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Our goal in this article is to give an expository account of some recent work on the classification of
topological field theories. More specifically, we will outline the proof of a version of the cobordism hypothesis
conjectured by Baez and Dolan in [2].
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Terminology

Unless otherwise specified, we will use the word manifold to refer to a compact smooth manifold M , possibly
with boundary (or with corners). If M is a manifold, we will denote its boundary by ∂M . We will say that
M is closed if the boundary ∂M is empty. For a brief description of how the ideas of this paper generalize
to manifolds which are not smooth, we refer the reader to Remark 2.4.30.
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Throughout this paper, we will make informal use of the language of higher category theory. We will
always use the term n-category to refer to what is sometimes called a weak n-category: that is, a collection
of objects {X,Y, Z, . . .} together with an (n − 1)-category Map(X,Y ) for every pair of objects X and Y ,
which are equipped with a notion of composition which is associative up to coherent isomorphism. We refer
the reader to 1.3 for an informal discussion and 2.1 for the outline of a more precise definition.

If C is a category (or a higher category) equipped with an associative and unital tensor product ⊗, we
will let 1 denote the unit object of C.

Let V be a finite-dimensional real vector space. By an inner product on V we will mean a symmetric
bilinear form b : V × V → R which is positive-definite (so that b(v, v) > 0 for v 6= 0). More generally, if X is
a topological space and ζ is a real vector bundle on X, then by an inner product on ζ we will mean an inner
product on each fiber ζx, which depends continuously on the point x ∈ X.

Disclaimer

Our objective in this paper is to give an informal account of some ideas relating to the classification of
topological field theories. In many instances, we have not attempted to give precise definitions, let alone
careful proofs. A more detailed account of the ideas and methods described in this paper will appear
elsewhere.
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1 Topological Field Theories and Higher Categories

The starting point for this paper is Atiyah’s definition of a topological field theory, which we will review in §1.1.
This notion is fairly concrete, and it is not difficult to explicitly classify topological field theories of dimensions
≤ 2. In §1.2, we will discuss some of the difficulties that we encounter when attempting to generalize this
classification to the higher-dimensional setting. To address these difficulties, we will introduce the notion of
an extended topological field theory. We will then formulate a version of the Baez-Dolan cobordism hypothesis
(Theorem 1.2.16), which provides an elegant classification of extended topological field theories.

The notion of an extended topological field theory and the cobordism hypothesis itself are most naturally
expressed using the language of higher category theory, which we will review informally in §1.3. This language
can also be used to introduce a more refined version of topological field theory which takes into account the
homotopy types of diffeomorphism groups of manifolds; we will discuss this definition in §1.4, and formulate
an appropriate generalization of the cobordism hyothesis (Theorem 1.4.9).

1.1 Classical Definitions

In this section, we will review the notion of a topological field theory as axiomatized by Atiyah; for details,
we refer the reader to [1].

Definition 1.1.1. Let n be a positive integer. We define a category Cob(n) as follows:
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(1) An object of Cob(n) is a closed oriented (n− 1)-manifold M .

(2) Given a pair of objectsM,N ∈ Cob(n), a morphism fromM toN in Cob(n) is a bordism fromM toN :
that is, an oriented n-dimensional manifold B equipped with an orientation-preserving diffeomorphism
∂ B ' M

∐
N . Here M denotes the manifold M equipped with the opposite orientation. We regard

two bordisms B and B′ as defining the same morphism in Cob(n) if there is an orientation-preserving
diffeomorphism B ' B′ which extends the evident diffeomorphism ∂ B 'M

∐
N ' ∂ B′ between their

boundaries.

(3) For any object M ∈ Cob(n), the identity map idM is represented by the product bordism B =
M × [0, 1].

(4) Composition of morphisms in Cob(n) is given by gluing bordisms together. More precisely, suppose we
are given a triple of objects M,M ′,M ′′ ∈ Cob(n), and a pair of bordisms B : M →M ′, B′ : M ′ →M ′′,
the composition B′ ◦B is defined to be the morphism represented by the manifold B

∐
M ′ B

′.

Remark 1.1.2. The composition law for bordisms described in Definition 1.1.1 is potentially ambiguous,
because we did not explain how to endow the manifold B

∐
M ′ B

′ with a smooth structure. To do so, we
need to make some auxiliary choices (for example, the choice of a smooth collar around M ′ inside of B and
B′), which ultimately turn out to be irrelevant (different choices of collar lead to different smooth structures
on B

∐
M ′ B

′, but the resulting bordisms are nevertheless diffeomorphic). We will not press this technical
point any further here; later, we will introduce more elaborate versions of Definition 1.1.1 in which the issue
does not arise.

Recall that a symmetric monoidal category is a category C equipped with a functor ⊗ : C×C→ C and a
unit object 1C ∈ C, together with isomorphisms

C ⊗ 1C ' C

C ⊗D ' D ⊗ C

C ⊗ (D ⊗ E) ' (C ⊗D)⊗ E.

which express the idea that ⊗ is a commutative and associative product on C (with unit by 1C). These
isomorphisms should be required to satisfy a list of coherence conditions which we do not recall here; see
[18] for a complete definition.

Example 1.1.3. For each n > 0, the category Cob(n) can be endowed with the structure of a symmetric
monoidal category, where the tensor product operation ⊗ : Cob(n) × Cob(n) → Cob(n) is given by the
disjoint union of manifolds. The unit object of Cob(n) is the empty set (regarded as a manifold of dimension
(n− 1)).

Example 1.1.4. Let k be a field. Then the category Vect(k) of vector spaces over k can be regarded as
a symmetric monoidal category with respect to the usual tensor product functor ⊗ : Vect(k)×Vect(k)→
Vect(k). The unit object of Vect(k) is the vector space k itself.

Given a pair of symmetric monoidal categories C and D, a symmetric monoidal functor from C to D is a
functor F : C→ D together with a collection of isomorphisms

F (C ⊗ C ′) ' F (C)⊗ F (C ′) F (1C) ' 1D.

These isomorphisms are required to be compatible with the commutativity and associativity constraints on
the tensor products in C and D; we refer the reader again to [18] for a more complete discussion.

Definition 1.1.5 (Atiyah). Let k be a field. A topological field theory of dimension n is a symmetric
monoidal functor Z : Cob(n)→ Vect(k).
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Unwinding Definition 1.1.5, we see that a topological field theory Z of dimension n is given by the
following data:

(a) For every oriented closed manifold M of dimension (n− 1), a vector space Z(M).

(b) For every oriented bordism B from an (n−1)-manifold M to another (n−1)-manifold N , a linear map
of vector spaces Z(B) : Z(M)→ Z(N).

(c) A collection of isomorphisms

Z(∅) ' k Z(M
∐

N) ' Z(M)⊗ Z(N).

Moreover, these data are required to satisfy a number of natural coherence properties which we will not
make explicit.

Remark 1.1.6. Let M be a closed oriented manifold of dimension n. Then we can regard M as a bordism
from the empty (n − 1)-manifold to itself. In this way, M determines a morphism ∅ → ∅ in the category
Cob(n). If Z is a topological field theory of dimension n, then M determines a map Z(M) : Z(∅)→ Z(∅).
Since Z is a tensor functor, it preserves unit objects: that is, Z(∅) is canonically isomorphic to the ground
field k. Consequently, we can think of Z(M) as an element of the endomorphism ring HomVect(k)(k, k): that
is, as an element of k. In other words, the functor Z assigns a number to every closed oriented manifold of
dimension n.

Remark 1.1.7. Let B be an oriented n-manifold with boundary ∂ B. Then B can usually be interpreted
as a morphism in Cob(n) in many different ways: one for every decomposition of the boundary ∂ B as a
disjoint union of two components.

For example, let us suppose that M is a closed oriented manifold of dimension (n− 1), and let M denote
the same manifold with the opposite orientation. The product manifold M × [0, 1] has boundary M

∐
M .

It therefore determines a bordism from M to itself: when so regarded, it represents the identity map idM in
the category Cob(n). However, there are several other ways to view M × [0, 1] as a morphism in Cob(n),
corresponding to other decompositions of the boundary ∂(M × [0, 1]). For example:

(a) We can regard M × [0, 1] as a bordism from M to itself; it then represents the identity map idM in the
category Cob(n).

(b) We can regard M× [0, 1] as a bordism from M
∐
M to the empty set. In this case, M× [0, 1] represents

a morphism M
∐
M → ∅ in Cob(n), which we will denote by evM and refer to as the evaluation map

for M .

(c) We can regard M × [0, 1] as a bordism from the empty set to M
∐
M . It then represents a morphism

∅ →M
∐
M in the category Cob(n), which we will denote by coevM and refer to as the coevaluation

map for M .

Suppose now that Z is a topological field theory of dimension n, and let M be a closed oriented (n− 1)-
manifold. Applying the functor Z to the evaluation map evM , we obtain a map of vector spaces

Z(M)⊗ Z(M) ' Z(M
∐

M)
Z(evM )→ Z(∅) ' k.

In other words, there is a canonical bilinear pairing of Z(M) with Z(M).

Proposition 1.1.8. Let Z be a topological field theory of dimension n. Then for every closed (n − 1)-
manifold M , the vector space Z(M) is finite dimensional, and the pairing Z(M) ⊗ Z(M) → k is perfect:
that is, it induces an isomorphism α from Z(M) to the dual space of Z(M).
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The proof is completely formal: we can use the coevaluation map of M to explicitly construct an inverse
to α. More precisely, let Z(M)∨ denote the dual space to Z(M). Applying Z to the coevaluation map
coevM , we obtain a map

k ' Z(∅) Z(coevM )−→ Z(M
∐

M) ' Z(M)⊗ Z(M).

Tensoring this map with Z(M)∨ and composing with the natural pairing of Z(M)∨ with Z(M), we get a
map

β : Z(M)∨ → Z(M)∨ ⊗ Z(M)⊗ Z(M)→ Z(M).

By judiciously applying the axioms for a topological field theory, one can deduce that β is an inverse to α:
this proves that α is an isomorphism. Because every element in the tensor product Z(M) ⊗ Z(M) belongs
to Z(M)⊗ V for some finite dimensional subspace V of Z(M), the image of the map β is necessarily finite
dimensional; since β is an isomorphism, we conclude that Z(M)∨ is finite dimensional (so that Z(M) is also
finite dimensional).

In low dimensions, it is possible to describe topological field theories very explicitly.

Example 1.1.9 (Field Theories in Dimension 1). Let Z be a 1-dimensional topological field theory. Then
Z assigns a vector space Z(M) to every closed oriented 0-manifold M . A zero dimensional manifold M is
simply a finite set of points. An orientation of M determines a decomposition M = M+

∐
M− of M into

“positively oriented” and “negatively oriented” points. In particular, there are two oriented manifolds which
consist of only a single point, up to orientation-preserving diffeomorphism. Let us denote these manifolds by
P and Q. Applying the functor Z, we obtain vector spaces Z(P ) and Z(Q). However, these vector spaces
are related to one another: according to Proposition 1.1.8, we can write Z(P ) = V and Z(Q) = V ∨, for
some finite-dimensional vector space V .

Once we have specified V , the remainder of the field theory is uniquely determined (up to isomorphism).
For example, the value of Z on any oriented 0-manifold M is canonically isomorphic to the tensor product

(
⊗
x∈M+

V )⊗ (
⊗
y∈M−

V ∨).

Of course, this does not yet determine Z: we must also specify the behavior of Z on 1-manifolds B with
boundary. However, since Z is a symmetric monoidal functor, it suffices to specify Z(B) when B is connected.
In this case, the 1-manifold B is diffeomorphic either to a closed interval [0, 1] or to a circle S1. There are
five cases to consider, depending on how we decompose ∂ B into “incoming” and “outgoing” pieces:

(a) Suppose that B = [0, 1], regarded as a bordism from P to itself. Then Z(B) coincides with the identity
map id : V → V .

(b) Suppose that B = [0, 1], regarded as a bordism from Q to itself. Then Z(B) coincides with the identity
map id : V ∨ → V ∨.

(c) Suppose that B = [0, 1], regarded as a bordism from P
∐
Q to the empty set. Then Z(B) is a linear

map from V ⊗ V ∨ into the ground field k: namely, the evaluation map (v, λ) 7→ λ(v).

(d) Suppose that B = [0, 1], regarded as a bordism from the empty set to P
∐
Q. Then Z(B) is a linear

map from k to Z(P
∐
Q) ' V ⊗ V ∨. Under the canonical isomorphism V ⊗ V ∨ ' End(V ), this linear

map is given by x 7→ x idV .

(e) Suppose that B = S1, regarded as a bordism from the empty set to itself. Then Z(B) is a linear map
from k to itself, which we can identify with an element of k (Remark 1.1.6). To compute this element,
it is convenient to decompose the circle S1 ' {z ∈ C : |z| = 1} into two intervals

S1
− = {z ∈ C : (|z| = 1) ∧ Im(z) ≤ 0} S1

+ = {z ∈ C : (|z| = 1) ∧ Im(z) ≥ 0},
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meeting in the subset
S1
− ∩ S1

+ = {±1} ⊆ S1.

It follows that Z(S1) is given as the composition of the maps

k ' Z(∅)
Z(S1

−)
−→ Z(±1)

Z(S1
+)

−→ Z(∅) ' k.

These maps were described by (c) and (d) above. Under the identification of Z(±1) with V ⊗ V ∨ '
End(V ), the map Z(S1

−) : k → End(V ) is given by x 7→ x idV , while Z(S1
+) : End(V )→ k is given by

A 7→ tr(A). Consequently, Z(S1) is given by the trace of the identity map from V to itself: in other
words, the dimension of V .

Remark 1.1.10. Example 1.1.9 illustrates some central themes which will reappear (in a more sophisticated
form) later in this paper. A priori, the specification of a topological field theory Z involves a large quantity of
data: one must give a vector space Z(M) for every closed oriented manifold M of the appropriate dimension,
together with a number of linear maps satisfying various conditions. However, the field theory Z is often
determined by only a tiny fragment of this data, given by evaluating Z on a small class of manifolds (in
Example 1.1.9, the entire field theory Z is determined by the single vector space V = Z(P )). Nevertheless,
it can be interesting to consider the values of Z on arbitrary manifolds. In Example 1.1.9, the value Z(S1)
recovers the dimension of the vector space V . This is the most important numerical invariant of V , and is
in some sense the only invariant: any two vector spaces with the same (integer) dimension are isomorphic
to one another.

Example 1.1.11 (Field Theories in Dimension 2). Let Z be a 2-dimensional topological field theory. Then
Z assigns a vector space Z(M) to every closed, oriented 1-manifold M . In particular, Z determines a vector
space A = Z(S1). Since Z is a symmetric monoidal functor, the values of Z on objects are determined by
A: every closed 1-manifold M is a disjoint union of n circles for some n ≥ 0, so that Z(M) ' A⊗n.

Evaluating the field theory Z on bordisms between 1-manifolds, we obtain some algebraic structure on
the vector space A. For example, let B denote a pair of pants, regarded as a bordism from two copies of S1

to a third copy of S1. Then Z(B) determines a linear map

A⊗A ' Z(S1
∐

S1)
Z(B)−→ Z(S1) = A

which we will denote by m. We can view m as endowing A with a bilinear multiplication. It follows easily
from the definition that this multiplication is commutative and associative: for example, the commutativity
results from the observation that there is a diffeomorphism ofB which permutes the two “incoming” boundary
circles and restricts to the identity on the third.

There is also a unit for the multiplication on A: namely, the image of 1 ∈ k under the linear map

Z(D) : k ' Z(∅)→ Z(S1) = A,

where we regard the disk D2 = {z ∈ C : |z| ≤ 1} as a bordism from the empty set to the boundary circle
S1 = ∂ D2 = {z ∈ C : |z| = 1}. We can also interpret D2 as a bordism from S1 to the empty set, in which
case it determines a linear map tr : A→ k. The composition

A⊗A m→ A
tr→ k

is the linear map associated to the cylinder S1 × [0, 1], and therefore determines a perfect pairing of A with
itself (Proposition 1.1.8). (Note that the 1-sphere S1 admits an orientation-reversing diffeomorphism, so
that S1 ' S1.)

It is convenient to summarize the analysis up to this point by introducing a definition.

Definition 1.1.12. Let k be a field. A commutative Frobenius algebra over k is a finite dimensional com-
mutative k-algebra A, together with a linear map tr : A→ k such that the the bilinear form (a, b) 7→ tr(ab)
is nondegenerate.
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The above analysis shows that if Z is a 2-dimensional topological field theory, then the vector space
A = Z(S1) is naturally endowed with the structure of a commutative Frobenius algebra over k. In fact,
the converse is true as well: given a commutative Frobenius algebra A, one can construct a 2-dimensional
topological field theory Z such that A = Z(S1) and the multiplication and trace on A are given by evaluating
Z on a pair of pants and a disk, respectively. Moreover, Z is determined up to unique isomorphism: in other
words, the category of 2-dimensional topological field theories is equivalent to the category of commutative
Frobenius algebras.

1.2 Extending Down: Lower Dimensional Manifolds

In §1.1, we analyzed the structure of an n-dimensional topological field theory Z for n = 1 and n = 2.
In both cases, we accomplished this by emphasizing the value of the field theory Z on closed manifolds of
dimension n− 1. However, it is possible to proceed differently: according to Remark 1.1.6, for every closed
oriented manifold M of dimension n we can identify the value Z(M) with an element of the ground field
k. In other words, a topological field theory gives rise to a diffeomorphism invariant for closed manifolds of
dimension n. Suppose we take the point of view that these diffeomorphism invariants are the main objects
of interest. Of course, a topological field theory provides more data: we can evaluate Z not only on closed
manifolds of dimension n, but also on manifolds with boundary and manifolds of dimension (n − 1). This
data can be viewed as supplying a set of rules which allow us to compute the invariant Z(M) associated to
a closed manifold M by breaking M up into pieces.

Example 1.2.1. Let A be a commutative Frobenius algebra over a field k. According to Example 1.1.11,
the algebra A determines a 2-dimensional topological field theory Z. In particular, we can evaluate Z on
closed oriented 2-manifolds M . Such manifolds are classified (up to orientation-preserving diffeomorphism)
by a single invariant g, the genus, which ranges over the nonnegative integers. Consequently, for each g ≥ 0,
we can evaluate Z on a closed surface Σg of genus g, to obtain an element Z(Σg) ∈ k. Let us compute the
value of Z(Σg) for small values of g.

• Suppose that g = 0. In this case, Σg is diffeomorphic to a 2-sphere S2, which we can view as obtained
by gluing together hemispheres S2

+ and S2
− along the equator S2

+ ∩ S2
− ' S1. Consequently, Z(S2) is

obtained by composing the linear maps

k ' Z(∅)
Z(S2

−)
−→ Z(S1)

Z(S2
+)

−→ Z(∅) ' k.

Note that Z(S1) coincides with the Frobenius algebra A, Z(S2
−) : k → A corresponds to the inclusion

of the identity element of A, and Z(S2
+) : A → k is the trace map tr. It follows that the invariant

Z(Σg) is given by tr(1) ∈ k.

• Suppose that g = 1. In this case, Σg is diffeomorphic to a torus S1×S1, which we can decompose into
cylinders S1

+ × S1 and S1
− × S1 meeting in the pair of circles

(S1
+ × S1) ∩ (S1

− × S1) ' (S1
+ ∩ S1

−)× S1 ' {±1} × S1.

It follows that Z(Σg) is given by composing the linear maps

k ' Z(∅)
Z(S1

−×S
1)

→ Z({±1} × S1)
Z(S1

+)×S1)
→ Z(∅) ' k.

As in Example 1.1.9, we can identify Z({±1}×S1) with the tensor product Z(S1)⊗Z(S
1
) ' A⊗A∨ =

End(A) (of course, A is isomorphic to its dual, since the trace pairing (a, b) 7→ tr(ab) is a nondegenerate
bilinear form on A, but we will not use this observation). In terms of this identification, the map Z(S1

−) :
k → End(A) corresponds to the inclusion of the identity element idA, while Z(S1

+) : End(A) → k is
given by the trace (on the matrix ring End(A), which is unrelated to the trace on A). It follows that
Z(Σg) is equal to the trace of idA: in other words, the dimension of the Frobenius algebra A.
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It is possible to continue this analysis, and to compute all of the invariants {Z(Σg)}g≥0 in terms of the
structure constants for the multiplication and trace on A; we leave the details to the interested reader.

We can attempt to use the reasoning of Example 1.2.1 in any dimension. Suppose that Z is a topological
field theory of dimension n. For every oriented n-manifold M , we can regard M as a bordism from the
empty set to ∂M , so that Z(M) : Z(∅) → Z(∂M) can be regarded as an element of the vector space
Z(∂M). The requirement that Z be a functor can be translated as follows: suppose that we are given a
closed (n−1)-dimensional submanifold N ⊆M which partitions M into two pieces M0 and M1. Then Z(M)
is the image of

Z(M0)⊗ Z(M1) ∈ Z(∂M0)⊗ Z(∂M1) ' Z(∂M)⊗ Z(N)⊗ Z(N)

under the map Z(∂M) ⊗ Z(N) ⊗ Z(N) → Z(∂M) induced by the perfect pairing Z(N) ⊗ Z(N) → k of
Proposition 1.1.8. In other words, Definition 1.1.5 provides a rule for computing the invariant Z(M) in terms
of any decomposition M = M0

∐
N M1 along a closed submanifold N of codimension 1. We might now ask:

is it possible to break M up into “simple” pieces by means of the above procedure? To put the question
another way, is it possible to specify a short list of “simple” n-manifolds with boundary {Mα}, such that
any n-manifold can be assembled by gluing together manifolds appearing in the list {Mα} along components
of their boundaries? When n = 2, this question has an affirmative answer: every oriented surface Σ can be
obtained by gluing together disks, cylinders, and pairs of pants.

Unfortunately, the above method becomes increasingly inadequate as the dimension n grows. If M is a
manifold of large dimension, then it is generally not possible to simplify M very much by cutting along closed
submanifolds of codimension 1 (and these submanifolds are themselves very complicated objects when n� 0).
What we would really like to do is to chop M up into very small pieces, say, by choosing a triangulation
of M . We might then hope to somehow recover the invariant Z(M) in terms of the combinatorics of the
triangulation. A triangulation of an n-manifold M allows us to write M as a union

⋃
α ∆n

α of finitely many
n-simplices, which we can regard as a very simple type of n-manifold with boundary. In other words, M
can be obtained by gluing together a collection of simplices. However, the nature of the gluing is somewhat
more complicated in this case: in general, we must allow ourselves to glue along submanifolds which are not
closed, but which themselves have boundary. Definition 1.1.5 makes no provision for this sort of generalized
gluing, which requires us to contemplate not only manifolds of dimension n and n− 1, but also manifolds of
lower dimension. For this reason, various authors have proposed refinements of Definition 1.1.5, such as the
following:

Definition Sketch 1.2.2. Let k be a field. A topological field theory Z gives rise to the following data:

(a) For every closed oriented n-manifold M , an element Z(M) ∈ k.

(b) For every closed oriented (n− 1)-manifold M , a k-vector space Z(M). When M is empty, the vector
space Z(M) is canonically isomorphic to k.

(c) For every oriented n-manifold M , an element Z(M) of the vector space Z(∂M). In the special case
where M is closed, this should coincide with the element specified by (a) under the isomorphism
Z(∂M) = Z(∅) ' k of (b).

A 2-extended topological field theory consists of data (a) through (c) as above, together with the following:

(d) For every closed oriented (n− 2)-manifold M , a k-linear category Z(M). That is, Z(M) is a category
such that for every pair of objects x, y ∈ Z(M), the set of morphisms HomZ(M)(x, y) has the structure
of a k-vector space, and composition of morphisms is given by bilinear maps. Furthermore, when M is
empty, the category Z(M) should be (canonically equivalent to) the category Vect(k) of vector spaces
over k.

(e) For every oriented (n − 1)-manifold M , an object Z(M) of the k-linear category Z(∂M). In the
special case where M is closed, Z(M) should coincide with the vector space specified by (b) under the
equivalence Z(∂M) = Z(∅) ' Vect(k) of (d).
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Definition 1.2.2 is very much incomplete: it specifies a large number of invariants, but does not say very
much about how they should be related to one another. For example, if Z is an ordinary topological field
theory and B is a bordism from an oriented (n−1)-manifold M to another oriented (n−1)-manifold N , then
Z associates a linear map Z(B) : Z(M)→ Z(N); clause (c) of Definition 1.2.2 describes only the case where
M is assumed to be empty. Similarly, we should demand that if B is a bordism from an oriented (n − 2)-
manifold M to another oriented (n − 2)-manifold N , then B determines a functor Z(B) : Z(M) → Z(N)
(the data described in (e) is reduces to the special case where M is empty, so that Z(M) ' Vect(k), and
we evaluate the functor on the vector space k ∈ Vect(k)). Of course, this is only the tip of the iceberg:
we should also demand coherence conditions which describe the behavior of the invariant Z(B) when B is
obtained by gluing bordisms together, or as a disjoint union of bordisms, or varies by a bordism between
(n − 1)-manifolds with boundary (to properly formulate the relevant structure, we need to contemplate n-
manifolds with corners). In the non-extended case, the language of category theory allowed us to summarize
all of this data in a very succinct way: a topological field theory is simply a symmetric monoidal functor from
the category Cob(n) to the category Vect(k). There is an analogous picture in the 2-extended situation,
but it requires us to introduce the language of 2-categories.

Definition 1.2.3. A strict 2-category is a category enriched over categories. In other words, a strict 2-
category C consists of the following data:

• A collection of objects, denoted by X,Y, Z, . . .

• For every pair of objects X,Y ∈ C, a category MapC(X,Y ).

• For every object X ∈ C, a distinguished object idX ∈ MapC(X,Y ).

• For every triple of objects X,Y, Z ∈ C, a composition functor

MapC(X,Y )×MapC(Y,Z)→ MapC(X,Z).

• The objects {idX}X∈C are units with respect to composition: in other words, for every pair of objects
X,Y ∈ C, the functors

MapC(X,Y )→ MapC(X,Y ) MapC(Y,X)→ MapC(Y,X)

given by composition with idX are the identity.

• Composition is strictly associative: that is, for every quadruple of objects W,X, Y, Z ∈ C, the diagram
of functors

MapC(W,X)×MapC(X,Y )×MapC(Y,Z) //

��

MapC(W,Y )×MapC(Y,Z)

��
MapC(W,X)×MapC(X,Z) // MapC(W,Z)

is commutative.

Example 1.2.4. Let k be a field. There is a strict 2-category Vect2(k), which may be described as follows:

• The objects of Vect2(k) are cocomplete k-linear categories: that is, k-linear categories C which are
closed under the formation of direct sums and cokernels.

• Given a pair of objects C,D ∈ Vect2(k), we define MapVect2(k)(C,D) to be the category of cocontinuous
k-linear functors from C to D: that is, functors F : C→ D which preserve cokernels and direct sums,
and such that for every pair of objects x, y ∈ C, the induced map HomC(x, y) → HomD(Fx, Fy) is
k-linear.
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• Composition and identity morphisms in Vect2(k) are defined in the obvious way.

Example 1.2.5. For every nonnegative integer n ≥ 2, we can attempt to define a strict 2-category Cob2(n)
as follows:

• The objects of Cob2(n) are closed oriented manifolds of dimension (n− 2).

• Given a pair of objects M,N ∈ Cob2(n), we define a category C = MapCob2(n)(M,N) as follows.
The objects of C are bordisms from M to N : that is, oriented (n − 1)-manifolds B equipped with a
diffeomorphism ∂ B ' M

∐
N . Given a pair of objects B,B′ ∈ C, we let HomC(B,B′) denote the

collection of all (oriented) diffeomorphism classes of (oriented) bordisms X from B to B′. Here we
require that X reduce to the trivial bordism along the common boundary ∂ B ' M

∐
N ' ∂ B′, so

that X can be regarded as an n-manifold with boundary

B
∐

M
‘
N

((M
∐

N)× [0, 1])
∐

M
‘
N

B′.

Unfortunately, this definition does not (immediately) yield a strict 2-category, because it is difficult to define
a strictly associative composition law

c : MapCob2(n)(M,M ′)×MapCob2(n)(M
′,M ′′)→ MapCob2(n)(M,M ′′).

Roughly speaking, given a bordism B from M to M ′ and another bordism B′ from M ′ to M ′′, we would like
to define c(B,B′) to be the bordism obtained by gluing B to B′ along M ′. We encounter two difficulties:

(i) In order to endow c(B,B′) with a smooth structure, we need to make some additional choices, such
as a smooth collar neighborhood of M ′ in both B and B′. These choices were irrelevant in Definition
1.1.1, because we were only interested in the bordism c(B,B′) up to diffeomorphism. However, to fit
into the mold of Definition 1.2.3, we need c(B,B′) to be defined on the nose.

(ii) Given a triple of composable bordisms B : M → M ′, B′ : M ′ → M ′′, and B′′ : M ′′ → M ′′′, the
associative law of Definition 1.2.3 requires that we have an equality of bordisms

(B
∐
M ′

B′)
∐
M ′′

B′′ = B
∐
M ′

(B′
∐
M ′′

B′′).

This may be difficult to arrange: what we see in practice is a canonical homeomorphism between the
right and left hand sides (which can be promoted to a diffeomorphism, provided that we have correctly
dealt with problem (i)).

For the purposes of studying 2-extended topological field theories, it is vitally important that our cat-
egorical formalism should incorporate Example 1.2.5. There are two possible means by which we might
accomplish this:

(a) Adjust the definition of Cob2(n) so that issues (i) and (ii) do not arise. For example, we can address
problem (i) by introducing a more complicated notion of bordism which keeps track of collar neighbor-
hoods of the boundary. Issue (ii) is a bigger nuisance: though it is possible to “rectify” the composition
law on Cob2(n) to make it strictly associative, it is somewhat painful and technically inconvenient to
do so.

(b) Adjust Definition 1.2.3 so that it incorporates Example 1.2.5 more easily. This can be accomplished
by introducing the definition of a (nonstrict) 2-category (also called a weak 2-category or a bicategory),
where we do not require composition to be associative on the nose but only up to coherent isomorphism.

10



We will adopt approach (b), and work with the 2-categories rather than strict 2-categories. The advantage
of this approach is that it more easily accomodates Example 1.2.5 and variations thereof. The disadvantage
is that the definition of a 2-category is more complicated than Definition 1.2.3, because we need to define
“up to coherent isomorphism” precisely. We will defer a more precise discussion until §2.1; for the moment,
we will simply take for granted that there is a good theory of 2-categories which incorporates the examples
above and use it to give a more complete formulation of Definition 1.2.2:

Definition 1.2.6. Let k be a field. An 2-extended topological field theory of dimension n is a symmetric
monoidal functor Z : Cob2(n)→ Vect2(k) between 2-categories.

Remark 1.2.7. In order to make sense of Definition 1.2.6, we need to understand Cob2(n) and Vect2(k) not
only as 2-categories, but as symmetric monoidal 2-categories. In the case of Cob2(n), this is straightforward:
the tensor product operation is simply given by disjoint unions of manifolds, just as for Cob(n). The tensor
product on Vect2(k) is a bit more subtle. To describe it, let us first recall how to define the tensor product
of a pair of vector spaces U and V over k. Given a third k-vector space W , we can define the notion of a
bilinear map from U ×V into W : this is a map b : U ×V →W which is linear separately in each variable (in
other words, we require that for each u ∈ U the map v 7→ b(u, v) is linear, and similarly for each v ∈ V the
map u 7→ b(u, v) is linear). The tensor product U ⊗ V is defined to be the recipient of a universal bilinear
map U × V → U ⊗ V . In other words, U ⊗ V is characterized by the following universal property: giving a
linear map from U ⊗ V into another k-vector space W is equivalent to giving a bilinear map U × V →W .

We can apply the same reasoning to define a tensor product operation in the setting of (cocomplete)
k-linear categories. We begin by defining the analogue of the notion of a bilinear map: given a triple of
cocomplete k-linear categories C, D, and E, we will say that a functor F : C×D → E is k-bilinear if for
every object C ∈ C the functor D 7→ F (C,D) is cocontinuous and k-linear, and for every object D ∈ D

the functor C 7→ F (C,D) is cocontinuous and k-linear. We can then attempt to define a tensor product
C⊗D by demanding the following universal property: for every cocomplete k-linear category E, there is an
equivalence between the category of cocontinuous k-linear functors C⊗D→ E with the category of k-bilinear
functors C×D → E. Of course, it takes some effort to prove that the tensor product C⊗D exists (and a
bit more work to show that it is associative); we will not dwell on this point, since the strict 2-category
Vect2(k) will soon disappear from our discussion of topological field theories.

Remark 1.2.8. Definition 1.2.6 should be regarded as a more elaborate version of Definition 1.1.5. To
explain this, we note that if C is an arbitrary symmetric monoidal 2-category, then we can extract a symmetric
monoidal category Ω C = MapC(1,1) of morphisms from the unit object to itself in C. Applying this
construction in the situations of Example 1.2.4 and 1.2.5, we obtain equivalences

Ω Vect2(k) ' Vect(k) ΩCob2(n) ' Cob(n).

Consequently, any 2-extended field theory Z : Cob2(n) → Vect2(k) determines a symmetric monoidal
functor ΩZ : Cob(n) → Vect(k), which we can regard as an n-dimensional topological field theory in the
sense of Definition 1.1.5.

In general, a 2-extended topological field theory Z : Cob2(n) → Vect2(k) contains a great deal more
information than its underlying topological field theory ΩZ, which can be useful in performing calculations.
For example, suppose that we wish to compute Z(M) = (ΩZ)(M), where M is a closed oriented n-manifold.
Knowing that Z(M) is the value of a topological field theory ΩZ on M allows us to compute Z(M) by cutting
M along closed submanifolds of codimension 1. The 2-extended field theory Z itself gives us more flexibility:
we can cut M along (n−1)-manifolds with boundary. However, this freedom is still somewhat limited: given
a decomposition M = M0

∐
N M1, we can try to reconstruct Z(M) in terms of the constituents Z(M0),

Z(M1), and Z(N). In particular, we need to understand Z(N), where N has dimension (n−1). If n is large,
we should expect N to be quite complicated. It is therefore natural to try to break N into simpler pieces.
Definition 1.2.6 gives us a limited amount of freedom to do so: given a decomposition N = N0

∐
P N1, where

P is a closed (n − 2)-manifold, we can compute Z(N) in terms of Z(N0), Z(P ), and Z(N1). However, we
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cannot generally simplify N very much by cutting along closed submanifolds: it is again necessary to allow
cutting along (n−2)-manifolds with boundary. For this, we need to consider topological field theories which
are even more “extended”. To make sense of these ideas, we need to introduce a bit more terminology.

Definition 1.2.9. Let n be a nonnegative integer. We define the notion of a strict n-category by induction
on n:

(a) If n = 0, then a strict n-category is a set.

(b) If n > 0, then a strict n-category is a category enriched over strict (n− 1)-categories. In other words,
a strict n-category C consists of the following data:

(i) A collection of objects X,Y, Z, . . .
(ii) For every pair of objects X,Y ∈ C, a strict (n− 1)-category MapC(X,Y ).

(iii) Identity objects idX ∈ MapC(X,X) and composition maps

MapC(X,Y )×MapC(Y,Z)→ MapC(X,Z),

satisfying the usual unit and associativity conditions.

Let us take a moment to unwind Definition 1.2.9. A strict n-category C is a mathematical structure in
which one has:

• A collection of objects X,Y, Z, . . .

• For every pair of objects X,Y ∈ C, a collection of morphisms from X to Y , called 1-morphisms.

• For every pair of objects X and Y and every pair of morphisms f, g : X → Y , a collection of morphisms
from f to g, called 2-morphisms.

• For every pair of objects X and Y , every pair of morphisms f, g : X → Y , and every pair of 2-morphisms
α, β : f → g, a collection of morphisms from α to β, called 3-morphisms.

• . . .

Moreover, these morphisms are equipped with various notions of composition, which are strictly associative
at every level.

Warning 1.2.10. When n = 1, Definition 1.2.9 recovers the usual notion of category. When n = 2, it
reduces to Definition 1.2.3. For n > 2, Definition 1.2.9 is poorly behaved. However, there is a related notion
of n-category (or weak n-category), where one requires composition to be associative only up to isomorphism,
rather than “on the nose”. Most of the examples of n-categories which arise naturally (such as the example
we will discuss below) are not equivalent to strict n-categories. We will review the theory of n-categories in
§1.3, and sketch a more precise definition in §2.1.

Example 1.2.11. Suppose given a pair of nonnegative integers k ≤ n. Then there exists a k-category which
we will denote by Cobk(n), which can be described informally as follows:

• The objects of Cobk(n) are closed oriented (n− k)-manifolds

• Given a pair of objects M,N ∈ Cobk(n), a 1-morphism from M to N is a bordism from M to N : that
is, a (n− k + 1)-manifold B equipped with a diffeomorphism ∂ B 'M

∐
N .

• Given a pair of objects M,N ∈ Cobk(n) and a pair of bordisms B,B′ : M → N , a 2-morphism from
B to B′ is a bordism from B to B′, which is required to be trivial along the boundary: in other words,
a manifold with boundary

B
∐

M
‘
N

((M
∐

N)× [0, 1])
∐

M
‘
N

B′.
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• . . .

• A k-morphism in Cobk(n) is an n-manifold X with corners, where the structure of ∂ X is determined
by the source and target of the morphism. Two n-manifolds with (specified) corners X and Y determine
the same n-morphism in Cobk(n) if they differ by an orientation-preserving diffeomorphism, relative
to their boundaries.

• Composition of morphisms (at all levels) in Cobk(n) is given by gluing of bordisms.

Here we encounter the same issues as in Definition 1.2.5, but they are somewhat more serious. For n > 2, it
is not possible to massage the above definition to produce a strict n-category: gluing of bordisms is, at best,
associative up to diffeomorphism. Nevertheless, Cobk(n) is a perfectly respectable example of a (nonstrict)
n-category: we will sketch a more precise definition of it in §2.2.

Remark 1.2.12. When k = 1, the category Cobk(n) described in Example 1.2.11 is just the usual bordism
category Cob(n) of Definition 1.1.1. When k = 0, we can identify Cobk(n) with the set of diffeomorphism
classes of closed, oriented n-manifolds.

We might now attempt to define an extended topological field theory to be a symmetric monoidal functor
from the n-category Cobn(n) of Example 1.2.11 into a suitable n-categorical generalization of Vect(k). Of
course, there are many possible candidates for such a generalization. We will skirt the issue by adopting the
following more general definition:

Definition 1.2.13. Let C be a symmetric monoidal n-category. An extended C-valued topological field theory
of dimension n is a symmetric monoidal functor

Z : Cobn(n)→ C .

At a first glance, Definition 1.2.13 appears much more complicated than its more classical counterpart,
Definition 1.1.5. First of all, it is phrased in the language of n-categories, which we have not yet introduced.
Second, an extended topological field theory supplies a great deal more data than that of an ordinary
topological field theory: we can evaluate an extended field theory Z on manifolds (with corners) of arbitrary
dimension, rather than simply on closed (n − 1)-manifolds and n-manifolds with boundary. Finally, the
values of Z on manifolds of low dimension are typically invariants of a very abstract and higher-categorical
nature.

Nevertheless, one can argue that the notion an of extended field theory Z should be quite a bit simpler
than its non-extended counterpart. Optimistically, one might hope to interpret the statement that Z is
a functor between n-categories as saying that we have a complete toolkit which will allow us to compute
the value Z(M) given any decomposition of M into pieces. While a closed n-manifold M might look very
complicated globally, it is locally very simple: by definition, every point x ∈ M has a neighborhood which
is diffeomorphic to Euclidean space Rn. Consequently, we might hope to compute Z(M) by breaking M up
into elemental bits of manifold such as points, disks, or simplices. If this were possible, then Z would be
determined by a very small amount of data. Indeed, we have already seen that this is exactly what happens
in the case n = 1: a 1-dimensional topological field theory Z is completely determined by a single vector
space, given by evaluating Z at a point (Example 1.1.9). (Note that when n = 1, the distinction between
extended topological field theories and ordinary topological field theories evaporates.)

Motivated by the 1-dimensional case, we might hope to prove in general that an extended topological
field theory Z is determined by its value on a single point: in other words, that extended topological field
theories with values in C can be identified with objects of C. This hope turns out to be a bit too naive, for
two reasons:

(1) As we explained above, if M is a closed manifold of dimension n, then for every point x ∈M there is
a diffeomorphism of Rn with an open neighborhood of x in M . However, this diffeomorphism is not
unique. More canonically, we can say that x admits a neighborhood which is diffeomorphic to an open
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ball in the tangent space TM,x of M at x. (This diffeomorphism is still not uniquely determined, but
is determined up to a contractible space of choices if we require its derivative at x to reduce to the
identity map from TM,x to itself. Alternatively, if we choose a Riemannian metric on M , we can obtain
a canonical diffeomorphism using the spray associated to the exponential flow on the tangent bundle
TM .) If n = 1, then an orientation on M allows us to trivialize the tangent bundle TM , so the issue
of noncanonicality does not arise. However, for n > 1 the potential nontriviality of TM will play an
important role in the classification of (extended) topological field theories.

(2) Even in the case where n = 1 and C = Vect(k), it is not true that giving of a C-valued topological field
theory is equivalent to giving an object of C. In Example 1.1.9, we saw that a 1-dimensional topological
field theory Z was uniquely determined by a single vector space V = Z(∗), which was required to be
finite dimensional (Proposition 1.1.8). In the general case, the best we can expect is that C-valued
extended topological field theories should be classified by objects of C which satisfy suitable finiteness
conditions, which generalize the condition that a vector space be finite-dimensional.

To address objection (1), it is convenient to replace the oriented bordism n-category nCob by its framed
analogue:

Variant 1.2.14. Let M be an m-manifold. A framing of M is trivialization of the tangent bundle of M :
that is, an isomorphism TM ' Rm of vector bundles over M ; here Rm denotes the trivial bundle with fiber
Rm. More generally, if m ≤ n, we define an n-framing of M to be a trivialization of the stabilized tangent
bundle TM ⊕ Rn−m.

The framed bordism n-category Cobfr
n(n) is defined in the same way as Cobn(n) (see Example 1.2.11),

except that we require that all manifolds be equipped with an n-framing. If C is a symmetric monoidal
n-category, then a framed extended topological field theory with values in C is a symmetric monoidal functor
of n-categories Cobfr

n(n)→ C.

Remark 1.2.15. There is an evident functor Cobfr
n(n) → Cobn(n), which discards framings and retains

only the underlying orientations. By composing with this forgetful functor, every extended topological field
theory determines a framed extended topological field theory. We will give a more precise account of the
relationship between the framed and oriented field theories in §2.4.

To address objection (2), we need to introduce the notion of a fully dualizable object of a symmetric
monoidal n-category C. We will defer the precise definition until §2.3: for the moment, we note only that full
dualizability is a natural finiteness condition in the n-categorical setting. Moreover, when C is the category
Vect(k) of vector spaces over a field k (so that n = 1), an object V ∈ C is fully dualizable if and only if it
is a finite dimensional vector space.

The main objective of this paper is to sketch a proof of the following result (and various generalizations
thereof):

Theorem 1.2.16 (Baez-Dolan Cobordism Hypothesis). Let C be a symmetric monoidal n-category. Then
the evaluation functor

Z 7→ Z(∗)

determines a bijective correspondence between (isomorphism classes of) framed extended C-valued topological
field theories and (isomorphism classes of) fully dualizable objects of C.

Theorem 1.2.16 asserts that for every fully dualizable object C of a symmetric monoidal n-category C,
there is an essentially unique symmetric monoidal functor ZC : Cobfr

n(n)→ C such that ZC(∗) ' C. In other
words, the symmetric monoidal Cobfr

n(n) is freely generated by a single fully dualizable object: namely, the
object consisting of a single point.

Remark 1.2.17. A version of Theorem 1.2.16 was originally conjectured by Baez and Dolan; we refer the
reader to [2] for the original statement, which differs in some respects from the formulation presented here.
For a proof of Theorem 1.2.16 and some variations in the case n = 2, we refer the reader to [21].
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1.3 Higher Category Theory

In §1.2, we introduced the notion of an extended topological field theory, and argued that this notion is
best described using the language of higher category theory. Our objective in this section is to give a brief
informal introduction to higher categories; we will give a more precise account in §2.1.

Roughly speaking, we would like to obtain the theory of n-categories by means of the inductive description
given in Definition 1.2.9: an n-category C consists of a set of objects X,Y, Z, . . ., together with an (n − 1)-
category MapC(X,Y ) for every pair of objects X,Y ∈ C. These (n− 1)-categories should be equipped with
an associative and unital composition law. Definition 1.2.9 requires that composition be associative on the
nose: that is, for every quadruple of objects W,X, Y, Z ∈ C, the diagram

MapC(W,X)×MapC(X,Y )×MapC(Y, Z)
cW,X,Y //

cX,Y,Z

��

MapC(W,Y )×MapC(Y,Z)

cW,Y,Z

��
MapC(W,X)×MapC(X,Z)

cW,X,Z // MapC(W,Z)

is required to commute. We have already met examples (arising from the theory of bordisms between
manifolds) which almost fit this pattern: however, the above diagram is only commutative up to isomorphism.
To accomodate these examples, it is natural to replace the commutativity requirement by the assumption
that there exists an isomorphism

αW,X,Y,Z : cW,X,Z ◦ (id×cX,Y,Z) ' cW,Y,Z ◦ (cW,X,Y × id).

Moreover, we should not merely assume that this isomorphism exist: we should take it as part of the data
defining our n-category C. Furthermore, the isomorphisms {αW,X,Y,Z}W,X,Y,Z∈C must themselves be required
to satisfy appropriate “associativity” conditions, at least up to isomorphism. These isomorphisms should
themselves be specified, and subject to further associativity conditions. To properly spell out all of the
relevant structure is no small feat: it is possible to do this directly for small values of n, but even for n = 3
the definition is prohibitively complicated (see [12]).

Example 1.3.1. Let X be a topological space. We can define a category π≤1X, the fundamental groupoid
of X, as follows:

• The objects of π≤1X are the points of X.

• Given a pair of points x, y ∈ X, a morphism from x to y in π≤1X is a homotopy class of paths in X
which start at x and end at y.

The fundamental groupoid is a basic invariant of the topological space X: note that it determines the set
π0X of path components of X (these are precisely the isomorphism classes of objects in π≤1X), and also
the fundamental group π1(X,x) of X at each point x ∈ X (this is the automorphism group of the object x
in π≤1(X)).

The fundamental groupoid π≤1X does not retain any other information about the homotopy type of X,
such as the higher homotopy groups {πn(X,x)}n≥2. We can attempt to remedy the situation using higher
category theory. For each n ≥ 0, one can define an n-category π≤nX, called the fundamental n-groupoid of
X. Informally, this n-category can be described as follows:

• The objects of π≤nX are the points of X.

• Given a pair of objects x, y ∈ X, a 1-morphism in π≤nX from x to y is a path in X from x to y.

• Given a pair of objects x, y ∈ X and a pair of 1-morphisms f, g : x→ y, a 2-morphism from f to g in
π≤nX is a homotopy of paths in X (which is required to be fixed at the common endpoints x and y).

• . . .
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• An n-morphism in π≤nX is given by a homotopy between homotopies between . . . between paths
between points of X. Two such homotopies determined the same n-morphism in π≤nX if they are
homotopic to one another (via a homotopy which is fixed on the common boundaries).

We say that π≤nX is an n-groupoid because all of its k-morphisms are invertible for 1 ≤ k ≤ n. For
example, every 1-morphism f : x → y in π≤nX is given by a path p : [0, 1] → X such that p(0) = x and
p(1) = y. The path t 7→ p(1 − t) then determines a morphism from y to x, which can be regarded as an
inverse to f (at least up to isomorphism).

There is a converse to Example 1.3.1, which is a generally-accepted principle of higher category theory:

Thesis 1.3.2. Let C be an n-groupoid (that is, an n-category in which every k-morphism is assumed to be
invertible, for 0 < k ≤ n). Then C is equivalent to π≤nX for some topological space X.

