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Abstract

Let A denote the mod 2 Steenrod algebra. In this paper we make calculations to completely determine the Ext groups

Exti’*(Z/ 2,7/2) and also to determine the structure of Z/2-submodule of decomposable elements in Exti’*(Z /2,7]2).
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1. Introduction

Let A denote the mod 2 Steenrod algebra. The Ext groups ExtSA”(Z/Z, Z/2) are well known to form the E>-term
of the Adams spectral sequence for computing the 2-primary stable homotopy groups of spheres [1]. Here s is the
homological degree and ¢ is associated with the degree in the Steenrod algebra A. We will simply write Exti{’ to
denote Ext’;' (Z/2,7/2) and let Ext}," denote €, Ext;'.

The structure of Ext‘z’* for s < 3 is known and this will be recalled in a moment. The purpose of this paper is to make
calculations to determine completely Exti’* and also to determine the structure of Z/2-submodule of decomposable
elements in Exti’*(Z/ 2,7./2).

We shall describe these results in terms of the mod 2 lambda algebra A [3]. Recall that A is a bigraded differential
algebra over Z/2 generated by A; € ALY, Jj = 0, with relations

m—v—1
@ AjA2ji14m = Z ( ; >)»j+m—u)»2j+1+u
v=>0

for m > 0 and the differential

k—v—1
b)) s = Z ( v )Ak_v_lkv on the generators A
v>0 vt1
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and that H%'(A) = H5' (A, 8) = Exti{’ﬂ. From (a) we see the set {Aj, ---Aj, | ji = 2ji4+1}is a Z/2-base for A. Such
monomials in the A ;" are said to be admissible. There is an operation Sq°: A — A given by

© S, - hj) = Aoyl A2,

where A}, ---A; is not necessarily admissible. This operation respects the relations in (a) and commutes with the
differential in (b). So it induces a map

Sq°  H*' 75 (A) = Exty' — H*275(A) = Ext}”!

which is precisely the first Steenrod operation SqO:Exti"’ — Exti{zt in [7]. In what follows, (Sqo)i A — A (or

(S¢") : H**(A) — H**(A)) denotes the composite S¢°---S¢° if i > 1, is S¢° if i = 1 and is the identity map if
i
i=0.
In (1.1) below we list some classes in Extj;’* where each chain in A as given is easily seen to be a cycle (by direct
computations from (a) and (b)) representing the corresponding class as named.

(LD () hi = {ryi_ = (5¢°) (o)} € Exty”,
that corresponds to the generator qul cA,i>0.
@ e ={8q") Mard)) e Exri 2 THTHY i,
3) di = {(5¢°) (heraA2 + 2232 + Aadarshs + Aashian) ) € Exth2 T s,
. i+4 i+2 i
@ e = (S (1s23 + (33 + 123) + Ma(hsdshy + aoad) ) € Exeh? T
. i+4 Hi+2 ) Hi+l
() fi = (5 (hanor2 + A3(hoA3 + A3hshe) + Aahadshs) ) € Exy® TEUTET

~

= 0.
0.

WV

. i+4 , Hi+3
©) gi+1= {(Sqo)’ (A6r0A3 + As5(AoA3 + A3ksh7) + A3(Ashohs + MM%))} € Ext‘:{Z P ixo.

. i+5 i+2 i
D) pi = [(S¢%) (1arsh3 + hiohodd + Aghornidg) ) € Exih? 2T >0,

7 7 A
) . i+6_ i .

®)  D3(i) = {(5¢°) (haah1dgdat + hishis + hiahodsdsn)} € Exiy” T2, i>0.

A38 A A% + A30hoA2s 4+ AogA 11 A% + AxAi7A2 461 i43 i
9) p;z{(sqo)l< 38A147 5 230 95 28A114 5 22417 ls)}EExti’er 420t +27 i>0.

+ A20A 19475 + A14A1A23A31 + 12419423415

Theorem 1.2 below recalls the already known result on Ext‘i{* for s < 3.

Theorem 1.2. (See [2,9].) The algebra Ext‘;\’*for s < 3 is generated by h; # 0 and c; # 0 for i > 0, where h;, c; are
as in (1.1)(1) and (1.1)(2), and subject only to the relations hih;+1 =0, h,-hinr2 =0and h? = hl.zfth_l. In particular,

{ci |i =0} is a Z/2-base for the indecomposable elements in Exti’*.

Now we state our main results of the paper as follows. Theorem 1.3 is the result on E)cti”'< and Theorem 1.4 is the
result on Exty*.

Theorem 1.3.

(1) The subalgebra E of the algebra Exti\’* for s < 4 generated by h; and c; for i > 0 is subject only to the relations
in Theorem 1.2 together with the relations: hizhinr3 =0,hjc;=0for j=i—1,i,i+2andi~+3.
(2) The set S of the classes d;, e;, fi, gi+1, pi,» D3(i) and p; for i 2 0in (1.1)(3) through (1.1)(9) is a Z/2-base for
. . 4, %
the indecomposable elements in Ext ;.

Here in (1.3)(2), “S is a Z/2-base for the indecomposable elements in Exti"*” means that the projection of S to
Exti"*/E is a Z/2-base where E is as in (1.3)(1).
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Theorem 1.4. The subalgebra E of the algebra Ext;’*fors < 5 generated by h;, c;, d;, e;, fi, gi+1, pi» D3(i) and p;
for i > 0 is subject only to the relations in Theorem 1.3 (note that these include those in Theorem 1.2) together with
the following relations (1) through (39) where classes, if not specified to be zero, are all non-zero, and where j > 0
except (34) in which j > 1.

(D) h§+4cj =0, (2) hj3hjcjt2=0,(3) h§+lcj =0,
@) Rjdjy1 =0, (5) hjy3d; =0, (6) hjrad; =0, (T) hje;11 =0,
) hjyae; =0, hj1f;=0,10)hj13f; =0, A1) hjafj=0,
(12) hj138j41=0,(13)hjpj+1=0,A4) hjr1p; =0,(15) hj12p; =0,
(16) hjrapj =0, (17) hjisp; =0, (18) h;D3(j +1) =0, (19) h; D3(j) =0,
(20) hj+sD3(j) =0, 21) hj16D3(j) =0, (22) hjp’; 1 =0, (23) hj42p; =0,
(24) hjy3p’;=0,(25) hjyep; =0, (26) hjrahjric; =hjy3e;,
(27) hjyahjcjss = hiysp), 28) 5, scj =hjt1p),
(29) hjdjr2="hj13D3(j), 30) hjyidjr1=h;jpj,
B hjiodjyi=hjragjr1, 32) hjyodj=hjej, 33) hjr1ej =h; [,
(34) hjpiej=hjfj=h3_cjs1, 35) hjsoe; =hjgjt1,
(36) hjfjvr="hjtap’ G hjfir1=hjs3p),
(38) hjtafj=hjt18j+1, B hji38j+2="hji58j+1.

The result (1.3) is announced in [6]. We apologize for the delay of its proof given here. Some of the relations at
Exti’* in (1.4) are known [8]. Here we will give complete proofs of all of these relations.
Theorems 1.3 and 1.4 will be proved by making calculations for the Ext groups

Ext’*(P) = Ext'* (H*(P), Z/2)

over the Steenrod algebra A where P denotes the infinite real projective space RP>. More precisely, we are going to
make calculations in a spectral sequence {E,"*"'} for Ext’;*(P) with s < 4 from which to deduce (1.3) and (1.4). This
spectral sequence is considered in [4] where the differentials

. dr L _
(x) ELST S pimrstLi=l forg <2
are determined. Our main work here is to determine completely the differentials
i34 dr i—rdi—
(**) E;,3,I &y E;. rd,t—1

in the spectral sequence. To get (*x) we need to recall (). All of these will be given in the next section. In Section 3
we recall a connection from Exry*(P) to Exty* and also a connection from Ext’y* back to Ext,y*(P) and use the
differentials (%) and (*%) in Section 2 plus some extensive calculations to complete the proofs of Theorems 1.3
and 1.4.

2. Some calculations in a spectral sequence for Ext:’* (P)

Given a locally finite graded left module N over the mod 2 Steenrod algebra A. The lambda algebra A in Section 1
can also be used to compute the Ext groups Exti’Z (N) = Exti{’(N ,Z,/2) and this is described as follows. Let N, be
the Z/2-dual of N which is a right A-module by transposing the left A-module structure on N. Consider N, ® A and
bigrade it by

(N* R A)S,t — ZN]{ ® AS,t—k‘
k

For any sequence [ = (i, ..., i) of non-negative integers we write A; to denote A;, ---A;, € A. For m, € N, write
myAy to denote my @ A € N, ® A and let my, =m, 1. N, ® A is a bigraded differential right A-module with differ-
ential § given by

(1) 8(mah)) =m SO + Y miSq/ T A
>0
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Then Ext’;' T(N)=H"!'(N, ® A, 8), and the differential in (1) induces a right action of Exty™ on Exty(N) making
the latter a right Ext’; 0 *-module.

We will be 1nterested in N H *(P), the reduced mod 2 cohomology of the infinite real projective space P. To
simplify, let Ext’; " (P) = Ext%; n (H *(P)). We recall that N, = H (P), the reduced mod 2 homology of P, has

Z)2 fork>1

APy =|
k(P) 0 otherwise

and that if e is the generator of H(P)=17 /2 for k > 1 then the Steenrod algebra A acts on H.(P) from the right by

k—1
) ekSq’=< l )ek_l.

From (1) and (2) we see the differential § on H*(P) ® A is given by

j— 1
3) 6(ekxz)—eka(m+z< " )ek,»lx,-m.

Thus Ext};'**(P) = H® 1(Hy(P)® A, 8) with § given as in 3).

Define a filtration {F (i)};>1 of the differential A-module H (P)® Aby (F@)) = Zl<k<l Hk(P) ® A. Clearly,
F@i)/F(@i — 1) = X A(F(0) =0); so HY'(F(i)/F(@i — 1)) = X! Exti"“ ! This filtration gives rise to a spectral
sequence {E,;*'},>1 with

@ EY'=HY(FG)/FGi—1) =X Ext™™

and @l>1 EsS IS Exts ’+S(P) as Z/2-modules. For each r > 1 the differential d, of the spectral sequence goes from

. We will simply write E;** dr, prstlx

for a fixed s and for all i, ¢ and r.
From (4) we see that, for a given s > 0, if Ext‘}’* are known for all s’ < s (and all %) then one can compute the
differentials

ELS o LTI to indicate that we are considering these differentials

§4 dr 5 _
EfS* L prStle fors <s — 1.
In particular, one can compute the differentials
o d _
(%) EFS*F S pRSTLE for0 <5 <2

since Exti\/’* for s’ < 3 are known by Theorem 1.2. This has been completely done in [4]. In order to compute the next

stage differentials E;*>* LNy %% which will be the main work here, we need to recall from [4] the results on the

differentials (). These will be stated in (2.1), (2.2) and (2.3) below.

We will use some conventions in stating these results. Note that, by (4), if « is a basis element in Extil* then

1,
e;o0 = ¢; ® « is a basis element in El S We w111 write e;o0 — e;_, 8, where e;_, 8 is a basis element in E’ rstlx

to mean that both e;a and e;_, 8 survive to E;"™* and d, (e;a) = e;_, B in the spectral sequence. Such a d1fferential
is a non-trivial one. If d, (e;ar) = O for all r > 0 so that ¢;« is an infinite cycle then we write e;a — 0. We will only
consider those e;a with e;a — 0 which are not boundaries so that they survive to E5;"* representing non-trivial
elements in Extj’* (P).

From Theorem 1.2 we have the following.

(5) () {ei=eil|i=>1}isaZ/2-base for E 0*
(i) {ejhj |i =1, j >0} is a Z/2-base for E}" Lx
(iii) {e;hjhx i >1,0 J =kor0<j<k—1}isaZ/2- baseforE*z’k

>1,0< k—1<1-2
(iv) {eihjhih | jek—l<l=2or Ulerej i =1, j>0)isa
' J—k<l—10r0 j<k—=2=1-2

Z./2-base for ET 3%
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The results on the differentials (x) are recalled as follows. (2.1), (2.2) and (2.3) record all the non-trivial differentials
for (x). From these all the non-trivial infinite cycles in EX5* for 0 < s < 2 will be extracted and listed in (2.1), (2.2)
and (2.3) that follow.

(2]]) 62](2m+1)_1 —> ezl+lm_1h[ fOI‘m 2 ], l 2 O
(221) 62[(2m+1) lh i —> 62/+Im71h]hj
form>21,0<l<j—lor0<<I=].
(2.2.2) egrinpyai_this1 = eqiing_p_yhiy, form>1,1>0andn >2.
2.2.3) 6‘21+n+1m+21+n_21_1hl+1
eylintiy_oi_thip1hi4y, form>1,12>0, n >3,
i3y g+t ol _1hi,  form>=1,1>0, n=2.
(2.3.1) eamhy — exm_1hy form > 1.
(2.3.2) €12y 40115 = €32, ait1_pi-1_ycjo1 form>1, j>1.
(2.3.3) €331 2i+1 12115 = €2j43m_ait1 _gjpi-1_1hj_1h5
form>1, j>1.
(234) ezj+n+lm+2j+n 2j— 1h L —> 32j+n+lm_2_j_1h§hj+n
form>1, j>1andn >3.
(2.3.5) existpyait_h5 = eyisiy a1 _jh) form>1, j> 1.
(2.3.6) €7y yai-1 122 1h5 = €3ipy_jcja form>1, j>2.
(2.3.7) it pyni-2_th5 — ez,-ﬂm_zmjfz_lh. form>1, j>2.
(2.3.8) ex1 a1y 1hs = ezt hih form>1, 0<1< j—3.
(2.3.9) €2i a1y 1hjhi = eyist,_hihie form>1, 0< j <k —2.
(2310) 62/+nm+2j—1 lh l’lk > €+l _nj-1_ lh ]’lk
form>21, 1<j<k—2andn > 1.
(2311) 621+nm+2n_2j—l_1h]hk
€2l+nm72_/‘—]71h./hnhk for m 1 l ] < n—2
andn <k —1 ork=n>j+3,
621+j+1m_2j+l+2j—1_1h3+lhk form>1,12>1
and 1< j=n—-1<k—-3.
(2.3.12) epikyyqpk—1 _pj-1_1hjhi

etthy_nk-1_pi-1_thjhi form>1,1>1,1<j<k-3,
eltjtry_piv2_pj-1_1¢j form=1,121, 1<j=k—-2.

—

(2.3.13) eptskt1py otk _ok—1_nj—1 _hjhx = episkt1y _ok—1_pj-1_1hjhihii
form>1,122, 1<j<k—2.

(2.3.14) epk+2,y 40k 4 ok—1_pj-1_1hjhr — €2k+2m_2k_2k—l_zj—l_lhjh]%_i_l
form>1, 1<j<k—2.

(2.3.15) epi+jr2yq0i+2_pi-1_1hjhji2 — 62[+j+2m_2j+1_2j_2j—1_1h3’-+2
form>1,1>21, j>1.

(2316) 621(2m+l)—lhjhk — 62[+lm71hlhjhk forO <l < j —1< k — 2

Note that the differentials above from (2.1.1) through (2.3.16) are all of the form e ()& — eg() B for a common
integral variable m which is > 1 so that g(m) > 0. If we put m = 0 in these differential formulas then g(0) < 0. Thus
era — 0, that is, e sy is an infinite cycle provided f(0) > 0 which is satisfied for (2.1.1) through (2.3.16) except
(2.3.1). These infinite cycles e sy« are listed in (2.1.1) through (2.3.16) below (there is no (2.3.1)).
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21D ey_y, 1 21. 221D ey_1hj, 1<l<j—lorl<l=j.
222) ey_thip1, 1>1.  (2.23) eqen_oi_1his1, 10, n>2.

232) ey _1h3. j=1. (233) eyir1gpi h3, j = 1.

Q38 eyjan_gi b3, j=1.n=23. (235)ey-1_1h3, j=2.

