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Abstract

Let A denote the mod 2 Steenrod algebra. In this paper we make calculations to completely determine the Ext groups
Ext4,∗

A
(Z/2,Z/2) and also to determine the structure of Z/2-submodule of decomposable elements in Ext5,∗

A
(Z/2,Z/2).
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1. Introduction

Let A denote the mod 2 Steenrod algebra. The Ext groups Exts,tA (Z/2,Z/2) are well known to form the E2-term
of the Adams spectral sequence for computing the 2-primary stable homotopy groups of spheres [1]. Here s is the
homological degree and t is associated with the degree in the Steenrod algebra A. We will simply write Exts,tA to
denote Exts,tA (Z/2,Z/2) and let Exts,∗A denote

⊕
t Exts,tA .

The structure of Exts,∗A for s � 3 is known and this will be recalled in a moment. The purpose of this paper is to make

calculations to determine completely Ext4,∗
A and also to determine the structure of Z/2-submodule of decomposable

elements in Ext5,∗
A (Z/2,Z/2).

We shall describe these results in terms of the mod 2 lambda algebra Λ [3]. Recall that Λ is a bigraded differential
algebra over Z/2 generated by λj ∈ Λ1,j , j � 0, with relations

(a) λjλ2j+1+m =
∑
ν�0

(
m − ν − 1

ν

)
λj+m−νλ2j+1+ν

for m � 0 and the differential

(b) δ(λk) =
∑
ν�0

(
k − ν − 1

ν + 1

)
λk−ν−1λν on the generators λk
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and that Hs,t (Λ) = Hs,t (Λ, δ) = Exts,t+s
A . From (a) we see the set {λj1 · · ·λjs | ji � 2ji+1} is a Z/2-base for Λ. Such

monomials in the λj
′s are said to be admissible. There is an operation Sq0 :Λ → Λ given by

(c) Sq0(λj1 · · ·λjs ) = λ2j1+1 · · ·λ2js+1,

where λj1 · · ·λjs is not necessarily admissible. This operation respects the relations in (a) and commutes with the
differential in (b). So it induces a map

Sq0 :Hs,t−s(Λ) = Exts,tA → Hs,2t−s(Λ) = Exts,2t
A

which is precisely the first Steenrod operation Sq0 : Exts,tA → Exts,2t
A in [7]. In what follows, (Sq0)i :Λ → Λ (or

(Sq0)i :H ∗,∗(Λ) → H ∗,∗(Λ)) denotes the composite Sq0 · · ·Sq0

——i——
if i > 1, is Sq0 if i = 1 and is the identity map if

i = 0.
In (1.1) below we list some classes in Ext∗,∗

A where each chain in Λ as given is easily seen to be a cycle (by direct
computations from (a) and (b)) representing the corresponding class as named.

(1.1) (1) hi = {
λ2i−1 = (Sq0)i(λ0)

} ∈ Ext1,2i

A ,

that corresponds to the generator Sq2i ∈ A, i � 0.

(2) ci = {
(Sq0)i(λ2λ

2
3)

} ∈ Ext3,2i+3+2i+1+2i

A , i � 0.

(3) di = {
(Sq0)i(λ6λ2λ

2
3 + λ2

4λ
2
3 + λ2λ4λ5λ3 + λ1λ5λ1λ7)

} ∈ Ext4,2i+4+2i+1

A , i � 0.

(4) ei = {
(Sq0)i

(
λ8λ

3
3 + λ4(λ

2
5λ3 + λ7λ

2
3) + λ2(λ3λ5λ7 + λ9λ

2
3)

)} ∈ Ext4,2i+4+2i+2+2i

A , i � 0.

(5) fi = {
(Sq0)i

(
λ4λ0λ

2
7 + λ3(λ9λ

2
3 + λ3λ5λ7) + λ2λ4λ5λ7

)} ∈ Ext4,2i+4+2i+2+2i+1

A , i � 0.

(6) gi+1 = {
(Sq0)i

(
λ6λ0λ

2
7 + λ5(λ9λ

2
3 + λ3λ5λ7) + λ3(λ5λ9λ3 + λ11λ

2
3)

)} ∈ Ext4,2i+4+2i+3

A , i � 0.

(7) pi = {
(Sq0)i(λ14λ5λ

2
7 + λ10λ9λ

2
7 + λ6λ9λ11λ7)

} ∈ Ext4,2i+5+2i+2+2i

A , i � 0.

(8) D3(i) = {
(Sq0)i(λ22λ1λ7λ31 + λ16λ

3
15 + λ14λ9λ7λ31)

} ∈ Ext4,2i+6+2i

A , i � 0.

(9) p′
i =

{
(Sq0)i

(
λ38λ1λ

2
15 + λ30λ9λ

2
15 + λ28λ11λ

2
15 + λ22λ17λ

2
15

+ λ20λ19λ
2
15 + λ14λ1λ23λ31 + λ12λ19λ23λ15

)}
∈ Ext4,2i+6+2i+3+2i

A , i � 0.

Theorem 1.2 below recalls the already known result on Exts,∗A for s � 3.

Theorem 1.2. (See [2,9].) The algebra Exts,∗A for s � 3 is generated by hi �= 0 and ci �= 0 for i � 0, where hi , ci are
as in (1.1)(1) and (1.1)(2), and subject only to the relations hihi+1 = 0, hih

2
i+2 = 0 and h3

i = h2
i−1hi+1. In particular,

{ci | i � 0} is a Z/2-base for the indecomposable elements in Ext3,∗
A .

Now we state our main results of the paper as follows. Theorem 1.3 is the result on Ext4,∗
A and Theorem 1.4 is the

result on Ext5,∗
A .

Theorem 1.3.

(1) The subalgebra E of the algebra Exts,∗A for s � 4 generated by hi and ci for i � 0 is subject only to the relations
in Theorem 1.2 together with the relations: h2

i h
2
i+3 = 0, hj ci = 0 for j = i − 1, i, i + 2 and i + 3.

(2) The set S of the classes di , ei , fi , gi+1, pi , D3(i) and p′
i for i � 0 in (1.1)(3) through (1.1)(9) is a Z/2-base for

the indecomposable elements in Ext4,∗
A .

Here in (1.3)(2), “S is a Z/2-base for the indecomposable elements in Ext4,∗
A ” means that the projection of S to

Ext4,∗
/E is a Z/2-base where E is as in (1.3)(1).
A
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Theorem 1.4. The subalgebra Ē of the algebra Exts,∗A for s � 5 generated by hi , ci , di , ei , fi , gi+1, pi , D3(i) and p′
i

for i � 0 is subject only to the relations in Theorem 1.3 (note that these include those in Theorem 1.2) together with
the following relations (1) through (39) where classes, if not specified to be zero, are all non-zero, and where j � 0
except (34) in which j � 1.

(1) h2
j+4cj = 0, (2) hj+3hj cj+2 = 0, (3) h2

j+1cj = 0,
(4) hjdj+1 = 0, (5) hj+3dj = 0, (6) hj+4dj = 0, (7) hj ej+1 = 0,
(8) hj+4ej = 0, (9) hj+1fj = 0, (10) hj+3fj = 0, (11) hj+4fj = 0,

(12) hj+3gj+1 = 0, (13) hjpj+1 = 0, (14) hj+1pj = 0, (15) hj+2pj = 0,
(16) hj+4pj = 0, (17) hj+5pj = 0, (18) hjD3(j + 1) = 0, (19) hjD3(j) = 0,
(20) hj+5D3(j) = 0, (21) hj+6D3(j) = 0, (22) hjp

′
j+1 = 0, (23) hj+2p

′
j = 0,

(24) hj+3p
′
j = 0, (25) hj+6p

′
j = 0, (26) hj+4hj+1cj = hj+3ej ,

(27) hj+4hj cj+3 = hi+5p
′
i , (28) h2

j+5cj = hj+1p
′
j ,

(29) hjdj+2 = hj+3D3(j), (30) hj+1dj+1 = hjpj ,
(31) hj+2dj+1 = hj+4gj+1, (32) hj+2dj = hj ej , (33) hj+1ej = hjfj ,
(34) hj+1ej = hjfj = h2

j−1cj+1, (35) hj+2ej = hjgj+1,
(36) hjfj+2 = hj+4p

′
j , (37) hjfj+1 = hj+3pj ,

(38) hj+2fj = hj+1gj+1, (39) hj+3gj+2 = hj+5gj+1.

The result (1.3) is announced in [6]. We apologize for the delay of its proof given here. Some of the relations at
Ext5,∗

A in (1.4) are known [8]. Here we will give complete proofs of all of these relations.
Theorems 1.3 and 1.4 will be proved by making calculations for the Ext groups

Exts,∗A (P ) = Exts,∗A

(
H̃ ∗(P ),Z/2

)
over the Steenrod algebra A where P denotes the infinite real projective space RP ∞. More precisely, we are going to
make calculations in a spectral sequence {Ei,s,t

r } for Exts,∗A (P ) with s � 4 from which to deduce (1.3) and (1.4). This
spectral sequence is considered in [4] where the differentials

(∗) Ei,s,t
r

dr−→ Ei−r,s+1,t−1
r for s � 2

are determined. Our main work here is to determine completely the differentials

(∗∗) Ei,3,t
r

dr−→ Ei−r,4,t−1
r

in the spectral sequence. To get (∗∗) we need to recall (∗). All of these will be given in the next section. In Section 3
we recall a connection from Ext∗,∗

A (P ) to Ext∗,∗
A and also a connection from Ext∗,∗

A back to Ext∗,∗
A (P ) and use the

differentials (∗) and (∗∗) in Section 2 plus some extensive calculations to complete the proofs of Theorems 1.3
and 1.4.

2. Some calculations in a spectral sequence for Ext∗,∗
A (P )

Given a locally finite graded left module N over the mod 2 Steenrod algebra A. The lambda algebra Λ in Section 1
can also be used to compute the Ext groups Exts,tA (N) = Exts,tA (N,Z/2) and this is described as follows. Let N∗ be
the Z/2-dual of N which is a right A-module by transposing the left A-module structure on N . Consider N∗ ⊗ Λ and
bigrade it by

(N∗ ⊗ Λ)s,t =
∑

k

Nk ⊗ Λs,t−k.

For any sequence I = (i1, . . . , is) of non-negative integers we write λI to denote λi1 · · ·λis ∈ Λ. For m∗ ∈ N∗ write
m∗λI to denote m∗ ⊗ λI ∈ N∗ ⊗ Λ and let m∗ = m∗1. N∗ ⊗ Λ is a bigraded differential right Λ-module with differ-
ential δ given by

(1) δ(m∗λI ) = m∗δ(λI ) +
∑

m∗Sqj+1λjλI .
j�0
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Then Exts,t+s
A (N) = Hs,t (N∗ ⊗ Λ,δ), and the differential in (1) induces a right action of Ext∗,∗

A on Ext∗,∗
A (N) making

the latter a right Ext∗,∗
A -module.

We will be interested in N = H̃ ∗(P ), the reduced mod 2 cohomology of the infinite real projective space P . To
simplify, let Exts,tA (P ) = Exts,tA (H̃ ∗(P )). We recall that N∗ = H̃∗(P ), the reduced mod 2 homology of P , has

H̃k(P ) =
{

Z/2 for k � 1,

0 otherwise

and that if ek is the generator of H̃k(P ) = Z/2 for k � 1 then the Steenrod algebra A acts on H̃∗(P ) from the right by

(2) ekSql =
(

k − l

l

)
ek−l .

From (1) and (2) we see the differential δ on H̃∗(P ) ⊗ Λ is given by

(3) δ(ekλI ) = ekδ(λI ) +
∑
j�0

(
k − j − 1

j + 1

)
ek−j−1λjλI .

Thus Exts,t+s
A (P ) = Hs,t (H̃∗(P ) ⊗ Λ,δ) with δ given as in (3).

Define a filtration {F(i)}i�1 of the differential Λ-module H̃∗(P ) ⊗ Λ by (F (i)) = ∑
1�k�i H̃k(P ) ⊗ Λ. Clearly,

F(i)/F (i − 1) ∼= ΣiΛ(F(0) = 0); so Hs,t (F (i)/F (i − 1)) = ΣiExts,t+s−i
A . This filtration gives rise to a spectral

sequence {Ei,s,t
r }r�1 with

(4) E
i,s,t
1 = Hs,t

(
F(i)/F (i − 1)

) = ΣiExts,t+s−i
A

and
⊕

i�1 E
i,s,t∞ ∼= Exts,t+s

A (P ) as Z/2-modules. For each r � 1 the differential dr of the spectral sequence goes from

E
i,s,t
r to E

i−r,s+1,t−1
r . We will simply write E

∗,s,∗
r

dr−→ E
∗,s+1,∗
r to indicate that we are considering these differentials

for a fixed s and for all i, t and r .
From (4) we see that, for a given s > 0, if Exts

′,∗
A are known for all s′ � s (and all ∗) then one can compute the

differentials

E∗,s,∗
r

dr−→ E∗,s+1,∗
r for s � s − 1.

In particular, one can compute the differentials

(∗) E∗,s,∗
r

dr−→ E∗,s+1,∗
r for 0 � s � 2

since Exts
′,∗

A for s′ � 3 are known by Theorem 1.2. This has been completely done in [4]. In order to compute the next

stage differentials E
∗,3,∗
r

dr−→ E
∗,4,∗
r , which will be the main work here, we need to recall from [4] the results on the

differentials (∗). These will be stated in (2.1), (2.2) and (2.3) below.
We will use some conventions in stating these results. Note that, by (4), if α is a basis element in Exts,∗A then

eiα = ei ⊗ α is a basis element in E
i,s,∗
1 . We will write eiα → ei−rβ , where ei−rβ is a basis element in E

i−r,s+1,∗
1 ,

to mean that both eiα and ei−rβ survive to E
∗,∗,∗
r and dr(eiα) = ei−rβ in the spectral sequence. Such a differential

is a non-trivial one. If dr(eiα) = 0 for all r > 0 so that eiα is an infinite cycle then we write eiα → 0. We will only
consider those eiα with eiα → 0 which are not boundaries so that they survive to E

∗,∗,∗∞ representing non-trivial
elements in Ext∗,∗

A (P ).
From Theorem 1.2 we have the following.

(5) (i) {ei = ei1 | i � 1} is a Z/2-base for E
∗,0,∗
1 ,

(ii) {eihj | i � 1, j � 0} is a Z/2-base for E
∗,1,∗
1 ,

(iii) {eihjhk | i � 1,0 � j = k or 0 � j < k − 1} is a Z/2-base for E
∗,2,∗
1 ,

(iv)

{
eihjhkhl |

(
i � 1, 0 � j < k − 1 < l − 2 or

0 � j = k < l − 1 or 0 � j < k − 2 = l − 2

)}
∪ {eicj | i � 1, j � 0} is a

Z/2-base for E
∗,3,∗

.
1
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The results on the differentials (∗) are recalled as follows. (2.1), (2.2) and (2.3) record all the non-trivial differentials
for (∗). From these all the non-trivial infinite cycles in E

∗,s,∗∞ for 0 � s � 2 will be extracted and listed in (2.1), (2.2)

and (2.3) that follow.

(2.1.1) e2l (2m+1)−1 → e2l+1m−1hl for m � 1, l � 0.

(2.2.1) e2l (2m+1)−1hj → e2l+1m−1hlhj

for m � 1, 0 � l < j − 1 or 0 � l = j.

(2.2.2) e2l+nm+2l−1hl+1 → e2l+nm−2l−1h
2
l+1 for m � 1, l � 0 and n � 2.

(2.2.3) e2l+n+1m+2l+n−2l−1hl+1

→
{

e2l+n+1m−2l−1hl+1hl+n for m � 1, l � 0, n � 3,

e2l+3m−2l+1−2l−1h
2
l+2 for m � 1, l � 0, n = 2.

(2.3.1) e2mh2
0 → e2m−1h

3
0 for m � 1.

(2.3.2) e2j+2m+2j −1h
2
j → e2j+2m−2j+1−2j−1−1cj−1 for m � 1, j � 1.

(2.3.3) e2j+3m+2j+1+2j −1h
2
j → e2j+3m−2j+1−2j −2j−1−1hj−1h

2
j+2

for m � 1, j � 1.

(2.3.4) e2j+n+1m+2j+n−2j −1h
2
j → e2j+n+1m−2j −1h

2
j hj+n

for m � 1, j � 1 and n � 3.

(2.3.5) e2j+1m+2j−1−1h
2
j → e2j+1m−2j−1−1h

3
j for m � 1, j � 1.

(2.3.6) e2j m+2j−1+2j−2−1h
2
j → e2j m−1cj−2 for m � 1, j � 2.

(2.3.7) e2j+1m+2j−2−1h
2
j → e2j+1m−2j +2j−2−1h

3
j for m � 1, j � 2.

(2.3.8) e2l (2m+1)−1h
2
j → e2j+1m−1hlh

2
j for m � 1, 0 � l � j − 3.

(2.3.9) e2j (2m+1)−1hjhk → e2j+1m−1h
2
j hk for m � 1, 0 � j � k − 2.

(2.3.10) e2j+nm+2j−1−1hjhk → e2j+1m−2j−1−1h
2
j hk

for m � 1, 1 � j � k − 2 and n � 1.

(2.3.11) e2l+nm+2n−2j−1−1hjhk

→

⎧⎪⎨
⎪⎩

e2l+nm−2j−1−1hjhnhk for m � 1, l � 1, 1 � j � n − 2
and n < k − 1 or k = n � j + 3,

e2l+j+1m−2j+1+2j−1−1h
2
j+1hk for m � 1, l � 1

and 1 � j = n − 1 � k − 3.

(2.3.12) e2l+km+2k−1−2j−1−1hjhk

→
{

e2l+km−2k−1−2j−1−1hjh
2
k for m � 1, l � 1, 1 � j � k − 3,

e2l+j+2m−2j+2−2j−1−1cj for m � 1, l � 1, 1 � j = k − 2.

(2.3.13) e2l+k+1m+2l+k−2k−1−2j−1−1hjhk → e2l+k+1m−2k−1−2j−1−1hjhkhl+k

for m � 1, l � 2, 1 � j � k − 2.

(2.3.14) e2k+2m+2k+2k−1−2j−1−1hjhk → e2k+2m−2k−2k−1−2j−1−1hjh
2
k+1

for m � 1, 1 � j � k − 2.

(2.3.15) e2l+j+2m+2j+2−2j−1−1hjhj+2 → e2l+j+2m−2j+1−2j −2j−1−1h
3
j+2

for m � 1, l � 1, j � 1.

(2.3.16) e2l (2m+1)−1hjhk → e2l+1m−1hlhjhk for 0 � l < j − 1 < k − 2.

Note that the differentials above from (2.1.1) through (2.3.16) are all of the form ef (m)α → eg(m)β for a common
integral variable m which is � 1 so that g(m) > 0. If we put m = 0 in these differential formulas then g(0) < 0. Thus
ef (0)α → 0, that is, ef (0)α is an infinite cycle provided f (0) > 0 which is satisfied for (2.1.1) through (2.3.16) except
(2.3.1). These infinite cycles ef (0)α are listed in (2.1.1) through (2.3.16) below (there is no (2.3.1)).
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(2.1.1) e2l−1, l � 1. (2.2.1) e2l−1hj , 1 � l < j − 1 or 1 � l = j.

(2.2.2) e2l−1hl+1, l � 1. (2.2.3) e2l+n−2l−1hl+1, l � 0, n � 2.

(2.3.2) e2j −1h
2
j , j � 1. (2.3.3) e2j+1+2j −1h

2
j , j � 1.

(2.3.4) e2j+n−2j −1h
2
j , j � 1, n � 3. (2.3.5) e2j−1−1h

2
j , j � 2.

(2.3.6) e2j−1+2j−2−1h
2
j , j � 2. (2.3.7) e2j−2−1h

2
j , j � 3.

(2.3.8) e2l−1h
2
j , 1 � l � j − 3. (2.3.9) e2j −1hjhk, 1 � j < k − 1.

(2.3.10) e2j−1−1hjhk, 2 � j < k − 1.

(2.3.11) e2n−2j−1−1hjhk, 1 � j = n − 1 < k − 2 or 1 � j < n − 1 < k − 2

or 1 � j < k − 2 = n − 2.

(2.3.12) e2k−1−2j−1−1hjhk, 1 � j < k − 1.

(2.3.13) e2l+k−2k−1−2j−1−1hjhk, 1 � j < k − 1 and l � 2.

(2.3.14) e2k+2k−1−2j−1−1hjhk, 1 � j < k − 1.

