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ON THE MAY SPECTRAL SEQUENCE AT THE PRIME 2

WEINAN LIN

ABSTRACT. We make a conjecture about all the relations in the Es page of
the May spectral sequence and prove it in a subalgebra which covers a large
range of dimensions. We conjecture that the E> page is nilpotent free and also
prove it in this subalgebra. For further computations we construct maps of
spectral sequences which systematically extend one of the techniques used by
May and Tangora.
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2 WEINAN LIN

1. INTRODUCTION

The May spectral sequence
Extpoy (Fp,Fp) = Ext}, (F,, Fp)

from [3] is one of the first effective methods to compute the cohomology of the
Steenrod algebra. In this paper, we will study this spectral sequence at the prime
2.

We start with the Fy page of the May spectral sequence. Compared with the
cohomology of the Steenrod algebra, the Fs page of the May spectral sequence can
be computed in a much larger range. In addition to Conjecture 2.17 by May about
what all the indecomposables of the Fs page are, we state Conjecture 2.20 about
all the relations among these indecomposables and Conjecture 2.21 claiming that
the Eo page is nilpotent free. We will prove all three conjectures in a subalgebra
which covers a large range of dimensions (Theorem 2.26). It indicates that it is
possible that these indecomposables and relations do in fact describe the whole Es
page, and the Es page is nilpotent free. This is startling because all of the positive
elements in the stable homotopy groups of spheres are nilpotent.

1.1. Organization

In Section 2 we state our main conjectures and theorems about the Ey page of
the May spectral sequence. We also show how to obtain the indecomposables hg r
from h; under matric Massey products. In Section 3 we give a formula for the ds
differentials on the indecomposables hg 1 of the Es page. In Section 4 we set up
some computational tools including the Grobner bases in order to compute H X7
which proves Theorem 2.26 in Section 2. Some of the work is aided by computer.
We also construct some comparison maps of spectral sequences in this section.
Appendix A provides a list of charts of the computational results of Section 4.

1.2. Acknowledgement

The author would like to thank his advisor Peter May for many helpful discus-
sions on this topic. The author was very glad to come across this problem and to
get the support from his advisor to choose this problem as his thesis topic. May
also read many drafts of this paper and offered tremendous help on writing.

2. THE F> PAGE OF THE MAY SPECTRAL SEQUENCE

The main goal of this section is to state the conjecture which fully describes the
E5 page of the May spectral sequence in terms of generators and relations. We will
show that this conjecture holds at least in a big subalgebra of E5.

2.1. The May filtration

Recall May’s results in his thesis [3] that we can filter the Steenrod algebra as
follows.
Let I(«/) C & be the augmentation ideal. Let

O, [(H)® - QI() — ()

be the n-fold multiplication.
Define
Foo/ =o/,n>0;, F_p,o =Im®,,n>0.
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Then the associated graded Hopf algebra E°.<7 of <7 is defined by
Eg,q’d = (Fpd [ Fp 1 )piq-

A theorem due to Milnor and Moore [5] states that any primitively generated
Hopf algebra over a field of characteristic p is isomorphic to the universal enveloping
algebra of its restricted Lie algebra of primitive elements. The associated graded
algebra EY.o/ satisfies the conclusion as follows.

Theorem 2.1 (May). The associated graded algebra E°</ can be represented by
the associative algebra generated by Pj, 1> 0,7 > 0 with relations

(P})* = 0; [P}, Pf) = bipePpie i > k.

Here Pji € E% corresponds to the projection of the dual ofgf-i in the dual Steenrod
algebra

JZ{* = F2[§1,§2,...]

with monomial basis.

We can also filter the the cobar complex of &/ based on this filtration. The
resulting spectral sequence is the May spectral sequence.

Theorem 2.2 (May). There exists a spectral sequence (E,,d,) converging to the
cohomology of the Steenrod algebra, and having its By term H*(E°</). Each E, is
a tri-graded algebra and each d, is a homomorphism

d .Eu,'u,t _)Eu+r,v7r+1,t
T T
which is a derivation with respect to the algebra structure.
2.2. The cohomology of E°g

For any Hopf algebra A, May [3] found a reasonably small complex with which
to calculate H*(E°A). As an application, for the Steenrod algebra &/ we get the
following.

Theorem 2.3 (May). The cohomology of the associated graded algebra E°</ is
isomorphic to the homology of the differential graded algebra
X =Fy[R}:i>0,j>0]

with differentials given by

j—1
(2.4) dR} =Y RN Rj.

k=1
Remark 2.5. May proved this theorem by showing that F’«/ ® X* is an EY.</-
free resolution of Fy which is much smaller than the bar construction. In 1970 after
May’s thesis, Priddy [7][8] conceptualized this method into Koszul resolutions which

apply to a more general kind of algebras called Koszul algebras. The complex X
can be interpreted as the co-Koszul complex of E°.7 in terms of Priddy’s setting.

Definition 2.6. We reindex the generators of X by

0, if0<yj<i.
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With a little rewriting, (2.4) now becomes

Jj—1
(2.7) dRij = Y RiRy;.
k=i+1

If we regard R as the strictly upper triangular matrix (R;;), then dR = R?.

Remark 2.8. The symbol R! is written as R;; by Tangora [10] but as R; ;4 ; in this
paper.

The differential algebra X has interesting connections to matric Massey products.
Note that (2.7) takes exactly the same form as that of (5) in [4] which is the formula
for the defining system of a matric Massey product. The direct consequences are
the following.

Let X,, =Fs [RZ—J— :0 <i< j<n]. Itis a sub-differential algebra of X.

Theorem 2.9. If A is a commutative differential algebra, then the decompositions
of zero in HA as an n-ary Massey product (together with a defining system)
0€ (ay,...,an), a; € HA
are in one-to-one correspondence to maps of differential algebras:
f:Xn—A
where [ induces the algebraic map
fi:HX, - HA
with fi(hi—1) = a;, 1 <i < n, where hi_1 is the homology class of R;_1 ;.

Theorem 2.10. A nontrivial element a € HA and a defining system for the Massey
product

a€{ay,...,an)

corresponds to the obstruction to obtaining the dashed map

X, (L)Xn, 1

~

. N f

11 N 0
N

X3
1

where fo corresponds to the sub-defining system for 0 € {(a1,...,an—1) and f1 for
0 € (ag,...,an). The embeddings iy and i1 are given by io(Ri;) = Rij and i1(Ry;) =
Rit1j41-

2.3. The indecomposables of H*(E’</)

Definition 2.11. For two strictly increasing sequences of distinct numbers S =
{51,.-y8n}, T ={t1,...,tn}, we define

Rgor = det(RSitj) = Z Rsltg(l) e 'Rsnto(n)'
oEX,

Note that the value of Rg 7 does not depend on the ordering of numbers in S or T'.
However we prefer to put them in order, and in the rest of the paper, we assume
all sequences S and T are ordered.



ON THE MAY SPECTRAL SEQUENCE AT THE PRIME 2 5

Definition 2.12. For two sequences S and T, we write S < T if max(S) < min(7")
and S < T if max(S) < min(T).
Proposition 2.13. The determinants Rg 1 have the following properties

(1) Rs 1 is nonzero if and only if s; < t; for 1 <i < mn.

(2) If T1 S 52 or T2 S Sl, then

R51U527T1UT2 = Rsl,Tl R521T2

(3) dRgr = > Rsugry,rugky- Note that the summand of the summa-
kE€Z5o\(SUT)

tion is zero when k < min(SUT) or k > max(SUT) because of (1).
(4) For any fized subset I of S,
Rsr = Z Ry jRs_17—7.
|J|=I1]
Similarly, for any fixed subset J of T,

Rsr = E Ry jRs_17—y.
[T|=|J]

Proof. We keep using the fact that Rg 1 is the determinant of (Rsitj).

(1) If s; > t; for some 4, then Ry = 0if j > i > k which yields zero
determinant. Thus s; < ¢; for all 4.

(2) If 71 < Sy or T < 57 we have either an upper or lower triangular block
matrix associated to Rs,us,, 7y ur, With determinants of the diagonal blocks
being RSl,Tl and R521T2.

(3) By the definition of Rg r and property (1), we have

dRsT = Z ARy to00)  Riptony)

oeX,
= Z Z Z ity Bsitoy  Bsntogny ~ Bsik Bio(i)
oEX, 1 k
= Z Rsuiry,Tuik}-
k¢ SUT
Here }i;) means that we skip the factor in the monomial.
(4) This is the expansion of the determinant of (R,,¢;) by the rows correspond-
ing to I.
O
Definition 2.14. Assume we have two sequences S = {s1,...,8,} and T =

{t1,...,tn} such that sy <ty for 1 <k < n and
SUT ={i,i+1,...,i+2n—1}

for some integer i. Then dRg = 0 by (3) of the above proposition. Let .#” be the
set of homology classes of all such Rg 7. Let J# be the set of homology classes of all
such Rg 7 with one extra condition that s, < tx—1 for 2 < k <n. For convenience
we use hg 1 or h(S") to denote the homology class of Rgr, where i = s; and
SI = {82 — 81,58 — Sl}. The simplest examples are hi,iJrl = hz = [Ri,iJrl]-
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Remark 2.15. By Proposition 2.13.(2) we can see that every element in J#’ can be
decomposed as a product of elements in 7.

Theorem 2.16 (May). All elements in S are indecomposables in HX .

The way May proved this theorem is by studying the dual of X instead of X.
The differential graded algebra X is actually a Hopf algebra. May was able to
identify all monomial cycles in the dual of X which are primitive in the homology.
Each additive summand of the determinant Rg r for hs 1 € S corresponds to such
a monomial cycle in the dual of X and they are homologous to each other. Hence
we can get the theorem by dualization. The details can be found in [3, IL5].

Beside elements of 57, we can also see that the homology classes of Rfj for
j — 1 > 2 are also indecomposables of HX. Let bgr denote the homology class of
R%’,T' Especially, bij = [ng] and bi,iJrl = h,12

The following conjecture suggests that it is possible that these are all the inde-
composables we need in HX.

Conjecture 2.17 (May, [3, Conjecture I1.5.7]). The elements of A and b;j (j—i >
2) form a basis of indecomposables of HX .

2.4. The relations in H*(E°%)

In addition to Conjecture 2.17, we will state a conjecture to describe all the
relations in H*(E%«/) = HX. We also conjecture that this algebra is nilpotent
free.

Definition 2.18. For 0 < m < n, we define

Hwn = {hs,r € H : min(S) = m, max(T) =n}
and

A ={hsr € ' : min(S) = m, max(T) = n}.
Note that J%,, C £, and .., H), are empty if n —m is even.

Definition 2.19. For a sequence S = {s1,...,8,}, we define |S]| to be the length
nof S.

Conjecture 2.20. The algebra HX is generated by hgp € A and b; (j—1i > 2)
with the following relations.

(1) For all 0 <i<j,
> bigbr; = 0.
k

(2) Assume hg, 1, € %/lqu’ hs,r, € )

a a2b2,a1<a2<b1<b2andbl—agis
even. Then
hsl;Tl hsz,Tz =0.

(3A) Assume that SC N ={a,a+1,...,a+2k—1} and |S| =k + 1. Let T be
the complement of S in N. Then

Z bsjhs—_{s),7+{sy =0
seS

for any 5 < a+ 2k.
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(3B) Assume that S C N ={a,a+1,...,a+2k—1} and |S| =k — 1. Let T be
the complement of S in N. Then

Z bithsy(ty,r—{1y =0
teT
for anyi >a—1.
(4A) Assume hg, 1 € %ﬁ’hbl, hs, 1, € %ﬁ’%bz, a1 < as <by <by and by —as is
odd. Then

hs, s, 1, = Z hsyrmy—1hs;+8,—1,17{+T5+1
ICT{,QSQ
2/I1=|Ty"|—|8Y]
li 1 /A 1

Where Sl = Sl\Nag,bl; Sl =5 ﬂNaz)bl, Tl = Tl\Nag,b17 Tl =T ﬁNaz,bl .
! ! -
(4B) Assume hg, 1, € Ky oy sy € I, 4, a1 <ag < by <be and by —ay is
odd. Then

hs,mhs, 1, = Z hsg’—I,T2”+Ih51+5§+1,T1+T2f—I
ICT1I"WS§'
2|1|=1Sy | -1 |
/ 1" ! 1
Where 52 = 52\Na2,b1; 52 = SQQN@)()U T2 = T2\Na2,b17 T2 = TgﬁNaz)bl .
(5) Assume hg, 1, € A hs, 1, € %ﬁ’%bz, a1 < as <by <by and by —as is

ay,by’
odd. Then
hs,mhs, 1, = Y hs; 11y rhsyyom - bsyi1my i
ICs)
JCT,
li 1 A 1!
Where Si = Si\Nambw Si =S m‘Naz,bw Tz = Ti\Nambw Tz =T mNaz,bw

i=1,2.
(6) Assume hs, 1, € Hap, i=1,...,n, and

inhSi—{a},Ti—{b} =0

where x; is a product of elements in

U Sy

a<a’'<b’<b
a;—a is odd

Z xihSi,Ti =0

Conjecture 2.21. HX is nilpotent free.

Then

In order to prove Conjecture 2.20, we have to prove that all the relations in the
conjecture hold and they imply all the other relations. We are not there yet although
we have a great deal of evidence for the conjecture. In the rest of the section we
will describe the results we already have, including evidence for Conjecture 2.21.

Theorem 2.22. The relations (1), (2), (3A), (3B), (4A) and (4B) in Conjecture
2.20 hold in HX. The relations (5) and (6) hold in a large range of dimensions.

The following proposition for all n shows that the statement (3A) is symmetric
to (3B) and (4A) is symmetric to (4B). Hence we only have to prove one for each
pair.
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Proposition 2.23. The reflection map
X, = X,

Rij = Rn_jn—i
is an isomorphism between differential algebras. Therefore HX,, is isomorphic to

itself via this reflection map.

The proof is straightforward. Before we prove Theorem 2.22 we need the follow-
ing lemma.

Lemma 2.24. Assume that S1,T1, S, T are four sequences such that |S1| = |T1|—
1, |S2| = |T2|—|—1, SiNT :Q):SQQTQ and

(Sl @] Tl)\(SQ @] Tg) < (Sl @] Tl) N (SQ @] Tz) < (52 @] Tz)\(sl @] Tl)
Then

E Rs, 1y Rs,— (51,1 Bsi = E Rs, 1ty Rso— (i}, 15 Rit-
s€S81NS2 i€T1NSy
i€T1NS> teT) N>

Proof. By Proposition 2.13.(4), these are both equal to

Z Rs, 1 —(1yRs,— (s}, 1 R t-

s€S1NSa
teT NI

d

We now prove Theorem 2.22 by realizing the relations as boundaries via explicit
constructions.

Proof of Theorem 2.22. (1). The relation follows from

d(RijdRij) = (dRij)> = > R.Ri;.
k

(2). Let
Y= Z Rsl_{5})T1_{i}RSQ—{i}-‘r{S},TQ'

S19s<az
€T NS2

It suffices to show that dy = Rs, 1, Rs,,1,. In fact,

dy = Z (Rsl,Tl—{i}-l-{s}RSg—{i}-l-{s},Tg + Rs,—(sy+{i3, 1 Bso— i3+ (s}, T

S19s<as
€T NS2

R, ap ity Rsat o) oy + D R (pri—(oy Bsa i+ 1i0m Rey )
j<az
We apply 2.13.(4) and get
> Y Reqgm-p R rinmBei= D, Rs,r(iyi{s) Ror (i 4 ()10

S13s<az j<az S13s<az
i€T1NSs €T NSs
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Therefore

dy= > (Rs,—(s}1— (i} RSo (s} 1ot (1) T RSy — (s} 3113 Rep— (i) 4 (o)1)

S13s<az
1€T1NS2

= Z Rs, sy —(iyBsymu Rs)i + Z Rs, sy —{iy Rso—{so)+{s}, To Fsasi

Si13s<asz Si12s<asz
i€T1NS> i€T1NSs
s2€52NS

+ Z Rs, (s 1 —(ty Rso—{iy (s}, 1 Bty -

S13s<as
1€T1NS2
t1€T1NTo

By Lemma 2.24 we have

Z Rs, (531 —(iy By —{so) 4 (s}, T2 Fosai T Z Rs, (31—t 3 Bsy— (i1 (s}, Bty

S13s<as S13s<as
i€T1NSa 1€T1NS2
s2€S5NST t1€T1NT,
= E RSl*{S}qu7{t1}R52)T2RS7t1
S13s<a2
t1€T1NT>
Therefore
dy = Z R51*{S}1T1*{i}R527T2R5,i+ Z R517{5},T17{t1}RS2,T2Rs,t1
S12s<as S13s<asz
1€T1 NSy t1€T1NT>
= Y Rs,_(s1-{tyRs,mRa
S13s<as
Ty>t>as

= RSI ,Th Rsz VbR

The last equality holds because for every monomial o in Rg, 7, there is an odd
number of factors Rs: in « such that S 3 s < ag,T1 >t > as.