(2.3.6) €2j—1+2j—2_1hj, j=2. (237) eyj-2_ lhj, j=3.
238) ey h3, 1<1<j—3. (23.9) eyj_1hjhg, 1<j<k—1.

mQFLlhjhk, <j<k-1.
(231D eyn_pji_thjhg, 1<j=n—1<k—2o0rl1<j<n—1<k—-2
or 1< j<k—2=n-2.

(2.3.12) epe-1 _pj1_thjhg, 1< j<k—1.
(2.3.13) eysk k1 _pj-1_1hjhg, 1< j<k—1landl>2.
(2.3.14) exi okt _pj1_thjh, 1< j <k —1.
(2.3.15) eyju2_nj-1_thjhjio, j > 1.
(2.3.16) ey hjh, 1<l <j—1<k—2.

We recall that the differentials in (2.1.1) through (2.3.16) are of the form e ¢yt — e4(m)B. Call e r () a source el-
ement and e, () B a boundary in the spectral sequence. We also recall that (2.k), for 1 < k < 3, consists of the (2.k. DR
thatis, (2.k) = J;(2.k. ). Similarly, (2.k) = |J; (2.k. ). For each k with 0 < k <2 let S(k) (resp., B(k + 1)) be the

set of all the source elements (resp., all the boundaries) in (2.k 4 1) and let I (k) be the set of all the infinite cycles in
(2.k 4+ 1). It is not difficult to check the following.

6) (1) SO)UI)and Sk)U B(k)UI(k), for k=1, 2, are disjoint unions.
(i) $(0) U 1(0) is a Z/2-base for E}""*.
(>iii) S(k) U B(k) U I (k) is a Z/2-base for ET’k’*, k=1,2.

In particular, this implies 7 (k) is a Z/2-base for E:g)k’* for k =0, 1, 2. From this the Extj’*-module structure of
Ext‘;* (P) for 0 < s < 2is determined in [4]. The result on this is recalled as Theorem 2.4 below. To state the result we

note that ey _; fori > 1 and eyj+1 5 1)‘2/+2 , for j = 0 are easily seen to be cycles in H,(P) ® A. Define certain

classes in Ext’ I *(P) as follows.

D @) 7 =few_1} e B2 (), i

221+ +2f+‘+2/ 1 .
(i) ¢ cj ={eyi+149i_ 1)‘21+2 1}eE 'y (P), j=0

In the following statement the result in Theorem 1.2 on the algebra structure of Exti{k for s < 2 is implicitly used.
Theorem 2.4. The Ext;*-module Exti‘*(P) fors <2, is generated by hi fori>1 and/:c\j for j >0, described in
(M), (ii), subject only to the relations: hy hi—1=0,i>1, h,+2h = h,Hh[_H, i>20andhiy2hitohi =0,i >0.

We proceed to describe the differentials

*3,% dr *,4,%
(k%) ED7" — E;

which is the main work in this section. The source elements in E; 3* are known by (5)(iv). By (4), E 1’4’* =3 Exti’*.
Although the Ext groups Extj’* are yet to be determined, which essentially is Theorem 1.3, we may still make calcu-

lations to do the differentials () by induction on the internal degree ¢ in Exti"’ and this is explained as follows.
First of all, we note from [5] that there is a map

s,t t s+1,t4+1
Ext; (P) = Ext,
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which is onto for # — s > 0. This is known as the algebraic Kahn-Priddy theorem. The map z, will be explicitly
described in Section 3. For a given k > 0 if Exti\’(P) can be computed for t — s < k then from the explicit formula

for ¢, one can compute Ext“rl " fort —s <k.
Next we recall again that any non-trivial differential in (%) is of the form

. . . . 3, . :
(k%) e jo — exff where j >k, « is some basis element in Ext, for a certain ¢ and B is some non-zero

class in Exti", witht' =t + j — k >t (since j > k).

Given an integer 7 > 0 and suppose, as an inductive hypothesis, that Exti’t, are known for ' up to ¢ and that the
differentials e ja — ex 8 can be determined for any possible e o and e 8 with 8 € Exti’t,, t <1,
i.3.7-3 ~ g3 Xty 7(P) for
Tuptof+ 1 (since k > 1) and therefore Ext At+1 for 74 1 up to  + 2 by the algebraic Kahn—Priddy theorem.

In this way one may thus compute the differentials

From this and from the relations of the internal degrees in (++)’ one can then compute | J; E5

*3,% dr *,4,%
(kx) EDT — E;

by simply assuming the results on Exti'{* in Theorem 1.3. We have made calculations to determine all the differentials
for () and the results are to be given in (2.5) below from (2.5.1) to (2.5.74). They are obtained by making calculations
in the lambda algebra A using the same method in [4] by which the differentials (2.1), (2.2) and (2.3) recalled earlier
were obtained. Details of these calculations will not be given here.

Now we list these differentials from (2.5.1) to (2.5.74) as follows. Note that the source elements in these differ-
entials are taken into consideration from excluding the boundaries in (2.3). Also, a possible confusion on notations
should be cautioned. Recall that e; denotes the generator of Hy(P) = 7Z/2 for k > 1. Now the same notation ey is also
used to denote the cohomology class in Exti’l described in (1.1)(4) of Section 1 where [ = 284 4 2k+2 1 2K Thus if

ejot — ejeg, say, is a differential in this list then e; is the homology class for P and ey is the Ext group class in Ext‘:{*.

(2.5.1) exnhy — eam—1hy form > 1.

(2.5.2) e2,~+nm+2,-_|71h3- — €2j+nm72/+172j71hj6‘j_]
form>1, j>1landn >

(2.5.3) €yjeniaminy—2i—2i-1_1h] = ezmﬂm_y_z,q_lhjhm
form>1, j>1landn >

(2.5.4) €2j+3m+2j+l+2j71_1h P> €43 _nj+2_nj-1_1€j_]
form>1, j>1.

(2.5.5) e2,~+nm+2/_z,]hi — €2j+nm72/+171€j_2
form>1, j>2andn >

(2.5.6) €2j+2m+2j+l+2j—2_1h P> eyjt2,_1€j 2
form=>1, j>2.

(2.5.7) €2j+nm+2j73_1h F > €jtngy,_0j_0j-1_1Pj-3
form>1, j>3andn > 1.

(2.5.8) e2,~+n_1m+2,’_2+2;_3,1h; — epjtn—1,,_1Cj—3h 41
form>1, j>3andn >0.

(2.5.9) 621(2m+1)—1hj — ezz+1m_1h1h for

m>1,0<l<j—3.
(2.5.10) exmhdhy — exm—1hghy form =1, k

2
> 3.

(2.5.11) eyj42, 125 1hhk = €342, i+1_pi-1_1Cj—1hi
form>1, 1<j<k—2.
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(2.5.12) ezj+3m+2j+1+2j_1h2-hk — €2j+3m_2j+1_zj_gjfl_lhjflhi_kzhk
form>1, 1<j<k—3.
(2.5.13) eyjrapinitiyoi_1h 'hj+3 —> €j+am_2i+3_ni_1 fj
form>1, j>1.
(2.5.14) €xjntippaion_ait2_ai1h3hjis
— ez_,'+n+1m,2,~+z,2_,-,1h?h.,'+3hj+,, form>1, j>1, n>5.
(2.5.15) egisspynivt g g 1h3hj4s
— €345y _ai+3ait2gi1hhG 4 form =1, j>1.
(2.5.16) eyutipyyon_ai_h5hi = eyt _ai_hihuhi
form>2landl1<j<n—2<k—-3o0r1l<j<n—-3=k—-3.
(2.5.17) expcrtpypai-t gih5hi = eqicrty skt _pi_h3h]
form>1, 1<j<k—3.
(2.5.18) eppctnttyyoiin_gk-1_pj_1hhg — ewmm_w_zj_lhﬁhkh,m,
form>1,1<j<k—3andn>
(2.5.19) eqk2yq k1 _pk-1_pj 1h hie = egprzy, gk _gk-1_pj 1h "
form>1, 1<j<k—-3.
(2.5.20) €pjappait3_ni_1hihjy3 — ez/+4m,2.f+3+2./—1,1hj—1h§+3
form>1, j>1.
(2.5.21) €pitipqai-t_1hThi = eyiviy_sim1_1hhi
form>1, 1<j<k—2.
(2.5.22) epjny a2 1hihi — e2j+,lm_2j+2,,z_1h§hk
form>1,2<j<k—2andn>
(2.5.23) epjpyri-140i-2_1h; Zhe — €3jm_1Cj—2hk
form>1,2<j<k—2.
(2.5.24) e ami1y—1h5hx = €yt hilhy
form>1,0<l<j—-2<k—4.
(2.5.25) €3iami1y-1hjhi = exiviy_1hh; form>1, 0<j <k —3.
(2.5.26) e2,~+4m+2/,]h ih3 43 = €airim_ai+3_2i_1Cjhj 4
form>1, j>0.
(2.5.27) 62_f+3m+2j+2+2j_1hjhj+3 —eyi3,_1fj form>1, j=0.
(2.5.28) €2j+3m+2j+1+2j_1hjh§+3 — eyjt3p,_nj+i_ fj form>=1, j>0.
(2.5.29) eyjsspraivrsaintfaiothjh] 3 = €iesy_18j+1
form>1, j>0.
(2.5.30) egnttpyaon_si-1_1hjhi — enityy_nj-1_1hjhyhi
form>1,1<j<n—-1<k—-3.
(2.5.31) eyit1y i1 1hjh; = €xjviy_ai1_1h3h}
form>1, 1<j<k—-3.
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(2.5.32) €gitippai-t_1hjh 3 — €xiviy_ai 1 Pj1
form=>1, j>1.

(2.5.33) €pii2ppaisai-i 1hjhi = €yivry_ai_ni-1_1h5 1
form>1, 1<j<k—4.

(2.5.34) 62/+2m+2j+2/—1,1h 'hj+4 — 62_,'+2m,2j+1,1p}_1
form>1, j>1.

(2.5.35) €2j+3m+2j+2+2j+2j—1_lhjh3+3 —> €943y _nj+240i-1_1Cj+1hj42
form>1, j>1.

(2536) €2j+4m+2j+2j71_1h hj+3 — €2j+4m_2j+3_2j—l_1thj+4
form=>1, j>1.

(2.5.37) ekt k-1 _pj-1_1h; h% — €2k+lm_2k—l_2j—l_1hjh,3;
form>1, 1<j<k—3.

(2.5.38) €2j+4m+2j+4+2/+1+2j+2j—171I’lll‘l’l§+3 — 62_/+4m,]p}_1
form>1, j>1.

(2.5.39) epkpyyok—140k-2_nj-1_1h; h% — ety _pi-1_1hjcr—2
form>1, 1<j<k—3.

(2.5.40) epk+1,y40k-2_pj-1_1h 'hk — €2k+1m_2k—1_2k—2_2j—1_1hjh2
form>1, 1<j<k—3.

(2.5.41) epk+2,y40k_ni-1_1h 'hk —> @ok+2,y _pk+1 _ok—1_nj—1_1hjCk_1
form>1, 1<j<k—2.

(2.5.42) €2k+3m+2k+272k72_1‘—17]hjhk
—> k43, _pk+2 1 pk—1_nj-1_1h ‘hk—lhi.;_z

form>21, 1<j<k—-2.

(2543) €2k+n+1m+2k+n72k72/’—|7]h 'hk g 62k+11+1m72k72_/—]7]hjh%hk+n
form>1,1<j<k—2andn > 3.

(2.5.44) ey hih? = eps _ hlh~h form>1,0<l<j—1<k-—3.

2L@m+1)—1"1j 2+l —1 N J

(2545) ezj(2m+1)_1hjhkhi — 62j+lm_lh3:hkhi fOI‘m 1 O ] <k—1<i-2.

(2.5.46) eon+i,yyon_nj-1_1hjhihi — eqnt1p,_oj-1_1hjhpyhih;
form>1landeither 1< j<n—1<k—2<i—-3
form>lorl<j<n—-2=k—-2<i-3.

(2.5.47) eyjr1yy0i-1_1hjhchi — ez_;+|m72,~_171hjhkh,~
form>21, 1<j<k—1<i-2.

(2.5.48) epi+1y qok—1_pj-1_1hjhih; — €2k+lm_2k—1_2j—1_1hjhihi
form>1,1<j<k—2<i-3.

(2.5.49) eyiv3pyaivi_pi-1_thjhjiohi — epji3,, pj+2_nj-1_1Cjh;
form>1, 1<j<i—3.

(2.5.50) enktnpyyokyok—1_nj—1_yhjhih;

- €2k+nm_2k+l+2k71_2j*1_1h ‘hJ%.Hh'

form>1, 1<j<k—1<i—3andn>

467
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(2.5.51) episnpyyot _ok-1_pji-1_1hjhih;
—> €slny_ok-1_nj-1_thjhihih;
form>1,1<j<k—1<l—-2<i—3andn >
(2.5.52) epitnpyyoi_gk-1_pj-1_1hjhih;
= Epitnpy _ok—1_nj—1_1h; hyh?
form>1,1<j<k—1<i—3andn>
(2.5.53) epitnpyyoi-1 _ok—1_pj-1_thjhih;
- €2i+nm_2i—1_2k71_2f71_1h ‘hkh-2
form>1,1<j<k—1<i—3andn>1.
(2.5.54) eqpsnyypok+1 _ok—1_nj—1_th jhihiso
—> gkt _ok+2_ok—1_nj—1_thjck
form>1,1<j<k—1andn>3.
(2.5.55) epitntipy oitn_ni-1_gk—1_pj—1_1hjhih;
— €nitntlpy_gi—1 _ok—1 _nj—1_thjhihihiiy
form>21,1<j<k—1<i—2andn>2
(2.5.56) epit2p 9iyoi-1 _gk—1_pj—1_1hjhih;
- 32f+2m72f72i—172k—172.i—'71hjhkhi2+1
form>21, 1<j<k—1<i—-2.
(2.5.57) entnpyyok+2_ok—1_pj—1_1hjhrhgi2
— €2k+nm72k+172k72k—1721—171h.1’h13c+2
form>1,1<j<k—1landn>3.
(2.5.58) €yi2py0iait_thjhihi = eyisay_gi1ai1_yh2y hichi
form>1,1<j<k—-2<i-3.
(2.5.59) €33, 1212 2i-1_1hjhjahi = eyia, a2 a1 1Yk
form>1,1<j<i—4.
(2.5.60) eyj+3, 4043 40i+2 nj-1 _thjhjohjia — eyjvs,, 1 D3(j —1)
form>1, j>1.
(2.5.61) eyami1y—1hjhihi — eyiviy,_hihjhih;
form>1,0<I<j—-1<k—-2<i-3.

(2.5.62) €2j+1 2m4+1)—1€j = eyj+2_1hjric; form>1, j=0.
(2.5.63) egj+249i_1Cj = €gj42p_ni_jCjhjy1 form =1, j>0.
(2.5.64) ej+a,y10i+3_0j_1Cj —> €pj+ap,_1d; form>1, j=>0.
(2.5.65) epjm+3_nj_1Cj —> exj+m+3_nj+3_yd; form =1, j=>0.

(2.5.66) ezj+n+lm+2j+n_2j+3+2j+l+2j—l_1Cj —> ity _2i+342i+l 4 2i-1 1P jincC;
form>1, j>1landn >

(2.5.67) "’2/’+4m+2/+‘+2f—171Cj - ezj+4m72.f+3721+2721—171Cj+1hj+2
form>1, j>

(2.5.68) eyj+2,10j-1_1Cj — €2j+2m_2j+1+2j—1_1hj+]cj'
form=>1, j>1.
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(2.5.69) eyjrapyoit240itly0i-1_1Cj —> €xjtapy _oj-1_1d;

form>1, j>1.
(2.5.70) eyjrm+3_pj+1 1 0j-1_1Cj —> €pj+m+3_nj+3_oj—1_1d;j

form=>1, j>1.
(2.5.71) epj+2,40i40j-1_1Cj = €gj+2,y_pi-1_1hjt1c;

form>1, j>1.
(2.5.72) eyjrapyq0i+3_0j-1_1Cj —> eyj+ay,_1pj—1 form>=1, j=>1.
(2.5.73) eyjr3m_nj-1_1Cj —> €xj+3+m_nj+3_1pj—1 form =1, j=>1.
(2.5.74) ey myry—1€j = eqtipy_jhic; form=1, 0<l<j—1.