Of course, the topological space X is not at all unique: for example, any two simply-connected spaces
have equivalent fundamental groupoids. To eliminate this ambiguity, we recall the following definition from
classical homotopy theory:

Definition 1.3.3. A topological space X is called an n-type if the homotopy groups πk(X,x) vanish for all
x ∈ X and all k > n.

For every topological space X, one can construct an n-type Y and a map f : X → Y which is an
isomorphism on homotopy groups in degrees ≤ n; the construction proceeds by attaching cells to “kill” the
homotopy groups of X in degrees larger than n. The space Y is uniquely determined up to (weak) homotopy
equivalence, and the induced map on fundamental n-groupoids π≤nX → π≤nY is an equivalence of n-
categories. Consequently, if we are only interested in studying the fundamental n-groupoids of topological
spaces, there is no loss of generality in assuming that the spaces are n-types. We can now formulate a
refinement of Thesis 1.3.2:

Thesis 1.3.4. The construction X 7→ π≤nX establishes a bijective correspondence between n-types (up to
weak homotopy equivalence) and n-groupoids (up to equivalence).

We refer to this assertion as a thesis, rather than a theorem, because we have not yet defined the notion
of an n-category. Thesis 1.3.4 should be regarded as a basic requirement that any reasonable definition of
n-category must satisfy: when we restrict our attention to n-categories in which all morphisms are assumed
to be invertible, then we should recover the classical homotopy theory of n-types. This makes n-groupoids
much easier to work with than n-categories in general: we can describe them in reasonably concrete terms
without giving an inductive description in the style of Definition 1.2.9, and without ever contemplating any
“higher associativity” conditions.

Between the theory of n-categories in general (which are difficult to describe) and the theory of n-
groupoids (which are easy to describe) there are various intermediate levels of complexity.

Definition 1.3.5. Suppose we are given a pair of nonnegative integers m ≤ n. An (n,m)-category is an
n-category in which all k-morphisms are assumed to be invertible, for m < k ≤ n.

Example 1.3.6. An (n, 0)-category is an n-groupoid; an (n, n)-category is an n-category.

Variant 1.3.7. In Definition 1.3.5, it is convenient to allow the case n =∞: in this case, an (n,m)-category
has morphisms of all orders, but all k-morphisms are assumed to be invertible for k > m. It is possible to
allow m =∞ as well, but this case will play no role in this paper.

Taking n to ∞ in the formulation of Thesis 1.3.4, we obtain the following:

Thesis 1.3.8. There is a construction X 7→ π≤∞X which establishes a bijection between topological spaces
(up to weak homotopy equivalence) and (∞, 0)-categories (up to equivalence).

One approach to the theory of higher categories is to turn Thesis 1.3.8 into a definition:
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Definition 1.3.9. An (∞, 0)-category is a topological space.

Convention 1.3.10. Throughout the remainder of this paper, we will use Definition 1.3.9 implicitly and
will often not distinguish between the notions of (∞, 0)-category and topological space. In particular, we
will view topological spaces X as special kinds of higher categories, so that it makes sense to talk about
functors X → C, where C is an (∞, n)-category.

We can now try to mimic the recursion of Definition 1.2.9, starting with (∞, 0)-categories rather than
sets.

Definition Sketch 1.3.11. For n > 0, an (∞, n)-category C consists of the following data:

(1) A collection of objects X,Y, Z, . . .

(2) For every pair of objects X,Y ∈ C, an (∞, n− 1)-category MapC(X,Y ) of 1-morphisms.

(3) An composition law for 1-morphisms which is associative (and unital) up to coherent isomorphism.

At a first glance, Definition 1.3.11 seems to suffer from the same defects of Definition 1.2.9. Do we require
the composition of morphisms to be associative on the nose, or only up to isomorphism? If the latter, what
sorts of coherence conditions do we need to require? However, it is slightly easier to address these questions
in the case of (∞, n)-categories than in the case of ordinary n-categories:

(a) Let n = 1. If we require strict associativity in Definition 1.3.9, then we recover the notion of a
topological category: that is, a category C in which all morphism spaces HomC(X,Y ) are equipped with
topologies, and all of the composition maps cX,Y,Z : HomC(X,Y ) × HomC(Y, Z) → HomC(X,Z) are
continuous. In this case, it is also possible to demand only a weak form of associativity, in which the
diagrams

HomC(W,X)×HomC(X,Y )×HomC(Y,Z)
cW,X,Y //

cX,Y,Z

��

HomC(W,Y )×HomC(Y, Z)

cW,Y,Z

��
HomC(W,X)×HomC(X,Z)

cW,X,Z // HomC(W,Z)

are required to commute only up to (specified) homotopy. However, this turns out to be unnecessary:
every composition law which is associative “up to coherent homotopy” can be replaced by an equiva-
lent composition law which is strictly associative. Consequently, the theory of topological categories
can be regarded as a version of the theory of (∞, 1)-categories. However, this version is sometimes
inconvenient, as we will see in §1.4; we will present a more useful definition in §2.1.

(b) One of the main obstacles to formulating a weak version of Definition 1.2.9 is that the notion of
“associative up to isomorphism” is itself a higher-categorical idea. In the case n = 2, we are forced to
consider diagrams of categories

MapC(W,X)×MapC(X,Y )×MapC(Y,Z)
cW,X,Y //

cX,Y,Z

��

MapC(W,Y )×MapC(Y,Z)

cW,Y,Z

��
MapC(W,X)×MapC(X,Z)

cW,X,Z // MapC(W,Z)

which should be required to commute up a natural isomorphism αW,X,Y,Z . In this diagram, each corner
represents a category, and each arrow represents a functor. In other words, we can regard the above as
determining a diagram in the category Cat of categories. However, if we want to formulate the idea that
this diagram commutes up to isomorphism (rather than “on the nose”), then it is not enough to think
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about Cat as a category: we need to contemplate not just categories and functors, but also natural
transformations. In other words, we need to think of Cat as a 2-category. This skirts dangerously close
to circular reasoning: we are trying to introduce the definition in a 2-category, so we should probably
avoid giving a definition which already presupposes that we understand the 2-category Cat.

However, we do not need to understand all natural transformations in order to contemplate diagrams
of categories which commute up to isomorphism: we only need to consider invertible natural trans-
formations. In other words, we need to think about Cat as a (2, 1)-category, where the objects are
categories, the 1-morphisms are functors, and the 2-morphisms are invertible natural transformations.
We can therefore avoid circularity provided that we have a good theory of (2, 1)-categories (which is a
special case of the theory of (∞, 1)-categories provided by (a)). For one implementation of this strategy
we refer the reader to [14].

1.4 Extending Up: Diffeomorphism Groups

In §1.2, we saw that the language of higher category theory is useful for formulating the notion of an extended
topological field theory. Our goal in this section is to describe a different application of higher-categorical
ideas to the study of topological field theories. We begin by discussing an example.

Example 1.4.1. Let X be a smooth projective algebraic variety defined over a field k. We can naturally
associate to X a graded algebra over the field k, called the Hochschild cohomology of X and denoted by
HH∗(X). The algebra HH∗(X) is commutative in the graded sense: that is, for every pair of homogeneous
elements x ∈ HHp(X), y ∈ HHq(X), we have xy = (−1)pqyx. In other words, HH∗(X) is a commutative
algebra in the category grVect(k) of Z/2Z-graded vector spaces over k.

In the special case where X is a Calabi-Yau variety of even dimension (that is, when the canonical bundle
ΩdimX
X is trivial), there is a canonical trace map HH∗(X)→ k (here we require X to have even dimension in

order to guarantee that this map does not shift degree; this hypothesis is not really important). This trace
is nondegenerate, and therefore endows HH∗(X) with the structure of a (graded) commutative Frobenius
algebra. A graded analogue of the reasoning described in Example 1.1.11 will then tell us that HH∗(X)
determines a 2-dimension topological field theory ZX (taking values in graded k-vector spaces) such that
ZX(S1) = HH∗(X); this field theory is sometimes called the B-model with target X.

Example 1.4.1 illustrates a feature which is common to many examples of topological field theories Z:
the vector spaces Z(M) are naturally given as some kind of homology or cohomology. In other words, there
is a more basic invariant Z(M), which takes values not in vector spaces but in chain complexes of vector
spaces, such that Z(M) is obtained from Z(M) by passing to homology. We can attempt to axiomatize the
situation by introducing the notion of a chain-complex valued topological field theory:

Incorrect Definition 1.4.2. Let k be a field. A chain-complex valued topological field theory of dimension
n is a symmetric monoidal functor Z : Cob(n)→ Chain(k), where Chain(k) denotes the category of chain
complexes of k-vector spaces

. . . V2 → V1 → V0 → V−1 → V−2 → . . .

To get a feeling for why Definition 1.4.2 is unreasonable, let us suppose that we begin with an n-
dimensional topological field theory Z which takes values in graded vector spaces, such as the B-model
described in Example 1.4.1. We might then ask if it is possible to promote Z to a symmetric monoidal
functor Z : Cob(n)→ Chain(k). In particular, this would mean the following:

(i) For every closed oriented manifold M of dimension (n− 1), the graded vector space Z(M) is obtained
as the homology of a chain complex Z(M).

(ii) For every oriented bordism B from a closed (n− 1)-manifold M to another closed (n− 1)-manifold N ,
the map Z(B) : Z(M)→ Z(N) is obtained from a map of chain complexes Z(B) : Z(M)→ Z(N) by
passing to homology.
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(iii) Suppose that B and B′ are two oriented bordisms from one closed (n − 1)-manifold M to another
closed (n− 1)-manifold N . If there exists an orientation-preserving diffeomorphism φ : B → B′ which
reduces to the identity on ∂ B 'M

∐
N ' ∂ B′, then Z(B) = Z(B′).

Conditions (i) and (ii) are generally satisfied in practice, but (iii) is not. For example, the chain map
Z(B) might be defined only after choosing some additional data on B, like a Riemannian metric, which is
not diffeomorphism invariant. However, all is not lost: because Z is assumed to be a topological field theory
in the usual sense, we know that Z(B) = Z(B′), so that the maps Z(B) and Z(B′) induce the same map
after passing to homology. In fact, this generally happens for a reason: for example, because there exists a
chain homotopy h relating Z(B) and Z(B′). This homotopy h is generally nonzero, and depends on a choice
of diffeomorphism φ : B → B′. To discuss the situation more systematically, it is useful to introduce some
terminology.

Notation 1.4.3. Let M and N be closed, oriented (n− 1)-manifolds. We let B(M,N) denote a classifying
space for bordisms from M to N . More precisely, consider the category C whose objects are oriented bordisms
B from M to N , where the morphisms are given by (orientation-preserving) diffeomorphisms which reduce
to the identity on M and N . This is naturally a topological category: that is, for every pair of bordisms B
and B′, the collection of diffeomorphisms HomC(B,B′) has a topology (the topology of uniform convergence
of all derivatives) such that the composition maps are continuous. We can then define B(M,N) to be the
classifying space B C.

Alternatively, we can characterize the space B(M,N) up to homotopy equivalence by the following
property: there exists a fiber bundle p : E → B(M,N) whose fibers are (smooth) bordisms from M to N .
This fiber bundle is universal in the following sense: for any reasonable space S, pullback of E determines a
bijective correspondence between homotopy classes of maps from S into B(M,N) and fiber bundles E′ → S
whose fibers are (smooth) bordisms from M to N . In particular (taking S to consist of a single point), we
deduce that the set of path components π0 B(M,N) can be identified with the collection of diffeomorphism
classes of bordisms from M to N . In other words, we have a bijection π0 B(M,N) ' HomCob(n)(M,N).

Let us now return to our analysis of Definition 1.4.2. Suppose that Z is an n-dimensional topological
field theory and that we are attempting to lift Z to a chain-complex valued field theory Z which satisfies (i)
and (ii). It is not reasonable to demand condition (iii) as stated, but we expect that it least holds up to
homotopy: that is, that Z determines a well-defined map

α : π0 B(M,N) = HomCob(n)(M,N)→ [Z(M), Z(N)].

Here [Z(M), Z(N)] denotes the collection of chain homotopy classes of maps from Z(M) to Z(N). Be-
cause [Z(M), Z(N)] has the structure of a vector space over k, the map α determines a k-linear map
H0(B(M,N); k)→ [Z(M), Z(N)] (here we invoke the fact that the homology group H0(B(M,N); k) can be
identified with the free k-vector space generated by the set π0 B(M,N)). Note that [Z(M), Z(N)] can itself be
identified with 0th homology group of a certain chain complex: namely, the chain complex Map(Z(M), Z(N))
described by the formula

Map(Z(M), Z(N))i =
∏
n

Hom(Z(M)n, Z(N)n+i).

It is therefore natural to propose the following replacement for conditions (ii) and (iii):

(iii′) For every pair of closed oriented (n− 1)-manifolds M and N , there is a map of chain complexes

γ : C∗(B(M,N); k)→ Map(Z(M), Z(N)).

Here C∗(B(M,N); k) denotes the complex of singular k-valued chains on the topological space B(M,N).
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Let us take a moment to unwind the structure described by (iii′). First of all, we get a map at the level
of 0-chains

C0(B(M,N); k)→ Map(Z(M), Z(N))0.

On the left hand side, every 0-chain is automatically a 0-cycle (since there are no nonzero (−1)-chains); on
the right hand side, the 0-cycles are precisely the chain maps from Z(M) to Z(N). We therefore obtain a
map γ0 : C0(B(M,N); k) → Hom(Z(M), Z(N)). The left hand side can be identified with the free vector
space generated by the points in the classifying space B(M,N). We may therefore interpret the map γ as
associating to every point x ∈ B(M,N) a map of chain complexes γ0(x) : Z(M) → Z(N). Since giving a
point of the classifying space B(M,N) is essentially the same thing as giving a bordism from M to N , this
is equivalent to the data described in (ii).

Let us now consider the induced map at the level of 1-chains

γ1 : C1(B(M,N); k)→ Hom(Z(M), Z(N)).

The domain of γ1 can be identified with the free k-vector space generated by the set of paths p : [0, 1] →
B(M,N). Every such path begins at a point x = p(0) and ends at a point y = p(1). The requirement that γ
be a map of chain complexes translates into the assertion that γ1(p) is a chain homotopy between the chain
maps γ0(x), γ0(y) : Z(M) → Z(N). Giving a path p from x to y is essentially the same data as giving a
diffeomorphism between the bordisms determined by the points x and y. Consequently, we can regard the
map γ at the level of 1-chains as an efficient way of encoding the structure described earlier: diffeomorphic
bordisms from M to N give rise to chain homotopic maps from Z(M) to Z(N), via a chain homotopy
which depends on a choice of diffeomorphism φ. The requirement that γ to be defined also in higher degrees
translates into the requirement that this dependence is in some sense continuous in φ.

Remark 1.4.4. Giving a chain map γ : C∗(B(M,N); k) → Map(Z(M), Z(N)) is equivalent to giving a
chain map

δ : C∗(B(M,N); k)⊗ Z(M)→ Z(N).

Passing to the level of homology, we get a k-linear map H∗(B(M,N); k)⊗Z(M)→ Z(N). If we restrict our
attention to the 0-dimensional homology of B(M,N), we obtain a map H0(B(M,N); k)⊗Z(M)→ Z(N): this
simply encodes the fact that every oriented bordismB fromM toN determines a map Z(B) : Z(M)→ Z(N).
However, γ also determines maps Hn(B(M,N); k)⊗Z(M)→ Z(N) for n > 0, which are not determined by
the original topological field theory Z. This can be interesting from multiple points of view. For example, if
we are primarily interested in understanding the topological field theory Z, then every lifting Z of Z satisfying
(i) and (iii′) gives rise to additional operations on the vector spaces Z(M), which are parametrized by the
(higher) homology of the classifying spaces B(M,N). Alternatively, can use these operations as means to
investigate the structure of the classifying spaces B(M,N) themselves.

We would like to give another description of the data posited by assumption (iii′). For this, we need to
embark on a mild digression. Suppose we are given a topological space X and a chain complex V∗; we would
like to better understand the collection of chain maps from C∗(X; k) to V∗. In practice, we are interested
in the case where X is a classifying space B(M,N) and V∗ = Map(Z(M), Z(N)). However, as a warm-up
exercise, let us first consider the simplest nontrivial case where

Vm =

{
k if m = n

0 if m 6= n.

In this case, a chain map from C∗(X; k) into V∗ can be identified with a k-valued n-cocycle on X, and two
such chain maps are homotopic if and only if they differ by a coboundary. The set of chain homotopy classes
of maps from C∗(X; k) into V∗ can therefore be identified with the cohomology group Hn(X; k).

If X is a sufficiently nice topological space, then the cohomology group Hn(X; k) can be described in
another way: it is the set of homotopy classes of maps [X,K(k, n)]. Here K(k, n) denotes an Eilenberg-
MacLane space: it is characterized up to homotopy equivalence by its homotopy groups, which are given
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by

πmK(k, n) =

{
k if m = n

0 otherwise.

It is possible to give a similar description in the general case: for any chain complex V∗, the set of
chain homotopy classes of maps from C∗(X; k) into V∗ can be identified with the set of homotopy classes
of maps from X into a certain topological space K(V∗), at least provided that X is sufficiently nice. Here
K(V∗) denotes a generalized Eilenberg-MacLane space whose homotopy groups are given by the formula
πmK(V∗) ' Hm(V∗). The space K(V∗) is generally not characterized by this formula, but it is determined
up to homotopy equivalence by the universal property stated above.

We can now reformulate assumption (iii′) as follows:

(iii′′) For every pair of closed oriented (n− 1)-manifolds M and N , there is a map of topological spaces

γM,N : B(M,N)→ K(Map(Z(M), Z(N))).

Of course, we do not want to stop with (iii′′). It is not enough to specify the maps γM,N separately for
every pair of manifolds M,N ∈ Cob(n): we should also say how these maps are related to one another.
This leads us to propose the following revised version of Definition 1.4.2:

Incorrect Definition 1.4.5. Let k be a field. A chain-complex valued topological field theory of dimension
n is a continuous symmetric monoidal functor

Z : Cobt(n)→ Chaint(k)

between topological categories. Here the topological categories Cobt(n) and Chaint(n) can be described as
follows:

• The objects of Cobt(n) are closed oriented manifolds of dimension (n− 1).

• Given a pair of objects M,N ∈ Cobt(n), we let HomCobt(n)(M,N) denote the classifying space
B(M,N) of bordisms from M to N .

• The objects of Chaint(k) are chain complexes of k-vector spaces.

• Given a pair of chain complexes V∗ and W∗, we define HomChaint(k)(V∗,W∗) to be the generalized
Eilenberg-MacLane space K(Map(V∗,W∗)).

Definition 1.4.5 is a vast improvement over Definition 1.4.2, but still not quite adequate:

(a) Our definition of Cobt(n) is incomplete because we did not explain how to compose morphisms. Un-
winding the definitions, we see that HomCobt(n)(M,M ′) is the classifying of the (topological) category
CM,M ′ of oriented bordisms from M to M ′, where the morphisms are given by diffeomorphisms. We
would like to say that for a triple of objects M,M ′,M ′′ ∈ Cobt(n), the composition law

HomCobt(n)(M,M ′)×HomCobt(n)(M ′,M ′′)→ HomCobt(n)(M,M ′′)

is induced by a functor CM,M ′ ×CM ′,M ′′ → CM,M ′′ given by “gluing along M ′”. We encounter a minor
technicality having to do with smoothness: given a pair of bordisms B : M →M ′ and B′ : M ′ →M ′′,
the coproduct B

∐
M ′ B

′ does not inherit a smooth structure. However, this problem can be avoided
by giving more careful definitions: namely, we should require every bordism from M to M ′ to come
equipped with distinguished smooth collars near M and M ′.

Another issue is that the coproduct B
∐
M ′ B

′ is only well-defined up to isomorphism. This does not
prevent us from defining a gluing functor CM,M ′ ×CM ′,M ′′ → CM,M ′′ , but it does mean that this functor
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is only well-defined up to isomorphism. Consequently, the diagram which encodes the associativity of
composition

CM,M ′ ×CM ′,M ′′ ×CM ′′,M ′′′ //

��

CM,M ′′ ×CM ′′,M ′′′

��
CM,M ′ ×CM ′,M ′′′ // CM,M ′′′

can only be expected to commute up to isomorphism, so that induced diagram of classifying spaces
will commute only up to homotopy. This problem can again be avoided in an ad hoc way by giving
sufficiently careful definitions. We will not pursue the details any further, since these difficulties will
disappear when we use the more sophisticated formalism of §2.1.

(b) Our definition of Chaint(k) is also incomplete. According to Definition 1.4.5, if V∗ and W∗ are
chain complexes of vector spaces, then the space of morphisms HomChaint(k)(V∗,W∗) is a generalized
Eilenberg-MacLane space K(Map(V∗,W∗)) associated to the mapping complex Map(V∗,W∗). The
discussion above shows that the generalized Eilenberg-MacLane space K(Map(V∗,W∗)) is well-defined
up to homotopy equivalence. In order to define the topological category, we need to choose a specific
construction for the generalized Eilenberg-MacLane spaceK(U∗) associated to a complex U∗. Moreover,
we need this construction to be functorial in U∗ and to behave well with respect to tensor products.
This is again possible (and not very difficult), but we do not want to dwell on the details here.

(c) Even if we take the trouble to construct Cobt(n) and Chaint(k) as topological categories, the notion of
continuous functor appearing in Definition 1.4.5 is too strict. For example, suppose that Z : Cobt(n)→
Chaint(k) is a continuous functor, and that we are given a triple of objects M,M ′,M ′′ ∈ Cobt(n).
Functoriality guarantees us that the diagram of topological spaces

HomCobt(n)(M,M ′)×HomCobt(n)(M ′,M ′′) //

��

HomCobt(n)(M,M ′′)

��
HomChaint(k)(Z(M), Z(M ′))×HomChaint(k)(Z(M ′), Z(M ′′)) // HomChaint(k)(Z(M), Z(M ′′))

is commutative. All of the spaces in this diagram are (products of) classifying spaces of manifolds
and generalized Eilenberg-MacLane spaces: in other words, they are characterized up to homotopy
equivalence by some universal property. In this context, it is somewhat unnatural to demand such a
diagram to be commutative: one should instead require that it commute up to a specified homotopy.

To address these objections, we recall from §1.3 that the theory of topological categories can be regarded
as one approach to the study of (∞, 1)-categories: that is, higher categories in which all k-morphisms are
assumed to invertible for k > 1. This approach is conceptually very simple (it is very easy to describe
what a topological category is) but technically very inconvenient, essentially because of difficulties like those
described above. We can circumvent them by reformulating Definition 1.4.5 in terms of a better theory of
(∞, 1)-categories, which we will present in §2.1.

To close this section, let us make a few remarks about how the higher-categorical issues of this section
relate to those described in §1.2. The topological category Cobt(n) of Definition 1.4.5 should really be
regarded as an (∞, 1)-category, which may be described more informally as follows:

• The objects of Cobt(n) are closed, oriented (n− 1)-manifolds.

• The 1-morphisms of Cobt(n) are oriented bordisms.

• The 2-morphisms of Cobt(n) are orientation-preserving diffeomorphisms.

• The 3-morphisms of Cobt(n) are isotopies between diffeomorphisms.

22



• . . .

Like the n-category Cobn(n) of Example 1.2.11, we can regard Cobt(n) as a higher-categorical version of
the usual bordism category Cob(n). However, these versions are related to Cob(n) in different ways:

(1) Objects and morphisms of Cob(n) can be regarded as (n−1)-morphisms and n-morphisms of Cobn(n).
We may therefore regard Cobn(n) as an elaboration of Cob(n) obtained by considering also “lower”
morphisms corresponding to manifolds of dimension < n− 1.

(2) The objects of Cob(n) and Cobt(n) are the same, and morphisms in Cob(n) are simply the iso-
morphism classes of 1-morphisms in Cobt(n). We may therefore regard Cobt(n) as an elaboration
of Cob(n) obtained by allowing higher morphisms which keep track of the diffeomorphism groups of
n-manifolds, rather than simply identifying diffeomorphic n-manifolds.

These variations on the definition of Cob(n) are logically independent of one another, but the formalism of
higher category theory allows us to combine them in a natural way:

Definition Sketch 1.4.6. Let n be a nonnegative integer. The (∞, n)-category Bordn is described infor-
mally as follows:

• The objects of Bordn are 0-manifolds.

• The 1-morphisms of Bordn are bordisms between 0-manifolds.

• The 2-morphisms of Bordn are bordisms between bordisms between 0-manifolds.

• . . .

• The n-morphisms of Bordn are bordisms between bordisms between . . . between bordisms between
0-manifolds (in other words, n-manifolds with corners).

• The (n+ 1)-morphisms of Bordn are diffeomorphisms (which reduce to the identity on the boundaries
of the relevant manifolds).

• The (n+ 2)-morphisms of Bordn are isotopies of diffeomorphisms.

• . . .

Remark 1.4.7. The (∞, n)-category Bordn is endowed with a symmetric monoidal structure, given by
disjoint unions of manifolds.

Variant 1.4.8. In Definition 1.4.6, we can consider manifolds equipped with various structures such as
orientations and n-framings (see Variant 1.2.14); in these cases we obtain variants on the (∞, n)-category
Bordn which we will denote by Bordor

n and Bordfr
n . We will discuss other variations on this theme in §2.4.

We now formulate an (∞, n)-categorical version of the cobordism hypothesis:

Theorem 1.4.9 (Cobordism Hypothesis: (∞, n)-Categorical Version). Let C be a symmetric monoidal
(∞, n)-category. The evaluation functor Z 7→ Z(∗) determines a bijection between (isomorphism classes of)
symmetric monoidal functors Bordfr

n → C and (isomorphism classes of) fully dualizable objects of C.

Remark 1.4.10. If D is any (∞, n)-category, then we can define an n-category hnD as follows:

(i) For k < n, the k-morphisms of hnD are the k-morphisms of D.

(ii) The n-morphisms of hnD are given by isomorphism classes of n-morphisms in D.
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This construction can be characterized by the following universal property: let C be an n-category, which
we can regard as an (∞, n)-category which has only identity k-morphisms for k > n. Then functors (of
n-categories) from hnD to C can be identified with functors (of (∞, n)-categories) from D to C. We call hnD
the homotopy n-category of D.

If D = Bordfr
n , then the homotopy n-categry hnD can be identified with the n-category Cobfr

n(n)
described in Variant 1.2.14. It follows from the above universal property that our original formulation of the
cobordism hypothesis (Theorem 1.2.16) is equivalent to a special case of Theorem 1.4.9: namely, the special
case in which we assume that C is an ordinary n-category.

Remark 1.4.11. Though the original formulation of the cobordism hypothesis (Theorem 1.2.16) may appear
to be simpler than Theorem 1.4.9, it is actually essential to our proof that we work in the the more general
setting of (∞, n)-categories. This is because the proof proceeds by induction on n: in order to understand
the (n+ 1)-morphisms in Bordn+1, we will need to understand the (n+ 1)-morphisms in Bordfr

n , which are
forgotten by passing from Bordfr

n to the n-category Cobfr
n(n).

2 Formulation of the Cobordism Hypothesis

In §1, we gave an informal introduction to the language of higher category theory and used that language to
formulate a version of the Baez-Dolan cobordism hypothesis (Theorem 1.4.9) which posits a classification of
extended topological field theories. Before we can describe this classification in precise mathematical terms,
we need to answer a number of questions:

(a) What is an (∞, n)-category?

(b) What is a functor between (∞, n)-categories?

(c) What is a symmetric monoidal structure on an (∞, n)-category, and what does it mean for a functor
to be symmetric monoidal?

(d) What is the (∞, n)-category Bordfr
n?

(e) What does it mean for an object of a symmetric monoidal (∞, n)-category to be fully dualizable?

To properly address all of these questions would require a more thorough discussion than we have space
to give here. Nevertheless, we would like to convey some of the flavor of the mathematics that provides
the answers (and to dispel any sense that the basic objects of higher category theory are ill-defined). We
will therefore devote §2.1 to describing a rigorous approach to the study of (∞, n)-categories, using Rezk’s
theory of complete Segal spaces (and its higher-dimensional analogue, due to Barwick). In §2.2, we will
address (d) by giving a construction of Bordfr

n using the language of complete Segal spaces. These sections
are somewhat technical, and can safely be omitted by the reader who wishes to avoid the details: once we
have given a precise definition for the notion of an (∞, n)-category, we will promptly ignore it and return
to the somewhat informal approach of §1. In the interest of space, we will gloss over (b) and (c) (for an
extensive discussion of (c) in the case n = 1 we refer the reader to [16]).

In §2.3, we will address question (e) by studying various finiteness conditions in the setting of higher
category theory. This will allow us to reformulate Theorem 1.4.9 as follows: Bordfr

n is the free symmetric
monoidal (∞, n)-category with duals generated by a single object. In §2.4 we will present this formulation,
deduce some of its consequences, and explain how it can be generalized to the case of manifolds which
are not framed. In the special case of topological field theories taking values in a Picard ∞-groupoid, this
generalization reduces to a homotopy-theoretic statement which was proven by Galatius, Madsen, Tillmann,
and Weiss. In §2.5 we will briefly review their work and its connection with the cobordism hypothesis
presented here.
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2.1 Complete Segal Spaces

In §2.1, we argued that it is most natural to describe topological field theories using the language of higher
category theory. This theory has a reputation for being a thorny and technical subject. This is largely due
to the fact that it is very easy to give definitions which are incorrect or poorly behaved (some of which
have already appeared earlier in this paper). However, there are many (equivalent) ways to give reasonable
definitions which generate a well-behaved theory. Our first goal in this section is to describe such an approach
in the setting of (∞, 1)-categories: Rezk’s theory of complete Segal spaces. We are interested in this approach
primarily for two reasons:

(1) The (∞, 1)-category Cobt(n), which we struggled to describe as a topological category in Definition
1.4.5, arises much more naturally in the language of complete Segal spaces, as we will see in §2.2.

(2) The notion of a complete Segal space can be generalized to produce a good theory of (∞, n)-categories
for each n ≥ 0. This generalization is due originally to Barwick, and will be sketched below; for more
details we refer the reader to [14].

To explain the basic idea, let us pretend for the moment that we already have a good theory of (∞, 1)-
categories, and that we would like to describe this theory in concrete terms. According to Thesis 1.3.8,
the theory of (∞, 0)-categories is “easy”: it is equivalent to the homotopy theory of topological spaces.
The general case is more complicated, because a general (∞, 1)-category C might contain noninvertible 1-
morphisms. However, we can always simplify C by throwing those 1-morphisms away. Namely, we can
extract an (∞, 0)-category C0, which can be described roughly as follows:

• The objects of C0 are the object of C.

• The 1-morphisms of C0 are the invertible 1-morphisms of C.

• The 2-morphisms of C0 are the 2-morphisms between invertible 1-morphisms of C.

• . . .

Since all of the morphisms in C0 are invertible, Thesis 1.3.8 allows us to identify C0 with a topological space
X0. The space X0 can be regarded as an invariant of C: we will sometimes refer to it as a classifying space
for objects of C (for example, the path components of X0 are in bijection with the isomorphism classes of
objects of C).

If C is an (∞, 0)-category, then C is determined (up to equivalence) by the topological space X0. However,
it generally is not: the space X0 does not contain any information about the noninvertible 1-morphisms in C.
We can think of a morphism in C as a functor [1]→ C, where [1] denotes the ordinary category associated to
the linearly ordered set {0 < 1}. The collection of all such functors is naturally organized into another (∞, 1)-
category, which we will denote by Fun([1],C). We can now repeat the process described above: let C1 denote
the (∞, 0)-category obtained from Fun([1],C) by discarding the noninvertible 1-morphisms. According to
Thesis 1.3.8, we should be able to identify C1 with the fundamental∞-groupoid of another topological space,
which we will denote by X1. We can think of X1 as a classifying space for 1-morphisms in C.

The topological space X1 remembers a little bit more about the (∞, 1)-category C: namely, the class of
1-morphisms in C. But we still do not have enough information to reconstruct C, because X0 and X1 do
not remember anything about compositions between noninvertible 1-morphisms in C. To correct this defect,
let us consider the collection of all pairs of composable 1-morphisms X

f→ Y
g→ Z in C. Such a pair of

morphisms can be identified with a functor [2] → C, where [2] denotes the (ordinary) category associated
to the linearly ordered set {0 < 1 < 2}. More generally, we can consider for every nonnegative integer n
the linearly ordered set [n] = {0 < 1 < . . . < n}, which we regard as an ordinary category. The collection
of all functors [n] → C is naturally organized into an ∞-category Fun([n],C). We can then discard the
noninvertible 1-morphisms to obtain an (∞, 0)-category Cn, which we can identify with the fundamental
∞-groupoid of a topological space Xn.

We might now ask the following questions:
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(Q1) How are the spaces Xn related to one another? In other words, what sort of mathematical object is
the totality {Xn}n≥0?

(Q2) What special features, if any, does this mathematical object possess?

(Q3) To what extent does the sequence {Xn}n≥0 determine the original (∞, 1)-category C?

The short answers to these questions can be summarized as follows:

Thesis 2.1.1. (A1) The topological spaces {Xn}n≥0 are naturally organized into a simplicial space.

(A2) The simplicial space {Xn}n≥0 associated to an (∞, 1)-category is always a complete Segal space (see
Definitions 2.1.15 and 2.1.22 below).

(A3) An (∞, 1)-category C is determined (up to equivalence) by the complete Segal space {Xn}n≥0. Moreover,
every complete Segal space arises from an (∞, 1)-category in this way.

Remark 2.1.2. We refer to Thesis 2.1.1 as a thesis, rather than a theorem, because it should really be
regarded as a test that any definition of (∞, 1)-category must pass in order to be considered reasonable. In
other words, it should become a theorem as soon as a suitable definition has been given. Alternatively, we
can use Thesis 2.1.1 to prescribe a definition which passes this test automatically: that is, we can define an
(∞, 1)-category to be a complete Segal space.

Our next goal is to explain answers (A1) through (A3) in more detail. We begin with a brief review of
the formalism of simplicial objects.

Definition 2.1.3. The category ∆ of combinatorial simplices is defined as follows:

• The objects of ∆ are the nonnegative integers. For each n ≥ 0, we let [n] denote the corresponding
object of ∆.

• Given a pair of integers m,n ≥ 0, we define Hom∆([m], [n]) to be the set of nonstrictly increasing maps
f : {0 < 1 < . . . < m} → {0 < 1 < . . . < n}.

Let A be an arbitrary category. A simplicial object of A is a functor from ∆op into A.

Remark 2.1.4. We will typically let A• denote a simplicial object of a category A, and An the value of the
functor A• when evaluated at the object [n] ∈∆.

The most important special case of Definition 2.1.3 is the following:

Definition 2.1.5. A simplicial set is a simplicial object in the category of sets.

Remark 2.1.6. The theory of simplicial sets was originally introduced as tool for investigating the homotopy
theory of topological spaces using combinatorial means. To every topological space X, one can associate a
simplicial set Sing•X called the singular complex of X, by means of the formula

SingnX = Hom(∆n, X),

where ∆n denotes the topological n-simplex {x0, x1, . . . , xn ∈ R : x0 + . . . + xn = 1}. The functor X 7→
SingnX has a left adjoint A• 7→ |A•|, called the geometric realization functor. For every topological space X,
the counit map |Sing•X| → X is a weak homotopy equivalence. Consequently, passing from a topological
space X to its singular complex Sing•X entails no loss of “homotopy invariant” information. In fact, it is
possible to develop the theory of algebraic topology in an entirely combinatorial way, using simplicial sets
as surrogates for topological spaces.
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There is a close relationship between the theory of simplicial sets and classical category theory. To every
ordinary category C, we can associate a simplicial set N(C)•, called the nerve of C, by setting N(C)n =
Fun([n],C). More concretely, we let N(C)n denote the set of all composable sequences of morphisms

C0
f1→ C1

f2→ . . .
fn→ Cn

in C having length n.
The nerve N(C)• of a category C determines C up to isomorphism. Indeed, the objects of C are the

elements of N(C)0, and the morphisms of C are the elements of N(C)1. To recover the composition law
for morphisms in C from the nerve N(C)•, we need to introduce a bit of terminology. For every sequence
0 ≤ i0 ≤ i1 ≤ . . . ≤ im ≤ n, let pi0,i1,...,im denote the corresponding map from {0 < 1 < . . . < m} to
{0 < 1 < . . . < n}, and p∗i0,i1,...,im : N(C)n → N(C)m the associated map. We have a pullback diagram of
sets

N(C)2

p∗0,1 //

p∗1,2

��

N(C)1

p∗1
��

N(C)1

p∗0 // N(C)0.

This diagram determines an isomorphism of sets

q : N(C)2 → N(C)1 ×N(C)0 N(C)1.

A pair of composable morphisms f : C → D and g : D → E in C can be identified with an element (f, g)
in the fiber product N(C)1 ×N(C)0 N(C)1. The composition g ◦ f is then given by p∗0,2q

−1(f, g) ∈ N(C)1: in
particular, it can be described entirely in terms of the structure of N(C)• as a simplicial set.

Of course, not every simplicial set arises as the nerve of a category. Given an arbitrary simplicial set
X•, we might attempt to recover a category whose objects are the elements of X0 and whose morphisms are
elements of X1. However, we encounter difficulties when trying to define a composition law on morphisms.
As above, we have a commutative diagram

X2

p∗0,1 //

p∗1,2

��

X1

p∗1
��

X1

p∗0 // X0

which induces a map q : X2 → X1 ×X0 X1. However, the diagram is not necessarily a pullback square, so
that q is not necessarily an isomorphism. It turns out that this is essentially the only problem:

Exercise 2.1.7. Let X• be a simplicial set. Then X is isomorphic to the nerve of a category C if and only
if, for every pair of integers m,n ≥ 0, the diagram

Xm+n

p∗0,1,...,m//

p∗m,m+1,...,m+n

��

Xm

p∗m
��

Xn

p∗0 // X0

is a pullback square; in other words, if and only if the canonical map Xm+n → Xm ×X0 Xn is bijective.

Let us now return to assertion (A1) of Thesis 2.1.1. Let C be an (∞, 1)-category. For each n ≥ 0, we let Xn

denote a space whose fundamental∞-groupoid coincides with the (∞, 0)-category obtained from Fun([n],C)
by discarding the noninvertible 1-morphism. Observe that Xn depends functorially on the linearly ordered

27



set {0 < 1 < . . . < n}: given a nonstrictly increasing function f : {0 < 1 < . . . < m} → {0 < 1 < . . . <
n}, composition with f determines functor from Fun([n],C) to Fun([m],C), which should (after discarding
noninvertible 1-morphisms) give rise to a map of topological spaces Xn → Xm. To describe the situation
more systematically, let us consider another special case of Definition 2.1.3:

Definition 2.1.8. A simplicial space is a simplicial object of the category of topological spaces.

We can now summarize the above discussion as follows: given an (∞, 1)-category C, the collection of
topological spaces {Xn}n≥0 should be organized into a simplicial space X•.

Warning 2.1.9. The construction C 7→ X• (which we have described informally when C is an (∞, 1)-
category) is quite similar to the construction C 7→ N(C)• (which we have defined precisely when C is an
ordinary category). In both cases, the nth term of the relevant simplicial object parametrizes functors from
[n] into C. However, these constructions do not agree when C is an ordinary category. For example, the
topological space X0 is a classifying space for the underlying groupoid of C; in particular, the connected
components of X0 are in bijection with isomorphism classes of objects in C. On the other hand, N(C)0 is
defined to be the (discrete) set of objects of C; in particular, it takes no account of whether or not two
objects in C are isomorphic.

In spite of Warning 2.1.9, the simplicial space X• extracted from an (∞, 1)-category C behaves much like
the nerve of an ordinary category. In particular, it is natural to expect that it should satisfy some analogue
of condition described in Exercise 2.1.7. To formulate this condition, we need to recall a bit of homotopy
theory.

Definition 2.1.10. Let f : X → Z and g : Y → Z be continuous maps of topological spaces. The homotopy
fiber product of X ×RZ Y is the topological space

X ×Z Z [0,1] ×Z Y

whose points consist of triples (x, y, p), where x ∈ X, y ∈ Y , and p : [0, 1] → Z is a continuous path from
p(0) = f(x) to p(1) = g(y).

Remark 2.1.11. The construction of Definition 2.1.10 should be regarded as a homotopy-theoretic (or right
derived) version of the ordinary fiber product. It has the feature of being a homotopy invariant: given a
commutative diagram of topological spaces

X //

��

Z

��

Yoo

��
X ′ // Z ′ Y ′oo

in which the vertical maps are weak homotopy equivalences, the induced map

X ×RZ Y → X ′ ×RZ′ Y ′

is again a weak homotopy equivalence. Moreover, the weak homotopy type of a homotopy fiber product
X ×RZ Y does not change if we replace the continuous maps f : X → Z and g : Y → Z by homotopic maps.
Both of these assertions fail dramatically if we replace the homotopy fiber product X×RZ Y with the ordinary
fiber product X ×Z Y .

Remark 2.1.12. For any pair of continuous maps f : X → Z, g : Y → Z, there is a canonical map from the
ordinary fiber product X ×Z Y to the homotopy fiber product X ×RZ Y ; it carries a point (x, y) ∈ X ×Z Y
to the point (x, y, p) ∈ X ×RZ Y , where p : [0, 1]→ Z is the constant path from f(x) = g(y) ∈ Z to itself.
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Definition 2.1.13. Suppose given a commutative diagram of topological spaces

W //

��

X

��
Y // Z.

We say that this diagram is a homotopy pullback square (or a homotopy Cartesian diagram) if the composite
map

W → X ×Z Y → X ×RZ Y
is a weak homotopy equivalence.

Remark 2.1.14. Suppose we are given a commutative diagram of topological spaces

W //

��

X

f

��
Y

g // Z.

In general, the condition that this diagram be a pullback square and the condition that it be a homotopy
pullback square are independent: neither implies the other. Suppose, however, that we can somehow guar-
antee that the inclusion X ×Z Y → X ×RZ Y is a weak homotopy equivalence (this is always true if f or g is
a Serre fibration, for example). In this case, if the above diagram is a pullback square, then it is a homotopy
pullback square.

We are now ready to formulate the homotopy-theoretic counterpart to the condition of Exercise 2.1.7:

Definition 2.1.15. Let X• be a simplicial space. We say that X• is a Segal space if the following condition
is satisfied:

(∗) For every pair of integers m,n ≥ 0, the diagram

Xm+n
//

��

Xm

��
Xn

// X0

is a homotopy pullback square.

Warning 2.1.16. Definition 2.1.15 is not completely standard. Some authors impose the additional require-
ment that the simplicial space X• be Reedy fibrant: this is a harmless technical condition which guarantees,
among other things, that each of the maps in the diagram

Xn+m
//

��

Xm

��
Xn

// X0

is a Serre fibration of topological spaces. If we assume this condition, then X• is a Segal space if and only if
each of the maps Xn+m → Xn ×X0 Xm is a weak homotopy equivalence.

Returning now to our discussion of Thesis 2.1.1, we observe that if C is an (∞, 1)-category, then it is
natural to suppose that the associated simplicial space X• is a Segal space. This simply encodes the idea
that giving a chain of composable morphisms

C0
f1→ C1

f2→ . . .
fn→ Cn
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is equivalent to giving a pair of chains

C0
f1→ . . .

fm→ Cm Cm
fm+1→ . . .

fn→ Cn

such that the final term of the first chain (the object Cm ∈ C) agrees with the initial term of the second
chain.

In fact, even more is true: according to Thesis 2.1.1, the (∞, 1)-category C is determined up to equivalence
by the associated Segal space X•. Indeed, we can attempt recover C from X• as follows:

Construction 2.1.17. Let X• be a Segal space. We can extract from X• an (∞, 1)-category C which may
be described informally as follows:

• The objects of C can be identified with points of the topological space X0.

• Given a pair of points x, y ∈ X0, the mapping space MapC(x, y) is defined to be the iterated homotopy
fiber product {x} ×RX0

X1 ×RX0
{y}.

• Given a triple of points x, y, z ∈ X0, the composition law

MapC(x, y)×MapC(y, z)→ MapC(x, z)

can be recovered as the composition

({x} ×RX0
X1 ×RX0

{y})× ({y} ×RX0
X1 ×RX0

{z}) → {x} ×RX0
X1 ×RX0

X1 ×RX0
{z}

φ
' {x} ×RX0

X2 ×RX0
{z}

→ {x} ×RX0
X2 ×RX0

{z}.

Here the map φ really goes in the opposite direction, but our assumption that X• is a Segal space
implies that φ is a weak homotopy equivalence, and is therefore invertible in the homotopy category.

• The remaining data of the simplicial space X• (and other Segal conditions) guarantees that the above
composition law is associative up to (coherent) homotopy.

We have now sketched constructions in both directions which relate the (as yet undefined) notion of
(∞, 1)-category with the (well-defined) notion of a Segal space. However, these constructions are not quite
inverse to one another.

Example 2.1.18. Let C be an ordinary category. We can regard the nerve N(C)• as a simplicial space, in
which each set N(C)n is endowed with the discrete topology. This simplicial space is a Segal space. Moreover,
if we apply the above construction to N(C)n, we recover the original category C. However, the Segal space
X• associated to C (viewed as an (∞, 1)-category) does not coincide with N(C)•, as we have already seen in
Warning 2.1.9: the space X0 is usually not discrete (even up to homotopy), since its fundamental groupoid
is equivalent to the underlying groupoid of C.

Remark 2.1.19. Let X• be a Segal space. We can modify Construction 2.1.17 to extract a more concrete
invariant of X•: an ordinary category which we call the homotopy category of X• and denote by hX•. This
category can be described informally as follows:

(1) The objects of hX• are the points of the space X0.

(2) Given a pair of points x, y ∈ X0, we let HomhX•(x, y) be the set of path components

π0({x} ×RX0
X1 ×RX0

{y}).
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The correspondence between Segal spaces and (∞, 1)-categories is generally many-to-one: a given (∞, 1)-
category C can be obtained from many different Segal spaces via Construction 2.1.17. Example 2.1.18
illustrates the origin of this difficulty. Suppose that we begin with a Segal space Y•, and use it to construct
an (∞, 1)-category C. We can then extract from C a new Segal space X•. We can then think of (the
fundamental ∞-groupoid of) X0 as the (∞, 0)-category obtained from C by discarding the noninvertible
1-morphisms. This (∞, 0)-category receives a map from (the fundamental ∞-groupoid of) Y0, but this map
is not necessarily an equivalence: for example, there could be invertible 1-morphisms in C which do not arise
from paths in the space Y0. We can rule out this phenomenon by introducing an additional assumption on
the Segal space Y•.

Definition 2.1.20. Let X• be a Segal space, and let f ∈ X1 be a point. Let x = p∗0(f) and y = p∗1(f), so
that the points x, y ∈ X0 can be identified with objects of the homotopy category hX•. The composite map

{f} → {x} ×X0 X1 ×X0 {y} → {x} ×RX0
X1 ×RX0

{y}

determines a morphism
[f ] ∈ HomhX•(x, y) = π0({x} ×RX0

X1 ×RX0
{y}).

We will say that f is invertible if [f ] is an isomorphism in the homotopy category hX•.

Example 2.1.21. Let X• be a Segal space, and let δ : X0 → X1 be the “degeneracy map” induced by the
unique nondecreasing functor {0, 1} → {0}. For every point x in X0, the morphism [δ(x)] in the homotopy
category hX• coincides with the identity map idx : x→ x. In particular, δ(x) is invertible for each x ∈ X0.

Definition 2.1.22. Let X• be a Segal space, and let Z ⊆ X1 denote the subset consisting of the invertible
elements (this is a union of path components in X1; we will consider Z as endowed with the subspace
topology). We will say that X• is complete if the map δ : X0 → Z of Example 2.1.21 is a weak homotopy
equivalence.

Roughly speaking, a Segal space Y• is complete if every isomorphism in the associated (∞, 1)-category C

arises from an essentially unique path in the space Y0. This allows us to identify the fundamental∞-groupoid
of Y0 with the (∞, 0)-category obtained by discarding the noninvertible 1-morphisms in C. In fact, it allows
us to identify the fundamental ∞-groupoid of each Yn with the underlying (∞, 0)-category of Fun([n],C).
In other words, Construction 2.1.17 should establish an equivalence between the theory of complete Segal
spaces and the theory of (∞, 1)-categories. We can take this as a heuristic justification for the following
definition:

Definition 2.1.23. An (∞, 1)-category is a complete Segal space.