(3A). Let

Y= Z R51jRS2J'RS—{Slx82}xT
{51 <52}CS

dy = Z Z(RsliRinSQj + RsyiRijRs,j) Rs_ (s, ,s0},7
{s1<s2}CS 1

+ D> RajRaj (R (o)migs) + Ro s}, 14 (1))

{s1<s2}CS
= Z ZRSQiRin81jR57{Sl7SQ}7T+ Z Rslszszsf{sl},TJr{@}
S$1,82€S 1 S$1,82€8

51;552 S15‘552
=I+1I

where

I= Z ZRsziRin51jRS—{Sl752}7T

$1,82€8 1

51752
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and

II = Z Rs,jRsyj Rs— {51}, T+{s2}

51,52€8
S1#£82

E RSljRSQjRiszRS*{Slqi}yT
81,82,1€S
S517#£82
51757;

E Rs,jRijRsyiRs (s, 50,7
51,i752€S

Sl;éi
51782

The only difference between summations I and II is that ¢ can be equal to s; or
1 € T in summation I. Therefore

dy = Z Rs2iRinsljRS—{51752}>T
$1,82€8

S17#£82
iGTU{Sl}

= Z RinsljRS—{51}7T+{i}

s1ES
1€TU{s1}

> RZRo (o) ()

s1ES

where the right-hand side represents our relation. Hence our relation holds.

(3B). This follows from (3A) because of the symmetry given by Proposition 2.23.
(4A). Let

y= Z Ry 1y —gRsi 48, —1—{Go}, T +To+J"
I,JCT{NS2
jo=max(J\I)>I\J
Then
dy=1+1T+1I+1V

where

I= E Reyirry—gRs)+8,— 1,17 +To+7
I,JCT{NS>2
jo=max(J\I)>I\J

= Z Rsy g r4-Goy, 11— 14 (o Y RS 80— 1— o} T+ Ta 407
I,JCT{'NS>
jo=max(J\I)>I\J

I = E Ry gy, 17— 0+ (Y RS 480~ 1—{jo} T+ Tat 0
1,JCT]'NSs
jo=max(J\I)>I\J
jeJ'\I
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IV = > Rs i1y — g Rs; 480 —1—{Go}+{i}, T{+Ta+J/+{i}-
1,JCT!NSs
jo=max(J\I)>I\J
i€\

In summation III, change index by Iy = I + {j}, J1 = J — {j}. We have

I = > Ry n =0, Ry +-Sa— 1 +-{}—{o ) T{+To+ T+ (5}
I,,J1CTy' NS>
jo:maX(J1\11)>11\J1
JEL\J1

= E Ry yrmy— g Rs; 15, —1—{jo}+{i} T+ Ta+J'+{i}
I,JCTy' NS>
Jjo=max(J\I)>I\J
i€I\J

=IV
In summation II, change index by Iy = I + {jo}, J1 = J — {jo}. We have
1= > Rsyyn 1y - Rsj 801, 141240

I1,J3 CT{/OSQ
jo=max(I1\J1)>J1\I1

Therefore
dy=T+1I= Z Ry i1y —gRs;+8,— 1,1/ +T5+7

1,JCT{'NS,
I£J

Note that if we instead require I = J in the above summation, we get the right
hand side of Relation (4A). Hence in order to prove Relation (4A) it suffices to
show that

Z Rsvyrmy—gRsit+s,—1,1+15+5 = Rsy my Ry 1,
I1,JCT}'NS:
In fact, if we denote the summation on the left hand side above by V, then

V= E Rsuyrry—gRs; —mis,—1-1,0Rmr R,
I,JCT{NS2

McCS]
LCS,—M+8s—1I
Fix I, M and L. If
(2.25) (ST +D)N(Sy—M+Sa—I—-L)=10
which is equivalent to
(SY+DN((S2\L)—I)=0 and to S NSy =5 NS, CL,
then by 2.13.4 we have
Z Reyirry—gRs)—M+sy—L—1,7
JCT{'NS>
=R(sy+1)+(S,~M+82—L—1),T}'
=Rs,—M+8,—L,1)-



12 WEINAN LIN

Otherwise if (2.25) does not hold, then
Z Rsyirmy—gRs;—m+s,—1-1,0 =0.
JCTY'NS,
Therefore

V= E Rs,—m+s,—r1y Ry R,

ICT{'NS:
McCS|
S1ﬂSzCLCSi—M+Sz—I

= E Rs,—m+s,—rmy Ry R,
Si,ﬁS2CLC51+S2
MCS{\L
IC(T{'NS2)\L

T'NS2)\L
= E 2SN e vrys,— oy Ry R,

S1'NS2CLCS;+S2
McCS{\L

The summand is nontrivial only if
(TN S2)\L=0 and S; — M + S — L < max(T}') = b,
which is equivalent to
(TN S2) C L and Ny, 415, NS> C L.
Note that in the summation we also require (S7 N Sz) C L. Hence
(ST + T 4+ Npy416,) NSa =52 C L
which implies So = L. Therefore
V= Z Rs,—n1y By Rs, m,
McCS]
=Rs, 1 Rs, 1,

(4B). This follows from (4A) because of the symmetry given by Proposition
2.23. ([

Theorem 2.26. Conjectures 2.20 and 2.21 hold in HX75.

We will prove this theorem by computing HX7 in Section 4. This is strong
evidence for the two conjectures since the subalgebra H X7 C HX together with hr
generates a subalgebra isomorphic to HX in stems ¢t — s < 285.

2.5. Massey products in H*(E'</)

A theorem due to Gugenheim and May [2] states that for a connected algebra
A, the cohomology H*(A) is generated under matric Massey products by H*(A).
As a concrete example, we will show how to obtain the indecomposables hg 1 € S
from h; under matric Massey products.

Theorem 2.27. For hg 1 € S where
SuT ={k,k+1,....;k+2n—1}

we have
hsr € (hiy w1y -+ hkaan—2, hs— (), T— {h+2n—1})-
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Proof. Without loss of generality we assume & = 0. By the definition of matric
Massey products, we must find a defining system (A4;;) with 0 < i < j < 2n and
(i,7) # (0,2n) such that

Rs— - fo<i<2n-—1
(228) Ai,i+1 = S {Sl}vT {tn} l ' ST < 2n

R; i1 if i =2n—1,
(2.29) dAy = 3 AgAy

<k<j
and
(2:30) ;1012" = Z Ao kAk,2n = Rs .
0<k<2n

In fact, for 0 <i < j <2n—1, if we let A;; = R;;, then (2.28) and (2.29) are
automatically true by (2.7).

We adopt the convention that Rg_joy,r—;p = 0if i ¢ T. We let A;2, =
Rs_{oy, 17—y (i #0). Now for (2.29) we only have to show

dA; on = Z Ao,k Ak 2n
i<k<2n
i.e.
dRs_(oy,7—{iy = Z RikRs_{0y,7—{k}-
<k<2n
If i € T, by (3)(4) of Proposition 2.13.

dRs_0y.r—(iy = Rs—{oy4(yr = Y, RinRs_({o).0— (k-
1<k<2n

If i ¢ T, the right-hand side is zero because ¢ € S and hence
Y RiRs_joy7—(i) = Rs—(oy+(ip.0 =0

i<k<2n
since Rs_(o}4{i},7 is the determinant of a matrix with repeating rows.
Finally, to show (2.30) we have

> AokAran = D RoxRs_(oyr—(ry = Rsr
0<k<2n 0<k<2n

O

Note that in Theorem 2.27 the s degree of hg_ () 7—{r42n—1} is one less than the
s degree of hg . The element hg_ir) 7—fryon—1) is either an element of 77 or a
product of elements in .77. Hence by induction on s all indecomposables hg 1 € 7
can be obtained inductively from h; under matric Massey products.

Remark 2.31. Although the indecomposables b;; = [Rfj] are represented by simpler
cycles, the decompositions of b;; by matric Massey products are more complicated.
The author has followed the proofs in the work of Gugenheim and May [2, Chapter
5] and produced a computer program to write elements in HX by “canonically
defined matric Massey products” as defined in [2, Theorem 5.6]. It means that we
can generate a sequence of matrices Wy, Ws, ... such that we can write everything
in HX in terms of
Wi, ..., W, Vi)
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with indeterminacies where V41 is some column matrix (not unique even if the
sequence Wy, Wa, ... is fixed). One can simplify the canonical form if V;,41 contains
zero entries. Here we list some decompositions of b;; via this method.

h
boz € (ho, h1,ho, h1) C <h0=h1, (ho h2), (01)>

h 0 h
b03 € <h07h17 (hO h?) ) (hi I’Lg) ) (01) 7h2>
h 0 hi h h
b04 € <h07h17 (hO h?) ’ (hi hg) ) (01 hz) ) (hj) 7h27h3> .

Here W, = hg, Wo = hy, W3 = (ho h2)7 (h2

0 . .
ho h3> is a submatrix of Wy,

I hs is a submatrix of W, ....
0 ho

3. THE MAY SPECTRAL SEQUENCE

The main goal of this section is to compute the differentials on H*(E%<7) in the
May spectral sequence.

In this section we use the method of Ravenel [9] to obtain the May spectral
sequence. The reason behind this is that the associated graded algebra E%.;zf of
the Steenrod algebra by the filtration suggested by Ravenel is E% EY</, which is
Priddy’s associated homogeneous Koszul algebra of May’s associated graded algebra
of /. When we interact with the cobar complex this filtration is more efficient
computationally.

3.1. The cobar complex

Recall that if I is the augmentation ideal of the dual Steenrod algebra <7, then
the cobar complex C(.7) is the tensor algebra T*(I) with d : I®" — I®("+1) given
by

(3.1) d(al®"'®an):ZZOQ@"'@OM—l®a;®a;/®ai+1®...®an
i

where
1/)((341) :ai®1+1®ai+za;®a;/
in . Then H*(&/) = Exty (F2,F2) = HC(L).

Definition 3.2. The weight function w on &7 is given by setting w({f) =2j—1,
ie.
Wl ) = 302k — D,
k
where 1, = Y, aj,;2" is the 2-adic expansion.
We also define w on C (%) by

wlog @ Qay) =w(ar) + -+ w(ay).

Definition 3.3. The filtrations F, (<7 ) and F,(C(2%)) are given by elements in
o, and C(,) with weight < p respectively. Note that we are using an increasing
filtration indexed positively. The associated graded algebra by this filtration is
denoted with E%sz*.
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It follows that the associated graded algebra E%.7 is an exterior algebra gener-
ated by the projections of RZ—J— = 5?:1 (0 < i < j), which are primitive. Therefore
we have the following.

Proposition 3.4. The E; page of the spectral sequence determined by the filtration
F,(C(4,)) is isomorphic to X = Fa[R;; : 0 < i < j] with di(Rsj) = >, RirRuj-
Here R;; corresponds to the primitive generator R;; = &i_

j—i in the associated graded
algebra.

Remark 3.5. do(z) = Y 21 @ x3 in EY? = (F,C(.)/Fp_1C(s))s=p+q if  is a
monomial in 7, where the summation is taken over all ordered monomial pairs
($1,$2) such that = z125 in the augmentation ideal of E%<Z. In particular,

dO(RZJRkl) Rz; & Rkl + Rkl oy Rz;

Since w({f—l) = 2j — 1 is odd and the s degree of all differentials in the spectral
sequence is 1, all nontrivial differentials d, in the spectral sequence must have odd
index r. The following is the comparison between the spectral sequence obtained
by the method of Ravenel and the May spectral sequence.

TABLE 1
Ravenel May
EFi=X FE = C(EO,Q%*)
(E2T71;d27"71)7 T Z 2 (Ehdr); r Z 2
Ey = E5 zH*(EO.;zf*) FEs =H*(E0,Q/*)

3.2. The differentials in H*(E°.«/)

We will use the filtration in the previous section and we will therefore use the
notations in the left-hand side of Table 1. We want to compute the d3 differentials
on H*(E°4).

The following was already proven by May.
d3(b02) h$ + h3hs,

j) = 1+1bi+1,j +bij-1hjt1, J—1> 2,

d3(b;
(hz)
ds(hi(1 ) -y ih?ia,
d3(hi(1,3)) = hihisohipa(1) + hi(1)hi 4,
ds(hi(1,2)) = hiyshi(1,3).

The main goal of this section is to determine the differentials on hgr € 2.
Then all d3 differentials in H*(E°«) will be determined if Conjecture 2.17 is true.

Definition 3.6. We say that « = a1 ® -+ ® o, € C() is a monomial in C()
if each ay, is a monomial in 7. Note that all monomials form an additive basis of
C(4,). We say that the monomial « is simple if each ay = Ry, j, for some iy, jg.
Note that do(«) = 0 in the Ej page if « is a simple monomial.

Definition 3.7. We denote the span of simple monomials in C(<Z) by S(<)

and the span of non-simple monomials by S(<7)*. Note that we have C() =
S(et.) @ S()*t.
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Proposition 3.8. The map g : (Eo, do) — E1 (with trivial differentials) given by

(o) = Rijji -+ Ri,j, ifa= Riljl Q@ ® Rin]‘n € S(4)
0 if o € S()*

is a homology isomorphism.

Proof. 1t is clear that the homology classes [R;;] generate E; while g is multiplica-
tive. Therefore g induces an isomorphism g, : H(FEy,dy) — F. O

Remark 3.9. We can project suitable chains in C(<%) into cycles in E, (r > 1) via
g.

Lemma 3.10. If o € C(4,) is a non-simple monomial and B is a simple monomial
summand of d(«), then either B is a summand of do(«) in Ey or w(B) < w(a) —2.

Proof. Write o = a1 ® - - - @ v, If there is a simple summand S of d(«), then there
must be at most one factor ay which is not equal to some Rij by (3.1). Since «
is not simple, there must be exactly one such ay. Assume that S does not appear
in dp(a) in Ey. To obtain the simple summand 8; ® Be+1 in d(ay), we have to
replace at least one factor Rij of ay with Rkj ® Rik and either Rkj or Rik will meet
another copy of itself coming from another factor of ay to become Ri] = RkJrL J+1
or Rfk = Ri+1,;€+1. Noting that w(]:?kj ® Rzk) = w(]:?ij) — 1 and in general

w((Rij)?) = w(Ris1j41) = 2w(Ryj) — (207 — i) = 1) < 2w(Ryj) — 1,
we see that w(8) < w(a) — 2. O
Lemma 3.11. Assume that
d(ap +ap—1) =ap—2+ap—3+bp—s mod F,_4C(2)

in C(), where ap—; consists of terms of weight p — i, i = 0,1,2,3 and by_3
consists of terms of weight p — 3. Assume further that a,,b,—3 € S(<) and
Ap—1,ap—2,a,—3 € S()*t. Then ds(a,) = by_3 in the Es page of the spectral
sequence determined by F,C(<.).

Proof. Note that d(ap—2 + ap—3 + by—3) = d*(ap + ap—1) = 0. Hence we have
do(ap—2) = 0 in the Ey page. By Proposition 3.8, g(ap—2) = 0 in E; implies that
ap—2 is a boundary in Ey. Therefore we can find a, , € F,_2C()NS( )" such
that do(aj,_5) = a2 in Ey. By Lemma 3.10, we have

d(ay_o) = ap—2 +cp—3 mod F, 4C(.)
where ¢,_3 € F,_3C (o) N S(e)*. Now consider
d(ap +ap-1+a, o) =by 3+ c,-3 mod F, 4C ().
By Remark 3.9 we have ds(ap) = bp—3 in Es. O
Now we are ready to prove the main theorem of this section.