. R, . dy
This concludes the statements of all the non-trivial differentials E;' 3 g E} s

We are going to obtain from the differentials (2.5./) above the corresponding infinite cycles (2.5./) analogous to
the process that we get the mﬁmte cycles (2.k.l) from the differentials (2.k.]) for 1 < k < 3 discussed earlier. The
process from (2.5.1)’* to (2.5.0) l) will be described in a moment. The resulting infinite cycles (2.5./) will then be
hsted together with the cohomology classes they represent. For this purpose we need to describe certain classes in
Ext: " (P) which, as will be seen, turn out to be indecomposable elements in the sense that they are not classes of the
form h hjhih; orc jhk or hlc, These classes will be given in (2.6) that follows. In order to describe these classes we
note that there is an operation

®) S¢*:H.(P)® A— H (P)® A givenby
Sq°(exhiy -+ hiy) = €2kt A2y 41 - Aaiy 41

analogous to the operation S¢°: A — A in (c) of Section 1. Here again A;, - - - A, is not necessarily admissible. The
operation Sq in (8) also commutes with the differential § of H (P) ® A given in (3), and so induces an operation

Sq°: Ext’;' (P) — Ext’* 1 (P).

For example, Sq (h,- = {ey_1}) = 71\,'“ = {eyi+1_1} for i > 1 and Sqo('c\j = {32,-+1+2,-_1k§j+2_1}) = ’5j+1 =
{eaivaiaivi 123,45} for j > 0.

Now we describe in (2.6) below the classes in Exti"*(P) we want, where (Sqo)i again denotes the composite
Sq°---Sq if i > 1,is Sq° if i = 1 and is the identity map if i = 0.

i

2.6) (1) d = {(Sq°) (eshah2 + earar2 + exharshs + erhshian)} € Excy® +27 =Py i 0.
—~ i+4 4 Hi+2 4 Hi .
@)@ = {(5°) (es)3 + ea02h3 + 2722) + e2(harsrg + 20ad)) e Exc? 2T py iz,
3) fi = {(Sq°) (eahor2 + €3(h0A2 + Ashshs) + exharsig) | € Exei? 2T gy i,
. . i+4 i+3_ .
@) Bip1 = {5 (e62023 + e5(hohd + A3hsha) + e3(hshors + 21aD) € B2 T2 (p), ixo0,
~ 3,205 4214200 .
O pi= {(Sq ) (e14A5A3 + e10hoA3 + echori1A7)} € Exty (P), i=0.
6 — .
(6) D3(i) = {(Sg°) (exah1nrrar + er6hls + erarorsran)} € Exei 2 2Py, i>0.

~ - (e38M A3 + e30hA2, + eashi1AZs + enhi7Al i+6_1 0i+3 i _ )
) Pi/ _ {(Sqo)l< 15 ) 51 15 15 eExti"ﬁ 42i+342 I(P), i>0.
+ e20A 19475 + €14A 1423031 + €12A19A23A15

. i+4 i+2
®) (i) = {(S¢%) (22013 + €1 (hod3 + Asrsan) } e Exiy® 2Py, iz 0.
©) @21 (1) = {(5¢°) (exr5AD)} € Exy® 22 (py i >0,

e12hs5A3 4+ e1oA3 + eghA i4+5 i+l L oi _ _
124547 1047 641423 eExti’z 2+ 2 l(P), i>0.

10 N =1 (Sq°)!
(10) &1 {( ) (+€6)»7)\3)»15+€3)¥0)¥5)\23
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These classes in Ext>: " *(P) are well defined in the following sense. For each k with 1 < k < 10 let f (k) denote the
chain of H*(P) ® A given in (2.6)(k). For example,

F(1) = eghad3 4 esrard + exharsis + e1hshirg.

It is not difficult to check, by direct computations, that f (k) and therefore (Sqo)i (f (k)) are cycles for all k and i.

If one compares the classes c’l\l,'e\l, cee, ffl in (2.6) above to the classes d;, ¢;, . . ., pl/ described in (1.1) of Section 1,
one will notice a similarity between the formulations of these two sets of classes. For example, if each ¢; in the cycle
f (1) above, that represents dy, is replaced by the corresponding 4 ;, the resulting

)\6)\2)»3 + )»4)»4)»3 + A2AaAsA3 + AiAsAiAg
is a cycle in A representing the class dy € Ext‘k* described in (1.1)(3). In this way we get correspondences

di <> di, ¢ «—>ej, ... Pl <— pi.
These correspondences are relevant to the proofs of Theorems 1.3 and 1.4 and will be described more precisely in the
next section.

We now proceed to describe the process “(2.5.]) — (2.5.1)” which is to obtain from the differentials (2.5./) the
corresponding infinite cycles (2.5./) and then to explain how we are going to list these infinite cycles together with

. 3%
the cohomology classes in Ext,~ (P) they represent.

We will consider the differentials (2.5.1) for 1 <1 < 74 with [ # 1, 10. For each such / let (2.5.1) denote the family
of the elements e sy obtained by letting m = 0 in the source elements e ¢ (,o of (2.5.1) (I =1, 10 excluded so that
f(0) > 0). Then ey — 0, that is, they are infinite cycles in the spectral sequence. In letting m = 0 in (2.5.]) to
get the corresponding (2.5./) we have to adjust some of the restrictions on the integral variable j so that the resulting

infinite cycles are in the * existing range”. For example, in (2.5.2), the restriction on j is j > 1. The corresponding
family in (2.5.2) is €pj—1 1h for which the condition on j must be adjusted to j > 2 in order to have 2i-1_1>0.

In addition to the resulting families (2.5./) of infinite cycles thus obtained we will consider two families of in-
finite cycles that can not be obtained from any of the (2.5.)’% by this process. These two additional families are
32j+2_2j—1_1hjh3+3 for j > 1and eyj+2_pj-1_1hjhjiahji4 for j > 1 and will be numbered respectively as (2.5.75)
and (2.5.76) although there are no (2.5.75) and (2.5.76). As will be shown later, the set of the infinite cycles in (2.5.])
for 2 <1 < 76 with [ # 10 will form a Z/2-base for ES>*

We are going to list below these (2.5./). Each will have the form C < D. For example, (2.5.3) will be

nx=3, j>1

(253) €rj+n_nj_nj-1 1]1 (Hh]_knhj 1

Here C = eyjtn_pj_pj-1 lh for each n > 3 and j > 1, is the infinite cycle obtained by letting m = 0 in the source

element €;j+n (g 41y—2j —2i-1 k3 ; of the differential (2.5.3) and that D = ]+,,h i is the class in Ext>; " (P) repre-
sented by this infinite cycle C. Just how and why the class D is represented by the infinite cycle C, in this example
and also in other (2.5.1), will be explained and proved later.

In order to make the list shorter, we will list these (2.5.]) in groups. Various (2.5./) are put together in the same
group if the infinite cycles in these (2.5.]) are of the “same type”. For example, the infinite cycles in (2.5.2), (2.5.5),
(2.5.7) and (2.5.9) are Ezj—l_lh:;, 62]‘—2_1}13, €2j—3_1h:;- and 62’—1h§ with [ < j — 3, respectively, and all of these are

of the type “ezz_lh?” with 1 </ < j — 1. These four are put together in one group which is the first group (2.5.17).

Most groups have at least two of the (2.5.)’*. There are exactly 10 groups, each of which consisting of only one
(2.5.1). These are precisely the infinite cycles representing the classes in (2.6)(1) through (2.6)(10). Finally we note
that (2.5.7) is equal to (2.5.] — 1) for [ = 65, 70 and 73.

The grouped (2.5.1 )/S are listed as follows.

Q25.0) ey b} <« Whd, 1<I<j—1 forlj=2,5,17,09.

Q25.0) eyin_gi gt b} = hjgah_ . n>2, j>1 forlh=3, 4.

-
(2.5.13) eyisiypi2 b} «—>2ja, j=2 forly=6.

(2.5.1y) ez_,'_1+2;_2,1h§hk <—>’c‘j_2hk, 2<j<k—1 forly=38, 23.
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2515) ey_yhihg < hihdhe, 1<1<j <k—2
forls =11, 21, 22, 24.

2.516) ey ni_1h3hg <— hoh%_hg, 3<j+2<n<k, j<k-2
for s = 12, 13, 16, 17, 20.

(2.5.17) €2k+n_2k—1_2j_1h§hk <—>ﬁk+nh3_1hk—1, nzl, I<j<k-2
for I; = 14, 15,18, 19.

(2.513) ey_1hjh? «— hjh}, 1<I<j<k—2
for I = 25,26, 31, 32, 4.

(2.5.19) 62_f+2+2j_1]’ljh§+3 <~ E j =0 forlg=27.

25.010) exi+14ai1hjh3 5 < a16(j), j =0 forljp=28.

(2.5.011) €2j+2+2j+1+2f_1hjh5+3 <« gj+1, j =0 forlj =29.

(2502) ep_nj1_thjh} <= hyhj_1h3, 2<j+1<n<k, j<k—2
for I15 = 30, 33, 34, 36, 37, 40, 41 and 75.

(2.5013) €14k nj1_yhjhi < Ceahjo1, 1< j<k—2
for 113 = 35, 39.

(2.5.014) exjssgaiviyaiqai-i_thjhi s < Pj_y, j =1 forliy=38.

(2.5.015) eqen_ok_njt_thjh? < hignhj_th?_ |, n>2, 1<j<k—=2
for I15 = 42, 43.

(2.5.016) ey_yhjhihi <> hihjhehi, 1<I<j<k—1<i—2
for 1 = 45,47, 61.

25.017) eyn_nit_yhjhghi < hyhj_thghi, 2<j+1<n<k<i—1landj<k—1
for 117 = 46, 48,49, 58,59, 76.

(2.5.018) eyt_gi-1_nj-t_yhjhghi < hihj_hy_1hi, 4<j+3<k+1<I<iandk <i—1
for 13 =50, 51,52, 53, 54, 57.

(25.019) egisn_gi-1 -t _nj-i_thjhihi < hisnhj_thg—thi—1, 1<j <k—1<i—2andn>1
for I19 = 55, 56.

(2.5.10) eyjssinitr_ni-1_thjhjiohjs <> Dy(j—1), j=1
for l,o = 60.

(25.101) ey_qcj <> hicj, 1<I<j+1 forly =62,63,68,74.

(2.5.12) €pj+3_nj_1Cj <—>c?, j =0 forly=064,65
(note that (2.5.64) = (2.5.65)).

(2.5.123) €pjin_nit34nitiyni-1_1Cj <—>’h\j+an—1, jz1l,n=3
for I3 = 66, 67.

(25.104) eyiv2yainiqgi-i_jcj <—E31(j — 1), j=1 forly=69,70
(note that (2.5.69) = (2.5.70)).

(2.5.5) eyjpji-1_jcj <~—>ax(j—1), j=1 forls=71.

(2.5.126) eyj+3_pj-1_1Cj <> ﬁj_l, j=1 forlhe=72,73
(note that (2.5.72) = (2.5.73)).
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Each group (2.5./;) above has the form C <> D where C are infinite cycles and D are the cohomology classes in
Exti"* (P) represented by these infinite cycles. We proceed to explain how these representations are obtained.

Given a chain x = Z’}Zl ei; A(j) in Hy(P) ® AS* where i| < --- < i, and each A(j) is a non-zero chain in A%-*,
We write x = ¢;, A(n) mod F (i, — 1). Here we recall that F (i) = Z;;:] ﬁk(P) ® A. From this equivalence equation
we call i, the filtration degree of x which is denoted va m(x). For a non-zero class « in ExtsA’*(P) we can always find
an integer m(«) > 0 and a cycle x = Z’;’:l ei;AM(j) € Hy(P)® AS* with i] < --- < iy, such that

(i) o ={x}, thatis, « is represented by the cycle x.

@) mx) =i, =m(x).
(iii) « cannot be represented by any cycle y with m(y) < m(x).
(iv) A(n) € A** is a cycle representing a non-zero class {A(n)} in Exti{*.
In fact, property (iv) is a consequence of properties (i), (ii) and (iii). From the theory of the spectral sequence (EF™7)
defined by the filtration {F (i) | i > 1} for H.(P) ® A, we see these properties imply that ¢;, {A(n)} is a non-trivial
cycle in EX* representing the class «. And conversely, if ex 8 is a non-trivial infinite cycle in EX’* then there is a
cycle x = Z’}Z] ei;A(j) in Hy(P) ® A with m(x) =i, = k such that A(n) is a cycle in A™* with {1(n)} = B and such
that y = {x} is a non-zero class in Exti{*(P) which is represented by the infinite cycle e 8.

We recall again that the expression C <> D in each (2.5./;) above claims that the exhibited C are infinite cycles
representing the cohomology classes D exhibited.

From the above theory of representations cohomology classes by infinite cycles we see immediately that the repre-

sentations C <> D as claimed in some of the (2.5./ j)/s are true. These include (2.5.l;) for
k=1,3,4,5,8,9,10,11, 14, 16,20, 21, 22,24, 25 and 26

noting the explicit cycle representations of hi, ¢ in (7) and those for d;, e, f;, Zit1, Dis Ds(i), P}, a16(i), az1 (i)
and &31(i) in (2.6) (and also the cycle representations for £;, ¢; in (1.1) of Section 1). For the claims C <> D in the

remaining (2.5./;) we have to make calculations to prove them. We will illustrate such calculations for two of these

(2.5.15) and leave the proofs of the rest to the reader.
The first of these two is

Q25.0) exien_ai_ai-1_1h3 < hipnh’ n=2 j>1.

i1

3
2/-1-1°

3

Now E/Jr,,h;’.f] is represented by the cycle e,)+n_ 1A 2i-1_1

such that

X =eyitn_gi g1 1Ay, mod F(2/H" —2/ — 2771 —2),

We have to show that €541 _ A ~ x for some cycle x

Here “~” means “homologous”. It suffices to do this for j =1 and for any j +n =n +1 > 3 since one can apply
appropriate (S¢°)". So we need to show

(2.5.1)* ei_; A3 ~ x for some cycle x with
X = 92_4)»? mod F(2' —5) foranyi >3.
By direct computations we find that
8(exi Mg+ eri_shaho + exi_3hik2) = egi_ Ay + exi_sr3rd mod F (2! —5).

(2.5.1)* follows from this since )»3)\(2) ~ )»?. This proves (2.5.02).
The other one is

(2.5.123) egjtn_pj+34pi+140i-1_1Cj <> hjyucj1, j21,n2
k

Recall that A,e+1 +2k_1)\.§k +2_, 1s a cycle representing ¢y for

for j = 1 which is equivalent to proving

3.
> 0. Again to prove (2.5.1»3) it suffices to show it

(2.5.13)* 821’_1)\,2)\% ~ x for some cycle x such that
x= ezi_]z)\s)\,% mod F(2' —13) foranyi > 4.
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We find that §(z) = eyi_1A2A3 + esi_1pAsA3 mod F (2! — 13) where

= €2i+2)\.§ + 6‘2i}\,])\.7 + 621'73)\4())\.11 + 621’74)\5)\.7 + €2i75)\.2)\,]]
+ e5i_g(A11A3 + )L%) + e5i_gA9A7 + €pi _gAsAll + €pi _1gATALL.

This proves (2.5.1>3)* and therefore (2.5.153).

Recall that B(3) denotes the set of all the boundaries in the differentials (2.3.1) through (2.3.16). Let S(3) be the
set of all the source elements in the differentials (2.5.1) through (2.5.74). Let I (3) be the set of all the infinite cycles
C in (2.5.17) through (2.5.156) (recall each (2.5.1;) is of the form C <> D). It is not difficult to check the following.

(9) B(3)US(3)UI(3)is adisjoint union and is a Z/2-base for ET’3’*(P).

This implies 1 (3) is a Z/2-base E &3* From this we have the following conclusion. We recall again that each (2.5.1;)
is of the form C < D.