Remark 2.1.24. Let Y• be a Segal space which is not complete. Then there exists a map Y• → X• in the
homotopy category of simplicial spaces which is universal among maps from Y• to complete Segal spaces. In
this case, we will say that X• is a completion of Y•. Informally, we can think of X• as the complete Segal
space corresponding to the (∞, 1)-category obtained from Y• via Construction 2.1.17. This construction will
play an important role in what follows, because the higher categories which arise in the bordism theory of
manifolds are naturally obtained from Segal categories which are not complete (see Warning 2.2.8).

Remark 2.1.25. There are many alternatives to Definition 2.1.23 which give rise to essentially the same
theory. Were we to adopt such an alternative, Thesis 2.1.1 could be formulated as a theorem, which would
be proved by giving a precise implementation of Construction 2.1.17. For a more detailed discussion of the
various models of the theory of (∞, 1)-categories, we refer the reader to [6].

Remark 2.1.26. Using a more rigorous version of the above arguments, Toën has proven a version of Thesis
2.1.1. More precisely, he has proven that any homotopy theory satisfying a short list of reasonable axioms
is equivalent to the theory of complete Segal spaces ([23]).

In the next section, we will need a variant of the theory of complete Segal spaces.
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Definition 2.1.27. Let ∆0 denote the subcategory of ∆ with the same objects, where the morphisms from
[m] to [n] are given by strictly increasing maps of linearly ordered sets {0 < 1 < . . . < m} → {0 < 1 < . . . <
n}. A semisimplicial object of a category A is a functor from ∆op

0 into A.

Definition 2.1.28. Let X• be a semisimplicial space. We will say that X• is a semiSegal space if the
following condition is satisfied:

(∗) For every pair of integers m,n ≥ 0, the diagram

Xm+n
//

��

Xm

��
Xn

// X0

is a homotopy pullback square.

Example 2.1.29. Every simplicial object of a category A determines a semisimplicial object of A by
restriction. In particular, every simplicial space X• determines a semisimplicial space X ′•; we observe that
X• is a Segal space if and only if X ′• is a semiSegal space.

Example 2.1.30. A nonunital category C consists of the following data:

(1) A collection of objects X,Y, Z, . . . ∈ C.

(2) For every pair of objects X,Y ∈ C, a set HomC(X,Y ).

(3) For every triple of objects X,Y, Z ∈ C, a composition map

HomC(X,Y )×HomC(Y, Z)→ HomC(X,Z).

These composition maps are required to be associative in the obvious sense.

In other words, a nonunital category is like a category, except that we do not require the existence of identity
morphisms. Every category determines an underlying nonunital category, simply by forgetting the identity
morphisms.

To every nonunital category C, we can associate a semisimplicial set N(C), the nerve of C: we let N(C)n
denote the collection of all n-tuples

x0
f1→ x1

f2→ · · · fn→ xn

of morphisms in C. A nonunital category is determined up to isomorphism by its nerve, and it is not difficult
to characterize those semisimplicial sets which arise as nerves of nonunital categories as in Exercise 2.1.7.

If X• is a semiSegal space, then one can attempt to apply Construction 2.1.17 to build an (∞, 1)-category.
In general, this does not succeed: one can extract a collection of objects, a topological space of morphisms
between every pair of objects, and a coherently associative composition law, but there is no natural candidate
for identity morphisms. In other words, we can think of a semiSegal space X• as encoding a nonunital (∞, 1)-
category. Just as in ordinary category theory, the existence of units is merely a condition to be assumed:
identity morphisms are unique (up to canonical isomorphism) when they exist. Formally, this translates into
the following assertion:

Claim 2.1.31. Let Y• be a semiSegal space. Suppose that there exists a simplicial space X• and a weak ho-
motopy equivalence X• → Y• of semisimplicial spaces. Then X• is a Segal space, and is uniquely determined
up to weak homotopy equivalence.
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In fact, one can be more precise: a semiSegal space Y• is equivalent to the restriction of a Segal space
if and only if it has “identity morphisms up to homotopy” in an appropriate sense. We will not pursue the
matter in any further detail.

We conclude this section by sketching how the above definitions can be generalized to the setting of (∞, n)-
categories for n > 0. Roughly speaking, one can think of an (∞, n)-category C has having an underlying
∞-groupoid X0 (obtained by discarding all noninvertible k-morphisms in C for 1 ≤ k ≤ n), which we view
as an (∞, n − 1)-category. For every pair of objects x, y ∈ X0, there is an (∞, n − 1)-category MapC(x, y)
of 1-morphisms f : x→ y. We can organize the collection of all triples (x, y, f) into an (∞, n− 1)-category
X1 which is equipped with a pair of forgetful functors X1 → X0. Proceeding in this manner, we can encode
the entirety of the structure of C into a simplicial (∞, n − 1)-category X•. To describe the mathematical
structures which arise via this procedure, we need to introduce a definition.

Definition 2.1.32. Let n ≥ 0 an integer, and let A be a category. An n-fold simplicial object of A is a
functor

∆op× . . .×∆op → A,

where the product on the left hand side has n factors.

Example 2.1.33. If n = 0, then an n-fold simplicial object of A is just an object of A. If n = 1, then an
n-fold simplicial object of A is a simplicial object of A in the sense of Definition 2.1.3. In general, an n-fold
simplicial object of A consists of a collection of objects Xk1,...,kn ∈ A indexed by n-tuples of nonnegative
integers k1, . . . , kn ≥ 0, which are related by a variety of “face” and “degeneracy” maps.

Notation 2.1.34. If A is a category, we will let A(n) denote the category of n-fold simplicial objects of A.
For m,n ≥ 0, we have an evident equivalence of categories

(A(m))(n) ' A(m+n).

In particular, we can identify n-fold simplicial objects of A with simplicial objects X• of A(n−1).

We now specialize to the case where the target category A is the category of topological spaces.

Definition 2.1.35. An n-fold simplicial space is an n-fold simplicial object in the category of topological
spaces and continuous maps.

We will say that a map X → Y of n-fold simplicial spaces is a weak homotopy equivalence if the induced
map Xk1,...,kn → Yk1,...,kn is a weak homotopy equivalence of topological spaces, for every sequence of
nonnegative integers k1, . . . , kn ≥ 0. A diagram

X //

��

Y

��
X ′ // Y ′

of n-fold simplicial spaces is a homotopy pullback square if, for every sequence of nonnegative integers
k1, . . . , kn ≥ 0, the induced square

Xk1,...,kn
//

��

Yk1,...,kn

��
X ′k1,...,kn

// Y ′k1,...,kn

is a homotopy pullback square of topological spaces (see Definition 2.1.13).
We will say that an n-fold simplicial space X is essentially constant if there exists a weak homotopy

equivalence of n-fold simplicial spaces X ′ → X, where X ′ is a constant functor.

33



Remark 2.1.36. An n-fold simplicial space X is constant if and only if, for every sequence k1, . . . , kn ≥ 0,
the canonical map X0,...,0 → Xk1,...,kn is a weak homotopy equivalence; in this case, X is weakly equivalent
to the constant n-fold simplicial space associated to X0,...,0.

Definition 2.1.37. Let n > 0, and let X be an n-fold simplicial space. We will regard X as a simplicial
object X• in the category of (n− 1)-fold simplicial spaces. We will say that X is an n-fold Segal space if the
following conditions are satisfied:

(A1) For every 0 ≤ k ≤ m, the diagram
Xm

//

��

Xk

��
Xm−k // X0

of Definition 2.1.15 is a homotopy pullback square (of (n− 1)-fold simplicial spaces).

(A2) The (n− 1)-fold simplicial space X0 is essentially constant.

(A3) Each of the (n− 1)-uple simplicial spaces Xk is an (n− 1)-dimensional Segal space.

We will say that an n-fold Segal space X• is complete if it satisfies the following additional conditions:

(A4) Each of the (n−1)-dimensional Segal spaces Xn is complete (we regard this condition as vacuous when
n = 1).

(A5) Let Y• be the simplicial space described by the formula Yk = Xk,0,...,0; note that condition (A1)
guarantees that Y• is a Segal space. Then Y• is complete.

We now have the corresponding analogue of Definition 2.1.23:

Definition 2.1.38. An (∞, n)-category is an n-fold complete Segal space.

Remark 2.1.39. There are other reasonable approaches to the theory of (∞, n)-categories which are equiv-
alent to Definition 2.1.38. We refer the reader to [14] for a discussion in the case n = 2.

Remark 2.1.40. If X is an n-fold Segal space, then there is a universal example of a map X → X ′ in
the homotopy category of n-fold simplicial spaces, such that X ′ is an n-fold complete Segal space. In this
case, we will refer to X ′ as the completion of X. We can regard X ′ as an (∞, n)-category (Definition 2.1.38)
whose structure is determined by X.

Remark 2.1.41. There is an evident action of the symmetric group Σn on the category of n-fold simplicial
spaces. Definition 2.1.37 is not invariant under this action. For example, when n = 2, the axioms demand
that the simplicial space X0,• be essentially constant, but there is no corresponding demand on the simplicial
space X•,0.

2.2 Bordism Categories as Segal Spaces

Let n be a positive integer, which we regard as fixed throughout this section. In §1.4, we argued that it is
natural to replace the ordinary bordism category Cob(n) with an (∞, 1)-category Cobt(n), which encodes
information about the homotopy types of diffeomorphism groups of n-manifolds. In §2.1, we introduced the
notion of a Segal space, and argued that complete Segal spaces can be regarded as representatives for (∞, 1)-
categories. Our goal in this section is to unite these two lines of thought, giving an explicit construction of
Cobt(n) in the language of Segal spaces. To simplify the exposition, we consider the unoriented version of
the bordism category, which we will denote by Cobun

t (n). At the end of this section, we will explain how the
construction of Cobun

t (n) can be generalized to the setting of n-fold Segal spaces to give a precise definition
of the (∞, n)-category Bordn described informally in Definition 1.4.6.
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Let us first outline the rough idea of the construction. We would like to produce a Segal space PreCob(n)•
which encodes the structure of the (∞, 1)-category Cobun

t (n). Roughly speaking, we would like PreCob(n)k
to be a classifying space for composable chains of bordisms

M0
B1→M1

B2→ · · · Bk→ Mk

of length k: here each Mi is a closed manifold of dimension (n− 1) and each Bi is a bordism from Mi−1 to
Mi. There are two considerations to bear in mind:

(a) As noted in Remark 1.1.2, composition of bordisms is not quite well-defined without making some
auxiliary choices. Fortunately, the formalism of Segal spaces comes to our rescue: we do not need the
space PreCob(n)k to coincide with the iterated fiber product

PreCob(n)1 ×PreCob(n)0 · · · ×PreCob(n)0 PreCob(n)1;

we only need Xk to be weakly equivalent to the corresponding homotopy fiber product. We can
therefore allow points of Xk to encode more information than just the chain of composable bordisms
{Bi}1≤i≤k (for example, a smooth structure on B = B1

∐
M1
· · ·

∐
Mk−1

Bk−1) so long as the inclusion
of this information does not change the relevant homotopy type.

(b) The collection of all composable chains of bordisms as above is naturally organized into a (topological)
groupoid, where the morphisms are given by diffeomorphisms. We would like PreCob(n)k to be a
classifying space for this groupoid. To construct such a classifying space explicitly, we will choose some
auxiliary data: namely, an embedding of the manifold B into V × R, where V is a real vector space
of large dimension. As the dimension of V grows, the relevant space of embeddings becomes highly
connected (by general position arguments), and in the limit we can identify the relevant classifying
space with the collection of embedded submanifolds.

Notation 2.2.1. Let V be a real vector space of finite dimension d. We let Sub0(V ) denote the collection
of all smooth closed submanifolds M ⊆ V of dimension n − 1, and Sub(V ) the collection of all smooth
compact n-manifolds properly embedded in V × [0, 1] (we say that an embedding M ↪→ V × [0, 1] is proper
if ∂M = M ∩ (V × {0, 1})).

Remark 2.2.2. For every finite dimensional real vector space V , the spaces Sub0(V ) and Sub(V ) admit
topologies. We will describe this topology in the case for Sub(V ); the case of Sub0(V ) is similar but slightly
easier. Given an abstract n-manifold M , we can define a topological space Emb(M,V × [0, 1]) of smooth
proper embeddings of M into V ×[0, 1]. The space Emb(M,V ×[0, 1]) carries an action of the diffeomorphism
group Diff(M), and we have a canonical bijection∐

M

Emb(M,V × [0, 1])/Diff(M)→ Sub(V )

where the coproduct is taken over all diffeomorphism classes of n-manifolds. We endow Sub(V ) with the
quotient topology: a subset U ⊆ Sub(V ) is open if and only if its inverse image in Emb(M,V × [0, 1]) is open,
for every n-manifold M . With respect to this topology, each of the quotient maps Emb(M,V × [0, 1]) →
Sub(V ) exhibits Emb(M,V × [a, b]) as a principal Diff(M)-bundle over a suitable summand of Sub(V ).

Definition 2.2.3. For each k ≥ 0, let SemiCob(n)Vk denote the set of all pairs (t0 < t1 < · · · < tk;M)
where {ti}0≤i≤k is a strictly increasing sequence of real numbers and M ⊆ V × [t0, tk] is either a smooth
submanifold of dimension (n− 1) (if k = 0) or a properly embedded submanifold of dimension n (if k > 0)
which intersects each of the submanifolds V × {ti} ⊆ V × [t0, tk] transversely. If k = 0 we can identify
SemiCob(n)Vk with R×Sub0(V ) and if k > 0 we can identify SemiCob(n)Vk with an open subset of
Sub(V ) × {t0, . . . tk ∈ R : t0 < · · · < tk} (using a linear change of coordinates to identify V × [t0, tk] with
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V × [0, 1]. In either case, the relevant identification endows SemiCob(n)Vk with the structure of a topological
space.

Given a strictly increasing map f : {0 < 1 < · · · < k} → {0 < 1 < · · · < k′}, we obtain a continuous map
of topological spaces f∗ : SemiCob(n)Vk′ → SemiCob(n)Vk , given by the formula

f∗(t0 < . . . < tk′ ;M) = (tf(0) < . . . < tf(k);M ∩ (V × [tf(0), tf(k)]).

In this way, the collection of topological spaces {SemiCob(n)Vk }k≥0 can be organized into a semisimplicial
space, which we will denote by SemiCob(n)V• .

Let R∞ denote an infinite dimensional real vector space. We define the semisimplicial space SemiCob(n)•
to be the direct limit lim−→SemiCob(n)V• , where V ranges over the collection of all finite dimensional subspaces
of R∞.

Remark 2.2.4. Up to homotopy equivalence, the semisimplicial space SemiCob(n)• does not depend on
the choice of infinite dimensional real vector space R∞. In fact, if we require that R∞ have countable
dimension, then SemiCob(n)• is well-defined up to homeomorphism.

Claim 2.2.5. The semisimplicial space SemiCob(n)• is a semiSegal space.

Claim 2.2.5 expresses the idea that we can glue pairs of bordisms together, and the result is well-defined up
to a contractible space of choices. As we explained in §2.1, this allows us to view SemiCob(n)• as encoding
the structure of a not necessarily unital (∞, 1)-category. According to Claim 2.1.31, if SemiCob(n)• is
weakly equivalent to the restriction of a Segal space, then that Segal space is uniquely determined up
to weak homotopy equivalence. The existence of such a Segal space can be deduced formally from the
fact that SemiCob(n)• admits units “up to homotopy” (given an object of SemiCob(n)V• represented
by a submanifold M ⊆ V , the identity map from this object to itself can be represented by the product
M × [0, 1] ⊆ V × [0, 1]). However, it is possible to give a direct construction of such a Segal space.

Definition Sketch 2.2.6. Let V be a finite dimensional real vector space. For every nonnegative integer
k, let PreCob(n)Vk denote the collection of all pairs (M, {t0 ≤ t1 ≤ · · · ≤ tk}), where the ti are real
numbers, M ⊆ V × R is a (possibly noncompact) n-dimensional submanifold, and the projection M → R
is a proper map whose critical values are disjoint from {t0 ≤ · · · ≤ tk}. The set PreCob(n)Vk can be
endowed with a topology. This topology generalizes that of Remark 2.2.2, but is more complicated because
we allow noncompact manifolds; we refer the reader to the appendix of [10] for a definition. We can use
these topologies to endow PreCob(n)V• with the structure of a simplicial space.

For each k ≥ 0, let PreCobo(n)Vk denote the open subset of PreCob(n)Vk consisting of pairs (M, {t0 ≤
. . . ≤ tk}) such that t0 < · · · < tk. We can regard PreCobo(n)V• as a semisimplicial space equipped
with an evident inclusion (of semisimplicial spaces) PreCobo(n)V• ⊆ PreCob(n)V• . There is also a natural
map f : PreCobo(n)V• → SemiCob(n)V• , which carries a pair (M, {t0 < · · · < tk}) to the pair (M ∩
(V × [t0, tk]), {t0 < · · · < tk}). The topology on each PreCob(n)Vk is defined so that f induces a weak
homotopy equivalence: roughly speaking, there is a canonical path joining any two points (M, {t0 < · · · <
tk}), (N, {t0 < · · · < tk}) such that M ∩ (V × [t0, tk]) = N ∩ (V × [t0, tk]), which is given by “stretching to
infinity” the parts of M and N which do not lie in V × [t0, tk].

Let PreCob(n)• denote the simplicial space lim−→PreCob(n)V• , where the direct limit is taken over all
finite dimensional subspaces of R∞. Then the underlying semisimplicial space of PreCob(n)• is weakly
equivalent to SemiCob(n)•. In particular, PreCob(n)• is a Segal space.

Definition 2.2.7. We let Cobun
t (n) denote the (∞, 1)-category associated to the Segal space PreCob(n)•

by Construction 2.1.17. If we adopt Definition 2.1.23, we can be more precise: we let Cobun
t (n) denote the

complete Segal space obtained by completing PreCob(n)• (see Remark 2.1.24).

Warning 2.2.8. The Segal space PreCob(n)• is usually not complete if n is large. To see why this is, we
observe that

PreCob(n)0 ' lim−→PreCob(n)V0 ' lim−→R×Sub0(V )
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is a classifying space for closed manifolds of dimension (n−1) (this follows from general position arguments:
as the dimension of the vector space V grows, the embedding spaces Emb(M,V ) of Remark 2.2.2 become
highly connected, so the homotopy type of the quotients Emb(M,V )/Diff(M) become good approximations
to the classifying spaces BDiff(M)). Consequently, we can think of paths in SemiCob(n)0 as corresponding
to diffeomorphisms between (n−1)-manifolds. By contrast, invertible 1-morphisms in the homotopy category
hPreCob(n)• are given by invertible bordisms between (n−1)-manifolds. An invertible bordism B : M → N
arises from a diffeomorphism of M with N if and only if B is diffeomorphic to a product M × [0, 1]. If n ≥ 6,
the s-cobordism theorem asserts that this is equivalent to the vanishing of a certain algebraic obstruction,
called the Whitehead torsion of B. Since there exist bordisms with nontrivial Whitehead torsion, the Segal
space PreCob(n)• is not complete for n ≥ 6.

The failure of the Segal space PreCob(n)• to be complete is not really problematic; we can always pass
to its completion using Construction 2.1.17. For our purposes, this is not even necessary: in this paper, we
are interested in studying topological field theories, which are given by functors from PreCob(n)• into other
Segal spaces C•. If we assume that C• is complete to begin with, then the classification of such maps does
not change if we replace PreCob(n)• by its completion. In some cases, we can even obtain more refined
information by not passing to the completion.

We can regard the above discussion as providing a precise definition of Cobt(n), which appeared more
informally earlier (in its oriented incarnation) in Definition 1.4.5. We can employ the same ideas to define
the (∞, n)-category Bordn using the language of n-fold Segal spaces.

Definition 2.2.9. Let V be a vector space. For every n-tuple k1, . . . , kn of nonnegative integers, we let
(PreBordVn )k1,...,kn denote the collection of tuples (M, {t10 ≤ . . . ≤ t1k1}, . . . , {t

n
0 ≤ . . . ≤ tnkn}) where

(i) M is a closed submanifold of V × Rn of dimension n (not necessarily compact).

(ii) The projection M → Rn is a proper map.

(iii) For every subset S ⊆ {1, . . . , n} and every collection of integers {0 ≤ ji ≤ ki}i∈S , the projection
M → Rn → RS does not have (tji)i∈S as a critical value.

As in Definition 2.2.6, the set (PreBordVn )k1,...,kn can be endowed with a topology (see [10]) so that
PreBordVn becomes an n-fold simplicial space. We let PreBordn denote the limit lim−→PreBordVn , as
V ranges over the finite dimensional subspaces of R∞.

The n-fold simplicial space PreBordn of Definition 2.2.9 is not an n-fold Segal space in the sense of
Definition 2.1.37, because we have not guaranteed that the (n− 1)-fold simplicial spaces (PreBordVn )0,•,...,•
are essentially constant. To remedy the situation, we can modify Definition 2.2.9 by adding the following
condition to (i), (ii), and (iii):

(iv) The projection map M → R{i+1,...,n} is submersive at every point x ∈M whose image in R{i} belongs
to the subset {ti0 , ti1 , . . . , tiki}.

With this modification, we obtain an n-fold Segal space which we will denote by PBordn. This n-fold
Segal space is generally not complete (Warning 2.2.8), but nevertheless determines an (∞, n)-category:

Definition 2.2.10. We let Bordn denote the (∞, n)-category associated to the n-fold Segal space PBordn
defined above. More precisely, we define Bordn to be an n-fold complete Segal space which is obtained from
PBordn by completion (see Remark 2.1.40).

Variant 2.2.11. In the above discussion, we could impose the additional requirement that all manifolds be
endowed with some additional structure, such as an orientation or an n-framing. In these cases, we obtain
n-fold complete Segal spaces which we will denote by Bordor

n and Bordfr
n .
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Remark 2.2.12. The (∞, n)-category Bordn produced by the construction outlined above is naturally
written as a direct limit of (∞, n)-categories BordVn , where V ranges over finite dimensional subspaces of an
infinite-dimensional vector space R∞. The characterization of Bordn provided by the cobordism hypothesis
has an unstable analogue for the (∞, n)-categories BordVn (the Baez-Dolan tangle hypothesis). We will
return to the study of these embedded bordism categories in §4.4.

2.3 Fully Dualizable Objects

Let C be a symmetric monoidal (∞, n)-category with duals. According to the cobordism hypothesis (Theorem
1.4.9), a symmetric monoidal functor Z : Bordfr

n → C is determined (up to canonical isomorphism) by the
object Z(∗) ∈ C. However, not every object of C need arise in this way: as we saw in Example 1.1.9, an object
V ∈ Vect determines a 1-dimensional topological field theory if and only if V is finite dimensional. Our
goal in this section is to formulate an analogous finiteness condition in the setting of an arbitrary symmetric
monoidal (∞, n)-category C.

We begin by reformulating the condition that a vector space V (over a field k) be finite-dimensional
in purely categorical terms. As we saw in Example 1.1.9, the essential feature of finite-dimensional vector
spaces is that they have a well-behaved duality theory. If we let V ∨ denote the dual space of V , then we
have a canonical map evV : V ⊗V ∨ → k. For any pair of vector spaces W and W ′, the map evV determines
a map

Hom(W,W ′ ⊗ V )→ Hom(W ⊗ V ∨,W ′ ⊗ V ⊗ V ∨)→ Hom(W ⊗ V ∨,W ′).

If V is finite-dimensional, then this map is an isomorphism. In fact, it has an inverse given by the composition

Hom(W ⊗ V ∨,W ′)→ Hom(W ⊗ V ∨ ⊗ V,W ′ ⊗ V )→ Hom(W,W ′ ⊗ V ),

where the second map is given by composition with the a coevaluation coevV : k → V ∨ ⊗ V (which is
well-defined whenever V is finite-dimensional). The assertion that these constructions are inverse to one
another rests on a compatibility between the maps evV and coevV which can be described axiomatically as
follows:

Definition 2.3.1. Let C be a monoidal category: that is, a category equipped with a tensor product
operation ⊗ : C×C → C which is unital and associative (but not necessarily commutative) up to coherent
isomorphism. Let V be an object of C. We will say that an object V ∨ is a right dual of V if there exist maps

evV : V ⊗ V ∨ → 1 coevV : 1→ V ∨ ⊗ V

such that the compositions
V

idV ⊗ coevV−→ V ⊗ V ∨ ⊗ V evV ⊗ idV−→ V

V ∨
coevV ⊗ idV∨−→ V ∨ ⊗ V ⊗ V ∨ idV∨ ⊗ evV→ V ∨

coincide with idV and idV ∨ , respectively. In this case, we will also say that V is a left dual of V ∨.

Remark 2.3.2. If C is a symmetric monoidal category, then the relationship described in Definition 2.3.1
is symmetric in V and V ∨; in this case, we will simply say that V ∨ is a dual of V .

Remark 2.3.3. Let V be an object of a monoidal category C. Then left and right duals of V are uniquely
determined up to (unique) isomorphism if they exist. This is a consequence of a more general assertion
regarding adjoint morphisms in a 2-category which we will explain below (see Example 2.3.7).

Example 2.3.4. An object V ∈ Vect(k) has a dual (in the sense of Definition 2.3.1) if and only if V is finite-
dimensional. For any vector space V , we can define a dual space V ∨ and an evaluation map evV : V ⊗V ∨ → k,
but a compatible coevaluation coevV : k → V ∨ ⊗ V can only be defined in the finite-dimensional case.

Definition 2.3.5. Let C be a symmetric monoidal (∞, n)-category. We will say that an object C ∈ C is
dualizable if it admits a dual when regarded as an object of the homotopy category hC.
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The requirement that an object C of a symmetric monoidal (∞, n)-category be dualizable is a natural
finiteness condition which can be formulated in completely categorical terms. Moreover, it is obviously a
necessary condition for the existence of a field theory Z : Bordfr

n → C with Z(∗) = C (a dual of C can be
given by evaluating Z on a point with a different orientation, as we saw in §1.1). If n = 1, this condition
is also sufficient: when C is an ordinary category, this follows from the argument sketched in Example 1.1.9
(the general case is more difficult and has interesting consequences, as we will explain in §4.2). For n > 1, we
will need a stronger condition on C to guarantee the existence of Z. This condition has a similar flavor but
is higher-categorical in nature, involving a demand for duals not only of objects in C but also for morphisms.
Before we can formulate it, we need to embark on a brief digression.

One of the most basic examples of a 2-category is the 2-category Cat of (small) categories: the objects of
Cat are categories, the 1-morphisms of Cat are functors, and the 2-morphisms of Cat are natural transforma-
tions between functors. We can regard classical category theory as the study of the 2-category Cat. It turns
out that many of the fundamental concepts of category theory can be generalized to arbitrary 2-categories.
We now describe one example of this phenomenon, coming from the theory of adjoint functors.

Let C and D be categories, and let F : C → D and G : D → C be functors. An adjunction between F
and G is a collection of bijections

φC,D : HomD(F (C), D) ' HomD(C,G(D)),

which depend functorially on C ∈ C and D ∈ D. In this situation, we say that F is left adjoint to G and that
G is right adjoint to F ; by Yoneda’s lemma, either F or G determines the other up to canonical isomorphism.

Suppose we are given an adjunction {φC,D}C∈C,D∈D between F and G. Taking D = F (C) and applying
φC,D to the identity map from D to itself, we get a canonical map uC : C → (G ◦ F )(C), which depends
functorially on C: we can regard the collection of maps {uC}C∈C as a natural transformation of functors
u : idC → G ◦ F . Conversely, if we are given a natural transformation u : idC → G ◦ F , we get a canonical
map

HomD(F (C), D)→ HomC((G ◦ F )(C), G(D)) ◦uC→ HomC(C,G(D)).

for every pair of objects C ∈ C, D ∈ D. If each of these maps is bijective, then we obtain an adjunction
between F and G; in this case, we will say that u is the unit of the adjunction.

We also have the dual notion of a counit for an adjunction: given a pair of functors F : C → D and
G : D→ C, a natural transformation v : F ◦G→ idD determines a map

HomC(C,G(D))→ HomD(F (C), (F ◦G)(D)) vD◦→ HomD(F (C), D)

for every pair of objects C ∈ C, D ∈ D. If each of these maps is bijective, then we obtain an adjunction
between between a pair of functors F : C → D and G : D → C determines a natural transformation
v : F ◦G→ idD. In this case, we say that v is the counit of the corresponding adjunction.

If we are given an adjunction between a pair of functors F : C → D and G : D → C, then the unit
u : idC → G ◦ F and v : F ◦G→ idC are compatible in the following sense:

(∗) The composite transformations

F = F ◦ idC
id×u−→ F ◦G ◦ F v×id−→ idD ◦F = F

G = idC ◦G
u×id−→ G ◦ F ◦G id×v−→ G ◦ idD = G

coincide with the respective identity maps on F and G.

Conversely, if we are given an arbitrary pair of natural transformations u : idC → G ◦ F , v : F ◦ G → idD

satisfying (∗), then the maps

HomD(F (C), D)→ HomC(C,G(D)) HomC(C,G(D))→ HomD(F (C), D)

are mutually inverse. Consequently, u is the unit of an adjunction between F and G, and v is the counit of
the same adjunction.

This motivates the following definition:
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Definition 2.3.6. Let E be an arbitrary 2-category. Suppose we are given a pair of objects X,Y ∈ E and
a pair of 1-morphisms f : X → Y and g : Y → X. We will say that a 2-morphism u : idX → g ◦ f is the
unit of an adjunction between f and g if there exists another 2-morphism v : f ◦ g → idY such that the
compositions

f ' f ◦ idX
id×u−→ f ◦ g ◦ f v×id−→ idY ◦f ' f

g ' idC ◦g
u×id−→ g ◦ f ◦ g id×v−→ g ◦ idD ' g

both coincide with the identity. In this case, we will also say that v is the counit of an adjunction, and that
either u or v exhibit f as a left adjoint to g and exhibit g as a right adjoint to f .

To get a feeling for the meaning of Definition 2.3.6, it is helpful to consider some examples of 2-categories
other than Cat:

Example 2.3.7. Recall that a category with a single object is essentially the same thing as a monoid.
This observation can be generalized to higher category theory. For example, suppose that C is a monoidal
category. We can associate to C a 2-category B C as follows:

• The 2-category B C has only a single object ∗.

• The category of 1-morphisms MapB C(∗, ∗) is C.

• The composition law
MapB C(∗, ∗)×MapB C(∗, ∗)→ MapB C(∗, ∗)

is given by the tensor product on C.

Conversely, if E is any 2-category with a distinguished object ∗, then C = MapE(∗, ∗) has the structure of
a monoidal category, and there is a canonical functor B C → E, which is an equivalence of 2-categories if
and only if every object of E is equivalent to ∗. We may informally summarize this discussion as follows: a
monoidal category is essentially the same thing as a 2-category with a single (distinguished) object.

The above construction sets up a dictionary which allows us to translate concepts from the theory of
2-categories into concepts in the theory of monoidal categories. In particular, we note that an object X ∈ C

is right dual to an object Y ∈ C (in the sense of Definition 2.3.1) if and only if X is right adjoint to Y when
both are viewed as 1-morphisms in B C (in the sense of Definition 2.3.6).

Suppose we are given a pair of 1-morphisms f : X → Y and g : Y → X in a 2-category C, together with
a 2-morphism u : idX → g ◦ f . If u is the unit of an adjunction between f and g, then a compatible counit
v : f ◦ g → idY is uniquely determined. In fact, it is uniquely determined by either one of the compatibilities
demanded by Definition 2.3.6. To see this, it is convenient to break Definition 2.3.6 into two parts. We will
say that a 2-morphism v : f ◦ g → idY is upper compatible with u if the composition

f ' f ◦ idX
id×u−→ f ◦ g ◦ f v×id−→ idY ◦f ' f

coincides with idf . Similarly, we will say that v is lower compatible with u if the composition

g ' idC ◦g
u×id−→ g ◦ f ◦ g id×v−→ g ◦ idD ' g

coincides with idg. We then have the following result, which we will use in §3.4:

Lemma 2.3.8. Let f : X → Y and g : Y → X be 1-morphisms in a 2-category C, and let u : idX → g ◦ f be
a 2-morphism. Suppose that there exist a 2-morphism v : f ◦ g → idY which is upper compatible with u, and
another 2-morphism v′ : f ◦ g → idY which is lower compatible with u. Then v = v′, so that u is the unit of
an adjunction between f and g.
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Lemma 2.3.8 can be regarded as an analogue of the following classical observation: let G be an associative
monoid containing an element f which admits both a left inverse g and a right inverse g′. Then g = g(fg′) =
(gf)g′ = g′ so that f is invertible. The proof of Lemma 2.3.8 is essentially the same, but slightly more
notationally involved:

Proof. Let w : f ◦ g → idY be the 2-morphism in C defined by the composition

f ◦ g ' f ◦ idX ◦g
u→ f ◦ (g ◦ f) ◦ g ' (f ◦ g) ◦ (f ◦ g) v×v

′

→ idY ◦ idY ' idY .

The 2-morphism v × v′ can be factored as a composition

(f ◦ g) ◦ (f ◦ g) v×id→ idY ◦(f ◦ g) v′→ idY .

It follows that w agrees with the composition v′ ◦ (w′ × idg), where w′ is the composition

f ' f ◦ idX
id×u→ f ◦ g ◦ f v×id→ idY ◦f ' f.

Since v is upper compatible with u, we conclude that w′ = idf so that w = v′. The same reasoning shows
that w = v, so that v = v′ by transitivity.

Example 2.3.9. Let f : X → Y be an invertible 1-morphism in a 2-category C, and let g : Y → X denote
its inverse. Then we can choose isomorphisms

idX ' g ◦ f f ◦ g ' idY

which form the unit and counit for an adjunction between f and g. In particular, we can identify g with a
right adjoint to f ; the same argument allows us to identify g with a left adjoint to f .

Conversely, suppose that f and g are adjoint 1-morphisms in C such that the unit and counit maps
idX → g ◦ f and f ◦ g → idY are isomorphisms. Then these maps exhibit g as an inverse to f , up to
isomorphism. This proves the following:

Proposition 2.3.10. Let C be a 2-category in which every 2-morphism is invertible, and let f be a 1-
morphism in C. The following conditions are equivalent:

(1) The morphism f is invertible.

(2) The morphism f admits a left adjoint.

(3) The morphism f admits a right adjoint.

Definition 2.3.11. We will say that a 2-category E has adjoints for 1-morphisms if the following conditions
are satisfied:

(1) For every 1-morphism f : X → Y in E, there exists another 1-morphism g : Y → X and a 2-morphism
u : idX → g ◦ f which is the unit of an adjunction.

(2) For every 1-morphism g : Y → X in E, there exists another 1-morphism f : X → Y and a 2-morphism
u : idX → g ◦ f which is the unit of an adjunction.

Example 2.3.12. Let k be a field, and consider the category Vect(k) of vector spaces over k, endowed with
the monoidal structure given by tensor products of vector spaces. Then linear map e : V ⊗W → k is the
evaluation map for a duality if and only if it determines a perfect pairing between V and W : that is, V and
W are finite-dimensional, and e induces an isomorphism of V with dual space of W .

We now wish to generalize Definition 2.3.11 to the setting of higher categories.
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Definition 2.3.13. Let C be an (∞, n)-category for n ≥ 2, and let h2C denote its homotopy 2-category,
defined as follows:

• The objects of h2C are the objects of C.

• The 1-morphisms of h2C are the 1-morphisms of C.

• Given a pair of objects X,Y ∈ C and a pair of 1-morphisms f, g : X → Y , we define a 2-morphism
from f to g in h2C to be an isomorphism class of 2-morphisms from f to g in C.

We will say that C admits adjoints for 1-morphisms if the homotopy 2-category h2C admits adjoints for
1-morphisms, in the sense of Definition 2.3.11. For 1 < k < n, we will say that C admits adjoints for
k-morphisms if, for any pair of objects X,Y ∈ C, the (∞, n − 1)-category MapC(X,Y ) admits adjoints for
(k− 1)-morphisms. We will say that an (∞, n)-category C has adjoints if C admits adjoints for k-morphisms
for all 0 < k < n.

Remark 2.3.14. Let C be an (∞, n)-category. If every k-morphism in C is invertible, then C admits adjoints
for k-morphisms. The converse holds provided that every (k + 1)-morphism in C is invertible (this follows
from Proposition 2.3.10).

Warning 2.3.15. The condition that an (∞, n)-category C have adjoints depends on the choice of n. We can
always choose to view C as an (∞, n+ 1)-category, in which all (n+ 1)-morphisms are invertible. However,
C will never have adjoints for n-morphisms unless C is an ∞-groupoid.

In the case of a monoidal (∞, n)-category, we can demand slightly more:

Definition 2.3.16. Let C be a monoidal category. We will say that C has duals for objects if the 2-category
B C admits adjoints for 1-morphisms: in other words, if every object X ∈ C has both a left and a right dual.

More generally, suppose that C is an (∞, n)-category equipped with a monoidal structure. Let hC denote
its homotopy category: the objects of hC are the objects of C, and given a pair of objects X,Y ∈ C we let
HomhC(X,Y ) denote the set of isomorphism classes of objects in the (∞, n− 1)-category MapC(X,Y ). The
homotopy category hC inherits a monoidal structure from the monoidal structure on C. We will say that C

has duals for objects if the ordinary category hC has duals for objects.
We will say that a monoidal (∞, n)-category has duals if C has duals for objects and C has adjoints in

the sense of Definition 2.3.13.

Remark 2.3.17. Let C be a monoidal (∞, n)-category. The construction of Example 2.3.7 can be generalized
to produce an (∞, n+ 1)-category B C having only a single object (see Remark 4.4.6). Then C has duals if
and only if B C has adjoints.

Example 2.3.18. Let C be a monoidal (∞, n)-category. We say that an object X ∈ C is invertible if it is
invertible when regarded as a 1-morphism in B C: in other words, if there exists another object X−1 ∈ C

such that the tensor products X⊗X−1 and X−1⊗X are isomorphic to the unit object of C. Every invertible
object X ∈ C admits left and right duals (both given by X−1), and the converse holds if every 1-morphism
in C is invertible (Proposition 2.3.10).

A Picard ∞-groupoid is a symmetric monoidal (∞, 0)-category C such that every object of C is invertible.
Using Remark 2.3.14, we deduce that a Picard ∞-groupoid has duals when regarded as an (∞, n)-category
for any n ≥ 0. Conversely, if C is a symmetric monoidal (∞, n)-category which has duals when regarded as
an (∞, n+ 1)-category, then C is a Picard ∞-groupoid.

Claim 2.3.19. Let C be a symmetric monoidal (∞, n)-category. Then there exists another symmetric
monoidal (∞, n)-category Cfd and a symmetric monoidal functor i : Cfd → C with the following proper-
ties:

(1) The symmetric monoidal (∞, n)-category Cfd has duals.
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(2) For any symmetric monoidal (∞, n)-category D with duals and any symmetric monoidal functor F :
D → C, there exists a symmetric monoidal functor f : D → Cfd and an isomorphism F ' i ◦ f ;
moreover, f is uniquely determined up to isomorphism.

It is clear that the monoidal (∞, n)-category Cfd is determined up to equivalence by the properties
required by Claim 2.3.19.

Example 2.3.20. Let C be a symmetric monoidal (∞, 1)-category. Then we can identify Cfd with the full
subcategory of C spanned by the dualizable objects of C.

In general, the passage from a symmetric monoidal (∞, n)-category C to its fully dualizable part Cfd can
be accomplished by repeatedly discarding k-morphisms which do not admit left and right adjoints (and all
objects which do not admit duals).

Definition 2.3.21. Let C be a monoidal (∞, n)-category. We will say that an object X ∈ C is fully dualizable
if it belongs to the essential image of the functor Cfd → C.

Warning 2.3.22. The terminology of Definition 2.3.21 is potentially ambiguous, because the notion of a
fully dualizable object of an (∞, n)-category C depends on n. For example, a fully dualizable object of C

will almost never remain fully dualizable if we regard C as an symmetric monoidal (∞, n+ 1)-category.

Example 2.3.23. For each n ≥ 0, the symmetric monoidal (∞, n)-category Bordn has duals. Every
k-morphism f : X → Y in Bordn can be identified with an oriented k-manifold M , having boundary
X

∐
∂ X=∂ Y Y ; here X denotes the manifold X with the opposite orientation. We note that M can be

interpreted as a k-morphism Y → X, which is both a right and a left adjoint to f . In the case k = 0 the
analysis is similar but easier: for every object M ∈ Bordn, the object M is both a right and left dual of M .

Example 2.3.24. Let C be the category Vect(k) of vector spaces over a field k (viewed as an (∞, 1)-
category). Then an object V ∈ C is fully dualizable if and only if V is finite-dimensional. More generally, an
object of a symmetric monoidal (∞, 1)-category C is fully dualizable if and only if is dualizable, in the sense
of Definition 2.3.5.

Remark 2.3.25. If n > 1, then the condition that an object C of a symmetric monoidal (∞, n)-category C

be fully dualizable is much stronger than the condition that C be dualizable. The strength of this condition
grows rapidly with n, and tends to be quite difficult to verify if n is large. In §4.2, we will give a simple
criterion for testing full dualizability in the case n = 2 (Proposition 4.2.3).

2.4 The Cobordism Hypothesis

Our goal in this section is to give a more precise formulation of the Baez-Dolan cobordism hypothesis for
framed manifolds (Theorem 1.4.9), and to explain how this statement generalizes to other types of manifolds.
We first establish a bit of terminology.

Notation 2.4.1. Let C and D be (∞, n)-categories. There exists another (∞, n)-category Fun(C,D) of
functors from C to D. The (∞, n)-category Fun(C,D) is characterized up to equivalence by the following
universal property: for every (∞, n)-categoy C′, there is a bijection between the set of isomorphism classes
of functors C′ → Fun(C,D) and the set of isomorphism classes of functors C′×C→ D.

Remark 2.4.2. The collection of all (small) (∞, n)-categories can be organized into a (large) (∞, n + 1)-
category Cat(∞,n), with mapping objects given by MapCat(∞,n)

(C,D) = Fun(C,D).

Variant 2.4.3. Suppose that C and D are symmetric monoidal (∞, n)-categories. Then we can also define
an (∞, n)-category Fun⊗(C,D) of symmetric monoidal functors from C to D.

Notation 2.4.4. Let C be an (∞, n)-category. We let C∼ denote the underlying (∞, 0)-category obtained
by discarding all of the noninvertible morphisms in C.
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Remark 2.4.5. In the situation of Notation 2.4.4, the (∞, 0)-category C∼ can be characterized by the
following universal property: for any (∞, 0)-category D, composition with the inclusion C∼ ⊆ C induces an
equivalence

Fun(D,C∼)→ Fun(D,C).

We are now ready to formulate Theorem 1.4.9 more precisely:

Theorem 2.4.6 (Cobordism Hypothesis: Framed Version). Let C be a symmetric monoidal (∞, n)-category
with duals. Then the evaluation functor Z 7→ Z(∗) induces an equivalence

Fun⊗(Bordfr
n ,C)→ C∼ .

In particular, Fun⊗(Bordfr
n ,C) is an (∞, 0)-category.

Remark 2.4.7. Theorem 2.4.6 is best regarded as comprised of two separate assertions:

(a) The (∞, n)-category Fun⊗(Bordfr
n ,C) is an (∞, 0)-category. Consequently, Remark 2.4.5 implies that

the evaluation functor Fun⊗(Bordfr
n ,C) → C factors through a functor φ : Fun⊗(Bordfr

n ,C) → C∼,
which is well-defined up to isomorphism.

(b) The functor φ is an equivalence of (∞, 0)-categories.

Assertion (a) asserts that every k-morphism in Fun⊗(Bordfr
n ,C) is invertible for 0 < k ≤ n. This statement

is relatively formal. For example, suppose that k = 1, and that α : Z → Z ′ is a natural transformation of
field theories Z,Z ′ : Bordfr

n → C. We wish to show that α is invertible; in other words, we wish to show that
for every object M ∈ Bordfr

n , the induced map αM : Z(M) → Z ′(M) is an isomorphism in the homotopy
category hC. Let M be the same manifold equipped with an n-framing of the opposite orientation. Then
Z(M) and Z ′(M) are dual to Z(M) and Z ′(M) in the homotopy category hC. In particular, we have a map

α∨
M

: Z ′(M) ' Z ′(M)∨ → Z(M)∨ ' Z(M).

It is not difficult to check that α∨
M

is the desired homotopy inverse to αM .
Assertion (b) is much less trivial, and will occupy our attention for the bulk of this paper.

Remark 2.4.8. In the statement of Theorem 2.4.6, the assumption that C has duals entails no real loss of
generality. For any symmetric monoidal (∞, n)-category C, the canonical map

Fun⊗(Bordfr
n ,C

fd)→ Fun⊗(Bordfr
n ,C)

is an equivalence of (∞, n)-categories, where Cfd is defined as in Claim 2.3.19: this follows from the fact
that Bordfr

n has duals (Example 2.3.23). Applying Theorem 2.4.6, we deduce that Fun⊗(Bordfr
n ,C) is

equivalent to the underlying ∞-groupoid of Cfd: in other words, Fun⊗(Bordfr
n ,C) is a classifying space for

fully dualizable objects of C.

Remark 2.4.9. Theorem 2.4.6 may appear to be more precise than Theorem 1.4.9: it describes the entire
(∞, n)-category of functors Fun⊗(Bordfr

n ,C), rather than just its isomorphism classes of objects. However,
this generality is only apparent: to prove that a functor D→ D′ of∞-groupoids is an equivalence, it suffices
to show that for every ∞-groupoid E, the induced functor Fun(E,D) → Fun(E,D′) induces a bijection
between isomorphism classes of objects (this follows from Yoneda’s lemma). To deduce Theorem 2.4.6 from
Theorem 1.4.9, it suffices to apply this observation to the commutative diagram

Fun⊗(Bordfr
n ,Fun(E,C)) //

��

Fun(E,C)∼

��
Fun(E,Fun⊗(Bordfr

n ,C)) // Fun(E,C∼),

in which the vertical functors are equivalences.
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We now explain how Theorem 2.4.6 generalizes to the case of manifolds with other structure groups. We
begin with the following observation: by definition, a framing of an n-manifold M is an isomorphism of the
tangent bundle TM with the trivial bundle Rn of rank n. Consequently, the collection of all framings of M
carries an action of the orthogonal group O(n). More generally, we have an action of O(n) on the collection
of all n-framings of a manifold M of dimension ≤ n. These actions together determine an action of O(n) on
the (∞, n)-category Bordfr

n , and therefore on the∞-groupoid Fun⊗(Bordfr
n ,C), for any symmetric monoidal

(∞, n)-category C. Combining this observation with Theorem 2.4.6, we obtain the following:

Corollary 2.4.10. Let C be a symmetric monoidal (∞, n)-category with duals. Then the underlying ∞-
groupoid C∼ carries an action of the orthogonal group O(n).

Remark 2.4.11. According to Thesis 1.3.8, the ∞-groupoid C∼ can be identified with the fundamental
∞-groupoid of a topological space X, which is well-defined up to homotopy equivalence. Corollary 2.4.10
can be formulated more precisely as follows: it is possible to choose the space X so that it carries an action
of the orthogonal group O(n).

Example 2.4.12. Let C be a symmetric monoidal (∞, 1)-category. Then to say that C has duals is to say
that every object X ∈ C admits a dual X∨ in the homotopy category hC. In this case, Corollary 2.4.10
asserts that the underlying ∞-groupoid of C admits an action of the orthogonal group O(1) ' Z/2Z. The
action of this group corresponds to the involution X 7→ X∨ on C∼. In this case, we can interpret Corollary
2.4.10 as saying that the dual X∨ of an object X ∈ C is defined not only up to isomorphism in the homotopy
category hC, but up to a contractible space of choices in C itself.

Warning 2.4.13. The action of O(n) on C∼ in Corollary 2.4.10 is not the restriction of an action of O(n)
on C itself. For example, when n = 1, the construction X → X∨ is a contravariant functor from C to itself.
We will return to this point in Remark 4.4.10.

