, i,K and i,p are all non-zero 

sures in ye(P, 4) with 2<4, 21,K> =4,)kK. It is not hard to verify thst 

{ghpby" } projects to <i,21,k> —o in view of 7.1). Now consider 

s?v 3? > pt > st. 
In homotopy 8,k = ,)K since ot = ont 42t. The adn ox 

spectral sequence to accomplish this is for Bo ( shyly”) = (hyd). This com 

pletes the proof of the lemma. 

This lemma and the discussion before it suggest strongly that all differ 

entials in the Adams spectral sequence are direct consequences of the Hopf in- 

variant, one problem which, from our point of view, is just the vector field 
problem. 

3. Using the Adams periodicity we see that the edge of Ext for P, is contimed 
periodically. In particular, in each 8j-2 stem there is a collection of at 
least four elements connected by ho and ending with filtration 4j-1. For ex 
ample, if t-s = 22, GeFih*) generates such a family. A portion of this 
family can be described using the periodicity theorem (theorem 5 of [3]). 

Let @,; be the periodicity operator raising t-s by 8j and s by Aj. 
Sy tex. PROPOSITION : 1. In Ext,” (B*(P,.) ,25), 

i 
@re2,,,%0 Ca) 

is non-zero for k > 0, n> 0 and 0 <i < 23*2, 

Proof. The definition of A implies A,( jeg) = hy43° Naturality and 
a
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I1.6.15 of [21] complete the proof, 

DEFINITION 3.2, Tn Ext for P, with t-2 = &-2, 6k = 2)(2J*2), thore is a 
class b, and an integer i such that hy'b, = @ 65-2) for an appropriate q 

and b, # hoa for any a. 

THEOREM 3634 A,yb, #0. 

The proof is clear. 

he Te ext}? )?(He(p, 2) 225) there is a class rip hy which is a permanent sur- 
viving cycle and epeeen te a@ coextension of & by a Let i: Pt a Py and 
let p,' = Sgfghy? hg}. (In table III 8.2 the symbol ghee hy represents R's «) 
na m,! = <ty1:92t,8d > where the coextension of 80 is always taken to be 

faty By}> Let y= Aa!» 
PROPOSITION 441. i) py, #0. 

ii) Py is a surviving permanent cycle and ne Pay. 

iii) 4,(p,) = (2) where R is the Adams invariant. 

iv) np, and Thy, # 0» 

Proof. Clearly iii) will imply i). But Py © <Py_1,2t,85> and so if we 
show e (Py) = ts we are done. But Ay gbg” hy} & <1,21,80> and thus satis- 

fies e,(p,) = moa 1. By [4] 4, =e, in this case. 

Notice on our requirement hie the coextension of & used always has 

filtration (4,12) implies that the filtration of R,' is (4k,12c) and hence A, 

mst have filtration (4k+1,12k +2), which means that it mst project to 

Ph.) proving 41). 
Since our py, is essentially the same as Adams p,,,, (they are defined by 

the same Toda bracket), iv) follows from [4], 12.14 and 12.17. This completes 

the proof. 

Proposition 4.l.iv implies that Pn? } # O and hence {Pn} #0. let 

1, = {Pn}. 
eet yes vy, = 4B, and & © imA,. 

oa The proof is clear and this proves vii) of theorem B since e(n“p) = 1/2 

and e is a homomorphism.
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0 Y 

In Theorem III.7.4 let n =-1 and consider mE sequence ae 4 rds 

P,.* Suppose k = 2a 1), m2 3. Then i(-1,k) = 3-m-1 and FE (aghy) is 
ed a 

a permanent cycle. Let Ay{i,hy Lt = Pyyg- 
+2 

PROPOSITION 4.3. 4) P43 # 0) indeed e(p,) = 27"“(mod 1) where 8j = k 
a2). 