Theorem 2.7. The set of the cohomology classes D exhibited in (2.5.11) through (2.5.13¢) is a Z/2-base for ExtA (P).
Thus the set of the classes dl, e,, ﬁ, gi+1, Dis D3(1) Pw 0(16(1) ap1(i) and &31(i) for i 2 0isaZ/2-base for the

indecomposable elements in Ext>: " *(P). Other classes in Ext>: " *(P) are either of the form hlh hihi or of the form ¢;h
or of the form h;c,

Here “the set of the classes cz ,€,...,&1(0) fori > 0is a Z/2-base for the indecomposable elements in Ext‘j’ﬁ< (P)”
means the following. Let this set be S. Let D be the Z./2-submodule of Exti’*(P) generated by iz\lh jhihi, <ih j and
/h\lc, Then the projection of Sto Exti*(P)/f)\ is a Z/2-base.

By some slight extra work, one can actually determine from (2.5./; ) * the complete structure of Ext> " *(P) pertain-
ing the decomposables hlh hih;, c,h and hlc, This, however, will not be described here. In Section 3 we are going
to use Theorem 2.7 to prove Theorem 1.3 and what has been stated in (2.7) suffices for this purpose.

3. Proofs of Theorems 1.3 and 1.4

We begin with the proof of Theorem 1.3 that occupies approximately two fifths of the section. _
Recall from Theorem 1.2 that the algebra Ext;’* for s < 3 is generated by the generators h; € Extl{zl , Ci €
Exti’zlﬁﬂmﬂl for i > 0 as described in (1.1)(1), (2) of Section 1 subject only to the relations
@ hihiy1 =0, hih? , =0and hj = h?_ hiy1.
We want to show for Theorem 1.3 the following.

(1.3) (1) The subalgebra of the algebra ExtSA’* for s < 4 generated by h; and ¢; for i > 0 is subject only to the
relations in (a) above together with the relations hlzhl2 3 =0fori >0andhc; =0 for
j=i—1,i,i+2,i+3.

(2) The set of the classes d;, e¢;, fi, g&i+1, pi>» D3(i), pl/- for i > 0 as described in (1.1)(3) through (1.1)(9)

of Section 1 is a Z/2-base for the indecomposable elements in Exti’*.

To prove these we first recall from [5] the following result.
Theorem 3.1. (See [5].)

€))] The map H*(P) ® A LA given by t(ek)q) = MAg is a chain map and commutes with the operations
‘H.(P)® A — H, (P)® A and Sq°: A — A described in (8) of Section 2 and (c) of Section 1, respec-
tlvely.
(2) The induced map Exti"t(P) LN Extf:r]’ﬂrl is onto fort —s > 0.
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This is known as the algebraic Kahn—Priddy theorem. (3.1)(1) is easy to see. We will also recall later how the
“onto” result in (3.1)(2) is proved.
Let B be the set of the classes

hi, G, di, @, fi, Giv1, Di» D3(), Pi, @16(i), @a1(i) and &;(i) fori >0
in Ext:’*(P) and let B, be the set of the classes
his Ci, div €, ‘fi9 8i+1s Dis D3(l) andpl{ fOri 20

in Extj;’*. From the cycle represgntations for these classes described in (7) of Section 2, (2.6) and (1.1), and also from
the formula for the chain map H.(P) ® A — A in (3.1)(1) we see the following.

(3.2) tu(hi) = hj fori > 1 and £.@) = ci, t.(d) =di, t.@) =ei,
t(f) = fis t+@ir1) = gis1, 6:(P0) = pi, 1(D3(D)) = D3 (i) and
t«(p;) = p; fori>0.
We will prove in a moment the following.
(3.3) tx(a16(1)) =0, te(a21(i)) =0and #,.(&31 (7)) =0 in Exti{* for the remaining families o16(7), a21(i) and £31(i)
in the set
B ={hi,G.d;, ..., P} er6(i), @21 (), &1 () | i > 0}
From Theorems 2.7, 3.1(2), (3.2) and (3.3) we deduce the following.
(3.4) The algebra Ext‘i{* for s < 4 is generated by
By ={hj,ci,d;,ei, fi, giv1, pir D3 (), p; |i >0}.
To prove (1.3) is then equivalent to proving the following.
(1.3)' (i) h?h? 3 =0fori >0and hjc; =0for j=i —1,i,i +2,i+3 in Ext}y*.
(i) The set of the following classes in (1) through (18) is a Z/2-base for Exti’*
where i > 0 in (1) through (8).
(D) di, 2) ei, 3) fi, @) git1, (5) pi, (6) D3(0), (7) p}, (8) cihiti,
D cihj, 0<j<i—1, 10)cihj, 0<i<j—3, (11)hl.3h1, 0<l<i-3,
(12) h?hi, 0<k <i—3, (13) h?hghy, 0<I <k —1<i —3,
(14) hil5hy, 0<l < j—2<i—4, (15 hihjhi, 0<k<j—2<i—3,
(16)hih3, 0<j<i—=2, (I7) hihjhih, 0<I<k—-2<j—2<i=3,
(18) Ig.
We note that in (1.3)'(ii), the class hé lies in Ext‘:{4 and is intentionally put at the end of the statement. All other classes

lie in Ext’' with t — 4 > 0.

We proceed to prove (3.3) and (1.3)" and we begin with the proofs of the triviality results (3.3) and (1.3)’(i) which
are easier.

Since Sqo(hizhizH) = h12+1hl.2+4 and Sqo(hjci) = hjt1cit1, to prove (1.3)(i) it suffices to show
(b) h2h2 =0, hoci =0, hoco =0, haco =0 and hzco = cohs = 0 in Exty*.
Since t, commutes with the operations (Sqo)i (see (3.1)(1)), to prove (3.3) is to prove

© 1:(@16(0) =0, £,(e21(0)) =0, 1,.(31(0)) =0 in Exry".
The classes in (b) are represented respectively by the cycles

AAZ, AoAsAZ =AaMAZ =0, AoaA3=ATA3=0, A3iA3 and Aar3A7=0
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in A. From (2.6) and the formula for 7 in (3.1)(1) we see the classes in (c) are represented respectively by the cycles

AA0AZ 4+ A1 (A3hshs + Aord) = Aardas + 2222, Aasa3=0 and
A22sA3 + A10A) + A6 (ATA23 + A7A3h1s) + A3hohsAas.
In A, we have 8(AoAZ + A3ksh7) = A3A3, 8(Aer3) = A3hor3, 8(AshiAi1) = A2A3 4+ A3A2A3 and

8[A12(A 1723 4+ AoA11) + Ag(A13A11 + AoAis)]
= M12hsA3 4 A10A3 + Ao (AT A3 + A7A3A15) + A3hoAsAos.

This proves (b) and (c) and therefore (3.3) and (1.3)'(i).

To prove (1.3)'(ii) we need to do some preparatory work. We begin by recalling from [5] a map Exti;”l’“rl LN
Exti{’(P) which “essentially” is the right inverse of the map #, in (3.1)(2). Precise meaning of this “essentially” is not
important here and so will not be explained. The map ¢, is induced by a chain map A 2, H.(P)® A.In (3.5) below

we recall the construction of this chain map which not only will be crucial to the proof of (1.3)’(ii) but also will be
crucial to the proof of Theorem 1.4 later.

(3.5) Define a map A i) ﬁ*(P) ® A on any admissible monomial A; = A;, - - - A;; as follows. ¢ (X;) =¢;, fori; > 1
ifs=1.If s > 2 then ¢ (A7) =0 for i1 = 0 (which implies iy = 0 for k > 2) and, for i > 1, ¢ (A7) is defined to
be

(0) @Ay =Aijhiy -~ hip) = e Ay + Zejl(‘)))\"]/(‘))’
v

where I’ = (i, ..., is) and the second sum is described as follows.  First we require each J'(v) = (j2(v),
.., Js(v)) be admissible and J(v) = (j;1(v), ja(v), ..., js(v)) be inadmissible. Secondly, choose any large in-
teger m (compared to i; and s) and let

J(V, m) = (2m + jl(v)7 jZ(V)a cr JY(U))

which is admissible. Then e, )A j () appears in the second sum of (x) if and only if, for some g > 2, Ay m)
appears in the admissible expansion of A;, - - Ny higam iy e A

The following result (3.6) on some properties of the map ¢ above is proved in [4,5] ((3.6)(1), (2) are proved in
[5] and (3.6)(3), (4) are proved in [4]). To state the result we recall that the filtration {F (i) | i > 1} of ﬁ*(P) ® Ais
givenby F(i) =) ;_, ﬁk(P) ® A. Extend this filtration to {F (i) | i > 0} by letting F(0) = 0. Define an increasing
filtration {A@{) | i = 0} of A as follows. For each i > 0 let A(i) be the Z/2-submodule of A generated by the
admissible monomials A;, ---A; with iy <i. It is not difficult to show that each A(i) is indeed a subcomplex of A.

Theorem 3.6. (See [4,5].)

(1) The map A i) I-NI*(P) ® A constructed in (3.5) is well defined, is a chain map and commutes with the operations
0 ~ 0~
A3 Aand H.(P)® AL H.(P)® A.
(2) Let r be the composite A i) ﬁ*(P) ® AL A where t is as in (3.1)(1). Then for each admissible \; A, - - - A;
in A with iy > 1 there is the relation
10()»1'1)»1'2 o ')‘l'x) = )‘il)‘iz s )\'is mod A(i] - 1)

(3) ¢(A@G) CF@) foralli >0.
@) d(XijAiy -+ Ai)) =€ Aiy -+ Aj, mod F (i — 1) for any admissible Aj Ai, - - - Aj, with i > 1.

s

We should remark that the last conclusion in (3.6)(1) is actually not proved in [5]. But from the construction of ¢
in (3.5) it is not difficult to see that this result is true.

It is easy to see that the result (3.1)(2) (the algebraic Kahn—Priddy theorem) follows from (3.6)(2). It is only the
properties (1), (3) and (4) in (3.6) that we will need for proving (1.3)'(ii) (and also Theorem 1.4 later).
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Given a class « in Exti{ with# —s > 0 and s > 1. Let x be a cycle in A%!~* representing the class . Suppose
x #0. Since t — s > 0 we should have the following.

(d) x=Ai;A(j) mod A(j — 1) for some j > 1 where A(j) is a non-zero chain in ASTHITS=T and
AjAj -+ Aj,_, is admissible for any admissible A j, - -- A, appearing in the admissible expansion of A(j).

Call A ;A(j) in (d) the leading term of the cycle x and we write x = A;A(j) to denote this relation. Thus o = {x} =
{A;A(j)}. Since each A(7) is a subcomplex of A, the chain A(j) in (d) is actually a cycle.

Now apply the chain map ¢ in (3.6)(1) to x in (d) above. From (3.6) we see the induced map Extil” ¢—*>

Ext;_]’t_1 (P) of ¢ carries « to ¢4 () which is represented by the cycle ¢ (x) € ﬁ*(P) ® A with

(e) ¢(x)=e;A(j)mod F(j—1).

Since A(j) is a cycle we can consider e;{A(j)} which is an element in the Eq-term E f’“]’* of the spectral sequence

{E;"*"},>1 considered in Section 2. The process from « to e;{A(j)} in ET’S_I’* via (d), (e) depends on the represent-
ing cycle x for o. Since ¢ (x) is a cycle, from (e), we see e;{A(j)} is actually an infinite cycle in the spectral sequence
which may or may not be a non-zero one. We will write e;{A(j)} # 0if e;{A(j)} is a non-zero infinite cycle and write
e;{A(j)} = 0 to mean that it is a boundary in the spectral sequence.

In case e;{A(j)} # 0 we will let é(a = {x}), or simply, ¢(c), to denote e {1 (j)} and use the correspondence

O a={x}={r()} = e {r()} =pla={x}) =d(@)

to denote the connection from « to the non-trivial infinite cycle e;{A(;j)} via (d) and (e).

s—1,%

Suppose e {A(j)} = 0. This does not necessarily inlply that ¢, (@) = {¢(x)} is zero in Ext, " (P). It only implies
that the cycle ¢ (x) is homologous to some cycle z € H,(P) ® A with z € F(j — 1) where j is as in (d), (e). Suppose
one can find such a cycle z having the properties in (g) below. To state (g) we fix a notation. Given two cycles u and v in
H,.(P)® A. We write u ~ v =¢;A(l) mod F (I — 1) to mean that u is homologous to v with v = ¢;A(/) mod F (I — 1).

(g2) (1) ¢(x) ~z=err(k) mod F(k — 1) for some k with 1 < k < j and some A(k) € A~V *which is
necessarily a cycle, where j is as in (d), (e).
(ii) ex{A(k)} is a non-trivial infinite cycle in E;’f_l’*.
In this case we will write 5 () to denote the non-trivial cycle ex{1(k)} and use the correspondence

(h) o= {x}={Ar()} = e} = (@)

to denote the connection from « to the non-trivial infinite cycle e {A(k)} via (d) and (g).
The reason to consider the notion (g) that leads to the correspondence (h) is the following. Given a non-zero
class a € Ext;’*. It may happen that no matter what cycle x = 1 ;1(j) € A®* one chooses to represent «, the class

{A(j)} € Exti\_l”k is always zero; so « has no correspondence of type (f). For such an «, since o # 0, from Theo-
rem 3.6 we see o always has property (g) and therefore has a correspondence of type (h). A typical example for such
an « is the class f; for any i > 0. This will be seen later when we come to prove (3.8.3) in which we have to consider
the correspondence (h) for f;. Many other examples will arise when we come to prove Theorem 1.4 later.

Ifae Exti{* is a class such that either there is a correspondence as that in (f) for « or there is a correspondence as
that in (h) for « then we say « has either (f) or (h).

Proposition 3.7.

) Ifae Ext‘;\’* is a class having either (f) or (h) then « is non-zero.
(2) If S is a set of classes in Exti"* such that each a € S has either (f) or (h), so that either ¢ (o) or () is defined, and

such that the set {¢(x) or 5(0{) | @ € S} is a linearly independent subset of non-trivial infinite cycles in E;g,sil‘*

. . . S, %
then S is a linearly independent subset of Ext;".
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Proof. If @ € Extf;{* has either (f) or (h) then ¢, (@) € Exti(l’* is represented either by the non-trivial infinite cycle
ei{l(j)} = ¢ (a) or by the non-trivial infinite cycle e {A(k)} = ¢ () in the spectral sequence. So ¢ () # 0 and this
implies « # 0. This proves (3.7)(1). (3.7)(2) is clear. This proves Proposition 3.7. O

We are going to use Proposition 3.7 to prove (1.3)/(ii). Recall that we want to prove that the set of the classes in
(1.3)/(ii) is a Z/2-base for Extj"*. Call this set B. By (3.4) and (1.3)'(i) we see this is equivalent to proving that B is
linearly independent in Ext‘k*. We shall prove this by showing the following result (3.8).

In order to state this result we fix some notations. Recall that, for each i > 0, the class &; € Exti{* is represented
by the cycle A, _; € AL* and the class ¢; € Ext‘l’* is represented by the cycle A2f+|+2z,lk§i+2_l e A>*. To sim-

plify, we will let ] denote the cycle A, _; and let ¢ denote the cycle Aji+1 +2,-_1)»§,. 12, Note that A, hih’hy =
2

Anhgi_1Asi_1hok_y is admissible if and only if 27 >2' — 1 and i > j >k, and Amc} = AmAgi+i i _1A54, 18 ad-
missible if and only if 2m > 2/+1 421 — 1,

The result (3.8) below consists of the statements (3.8.1) through (3.8.17). For each n with 1 <n < 17 and n # 3,
(3.8.n) describes, for each class « in (1.3)(ii)(n), a correspondence of type (f) for @ which is of the form a =
{AA())} — ej{r(j)} = ¢(«). And (3.8.3) describes, for each class « in (1.3)'(ii)(3), a correspondence of type (h)
for o which is of the form a = {A;A(j)} = ex{A(k)} = g(a). These ¢ (c) or 5 (o) are to be non-trivial infinite cycles
in EX>*. Recall that (2.5.1;) through (2.5.75) in Section 2 is the list of a basis for EX>* . Right after ¢() or ¢ (a)
in these (3.8.n)"* we attach an appropriate (2.5./;) to indicate that ¢ (cr) or ¢(a) belongs to the family (2.5./;). For
example, “esi+3_si_Ci = &(d;), (2.5.122)” at the end of (3.8.1) indicates that the non-trivial infinite cycle ejyi+3_qi_1Ci

belongs to the family (2.5./57). Finally, the restriction on i in (3.8.1) through (3.8.8) is i > 0.