(2.3.15) e2j+2−2j−1−1hjhj+2, j � 1.

(2.3.16) e2l−1hjhk, 1 � l < j − 1 < k − 2.

We recall that the differentials in (2.1.1) through (2.3.16) are of the form ef (m)α → eg(m)β . Call ef (m)α a source el-
ement and eg(m)β a boundary in the spectral sequence. We also recall that (2.k), for 1 � k � 3, consists of the (2.k.j)′s ,
that is, (2.k) = ⋃

j (2.k.j). Similarly, (2.k) = ⋃
j (2.k.j). For each k with 0 � k � 2 let S(k) (resp., B(k + 1)) be the

set of all the source elements (resp., all the boundaries) in (2.k + 1) and let I (k) be the set of all the infinite cycles in
(2.k + 1). It is not difficult to check the following.

(6) (i) S(0) ∪ I (0) and S(k) ∪ B(k) ∪ I (k), for k = 1,2, are disjoint unions.

(ii) S(0) ∪ I (0) is a Z/2-base for E
∗,0,∗
1 .

(iii) S(k) ∪ B(k) ∪ I (k) is a Z/2-base for E
∗,k,∗
1 , k = 1,2.

In particular, this implies I (k) is a Z/2-base for E
∗,k,∗∞ for k = 0,1,2. From this the Ext∗,∗

A -module structure of
Exts,∗A (P ) for 0 � s � 2 is determined in [4]. The result on this is recalled as Theorem 2.4 below. To state the result we
note that e2i−1 for i � 1 and e2j+1+2j −1λ

2
2j+2−1

for j � 0 are easily seen to be cycles in H̃∗(P ) ⊗ Λ. Define certain

classes in Ext∗,∗
A (P ) as follows.

(7) (i) ĥi = {e2i−1} ∈ Ext0,2i−1
A (P ), i � 1.

(ii) ĉj = {e2j+1+2j −1λ
2
2j+2−1} ∈ Ext2,2j+3+2j+1+2j −1

A (P ), j � 0.

In the following statement the result in Theorem 1.2 on the algebra structure of Exts,∗A for s � 2 is implicitly used.

Theorem 2.4. The Ext∗,∗
A -module Exts,∗A (P ), for s � 2, is generated by ĥi for i � 1 and ĉj for j � 0, described in

(7)(i), (ii), subject only to the relations: ĥihi−1 = 0, i � 1, ĥi+2h
2
i = ĥi+1h

2
i+1, i � 0 and ĥi+2hi+2hi = 0, i � 0.

We proceed to describe the differentials

(∗∗) E∗,3,∗
r

dr−→ E∗,4,∗
r

which is the main work in this section. The source elements in E
∗,3,∗
r are known by (5)(iv). By (4), E

i,4,∗
1 = ΣiExt4,∗

A .

Although the Ext groups Ext4,∗
A are yet to be determined, which essentially is Theorem 1.3, we may still make calcu-

lations to do the differentials (∗∗) by induction on the internal degree t in Ext4,t
A and this is explained as follows.

First of all, we note from [5] that there is a map

Exts,t (P )
t∗−→ Exts+1,t+1
A A
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which is onto for t − s > 0. This is known as the algebraic Kahn–Priddy theorem. The map t∗ will be explicitly
described in Section 3. For a given k > 0 if Exts,tA (P ) can be computed for t − s � k then from the explicit formula

for t∗ one can compute Exts+1,t+1
A for t − s � k.

Next we recall again that any non-trivial differential in (∗∗) is of the form

(∗∗)′ ejα → ekβ where j > k, α is some basis element in Ext3,t
A for a certain t and β is some non-zero

class in Ext4,t ′
A with t ′ = t + j − k > t (since j > k).

Given an integer t > 0 and suppose, as an inductive hypothesis, that Ext4,t ′
A are known for t ′ up to t and that the

differentials ejα → ekβ can be determined for any possible ejα and ekβ with β ∈ Ext4,t ′
A , t ′ � t .

From this and from the relations of the internal degrees in (∗∗)′ one can then compute
⋃

i E
i,3,̃t−3∞ ∼= Ext3,̃t

A (P ) for

t̃ up to t + 1 (since k � 1) and therefore Ext4,̃t+1
A for t̃ + 1 up to t + 2 by the algebraic Kahn–Priddy theorem.

In this way one may thus compute the differentials

(∗∗) E∗,3,∗
r

dr−→ E∗,4,∗
r

by simply assuming the results on Ext4,∗
A in Theorem 1.3. We have made calculations to determine all the differentials

for (∗∗) and the results are to be given in (2.5) below from (2.5.1) to (2.5.74). They are obtained by making calculations
in the lambda algebra Λ using the same method in [4] by which the differentials (2.1), (2.2) and (2.3) recalled earlier
were obtained. Details of these calculations will not be given here.

Now we list these differentials from (2.5.1) to (2.5.74) as follows. Note that the source elements in these differ-
entials are taken into consideration from excluding the boundaries in (2.3). Also, a possible confusion on notations
should be cautioned. Recall that ek denotes the generator of H̃k(P ) = Z/2 for k � 1. Now the same notation ek is also
used to denote the cohomology class in Ext4,l

A described in (1.1)(4) of Section 1 where l = 2k+4 + 2k+2 + 2k . Thus if

eiα → ej ek , say, is a differential in this list then ej is the homology class for P and ek is the Ext group class in Ext4,∗
A .

(2.5.1) e2mh3
0 → e2m−1h

4
0 for m � 1.

(2.5.2) e2j+nm+2j−1−1h
3
j → e2j+nm−2j+1−2j −1hj cj−1

for m � 1, j � 1 and n � 2.

(2.5.3) e2j+n(2m+1)−2j −2j−1−1h
3
j → e2j+n+1m−2j −2j−1−1h

3
j hj+n

for m � 1, j � 1 and n � 3.

(2.5.4) e2j+3m+2j+1+2j−1−1h
3
j → e2j+3m−2j+2−2j−1−1ej−1

for m � 1, j � 1.

(2.5.5) e2j+nm+2j−2−1h
3
j → e2j+nm−2j+1−1ej−2

for m � 1, j � 2 and n � 2.

(2.5.6) e2j+2m+2j+1+2j−2−1h
3
j → e2j+2m−1ej−2

for m � 1, j � 2.

(2.5.7) e2j+nm+2j−3−1h
3
j → e2j+nm−2j −2j−1−1pj−3

for m � 1, j � 3 and n � 1.

(2.5.8) e2j+n−1m+2j−2+2j−3−1h
3
j → e2j+n−1m−1cj−3hj+1

for m � 1, j � 3 and n � 0.

(2.5.9) e2l (2m+1)−1h
3
j → e2l+1m−1hlh

3
j for m � 1, 0 � l < j − 3.

(2.5.10) e2mh2
0hk → e2m−1h

3
0hk for m � 1, k � 3.

(2.5.11) e2j+2m+2j −1h
2
j hk → e2j+2m−2j+1−2j−1−1cj−1hk

for m � 1, 1 � j < k − 2.



466 W.-H. Lin / Topology and its Applications 155 (2008) 459–496
(2.5.12) e2j+3m+2j+1+2j −1h
2
j hk → e2j+3m−2j+1−2j −2j−1−1hj−1h

2
j+2hk

for m � 1, 1 � j < k − 3.

(2.5.13) e2j+4m+2j+1+2j −1h
2
j hj+3 → e2j+4m−2j+3−2j −1fj

for m � 1, j � 1.

(2.5.14) e2j+n+1m+2j+n−2j+2−2j −1h
2
j hj+3

→ e2j+n+1m−2j+2−2j −1h
2
j hj+3hj+n for m � 1, j � 1, n � 5.

(2.5.15) e2j+5m+2j+4−2j+2−2j −1h
2
j hj+3

→ e2j+5m−2j+3−2j+2−2j −1h
2
j h

2
j+4 for m � 1, j � 1.

(2.5.16) e2n+1m+2n−2j −1h
2
j hk → e2n+1m−2j −1h

2
j hnhk

for m � 1 and 1 � j < n − 2 < k − 3 or 1 � j < n − 3 = k − 3.

(2.5.17) e2k+1m+2k−1−2j −1h
2
j hk → e2k+1m−2k−1−2j −1h

2
j h

2
k

for m � 1, 1 � j < k − 3.

(2.5.18) e2k+n+1m+2k+n−2k−1−2j −1h
2
j hk → e2k+n+1m−2k−1−2j −1h

2
j hkhk+n

for m � 1, 1 � j < k − 3 and n � 2.

(2.5.19) e2k+2m+2k+1−2k−1−2j −1h
2
j hk → e2k+2m−2k−2k−1−2j −1h

2
j h

2
k+1

for m � 1, 1 � j < k − 3.

(2.5.20) e2j+4m+2j+3−2j −1h
2
j hj+3 → e2j+4m−2j+3+2j−1−1hj−1h

3
j+3

for m � 1, j � 1.

(2.5.21) e2j+1m+2j−1−1h
2
j hk → e2j+1m−2j−1−1h

3
j hk

for m � 1, 1 � j < k − 2.

(2.5.22) e2j+nm+2j−2−1h
2
j hk → e2j+nm−2j +2j−2−1h

3
j hk

for m � 1, 2 � j < k − 2 and n � 1.

(2.5.23) e2j m+2j−1+2j−2−1h
2
j hk → e2j m−1cj−2hk

for m � 1, 2 � j < k − 2.

(2.5.24) e2l (2m+1)−1h
2
j hk → e2l+1m−1hlh

2
j hk

for m � 1, 0 � l < j − 2 < k − 4.

(2.5.25) e2j (2m+1)−1hjh
2
k → e2j+1m−1h

2
j h

2
k for m � 1, 0 � j < k − 3.

(2.5.26) e2j+4m+2j −1hjh
2
j+3 → e2j+4m−2j+3−2j −1cjhj+4

for m � 1, j � 0.

(2.5.27) e2j+3m+2j+2+2j −1hjh
2
j+3 → e2j+3m−1fj for m � 1, j � 0.

(2.5.28) e2j+3m+2j+1+2j −1hjh
2
j+3 → e2j+3m−2j+1−1fj for m � 1, j � 0.

(2.5.29) e2j+3m+2j+2+2j+1+2j −1hjh
2
j+3 → e2j+3m−1gj+1

for m � 1, j � 0.

(2.5.30) e2n+1m+2n−2j−1−1hjh
2
k → e2n+1m−2j−1−1hjhnh

2
k

for m � 1, 1 � j < n − 1 < k − 3.

(2.5.31) e2j+1m+2j−1−1hjh
2
k → e2j+1m−2j−1−1h

2
j h

2
k

for m � 1, 1 � j < k − 3.
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(2.5.32) e2j+1m+2j−1−1hjh
2
j+3 → e2j+1m−2j −1pj−1

for m � 1, j � 1.

(2.5.33) e2j+2m+2j +2j−1−1hjh
2
k → e2j+2m−2j −2j−1−1h

2
j+1h

2
k

for m � 1, 1 � j < k − 4.

(2.5.34) e2j+2m+2j +2j−1−1hjh
2
j+4 → e2j+2m−2j+1−1p

′
j−1

for m � 1, j � 1.

(2.5.35) e2j+3m+2j+2+2j +2j−1−1hjh
2
j+3 → e2j+3m−2j+2+2j−1−1cj+1hj+2

for m � 1, j � 1.

(2.5.36) e2j+4m+2j +2j−1−1hjh
2
j+3 → e2j+4m−2j+3−2j−1−1cjhj+4

for m � 1, j � 1.

(2.5.37) e2k+1m+2k−1−2j−1−1hjh
2
k → e2k+1m−2k−1−2j−1−1hjh

3
k

for m � 1, 1 � j < k − 3.

(2.5.38) e2j+4m+2j+4+2j+1+2j +2j−1−1hjh
2
j+3 → e2j+4m−1p

′
j−1

for m � 1, j � 1.

(2.5.39) e2km+2k−1+2k−2−2j−1−1hjh
2
k → e2km−2j−1−1hj ck−2

for m � 1, 1 � j < k − 3.

(2.5.40) e2k+1m+2k−2−2j−1−1hjh
2
k → e2k+1m−2k−1−2k−2−2j−1−1hjh

3
k

for m � 1, 1 � j < k − 3.

(2.5.41) e2k+2m+2k−2j−1−1hjh
2
k → e2k+2m−2k+1−2k−1−2j−1−1hj ck−1

for m � 1, 1 � j < k − 2.

(2.5.42) e2k+3m+2k+2−2k−2j−1−1hjh
2
k

→ e2k+3m−2k+2+2k−1−2j−1−1hjhk−1h
2
k+2

for m � 1, 1 � j < k − 2.

(2.5.43) e2k+n+1m+2k+n−2k−2j−1−1hjh
2
k → e2k+n+1m−2k−2j−1−1hjh

2
khk+n

for m � 1, 1 � j < k − 2 and n � 3.

(2.5.44) e2l (2m+1)−1hjh
2
k → e2l+1m−1hlhjh

2
k for m � 1, 0 � l < j − 1 < k − 3.

(2.5.45) e2j (2m+1)−1hjhkhi → e2j+1m−1h
2
j hkhi for m � 1, 0 � j < k − 1 < i − 2.

(2.5.46) e2n+1m+2n−2j−1−1hjhkhi → e2n+1m−2j−1−1hjhnhkhi

for m � 1 and either 1 � j < n − 1 < k − 2 < i − 3

for m � 1 or 1 � j < n − 2 = k − 2 < i − 3.

(2.5.47) e2j+1m+2j−1−1hjhkhi → e2j+1m−2j−1−1h
2
j hkhi

for m � 1, 1 � j < k − 1 < i − 2.

(2.5.48) e2k+1m+2k−1−2j−1−1hjhkhi → e2k+1m−2k−1−2j−1−1hjh
2
khi

for m � 1, 1 � j < k − 2 < i − 3.

(2.5.49) e2j+3m+2j+1−2j−1−1hjhj+2hi → e2j+3m−2j+2−2j−1−1cjhi

for m � 1, 1 � j < i − 3.

(2.5.50) e2k+nm+2k+2k−1−2j−1−1hjhkhi

→ e2k+nm−2k+1+2k−1−2j−1−1hjh
2
k+1hi

for m � 1, 1 � j < k − 1 < i − 3 and n � 2.
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(2.5.51) e2l+nm+2l−2k−1−2j−1−1hjhkhi

→ e2l+nm−2k−1−2j−1−1hjhkhlhi

for m � 1, 1 � j < k − 1 < l − 2 < i − 3 and n � 1.

(2.5.52) e2i+nm+2i−2k−1−2j−1−1hjhkhi

→ e2i+nm−2k−1−2j−1−1hjhkh
2
i

for m � 1, 1 � j < k − 1 < i − 3 and n � 1.

(2.5.53) e2i+nm+2i−1−2k−1−2j−1−1hjhkhi

→ e2i+nm−2i−1−2k−1−2j−1−1hjhkh
2
i

for m � 1, 1 � j < k − 1 < i − 3 and n � 1.

(2.5.54) e2k+nm+2k+1−2k−1−2j−1−1hjhkhk+2

→ e2k+nm−2k+2−2k−1−2j−1−1hj ck

for m � 1, 1 � j < k − 1 and n � 3.

(2.5.55) e2i+n+1m+2i+n−2i−1−2k−1−2j−1−1hjhkhi

→ e2i+n+1m−2i−1−2k−1−2j−1−1hjhkhihi+n

for m � 1, 1 � j < k − 1 < i − 2 and n � 2.

(2.5.56) e2i+2m+2i+2i−1−2k−1−2j−1−1hjhkhi

→ e2i+2m−2i−2i−1−2k−1−2j−1−1hjhkh
2
i+1

for m � 1, 1 � j < k − 1 < i − 2.

(2.5.57) e2k+nm+2k+2−2k−1−2j−1−1hjhkhk+2

→ e2k+nm−2k+1−2k−2k−1−2j−1−1hjh
3
k+2

for m � 1, 1 � j < k − 1 and n � 3.

(2.5.58) e2j+2m+2j +2j−1−1hjhkhi → e2j+2m−2j+1+2j−1−1h
2
j+1hkhi

for m � 1, 1 � j < k − 2 < i − 3.

(2.5.59) e2j+3m+2j+2−2j−1−1hjhj+2hi → e2j+3m−2j+2+2j−1−1h
3
j+2hi

for m � 1, 1 � j < i − 4.

(2.5.60) e2j+3m+2j+3+2j+2−2j−1−1hjhj+2hj+4 → e2j+3m−1D3(j − 1)

for m � 1, j � 1.

(2.5.61) e2l (2m+1)−1hjhkhi → e2l+1m−1hlhjhkhi

for m � 1, 0 � l < j − 1 < k − 2 < i − 3.

(2.5.62) e2j+1(2m+1)−1cj → e2j+2m−1hj+1cj for m � 1, j � 0.

(2.5.63) e2j+2m+2j −1cj → e2j+2m−2j −1cjhj+1 for m � 1, j � 0.

(2.5.64) e2j+4m+2j+3−2j −1cj → e2j+4m−1dj for m � 1, j � 0.

(2.5.65) e2j+m+3−2j −1cj → e2j+m+3−2j+3−1dj for m � 1, j � 0.

(2.5.66) e2j+n+1m+2j+n−2j+3+2j+1+2j−1−1cj → e2j+n+1m−2j+3+2j+1+2j−1−1hj+ncj

for m � 1, j � 1 and n � 4.

(2.5.67) e2j+4m+2j+1+2j−1−1cj → e2j+4m−2j+3−2j+2−2j−1−1cj+1hj+2

for m � 1, j � 1.

(2.5.68) e2j+2m+2j−1−1cj → e2j+2m−2j+1+2j−1−1hj+1cj

for m � 1, j � 1.
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(2.5.69) e2j+4m+2j+2+2j+1+2j−1−1cj → e2j+4m−2j−1−1dj

for m � 1, j � 1.

(2.5.70) e2j+m+3−2j+1+2j−1−1cj → e2j+m+3−2j+3−2j−1−1dj

for m � 1, j � 1.

(2.5.71) e2j+2m+2j +2j−1−1cj → e2j+2m−2j−1−1hj+1cj

for m � 1, j � 1.

(2.5.72) e2j+4m+2j+3−2j−1−1cj → e2j+4m−1pj−1 for m � 1, j � 1.

(2.5.73) e2j+3+m−2j−1−1cj → e2j+3+m−2j+3−1pj−1 for m � 1, j � 1.

(2.5.74) e2l (2m+1)−1cj → e2l+1m−1hlcj for m � 1, 0 � l < j − 1.

This concludes the statements of all the non-trivial differentials E
∗,3,∗
r

dr−→ E
∗,4,∗
r .

We are going to obtain from the differentials (2.5.l) above the corresponding infinite cycles (2.5.l) analogous to
the process that we get the infinite cycles (2.k.l) from the differentials (2.k.l) for 1 � k � 3 discussed earlier. The
process from (2.5.l)′ s to (2.5.l)

′ s
will be described in a moment. The resulting infinite cycles (2.5.l) will then be

listed together with the cohomology classes they represent. For this purpose we need to describe certain classes in
Ext3,∗

A (P ) which, as will be seen, turn out to be indecomposable elements in the sense that they are not classes of the
form ĥihjhkhl or ĉj hk or ĥlci . These classes will be given in (2.6) that follows. In order to describe these classes we
note that there is an operation

(8) Sq0 : H̃∗(P ) ⊗ Λ → H̃∗(P ) ⊗ Λ given by

Sq0(ekλi1 · · ·λis ) = e2k+1λ2i1+1 · · ·λ2is+1

analogous to the operation Sq0 :Λ → Λ in (c) of Section 1. Here again λi1 · · ·λis is not necessarily admissible. The
operation Sq0 in (8) also commutes with the differential δ of H̃∗(P ) ⊗ Λ given in (3), and so induces an operation

Sq0 : Exts,tA (P ) → Exts,2t+1
A (P ).

For example, Sq0(̂hi = {e2i−1}) = ĥi+1 = {e2i+1−1} for i � 1 and Sq0(̂cj = {e2j+1+2j −1λ
2
2j+2−1

}) = ĉj+1 =
{e2j+2+2j+1−1λ

2
2j+3−1

} for j � 0.

Now we describe in (2.6) below the classes in Ext3,∗
A (P ) we want, where (Sq0)i again denotes the composite

Sq0 · · ·Sq0

——i——
if i > 1, is Sq0 if i = 1 and is the identity map if i = 0.