44) np, = {pi-te,} modulo elements divisible by 2, 

iii) order p, = eae 

Proof. let a, € Ext???(H*(P,) 25) be the non-zero class. A,{a,} = a 
= 3 #0. Also 8p, = 80. Let fa; = <{25 gh 924,80 > where we use {,hy hy} as the 

particular coextension of 8&. Clearly 2(Aye.j} = 1/2 and therefore {ast #0. 

By a filtration consideration then {a,} = 2F{hoia } where k,J and m ar 
related as above. Hence e(Ay{h 71,3) = 22 (aod 1), 

Consider the map A: Py A> s° i> 3° U Ce An argument essentially i 

paralleling the proof of III.7.4 but in homotopy shows that Aly I} = 

pi-h, 2}, since n,PUn,* = pote, part 44) is established. Clearly 2a = Hie ee ee 7 
~ a = = = 0 and so 2 {hl 0 bab ebay a; #0. This completes the prost 
of the proposition. 

This proposition completes the definition of the Adams collection of ele- 

ments, table I.1 and the proof of theorem B. 

5. We will now prove theorem C. The main tool is II.4.6 and the results of 

Chapter III. Notice that if n = 0(2) Crys?" 4] Z7 0 if p<m-3 and 
Cips??€ 5] #0 4f p< 2 while if n = 1(2) (292P5] = [ty9264] = 0+ Now tte 
results of Chapter III prove theorem C except for the following cases: 

i= 0(8), ts; i= 6(8), By is 5(8) 155 and i = 4(8)5 vfs. 

First consider 28, for i= 8p. This produces a class in Tg s-146p"ap 
with s-filtration 4j. Suppose 8(j+p) = 2%(2""1), Let q =v-1+4j and let 
By be as defined in Chapter I. Finally let n = 8p- pla)+8j-1. Then the 

  

*The complex P_j a8 a stable object is the Thom complex of the bundle 
over =P) induced by the adjoint of Ay Az =P) —> BSO.
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homotopy version of III 7.4 asserts that in the sequence 

8 Tg( 4+p)-15 RB) 

qd, 
* oy Sp-1. 

"gjtep-1'Py) > "gC jep)-a (Pap) > "a gepynonr 
cy 

"8(j+p)-2(S") 
0,4,(2"%p 5) = ¢,(B,)- Thus by 11.4.6 if 3n- 2 > 8(j+2p)-1 the theorem 

holds. By an easy calculation this is 8p > 8j+6v-2. Now consider i = 8p-2 

and By: This produces a class in "3 (4+p)-1'Fep-2) with s-filtration 4j+1. 

let v be as above and let q =vt4j with By defined as above. let n= 

8p-9(aq)+8j-1. Then we have the same diagram as above with the same con- 

clusion. The estimate again comes out 8p > 8j+6v+2. 

The other two cases are done in a similar fashion, with the estimates 

being 8p > 8j+6v+5 and (i = Sp-—3) Sp > 8j+6v+7 (i = 8p-4) respectively. 

The above argument also completes the proof of theorem D.
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CHAPTER V 

Th 

UNSTABLE GROUPS 

1. ‘The purpose of this chapter is to give the general results on Teal) 

for -l1 <k < 27 that can easily be obtained from the calculations of Chapter 

III. The results are not as sharp as one would like because of the lack of , 

particular calculation in Ext for spheres, conjecture 2.4. It seems to us 

that the argument proving 2.6 is the most valuable contribution in this Chap 

ter. 

Throughout this Chapter the maps Fan and tan are the ones in the Toda 

sequence 

n-1_ntk-1 P. n. Per) See 7 4(S°). (sn*) aoe sy ", 36 = "54k 

Using the propositions of section 3 and the tables of Chapter III almost all 

Whitehead products among elements in the first 20 stems can be determined, { 

There seems to be little point in tabulating them. Recall also that Fon 

essentially the unstable J—homomorphism. 