(3.8.1) di = (hyi+3_pi_ 1€} = exins_ni_yci = P(di), (2.5.1n).
(3.8.2) ei = {m} - 62f+3+2i—1h?+2 =¢(e). (2.5.13).
(3.83) fi = {hpivagginr_1hf 5(hF5)?)

— ey i 1hishi = b(f), 2.5.1).
(3.8.4) git1 = {Ay2yoi1 01 (hfy3)?h] )

— eyt 40t yoi_thishi = @(git1), (2.5.000).
(3.8.5) pi = {hyits_gi 1€} 1) = eqiva_ni_jciv1 =d(pi). 2.5.5).
(3.8.6) D3(i) = {Ayi+ayoits_ni_1hY sh¥ 3T}

— eyivaqnit3_gi_higshizzhivi = $(D3(i)), (2.5.10).

(3.8.7) pf = {Ahyissiaivaiaivi o (hF)?hT,
— €i+5 41240t oi_th ghivt = d(p)), (2.5.014).
(3.8.8) hit1ci = {Ayiri_1c} = eyivi_jci = p(hivici), 2.5.11).
(3.8.9) cihj = {hyripoioi_y (h5)?h% )
- 62f+'+2i72.f71hi2+2h1'+1 =(cihj)
for0<j<i—1, 25103).

(3.8.10) cihj=hjci ={Ayj_givsqnitaini_j¢iy 1}
—> €3 _pitayaitryai_1Citl = P(cih )
for0<i<j—3, (2.5.023).
(.8.11) hihy={hy_p_(B))?h}, )
— eyi_gi_1h3hip1 = p(3hy), for0<I<i—3, 2.5.112).
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(3.8.12) hihi ={hy g1 b} (hE 2}
— eyi_qpri_thihi, = @hIh), for0<k <i—3, (2.5.1¢).
(3.8.13) hihihy = {hy ok o hihi, hf i}
— eyi_gt_gi_thihgsthisy = (h?hihy)
forO<Il<k—1<i—3, 2.5.3).
(3.8.14) hih%h; = o pis iy (B D20y )
— exi_pit ol hiy = G(hilhy)
for0<l<j—2<i—4, (25—115)
(3.8.15) hihjhi = {hai _aigpr g5 (B, D2}
- ezi—21—2k+1—1hj+1h1%+1 ¢ (hih; U i)
forO0<k<j—2<i—3, (2.5.17).
(3.8.16) h,»h? = {Aoi i1 0i 1 (5 5)°}
— ey gt _ai )y =¢hil), for0<j<i—2, 2.5.h).
(3.8.17) hihjhihy = {hyi_sj o115 B by )
— ei i gk gt _thjrihirihigy = ¢(hihihihy)
for0<l<k—1<j—2<i—3, (25119).
We recall again that the left-sided classes in 2.5.17) through (2.5.126) in Section 2 is a Z/2-base for E;‘o%* Let B’

be the set of the classes in Ext‘:‘* exhibited in (3.8) = U 1(3.8.n) above. For each o € B’ the corresponding non-
trivial infinite cycle ¢(a) or ¢(oz) belongs to some (2.5.1;) as deplcted in (3. 8) Since different (2.5.1;) ;) are attached
to different (3.8.k), and this is easy to check, it follows that the set {¢((x) or q‘)(a) |a e B'}isa hnearly independent
subset of Ex 3% This implies B’ is a linearly independent subset of Ext** 4 by Proposition 3.7. Now B’ is precisely
the set of the classes listed in (1.3)(ii)(1) through (1.3) (ii)(17) Together with the class h4 in (1.3)/(ii)(18) the set
B=B'U {h } is therefore also linearly independent in Ext’y A since h4 # 0 lies in Ext* A * while each o € B’ lies in
Extt! 4 for some 7 with ¢ > 4. This proves (1.3)'(ii) modulo the proof of (3.8).

We proceed to prove (3.8). First we explain what are to be proved. To prove (3.8.1), for example, is to show that,
for each i > 0, the class d; can be represented by a cycle x € A** whose leading term is the admissible monomial

2
A2i+3_2i_lc;k = A.2i+3_2i_1)\.2i+1+2i_1)L2i+2_1 .

Once this done, that the corresponding ¢(d;) = e5i+3_»i_;c; is a non-trivial infinite cycle belonging to the family
(2.5.1) is clear. All other (3.8.n) with n # 3 are to be proved this way. The correspondence (3.8.3) is of type (h) and
will be given a special treatment of its proof.

To prove (3.8.1) through (3.8.7) we have to recall from (1.1) some specific cycle representations in AS* for the
classes in Bz = {d;, e;, fi, g&i+1, pi, D3(i), plf | i > 0}. Actually, for the purpose of making calculations for proving
Theorem 1.4 later, we will give, for each class « in B3, either

(i) a specific cycle representation & (1), or
(ii) two specific cycle representations & (1) and @ (2), or
(iii) three specific cycle representations & (1), & (2) and @ (3).

Only the cycle representations ¢ (1), for @ € B3, which are in admissible forms, will be relevant to the proofs of (3.8.1)
through (3.8.7). If & € B3 is a class in the case (ii) then the cycle representations & (1) and & (2), either

(ii)" are different cycles but homologous, or
(i1)” are equal but @(2) is in inadmissible form.
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In case (i)’ we will give a specific chain y € A>* with §(y) = @ (1) +a&(2) showing that @(1) ~ &(2). In case (ii)” we
will write & (1) = @(2). If « € B3 is in the case (iii) then & (1) and &(2) will be in the situation (ii)’, and @ (1) and @(3)
will be in the situation (ii)”. These cycle representations are described in (3.9) below where i > 0 in each (3.9.k).
(3.9.1) di(1) = (S¢°)' (heraA3 4+ AGA3 + Aahadshz),

di(2) = (5¢°)' (A6A223 + A3A§A11).

8[(Sq°) (Aarorin + A3h11 + AiAiiAs + Ashshg) ] = di(1) + di (2).
(3.9.2) &(1) = (S¢°) (AsA3 + Aar2A3 + Aar7r + Aar3hsha),

2i(2) = (S¢") (AoA1123 + MoAshors + A1A2Ad),

8[(Sq°) (kgh7rs + Arrori) ] =& (1) + & (2).
(3.9.3) Fi(1) = (S¢°) (AsA723 + harorshs + Ahsh + Aohadshy).
(3.9.4) it1(1) = (S¢°) (AErshs + Ashord + AsAzAsAz + Azhshors).
(3.9.5) Pi(1) = (5¢°) (M14%5A3 + A10A023 + Aehok11A7).,

Pi(2) = (S¢°) (A14A523 + A7hoh19A7).

Pi(3) = (84" [ro(r1943 + A7hn1hi5)] = pi (1),

3[(Sq") (A10r1r23 + A6rshaz) | = pi (1) + i (2).
(3.9.6) D3(i)(1) = (S¢°) [M2A21A11A7 + A22A13A11A15 + Aighis + A1ari3hiohss],

D3(1)(2) = (S¢") (A23h0A7A31 + A15AsA7A31 + Al6ATs).

D3(i)(3) = (S¢°) (hor23r7ha1) = D3(i)(1),

8[(Sq°) (Aaar7231)] = D3(i)(1) + D3(i)(2).

o A3gh13A11A7 + A30A0A3 + Aogh11ATs + AAi7Ads
(3.9.7) pi(1)=(S¢")' + A20h19A%5 + A1ad21A27h7 + A1araihioAts ,
+ A14A 17423415 + A14A13A19A23 + A12A 19423415

Pi(2) = (S¢") [ro(A30rTs + Aishazrsn) | = Bi(D).

Let ;l;, e, f{, Sit1> Dis 53 (i) and P! be the cycle representations for the classes d;, ¢;, f;, gi+1, pi, D3(i) and p]
respectively described in (1.1)(3) through (1.1)(9) of Section 1. The admissible cycle representations d; (1), ..., Pi()
in (3.9) are derived from d;, .. ., ﬁl’ with the following relations.

() (1) Fi(1) = fi, pi(1) = Pi, D3()(1) = D3(i) and p(1) = B in A**,
(2) d;(1) differs from d; by one term (S¢°)' (A;AsA1A7) which is ~ 0 as AjAsAiA7 = AAiA7 = 8(A3hsA7).
(3) & (1) differs from &; by one term (S¢°)" (A2A923) which is ~ 0 as A2hoA3 = AghsA3 = AghiA7A3 = AoAdA3 =
(AoA7A11).
(4) gi1(1) differs from g4 by one term (S¢°)' (A311143) which is ~ 0 A3411A3 = 2343 = §(A7A1123).

This implies that 3,-(1), e;(1),..., 1_7;(1) are indeed cycle representations for d;, e;, .. ., plf, respectively. From their
admissible forms as given in (3.9) we see the following.

(381" di = {(Sq°) (her2r2 = hech) = Aoy 17 )-
(3.8.2)* ¢ = {(S¢°) (:813) = Ayiva poi_ (h} )2},
B84 gir1 = [(5¢)) (W2hshs = hehor2))
= {m = Agi+2 i+l 40i | (h;k+3)2h;'k}’ since

8(Aergh7 + AsA7Ag) = AshoAZ + AeA3Ag mod A(5).
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(3.8.5)" pi = {(5¢°) (1arsh3 = hact) = hyva gyl -

(3.8.6)* D3(i) = {(S¢°) [M22(h21A11A7 + A13h11A1s) = A2ahi A7z}

= {(Sqo)i (A2A31A701) = k2i+4+2i+3_2i_lh?‘+5h;.k+3h?<+l }, since
5[)»22()»9)»31 + A7h33 + )»39)\1)] = AnA1A7A31 + A22A31A741 mod A(21).

(3.8.7)* p; ={(Sq") (h3ghizhiihy = Azghiris)}

= {(Sqo)i()gg)»%)\l) = )\.2i+5+2i+2+2i+1+2i,1(h?+4)2h;~k+l} since
8[r38(Ai7A1s + Aishin) ] = A3ghiATs 4 AzghisAT mod A(37).

This proves (3.8.k) fork=1,2,4,5,6 and 7.
Next we prove (3.8.3). Apply the chain map A ﬂ I-I*(P) ® Ain (3.5) to the cycle 7,-(1) in (3.9.3) to get

() ¢(fi(D) = (Sq°) [$(Asr723) + P (harehrsrs) + ¢ (A3hsh7) + ¢ (haharshs)].
Note that AsA7A3, AareAsA3, A3AsA7 and AxdsdsA; are all admissibles. From (3.6)(4) to get
(i) ¢(Rakorshs) +¢(R3hsA7) + @ (akadshy) = es(hhshs = Aor7) mod F(3).
From the construction of the map ¢ described in (3.5) it is easy to see the following.
(i) ¢(As5A723) = esA7A3 + e1h11A3 = esi7A3 mod F(3).
From (i), (ii) and (iii) we conclude
(iv) ¢(Fi(1)) = (Sg°) (esh743 + earord) mod F(27H2 —1).

In Hy(P)® A we have 8(esh1143) = esh7a3 mod F(3) and 8[es(Agh7 4+ A7Ag)] = earo3 +esr3hg mod F(3). These
imply
V) 8[(S¢°) (eshn123)] = (S¢°) (esh7A3) mod F(2F2 — 1),
3[(Sq°) (ea(Asr7 + A728))] = (Sq°)! (earor3 + esr3rg) mod F (212 —1).

From (iv) and (v) we deduce that
o(Fi (D) ~y=(Sq") (ear3no) = episayni_y (hi 3)*h} mod F (2% —1).

This implies a(f,-) = €2i+2+2i71hi2+3hl’ by the definition of a(ﬁ) in (h). This proves (3.8.3).

Some calculations are needed in order to prove the remaining (3.8.8) through (3.8.17). We are not going to do all
these calculations. Rather, we will just illustrate our method of calculations for two of these which are (3.8.9) and
(3.8.11), as the proofs of the rest are similar which we leave to the reader.

We want to show for (3.8.9) that

cihj = {)»2,'+1+2,-_2j_1(hlﬂ_z)zhj“} for0<j<i—1.

It is clear that it suffices to show this for j = 0, that is, to prove

() ciho = {Ayiv1 401 o(hY,5)?R7} fori >2.

§i+2_1)‘0 is a cycle representing c;ho. Let A(1) = Ayiva_jAoit2 + Aoit2Agita_y,

M2) =13, and A(3) = Agivayy Agiva_ g + Agiva_jhgi+2, . We have

We already know that Agi+1 5 (A



W.-H. Lin / Topology and its Applications 155 (2008) 459-496 481

3(X2i+1+2i_1)»(1) + Agit140i A(2) + X2i+1+2i_2)x(3))
= Ayi+1 4o 1 Agia_ M0+ Agitiyoi_oAgis A1 mod AT 420 —3),

This proves (x) and therefore (3.8.9).
We want to show for (3.8.11) that

Wi ={dy o1 (K2R} )} forO<I<i—3.

Again it suffices to show
(%) B3ho = {Agi_o(B¥)2h*} fori > 4.

The cycle A;i_lko represents h?ho. We have

2
8[)\.21'_1 ()xzi_])\.zi + )\.2:’)\.2:’_1) + )\.2:’)\.2,-_1 + )\zi_z()\,zi+1)\.2i_1 + )"Zi—l)"2i+l)]
=13, A0+ Ay _pA5 A1 mod F(2' —3).
This proves (xx) and therefore (3.8.11).

This completes the proof of Theorem 1.3 and therefore also the “inductive proof” of the differentials E; Box dr,
ES** given in (2.5).

The remainder of this section is devoted to proving Theorem 1.4.
Let E be the subalgebra of the algebra Exti"* for s < 5 generated by the classes in B> = {h;, ¢;,d;, ei, fi, &i+1, Di»
D3(i), p; | i > 0}. We already know from Theorem 1.3 the following relations in E:
(1.3)* hihit1 =0, hih?, =0, h? =h?_hi1, h?h? 3 =0and hjc; =0
forj=i—1,i,i+2andi+3.
We want to prove for Theorem 1.4 that in E the only relations among the generators in B, = {h;, ¢;, d;, ..., plf |i >0}

are those in (1.3)* together with the set of the relations (1) through (39) in the statement (1 4)in Section 1. Let R(1.4)
denote this set. Then R(1.4) is the set of the relations obtained by applying (S¢°)" for all i > 0 to the following

relations (1.4)*(1) through (1.4)*(39) where D3 = D3(0).
(1.4)* (1) hﬁco =0, (2) hzhpcp =0, (3) h%co =0, (4) hod; =0,
(5) h3do =0, (6) hady =0, (7) hoe1 =0, (8) haep =0,
9) h1 fo=0, (10) h3 fo=0, (11) ha fo =0, (12) h3g1 =0,
(13) hop1 =0, (14) h1po =0, (15) hapo =0, (16) h4po =0,
(A7) hspo =0, (18) hoD3(1) =0, (19) hoD3 =0, (20) hsD3 =0,
(21) h¢D3 =0, (22) hop} =0, (23) hapy =0, (24) h3py =0,
(25) hepy =0, (26) hahico = hzeo, (27) hahocs = hs p;,
(28) h3co = h1p, (29) hoda = h3Ds, (30) hidy = hopo,
(31) hady = hagi, (32) hado = hoeo, (33) hieo = ho o,
(34) haey = hy fi = hiea, (35) haeo = hogi, (36) ho fo = hapy,
(37) ho f1 = h3po, (38) ha fo="h1g1, (39) h3gr = hsg1.
To complete the proof of Theorem 1.4 it suffices to show the following (3.10) and (3.11).
(3.10) In 1_77 there are the relations (1.4)*(1) through (1.4)*(39), which imply that the relations in R(1.4) also hold
in E.