(2.6) (1) d̂i = {
(Sq0)i(e6λ2λ

2
3 + e4λ4λ

2
3 + e2λ4λ5λ3 + e1λ5λ1λ7)

} ∈ Ext3,2i+4+2i+1−1
A (P ), i � 0.

(2) êi = {
(Sq0)i

(
e8λ

3
3 + e4(λ

2
5λ3 + λ7λ

2
3) + e2(λ3λ5λ7 + λ9λ

2
3)

)} ∈ Ext3,2i+4+2i+2+2i−1
A (P ), i � 0.

(3) f̂i = {
(Sq0)i

(
e4λ0λ

2
7 + e3(λ9λ

2
3 + λ3λ5λ7) + e2λ4λ5λ7

)} ∈ Ext3,2i+4+2i+2+2i+1−1
A (P ), i � 0.

(4) ĝi+1 = {
(Sq0)i

(
e6λ0λ

2
7 + e5(λ9λ

2
3 + λ3λ5λ7) + e3(λ5λ9λ3 + λ11λ

2
3)

)} ∈ Ext3,2i+4+2i+3−1
A (P ), i � 0.

(5) p̂i = {
(Sq0)i(e14λ5λ

2
7 + e10λ9λ

2
7 + e6λ9λ11λ7)

} ∈ Ext3,2i+5+2i+2+2i−1
A (P ), i � 0.

(6) D̂3(i) = {
(Sq0)i(e22λ1λ7λ31 + e16λ

3
15 + e14λ9λ7λ31)

} ∈ Ext3,2i+6+2i−1
A (P ), i � 0.

(7) p̂ ′
i =

{
(Sq0)i

(
e38λ1λ

2
15 + e30λ9λ

2
51 + e28λ11λ

2
15 + e22λ17λ

2
15

+ e20λ19λ
2
15 + e14λ1λ23λ31 + e12λ19λ23λ15

)}
∈ Ext3,2i+6+2i+3+2i−1

A (P ), i � 0.

(8) α16(i) = {
(Sq0)i

(
e2λ0λ

2
7 + e1(λ9λ

2
3 + λ3λ5λ7)

)} ∈ Ext3,2i+4+2i+2−1
A (P ), i � 0.

(9) α21(i) = {
(Sq0)i(e2λ5λ

2
7)

} ∈ Ext3,2i+4+2i+3+2i−1
A (P ), i � 0.

(10) ξ31(i) =
{
(Sq0)i

(
e12λ5λ

2
7 + e10λ

3
7 + e6λ

2
1λ23

)}
∈ Ext3,2i+5+2i+1+2i−1

A (P ), i � 0.
+ e6λ7λ3λ15 + e3λ0λ5λ23
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These classes in Ext3,∗
A (P ) are well defined in the following sense. For each k with 1 � k � 10 let f (k) denote the

chain of H̃∗(P ) ⊗ Λ given in (2.6)(k). For example,

f (1) = e6λ2λ
2
3 + e4λ4λ

2
3 + e2λ4λ5λ3 + e1λ5λ1λ7.

It is not difficult to check, by direct computations, that f (k) and therefore (Sq0)i(f (k)) are cycles for all k and i.
If one compares the classes d̂i , êi , . . . , p̂

′
i in (2.6) above to the classes di, ei, . . . , p

′
i described in (1.1) of Section 1,

one will notice a similarity between the formulations of these two sets of classes. For example, if each ej in the cycle
f (1) above, that represents d̂0, is replaced by the corresponding λj , the resulting

λ6λ2λ
2
3 + λ4λ4λ

2
3 + λ2λ4λ5λ3 + λ1λ5λ1λ7

is a cycle in Λ representing the class d0 ∈ Ext4,∗
A described in (1.1)(3). In this way we get correspondences

d̂i ←→ di, êi ←→ ei, . . . , p̂ ′
i ←→ p′

i .

These correspondences are relevant to the proofs of Theorems 1.3 and 1.4 and will be described more precisely in the
next section.

We now proceed to describe the process “(2.5.l) → (2.5.l)” which is to obtain from the differentials (2.5.l) the
corresponding infinite cycles (2.5.l) and then to explain how we are going to list these infinite cycles together with
the cohomology classes in Ext3,∗

A (P ) they represent.
We will consider the differentials (2.5.l) for 1 � l � 74 with l �= 1,10. For each such l let (2.5.l) denote the family

of the elements ef (0)α obtained by letting m = 0 in the source elements ef (m)α of (2.5.l) (l = 1, 10 excluded so that
f (0) > 0). Then ef (0)α → 0, that is, they are infinite cycles in the spectral sequence. In letting m = 0 in (2.5.l) to
get the corresponding (2.5.l) we have to adjust some of the restrictions on the integral variable j so that the resulting
infinite cycles are in the “existing range”. For example, in (2.5.2), the restriction on j is j � 1. The corresponding
family in (2.5.2) is e2j−1−1h

3
j for which the condition on j must be adjusted to j � 2 in order to have 2j−1 − 1 > 0.

In addition to the resulting families (2.5.l) of infinite cycles thus obtained we will consider two families of in-
finite cycles that can not be obtained from any of the (2.5.l)′s by this process. These two additional families are
e2j+2−2j−1−1hjh

2
j+3 for j � 1 and e2j+2−2j−1−1hjhj+2hj+4 for j � 1 and will be numbered respectively as (2.5.75)

and (2.5.76) although there are no (2.5.75) and (2.5.76). As will be shown later, the set of the infinite cycles in (2.5.l)

for 2 � l � 76 with l �= 10 will form a Z/2-base for E
∗,3,∗∞ .

We are going to list below these (2.5.l). Each will have the form C ↔ D. For example, (2.5.3) will be

(2.5.3) e2j+n−2j −2j−1−1h
3
j ←→ ĥj+nh

3
j−1, n � 3, j � 1.

Here C = e2j+n−2j −2j−1−1h
3
j , for each n � 3 and j � 1, is the infinite cycle obtained by letting m = 0 in the source

element e2j+n(2m+1)−2j −2j−1−1h
3
j of the differential (2.5.3) and that D = ĥj+nh

3
j−1 is the class in Ext3,∗

A (P ) repre-
sented by this infinite cycle C. Just how and why the class D is represented by the infinite cycle C, in this example
and also in other (2.5.l), will be explained and proved later.

In order to make the list shorter, we will list these (2.5.l) in groups. Various (2.5.l) are put together in the same
group if the infinite cycles in these (2.5.l) are of the “same type”. For example, the infinite cycles in (2.5.2), (2.5.5),
(2.5.7) and (2.5.9) are e2j−1−1h

3
j , e2j−2−1h

3
j , e2j−3−1h

3
j and e2l−1h

3
j with l < j − 3, respectively, and all of these are

of the type “e2l−1h
3
j ” with 1 � l � j − 1. These four are put together in one group which is the first group (2.5.l1).

Most groups have at least two of the (2.5.l)′ s . There are exactly 10 groups, each of which consisting of only one
(2.5.l). These are precisely the infinite cycles representing the classes in (2.6)(1) through (2.6)(10). Finally we note
that (2.5.l) is equal to (2.5.l − 1) for l = 65, 70 and 73.

The grouped (2.5.l)
′ s

are listed as follows.

(2.5.l1) e2l−1h
3
j ←→ ĥlh

3
j , 1 � l � j − 1 for l1 = 2, 5, 7, 9.

(2.5.l2) e2j+n−2j −2j−1−1h
3
j ←→ ĥj+nh

3
j−1, n � 2, j � 1 for l2 = 3, 4.

(2.5.l3) e2j+1+2j−2−1h
3
j ←→ êj−2, j � 2 for l3 = 6.

(2.5.l4) e2j−1+2j−2−1h
2hk ←→ ĉj−2hk, 2 � j < k − 1 for l4 = 8, 23.
j
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(2.5.l5) e2l−1h
2
j hk ←→ ĥlh

2
j hk, 1 � l � j < k − 2

for l5 = 11, 21, 22, 24.

(2.5.l6) e2n−2j −1h
2
j hk ←→ ĥnh

2
j−1hk, 3 � j + 2 � n � k, j < k − 2

for l6 = 12,13,16,17,20.

(2.5.l7) e2k+n−2k−1−2j −1h
2
j hk ←→ ĥk+nh

2
j−1hk−1, n � 1, 1 � j < k − 2

for l7 = 14,15,18,19.

(2.5.l8) e2l−1hjh
2
k ←→ ĥlhjh

2
k, 1 � l � j < k − 2

for l8 = 25,26,31,32,44.

(2.5.l9) e2j+2+2j −1hjh
2
j+3 ←→ f̂j , j � 0 for l9 = 27.

(2.5.l10) e2j+1+2j −1hjh
2
j+3 ←→ α16(j), j � 0 for l10 = 28.

(2.5.l11) e2j+2+2j+1+2j −1hjh
2
j+3 ←→ ĝj+1, j � 0 for l11 = 29.

(2.5.l12) e2n−2j−1−1hjh
2
k ←→ ĥnhj−1h

2
k, 2 � j + 1 � n � k, j < k − 2

for l12 = 30,33,34,36,37,40,41 and 75.

(2.5.l13) e2k−1+2k−2−2j−1−1hjh
2
k ←→ ĉk−2hj−1, 1 � j < k − 2

for l13 = 35,39.

(2.5.l14) e2j+4+2j+1+2j +2j−1−1hjh
2
j+3 ←→ p̂ ′

j−1, j � 1 for l14 = 38.

(2.5.l15) e2k+n−2k−2j−1−1hjh
2
k ←→ ĥk+nhj−1h

2
k−1, n � 2, 1 � j < k − 2

for l15 = 42,43.

(2.5.l16) e2l−1hjhkhi ←→ ĥlhjhkhi, 1 � l � j < k − 1 < i − 2

for l16 = 45,47,61.

(2.5.l17) e2n−2j−1−1hjhkhi ←→ ĥnhj−1hkhi, 2 � j + 1 � n � k < i − 1 and j < k − 1

for l17 = 46,48,49,58,59,76.

(2.5.l18) e2l−2k−1−2j−1−1hjhkhi ←→ ĥlhj−1hk−1hi, 4 � j + 3 � k + 1 � l � i and k < i − 1

for l18 = 50,51,52,53,54,57.

(2.5.l19) e2i+n−2i−1−2k−1−2j−1−1hjhkhi ←→ ĥi+nhj−1hk−1hi−1, 1 � j < k − 1 < i − 2 and n � 1

for l19 = 55,56.

(2.5.l20) e2j+3+2j+2−2j−1−1hjhj+2hj+4 ←→ D̂3(j − 1), j � 1

for l20 = 60.

(2.5.l21) e2l−1cj ←→ ĥlcj , 1 � l � j + 1 for l21 = 62,63,68,74.

(2.5.l22) e2j+3−2j −1cj ←→ d̂j , j � 0 for l22 = 64,65

(note that (2.5.64) = (2.5.65)).

(2.5.l23) e2j+n−2j+3+2j+1+2j−1−1cj ←→ ĥj+ncj−1, j � 1, n � 3

for l23 = 66,67.

(2.5.l24) e2j+2+2j+1+2j−1−1cj ←→ ξ31(j − 1), j � 1 for l24 = 69,70

(note that (2.5.69) = (2.5.70)).

(2.5.l25) e2j +2j−1−1cj ←→ α21(j − 1), j � 1 for l25 = 71.

(2.5.l26) e2j+3−2j−1−1cj ←→ p̂j−1, j � 1 for l26 = 72,73

(note that (2.5.72) = (2.5.73)).
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Each group (2.5.lj ) above has the form C ↔ D where C are infinite cycles and D are the cohomology classes in
Ext3,∗

A (P ) represented by these infinite cycles. We proceed to explain how these representations are obtained.
Given a chain x = ∑n

j=1 eij λ(j) in H̃∗(P ) ⊗ Λs,∗ where i1 < · · · < in and each λ(j) is a non-zero chain in Λs,∗.

We write x ≡ einλ(n) mod F(in − 1). Here we recall that F(i) = ∑i
k=1 H̃k(P ) ⊗ Λ. From this equivalence equation

we call in the filtration degree of x which is denoted by m(x). For a non-zero class α in Exts,∗A (P ) we can always find
an integer m(α) > 0 and a cycle x = ∑n

j=1 eij λ(j) ∈ H̃∗(P ) ⊗ Λs,∗ with i1 < · · · < in such that

(i) α = {x}, that is, α is represented by the cycle x.
(ii) m(x) = in = m(α).

(iii) α cannot be represented by any cycle y with m(y) < m(α).
(iv) λ(n) ∈ Λs,∗ is a cycle representing a non-zero class {λ(n)} in Exts,∗A .

In fact, property (iv) is a consequence of properties (i), (ii) and (iii). From the theory of the spectral sequence {E∗,∗,∗
r }

defined by the filtration {F(i) | i � 1} for H̃∗(P ) ⊗ Λ, we see these properties imply that ein{λ(n)} is a non-trivial
cycle in E

∗,s,∗∞ representing the class α. And conversely, if ekβ is a non-trivial infinite cycle in E
∗,s,∗∞ then there is a

cycle x = ∑n
j=1 eij λ(j) in H̃∗(P )⊗Λ with m(x) = in = k such that λ(n) is a cycle in Λs,∗ with {λ(n)} = β and such

that γ = {x} is a non-zero class in Exts,∗A (P ) which is represented by the infinite cycle ekβ .
We recall again that the expression C ↔ D in each (2.5.lj ) above claims that the exhibited C are infinite cycles

representing the cohomology classes D exhibited.
From the above theory of representations cohomology classes by infinite cycles we see immediately that the repre-

sentations C ↔ D as claimed in some of the (2.5.lj )
′ s

are true. These include (2.5.lk) for

k = 1,3,4,5,8,9,10,11,14,16,20,21,22,24,25 and 26

noting the explicit cycle representations of ĥi , ĉj in (7) and those for d̂i , êi , f̂i , ĝi+1, p̂i , D̂3(i), p̂ ′
i , α16(i), α21(i)

and ξ31(i) in (2.6) (and also the cycle representations for hi , cj in (1.1) of Section 1). For the claims C ↔ D in the
remaining (2.5.lj ) we have to make calculations to prove them. We will illustrate such calculations for two of these
(2.5.lj ) and leave the proofs of the rest to the reader.

The first of these two is

(2.5.l2) e2j+n−2j −2j−1−1h
3
j ←→ ĥi+nh

3
j−1, n � 2, j � 1.

Now ĥj+nh
3
j−1 is represented by the cycle e2j+n−1λ

3
2j−1−1

. We have to show that e2j+n−1λ
3
2j−1−1

∼ x for some cycle x

such that

x ≡ e2j+n−2j −2j−1−1λ
3
2j −1 mod F(2j+n − 2j − 2j−1 − 2).

Here “∼” means “homologous”. It suffices to do this for j = 1 and for any j + n = n + 1 � 3 since one can apply
appropriate (Sq0)i . So we need to show

(2.5.l2)
∗ e2i−1λ

3
0 ∼ x for some cycle x with

x ≡ e2i−4λ
3
1 mod F(2i − 5) for any i � 3.

By direct computations we find that

δ(e2i λ2
0 + e2i−2λ2λ0 + e2i−3λ1λ2) ≡ e2i−1λ

3
0 + e2i−4λ3λ

2
0 mod F(2i − 5).

(2.5.l2)
∗ follows from this since λ3λ

2
0 ∼ λ3

1. This proves (2.5.l2).
The other one is

(2.5.l23) e2j+n−2j+3+2j+1+2j−1−1cj ←→ ĥj+ncj−1, j � 1, n � 3.

Recall that λ2k+1+2k−1λ
2
2k+2−1

is a cycle representing ck for k � 0. Again to prove (2.5.l23) it suffices to show it
for j = 1 which is equivalent to proving

(2.5.l23)
∗ e2i−1λ2λ

2
3 ∼ x for some cycle x such that

x ≡ e2i−12λ5λ
2
7 mod F(2i − 13) for any i � 4.
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We find that δ(z) ≡ e2i−1λ2λ
2
3 + e2i−12λ5λ

2
7 mod F(2i − 13) where

z = e2i+2λ
2
3 + e2i λ1λ7 + e2i−3λ0λ11 + e2i−4λ5λ7 + e2i−5λ2λ11

+ e2i−6(λ11λ3 + λ2
7) + e2i−8λ9λ7 + e2i−9λ6λ11 + e2i−10λ7λ11.

This proves (2.5.l23)
∗ and therefore (2.5.l23).

Recall that B(3) denotes the set of all the boundaries in the differentials (2.3.1) through (2.3.16). Let S(3) be the
set of all the source elements in the differentials (2.5.1) through (2.5.74). Let I (3) be the set of all the infinite cycles
C in (2.5.l1) through (2.5.l26) (recall each (2.5.lj ) is of the form C ↔ D). It is not difficult to check the following.

(9) B(3) ∪ S(3) ∪ I (3) is a disjoint union and is a Z/2-base for E
∗,3,∗
1 (P ).

This implies I (3) is a Z/2-base E
∗,3,∗∞ . From this we have the following conclusion. We recall again that each (2.5.lj )

is of the form C ↔ D.

Theorem 2.7. The set of the cohomology classes D exhibited in (2.5.l1) through (2.5.l26) is a Z/2-base for Ext3,∗
A (P ).

Thus the set of the classes d̂i , êi , f̂i , ĝi+1, p̂i , D̂3(i), p̂′
i , α16(i), α21(i) and ξ31(i) for i � 0 is a Z/2-base for the

indecomposable elements in Ext3,∗
A (P ). Other classes in Ext3,∗

A (P ) are either of the form ĥlhjhkhi or of the form ĉihj

or of the form ĥlci .

Here “the set of the classes d̂i , êi , . . . , ξ31(i) for i � 0 is a Z/2-base for the indecomposable elements in Ext3,∗
A (P )”

means the following. Let this set be Ŝ. Let D̂ be the Z/2-submodule of Ext3,∗
A (P ) generated by ĥlhjhkhi , ĉihj and

ĥlci . Then the projection of Ŝ to Ext3,∗
A (P )/D̂ is a Z/2-base.

By some slight extra work, one can actually determine from (2.5.lj )
′ s

the complete structure of Ext3,∗
A (P ) pertain-

ing the decomposables ĥlhjhkhi , ĉihj and ĥlci . This, however, will not be described here. In Section 3 we are going
to use Theorem 2.7 to prove Theorem 1.3 and what has been stated in (2.7) suffices for this purpose.

3. Proofs of Theorems 1.3 and 1.4

We begin with the proof of Theorem 1.3 that occupies approximately two fifths of the section.

Recall from Theorem 1.2 that the algebra Exts,∗A for s � 3 is generated by the generators hi ∈ Ext1,2i

A , ci ∈
Ext3,2i+3+2i+1+2i

A for i � 0 as described in (1.1)(1), (2) of Section 1 subject only to the relations

(a) hihi+1 = 0, hih
2
i+2 = 0 and h3

i = h2
i−1hi+1.

We want to show for Theorem 1.3 the following.

(1.3) (1) The subalgebra of the algebra Exts,∗A for s � 4 generated by hi and ci for i � 0 is subject only to the

relations in (a) above together with the relations h2
i h

2
i+3 = 0 for i � 0 and hj ci = 0 for

j = i − 1, i, i + 2, i + 3.

(2) The set of the classes di , ei , fi , gi+1, pi , D3(i), p′
i for i � 0 as described in (1.1)(3) through (1.1)(9)

of Section 1 is a Z/2-base for the indecomposable elements in Ext4,∗
A .

To prove these we first recall from [5] the following result.

Theorem 3.1. (See [5].)

(1) The map H̃∗(P ) ⊗ Λ
t−→ Λ given by t (ekλI ) = λkλI is a chain map and commutes with the operations

Sq0 : H̃∗(P ) ⊗ Λ → H̃∗(P ) ⊗ Λ and Sq0 :Λ → Λ described in (8) of Section 2 and (c) of Section 1, respec-
tively.

(2) The induced map Exts,tA (P )
t∗−→ Exts+1,t+1

A is onto for t − s > 0.



474 W.-H. Lin / Topology and its Applications 155 (2008) 459–496
This is known as the algebraic Kahn–Priddy theorem. (3.1)(1) is easy to see. We will also recall later how the
“onto” result in (3.1)(2) is proved.