Example 2.4.14. Let C be a symmetric monoidal (∞, 2)-category with duals. According to Corollary 2.4.10,
the ∞-groupoid C∼ carries an action of the orthogonal group O(2). In particular, we have a canonical map
SO(2)×C∼ → C∼, which we can think of as an automorphism of the identity functor from C∼ to itself. This
gives rise to an automorphism SX of every object X ∈ C. We will refer to SX as the Serre automorphism of
X. See Remark 4.2.4 for further discussion.

Example 2.4.15. Let C be a Picard ∞-groupoid (see Example 2.3.18). Using Thesis 1.3.8, we can identify
C with a topological space X. The symmetric monoidal structure on C endows X with the structure of an
E∞-space: that is, it is equipped with a multiplication operation which is commutative, associative, and
unital up to coherent homotopy. The assumption that every object of C be invertible translates into the
requirement that X be grouplike: that is, the commutative monoid π0X is actually an abelian group. It
follows that X has the structure of an infinite loop space: that is, there is a sequence of pointed spaces
{X(k)}n≥0 such that X(0) ' X and X(k) is equivalent to the loop space ΩX(k + 1) for all n ≥ 0.

Let Y be a topological space equipped with a base point ∗. The nth suspension ΣnY of Y is defined to
be the quotient of Dn × Y by collapsing the subset (Dn × {∗}) ∪ (Sn−1 × Y ) to a point, where Dn denotes
the n-dimensional unit disk and Sn−1 its boundary. Note that ΣnY carries an action of the orthogonal
group O(n). If X is an infinite loop space as above, then X is homotopy equivalent to the direct limit
lim−→k

Ωn+kΣnX(k). This direct limit carries an action of the group O(n), which determines an action of O(n)
on X up to homotopy; this construction recovers the O(n)-action of Corollary 2.4.10.

We can summarize the situation more succinctly using the language of algebraic topology. We can identify
a Picard∞-groupoid C with a (connective) spectrum. This spectrum then carries an action of the direct limit
O = lim−→O(n) (this is a version of the classical J-homomorphism in stable homotopy theory). Restricting to
the subgroups O(n) for various n, we recover the action of O(n) on C = C∼ guaranteed by Corollary 2.4.10
(note that C can be regarded as an (∞, n)-category with duals; see Example 2.3.18).

We now turn to the problem of describing the analogue of Theorem 2.4.6 when we endow our manifolds
with structures other than that of an n-framing. We first need a general digression about tangential structures
on manifolds.
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Notation 2.4.16. Let X be a topological space and let ζ be a real vector bundle on X of rank n. Let M
be a manifold of dimension m ≤ n. An (X, ζ)-structure on M consists of the following data:

(1) A continuous map f : M → X.

(2) An isomorphism of vector bundles
TM ⊕ Rn−m ' f∗ζ.

Definition Sketch 2.4.17. Let X be a topological space, and let ζ be an n-dimensional vector bundle on
X. The (∞, n)-category Bord(X,ζ)

n is defined just as Bordn (see Definition 2.2.10), except that all of the
manifolds involved are required to be equipped with an (X, ζ)-structure.

Theorem 2.4.18 (Cobordism Hypothesis for (X, ζ)-Manifolds). Let C be a symmetric monoidal (∞, n)-
category with duals, let X be a CW complex, let ζ be an n-dimensional vector bundle over X equipped with
an inner product, and let X̃ → X be the associated principal O(n)-bundle of orthonormal frames in ζ. Then
there is an equivalence of (∞, 0)-categories

Fun⊗(Bord(X,ζ)
n ,C) ' HomO(n)(X̃,C

∼),

Here we identify C∼ with a topological space carrying an action of the group O(n) (see Corollary 2.4.10 and
Remark 2.4.11).

Remark 2.4.19. Let X and ζ be as in Theorem 2.4.18. Note that every point x̃ ∈ X̃ determines an (X, ζ)-
structure on the 0-manifold ∗ consisting of a single point. The equivalence of Theorem 2.4.18 is implemented
by restricting a symmetric monoidal functor Z : Bord(X,ζ)

n → C to (X, ζ)-manifolds which are obtained in
this way.

Remark 2.4.20. Let X, ζ, and C be as in Theorem 2.4.18. For every map of CW complexes Y → X, let
Ỹ = Y ×X X̃ be the associated O(n)-bundle over Y . The functor Y 7→ HomO(n)(Ỹ ,C

∼) carries homotopy
colimits in Y to homotopy limits of spaces. It follows from Theorem 2.4.18 that the functor Y 7→ Bord(Y,ζ|Y )

n

commutes with homotopy colimits in Y . This can be regarded as a kind of excision property. For example,
it implies that for any open covering {Ui} of X, we can recover Bord(X,ζ)

n by gluing together the (∞, n)-
categories Bord(Ui,ζ|Ui)

n in a suitable way. This is the reflection of a simple geometric idea: namely, that
any manifold M equipped with an (X, ζ)-structure f : M → X can be disassembled into pieces such that
on each piece, f factors through one of the open sets Ui. We do not know a direct proof of this excision
property: we can only deduce it indirectly from Theorem 2.4.18. However, the idea of decomposing X into
pieces will feature in the proof of Theorem 2.4.18 that we present in §3.1.

When the topological space X is connected, Theorem 2.4.18 can be expressed in a slightly more conceptual
way. To explain this, we need to introduce a bit more notation.

Notation 2.4.21. Suppose that G is a topological group equipped with a continuous homomorphism χ :
G → O(n), where O(n) denotes the orthogonal group. We let EG denote a weakly contractible G-CW
complex on which G acts freely (in other words, a space which is obtained by gluing together cells of the
form G × Dn for n ≥ 0; such a space exists and is unique up to G-equivariant homotopy equivalence).
Let BG = EG/G denote a classifying space for G, and let ζχ = (Rn×EG)/G denote the vector bundle
over BG determined by χ. We will denote the (∞, n)-category Bord(BG,ζχ)

n by BordGn and refer to an
(BG, ζ)-structure on a manifold M as an G-structure on M .

Example 2.4.22. If the group G is trivial, then a G-structure on a manifold M is an n-framing of M , as
described in Variant 1.2.14. If G = SO(n), then giving a G-structure on a manifold M is (up to contractible
ambiguity) equivalent to choosing an orientation of M . If G = O(n), then a G-structure on a manifold M
consists of no structure at all. We therefore have equivalences

Bordfr
n ' Bord{1}n Bordor

n ' BordSO(n)
n Bordn ' BordO(n)

n .
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Definition 2.4.23. Let G be a topological group acting continuously on a topological space X. The
homotopy fixed set XhG is defined to be the space of G-equivariant maps HomG(EG,X), where EG is as in
Notation 2.4.21.

Remark 2.4.24. In order for Definition 2.4.23 to be sensible, we should require that G and EG are CW-
complexes (in practice, this is easy to arrange, since we will generally take G to be a compact Lie group).
In this case, the homotopy type of XhG is independent of the choice of EG, and the construction X 7→ XhG

preserves weak homotopy equivalences.

Notation 2.4.25. Let C be an ∞-groupoid carrying an action of the topological group G. An analogue of
Thesis 1.3.8 asserts that C is equivalent to the fundamental ∞-groupoid of a topological space X carrying
an action of G. We let ChG denote the fundamenal ∞-groupoid of the homotopy fixed set XhG.

Theorem 2.4.26 (Cobordism Hypothesis for G-Manifolds). Let C be a symmetric monoidal (∞, n)-category
with duals, and let χ : G→ O(n) be a continuous group homomorphism. There is a canonical equivalence of
(∞, n)-categories

Fun⊗(BordGn ,C)→ (C∼)hG.

In particular, Fun⊗(BordGn ,C) is an ∞-groupoid.

Proof. Let B̃G denote the O(n)-bundle (EG×O(n))/G over BG determined by the homomorphism χ. Ac-
cording to Theorem 2.4.18, we can identify Fun⊗(BordGn ,C) with HomO(n)(B̃G,C

∼). The desired conclusion
follows from the evident equivalence

HomO(n)(B̃G,C
∼) ' HomG(EG,C∼) ' (C∼)hG.

Example 2.4.27. In the special case where the group G is trivial, Theorem 2.4.26 reduces to Theorem
2.4.6.

Example 2.4.28. In the case n = 1 and G = O(1), Theorem 2.4.26 asserts that the data of a 1-dimensional
unoriented field theory Z : Bord1 → C is equivalent to the data of a homotopy fixed point of for the natural
action of O(1) ' Z/2Z on C∼. As indicated in Example 2.4.12, we can think of this action as given by the
involution on C which carries every object X ∈ C to its dual X∨. A homotopy fixed point can therefore
be identified with a symmetrically self-dual object of C: in other words, an object X ∈ C equipped with a
symmetric map X⊗X → 1 which exhibits X as a dual of itself. For example, if C is the (ordinary) category
of vector spaces, then Z is determined by the finite dimensional vector space V = Z(∗), together with a
nondegenerate symmetric bilinear form on V .

Remark 2.4.29. If X is a nonempty path connected topological space, then there exists a topological group
G and a weak homotopy equivalence BG ' X. A real vector bundle of rank n on X determines a continuous
homomorphism χ : G→ O(n) (possibly after replacing G by a weakly equivalent topological group) so that
the pairs (BG, ζχ) and (X, ζ) are weakly equivalent. The proof of Theorem 2.4.26 shows that Theorem 2.4.26
for χ : G→ O(n) is equivalent to Theorem 2.4.18 for the pair (X, ζ). Consequently, we can regard Theorem
2.4.18 as a very mild generalization of Theorem 2.4.26: it is slightly stronger because it encompasses the
situation where the space X is not path connected.

Remark 2.4.30. Throughout this paper, we have considered only smooth manifolds. However, it is possible
to define analogues of the (∞, n)-category Bordn in the piecewise linear and topological settings. Let us
denote these (∞, n)-categories by BordPL

n and BordTop
n . These (∞, n)-categories are related by functors

Bordn
θ→ BordPL

n
θ′→ BordTop

n ,

where θ′ is defined by forgetting piecewise linear structures, and θ is defined by selecting Whitehead com-
patible triangulations of smooth manifolds (which are always unique up to a contractible space of choices).
These functors are related as follows:
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(1) For n ≤ 3, the theories of smooth, topological, and piecewise linear manifolds all essentially equivalent
to one another, and the functors θ and θ′ are equivalences.

(2) If we restrict our attention to n-framed manifolds, then the analogue of the functor θ is an equivalence
Bordfr

n → BordPL,fr
n (here the notion of a framing in the piecewise linear setting involves trivialization

of piecewise linear microbundles, rather than vector bundles): this can be proven using parametrized
smoothing theory.

(3) Combining (2) with the proof of Corollary 2.4.10, we can obtain a stronger result: for any symmetric
monoidal (∞, n)-category C with duals, the underlying ∞-groupoid C∼ carries an action of the group
PL(n) of piecewise-linear homeomorphisms from Rn to itself.

(4) If n 6= 4, then assertion (3) is in some sense optimal: the group PL(n) is homotopy equivalent to the
automorphism group of BordPL,fr

n ' Bordfr
n , and is therefore universal among groups which act on

C∼ for every symmetric monoidal (∞, n)-category with duals C. We do not know if the analogous
statement holds for n = 4: it is equivalent to the piecewise-linear Schoenflies conjecture.

(5) Using (3), one can formulate an analogue of Theorem 2.4.18 for piecewise linear Rn-bundles ζ → X
(and Theorem 2.4.26 for maps of groups G→ PL(n)). This analogue is equivalent to Theorem 2.4.18 if
ζ → X can be refined to a vector bundle. The proof in general is more difficult, and requires methods
which we will not describe here.

(6) Assertion (4) guarantees that the action of PL(n) on C∼ generally does not extend to an action of
the group Top(Rn) of topological homeomorphisms of Rn with itself when n ≥ 5 (here C denotes a
symmetric monoidal (∞, n)-category with duals). Consequently, there is no obvious way to formulate
Theorems 2.4.26 and 2.4.18 in the topological setting.

We do not know an analogue of the cobordism hypothesis which describes the topological bordism cat-
egories BordTop

n for n ≥ 4. Roughly speaking, the usual cobordism hypothesis (for smooth manifolds)
can be regarded as an articulation of the idea that smooth manifolds can be constructed by a sequence
of handle attachments: that is, every smooth manifold admits a handle decomposition. The handle
decomposition of a smooth manifold is not unique. Nevertheless, any two handle decompositions can
be related by a finite sequence of handle cancellation rules which have natural category-theoretic inter-
pretations (we will explain this idea more precisely in §3.4). However, there are topological 4-manifolds
which do not admit handle decompositions (such as Freedman’s E8-manifold).

2.5 The Mumford Conjecture

Fix a closed oriented surface Σg of genus g ≥ 0. Let Diff(Σg) denote the group of orientation-preserving
diffeomorphisms of Σg, let EDiff(Σg) denote a contractible space with a free action of Diff(Σg), and
let BDiff(Σg) = EDiff(Σg)/Diff(Σg) denote a classifying space for Diff(Σg). Over the classifying space
BDiff(Σg) we have a canonical fiber bundle

π : X = (EDiff(Σg)× Σg)/Diff(Σg)→ BDiff(Σg),

with fibers homeomorphic to Σg. Using the fact that the fibers of π are oriented surfaces, we deduce:

(a) There is an oriented real vector bundle V of rank 2 on X, whose restriction to every point x ∈ X
is given by the tangent space to the fiber π−1{π(x)} at x. This vector bundle V has an Euler class
e(V ) ∈ H2(X; Q).

(b) There is an integration map on cohomology

H∗+2(X; Q)→ H∗(BDiff(Σg); Q).
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In particular, for each n ≥ 0 we can evaluate this map on e(V )n+1 to obtain a class

κn ∈ H2n(BDiff(Σg); Q).

The classes {κn}n>0 determine a homomorphism of graded rings

Q[κ1, κ2, . . .]→ H∗(BDiff(Σg); Q),

where the grading on the left hand side is determined by letting each κn have degree 2n. The following
result was conjectured by Mumford:

Theorem 2.5.1 (Mumford Conjecture). Fix a positive integer n. Then for all sufficiently large g (depending
on n), the map

Q[κ1, κ2, . . .]→ H∗(BDiff(Σg); Q)

defined above is an isomorphism in degrees ≤ n.

Remark 2.5.2. For each g ≥ 0, the group of connected components π0 Diff(Σg) is called the mapping class
group of Σg and denoted by Γg. If g ≥ 2, then the projection map Diff(Σg) → π0 Diff(Σg) is a homotopy
equivalence. Consequently, we can identify H∗(BDiff(Σg); Q) with the rational cohomology of the discrete
group Γg.

Theorem 2.5.1 was proven by Madsen and Weiss in [19]. Our goal in this section is to explain the
relationship between their proof (at least in its modern incarnation) and the cobordism hypothesis. For this,
we need to introduce a bit of terminology.

Notation 2.5.3. Let X• be a simplicial space. We define a new topological space |X•|, the geometric
realization of X•, as the coequalizer of the diagram∐

f :[m]→[n]Xn ×∆m // //
∐
nXn ×∆n .

In other words, |X•| is the space obtained by gluing together the products Xn ×∆n in the pattern specified
by the simplicial structure of X•.

More generally, suppose that X is a k-fold simplicial space. We define the geometric realization |X| of
X to be the coequalizer∐

{fi:[mi]→[ni]}1≤i≤k Xn1,...,nk ×∆m1 × . . .×∆mk ////
∐
n1,...,nk

Xn1,...,nk ×∆n1 × . . .×∆nk .

Remark 2.5.4. Let X be a k-fold simplicial space. Then we can view X as a diagram in the category
of topological spaces. The geometric realization |X| can be identified with the homotopy colimit of this
diagram. In other words, the construction X 7→ |X| is left adjoint (at the level of homotopy categories) to
the functor which carries a topological space Y to the constant k-fold simplicial space taking the value Y .

Remark 2.5.5. According to Thesis 1.3.8, we can identify (∞, 0)-categories with topological spaces. Sup-
pose that X is an n-fold Segal space, which determines an (∞, n)-category C as explained in §2.1. Then the
geometric realization |X| can be viewed as an (∞, 0)-category, and Remark 2.5.4 implies that |X| is universal
among (∞, 0)-categories equipped with a functor C → |X|. In other words, we can think of the geometric
realization |X| as encoding the (∞, 0)-category obtained from C by formally inverting all k-morphisms for
1 ≤ k ≤ n.

Example 2.5.6. Let X denote the n-fold Segal space PBordor
n used to define Bordor

n in §2.2. The geometric
realization |X| has a canonical base point ∗, given by the point of X0,...,0 supplied by the empty set.

Suppose that M is a closed oriented manifold of dimension n. Then there exists a tangential embedding
f of M into (0, 1)n × R∞×BSO(n), which determines a point of the space X1,...,1. This point in turn
determines a map of topological spaces

∆1 × . . .×∆1 → |X|,
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which carries the boundary of the cube ∆1 × . . .×∆1 to the base point of |X|: this determines an element
of the homotopy group πn(|X|, ∗) which we will denote by [M ]; it is not difficult to see that the homotopy
class [M ] is independent of the choice of f .

The construction M 7→ [M ] is completely functorial, and makes sense for families of manifolds. In
particular, we can apply this construction to the universal bundle of manifolds with fiber M , whose base is
the classifying space BDiff(M). This classifying space can be identified with a suitable path component of
X1,...,1, so we get a map

∆1 × . . .×∆1 × BDiff(M)→ |X|,

which carries the product of BDiff(M) with the boundary of the cube ∆1 × . . . × ∆1 to the base point
of |X|. This can also be interpreted as a map of topological spaces BDiff(M) → Ωn|X|, where Ωn|X|
denotes the nth loop space of |X|. Composing with the completion map X → Bordor

n , we get a map
BDiff(M)→ Ωn|Bordor

n |.

Returning to the case of surfaces, we observe that for every genus g ≥ 0 Example 2.5.6 provides a map
ηg : BDiff(Σg) → Ω2|Bordor

2 |. Let Yg denote the path component of Ω2|Bordor
2 | containing the image of

ηg. To prove Theorem 2.5.1, it suffices to do the following:

(i) Prove that the induced map on cohomology

Hn(Yg; Q)→ Hn(BDiff(Σg); Q)

is an isomorphism for all sufficiently large g (depending on n).

(ii) Compute the cohomology groups H∗(Ω2|Bordor
2 |; Q) (which contain the cohomology groups of each

component Yg ⊆ Ω2|Bordor
2 | as direct factors).

Step (i) involves delicate geometric arguments which are very specific to manifolds of dimension 2 (such as
the Harer stability theorem). However, step (ii) has an analogue which is true in any dimension. Moreover,
it is possible to be much more precise: we can describe not just the rational cohomology of the space
Ω2|Bordor

2 |, but the entire homotopy type of the classifying space |Bordor
2 | itself:

Theorem 2.5.7 (Galatius-Madsen-Tillmann-Weiss, [11]). Let n ≥ 0 be an integer. Then the geometric
realization |Bordor

n | is homotopy equivalent to the 0th space of the spectrum Σn MTSO(n). Here MTSO(n)
denotes the Thom spectrum of the virtual bundle −ζ, where ζ is the universal rank n-vector bundle over the
classifying space BSO(n).

Remark 2.5.8. The result of Galatius-Madsen-Tillmann-Weiss is actually somewhat more general than
Theorem 2.5.7; it can be formulated for manifolds with arbitrary structure group, as we will explain below.

Remark 2.5.9. Theorem 2.5.7 can be regarded as a generalization of a classical result of Thom on the
bordism groups of manifolds. Recall that a pair of closed oriented manifolds M and N of the same dimension
d are said to be cobordant if there is a bordism from M to N : that is, an oriented manifold B of dimension
(d+1) whose boundary is diffeomorphic with M

∐
N . Cobordism is an equivalence relation on manifolds, and

the set of equivalence classes Ωd has the structure of an abelian group (given by disjoint unions of manifolds).
In [22], Thom showed that the calculation of the groups {Ωd}d≥0 could be reduced to a problem of homotopy
theory. More precisely, there exists a pointed topological space X and a sequence of isomorphisms Ωd ' πdX.
Moreover, the space X admits a direct construction in the language of algebraic topology: it is the 0th space
of what is now callled the Thom spectrum MSO.

In the language of higher category theory, we might predict the existence of the space X on the following
grounds. Let C be the higher category described as follows:

• The objects of C are oriented 0-manifolds.

• The 1-morphisms of C are bordisms between oriented 0-manifolds.
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• The 2-morphisms of C are bordisms between bordisms between oriented 0-manifolds.

• . . .

Here it is sensible to view C as an (∞, 0)-category: for every k-morphism B : M → N in C, the same
manifold with the opposite orientation defines a bordism B : N → M which can be taken as an inverse to
B. According to Thesis 1.3.8, we should expect the existence of a topological space X whose fundamental
∞-groupoid is equivalent to C. Unwinding the definitions, we learn that the homotopy groups πdX can be
identified with the bordism groups Ωd.

The higher category C can be viewed as the direct limit of the (∞, n)-categories Bordn as n grows.
Consequently, the space X can be constructed as the direct limit of the classifying spaces |Bordn |. Invoking
Theorem 2.5.7, we deduce that X is equivalent to the zeroth space of the spectrum given by the direct
limit lim−→Σn MTSO(n). This direct limit coincides with the Thom spectrum MSO, essentially by definition:
consequently, Thom’s result can be recovered as a limiting case of Theorem 2.5.7.

Our goal for the remainder of this section is to explain the relationship between Theorem 2.5.7 and the
cobordism hypothesis. To begin, suppose that we are given an (∞, n)-category D. As explained in Remark
2.5.5, we can extract from D a topological space |D |, whose fundamental ∞-groupoid can be viewed as the
(∞, 0)-category obtained from D by inverting all k-morphisms for 1 ≤ k ≤ n. We can rephrase this universal
property as follows: let X be any topological space having fundamental ∞-groupoid C. Then isomorphism
classes of functors F : D→ C can be identified with homotopy classes of continuous maps |D | → X.

Suppose now that the (∞, n)-category D is equipped with a symmetric monoidal tensor product operation
⊗ : D×D → D. This operation induces a continuous map |D | × |D | → |D |, which is commutative,
associative and unital up to coherent homotopy. Suppose that this multiplication induces a group structure
on π0|D | (in other words, that every point of |D | has an inverse in |D | up to homotopy): this is automatic,
for example, if every object of D has a dual. As in Example 2.4.15, we deduce that |D | is an infinite loop
space: that is, there exists a sequence of pointed spaces Y (0) = |D |, Y (1), Y (2), . . . together with homotopy
equivalences Y (n) ' ΩY (n + 1). Moreover, this infinite loop space can be again be characterized by a
universal property. Suppose that X is another infinite loop space, so that the fundamental ∞-groupoid C

has the structure of a Picard ∞-groupoid (see Example 2.3.18). Then isomorphism classes of symmetric
monoidal functors F : D→ C can be identified with homotopy classes of infinite loop space maps |D | → X.
Combining this observation with Theorem 2.4.26, we deduce the following description of the geometric
realization of a bordism (∞, n)-category:

Theorem 2.5.10 (Cobordism Hypothesis, Group-Completed Version). Let G be a topological group equipped
with a continuous homomorphism χ : G → O(n), and let X be an infinite loop space (so that X carries an
action of the group G via the J-homomorphism, as explained in Example 2.4.15). Then the space of infinite
loop maps Map(|BordGn |, X) is homotopy equivalent to the homotopy fixed point set XhG.

Theorem 2.5.10 completely determines the homotopy type of |BordGn | as an infinite loop space. For
example, if the group G is trivial, then we deduce that |BordGn | is freely generated (as an infinite loop
space) by a single point: this tells us that |BordGn | is equivalent to the stable sphere QS0 ' lim−→k

ΩkSk.
More generally, we can identify |BordGn | with the infinite loop space of homotopy coinvariants (QS0)hG.
This, in turn, can be identified with the 0th space of a certain spectrum: namely, the n-fold suspension of
the Thom spectrum of the virtue bundle −ζχ on the classifying space BG. In the special case G = SO(n),
we deduce that Theorems 2.5.10 and 2.5.7 are equivalent to one another. In other words, Theorem 2.5.7 can
be regarded as a special case of the cobordism hypothesis.

3 Proof of the Cobordism Hypothesis

Our objective in this section is to present a proof of the cobordism hypothesis (in its incarnation as Theorem
2.4.18). Because the argument is quite lengthy and requires a substantial amount of technology which we
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do not have the space to fully develop here, we will be content to give a sketch which highlights some of the
main ideas; a detailed account will appear elsewhere.

For the reader’s convenience, we begin by giving a basic summary of our strategy:

(1) To prove the cobordism hypothesis, we need to show that the (∞, n)-category Bordn and its variants
can be characterized by universal properties. The first idea is to try to establish these universal
properties using induction on n. Roughly speaking, instead of trying to describe Bordn by generators
and relations, we begin by assuming that we have a similar presentation for Bordn−1; we are then
reduced to describing only the generators and relations which need to be adjoined to pass from Bordn−1

to Bordn. We will carry out this reduction in §3.1.

(2) Theorem 2.4.18 gives us a description of Bord(X,ζ)
n for any topological space X and any rank n vector

bundle ζ (with inner product) on X. In §3.2, we will see that it suffices to treat only the universal
case where X is a classifying space BO(n) (and ζ is the tautological bundle on X). Roughly speaking,
the idea is to consider a topological field theory Z : Bord(X,ζ)

n → C as an unoriented topological field
theory having a different target category, whose value on a manifold M is a collection of C-valued
invariants parametrized by the space of (X, ζ)-structures on M . This reduction to the unoriented case
is not logically necessary for the rest of the argument, but does result in some simplifications.

(3) In §3.3, we will explain how the cobordism hypothesis (and many other assertions regarding symmet-
ric monoidal (∞, n)-categories with duals) can be reformulated entirely within the setting of (∞, 1)-
categories. Again, this formulation is probably not logically necessary, but it does make the construc-
tions of §3.4 considerably more transparent.

(4) The bulk of the argument will be carried out in §3.4. Roughly speaking, we can view Bordn as obtained
from Bordn−1 by adjoining new n-morphisms corresponding to bordisms between (n − 1)-manifolds.
Using Morse theory, we can break any bordism up into a sequence of handle attachments, which give us
“generators” for Bordn relative to Bordn−1. The “relations” are given by handle cancellations. The
key geometric input for our argument is a theorem of Igusa, which asserts that the space of “framed
generalized Morse functions” on a manifold M is highly connected. This will allow us to prove the
cobordism hypothesis for a modified version of the (∞, n)-category Bordn, which we will denote by
Bordff

n .

(5) In §3.5, we will complete the proof of the cobordism hypothesis by showing that Bordff
n is equivalent to

Bordn. The key ingredients are a connectivity estimate of Igusa (Theorem 3.5.21) and an obstruction
theoretic argument which relies on a cohomological calculation (Theorem 3.5.23) generalizing the work
of Galatius, Madsen, Tillmann, and Weiss.

3.1 Inductive Formulation

Our original formulation of the cobordism hypothesis (Theorem 1.2.16) was stated entirely in the setting
of symmetric monoidal n-categories. In §1.4, we described a more general version (Theorem 1.4.9), which
describes bordism categories by a universal property in the more general setting of (∞, n)-categories. As we
explained in Remark 1.4.11, this additional generality is crucial to our proof, which uses induction on n: even
if we are ultimately only interested in understanding tensor functors Z : Bordn → C in the case where C is
an ordinary n-category, we will need to understand the restriction of Z to Bordn−1, which takes values in the
(n, n− 1)-category obtained from C by discarding the noninvertible n-morphisms. Our goal in this section is
to outline the inductive step of the proof: namely, we will explain how to deduce the cobordism hypothesis in
dimension n from the cobordism hypothesis in dimension n− 1, together with another statement (Theorem
3.1.8) which describes the relationship between Bordn and Bordn−1.

Throughout this section, we will fix an integer n ≥ 2, a topological space X, and a real vector bundle
ζ of rank n on X, equipped with an inner product (our discussion will apply also in the case n = 1, but
some of the notation needs to be modified). Let X̃ = {(x, f) : x ∈ X, f : Rn ' ζx} denote the bundle of

52



orthonormal frames of ζ, so that X̃ is a principal O(n)-bundle over X. Let X0 denote the unit sphere bundle
{(x, v) : x ∈ X, v ∈ ζx, |v| = 1} of ζ, and let ζ0 = {(x, v, w) : (x, v) ∈ X0, w ∈ ζx, (v, w) = 0} denote the
induced (n− 1)-dimensional vector bundle on X0. We observe that the bundle of orthonormal frames of ζ0
can also be identified with X̃, so we have a homeomorphism X0 = X̃/O(n− 1).

Let p : X0 → X denote the projection map. We have a canonical isomorphism of vector bundles
ζ0 ⊕ R ' p∗ζ. Moreover, (X0, ζ0) is universal among vector bundles of rank n − 1 with this property. It
follows that if M is a manifold of dimension < n, then the data of an (X0, ζ0)-structure on M is equivalent
to the data of an (X, ζ)-structure on M . We obtain a map of bordism categories

i : Bord(X0,ζ0)
n−1 → Bord(X,ζ)

n .

Remark 3.1.1. Roughly speaking, we can think of i as an inclusion functor: we have included the (∞, n−1)-
category Bord(X0,ζ0)

n−1 (in which n-morphisms are given by diffeomorphisms between (n−1)-manifolds) into a
larger (∞, n)-category Bord(X,ζ)

n (in which n-morphisms are given by bordisms between (n− 1)-manifolds).
It is tempting to assume that Bord(X0,ζ0)

n−1 is obtained from Bord(X,ζ)
n by discarding the noninvertible

n-morphisms. However, this is not always correct: for large values of n, the invertible n-morphisms in
Bord(X,ζ)

n are given by h-cobordisms between (n− 1)-manifolds. Such an h-cobordism need not arise from
a diffeomorphism between the underlying manifolds without assumptions of simple-connectivity.

Remark 3.1.2. Strictly speaking, the map i : Bord(X0,ζ0)
n−1 → Bord(X,ζ)

n depends on a choice of isomorphism
α : ζ0 ⊕ R ' p∗ζ. Our choice will be normalized by the following requirements:

(i) The restriction of α to the factor ζ0 reduces to the canonical inclusion of ζ0 ' {(x, v, w) : x ∈ X; v, w ∈
ζx; (v, w) = 0} into p∗ζ ' {(x, v, w) : x ∈ X; v, w ∈ ζx}.

(ii) The restriction of α to the factor R is given by the global section (x, v) 7→ (x, v, v) of p∗ζ.

However, there is another canonical normalization, where (ii) is replaced by the following:

(ii′) The restriction of α to the factor R is given by the global section (x, v) 7→ (x, v,−v) of p∗ζ.

This choice determines a different functor i′ : Bord(X0,ζ0)
n−1 → Bord(X,ζ)

n .

Our goal in this section is to study the difference between Bord(X,ζ)
n and Bord(X0,ζ0)

n−1 . More precisely,
we wish to analyze the problem of extending a symmetric monoidal functor Z0 : Bord(X0,ζ0)

n−1 → C to a
symmetric monoidal functor Z : Bord(X,ζ)

n → C, where C is a symmetric monoidal n-category with duals.
It turns out that extensions of Z0 are easy to classify: they are determined by the values of Z on the class
of n-dimensional disks. To state this result more precisely, we need to introduce some terminology.

Notation 3.1.3. Let C be a symmetric monoidal (∞, n)-category, and let 1 denote the unit object of C.
We let Ω C denote the symmetric monoidal (∞, n− 1)-category MapC(1,1). More generally, for each k ≤ n,
we let Ωk C denote the symmetric monoidal (∞, n− k)-category Ω(Ωk−1 C). We will refer to objects of Ωk C

as closed k-morphisms in C.

Example 3.1.4. A closed k-morphism in Bord(X,ζ)
n is a closed k-manifold M equipped with an (X, ζ)-

structure. In particular, for every point x ∈ X, the unit sphere Sζx = {w ∈ ζx : |v| = 1} comes equipped with
a canonical (X0, ζ0)-structure, and can therefore be regarded as a closed (n− 1)-morphism in Bord(X0,ζ0)

n−1 .

Suppose that we are given a symmetric monoidal functor Z0 : Bord(X0,ζ0)
n−1 → C. The construction

x 7→ Z0(Sζx) determines a functor from X to Ωn−1 C, which we will denote by Φ.
Given a point x = (x, v) ∈ X0, we obtain a decomposition of the sphere Sζx into upper and lower

hemispheres

Sζxv,+ = {w ∈ ζx : (v, w) ≥ 0, |w| = 1} Sζxv,− = {w ∈ ζx : (v, w) ≤ 0, |w| = 1},
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so that Sζx = Sζxv,+
∐
Sζxv,0

Sζxv,− where Sζxv,0 = Sζxv,+ ∩ S
ζx
v,− = {w ∈ ζx : (v, w) = 0, |w| = 1}. Consequently, the

(n− 1)-morphism Sζx in Bord(X0,ζ0)
n−1 can be written as the composition of a pair of morphisms

∅
Sζxv,−−→ Sζxv,0

Sζxv,+−→ ∅.

Composing with Z0, we obtain a pair of morphisms

1
H−(x)−→ H0(x)

H+(x)−→ 1

in the (∞, 2)-category Ωn−2 C, whose composition is Φ(x) ∈ Ωn−1 C.

Definition 3.1.5. Suppose given a symmetric monoidal functor Z0 : Bord(X0,ζ0)
n−1 → C, where C is a

symmetric monoidal (∞, n)-category with duals. Let x be a point of X, and let x ∈ X0 be a lift of x. We
will say that an 2-morphism η : 1 → Φ(x) = H+(x) ◦H−(x) in Ωn−2 C is nondegenerate at x if η exhibits
H+(x) as a right adjoint to H−(x).

Remark 3.1.6. Let Z0 : Bord(X0,ζ0)
n−1 → C and x ∈ X be as in Definition 3.1.5. Our assumption n ≥ 2

implies that the (n − 1)-sphere Sζx is connected. Consequently, if a map η : 1 → Φ(x) is nondegenerate at
any point x ∈ Sζx , then it is nondegenerate at every point of Sζx . In this case, we will simply say that η is
nondegenerate at x.

When n = 1, these notions need to be slightly revised. In this case, the object Φ(x) ∈ C factors as a
tensor product H+(x) ⊗ H−(x). We will say that a 1-morphism η : 1 → Φ(x) in C is nondegenerate if it
exhibits H+(x) as a dual of H−(x). The sphere Sζx is disconnected in this case. However, the condition
that η be nondegenerate is still independent of the choice of x, since a map 1→ X ⊗Y exhibits X as a dual
of Y if and only if it exhibits Y as a dual of X.

Example 3.1.7. Let C be a symmetric monoidal (∞, n)-category with duals, let Z0 : Bord(X0,ζ0)
n−1 → C

be a symmetric monoidal functor, and suppose that Z0 can be extended to a symmetric monoidal functor
Z : Bord(X,ζ)

n → C. For each x ∈ X, we can regard the unit disk Dζx = {v ∈ ζx : |v| ≤ 1} as a bordism from
the empty manifold to Sζx ; it therefore defines an n-morphism Dζx : ∅ → Sζx in Bord(X,ζ)

n . Applying the
functor Z, we obtain a nondegenerate n-morphism ηx = Z(Dζx) : 1→ Φ(x).

Example 3.1.7 admits the following converse, which is the basis of our inductive approach to the cobordism
hypothesis:

Theorem 3.1.8 (Cobordism Hypothesis, Inductive Formulation). Let C be a symmetric monoidal (∞, n)-
category with duals, and let Z0 : Bord(X0,ζ0)

n−1 → C be a symmetric monoidal functor. The following types of
data are equivalent:

(1) Symmetric monoidal functors Z : Bord(X,ζ)
n → C extending Z0.

(2) Families of nondegenerate n-morphisms ηx : 1→ Z0(Sζx) in C, parametrized by x ∈ X.

The equivalence is given by assigning a symmetric monoidal functor Z : Bord(X,ζ)
n → C the collection of

nondegenerate n-morphisms {ηx = Z(Dζx)}x∈X of Example 3.1.7.

Remark 3.1.9. Theorem 3.1.8 can be stated a bit more simply in the case where the space X is path
connected. In this case, we can assume without loss of generality that X is a classifying space BG, where
G is a topological group equipped with a continuous homomorphism χ : G→ O(n). Assume further that χ
is a fibration, and let G0 denote the subgroup G ×O(n) O(n − 1) ⊆ G so that we can identify X0 with the
classifying space BG0. If C is a symmetric monoidal (∞, n)-category with duals, then Theorem 3.1.8 asserts
that symmetric monoidal functors Z : BordGn → C are determined by two pieces of data:
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(i) The restriction Z0 = Z|BordG0
n−1. In this case, we can evaluate Z0 on the n-sphere Sn−1 to obtain a

closed (n− 1)-morphism Z0(Sn−1) of C. The orthogonal group acts by diffeomorphisms on Sn−1, and
the resulting action of G on Sn−1 is compatible with the G-structure on Sn−1 determined by the stable
framing TSn−1⊕R ' Rn. Consequently, the topological group G acts on the object Z0(Sn−1) ∈ Ωn−1 C.

(ii) A G-equivariant n-morphism η ∈ MapΩn−1 C(1, Z0(Sn−1)) which satisfies the nondegeneracy condition
described in Definition 3.1.5. This n-morphism is given by evaluating Z on the the n-disk Dn = {v ∈
Rn : |v| ≤ 1}.

We will outline the proof of Theorem 3.1.8 later in this paper. Our goal for the remainder of this section
is to explain how Theorem 3.1.8 can be used to prove earlier incarnations of the cobordism hypothesis
(Theorems 2.4.6 and 2.4.18). We will prove these results by a simultaneous induction on n.

Remark 3.1.10. It is necessary to discuss Theorems 2.4.6 and 2.4.18 individually, because Theorem 2.4.18
cannot even be formulated without assuming Theorem 2.4.6 (we need some form of the cobordism hypothesis
to define the action of O(n) on the underlying ∞-groupoid of a symmetric monoidal (∞, n)-category with
duals).

Proof of Theorem 2.4.6. Our concern in this case is the framed bordism (∞, n)-category Bordfr
n , which

coincides with Bord(X,ζ)
n in the case where X is a single point. Let {v1, v2, . . . , vn} be an orthonormal basis

for the vector space ζ. The choice of such a basis determines an identification of X̃ with the orthogonal
group O(n), and of X0 with the standard (n− 1)-sphere Sn−1 = {v ∈ Rn : |v| = 1}. Let C be a symmetric
monoidal (∞, n)-category with duals. We wish to prove that the groupoid Fun⊗(Bord(X,ζ)

n ,C) is equivalent
to C∼, the equivalence being implemented by the functor Z 7→ Z(∗). In proving this, we will assume that
Theorem 3.1.8 holds in dimensions ≤ n, and that Theorems 2.4.6 and 2.4.18 hold in dimension < n. We
now apply these assumptions as follows:

(1) Applying Theorem 3.1.8, we deduce that giving a symmetric monoidal functor Z : Bord(X,ζ)
n → C is

equivalent to giving the following data:

(a0) A symmetric monoidal functor Z0 : Bord(X0,ζ0)
n−1 → C.

(b0) A nondegenerate n-morphism η : 1→ Z0(Sn−1).

(2) Applying Theorems 2.4.6 and 2.4.18 in dimension (n− 1), we deduce that the ∞-groupoid C∼ carries
an action of the orthogonal group O(n − 1). Moreover, a symmetric monoidal functor Z0 as in (a0)
above is equivalent to the following data:

(a1) An O(n− 1)-equivariant map O(n)→ C∼; here O(n− 1) = {g ∈ O(n) : gv1 = v1} ⊆ O(n), acting
on O(n) by left translations.

(3) Let γ : [0, 1]→ O(n) and ε ∈ O(n− 1) be given by the formulas

γtvi =


cos(πt)v1 + sin(πt)v2 if i = 1
− sin(πt)v1 + cos(πt)v2 if i = 2
vi if i > 2.

εvi =

{
−v2 if i = 2
vi otherwise.

Consider the map q̃ : O(n − 1) × [0, 1] × O(n − 1) defined by the formula q̃(g, t, g′) = gγtg
′. Let

K = O(n − 1) × O(n − 1), and let O(n − 2) = {g ∈ O(n) : gv1 = v1, gv2 = v2} ⊆ O(n) act on K
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by the formula h(g, g′) = (gh−1, hg′). We observe that q̃ determines an O(n − 2)-equivariant map
K × [0, 1]→ O(n) (where O(n− 2) acts trivially on O(n)), which induces a homeomorphism

O(n− 1)
∐

K/O(n−2)×{0}

(K/O(n− 2)× [0, 1])
∐

K/O(n−2)×{1}

(O(n− 1)γ1) ' O(n).

It follows that (a1) is equivalent to the following data:

(a2) A pair of O(n−1)-equivariant maps e−, e+ : O(n−1)→ C∼, together with an O(n−2)-equivariant
homotopy from e− to the map g 7→ e+(εgε−1).

(4) Let Y be a single point, and let ζ ′ be the vector bundle on Y with orthonormal basis (v2, v3, . . . , vn).
Let Y0 ' Sn−2 denote the unit sphere bundle of ζ ′, and let ζ ′0 be the tangent bundle of Y0. Let Cop

denote the (∞, n)-category obtained from C by taking the opposite category at the level of (n − 1)-
morphisms. Applying Theorem 2.4.18 in dimensions n− 1 and n− 2, we deduce that (a2) is equivalent
to the following data:

(a3) A pair of symmetric monoidal functors

Z− : Bord(Y,ζ′)
n−1 → C Z+ : Bord(Y,ζ′)

n−1 → Cop

together with an isomorphism an isomorphism Z−|Bord(Y0,ζ
′
0)

n−2 ' Z+|Bord(Y0,ζ
′
0)

n−2 (this data
makes sense, since the underlying (∞, n− 2)-categories of C and Cop are canonically equivalent).

(5) Applying Theorem 3.1.8 in dimension n− 1, we deduce that (a3) is equivalent to the following data:

(a4) A functor Z ′ : Bord(Y0,ζ
′
0)

n−2 → C, together with a pair of nondegenerate (n− 1)-morphisms

f : 1→ Z ′(Sn−2) g : 1→ Z ′(Sn−2)

in C and Cop, respectively.

(6) Suppose we are given the data of (a4). We can regard g as an (n − 1)-morphism from Z ′(Sn−2) to
1 in the original (∞, n)-category C. Unwinding the definitions, we see that Z0(Sn−1) is given by the
composition g ◦f , and that an n-morphism η : 1→ Z0(Sn−1) is nondegenerate if and only if it exhibits
g as a right adjoint to f . Consequently, (b0) is equivalent to the following:

(b1) An n-morphism η : id1 → g ◦ f in C which exhibits g as a right adjoint to f .

(7) Since C admits adjoints, there is an equivalence between the underlying (∞, n − 1)-categories of C

and Cop, which is the identity on k-morphisms for k < n − 1 and carries each (n − 1)-morphism of
C to its right adjoint. Consequently, if f and g are adjoint (n − 1)-morphisms as in (a4), then f is
nondegenerate if and only if g is nondegenerate. It follows that the data of (a4) and (b1) together is
equivalent to the following:

(c0) A symmetric monoidal functor Z ′ : Bord(Y0,ζ
′
0)

n−2 → C together with a pair of (n− 1)-morphisms

f : 1→ Z ′(Sn−2) g : Z ′(Sn−2)→ 1

such that f is nondegenerate, and an n-morphism η : id1 → g ◦ f which exhibits g as a right
adjoint to f .

(8) Let f be any (n − 1)-morphism in an (∞, n)-category. If f admits a right adjoint fR, then fR is
determined up to canonical isomorphism. Moreover, giving another (n− 1)-morphism g together with
a map η : id → g ◦ f which exhibits g as a right adjoint to f is equivalent to giving an isomorphism
g ' fR. Consequently, we may neglect the data of g and η and we arrive at the following reformulation
of (c0):
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(c1) A symmetric monoidal functor Z ′ : Bord(Y0,ζ
′
0)

n−2 → C together with a nondegenerate (n − 1)-
morphism f : 1→ Z ′(Sn−2).

(9) Invoking Theorem 3.1.8 again (in dimension n− 1), we deduce that (c1) is equivalent to the following:

(c2) A symmetric monoidal functor Z− : Bord(Y,ζ′)
n−1 → C.

We may now invoke the cobordism hypothesis (Theorem 2.4.6) in dimension (n− 1) to conclude that
(c2) is equivalent to the data of a single object of C, as desired.

We now prove Theorem 2.4.18; the basic idea is to use Theorem 3.1.8 to justify the excision principle
described in Remark 2.4.20.

Proof of Theorem 2.4.18. Let C be a symmetric monoidal (∞, n)-category with duals and X a CW complex.
It follows from Theorem 2.4.6 that C∼ carries an action of the orthogonal group O(n), and we have a
canonical map of ∞-groupoids α : Fun⊗(Bord(X,ζ)

n ,C) → MapO(n)(X̃,C
∼). We wish to prove that this

map is an equivalence. More generally, consider any continuous map f : Y → X, where Y is a CW
complex. Set F (Y ) = Fun⊗(Bord(Y,f∗ζ)

n ,C) and G(Y ) = MapO(n)(X̃ ×X Y,C∼). We have a canonical map
αY : F (Y ) → G(Y ), which depends functorially on Y . Let S denote the collection of all CW complexes Y
for which αY is an equivalence, for any map f : Y → X.

The functor Y 7→ G(Y ) carries homotopy colimits in Y to homotopy limits of ∞-groupoids. Theorem
3.1.8 implies that the functor Y 7→ F (Y ) has the same property. It follows that the collection of spaces S
is closed under the formation of homotopy colimits. Theorem 2.4.6 implies that αY is an equivalence when
Y consists of a single point, so that ∗ ∈ S. Since every CW complex Y can be obtained as a homotopy
colimit of points, we deduce that S contains every CW complex. In particular, taking Y = X and f to be
the identity map, we deduce that α is an equivalence as desired.

3.2 Reduction to the Unoriented Case

Theorem 2.4.26 asserts that for any continuous homomorphism of topological groups χ : G → O(n), the
bordism (∞, n)-category BordGn of manifolds with structure group G has a certain universal property. In
the special case where the group G is trivial, we recover Theorem 2.4.6, which describes the framed bordism
(∞, n)-category Bordfr

n as the free symmetric monoidal (∞, n)-category with duals generated by a single
object. This special case is in some sense fundamental: it allows us to define an action of the group O(n)
on the classifying space of objects for an arbitrary symmetric monoidal (∞, n)-category with duals, without
which we cannot even formulate the more general Theorem 2.4.26 (at least directly). However, there is
another special case of interest, when the map χ : G → O(n) is homeomorphism. In this case, the (∞, n)-
category BordGn can be identified with the unoriented bordism (∞, n)-category Bordn. While Bordfr

n is in
some sense the “smallest” bordism category, Bordn can be thought of as the “largest”: for every continuous
homomorphism χ : G → O(n), we have a forgetful functor α : BordGn → Bordn. Our goal in this section
is to explain how to use this forgetful functor to deduce the cobordism hypothesis for G-manifolds to the
cobordism hypothesis for unoriented manifolds.

Let us first outline the basic idea. Suppose we are given a symmetric monoidal functor Z : BordGn → C,
and let M be an object of Bordn (that is, a finite collection of points). Let X denote a classifying space
for G-structures on M . For every x ∈ X, we can apply the functor Z to the pair (M,x) to obtain an object
Z(M,x) ∈ C. We can regard the collection {Z(M,x)}x∈X as a local system on the space X, taking values
in the (∞, n)-category C. The collection of such local systems can itself be regarded as an (∞, n)-category
which we will denote by Famn(C). We can regard the assignment M 7→ {Z(M,x)}x∈X as determining a
symmetric monoidal functor Z ′ : Bordn → Famn(C). The functor Z can be recovered from Z ′ by extracting
the fibers of the relevant local systems. This construction therefore gives a mechanism for describing the
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classification of symmetric monoidal functors Z : BordGn → C in terms of symmetric monoidal functors
Z ′ : Bordn → Famn(C), which will allow us to reduce the proof of Theorem 3.1.8 to the unoriented case.

We begin by sketching the definition of the (∞, n)-category Famn(C) in more detail, where C is an
(∞, n)-category. The construction uses induction on n.