(3.11) The set of the monomials /;/ jhihihy,, cih jhy and hjd;, hje;, hj fi, hjgiv1, hjpi, hjD3(i), hjp)in EﬂExti’*
which are obtained by avoiding the relations in (1.3)* and also the relations in R(1.4) is linearly independent.
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Precise description of the set in (3.11) will be given later when we come to prove it. ~ ~
To prove (3.10), and also (3.11) later on, we shall need the specific cycle representations d; (1), d;(2), ..., ﬁ;(l),

p;(2) in (3.9) for the classes d;, ..., p;, respectively. Recall that )‘gf—l %j+2,1
cycle representations for the classes 4 and c;, respectively. We shall use the cycle representations Ayi_qdi(1)
(or di(DAgi_1)s Apj_1di(2), ..., ki1 Pi(1), haj_1 P} (2) for the classes hjd; = dihj,...,hjp, = pihj in By =
{hjdi, hjei,...,hjD3(i), hjplf |i >0, j>0}. For example, Mdo(2) = )»7()»6)»2)% + A3k(2)A11) represents the class
hsdp and eg(1)A7 = [)\g)»g + )»4()%)»3 + )»7)»%) + AgA3AsA7]A7 = A2k3A5A% (since A3A7 =0 1in A) represents the class
hzeg = eoh3. Besides these cycle representations we shall also need some “exotic” cycle representations for some of
the classes in B3. These “exotic” cycle representations will be obtained from the following result which is new.

and Ayj+1,9j_1A are the standard

s—1,%

Proposition 3.12. Let a be a class in Ext, " (P) represented by a cycle x = Yoo e (k) € ﬁ*(P) Q AS™1* where
s — 1 > 0. Consider the class t,(a) in Exti’* where t, is as in (3.1)(2), so that t.(«) is represented by the cycle

t(x) = ZZ:] LigA(k) in AS*. Then for any j > 0 the class hjt,(a) € Extffl’* is represented by

. ix — 1
Z[Z ( k 1 )Aik_lkz_;+,1]k(k) e ASTLx,

k=110

Proposition 3.12 will be proved at the end of this section after we finish the proof of Theorem 1.4.

The classes in Bz = {hjd;,...,hjp}} to be given exotic cycle representations via (3.12), which are relevant to
the proof of (3.10), are the classes h1d1, hopo, hoeo, h181, hop1 and hy po. These exotic cycle representations are
to be described in (3.13) below. Recall that we use gi, Ci, ..., 17: to denote the cycle representations for the classes
di,ej, ..., p;i respectively described in (1.1) of Section 1. For example, we have

() &1 =162023 + A5(10A3 + A3hsA) + A3 (hshoks + A11d3),
0 = A3 4+ AaAZAs + (Aar7A3 = A3AsA3) + Aa(A3AsA7 + Aord).

Recall also from (3.9) that the following specific cycles di ), Po(2) and p1(2) represent di, pg and p; respectively.

(k) d1(2) = S¢° (heraA3 + A3A5A11) = A13AsAT + A7ATAos,
P0(2) = A1aAsA3 4+ A7hoh19A7,
P1(2) = A9oh11rTs + Aishiazorts = Sq° (Po(2)).

The following are cycles in ﬁ*(P) ® A3* which is easy to check.

() 2} =echor] +es(09h3 + 23h5h7) + e3(Ashors + A11A3),
2 = esh3 + ear3rs + e3hgd3 + e2(A3hshy + Aoh3),
d}(2) = e13hsA3 + e7h7 A3, Po(2) = e1ahsr? + erhoh19A7,
Pi(2) = 2011035 + e15A1A30A15.
From (j), (k), (1) we see 1(%) =21, 1(€) =20, 1(d}(2)) =d1(2) and 1(p}(2)) = p;(2) for i =0, 1. From (j), (k) and
Propositions 3.12 we obtain the following exotic cycle representations for the classes h1dy, hopo, hoeo, h181, hop1
and h1 po, respectively.
(3.13) (1) hidy = (13hi25A7 = 0) + AiAshshs + Ajhsh7
+ (MAT A3 = A7A%A1007).
(2) hopo = (A1ahorsh3 =0) + (A13A1AsAT = 0) + A1 A3hsA7
+ A3A523 + A9A3 k1007,
(3) hoeo = (Aghor3 = 0) + (A7A1A3 = 0) + AeroAd + A543
+ (Aaror3A3 = AGA3) + Ashiadas + (WA =0)
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+ 23004823 + (A2horshshs = 0) + (A{A3hshs = 0)
+ (Aaroror3 = 0) + (A2rgr3 = A23203).

(4) higi = hsh1hoAT + Ashahols + A3hadohs + AshiAod
+A3h923 + (hshiAshshs = 0) 4+ A3Ash7 + A3k hshols
+ A3A1A11AS.

(5) hop1 = Aaoror11ATs + Aa7haki1ATs + A23heA11ATs
+ Mslm?xuk% + (A15A0A1A39A15 = 0).

(6) h1po = (A1ar1As)s =0) + (A13h2AsA7 = 0) + A1 dahshs
+ )»7)»8?»5)»% + A7A1A0A 192 7.

Now we prove (3.10). Recall we want to prove for (3.10) that the relations (1.4)*(1) through (1.4)*(39) hold in
Exti’*. The following Egs. (3.10.k)* for 1 < k < 39 in the lambda algebra A constitute a proof for these relations
yvhere,_for each k, Eq. (3.10.k)* corresponds to the relation (1.4)*(k). In these equations we use the specific cycles
di(1),d;(2),...,pi(1), p;(2) in (3.9) to represent the classes d;, ..., p; respectively and, in Eqs. (3.10.k)* for k =

13, 14, 30, 32 and 38, we use the exotic cycle representations in (3.13) for the classes k1d1, hopo, hoeo, k181, hop1 and

h1po. And we recall again that /2; and c; are represented by the standard cycles A,;_; and Ayj+1,5j )»g 2 = c;f,
respectively. We also note that if « and g are classes in Extj"* represented respectively by cycles x and y in A then
{xy} = {yx} = aB = Ba since the algebra Ext,,™ is commutative.

(3.10.1)* hjco=0 by AA3rTs=0.
(3.10.2)* h3hoca =0 by A7hocs = ArAori1rls = S(hghi1ATs).
(3.10.3)* hico=0 by rich=2rTrar3 =8(Agr11).
(3.10.4)* hod; =0 by Aod1(2) = Ao(h13AsA3 + A7ATA23) = 8 (AgATA23).
(3.10.5)* h3do=0 by r7d0(2) = A7(Aer2A3 + A3A3A11)

= 3()»14K2)»§ + )»11?»(2))»11)-
(3.10.6)* hado=0 by do(1)r15 = (Aerar3 +AIA3 + AorarsAs)Ais

= 8(AoM16M3 + Aor1shgA7 -+ AoA23AoA7).

(3.10.7)* hoe; =0 by 2pe1 (1) = Ao(A17A3 + Ao A7 + AohisA3 4 AsAzhiiArs) = 0.
(3.10.8)* hseo =0 by eo(1)A15 = (hgA3 + rarirz + har7A3 + AaAsAsAp)Ars

= 5()»4)»%)»23).
(3.10.9* hifo=0 by a1 fo(1) = A[Aaror3 + A3(hord + A3AsA7) + Aaharsis]
= 8(Ar4r3).

(3.10.10)* h3fo=0 by fo(DA7 = [A4h0AF + A3(RoA3 + A3AsA7) + AoAahsA7|A7
= A2AsA2 4 AaharsAZ = S(A3has + A2A11A15).
(3.10.1D)* hafo=0 by fo(Dris = [raror? + 2303 + A3ksh7) + Aoharshg|Ais
= A3hordA1s = A3hoAd = 8(A3A17A2).
(3.10.12)* h3g1 =0 by g1(1)A7 = [A620A3 + As(hor3 + A3A5A7) + A3kshors |7
= AsA3AsA3 = 8(hoAsA2).
(3.10.13)* hop1 =0 by hop1 = (Aagho + A27h2 + A2zhe + A1shia)A11ATs
= 5()»30k11)»%5)-
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hipo=0 by hipo=Ari1harsr] + A7hshshs + Arhihoriors
= 8(A14A3 4+ A7A2h10A7).
h2po=0 by po(3)A3 = Ao(h10AF + A7A11A15)A3
= 8[ho(A23A3 + A1oA7A11 + A11A3A23 + A7A11A19)].
hapo=0 by po(2ris = (h1adsA3 + A7kohi9A7)his =0.
hspo=0 by po(3)r31 = Ao(A19A3 + A7A11A15)A31
= AoA19As = 8(hor3sATs).
hoD3(1) =0 by AoD3(1)(3) = Aor1A47hi5A63 = 0.
hoD3 =0 by 20D3(0)(3) = AJr23A7A31

_ [?»(2)?»47)%5 + (AoA3 + A3hsA7)Aa7 }
+ A1 A11A%s + A7h1A23A31

hsD3 =0 by D3(0)(3)A31 = Aor23h7A3, =0.
heD3 =0 by D3(0)(3)A63 = AoA23 7431463 = 0.
hopy =0 by AP} (2) = oh1(h7923; + A31harhe3) =0.
hapy=0 by r3Pp(2) = A3h0(A30rTs + A15A23A31)
= 8[Aa(A39ATs + A1sA23ra1) + Aor11A3; ).
h3py=0 by Py(2)A7 = ho(Aaorls + A15A23r31)A7
= 5[)»0()»47K%5 + A30A15M23 4+ A23A7h47 + A1sA23A30) .
hepl=0 by py(2)kes = Ao(A39ATs + A15A23A31)A63
= Aoh30r3; = 8(hoA7123)).
hahico=hseo by éo(1)A7 = [Agh] + Aa(A3h3 + A7A3) + Aakahshg [y
= Aah3AsAZ = A1 hgAsAZ = A AodS
= MA2r3Ais = Aicihrs.
hahocs = hsply by Pp(2)A31 = ho(R39ATs + A15A23A31)A31
= hohi5223A3; = Aoriscy.
h3co=h1py by MPp(2) = AAo(R3orTs + A1sA23A31)
= 8[Aa(A30ris + Aishasran) ] + (RaA3A3; = c§A3)).
hody = h3D3 by Lod2(2) + A7D3(0)(3)
= )»0()»27?»11)»%5 + )»15)%)»47) + A7A0A23A7A3]
= 8(L16A3A47 + A1aA1A30h15 + A7A0ha7AI15).
hidy =hopo by hidi = A1A3hsAh3 + A3AsA3 + A7Adhi9hs = hgpo.
hadi =hagi by g1(D)A1s + Azd (1)
= [A620A7 + As(AoA3 + A3As5A7) + A3hshohs]his
+ A3(A13A5A3 + AZA3 + AsAor11A7)
= AsAoA3 + A3A1A17A5 = 8(Ashi7A3).
hady = hoeg by hoeo + Azdo(1)
= Aohard + A3 (MAZAs + AoAsA3) + AZAIA
+ A3(heA2Ad + 4503 + Aahahshs)
= 8(AoraA7A3 + AsATAi1 4+ A3Ash7 + A3A7A11).
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(3.10.33)* hieo=hofo by rofo(l)+ rieo(l)
= 10[A4h023 + A5A7A3 + A3AsA7 + Aadahshs]
+ A1[A8A3 + AariAs 4+ Aar7AS + AaAsAsAg]
= A3A1A0A3 4 A6AT + Ashar
= 8(h10A3 + A7hoAsA7 + A3hard).
(3.10.34)* hae; =hy fi =h3ca by (W3ch = r3rnrds) + i f1(D)
= AoA1IAS + A9ATATs = 8(hoA7A11A15).
(3.10.35)" haeq =hog1 by rog1(1) + Azéo(1)
= ho[A6A0A3 + As(AoA3 + A3As5A7) + A3AshoAs]
+ 23[AsA3 + Aa(A2hs + A9A3) + Aarzhsig]
= 8(AshaAd 4+ AahshiAil 4+ A3hgh7).
(3.10.36)" hofr=hapy by rof2(1)
= ho[A19A3A3] + Ais(A39ATs + A1sAazrar) + AT A5 ]
= M6A3A3; + Aoh1s(A39ATs + A1sAa3h3r)
= 5[)»16()\39)»%5 + A1sA23231) ] + A5 P (2).
(3.10.37)* ho fi =h3po by rof1(1)
= ho[AoA1ATs + A7(h10A3 + A7A11415) + AAts]
= 8[A8(X1023 + A7A11015)] + A7P0(3).
(3.10.38)" hafo=rhig1 by higi+ 23 fo(l)
= A6h10A3 4 Ashihord + AsA3aZas
+ A3(A1Ashohs + MAIAS + Aahadshr)
= 8(AeraAd + A2h1A11).
(3.10.39)* h3ga=hsgr by g1(1)A31 + A782(1)
= [A6A0A3 + As(hoA3 + A3hsA7) + A3kshors]Asi

+ )»7()»13?»1)»%5 + A1A19AZ 4+ A7A11 21947 + A11A7A11A15)

= 8(AsA9gA15A23).

485

To complete the proof of Theorem 1.4 we have to show (3.11) which is restated more precisely as (3.11)* below. From
the relations in (1.3)*, described before the proof of (3.10) above, and also the relations in R(1.4), which is the set of
the relations (1.4)(1) through (1.4)(39) in Section 1, we see that to prove (3.11) is equivalent to proving the following

(3.11)* where the class hg € E)cti’5 is excluded, that is, only elements in Ext‘xt with t — s > 0 are considered.

(3.11)* The set of the monomials (1) through (23) below is a Z/2-base for EN Exti’*, the Z/2-submodule of Exti’*

generated by the decomposable elements.
(1) h?h§ fori > j+5,(2) h3hjhy fori
(3) hih3 fori > j+4, (4) hihihy fori
(5) hihjhifori> j+3>k+6,
(6) h2hjhghyfori>j+3>k+5>1+7,
(D) hilhg fori > j+3>k+7,
(8) hih% fori >j+3>k+7,
9) h,-hjhkhl fori>j+3>k+6>1+38,
(10) hihjhi fori > j+2>k+S5,

J

VoWV
~
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(11) hihjhgh? fori>j+2>k+4>1+7,

12) hihjh,%hlfori>j+2>k~|—5>l+8,

(13) hihjhkhlhmfori>j+2>k+4>l+6>m+8,

(14) hihg fori >4,

(15) cﬂz?forj<i—30rj>i+5,

(16) cihjhgfor(Dk>i+4,k—1>jand j#i—1,i,i+2,i+3o0r()j<k—1<i—2or
(ik=i+1>j—1,

(17) dihjfor j#i—2,i—1,i+3andi+4,

(18) ejhjfor j#i—1,i,i+3andi +4,

(19) fihjfor j<i—3orj=i+2orj>i+5,

(20) gi1hjforj<i—lorj=i+2o0rj>i+6,

(21) pihjfor j<i—2orj=i+3o0rj=j+6,

(22) D3(i)hj for j#i—1,i,i+5andi+6,

(23) pihjfor j<i—2orj=iorj=i+4orj=>i+7.

Let B be the set of the classes (3.11)*(1) through (3.11)*(23). To prove (3.11)* it suffices to show that Bisa linearly
independent set in Exti’* as B spans the Z/2-module E N Extffk which is easy to see from the relations in (1.3)* and
in R(1.4).

The method of proving (3.11)* will be the same as that for (1.3)'(ii), which was proved via the result (3.8), and this
is roughly described as follows. We are going to show that for each class « in (3.11)* either there is a correspondence

o = [0 > ;1)) = 9@
of type (f) or there is a correspondence
a= 12D} = a{r)} =@

of type (h) such that the resulting collection I of these ¢(a) or $ () is linearly independent in E 254’* of the spectral
sequence {E;"**},> for Exty*(P), and then apply Proposition 3.7. To show [ is linearly independent we shall resort

to the differentials Ef’?”* LN Ef’4’* described in (2.5) of Section 2.