Theorem 3.12. The differentials on hs € I are given by the following

dshsr = Z hst1,s+2hs— (s} +{s+1},T—{s+1}+{s}-
s€ES, s+1€T
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Proof. We are going to compute the differentials via the cobar complex C'().
Note that in C( ), the differentials are given by
j—1
d(Rij) = Z Rk_j ® Rik-
k=i+1
To make the right-hand side look more like matrix multiplications, in this proof we
are going to write

d(Ryj) = Z Rir & Ry

where z®y = y ® z. We also write
®ai =0y ®ap-_1® - Qajq.
i=1
The homology class hsr € E3 = H*(E%4/) can be represented in Ey by

a= Z Qo = Z sty ® 1 ® Ratypy-
€Y, €S,

Note that di(a) = 0 in E; but d(a) # 0 in C() because C(47) is not com-
mutative. In fact, every monomial summand of d(a) can be paired with another
summand the two being equal in the E; page. Two typical examples are pairs
(dis; g, dis; 0tpr) and (di o) Qo dijt, ;) Qor) Where

dis; 05 = RSltam @@ Ry, ®R81ta< i) ®R toiy @ '®R8nta<n)
djs; ot = RSltcr(l) ®R515; ® R‘SJ toy @ ® RSﬂo(i) ®--® RSntcr(n)
and
ditvu) Qo = RSltvu) ®- ®RS to () ®Rtv<:)tv<w) ®- ®Rs] to () & ®R5ntn<n>

jt, ;) O’ = RSltvu) ® & Ray toisy ® ®R5J to i) ®Rtamta<z> & QR
Here the permutation o’ is the same as o but with values o (i) and 0( /) swapped

and d;xa, is the summand of d(«,, ) which replaces Rsit in oy with Rslk Q Ryt
Observe the typical example

do(ab@c@d+bRacRd+bRc®ad) =aRbRcRA+bRc@d@a

Snto(n)*

o (i) o(i)”

where each a,b,c,d is equal to some Rs;. We can find a chain in C(4.) whose
dp-boundary is the sum of either typical pair above. In fact, we define

ﬂ Z Z 'Ycrz;k"'z Z '-Ya'zgg"'z Z doz;k

o i<k<j o o i<k<j
a(z)>o(g) a(i)>o(j)
where
_n_ _n_
Yo,ijk = ® Yo,ijkl,  doijk = ® doijkl
=1 =1
and }
R, ifl=1
Yoijkt = § Bsjtoq )Rs;tg(l) ifl==k
R otherwise

Site(1)
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Rsitg(j) ifl =1
do,ijkl = Rt(r(j)ta(i)Rslta(l) ifl=k
Rsm(z) otherwise

The careful reader can check that for every (o,0’ = o o (ij),1,j) with o(i) > o(j),

-1
do < Z (No,ijk + Vor.ijk) + ”Ya,z‘jj) = dys; 05 + dis; 0t
k=i+1

and
J
“ < Z da’ijk> = dit, ;o +djt, ;) -
k=i+1
Therefore do(8) agrees with d(a). Here if « is in weight p, 8 and d(«) are all in
weight p — 1. Noting that 3 € S(<)*, by Lemma 3.10, all simple summands of
d(a 4+ ) live in weight < p — 3 since dp(3) is the same as d(«). Therefore, by
Lemma 3.11, in order to compute d3(h;(S")) we only have to compute all simple

summands of d(8) in weight p — 3 = w(8) — 2. By the proof of Lemma 3.11 such
summands can only occur in the d-boundary of

2D ewn

o 1<j
o(i)>a(j)

because to get a simple summand of d(§) in weight < w(8) —2, we can only replace
the tensor factor

Yo,ijji = Bsjtoi Bsjtag

of Yo,ijj with

-, - = -

ng-tm) B R,y tony = Bsj+1,t0)+1 @ Beo gyt
in d(7s,:5;;) which has weight < w(¥e,i55;) — 2. In this typical example,

w(st +L.t,)+1 ®Rt(r(j)ta(i)) = w('Yo,ijjj) -1- (to(j) - Sj)-
To reach the equality
w(Yo,i555) =1 = (to(j) = 55) = w(Vo.ij55) — 2

we can further restrict our attention to the terms where #,(;) —s; = 1. Hence the
simple part in d(8) of weight p — 3 is

Y= Z Z %Im'jj
o 1

<Jj
o(i)>0(j)
to(j)—8j=1

where
_n
/ _ /
Voizi = @) Vaizs
=1
and
R, ifl=1
/ o 7 = 5 B = 5 . .
Voijit = Bsjtttoy+1 @ Rigytony = Bsj1,s,42 @ Ry 00 iftl=
R otherwise

Site(1)
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If we pass v to the E3 page, we get
V= > Risjit,s;+2 05— {55+ {s; 411, T~ {s5+1}1+{s5}
j=nor s;<s;jy1—1
which is exactly
Z hsi1,s+2hs— {sy+{s+1}, T—{s+1}+{s}-
seS, s+1eT
By Lemma 3.11 this is ds(hs ). O

Remark 3.13. If we use the notation h;(S’) instead of hg r, the differential can be
written in the following form

dshi(s1,...,8,-1) = g hiys;41hi(s1,...,85-1,8; +1,8j41,...,50-1).
j=n—1 or
sj+1<sjt1

Keep in mind that this is d2 in May’s grading.
4. GROBNER BASES AND COMPUTATIONS

In order to do computations in HX, we need the help of Grébner bases, to
which we will give a brief introduction. Grobner bases are usually used in com-
puter algebra and computational algebraic geometry, where the algebras are usually
ungraded. But in algebraic topology most algebras are graded. Therefore we will
introduce Grobner bases in this context. We only consider algebras over Fs.

We also prove a result on polynomial differential graded algebras. We will use this
result to compute the algebra H X7 with an inductive method. The computational
results show that Conjectures 2.20 and 2.21 are both true in HX7; C HX.

4.1. Grobner basis

In this section we always assume that P = Fao[x1,...,x,] is a connected graded
polynomial algebra over F.

Definition 4.1. All operations related to Grébner bases require the choice of a total
order on the monomials in each degree, with the following property of compatibility
with multiplication. For all monomials M, N, P where M, N are in the same degree,

M <N <<= MP<NP.

A total order (in each degree) satisfying this condition is called an admissible or-
dering.
Example 4.2. Lexicographical ordering is an obvious example of admissible or-
dering. In this article we are primarily interested in the reversed lexicographical
ordering, where if M = 2! ---2¢ and N = z{' --- 2y, are in the same degree, then
M < N if and only if

e1=¢€l,...,ep_1 =€}p_1,65 > €},
for some k.

Definition 4.3. Once a total ordering is fixed, we let LM(f) denote the largest
monomial in f € P. It is called the leading monomial of f.

Remark 4.4. If we use the reversed lexicographical ordering, then the leading mono-
mial of f € P is the least monomial of f in the lexicographical ordering.
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From now on we assume P is alway equipped with an admissible ordering.

Definition 4.5. Given two polynomials f and g in P, one says that f is reducible
by ¢ if some monomial M in f is divisible by LM(g). In this case we define the
one-step reduction of f by g by

M
I‘edl(fag> =f+ mg.

Note that compared with f, red;(f, g) replaces M in f with other monomials less
than M.

Definition 4.6. For f € P and a finite subset S C P, we say that f is reducible by
S if f is reducible by some g € S. In order to define red(f,S), if f is reducible by
some g € S, we replace f by red;(f,g), and we iterate this until f is not reducible
by any g € S. The iteration always terminates because there are only finitely many
monomials in each degree since P is a connected algebra. The final result depends
on the ordering of choices of g, and we define red(f, S) to be the set of all possible
outcomes.

Definition 4.7. A Grobner basis G of an ideal I in P is a generating set of I such
that the set of images of all monomials not divisible by LM(g) for any g € G under
the canonical map P — P/I form an additive basis for P/I.

Remark 4.8. If G is a Grobner basis, then red(f, G) is exactly the standard repre-
sentation of f in P/I as a linear combination of the additive basis mentioned above.
Hence red(f, G) consists of a single element of P.

Algorithm 4.9 (Buchberger). Given a finite generating set G of an ideal I in P,
we can change G into a Grébner basis of I by doing the following

(1) For f,g € G, let
L = lem(LM(f), LM(g)).

Find two monomials m,n such that LM(mf) = LM(ng) = L. If red(mf +
ng, G) contains a nonzero polynomial, then add it to G.
(2) Repeat (1) until red(mf + ng, G) is zero for every pair f, g in G.

Remark 4.10. In Step (1), each time we add a new element to G the ideal generated
by all leading monomials of G will strictly increase. Therefore the algorithm always
terminates in finitely many steps, because P is a Noetherian ring.

Definition 4.11. Let R = P/I for an ideal I of P. For (aj,az,...,a,) € R" we
define

Ann(a1,-.. ,an) = {(bl,...,bn) cR" | arby + -+ ayby, :0}'
This is an R-submodule of R™. Note that for 1 <17 < j <mn,

0,...,0,d;,0,...,0,d:,0,...,0) € Ann(ay, - , an).

These are called the commutators of ay,as, ..., a,.

Lemma 4.12. Assume I is trivial and R = P. Then Ann(zq,...,x,) is generated
by commutators of T1,...,Tn.

Proof. This is a consequence of the fact that Torp(F2,F2) & Eloxy,...,0z,], so

that oz; A oz; is an additive basis of Tory(F2,F2). In the Koszul complex this
means that all P-linear relations among xj, are generated by z;xz; + z;z;, =0 U
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Definition 4.13. For f € P, f denotes the image of f in P/I.

Theorem 4.14. Assume P is equipped with the reversed lexicographical ordering
and G is the Grébner basis of an ideal I in P. For the images T1,...,Ty of the
first k generators x1,...,x; of P in R = P/I, Ann(Zq,...,Tx) is generated as a
R-submodule of R* by commutators of T1,...,Tx and all (fi,...,fr) € R* such
that f; € P and x1f1 + -+ o fr € G.

Proof. Assume that x1g1 + -+ + zxgr € I. By the definition of a Grébner basis,
we can always choose representatives g; of g; such that no g; is reducible by G.
In order to show that (g1,...,gk) is an R-linear combination of commutators of
T1,...,% and (f1,..., fr) described in the theorem, by Lemma 4.12 it suffices to
show that x1g1 + - - - + xxgr is a P-linear combination of elements of G of the form
x1f1+ -+ fr, i.e. elements of G in which all monomials contain at least one of
Tlyeooy Tk

In fact, since red(z1g1 + - - - + gk, G) = 0, for some 1 < i < k, 2,9, is reducible
by some g € G. Since g; is not reducible by G but z;g; is reducible, LM(g) must
contain x;. Since LM(g) is the least monomial in g ordered lexicographically, other
monomials of g must contain at at least one of x1,...,x;. Therefore if we replace
x;g; with red;(x;g;,¢), then 2191 + - - - + xgr becomes another polynomial of the
form z19) + - + :Ekg;c. We can iterate this until x191 + - - - + xxgr becomes zero.
Hence x1g1 + - - - + gk is a P-linear combination of ¢ € G in which all monomials
contain at least one of x1, ..., zg. ([l

By the theorem for aj,...,ar € R we can make an algorithm for finding a
generating set of Ann(ay,---,a,) € R= P/I.

Algorithm 4.15. Given an ideal I in P, R = P/I and f1,..., fr € P, a generating
set of Ann(fy,..., fx) as an R-submodule of R¥ can be obtained by doing the
following

(1) Equip Q = Faly1,..., Yk, x1,...,%,| with the reversed lexicographical or-
dering.

(2) Compute the Grobner basis G of T+ (y1 — f1,--+, Yk — fx)-

(3) Find all elements g of G such that LM(g) contains at least one of y1, ..., yk
and write g in the form g = y1h1 + - -+ + yxhr where h; € Q. We can do
this because we are using the reversed lexicographical ordering.

(4) Replace h; with a polynomial in 21, ..., z, using the relations y; = f1, ...,
Yk = fr-

(5) All images of (h1,...,hy) in R = P/I together with commutators of fi,

.., fr form a generating set of Ann(fi,..., fr) as an R-submodule of RF.

Theorem 4.16. If the Grobner basis G of I C P with respect to some monomial
ordering has the property that all the leading monomials of g € G are square free,
then R = P/I is nilpotent free.

Proof. By the properties of Grobner bases, the set of all monomials not reducible
by G forms a basis for P/I. If all the leading monomials are square free, we show
that this basis is closed under the squaring map.

In fact, given a square free monomial o = x;, -+ 24, (i1 < -+ < i) in P, another
monomial 3 = z{'z5? - -+ is not divisible by « if and only if 32 is not divisible by
«. This is because

alf = e, >0(1<j<k) & 2, >0(1<j<k) < o
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Therefore R is nilpotent free since we have a basis closed under the squaring
map. ([

4.2. Polynomial differential graded algebras

Note that the differential graded algebra X is also a polynomial algebra. The
following proposition will help us calculate the homology of these kinds of algebras.

Proposition 4.17. Assume that A is a commutative differential graded algebra
over Fy and ¢ € A is a cycle. Consider B = Alx] as a differential graded algebra
which extends A with dx = c.

If [ = 0 in HA, then HB = HA ® F3[Z] where & corresponds to x + a where
da =c in A.

If [¢] # 0 in HA, assume that the ideal

Annga([e]) ={y € HA : y[c] = 0}
of HA is generated by y1,...,yn (n =0 if the ideal is zero). If we filter B by
FpB:{axi:aeA, 1 < p},
then the associated graded algebra E°H B can be represented by
HA@F?[bugla" 7971]/ ~

where the relations are given by [¢] = 0 and

() f e+ -+ anyn =0 in HA for a; € HA then
a191+ -+ angn =0.
(ii) gig; = byiy;-
Proof. Note that z is in filtration 1 and dx = c¢ is in filtration 0. Hence
Ey 2 HAQFq[x]

with do = [¢].

If [c] = 0, then F; = E because x is a permanent cycle represented by = + a
for some a € A such that da = ¢. There is no extensions since there is no relations
on x. Hence HB =~ HA ® Fa[Z].

If [¢] # 0, noting that b = [2?] is a permanent cycle, the set of elements in
FE> = HF in even filtrations is isomorphic to

D> HA/ ()

while the set of elements in odd filtrations is isomorphic to

@xzi_lAnnHA([c]).

The multiplication by b = [2?] will map elements in filtration p isomorphically
onto elements in filtration p 4+ 2. They are both modules over HA and the module
structure of xAnng4([c]) (elements in filtration 1) is precisely given by (i) with
gi = [zy;]. Relations in (ii) are direct consequences of xy; - zy; = 2% - y; - y; in
E;. The spectral sequence collapses in Es because the g; = [zy;] are represented
by cycles zy; + a; € B where da; = cy; in A. Therefore the g; are all permanent
cycles. O
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Remark 4.18. The proposition does not solve the extension problem for computing
HB. However, it constrains the number of relations we have to deal with, which is
very important for our computation of H X7 in the next section.

Remark 4.19. A generating set of (rq,...,7,) € (HA)™ in (1) in the proposition
can be obtained by Algorithm 4.15.

4.3. The computation of H X,

In this section, we are going to compute H X7 by an inductive method using
Proposition 4.17. We will see that Conjectures 2.20 and 2.21 hold in HX7 C HX.

It is helpful to see that X has a lot of symmetries. These will be useful in our
induction.

Definition 4.20. For 0 < m < n, let X[m, n] denote the sub-DGA of X

X[m,n] =F3[R;j :m <i<j<n].
Note that X,, = X[0,n]. Let X, = F2[Ro; : ¢ < k] ® X[1,n] which is also a
sub-DGA of X.
Proposition 4.21. The map

r: X — X[m,n]

given by

T(Rij): Rij, me§l<j§n

0, otherwise
is a retraction of DGAs. Therefore the homomorphism in homology HX|[m,n] —
HX is injective.
In addition to Proposition 2.23, we have another property of symmetries in X.

Proposition 4.22. The translation map
fe: X[m,n] = X[m+ k,n+ k|
Rij = Rivkjrk
is an isomorphism between differential algebras. Therefore
HX[m,n|= HX[m+ k,n+ k|
as algebras.

Remark 4.23. The map fj, is actually the same as the squaring operation (S¢°)*.
Here Sq° is a power operation in the May spectral sequence (See [6]).

Our strategy to compute H X7 is to show that Conjecture 2.20 holds in HX,,
for n = 1,2,...,7 inductively. For m < n, if we can prove that Conjecture 2.20
on HX][1,n] implies Conjecture 2.20 on HX[0,n] = HX,, then by ignoring all R;;
with j > m in the proof, we can obtain a proof of the fact that Conjecture 2.20 on
H X1, m] implies Conjecture 2.20 on HX[0,m]| = HX,,. Moreover, by Proposition
4.22, we have

HX[1,n)|ZHX[0,n—1]=HX, 1.

Therefore the statement

(4.24) Conjecture 2.20 holds on H Xs = Conjecture 2.20 holds on H X~

implies the statement
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Conjecture 2.20 holds on H Xj_; = Conjecture 2.20 holds on H X,

for 2 < k < 5. Since Conjecture 2.20 holds in HX; = Fa[hg], it suffices to prove
the statement (4.24).

Now we have our assumption on HXg = HX]J1,7]. See Appendix A.1 for a list
of generators and relations we generate for HX[1,7] according to Conjecture 2.20.

We are going to compute HX|[1,7] = HX70, HX71, ..., HX77 = HX7 one by
one. Note that X7; = X7,_1 ® F3[Ro;]. We apply Proposition 4.17 to the case
where A = X7,_1, B= X7,,x = Ry; and ¢ = Z;;ll Ry;jRj; to obtain the homology
HX771' from HX771',1.

Recall that Proposition 4.17 does not solve the extension problems for us. I
managed to solve all of the extensions via many different approaches, including pure
guesses, and to check them with the aid of a computer by realizing the relations as
boundaries of chains.

Appendix A.2-A.8 list the generators and relations of HX71,..., HX7 7 com-
puted by the author. In these charts, the relations are grouped into two parts.
Part (i) corresponds to relations (i) in Proposition 4.17 and Part (ii) corresponds
to relations (ii) in Proposition 4.17. For Part (i), the author put the extension part
of the relations on the right-hand side of the equations.

Appendix A.9 reorganizes the relations of H X7 = H X7 7 in the form of Grébner
bases. We can see that all of the leading monomials are square free. Hence Con-
jecture 2.21 holds in H X7 by Theorem 4.16.