Let B1 be the set of the classes

ĥi , ĉi , d̂i , êi , f̂i , ĝi+1, p̂i , D̂3(i), p̂ ′
i , α16(i), α21(i) and ξ31(i) for i � 0

in Ext∗,∗
A (P ) and let B2 be the set of the classes

hi, ci, di, ei, fi, gi+1, pi, D3(i) and p′
i for i � 0

in Ext∗,∗
A . From the cycle representations for these classes described in (7) of Section 2, (2.6) and (1.1), and also from

the formula for the chain map H̃∗(P ) ⊗ Λ → Λ in (3.1)(1) we see the following.

(3.2) t∗(̂hi) = hi for i � 1 and t∗(̂ci) = ci, t∗(d̂i) = di, t∗(̂ei) = ei,

t∗(f̂i) = fi, t∗(ĝi+1) = gi+1, t∗(p̂i) = pi, t∗(D̂3(i)) = D3(i) and

t∗(p̂′
i ) = p′

i for i � 0.

We will prove in a moment the following.

(3.3) t∗(α16(i)) = 0, t∗(α21(i)) = 0 and t∗(ξ31(i)) = 0 in Ext4,∗
A for the remaining families α16(i), α21(i) and ξ31(i)

in the set

B1 = {
ĥi , ĉi , d̂i , . . . , p̂

′
i , α16(i), α21(i), ξ31(i) | i � 0

}
.

From Theorems 2.7, 3.1(2), (3.2) and (3.3) we deduce the following.

(3.4) The algebra Exts,∗A for s � 4 is generated by

B2 = {
hi, ci, di, ei, fi, gi+1,pi,D3(i),p

′
i | i � 0

}
.

To prove (1.3) is then equivalent to proving the following.

(1.3)′ (i) h2
i h

2
i+3 = 0 for i � 0 and hj ci = 0 for j = i − 1, i, i + 2, i + 3 in Ext4,∗

A .

(ii) The set of the following classes in (1) through (18) is a Z/2-base for Ext4,∗
A

where i � 0 in (1) through (8).

(1) di, (2) ei, (3) fi, (4) gi+1, (5) pi, (6) D3(i), (7) p′
i , (8) cihi+1,

(9) cihj , 0 � j < i − 1, (10) cihj , 0 � i < j − 3, (11) h3
i hl, 0 � l < i − 3,

(12) h2
i h

2
k, 0 � k < i − 3, (13) h2

i hkhl, 0 � l < k − 1 < i − 3,

(14) hih
2
j hl, 0 � l < j − 2 < i − 4, (15) hihjh

2
k, 0 � k < j − 2 < i − 3,

(16) hih
3
j , 0 � j < i − 2, (17) hihjhkhl, 0 � l < k − 2 < j − 2 < i − 3,

(18) h4
0.

We note that in (1.3)′(ii), the class h4
0 lies in Ext4,4

A and is intentionally put at the end of the statement. All other classes

lie in Ext4,t
A with t − 4 > 0.

We proceed to prove (3.3) and (1.3)′ and we begin with the proofs of the triviality results (3.3) and (1.3)′(i) which
are easier.

Since Sq0(h2
i h

2
i+3) = h2

i+1h
2
i+4 and Sq0(hj ci) = hj+1ci+1, to prove (1.3)′(i) it suffices to show

(b) h2
0h

2
3 = 0, h0c1 = 0, h0c0 = 0, h2c0 = 0 and h3c0 = c0h3 = 0 in Ext4,∗

A .

Since t∗ commutes with the operations (Sq0)i (see (3.1)(1)), to prove (3.3) is to prove

(c) t∗(α16(0)) = 0, t∗(α21(0)) = 0, t∗(ξ31(0)) = 0 in Ext4,∗
A .

The classes in (b) are represented respectively by the cycles

λ2λ2
7, λ0λ5λ

2
7 = λ4λ1λ

2
7 = 0, λ0λ2λ

2 = λ2λ2 = 0, λ3λ2λ
2 and λ2λ

2λ7 = 0
0 3 1 3 3 3
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in Λ. From (2.6) and the formula for t in (3.1)(1) we see the classes in (c) are represented respectively by the cycles

λ2λ0λ
2
7 + λ1(λ3λ5λ7 + λ9λ

2
3) = λ3λ

2
5λ3 + λ2

5λ
2
3, λ2λ5λ

2
3 = 0 and

λ12λ5λ
2
7 + λ10λ

3
7 + λ6(λ

2
1λ23 + λ7λ3λ15) + λ3λ0λ5λ23.

In Λ, we have δ(λ9λ
2
3 + λ3λ5λ7) = λ2

0λ
2
7, δ(λ6λ

2
3) = λ3λ2λ

2
3, δ(λ5λ1λ11) = λ2

5λ
2
3 + λ3λ

2
5λ3 and

δ
[
λ12(λ17λ3 + λ9λ11) + λ8(λ13λ11 + λ9λ15)

]
= λ12λ5λ

2
7 + λ10λ

3
7 + λ6(λ

2
1λ23 + λ7λ3λ15) + λ3λ0λ5λ23.

This proves (b) and (c) and therefore (3.3) and (1.3)′(i).
To prove (1.3)′(ii) we need to do some preparatory work. We begin by recalling from [5] a map Exts+1,t+1

A

φ∗−→
Exts,tA (P ) which “essentially” is the right inverse of the map t∗ in (3.1)(2). Precise meaning of this “essentially” is not

important here and so will not be explained. The map φ∗ is induced by a chain map Λ
φ−→ H̃∗(P ) ⊗ Λ. In (3.5) below

we recall the construction of this chain map which not only will be crucial to the proof of (1.3)′(ii) but also will be
crucial to the proof of Theorem 1.4 later.

(3.5) Define a map Λ
φ−→ H̃∗(P ) ⊗ Λ on any admissible monomial λI = λi1 · · ·λis as follows. φ(λi1) = ei1 for i1 � 1

if s = 1. If s � 2 then φ(λI ) = 0 for i1 = 0 (which implies ik = 0 for k � 2) and, for i1 � 1, φ(λI ) is defined to
be

(∗) φ(λI = λi1λi2 · · ·λis ) = ei1λI ′ +
∑
ν

ej1(ν)λJ ′(ν),

where I ′ = (i2, . . . , is) and the second sum is described as follows. First we require each J ′(ν) = (j2(ν),

. . . , js(ν)) be admissible and J (ν) = (j1(ν), j2(ν), . . . , js(ν)) be inadmissible. Secondly, choose any large in-
teger m (compared to ij and s) and let

J (ν,m) = (
2m + j1(ν), j2(ν), . . . , js(ν)

)
which is admissible. Then ej1(ν)λJ ′(ν) appears in the second sum of (∗) if and only if, for some q � 2, λJ(ν,m)

appears in the admissible expansion of λi1 · · ·λiq−1λiq+2mλiq+1 · · ·λis .

The following result (3.6) on some properties of the map φ above is proved in [4,5] ((3.6)(1), (2) are proved in
[5] and (3.6)(3), (4) are proved in [4]). To state the result we recall that the filtration {F(i) | i � 1} of H̃∗(P ) ⊗ Λ is
given by F(i) = ∑i

k=1 H̃k(P ) ⊗ Λ. Extend this filtration to {F(i) | i � 0} by letting F(0) = 0. Define an increasing
filtration {Λ(i) | i � 0} of Λ as follows. For each i � 0 let Λ(i) be the Z/2-submodule of Λ generated by the
admissible monomials λi1 · · ·λis with i1 � i. It is not difficult to show that each Λ(i) is indeed a subcomplex of Λ.

Theorem 3.6. (See [4,5].)

(1) The map Λ
φ−→ H̃∗(P ) ⊗ Λ constructed in (3.5) is well defined, is a chain map and commutes with the operations

Λ
Sq0−−→ Λ and H̃∗(P ) ⊗ Λ

Sq0−−→ H̃∗(P ) ⊗ Λ.

(2) Let ψ be the composite Λ
φ−→ H̃∗(P ) ⊗ Λ

t−→ Λ where t is as in (3.1)(1). Then for each admissible λi1λi2 · · ·λis

in Λ with i1 � 1 there is the relation

ψ(λi1λi2 · · ·λis ) ≡ λi1λi2 · · ·λis mod Λ(i1 − 1).

(3) φ(Λ(i)) ⊆ F(i) for all i � 0.
(4) φ(λi1λi2 · · ·λis ) ≡ ei1λi2 · · ·λis mod F(i1 − 1) for any admissible λi1λi2 · · ·λis with i � 1.

We should remark that the last conclusion in (3.6)(1) is actually not proved in [5]. But from the construction of φ

in (3.5) it is not difficult to see that this result is true.
It is easy to see that the result (3.1)(2) (the algebraic Kahn–Priddy theorem) follows from (3.6)(2). It is only the

properties (1), (3) and (4) in (3.6) that we will need for proving (1.3)′(ii) (and also Theorem 1.4 later).
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Given a class α in Exts,tA with t − s > 0 and s � 1. Let x be a cycle in Λs,t−s representing the class α. Suppose
x �= 0. Since t − s > 0 we should have the following.

(d) x ≡ λjλ(j) mod Λ(j − 1) for some j � 1 where λ(j) is a non-zero chain in Λs−1,t−s−j and

λjλj1 · · ·λjs−1 is admissible for any admissible λj1 · · ·λjs−1 appearing in the admissible expansion of λ(j).

Call λjλ(j) in (d) the leading term of the cycle x and we write x = λjλ(j) to denote this relation. Thus α = {x} =
{λjλ(j)}. Since each Λ(i) is a subcomplex of Λ, the chain λ(j) in (d) is actually a cycle.

Now apply the chain map φ in (3.6)(1) to x in (d) above. From (3.6) we see the induced map Exts,tA

φ∗−→
Exts−1,t−1

A (P ) of φ carries α to φ∗(α) which is represented by the cycle φ(x) ∈ H̃∗(P ) ⊗ Λ with

(e) φ(x) ≡ ejλ(j) mod F(j − 1).

Since λ(j) is a cycle we can consider ej {λ(j)} which is an element in the E1-term E
∗,s−1,∗
1 of the spectral sequence

{E∗,∗,∗
r }r�1 considered in Section 2. The process from α to ej {λ(j)} in E

∗,s−1,∗
1 via (d), (e) depends on the represent-

ing cycle x for α. Since φ(x) is a cycle, from (e), we see ej {λ(j)} is actually an infinite cycle in the spectral sequence
which may or may not be a non-zero one. We will write ej {λ(j)} �= 0 if ej {λ(j)} is a non-zero infinite cycle and write
ej {λ(j)} = 0 to mean that it is a boundary in the spectral sequence.

In case ej {λ(j)} �= 0 we will let φ(α = {x}), or simply, φ(α), to denote ej {λ(j)} and use the correspondence

(f) α = {x} = {λjλ(j)} → ej {λ(j)} = φ(α = {x}) = φ(α)

to denote the connection from α to the non-trivial infinite cycle ej {λ(j)} via (d) and (e).
Suppose ej {λ(j)} = 0. This does not necessarily imply that φ∗(α) = {φ(x)} is zero in Exts−1,∗

A (P ). It only implies
that the cycle φ(x) is homologous to some cycle z ∈ H̃∗(P ) ⊗ Λ with z ∈ F(j − 1) where j is as in (d), (e). Suppose
one can find such a cycle z having the properties in (g) below. To state (g) we fix a notation. Given two cycles u and v in
H̃∗(P )⊗Λ. We write u ∼ v ≡ elλ(l) mod F(l − 1) to mean that u is homologous to v with v ≡ elλ(l) mod F(l − 1).

(g) (i) φ(x) ∼ z ≡ ekλ(k) mod F(k − 1) for some k with 1 � k < j and some λ(k) ∈ Λs−1,∗which is

necessarily a cycle, where j is as in (d), (e).

(ii) ek{λ(k)} is a non-trivial infinite cycle in E∗,s−1,∗∞ .

In this case we will write φ̃(α) to denote the non-trivial cycle ek{λ(k)} and use the correspondence

(h) α = {x} = {λjλ(j)} → ek{λ(k)} = φ̃(α)

to denote the connection from α to the non-trivial infinite cycle ek{λ(k)} via (d) and (g).
The reason to consider the notion (g) that leads to the correspondence (h) is the following. Given a non-zero

class α ∈ Exts,∗A . It may happen that no matter what cycle x = λjλ(j) ∈ Λs,∗ one chooses to represent α, the class

{λ(j)} ∈ Exts−1,∗
A is always zero; so α has no correspondence of type (f). For such an α, since α �= 0, from Theo-

rem 3.6 we see α always has property (g) and therefore has a correspondence of type (h). A typical example for such
an α is the class fi for any i � 0. This will be seen later when we come to prove (3.8.3) in which we have to consider
the correspondence (h) for fi . Many other examples will arise when we come to prove Theorem 1.4 later.

If α ∈ Exts,∗A is a class such that either there is a correspondence as that in (f) for α or there is a correspondence as
that in (h) for α then we say α has either (f) or (h).

Proposition 3.7.

(1) If α ∈ Exts,∗A is a class having either (f) or (h) then α is non-zero.
(2) If S is a set of classes in Exts,∗A such that each α ∈ S has either (f) or (h), so that either φ(α) or φ̃(α) is defined, and

such that the set {φ(α) or φ̃(α) | α ∈ S} is a linearly independent subset of non-trivial infinite cycles in E
∗,s−1,∗∞

then S is a linearly independent subset of Exts,∗A .
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Proof. If α ∈ Exts,∗A has either (f) or (h) then φ∗(α) ∈ Exts−1,∗
A is represented either by the non-trivial infinite cycle

ej {λ(j)} = φ(α) or by the non-trivial infinite cycle ek{λ(k)} = φ̃(α) in the spectral sequence. So φ∗(α) �= 0 and this
implies α �= 0. This proves (3.7)(1). (3.7)(2) is clear. This proves Proposition 3.7. �

We are going to use Proposition 3.7 to prove (1.3)′(ii). Recall that we want to prove that the set of the classes in
(1.3)′(ii) is a Z/2-base for Ext4,∗

A . Call this set B . By (3.4) and (1.3)′(i) we see this is equivalent to proving that B is

linearly independent in Ext4,∗
A . We shall prove this by showing the following result (3.8).

In order to state this result we fix some notations. Recall that, for each i � 0, the class hi ∈ Ext1,∗
A is represented

by the cycle λ2i−1 ∈ Λ1,∗ and the class ci ∈ Ext3,∗
A is represented by the cycle λ2i+1+2i−1λ

2
2i+2−1

∈ Λ3,∗. To sim-

plify, we will let h∗
i denote the cycle λ2i−1 and let c∗

i denote the cycle λ2i+1+2i−1λ
2
2i+2−1

. Note that λnh
∗
i h

∗
j h

∗
k =

λnλ2i−1λ2j −1λ2k−1 is admissible if and only if 2n � 2i − 1 and i � j � k, and λmc∗
i = λmλ2i+1+2i−1λ

2
2i+2−1

is ad-

missible if and only if 2m � 2i+1 + 2i − 1.
The result (3.8) below consists of the statements (3.8.1) through (3.8.17). For each n with 1 � n � 17 and n �= 3,

(3.8.n) describes, for each class α in (1.3)′(ii)(n), a correspondence of type (f) for α which is of the form α =
{λjλ(j)} → ej {λ(j)} = φ(α). And (3.8.3) describes, for each class α in (1.3)′(ii)(3), a correspondence of type (h)
for α which is of the form α = {λjλ(j)} → ek{λ(k)} = φ̃(α). These φ(α) or φ̃(α) are to be non-trivial infinite cycles
in E

∗,3,∗∞ . Recall that (2.5.l1) through (2.5.l26) in Section 2 is the list of a basis for E
∗,3,∗∞ . Right after φ(α) or φ̃(α)

in these (3.8.n)′s we attach an appropriate (2.5.lj ) to indicate that φ(α) or φ̃(α) belongs to the family (2.5.lj ). For
example, “e2i+3−2i−1ci = φ(di), (2.5.l22)” at the end of (3.8.1) indicates that the non-trivial infinite cycle e2i+3−2i−1ci

belongs to the family (2.5.l22). Finally, the restriction on i in (3.8.1) through (3.8.8) is i � 0.

(3.8.1) di = {λ2i+3−2i−1c
∗
i } → e2i+3−2i−1ci = φ(di), (2.5.l22).

(3.8.2) ei = {
λ2i+3+2i−1(h

∗
i+2)

3
} → e2i+3+2i−1h

3
i+2 = φ(ei), (2.5.l3).

(3.8.3) fi = {
λ2i+2+2i+1−1h

∗
i+3(h

∗
i+2)

2
}

→ e2i+2+2i−1h
2
i+3hi = φ̃(fi), (2.5.l9).

(3.8.4) gi+1 = {
λ2i+2+2i+1+2i−1(h

∗
i+3)

2h∗
i

}
→ e2i+2+2i+1+2i−1h

2
i+3hi = φ(gi+1), (2.5.l11).

(3.8.5) pi = {λ2i+4−2i−1c
∗
i+1} → e2i+4−2i−1ci+1 = φ(pi), (2.5.l26).

(3.8.6) D3(i) = {λ2i+4+2i+3−2i−1h
∗
i+5h

∗
i+3h

∗
i+1}

→ e2i+4+2i+3−2i−1hi+5hi+3hi+1 = φ(D3(i)), (2.5.l20).

(3.8.7) p′
i = {

λ2i+5+2i+2+2i+1+2i−1(h
∗
i+4)

2h∗
i+1

}
→ e2i+5+2i+2+2i+1+2i−1h

2
i+4hi+1 = φ(p′

i ), (2.5.l14).

(3.8.8) hi+1ci = {λ2i+i−1c
∗
i } → e2i+1−1ci = φ(hi+1ci), (2.5.l21).

(3.8.9) cihj = {
λ2i+1+2i−2j −1(h

∗
i+2)

2h∗
j+1

}
→ e2i+1+2i−2j −1h

2
i+2hj+1 = φ(cihj )

for 0 � j < i − 1, (2.5.l13).

(3.8.10) cihj = hj ci = {λ2j −2i+4+2i+2+2i−1c
∗
i+1}

→ e2j −2i+4+2i+2+2i−1ci+1 = φ(cihj )

for 0 � i < j − 3, (2.5.l23).

(3.8.11) h3
i hl = {

λ2i−2l−1(h
∗
i )

2h∗
l+1

}
→ e2i−2l−1h

2hl+1 = φ(h3hl), for 0 � l < i − 3, (2.5.l12).
i i
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(3.8.12) h2
i h

2
k = {

λ2i−2k+1−1h
∗
i (h

∗
k+1)

2
}

→ e2i−2k+1−1hih
2
k+1 = φ(h2

i h
2
k), for 0 � k < i − 3, (2.5.l6).

(3.8.13) h2
i hkhl = {λ2i−2k−2l−1h

∗
i h

∗
k+1h

∗
l+1}

→ e2i−2k−2l−1hihk+1hl+1 = φ(h2
i hkhl)

for 0 � l < k − 1 < i − 3, (2.5.l18).

(3.8.14) hih
2
j hl = {

λ2i−2j+1−2l−1(h
∗
j+1)

2h∗
l+1

}
→ e2i−2j+1−2l−1h

2
j+1hl+1 = φ(hih

2
j hl)

for 0 � l < j − 2 < i − 4, (2.5.l15).

(3.8.15) hihjh
2
k = {

λ2i−2j −2k+1−1h
∗
j+1(h

∗
k+1)

2
}

→ e2i−2j −2k+1−1hj+1h
2
k+1 = φ(hihjh

2
k)

for 0 � k < j − 2 < i − 3, (2.5.l7).

(3.8.16) hih
3
j = {

λ2i−2j+1−2j −1(h
∗
j+3)

3
}

→ e2i−2j+1−2j −1h
3
j+1 = φ(hih

3
j ), for 0 � j < i − 2, (2.5.l2).

(3.8.17) hihjhkhl = {λ2i−2j −2k−2l−1h
∗
j+1h

∗
k+1h

∗
l+1}

→ e2i−2j −2k−2l−1hj+1hk+1hl+1 = φ(hihkhkhl)

for 0 � l < k − 1 < j − 2 < i − 3, (2.5.l19).