In connection with [19] one should compare 3.5 and 3.17 together with the 
observation that for all other congruence classes the tables of Chapter III 

settle the Whitehead products discussed there. Also among unstable groups the 

homomorphism described in the tables of Chapter III is just the ome for the 
EHP sequence with exceptions as noted (compare section 3)e 

As a useful exercise we have the following table which is given without 

proof. The details consist just of gathering together all that we have doe 
in Chapter ITI and the latter section of Chapter II. The determination of te 
stable groups is given in [20]. Let It 7, (8°) — m ("P ). The Toda se- 
quence requires that n > (p+3)/3. 

Table 1.1 

The Hopf invariant of some stable homotopy classes through the 40 stem. 
The element 6 which is the image of a under I, is defined by what it locks like for the largest n for which (a) # 0. 

P= 23,n29 i, =0 

P=2%,n210 1, =0 
p= 25, n > 10 q,=0



ter 

of a 

a 

the 

P= 26, n> 10 

P=27,n>11 
P=2,n>n1 
P= 29, n>1 

P= 30, n> Je 

P=31,n>12 

P= 32, n> 12 

P= 33, n> 13 

P5394, nog 

P= 35, n> a3 

P=36,n>yu 

P= 37, .n 5192 

P= 38, n> 14 

P= 39, n> 15 

P= 40, n> 15 

THE METASTABLE HOMOTOPY gp g® =o 
fa s° 
r= 9 
I, =0 

1({a,7}) =n0 
Ta({hyh,}) = {hgh} 

Aa thy ths) = {72,7} 
Ty({hy hs) = {P44} 
KCB} = fn, 
14) = fo} 
UP) = {0} 
Ty({y BSH) = {m,7} 
4,({hohg}) Ei ths} 

4, (gtghs}) = ft ha} 
Ty(tBo tbs) = {7h} 
Lh =0 

qh =0 

Ta(tg"Bs}) = {454 
E(x) = theo} 
Ty({Bp"hshg}) = {hy7n,} 
Ty(thoBshsD = {a Pn} Rep = [n7y 

Ti bybshs}) = {hyh, } 
T({hseg}) = {ey} 
Ty({hy“hghg}) = {hgh} 
T,({Bseghy}) = {h,e, } 

22 >n>12 

@ 125"23 

n=12, 13 

n=12 

292n> 12 

n= 13 

nt 13,014 

27 2>n>13 

27>n>13 

26>n>13 

232>n>13 

32n>2>u 

n= 14 

al>n>Uu 

22>n>Uu 

Won>u 

al2n>15 
20>n>15 

19203215
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2, Consider the table of Ext for Py k= 3(16). We will study the following 

subset of that table: 

76 

3 
he ee 

3 
3 6h F ay hy, ey 

2 
2 a2 ag es oe 

1 102 8°3 4 
o 12° 

oa 

fe | CC TSC 19 2, a 
Table 2.1 

First we recall the results on multiplication by hy and hy: 

“ a (22) = By *Cagby) = By(eho”) = eho = Bip (hs) = Holhyhy) and 

B) Bg? phy) = BgP(ahngh,) = BoMgh,“,) = yy Bye 

©) y(n.) = by (phoh,) = o(hy'h,) 
Then we will prove 

2 PROPOSITION 2.2. h,“(551) (shy) = = Ch ). 

Proof. That h,(,51) = ” follows inmediately from Sq4a = = 
8 11+16k _ qloiék, 

Consider the diagram 

gkt4 

| in : 
Poth =h> & Ks 

Ts, _/*    
by definition Pox( gh) = ijyhj- But ye: Pyx< Terarhats 2 > = ih, too 

Now <Tsyshgrby >By = Pyg(ti(ghy)) = 4p_ <hghshy> = doyhg’s 
Shires = 19(32). Then (451) = ,h, and benee hy(/b, %) 

= oly hy 
The proposition follows immediately from Sara 31*32k = 16,,23+32k 70.
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From May's calculations it seems likely that the following is true. 
Conjecture 2.4. 

t-s ¢ 10. 