Appendix A.10 lists the relations of HX; according to Conjecture 2.20. It
has been checked by the computer that these relations indeed generate the same
Grobner basis as that in Appendix A.9. Hence we see that Conjecture 2.20 indeed
holds in H X7.

Combining the results above Theorem 2.26 is proved.

4.4. A localization of the May spectral sequence

One of the useful tools to compute the May spectral sequence is the Adams
vanishing theorem.

Theorem 4.25 (Adams [1]). Ext®)(F,F2) =0 if t — s < q(s) where the function
q s given by
q(4k) =8k —1;
q(4k+1) = 8k + 1;
q(4k 4+ 2) = 8k + 2;
q(4k +3) = 8k + 3.

Note that May [3] and Tangora [10] both used this theorem to compute some
differentials in the May spectral sequence. This is based on the fact that all the
infinite hg-structure lines in the May spectral sequence have to be truncated by
some differentials in order for the vanishing line to appear in the F., page. One of
the examples is the first nontrivial dg differential

ds(z) = hgy
where
xr = hob%2b03h0(1), Yy = h4b(2)2h0(1) + hgbozblg
in Eg. Here hiy # 0 for all i > 0 and x is the only thing that can truncate this

infinite hg-structure line supported by y. By computing the filtration degrees this
differential is dg.
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These infinite hg-structure lines inherit structures from the May spectral se-
quence and form another spectral sequence which converges to zero in positive
stems because of Theorem 4.25. A better way to process this information is to
invert hg in the May spectral sequence and study the localized spectral sequence
which converges to [h(jfl]. The following theorem shows the structure of the Fs
page of the localized May spectral sequence. What is surprising is that it contains
a subalgebra H X [2, co] which is isomorphic to the original Fy & HX with a shift
in degree t.

Theorem 4.26.
ho PHX = FolhT! by : j > 2] ® HX[2, ]
Proof. Note that as a differential algebra,
ho'HX = Fo[hd'] @ H(X/(Ro1 — 1)),
since hg is represented by Rp;. It suffices to show that
Let
Y, = X[Q,OO] ®F2[R0J‘,R1j 17 < m]/(R01 — 1)
Observe that
X = colimY,, and Y, 2Y,,_1 ®F3[Rom, Rim]-

Now it suffices to show by induction that for all m

The claim is trivial when m = 0, 1.

Assume it is true for Y;,,—1. First we consider Y;,,—1 ® F3[R1.,]. Note that dRy,,
is a boundary in HY,,_; since

d(eom) = d(Ro1 Rim + Ro2Ram + -+ + Rom—1Rm—1,m) =0
which implies
d(Rim) = d(Ro2Ram + -+ + Rom—1Rm—1,m)-
By Proposition 4.17 we have
H(Yp-1 ®@F2[Rim]) & HY ;o1 @ Faleom).

Now we consider Y;,, = Y,,,—1 ® Fo[R1] ® F2[Ro.m]. Note that dRo,, = egnm and

Ann(eg,) is trivial in H X [2, 00] ® Fa[egy]. Therefore by Proposition 4.17,
HY,, =2 HY,,_1 ®F2[bom] = HX[2,00] ®F2[boj, 2<5< m]

Hence the induction is complete. O

By the Adams vanishing theorem on the E; page of the Adams spectral sequence
we know that

hg 'Ext?)(F2, Fo) = Fo[hT!).
Hence after inverting hg in the May spectral sequence we get a spectral sequence
with
Ey = hy'HX = Fo[hi).

By the theorem above this is the same as

FolhE!, boj - j > 2] ® HX|[2, 00] = Fa[h!]
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Note that H X2, 00] is isomorphic to HX with a shift of degrees. Therefore the
following composition is an embedding

(S¢°)?

o HX HX ho'HX

where the second map is the localization. Since the operation Sq° (see Remark
4.23) commutes with all d, differentials in the May spectral sequence we have a
comparison map

(4.28) HX —— Ext")(Fy, Fy)

| |

ho ' HX == Fy[h7"]

The bottom spectral sequence has an advantage in calculation since all elements
in positive stems have to be killed by differentials. We intend to use the bottom
spectral sequence to aid in computing the top. Interestingly, computations in low
degrees lead us to the following conjecture.

Conjecture 4.29. The localized spectral sequence
Ey = hy 'HX = Foh!]

is isomorphic to a sub-spectral sequence
bos
(4.30) By = m[% 1§ > 2@ HX[2,00] = Fy
0

tensored with Fo[hT!].

Although the author cannot yet prove this, there is another spectral sequence
with the same Fs and Fo as (4.30). The advantage of the new spectral sequence
is that it is also tri-graded.

Theorem 4.31. Consider the cobar resolution C (<) of Fy over o/, where Cy(2Z,)
consists of elements [a1]---|as]a and

dlar] -+ lagJa = 3" N Ja] - [ala?| - lagJa+ > [ar| -~ laflal| - - - [ale(a’)]a".

There is a filtration on C (o) such the resulting spectral sequence has a Es page
isomorphic to
Bos
Fal7y :§ 2 2] @ HX[2,00]
0
with a degree shift in t, and it converges to Fs.

Proof. We continue the use of Ravenel’s filtration in Section 3. Consider the weight
function w on % and C(&%) in Definition 3.2. We define another linear function
w’ on .27, given by

k
w' (& 6F) = 222'7“1-.
i=1

We can define a weight function w on Cy() = Cy(4,.) ® . by
wlar] -+ lasla = w(ar) + - + w(as) + w'(a).
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Note that
n—1
d([€) = Y [€2" )¢
k=0
and

w(ll&) =2n > w(€2 L )&) =2k +2(n—k) — 1 =2n— 1.

Therefore on the Ey page do([]¢,) = 0. Hence by Proposition 3.4, the E;-term is
isomorphic to X ® 7. The d; differentials are given by

di(Rij) = Z R Ry,
%

di(§)) = Roj + ) &xRuj.
k

By (4.27) it suffices to show that
X =2 X/(Rp1 —1)

as differential algebras. In fact, it is not hard to check that the following map gives
the isomorphism.
X ® A, —>X/(R01 — 1)

Rij X1+ Ri+1,j+1

1®& — Rojt1-
(]

In contrast to the comparison map in (4.28) we now build another comparison

H — EXtZ;{* (]FQ, ]F2)

: |

Fg[% L j > 2] @ HX[2, 00) —— T,
using the composition of the map of complexes C(e% ) — C(.¢%) and the operation
Sq". The map ¢ is again an embedding. A stronger version of Conjecture 4.29
includes the claim that (4.30) is isomorphic to the bottom spectral sequence above.

The localization map and other comparison maps with compositions of (S¢°)°
yield different indeterminacies for computing the May spectral sequence. The au-
thor has been collaborating with the computer and feeding these data into the
program to obtain higher differentials in the May spectral sequence.

APPENDIX A. CHARTS

There is a new symbol in the following charts. Note that for each indecomposable
hi(S/) = hS,T S %,
i—1
> RojRs—(iyihr
§=0
is a cycle in HX7,;. We let r;(S”) = rg,r denote the homology class of this cycle in
HX7;.
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Al HX[1,7]

Generators.
hi, 1<i1<6
hi(1),1<i<4

Relations.
hiha =0
hohs = 0
h3biz = hlhl(l)
hshy =0
hshi(1) = hibaa
hahi(1) = 0
bigbos = h3b1a + hq(1)?
hiha(1) =0
habay = haha(1)
hahs =0
ha(1)biz = hohsbys
h4h2(1) = hobss
I (1)ha(1) = 0
bisbss = h3bos + hibia
h1(1)bss = hihsbas

hshs(1) = 0
baabzs = h3bas + hao(1)?
hahs(1) = 0

hsbss = h3h3(1)

h3(1)b13 = h1h1(1,3)

h1(1)hs(1) = hsha(1,3)

hgh,l(l, 3) = h1h5b25

hs(1)baa = hsghsbas

hshg = 0

h1(1)h1(1,3) = h3hsbis + hsbisbas

h3(1)b1a = hihi(1,2) + hahsbis

hshs(1) = hsbas

h1(1 3)bay = hzhl(l, 2) + hshi(1)bas
ha(1)hs(1) =

hi(1,2)b13 = h5h1( )b1s 4+ hi(1,3)b1s

( )b46 = h5h1(1 3)

hi(1)hi(1,2) = hsbaabis + hsbiabas

ha(1)h1(1,3) = hohahi(1,2)

baabas = h3bse + h2bas

bagb1a = h3bag + h2bis + bi3bse

hl(l, 3)b35 = h1h3(1)b25 + hihl(l, 2)

h1(1)bsg = h1hsbas + hshi(1,2)

ha(1)bss = hahabse

hehs(1) =0

bssbas = hibse + hs(1)?
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hehy(1,3) =0

hsha(1) =0

h3(1)h1(1,3) = h1h3bag + h1bagbas
hebas = haha(1)

hi(1)ha(1) =

hehi (1,2) = 0

bi3bagbas = h3h3bie + h3bagbis + hibisbas + hi(1,3)?
hiha(1,3) = 0

h4(1)bg4 = hghz(l, 3)
h3(1)h1(1,2) = h1bssbag + h1basbsg
hg(l, 3)b13 = h2h4(1)b14
b13b25b36 = h%b25b26 + h%b35b16 + h§b36b15 + hib14b26 + hl(l, 3)h1(1, 2)
ha(1)ha(1) = haha(1,3)
h4h2(1, 3) = hohgbsg
h1(1)h2(1,3) =0
ha(1)bss = hahebse
hl(l, 2)b46 = hlhg(l)bQG + hl(l, 3)b36
bi4bosbss = h3bisbag + ha(1)*b1g + h1(1,2)? + baabssbis + basbrabag
hlhz(l, 2)=0
h4(1)b25 = hghg(l, 2) + hahgbog
ha(1)h2(1,3) = h3hgbas + hebaabas
heha(1) = habsy
ha(1,2)biz = hohshebis + haha(1)b1s
hg(l 3)bss = h2h2(1 2) + hgha(1)bse
hi(1)ha(1, )_ 0
hs(1)ha(1 )
ha(1,2)bay = h6h2( )b26 + ha(1,3)b2s
ha(1,2)b1s = heha(1)bis + ha(1,3)b1s
a1 (1,3) = 0
( )b57 = h6h2(1,3)
ha(1)ha(1,2) = hebssbag + hebasbss
ha(1)ha(1,3) = hahsha(1,2)
bssbsr = h3bar + hibse
ha(1)hi(1,2) = 0
ha(1, 3)h2(1, 3) =0
bsrbas = h3bs7 + hdbag + basbar
bi4baz = h3ba7r + h3big + bisbsr + bsrbis
hg( Yba7 = hohabsr + heha(1,2)
ha(1,3)bag = haha(1)bss 4 h3ha(1,2)
h2(1,3)h1(1,2) =0
h3(1)bsy = h3hsbay
(1 3)b57 = h5h1( )b47
7 (1,3)ha(1,2) = 0
baebsr = hZbaz + ha(1)?
h1(1 2)bsr — hihshsbor + hsha (1)bsr
hi(1,2)h2(1,2) =0
ha(1 )hz(l 3) = hah2bs7 + habsrbse
hi(1,2)bar = hihs(1)bor + hi(1,3)bsr

1
1
1
1
1

29
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bosbsrbsg = hghgby + h§b57b26 + h§b24b37 + ha(1, 3)2

ha(1)ha(1,2) = hobsgbsr + habsgbar

b24baebar = h3bsgbsr + h3babar + h3barbag + hEbasbsr + ha(1,3)ha(1,2)
hg(l, 2)b57 = h2h4(1)b37 + h2(1, 3)b47

basbasbar = hibagbsr + ha(1)*bar + ha(1,2)? + bysbazbag + bagbasbsr

A2 HX;,
It is obvious that HX71 = HX|[1,7] ® Fa[ho].
A3 HX79
Consider dRp2 = Ro1 R12 whose homology class is 1 = hoh; in HX7 1. We have

1AIlIlHX7,1 (’I”l) = (hg, h,Q(l), hQ(l, 3), hg(l, 2))

obtained by Algorithm 4.15. Apply Proposition 4.17 on X745 = X71 ® Rp2. The
Es = E, page is generated by Rosha, Roz2ha(1), Rozha(1,3), Roah(1,2) and R3,
which are represented by rq, m2(1), r2(1,3), r2(1,2) and boe in H X7 o respectively.
In addition to relations in H X7 1, the new relations in HX7 5 are r; = 0 and

Part (i). !
’I”2h,1 = 0,
T‘2h3 = 0,
(1)hy =0
(1)ha(1)
(L)hs =0,
’I”th(l) = 0,
’I”Q(l)hg(l) =0
7‘2(1, 3)h1 = 0,
7‘2(1, 3)h1(1) = 0,
T2(1, 2)h1 = 0,
T2(1, 2)h1(1) = 0,
T2(1, 3)h1(1, 3) = U,
7‘2(1, 3)h1(1, 2) = U,
7‘2(1, 2)h1(1, 3) = U,
7'2(17 2)h1(17 2) =0,
’I”2(1)h,2 + T2h2( ) =0
’I”Q(l)blg + rohgbis =0
ro(1)ha + robss =0,
T‘Q(l)hl(l, 3) + T‘2h4h1(1, 2) =0,
r2(1)bag + r2habss = 0,
T2(1, 3)h2 + ’I”2h,2(1 3) = 0
T2(1, 3)b13 + T2h4( )b14 = 0
T2(1,3)h4—|—T2( )h,4( ) 0
r2(1)ha(1) + r2hebss = 0,
r2(1,2)ha + raha(1,2) = 0,
ro(1,3)ha(1) + r2(1)h2(1,3) = 0,
’I”Q(l, 3)h6 + ’I”Q( )b57 = 0,
r2(1,2)ha(1) + r2(1)ho(1,2) = 0,

Here there are no nontrivial extensions
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’I”Q(l, 2)h3h5 + 7"2(1 3)h3( ) 0,
T2(1, 2)h2(1 3) =+ T2(1 3)h2(1 2) = 0
r2(1,2)b13 4 r2hahebis + m2ha(1)b15 = 0,
ro(1, 2)h2 + r2(1)hebss + 7“2(1, 3)bss =0,
ro(1, 2)b24 + Tg(l 3)bas + 7‘2( )h6b26 =0,
T2(1, 2)b14 + T2(1 3)()15 + TQ( )h6b16 = O,
r2(1,2)h3 + r2ha(1)bse + r2(1,3)bss = 0,
ro(1, 2)h6 + 79(1)ba7 + rohabsr = 0,
7‘2(1, 3) ( ) + T‘zh%b?,? + robsrbzg = 0,
72(1,2)ha(1) + robsebar + robasbsr = 0,
(1,2)

T2

Part (i).
79,3723 45 = bo1b1,4Ra,5 + bo2b2 aha 5,
72,37235,467 = bo1b1,4Rh45,67 + bo2b2,ahuas 67,
79,37234,567 = b01b1,5R45,67 + bo2b2 5has.67 + bo1b1,6h46,57 + bo2b2 6 hae 57,
T23,457235,467 = bo1b1346h6,7 + bo2b23 46h6,7,
T23,457234,567 = bo1b13,56h6,7 + bo2b23 56h6,7,
T235,4677234,567 = Do1b135,567 + bo20235 567,
r2,372,3 = bo1b1,3 4 bo2b2 3,
793,45723,45 = bo1b13,45 + bo2b23 45,
T235,4677235,467 = D01b135,467 + bo20235 467,
T234,5677234,567 = bo10134,567 + bo2b234,567

3

bs7 + 12ha(1)ba7 + r2(1,3)bar = 0,

A4 HXq3

Consider dRg3 = Ro1R13 + Ro2R23 whose homology class is 7o in HX7 2. We
have
1AIlIlHX7,2 (TQ) = (hl, h,g, hg(l))
Apply Proposition 4.17 on X7 3 = X72 ® Ros3. The E; = E, page is generated
by Roszhi, Roshs, Roshs(1) and R3; which are represented by ho(1), r3, r3(1) and
bos in H X7 3 respectively. In addition to relations in H X7 1, the new relations in
HX7 3 are 7o = 0 and