We recall again that the left-sided classes in (2.5.l1) through (2.5.l26) in Section 2 is a Z/2-base for E
∗,3,∗∞ . Let B ′

be the set of the classes in Ext4,∗
A exhibited in (3.8) = ⋃17

n=1(3.8.n) above. For each α ∈ B ′ the corresponding non-
trivial infinite cycle φ(α) or φ̃(α) belongs to some (2.5.lj ) as depicted in (3.8). Since different (2.5.lj ) are attached
to different (3.8.k), and this is easy to check, it follows that the set {φ(α) or φ̃(α) | α ∈ B ′} is a linearly independent
subset of E

∗,3,∗∞ . This implies B ′ is a linearly independent subset of Ext4,∗
A by Proposition 3.7. Now B ′ is precisely

the set of the classes listed in (1.3)′(ii)(1) through (1.3)′(ii)(17). Together with the class h4
0 in (1.3)′(ii)(18) the set

B = B ′ ∪ {h4
0} is therefore also linearly independent in Ext∗,4

A since h4
0 �= 0 lies in Ext4,4

A while each α ∈ B ′ lies in

Ext4,t
A for some t with t > 4. This proves (1.3)′(ii) modulo the proof of (3.8).
We proceed to prove (3.8). First we explain what are to be proved. To prove (3.8.1), for example, is to show that,

for each i � 0, the class di can be represented by a cycle x ∈ Λ4,∗ whose leading term is the admissible monomial

λ2i+3−2i−1c
∗
i = λ2i+3−2i−1λ2i+1+2i−1λ

2
2i+2−1.

Once this done, that the corresponding φ(di) = e2i+3−2i−1ci is a non-trivial infinite cycle belonging to the family
(2.5.l22) is clear. All other (3.8.n) with n �= 3 are to be proved this way. The correspondence (3.8.3) is of type (h) and
will be given a special treatment of its proof.

To prove (3.8.1) through (3.8.7) we have to recall from (1.1) some specific cycle representations in Λ5,∗ for the
classes in B3 = {di, ei, fi, gi+1,pi, D3(i),p

′
i | i � 0}. Actually, for the purpose of making calculations for proving

Theorem 1.4 later, we will give, for each class α in B3, either

(i) a specific cycle representation α(1), or
(ii) two specific cycle representations α(1) and α(2), or

(iii) three specific cycle representations α(1), α(2) and α(3).

Only the cycle representations α(1), for α ∈ B3, which are in admissible forms, will be relevant to the proofs of (3.8.1)
through (3.8.7). If α ∈ B3 is a class in the case (ii) then the cycle representations α(1) and α(2), either

(ii)′ are different cycles but homologous, or
(ii)′′ are equal but α(2) is in inadmissible form.
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In case (ii)′ we will give a specific chain y ∈ Λ3,∗ with δ(y) = α(1)+α(2) showing that α(1) ∼ α(2). In case (ii)′′ we
will write α(1) = α(2). If α ∈ B3 is in the case (iii) then α(1) and α(2) will be in the situation (ii)′, and α(1) and α(3)

will be in the situation (ii)′′. These cycle representations are described in (3.9) below where i � 0 in each (3.9.k).

(3.9.1) di(1) = (Sq0)i(λ6λ2λ
2
3 + λ2

4λ
2
3 + λ2λ4λ5λ3),

di(2) = (Sq0)i(λ6λ2λ
2
3 + λ3λ

2
0λ11),

δ
[
(Sq0)i(λ4λ0λ11 + λ2

2λ11 + λ1λ11λ3 + λ3λ5λ7)
] = di(1) + di(2).

(3.9.2) ei(1) = (Sq0)i(λ8λ
3
3 + λ4λ

2
5λ3 + λ4λ7λ

2
3 + λ2λ3λ5λ7),

ei(2) = (Sq0)i(λ0λ11λ
2
3 + λ0λ5λ9λ3 + λ1λ2λ

2
7),

δ
[
(Sq0)i(λ8λ7λ3 + λ7λ0λ11)

] = ei(1) + ei(2).

(3.9.3) f i(1) = (Sq0)i(λ5λ7λ
2
3 + λ4λ6λ5λ3 + λ2

3λ5λ7 + λ2λ4λ5λ7).

(3.9.4) gi+1(1) = (Sq0)i(λ2
6λ5λ3 + λ5λ9λ

2
3 + λ5λ3λ5λ7 + λ3λ5λ9λ3).

(3.9.5) pi(1) = (Sq0)i(λ14λ5λ
2
7 + λ10λ9λ

2
7 + λ6λ9λ11λ7),

pi(2) = (Sq0)i(λ14λ5λ
2
7 + λ7λ0λ19λ7),

pi(3) = (Sq0)i
[
λ0(λ19λ

2
7 + λ7λ11λ15)

] = pi(1),

δ
[
(Sq0)i(λ10λ1λ23 + λ6λ5λ23)

] = pi(1) + pi(2).

(3.9.6) D3(i)(1) = (Sq0)i[λ22λ21λ11λ7 + λ22λ13λ11λ15 + λ16λ
3
15 + λ14λ13λ19λ15],

D3(i)(2) = (Sq0)i(λ23λ0λ7λ31 + λ15λ8λ7λ31 + λ16λ
3
15),

D3(i)(3) = (Sq0)i(λ0λ23λ7λ31) = D3(i)(1),

δ
[
(Sq0)i(λ24λ7λ31)

] = D3(i)(1) + D3(i)(2).

(3.9.7) p′
i (1) = (Sq0)i

⎡
⎣ λ38λ13λ11λ7 + λ30λ9λ

2
5 + λ28λ11λ

2
15 + λ22λ17λ

2
15+ λ20λ19λ

2
15 + λ14λ21λ27λ7 + λ14λ21λ19λ15

+ λ14λ17λ23λ15 + λ14λ13λ19λ23 + λ12λ19λ23λ15

⎤
⎦ ,

p′
i (2) = (Sq0)i

[
λ0(λ39λ

2
15 + λ15λ23λ31)

] = p′
i (1).

Let d̃i , ẽi , f̃i , g̃i+1, p̃i , D̃3(i) and p̃′
i be the cycle representations for the classes di , ei , fi , gi+1, pi , D3(i) and p′

i

respectively described in (1.1)(3) through (1.1)(9) of Section 1. The admissible cycle representations di(1), . . . , p′
i (1)

in (3.9) are derived from d̃i , . . . , p̃
′
i with the following relations.

(i) (1) f i(1) = f̃i , pi(1) = p̃i , D3(i)(1) = D̃3(i) and p′
i (1) = p̃′

i in Λ4,∗.
(2) di(1) differs from d̃i by one term (Sq0)i(λ1λ5λ1λ7) which is ∼ 0 as λ1λ5λ1λ7 = λ2

3λ1λ7 = δ(λ3λ5λ7).
(3) ei(1) differs from ẽi by one term (Sq0)i(λ2λ9λ

2
3) which is ∼ 0 as λ2λ9λ

2
3 = λ6λ5λ

2
3 = λ6λ1λ7λ3 = λ0λ

2
7λ3 =

δ(λ0λ7λ11).
(4) gi+1(1) differs from g̃i+1 by one term (Sq0)i(λ3λ11λ

2
3) which is ∼ 0 λ3λ11λ

2
3 = λ2

7λ
2
3 = δ(λ7λ11λ3).

This implies that di(1), ei(1), . . . ,p′
i (1) are indeed cycle representations for di, ei, . . . , p

′
i , respectively. From their

admissible forms as given in (3.9) we see the following.

(3.8.1)∗ di = {
(Sq0)i(λ6λ2λ

2
3 = λ6c

∗
0) = λ2i+3−2i−1c

∗
i

}
.

(3.8.2)∗ ei = {
(Sq0)i(λ8λ

3
3) = λ2i+3+2i−1(h

∗
i+2)

2
}
.

(3.8.4)∗ gi+1 = {
(Sq0)i(λ2

6λ5λ3 = λ6λ0λ
2
7)

}
= {

(Sq0)i(λ6λ
2
7λ0) = λ2i+2+2i+1+2i−1(h

∗
i+3)

2h∗
i

}
, since

δ(λ6λ8λ7 + λ6λ7λ8) ≡ λ6λ0λ
2
7 + λ6λ

2
7λ0 mod Λ(5).
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(3.8.5)∗ pi = {
(Sq0)i(λ14λ5λ

2
7 = λ14c

∗
1) = λ2i+4−2i−1c

∗
i+1

}
.

(3.8.6)∗ D3(i) = {
(Sq0)i[λ22(λ21λ11λ7 + λ13λ11λ15) = λ22λ1λ7λ31]

}
= {

(Sq0)i(λ22λ31λ7λ1) = λ2i+4+2i+3−2i−1h
∗
i+5h

∗
i+3h

∗
i+1

}
, since

δ
[
λ22(λ9λ31 + λ7λ33 + λ39λ1)

] ≡ λ22λ1λ7λ31 + λ22λ31λ7λ1 mod Λ(21).

(3.8.7)∗ p′
i = {

(Sq0)i(λ38λ13λ11λ7 = λ38λ1λ
2
15)

}
= {

(Sq0)i(λ38λ
2
15λ1) = λ2i+5+2i+2+2i+1+2i−1(h

∗
i+4)

2h∗
i+1

}
since

δ
[
λ38(λ17λ15 + λ15λ17)

] ≡ λ38λ1λ
2
15 + λ38λ15λ

2
1 mod Λ(37).

This proves (3.8.k) for k = 1,2,4,5,6 and 7.

Next we prove (3.8.3). Apply the chain map Λ
φ−→ H̃∗(P ) ⊗ Λ in (3.5) to the cycle f i(1) in (3.9.3) to get

(i) φ
(
f i(1)

) = (Sq0)i
[
φ(λ5λ7λ

2
3) + φ(λ4λ6λ5λ3) + φ(λ2

3λ5λ7) + φ(λ2λ4λ5λ7)
]
.

Note that λ5λ7λ
2
3, λ4λ6λ5λ3, λ2

3λ5λ7 and λ2λ4λ5λ7 are all admissibles. From (3.6)(4) to get

(ii) φ(λ4λ6λ5λ3) + φ(λ2
3λ5λ7) + φ(λ2λ4λ5λ7) ≡ e4(λ6λ5λ3 = λ0λ

2
7) mod F(3).

From the construction of the map φ described in (3.5) it is easy to see the following.

(iii) φ(λ5λ7λ
2
3) = e5λ7λ

2
3 + e1λ11λ

2
3 ≡ e5λ7λ

2
3 mod F(3).

From (i), (ii) and (iii) we conclude

(iv) φ
(
f i(1)

) ≡ (Sq0)i(e5λ7λ
2
3 + e4λ0λ

2
7) mod F(2i+2 − 1).

In H̃∗(P )⊗Λ we have δ(e5λ11λ3) ≡ e5λ7λ
2
3 mod F(3) and δ[e4(λ8λ7 +λ7λ8)] ≡ e4λ0λ

2
7 +e4λ

2
7λ0 mod F(3). These

imply

(v) δ
[
(Sq0)i(e5λ11λ3)

] ≡ (Sq0)i(e5λ7λ
2
3) mod F(2i+2 − 1),

δ
[
(Sq0)i(e4(λ8λ7 + λ7λ8))

] ≡ (Sq0)i(e4λ0λ
2
7 + e4λ

2
7λ0) mod F(2i+2 − 1).

From (iv) and (v) we deduce that

φ
(
f i(1)

) ∼ y ≡ (Sq0)i(e4λ
2
7λ0) ≡ e2i+2+2i−1(h

∗
i+3)

2h∗
i mod F(2i+2 − 1).

This implies φ̃(fi) = e2i+2+2i−1h
2
i+3hi by the definition of φ̃(fi) in (h). This proves (3.8.3).

Some calculations are needed in order to prove the remaining (3.8.8) through (3.8.17). We are not going to do all
these calculations. Rather, we will just illustrate our method of calculations for two of these which are (3.8.9) and
(3.8.11), as the proofs of the rest are similar which we leave to the reader.

We want to show for (3.8.9) that

cihj = {
λ2i+1+2i−2j −1(h

∗
i+2)

2h∗
j+1

}
for 0 � j < i − 1.

It is clear that it suffices to show this for j = 0, that is, to prove

(∗) cih0 = {
λ2i+1+2i−2(h

∗
i+2)

2h∗
1

}
for i � 2.

We already know that λ2i+1+2i−1λ
2
2i+2−1

λ0 is a cycle representing cih0. Let λ(1) = λ2i+2−1λ2i+2 + λ2i+2λ2i+2−1,

λ(2) = λ2
i+2 and λ(3) = λ2i+2+1λ2i+2−1 + λ2i+2−1λ2i+2+1. We have
2 −1
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δ
(
λ2i+1+2i−1λ(1) + λ2i+1+2i λ(2) + λ2i+1+2i−2λ(3)

)
≡ λ2i+1+2i−1λ

2
2i+2−1λ0 + λ2i+1+2i−2λ

2
2i+2−1λ1 mod Λ(2i+1 + 2i − 3).

This proves (∗) and therefore (3.8.9).
We want to show for (3.8.11) that

h3
i hl = {

λ2i−2l−1(h
∗
i )

2h∗
l+1

}
for 0 � l < i − 3.

Again it suffices to show

(∗∗) h3
i h0 = {

λ2i−2(h
∗
i )

2h∗
1

}
for i � 4.

The cycle λ3
2i−1

λ0 represents h3
i h0. We have

δ
[
λ2i−1(λ2i−1λ2i + λ2i λ2i−1) + λ2i λ2

2i−1 + λ2i−2(λ2i+1λ2i−1 + λ2i−1λ2i+1)
]

≡ λ3
2i−1λ0 + λ2i−2λ

2
2i−1λ1 mod F(2i − 3).

This proves (∗∗) and therefore (3.8.11).

This completes the proof of Theorem 1.3 and therefore also the “inductive proof” of the differentials E
∗,3,∗
r

dr−→
E

∗,4,∗
r given in (2.5).
The remainder of this section is devoted to proving Theorem 1.4.
Let Ē be the subalgebra of the algebra Exts,∗A for s � 5 generated by the classes in B2 = {hi, ci, di, ei, fi, gi+1,pi,

D3(i),p
′
i | i � 0}. We already know from Theorem 1.3 the following relations in Ē:

(1.3)∗ hihi+1 = 0, hih
2
i+2 = 0, h3

i = h2
i−1hi+1, h2

i h
2
i+3 = 0 and hj ci = 0

for j = i − 1, i, i + 2 and i + 3.

We want to prove for Theorem 1.4 that in Ē the only relations among the generators in B2 = {hi, ci, di, . . . , p
′
i | i � 0}

are those in (1.3)∗ together with the set of the relations (1) through (39) in the statement (1.4) in Section 1. Let R(1.4)

denote this set. Then R(1.4) is the set of the relations obtained by applying (Sq0)i for all i � 0 to the following
relations (1.4)∗(1) through (1.4)∗(39) where D3 = D3(0).

(1.4)∗ (1) h2
4c0 = 0, (2) h3h0c2 = 0, (3) h2

1c0 = 0, (4) h0d1 = 0,

(5) h3d0 = 0, (6) h4d0 = 0, (7) h0e1 = 0, (8) h4e0 = 0,

(9) h1f0 = 0, (10) h3f0 = 0, (11) h4f0 = 0, (12) h3g1 = 0,

(13) h0p1 = 0, (14) h1p0 = 0, (15) h2p0 = 0, (16) h4p0 = 0,

(17) h5p0 = 0, (18) h0D3(1) = 0, (19) h0D3 = 0, (20) h5D3 = 0,

(21) h6D3 = 0, (22) h0p
′
1 = 0, (23) h2p

′
0 = 0, (24) h3p

′
0 = 0,

(25) h6p
′
0 = 0, (26) h4h1c0 = h3e0, (27) h4h0c3 = h5p

′
0,

(28) h2
5c0 = h1p

′
0, (29) h0d2 = h3D3, (30) h1d1 = h0p0,

(31) h2d1 = h4g1, (32) h2d0 = h0e0, (33) h1e0 = h0f0,

(34) h2e1 = h1f1 = h2
0c2, (35) h2e0 = h0g1, (36) h0f2 = h4p

′
0,

(37) h0f1 = h3p0, (38) h2f0 = h1g1, (39) h3g2 = h5g1.

To complete the proof of Theorem 1.4 it suffices to show the following (3.10) and (3.11).

(3.10) In Ē there are the relations (1.4)∗(1) through (1.4)∗(39), which imply that the relations in R(1.4) also hold
in Ē.

(3.11) The set of the monomials hihjhkhlhm, cihjhk and hjdi , hj ei , hjfi , hjgi+1, hjpi , hjD3(i), hjp
′
i in Ē∩Ext5,∗

A

which are obtained by avoiding the relations in (1.3)∗ and also the relations in R(1.4) is linearly independent.
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Precise description of the set in (3.11) will be given later when we come to prove it.
To prove (3.10), and also (3.11) later on, we shall need the specific cycle representations di(1), di(2), . . . , p′

i (1),

p′
i (2) in (3.9) for the classes di, . . . , p

′
i , respectively. Recall that λ2

2j −1
and λ2j+1+2j −1λ

2
2j+2−1

are the standard

cycle representations for the classes hj and cj , respectively. We shall use the cycle representations λ2j −1di(1)

(or di(1)λ2j −1), λ2j −1di(2), . . . , λ2j −1p
′
i (1), λ2j −1p

′
i (2) for the classes hjdi = dihj , . . . , hjp

′
i = p′

ihj in B̂3 =
{hjdi, hj ei, . . . , hjD3(i), hjp

′
i | i � 0, j � 0}. For example, λ7d0(2) = λ7(λ6λ2λ

2
3 + λ3λ

2
0λ11) represents the class

h3d0 and e0(1)λ7 = [λ8λ
3
3 + λ4(λ

2
5λ3 + λ7λ

2
3) + λ2λ3λ5λ7]λ7 = λ2λ3λ5λ

2
7 (since λ3λ7 = 0 in Λ) represents the class

h3e0 = e0h3. Besides these cycle representations we shall also need some “exotic” cycle representations for some of
the classes in B̂3. These “exotic” cycle representations will be obtained from the following result which is new.

Proposition 3.12. Let α be a class in Exts−1,∗
A (P ) represented by a cycle x = ∑n

k=1 eikλ(k) ∈ H̃∗(P ) ⊗ Λs−1,∗ where
s − 1 > 0. Consider the class t∗(α) in Exts,∗A where t∗ is as in (3.1)(2), so that t∗(α) is represented by the cycle

t (x) = ∑n
k=1 λikλ(k) in Λs,∗. Then for any j � 0 the class hj t∗(α) ∈ Exts+1,∗

A is represented by

n∑
k=1

[∑
l�0

(
ik − l

l

)
λik−lλ2j +l−1

]
λ(k) ∈ Λs+1,∗.

Proposition 3.12 will be proved at the end of this section after we finish the proof of Theorem 1.4.
The classes in B̂3 = {hjdi, . . . , hjp

′
i} to be given exotic cycle representations via (3.12), which are relevant to

the proof of (3.10), are the classes h1d1, h0p0, h0e0, h1g1, h0p1 and h1p0. These exotic cycle representations are
to be described in (3.13) below. Recall that we use d̃i , ẽi , . . . , p̃

′
i to denote the cycle representations for the classes

di, ei, . . . , pi respectively described in (1.1) of Section 1. For example, we have

(j) g̃1 = λ6λ0λ
2
7 + λ5(λ9λ

2
3 + λ3λ5λ7) + λ3(λ5λ9λ3 + λ11λ

2
3),

ẽ0 = λ8λ
3
3 + λ4λ

2
5λ3 + (λ4λ7λ

2
3 = λ3λ8λ

2
3) + λ2(λ3λ5λ7 + λ9λ

2
3).

Recall also from (3.9) that the following specific cycles d1(2), p0(2) and p1(2) represent d1, p0 and p1 respectively.

(k) d1(2) = Sq0(λ6λ2λ
2
3 + λ3λ

2
0λ11) = λ13λ5λ

2
7 + λ7λ

2
1λ23,

p0(2) = λ14λ5λ
2
7 + λ7λ0λ19λ7,

p1(2) = λ29λ11λ
2
15 + λ15λ1λ39λ15 = Sq0(p0(2)).

The following are cycles in H̃∗(P ) ⊗ Λ3,∗ which is easy to check.

(l) g̃∗
1 = e6λ0λ

2
7 + e5(λ9λ

2
3 + λ3λ5λ7) + e3(λ5λ9λ3 + λ11λ

2
3),

ẽ∗
0 = e8λ

3
3 + e4λ

2
5λ3 + e3λ8λ

2
3 + e2(λ3λ5λ7 + λ9λ

2
3),

d∗
1(2) = e13λ5λ

2
7 + e7λ

2
1λ23, p∗

0(2) = e14λ5λ
2
7 + e7λ0λ19λ7,

p∗
1(2) = e29λ11λ

2
15 + e15λ1λ39λ15.