(1) The objects of Famn(C) are pairs (X, f), where X is a topological space and f is a functor from X
(regarded as an ∞-groupoid) into C; we can think of f as a local system on X with values in C.

(2) If n = 0, then a morphism from (X, f) to (X ′, f ′) in Famn(C) is a weak homotopy equivalence g :
X → X ′ and an equivalence of functors between f ′ ◦ g and f . (Strictly speaking, this definition is only
correct if X is a CW complex; otherwise we may need to adjoin additional morphisms corresponding
to diagrams of weak homotopy equivalences X ← X̃ → X ′; we will ignore this technical point.)

(3) Suppose that n > 0, and let (X, f) and (X ′, f ′) be objects of Famn(C). We then have a local system
F of (∞, n − 1)-categories on X ×X ′, given by the formula Fx,x′ = Famn−1 MapC(f(x), f ′(x′)). We
let MapFamn(C)((X, f), (X ′, f ′)) denote the (∞, n− 1)-category of global sections of F.

Notation 3.2.1. Let ∗ denote the trivial (∞, n)-category having a single object. We will denote the (∞, n)-
category Famn(∗) simply by Famn.

Example 3.2.2. The ∞-category Fam1 can be described as follows:

(a) The objects of Fam1 are topological spaces X.

(b) Given a pair of topological spaces X and Y , a morphism from X to Y in Fam1 is another topological
space C equipped with a continuous map C → X × Y .

(c) The composition of a 1-morphism C : X → Y and another one morphism C ′ : Y → Z is given by the
homotopy fiber product C ×RY C ′, which is equipped with a canonical map C ×Y C ′ → X × Z.

In other words, Fam1 is the (∞, 1)-category whose objects are topological spaces and whose morphisms are
correspondences between them.

Remark 3.2.3. Let C be an (∞, n)-category equipped with a symmetric monoidal structure. Then the
Famn(C) inherits a symmetric monoidal structure, given on objects by the formula (X, f)⊗(Y, g) = (X×Y, h)
where h(x, y) = f(x)⊗g(y) ∈ C. One can show that if C has duals, then Famn(C) also has duals. In particular,
for each n > 0, the∞-category Famn has the structure of a symmetric monoidal (∞, n)-category with duals.

For example, suppose that n = 1, so that Fam1 can be identified with the (∞, 1)-category of topological
spaces and correspondences between them, with a symmetric monoidal structure given by the Cartesian
product of spaces. Every object X ∈ Fam1 is dualizable: the diagonal map X → X × X determines
correspondences

evX : 1→ X ×X
coevX : X ×X → 1,

which exhibit X as its own dual.

Since Famn is a symmetric monoidal (∞, n)-category with duals, the cobordism hypothesis predicts that
the underlying ∞-groupoid Fam∼n carries an action of the orthogonal group O(n) (see Corollary 2.4.10). In
the case n = 1, this action should carry each object of Fam1 to its dual. As we saw in Remark 3.2.3, every
object of Fam1 is canonically self-dual, so the action of O(1) on Fam∼1 is trivial. The analogous statement
is true for every n: the O(n) action on Fam∼n is trivial. Since the objects of Fam∼n are topological spaces,
we can identify the objects of (Fam∼n )hO(n) with O(n)-equivariant spaces: that is, topological spaces X̃
equipped with a continuous action of the group O(n). Any such CW complex X̃ is (equivariantly) weakly
homotopy equivalent to a space with a free action of O(n), which determines a space X = X̃/O(n) and a
vector bundle ζ = (X̃ × Rn)/O(n) over X. Combining this analysis with Theorem 2.4.26, we arrive at the
following prediction:
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Claim 3.2.4. For each n ≥ 0, the following data are equivalent:

(1) Symmetric monoidal functors Z : Bordn → Famn.

(2) Pairs (X, ζ), where X is a topological space and ζ is an n-dimensional vector bundle on X with an
inner product.

We can justify Claim 3.2.4 by invoking Theorem 2.4.26 in the case where the structure groupG is the entire
orthogonal group O(n). However, the reasoning involved would be somewhat circular, since we first need
to prove Theorem 2.4.26 in the framed case to justify the existence of an O(n)-action on Fam∼n (and would
then need to argue further that this O(n) action was trivial). However, we will not need the full strength of
Claim 3.2.4 in the arguments which follow. We will only need to know the “hard” direction: namely, that
we can associate to every pair (X, ζ) a tensor functor Z(X,ζ) : Bordn → Famn. This we can produce by
direct construction. Indeed, Z(X,ζ) can be defined as the functor which associates to every k-morphism M
in Bordn (given by a k-manifold with corners) a k-morphism Z(X,ζ)(M) in Bordn (given by a topological
space): namely, we let Z(X,ζ)(M) be a classifying space for (X, ζ)-structures on M (see Notation 2.4.16). In
other words, Z(X,ζ)(M) can be identified with the collection of pairs {f : M → X,α : f∗ζ ' TX ⊕ Rn−k},
topologized in a natural way.

There is a canonical way to recover the (∞, n)-category Bord(X,ζ)
n from the functor Z(X,ζ) : Bordn →

Famn. To make this precise, we need to introduce another bit of notation.

Variant 3.2.5. We can describe Famn informally as follows:

• The objects of Famn are topological spaces.

• The morphisms of Famn are correspondences between topological spaces.

• The 2-morphisms of Famn are correspondences between correspondences.

• . . .

• The n-morphisms of Famn are correspondences between correspondences between . . .

• The (n+ 1)-morphisms of Famn are homotopy equivalences of correspondences.

• The (n+ 2)-morphisms of Famn are homotopies between homotopy equivalences.

• . . .

We can obtain a new (∞, n)-category by requiring all of the topological spaces in the above description
to be equipped with base points; we will denote this (∞, n)-category by Fam∗n. More generally, for any
(∞, n)-category C, we let Fam∗n(C) denote the homotopy fiber product Famn(C)×RFamn

Fam∗n. We can think
of objects of Fam∗n(C) as triples (X, f, x), where X is a topological space, f is a local system on X with
values in C, and x is a point of X. Note that there is a canonical evaluation functor χ : Fam∗n(C)→ C, given
by the formula χ(X, f, x) = f(x) ∈ C.

Proposition 3.2.6. Let X be a topological space, and let ζ be an n-dimensional vector bundle on X, equipped
with an inner product. Then there is a homotopy pullback diagram of (symmetric monoidal) (∞, n)-categories

Bord(X,ζ)
n

//

��

Fam∗n

��
Bordn

Z(X,ζ) // Famn .

In other words, Bord(X,ζ)
n can be described as the homotopy fiber product Bordn×RFamn

Fam∗n .
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The proof of Proposition 3.2.6 is a simple unwinding of definitions. A k-morphism in the homotopy fiber
product Bordn×RFamn

Fam∗n can be identified with a k-morphism M of Bordn together with a point of
Z(X,ζ)(M): by definition, such a point provides an (X, ζ)-structure on M , which allows us to view M as a
k-morphism in Bord(X,ζ)

n .
Our next goal is to use Proposition 3.2.6 to understand symmetric monoidal functors from Bord(X,ζ)

n

into another (∞, n)-category C. Our main tool is the following general principle:

Proposition 3.2.7. Let B and C be symmetric monoidal (∞, n)-categories, let Z : B→ Famn be a symmetric
monoidal functor, and let B∗ denote the homotopy fiber product B×RFamn

Fam∗n. The following types of data
are equivalent:

(1) Symmetric monoidal functors Z : B→ Famn(C) lifting Z.

(2) Symmetric monoidal functors Z
′

: B∗ → C.

The equivalence is implemented by carrying a symmetric monoidal functor Z to the composition

B∗ ' B×RFamn
Fam∗n → Famn(C)×RFamn

Fam∗n ' Fam∗n(C)→ C

where the last functor is described in Variant 3.2.5.

The proof of this result again amounts to carefully unwinding the definitions. We must show that the
values of a functor Z : B→ Famn(C) can be recovered from those of Z

′
: B∗ → C. Let M be an object of B,

and let Z(M) = (X, f), where X = Z(M) is a topological space and f is a local system on X with values in
C. For every point x ∈ X, the pair (M,x) determines an object of B∗, and we have a canonical isomorphism
f(x) ' Z ′(M,x) in the (∞, n)-category C.

Combining Propositions 3.2.7 and 3.2.6 in the special case where Z is the functor Z(X,ζ) : Bordn → Famn,
we obtain the following result:

Proposition 3.2.8. Let C be a symmetric monoidal (∞, n)-category, X a topological space, and ζ a real
vector bundle of rank n on X with inner product. The following data are equivalent:

(1) Symmetric monoidal functors Z : Bordn → Famn(C) lifting the functor Z(X,ζ) : Bordn → Famn.

(2) Symmetric monoidal functors Z
′

: Bord(X,ζ)
n → C.

We are now ready to sketch an argument reducing the proof of Theorem 3.1.8 to the unoriented case.
Fix a topological space X, a rank n vector bundle ζ on X equipped with an inner product, and a symmetric
monoidal (∞, n)-category C with duals. We wish to classify symmetric monoidal functors Z

′
: Bord(X,ζ)

n →
C. We argue in several steps:

(a) According to Proposition 3.2.8, the data of a symmetric monoidal functor Z
′

: Bord(X,ζ)
n → C is

equivalent to the data of a symmetric monoidal functor Z : Bordn → Famn(C) lifting the functor
Z(X,ζ) : Bordn → Famn.

(b) Let X0 be the set of pairs (x, v), where x ∈ X and v ∈ ζx is a vector unit length, and let ζ0 = {(x, v, w) :
(x, v) ∈ X0, w ∈ ζx, (v, w) = 0} be the induced vector bundle on X0. We observe that the restriction

of Z(X,ζ) to Bordn−1 can be identified with the composition Bordn−1

Z(X0,ζ0)→ Famn−1 → Famn.

Let EO(n) denote a contractible space with a free action of the orthogonal group O(n), let BO(n)
denote the classifying space EO(n)/O(n), and let ζ ′ denote the tautological vector bundle on BO(n).
For each point y ∈ BO(n), the nondegenerate n-morphism ηy = Z(X,ζ)(Dζ′y ) in Famn can be identified
with the space of all (X, ζ)-structures on the n-dimensional ball Dζ′y . Since Dζ′y is contractible, this
can be identified with the space of pairs (x, α), where x ∈ X and α : ζx ' ζ ′y is an isometry. Applying
Theorem 3.1.8 in the unoriented case, we conclude that giving a symmetric monoidal functor Z :
Bordn → Famn(C) is equivalent to giving the following data:
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(i) A symmetric monoidal functor Z0 : Bordn−1 → Famn(C) lifting Z(X0,ζ0).

(ii) For each y ∈ BO(n), a nondegenerate n-morphism ηy : 1→ Z0(Sζ
′
y ) in Famn(C) lying over ηy.

(c) Invoking Proposition 3.2.8 in dimension (n− 1) (and the fact that Famn−1(C) and Famn(C) have the
same underlying (∞, n− 1)-category), we can replace (i) by the following data:

(i′) A symmetric monoidal functor Z
′
0 : Bord(X0,ζ0)

n−1 → C.

(d) Let X ′ be the collection of triples (x, y, α), where x ∈ X, y ∈ BO(n), and α : ζx ' ζ ′y is an isometry,
and let φ : X ′ → X denote the projection map. For each y ∈ BO(n), let X ′y = X ′ ×BO(n) {y} denote
the fiber of X ′ over the point y. As we saw above, X ′y is homotopy equivalent to the topological space
ηy = Z(X,ζ)(Dζ′y ) (viewed as an n-morphism in Famn). Unwinding the definitions, we see that lifting
ηy to a nondegenerate n-morphism in ηy ∈ Famn(C) is equivalent to giving a family of nondegenerate
n-morphisms η′z : 1→ Z

′
0(Sζφ(z)) in C parametrized by z ∈ X ′y. Allowing y to vary over Y , we see that

(ii) is equivalent to the following data:

(ii′) A family of nondegenerate n-morphisms

η′z : 1→ Z
′
0(Sζφ(z))

in C, parametrized by z ∈ X ′.

(e) Since the space EO(n) is contractible, the projection map φ : X ′ → X is a homotopy equivalence. We
may therefore replace (ii′) by the following data:

(ii′′) A family of nondegenerate n-morphisms η′′x : 1→ Z
′
0(Sζx) in C, parametrized by x ∈ X.

This argument shows that symmetric monoidal functors Bord(X,ζ)
n → C are classified by the data of

(i′) and (ii′′), which is precisely the assertion of Theorem 3.1.8.

Remark 3.2.9. We can summarize the main theme of this section as follows: to deduce the cobordism
hypothesis for one class of manifolds, it suffices to prove the cobordism hypothesis for any larger class of
manifolds. In particular, if we can prove the cobordism hypothesis for the (∞, n)-category Bordn, then it
will follow for any other bordism (∞, n)-category Bord(X,ζ)

n of smooth n-manifolds.

3.3 Unfolding of Higher Categories

As we explained in §3.1, the basic skeleton of our proof of the cobordism hypothesis uses induction on the
dimension n. More precisely, in order to prove Theorem 2.4.18 for the (∞, n)-category Bordn, we consider
the filtration

Bord1 → Bord2 → . . .→ Bordn

and apply Theorem 3.1.8 repeatedly. One feature of the above filtration is that it is by increasing levels of
complexity: each Bordk is an (∞, k)-category, and we have seen (§1.3) that the theory of (∞, k)-categories
becomes increasingly complicated as k grows. Our goal in this section is to show that we can assign to this
filtration an “associated graded object” which is considerably simpler. This will, in principle, allow us to
formulate the cobordism hypothesis entirely in the language of (∞, 1)-categories. In practice this formulation
is not so convenient, but the ideas described in this section are nevertheless useful for the proof we will outline
in §3.4.

Let us begin by describing an analogue of the idea we wish to implement in a much simpler setting.
Recall the oriented bordism groups {Ωd}d≥0 defined in Remark 2.5.9: the elements of Ωd are represented by
closed oriented d-manifolds, and two such manifolds M and N represent the same element of Ωd if there is
an (oriented) bordism from M to N . We can almost realize the groups Ωd as the homology groups of a chain
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complex. To see this, let Cd denote the set of all isomorphism classes of oriented d-manifolds with boundary.
If M ∈ Cd, then the boundary ∂M can be regarded as a (d− 1)-manifold with boundary, whose boundary
happens to be empty. Consequently, we have a sequence of boundary maps

· · · → C2
∂→ C1

∂→ C0.

Each Cd has the the structure of a commutative monoid (given by the formation of disjoint unions), and
each of the compositions ∂2 is trivial. We can therefore think of C• as a chain complex in the category of
commutative monoids. Let Zd denote the kernel of the map Cd → Cd−1, so that Zd can be identified with
the set of all isomorphism classes of closed d-manifolds. Then Ωd can be identified with the quotient of Zd
by the equivalence relation which identifies a pair of objects M,N ∈ Zd if the coproduct M

∐
N lies in the

image of the boundary map ∂ : Zd+1 → Zd.
We would like to construct an analogous picture in the setting of higher category theory. The first step

is to introduce an appropriate analogue of the commutative monoid Cd:

Definition Sketch 3.3.1. Let d ≥ 1 be an integer. We let Cobun
∂ (d) denote the (∞, 1)-category which can

be described informally as follows:

(1) The objects of Cobun
∂ (d) are (d− 1)-manifolds with boundary.

(2) Given a pair of objects M,N ∈ Cobun
∂ (d), we let MapCobun

∂ (d)(M,N) denote a classifying space for
bordisms from M to N (any such bordism determines a bordism from ∂M to ∂ N ; we do not require
these bordisms to be trivial).

(3) Composition of morphisms in Cobun
∂ (d) is given by gluing of bordisms.

The (∞, 1)-categories Cobun
∂ (d) admit symmetric monoidal structures, given by disjoint unions. More-

over, passage to the boundary induces a symmetric monoidal functors

· · · ∂→ Cobun
∂ (3) ∂→ Cobun

∂ (2) ∂→ Cobun
∂ (1).

We note that each of the compositions ∂2 is trivial: more precisely, it is isomorphic to the constant functor
Cobun

∂ (d)→ Cobun
∂ (d− 2) taking the value 1 ∈ Cobun

∂ (d− 2) (here 1 denotes the unit with respect to the
symmetric monoidal structure on Cobun

∂ (d − 2): that is, the empty set). The sequence {Cobun
∂ (d)}d≥1 is

an example of a categorical chain complex (see Definition 3.3.6 and Example 3.3.7 below).
The main goal of this section is to prove that the data provided by the chain complex

· · · ∂→ Cobun
∂ (3) ∂→ Cobun

∂ (2) ∂→ Cobun
∂ (1).

is equivalent to the data provided by the sequence of symmetric monoidal functors

Bord1 → Bord2 → Bord3 → · · ·

in the sense that either can be used to reconstruct the other. This is a special case of a general result which
comparing categorical chain complexes (Definition 3.3.6) with skeletal sequences (Definition 3.3.11).

Remark 3.3.2. The above assertion might seem surprising, since the chain complex

· · · ∂→ Cobun
∂ (3) ∂→ Cobun

∂ (2) ∂→ Cobun
∂ (1)

consists only of (∞, 1)-categorical data, while each Bordn is an (∞, n)-category. The (∞, n)-category Bordn
is a fairly complicated object: it records information not only about bordisms between manifolds but also
bordisms between bordisms, bordisms between bordisms between bordisms, and so forth. Consequently,
the definition of Bordn involves manifolds with corners of arbitrary codimension. By contrast, the (∞, 1)-
categories Cobun

∂ (d) can be defined using manifolds having corners of codimension ≤ 2. The fact that we
can dispense with corners of higher codimension can be regarded as a reflection of the following geometric
idea: any manifold with corners can be regarded as a manifold with boundary by “smoothing” the corners.
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Our first step is to axiomatize the properties of the sequence of (∞, 1)-categories {Cobun
∂ (d)}d≥1. Recall

that a sequence of abelian groups and group homomorphisms

· · · d3→ C2
d2→ C1

d1→ C0

is a chain complex if each composition dn−1 ◦ dn : Cn → Cn−2 is the zero map. As we already noted above,
the sequence

· · · ∂→ Cobun
∂ (3) ∂→ Cobun

∂ (2) ∂→ Cobun
∂ (1)

has an analogous property: each of the compositions ∂2 : Cobun
∂ (n)→ Cobun

∂ (n−2) is trivial. However, when
we work in the setting of higher category theory, we need to be more precise: what we should say is that there
is a canonical isomorphism αn : ∂2 ' 1, where 1 denotes the constant functor Cobun

∂ (n) → Cobun
∂ (n − 2)

taking the value 1. We then encounter secondary phenomena: specifying the isomorphisms {αn}n≥3 allows
us to identify the composition ∂3 : Cobun

∂ (n) → Cobun
∂ (n − 3) with the constant functor (taking the value

1 ∈ Cobun
∂ (n− 3)) in two different ways, depending on whether we use αn or αn−1. In our example, there is

a canonical homotopy which relates these two isomorphisms. To extract a good theory of chain complexes,
it is necessary to take into account these homotopies as well as the isomorphisms {αn}n≥3, together with
additional coherence conditions satisfied by higher powers of ∂.

We will sidestep these issues by defining the notion of chain complex in a different way. For motivation,
let us begin with classical homological algebra. Suppose we are given a chain complex of abelian groups

· · · d3→ C2
d2→ C1

d1→ C0 → · · ·

For every integer n, let Zn ⊆ Cn denote the kernel of the differential dn. The condition dn−1 ◦dn = 0 implies
that dn maps Cn into Zn−1. We therefore obtain a collection of short exact sequences

0→ Zn → Cn
d′n→ Zn−1,

each of which is determined (up to canonical isomorphism) by the homomorphism d′n : Cn → Zn−1. Con-
versely, given sequence of maps {d′n : Cn → Zn−1}n∈Z together with isomorphisms Zn ' ker d′n, we can
construct a complex of abelian groups (C•, d•) by letting dn denote the composition

Cn
d′n→ Zn−1 ' ker(d′n−1) ⊆ Cn−1.

We can summarize the above discussion as follows: every chain complex of abelian groups can be obtained
by splicing together short exact sequences.

We would like to export this idea to our higher-categorical setting, replacing the abelian groups Cn by
the (∞, 1)-categories Cobun

∂ (n) and the abelian groups Zn by the (∞, 1)-categories Cobun
t (n). For each

n > 1, passage to the boundary defines a forgetful functor π : Cobun
∂ (n)→ Cobun

t (n− 1). To complete the
analogy with our homological algebra discussion, we should identify Cobun

t (n) with the “kernel” of the map
π. This kernel can be defined as the homotopy fiber product Cobun

∂ (n)×RCobun
t (n−1) {1}: in other words, the

inverse image π−1{1}. The fact that the formation of this kernel is a well-behaved operation is a reflection
of a special feature of the functor π which we now describe.

Let π : C → D be an arbitrary functor between (∞, 1)-categories. For each object D ∈ D, we let CD
denote the homotopy fiber product C×RD{D}. We can think of {CD}D∈D as a family of (∞, 1)-categories
parametrized by the objects of D. However, this intuition can be somewhat misleading: a morphism D → D′

in D need not induce a functor between fibers CD → CD′ . We can remedy the situation by introducing an
assumption on the functor π:

Definition 3.3.3. Let π : C→ D be a functor between (∞, 1)-categories, and let f : C → C ′ be a morphism
in C. We will say that f is π-coCartesian if the following condition is satisfied:
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• For every object C ′′ ∈ C, the diagram of ∞-groupoids

MapC(C ′, C ′′) //

��

MapC(C,C ′′)

��
MapD(π(C ′), π(C ′′)) // MapD(π(C), π(C ′′))

is a homotopy pullback square.

We say that the functor π is a coCartesian fibration if the following condition is satisfied: for every object
C ∈ C and every morphism f : π(C)→ D in D, there exists a π-coCartesian morphism f : C → D lifting f .

In the situation of Definition 3.3.3, the morphism f is determined up to isomorphism by D and f ,
provided that f exists. It follows that the codomain D of f is also determined by C and f ; we will often
indicate this dependence by writing D = f!C.

Definition 3.3.4. Let C and D be symmetric monoidal (∞, 1)-categories. A symmetric monoidal coCarte-
sian fibration from C to D is a symmetric monoidal functor π : C→ D which is a coCartesian fibration and
such that the collection of π-coCartesian morphisms in C is stable under tensor products.

Example 3.3.5. For n ≥ 2, passage to the boundary determines a symmetric monoidal coCartesian fibration
Cobun

∂ (n) → Cobun
t (n − 1). For every closed (n − 2)-manifold M , we can identify the fiber Cobun

∂ (n)M
with an (∞, 1)-category whose objects are (n− 1)-manifolds with boundary M , with MapCobun

∂ (n)M (X,X ′)
is a classifying space for bordisms from X to X ′ which are trivial along M . A bordism B from M to M ′

determines a functor Cobun
∂ (n)M → Cobun

∂ (n)M ′ , given by the formula X 7→ X
∐
M B.

We are now ready to define the basic objects of interest to us in this section:

Definition 3.3.6. A categorical chain complex of length n consists of the following data:

(a) A sequence of symmetric monoidal coCartesian fibrations {Ck → Zk−1}1≤k≤n between symmetric
monoidal (∞, 1)-categories, where Z0 ' ∗ is trivial and each Ck has duals.

(b) For 1 ≤ k < n, a symmetric monoidal equivalence of Zk with the homotopy fiber Ck ×RZk−1
{1}.

Example 3.3.7. The symmetric monoidal coCartesian fibrations {Cobun
∂ (k) → Cobun

t (k − 1)}1≤k≤n de-
termine a categorical chain complex of length n.

Our goal is to compare the class of categorical chain complexes with another class of mathematical
objects, which we call skeletal sequences.

Definition 3.3.8. Let f : C → D be a functor between (∞, n)-category, and let k ≥ 0 be an integer. We
will say that f is k-connective if the following conditions are satisfied:

(1) The functor f is essentially surjective. That is, for every object D ∈ D, there exists an object C ∈ C

and an isomorphism D ' f(C).

(2) If k > 0, then for every pair of objects C,C ′ ∈ C, the induced functor

MapC(C,C ′)→ MapD(F (C), F (C ′))

is (k − 1)-connective.

Example 3.3.9. Let X ⊆ Y be a nice inclusion of topological spaces (for example, a cellular inclusion of
CW complexes). Then the induced functor f : π≤∞X → π≤∞Y is k-connective if and only if the inclusion
X ⊆ Y is k-connected: that is, if and only if the homotopy groups πi(Y/X) vanish for i ≤ k.
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Example 3.3.10. For every integer k, the evident functor Bordk → Bordk+1 is k-connective: in fact,
Bordk and Bordk+1 have the same j-morphisms for j ≤ k.

Definition 3.3.11. A skeletal sequence (of length n) is a diagram

B1
f1→ B2

f2→ . . .
fn−1→ Bn

with the following properies:

(1) Each Bk is a symmetric monoidal (∞, k)-category.

(2) Each fk is a (k − 1)-connective symmetric monoidal functor.

(3) Every object of B1 is dualizable.

(4) For 2 ≤ k ≤ n, every morphism α : 1→ X in Ωk−2 Bk admits a left adjoint.

Example 3.3.12. The sequence

Bord1 → Bord2 → . . .→ Bordn

is a skeletal sequence of length n. More generally, suppose that X is a topological space and ζ is an n-
dimensional vector bundle on X with inner product. For 0 ≤ k ≤ n, let Xk denote the set of pairs (x, α),
where x ∈ X and α : Rn−k → ζx is an isometric embedding, and let ζk denote the vector bundle on Xk

whose fiber at (x, α) is the orthogonal complement to the image of α. Then we have a skeletal sequence

Bord(X1,ζ1)
1 → . . .→ Bord(Xn,ζn)

n = Bord(X,ζ)
n .

Example 3.3.13. Let B be a symmetric monoidal (∞, n)-category with duals. For k ≤ n, let Bk denote the
underlying (∞, k)-category of B: that is, the (∞, k)-category obtained from B by discarding noninvertible
m-morphisms for m > k. Then

B1 → B2 → · · · → Bn = B

is a skeletal sequence, which we will call the canonical skeletal sequence associated to B.

Remark 3.3.14. The skeletal sequences described in Examples 3.3.12 and 3.3.13 have a number of additional
features:

(i) For 1 ≤ k ≤ n, the symmetric monoidal (∞, k)-category Ck has duals.

(ii) Each of the functors Ck → Ck+1 is k-connective (rather than merely (k − 1)-connective).

We generally be interested only in skeletal sequences satisfying these conditions. However, we will have no
need of (i) or (ii) in the analysis below.

Warning 3.3.15. For n ≤ 3, the skeletal sequence Bord1 → . . .→ Bordn of Example 3.3.12 coincides with
the canonical skeletal sequence of Example 3.3.13. However, this is not true in general, due to the failure of
the parametrized h-cobordism theorem.

The main result of this section can be summarized as follows:

Claim 3.3.16. For each integer n ≥ 1, the following types of data are equivalent:

(1) Categorical chain complexes of length n.

(2) Skeletal sequences of length n.

We will give a more precise formulation of Claim 3.3.16 below (see Theorem 3.3.33). First, we need to
introduce mild generalizations of Definitions 3.3.11 and 3.3.6.
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Definition 3.3.17. A weak categorical chain complex of length n consists of the following data:

(a) A sequence of symmetric monoidal coCartesian fibrations {Ck → Zk−1}1≤k≤n between symmetric
monoidal (∞, 1)-categories, where Z0 ' ∗ is trivial and each Ck has duals for k < n.

(b) For 1 ≤ k < n, a symmetric monoidal equivalence of Zk with the homotopy fiber Ck ×RZk−1
{1}.

A weak skeletal sequence (of length n) is a diagram

B1
f1→ B2

f2→ . . .
fn−1→ Bn

with the following properies:

(1) Each Bk is a symmetric monoidal (∞, k)-category.

(2) Each fk is a (k − 1)-connective symmetric monoidal functor.

(3) Every object of B1 is dualizable if n > 1.

(4) For 2 ≤ k < n, every morphism α : 1→ X in Ωk−2 Bk admits a left adjoint.

Example 3.3.18. Let ~C denote a (weak) skeletal sequence C1 → C2 → . . . → Cn of length n. Then the
induced sequence Ω C2 → Ω C3 → . . . → Ω Cn is a (weak) skeletal sequence of length n − 1, which we will
denote by Ω~C. The only nontrivial point is to verify that Ω~C satisfies condition (3) of Definition 3.3.17. This
follows from the observation that the dual of an object of Ω C2 can be identified with a left adjoint of the
corresponding endomorphism of the unit object 1 ∈ C2.

Let us now analyze the notion of weak skeletal sequence of length 2. Let F : B1 → B2 be a symmetric
monoidal functor from a symmetric monoidal (∞, 1)-category B1 to a symmetric monoidal (∞, 2)-category
B2. We would like to describe B2 in terms of B1, together with some additional data of an (∞, 1)-categorical
nature. To accomplish this, we will need to know the mapping objects MapB2

(F (X), F (Y )) for C,D ∈ B1. If
we assume that every object X ∈ B1 has a dual C∨, we obtain a canonical equivalence (of (∞, 1)-categories)

MapB2
(F (X), F (Y )) ' MapB2

(1, F (X∨ ⊗ Y ));

here 1 denotes the unit object of B2.

Notation 3.3.19. Let F : B1 → B2 be a symmetric monoidal functor from a symmetric monoidal (∞, 1)-
category B1 to a symmetric monoidal (∞, 2)-category B2. For each object X ∈ B1, we let MF (X) denote
the (∞, 1)-category MapB2

(1, F (X)).

What sort of an object is MF ? We first observe that MF (X) depends functorially on the object X ∈ B1.
In other words, we can regard MF as a functor from B1 into Cat(∞,1), where Cat(∞,1) denotes the (large)
(∞, 1)-category of (∞, 1)-categories and functors between them. Moreover, the MF interacts with the
symmetric monoidal structure on C1: it is an example of a lax symmetric monoidal functor, which means
that there is a collection of maps

MF (X)×MF (Y )→MF (X ⊗ Y )

which are suitably compatible with the commutativity and associativity properties of the tensor product ⊗
on B1. We can attempt to recover the (∞, 2)-category B2 from B1 and the functor MF , using the following
general construction:

Construction 3.3.20. Let B1 be a symmetric monoidal (∞, 1)-category, and let M : B1 → Cat(∞,1) be
a lax symmetric monoidal functor. Suppose that every object of B1 has a dual. We can then construct a
symmetric monoidal (∞, 2)-category B[M ] which can be described informally as follows:
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(1) The objects of B[M ] are the objects of B1.

(2) Given a pair of objects X,Y ∈ B[M ], we let MapB[M ](X,Y ) = M(X∨ ⊗ Y ).

(3) Given a triple of objects X,Y, Z ∈ B[M ], the composition law MapB[M ](X,Y ) ×MapB[M ](Y, Z) →
MapB[M ](X,Z) is given by the composition

M(X∨ ⊗ Y )×M(Y ∨ ⊗ Z)→M(X∨ ⊗ Y ⊗ Y ∨ ⊗ Z)→M(X∨ ⊗ Y ),

where the first map is given by the lax symmetric monoidal structure on the functor M and the second
is induced by the evaluation map Y ∨ ⊗ Y → 1 in B1.

The fundamental properties of Construction 3.3.20 may be summarized as follows:

Proposition 3.3.21. Let B1 be a symmetric monoidal (∞, 1)-category with duals. Then the construction
M 7→ B[M ] determines an equivalence between the following data:

(1) Lax symmetric monoidal functors M : B1 → Cat(∞,1).

(2) Symmetric monoidal (∞, 2)-categories B2 equipped with an essentially surjective symmetric monoidal
functor B1 → B2.

Warning 3.3.22. Let B1 and M be as in Construction 3.3.20. To define B[M ] as an (∞, 2)-category, it
is not necessary to assume that the tensor product operation on B1 is commutative: it suffices to assume
that B1 is a monoidal (∞, 1)-category, and that M is a lax monoidal functor. In this case, B[M ] does not
inherit a monoidal structure from the monoidal structure on B1. However, it does inherit an action of the
monoidal category B1. Proposition 3.3.21 admits the following analogue: giving a lax monoidal functor
M : B1 → Cat(∞,1) is equivalent to giving an (∞, 2)-category B2 with a distinguished object 1 which is
acted on by B1, such that the action functor B1 ' B1×{1} → B1×B→ B is essentially surjective.

In order to apply Proposition 3.3.21 in practice, we need a way of describing lax symmetric monoidal
functors M : B1 → Cat(∞,1). This can be achieved by a higher-categorical version of what is often called the
Grothendieck construction:

Construction 3.3.23. Let B be an (∞, 1)-category, and let M : B → Cat(∞,1) be a functor. Then M
associates to each object X ∈ B an (∞, 1)-category M(X), and to each morphism f : X → Y in B a functor
f! : M(X)→M(Y ).

We can construct a new (∞, 1)-category Groth(B,M) which can be described informally as follows:

• The objects of Groth(B1,M) are pairs (X, η), where X is an object of B and η is an object of M(X).

• Given a pair of objects (X, η), (X ′, η′) ∈ Groth(B,M), we define MapGroth(B,M)((X, η), (Y ′, η′)) to be
a classifying space for pairs (f, α), where f ∈ MapB(X,X ′) and α ∈ MapM(X′)(f!η, η

′).

• Composition of morphisms in Groth(B,M) is defined in a straightforward way.

Let B and M be as in Construction 3.3.23. There is a canonical projection functor π : Groth(B,M)→ B,
given on objects by the formula (X, η) 7→ X. This functor is a coCartesian fibration, and we have a canonical
equivalence Groth(B,M)X ' M(X) for each X ∈ B. We can therefore recover the functor M from π: for
example, if f : X → Y is a morphism in B, then the induced functor M(X) → M(Y ) can be identified
with the functor f! : Groth(B,M)X → Groth(B,M)Y whose value on an object X ∈ Groth(B,M)X is the
codomain of a π-coCartesian morphism f : X → Y lifting f . Elaborating on these ideas, one can prove the
following:

Proposition 3.3.24. Let B be an (∞, 1)-category. The construction M 7→ Groth(B,M) determines an
equivalence between the following types of data:
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(1) Functors from B to Cat(∞,1).

(2) CoCartesian fibrations π : C→ B.

Remark 3.3.25. For a precise formulation and proof of Proposition 3.3.24 in the (∞, 1)-categorical context,
we refer the reader to [17].

Suppose now that B is a symmetric monoidal (∞, 1)-category, and that M : B → Cat(∞,1) is a lax
symmetric monoidal structure. Then for every pair of objects X,Y ∈ B, we have a canonical functor
βX,Y : M(X) ×M(Y ) → M(X ⊗ Y ). The (∞, 1)-category Groth(B,M) inherits a symmetric monoidal
structure, which is given on objects by the formula (X, η)⊗ (Y, η′) ' (X ⊗ Y, βX,Y (η, η′)). We observe that
the projection functor π : Groth(B,M)→ B is a symmetric monoidal coCartesian fibration. In fact, we have
the following converse, which can be regarded as a symmetric monoidal analogue of Proposition 3.3.24:

Proposition 3.3.26. Let B be a symmetric monoidal (∞, 1)-category. The construction M 7→ Groth(B,M)
determines an equivalence between the following data:

(1) Lax symmetric monoidal functors from B to Cat(∞,1).

(2) Symmetric monoidal coCartesian fibrations π : C→ B.

Notation 3.3.27. Let F : B1 → B2 be a symmetric monoidal functor from a symmetric monoidal (∞, 1)-
category B1 to a symmetric monoidal (∞, 2)-category B2. We let C[F ] denote the symmetric monoidal
(∞, 1)-category Groth(B1,MF ), where MF is defined in Notation 3.3.19. More concretely, C[F ] is an (∞, 1)-
category whose objects are pairs (X, η), where X ∈ B1 and η : 1→ F (X) is a 1-morphism in B2.

Combining Propositions 3.3.21 and 3.3.26, we obtain the following result:

Proposition 3.3.28. Let B1 be a symmetric monoidal (∞, 1)-category with duals. The construction

(F : B1 → B2) 7→ (π : C[F ]→ B1)

determines an equivalence between the following types of data:

(1) Essentially surjective symmetric monoidal functors F : B1 → B2, where B2 is a symmetric monoidal
(∞, 2)-category.

(2) Symmetric monoidal coCartesian fibrations C→ B1.

It follows from Propositino 3.3.28 that properties of a symmetric monoidal coCartesian fibration π : C→
B1 can be translated into properties of the corresponding weak skeletal sequence B1 → B2. In particular,
we have the following result:

Proposition 3.3.29. Let B1 be a symmetric monoidal (∞, 1)-category with duals, let B2 be a symmetric
monoidal (∞, 2)-category, and let F : B1 → B2 be an essentially surjective symmetric monoidal functor.
The following conditions are equivalent:

(1) Every morphism 1 → X in B2 admits a left adjoint (in other words, F : B1 → B2 is a skeletal
sequence).

(2) The symmetric monoidal (∞, 1)-category C[F ] has duals.

Proof. Since F is essentially surjective, condition (1) is equivalent to the following:

(1′) Let X ∈ B1 be an object. Then every morphism η : 1→ F (X) in B2 admits a left adjoint.

In the situation of (1′), the pair (X, η) determines an object of C[F ]. Unwinding the definitions, we see that
(X∨, η′) is dual to (X, η) if and only if η′∨ : X → 1 is a left adjoint to η.
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Combining Propositions 3.3.28 and 3.3.29, we obtain the following result (which proves Claim 3.3.16 in
the case n = 2):

Proposition 3.3.30. Let B1 be a symmetric monoidal (∞, 1)-category with duals. The construction (F :
B1 → B2) 7→ (π : C[F ]→ B1) determines an equivalence between the following types of data:

(1) Skeletal sequences F : B1 → B2 of length 2.

(2) Symmetric monoidal coCartesian fibrations π : C → B1, where C is a symmetric monoidal (∞, 1)-
category with duals.

We now outline the modifications to the above constructions which are needed to justify Claim 3.3.16
for n > 2. Consider a weak skeletal sequence B1 → B2 → . . . → Bn of length n > 2. For each i ≥ 2,
let Fi : B1 → Bi denote the induced functor. We can then define a lax symmetric monoidal functor
Mi : B1 → Cat(∞,i−1) by the formula Mi(X) = MapBi

(1, Fi(X)), where Cat(∞,i−1) denotes the (∞, 1)-
category of (∞, i − 1)-categories and functors between them. Applying a generalization of Construction
3.3.23, we can convert the functors Mi into symmetric monoidal coCartesian fibrations π[i] : Ci → B1, where
Ci is an (∞, i− 1)-category. We have a sequence of essentially surjective functors C2 → C3 → . . .→ Cn . For
i > 2, let Gi : C2 → Ci denote the induced functor. We can then define a new functor Ni : C2 → Cat(∞,i−2)

by the formula Ni(X) = MapCi(1, Gi(X)). Since C2 has duals (Proposition 3.3.29), we can recover Ci from
Ni, at least up to canonical equivalence. For i > 2 and X = (C, η) ∈ C2, define N(X) to be the ∞-groupoid
MapB1

(1, C). Then N is a functor from C2 to the (∞, 1)-category Cat(∞,0) (whose objects we can view
as topological spaces). For each i > 2, we have a natural transformation of functors Ni → N . Given a
morphism f : 1→ C in N(X), the homotopy fiber product Ni(X)×RN(X) {f} is given by

MapCi(1, Gi(X))×RMapB1
(1,C) {f} ' MapCi(Gi(X

∨),1)×RMapB1
(C∨,1) {f

∨}

' MapΩ Bi
(Gi(f∨! X

∨),1)

and can therefore be entirely reconstructed from the functor Gi : Ω B2 → Ω Bi by passing to the fiber over
the unit object 1 ∈ B1. Elaborating on this reasoning, one can prove the following:

Proposition 3.3.31. Fix a skeletal sequence F : B1 → B2 of length 2, and let n > 2. The construction
above establishes an equivalence between the following types of data:

(1) Weak skeletal sequences B1 → B2 → B3 → · · · → Bn of length n which begin with F .

(2) Weak skeletal sequences Ω B2 → C2 → . . .→ Cn−1 of length (n− 1) which begin with Ω B2.

Construction 3.3.32. Suppose we are given a weak skeletal sequence

B1
F2→ B2

F3→ B3 → · · · → Bn

of length n. We can associate to this weak skeletal sequence a weak categorical chain complex of of length
n {Ci → Zi−1}1≤i≤n as follows:

• For 1 ≤ k ≤ n, set Zk = Ωk−1 Bk.

• Let C1 = Z1, and for 2 ≤ k ≤ n let Ck = C[Ωk−2Fk−1].

Claim 3.3.16 can now be formulated more precisely as follows:

Theorem 3.3.33. Construction 3.3.32 determines an equivalence between the following types of data:

(1) Weak skeletal sequences of length n.

(2) Weak categorical chain complexes of length n.
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Under this equivalence, skeletal sequences of length n correspond to categorical chain complexes of length n.

Proof. Combine Propositions 3.3.31 and 3.3.30.

Example 3.3.34. Under the equivalence of Theorem 3.3.33, the skeletal sequence

Bord1 → Bord2 → · · · → Bordn

corresponds to the categorical chain complex {Cobun
∂ (k)→ Cobun

t (k − 1)}1≤k≤n of Example 3.3.7.

Example 3.3.34 and Theorem 3.3.33 allow us to reformulate the cobordism hypothesis as a statement
about the symmetric monoidal (∞, 1)-categories {Cobun

∂ (k)}1≤k≤n. We will not make use of this maneuver
directly. Nevertheless, in §3.4 we will exploit the following consequence of Theorem 3.3.33:

Corollary 3.3.35. Let Bn−1 be a symmetric monoidal (∞, n− 1)-category with duals. The following types
of data are equivalent:

(1) Symmetric monoidal functors Bn−1 → Bn which are (n − 2)-connective, where Bn is a symmetric
monoidal (∞, n)-category.

(2) Lax symmetric monoidal functors M : Ωn−2 Cn−1 → Cat(∞,1).

(3) Symmetric monoidal coCartesian fibrations π : C→ Ωn−2 Bn−1 .

Proof. Let ~B : B1 → B2 → . . . → Bn−1 be the canonical skeletal sequence of length (n − 1) associated to
Bn−1 (Example 3.3.13). Then the data of described in any of (1), (2), of (3) can be identified with that of
a weak skeletal sequence of length n extending ~B.

3.4 The Index Filtration

Our goal in this section is to present the core geometric arguments underlying our proof of the cobordism
hypothesis. Using the methods of §3.1 and 3.2, we are reduced to analyzing the symmetric monoidal functor
i : Bordn−1 → Bordn. According to Corollary 3.3.35, the functor i is classified by a lax symmetric monoidal
functor B : Ωn−2 Bordn−1 → Cat(∞,1). We will therefore proceed by analyzing the functor B.

We begin by observing that Ωn−2 Bordn−1 is a familiar object: it can be identified with the (∞, 1)-
category Cobun

t (n − 1) described in §2.2, whose objects are closed (n − 2)-manifolds and morphism spaces
are classifying spaces for bordisms between closed (n− 2)-manifolds. For every closed (n− 2)-manifold M ,
the (∞, 1)-category B(M) can be described informally as follows:

(i) The objects of B(M) are (n− 1)-manifolds X equipped with a diffeomorphism ∂ X 'M .

(ii) Given a pair of objects X,X ′ ∈ B(M), the ∞-groupoid MapB(M)(X,X ′) is a classifying space for
bordisms B from X to X ′. We require such bordisms to be trivial along the common boundary
∂ X 'M ' ∂ X ′, so that we have an identification

∂ B ' X
∐
M

(M × [0, 1])
∐
M

X ′.

We regard B(M) as a functor of M : for every bordism Y : M → M ′ of closed (n − 2)-manifolds, Y
defines a functor B(M)→ B(M ′) which is given on objects by the formula X 7→ X

∐
M Y .

The cobordism hypothesis (see Theorem 3.1.8) asserts roughly that Bordn is freely generated from
Bordn−1 by adjoining an O(n)-equivariant n-morphism η : ∅ → Sn−1, corresponding to an n-dimensional
disk. In the present terms, this amounts to a description of the functor B by “generators and relations.”
In this section, we will explain how to obtain such a description using Morse theory. We begin by recalling
some basic definitions.
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Let M be a closed (n− 2)-manifold, and let B : X → X ′ be a 1-morphism in B(M). We will identify X,
X ′, and M × [0, 1] with their images in B. A smooth function f : B → R is said to have a critical point at
b ∈ B if each of the first derivatives of f vanish at the point b; in this case, we also say that f(b) is a critical
value of f . If b ∈ B is a critical point of f , the second derivatives of f determine a symmetric bilinear on the
tangent space TB,b, called the Hessian of f . A critical point b of f is said to be nondegenerate if the Hessian
of f at b is a nondegenerate bilinear form.

Let Fun(B) denote the collection of all smooth functions f : B → [0, 1] such that f−1{0} = X, f−1{1} =
X ′, f(m, t) = t for (m, t) ∈ M × [0, 1], and such that f has no critical points on ∂ B. A generic element of
f ∈ Fun(B) has the following properties:

(a) The function f : B → [0, 1] is Morse: that is, every critical point of f is nondegenerate.

(b) The critical values of f are distinct. That is, for every pair of distinct critical points b 6= b′ of f , the
we have f(b) 6= f(b′).

More precisely, the set Fun(B) carries a natural topology and the collection of functions f ∈ Fun(B) satisfying
both (a) and (b) is open and dense. Let f : B → [0, 1] be such a function. If f has no critical points then it
exhibits B as a fiber bundle over the interval [0, 1], which determines an identification of X with X ′ (well-
defined up to isotopy). Under this identification, B corresponds to the identity morphism idX in B(M). If
f has at least one critical point, then we can choose a sequence of real numbers 0 = t0 < t1 < . . . < tk = 1
with the following properties:

• None of the real numbers ti is a critical value of f .

• Each of the inverse images f−1[ti−1, ti] contains exactly one critical point of f .

This allows us to express B as a composition Bk◦. . .◦B1 of 1-morphisms in B(M), where Bi ' f−1[ti−1, ti]
is a morphism from Xi−1 = f−1{ti−1} to Xi = f−1{ti}. The advantage of this representation is that each
of the morphisms Bi is very simple, thanks to the following fundamental result:

Lemma 3.4.1 (Morse Lemma). Let f : B → [0, 1] be a smooth function with a nondegenerate critical point
at a point b ∈ B. Then there exists a system of local coordinates x1, . . . , xn for B at b such that f can be
written

f(x1, . . . , xn) = f(b)− x2
1 − . . .− x2

m + x2
m+1 + . . .+ x2

n.

Here m ≤ n is a nonnegative integer, called the index of the critical point b.

Suppose that B is a morphism in B(M) and that f : B → [0, 1] is a Morse function with exactly one
critical point b, which has index m. Choose local coordinates x1, . . . , xn for B at b as described in Lemma
3.4.1. For a sufficiently small real number ε, we can regard

U = {(x1, . . . , xn) ∈ Rn : (x2
1 + . . .+ x2

n < 2ε) ∧ (−ε < −x2
1 − . . .− x2

m + x2
m+1 + . . .+ x2

n < ε)}

as an open subset of B. Let B′ = f−1[f(b)−ε, f(b)+ε]; since f is submersive outside of B′, we can identify B
with B′ as morphisms in B(M). We observe that B′−U ' [f(b)−ε, f(b)+ε]×Y , where Y is a bordism from
M to Sm−1×Sn−m−1. The closure U of U determines a morphism γm from Dm×Sn−m−1 to Sm−1×Dn−m

in the (∞, 1)-category B(Sm−1 × Sn−m−1), and we can identify B with the image of η under the functor
B(Sm−1 × Sn−m−1)→ B(M) determined by Y .