Part (i).
ho(1)ho = bo2ha,
ho(1)ha = hobis,
r3hy = hohi(1),

r3hy = 0,

ho(1)h2(1) = hobi4ha,
ho(1)r2(1) = 0,

Tg(l)hz hohl(l,?)),
T3(1)h2( ) h0h4h1(1 2)
T3(1)T2(1 :0,

r3(1)he = 0,

’f‘3h4(1) = 0,

ho(l)hg(l, 3) = hobl4h4(1),
ho(1)r2(1,3) =0,
ho(1)ha(1,2) = hobisha(1) + hobighahe,
ho(l)?”g(l, 2) = 0,
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rs(1)ha(1) = 0,
Tghl + ho(l)hg = 0,
'f‘3b13 + ho(l)hl(l) =0
r3hi(1) + ho(1)bas = hohaobia,
r3(1)ha + ho(1)hs(1) =0
r3(1)hs +r3hs(1) =0,
73(1)b13 + ho(1)h1(1,3) = 0,
r3(1)h1(1) + ho(1)hsbas = hohohsbis,
7“?,hl(l 3) + ho(1)hsbas = hohahsbis,
r3(1)bos + 13hs5bos = hohahi(1,2),
(1)h,5 + T3b46 = 0,
T3(1)h2(1 3) +T3h5h2(1, ) 0
’I”g(l)?”g(l 3)—|—’I”3h57”2(1 2) 0
r3(1)bs7 + r3hsbar = 0,
r3(1)b1a + r3hsb1s + ho(1)hi(1,2) =
r3(1)h1(1,3) + ho(1)bagbas + ho(l)h4b26 = hoh2b14 56,
r3(1)h1(1,2) + ho(1)basbzs + ho(1)bssbag = hohabis 56,
Part ().
ho1,2373,4 = bo,2h12,34 + bo 3h13, 24,
ho1,23734,56 = bo,2h124,356 + bo,3h134,256,
73,4734,56 = bo1b1,5N5,6 + boab2 5hs5.6 + bosbs 5N 6,
ho1,23h01,23 = bo1,23,
73,4734 = bo1b1,4 + bo2ba,4 + b33 4,
734,56734,56 = D01014,56 + Do2b24,56 + bo3b34,56.
A5 HXq4

Consider dRys = Rp1R14 + Ro2R24 + Ro3R34 whose homology class is 73 in

HX7 3. We have

Apply Proposition 4.17 on X714 = X735 ® Roa.
by Rosha, Rosha(1) and R3, which are represented by ry, 74(1) and bos in HX7 4
respectively. In addition to relations in H X7 3, the new relations in H X7 4 are

Anngx, ,(r3) = (ha, ha(1)).

r3 = 0 and
Part (i).
’I”4h3 = Tg(l),
T4h1(1) = 0,
T‘4h5 = 0,
ra(1)hs = ra(1,3),
’f‘4(1)h1(1) = 0,
T4(1)h3(1) = Tg(l, 2)h,5,
ra(1)rs(1) =0,
ra(1)hi(1,3) = 0,
'f‘4(1)h1(1, 2) = 0
ra(1)ra(1,2) = hs(b01b14 67 + bo2b2a 67 + bosbsae7),
T4(1)h4 + T4h4( ) =0,
’I”4(1)h2(1) + ’I”4h2(1, 3) =0,
’I”4(1)b35 + T4h6b36 = Tg(l, 2)h3,

The Ey = E, page is generated
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r4(1)h1bes + r4h1hebas = 0,
T4(1)h6 + r4bs7 = 0,
74(1)bo2bas + Taheboobos + ra(1)h3bis + rahdhebis = ra(1,2)boshs,
r4(1)ho(1)bas + ra(1)hohabis + raheho(1)beg + rahohahebis = 0,
74(1)b13bas + T4hebi3bag + rah3hebis + r4(1)h3b15 = 0,
T4(1)b1abas + rahebrabag + rahebaabis + 14(1)b2abis = 0,

Part (ii).

r4,5745,67 = bo1b1,6he,7 + bo2b2,6Ne,7 + bozbs,ehe,7 + boabache,7,
r4,574,5 = bo1b1,5 4 boaba 5 + bosbs 5 + boaba s,
T45,67745,67 = bo1b15,67 + bo2b2s 67 + bo3b35,67 + boabas 67

A6. HX75
Consider dRys = 2221 Ro; Ri5s whose homology class is 74 in H X7 4. We have
ADDHX714 (7‘4) = (hlhg, hl (1), h5)

Apply Proposition 4.17 on X7 5 = X714 ® Ros. The Ey = E, page is generated by
Roshihs, Roshi(1), Roshs and R3; which are represented by ho(1,3), ho(1,2), 5
and bgs in H X7 5 respectively. In addition to relations in H X7 4, the new relations
in HX7 5 are ry = 0 and

Part (i).
ho(1,3)ho = bo2hz(1),
ho(1,3)ho(1) = bo1,24ha,
ho(1,2)ho = bozha(1) + boshaha,
ho(1,3)hy = ho(1)bss,
ho(1,2)ho(1) = bo1,34ha,
ho(l, 2)h4 = hohsobis + ho(l)bgg,,
ho(1,3)h2(1) = hob13,as,
rshy = r3(1),
ho(1,2)h2(1) = hobi2,4s,
’I”5h2 1) = h,o 1(1, 2),
rshe = 0,
ho(1,2)h4(1) = hohabishe + ho(1)bashs,
ho(1,3)ra(1) =0,
h0(17 2)7‘4(1) = 07
hO(la 3)T2(1a 2) = 07
hO(lv 2)7'2(17 2) =0,
ho(1,2)h3 + ho(1,3)b13 = ho(1)habia,
ho(l, 2)b02 + ho(l, 3)()03 = ho(l)h4b04,
ho(1,2)h1hs + ho(1,3)h1(1) =0,
ho(1, 2)h§ + ho(1,3)bag = hoha(1)b14,
rshihg + ho(l, 3)h5 =0,
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’I”5h1( ) + h()( ,2)h5 = 0,
ho(1,2)bss + ho(1,
rshibss + ho( ,3)
rshibos + ho( , 2)
ho(1,2)h1hs(1) + ho (173)711(1 3) = ho(1)hahi(1,2),
rshihs(1) + ho(1, 3)bag = ho(1)h4bss,

’I”5h1(1, 3) —|— ho(l, 2)b46 = ho(l)h4b26 + h0h2h4b16,
r5b13bos + T‘5h§b15 + ho(l, 2)h1(1, 3) =0,

r5b3sbig + ho(l, 3)h1(1, 2) + 7“5]7%()15 =0,

r5b14bas + ho(1,2)h1(1,2) + r5b2sbis = 0,

rshi(1,2) + ho(1,2)bse + ho(1,3)bag = hoha(1)bis,

Part ().
ho13,245h012,345 = b013,345,
ho13,24575,6 = bo,2h123,456 + bo,4h134,256 + bo,5R135,246,
ho12,34575,6 = bo,3R123,456 + bo,ah124,356 + bo,5R125,346,
ho13,245h013,245 = b013,245,

ho12,345h012,345 = bo12,345,
5,675,6 = bo1b1,6 + bo2ba,e + bo3b3,6 + bosba,s + bosbs 6.

A7. HXq7¢
Consider dRyg = 22:1 RoiRis whose homology class is 75 in HX7 5. We have

AIlIlHXZ5 (T5) = (hﬁ)

Apply Proposition 4.17 on X7 = X75 ® Ros. The E; = E, page is generated
by Roghe and R%G which are represented by 7¢ and bgo in H X7 respectively. In
addition to relations in H X7 5, the new relations in H X7 ¢ are r5 = 0 and

Part (i).
rehs = r4(1),
T‘ﬁhg(l) = Tg(l, 2),
'f‘ﬁhl(l, 3) = 0,
r¢h1(1,2) =0,
Part ().

r6,776,7 = bo1b1,7 4 bo2ba 7 + bosbs 7 + boaba,7 4 bosbs 7 + boebe,7.

AS8. HX7 7
Consider dRy7 = 22:1 Ro; Ri7 whose homology class is 76 in HX7 5. We have

AAIIIIHXZ6 (T‘G) = (h1h3h5, hl (1)]7,5, hlhg(l), hl (1, 3), hl(l, 2))

Apply Proposition 4.17 on X7 7 = X776 ® Ro7. The Ey = Eo page is generated by
R07h1h3h5, R07h1(1)h5, R07h1h3(1), R07h1(1,3), R07h1(1,2) and R(2J7 which are
represented by ho(1,3,5), ho(1,2,5), ho(1,3,4), ho(1,2,4), ho(1,2,3) and by7 in
H X7 7 respectively. In addition to relations in H X7 g, the new relations in H X7 7
are rg = 0 and
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0 = boz2h2(1,3),
2 = ho(1)h2(1,3),
o(1) = bo1,24ha(1),
ho = bozha(1,3) + boahahy(1),
ha = ho(1,3)h4(1),
ho(1) = bo1,34ha(1),
h4 - h0(17 2)h4(1)7
ho = bozh2(1,2),
hQ(l) = hO(lv 3)h2(17 3)7
o = ho(1)ha(1,2),
0(1,3) = bo13,246 6,
(1) = bo1,25h4(1) + bo1,26hahe,
0 = bosha(1,2) + boshaha(1) + boshahahe,

h
h
h

,3) = bo13,346 N6,
) = bo1,35h4(1) + bo1 36hahs,
1,2) = bo12,346hs,
0= b074h2(1, 2) + bo)5h2(1, 3) + bo)ﬁhg(l)hg,
6 = ho(1,3)bs7,
0(1) = bo1,45h4(1) + bo1,46hahs,
(1)

1
1,2) = bo12,246 h6,
1
1

2 1) = hO(la?’)hQ(la 2)7

6 = ho(1,2)bs7,

0(1,3) = bo13,256hs,

0(1,2) = bo12,256 1,

0(1,3) = bo13,356 6,

0(1,2) = bo12,356 16,

6 = ho(1)habs 7 + ho(1,3)ba 7,

0(1,3) = bo13,456 1,
6 = hohahabi7 + ho(1)habar + ho(1, 2)bar,
0(1,2) = bo12,456hs,
= hoh2(1)b17 + ho(1,3)ba7 + ho(1,2)bs7,

6=
4(1) = ho(1)bs3s,67,

4(1) = hohabis 67 + ho(1)bas 67,
2(1,3) = hobi3s,a67,

2(1,3) = hob12s,467,

4(1) = ho(1)b34,67,

4(1) = hohabia 67 + ho(1)b24,67,
2(1,3) = hobi34,467,

2(1,2) = hobi3s,s67,

4(1) = hohabis 67 + ho(1)bas 67,
2(1,2) = hobi2s,567,

2(1,3) = hob124,467,

2(1,3) = hobi23,467,

2(1,2) = hobi3a,s67,

2(1,2) = hobi24,567,

2(1,2) = hob123,567,

35
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h2 + ho(1,3,5)b13 = ho(1)hg(1)b14,
boz + ho(1,3,5)boz = ho(1)ha(1)boa,
h1h3+h(1737 ) ()_07

h3 + ho(1,3,5)bas = hoha(1, 3)b14,
hl + ho(l 3 4)b13 = ho( )h4(1)b15 + ho(l)h4h6b16,
3

) )

)

)

)

i

)boz + ho(l, 3, 4)()03 = ho( )h4(1)b05 + ho(l)h4h6b06,
Jh3 + ho(1,3,5)bss = ho(1,3)hebsg,

Yhihs + ho(1,3,4)h1(1) =0

)b24 + ho(l, 3,5)bos = ho(l, 3)h6b26,

)bss + ho(1,3,5

)h3 + ho(1,2,5)bss = ho(1, 2)h6b367
Vhahs + ho(l, 3,5)hs(1) =0,

Jhzhy + ho(1,2,4)hse(1) = ho(l 2)h2(1,2),
)hshs + ho(1,2,5)hs(1) =0,
Yhrhshs + ho(1,3,5)hi(1,3) = 0
)hsha (1) + ho(1,

Yh2 + ho(1,3,5
Vhshshs + ho(1, 3, 5)h
)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

3

)
)bas = hoha(1,3)b1s,

AH
fi
N~—
>
[N
[=N
_|_
>
o
>
)
>
W~
-
\_/
(=
firy
=)

1
h2 + ho(1,2,5)bag = ho(1)h
hshi(1) 4 ho(
hihs(1) 4 ho(
hihsz(1) + ho(
hl(l 3) + hO( ’ )
bs7 + ho(l 3, 5)b47 = ho(l)h4(
,5)b ho(1)ha(1)ba7 + hohaha(1)bi7,
,3,4)b14 + h0(1, ,5)b1s = ho(1,3)hebis,

bs7 + ho(1,
h2 + ho(
boz + ho
h2 + ho(
b1s + ho
bos + ho
h2 + ho(
h5 + ho(
bag + ho(l, 74)b36 + ho(l, 3, 4)b26 = hohz(l
bs7 + ho(l, 3, 5)b27 + ho(l, 2, 5)b37 = hth(l,

(1,2,4)bs7 + ho(l, 3, 4)b27 = hohg(l

A)_.

3
1,3,4)bos + ho(1,3,5)bos = ho(1,3)hebos,
,2
2
2

—

2

s 4)b24 + ho(1,2,5)bas = ho(1,2)hebas,
2,4)b1s + ho(1,2,5)b15 = ho(1,2)hebis,
2,5
2

—~
—_

3

)
,5)bos + ho(1,2,4)bos = ho(1,2)hebos,
,4)b3s + ho(1,3,4)bas = hoha(1,2)bs,
5)bss + ho(1,3,5)bas = hoha(1,3)bis,
72)b167
3)b177
,2)b17,

—_

)

)

— =

) )

NN NMNNNNNNONNNNWNONNNNNNNNW@NONDNN®NDNDWNDWNDNNDNDNN
LO Lo Lo WO WO Lo GO GO GO GO I i QO QO R 0O R O R R R R GO R R T R R R R R O OT O O

b47 + hO 727

Part ().

ho135,2467h0134,2567 = bo135,2567,
ho13s,24670125,3467 = b0135,3467,
ho13s,24670124,3567 = b0135,35675
ho135,2467M0123,4567 = b0135,4567,
ho134,2567h0125,3467 = bo134,3467,
ho134,2567h0124,3567 = bo134,3567,
ho134,2567M0123,4567 = b0134,4567,
ho125,3467h0124,3567 = bo125,3567,
ho125,3467h0123,4567 = bo125,4567,
ho124,3567h0123,4567 = bo124,4567,
ho135,2467h0135,2467 = bo135,2467,
ho134,2567h0134,2567 = bo134,2567,
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ho12s,3467h0125,3467 = bo125,3467,
ho124,3567h0124,3567 = bo124,3567,
ho123,456710123,4567 = b0123,4567-

A.9. Grobner basis of H X7

Monomial ordering.

37

The monomial ordering we use here is the reversed lexicographical ordering by

the sequence of the following generators

name degree (s,t,v) range of i
hi (1,2%,1) 0<i<6
R (1) (2,9-27,4) 0<i<4
hi(1,3) | (3,41-20,7) 0<i<2
hi(1,2) | (3,49 27,9) 0<i<2?
ho(1,3,5) | (4,169, 10)

ho(1,2,5) | (4,177,12)

ho(1,3,4) | (4,201, 12)

ho(L,2,4) | (4,200, 14)

ho(1,2,3) | (4,225,16)

by 220 -2 -0 0<i<j—2<j<7

Here b;; is ordered first by j — ¢ and then by .