From (j), (k), (l) we see t (g̃∗
1) = g̃1, t (̃e∗

0) = ẽ0, t (d∗
1(2)) = d1(2) and t (p∗

i (2)) = pi(2) for i = 0,1. From (j), (k) and
Propositions 3.12 we obtain the following exotic cycle representations for the classes h1d1, h0p0, h0e0, h1g1, h0p1
and h1p0, respectively.

(3.13) (1) h1d1 = (λ13λ1λ5λ
2
7 = 0) + λ11λ3λ5λ

2
7 + λ2

7λ5λ
2
7

+ (λ7λ
3
1λ23 = λ7λ

2
0λ19λ7).

(2) h0p0 = (λ14λ0λ5λ
2
7 = 0) + (λ13λ1λ5λ

2
7 = 0) + λ11λ3λ5λ

2
7

+ λ2
7λ5λ

2
7 + λ7λ

2
0λ19λ7.

(3) h0e0 = (λ8λ0λ
3
3 = 0) + (λ7λ1λ

3
3 = 0) + λ6λ2λ

3
3 + λ2

4λ
3
3

+ (λ4λ0λ
2λ3 = λ2λ3) + λ3λ1λ

2λ3 + (λ2λ2λ3 = 0)
5 4 3 5 2 5
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+ λ3λ0λ8λ
2
3 + (λ2λ0λ3λ5λ7 = 0) + (λ2

1λ3λ5λ7 = 0)

+ (λ2λ0λ9λ
2
3 = 0) + (λ2

1λ9λ
2
3 = λ2

0λ
2
7λ3).

(4) h1g1 = λ6λ1λ0λ
2
7 + λ5λ2λ0λ

2
7 + λ3λ4λ0λ

2
7 + λ5λ1λ9λ

2
3

+ λ2
3λ9λ

2
3 + (λ5λ1λ3λ5λ7 = 0) + λ3

3λ5λ7 + λ3λ1λ5λ9λ3

+ λ3λ1λ11λ
2
3.

(5) h0p1 = λ29λ0λ11λ
2
15 + λ27λ2λ11λ

2
15 + λ23λ6λ11λ

2
15

+ λ15λ14λ11λ
2
15 + (λ15λ0λ1λ39λ15 = 0).

(6) h1p0 = (λ14λ1λ5λ
2
7 = 0) + (λ13λ2λ5λ

2
7 = 0) + λ11λ4λ5λ

2
7

+ λ7λ8λ5λ
2
7 + λ7λ1λ0λ19λ7.

Now we prove (3.10). Recall we want to prove for (3.10) that the relations (1.4)∗(1) through (1.4)∗(39) hold in
Ext5,∗

A . The following Eqs. (3.10.k)∗ for 1 � k � 39 in the lambda algebra Λ constitute a proof for these relations
where, for each k, Eq. (3.10.k)∗ corresponds to the relation (1.4)∗(k). In these equations we use the specific cycles
di(1), di(2), . . . ,p′

i (1),p′
i (2) in (3.9) to represent the classes di, . . . , p

′
i respectively and, in Eqs. (3.10.k)∗ for k =

13,14,30,32 and 38, we use the exotic cycle representations in (3.13) for the classes h1d1, h0p0, h0e0, h1g1, h0p1 and
h1p0. And we recall again that hj and cj are represented by the standard cycles λ2j −1 and λ2j+1+2j −1λ

2
2j+2−1

= c∗
j ,

respectively. We also note that if α and β are classes in Ext∗,∗
A represented respectively by cycles x and y in Λ then

{xy} = {yx} = αβ = βα since the algebra Ext∗,∗
A is commutative.

(3.10.1)∗ h2
4c0 = 0 by λ2λ

2
3λ

2
15 = 0.

(3.10.2)∗ h3h0c2 = 0 by λ7λ0c
∗
2 = λ7λ0λ11λ

2
15 = δ(λ8λ11λ

2
15).

(3.10.3)∗ h2
1c0 = 0 by λ2

1c
∗
0 = λ2

1λ2λ
2
3 = δ(λ3

0λ11).

(3.10.4)∗ h0d1 = 0 by λ0d1(2) = λ0(λ13λ5λ
2
7 + λ7λ

2
1λ23) = δ(λ8λ

2
1λ23).

(3.10.5)∗ h3d0 = 0 by λ7d0(2) = λ7(λ6λ2λ
2
3 + λ3λ

2
0λ11)

= δ(λ14λ2λ
2
3 + λ11λ

2
0λ11).

(3.10.6)∗ h4d0 = 0 by d0(1)λ15 = (λ6λ2λ
2
3 + λ2

4λ
2
3 + λ2λ4λ5λ3)λ15

= δ(λ0λ16λ
2
7 + λ0λ15λ8λ7 + λ0λ23λ0λ7).

(3.10.7)∗ h0e1 = 0 by λ0e1(1) = λ0(λ17λ
3
7 + λ9λ

2
11λ7 + λ9λ15λ

2
7 + λ5λ7λ11λ15) = 0.

(3.10.8)∗ h4e0 = 0 by e0(1)λ15 = (λ8λ
3
3 + λ4λ

2
5λ3 + λ4λ7λ

2
3 + λ2λ3λ5λ7)λ15

= δ(λ4λ
2
3λ23).

(3.10.9)∗ h1f0 = 0 by λ1f 0(1) = λ1
[
λ4λ0λ

2
7 + λ3(λ9λ

2
3 + λ3λ5λ7) + λ2λ4λ5λ7

]
= δ(λ2λ4λ

2
7).

(3.10.10)∗ h3f0 = 0 by f 0(1)λ7 = [
λ4λ0λ

2
7 + λ3(λ9λ

2
3 + λ3λ5λ7) + λ2λ4λ5λ7

]
λ7

= λ2
3λ5λ

2
7 + λ2λ4λ5λ

2
7 = δ(λ3

1λ23 + λ2
0λ11λ15).

(3.10.11)∗ h4f0 = 0 by f 0(1)λ15 = [
λ4λ0λ

2
7 + λ3(λ9λ

2
3 + λ3λ5λ7) + λ2λ4λ5λ7

]
λ15

= λ3λ9λ
2
3λ15 = λ3λ9λ

3
7 = δ(λ3λ17λ

2
7).

(3.10.12)∗ h3g1 = 0 by g1(1)λ7 = [
λ6λ0λ

2
7 + λ5(λ9λ

2
3 + λ3λ5λ7) + λ3λ5λ9λ3

]
λ7

= λ5λ3λ5λ
2
7 = δ(λ9λ5λ

2
7).

(3.10.13)∗ h0p1 = 0 by h0p1 = (λ29λ0 + λ27λ2 + λ23λ6 + λ15λ14)λ11λ
2
15

= δ(λ30λ11λ
2 ).
15
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(3.10.14)∗ h1p0 = 0 by h1p0 = λ11λ4λ5λ
2
7 + λ7λ8λ5λ

2
7 + λ7λ1λ0λ19λ7

= δ(λ14λ
3
7 + λ7λ2λ19λ7).

(3.10.15)∗ h2p0 = 0 by p0(3)λ3 = λ0(λ19λ
2
7 + λ7λ11λ15)λ3

= δ
[
λ0(λ23λ

2
7 + λ19λ7λ11 + λ11λ3λ23 + λ7λ11λ19)

]
.

(3.10.16)∗ h4p0 = 0 by p0(2)λ15 = (λ14λ5λ
2
7 + λ7λ0λ19λ7)λ15 = 0.

(3.10.17)∗ h5p0 = 0 by p0(3)λ31 = λ0(λ19λ
2
7 + λ7λ11λ15)λ31

= λ0λ19λ
3
15 = δ(λ0λ35λ

2
15).

(3.10.18)∗ h0D3(1) = 0 by λ0D3(1)(3) = λ0λ1λ47λ15λ63 = 0.

(3.10.19)∗ h0D3 = 0 by λ0D3(0)(3) = λ2
0λ23λ7λ31

= δ

[
λ2

0λ47λ15 + (λ9λ
2
3 + λ3λ5λ7)λ47

+ λ21λ11λ
2
15 + λ7λ1λ23λ31

]
.

(3.10.20)∗ h5D3 = 0 by D3(0)(3)λ31 = λ0λ23λ7λ
2
31 = 0.

(3.10.21)∗ h6D3 = 0 by D3(0)(3)λ63 = λ0λ23λ7λ31λ63 = 0.

(3.10.22)∗ h0p
′
1 = 0 by λ0p

′
1(2) = λ0λ1(λ79λ

2
31 + λ31λ47λ63) = 0.

(3.10.23)∗ h2p
′
0 = 0 by λ3p

′
0(2) = λ3λ0(λ39λ

2
15 + λ15λ23λ31)

= δ
[
λ4(λ39λ

2
15 + λ15λ23λ31) + λ0λ11λ

2
31

]
.

(3.10.24)∗ h3p
′
0 = 0 by p′

0(2)λ7 = λ0(λ39λ
2
15 + λ15λ23λ31)λ7

= δ
[
λ0(λ47λ

2
15 + λ39λ15λ23 + λ23λ7λ47 + λ15λ23λ39)

]
.

(3.10.25)∗ h6p
′
0 = 0 by p′

0(2)λ63 = λ0(λ39λ
2
15 + λ15λ23λ31)λ63

= λ0λ39λ
3
31 = δ(λ0λ71λ

2
31).

(3.10.26)∗ h4h1c0 = h3e0 by e0(1)λ7 = [
λ8λ

3
3 + λ4(λ

2
5λ3 + λ7λ

2
3) + λ2λ3λ5λ7

]
λ7

= λ2λ3λ5λ
2
7 = λ1λ4λ5λ

2
7 = λ1λ2λ

3
7

= λ1λ2λ
2
3λ15 = λ1c

∗
0λ15.

(3.10.27)∗ h4h0c3 = h5p
′
0 by p′

0(2)λ31 = λ0(λ39λ
2
15 + λ15λ23λ31)λ31

= λ0λ15λ23λ
2
31 = λ0λ15c

∗
3 .

(3.10.28)∗ h2
5c0 = h1p

′
0 by λ1p

′
0(2) = λ1λ0(λ39λ

2
15 + λ15λ23λ31)

= δ
[
λ2(λ39λ

2
15 + λ15λ23λ31)

] + (λ2λ
2
3λ

2
31 = c∗

0λ2
31).

(3.10.29)∗ h0d2 = h3D3 by λ0d2(2) + λ7D3(0)(3)

= λ0(λ27λ11λ
2
15 + λ15λ

2
3λ47) + λ7λ0λ23λ7λ31

= δ(λ16λ
2
3λ47 + λ14λ1λ39λ15 + λ7λ0λ47λ15).

(3.10.30)∗ h1d1 = h0p0 by h1d1 = λ11λ3λ5λ
2
7 + λ2

7λ5λ
2
7 + λ7λ

2
0λ19λ7 = h0p0.

(3.10.31)∗ h2d1 = h4g1 by g1(1)λ15 + λ3d1(1)

= [
λ6λ0λ

2
7 + λ5(λ9λ

2
3 + λ3λ5λ7) + λ3λ5λ9λ3

]
λ15

+ λ3(λ13λ5λ
2
7 + λ2

9λ
2
7 + λ5λ9λ11λ7)

= λ5λ9λ
3
7 + λ3λ1λ17λ

2
7 = δ(λ5λ17λ

2
7).

(3.10.32)∗ h2d0 = h0e0 by h0e0 + λ3d0(1)

= λ6λ2λ
3
3 + λ3(λ1λ

2
5λ3 + λ0λ8λ

2
3) + λ2

0λ
2
7λ3

+ λ3(λ6λ2λ
2
3 + λ2

4λ
2
3 + λ2λ4λ5λ3)

= δ(λ6λ2λ7λ3 + λ5λ
2λ11 + λ2λ5λ7 + λ2λ7λ11).
1 3 0
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(3.10.33)∗ h1e0 = h0f0 by λ0f 0(1) + λ1e0(1)

= λ0[λ4λ0λ
2
7 + λ5λ7λ

2
3 + λ2

3λ5λ7 + λ2λ4λ5λ7]
+ λ1[λ8λ

3
3 + λ4λ

2
5λ3 + λ4λ7λ

2
3 + λ2λ3λ5λ7]

= λ3λ1λ0λ
2
7 + λ6λ

4
3 + λ5λ4λ

3
3

= δ(λ10λ
3
3 + λ7λ0λ5λ7 + λ3λ2λ

2
7).

(3.10.34)∗ h2e1 = h1f1 = h2
0c2 by (λ2

0c
∗
2 = λ2

0λ11λ
2
15) + λ1f 1(1)

= λ9λ11λ
3
7 + λ9λ

2
1λ

2
15 = δ(λ9λ7λ11λ15).

(3.10.35)∗ h2e0 = h0g1 by λ0g1(1) + λ3e0(1)

= λ0
[
λ6λ0λ

2
7 + λ5(λ9λ

2
3 + λ3λ5λ7) + λ3λ5λ9λ3

]
+ λ3

[
λ8λ

3
3 + λ4(λ

2
5λ3 + λ7λ

2
3) + λ2λ3λ5λ7

]
= δ(λ5λ2λ

2
7 + λ4λ5λ1λ11 + λ2

3λ8λ7).

(3.10.36)∗ h0f2 = h4p
′
0 by λ0f 2(1)

= λ0
[
λ19λ3λ

2
31 + λ15(λ39λ

2
15 + λ15λ23λ31) + λ2

11λ
2
31

]
= λ16λ

2
3λ

2
31 + λ0λ15(λ39λ

2
15 + λ15λ23λ31)

= δ
[
λ16(λ39λ

2
15 + λ15λ23λ31)

] + λ15p
′
0(2).

(3.10.37)∗ h0f1 = h3p0 by λ0f 1(1)

= λ0
[
λ9λ1λ

2
15 + λ7(λ19λ

2
7 + λ7λ11λ15) + λ2

5λ
2
15

]
= δ

[
λ8(λ19λ

2
7 + λ7λ11λ15)

] + λ7p0(3).

(3.10.38)∗ h2f0 = h1g1 by h1g1 + λ3f 0(1)

= λ6λ1λ0λ
2
7 + λ5λ1λ9λ

2
3 + λ5λ3λ

2
5λ3

+ λ3(λ1λ5λ9λ3 + λ1λ11λ
2
3 + λ2λ4λ5λ7)

= δ(λ6λ2λ
2
7 + λ2

5λ1λ11).

(3.10.39)∗ h3g2 = h5g1 by g1(1)λ31 + λ7g2(1)

= [
λ6λ0λ

2
7 + λ5(λ9λ

2
3 + λ3λ5λ7) + λ3λ5λ9λ3

]
λ31

+ λ7(λ13λ1λ
2
15 + λ11λ19λ

2
7 + λ7λ11λ19λ7 + λ11λ7λ11λ15)

= δ(λ5λ9λ15λ23).

To complete the proof of Theorem 1.4 we have to show (3.11) which is restated more precisely as (3.11)∗ below. From
the relations in (1.3)∗, described before the proof of (3.10) above, and also the relations in R(1.4), which is the set of
the relations (1.4)(1) through (1.4)(39) in Section 1, we see that to prove (3.11) is equivalent to proving the following
(3.11)∗ where the class h5

0 ∈ Ext5,5
A is excluded, that is, only elements in Exts,tA with t − s > 0 are considered.

(3.11)∗ The set of the monomials (1) through (23) below is a Z/2-base for Ē ∩ Ext5,∗
A , the Z/2-submodule of Ext5,∗

A

generated by the decomposable elements.
(1) h3

i h
2
j for i � j + 5, (2) h3

i hjhk for i � j + 4 � k + 6,

(3) h2
i h

3
j for i � j + 4, (4) h2

i h
2
j hk for i � j + 4 � k + 7,

(5) h2
i hjh

2
k for i � j + 3 � k + 6,

(6) h2
i hjhkhl for i � j + 3 � k + 5 � l + 7,

(7) hih
3
j hk for i � j + 3 � k + 7,

(8) hih
2
j h

2
k for i � j + 3 � k + 7,

(9) hih
2
j hkhl for i � j + 3 � k + 6 � l + 8,

(10) hihjh
3 for i � j + 2 � k + 5,
k
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(11) hihjhkh
2
l for i � j + 2 � k + 4 � l + 7,

(12) hihjh
2
khl for i � j + 2 � k + 5 � l + 8,

(13) hihjhkhlhm for i � j + 2 � k + 4 � l + 6 � m + 8,

(14) hih
4
0 for i � 4,

(15) cih
2
j for j � i − 3 or j � i + 5,

(16) cihjhk for (i) k � i + 4, k − 1 > j and j �= i − 1, i, i + 2, i + 3 or (ii) j < k − 1 < i − 2 or
(iii) k = i + 1 > j − 1,

(17) dihj for j �= i − 2, i − 1, i + 3 and i + 4,

(18) eihj for j �= i − 1, i, i + 3 and i + 4,
(19) fihj for j � i − 3 or j = i + 2 or j � i + 5,

(20) gi+1hj for j � i − 1 or j = i + 2 or j � i + 6,

(21) pihj for j � i − 2 or j = i + 3 or j � j + 6,

(22) D3(i)hj for j �= i − 1, i, i + 5 and i + 6,

(23) p′
ihj for j � i − 2 or j = i or j = i + 4 or j � i + 7.

Let B̃ be the set of the classes (3.11)∗(1) through (3.11)∗(23). To prove (3.11)∗ it suffices to show that B̃ is a linearly
independent set in Ext5,∗

A as B̃ spans the Z/2-module Ē ∩ Ext5,∗
A which is easy to see from the relations in (1.3)∗ and

in R(1.4).
The method of proving (3.11)∗ will be the same as that for (1.3)′(ii), which was proved via the result (3.8), and this

is roughly described as follows. We are going to show that for each class α in (3.11)∗ either there is a correspondence

α = {
λjλ(j)

} → ej

{
λ(j)

} = φ(α)

of type (f) or there is a correspondence

α = {
λjλ(j)

} → ek

{
λ(k)

} = φ̃(α)

of type (h) such that the resulting collection I of these φ(α) or φ̃(α) is linearly independent in E
∗,4,∗∞ of the spectral

sequence {E∗,∗,∗
r }r�1 for Ext∗,∗

A (P ), and then apply Proposition 3.7. To show I is linearly independent we shall resort

to the differentials E
∗,3,∗
r

dr−→ E
∗,4,∗
r described in (2.5) of Section 2.

The result of these correspondences for classes in (3.11)∗ is described in (3.14) below from (3.14.1) to (3.14.51),
analogous to those in (3.8) for (1.3)′(ii) discussed earlier. The correspondences (3.14.1) through (3.14.43) are of
type (f) which are listed for the classes in (3.11)∗(1) through (3.11)∗(23) roughly in that order with several consecutive
(3.14.n)′ s for each such (3.11)∗(l). The remaining eight correspondences (3.14.44) through (3.14.51) are of type (h).
Proofs for these correspondences will be given afterwards. In stating these correspondences we still use h∗

j and c∗
j

to stand for the cycles λ2j −1 and λ2j+1+2j −1λ
2
2j+2−1

, respectively. We will also use the cycle representations di(1),

ei(1), f i(1), gi+1(1), pi(1), D3(i)(1) and p′
i (1) described in (3.9) for the classes di , ei , fi , gi+1, pi , D3(i) and p′

i ,
respectively. These cycle representations will simply be denoted by d∗

i , e∗
i , . . . ,D

∗
3(i) and (p′

i )
∗. From (3.9) we also

note that p∗
i = pi(1) = pi(3), D∗

3 = D3(i)(1) = D3(i)(3) and (p′
i )

∗ = p′
i (1) = p′

i (2). In addition to these, we will
also consider the cycle representation di(2) in (3.9.1) for the class di .

(3.14.1) h3
i h

2
j = {

λ2i−2j+1−1(h
∗
i )

2(h∗
j+1)

2
}

→ e2i−2j+1−1h
2
i h

2
j+1 = φ(h3

i h
2
j ) for i � j + 5.

(3.14.2) h3
i hjhk = {

λ2i−2j −2k−1(h
∗
i )

2h∗
j+1h

∗
k+1

}
→ e2i−2j −2k−1h

2
i hj+1hk+1 = φ(h3

i hjhk) for i � j + 4 � k + 6.

(3.14.3) h2
i h

3
j = {

λ2i−2j+1−2j −1h
∗
i (h

∗
j+1)

3
}

→ e2i−2j+1−2j −1hih
3
j+1 = φ(h2

i h
3
j ) for i � j + 4.