The upshot of this discussion is that we can regard the morphisms {γm}0≤m≤n as “generators” for the
functor B in the following sense: for every closed (n − 2)-manifold M , every morphism B in B(M) can be
obtained as a composition of images of the morphisms of γm under functors B(Sm−1 × Sn−m−1) → B(M)
induced by bordisms from Sm−1×Sn−m−1 to M . This is just a categorical reformulation of the classical fact
that every n-manifold B admits a handle decomposition: in other words, B can be built by a finite sequence
of handle attachments.
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Unfortunately, the above analysis is not nearly refined enough for our purposes. In order to prove the
cobordism hypothesis, we need a more precise understanding (∞, 1)-categories B(M). Every morphism in
B(M) corresponds to a bordismB between (n−1)-manifolds, which admits a handle decomposition. However,
this handle decomposition is not unique: it depends on a choice of Morse function f : B → [0, 1]. Two
different Morse functions f0, f1 : B → [0, 1] will generally give rise to very different handle decompositions:
for example, they can have different numbers of critical points. However, Cerf theory guarantees that f0 and
f1 must be related to one another in a reasonably simple way. To see this, one chooses a smooth family of
functions {ft}0≤t≤1 in Fun(B) which interpolate between f0 and f1. It is generally impossible to ensure that
all of the functions ft are Morse. However, if {ft}0≤t≤1 is suitably generic, then ft will be fail to be Morse
for only finitely many values of t; moreover, each ft will fail to be Morse in a very mild (and well-understood)
way.

Definition 3.4.2. Let B be an n-manifold. A smooth function f : B → R is a generalized Morse function
if, for every point b ∈ B, one of the following conditions holds:

(1) The point b is a regular point of the function f : in other words, the derivative of f does not vanish at
b.

(2) The point b is a nondegenerate critical point of the function f .

(3) The function f has a birth-death singularity at b: that is, there exists a system of local coordinates
x1, . . . , xn for B at b such that f can be written in the form

f(x1, . . . , xn) = f(b)− x2
1 − . . .− x2

m + x2
m+1 + . . .+ x2

n−1 + x3
n.

Here m < n is an integer, called the index of the critical point b ∈ B.

Moreover, if B is a manifold with boundary (or with corners), then we require all critical points of f to lie
in the interior of B.

Remark 3.4.3. It is possible to formulate Definition 3.4.2 in more invariant terms. A smooth function
f : B → R has a birth-death singularity at b ∈ B if and only if b is a critical point for f , the Hessian of f at
b has a one-dimensional nullspace V ⊆ TB,b, and the third derivative of f along V does not vanish.

The theory of generalized Morse functions describes the generic behavior of 1-parameter families of
smooth functions on a manifold B. For our purposes, this is still not good enough: in order to understand
B(M) as an (∞, 1)-category, as opposed to an ordinary category, we need to be able to contemplate families
with an arbitrary number of parameters. One approach to the problem is to try to explicitly understand
the generic behavior of several parameter families of functions on B. This is feasible for small numbers of
parameters (and in fact this is sufficient for our purposes: we can use the methods of §3.5 to reduce to the
problem of understanding the (2, 1)-categories τ≤2 B(M)) using Thom’s theory of catastrophes. However, it
will be more convenient to address the issue in a different way, using Igusa’s theory of framed functions.

Definition 3.4.4. Let M be a closed (n − 2)-manifold, and let B be a morphism in B(M). A framed
function on B consists of the following data:

(1) A function f ∈ Fun(B) which is a generalized Morse function.

(2) For every critical point b of f having index m, a collection of tangent vectors v1, . . . , vm ∈ TB,b satisfying

H(vi, vj) =

{
0 if i 6= j

−2 if i = j,

where H denotes the Hessian of f at b.
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In the situation of Definition 3.4.4, we will generally abuse terminology and simply refer to f as a framed
function on B; the data of type (2) is implicitly understood to be specified as well. In [13], Igusa explains how
to introduce a topological space Funfr(B) of framed functions on B (more precisely, he defines a simplicial
set whose vertices are framed functions; one can then define Funfr(B) to be the geometric realization of this
simplicial set). We can use the spaces Funfr(B) to assemble a new version of the (∞, n)-category Bordn. For
every closed (n − 2)-manifold M , let Bn(M) denote the (∞, 1)-category which we may describe informally
as follows:

(i′) The objects of Bn(M) are (n− 1)-manifolds X equipped with an identification ∂ X 'M .

(ii′) For every pair of objects X,X ′ ∈ Bn(M), we let MapBn
(X,X ′) be a classifying space for pairs (B, f),

where B is a bordism from X to X ′ (which is trivial along M , as in the description of B(M)), and
f ∈ Funfr(B) is a framed function.

We can regard Bn as a lax symmetric monoidal functor from Ωn−2 Bordn−1 to Cat(∞,1). In view of
Corollary 3.3.35, this functor determines an (n − 2)-connective symmetric monoidal functor Bordn−1 →
Bordff

n . We can think of Bordff
n as a variation on the (∞, n)-category Bordn, where we require that every

n-manifold be decorated by a framed function. In particular, there is a forgetful functor j : Bordff
n → Bordn.

Warning 3.4.5. The reader should not confused the framed bordism (∞, n)-category Bordfr
n with the

(∞, n)-category Bordff
n introduced above. In the former case, we endow all n-manifolds with framings; in

the latter, we endow all n-manifolds with generalized Morse functions together with framings on the negative
eigenspaces of the Hessian at each critical point.

There is an evident functor Bordff
n → Bordn, which is obtained by forgetting the framed functions. In

order to prove the cobordism hypothesis, it will suffice to verify the following results:

Theorem 3.4.6 (Cobordism Hypothesis, Framed Function Version). Let C be a symmetric monoidal (∞, n)-
category with duals, and let Z0 : Bordn−1 → C be a symmetric monoidal functor. The following types of
data are equivalent:

(1) Symmetric monoidal functors Z : Bordff
n → C extending Z0.

(2) Nondegenerate O(n)-equivariant n-morphisms η : 1→ Z0(Sn−1) in C.

Theorem 3.4.7. The forgetful functor Bordff
n → Bordn is an equivalence of (∞, n)-categories.

The remainder of this section is devoted to a proof of Theorem 3.4.6; we will defer the proof of Theorem
3.4.7 until §3.5.

Remark 3.4.8. Theorem 3.4.7 is equivalent to the assertion that for every morphism B ∈ B(M), the
space Funfr(B) of framed functions on B is contractible. This was conjectured by Igusa, who proved the
weaker result that Funfr(B) is highly connected (Theorem 3.5.21). In §3.5 we will deduce Theorem 3.4.7 by
combining Igusa’s connectivity result with deformation-theoretic arguments. This provides a proof that each
Funfr(B) is contractible, but the proof is very indirect: it uses in an essential way that the spaces Funfr(B)
can be packaged together (as M and B vary) to form an (∞, n)-category Bordff

n . It is likely possible to
verify the contractibility of Funfr(B) in a more direct way (the contractibility can be regarded as an instance
of Gromov’s h-principle), which would eliminate the need to consider the cohomological formalism described
in §3.5.

The advantage of Bordff
n over Bordn is that the former (∞, n)-category evidently admits a description

by “generators and relations”, corresponding to the possible behaviors of a generalized Morse function near
a critical point. However, the situation is still fairly complicated because critical points can appear with
arbitrary Morse index. It is therefore convenient to consider these indices one at a time.
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Definition 3.4.9. Let M be a closed (n − 2)-manifold, let B be a 1-morphism in B(M), and let k be an
integer. We will say that a framed function f on B is k-typical if, for every critical point b of f , one of the
following conditions holds:

(1) The function f has a nondegenerate critical point at b of index ≤ k.

(2) The function f has a birth-death singularity at b of index < k.

We now define an (∞, 1)-category B(M) informally as follows:

(i) The objects of Bk(M) are (n− 1)-manifolds X equipped with an identification ∂ X 'M .

(ii) For every pair of objects X,X ′ ∈ B(M), the mapping object MapBk(M)(X,X ′) is a classifying space
for pairs (B, f), where B is a bordism from X to X ′ (which is trivial on M) and f is a k-typical framed
function on B.

For every integer k, we can view Bk as a lax symmetric monoidal functor Ωn−2 Bordn−1 → Cat(∞,1),
which (by virtue of Corollary 3.3.35) determines a symmetric monoidal functor Bordn−1 → Fk. Since
every k-typical framed function is also k′-typical for k′ ≥ k, we obtain a sequence of symmetric monoidal
(∞, n)-categories and functors

. . .→ F−1 → F0 → . . .→ Fn−1 → Fn → . . .

Example 3.4.10. If k ≥ n, then every framed function on an n-manifold B is k-typical. Consequently, we
obtain a canonical equivalence Fk ' Bordff

n .

Example 3.4.11. If k < 0, then a framed function f : B → [0, 1] is k-typical if and only if f has no critical
points. In this case, f exhibits B as a fiber bundle over the interval [0, 1], and determines a diffeomorphism
of X = f−1{0} with X ′ = f−1{1} (which is well-defined up to isotopy). It follows that Fk can be identified
with the (∞, n− 1)-category Bordn−1, in which n-morphisms are given by diffeomorphisms.

We begin the proof of Theorem 3.4.6 by analyzing the (∞, n)-category F0. We observe that a framed
function f : B → [0, 1] is 0-typical if and only if it is a Morse function, and every critical point of f has index
0. The Morse Lemma implies that near each critical point b of B, we can choose local coordinates x1, . . . , xn
such that f is given by the formula

f(x1, . . . , xn) = b+ x2
1 + . . .+ x2

n.

This choice of coordinates is not unique: however, it is unique up to a contractible space of choices, once
we fix an orthonormal frame for the tangent space TB,b. One can use this reasoning to prove the following
result:

Claim 3.4.12. The functor B0 : Ωn−2 Bordn−1 → Cat(∞,1) is freely generated (as a lax symmetric monoidal
functor) by a single O(n)-equivariant 1-morphism ∅ → Sn−1 in B0(∅), corresponding to the pair (Dn, f) where
Dn = {(x1, . . . , xn) ∈ Rn : x2

1 + . . . + x2
n ≤ 1

2} and f : Dn → [0, 1] is given by the formula f(x1, . . . , xn) =
1
2 + x2

1 + . . .+ x2
n.

Corollary 3.4.13. The (∞, n)-category F0 is freely generated (as a symmetric monoidal (∞, n)-category)
by Bordn−1 together with a single O(n)-equivariant n-morphism ∅ → Sn−1, corresponding to the disk Dn

(equipped with the framed function described in Claim 3.4.12). In other words, if C is any symmetric monoidal
(∞, n)-category, then giving a symmetric monoidal functor Z : F0 → C is equivalent to giving a symmetric
monoidal functor Z0 : Bordn−1 → C together with an O(n)-equivariant n-morphism η : 1→ Z0(Sn−1).

Corollary 3.4.13 bears a strong resemblance to Theorem 3.4.6. However, it differs in two important
respects:

(a) We do not need to assume that the target (∞, n)-category C has duals.
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(b) The morphism η : 1→ Z0(Sn−1) need not be nondegenerate.

To deduce Theorem 3.4.6 from Corollary 3.4.13, we will prove the following:

Lemma 3.4.14. Let C be a symmetric monoidal (∞, n)-category. Then the forgetful functor Fun⊗(F1,C)→
Fun⊗(F0,C) is fully faithful, and its essential image consists of precisely those functors Z : F0 → C such that
the n-morphism Z(Dn) : Z(∅)→ Z(Sn−1) is nondegenerate.

Lemma 3.4.15. Let C be a symmetric monoidal (∞, n)-category with duals. For 2 ≤ k ≤ n, the forgetful
functor Fun⊗(Fk,C)→ Fun⊗(Fk−1,C) is an equivalence.

In other words, a functor Z : F0 → C can be extended (in an essentially unique fashion) to F1 if and
only if corresponds to a nondegenerate n-morphism η : 1 → Z(Sn−1). Then, if C has duals, we can extend
Z uniquely over each successive step of the filtration F1 → F2 → . . .→ Fn.

To prove Lemmas 3.4.14 and 3.4.15, we need an analogue of Claim 3.4.12 which describes the passage
from Fk−1 to Fk for 0 < k ≤ n. In other words, we want to describe how to obtain the functor Bk :
Ωn−2 Bordn−1 → Cat(∞,1) is obtained from Bk−1 by adjoining “generators and relations”. Once again, this
question can be addressed by describing the behavior of a framed function f : B → [0, 1] near points b ∈ B
where f is k-typical, but not (k − 1)-typical. There are two possibilities for the behavior of f :

(1) The function f can have a nondegenerate critical point of index k near the point b ∈ B. In this case,
we can choose local coordinates x1, . . . , xn for b at B so that f admits an expression

f(x1, . . . , xn) = f(b)− x2
1 − . . .− x2

k + x2
k+1 + . . .+ x2

n.

Moreover, since f is a framed function, it comes equipped with a collection of tangent vectors

v1, . . . , vk ∈ TB,b

satisfying

H(vi, vj) =

{
0 if i 6= j

−2 if i = j,

where H denotes the Hessian of f at b. Without loss of generality, we may assume that vi = ∂
∂ xi

.
The choice of coordinates x1, . . . , xn is not unique. For example, any element of O(n− k) determines
a linear coordinate change (fixing each xi for i ≤ k) which leaves the function f invariant. However,
this is essentially the only source of nonuniqueness: one can show that the group of local coordinate
changes which respect both f and the vectors vi is homotopy equivalent to O(n− k).

(2) The function f can have a birth-death singularity of index (k − 1) near the point b ∈ B. In this case,
we can choose local coordinates x1, . . . , xn near b so that f can be written

f(x1, . . . , xn) = f(b)− x2
1 − . . .− x2

k−1 + x3
k + x2

k+1 + . . .+ x2
n.

Because f is a framed function, it comes equipped with a collection of tangent vectors v1, . . . , vk−1 ∈
TB,b satisfying

H(vi, vj) =

{
0 if i 6= j

−2 if i = j,

where H denotes the Hessian of f at b. Without loss of generality, we may assume that these tangent
vectors are given by vi = ∂

∂ xi
. The choice of coordinates is not unique, but the relevant group of

coordinate changes is again homotopy equivalent to O(n− k).
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We now translate the local pictures described in (1) and (2) into categorical terms. If f has a non-
degenerate critical point at b ∈ B then we can locally identify (B, f) with the pair (U, f0), where U =
{(x1, . . . , xn) ∈ Rn : (x2

1 + . . .+x2
n ≤ 1)∧ (−1

2 ≤ −x
2
1− . . .−x2

k +x2
k+1 + . . .+x2

n ≤ 1
2 )} and f0(x1, . . . , xn) =

1
2−x

2
1−. . .−x2

k+x2
k+1 +. . . x2

n. The pair (U, f0) determines a 1-morphism from Sk−1×Dn−k to Dk×Sn−k−1

in the (∞, 1)-category Bk(Sk−1 × Sn−k−1), which we will denote by αk. We can informally summarize the
situation as follows: the existence of nondegenerate critical points of index k contributes a 1-morphism αk
to Bk(Sk−1 × Sn−k−1), which is equivariant with respect to the orthogonal group O(n− k).

Notation 3.4.16. To avoid unnecessarily cumbersome notation in the arguments which follow, we will
identify αk with its image in Bk′(Sk−1 × Sn−k−1) for k′ ≥ k. We will use this notation also in the case
k = 0, in which case αk corresponds to the 1-morphism described in Claim 3.4.12.

The analogous assertion for birth-death critical points is more complicated. First of all, a generic gen-
eralized Morse function f : B → R will not admit any birth-death critical points at all. Instead birth-
death critical points appear generically at isolated points (b, t) for a family of generalized Morse functions
{ft : B → R}t∈[−1,1]. Suppose we are given such a family which has a birth-death singularity of index (k−1)
at the point (b, 0). One can show that for a suitable choice of local coordinates, we have the formula

ft(x1, . . . , xn) = f0(b)− x2
1 − x2

2 − . . .− x2
k−1 + x3

k − txk + x2
k+1 + . . .+ x2

n.

For t < 0, this function has no critical points. For t > 0, it has two critical points: namely, the points
where xk = ±

√
t
3 and the other coordinates vanish. These critical points have index (k − 1) (when xk is

positive and the value of the function f is less than f(b)) and index k (when xk is negative and the value
of the function f is greater than f(b)) respectively. We can interpret this family of functions as giving us a
2-morphism in Bk(Sn−2). To describe the situation more precisely, we need to introduce a bit of notation.

Choose small disjoint open balls V+, V− ⊆ Sk−1 and W+,W− ⊆ Sn−k. Set

X = (Sk−1 × Sn−k)− (V− ×W−),

so we can regard X as an object of Bk(Sn−2) (here we implicitly smooth the corners of the product disk
V −×W−). We note that X−(Sk−1×W+) can be regarded as a bordism from ∂ X = Sn−2 to ∂(Sk−1×W+) '
Sk−1×Sn−k−1, which we identify with a 1-morphism δ : Sk−1×Sn−k−1 → Sn−2 in Ωn−2 Bordn−1. This 1-
morphism induces a functor δ! : Bk(Sk−1×Sn−k−1)→ Bk(Sn−2). Similarly, we can regard X− (V+×Sn−k)
as defining a 1-morphism ε : Sk−2 × Sn−k → Sn−2 in Ωn−2 Bordn−1, which determines a functor ε! :
Bk(Sk−2 × Sn−k−1)→ B(Sn−2). In particular, we can apply δ! to αk−1 and ε! to αk, to obtain a diagram

Dn−1 δ!αk−1−→ X
ε!αk−→ Dn−1

in the (∞, 1)-category Bk(Sn−2). The composition of these 1-morphisms corresponds to a 1-morphism
(Dn, g) : Dn−1 → Dn−1 in Bk(Sn−2), where g is a framed function which is given locally by

ft(x1, . . . , xn) = f0(b)− x2
1 − x2

2 − . . .− x2
k−1 + x3

k − txk + x2
k+1 + . . .+ x2

n

for positive values of t. The existence of such a family connecting g to a function without critical points
implies that the composition ε!(αk) ◦ δ!(αk−1) is isomorphic to the identity idDn−1 in Bk(Sn−2).

We can now state the higher-index analogue of Claim 3.4.12:

Claim 3.4.17. For 0 < k ≤ n, the lax symmetric monoidal functor Bk : Ωn−2 Bordn−1 → Cat(∞,1) is freely
generated from Bk−1 by the following data:

(1) An O(n − k)-equivariant 1-morphism αk : Sk−1 × Dn−k → Dk × Sn−k−1 in Bk(Sk−1 × Sn−k−1)
(corresponding to a handle attachment of index k).

(2) An O(n − k)-equivariant 2-morphism βk : idDn−1 ' ε!(αk) ◦ δ!(αk−1) in Bk(Sn−2) (corresponding to
cancellation of handles of indices k and k − 1).
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We can regard Claim 3.4.17 as giving descriptions of the lax symmetric monoidal functors Bk by gen-
erators and relations. Our next step is to translate these into descriptions of the (∞, n)-category Fk by
generators and relations. Of course, there is a naive way to go about this: by construction, 1-morphisms
from X to X ′ in Bk(M) can be identified with n-morphisms from X : 1→M to X ′ : 1→M in the (∞, n)-
category Fk. However, other translations are also possible. The results described in §3.3, which assert that
Fk is completely determined by the lax symmetric monoidal functor Bk : Ωn−2 Bordn−1 → Cat(∞,1), are
possible precisely because the (∞, n)-category Fk packages a great deal of information in a redundant way.
For example, if K is any closed (n − 3)-manifolds bounding a pair of (n − 2)-manifolds M+ and M−, then
Bk(M−

∐
KM+) can be identified with the (∞, 1)-category MapC(M−,M+) where C = MapΩn−2 Fk

(∅,K).
We will apply this observation to obtain a more subtle interpretation of the presentation of Claim 3.4.17.
First, we need to introduce a bit more terminology.

Notation 3.4.18. Let C be a symmetric monoidal (∞, n)-category, and let K be an object of Ωm−1 C, where
m < n. We let ΩmK C denote the (∞, n −m)-category MapΩm−1 C(1,K). Note that if K is the unit object
of Ωm−1 C, then ΩmK C = Ωm C. We will sometimes use this notation even when m = 0: in this case, we will
implicitly assume that K is the unique object of the delooping B C and define ΩmK C = C.

In particular, if K is a closed (n − 3)-manifold, then we can consider an (∞, 2)-category Ωn−2
K Fk. We

can identify objects of Ωn−2
K Fk with (n− 2)-manifolds having boundary K, and morphisms of Ωn−2

K Fk with
bordisms between such (n− 2)-manifolds.

For k ≥ 1, we have in particular two objects

Sk−2 ×Dn−k, Dk−1 × Sn−k−1 ∈ Ωn−2
Sk−2×Sn−k−1 Fk

which we will denote by x and y, respectively. The disk Dn−1 ' Dk−1 × Dn−k can be interpreted as
both a morphism f : x → y and as a morphism g : y → x in Ωn−2

Sk−2×Sn−k−1 Fk. The (∞, 1)-category
MapΩn−2

Sk−2×Sn−k−1 Fk
(x, x) can be identified with Bk(Sk−2 × Sn−k). Under this identification, the identity

1-morphism idx corresponds to the object Sk−2 × Dn−k+1 ∈ Bk(Sk−2 × Sn−k−1), while the composition
g ◦ f corresponds to the object Dk−1×Sn−k ∈ Bk(Sk−2×Sn−k−1). We may therefore interpret the handle-
attachment 1-morphism αk−1 : Sk−2 × Dn−k+1 → Dk−1 × Sn−k in Bk(Sk−2 × Sn−k−1) as giving us a
2-morphism u : idx → g ◦ f in the (∞, 2)-category Ωn−2

Sk−2×Sn−k−1 Fk.
Using the same reasoning, we obtain an equivalence of (∞, 1)-categories

MapΩn−2
Sk−2×Sn−k−1 Fk

(y, y) ' Bk(Sk−1 × Sn−k).

Under this equivalence, the identity map idy corresponds to the object Dk ×Sn−k−1, while the composition
f ◦ g corresponds to the object Sk−1 × Dn−k. The 1-morphism αk : Sk−1 × Dn−k → Dk × Sk−1 in
Bk(Sk−1 × Sn−k) corresponds to a 2-morphism v : f ◦ g → idy in the (∞, 2)-category Ωn−2

Sk−2×Sn−k−1 Fk.
Finally, we observe that there is an equivalence of (∞, 1)-categories

MapΩn−2
Sk−2×Sn−k−1 Fk

(x, y) ' Bk(Sn−2).

Under this equivalence, the map f corresponds to the (n− 1)-disk Dn−1 ∈ Bk(Sn−2), while the composition
f ◦ g ◦ f corresponds to the (n − 1)-manifold X = Sk−1 × Sn−k − V− ×W−. The 1-morphisms ε!(αk) and
δ!(αk−1) appearing in the statement of Claim 3.4.17 correspond to the 2-morphisms

f
idf ×u−→ f ◦ g ◦ f f ◦ g ◦ f v×idf−→ f

induces by u and v. Consequently, the 2-morphism βk : idDn−1 ' ε!(αk) ◦ δ!(αk−1) can be regarded as an
isomorphism γ : idf ' (v × idf ) ◦ (idf ×u) between 2-morphisms of Ωn−2

Sk−2×Sn−k−1 Fk. In particular, the
existence of γ implies that v is upper compatible with u in the homotopy 2-category τ≤2Ωn−2

Sk−2×Sn−k−1 Fk
(see the discussion preceding Lemma 2.3.8).
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Applying the same reasoning with the roles of x and y switched, we deduce that there exists another
2-morphism v′ : f ◦ g → idy which is lower compatible with u. It is not clear immediately that v = v′ (this is
a bit subtle if we keep careful track of the framed functions), but Lemma 2.3.8 implies that v is isomorphic
to v′, so that u is the unit of an adjunction between u and v in Ωn−2

Sk−2×Sn−k−1 Fk.
Now, if we assume that u : idx → g ◦ f is the unit of an adjunction in Ωn−2

Sk−2×Sn−k−1 Fk, then it has
a compatible counit v0 : f ◦ g → idy. For any map v : f ◦ g → idy, giving an isomorphism γ : idf '
(v × idf ) ◦ (idf ×u) is equivalent to giving an isomorphism v0 ' v. Consequently, the pair (v, γ) is uniquely
determined up to isomorphism. We can summarize our discussion as follows:

Proposition 3.4.19. Let C be a symmetric monoidal (∞, n)-category, let 1 ≤ k ≤ n and let Z0 : Fk−1 → C

be a symmetric monoidal functor. Let C = Z0(Sk−2×Sn−k−1) and let C′ denote the (∞, 2)-category Ωn−2
C C.

Applying Z0 to Dk−1 × Sn−k−1, Sk−2 × Dn−k, and Dn−1, we obtain objects x, y ∈ C′ and 1-morphisms
f : x→ y, g : y → x. Moreover, applying Z0 to αk−1, we obtain a 2-morphism u : idx → g ◦ f . The functor
Z0 can be extended to a symmetric monoidal functor Z : Fk → C if and only if u is the unit for an adjunction
between g and f in C′. Moreover, if this extension exists, then it is unique up to canonical isomorphism.

In the special case where k = 1, Proposition 3.4.19 reduces to the statement of Lemma 3.4.14. Lemma
3.4.15 follows immediately from Proposition 3.4.19 and the following:

Proposition 3.4.20. Let C be a symmetric monoidal (∞, n)-category with duals, let 2 ≤ k ≤ n, and let
Z0 : Fk−1 → C be a symmetric monoidal functor. Let C′, x, y, f , g, and u : idx → g ◦ f be as in Proposition
3.4.19. Then u is the unit of an adjunction between g and f in the (∞, 2)-category C′.

The proof of Proposition 3.4.20 rests on the following bit of category theory:

Lemma 3.4.21 (Exchange Principle). Let f : x → y and f† : y → x be 1-morphisms in a 3-category D.
Let u : idx → f† ◦ f and u′ : idy → f ◦ f† be 2-morphisms in D, and let α : (idf† ×u′) → (u × idf†) be a
3-morphism between the 2-morphisms (idf† ×u′), (u× idf†) : f† → f† ◦ f ◦ f†. Assume that:

(1) The 2-morphism u exhibits f† as a right adjoint of f . In particular, there exists a compatible counit
map v : f ◦ f† → idy which determines an bijection Hom(idf† ×u′, u× idf†) ' Hom(u′ ◦ v, idf◦f†); we
let β denote the image of α under this bijection.

(2) The 2-morphism u′ exhibits f† as a left adjoint of f . In particular, there exists a compatible counit
map v′ : f† ◦ f → idx which determines a bijection Hom(idf† ×u′, u × idf†) ' Hom(idf†◦f , u ◦ v′); let
γ denote the image of α under this bijection.

(3) The 2-morphisms u and v both admit left adjoints.

Then β : u′ ◦ v → idf◦f† is the counit of an adjunction between u′ and v if and only if γ : idf†◦f → u ◦ v′ is
the unit of an adjunction between u and v′.

Remark 3.4.22. In the statement of Lemma 3.4.21, the assumption that f† is both a right and a left adjoint
to f is not as strong as it might first appear. Suppose that f admits a right adjoint fR, so we have unit and
counit maps u : idx → fR ◦ f and v : f ◦ fR → idy. If u and v admit left adjoints uL and vL, then uL and
vL exhibit fR also as a left adjoint to f .

Proof of Lemma 3.4.21. Let uL : f† ◦ f → idx and vL : idy → f ◦ f† be left adjoints to u and v, respectively.
Assumption (1) guarantees that u and v are compatible unit and counit maps which exhibit f† as a right
adjoint to f , we conclude that vL and uL are compatible unit and counit maps which exhibit f† as left
adjoint to f . We can therefore factor the map u′ as a composition

idy
vL−→ f ◦ f†

S×id
f†−→ f ◦ f†,
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where S : f → f is a 2-morphism in D (which is well-defined up to canonical isomorphism). Assumption
(2) guarantees that S is an isomorphism. The identification u′ ' (S × idf†) ◦ vL induces an identification
v′ ' uL ◦ (idf† ×S−1).

The 3-morphism β : u′ ◦ v → idf◦f† is classified by a 3-morphism (S × idf†) ◦ vL ' u′ → vL, which is in
turn determined by a 3-morphism β′ : S → idf . Similarly, γ : idf†◦f → u ◦ v′ is classified by a 3-morphism
uL → v′ ' uL ◦ (idf† ×S−1), which is turn determined by a 3-morphism γ′ : idf → S−1. We wish to prove
that β′ is an isomorphism if and only if γ′ is an isomorphism. To see this, it suffices to observe that β′ is
the image of γ′ under the equivalence of 2-categories MapD(f, f)→ MapD(f, f) given by composition with
S.

Proof of Proposition 3.4.20. Let C be an (∞, n)-category with duals, and let Z0 : Fk−1 → C be a symmetric
monoidal functor, where 2 ≤ k ≤ n. For the sake of simplicity, we will assume that n ≥ 4 (the cases n = 2
and n = 3 can be handled by the same method, but require slight changes of notation). Let C = Z0(Sk−3×
Sn−k−1) ∈ Ωn−4 C, and let D = τ≤3Ωn−3

C C. Let x = Z0(Dk−2 × Sn−k−1) and y = Z0(Sk−3 × Dn−k),
regarded as objects of D. We observe that Dk−2 ×Dn−k determines morphisms f : x → y and f† : y → x
in D. We have canonical identifications idx ' Z0(Dk−1 × Sn−k−1) and f† ◦ f ' Z0(Sk−2, Dn−k), so the
product Dk−1 × Dn−k determines a 2-morphism u : idx → f† ◦ f in D. This 2-morphism is the unit an
adjunction (the analogous statement is already true in the 3-category Ωn−3

Sk−3×Sn−k−1 Fk−1); let v denote a
compatible counit. Similarly, the product Dk−2 × Dn−k+1 determines a 2-morphism u′ : idy → f ◦ f†,
which is again the unit of an adjunction and therefore has a compatible counit v′. Finally, we note that
the 1-morphism αk−1 in Bk−1(Sk−2 × Sn−k) (see the discussion preceding Notation 3.4.16) determines
a 3-morphism α : (idf† ×u′) → (u × idf†) in D, which induces 2-morphisms β : u′ ◦ v → idf◦f† and
γ : idf†◦f → u ◦ v′ as in the statement of Lemma 3.4.21. Since C has duals, every 2-morphism in D has a
left adjoint. The discussion preceding Proposition 3.4.19 shows that β is the counit of an adjunction (the
analogous statement is already true in the (∞, 2)-category Ωn−2

Sk−3×Sn−k Fk−1). It follows from Lemma 3.4.21
that β is the unit of an adjunction, as desired.

3.5 Obstruction Theory

Our goal in this section is to complete the proof of the cobordism hypothesis by establishing Theorem 3.4.7,
which asserts that the forgetful functor Bordff

n → Bordn is an equivalence of (symmetric monoidal) (∞, n)-
categories. To prove this, we need a method for testing when a functor between (∞, n)-categories is an
equivalence. In the case n = 0, we have the following criterion for detecting homotopy equivalences:

Proposition 3.5.1. Let f : X → Y be a continuous map of CW complexes. Then f is a homotopy
equivalence if and only if the following conditions are satisfied:

(i) The map f induces an equivalence of fundamental groupoids π≤1X → π≤1Y .

(ii) For every local system of abelian groups A on Y and every n ≥ 0, the induced map on cohomology
Hn(Y ; A)→ Hn(X; f∗A) is an isomorphism.

In this section we will describe an analogue of Proposition 3.5.1 in the (∞, n)-categorical setting and
apply this analogue to prove Theorem 3.4.7. We begin by sketching a proof of Proposition 3.5.1 itself.

Suppose that f : X → Y is a map of CW complexes satisfying conditions (i) and (ii) of Proposition
3.5.1. We wish to prove that f is a homotopy equivalence. To prove this, we will show the following: for
every topological space Z, composition with f induces a weak homotopy equivalence of mapping spaces
φ : Map(Y,Z)→ Map(X,Z) (in particular, it will follow that π0 Map(Y,Z) ' π0 Map(X,Z), so that X and
Y corepresent the same functor on the homotopy category of topological spaces). The idea is to break Z up
into simple pieces for which the map φ is easy to analyze. First, we need to review a few basic ideas from
homotopy theory.
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Definition 3.5.2. Let K be a topological space and n a nonnegative integer. We say that K is n-truncated
if πi(K,x) vanishes, for every point x ∈ K and all i > n. We will say that a continuous map p : Z → K
exhibits K as an n-truncation of X if K is n-truncated, and p induces isomorphisms πi(Z, z)→ πi(K, f(z))
for all z ∈ Z and all i ≤ n.

For every topological space Z and every n ≥ 0, there exists an n-truncation p : Z → K of Z. Moreover,
K is uniquely determined up to weak homotopy equivalence. We can construct K functorially in Z: it can
be obtained by successively gluing on cells of each dimension m > n + 1 to kill all of the higher homotopy
groups of Z. We will generally denote an n-truncation of Z by τ≤nZ.

Example 3.5.3. Let X be a CW complex. Then there is a continuous map f : X → π0X, which collapses
every connected component of X to a point. This map exhibits π0X as a 0-truncation of X.

Allowing the integer n to vary, we can associate to every topological space Z its Postnikov tower

. . .→ τ≤nZ → τ≤n−1Z → . . .→ τ≤0Z.

The truncations appearing in this tower can be regarded as successively better approximations to the space
Z. The space Z itself can be recovered (up to weak homotopy equivalence) by forming the homotopy inverse
limit of the tower. If X and Y are CW complexes, then the mapping spaces Map(X,Z) and Map(Y,Z) can
also be recovered (again up to weak homotopy equivalence) as the homotopy inverse limits of the towers
{Map(X, τ≤nZ)}n≥1 and {Map(Y, τ≤nZ)}n≥1. Consequently, to prove that a map f : X → Y induces a
weak homotopy equivalence Map(Y,Z)→ Map(X,Z), it will suffice to show that f induces a weak homotopy
equivalence Map(Y, τ≤nZ)→ Map(X, τ≤nZ) for each n ≥ 1.

The proof of Proposition 3.5.1 now proceeds by induction on n. When n = 1, the space τ≤nZ is 1-
truncated: in other words, it is completely determined (up to weak homotopy equivalence) by its fundamental
groupoid. The mapping spaces Map(X, τ≤1Z) is likewise 1-truncated: it can be identified with the classifying
space of the groupoid of functors π≤1X → π≤1Z. Similarly, Map(Y, τ≤1Z) is equivalent to the classifying
space of the groupoid of functors from π≤1Y into π≤1Z. Hypothesis (i) of Proposition 3.5.1 guarantees
that f induces an equivalence of fundamental groupoids π≤1X → π≤1Y ; it follows that the induced map
Map(Y, τ≤1Z)→ Map(X, τ≤1Z) is a weak homotopy equivalence.

Now suppose that n > 1, and suppose that the map Map(Y, τ≤n−1Z) → Map(X, τ≤n−1Z) is a weak
homotopy equivalence. We would like to prove that the map Map(Y, τ≤nZ)→ Map(X, τ≤nZ) is also a weak
homotopy equivalence. The idea is to take advantage of the fact that the spaces τ≤nZ and τ≤n−1Z are very
similar. Without loss of generality, we may suppose that the map τ≤nZ → τ≤n−1Z is a fibration; let Fz
denote the fiber of this map taken over a point z ∈ τ≤n−1Z. For every point z ∈ τ≤nZ lying over z, we
obtain a long exact sequence of homotopy groups

. . .→ πk(Fz, z)→ πk(τ≤nZ, z)→ πk(τ≤n−1Z, z)→ πk−1(Fz, z)→ . . .

It follows that the homotopy groups of Fz are given by the formula

πk(Fz, z) '

{
0 if k 6= n

πn(τ≤nZ, z) if k = n.

In particular, each fiber Fz is an Eilenberg-MacLane space K(Az, n) for some abelian group Az. The abelian
group Az generally depends on the choice of point z ∈ τ≤n−1Z. However, this dependence is functorial: the
construction z 7→ Az determines a functor from the fundamental groupoid π≤1(τ≤n−1Z) ' π≤1Z into the
category of abelian groups. In other words, we can view the collection of abelian groups {Az}z∈τ≤n−1Z as
defining a local system of abelian groups on the space τ≤n−1Z.

The fibration τ≤nZ → τ≤n−1Z induces a fibration q : Map(Y, τ≤nZ) → Map(Y, τ≤n−1Z). We can try
to use this fibration to compute the homotopy groups of the mapping space Map(Y, τ≤nZ). However, we
must be careful in doing so, because the fibers of q over different elements of Map(Y, τ≤n−1Z) are generally
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different from one another. Let g : Y → τ≤nZ be a continuous map, and let g : Y → τ≤n−1Z be the induced
map. Then the fibration q determines a long exact sequence of homotopy groups

· · · → πk+1(Map(Y, τ≤n−1Z), g)→ Hn−k(Y ; A′)→ πk(Map(Y, τ≤nZ), g)→ πk(Map(Y, τ≤n−1Z), g)→ · · ·

where A′ = g∗A denotes the pullback of the local system A along the map g.
The morphism f : X → Y induces a map of long exact sequences

πk+1(Map(Y, τ≤n−1Z), g)

��

φ1 // πk+1(Map(X, τ≤n−1Z), g ◦ f)

��
Hn−k(Y ; A′)

��

φ2 // Hn−k(X; f∗A′)

��
πk(Map(Y, τ≤nZ), g)

��

φ3 // πk(Map(X, τ≤nZ), g ◦ f)

��
πk(Map(Y, τ≤n−1Z), g)

��

φ4 // πk(Map(X, τ≤n−1Z), g ◦ f)

��
Hn+1−k(Y ; A′)

φ5 // Hn+1−k(X; f∗A′).

The inductive hypothesis guarantees that φ1 and φ4 are isomorphisms, and hypothesis (ii) guarantees that
φ2 and φ5 are isomorphisms. It follows from the “five lemma” that φ3 is an isomorphism, so that the map
Map(Y, τ≤nZ)→ Map(X, τ≤nZ) is a weak homotopy equivalence as desired.

Warning 3.5.4. The argument sketched above is not quite complete: we need to take special care with the
above long exact sequence for small values of k (where the relevant homotopy groups do not admit group
structures).

We would now like to prove an analogue of Proposition 3.5.1 in the setting of higher category theory.
The first step is to find the appropriate generalization of the theory of Postnikov towers.

Definition 3.5.5. Let C be an (∞, n)-category, and let m ≥ n. We will say that a functor f : C → D

exhibits D as an m-truncation of C if D is an (m,n)-category and the following condition is satisfied:

(∗) For any (m,n)-category E, composition with f induces an equivalence

Fun(D,E)→ Fun(C,E).

In other words, Definition 3.5.5 requires that D be universal among (m,n)-categories which admit a
functor C → D. It is clear that if an (∞, n)-category C admits an m-truncation D, then D is uniquely
determined up to equivalence. We will denote this m-truncation by τ≤m C. To verify the existence of τ≤m C,
we use the following recursive construction:

Construction 3.5.6. Let C be an (∞, n)-category, and let m ≥ n be an integer. We will define an (m,n)-
category τ≤m C as follows:

(a) The objects of τ≤m C are the objects of C.

(b) Given a pair of objects X,Y ∈ C, we define Mapτ≤m C(X,Y ) = τ≤m−1 MapC(X,Y ).

(c) The composition of morphisms in τ≤m C is induced by the composition of morphisms in C.
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Remark 3.5.7. More informally, we can describe the truncation τ≤m C of an (∞, n)-category C as follows.
For k < m, the k-morphisms in τ≤m C are the same as the k-morphisms in C. For k = m, the k-morphisms
in τ≤m C are isomorphism classes of k-morphisms in C. For k > m, τ≤m C has only identity k-morphisms.

Remark 3.5.8. In the case n = 0, the notion of m-truncation of a topological space (Definition 3.5.2) and
the notion of m-truncation of an (∞, n)-category (Definition 3.5.5) correspond to one another, under the
equivalence of Thesis 1.3.8.

Example 3.5.9. Let C be an (∞, n)-category. Then the truncation τ≤n C coincides with the homotopy
n-category hnC described in Remark 1.4.10.

It follows from the above discussion that every (∞, n)-category C determines a Postnikov tower

. . .→ τ≤n+2 C→ τ≤n+1 C→ τ≤n C ' hnC .

As in the topological case, we can recover C (up to equivalence) as the homotopy inverse limit of this tower.
In practice, this Postnikov tower is a useful tool because it allows us to reduce questions about the (∞, n)-
category C to questions about the n-category hnC (a much less sophisticated object) and questions about
the individual maps ψm : τ≤m C → τ≤m−1 C. To address the questions of the latter type, we would like to
articulate a sense in which ψm is close to being an isomorphism. In the case n = 0, we saw that for m ≥ 2,
the homotopy fibers of ψm were Eilenberg-MacLane spaces K(Az,m), where the functor z 7→ Az determines
a local system of abelian groups on the base τ≤m−1 C. Our next goal is to formulate the appropriate higher
categorical generalizations of these statements.

We will define, for each (∞, n)-category C, an abelian category Loc(C) of local systems (of abelian groups)
on C. This construction will be functorial in C: every functor f : C → D between (∞, n)-categories will
induce a pullback functor f∗ : Loc(D)→ Loc(C). The definition uses induction on n.

Definition 3.5.10. Let C be an (∞, n)-category. If n = 0, then a local system of abelian groups on C is a
functor from C to the (ordinary) category of abelian groups. If n > 0, then a local system of abelian groups
on C consists of the following data:

(i) For every pair of objects x, y ∈ C, a local system Ax,y of abelian groups on the (∞, n − 1)-category
MapC(x, y).

(ii) For every triple of objects x, y, z ∈ C, a map of local systems

mx,y,z : p∗0 Ax,y ×p∗1 Ay,z → c∗Ax,z .

Here p0 and p1 denote the projection maps of MapC(x, y)×MapC(y, z) onto MapC(x, y) and MapC(y, z),
respectively, and c the composition map MapC(x, y) × MapC(y, z) → MapC(x, z). The collection of
maps {mx,y,z}x,y,z∈C is required to satisfy some natural associativity conditions which we will not
make explicit.

Our next step is to define the cohomology of an (∞, n)-category C with coefficients in a local system
A ∈ Loc(C). We begin by reviewing the classical case. If X is a CW complex and A is an abelian group,
then the cohomology group Hm(X;A) can be described as the set [X,K(A,m)] of homotopy classes of maps
from X into an Eilenberg-MacLane space K(A,m). Equivalently, we can describe Hm(X;A) as the set of
homotopy classes of sections of the projection map p : X ×K(A,m)→ X. There is a generalization of this
assertion to the case of cohomology with coefficients in a local system A on X: in this case, we need to
replace p by a twisted fibration q : K(A,m)→ X with the following properties:

(a) There exists a section s of q.

(b) For each x ∈ X, let Fx denote the fiber of the map q over the point x. There exists a collection of
isomorphisms

πk(Fx, s(x)) '

{
0 if k 6= m

Ax if k = m,

depending naturally on x.
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The fibration q always exists and is determined up to homotopy equivalence by these requirements, and the
twisted cohomology group Hm(X; A) can be identified with the set of homotopy classes of sections of q. We
now present a generalization of this picture to higher category theory:

Definition 3.5.11. Let C be an (∞, n)-category, and let A be a local system of abelian groups on C. For
each m ≥ n, we will define a new (∞, n)-category K(A,m). Our construction proceeds by induction on
n. In the case n = 0, we let K(A,m) be defined as in the preceding discussion. If n > 0, then we define
K(A,m) as follows:

(1) The objects of K(A,m) are the objects of C.

(2) Let x and y be objects of C, so that A determines a local system of abelian groups Ax,y on the
(∞, n− 1)-category MapC(x, y). We now define MapK(A,m)(x, y) = K(Ax,y,m− 1).

(3) The composition law for morphisms in K(A,m) is determined by the composition of morphisms in C

(and the structure of A as a local system).

By construction, the (∞, n)-category K(A,m) comes equipped with a forgetful functor q : K(A, n)→ C.
We let Hm(C; A) denote the set of isomorphism classes of sections of q; we refer to Hm(C; A) as the mth
cohomology group of C with values in A.

Remark 3.5.12. It is also possible to define the cohomology groups Hm(C; A) for m < n. For example,
Hm−k(C; A) can be identified with the kth homotopy group of the classifying space for sections of the
projection K(A,M)→ C.

As the terminology suggests, the set Hm(C; A) admits a natural (commutative) group structure, which
is induced by the map of local systems A×A→ A. In particular, there is a canonical zero object Hm(C; A),
which corresponds to a section s0 : C→ K(A,m) of the projection map q : K(A,m)→ C.

Variant 3.5.13. Let C be a symmetric monoidal (∞, n)-category, so that we have a tensor product functor
T : C×C→ C which is commutative and associative, up to isomorphism. We will say that a local system of
abelian groups A on C is multiplicative if we are provided with a map of local systems

m : p∗0 A×p∗1 A→ T ∗A

on C×C, which satisfies some natural commutativity and associativity properties (here p0, p1 : C×C → C

denote the projection maps). If A is a multiplicative local system, then the (∞, n)-categories K(A,m)
inherit a symmetric monoidal structure, and the forgetful functor q : K(A,m)→ C preserves this symmetric
monoidal structure. We let Hm

⊗ (C; A) denote the collection of all isomorphism classes of symmetric monoidal
sections of q. We will refer to Hm

⊗ (C; A) as the mth multiplicative cohomology group of C with values in
A. By forgetting the symmetric monoidal structure, we obtain a canonical map of cohomology groups
Hm
⊗ (C; A)→ Hm(C; A); this map is generally not an isomorphism.

Example 3.5.14. Let A be an abelian group. Then we can regard A as a local system A of abelian groups
on the trivial (∞, n)-category ∗, having only a single object. For each m ≥ n, the associated local system
K(A,m) can be identified with the fundamental groupoid of an Eilenberg-MacLane space K(A,m).

For any symmetric monoidal (∞, n)-category C, we have a canonical functor f : C → ∗, so that A
determines a (multiplicative) local system f∗A on C. We will refer to local systems on C that arise via this
construction as constant local systems on C. Unwinding the definitions, we deduce that the cohomology
groups Hm(C; f∗A) can be identified with the set of isomorphism classes of functors from C into K(A,m):
in other words, the set of homotopy classes of maps of topological spaces from the geometric realization |C |
into the Eilenberg-MacLane space K(A,m). Consequently, we recover a canonical isomorphism

Hm(C; f∗A) ' Hm(|C |;A).
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If C is endowed with a symmetric monoidal structure, then f∗A is a multiplicative local system on C,
and we can also consider the multiplicative cohomology Hm

⊗ (C; f∗A). If we suppose that every object in C is
dualizable, then this symmetric monoidal structure allows us to realize the geometric realization |C | as an
infinite loop space, so that there is a sequence of topological spaces {X(n)}n≥0 such that X(0) ' |C |, X(n)
is homotopy equivalent to the loop space of X(n + 1) for each n ≥ 0, and each X(n) is (n − 1)-connected.
Then Hm

⊗ (C; f∗A) can be identified with the set of homotopy classes of infinite loop maps from |C | into
K(A,m): in other words, the cohomology groups of the spectrum {X(n)}n≥0 with coefficients in A.

Let us now return to our discussion of the Postnikov tower

. . .→ τ≤n+2 C→ τ≤n+1 C→ τ≤n C ' hnC

of an (∞, n)-category C. The maps q : τ≤m C → τ≤m−1 C bear a resemblance to the projection maps
K(A,m) → τ≤m−1 C described in Definition 3.5.11: for example, the fiber of q over any object of τ≤m−1 C

can be identified with an Eilenberg-MacLane space K(A,m), for some abelian group A. However, there is
one crucial difference: the map q does not necessarily admit a section. We can account for this discrepancy
by introducing a “twisted” variant on Definition 3.5.11:

Definition 3.5.15. Let C be an (∞, n)-category, let A be a local system of abelian groups on C, and let
m ≥ n. Suppose we are given a pair of sections s, s′ : C→ K(A,m+1) of the projection mapK(A,m+1)→ C.
We define a new (∞, n)-category C̃ by forming a homotopy pullback square

C̃
//

��

C

s

��
C

s′ // K(A,m+ 1).

Note that s and s′ determine cohomology classes [s], [s′] ∈ Hm+1(C; A). Up to equivalence, the fiber product
C̃ depends only on the difference η = [s]− [s′] ∈ Hm+1(C; A). We will refer to C̃ as the small extension of C

determined by η ∈ Hm+1(C; A). Note that C̃ comes equipped with a canonical forgetful functor C̃→ C.