If k = 6 Tangora has verified the conjecture (unpublished) while if k = 5 
we have the following: 

LEMMA 2.5 (Tangora [24]). If k= 5,ph,? # 0 for a any non-zero monomial in 
h, with t-s ¢ 3. i 

The main result of this section is the next theorem. 

2 For k > 6 Bh,“ # 0 for B any non-zero monomial in h, with 

THEOREM 2.6, Suppose k+13 = (24+ De Le S22) Meaty 90 te ph,” #0 
in H*(A), for B € HX(A) (t-s < 2 gor B), then B(,51) is not in the image of 
Py Where 

P . 
(j-u)2t*2e ote 7 Fe 

Bi The map A: P > 8° satisfies A,(,i- 51) = hy. Hence A,(51- h,) 
=n,” Timms if ph,? #0, then p(,i- oh i) # 00 Hence in E,; of the pre- 
spectral sequence the same conclusion phot hold. Now E oi (Py, dr 
E since as modules over A invol: cohomology operation AP ayattts ot oy) ving oe 
which raise dimension by less than at > H*(P, dx a(P, ) where q = (j-1)2 + 

Os. Batane pilPys 8 gM (pi#1_ 52) = since (24-2) P24 

sq? aa*2*-2 on 

Hence the theorem follows. 

Using [2] we know that hyh,* 20 Af tc 5-3, 

3. Using theorem 2.6 we will now investigate the first few unstable groups. 

First we show 

IMA 3.1. a) Applying Ext to the sequence PETZ > P,_¢ > Py, where k = 5(16) 

and letting 5 be the coboundary in the resulting sequence we have 8( ge) =a, 

and 8(5¢,) = pe 

b) Applying Ext to the sequence ee 2 > Py.g > ®, with the other notation as 

above we have 8(o( ge Wee hod, - 

Proof. Recall ay = <hy,h5yh,e>- Consider the diagram
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Pl p Pp. Pp 

Fross P+6 < Fora <—" Fe Su ee 
= < >> (PyPs)a(gea) = <Agrgrbyres? = <ArcrerBys $ Barty oy hy 

= <KTgsgghy stig? shyaBg? « 
Wow Pox <ygags <Byrby bg? shgobyhy > = <<2yygr!yshy>rBgobyhg?» Finally ty 
the sequence for pol > Pg > Fs we have 6, 42 = hg or 

Og <Igagrlybyrbyrighs> = a Since bh, ¢ = Hh g we get part b) of the 
proposition while the second part of a) then follows from the module extension 

property given by 3.15. 

LEMMA 3.2. a) Applying Ext to the sequence Py, > Py. > Py, where k = 9(19 
we have 8(ho( 7h, 3)) = of. 

b) k= nes 8(,h”) = (2° 

LEMMA 3.3. If k = 12(16) then 4c, = igt 0° 

These propositions are proved just as 3.1. 

The calculations tabulated in tables I.4.2 and I.4.3 now follow by 
looking at 

Px? 7 5429(P 4440) > T5409(P5) 

and finding 

a) the smallest k such that p, is zero, or 

b) a k such that there is a k! for which Pf? 7 5429(P 544.) >1 T1291 Pha) 

is zero. 

Inspection of the tables gives the first statement and Lemmas 3.1, 2 ani} 
together with 2.6 supply the answers to the second part. The tables give tke 
easy results possible by this method. 

The details of this calculation are omitted but we give one case to il- 

lustrate the procedure. 

oo Behe If k+n 7 25+ 2, but k+n = 2(mod 16) then 1, Bae oF 
Thaie(P,) for k < 6 and for k < 28 4f 2.4 holds. 

Proof. Consider the sequence 

See T Dom 225 5 TM294n (Py don open (Se jon ae o28y Top4n(Pa) 7 

ny e
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for n= 6(16). Since To9+m(Py) = 2g and by a simple check of the differen- 
tials we see that 

PRE Mogan Figs) > Moan(F,) 
is zero. Thus i, =0. 