Grébner basis. 2

hoh, =0

hihe =0

haboz = hoho(1)

hohsz =0

haho(1) = hobis
h3h0(1) =

bozbiz = hibos + ho(1)?
hoha(1) = 0

h3bi3 = hihi(1)

hshy =0

h1(1)bo2 = hihsbos
hahi(1) = hibay
ho(1)h1(1) =

bo2boa = h3bia + h3bos
ho(1)bay = hohabia

hahi(1) =
bigbos = h3b1a + hq(1)?
haiha(1) = 0

habas = haohs(1)
ha(1)bo2 = hoho(1,3)

2An element g of the Grébner basis here is presented in the form LM(g) = g — LM(g)
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ho(1)h2(1) = hohabi4

haho(1,3) = hohabia

ha(1)biz = hahabis

ha(1)bos = hoho(1,2) + hahybos

ho(1)ho(1,3) = h3habos + habo2bia

hah2(1) = habss

ho(l 3)b13 = tho(l, 2) + haho(1)b14
hi(1)ho(1) =

ho(1,2)bpe = h4h0( )bosa + ho(1,3)bos

ho(1)bss = haho(1,3)

ho(1)ho(1,2) = habi3boa + habozbis

h1(1)ho(1,3) = h1hsho(1,2)

bisbss = hibas + hibis

hahabozbia = hoho(1,2)b13 + hohabisbos

bssboz = hibis + h3boa + bozbas

ho(1,3)bay = hoha(1)b1a + h3ho(1,2)

ho(1)bas = hohabis + haho(1,2)

h1(1)bzs = hihsbas

hsha(1) =0

hahaho(1,2) = hoh3bis + hobisbas

basbss = h3bas + ho(1)?

hsho(1,3) =0

hghg(l) =

ha(1)ho(1,3) = hoh3bis + hobssbia

hsbss = hzhs(1)

ho(1)h3(1) =0

hsho(1,2) = 0
bo2bssbia = hih3bos + hibssbos + h3bo2bis + ho(1,3)?
hohi(1,3) = 0

ha(1)ho(1,2) = hob2ab1s + hobiabas

hl(l, 3)b02 = h1h3(1)b03

h1(1)hs(1) = hihsbas

bo2b14bas = hib14b1s + hibaabos + hibasbos + h3bosbis + ho(1,3)ho(1,2)
hsh1(1,3) = hihsbas

ho(1)h1(1,3) =0

hsbozbas = hghsbis + hahs(1)bos

h3(1)bay = h3hsbas

ho(l, 2)b35 = hohg(l)b15 =+ ho(l, 3)b25

bosbrabas = h3boabis + h1(1)%bos + ho(1,2)? + bisbasbos + baabosbis
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hohi(1,2) = 0

ha(1)bra = hahi(1,2) + hahsbis
h1(1)h1(1,3) = h3hsbis + hsbisbos
hohsbisbas = hoh3hsbis

h1(1,2)bo2 = hihshsbos + h1hs(1)bos
hshs(1) = hsbag

hl(l, 3)b24 = h%hl(l, 2) + h5h1(1)b25

hohsbi4bas = hohsb24b1s

h2(1)h1(1,3) = hahaha(1,2)

baabas = h3bsg + h2bas

h3(1)ho(1,2) =0

ho(1,3)h1(1,3) =0

h1(1,3)bo3b1a = hshi(1)b13bos + hshi(1)bosbis + h1(1,3)b13boa
hahsbisbas = hihi(1,2)boy + h3hsboabis
bagb14 = h3bag + h2bis + bi3bse

bosbss = h3bie + h2bos + boabas + basboa
hl(l, 3)b35 = h1h3(1)b25 + hihl(l, 2)
hi1(1)bsg = hihsbas + hshi(1,2)
h1(1,3)ho(1,2) =0

ha(1)bss = hahabse

hehs(1) =0

ho(l, 3)b46 = h4h0(1)b36

hshshi(1,2) = h1h3bag + h1b2abse
ho(1,3)h1(1,2) = 0

bssbag = hibse + ha(1)?

ho(1,2)bss = hohahabis + haho(1)bags
hehi(1,3) = 0

ho(1,2)hn (1,2) = 0

hsha(1) = 0

ha(1)h1(1,3) = hih2bas + h1bagbos
boabagbas = h3h3bis + hdbagbis + h3boabas + ha(1)2bo3
hebig = h4h4(1)

ho(l, 2)b36 = hohg(l)bm + ho(l, 3)b26

I (1ha(1) = 0

hehi(1,2) = 0

39
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bisbagbos = h3hibig + h3bagbis + hibizbas + hi(1,3)?
hnha(1,3) = 0

h4(1)bg4 = hghg(l, 3)

hg(l, 3)b02 = hoho(l, 3, 5)

h3(1)h1(1, 2) = h1bssbag 4+ h1basbss

ho(l)hg(l, 3) = h0h4(1)b14

hgho(l, 3, 5) = h0h4(1)b14

bo2basbss = hibssbis + hgbsebis + h3basbos + hs(1)?bos + bozbssbas
ha(1,3)b1s = haha(1)bia

ha(1,3)bos = hoho(1, 2, 5) + haha(1)bos

ha(D)boabia = h2ha(1)bos + ho(1)ho(1,3,5)
hg(l)h4(1) = hohgbsg

b13basbas = h3basbag + h3bssbi + h3bsebis + hibiabas + hi(1,3)h1(1,2)

h4h2(1, 3) = hohgbsg

ho(1,3,5)b1z = hiho(1,2,5) + ho(1)ha(1)b14
ha(1)ha(1,3) = 0

ho(1,2, 5)bos = ho(1)ha(1)bos + ho(1,3, 5)bos
ha(1)ho(1,3) = haho(1,3,5)

heho(1)bss = haho(1,3,5)

ha(Dbosbra = ho(Dho(1,2,5) + ha(1)brsbos
hi(1)ho(1,3,5) = hihsho(1, 2, 5)

hebisbss = hihebag + haha(1)b14

ha(1)bss = hahebse

ho(1,3,5)bay = hoha(1,3)b1s + h3ho(1,2,5)
h4(1)h0(172) = h4h0(1,2, 5)

heho(1)bag = hohahgbis + haho(1,2,5)

h1(1,2)bsg = h1hs(1)bas + h1(1,3)bss

b14basbsg = h3bisbag + ha(1)b16 + h1(1,2)? + baabssbis + basbiabag
h2h4h0(1, 2, 5) = hoh%hﬁblﬁ + h0h6b13b26

hih2(1,2) =0

h4(1)b25 = hghz(l, 2) + hahgbog

ha(1)ha(1,3) = hZhebae + hebasbse

h1hgbaabse = h1h3hebag

ha(1,2)boz = hoho(1, 3, 4)

ho(1)ha(1,2) = hohahgbis + hoha(1)bis
ho(1,3)ha(1,3) = hoh2hebis + hohabrabss
haho(1,3,4) = hohahgbis + hoha(1)b1s

hg(l)ho(l, 3, 5) = hoh%hgbm + hohgb14bse
ha(1,2)b13 = hahahebis + hoha(1)b1s

heha(1) = habs?

ho(1,3)basbss = hoha(1)bssbis + hoha(1)bsgbis + ho(1,3)bssbas
ha(1,2)bos = hoho(1, 2, 4) + hahahebos + haha(1)bos
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ha(D)bosbis = h2hahabos + h2ha(1)bos + hahsbozbis + ho(1)ho(1, 3, 4)
ho(1,3)ho(1,3,5) = hih3hebos + hihebssbos + hihebo2bis + hebozbiabss

hg(l )b35 = hzhg( ) + hﬁhg(l)bgﬁ

ho(1,3,4)b13 = h2h0( 2,4) + haheho(1)bis + ho(l)h4(1)b15

ha(1,3)ho(1,2) = hohgb2abis 4 hohebi4bas

ha(1)ho(1,2,5) = hohgb2abis 4 hohebi4bas

h1(1)h2(1,2) =0

ho(1,2, 4)bgs — h4h6h0(1)b06 + ho(Dha(1)bos + ho(1, 3, 4)bs

hs(1)ha(1) =

ho(1,3,5)bgs — h2h0(1 3,4) + hsho(1, 3)bas

ho(1,2)ho(1,3,5) = h2habrabrs-+h2hebasbos+h2hebosbas+h2habosbrs+habosbiabes
ha(1)bosbis = h4h6b13b06 + hahebosbis + ho(1)ho(1,2,4) + ha(1)b13bos
ho(1,3)ho(1,2,5) = hiheb14bi6+hiheb2abos+h3 heboabas+h3hebosbis+hebozbiabag
h1(1)ho(1,3 4) = h1h3ho(1,2,4)

hg(l, 2)b24 = h6h2( )b26 + hg(l, 3)b25

ha(1,2)b14 = hgha(1)bis + ha(1,3)b15

ho(1,3,4)bag = hohgh2(1)bis + hoha(1,3)b15 + hgho(l, 2,4)

ho(1,2,5)bss = hohgha(1)bis + h%ho(l, 2,4) + heho(1, 3)bag

ho(1,3,5)bas = hohgh2(1)bis + hoha(1,3)b1s + h%ho(l, 2,4) + heho(1, 3)bag
ha()h1(1,3) =0

ha(1,2)bos = hoho(1,2,3) 4+ heha(1)bos + h2(1,3)bos
ho(1,2)ho(1,2,5) = h3hebosbis+heh1(1)*bos+heb13boabas+hebasbosbis+heboszbiabas
)b57 = h6h2(1 3)

(

(

(
hg(l
ho(1,3,4)b14 = h2h0( 2,3)+ hﬁho(l, 3)b16 + ho(1,3,5)b15
ho(1,2,3)bo2 = heho(1, 3)bos + ho(1,3,5)bos + ho(1,3,4)boa
ha(1)ha(1,2) = hebssbas + hebasbse
ho(1,2,4)bos = h%ho(l, 2,3) + heho(1,2)bos + ho(1,2,5)bas
ho(1,3)bs7 = heho(1,3,5)
hi1hebasbss = hi1hebssbas
ha(1)boabis = hahebi4bos + hahebosbis + ho(1)ho(1,2,3) + ha(1)biabos

(
h3(1)ha(1,3) = hshsha(1,2)

ho( s 2 3)()13 = hﬁho( )blﬁ + ho(l, 2, 5)b15 + ho(l, 2, 4)b14
ho(1,3)h2(1,2) = hohgbssbie + hohebssbis

ha(1)ho(1,3,4) = hohebssbis + hohebssbis

ho(1,2,3)bos = heho(1,2)bos + ho(1,2,5)bos + ho(1,2,4)bos

bssbs7 = h3bar + hibss

ho(1,2)bs7 = heho(1,2,5)

h3(1)ho(1,3,5) = hghsho(1,3,4)

hsho(1)ho(1,3,5) = hihabsrbos + habozbsrbis

he(1)R1(1,2) =0

ho(1,3)ho(1,3,4) = h3hebssbos + hihebssbos + hebo2bssbis + hebo2bssbis
hsho(1,2,4)bra = hihy (1)ho(1, 2, 3) + hshgho(L, 2)bis + haho(1, 2, 5)b1s
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ho(1,2,5)b13bes = h%hﬁho(l, 2)b16+h§h0(1, 2,5)b15+hgho(1, 2)b13b26+h1(1)2h0(1, 2,4)
ho(1,2)h2(1,2) = hohgbasbie 4 hohebisbas
hg(l)ho(l, 2, 4) = hohgbasbig + hohgbisbos + h2h4h0(1, 2, 3)
h1(1,3)h2(1,3) =0

ha(1,3)b1abas = heha(1)baabis + heha(1)b1abas + ha(1,3)b2sbis

hahebasbse = haha(1,2)bss + hahgbssbas

bs7bas = h3bsr + hibae + baabar

h4h0(1, 2, 5)b25 = hohaohgbasbig + hohohgbisbog + h4h6h0(1, 2)bag

ha()ho(1,2,5) = hahsho(1,2,4)

heho(1)ho(1,2,5) = habi3bs7bos + habs7bozbis

ha(1, 3)b25b04 = hoho(1,2,3)bag + hﬁhg(l)bg4b06 + h6h2(1)b04b26 + ha(1, 3)b24bo5

ho(1,2)ho(1,3,4) = h?hgbasbos + h3hebagbos + heboabasbis + hebo2bisbag

ho(1,3)ho(1,2,4) = h2hebasbos + h2hebasbos + haho(Dho(1, 2, 3) + hebosbasbis +
hebo2b15b26

ho(1,2,4)bosb1a = heho(1, 2)b13506+h6h0(1, 2)bo3blﬁ+ho(1, 2, 5)b13505+h0(1, 2,5)bosb1s+
ho(l, 2, 4)b13b04

h1(1,3)ho(1,3,5) = h1hshsho(1,2,4)

biabar = h3bor + h3bie + bi3bsr + bs7rbis

ha(1, 3)b04b15 = hoho(1,2,3)b14 + hﬁhg(l)b14b06 + hﬁhz(l)bo4b16 + ha(1, 3)b14bo5

barbos = h3bi7 + hibos + bo2bar + bs7bos + bosbsz

ho(1,2,4)bss = hoha(1,2)b1s 4+ hiho(1,2,3) + ho(1,3,4)bas

ho(1,2)ho(1,2,4) = h3heb1sbos+h3hebosbis+heb13basbos+hebisbagbos+hebosbasbie+
hebozb15b26

ha(L,3)ho(1,2,5) = hshi(1)ho(1, 2, 4)

hg(l, 3)b46 = h2h4(1)b36 + hghz(l, 2)

ha(1)ba7 = hohabsr + heha(1,2)

ho(1,2,5)b14bos = heho(1,2)baabis+heho(1, 2)b14b26+h1(1)2h0(1, 2,3)+ho(1,2,5)basb1s

hebasbsebos = hoha(1)ho(1,2,3)+h3hebagbos+heh2(1)%bos+hebaabssbos+hebssboabas

h2(1,3)h1(1,2) =0

h3(1)bs7 = hahsbaz

ho(l, 3, 5)b46 = hgho(l, 3, 4) + ho(l)h4(1)b36

ho(1,3)ba7 = haho(1)bs7 + heho(1,3,4)

ho(1,3)ho(1,2,3) = h3heb1sbos+h3hebosb16+hebssb1abos+hebssboabis+hebiabssbos+
hebseboabis

hi1(1,2)ho(1,3,5) = hihshsho(1,2,3)

hahgbssboabis = hohaho(1,2,3)b1a+hahebssb14bos+hahebssboabis+hahebi4bssbos

ho(1,2,5)bas = hohaha(1)bis + hEho(1,2,4) 4 ho(1)ha(1)b2g

ho(1, 2)b47 = hohohabi7 + haho(1)ba7 + heho(1,2,4)

heho(1)ho(1,3,4) = h2hah2bos + h2habsrbos + hah2bosbis + habosbsrbis

hl(l, 3)b57 = h5h1(1)b47

ho(1,2)ho(1,2,3) = hebaabi5bos+hebaabosbic+hebiabasbos+hebi4basbos+hebasbosbis+
heboab1sbag

ha(L,2)ho(1,2,5) = hshi(1)ho(1,2,3)
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hahoha(1,2) = hah2bsr + habssbar

hahahgbosbisbas = hoh2ho(1, 2, 4)b1s+hoho(1, 2, 4)brsbos+h3hahebisbos+hihahsbosbio+
hahyhgb13basbos + hahahebi3baebos + hahahebozbasbie

hi(1,3)ha(1,2) = 0

bosbiabsr = h3biabiz + h3boabar + hEbiabos + hEboabis + bo2biabar + bisboabsr +
bs7b14bos 4 bs7boabis

heho(1)ho(1,2,4) = hahgbizbos + hahgbosbis + habisbsrbos + habsrbosbis

h1(1,3)ho(1,3,4) = h1hs(1)ho(1,2,4)

hahabsrbosbis = hoheho(1,2, 4)b1s+ hahahgbizbos + hahahgbosbie + hahabisbs7bos

baebsr = hZbaz + ha(1)?

hsho(1, 3, 4)bas = hohsha(1, 2)bis + hahs(1)ho(1, 2, 4)

ho(1,2,5)bss = hoha(1,3)bis + hZho(1,2,3) + ho(1,3,5)bag

ho(1, 2)b37 = hoha(1)b17 + hﬁho(l, 2, 3) + ho(l, 3)bar

heb2abssbosbis = hoha(1)ho(1,2, 3)b1a+h3heb1abasbos+h2heboabisbos+heha(1)?b14bos+
heha(1)2bosbis + hebaabiabsebos

h1(1,2)bs7 = hihshsbar + hshy(1)bsr

hohahgho(1,2,4) = hoh%hibu + h0h§b47b15 + hohiblgbw + hob13basbar

haohshgbgabrsbog = hoh%ho(l, 2,3)b15 + hoheho(1, 2)basbis + hoho(1,2,5)basb1s +
hoho (1,2, 4)brabas+h5heha(1)bisbos+hsheha(1)bosbic+hahahebiabasbos+hahahebiabasbos+
hahyhgbasboabis

hi(1,2)ha(1,2) = 0

ho(1,3)bosbsr = h2ho(1,3)b17 + haho(1)boabsr + h2ho(1, 3)bos + heho(1, 3, 5)bos +
heho(1,3,4)bos + ho(1, 3)bo2bar

heho(1)ho(1,2,3) = hahgbiabos + hahgboabis + habszbiabos + habszboabis

h1(1,2)ho(1,3,4) = h1hs(1)ho(1,2,3)

heha(1)bsgboabis = hohgho(l, 2,3)b15 + hoho(1,2,3)bssb1s + hghghg(l)bwboﬁ +
h3heha(1)bosbis + heha(1)bssbiabos + heha(1)bssboabis + heha(1)b1abssbos

hohabszbosbis = hohgho(1,2)bis+hoheho(1,2,5)bis+hoheho(1,2,4)b1a+hahahEbiabos+
haohahboabis + hahabszbisbos

hi(1,2)ho(1,2,4) = hi(1,3)ho(1,2,3)

ha(1)ha(1,3) = hohZbsy + hobsrbse

hohshgho(1,2,3) = hoh%b35b17 + hoh%b15b37 + hohib14b27 + hob13bosbsr

heha(1)boabisbas = hoho(1,2,3)basb1s + hoho(1, 2, 3)b1abas + heha(1)boabisbos +
heha(1)basbosbis + heha(1)b14basbos + heha(1)b1abasbos + heha(1)basboabis

ha(1)ho(1,3,5) = h%ho(l)bw + ho(1)bs7b36

b13bs7bse = hTh2bar + hibsrbag + h2bi3bsr + ha(1)%b1g

ho(1,2,3)bag = hoha(1, 2)b16 + ho(l, 3, 4)b26 + ho(1,2,4)bss

h4(1)h0(1, 2, 5) = hohgh%bn + hohobs7bie + h%ho(l)b27 + ho(1)bs7b26

hl(l, 2)b47 = h1h3(1)b27 + hl(l, 3)b37

heha(1)ho(1,2,3) = hoh3bisbar+hoha(1)2b17-+hob2abisbsr+hobssbiabar+hobiabasbsy

hahgbssboabisbag = hohaha(1)ho(1,2,3)b1s+hohaho(1,2, 3)b14b25+h2h6h2(1)2b15b06+
haheha(1)2bosbie + hahebssbiabasbos + hahebssbiabagbos + hahebssbasboabie