Example 3.5.16. Let C be an (∞, n)-category and A a local system of abelian groups on C, and let m ≥ n.
The zero element 0 ∈ Hm+1(C; A) determines a small extension C̃ of C, which can be identified with the
(∞, n)-category K(A,m) described in Definition 3.5.11.

Variant 3.5.17. Suppose that C is a symmetric monoidal (∞, n)-category, and that A is a multiplicative
local system of abelian groups on C. Let m ≥ n, let η ∈ Hm+1

⊗ (C; A) be a multiplicative cohomology class,
and let η denote the image of η in Hm+1(C; A). Let C̃ denote the small extension of C determines by η. Then
C̃ can be described as a homotopy fiber product of symmetric monoidal (∞, n)-categories, and therefore
inherits a symmetric monoidal structure (which depends on η).

The following result guarantees a sufficiently large class of small extensions:

Claim 3.5.18. Let C be an (∞, n)-category, and let

. . .→ τ≤n+2 C→ τ≤n+1 C→ τ≤n C ' hnC

be its Postnikov tower. Then for each m > n, there exists a local system of abelian groups Am on τ≤m C

and a cohomology class ηm ∈ Hm+2(C; Am) such that τ≤m+1 C can be identified with the small extension of
τ≤m C determined by ηm.

Suppose furthermore that C is equipped with a symmetric monoidal structure, and let m > n. Then:

(1) The truncation τ≤m C inherits a symmetric monoidal structure.
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(2) The local system Am inherits a multiplicative structure.

(3) The cohomology class ηm has a natural lift to multiplicative cohomology class η̃m ∈ Hm+2
⊗ (C; Am).

(4) The identification of τ≤m+1 C with the small extension of τ≤m C determined by ηm is compatible with
the symmetric monoidal structure provided by the multiplicative lift η̃m.

Using Claim 3.5.18, one can mimic our proof of Proposition 3.5.1 to obtain the following result:

Proposition 3.5.19. Let f : D→ D′ be a symmetric monoidal functor between symmetric monoidal (∞, n)-
categories. Then f is an equivalence if and only if the following conditions are satisfied:

(i) The functor f induces an equivalence τ≤n+1 D→ τ≤n+1 D′.

(ii) For every local system of abelian groups A on D′ and every integer m, the functor f induces an
isomorphism of multiplicative cohomology groups Hm

⊗ (D′; A)→ Hm
⊗ (D; f∗A).

Remark 3.5.20. It is convenient to restate hypothesis (ii) of Proposition 3.5.19 in terms of relative co-
homology groups. Suppose given a symmetric monoidal functor f : D → D′ between symmetric monoidal
(∞, n)-categories, and let A be a multiplicative local system on D. For m ≥ n, we let Hm

⊗ (D′,D; A) denote
the set of isomorphism classes of symmetric monoidal sections s of the projection K(A,m)→ D′ such that
s ◦ f is identified with the zero section. These relative cohomology groups can in fact be defined for all
integers m, and fit into a long exact sequence

. . .→ Hm−1
⊗ (D; f∗A)→ Hm

⊗ (D′,D; A)→ Hm
⊗ (D′; A)→ Hm

⊗ (D; f∗A)→ Hm+1
⊗ (D′,D; A)→ . . .

Consequently, hypothesis (ii) of Proposition 3.5.19 is equivalent to the vanishing of the relative cohomology
groups Hm

⊗ (D′,D; A), for every integer m and every multiplicative local system A on D′.

To prove Theorem 3.4.7 from Proposition 3.5.19, we need two things: a connectivity estimate for the
forgetful functor Bordff

n → Bordn, and a calculation of the relevant (multiplicative) cohomology groups.
We will obtain the estimate from the following theorem of Igusa (see [13]):

Theorem 3.5.21 (Igusa). Let M be a closed (n − 2)-manifold and let B be a 1-morphism in B(M). If
n = 1, then Funfr(B) is contractible. For n > 1, the space Funfr(B) is (n− 1)-connected. In particular, the
spaces Funfr(B) are always simply connected.

Corollary 3.5.22. The forgetful functor f : Bordff
n → Bordn is (n + 2)-connective. In particular, the

induced map τ≤n+1 Bordff
n → τ≤n+1 Bordn is an equivalence of (n+ 1, n)-categories.

To apply Proposition 3.5.19 to our situation, we also need to know that the relative cohomology groups
Hm
⊗ (Bordn,Bordff

n ; A) vanish for every integer m and every multiplicative local system A on Bordn. These
relative cohomology groups fit into a long exact sequence

Hm
⊗ (Bordn,Bordff

n ; A) // Hm
⊗ (Bordn,Bordn−1; A)

θm // Hm
⊗ (Bordff

n ,Bordn−1; f∗A)

qqddddddddddddddddddddddddddddddddddddd

Hm+1
⊗ (Bordn,Bordff

n ; A) // Hm+1
⊗ (Bordn,Bordn−1; A)

θm+1// Hm+1
⊗ (Bordff

n ,Bordn−1; f∗A)

Consequently, the vanishing of the cohomology groups Hm
⊗ (Bordn,Bordff

n ; A) is equivalent to the assertion
that each of the maps θm is an isomorphism. The relative cohomology group Hm

⊗ (Bordff
n ,Bordn−1, f

∗A)
can be identified with the collection of isomorphism classes of symmetric monoidal sections s of the projection
K(f∗A,m) → Bordff

n which restrict to the zero section on Bordn−1. According to Theorem 3.4.6, such
sections are classified by their restriction to the O(n)-equivariant n-morphism Dn : 1 → Sn−1. For each
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x ∈ BO(n), we can evaluate the local system A on the corresponding n-morphism to obtain an abelian group
Bx. The collection of abelian groups ηx to obtain an abelian group Bx. The collection of abelian groups
{Bx}x∈BO(n) and the value of s on the n-morphism ηx can be identified with a point of the Eilenberg-MacLane
space K(m− n,Bx). Allowing x to vary, we obtain a canonical isomorphism

Hm
⊗ (Bordff

n ,Bordn−1, f
∗A) ' Hm−n(BO(n); B).

The requisite cohomological calculation can therefore be formulated as follows:

Theorem 3.5.23 (Cobordism Hypothesis, Infinitesimal Version). Let A be a multiplicative local system of
abelian groups on Bordn, and let B be the induced local system of abelian groups on BO(n). Then for every
integer m, the canonical map

Hm
⊗ (Bordn,Bordn−1; A)→ Hm−n(BO(n); B)

is an isomorphism.

Remark 3.5.24. In the situation of Theorem 3.5.23, suppose that A is a constant local system associated
to an abelian group A (see Example 3.5.14). According to the unoriented version of Theorem 2.5.7, the
classifying spaces |Bordn | and |Bordn−1 | can be identified with the zeroth spaces of the (connective)
spectra Σn MTO(n) and Σn−1 MTO(n − 1), respectively. As explained in Example 3.5.14, the relative
multiplicative cohomology groups Hm

⊗ (Bordn,Bordn−1; A) can in this case be realized as the spectrum
cohomology Hm(Σn MTO(n),Σn−1 MTO(n−1);A). The isomorphism of Theorem 3.5.23 in this case results
from the existence of a cofiber sequence of spectra

Σn−1 MTO(n− 1)→ Σn MTO(n)→ Σ∞+n
+ BO(n).

If we assume Theorem 3.5.23 holds for every constant local system A, then we can deduce the unoriented
version of Theorem 2.5.7 using induction on n. For each n, the geometric realization |Bordn | can be
identified with the zeroth space of some connective spectrum Y (n) equipped with a canonical map fn :
Y (n)→ Σn MTO(n). Theorem 2.5.7 asserts that fn is a homotopy equivalence of spectra. If we assume that
fn−1 is a homotopy equivalence, then Theorem 3.5.23 implies that fn induces an isomorphism on cohomology
groups Hm(Σn MTO(n);A)→ Hm(Y (n);A) for every abelian group A and every integer m. Since the domain
and codomain of fn are connective, this implies that fn is a homotopy equivalence.

We can summarize Remark 3.5.24 as follows: the unoriented version of Theorem 2.5.7 is equivalent to a
special case of Theorem 3.5.23, in which we assume that the local system A is constant. It is possible to prove
the general case Theorem 3.5.23 using the methods developed by Galatius, Madsen, Tillmann, and Weiss
to prove Theorem 2.5.7 (note that Theorem 3.5.23 is essentially calculational in nature; it can therefore be
formulated in a purely homotopy-theoretic way that makes no mention of higher category theory). We will
not describe the details any further here.

4 Beyond the Cobordism Hypothesis

In this section, we will present some applications and extensions of the ideas developed earlier in this paper.
We will begin in §4.1 by describing a class of topological field theories which can be produced by a very
explicit homotopy-theoretic construction which we call topological chiral homology. In §4.2 we will discuss
out the cobordism hypothesis in detail in dimensions ≤ 2. In particular, we will formulate a “noncompact”
analogue of the cobordism hypothesis (Theorem 4.2.11) and explain its relationship to earlier work of Costello
([8]) and to the string topology operations introduced by Chas and Sullivan ([7]). In §4.3, we will describe a
generalization of the cobordism hypothesis in which we work with bordism categories of (stratified) singular
spaces, rather than smooth manifolds. We will apply this generalization in §4.4 to sketch a proof of a version
of the Baez-Dolan tangle hypothesis, which characterizes (∞, n)-categories of embedded bordisms and can
be regarded as an “unstable” version of the cobordism hypothesis.
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4.1 Topological Chiral Homology

Let C be a symmetric monoidal (∞, n)-category with duals. According to Theorem 2.4.6, every object C ∈ C

determines an symmetric monoidal functor ZC : Bordfr
n → C, which is characterized by the existence of an

isomorphism ZC(∗) ' C. Though these invariants are formally determined by C in principle, they can be
very difficult to compute in practice. In this section, we would like to illustrate the cobordism hypothesis in
a special case where ZC can be described in completely explicit terms.

Let S be a symmetric monoidal (∞, 1)-category. It is sensible to talk about associative algebra objects of
S: that is, objects A ∈ S which are endowed with a unit map and a multiplication

1→ A A⊗A→ A

which satisfy all of the usual associativity properties up to coherent isomorphism. The collection of such
algebra objects can itself be organized into an (∞, 1)-category, which we will denote by Alg(S). The tensor
product ⊗ on S determines a tensor product on Alg(S), and endows Alg(S) with a symmetric monoidal
structure.

Definition 4.1.1. Let S be a symmetric monoidal (∞, 1)-category. We will define a sequence of symmetric
monoidal (∞, 1)-categories Alg(n)(S) using induction as follows:

• If n = 1, we let Alg(n)(S) = Alg(S) be the (∞, 1)-category of associative algebra objects of S.

• If n > 1, we let Alg(n)(S) = Alg(Alg(n−1)(S)) be the (∞, 1)-category of associative algebra objects in
Alg(n−1)(S).

We will refer to objects of Alg(n)(S) as En-algebras in S.

Remark 4.1.2. It is convenient to extend Definition 4.1.1 to the case n = 0; we will agree to the convention
that an E0-algebra in S is an object A ∈ S equipped with a unit map 1→ A.

Remark 4.1.3. More informally, we can think of an En-algebra in S as an object A ∈ S equipped with
n associative algebra structures {mi : A ⊗ A → A}1≤i≤n, which are compatible with one another in the
following sense: if i 6= j, then mi : A ⊗ A → A is a homomorphism with respect to the algebra structures
determined by mj .

Example 4.1.4. Suppose that S is an ordinary symmetric monoidal category. In that case, Definition 4.1.1
reduces to the following:

• If n = 1, then Alg(n)(S) is the category of associative algebra objects of S.

• If n > 1, then Alg(n)(S) is the category of commutative algebra objects of S.

This is a consequence of the following general observation: let m1 and m2 be associative multiplications on
an object A ∈ S which are compatible in the sense described in Remark 4.1.3. Then m1 = m2, and both
products are commutative. For example, suppose that S is the category of sets (with symmetric monoidal
structure given by the Cartesian product). Then we can view A as a set endowed with two associative
multiplications ×1 and ×2, having identity elements e1 and e2. We observe that

e2 = e2 ×2 e2 = (e2 ×1 e1)×2 (e1 ×1 e2) = (e2 ×2 e1)×1 (e1 ×2 e2) = e1 ×1 e1 = e1,

so that e1 and e2 are equal to a common element e ∈ A. The chain of equalities

x×1 y = (x×2 e)×1 (e×2 y) = (x×1 e)×2 (e×1 y) = x×2 y

shows that ×1 = ×2. The same argument shows that ×1 is the opposite of the multiplication given by ×2,
so that the product ×1 = ×2 is commutative.
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Example 4.1.5. Let S be the (large) (∞, 1)-category Cat(∞,k), whose objects are (small) (∞, k)-categories
and whose morphisms are given by functors (here we discard information about noninvertible natural trans-
formations of functors). Then S admits a symmetric monoidal structure, given by the Cartesian product.
We will refer to an En-algebra in Cat(∞,k) as an En-monoidal (∞, k)-category. When n = 1, we recover
the notion of a monoidal (∞, k)-category; in the limiting case n =∞, we recover the notion of a symmetric
monoidal (∞, k)-category.

Remark 4.1.6. In order to define the notion of an En-algebra in an (∞, 1)-category S, it suffices to assume
that S has an En-monoidal structure: we do not need S to be symmetric. For example, we can talk about
associative algebra objects of an arbitrary monoidal (∞, 1)-category.

Let S be a symmetric monoidal (∞, 1)-category, and let A and B be algebra objects of S. We can then
define a new (∞, 1)-category BimodA,B(S) of A-B bimodules in S: that is, an (∞, 1)-category whose objects
are objects of S equipped with a left action of A and a commuting right action of B. We would like to regard
BimodA,B(S) as a collection of 1-morphisms in an (∞, 2)-category, where composition of bimodules is given
by the formation of relative tensor products (M,N) 7→M ⊗B N . To define this (∞, 2)-category, we need to
introduce a technical assumption on S.

Definition 4.1.7. We will say that a monoidal (∞, 1)-category S is good if S admits small sifted colimits,
and the tensor product functor ⊗ : S× S→ S preserves small sifted colimits (see [17] for an explanation of
this terminology).

Remark 4.1.8. Let S be a monoidal (∞, 1)-category, let A be an algebra object of S, let M be a right
A-module and N a left A-module. We would like to define the relative tensor product M ⊗A N . If S
is an ordinary category, we can define this tensor product to be the coequalizer of a pair of maps f, g :
M ⊗ A ⊗ N → M ⊗ N . In the general case, we need a more elaborate definition using the two-sided bar
construction. The assumption that S is good guarantees that this construction exists and is well-behaved;
we refer the reader to [15] for more details.

Remark 4.1.9. More generally, we will say that an En-monoidal (∞, 1)-category S is good if it is good when
regarded as a monoidal (∞, 1)-category, by neglecting all but one of the n compatible monoidal structures
on S (an elaboration of the argument presented in Example 4.1.4 can be used to show that these monoidal
structures are all equivalent to one another, so it does not matter which one we choose). By convention, we
will say that an E0-monoidal (∞, 1)-category is good if it admits sifted colimits.

The construction (A,B) 7→ BimodA,B(S) can be regarded as a monoidal functor of A and B. For example,
if we are given maps of algebra objects A⊗A′ → A′′ and B ⊗B′ → B′′, then there is an induced bifunctor

BimodA,B(S)× BimodA′,B′(S)→ BimodA′′,B′′(S).

In particular, if A and B are algebra objects of Alg(S), then BimodA,B(S) inherits a monoidal structure.
Amplifying on this observation, we obtain the following:

Claim 4.1.10. Let S be a good En-monoidal (∞, 1)-category for n ≥ 1, and let A and B be En-algebras in
S. Then the (∞, 1)-category BimodA,B(S) admits the structure of an En−1-category.

Definition 4.1.11. Let S be a good En-monoidal (∞, 1)-category. We can construct a new (∞, n + 1)-
category Alg(n)(S) using induction on n as follows:

• If n = 0, then Alg(n)(S) = S.

• If n > 0, then the objects of Alg(n)(S) are En-algebras in S.

• If n > 0 and A,B ∈ Alg(n)(S), then we set

MapAlgn(S)(A,B) = Alg(n−1)(BimodA,B(S)).
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We let Algo
(n)(S) denote the (∞, n)-category obtained from Algn(S) by discarding the noninvertible (n+ 1)-

morphisms.

Example 4.1.12. Let S be a good monoidal (∞, 1)-category. Then Alg(1)(S) can be regarded as an (∞, 2)-
category whose objects are algebras in S and whose 1-morphisms are given by bimodules, with composition
given by tensor product of bimodules.

Remark 4.1.13. Let S be a good symmetric monoidal (∞, 1)-category. Then for each n ≥ 0, the (∞, n+1)-
category Alg(n)(S) and the (∞, n)-category Algo

(n)(S) inherit symmetric monoidal structures.

Let S be a good symmetric monoidal (∞, 1)-category. For every algebra object A ∈ Alg(1)(S), the
opposite algebra Aop can be regarded as a dual of A in the symmetric monoidal (∞, 1)-category Algo

(1): we
have evaluation and coevaluation maps

A⊗Aop → 1 1→ A⊗Aop

given by A itself, regarded as an A ⊗ Aop-module. It follows that the symmetric monoidal (∞, 1)-category
Alg(1)(S) has duals. This observation admits the following generalization:

Claim 4.1.14. Let S be a good symmetric monoidal (∞, 1)-category. Then the symmetric monoidal (∞, n)-
category Algo

(n)(S) has duals.

Combining Claim 4.1.14 with Theorem 2.4.6, we conclude that every En-algebra A in S determines a
symmetric monoidal functor ZA : Bordfr

n → Algo
(n)(S)→ Alg(n)(S) such that ZA(∗) ' A. In particular, we

get an induced functor
Ωn Bordfr

n → Ωn Alg(n)(S) ' S,

which associates to every closed framed n-manifold M an invariant ZA(M) ∈ S. Our goal in this section
is to give an explicit construction of these invariants. We first review another approach to the theory of
En-algebras.

Notation 4.1.15. Fix n ≥ 0, and let Dn denote the (open) unit disk in Rn. We will say that an open
embedding D → D is rectilinear if it can be extended to a linear map Rn → Rn, given by the formula
v 7→ λv+ v0 for some λ > 0 and some v0 ∈ Rn. For each k ≥ 0, we let En(k) denote the space of all k-tuples
of rectilinear embeddings e1, . . . , ek : D → D whose images are disjoint.

The collection of spaces {En(k)} can be organized into an operad: that is, there are natural composition
maps

En(m)× En(k1)× · · · × En(km)→ En(k1 + . . .+ km)

satisfying an appropriate associativity formula (we refer the reader to [20] for a more careful definition, and
for a discussion of operads in general). We will refer to this operad as the little n-disks operad, and denote
it by En.

If S is any symmetric monoidal (∞, 1)-category, then it makes sense to talk about En-algebras in S:
that is, objects A ∈ S which are equipped with maps En(k) → MapS(A⊗k, A) for each k ≥ 0, which are
compatible with the composition on En (up to coherent homotopy).

If n = 1, then E1(k) is homotopy equivalent to a discrete space for every k: namely, the discrete space of all
linear orderings of a k-element set. It follows that E1 is homotopy equivalent to the usual associative operad,
and E1-algebras can be identified with associative algebras in S. This observation admits the following
amplification:

Claim 4.1.16. Let S be a symmetric monoidal (∞, 1)-category. Then En-algebras in S can be identified
with En-algebras in S.

Remark 4.1.17. It follows from Claim 4.1.14 and Corollary 2.4.10 that if S is a good symmetric monoidal
(∞, 1)-category, then the ∞-groupoid Alg∼n (S) carries an action of the group O(n). Claim 4.1.16 makes this
action more evident, since the group O(n) acts naturally on the little disks operad En itself.
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We now come to the main idea of this section:

Construction 4.1.18. We define an (∞, 1)-category A as follows:

• The objects of A are finite disjoint unions Dn
∐
Dn

∐
· · ·

∐
Dn, where Dn denotes the open unit disk

in Rn.

• Given a pair of objects X,Y ∈ A, we let MapA(X,Y ) be the space of open embeddings X → Y which
are rectilinear on each connected component component.

If M is a framed n-manifold (not necessarily compact), we can define a functor fM from A into the
(∞, 1)-category of topological spaces as follows: for every object X ∈ A, we let fM (X) denote the space of
framed open embeddings X →M : that is, the space of pairs (j, h) where j : X →M is an open embedding
and h is a homotopy between the canonical framing on X and the framing obtained by pulling back the
framing of M . Let AM denote the (∞, 1)-category obtained by applying the Grothendieck construction
(Construction 3.3.23) to fM : in other words, AM is the (∞, 1)-category whose objects are pairs (X, η) where
X ∈ A and η : X → M is a framed embedding. We observe that there is a canonical forgetful functor
AM → A.

Let S be a good symmetric monoidal (∞, 1)-category, and let A be an En-algebra in S. Then A carries
an action of the little disks operad En, and in particular determines a functor g : A → S which carries a
disjoint union of k copies of Dn into the tensor power A⊗k. For every framed n-manifold M , we let

∫
M
A

denote a homotopy colimit of the composite functor

AM → A
g→ S.

(Such a colimit always exists, provided that S is good.) We will refer to
∫
M
A as the topological chiral

homology of M with coefficients in A.

Remark 4.1.19. One can think of the topological chiral homology
∫
M
A as a kind of continuous tensor

product ⊗x∈MA indexed by points of the manifold M .

Remark 4.1.20. The terminology of Construction 4.1.18 is intended to invoke an analogy with the theory
of chiral homology introduced by Beilinson and Drinfeld (see [5]). The basic idea of our construction is the
same, except that we use constant S-valued sheaves on framed manifolds in place of D-modules on algebraic
varieties.

Example 4.1.21. Suppose that S is the (∞, 1)-category of topological spaces. LetX be a pointed topological
space which is n-connective (that is, the homotopy groups πiX vanish for i < n), and let A denote the nth
loop space ΩnX. Then A carries an action of the little disks operad En, and can therefore be regarded
as an En-algebra. For any framed (possibly noncompact) framed n-manifold M , the integral

∫
M
A can be

identified with the space Cc(M,X) of compactly supported functions M → X (that is, functions from M to
X which carry M −K to the base point of M for some compact subset K ⊆M).

Example 4.1.22. Let S be a good symmetric monoidal (∞, 1)-category, and let A be an associative algebra
object of S. Then

∫
S1 A can be identified with the Hochschild homology of A, which is given by the relative

tensor product
A⊗A⊗Aop A.

Example 4.1.23. Let S be a good symmetric monoidal (∞, 1)-category, and suppose that A is a commuta-
tive algebra object of S. In this case, the topological chiral homology

∫
M
A is again a commutative algebra,

and can be characterized by the following universal mapping property:

MapCAlg(S)(
∫
M

A,B) ' MapCat(∞,0)
(M,MapCAlg(S)(A,B))

Here CAlg(S) denotes the (∞, 1)-category of commutative algebra objects in S.
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Fix a good symmetric monoidal (∞, 1)-category S and an En-algebra A in S. The topological chiral
homology

∫
M
A is covariant with respect to open inclusions of (framed) n-manifolds: an open inclusion

M0 ⊆M induces a functor AM0 → AM , which in turn determines a map of homotopy colimits
∫
M0

A→
∫
M
A.

Moreover, one can show that the functor M 7→
∫
M
A carries disjoint unions of framed n-manifolds to tensor

products in S.
Suppose now that M is an n-framed manifold of dimension m ≤ n, and let Dn−m denote the open

unit disk in Rn−m. Then M × Dn−m can be regarded as a framed n-manifold, and we define
∫
M
A to be∫

M×Dn−m A. It follows from the above remarks that
∫
M
A carries an action of the operad En−m, and can

therefore be regarded as an En−m-algebra in S. In the special case where M consists of a single point, we
have a canonical isomorphism

∫
M
A ' A of En-algebras in S.

Let M be a framed n-manifold with boundary. Let M0 denote the interior of M . Choosing a collar of the
boundary, we obtain a bijection M ' M0

∐
([0, 1] × ∂M), which induces an open embedding M0

∐
(D1 ×

∂M)→M0. Passing to topological chiral homology, we obtain a map

(
∫
M0

A)⊗ (
∫
∂ M

A)→
∫
M0

A,

which exhibits the object
∫
M0 A as a right module over the associative algebra object

∫
∂ M

A. More generally,
ifM is a bordism from an n-framed (n−1)-manifoldsN andN ′, then we can regard

∫
M0 A as an (

∫
N
A,

∫
N ′
A)-

bimodule. Elaborating on these constructions, one can prove the following:

Theorem 4.1.24. Let A be an En-algebra in a good symmetric monoidal (∞, 1)-category S. Then the
construction M 7→

∫
M
A can be extended to a symmetric monoidal functor Z : Bordfr

n → Algo
(n)(S). In

particular, we have an isomorphism of En-algebras Z(∗) ' A.

Theorem 4.1.24 provides an explicit construction of the topological field theory Z : Bordfr
n → Algn(S)

associated to an object A ∈ Algn(S). Namely, the value of Z on a framed n-manifold M is given by
∫
M
A,

which can in turn be described as a certain homotopy colimit.

Remark 4.1.25. Construction 4.1.18 actually gives quite a bit more than the field theory Bordfr
n → Algn(S):

the topological chiral homology
∫
M
A can be defined for any framed n-manifold M , whether or not M is

compact. It can also be defined on a larger class of manifolds: for example, in dimension 4, we can use
topological manifolds equipped with a trivialization of their tangent microbundles.

Remark 4.1.26. Theorem 4.1.24 can be regarded a concrete version of the cobordism hypothesis for framed
manifolds. One can use similar ideas to produce concrete analogues of the more exotic forms of the cobordism
hypothesis. For example, suppose we are given a continuous homomorphism of topological groups G→ O(n).
Then G acts on the operad En, and it makes sense to talk about a En-algebra in S with a compatible action
of G. In this case, we obtain a symmetric monoidal functor Z : BordGn → Algn(S) which we can think of as
carrying a G-manifold M to the twisted topological chiral homology ⊗x∈MA′x, where A′ denotes the bundle
of En-algebras on M determined by the G-structure on M and the action of G on A.

Remark 4.1.27. Theorem 4.1.24 is usually not very satisfying, because it describes a functor Z : Bordfr
n →

Algo
(n)(S) whose values on closed framed n-manifolds are objects of an (∞, 1)-category S, rather than concrete

invariants like numbers. We might attempt to remedy this by contemplating (n+ 1)-dimensional topological
field theories taking values in the (∞, n+1)-category Alg(n)(S). This turns out to be somewhat more difficult,
because Alg(n)(S) does not have duals in general (in other words, there are n-morphisms in Alg(n)(S) which
do not admit left or right adjoints). Consequently, not every object of Alg(n)(S) is fully dualizable. In
general, the condition that an En-algebra A ∈ S be fully dualizable as an object of Alg(n)(S) amounts to a
very strong finiteness condition on A. By unwinding the proof of the cobordism hypothesis, one can formulate
this finiteness condition in reasonably concrete terms: it amounts to the requirement that A '

∫
Dk

A be
dualizable as a module over

∫
Sk−1 A for 0 ≤ k ≤ n. For example, when n = 1, we must require that A

admits a dual both as an object of S and as an A⊗Aop-module. When S is the (∞, 1)-category Chaint(k)
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described in Definition 1.4.5, then we can identify algebra objects A of S with differential graded algebras
over k; such an object is fully dualizable in Alg(1)(S) if and only if A is a smooth and proper differential
graded algebra (see, for example, [24]).

4.2 The Cobordism Hypothesis in Low Dimensions

Our goal in this section is to discuss some consequences of the cobordism hypothesis and related results in
the case of manifolds of dimension 1 and 2. In particular, we will relate the contents of this paper to the
work of Costello ([8]) and to the Chas-Sullivan theory of string topology operations on the homology of loop
spaces of manifolds ([7]).

We begin by studying topological field theories in dimension 1. Let C be a symmetric monoidal (∞, 1)-
category, and let X ∈ C be a dualizable object. According to Theorem 2.4.6, there is an essentially unique
symmetric monoidal functor Z : Bordor

1 ' Bordfr
1 → C satisfying Z(∗) ' X. In Example 1.1.9, we sketched

a direct proof of this fact in the special case where C is the ordinary category of vector spaces. This proof
exploits the fact that manifolds of dimension 1 are very simple (consisting only of intervals and circles), and
can be applied more generally whenever C is an ordinary category. However, the (∞, 1)-categorical case is
substantially subtle. The (∞, 1)-category Bordor

1 is not equivalent to an ordinary category. For example,
the mapping space MapBordor

1
(∅, ∅) can be identified with a classifying space for oriented closed 1-manifolds.

In particular, it contains as a connected component a classifying space CP∞ ' BSO(2) for oriented circle
bundles. If Z : Bordor

1 → C is a symmetric monoidal functor, then Z induces a map f : CP∞ → MapC(1,1).
Roughly speaking, f is determined by the values of Z on circles. Given X = Z(∗), we can compute Z(S1)
as in Example 1.1.9, by breaking the circle S1 into two half-circles. The result is that we can identify Z(S1)
with a 1-morphism dim(X) : 1→ 1 which is given by composing the evaluation map evX : X⊗X∨ → 1 with
the coevaluation map coevX : 1 → X ⊗X∨. We refer to dim(X) as the dimension of X (this is motivated
by the example where C is the category of vector spaces over a field, where we recover the classical notion of
the dimension of a vector space). In the (∞, 1)-categorical case, this above argument does not determine the
map f : it only determines the value of f on a single point of the classifying space CP∞. The map f encodes
the idea that the object Z(S1) ∈ MapC(1,1) carries an action of the symmetry group SO(2). However, our
calculation of Z(S1) proceeds by breaking the circle into two pieces, and thereby destroying its symmetry.
Consequently, Theorem 2.4.6 has an interesting consequence even in dimension 1:

Proposition 4.2.1. Let C be a symmetric monoidal (∞, 1)-category, and let X be a dualizable object of C.
Then the object dimX ∈ MapC(1,1) carries a canonical action of the circle group S1 = SO(2).

Example 4.2.2. Let S be a symmetric monoidal (∞, 1)-category, and let A be an associative algebra
object of S. Then we can regard A as a (dualizable) object of Algo

(1)(S), and thereby obtain an object
dim(A) ∈ Ω Algo

(1)(S) ⊆ Ω Alg(1)(S) ' S. In this case, we can identify dim(A) with the Hochschild homology∫
S1 A ' A ⊗A⊗Aop A (see Example 4.1.22), and the circle action of Proposition 4.2.1 recovers the classical

circle action on Hochschild homology (which can be obtained by computing the relative tensor product using
a cyclic bar resolution).

Let us now analyze the cobordism hypothesis in dimension 2. Our first step is to give a simple criterion
for full dualizability.

Proposition 4.2.3. Let C be a symmetric monoidal (∞, 2)-category, and let X ∈ C be an object. Then X
is fully dualizable if and only if the following conditions are satisfied:

(1) The object X admits a dual X∨.

(2) The evaluation map evX : X ⊗X∨ → 1 admits both a right and a left adjoint.

Proof. Conditions (1) and (2) are obviously necessary. To prove the converse, let us suppose that (1) and
(2) are satisfied. Then evX admits right and left adjoints

evRX , evLX : 1→ X ⊗X∨.
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Then there exist 1-morphisms S, T : X → X such that evRX = (S ⊗ idX∨) ◦ coevX and evLX = (T ⊗ idX∨) ◦
coevX . It is not difficult to show that the endomorphisms S and T are inverse to each other, and in particular
adjoints of one another. Consequently, we deduce that for every integer n, the morphism evX ◦(Sn ⊗ idX∨)
has a right adjoint (given by (S1−n ⊗ idX∨) ◦ coevX) and a left adjoint (given by (S−1−n ⊗ idX∨) ◦ coevX).
These formulas show that (Sn ⊗ idX∨) ◦ coevX also admits both right and left adjoints. Let C0 denote the
largest subcategory of C such that every 1-morphism in C0 admits both a right and a left adjoint. Then evX
and coevX belong to C0, so that X is dualizable in C0 and therefore a fully dualizable object of C.

Remark 4.2.4. In the situation of Proposition 4.2.3, we will refer to the map S : X → X as the Serre
automorphism of X. This terminology is motivated by the situation where C is the (∞, 2)-category of
cocomplete differential graded categories over a field k (suitably defined). If D is a fully dualizable object of
C which is generated by compact objects, then there is a canonical endofunctor S : D→ D (called the Serre
functor on D), which is characterized by the existence of natural quasi-isomorphisms

MapD(C, S(D)) ' MapD(D,C)∨

for every pair of compact objects C and D. In the special case where D is the differential graded category of
quasi-coherent complexes on a smooth projective variety X, the Serre functor S : D→ D is given by tensoring
with the canonical line bundle ωX on X and shifting by the dimension of X, and the quasi-isomorphism is
provided by Serre duality.

Remark 4.2.5. Let C be a symmetric monoidal (∞, 2)-category. According to Corollary 2.4.10, there is an
action of the group O(2) on the ∞-groupoid of fully dualizable objects of C. In particular, for every fully
dualizable object X ∈ C, we obtain a map S1 ' SO(2) × {X} → C∼ which carries the base point of S1

to the object X ∈ C, which gives rise to an automorphism of X. This automorphism coincides with the
Serre automorphism constructed more explicitly in Proposition 4.2.3. To prove this, it suffices to consider
the universal case where C is freely generated by a fully dualizable object X: that is, we may assume that
C = Bordfr

2 ; we leave this as an elementary exercise for the reader.

It follows from Remark 4.2.5 that if X is an SO(2)-fixed point in the ∞-groupoid of fully dualizable
objects of a symmetric monoidal (∞, 2)-category C, then the Serre automorphism S : X → X is the identity.
However, we can formulate the condition of being an SO(2)-fixed point without the full strength of the
assumption that X is fully dualizable.

Definition 4.2.6. Let C be a symmetric monoidal (∞, 2)-category. A Calabi-Yau object of C consists of the
following data:

(1) A dualizable object X ∈ C.

(2) A morphism η : dim(X) = evX ◦ coevX → 1 in Ω C, which is equivariant with respect to the action of
SO(2) on dim(X) (see Proposition 4.2.1) and is the counit for an adjunction between evX and coevX .

Remark 4.2.7. If C is a symmetric monoidal (∞, 2)-category with duals, then Theorem 2.4.18 and Theorem
3.1.8 together imply that Calabi-Yau objects of C can be identified with (homotopy) fixed points for the
action of SO(2) on C∼ (because both can be identified with symmetric monoidal functors Bordor

2 → C).

Example 4.2.8. Let S be a good symmetric monoidal (∞, 1)-category (see Definition 4.1.7), and let
Alg(1)(S) be the (∞, 2)-category of Definition 4.1.11. The objects of Alg(1)(S) are associative algebras
A ∈ S, and are all dualizable objects of Alg(1)(S) (the dual of an algebra A is the opposite algebra Aop).
By definition, a Calabi-Yau object of Alg(1)(S) consists of an associative algebra A together with an SO(2)-
equivariant map

tr :
∫
S1
A→ 1
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satisfying the following condition: the composite map

A⊗A '
∫
S0
A→

∫
S1
A

tr→ 1

induces an identification of A with its dual A∨ in S. We will refer to such a structure as a Calabi-Yau algebra
in S.

Remark 4.2.9. The notion of a Calabi-Yau algebra makes sense in an arbitrary symmetric monoidal (∞, 1)-
category S (in other words, S need not be good). Although the Hochschild homology

∫
S1 A ' A⊗A⊗Aop A

is generally not well-defined as an object of S, it can be defined formally as a colimit of objects of S so it
still makes sense to talk about a map tr :

∫
S1 A→ 1.

If C is a general symmetric monoidal (∞, 2)-category, then Calabi-Yau objects of C need not be fully
dualizable. In fact, Calabi-Yau objects fail to be fully dualizable in a number of interesting cases (see
Example 4.2.16 below). Consequently, it will be convenient to characterize Calabi-Yau objects in terms of
topological field theories. We can extract such a characterization from our proof of the cobordism hypothesis.
Recall that our proof of the cobordism hypothesis for Bordn proceeds by analyzing a filtration

F−1 → F0 → . . .→ Fn = Bordn

of the (∞, n)-category Bordn; roughly speaking, we can think of Fk as an (∞, n)-category of bordisms where
all n-manifolds are equipped with a decomposition into handles of index ≤ k. As a by-product of the proof,
we obtain a characterization of each Fi by a universal property. In particular, when n = 2, we deduce that
the oriented version of F1 can be described as the free symmetric monoidal (∞, 2)-category generated by a
single Calabi-Yau object. It turns out that this (∞, 2)-category can be described more concretely, without
making reference to the theory of framed functions.

Definition Sketch 4.2.10. We define a symmetric monoidal (∞, 2)-category Bordnc
2 informally as follows:

• The objects of Bordnc
2 are oriented 0-manifolds.

• Given a pair of objects X,Y ∈ Bordnc
2 , a 1-morphism from X to Y is an oriented bordism B : X → Y .

• Given a pair of 1-morphsims B,B′ : X → Y in Bordor,nc
2 , a 2-morphism from B to B′ in Bordnc

2 is
an oriented bordism Σ : B → B′ (which is trivial along X and Y ) with the following property: every
connected component of Σ has nonempty intersection with B.

• Higher morphisms in Bordnc
2 are given by (orientation preserving) diffeomorphisms, isotopies between

diffeomorphisms, and so forth.

• The symmetric monoidal structure on Bordnc
2 is given by the formation of disjoint unions.

The (∞, 2)-category Bordnc
2 is characterized by the following analogue of the cobordism hypothesis:

Theorem 4.2.11 (Cobordism Hypothesis, Noncompact Version). Let C be a symmetric monoidal (∞, 2)-
category. The following types of data are equivalent:

(1) Symmetric monoidal functors Z : Bordnc
2 → C.

(2) Calabi-Yau objects of C.

The equivalence is implemented by carrying a functor Z to the Calabi-Yau object Z(∗).

Remark 4.2.12. In particular, the 0-manifold consisting of a single point can be regarded as a Calabi-Yau
object of Bordnc

2 .
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Using the methods of §3.3, we can translate Theorem 4.2.11 into a statement in the language of symmetric
monoidal (∞, 1)-categories. Let C be a symmetric monoidal (∞, 2)-category, and let C1 be the symmetric
monoidal (∞, 1)-category obtained by discarding the noninvertible 2-morphisms in C. Using Proposition
3.3.28, we can convert the inclusion C1 → C into a symmertic monoidal coCartesian fibration C̃1 → C1 of
(∞, 1)-categories. Similarly, we can convert the inclusion Bordor

1 → Bordnc
2 into a coCartesian fibration

π : OC→ Bordor
1 . Here OC is a symmetric monoidal (∞, 1)-category which can be described as follows:

• The objects of OC are oriented 1-manifolds with boundary.

• Given a pair of objects I, J ∈ OC, a 1-morphism from I to J in OC is an oriented bordism B from I
to J , satisfying the following condition: every connected component of B has nonempty intersection
with J .

• Higher morphisms in OC are given by (orientation-preserving) diffeomorphisms, isotopies between
diffeomorphisms, and so forth.

The forgetful functor π : OC→ Bordor
1 is given by sending a 1-manifold J to its boundary ∂ J .

In the above situation, we can identify symmetric monoidal functors Z : Bordnc
2 → C with diagrams of

symmetric monoidal functors

OC
Z2 //

��

C̃1

��
Bordor

1

Z1 // C1

satisfying the technical condition that Z2 preserves coCartesian morphisms. Applying the cobordism hy-
pothesis in dimension 1, we deduce that giving the symmetric monoidal functor Z1 is equivalent to giving a
dualizable object X ∈ C. Consequently, we may reformulate Theorem 4.2.11 as follows:

Theorem 4.2.13 (Cobordism Hypothesis, Noncompact Unfolded Version). Let C be a symmetric monoidal
(∞, 2)-category, let C̃1 → C1 be the coCartesian fibration defined as above, and let X ∈ C be a dualizable
object. Let Z0 denote the composition

OC→ Bordor
1

Z1→ C1

where Z1 is the symmetric monoidal functor determined by X. The following types of data are equivalent:

(1) Symmetric monoidal functors Z2 : OC → C̃1 which are coCartesian in the following sense: they carry
coCartesian morphisms for the projection OC → Bordor

1 to coCartesian morphisms for the projection
C̃1 → C1.

(2) Morphisms η : dim(X)→ 1 in Ω C which are the counit for an adjunction between evX and coevX in
C.

It is possible to give a proof of Theorem 4.2.13 which is completely independent of the methods presented
earlier in this paper. Instead, it relies on a classification of symmetric monoidal functors with domain OC

which arises from the work of Kevin Costello. In order to state this classification, we need a bit of notation:
let O denote the full subcategory of OC whose objects are finite unions of intervals (in other words, we
disallow any components which are circles).

Theorem 4.2.14 (Costello [8]). Let S be a symmetric monoidal (∞, 1)-category. The following types of
data are equivalent:

(1) Symmetric monoidal functors Z : O→ S.

(2) Calabi-Yau algebras in S.
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The equivalence is implemented by carrying a functor Z : O→ S to the Calabi-Yau algebra Z([0, 1]).

Theorem 4.2.15 (Costello [8]). Let S be a good symmetric monoidal (∞, 1)-category, and let Z0 : O → S
be a symmetric monoidal functor. Then there is another symmetric monoidal functor Z : OC→ S such that
Z0 = Z|O, and Z is universal with respect to this property (more precisely, Z is obtained from Z0 by left
Kan extension; see [17]).

Theorems 4.2.14 and 4.2.15 were proven by Costello in the special case where S is the (∞, 1)-category
Chaint(k) of Definition 1.4.5 when k is a field of characteristic zero. However, his methods are quite general,
and can be adapted without essential change to prove the versions given above.

Let us briefly sketch how Theorems 4.2.14 and 4.2.15 can be used to prove Theorem 4.2.13. Consider
first the symmetric monoidal functor Z0 : OC→ C1 determined by a dualizable object X ∈ C. According to
Theorem 4.2.14, the restriction Z0|O is classified by a Calabi-Yau algebra in C1. Unwinding the definitions,
we learn that this algebra is End(X) ' X ⊗ X∨, with Calabi-Yau structure determined by the evaluation
map End(X) → 1. Using Theorem 4.2.14, we deduce that lifting Z0|O to a symmetric monoidal functor
Z ′ : O → C̃1 is equivalent to lifting End(X) to a Calabi-Yau algebra in C̃1. Recall that the objects of
C̃1 can be identified with morphisms η : 1 → C in C. The requirement that Z ′ preserve coCartesian
morphisms determines the lift Ẽnd(X) of End(X) as an algebra: it must be given by the coevaluation map

1→ End(X). Unwinding the definitions, one can show that a Calabi-Yau structure on the algebra Ẽnd(X)
lifting the Calabi-Yau structure on End(X) is equivalent to a Calabi-Yau structure on the object X ∈ C.
It remains to prove that there is an essentially unique symmetric monoidal functor Z2 : OC → C̃1 which
preserves coCartesian morphisms and is compatible with both Z0 and Z ′. This can be deduced from a relative
version of Theorem 4.2.15 (where the notion of left Kan extension is replaced by the notion of relative left
Kan extension with respect to the projection C̃1 → C1; see [17]). We will not describe the details here.

Example 4.2.16 (String Topology (see [7])). Let M be an oriented manifold of even dimension 2k and
assume that M is simply-connected. Let R denote the graded algebra Q[x, x−1] where x has degree 2k,
and regard R as a differential graded algebra with trivial differential. The collection of differential graded
R-modules can be organized into a symmetric monoidal (∞, 1)-category, which we will denote by S. The
cochain complex C∗(M ;R) can be regarded as an algebra object (even a commutative algebra object) of S.
Using the fact that M is simply connected, one can show that the Hochschild homology

∫
S1 C

∗(M ;R) is
quasi-isomorphic to the cochain complex C∗(LM,R), where LM = MS1

denotes the free loop space of M ;
moreover, this identification is SO(2)-equivariant. In particular, we have a canonical SO(2)-equivariant map

tr :
∫
S1
C∗(M ;R) ' C∗(LM ;R) t′→ C∗(M ;R) t′′→ R,

where t′ is induced by the diagonal embedding M → LM and t′′ is given by evaluation on the fundamental
cycle of M . The pair (C∗(LM ;R), tr) is a Calabi-Yau object of the symmetric monoidal (∞, 2)-category
Alg1(S) (the nondegeneracy of tr follows from Poincare duality) and therefore determines a topological field
theory Z : Bordnc

2 → Alg1(S). We can identify Z(S1) with the complex of R-valued cochains C∗(LM ;R) on
the free loop space of M . We can view surfaces with boundary as giving rise to operations on C∗(LM ;R),
called string topology operations (see [7]).

Remark 4.2.17. Example 4.2.16 can be refined in various ways. First, we can replace the cochain complex
C∗(M ;R) of M with the chain complex C∗(ΩM ;R) of the based loop space ΩM , which has the structure
of an associative (but not commutative) algebra in S. The Hochschild homology

∫
S1 C∗(ΩM ;R) can be

identified with the chain complex C∗(LM ;R). The algebra C∗(ΩM ;R) is generally not a Calabi-Yau object
of Alg1(S), because it is not even dualizable as an object of S (the loop space LM generally has homology
in infinitely many degrees). However, it can be regarded as a Calabi-Yau object in the (∞, 2)-category
Alg1(S)op obtained by reversing the direction of 2-morphisms in Alg1(S): the fundamental cycle of M gives
rise to a nondegenerate, SO(2)-invariant cotrace R → C∗(LM ;R). It therefore determines a symmetric
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monoidal functor Z : Bordor,nc
2 → Alg1(S)op whose value on a circle can be identified with the chain

complex C∗(LM ;R). Evaluating Z on manifolds of higher dimension, we obtain operations on C∗(LM ;R)
which are preduals of the operations of Example 4.2.16, and are defined even if we do not assume that M is
simply connected.

It is also possible to drop the assumption that M is even-dimensional, and to work over the field Q (or
other coefficient rings) rather than the periodic algebra R. However, we encounter a new complication: the
fundamental cycle of M gives rise to a trace map tr : C∗(LM ; Q) → Q which is not of degree zero, but
involves a shift by the dimension of M . Nevertheless, we can view the pair (C∗(M ; Q), tr) as a Calabi-Yau
object of an appropriately defined elaboration of the (∞, 2)-category Alg1(S), where we allow twistings by
2-gerbes over Q. In concrete terms, this means that the operations

C∗(LM ; Q)⊗m → C∗(LM ; Q)⊗n

associated to a surface Σ with m incoming and n outgoing boundary circles is not of degree zero, but involves
a homological shift whose magnitude depends on the dimension of M and the genus of Σ.

4.3 Manifolds with Singularities

The cobordism hypothesis (Theorem 1.4.9) asserts that the higher category of framed bordisms Bordfr
n is

freely generated, as a symmetric monoidal (∞, n)-category with duals, by a single object (corresponding
to the 0-manifold with a single point). In this section, we will describe a generalization of the cobordism
hypothesis, which gives a geometric description of symmetric monoidal (∞, n)-categories (again assumed to
have duals) having more complicated presentations.