(3.14.4) h2
i h

2
j hk = {

λ2i−2j+1−2k−1h
∗
i (h

∗
j+1)

2h∗
k+1

}
→ e2i−2j+1−2k−1hih

2 hk+1 = φ(h2h2hk) for i � j + 4 � k + 7.
j+1 i j
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(3.14.5) h2
i hjh

2
k = {

λ2i−2j −2k+1−1h
∗
i h

∗
j+1(h

∗
k+1)

2
}

→ e2i−2j −2k+1−1hihj+1h
2
k+1 = φ(h2

i hjh
2
k) for i � j + 3 � k + 6.

(3.14.6) h2
i hjhkhl = {λ2i−2j −2k−2l−1h

∗
i h

∗
j+1h

∗
k+1h

∗
l+1}

→ e2i−2j −2k−2l−1hihj+1hk+1hl+1 = φ(h2
i hjhkhl)

for i � j + 3 � k + 5 � l + 7.

(3.14.7) hih
3
j hk = {

λ2i−2j+1−2j −2k−1(h
∗
j+1)

3h∗
k+1

}
→ e2i−2j+1−2j −2k−1h

3
j+1hk+1 = φ(hih

3
j hk) for i � j + 3 � k + 7.

(3.14.8) hih
2
j h

2
k = {

λ2i−2j+1−2k+1−1(h
∗
j+1)

2(h∗
k+1)

2
}

→ e2i−2j+1−2k+1−1h
2
j+1h

2
k+1 = φ(hih

2
j h

2
k) for i � j + 3 � k + 7.

(3.14.9) hih
2
j hkhl = {

λ2i−2j+1−2k−2l−1(h
∗
j+1)

2h∗
k+1h

∗
l+1

}
→ e2i−2j+1−2k−2l−1h

2
j+1hk+1hl+1 = φ(hih

2
j hkhl)

for i � j + 3 � k + 6 � l + 8.

(3.14.10) hihjh
3
k = {

λ2i−2j −2k+1−2k−1h
∗
j+1(h

∗
k+1)

3
}

→ e2i−2j −2k+1−2k−1hj+1h
3
k+1 = φ(hihjh

3
k) for i � j + 2 � k + 5.

(3.14.11) hihjhkh
2
l = {

λ2i−2j −2k−2l+1−1h
∗
j+1h

∗
k+1(h

∗
l+1)

2
}

→ e2i−2j −2k−2l+1−1hj+1hk+1h
2
l+1 = φ(hihjhkh

2
l )

for i � j + 2 � k + 4 � l + 7.

(3.14.12) hihjh
2
khl = {

λ2i−2j −2k+1−2l−1h
∗
j+1(h

∗
k+1)

2h∗
l+1

}
→ e2i−2j −2k+1−2l−1hj+1h

2
k+1hl+1 = φ(hihjh

2
khl)

for i � j + 2 � k + 5 � l + 8.

(3.14.13) hihjhkhlhm = {λ2i−2j −2k−2l−2m−1h
∗
j+1h

∗
k+1h

∗
l+1h

∗
m+1}

→ e2i−2j −2l−2l−2m−1hj+1hk+1hl+1hm+1 = φ(hihjhkhlhm)

for i � j + 2 � k + 4 � l + 6 � m + 8.

(3.14.14) hih
4
0 = {

λ2i−8h
∗
3(h

∗
0)

3
} → e2i−8h3h

3
0 = φ(hih

4
0) for i � 4.

(3.14.15) cih
2
j = {

λ2i+1+2i−2j+1−1(h
∗
i+2)

2(h∗
j+1)

2
}

→ e2i+1+2i−2j+1−1h
2
i+2h

2
j+1 = φ(cih

2
j ) for i � j + 3.

(3.14.16) cih
2
j = h2

j ci = {λ2j −2i+3−2i+1−2i−1h
∗
j c

∗
i+1}

→ e2j −2i+3−2i+1−2i−1hj ci+1 = φ(h2
j ci) for j � i + 5.

(3.14.17) cihjhk = hkcihj = {λ2k−2i+3−2i+1−2i−2j −1c
∗
i+1h

∗
j+1}

→ e2k−2i+3−2i+1−2i−2j −1ci+1hj+1 = φ(hkcihj )

for k � i + 4 � j + 6.

(3.14.18) cihjhk = hkhj ci = {λ2k−2j −2i+3−2i+1−2i−1h
∗
j+1c

∗
i+1}

→ e2k−2j −2i+3−2i+1−2i−1hj+1ci+1 = φ(hkhj ci)

for k > j + 1 � i + 5 or k − 2 > j + 1 = i.

(3.14.19) cihjhi+1 = hi+1cihj = {λ2i+1−2j −1c
∗
i h

∗
j+1}

→ e2i+1−2j −1cihj+1 = φ(hi+1cihj ) for i � j + 3.
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(3.14.20) cihjhk = cihkhj = {
λ2i+1+2i−2k−2j −1(h

∗
i+2)

2h∗
k+1h

∗
j+1

}
→ e2i+1+2i−2k−2j −1h

2
i+2hk+1hj+1 = φ(cihkhj )

for i � k + 2 � j + 4.

(3.14.21) dihj = {λ2i+2+2i+1+2i−2j −1c
∗
i h

∗
j+1}

→ e2i+2+2i+1+2i−2j −1cihj+1 = φ(dihj ) for i � j + 3.

(3.14.22) dihi = {λ2i+2+2i+1−1h
∗
i+1c

∗
i }

→ e2i+2+2i+1−1hi+1ci = φ(dihi) for i � 0.

(3.14.23) dihi+2 = hi+2di = {λ2i+2−1d
∗
i }

→ e2i+2−1di = φ(dihi+2) for i � 0.

(3.14.24) dihj = hjdi = {λ2j −2i+4−2i+1−1d
∗
i+1}

→ e2j −2i+4−2i+1−1di+1 = φ(hjdi) for j � i + 5.

(3.14.25) eihj = {
λ2i+3+2i−2j −1(h

∗
i+1)

3h∗
j+1

}
→ e2i+3+2i−2j −1h

3
i+1hj+1 = φ(eihj ) for i � j + 3.

(3.14.26) ei+2hi = {λ2i+5−2i−1c
∗
i+1h

∗
i+5}

→ e2i+5−2i−1ci+1hi+5 = φ(ei+2hi) for i � 0.

(3.14.27) eihj = hj ei = {λ2j −2i+4−2i+2−2i−1e
∗
i+1}

→ e2j −2i+4−2i+2−2i−1ei+1 = φ(hj ei) for j � i + 5.

(3.14.28) fihi+2 = hi+2fi = {λ2i+2−1f
∗
i }

→ e2i+2−1fi = φ(hi+2fi) for i � 0.

(3.14.29) fihj = hjfi = {λ2j −2i+4−2i+2−2i+1−1f
∗
i+1}

→ e2j −2i+4−2i+2−2i+1−1fi+1 = φ(hjfi) for j � i + 5.

(3.14.30) gi+1hj = {
λ2i+2+2i+1+2i−2j −1(h

∗
i+3)

2h∗
i h

∗
j+1

}
→ e2i+2+2i+1+2i−2j −1h

2
i+3hihj+1 = φ(gi+1hj ) for i � j + 3.

(3.14.31) gi+1hi−2 = {
λ2i+2+2i+1−1(p

′
i−2)

∗}
→ e2i+2+2i+1−1p

′
i−2 = φ(gi+1hi−2) for i � 2.

(3.14.32) gi+1hi−1 = {λ2i+2+2i+1−1p
∗
i−1}

→ e2i+2+2i+1−1pi−1 = φ(gi+1hi−1) for i � 1.

(3.14.33) gi+1hi+2 = hi+2gi+1 = {λ2i+2−1g
∗
i+1}

→ e2i+2−1gi+1 = φ(hi+2gi+1) for i � 0.

(3.14.34) gi+1hj = hjgi+1 = {λ2j −2i+4−2i+3−1g
∗
i+2}

→ e2j −2i+4−2i+3−1gi+2 = φ(hjgi+1) for j � i + 6.

(3.14.35) pihj = {λ2i+4−2i−2j −1c
∗
i+1h

∗
j+1}

→ e2i+4−2i−2j −1ci+1hj+1 = φ(pihj ) for i � j + 2.

(3.14.36) pihi+3 = hi+3pi = {λ2i+3−1p
∗
i }

→ e2i+3−1pi = φ(hi+3pi) for i � 0.

(3.14.37) pihj = hjpi = {λ2j −2i+5−2i+2−2i−1p
∗
i+1}

→ e2j −2i+5−2i+2−2i−1pi+1 = φ(hjpi) for j � i + 6.
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(3.14.38) D3(i)hj = {λ2i+4+2i+3−2i−2j −1h
∗
i+5h

∗
i+3h

∗
i+1h

∗
j+1}

→ e2i+4+2i+3−2i−2j −1hi+5hi+3hi+1hj+1 = φ
(
D3(i)hj

)
for i � j + 2.

(3.14.39) D3(i)hi+1 = {λ2i+3+2i+2+2i−1c
∗
i+1h

∗
i+5}

→ e2i+3+2i+2+2i−1ci+1hi+5 = φ
(
D3(i)hi+1

)
for i � 0.

(3.14.40) D3(i)hj = hjD3(i) = {
λ2j −2i+6−2i−1D

∗
3(i + 1)

}
→ e2j −2i+6−2i−1D3(i + 1) = φ

(
hjD3(i)

)
for j � i + 7.

(3.14.41) p′
ihj = {

λ2i+5+2i+3−2i−2j −1(h
∗
i+4)

2h∗
i+1h

∗
j+1

}
→ e2i+5+2i+3−2i−2j −1h

2
i+4hi+1hj+1 = φ(p′

ihj ) for i � j + 2.

(3.14.42) p′
ihi = {λ2i+5−2i+1−1f

∗
i+1}

→ e2i+5−2i+1−1fi+1 = φ(p′
ihi) for i � 0.

(3.14.43) p′
ihj = hjp

′
i = {

λ2j −2i+6−2i+3−2i−1(p
′
i+1)

∗}
→ e2j −2i+6−2i+3−2i−1p

′
i+1 = φ(hjp

′
i ) for j � i + 7.

(3.14.44) dihi+1 = hi+1di = {
λ2i+1+2i−1λ2i+2+2i−1(h

∗
i+2)

3
}

→ e2i+1−1di = φ̃(hi+1di) for i � 0.

(3.14.45) eihi+1 = hi+1ei = {
λ2i+2+2i−1λ2i+2+2i+1−1(h

∗
i+2)

3
}

→ e2i+1−1ei = φ̃(hi+1ei) for i � 0.

(3.14.46) eihi+2 = hi+2ei = {
λ2i+2+2i−1h

∗
i+3(h

∗
i+2)

3
}

→ e2i+2−1ei = φ̃(hi+2ei) for i � 0.

(3.14.47) fihj = {
λ2i+2+2i+1−1h

∗
i+3(h

∗
i+2)

2h∗
j

}
→ e2i+2+2i−2j −1h

2
i+3hihj+1 = φ̃(fihj ) for i � j + 3.

(3.14.48) D3(i)hi+2 = hi+2D3(i) = {
λ2i+3+2i+1+2i−1λ2i+3+2i+1−1(h

∗
i+4)

3
}

→ e2i+2−1D3(i) = φ̃
(
hi+2D3(i)

)
for i � 0.

(3.14.49) D3(i)hi+3 = hi+3D3(i) = {
λ2i+3+2i−1(h

∗
i+4)

4
}

→ e2i+3−1D3(i) = φ̃
(
hi+3D3(i)

)
for i � 0.

(3.14.50) D3(i)hi+4 = {
λ2i+4−2i−1λ2i+4+2i+1−1(h

∗
i+4)

3
}

→ e2i+3−1p
′
i = φ̃

(
D3(i)hi+4

)
for i � 0.

(3.14.51) p′
ihi+4 = hi+4p

′
i = {

λ2i+4+2i+3−2i−1h
∗
i+5(h

∗
i+4)

2h∗
i+1

}
→ e2i+4−1p

′
i = φ̃(hi+4p

′
i ) for i � 4.

Let I be the set of all the infinite cycles φ(α) or φ̃(α) in (3.14) = ⋃51
n=1(3.14.n). Let B(4) be the set of all the

boundaries in the differentials (2.5.1) through (2.5.74) in Section 2. It is not difficult to check that B(4) ∩ I = φ. This
implies that I is linearly independent in E

∗,4,∗∞ of the spectral sequence {E∗,∗,∗
r }r�1 for Ext∗,∗

A (P ). Since the set of the

classes of Ext5,∗
A listed in (3.14) is precisely the set B̃ of the classes in (3.11)∗, by Proposition 3.7, we see this in turn

implies that B̃ is a linearly independent subset of Ext5,∗
A . This will complete the proof of Theorem 1.4 once (3.14) is

proved.
The proof of (3.14) will be parallel to that for (3.8) (which is to prove (1.3)′(ii)). We are going to give detailed

proofs only for

(i) (3.4.n) with n = 1, 16, 23, 24, 26, 31, 32, 39 and 42 which are of type (f).
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and also for

(ii) (3.14.m) for 44 � m � 51 which are of type (h)

since the proofs of some of the (3.14.n)′ s in (i) are prototypes for those of the remaining (3.14.l). (iii) below lists
these remaining (3.14.l). We will write (3.14.l) ∈ (3.14.n) to mean that the proof of (3.14.n) is a prototype for a proof
of (3.14.l). Then we have the following.

(iii) (1) (3.14.l1) ∈ (3.14.1) for 2 � l1 � 15 and also for l1 = 20,21,22,25,30,35,38 and 41,
(2) (3.14.l2) ∈ (3.14.16) for l2 = 17,18,19,
(3) (3.14.l3) ∈ (3.14.23) for l3 = 28,33,36,
(4) (3.14.l4) ∈ (3.14.24) for l4 = 27,29,34,37,40,43.

We begin with the proof of (3.14.1). The class h3
i h

2
j = h2

j h
3
i is represented by the cycle λ2

2j −1
λ3

2i−1
= (h∗

j )
2(h∗

i )
3

which is inadmissible since i � j + 5. In the remainder of this proof for (3.14.1) and also in the proof of (3.14.16)
that follows we will use Hk to denote h∗

k = λ2k−1 for k � 0. We have

H 2
j H 3

i = λ2
2j −1λ

3
2i−1 ≡ λ2i−2j+1−1H

2
j+1H

2
i mod Λ(2i − 2j+1 − 2).

Let T = λ2i+2j+1−1. We have δ(T ) = Hj+1Hi + HiHj+1 in Λ. It is easy to see that

δ
[
λ2i−2j+1−1(Hj+1T Hi + T Hj+1Hi + HiHj+1T + HiT Hj+1)

]
≡ λ2i−2j+1−1(H

2
j+1H

2
i + H 2

i H 2
j+1) mod Λ(2i − 2j+1 − 2).

So h3
i h

2
j = {λ2i−2j+1−1H

2
i H 2

j+1} since λ2i−2j+1−1H
2
i H 2

j+1 is admissible. The condition i � j + 5 insures that

h2
i h

2
j+1 = {H 2

i H 2
j+1} is non-zero. This proves (3.14.1).

Proof of (3.14.16). The class h2
j ci = cih

2
j is represented by the cycle c∗

i H
2
j = λ2i+1+2i−1λ

2
2i+2−1

λ2
2j −1

which is inad-
missible since j � i + 5. We have

c∗
i H

2
j ≡ λ2j −2i+3−2i+1−2i−1c

∗
i+1Hj mod Λ(2j − 2i+3 − 2i+1 − 2i − 2).

Since ci+1 = {c∗
i+1}, hj = {Hj } and ci+1hj = hj ci+1 it follows that there is a T1 ∈ Λ3,∗ such that δ(T1) = c∗

i+1Hj +
Hjc

∗
i+1 in Λ. As j � i + 5, it is not difficult to see that

δ(λkT1) ≡ λk(c
∗
i+1Hj + Hjc

∗
i+1) mod Λ(k − 1)

where k = 2j − 2i+3 − 2i+1 − 2i − 1. So cih
2
j = {λ2j −2i+3−2i+1−2i−1Hjc

∗
i+1} since λ2j −2i+3−2i+1−2i−1Hjc

∗
i+1 is

admissible. The condition j � i + 5 insures that hj ci+1 = {Hjc
∗
i+1} is non-zero. This proves (3.14.16). �

Proof of (3.14.23). The class dihi+2 = hi+2di is represented by the cycle λ2i+2−1d
∗
i = λ2i+2−1(Sq0)i(λ6λ2λ

2
3 +

λ2
4λ

2
3 + λ2λ4λ5λ3). The monomial λ2i+2−1(Sq0)i(λ6λ2λ

2
3) = λ2i+2−1λ2i+3−2i−1λ2i+1+2i−1λ

2
2i+2−1

is admissible, and

this implies λ2i+2−1(Sq0)i(λ2
4λ

2
3) and λ2i+2−1(Sq0)i(λ2λ4λ5λ3) are also admissible. So hi+2di = {λ2i+2−1d

∗
i }. This

proves (3.14.23). �
Proof of (3.14.24). The class dihj = hjdi is represented by the cycle d∗

i λ2j −1 = (Sq0)i[(λ6λ2λ
2
3 + λ2

4λ
2
3 +

λ2λ4λ5λ3)λ2j−i−1] which is a sum of inadmissible monomials since j � i + 5. We have

(λ6λ2λ
2
3 + λ2

4λ
2
3 + λ2λ4λ5λ3)λ2j−i−1

≡ λ2j−i−18−1
[
(λ13λ5λ

2
7 + λ2

9λ
2
7 + λ5λ9λ11λ7) = d∗

1

]
mod Λ(2j−i − 20).

This implies d∗
i λ2i−1 ≡ λ2j −2i+4−2i+1−1d

∗
i+1 mod Λ(2j − 2i+4 − 2i+1 − 2). Since λ2j −2i+4−2i+1−1d

∗
i+1 is a sum of

admissible monomials (as j � i + 5) it follows that dihj = {λ2j −2i+4−2i+1−1d
∗ }. This proves (3.14.24). �
i+1
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Proof of (3.14.26). The class e2h0 = h0e2 is represented by the cycle λ0e
∗
2 = λ0(λ35λ

3
15 + λ19λ

2
23λ15 + λ19λ31λ

2
15 +

λ11λ15λ23λ31). We have

λ0e
∗
2 ≡ λ0λ35λ

3
15 ≡ λ30λ5λ

3
15 = λ30λ9λ11λ

2
15 mod Λ(29).

Since λ30λ9λ11λ
2
15 is admissible and λ9λ11λ

2
15 = λ5λ

2
7λ31 = c∗

1h∗
5 it follows that h0e2 = {λ30c

∗
1h∗

5}. Applying (Sq0)i

we get hiei+2 = ei+2hi = {λ2i+5−2i−1c
∗
i+1h

∗
i+5}. This proves (3.14.26). �

Proof of (3.14.31). The class g3h0 = h0g3 is represented by the cycle λ0g
∗
3 = λ0(λ27λ3λ

2
31 + λ23λ39λ

2
15 +

λ23λ15λ23λ31 + λ15λ23λ39λ15). We have

λ0g
∗
3 ≡ λ0λ27λ3λ

2
31 ≡ λ24λ

2
3λ

2
31 mod Λ(22)

and δ[λ24(λ39λ
2
15 + λ15λ23λ31)] ≡ λ24λ

2
3λ

2
31 + λ23(p

′
0)

∗ mod Λ(22). Here we recall that

(p′
0)

∗ = p′
0(1) = p′

0(2) = λ0(λ39λ
2
15 + λ15λ23λ31) = λ38(λ1λ

2
15 = λ13λ11λ7).

Thus g3h0 = {λ23(p
′
0)

∗} since λ23(p
′
0)

∗ is a sum of admissible monomials. Applying (Sq0)i we get gi+3hi =
{λ2i+4+2i+3−1(p

′
i )

∗}. This proves (3.14.31). �
Proof of (3.14.32). The class g2h0 = h0g2 is represented by the cycle λ0g

∗
2 = λ0(λ13λ1λ

2
15 + λ11λ19λ

2
7 +

λ11λ7λ11λ15 + λ7λ11λ19λ7). We have

λ0g
∗
2 ≡ λ0λ13λ1λ

2
15 ≡ λ12λ

2
1λ

2
15 mod Λ(10)

and δ[λ12(λ19λ
2
7 + λ7λ11λ15)] ≡ λ12λ

2
1λ

2
15 + λ11p

∗
0 mod Λ(10). Here we recall that

p∗
0 = p0(1) = p0(3) = λ0(λ19λ

2
7 + λ7λ11λ15) = λ14λ5λ

2
7 + λ10λ9λ

2
7 + λ6λ9λ11λ7.