9 
Also by inspection we see that im(p*: Tog4n(P.) > M28 4n (Peg)? is 

generated by {hj} = {521 hj}. Conjecture 2.4 and theorem 2.6 show Ing is 
: 2 zero. Without 2.4 we know that im{I,,} could only be {,.1,,h, hy} , a Z 

2 

group, since 2.4 is verified through s filtration 3.



80 

ile 

26 

3e 

Ae 

5s 

6. 

Te 

8. 

Qe 
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16. 

17. 

MAHOWALD 

BIBLIOGRAPHY 

J. F. Adams, On the structure and applications of the Steenrod algebra, 

Commit. Math. Helv. 32(1958), 180-214. 

» On the non-existence of elements of Hopf invariant one, Ann, of 

Math. 72(1960), 20-103. 

» Stable Homotopy Theory, Springer Verlay, Berlin, 1964, 

, On the groups J(X), IV, Topology 5(1966), 21-71. 

» Vector fields on spheres, Ann. of Math. 75(1962), 603-632, 

We D. Barcus and J. P. Meyer, The suspension of a loop space, Aner, J, 

Math. 80(1958), 895, 920. 

M. G. Barratt, Homotopy operations and homotopy groups, mimeographed notes, 

Seattle Topology Conference, 1963. 

and M. E. Mahowald, The metastable homotopy of O(n), Bull. An, 

Math. Soc. 70(1964), 758-760. 

R. Bott, The stable homotopy of classical groups, Ann. of Math. 70(1959), 

313~337. 

P. J. Hilton, A note on the P homomorphism in homotopy groups of spheres, 

Proc. Camb. Phil. Soc. 59(1955), 230-233. 

and J. H. C. Whitehead, Note on the Whitehead product, Ann. of 

Math. 58(1953), 429-442. 
C. S. Hoo and M. E. Mahoweld, Some homotopy groups of Stiefel Manifolds, 

Bull. Am. Math. Soc., 71(1965), 661-667. 

I. M. James, Cross section of Stiefel manifolds, Proc. Lon. Math. Soc., 

8(1958), 536-547. 
» On the iterated suspension, Quart. J. of Math. Oxford (2) 5(19%4), 

1-10. 

» Spaces associated with Stiefel manifolds, Proc. Lon. Math. Soc. 

(3) 9(1959), 115-140. 

» On the suspension triad, Ann. of Math. 63(1956), 191-247. 

M. Kervaire, An interpretation of Whitehead's generalization of the Hort 

invariant, Ann. of Math. 69(1959), 345-365. 
M. P. MacLaren and M. E, Mahowald, A Machine Calculation of a Spectral 

Sequence, Sym. on Applied Math., Am. Math. Soc. (to appear). 

  

  

  

  

  

  

  

  

| 
| 
| 

f



THE METASTABLE HOMOTOPY oF Ss” 81 

19. M. E. Mahowald, Some Whitehead Products in Ses Topology 4(1965), 17=26. 

206 and M. C. Tangora, Some differentials in the Adams spectral 

sequence, Topology (to appear). 

21. J. Pe May, The cohomology of Restricted Lie Algebras and of Hopf Algebras, 

Ph.D. Thesis, Princeton University (1964). 

22, G. Paechter, The groups meV a) Quart. J. Math. Oxford 7(1956), 249-268. 

23. N. E. Steenrod and D. B. Epstein, Cohomology operation, Anne of Math. 

Studies 50, Princeton, New Jersey. 

  

2he Me C. Tangora, The cohomology of the Steenrod Algebra, Ph.D. Thesis, 

Northwestern University (1966). 

25, H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. 

Studies, 49, Princeton, New Jersey. 

; Vector fields on spheres, Bull. Amer. Math. Soc. 67(1961), 408- 
4l2. 

26.  