To explain the basic idea, suppose that we are given an object Y ∈ Ωk−1 Bordn, corresponding to a closed
(k − 1)-manifold. By definition, giving a k-morphism ∅ → Y in Bordn is equivalent to giving a k-manifold
whose boundary is identified with Y . Suppose that we wish to enlarge the (∞, n)-category Bordn, to obtain
a new (∞, n)-category C which contains a k-morphism α : ∅ → Y . We might then try to think of the
k-morphisms in C as given by some kind of “generalized k-manifolds”; in particular, we can try to think of α
as a “generalized k-manifold” with boundary Y . In general, it is not possible to realize Y as the boundary of
a smooth manifold of dimension k. However, there is always a canonical way to realize Y as the “boundary”
of a k-dimensional topological space Y ′. Namely, let Y ′ denote the cone C(Y ) = (Y × [0, 1])

∐
Y×{1}{v},

and set ∂ Y ′ = Y ×{0} ⊆ Y ′. Then Y ′ is a k-dimensional topological space containing Y as a closed subset,
which is a manifold except possibly at a single point: the vertex v of the cone. The space C(Y ) is an example
of a manifold with singularities: it admits a decomposition C(Y ) = (C(Y ) − {v})

∐
{v} into locally closed

subsets which are manifolds and which fit together in a reasonably nice way.
More generally, we can consider pairs (M,M0) where M is a topological space of dimension m, M0 ⊆M

is a closed subset which is a smooth (n − k)-framed manifold of dimension (m − k) (so that M0 is empty
if m < k), the complement M −M0 is a smooth manifold of dimension m, and we have a homeomorphism
U ' M0 × C(Y ) for some open neighborhood U of M0. We can think of the pair (M,M0) as a kind
of generalized m-manifold. Using these generalized manifolds in place of ordinary smooth manifolds, we
can define an analogue of the (∞, n)-category Bordn; let us denote this analogue by Bord′n. As in the
smooth case, one can show that Bord′n is a symmetric monoidal (∞, n)-category with duals (the symmetric
monoidal structure is given, as usual, by disjoint union). Every smooth m-manifold M can be regarded as
a generalized m-manifold by taking M0 = ∅. This construction determines a symmetric monoidal functor
Bordn → Bord′n. In particular, we can regard X and ∅ as objects of Ωk−1 Bord′n. By construction, C(Y )
defines a k-morphism α : ∅ → Y in Bord′n. In fact, Bord′n is universal with respect to these properties:

Proposition 4.3.1. Let C be a symmetric monoidal (∞, n)-category with duals, let Z0 : Bordn → C be
a symmetric monoidal functor, and let Y be a closed (k − 1)-manifold. The following types of data are
equivalent:

(1) Symmetric monoidal functors Z : Bord′n → C extending Z0, where Bord′n is defined as above.
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(2) Morphisms α : 1→ Z0(Y ) in Ωk−1 C.

In view of the description of Bordn given by Theorem 2.4.26, we can restate Proposition 4.3.1 more
informally as follows: as a symmetric monoidal (∞, n)-category with duals, Bord′n is freely generated by a
single O(n)-equivariant object (corresponding to a point) together with a single k-morphism (corresponding
to the cone C(Y )). Our goal in this section is to explain a more general form of Proposition 4.3.1, which
describes the free (∞, n)-category with duals generated by an arbitrary collection of objects, 1-morphisms,
2-morphisms, and so forth, stopping at the level of n-morphisms. The description will be given in geometric
terms: roughly speaking, the free (∞, n)-category in question can be described in terms of bordisms between
manifolds with singularities, where we allow singularities whose local structure is determined by the pattern
of generators. In order to make a more precise statement, we need to introduce a somewhat elaborate
definition.

Definition Sketch 4.3.2. Fix an integer n ≥ 0. Using a simultaneous induction on 0 ≤ k ≤ n, we will
define the following:

• The notion of an n-dimensional singularity datum of length k.

• If ~X is a singularity datum of length k and V is a real vector space of dimension ≤ n− k, the notion
of a ~X-manifold of codimension V .

The definitions are given as follows:

(a) An n-dimensional singularity datum of length 0 consists of a pair (X0, ζ0), where X0 is a topological
space and ζ0 is a real vector bundle of dimension n on X0 which is endowed with an inner product.

(b) If 0 < k ≤ n, then an n-dimensional singularity datum of length k is given by a quadruple ( ~X,Xk, ζk, p :
Ek → Xk), where ~X is an n-dimensional singularity datum of length k − 1, Xk is a topological space,
ζk is a real vector bundle of dimension n− k on Xk endowed with an inner product, and p : Ek → Xk

is a fiber bundle whose fiber over each point x ∈ Xk is a compact ~X-manifold of codimension ζx ⊕ R.

(c) Let ~X be an n-dimensional singularity datum of length k, given by a quadruple ( ~X ′, Xk, ζk, p : Ek →
Xk). Let V be a real vector space of dimension m ≤ n− k. A ~X-manifold of codimension V consists
of the following data:

(i) A topological space M .

(ii) A closed subspace Mk ⊆ M , which is endowed with the structure of a smooth manifold of
dimension n−m− k, having tangent bundle T .

(iii) A map q : Mk → Xk and an isomorphism of vector bundles T ⊕ V ' q∗ζ, where V denotes the
constant vector bundle on Mk associated to V . This data endows the pullback q∗E = E ×Xk Mk

with the structure of a ~X ′-manifold of codimension V ⊕R, so that q∗E × (0, 1) has the structure
of a ~X ′-manifold of codimension V .

(iv) A structure of ~X ′-manifold of codimension V on the open subset M −Mk ⊆M .

(v) An open neighborhood U of Mk and a continuous quotient map f : (0, 1] × q∗E → U whose
restriction to (0, 1) × q∗E is an open embedding of (0, 1) × q∗E → M −Mk of ~X ′-manifolds of
codimension V and whose restriction to {1} × q∗E coincides with the projection q∗E →Mk.

We will refer to an n-dimensional singularity datum of length n simply as an n-dimensional singularity
datum. If ~X is an n-dimensional singularity datum and m ≤ n, then we define a ~X-manifold of dimension
m to be a ~X-manifold of codimension Rn−m.

Remark 4.3.3. Unwinding the induction, we see that an n-dimensional singularity datum of length k
consists of a sequence of topological spaces {Xi}0≤i≤k, a sequence of vector bundles {ζi}0≤i≤k where each
ζi has rank n− i on Xi, and a sequence of fiber bundles {Ei → Xi}0≤i≤k.

98



Remark 4.3.4. Any n-dimensional singularity datum ~X ′ of length k can be completed to an n-dimensional
singularity datum ~X by taking the spaces Xi to be empty for i > k. In this situation, we will not distinguish
between ~X ′ and ~X. In other words, we will think of n-dimensional singularity data of length k as n-
dimensional singularity data for which the spaces Xi are empty for i > k.

Remark 4.3.5. Part (a) of Definition 4.3.2 can be regarded as a special case of part (b) if we make use the
following conventions:

• There is a unique n-dimensional singularity datum ~X of length −1.

• Every ~X-manifold is empty.

Remark 4.3.6. Let ~X = ({Xi}0≤i≤n, {ζi}0≤i≤n, {pi : Ei → Xi}0≤i≤n) be an n-dimensional singularity
datum. A ~X-manifold of dimension m consists of a topological space M equipped with a stratification

Mn ⊆Mn−1 ⊆Mn−2 ⊆ . . . ⊆M0 = M,

where each open stratum Mk −Mk−1 is a smooth manifold of dimension m − k (which is empty if m < k)
equipped with an (Xk, ζk)-structure. Moreover, these smooth manifolds are required to “fit together” in a
manner which is prescribed by the fiber bundles pi : Ei → Xi.

Remark 4.3.7. In Definition 4.3.2, we did not include any requirement that an ~X-manifold M be compact.
However, all of the ~X-manifolds which we subsequently discuss will be assumed compact unless otherwise
specified.

Example 4.3.8. An n-dimensional singularity datum of length 0 consists of a pair (X, ζ), where X is a
topological space and ζ is a vector bundle of rank n on X. The notion of (X, ζ)-manifold of dimension m ≤ n
(appearing in Definition 4.3.2) agrees with the notion of a smooth manifold with (X, ζ)-structure (Notation
2.4.21).

Let ~X be an n-dimensional singularity datum. By elaborating on Definition 4.3.2, one can define the
notions ~X-manifold with boundary and bordism between ~X-manifolds. Using ~X-manifolds in place of ordinary
manifolds, we can define an analogue of the (∞, n)-category Bordn, which we will denote by Bord

~X
n .

Remark 4.3.9. The notion of a ~X-manifold with boundary is described very naturally in the language of
Definition 4.3.2: it is just a ~X ′-manifold, where ~X ′ is a singularity datum which can be extracted from ~X.
For example, the usual notion of a manifold with boundary (or, more precisely, of a manifold with a collared
boundary) arises as a special case of Definition 4.3.2; see Example 4.3.22 below.

Example 4.3.10. Let k ≤ n be positive integers, and let Y be a closed (k − 1)-manifold. We define an
n-dimensional singularity datum ~X = ({Xi}0≤i≤n, {ζi}0≤i≤n, {pi : Ei → Xi}0≤i≤n) as follows:

(1) The topological space X0 is a classifying space BO(n), the topological space Xk consists of a single
point, and the topological space Xi is empty for i /∈ {0, k}.

(2) The vector bundle ζ0 is the tautological vector bundle of rank n on BO(n), and the vector bundle ζk
corresponds to the vector space Rn−k.

(3) The fiber bundle pk : Ek → Xk is given by the projection Y → ∗.

The (∞, n)-category Bord
~X
n can be identified with the (∞, n)-category Bord′n appearing in Proposition

4.3.1.

We would now like to generalize Proposition 4.3.1 to obtain a description of the (∞, n)-category Bord
~X
n

for any n-dimensional singularity datum ~X. First, we need to introduce a bit of additional terminology.
Recall that if C is a symmetric monoidal (∞, n)-category with duals, then the underlying (∞, 0)-category
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C∼ carries an action of the orthogonal group O(n) (Corollary 2.4.10). The group O(n) does not act on the
(∞, n)-category C itself. For example, if n = 1, then the nontrivial element in O(n) acts by carrying every
object X in C to its dual X∨. A morphism f : X → Y does not generally induce a morphism X∨ → Y ∨

(unless f is an isomorphism); instead, it induces a dual map f∨ : Y ∨ → X∨. Nevertheless, the subgroup
O(n − 1) ⊆ O(n) naturally acts on the collection of 1-morphisms in C. To see this, let [1] denote the
ordinary category associated to the linearly ordered set {0 < 1}. One can endow the collection Fun([1],C) of
functors [1]→ C with the structure of a symmetric monoidal (∞, n−1)-category with duals (the appropriate
construction is a bit subtle, since it is not an internal Hom-object with respect to the Cartesian product of
higher categories), so that the ∞-groupoid Fun([1],C)∼ carries an action of the orthogonal group O(n− 1).
More generally, the∞-groupoid of 1-morphisms in Ωk−1 C carries an action of the orthogonal group O(n−k),
which is compatible with the action of O(n+ 1− k) on the ∞-groupoid of objects of Ωk−1 C.

Theorem 4.3.11 (Cobordism Hypothesis with Singularities). Let 0 < k ≤ n be integers. Suppose we are
given an n-dimensional singularity datum ~X of length k, corresponding to a quadruple ( ~X ′, X, ζ, p : E → X)
as in Definition 4.3.2. Let X̃ → X denote the bundle of orthonormal frames in ζ (so that X̃ is a principal
O(n− k)-bundle over X). For every point x̃ = (x, α : ζx ' Rn−k), we can use α to view the fiber p−1{x} as
a ~X ′-manifold of codimension Rn+1−k, which determines an object Eex → Ωk−1 Bord

~X′

n . We note that the
assignment x̃ 7→ Eex is equivariant with respect to the action of the orthogonal group O(n− k).

Let C be a symmetric monoidal (∞, n)-category with duals. Then giving a symmetric monoidal functor
Z : Bord

~X
n → C is equivalent to giving the following data:

(1) A symmetric monoidal functor Z0 : Bord
~X′

n → C.

(2) A family of 1-morphisms ηex : 1→ Z0(Eex) in Ωk−1 C parametrized by x̃ ∈ X̃, such that the assignment
x̃ 7→ ηex is O(n− k)-equivariant.

Remark 4.3.12. With the appropriate conventions, we can regard Theorem 2.4.18 as corresponding to the
degenerate case of Theorem 4.3.11 where we take k = 0.

Remark 4.3.13. Let ~X be an n-dimensional singularity datum. Very roughly, Theorem 4.3.11 can be stated
as follows: as a symmetric monoidal (∞, n)-category with duals, Bord

~X
n is freely generated by adjoining a

k-morphism for every point of Xk, for 0 ≤ k ≤ n. The source and target of these k-morphisms are dictated
by the details of the singularity datum ~X.

Remark 4.3.14. Theorem 4.3.11 is more general than it might first appear: it implies that any symmetric
monoidal (∞, n)-category with duals which is freely generated by adjoining k-morphisms for 0 ≤ k ≤ n can
be realized as Bord

~X
n for a suitable singularity datum ~X. This is a consequence of the following general

observation: if C is a symmetric monoidal (∞, n)-category with duals and k ≤ n, then for any pair of (k−1)-
morphisms f and g with the same source and target, the data of a k-morphism from f to g is equivalent
to the data of a k-morphism from 1 to h in Ωk−1 C, for an appropriately chosen closed (k − 1)-morphism
h. For example, when k = 1, we note that MapC(f, g) ' MapC(1, f∨ ⊗ g). The general assertion reflects
the geometric idea that any k-manifold with corners can be regarded as a k-manifold with boundary by
smoothing the corners in an appropriate way.

Remark 4.3.15. Let ~X = ({Xi}0≤i≤k, {ζi}0≤i≤k, {pi : Ei → Xi}0≤i≤k) be an n-dimensional singularity
datum of length k. For every integer m, the triple ({Xi}0≤i≤k, {ζi ⊕ Rm}0≤i≤k, {pi : Ei → Xi}0≤i≤k)
corresponds to an (n+m)-dimensional singularty datum of length k, which we will denote by ~X[Rm]. Implicit
in this assertion is the following observation: every ~X-manifold can be regarded as a ~X[Rm]-manifold in a
natural way. Passing to the limit as m 7→ ∞, we obtain the notion of a stable ~X-manifold. For example,
suppose that X0 consists of a single point and Xi = ∅ for i > 0. In this case, a ~X-manifold is a manifold
equipped with an n-framing (see Variant 1.2.14), and a stable ~X-manifold is a manifold M equipped with a
stable framing (that is, a trivialization of TM ⊕ Rm for m� 0).
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We can also consider the direct limit of the bordism categories Bord
~X[Rm]
n+m as m→∞ to obtain a bordism

theory of stable ~X-manifolds. The classifying space lim−→|Bord
~X[Rm]
n+m | is an infinite loop space, and therefore

represents a cohomology theory. The corresponding homology theory admits a geometric interpretation
in terms of the bordism theories of manifolds with singularities. These homology theories were originally
introduced by Baas and Sullivan (see [4]). We can therefore regard the (∞, n)-categories Bord

~X
n as a

providing a refinement of the Baas-Sullivan theory.

The proof of Theorem 4.3.11 uses a general categorical construction. Fix an integer n > 0, and suppose
that f : C → D is a symmetric monoidal functor, where C is a symmetric monoidal (∞, n − 1)-category
and D a symmetric monoidal (∞, n)-category. We can associate to this data a new symmetric monoidal
(∞, n)-category Cn(f), which we will call the cone of f . This (∞, n)-category can be described informally
as follows:

(a) The objects of Cn(f) are objects D ∈ D.

(b) Given a pair of objects D,D′ ∈ D, a 1-morphism from D to D′ is given by a pair (C, η), where C ∈ C

and η ∈ MapD(f(C)⊗D,D′) are objects (the collection of such pairs (C, η) can be organized into an
(∞, n− 1)-category in a natural way which we will not describe in detail).

Remark 4.3.16. Let f : C→ D be as above. There is a symmetric monoidal functor D→ Cn(f) which is
the identity on objects, and carries a morphism η : D → D′ in D to the morphism (1, η) in Cn(f).

Remark 4.3.17. Suppose that n = 2, let f : C → D be as above. Then Ω Cn(f) is a symmetric monoidal
(∞, 1)-category whose objects are pairs (C, η), where C ∈ C and η : f(C) → 1 is a 1-morphism in D. This
is a mild variation on the (∞, 1)-category C[f ] described in Notation 3.3.27.

Remark 4.3.18. Let C be a symmetric monoidal (∞, n)-category, let ∗ denote the trivial (∞, n)-category
comprised of a single object, and let f : C→ ∗ be the unique (symmetric monoidal) functor. We will denote
the symmetric monoidal (∞, n+ 1)-category Cn(f) by B C, and refer to it as the connected delooping of C.
It is characterized up to equivalence by the following properties:

(i) The (∞, n+ 1)-category B C has only a single object (up to isomorphism).

(ii) There is a symmetric monoidal equivalence Ω(B C) ' C.

More generally, if k ≥ 0, we let Bk C denote the (∞, n + k)-category obtained by iterating the above
construction k times.

The basic ingredient needed for the proof of Theorem 4.3.11 is the following:

Theorem 4.3.19 (Cobordism Hypothesis, Relative Version). Fix integers 0 < k ≤ n. Let X be a topological
space, ζ a vector bundle of rank n − k on X endowed with an inner product, and X̃ the corresponding
O(n− k)-bundle on X. Every point x̃ ∈ X̃ determines an object of Bord(X,ζ)

n−k , which we will denote by Pex.
Let Z0 : D→ C be a symmetric monoidal functor between symmetric monoidal (∞, n)-categories, and let

f : Bk−1 Bord(X,ζ)
n−k → D be a symmetric monoidal functor. Assume that C has duals. The following types

of data are equivalent:

(1) Symmetric monoidal functors Z : Cn(f)→ C extending Z0 (see Remark 4.3.16).

(2) A family of 1-morphisms ηex : 1 → Z0(Pex) in Ωk−1 C indexed by x̃ ∈ X̃, such that the assignment
x̃→ ηex is O(n− k)-equivariant.

Example 4.3.20. Suppose that D is the trivial (∞, n)-category consisting of a single object. Then we can
identify Cn(f) with the k-fold delooping Bk Bord(X,ζ)

n−k and Theorem 4.3.19 follows by applying Theorem
2.4.18 to Ωk C.
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The general case of Theorem 4.3.19 can also be reduced to Theorem 2.4.18, using formal properties of
the cone construction f 7→ Cn(f). We will omit the details, since they involve a more detailed excursion into
higher category theory. Instead, we explain how Theorem 4.3.19 can be applied to the study of manifolds
with singularities:

Proof of Theorem 4.3.11. Let ~X = ( ~X ′, X, ζ, p : E → X) be an n-dimensional singularity datum of length
k > 0. Assume that ζ is equipped with an inner product, and let X̃ → X be the O(n − k)-bundle of
orthonormal frames associated to ζ. As explained in the statement of Theorem 4.3.11, we can view the
assignment x̃ 7→ Eex as defining an O(n − k)-equivariant map from X̃ into Ωk−1 Bord

~X′

n . According to
Theorem 2.4.18, such a map is classified by a symmetric monoidal functor Bord(X,ζ)

n−k → Ωk−1 Bord
~X′

n .

which can be “delooped” to obtain another symmetric monoidal functor f : Bk−1 Bord(X,ζ)
n−k → Bord

~X′

n .
To deduce Theorem 4.3.11 from Theorem 4.3.19, it suffices to observe that the cone Cn(f) is canonically
equivalent to Bord

~X
n (the definition of a ~X-manifold is essentially rigged to produce this result).

Example 4.3.21 (Feynman Diagrams). Let ~X be a 1-dimensional singularity datum. Then ~X consists of
the following data:

• A pair of topological spaces X0 and X1.

• A rank 1 vector bundle ζ0 on X0, equipped with an inner product. Let X̃0 denote the associated double
cover of X0.

• A covering space E → X1 with finite fibers, equipped with a continuous map E → X̃0.

For simplicity, let us assume that the homotopy groups πiX̃0 vanish for i > 0. Then the (weak) homotopy
type of X̃0 is determined by the set P = π0X̃0. We will refer to the elements of P as particles. Since X̃0 is a
double covering of X0, the set P is equipped with a canonical involution p 7→ p, which carries each particle
to its corresponding antiparticle.

We will refer to the points of X1 as interactions. For every point x ∈ X1, the fiber Ex = E ×X1 {x} is a
finite set equipped with a map σx : Ex → P . In other words, we can think of Ex as a finite set of particles
(some of which might appear with multiplicity); these are the particles which participate in the relevant
interaction.

By definition, a closed ~X-manifold is given by the following:

• A compact topological space G, which is a smooth 1-manifold away from a specified finite subset
G0 ⊆ G.

• Every oriented connected component C of G−G0 is labelled by a particle p ∈ P . This particle depends
on a choice of orientation of C, and is replaced by the corresponding antiparticle if the orientation is
changed.

• Every point g ∈ G0 is labelled by an interaction x ∈ X1. Moreover, g has a neighborhood in G which is
can be identified with the open cone (Ex× (0, 1])

∐
Ex×{1}{g}. Moreover, if e ∈ Ex and C ⊆ G−G0 is

the (oriented) connected component containing the interval {e} × (0, 1) with its standard orientation,
then C is labelled with the particle σx(e).

More informally, a (closed) ~X-manifold consists of a graph G (possibly with loops) whose edges are
labelled by elements of P and whose vertices are labelled by points of X1. Such a graph is often called a
Feynman diagram. We can informally summarize the situation by saying that there is an (∞, 1)-category
Bord

~X
1 whose objects are given by finite sets labelled by elements of P (in other words, finite collections

of particles) and whose morphisms are given by Feynman diagrams. Theorem 4.3.11 asserts that this
(∞, 1)-category can be described by a universal mapping property. In particular, let Vect(k) denote the
category of vector spaces over a field k. Using Theorem 4.3.11, we deduce that symmetric monoidal functors
Z : Bord

~X
1 → Vectfd

C are classified by the following data:
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(i) A vector space Vp for each particle p ∈ P . These vector spaces should be endowed with a perfect
pairing Vp⊗Vp → k, which is symmetric in the case where p is its own antiparticle (in particular, each
Vp is finite-dimensional).

(ii) A vector vx ∈
⊗

e∈Ex Vσ(e) for every interaction x ∈ X1 (which is continuous in the sense that it
depends only on the path component of x in X1).

Given the data of (i) and (ii), we can construct a symmetric monoidal functor Z : Bord
~X
1 → Vect(k). In

particular, if G is a closed ~X-manifold, we can evaluate Z on G to obtain an invariant Z(G) ∈ k. It is easy
to describe this invariant by a concrete procedure. Assume for simplicity that G has no loops, let G0 ⊆ G
be the finite subset labelled by interactions {x(g)}g∈G0 , and set

v = ⊗g∈G0vx(g) ∈
⊗

g∈G0,e∈Ex(g)

Vσ(e).

Then Z(G) ∈ k is the image of v under the map⊗
g∈G0,e∈Ex(g)

Vσ(e) → k

induced by the pairings Vp ⊗ Vp → k given by (i) (note that the set of pairs {(g, e) : g ∈ G0, e ∈ Ex(g)} can
be identified with the collection of oriented connected components of G−G0; in particular, this set has two
elements for each component of G − G0, and the corresponding vector spaces are canonically dual to one
another).

Example 4.3.22 (Boundary Conditions). For any integer n, we can define an n-dimensional singularity
datum ~X = ({Xi}0≤i≤n, {ζi}0≤i≤n, {Ei → Xi}0≤i≤n) as follows:

• The space X0 is a classifying space BO(n), the space X1 is a classifying space BO(n − 1), and the
spaces Xi are empty for i > 0.

• The vector bundles ζ0 and ζ1 are the tautological vector bundles on BO(n) and BO(n− 1).

• The map E1 → X1 is a homeomorphism.

Unwinding the definitions, we see that a ~X-manifold M is just a manifold with boundary (more precisely,
it is a manifold with boundary together with a specified collar of the boundary). It is sensible to talk
about bordisms between manifolds with boundary (here we do not require our bordisms to be trivial on the
boundary: a bordism from a manifold with boundary M to another manifold with boundary M ′ determines,
in particular, a bordism from ∂M to ∂M ′ in the usual sense), bordisms between bordisms between manifolds
with boundary, and so forth: we thereby obtain a symmetric monoidal (∞, n)-category Bord

~X
n . There is a

canonical functor : Bordn → Bord
~X
n which reflects the fact that any closed manifold can be regarded as a

manifold with boundary by taking the boundary to be empty.
Let C be a symmetric monoidal (∞, n)-category and let Z0 : Bordn → C be a symmetric monoidal

functor. We can think of Z0 as a topological field theory; in particular, it assigns to every closed n-manifold
M an invariant Z0(M) ∈ Ωn C. In practice, the target (∞, n)-category C will often have a linear-algebraic
flavor, and Ωn C can be identified with the set of complex numbers. In this case, we can think of Z0(M) as
a complex number, which is often given heuristically as the value of some integral over a space of maps from
M into a target T . If Z0 can be extended to a functor Z : Bord

~X
n → C, then the assignment M 7→ Z0(M)

can be extended to assign invariants not only to closed n-manifolds but also n-manifolds with boundary. In
this case, we can think of Z(M) ∈ Ωn C as again given by an integral: this time not over the space of all
maps from M into T , but instead over the collection of maps which have some specified behavior at the
boundary ∂M . It is typical to speak of the extension Z of Z0 as corresponding to a boundary condition, or
a D-brane.
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If C has duals, then Theorem 4.3.11 provides a classification for symmetric monoidal functors Z :
Bord

~X
n → C. They are determined (up to canonical isomorphism) by the following data:

(1) An object C ∈ C, which is a (homotopy) fixed point with respect to the action of O(n) on C∼ (and
determines the restriction Z0 : Bordn → C of Z).

(2) A 1-morphism 1→ C in C, which is equivariant with respect to the action of the group O(n−1) (which
encodes the relevant boundary condition).

Of course, there are a number of variations on this example. For example, we could replace each of the
spaces BO(n) and BO(n − 1) by a single point in the definition of ~X. In this case, a ~X-manifold would
consist of an n-framed manifold with an (n − 1)-framed boundary, and we should drop the equivariance
requirements in (1) and (2) above.

Example 4.3.23 (Domain Walls). If ~X is an n-dimensional singularity datum, we have been loosely referring
to ~X-manifolds as “manifolds with singularities”. However, this description is sometimes misleading: it is
possible to give nontrivial examples of singularity data ~X such that the underlying topological space of every
~X-manifold is a smooth manifold. Roughly speaking, this corresponds to the situation where the fibers of
each bundle Ei → Xi are spheres Si−1 (and the structure group of the bundle can be reduced to O(i)). We
will discuss the simplest nontrivial example here; a more sophisticated variation will appear in our discussion
of the tangle hypothesis in §4.4.

Consider the n-dimensional singularity datum ~X = ({Xi}0≤i≤n, {ζi}0≤i≤n, {Ei → Xi}0≤i≤n) defined as
follows:

• The space X0 is a disjoint union BO(n)
∐

BO(n), the space X1 is a classifying space BO(n− 1), and
the spaces Xi are empty for i > 0.

• The vector bundles ζ0 and ζ1 are the tautological vector bundles on BO(n) and BO(n− 1). Note that
an (X0, ζ0)-structure on a manifold M of dimension m ≤ n consists of a decomposition M 'M−

∐
M+

of M into two disjoint open subsets.

• We have E1 = X1 × {x, y}, where we regard {x, y} as a 0-dimensional (X0, ζ0)-manifold via the
decomposition {x, y} = {x}

∐
{y}.

Unwinding the definitions, we see that a closed ~X-manifold of dimension m ≤ n consists of a closed
m-manifold M equipped with a decomposition M ' M−

∐
M0

M+, where M− and M+ are codimension 0
submanifolds of M which meet along their M0 = ∂M− = ∂M+ = M− ∩M+.

Every manifold M of dimension ≤ n admits the structure of a ~X-manifold in several different ways.
For example, we can obtain a decomposition M ' M−

∐
M0

M+ by taking either M− or M+ to be empty.

These two recipes give rise to symmetric monoidal functors j+, j− : Bordn → Bord
~X
n . In particular, every

symmetric monoidal functor Z : Bord
~X
n → C determines two topological field theories Z+, Z− : Bordn → C

via composition with j+ and j−, respectively. A choice of symmetric monoidal functor Z : Bord
~X
n → C

giving rise to Z+ = Z ◦ j+ and Z− = Z ◦ j− reflects a certain relationship between Z+ and Z−. Theorem
4.3.11 allows us to describe the nature of this relationship in reasonably simple terms. Assuming that C has
duals, it asserts that symmetric monoidal functors Z : Bord

~X
n → C are classified by the following data:

(1) A pair of objects C,D ∈ C, each of which is a (homotopy) fixed point for the action of O(n) on C∼

(these objects determine the topological field theories Z+ and Z−, respectively).

(2) A 1-morphism 1→ C ⊗D in C, which is equivariant with respect to the action of O(n− 1).

Note that if C and D are as in (1), then the O(1)×O(n−1) invariance of C implies that there is an O(n−1)-
equivariant equivalence C ' C∨, so that the data of (2) is equivalent to the data of an O(n− 1)-equivariant
1-morphism C → D in C.
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4.4 The Tangle Hypothesis

Fix an integer n ≥ 1, and recall that Cobun
t (n) denotes the (∞, 1)-category which may be described infor-

mally as follows:

(i) The objects of Cobun
t (n) are closed manifolds of dimension (n− 1).

(ii) Given a pair of closed (n − 1)-manifolds M and N , MapCobun
t (n)(M,N) is a classifying space for

bordisms from M to N .

In §2.2, we gave a more precise description of Cobun
t (n) using the language of Segal spaces. In order

to do so, we introduced a bit of auxiliary data: rather than taking arbitrary (n − 1)-manifolds as objects,
we instead considered (n− 1)-manifolds M equipped with an embedding M ↪→ R∞. There is essentially no
cost in doing so, since the space of embeddings M ↪→ R∞ is contractible (by general position arguments).
Nevertheless, it gives a bit of additional information: namely, it allows us to realize Cobun

t (n) as the direct
limit of (∞, 1)-categories Cobun

t (n)V , where V ranges over the finite dimensional subspaces of R∞. These
(∞, 1)-categories are not equivalent to Cobun

t (n), because the space of embeddings M ↪→ V is generally not
contractible when V has finite dimension (it can even be empty if the dimension of V is too small). Our
goal in this section is to discuss the analogue of the cobordism hypothesis for these (higher) categories of
embedded cobordisms.

Our first step is to define a more elaborate version of the (∞, 1)-category Cobun
t (n)V , which includes

information about all manifolds of dimension ≤ n. In order to simplify the discussion, we will restrict our
attention to the framed case.

Definition 4.4.1. Let 0 ≤ k ≤ n be integers, and let M be an m-manifold equipped with an n-framing. A
k-framed submanifold of M consists of the following data:

(1) A submanifold M0 ⊆ M of codimension (n − k). Together with the n-framing of M , the normal
bundle to M0 in M determines a “Gauss map” g : M0 → Grn−k,n, where Grn−k,n denote the real
Grassmannian O(n)/(O(k)×O(n− k)).

(2) A nullhomotopy of the map g.

If M is equipped with boundary (or with corners), then we will assume that M0 intersections the boundary
∂M (or the corners) transversely.

Definition Sketch 4.4.2. Fix integers 0 ≤ k ≤ n, and let V be a framed (n − k)-manifold. We define an
(∞, k)-category TangVk,n as follows:

(a) The objects of TangVk,n are (compact) k-framed submanifolds of V .

(b) Given a pair of objects M0,M1 ∈ TangVk,n, a 1-morphism from M0 to M1 is a (compact) k-framed
submanifold M ⊆ V × [0, 1] whose intersection with V × {i} coincides with Mi.

(c) More generally, if j ≤ k, we can identify j-morphisms f in TangVk,n with k-framed submanifolds of
V × [0, 1]j , satisfying certain boundary conditions (corresponding to a choice of domain and codomain
for f). If j = k, we regard the collection of such j-morphisms as a topological space (so that higher
morphisms in TangVk,n correspond to homotopies, paths between homotopies, and so forth).

In the case where V is the open unit disk in Rn−k, we will simply denote TangVk,n by Tangk,n.

Remark 4.4.3. For every pair of integers k ≤ n, a linear inclusion Rn−k ⊆ Rn−k+1 induces a functor
Tangk,n → Tangk,n+1 between (∞, k)-categories. In particular, we can form the direct limit lim−→n

Tangk,n:
this direct limit is canonically equivalent to the framed bordism (∞, k)-category Bordfr

k .
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According to the cobordism hypothesis, Bordfr
k can be regarded as the free symmetric monoidal (∞, k)-

category with duals generated by a single object. We would like to formulate an analogous assertion for
the (∞, k)-categories Tangk,n. Our first observation is that the (∞, k)-categories TangVk,n are generally not
symmetric monoidal: given a pair of submanifolds M,M ′ ⊆ V , there is generally no natural way to embed
the disjoint union M

∐
M ′ into V . Nevertheless, there is a good substitute for the symmetric monoidal

structure in the case where V is an open disk. Given an open embedding

V
∐
· · ·

∐
· · ·

∐
V → V

which is rectilinear on each component, we get a functor

Tangk,n× · · · × Tangk,n → Tangk,n .

In other words, Tangk,n carries an action of the little (n−k)-disks operad (Notation 4.1.15) and can therefore
be regarded as an En−k-monoidal (∞, k)-category. This En−k-monoidal (∞, k)-category can be characterized
by a universal property (a version of which was conjectured by Baez and Dolan in [2]):

Theorem 4.4.4 (Baez-Dolan Tangle Hypothesis). Fix integers 0 ≤ k ≤ n. Let C be an En−k-monoidal
(∞, k)-category with duals (if k < n) or with adjoints (if k = n), and let ∗ denote the object of Tangk,n
corresponding to the origin 0 ∈ Rn−k (regarded as a framed submanifold of the unit disk). Evaluation at ∗
induces an equivalence of (∞, k)-categories

Fun⊗(Tangk,n,C)→ C∼ .

If C is any (∞, k)-category with an En−k-structure, then there exists a maximal subcategory C0 ⊆ C

satisfying the hypothesis of Theorem 4.4.4. We will say that an object C ∈ C is fully dualizable if it belongs
to this subcategory (if n > k, this is equivalent to the notion introduced in Definition 2.3.21; if n = k
the condition is vacuous). We can informally summarize Theorem 4.4.4 by saying that Tangk,n is freely
generated as an En−k-monoidal (∞, k)-category by a single fully dualizable object.

Example 4.4.5. Suppose that k = n. Then Tangk,n is an ∞-groupoid which we can realize as the funda-
mental ∞-groupoid of a topological space: namely, the configuration space of finite subsets of the open unit
disk in Rn. Theorem 4.4.4 asserts that this configuration space is freely generated by a single point, as a
representation of the n-disks operad En.

Let C be a symmetric monoidal (∞, k)-category. Using the fact that Bordfr
k can be obtained as a direct

limit lim−→n
Tangk,n, we deduce that the (∞, k)-category of symmetric monoidal functors Fun⊗(Bordfr

k ,C) is
equivalent to the (homotopy) inverse limit of the (∞, k)-categories Fun⊗(Tangk,n,C) appearing in Theorem
4.4.4 (note that the symmetric monoidal (∞, k)-category C can be regarded as endowed with an Em-structure
for every m ≥ 0). Consequently, Theorem 4.4.4 immediately implies Theorem 2.4.6. In other words, we
can regard the tangle hypothesis as a refinement of the cobordism hypothesis. Our goal in this section is to
show that the converse is true as well: we can deduce the tangle hypothesis from the cobordism hypothesis,
provided that the cobordism hypothesis is formulated in a sufficiently general form (namely, Theorem 4.3.11).

The first step is to rephrase Theorem 4.4.4 in a way that does not mention En−k-monoidal structures.
For this, we need the following general observation (which already appears implicitly in §4.3; see Remark
4.3.18):

Remark 4.4.6. Let C be a an (∞, n)-category containing a distinguished object 1. We let Ω C denote the
(∞, n − 1)-category MapC(1,1). Composition in C endows the (∞, n − 1)-category Ω C with a monoidal
structure. Conversely, suppose that D is a monoidal (∞, n− 1)-category. We can then construct an (∞, n)-
category BD having a single object 1, with MapBD(1,1) ' D and with composition in BD given by the
monoidal structure on D. These two constructions are adjoint to one another, and determine an equivalence
between the following types of data:
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(1) Monoidal (∞, n− 1)-categories D.

(2) (∞, n)-categories C having only a single (distinguished) object, up to isomorphism.

More generally, if k ≤ n, then by applying the above constructions iteratively we obtain an equivalence
between the following types of data:

(1′) En−k-monoidal (∞, k)-categories D.

(2′) (∞, n)-categories C having only a single (distinguished) j-morphism for j < n− k.

Under this equivalence, an En−k (∞, k)-category D has duals if and only if the (∞, n)-category C has
adjoints.

We can use Remark 4.4.6 to reformulate Theorem 4.4.4 as follows:

Theorem 4.4.7 (Tangle Hypothesis, Framed (∞, n)-Category Version). Fix integers 0 ≤ k ≤ n and let C be
an (∞, n)-category with adjoints. Then Fun(Bn−k Tangk,n,C) is an ∞-groupoid which classifies pairs (1, η)
where 1 is an object of C and η is an object of Ωn−k C.

Remark 4.4.8. Given a functor Z : Bn−k Tangk,n → C, it is easy to extract the corresponding pair (1, η)
in Theorem 4.4.7: we obtain 1 ∈ C by evaluating Z on the (unique) distinguished object Bn−k Tangk,n, and
η by evaluating Ωn−kZ on the object {0} ⊆ Rn−k.

The difficult part is to go in the other direction: that is, to construct a functor Z : Bn−k Tangk,n → C

given the pair (1, η). We would like to obtain such a construction applying the cobordism hypothesis with
singularities (Theorem 4.3.11). First, we need to embark on a brief digression to describe the appropriate
symmetric monoidal (∞, n)-category to use as a target.

Let Cat(∞,1) denote the (large) (∞, 1)-category whose objects are (small) (∞, 1)-categories and whose
morphisms are given by functors. This (∞, 1)-category admits a symmetric monoidal structure given by the
formation of Cartesian products. Moreover, there is a canonical involution on Cat(∞,1), which carries each
(∞, 1)-category C to its opposite Cop. This involution resembles a duality functor. However, it does not
correspond to duality in Cat(∞,1), because there are no candidates for evaluation and coevaluation functors

ev : C×Cop → 1 coev : 1→ C×Cop

We can remedy the situation by passing to an enlargement of Cat(∞,1) which has a more general class of
morphisms. More precisely, we can introduce a new (∞, 1)-category CatAdj

(∞,1) whose objects are (small)
(∞, 1)-categories and whose morphisms are given by correspondences between (∞, 1)-categories: that is, we
define a 1-morphism from C to D in CatAdj

(∞,1) to be a functor C×Dop → Cat(∞,0). In this setting, there is a
natural candidate for the maps ev and coev indicated above: namely, we can take both to be correspondences
described by the functor Cop×C→ Cat(∞,0) given by the formula (C,D) 7→ MapC(C,D). It is not difficult
to check that the evaluation and coevaluation maps are compatible with one another, which shows that
CatAdj

(∞,1) is a symmetric monoidal (∞, 1)-category with duals.
The above construction can be generalized (with some effort) to the setting of (∞, n)-categories, for every

n ≥ 0. More precisely, it is possible to introduce a symmetric monoidal (∞, n)-category CatAdj
(∞,n) with duals

whose objects are (∞, n)-categories with adjoints and whose k-morphisms for 1 ≤ k ≤ n are given by a
suitably general notion of correspondence.

Warning 4.4.9. There is some danger of confusion when thinking of an (∞, n)-category with adjoints C as
an object of CatAdj

(∞,n), because there are morphisms in CatAdj
(∞,n) which do not correspond to actual functors.

It is possible for two (∞, n)-categories with adjoints to be equivalent as objects of CatAdj
(∞,n) without being

equivalent as (∞, n)-categories. For example, if C and D are (∞, 1)-categories, then C and D are equivalent
in CatAdj

(∞,1) if and only if they are Morita equivalent: that is, if and only if they have equivalent idempotent
completions (see [17]).
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Remark 4.4.10. The assertion that CatAdj
(∞,n) has duals has a remarkable consequence when combined

with Corollary 2.4.10: it implies that there is an action of the orthogonal group O(n) on the theory of
(∞, n)-categories with adjoints. This action has the following features:

(i) When restricted to the subgroup O(1) × · · · × O(1) ⊆ O(n), the action of O(n) on CatAdj,∼
(∞,n) is given

by a collection of involutions, each of which acts by replacing an (∞, n)-category C by the opposite
(∞, n)-category at the level of k-morphisms for 1 ≤ k ≤ n. In particular, this restricted action can be
defined without the assumption that our (∞, n)-categories have adjoints.

(ii) Let n = 2, and let C be an (∞, 2)-category with adjoints. Then the action of the circle S1 ' SO(2) on
the object C ∈ CatAdj,∼

(∞,n) determines a self-functor A : C→ C. It is possible to describe this self-functor
in concrete terms: it is the identity on objects, and carries every 1-morphism f ∈ C to fLL, the left
adjoint of the left adjoint of f .

(iii) Let C be a symmetric monoidal (∞, n)-category with duals. As we observed in §4.3, the action of O(n)
on C∼ provided by Corollary 2.4.10 does not extend to an action of O(n) on C itself. However, it does
extend to a twisted action of O(n) on C where the twist is provided by the action of O(n) on CatAdj,∼

(∞,n)

itself. For example, when n = 1, the action of the nontrivial element η ∈ O(1) on C∼ is given by
carrying every object X to its dual X∨. The construction X 7→ X∨ is a contravariant functor from C

to itself, and determines an equivalence C ' Cop, where Cop is the (∞, 1)-category obtained by applying
η to C (by virtue of (i)).

Remark 4.4.11. The existence of an action of O(n) on CatAdj,∼
(∞,n) can be phrased another way: the notion

of an (∞, n)-category with adjoints can be taken to depend not on a choice of nonnegative integer n, but
instead on a choice of finite dimensional inner product space V having dimension n.

Remark 4.4.12. The relationship between Cat(∞,n) and CatAdj
(∞,n) is analogous to the relationship between

the higher categories Alg(n)(S) and Algo
(n)(S) introduced in §4.1. In fact, Algo

(n)(S) and CatAdj
(∞,n) admit a

common generalization. If S is a good symmetric monoidal (∞, 1)-category, then we can introduce a theory of
S-enriched (∞, n)-categories: that is, (∞, n)-categories in which the collections of n-morphisms are regarded
as objects of S. When S is the (∞, 1)-category of spaces, we recover the usual notion of (∞, n)-category;
when S is the ordinary category of sets, we recover the notion of n-category. The collection of S-enriched
(∞, n)-categories can be organized into a symmetric monoidal (∞, n)-category CatAdj,S

(∞,n) with duals, which

reduces to CatAdj
(∞,n) when S is the (∞, 1)-category of spaces. We can regard CatAdj,S

(∞,n) as an enlargment of the
(∞, n)-category Algo

(n), because an En-algebra in S can be viewed as a S-enriched (∞, n)-category which
has only a single k-morphism for k < n.

The (∞, n)-category CatAdj
(∞,n) can also be regarded as an enlargement of the (∞, n)-category Famn

described in §3.2: instead of merely considering topological spaces and correspondences between topological
spaces, we consider (∞, n)-categories and correspondences between (∞, n)-categories. There is also an
analogue of the (∞, n)-category Fam∗n of Variant 3.2.5, which we will denote by CatAdj,∗

(∞,n), whose objects can
be viewed as (∞, n)-categories C which have adjoints and are equipped with a distinguished object 1 ∈ C.
There is a forgetful functor π : CatAdj,∗

(∞,n) → CatAdj
(∞,n).

Warning 4.4.13. Let C be an (∞, n)-category with adjoints. There is a canonical functor from C to the
(homotopy) fiber product CatAdj,∗

(∞,n)×
R
CatAdj

(∞,n)
{C}, but it is not generally an equivalence. An object of the

fiber product on the right hand side can be identified with a triple (D, D, φ) where D is an (∞, n)-category
with adjoints, D ∈ D is an object, and φ : D ' C is an isomorphism in CatAdj

(∞,n). As noted in Warning 4.4.9,
φ need not arise from an equivalence of (∞, n)-categories, so we cannot necessarily regard D as an object of
C.
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For example, when n = 1, the fiber product CatAdj,∗
(∞,n)×CatAdj

(∞,n)
{C} can be identified with the idempotent

completion of the (∞, 1)-category C (in other words, the (∞, 1)-category obtained from C by adjoining
an “image” for every coherently idempotent 1-morphism f : C → C in C; see [17] for a more detailed
discussion). We will say that an (∞, n)-category with adjoints C is Morita complete if the functor C →
CatAdj,∗

(∞,n)×CatAdj
(∞,n)
{C} is an equivalence of (∞, n)-categories.

We are now ready to sketch the proof of Theorem 4.4.7, at least in the case where C is Morita complete.

Proof of Theorem 4.4.7. Let ~X = ({Xi}0≤i≤n, {ζi}0≤i≤n, {pi : Ei → Xi}0≤i≤n) denote the singularity da-
tum characterized by the fact that Xi is empty for i /∈ {0, n− k}, X0 ' Xn−k ' {∗}, and the space En−k is
equivalent (as an n-framed manifold) to the unit sphere in Rn−k. Unwinding the definitions, we see that a
~X-manifold consists of a pair M0 ⊆M , where M is an n-framed manifold and M0 is a k-framed submanifold
of M (in the sense of Definition 4.4.1). In particular, every ~X-manifold can be regarded as an n-framed
manifold by forgetting the submanifold M0; this construction determines a symmetric monoidal functor
Bord

~X
n → Bordfr

n . By construction, we have a diagram of (∞, n)-categories

Bn−k Tangk,n //

��

Bord
~X
n

��
∗ // Bordfr

n

which commutes up to canonical isomorphism.
Let C be an (∞, n)-category with adjoints, which we regard as an object of CatAdj

(∞,n). Let 1 ∈ C and
η ∈ Ωn−k C be objects. Applying Theorem 2.4.6, we deduce that this object determines a symmetric monoidal
functor Z0 : Bordfr

n → CatAdj
(∞,n), which is characterized up to equivalence by the existence of an equivalence

Z0(∗) ' C. Let Z ′0 denote the composition Bord
~X
n → Bordfr

n
Z0→ CatAdj

(∞,n) . Applying Theorem 4.3.11, we see

that the pair (1, η) allow us to lift Z ′0 to a symmetric monoidal functor Z1 : Bord
~X
n → CatAdj

(∞,n). We obtain
a rectangular diagram

Bn−k Tangk,n //

��

Bord
~X
n

//

��

CatAdj,∗
(∞,n)

��
∗ // Bordfr

n
// CatAdj

(∞,n)

which commutes up to isomorphism. This induces a functor

Z : Bn−k Tangk,n → CatAdj,∗
(∞,n)×CatAdj

(∞,n)
{C}.

If C is Morita complete (see Warning 4.4.13), we can regard Z as a functor with codomain C; it then suffices
to check that the construction (1, η) 7→ Z is homotopy inverse to the more evident construction described in
Remark 4.4.8. If C is not assumed to be Morita complete, then a more elaborate argument (working directly
with the n-fold simplicial spaces described in §2.2, rather than their underlying (∞, n)-categories) is needed;
we will not present the details here.

Like the cobordism hypothesis, the tangle hypothesis can be generalized in many ways. For example, one
can consider embedded submanifolds with tangential structure more complicated than that of a k-framing
and embedded submanifolds with singularities. In these cases, one can still use the argument sketched above
to establish a universal property of the relevant (∞, n)-category.
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Example 4.4.14 (The Graphical Calculus). According to Remark 4.4.10, the group O(3) acts on the ∞-
groupoid of (∞, 3)-categories with adjoints. We can combine this with Remark 4.4.6 to obtain an O(3)
action on the ∞-groupoid Brd of braided monoidal (∞, 1)-categories C which are rigid, in the sense that
every object has a dual. In particular, it makes sense to talk about a (homotopy) fixed point for the action
of SO(3) on Brd: we will refer to such a fixed point as a ribbon (∞, 1)-category. If we restrict our attention
to ordinary categories (rather than (∞, 1)-categories), this recovers the usual notion of a ribbon structure
on a braided monoidal category.

If we take n = 3 and replace Bordfr
n by Bordor

n in the proof of Theorem 4.4.7, then we obtain a description
of the free ribbon (∞, 1)-category C on a single generator. Namely, C can be described as an (∞, 1)-category
where the morphisms are given by framed tangles (that is, 1-dimensional submanifolds embedded in R3

together with a trivialization of their normal bundles). Passing to the truncation τ≤1 C, we obtain a well-
known description of the free (ordinary) ribbon category on one generator in terms of framed tangles; see,
for example, [3].
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28, 1954, 17–86.
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