The result of these correspondences for classes in (3.11)* is described in (3.14) below from (3.14.1) to (3.14.51),
analogous to those in (3.8) for (1.3)/(ii) discussed earlier. The correspondences (3.14.1) through (3.14.43) are of
type (f) which are listed for the classes in (3.11)*(1) through (3.11)*(23) roughly in that order with several consecutive
(3.14.n)"" for each such (3.11)*(1). The remaining eight correspondences (3.14.44) through (3.14.51) are of type (h).
Proofs for these correspondences will be given afterwards. In stating these correspondences we still use h; and c;‘.

% 421 respectively. We will also use the cycle representations d; (1),

e (1), fi(1), gix1(1), pi(1), D3(i)(1) and 1_7;(1) described in (3.9) for the classes d;, ¢;, fi, gi+1, pi, D3(i) and pl/.,
respectively. These cycle representations will simply be denoted by d;*, e}, ..., D} (i) and (p})*. From (3.9) we also

note that p¥ = p;(1) = p;(3), Dj = D3(i)(1) = D3(i)(3) and (p))* = p}(1) = p}(2). In addition to these, we will
also consider the cycle representation d;(2) in (3.9.1) for the class d;.

to stand for the cycles A,;_; and Ayjv1, 5 (A

(B.14.0) hjh% = {agi i (BD2(RY )2
- ezi—zf+1_1hi2h§+1 =¢7(h?h§) fori >j+5.
(3.14.2) hhjhi = {Agi o oey (B)?H% h7 )
—> egi_nj_ok_1hihjpihier = p(h3hjhy) fori > j+4>k+6.
(3.14.3) Bl = {Aoi_gir1_pi_ 1 h} (h% )3
— exi_yit1_gi_thih = @(hTh) fori>j+4.
(3.14.4) Wih3hy = {hgi_pinr_ok_yhf (W% )?hE

— ey _piri_gt_yhih%yhpr = ¢(hTh5hy)  fori > j+4>k+7.




W.-H. Lin / Topology and its Applications 155 (2008) 459-496

(3.14.5) hihjhi = {hyi _pi_qee1_yhTIS (B, )2
— eyi_gj_prti_thihjpihi, = @hihjhi) fori>j+3>k+6.
(3.14.6) hihjhihy = {hai_yj ok o1 _{h7 W5 hi (BT,

— e3i_gi_gk_pi_thihjiihesihisr = @(hih jhihy)
fori > j+3>2k+5>2147.

(3.14.7) hil’ hk_{kz, 2+ o gk (B4 ) hiy )
— eyi_git1_gj gk 1)y i1 = G(hilihy)  fori> j+3>k+7.
(3.14.8) hil5hy = {hyi_sjs1_ges1_ NG NG
— eyi_pji_geri_thGhi = (hihihy) fori> j+3>k+17.
(3.14.9) hih3hihy = {Ayi_aje1 ok o1 (5 )P b )
— ezi_2j+1_2k_21_1hj+1hk+lhl+] = ¢(hihjhkhl)
fori >j+3>k+6>1+38.
(3.14.10) hihjhi = {hyi _pi_pir1 k% ()3}
— eyi_aj_opti gk _thjihpy = @(hihjh}) fori>j+2>k+5.
(B14.10) hihjhihi = {hoi i ok prer 15 B (i )
- ezi—zf'—zk—21+l—1hj+1hk+lh12+1 = a(hihjhkhzz)
fori>j+2>2k+4>1+7.
(3.14.12) hihjhihy = {hoi_oj_oper oI5 (hE )2y }

— ey i gkt _gi_hjsrhithier = @lhihjhihy)
fori>j+2>k+5>1+8.
(3 14. 13) h h hkh[hm = {)\.21 _2Jj—nk_npl__pm__ lh

hy kY

JH 1 g1}
— egi_ai_ot ot _om_yhjrihisthisihmyr = @(hihjhihihg)
forizj+22k+4214+6>2m+8.
(3.14.14) hih = [Ayi_gh%(h})3} — eni_shshy = d(hih) fori > 4.
(3.14.15) ¢ih% = {hyiv1 yoi_gii_y (B )2 (W5 2]
— €2i+1+2i_2./+1_1hi2+2h?+1 = <I_5(Cih§) fori > j+3.

(3.14.16) c,-h% = h%Ci = {)»2/_21'+3—2i+1—2i—1hj'c;'k+1}

— €yj_gi+3_git1_gi_1hjciv1 =g(h5ci) for j>i+5.

(3 14. 17) C,h hk—hkclh —{)\.zk 2i4+3_pi+1_0i_2j_ 1C

i+1 J-’rl}
—> €k _pi+3_ni+1_ni_2j_ lci+1hj+1=¢(hkcihj)
fork>i+4>j+6.
(3.14.18) C,'hjhk = hk/’ljcl' = {sz,z_j,2i+3,2i+l,2[,]hjf+lc;-k+]}

= €k _pj_pit3_pi+l _pi_thjt1Ciy1 = 5(hkhjci)
fork>j4+1>2i+50ork—2>j+1=i.

(3.14.19) cihjhig = hipicihj =M1y}

— eyiti_gj_1Cihjp1 = @(hipicihy) fori > j+3.

487
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(3.14.20) cihjhy = cihihj = {Agir ook _as 1 (B ) hE HE )
— egit1 i gk _gi1hihkrihjr1 = G(cihkh))
fori>k+22>j4+4.
(3.14.21) dihj = {Ayi2 41 10i_21_1C R

)
— ei+2 i+l yoi_pj_1Cihj11 = ¢(dh i) fori>j+3.
(3.14.22) dih; = {Ayi+2pi+1_1h}
— epiv2 i+l _1hit1ci = ¢(d;h;) fori>0.
(3.14.23) dihjjo = hiy2d; = {hyiv2_d}}
— eyit2_1d; =¢(d;ihiyo) fori >0.
(3.14.24) dihj = hjd;i = {Ayj_si+a_sit1_1d]" |}

i+1 t}

— ey _givs_giti_1dip1 = p(hjd;) for j >i+5.
(3.14.25) eihj = {Ayivspi_oi_y(hY, )R

i}

— €2i+3+2i72_/7]hi+1h‘/’+1 =¢(eih;) fori>j+3.
(3.14.26) eitahi = {Agits_i_1¢j b s}

— esi45_ni_1Cit1hivs = d(ei+2h;) fori > 0.
(3.14.27) eihj =hje; = {Ayj_pi+s_ji42_si_q1€

iy

— €y _giti_gi+2_pi_jeit1 = (hje;) forj>i+5.
(3.14.28) fihiso = hitafi = {hgivn_1 [7')

— esiv2_y fi =¢p(hisafi) fori >0.
(3.14.29) fihj=hjfi = {Ayj_gits_gita_giti_y fi 1}

— eyj_gi+a_giv2_oiti_y fix1 =@(hj fi) for j=i+35.
(3.14.30) git1hj = {Ayis2 o1 i iy (hfy3)*hTRT )

— egis2 it i _gi 1 hiyshihjr1 = @(gigrh)) fori > j+3.
(3.14.31) giy1hi2= {)vzi+2+2i+1—1(l7§—2)*}

— eqit2 i+l _1 Pi_y = P(gi1hi—z) fori>2.
(3.14.32) gisthi—1 = {hgivogpini_ Pj)

— eqit2 i+t _1 Pim1 = P(giy1hi—1) fori>1.
(3.14.33) giyihiya=hiagiv1 = {Ay+2_187,,)

— eyiva_18iv1 = P(hiragiv1) fori>0.
(3.14.34) git1hj =hjgit1 = Ay _nits_pi+3_18] 1)

— €y _pitd_sivi_1Givr =P(hjgiv1) for j=i+6.
(3.14.35) pihj = {yi+a_ni_oj_iCF

STy

— egit_gi_oi_1Ciythjr1 =@(pihj) fori > j+2.
(3.14.36) pihiz3 =hiy3p; = {Ayirs_; p}}

—> ey+3_|Pi = <I_5(hi+3pi) fori > 0.
(3.14.37) pihj=hjpi ={hyj_si+5_si+2_si_1Piyi}

—> €)j _pi+5_oi+2_pi_|Pi+l = ¢(h/Pz) for j =i +6.
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(3.14.38) D3(i)hj = {Agiva pi+s i i _1hf shishi b )

— eivagits_gi i _thitshitshizihji1 = @(D3()hj) fori> j+2.
(3.14.39) D3(i)hiv1 = {Api+3 poi+240i1¢fy 1y s}

— e3it3 4 pi+249i 1 Cit1hivs = P(D3(hiy1) fori >0.
(3.14.40) D3(i)hj = h;D3(i) = {Ayj_niv6_si_ D5 + 1)}

— eyj_gi+o_ni_1D3(i +1) =¢(h;D3(i)) for j>i+7.
(3.14.41) pihj = {Agiss s o o1 (B )HE I )

— 62i+5+2i+3_2i_2j_1h,'2+4hi+lhj+1 =¢(pihj) fori>j+2.
(3.14.42) pihi = (Agiss_yi1_1 fry)

— eyits_niti_y fiy1 = P(pihy)  fori > 0.
(3.14.43) pihj=h;p;={ryj_aiv6_gi+s_si_1 (P} )"}

— €3 _gite_git3_ni_1 Py =P(hjp]) forj>i+T.
(3.14.44) dihiy1 =hit1d; = {Xzi+l+2i—1)*2f+2+2i—1(h7+2)3}

— eyivi_1di = (hip1d;) fori >0.
(3.14.45) eihiv1 = hiviei = { Ay i 1Ay yoivi g (h]y)? )

— eyiri_1e; = P(hipre;) fori >0.
(3.14.46) eihia = hitsei = {Aysz iy 11} 5 (hF )%

— eyiv2_q€; = G(hisae;) fori >0.
(B.1447) fihj = {Agayoin_ihf 5 (hF )R

- 62i+2+2i—21—1h1‘2+3hihj+1 = (Z(fihj) fori > j+3.
(3.14.48) D3(i)hit2 =hiy2D3(0) = {Agies pivtyoi 1 hoivsyaint_y(hF )3}

— eyisa_D3(i) = ¢(hizaD3(i)) fori >0.
(3.14.49) D3()his3 = hix3D3() = {Ays a1 i, %)

— eyira_ D3(i) = ¢ (hiy3D3(0)) fori >0.
(3.14.50) D3()hita = {Agiss_yi_yhyissyoin_y () )

— esita_1 p} = $(D3(i)hipa) fori >0,

(3.14.51) pihita =hitap, = {)\-2i+4+2i+3_2i_1h:~k+5(h;k+4)2h;-k+1}
— eyiva_1 P} = Glhirap)) fori>4.

Let I be the set of all the infinite cycles ¢(a) or 5(05) in (3.14) = U,51]=1(3.14.n). Let B(4) be the set of all the
boundaries in the differentials (2.5.1) through (2.5.74) in Section 2. It is not difficult to check that B(4) N I = ¢. This
implies that / is linearly independent in EZ** of the spectral sequence { E;**},> for Ext’;*(P). Since the set of the
classes of Exti’* listed in (3.14) is precisely the set B of the classes in (3.11)*, by Proposition 3.7, we see this in turn
implies that Bisa linearly independent subset of Exti‘*. This will complete the proof of Theorem 1.4 once (3.14) is
proved.

The proof of (3.14) will be parallel to that for (3.8) (which is to prove (1.3)'(ii)). We are going to give detailed
proofs only for

(1) (3.4.n)withn =1, 16, 23, 24, 26, 31, 32, 39 and 42 which are of type (f).
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and also for
(i1) (3.14.m) for 44 < m < 51 which are of type (h)

since the proofs of some of the (3.14.n)’% in (i) are prototypes for those of the remaining (3.14.1). (iii) below lists
these remaining (3.14.1). We will write (3.14.]) € (3.14.n) to mean that the proof of (3.14.n) is a prototype for a proof
of (3.14./). Then we have the following.

@iii) (1) (3.14.17) € (3.14.1) for 2 < [; < 15 and also for /1 =20, 21, 22, 25, 30, 35,38 and 41,
(2) (3.14.1r) € (3.14.16) for [, =17, 18, 19,
(3) (3.14.13) € (3.14.23) for I3 = 28, 33, 36,
(4) (3.14.14) € (3.14.24) for 14 = 27,29, 34,37, 40, 43.
We begin with the proof of (3.14.1). The class h?h? = h;h? is represented by the cycle }‘gf—l)‘;f—l = (hjf)z(h?‘)3
which is inadmissible since i > j + 5. In the remainder of this proof for (3.14.1) and also in the proof of (3.14.16)
that follows we will use Hy to denote i} = A _; for k > 0. We have
HPH =25, (A =hyi_gmi_ Hj H} mod AQ' =2/t —2).
Let T = Api pj+1_1. We have §(T) = Hj1 H; + H; Hj 1 in A. Itis easy to see that

8[Mgi_gii _|(Hj1 TH; + THj 1 Hi + HiHj (1 T + HiTHj41)]
= Ay g1 (H H + HPH} ) mod AQ2 —2/%! —2),

So hjh% = {Agi_pimi_ H7H}\ ) since Ayi_pj+1_yHPH7, | is admissible. The condition i > j + 5 insures that
h%h?+1 = {HiZHJZH} is non-zero. This proves (3.14.1).

Proof of (3.14.16). The class h?ci = c,~h§ is represented by the cycle ¢} sz = Ayi+l +21,1)~2 A which is inad-

2i+2__1
missible since j >i + 5. We have

CPH? =i givs_gist_gi_1ciy Hj mod A7 — 2713 — 27+ — ol —2),

2,
2i-1

Since ¢;j41 = {CT+1}» hj={H;} and ciy1h; = hjci4 it follows that there is a T € A3* guch that §(T)) = c;."HHj +
Hjc;"Jrl in A. As j > i+ 5, itis not difficult to see that

§(Ty) = M(cfy  Hj + Hjcj ) mod A(k — 1)

where k =2/ — 2743 — 271 — 20 — 1. S0 ¢ih3 = {hyj g3 _giv1_giy Hjc} )} since Apj_nivs_ivi_gi_Hjcly, is
admissible. The condition j > i + 5 insures that & jc; 11 = {Hjc;"ﬂ} is non-zero. This proves (3.14.16). O

Proof of (3.14.23). The class d;h;j413 = h;y2d; is represented by the cycle )\.2i+2_1di* = k2i+z_1(5q0)i()»6)\2)»§ +
Aﬁ)\% + A2A4A513). The monomial Ayit2_; (Sqo)i(k6k2A§) = )\.2i+271)\,2i+3,2i7])\.2i+l+2i71)»§i+2_1 is admissible, and
this implies Ayii2_; (S¢°)' (x2A3) and Ayit2_(S¢°) (A2Aahsh3) are also admissible. So /i iod; = {Ayit2_d;}. This
proves (3.14.23). O

Proof of (3.14.24). The class dih; = h;d; is represented by the cycle d¥iyi_; = (S¢O) [(Aer2A3 + 2323 +
A2AaAs5A3)Ayj—i_;] which is a sum of inadmissible monomials since j > i 4+ 5. We have

(h6A2A3 + AGAT + AaharsAz)Agi-i_
=Ayj-i_18-1 [()»13)»5)»% + A%)\% + AsAoAi A7) = dﬂ mod A(2j_i —20).

This implies df Ay | = hyj_pis_pi+1_1d}, | mod A2 — 204 — 27+ —2) Since Ay _piva_ni1_ydf,; is a sum of
admissible monomials (as j > i + 5) it follows that d;h; = {)\.2_/72[+472i+]71dl-*+1}. This proves (3.14.24). O
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Proof of (3.14.26). The class e2h = hoe: is represented by the cycle Ape; = )Lo()h35)v?5 + Algkg3k15 + )L19)»31X%5 +
A11A15A23131). We have

rpes = )\0)»35)»';'5 = )»3())»5)»?5 = )»3())»9)»11)»%5 mod A(29).