bosbsrbsg = hgh%bw + h§b57b26 + h§b24b37 + hQ(l, 3)2
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ha(1,3)ho(1,3,5) = hoh2h2bi7 + hoh2bsrbis + hoh2biabst + hobsrbiabss

ho(1, 3)b25b37 = hoha(1)bssb17 + hoha(1)b15bs7 + heho(1, 2, 3)bss + ho(1, 3)1)35()27

bosbsrbiabss = h2h2h2bor + h2h3bsrbos -+ h2h2boabsy + h2bsrbssbos + h2hZbesbir +
h3bo2bs7bis + h2boob1absr + ho(1,3,5)>

ha(1)ha(1,2) = hobsgbsr + habsgbar

hahsho(1,2,3)bss = hohaha(1)bssbi7+hohaha(1)bisbsr+hohabssbiabar+hohabiabasbsy

ha(1,3)ho(1,2,5) = h0h§b24b17 + h0h§b14b27 + hobosbs7big + hobs7b14b26

ha(1)ho(1,3,4) = ho(1)bagbsr + ho(1)bsebar

boabs7b1abos = hEh2b14b17 + h3bs7b1abis + h3h2basbor + hih2boabar + h3baabs7bos +
h3bs7boabas + h3h2bosbi7 + h3bsrbosbie + h2boabiabar + ho(1,3,5)ho(1,2,5)

b13bssbar = hibagbar + hibarbae + hibsrbic + ha(1)?b1s + bisbasbsr

ho(1,3,4)bagbas = hoh3ha(1,2)big+hoha (1, 2)basbis+h3ho(1,3,4)bas+hs(1)%ho(1,2,4)

ha(D)ho(1,2,4) = hohabaghir + hohabarbis + ho(1)baghar -+ ho(1)barbas

bs7bosbrabze = h3h2boab17+h3bs7bosbig+h3hy (1)2bor+hEbi3bosbar+h2baabosbir+
h2bosbiabar + h1(1)?bs7bos + ho(1,2,5) + bisbsrbosbas + b2absrbosbie

bosbsgbar = h3bsebsr + h3bagbar + h3barbag + h2basbsr + ha(1,3)ha(1,2)

ha(1,2)ho(1,3,5) = hohgb46b17—|—h0h§b47b16—|—h0h§b15b37+h0h§b36b16+h0b57b36b15

hg(l, 3)h0(1, 3, 4) = hoh%b46517+h0h§b47516+h0h§b15b37+h0hg536516+h0b57b36b15

ho(l, 3, 4)()251)3(; = hohg(l, 2)b35b16+h0h2(1, 2)b36b15+h3(1)2h0(1, 2, 3)+h0(1, 3, 4)b35b26

ha(1)ho(1,2,3) = hohabssbi7 + hohabsrbis + ho(1)bssbar 4 ho(1)basbsr

boabsrbsebis = hih3basbor + hih3barbos + hih2bsrbos + h3h2bssbos + h3bs7bssbos +
h3bozbagbi7 + h3bozbarbie + hEboobisbsr + hiboabssbis + ho(1,3,5)ho(1,3,4)

ha(1,2)ho(1,2,5) = hoh3bszbis+hoh2basbi7+hoh2bisbar+hohgbasbis+hobaabarbis+
hobs7b15b26

ha(1,3)ho(1,2,4) = hoh3bssbi7r+hoh2basbi7+hoh2bisbar+hoh2bagbis+hobi3bssbar+
hob13bagbsr + hobagbarbis + hobs7bisb2e

bo2bs7bisbae = hgh2bisbir + hihgbls + hibisbsebir + hgbisbsrbis + hgbsrbisbis +
hih2basbor + hihZbosbar + hihEbasbos + hibasbarbos + hibsrbogbos + h3basbosbir +
h3bo3barbig+h2boabisbar+hEboabasbis+ho(1)2bagbar+ho(1)*bagbsr+ho(1,3,5)ho(1,2,4)

ho(1,2,5)ho(1,3,4) = h%b13b36b17 + h%b13b37b16 + h0(1)2b36b27 + h0(1)2b26b37 +
ho(1,3,5)ho(1,2,4)

heho(1,2,4)bss = hohahabsgbi7+hohahabsrbis+hohsha(1,2)bis+haho(1)bssbar+
haho(1)bagbsy + heho(1,3,4)bog

bs7bosbisbas = h3h2bi5bor + h3hEbosbir + h3h3biebos + h3bsrbosbie + h3bosbsrbis +
h2b13basbor + h2bisbosbar + h2bosbasbi7 + h2bosbisbar + hgbisbagbos + hgbosbasbis +
h1(1)?bazbos + ho(1,2,5)ho(1,2,4) + bisbsrbasbos + baaboszbarbis

hg(l, 2)b57 = h2h4(1)b37 + h2(1, 3)b47

ha(1,3)ho(1,2,3) = hoh3basbi7+hoh3bi6bar+hobaabssbi7+hobaabsrbis+hobiabssbar+
hob14bagbsr

basbsebar = hibagbsr + ha(1)%bar + ha(1,2)? + basbarbag + bagbasbsr

ho(l, 3, 4)1)57 = ho(l)h4(1)b37 + ho(l, 3, 5)b47

bs7b36bosb1s = hih3biebir +hih3basbor + hih3barbos + hibaabssbor + hibasbsrbos +
h3h2bosbi7 4 h3bo2biebar + h3bacbosbiz + h3bosbsrbis + hEbiabsrbos + h2bosbisbsr +
h2b14b3sbos + h2bseboabis + ho(1,3,5)ho(1,2,3) + bsrb14bssbos
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bo2b1abasbsr = h3h3bisbi7 + hib1absebi7 + hib14bsrbis + hih3bagbor -+ hih3barbos +
hibaabssbor + hibaabsrbos + hibssboabar + hibosbagbsr + h3h2bosbiz + h3bo2bigbar +
h3baeboabi7 + h3bosbsrbis + ho(1,3,5)ho(1,2,3) + bo2b1abssbar

ha(1,2)ho(1,3,4) = hohibsrbig+hohs(1)*bi7+hobssbarbis+hobagbisbsr+hobsbarbis

ho(1,3)b2gbsr = hoha(1)bsbi7 + hoha(1)bazbis + heho(1,2,3)bss + ho(1, 3)bssbar

ho(1,2,4)bs57 = h0h2h4(1)b17 + ho(l)h4(1)b27 + ho(l, 2, 5)b47

bo2bssbarbis = hihibsrbos+hihs(1)*bor+hibssbarbos+hibacbsrbos+hibssbarbos+
hib02b37b16 + h3(1)2b02b17 + ho(l, 3, 4)2 + b02b35b47b16 + b02b46b15b37

bs7boabisbas = h3boabi6bi7+hEb14b16bar+hibaabarbos+h3boabsrbis+h3bosbisbar+
h2baab15bor + h2baabosbi7 + h2bi4basbor + h2b1abosbar + h2basboabi7 + h2bosbisbar +
h2b14b26bos+h2boabasbis+h1(1)*bsrbos+ho(1,2,5)ho(1, 2, 3)+baabosbsrbie+bs7b14b2bos

haheho(1,2,3)bss = hohaoha(1)bsebi7+hohaha(1)bsrbie+hohabiabssbar+hohabiabasbsy

ha(1,2)ho(1,2,4) = hohibasbi7+hohibigbar+hobasbasbiz+hobasbisbar+hobasbarbis+
hoba7b15b26

ho(l, 3, 5)h0(1, 2, 4)b14 = h,gh%b14b%6+h(2)b13b14b36b17+h3b13b14b37b16+h%h§b24b16b06+
h%h%bo4526516+h%h0(1, 2, 5)h0(1, 2, 3)—‘,—h%h%bo3biﬁ+h%bogbl4b%blﬁ+ho(1)2bl4bggbz7+
h0(1)2bl4b26b37 + ho(l, 3, 5)h0(1, 2, 5)()15

bo2bazbisbag = hghibisbi7 + hdbagbisbi7 + hih3bagbor + hihibarbos + h3bagbasbor +
h%b46b05b27+h%b25b47b06—|—h%b47b26b05+hib02b16b27+h3(1)2b03b17+h0(1, 3, 4)h0(1, 2, 4)—|—
bo2bacbisbar + bo2basbarbis

ho(1,2,3)bs7 = hoha(1,3)b17 + ho(1,3,5)bar + ho(1,2,5)bs7

h1(1,3)b3ebar = h1h3(1)bagbar + h1hz(1)barbas + hi(1, 3)bacbsy

bosbarbisbas = h3h3boeb17+h3basbosbiz+h3barbisbos +h3barbosbis+hib13barbos+
h3bo3bagb17 + h3bosbisbar + hi(1,3)%bo7 + ho(1,2,4)% + b13basbosbar + b13basbarbos +
b13ba7basbos + bagbozbasbiz + bagbozbisbar + bosbasbarbis

ha(1,2)ho(1,2,3) = hobssbasbi7+hobssbiebar+hobasbssbir+hobasbsrbis+Nobssbisbar+
hob15b26bsr

h6h0(1,2,3)b24b36 = hoh%hg(l)b26b17 + hohghg(l)b16b27 + hohz(l)bg4b36b17 +
hoha(1)baabsrbis + hoha(1)b14bsebar + hoha(1)biabagbsr + h3heho(1,2,3)bag

boabisbasbsr = hdbssbisbi7+h3bsebisbi7+h3bssbogbor+hibssbarbos+h3basbssbor+
hibasbszbos+hibssbosbar+hibasbsrbos+h3basbosbiz+hs(1)?boabir+ho(1,3,4)ho(1,2,3)+
bo2b35b16b27 + bo2basbarbis + bo2b3sbisbar

bosb1sbagbsr = hbasbiebir+hibisbasbiz+h3basbarbos+h3bssbosbiz+h3bssbosbir+
h3b15bs7bos + h3bsrbosbis + hibiabarbos + hiboabasbir + hiboabigbar + h2basbosbiz +
h2b15bosbar +hi (1, 3)hi(1,2)bor +ho(1,2,4)ho(1,2,3) + bo2basbisbar + bo2bisbasbar +
b13basb37bos + b13b36bosba7 + 013026037005 + bagbasboabi7 + bagboabisbar + bosbasbsrbis

ho(1,2,3)ba7 = hoha(1, 2)b17 + ho(l, 3, 4)b27 + ho(1,2,4)bsr

boab15bagbsr = h3b1sbarbos+h3basbosbir+h3bosbiebar+ha(1)*bosbir+h1(1,2)?bor+
ho(1,2,3)% 4+ baabsgbosbi7 + baabi5bsrbos + baabsrbosbis + bssbiabarbos + basboabasbiz +
b35b04b16b27 +b14b25b37b06 +-b14036 D05 b7 4-b14b26b37b05 +-b25b36b04b17 +b25boabsrbie +
b36boab15bo7

heho(1,2,3)basbss = hoha(1)bssbagbi7 + hoha(1)bssbigbar + hoha(1)basbssbir +
hoha(1)basbszbis + hoha(1)bssbisbar + hoha(1)bisbeebsr + heho(l, 2, 3)bssbags

ho(1,3,5)ho(1,2,4)bss = hghibasbigbir+hEh3barbig+hEh2bisbsrbis+hEhibssbis+
h2by3b2ab17+ h2bisbasbarbis+ h2bsrbasbisbis+h2ho(L, 3, 4)ho(L, 2, 3)+ho(1)2b2ebar +
h0(1)2b36b26b37 + ho(l, 3, 5)h0(1, 3, 4)b26
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ho(1,2,4)bsgbar = hoha(1,2)basbr7+hoha(1,2)bazbis+ho(1, 3, 4)basbar+ho(1,3,4)barbas+
ho(1,2,4)bssbsr

A.10. Relations of H X7 organized by patterns

This section is coordinating with Conjecture 2.20 and Theorem 2.22.
Relations (1).

h&b1a + h3bos + bo2baa = 0

h&bis + hibos + bo2bas + basboz = 0

hbis + h2bos + bo2bas + basbos + bosbss = 0

hgbi7 4+ hEbos + bo2bar + bsrbos + bosbsr + barbos = 0
h3b1s + h2bor + boabas + besbos + bosbss + bssbos + boabas = 0

Relations (2).

hoh1 =0

h3h0(1) =0

hoha (1) = 0
ho()in(1) = 0
hsho(1,3) = 0
ho()ha(1) = 0
hsho(1,2) = 0
hohi(1,3) = 0
ho(Dn(1,3) = 0
hohi(1,2) = 0
ho(1)h(1,2) = 0
hs(1)ho(1,3) =0
hs(1)ho(1,2) =0
ho(1,3)h1(1,3) =0
h1(1,3)ho(1,2) =0
ho(1,3)h1(1,2) =0
ho(1,2)h1(1,2) =0
h7ho(1,3,5) =0
h7ho(1,2,5) =0
hs(Dho(1,3) = 0
hoho(1,3,4) = 0
ho(1)h3(1,3) =0
hs(1)ho(1,2) =0
hoho(1,2,4) = 0
hohi(1,3,5) = 0
ho(1)h1(1,3,5) =0
hiho(1,2,3) = 0
hoha(1,2,5) = 0
ho(1)h1(1,2,5) =0
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(
(
(1)h1(1,2,3) =0
(1,3)h1(1,2,4) = 0
(1)ho(1,2,5) =0
(1,2)h1(1,2,4) = 0
(1)ho(1,3,4) =0
(1,3)h1(1,2,3) = 0
(1,3)ho(1,3,5) = 0
(1)ho(1,2,4) =0
(1,2)h1(1,2,3) = 0
(1,3)ho(1,2,5) = 0
0(1,3,5)h1(1,3,5) = 0
hs(1)ho(1,2,3) = 0
(
(
(
(
(
(
(
(
(
(
(
(
(

=
ot

ho

>

3

>

5
ho
hs

>

hi(1,3,5)ho(1,2,5) = 0
ho(1,3,5)h1(1,2,5) = 0
ha(1,3)ho(1,3,4) = 0
ho(1,2,5)h1(1,2,5) = 0
ha(1,3)ho(1,2,4) = 0
hn(1,3,5)h0(1,3,4) = 0
hi(1,3,5)h0(1,2,4) = 0
ha(1,3)ho(1,2,3) = 0
hi(1,2,5)ho(1,3,4) = 0
ha(1,2)ho(1,3,5) = 0
1
hy
hs3

>

1,2,5)ho(1,2,4) =0
1,3,5)ho(1,2,3) =0
1,2)ho(1,2,5) =0
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ho(1,3,5)hy(1,3,4) =
ho(1,2,5)h1(1,3,4) =
h1(1,2,5)h0(1,2,3)
ho(1,3,5)ha(1,2,4) =
ha(L,2)ho(1,3 4> )
ho(1,2,5)h1(1,2,4) = 0
hs(1,2)ho(1,2,4) =0
ho(1,3,4)h1(1,3,4) =0
hi(1,3,4)h(1,2,4) =0
hs(1,2)ho(1,2,3) =0
ho(1,3 )h1(1,2,3) = 0
ho(1, 5 ) (1,2,4) =
ho(1, 2,5)h1(1, 2,3) = 0
ho( 2, )hl( 2, )
h1(1,3,4)ho(1,2,3) =
hl( 2, )hO(lu ’ )
ho(1, 3 ,h1(1,2,3) =
ho(1,2,4)h1(1,2,3) =
h0(1,2,3)h1(1,2,3) 0

Relations (34).

hohabia + ho(1)bos =0

hohg(l)blzl + h%ho(l, 2) + ho(l, 3)b24 =0

hoha(1)bis + ho(1, 3)b2s + ho(1,2)bss =0

h4h0(1)b36 + ho(l, 3)b46 =0

hohahabig + haho(1)bog + ho(1,2)bsg =0

hohg(l)blﬁ + ho(l, 3)b26 + ho(l, 2)b36 =0

hoha(1,3)b14 + h2ho(1,2,5) + ho(1,3,5)bay = 0

hoha(1,2)b14 + h3ho(1,2,4) + ho(1,3,4)bag = 0

hoha(1,3)b1s + ho(1,3,5)bes + ho(1,2,5)bss =0

hoha(1,2)b1s + h3ho(1,2,3) + ho(1,3,4)bas + ho(1,2,4)bss = 0

h2ho(1,3,4) + ho(1)ha(1)bse + ho(1,3,5)bss =0

hohaha(1)big + h2ho(1,2,4) + ho(1)ha(1)bag + ho(1,2,5)bse = 0

hoha(1,3)b1s + h2ho(1,2,3) + ho(1,3,5)bas + ho(1,2,5)bss = 0

hohg(l, 2)b16 + ho(1,3,4)bas + ho(1,2,4)bss + ho(l, 2, 3)b46 =0
( ) (1)b37 + ho(l, 3, 5)b47 + ho(l, 3, 4)b57 =0

hohahya(1)b17 + ho(l)h4(1)bz7 + ho(l, 2, 5)b47 + ho(1,2,4)b57 =0

hth( 73)()17 + ho(l, 3, 5)b27 + ho(l, 2, 5)b37 + ho(l, 2, 3)b57 =0
hoha(1,2)b17 + ho(1,3,4)ba7 + ho(1,2,4)bs7 + ho(1,2,3)by7 =0
hgho( ,3)b58 +h0(17375)b68 = 0
hﬁho(l, 2)b5g + ho(l, 2, 5)b68 =0

hahsho(1)bsg + heho(1,3)bas + ho(1,3,4)bss = 0
hohahshebis 4+ haheho(1)bag + heho(1,2)bag + ho(1,2,4)bg = 0
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hohghg(l)blg + hgho(l, 3)b28 + hﬁho(l, 2)b38 + ho(l, 2, 3)b68 =0
ho(l)h4(1)b3g + ho(1,3,5)bss + ho(l, 3, 4)b5g =0

hohahya(1)b1g + ho(l)h4(1)bzg + ho(l, 2, 5)b4g + ho(1,2,4)bss =0
hth(l, 3)b18 + ho(l, 3, 5)b28 + ho(l, 2, 5)b38 + ho(l, 2, 3)b58 =0
hoha(1,2)b1s + ho(1,3,4)bag + ho(1,2,4)bss + ho(1,2,3)bsg =0