Thus g2h0 = {λ11p
∗
0} since λ11p

∗
0 is a sum of admissible monomials. Applying (Sq0)i we get gi+2hi =

{λ2i+3+2i+2−1p
∗
i }. This proves (3.14.32). �

Proof of (3.14.39). The class D3(0)h1 = h1D3(0) is represented by the cycle λ1D3(0)∗ = λ1D3(0)(1) =
λ1D3(0)(3) = λ1λ0λ23λ7λ31. We have

δ(λ2λ23λ7λ15) + λ1λ0λ23λ7λ31 = λ2λ15λ
2
7λ31 ≡ λ12λ5λ

2
7λ31 mod Λ(10).

Since λ12λ5λ
2
7λ31 = λ12λ5λ

3
15 = λ12λ9λ11λ

2
15 is admissible it follows that D3(0)h1 = {λ12λ5λ

2
7λ31 = λ12c

∗
1h∗

5}. Ap-
plying (Sq0)i we get D3(i)hi+1 = {λ2i+3+2i+2+2i−1c

∗
i+1h

∗
i+5}. This proves (3.14.39). �

Proof of (3.14.42). Let h0p
′
0 be the exotic cycle representation for the class h0p

′
0 = p′

0h0 obtained by applying
Proposition 3.12 to the cycle

(p′
0)

∗ = p′(1) = λ38λ1λ
2
15 + λ30λ9λ

2
15 + λ28λ11λ

2
15 + λ22λ17λ

2
15

+ λ20λ19λ
2
15 + λ14λ1λ23λ31 + λ12λ19λ23λ15

for p′
0 that comes from the cycle

(p̂′
0)

∗ = e38λ1λ
2
15 + e30λ9λ

2
15 + e28λ11λ

2
15 + e22λ17λ

2
15 + e20λ19λ

2
15

+ e14λ1λ23λ31 + e12λ19λ23λ15

for the class p̂′
0 as in (2.6)(7). We have

h0p
′
0 ≡ (λ38λ0λ1λ

2
15 = 0) + λ37λ

2
1λ

2
15 + λ35λ3λ1λ

2
15 + λ30(λ8λ1λ

2
15 = λ0λ9λ

2
15)

+ λ29(λ9λ1λ
2 = λ9λ13λ11λ7) + λ30λ0λ9λ

2 + λ29λ1λ9λ
2 mod Λ(28).
15 15 15
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Let T2 = λ37(λ19λ
2
7 + λ7λ11λ15) + λ35λ5λ

2
15 + λ31λ1λ15λ23 ∈ Λ3,70. By direct calculations we find that

δ(T2) ≡ λ37λ
2
1λ

2
15 + λ35λ3λ1λ

2
15 + λ29(λ11λ15λ

2
7 + λ2

7λ11λ15) mod Λ(28).

So

δ(T2) ≡ h0p
′
0 + λ29

[
λ11λ15λ

2
7 + λ9λ13λ11λ7 + λ2

7λ11λ15 + (λ1λ9λ
2
15 = λ5λ9λ11λ15)

]
≡ h0p

′
0 + λ29f

∗
1 mod Λ(28).

Thus h0p
′
0 = {λ29f

∗
1 } since λ29f

∗
1 is a sum of admissible monomials. Applying (Sq0)i we get p′

ihi = hip
′
i =

{λ2i+5−2i+1−1f
∗
i+1}. This proves (3.14.42). �

Proof of (3.14.44). The class h1d0 = d0h1 is represented by the cycle

λ1d0(2) = λ1(λ6λ2λ
2
3 + λ3λ

2
0λ11) = λ1λ6λ2λ

2
3 = λ4λ3λ2λ

2
3 + λ3λ4λ2λ

2
3.

Straightforward calculations show that

δ(λ5λ1λ7λ3 + λ4λ6λ
2
3 + λ2λ4λ7λ3) = λ1d0(2) + λ2λ4λ

3
3 + λ1λ2λ4λ5λ3.

So h1d0 = {λ2λ4λ
3
3 + λ1λ2λ4λ5λ3}. Now apply the chain map Λ

φ−→ H̃∗(P ) ⊗ Λ in (3.5), (3.6)(1) to the admissibles
λ2λ4λ

3
3 and λ1λ2λ4λ5λ3. From (3.5) we find that φ(λ2λ4λ

3
3 + λ1λ2λ4λ5λ3) = e2λ4λ

3
3 + e1λ5λ

3
3 + e1λ2λ4λ5λ3. We

have the following equation in H̃∗(P ) ⊗ Λ:

δ(e2λ8λ
2
3 + e1λ1λ11λ3) = φ(λ2λ4λ

3
3 + λ1λ2λ4λ5λ3)

+ e1
[
d∗

0 = d0(1) = λ6λ2λ
2
3 + λ2

4λ
2
3 + λ2λ4λ5λ3

]
.

This shows that h1d0 = {λ2λ4λ
3
3 = λ2λ4(h

∗
2)

3} → e1d0 = φ̃(h1d0). Applying (Sq0)i we get hi+1di =
{λ2i+1+2i−1λ2i+2+2i−1(h

∗
i+2)

3} → e2i+1−1di = φ̃(hi+1di). This proves (3.14.44). �
For the remaining proofs for (3.14.45) through (3.14.51) to be given in what follows, the map Λ

φ−→ H̃∗(P ) ⊗ Λ

always refers to the chain map in (3.5), (3.6)(1) as is used in the proof of (3.14.44) above. Also, it suffices to prove
these (3.14.n) for i = 0 (and also j = 0 for (3.14.47)) because we can apply (Sq0)i for arbitrary i > 0 as we did in the
proof of (3.14.44) above.

Proof of (3.14.45). By (1.4)∗(33), h1e0 = h0f0 which is represented by the cycle λ0f
∗
0 = λ4λ5λ

3
3 + λ3λ1λ0λ

2
7 +

λ2λ3λ
2
5λ3 + λ1λ2λ3λ5λ7. Since δ(λ3λ2λ

2
7) = λ3λ1λ0λ

2
7 it follows that

λ0f
∗
0 ∼ z = λ4λ5λ

3
3 + λ2λ3λ

2
5λ3 + λ1λ2λ3λ5λ7.

We have φ(z) = e4λ5λ
3
3 + e2λ3λ

2
5λ3 + e1λ2λ3λ5λ7 and

δ
[
e4λ9λ

2
3 + e2(λ5λ9λ3 + λ11λ

2
3) + e1(λ6λ1λ11 + λ4λ

2
7)

]
= φ(z) + e1(e

∗
0 = λ8λ

3
3 + λ4λ

2
5λ3 + λ4λ7λ

2
3 + λ2λ3λ5λ7).

Thus h1e0 = {λ4λ5(h
∗
2)

3} → e1e0 = φ̃(h1e0). This proves (3.14.45). �
Proof of (3.14.46). e0h2 = h2e0 is represented by the cycle λ3e

∗
0 = λ4λ7λ

3
3 + λ3λ4λ

2
5λ3 + λ3λ4λ7λ

2
3 + λ3λ2λ3λ5λ7

on which φ is given by φ(λ3e
∗
0) = e4λ7λ

3
3 + e2λ9λ

3
3 + e3(λ4λ

2
5λ3 + λ4λ7λ

2
3 + λ2λ3λ5λ7). We have δ(e4λ11λ

2
3 +

e3λ0λ7λ11) = e4λ7λ
3
3 + e3λ8λ

3
3 + e2λ9λ

3
3 and this implies

δ(e4λ11λ
2
3 + e3λ0λ7λ11)

= φ(λ3e
∗
0) + e3

[
e∗

0 = λ8λ
3
3 + λ4(λ

2
5λ3 + λ7λ

2
3) + λ2λ3λ5λ7

]
.

Thus h2e0 = {λ4h
∗(h∗)3} → e3e0 = φ̃(h2e0). This proves (3.14.46). �
3 2
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Proof of (3.14.47). The class fih0 is represented by the cycle

f ∗
i λ0 = [

(Sq0)i(f ∗
0 = λ5λ7λ

2
3 + λ4(λ6λ5λ3 = λ0λ

2
7) + λ2

3λ5λ7 + λ2λ4λ5λ7)
]
λ0

which has

f ∗
i λ0 ≡ λ2i+2+2i+1−1h

∗
i+3(h

∗
i+2)

2h∗
0 + λ2i+2+2i−1h

∗
i (h

∗
i+3)

2h∗
0 mod Λ(2i+2 − 1)

where i � 3. We have φ(λ5λ7λ
2
3) = e5λ7λ

2
3 + e1λ11λ

2
3 and φ(λ4λ6λ5λ3) = e4(λ6λ5λ3 = λ0λ

2
7) + e1λ9λ5λ3. These

imply

φ(f ∗
i λ0) ≡ e2i+2+2i+1−1h

∗
i+3(h

∗
i+2)

2h∗
0 + e2i+2+2i−1h

∗
i (h

∗
i+3)

2h∗
0 mod F(2i+2 − 1).

We have

δ(e2i+2+2i+1−1λ2i+3+2i+2−1h
∗
i+2h

∗
0) ≡ e2i+2+2i+1−1h

∗
i+3(h

∗
i+2)

2h∗
0 mod F(2i+2 − 1).

It is not difficult to see that

e2i+2+2i−1h
∗
i (h

∗
i+3)

2h∗
0 ∼ e2i+2+2i−2(h

∗
i+3)

2h∗
i h

∗
1 mod F(2i+2 + 2i − 3).

So hih0 = {λ2i+2+2i+1−1h
∗
i+3(h

∗
i+2)

2h∗
0} → e2i+2+2i−2h

2
i+3hih1 = φ̃(fih0). This proves (3.14.47). �

Proof of (3.14.48). The class D3(0)h2 = h2D3(0) is represented by the cycle λ3(D
∗
3(0) = D3(0)(1) = D3(0)(3) =

λ0λ23λ7λ31). We have

δ(λ4λ23λ7λ31 + λ0λ35λ
2
15) = λ3D

∗
3(0) + λ10λ9λ

3
15 + λ8λ11λ

3
15.

So h2D3(0) = {λ10λ9λ
3
15 + λ8λ11λ

3
15}. We have φ(λ10λ9λ

3
15) = e10λ9λ

3
15 and φ(λ8λ11λ

3
15) = e8λ11λ

3
15 + e2λ17λ

2
15.

Thus

φ
(
λ2D

∗
3(0)

) ∼ φ(λ10λ9λ
3
15 + λ8λ11λ

3
15) ≡ e10λ9λ

3
15 + e8λ11λ

3
15 mod F(2).

By direct calculations we find

δ(e10λ1λ23λ31 + e8λ3λ23λ31 + e6λ5λ23λ31 + e4λ23λ7λ31)

≡ e10λ9λ
3
15 + e8λ11λ

3
15 + e3

(
D∗

3(0) = λ0λ23λ7λ31
)

mod F(2).

Thus h2D3(0) = {λ10λ9(h
∗
4)

3} → e3D3(0) = φ̃(h2D3(0)). This proves (3.14.48). �
Proof of (3.14.49). D3(0)h3 = h3D3(0) is represented by the cycle λ7D

∗
3(0) = λ7λ0λ23λ7λ31 which is inadmissible.

It is easy to see

δ(λ8λ23λ7λ31 + λ0λ15λ23λ31) = λ7D
∗
3(0) + λ8λ

4
15.

So h3D3(0) = {λ8λ
4
15} with λ8λ

4
15 admissible. We have

φ(λ8λ
4
15) = e8λ

4
15 + e6λ17λ

3
15 + e4λ19λ

3
15 ≡ e8λ

4
15 mod F(6)

and

δ(e8λ23λ7λ31) ≡ e8λ
4
15 + e7

(
λ0λ23λ7λ31 = D∗

3(0)
)

mod F(6).

So h3D3(0) = {λ8(h
∗
4)

4} → e7D3(0) = φ̃(h3D3(0)). This proves (3.14.49). �
Proof of (3.14.50). D3(0)h4 is represented by the cycle D∗

3(0)λ15 = λ0λ23λ7λ31λ15. We have

δ(λ0λ23λ7λ47) = D∗
3(0)λ15 + λ14λ17λ

3
15 + λ12λ19λ

3
15 + λ8λ

2
15λ23λ15

and
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φ(λ14λ17λ
3
15 + λ12λ19λ

3
15 + λ8λ

2
15λ23λ15)

= e14λ17λ
3
15 + e2λ29λ

3
15 + e12λ19λ

3
15 + e6λ25λ

3
15 + e4λ27λ

3
15

+ e2λ29λ
3
15 + e8λ

2
15λ23λ15 + e6λ17λ15λ23λ15 + e4λ19λ15λ23λ15

≡ e14λ17λ
3
15 + e12λ19λ

3
15 + e8λ

2
15λ23λ15 mod F(6).

So φ(D∗
2(0)λ15) ∼ e14λ17λ

3
15 + e12λ19λ

3
15 + e8λ

2
15λ23λ15 mod F(6). By direct calculations we find that

δ

[
e14(λ33λ

2
15 + λ31λ17λ15 + λ47λ1λ15) + e13λ0λ49λ15

+ e12(λ3λ
2
31 + λ35λ

2
15) + e11λ2λ49λ15 + e8λ15λ23λ31 + e7λ6λ49λ15

]
≡ e14λ17λ

3
15 + e12λ19λ

3
15 + e8λ

2
15λ23λ15 + e7

[
(p′

0)
∗ = p′

0(1)
]

mod F(6).

Thus D3(0)h4 = {λ14λ17(h
∗
4)

3} → e7p
′
0 = φ̃(D3(0)h4). This proves (3.14.50). �

Proof of (3.14.51). The class p′
0 is represented by the cycle

(p′
0)

∗ = p′
0(1) = λ38λ13λ11λ7 + λ30λ9λ

2
15 + λ28λ11λ

2
15 + λ22λ17λ

2
15

+ λ20λ19λ
2
15 + λ14λ21λ27λ7 + λ14λ21λ19λ15 + λ14λ17λ23λ15

+ λ14λ13λ19λ23 + λ12λ19λ23λ15.

Each monomial in this sum is admissible. Let R be the sum of these monomials except λ38λ13λ11λ7 so that

(1) (p′
0)

∗ = λ38λ13λ11λ7 + R.

The class p′
0h4 = h4p

′
0 is represented by the cycle

(2) λ15(p
′
0)

∗ = λ15λ38λ13λ11λ7 + λ15R, where
λ15R = λ15λ30λ9λ

2
15 + λ15λ28λ11λ

2
15 + λ15λ22λ17λ

2
15

+ λ15λ20λ19λ
2
15 + λ15λ14λ21λ27λ7 + λ15λ14λ21λ19λ15

+ λ15λ14λ17λ23λ15 + λ15λ14λ13λ19λ23 + λ15λ12λ19λ23λ15.

Each monomial in the sum λ15R is admissible and begins with λ15. So

(3) φ(λ15R) ≡ e15R mod F(14).

We have the admissible expansion

λ15λ38λ13λ11λ7 = λ22λ31λ13λ11λ7 + λ21λ32λ13λ11λ7 + λ19λ34λ13λ11λ7

and we find that

(4) φ(λ15λ38λ13λ11λ7) ≡ e22λ31λ13λ11λ7 + e21λ32λ13λ11λ7 + e19λ34λ13λ11λ7
≡ e22λ31λ1λ

2
15 + e21λ32λ1λ

2
15 + e19λ34λ1λ

2
15 mod F(14).

Straightforward calculations show that

(5) δ
[
e22(λ33λ

2
15 + λ1λ47λ15) + e20λ3λ

2
31

]
≡ e22λ31λ1λ

2
15 + e21λ32λ1λ

2
15 + e19λ34λ1λ

2
15 + e15λ38λ13λ11λ7 mod F(14).

From (1), (2), (3), (4) and (5) we deduce that

φ
[
λ15(p

′ )∗
] ∼ e15

[
(p′ )∗ = λ38λ13λ11λ7 + R

]
mod F(14).
0 0
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Thus

h4p
′
0 = {λ22λ31λ13λ11λ7 = λ22λ31λ1λ

2
15}

= {λ22λ31λ
2
15λ1} = {

λ22h
∗
5(h

∗
4)

2h∗
1

} → e15p
′
0 = φ̃(h4p

′
0).

Here λ22λ31λ1λ
2
15 ∼ λ22λ31λ

2
15λ1 mod Λ(21) is easy to see. This proves (3.14.51). �

This completes the proof of Theorem 1.4.
The final work of this section is to prove Proposition 3.12. We are going to prove a more general result that covers

Proposition 3.12. Let K be a locally finite graded left module over the Steenrod algebra A. Given a class α ∈ Exts,∗A (K)

and suppose
∑

q kq ⊗λ(q) is a cycle in K∗ ⊗Λs,∗ representing α. We refer to the beginning of Section 2 for the Z/2-
dual K∗ of K , which is a right A-module, and also for the differential right Λ-module K∗ ⊗ Λ. In particular we recall
that αhi is represented by the cycle

∑
q kq ⊗ λ(q)λ2i−1 for any i � 0. The following result says that αhi can also be

represented by some “exotic” cycle.

Proposition 3.12∗. The chain
∑

q(
∑

ν�0 kqSqν ⊗ λ2i+ν−1λ(q)) in K∗ ⊗ Λs+1,∗ is also a cycle and represents αhi .

It is clear that this result implies Proposition 3.12. The remainder of this section is devoted to proving (3.12)∗.
Let L be another locally finite left module over A. Consider N∗ = K∗ ⊗ L∗ with diagonal A-action. From the

differential formula (1) in the beginning of Section 2 we see the differential δ on N∗ ⊗ Λ is given by

(∗) δ
[
(k ⊗ l)λI

] = (k ⊗ l)δ(λI ) +
∑
j�0

(k ⊗ l)Sqj+1λjλI

= (k ⊗ l)δ(λI ) +
∑
j�0

(∑
ν�0

kSqν ⊗ lSqj+1−ν

)
λjλI .

Now consider the A-module L = (Z/2 = L0)⊕(Σ2i
Z/2 = L2i

) with Z/2-generators x, y for L0, L2i
, respectively,

such that Sq2i
x = y. Then L∗ = (Z/2 = L0) ⊕ (Σ2i

Z/2 = L2i ) with Z/2-generators x and y, respectively, such that

ySq2i = x. From this point on, L will be this A-module.
We have a short exact sequence of A-modules

0 → K∗ = K∗ ⊗ Z/2
j−→ K∗ ⊗ L∗

p−→ K∗ ⊗ Σ2i

Z/2 = Σ2i

K → 0

which gives rise to a short exact sequence of differential Λ-modules

0 → K∗ ⊗ Λ
j ′−→ (K∗ ⊗ L∗ = N∗) ⊗ Λ

p′−→ Σ2i

K∗ ⊗ Λ → 0

resulting in a long exact sequence of Ext groups

(∗∗) · · · → Exts,tA (K)
j∗−→ Exts,tA (K ⊗ L)

p∗−→ Exts,tA (Σ2i

K) = Exts,t−2i

A (K)

δ∗−→ Exts+1,t
A (K) → ·· · .

It is well known that δ∗ is given by δ∗(β) = βhi for any β in Exts,t−2i

A (K) (see [2]). The differential δ in (∗), when

applied to L∗ = Z/2(x) ⊕ Σ2i
Z/2(y), becomes

(∗)′ (i) δ
[
(k ⊗ x)λI

] = (k ⊗ x)δ(λI ) +
∑
j�0

(kSqj+1 ⊗ x)λjλI ,

(ii) δ
[
(k ⊗ y)λI

] = (k ⊗ y)δ(λI ) +
∑
j�0

(kSqj+1 ⊗ y)λjλI

+
∑

(kSqν ⊗ x)λ2i+ν−1λI
ν�0



496 W.-H. Lin / Topology and its Applications 155 (2008) 459–496
since xSq0 = x, xSql = 0 for l > 0, ySq0 = y, ySq2i = x and ySql = 0 for l �= 0, 2i . From (∗)′(i), (ii) one easily sees
that the map Σ2i

K∗ ⊗Λ → ΣK∗ ⊗Λ, given by kλI → ∑
ν�0 kSqνλ2i+ν−1λI is a chain map and induces the bound-

ary homomorphism δ∗ in (∗∗). This implies the conclusion in (3.12)∗. This complete the proof of Proposition 3.12.
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