Since A30AoA 1A% is admissible and Ao 1A% = AsA3As) = c}hi it follows that hgey = {A30chE}. Applying (S¢°)
we get hijej1o = ej1oh; = {k2i+5_2i_1c;"+lhf+5}. This proves (3.14.26). O

Proof of (3.14.31). The class g3ho = hogs is represented by the cycle )»og;“ = AO(A27A3A§] + )»23)»39)&5 +
A23A15A23A31 + A15A23439A15). We have

203 = horarAsAd; = A24r322, mod A(22)
and 5[)»24()»39)»%5 + A1sAa3r3))] = )»24)%)»%1 + X23(p6)* mod A(22). Here we recall that

(Pp)* = Po(1) = Py(2) = Ao(r30Ats + AisAxshsr) = A3g(MiATs = AishiiAg).
Thus g3hg = {k23(p6)*} since kzg(pé)* is a sum of admissible monomials. Applying (Sqo)i we get gi13h; =
{Agi+a gi+3_1 (pi)*}. This proves (3.14.31). O
Proof of (3.14.32). The class grho = hogz is represented by the cycle Aog; = )»0()»13)»1)»%5 + A11k19A% +
AMiAMA11A L5 + A7A11A1947). We have

2085 = horizrAls = 1242425 mod A(10)
and 5[)»12()&]9)»% + A7A11A15)] = A]zk%k%s + k]]pg mod A(10). Here we recall that

Po = Po(1) = po(3) = Ao(k19A3 + A7A112A15) = A1arsA3 + A10AoAT + AeAoA11A7.

Thus goho = {)»Upa"} since Allp(‘)‘ is a sum of admissible monomials. Applying (Sqo)i we get gitoh; =
{Azi+30i+2_1 pi}. This proves (3.14.32). O

Pr(lof of (3.14.39). The class D3(0)h; = h1D3(0) is represented by the cycle A;D3(0)* = A1 D3(0)(1)
A D3(0)(3) = A1 or23A7A31. We have

8 (A2A23A7A15) + AtAoro3A7A3 = )\.2)\.15)\,%)\.31 = A12k5)\%)»31 mod A(10).

Since )»12)\5)\%)»31 = A]zksk?s = A]zkgk]]k%s is admissible it follows that D3 (0)h; = {)\.]2)\.5)\.%)\.3] = )\12CTh§}- Ap-
plying (S¢°)" we get D3(i)h; 41 = {Agivspitaygi_ycfy by s} This proves (3.14.39). O

Proof of (3.14.42). Let hop(, be the exotic cycle representation for the class hop, = pyho obtained by applying
Proposition 3.12 to the cycle

(Py)* = P'(1) = A3sMATs + A30horTs + AagAh11ATs + Anhi7rds
+ A20A19ATs + A1arh1A23A31 + A12A19A23A15
for py, that comes from the cycle
(o) = 638)\1)v%5 + 630)»9?% + ezsku)»%s + ezz)nn)»% + 620)»19?»%5
+ e14M1A23A31 + e12A 19223715
for the class ﬁ(’) as in (2.6)(7). We have
hopy = (A3ghoriAls = 0) + A37AtAls + Asshshirls + A30(AsA1ATs = AoAoAts)
+ kzg()»g)»l)»% = MA13r11A7) + )\.30)\.())\,9)\.%5 + )»29)»1)»9)»%5 mod A(28).
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Let T5 = A37(A19A3 4+ A7A11A15) + A3sAsATs + A3i A1 A shos € A370. By direct calculations we find that

8(T2) = A37AATs + Aashshiris + oo (h1h1523 + A3A1121s) mod A(28).
So

8(T2) = hop + )\29[)%1}\15)»% + AoA13A11A7 + AZA11A15 + (A AoATs = AshoA11A1s)]

= h0p6 + A9 fi mod A(28).

Thus hopy = {r29 f}*} since A9 f;* is a sum of admissible monomials. Applying (S¢%)" we get pihi = hip. =
{Agits_pit1_y f{% 1} This proves (3.14.42). O
Proof of (3.14.44). The class h1dy = doh is represented by the cycle

2do(2) = A1 (A6A2A3 + A3AZA11) = A AeAaAs = AaA3AoA3 + A3harors.
Straightforward calculations show that

S(AsAA7A3 + )»4)»6)»% + A AgA7A3) = )»16;'()(2) + )»2)»4)\2 + A{A2A4A5A3.
So hidy = {)»2)»4)»% + A1A2xqi5A3}. Now apply the chain map A LN ﬁ*(P) ® A in (3.5), (3.6)(1) to the admissibles

A2h4r3 and Ajhzharshs. From (3.5) we find that ¢ (Aahsri 4+ A1doAahshs) = exhad3 + e1AsA3 + e Aadahshs. We
have the following equation in H.(P) ® A:

8(e22sh3 + erhinnihs) = p(Aahad] + Aihakadshs)
+e1[dg = do(1) = AeraA3 + AFA% + Aakahshs).

This shows that hidy = {Aohari =rora(h3)3) — erdo = ¢(hido). Applying (S¢°)' we get hipid; =
A1 o 1 Aoz i (B 5)3} = eyii_ydi = @(hi1d;). This proves (3.14.44). O

For the remaining proofs for (3.14.45) through (3.14.51) to be given in what follows, the map A ﬂ I-I*(P) ® A
always refers to the chain map in (3.5), (3.6)(1) as is used in the proof of (3.14.44) above. Also, it suffices to prove
these (3.14.n) for i = 0 (and also j = 0 for (3.14.47)) because we can apply (Sqo)i for arbitrary i > 0 as we did in the
proof of (3.14.44) above.

Proof of (3.14.45). By (1.4)*(33), hjeg = ho fo which is represented by the cycle Ao f§ = A4hsA3 + AzhiAors +
A2A3A2A3 + A1AaA3hsAg. Since 8(A3h2A3) = A3A1AgA3 it follows that

rfy ~z= )»4)»5)% + AMA3r2As 4 A AakadsAg.
We have ¢ (z) = 64)»5)% + 62)»3)%)»3 + e1AyA3A5A7 and

8[earor] + e2(Ashorz + A1123) + e1(Aeh A1t + A4h7) ]

= ¢(2) + e1(ef = AsA3 + AaAAs + Aah7A3 + AaA3AsAg).

Thus hieg = {r4A5 (h§)3} — e1eg = a(hleo). This proves (3.14.45). O
Proof of (3.14.46). eghy = haey is represented by the cycle Azef = Agh7A3 + AsharlAs + A3had7Ad + A3haA3hshy

on which ¢ is given by ¢(A3eé) = e4k7k§ + ezkgkg + e3(k4kgk3 + A4A7A§ + ApA3AsA7). We have 8(e4A11A§ +
e3h0A7A11) = €4A7A3 + e3XgA3 + exhol3 and this implies

5(64)»11)»§ + e3A0A7A11)
= ¢ (Msed) +es[ef = Aghd + Aa(A2hs + A723) + AaAshshg ).

Thus hyey = {k4h§‘(h§)3} — e3eq = a(hzeo). This proves (3.14.46). O
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Proof of (3.14.47). The class f;hg is represented by the cycle

fiho = [(S4°) (f§ = AsA723 + Aa(heAsAs = AoA3) + A3AsA7 + AakahsAq) Ao
which has

ko = hgiva it 1 hi 3 (hF )G + Aiva iy (ki 3)*hG mod A2 — 1)

where i > 3. We have ¢ (AsA713) = esi7A3 + e1A11A3 and ¢ (hahehsh3) = es(Aohshs = AoA3) + ejhorshs. These
imply

¢ (fi ho) = 62i+2+2f+1—1h7+3(h7+2)2h(>§ + €2i+2+2i—1h7(h7+3)2h3 mod F(2'2 — 1).
We have

8(exivaypint Ayt yoi_thioht) = ey givi_1hf 5 (hiyp) g mod FQ212 —1).
It is not difficult to see that

€2i+2+2i_1h7(h?<+3)2h8 ~ €2i+2+2i_2(h;'k+3)2h;'khT mOd F(2i+2 + 2i - 3)

So hjhg = {A2i+z+2i+1_1h;‘+3(h;"+2)2h3} — 62i+2+2i_2hl~2+3hih1 = $(fih0). This proves (3.14.47). O
Proof of (3.14.48). The class D3(0)hy = ha D3(0) is represented by the cycle A3(D3(0) = D3(0)(1) = D3(0)(3) =
AoA23A7A31). We have

8(har23d7Ast + Aorsshis) = 23D3(0) + Aiororis + AghiiAfs.

So hyD3(0) = {)»10)\9)»?5 + )»8)»11)»?5}. We have (]5()»10)»9)»?5) = 610)»9)»?5 and ¢()»g)»11)\?5) = 88)»11)»?5 + 62)»17)»%5.
Thus

¢ (22D5(0)) ~ p(h10horis + AsA11A]s) = €10horis + egh11A]s mod F(2).
By direct calculations we find

8(e10r1A23A31 + egA3rozAzy + egAsAazA3r + e4hz3A7A31)

= 610)\.9)\?5 + 63111)»?5 + 63(D§k(0) = A0123A7X3]) mod F(2).

Thus hy D3(0) = {)»1())»9(/12)3} — e3D3(0) = 5(1’12D3 (0)). This proves (3.14.48). O
Proof of (3.14.49). D3(0)h3 = h3D3(0) is represented by the cycle A7 D;‘ (0) = A710A23A7A31 which is inadmissible.
It is easy to see

8(AsA23A7A31 + Aor1sA23A31) = A7D3(0) + Aghs.
So h3D3(0) = {AgA{s} with AgA}s admissible. We have

¢(A.8)\.A1L5) = 68)“115 + 661171?5 + 64)\.]9}\.:;’5 = eg)flls mod F(6)
and

8(eshazr7rar) = eshls + e7(horsrirsl = D3(0)) mod F(6).

~

So h3D3(0) = {Ag(hj)“} — e7D3(0) = ¢ (h3D3(0)). This proves (3.14.49). O

Proof of (3.14.50). D3(0)h4 is represented by the cycle D;‘ (0)A15 = AoAp3A7A31115. We have
8(Aor23A7h47) = D3(0)A15 + A1ar17A]s + A2hioh]s + AsATshazAls

and
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¢ (M14M17035 + A2k1oA]s + AghisAashis)
= 614)»17)»%5 + 62)»29/\?5 + 612119?»?5 + 66?»25)»?5 + 64)x27?»?5
+ 62k29)»?5 + egATsAazhis + eeA17hi5A23h15 + eahiohisA23his
= e14h17M]5 + e12h 19435 + egAishaziis mod F(6).

So ¢(D§‘(O)A15) ~ 614)\17A?5 + 612)»19)\.:;’5 + eg)\.%s)\zg,)qs mod F(6). By direct calculations we find that

|: e14(A332%5 + A31A17A15 + Aazhihis) + e13horaohis i|
+ e12(A323; + A3sAids) + er1hahaokis + eghisAa3A31 + e7heAaoA1s

= e14h17)]s + e12hioA]s + esAishashis +e7[(pp)* = po(1)] mod F(6).
Thus D3(0)hy = {A14A17(hj)3} — e7p(’) = ¢~S(D3 (0)h4). This proves (3.14.50). O
Proof of (3.14.51). The class p, is represented by the cycle

(Po)* = Po(1) = A3gh13h1147 + A30horTs + Aogh1iATs 4 Aoah17A%s
+ 220219475 + A1aA21 42727 + A1aha1 A19h1s + A1ar17A23A15
+ A14A13A19A23 + A12A 194234 15.

Each monomial in this sum is admissible. Let R be the sum of these monomials except AzgA13A11A7 so that
(1) (py)* =A3gri13r11A7 + R.
The class pyhs = hyp, is represented by the cycle

(2) A15(py)* = A15A38A13A1147 + A1sR, where
AlsR = ?»15)»3019)»%5 + ?»15)»28/\11?»%5 + )»15)»22M7)»%5

+ Ai5A20A19ATs + AisAiada1Aa7A7 + Aishiadaihiokis
+ A15A14217A23015 + A1sA14r13A19423 + A15A 12419423415,
Each monomial in the sum A15R is admissible and begins with A15. So
3) ¢(A5R) =e15R mod F(14).

We have the admissible expansion
A15A38A13A 1147 = A22A31A13A11A7 + A21A30A 1341147 + A19A34A 1341147

and we find that

(4) p(A15A38A13A11A7) = e22A31A13A11A7 + €21A32A 1341147 + €19A34A13A11A7
= 622)\31)»1)\%5 + 621)»32)\1)»%5 + 619)»34)\1)»%5 mod F(14).

Straightforward calculations show that

(5) 8[exn(A33rds + AiAazhis) + e20r3rd ]
= enh31hiA]s + 214301 A5 + e1oA34hi Al + e1sA3sAi3h11A7 mod F(14).

From (1), (2), (3), (4) and (5) we deduce that
P[r15(py)*] ~ e15[(pp)* = Azghi13r11A7 + R] mod F(14).
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Thus

hapl = {A2A31 1311107 = A2 A31 A1 A s}
= (AraiAdsh) = {Anhk(R)2hT} — e1spy = G (happ).

Here )»22)»31)\1)»%5 ~ )»22)»31)\%5)»1 mod A(21) is easy to see. This proves (3.14.51). O

This completes the proof of Theorem 1.4.

The final work of this section is to prove Proposition 3.12. We are going to prove a more general result that covers
Proposition 3.12. Let K be a locally finite graded left module over the Steenrod algebra A. Givenaclass o € Exti"*(K )
and suppose Y ¢ kg ®A(g)isacyclein K, ® A% * representing «. We refer to the beginning of Section 2 for the Z/2-
dual K, of K, which is a right A-module, and also for the differential right A-module K, ® A. In particular we recall
that ah; is represented by the cycle Y ¢ kg ® 1(q)A,i_y for any i > 0. The following result says that ah; can also be
represented by some “exotic” cycle.

Proposition 3.12*. The chain 3_, (3 ,>0kqSq" ® Ayiy,_1A(q)) in Ky ® AS*U% s also a cycle and represents ah;.

It is clear that this result implies Proposition 3.12. The remainder of this section is devoted to proving (3.12)*.
Let L be another locally finite left module over A. Consider N, = K, ® L, with diagonal A-action. From the
differential formula (1) in the beginning of Section 2 we see the differential § on N, ® A is given by

() S[k@Dr]=(k@NDSO) + Y (k@DSg T ajny
Jj=0

= (k®D3(p) + Z(ZkSq” ® quf'“‘“)ml.

jz0 “v=0

Now consider the A-module L = (Z/2 = L) & (X 27,2 = L*') with Z/2-generators ¥, y for L, L', respectively,
such that qul)? =Yy.Then L, =(Z/2=Ly) & (22i Z,/2 = L,i) with Z/2-generators x and y, respectively, such that
yqui = x. From this point on, L will be this A-module.

We have a short exact sequence of A-modules

05 Ki=K.®Z2L K, QL. D Ke®5¥7/2=3"K >0
which gives rise to a short exact sequence of differential A-modules

0> Ke®@ALs (Ke@Li=N)® AL ZK,. @ A0
resulting in a long exact sequence of Ext groups

(k) -or o Ext (K) 2 Extf (K @ L) 25 Exty (52 K) = Ext{' =2 (K)

2 ExtN(K) > -

It is well known that §, is given by 6,.(8) = Bh; for any § in Ext‘i\’t_zi (K) (see [2]). The differential § in (*), when
appliedto L, =7Z/2(x) ® 3?7 Z/2(y), becomes

() () S[(k @ X)hs] = (k@ x)8(1) + Y _(kSq/ ' @ x)2 ;s
j=0

(i) 8[(k ® y)r1] = (k@ )8 + ) (kg™ @ y)jrs
Jj=0

+ Y (kSq" ® X)Agipy 1 hi
v=>0
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since xS¢° = x,_xSql =0forl>0, ySq¢’ =y, yqui =x and ySq’ =0 for [ # 0, 2¢. From (%)'(i), (ii) one easily sees
that the map X2 K, ® A — YK, ® A, given by kA; — Zv>0 kSq" i, _1 A1 is a chain map and induces the bound-
ary homomorphism 8, in (). This implies the conclusion in (3.12)*. This complete the proof of Proposition 3.12.
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