Relations (3B).

hihsbos 4+ h1(1)bo2 =0

h%ho(l, 2) + h4h0(1)b14 + ho(l, 3)b13 =0

h4h0(1)b04 + ho(l, 3)b03 + ho(l, 2)()02 =0

hlhg(l)bog + hl(l, 3)b02 =0

hihshsbos + h1hs(1)bos 4+ hi(1,2)bo2 = 0

h5h1(1)b05 + hl(l, 3)b04 + hl(l, 2)()03 =0

h%ho(l, 2,5) + ho(1)ha(1)b14 + ho(1,3,5)b13 =0

ho(l)h4(1)bo4 + ho(1,3,5)bos + ho(l, 2, 5)b02 =0

h%ho(l, 2, 4) + h4h6h0(1)b16 + ho(l)h4(1)b15 + ho(l, 3, 4)b13 =0

h4h6h0(1)b06 + ho(l)h4(1)b05 + ho(l, 3, 4)b03 + ho(l, 2, 4)b02 =0

h2h0(1 3 4) + hgho(l 3)b36 + ho(l 3, 5)b35 =0

hgho(l 3)bag + ho(1,3,5)bas + ho(1,3,4)b2g =0

h2h0( 2 3) + heho(1, 3)b16 + ho(l 3, 5)b15 + ho(1,3,4)b14 =0

( , )boﬁ + ho(l 3 5)b05 + ho(l 3 4)b04 + ho(l, 2, 3)b02 =0
hzho( ,2, 3) + hgho(l 2)b26 + ho(l, 2, 5)b25 + ho(l, 2, 4)b24 =0
hﬁho(l, 2)(716 + ho( y 2, 5)b15 + ho( y 2, 4)b14 + hO( ,2, 3)b13 =0
(1, 2)bos + ho(1,2,5)bos + ho(1,2,4)bos + ho(l, 2, 3)b03 =0

h hg(l, 3) 03 + hl(l, 3, 5)b02 =0
h1h3h5(1)b05 + hlhg(l, 3)b04 + hl(l, 2, 5)b02 =0
hl(l)hg,(l)bof, + hi(1,3,5)bos + hl(l, 2, 5)b03 =0
hlhg(l, 2)bos + h1(1,3,4)bg2 = 0
hihshshrzbor + hihshs(1)bos + h1hs(1,2)bos + h1(1,2,4)bg2 = 0
h5h7h1(1)b07 + hl(l)h5(1)b06 + hl(l, 3, 4)b04 + hl(l, 2, 4)b03 =0
hih7hs(1)bo7 + hihs(1, 3)b06 + hihs(1, 2)b05 + hl(l, 2, 3)b02 =0
h7h1(1, 3)bor + h1(1,3,5)bos + h1(1,3,4)bos + hl(l, 2, 3)b03 =0
hrh1(1,2)bor + h1(1,2,5)bos + h1(1,2,4)bos + h1(1,2,3)bos = 0

Relations (4A).
haho(L,3) + ho(1)ha(1) = 0
haho(1,3,5) 4 ho(1)ha(

(1,3,5) + ha(1)ho(
haho(1 72 5) + ha(1)ho(
(1,3,4) + ho(1)ha(
ha(1 )h0(173=5)+h0(
(

(

b
b

ha(1)ho(1,2,5) + ha
ha(1)ho(1,3,4) + ho
hahaho(1,2,3) + ha(1)ho(1,2,
ha(1,3)ho(1,3,4) + ha(1,2)ho
haha(1)ho
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Relations (4B).
hO(la 3)h0(15 27 5) + h’0(17 2)17’0(17 35 5) =0
h4h0(1)h0(17 27 3) + hO(lu 3)h0(17 27 4) + h0(17 2)h0(17 37 4) =0

Relations (5).

hoho(1) + habos = 0

hobis + haho(1) =0

h3bos + ho(1)* + bozbiz = 0

hoho(1,3) + ha(1)boz = 0

h0h4b14 + ho(l)hg(l) =0

hoho(l, 2) + hohabog + h2(1)b03 =0

h%h4b04 + h4b02b14 + ho(l)ho(l, 3) =0

h4h0(1, 3) + ho(l)b35 =0

hab13bos + habosbis + ho(1)ho(1,2) =0

hohabus + haho(1,2) + ho(1)bas = 0

hoh2bis + hobasbia + ha(1)ho(1,3) = 0

h3h3bos + h3bssbos + h3bo2bis + ho(1,3)? + boobssbia = 0

hobaabis + hobiabas -+ ha(1)ho(1,2) = 0

h2b13bos + h2bosbis + ho(1, 3)Ao(1,2) + bisbasbos + basbosbia = 0

h3b14bos + h3boab1s + ho(1,2)? + bi3baabos + b13basbosa + baabosbis + bosbiabas = 0

hoho(1,3,5) + ha(1, 3)bgz = 0

hoha(1)b14 + ho(1)h2(1,3) =0

hoho( ,2, 5) + h2h4(1)b04 + h2(1, 3)()03 =0

h%h4(1)b04 + ho(l)ho(l, 3, 5) + h4(1)b02b14 =0

heho(1)bzs + ha(1)ho(1,3) =0

ho(L)ho(1,2,5) 4+ ha(1)b13bos + ha(1)bosbrs =0

hohahebig + heho(1)bas + h4(1)h0(1, 2) =0

hoho(1,3,4) + ha(1,2)boz = 0

hohahgbis + hoha(1)bis + ho(1)ha(1,2) = 0

hohghﬁblG + hohgbi4bse + ho(l, 3)ha(1, 3) =0

hoho(l, 2, 4) + hohghgbos + h2h4(1)b05 + hz(l, 2)bos =0

h2hahabos + h2ha(Dbos + hahebosbis + ho(1)ho(1,3,4) + ha(1)bosbrs = 0

h%hghgboﬁ + h%hgbggb(m + h%hgbogblﬁ + hgboob14bse + ho(l, 3)ho(1,3,5) =0

hohebaabis + hohebiabas + ha(1,3)ho(1,2) =0

hahebiabos + hahabosbis + ho(1)ho(1,2,4) + ha(1)bisbos + ha(1)besbis = 0

h3hebisbos + h3hebosbis + hebisbssboa + hebosbiabss + ho(1,3)ho(1,2,5) = 0

hoho(l, 2, 3) + heha(1)bos + hg(l, 3)bos + ha(1, 2)b04 =0

h3heb1abos + h3heboabis + hebisbaabos + hebisboabas + hebaabosbis + hebosbiabas +
ho(1,2)ho(1,2,5) =0

heho(1,3,5) + ho(1,3)b57 =0

hahebiabos + haheboabis + ho(1)ho(1,2,3) 4 ha(1)b14bos + ha(1)bosbis = 0

hohebssbie + hohebsebis + ho(1,3)ha(1,2) =0

heho(1,2,5) 4+ ho(1,2)bs7 =0

1
1
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h%h6b35b06 + h%h6b36b05 + hebo2bssbis + hebozbsebis + ho(1,3)ho(1,3,4) =0

h0h6b25b16 + h0h6b15b26 + ho(l, 2)h,2(1, 2) =0

hebi3bssbos + hebi3bsebos + hebssbosbis + hebosbssbis + ho(l,3)ho(1,2,4) =0

h3hebisbos + h3hebosbie + hebisbasbos + hebisbagbos + hebosbasbis + hebosbisbas +
ho(1,2)ho(1,2,4) =0

haho(1)bs7 + heho(1,3,4) + ho(1,3)bar =0

h3hebisbos + h3hebosbie + hebssbiabos + hebssbosbie + hebiabsebos + hebssbosbis +
ho(1,3)ho(1,2,3) = 0

hohshabiz + haho(Dbar + heho(1,2,4) + ho(1,2)bar = 0

hebaab15b06 + hebasbosbie + heb14basbos + heb14bagbos + hebasboabis + hebosbisbag +
ho(1,2)ho(1,2,3) = 0

hohg(l)bn + hﬁho(l, 2, 3) + ho(l, 3)bar + ho(1, 2)b37 =0

h2ho(1)bs7 + ho(1)bs7bss + ha(1)ho(1,3,5) = 0

hohah2b17 + hohabstbis + h3ho(1)bar + ho(1)bsrbas + ha(1)ho(1,2,5) =0

hoh%h%bn + h0h§b57b16 + h0h§b14b37 + hobs7b14b36 + hg(l, 3)ho(1,3,5) =0

hih3h2bor + hih3bsrbos + hihEbosbsr + hibszbseboa + hih2boabir + h3boobsrbis +
hboab1abs7 + ho(1,3,5)% 4 boabs7biabss = 0

hohZbaabiz + hoh2biabar + hobasbsrbis + hobsrbiabas + ha(1,3)ho(1,2,5) = 0

ho(l)b46b37 + ho(l)b36b47 + h4(1)h0(1, 3, 4) =0

h3h2b13bo7 + h3hZbosbi7 + h3b13bs7bos + hibsrbosbie + habi3boabsr + hibosbi4bsr +
ho(1,3,5)ho(1,2,5) + bi3bsrbzsbos + bs7bo3bi4bss = 0

hohabagbi7 + hohaobazbis + ho(1)bagbar + ho(1)barbas + ha(1)ho(1,2,4) =0

h3h2b14bor + h3h2boab17 + h3bs7b14bos + h3bs7boab1s + h2bisbaabor + hEbisboabar +
h2basbosbi7 + hEbosbiabar + ho(1,2,5)2 + bi3baabsrbos + b13bs7boabos + baabsrbosbis +
bs7b03b14bag = 0

hoh2bssbir + hoh2bisbsy + hobssbsrbis + hobsrbssbis + ha(L, 2)ho(1,3,5) = 0

hohabssbi7 + hohabarbis + ho(1)bssbar + ho(1)basbsr + ha(1)ho(1,2,3) =0

h3h2bssbor + hih2bsrbos + h3bssbsrbos + hibs7bsebos + h2boobssbiz + hEboabisbsr +
ho(1,3,5)ho(1,3,4) + bozbssbsrbis + bo2bs7b36b15 = 0

hoh2basbi7 4+ hohZbisbar + hobsrbasbis + hobsrbisbas + ha(1,2)ho(1,2,5) = 0

h2b13bssbor + h2bi3bsrbos + hEbssbosbiz + h2bosbisbsr + ho(1,3,5)ho(1,2,4) +
b13b35b57b0s + b13bs7b36bos + 035057003016 + bs7bo3b3eb1s = 0

h§b13b46b07 + h§b13b47b06 + h§b46b03b17 + h§b03b47b16 + ho(1,2,5)ho(1,3,4) +
b13b46boabs7 + b13b36ba7bos + bagbo3b1abs7 + bozb14bzcbar = 0

h3h2b15bo7 + h3h2bosbi7 + h3bsbi5bos + h3bs7bosbis + h2bisbasbor + hEbisbosbar +
h2bosbasbi7+h2bosbisbar+ho(1,2,5)ho(1, 2, 4)+b13bs7basbos+b13b57b26b05+b57b03b25b16+
b57b03b15b26 = 0

hoh3bagbir + hoh3biebar + hobaabssbi7 + hobaabsrbis + hobiabssbar + hobiabagbsr +
ha(1,3)ho(1,2,3) =0

h3h2b15bo7 + h3h2bosbi7 + h3bs7bi5bos + h3bs7bosbis + h2bssbiabor + hEbssboabiz +
h2b14b37bos+h2boabisbsr+ho(1,3,5)ho(1, 2, 3)+bssbs7b14bos+b35b57b04b16+b57b14b36b05+
bs7b3eboabis = 0

hoh3bseb17 + hoh3bsrbis + hobssbasbir + hobssbarbie + hobagbisbsy + hobsebarbis +
ha(1,2)ho(1,3,4) =0
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hih3bsebor + hih3bsrbos + hibssbasbor + hibssbarbos + h3bagbszbos + hibssbarbos +
h3bo2bsebi7 + hiboabsrbis + ho(1, 3,4)? + boabssbagbir + boobssbarbie + boobasbisbsr +
bo2b36ba7b1s = 0

h3b24b15b07 + hEb2abosbi7 + hEb14basbor + h3b14bosbar + h3basboabiz +h3boabisbar +
ho(1,2,5)ho(1,2,3)+b24b57b15b06 +b24b57b05b16+b57b14b25b06+b57b14b26 D05 +b57b25b04b16+
bs7bo4b15b26 = 0

hoh3basbi7 + hoh3bisbar 4+ hobagbasbi7 + hobagbisbar + hobasbarbis + hobarbisbas +
h2(17 2)17’0(15 27 4) =0

hibisbsebor + hibisbsrbos + hibosbssbiz + hibosbsrbis + ho(1,3,4)ho(1,2,4) +
b13b35b46b07 +b13b35b47b06 4 b13046b37b05 413036 b47b05 +b35b16b03b17 +b35b03b47016 +
bsebozb15b37 + bo3bzebarbis = 0

h3h3b16bor + h3h3bob17 + h3bagbisbor + h3basbosbir + h3bazbisbos + h3barbosbis +
hibi3basbor + hibisbarbos + hibosbagbiz + hibosbisbar + ho(1,2,4)% + bisbasbasbor +
b13b46b05b27 + 013025047006 +b13ba7b26bos +ba6b03b25b17 +ba6b03b15027 +bo3basbazbis +
bo3ba7b15b26 = 0

hob3sbaebi7 + hobssbi6baz + hobasbsbi7 + hob2sbsrbie + hobsebisbar + hobisbasbsr +
h2(17 2)h0(17 2, 3) =0

h3h3b16bor + h3h3bob17 + h3bagbisbor + h3basbosbir + h3barbisbos + hibarbosbis +
h3b14bsebor+hibiabsrbos+hibssboabi7+h3boabsrbig+ho(1,3,4)ho(1, 2, 3)+bssbagbiabor+
b35b46b04b17 + 3501404706 + b35ba7b0ab16 + 046014037005 + 046004015037 +b14b36ba7b05 +
b36ba7bosb1s = 0

h3baabisbor + hib2abosbiz + hibiabasbor + hibiabarbos + hiboabasbi7r + hibosbisbar +
ho(1,2,4)ho(1,2, 3)+b24baeb15bor+b24ba6b05b17+b24ba7b15b06 +b24ba7b0s b16+bagbrabasbor+
ba6b14b05b27 +b16b25b04b17 +bagboabi5b27 +b14b25b47006 +b14b47b26b05 +b25barboabrs +
ba7bosb15b2s = 0

h3basb16bor + h3basbosbi7 + h3b15basbor + h3b15barbos -+ h3basbosbi7 + h3bosbigbar +
ho(1,2,3)% 4 basbssbibor + b2abssbosbi7 + baabssbisbor + baabsebosbiz + baabisbsrbos +
b24b37b05b16+b35014b26b07 +-b35014b27b06 4 b35b04b26b17 +b35b04b16b27 +b14b25b36b07 +
b14b25b37b06 +b14b36b05b27 +-b14b26b37b05 4 b25036b04b17 +b25b04b37b16 +b36boab15b27 +
bosb15b26b37 = 0

Relations (6).

hihsho(1,2) + h1(1)ho(1, ) 0
hihsho(1,2,5) + hi(1)ho(1,3,5) =
hnhsho(1,2,4) +h1(1)h0(1,3 4) =
hahsho(1,3,4) + hs(1)ho(1,3,5) =
hahsho(1,2,4) + ha(1)ho(1,2,5) = 0

h1h3h5h0(1, 2, 4) + hl(l, 3)h0(1, 3, 5) =0
h5h'1(1)h0(17 27 4) + hl(la 3)h0(17 27 5) =0
h1h3h5h0(1,2,3)+h1( 2)ho(1,3, 5) —0

hshi(1)ho(1,2,3) + hi(1,2)ho(1,2,5) =

hihs(1 )h0(1,2,4)+h1(1,3)h0(1 ], 4)

h h3(1)h0(1,2,3)+h1(1,2)h0(1 3,4) =
hi(1,3)ho(1,2,3) + hi (1, 2)ho(1, ):
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