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INTRODUCTION. If X is a CW complex with cells only in even dimensions and R
is a ring, then, by an elementary result in cellular cohomology theory, the ordinary
cohomology H*(X;R) of X with R coefficients is a free, Z-graded R-module. Since
this result is quite useful in the study of well-behaved complex manifolds like
projective spaces or Grassmannians, it would be nice to be able to generalize it to
equivariant ordinary cohomology. The result does generalize in the following sense.
Let G be a finite group, X be a G-CW complex (in the sense of [MAT, LMSM]), and
R be a ring-valued contravariant coefficient system [ILL]. Then the G-equivariant
ordinary Bredon cohomology H*(X;R) of X with R coefficients may be regarded as a
coefficient system. If the cells of X are all even dimensional, then H*(X;R) is a free
module over R in the sense appropriate to coefficient systems. Unfortunately, this
theorem does not apply to complex projective spaces or complex Grassmannians with
any reasonable nontrivial G-action because these spaces do not have the right kind of
G-CW structure. In fact, if G is Z/p, for any prime p, and n is a nontrivial
irreducible complex G-representation, then the theorem does not apply to S”, the one-
point compactification of 1. Moreover, the Z-graded Bredon cohomology of S" with
coefficients in the Burnside ring coefficient system is quite obviously not free over the
coefficient system.

The purpose of this paper is to provide an equivariant generalization of the
“freeness” theorem which does apply to an interesting class of G-spaces and to use
this result to describe the equivariant ordinary cohomology of complex projective
spaces with linear Z/p actions. These results are obtained by regarding equivariant
ordinary cohomology as a Mackey functor-valued theory graded on the real
representation ring RO(G) of G [LMM, LMSM]. To obtain such a theory, we take
the Burnside ring Mackey functor as our coefficient ring. Instead of using cells of the
form G/H xe", where H runs over the subgroups of G, we use the unit disks of real
G-representations as cells. QOur main theorem, Theorem 2.6, then has roughly the
following form.

THEOREM. Let G be Z/p and let X be a G-CW complex constructed from the unit
disks of real G-representations. If these disks are all even dimensional and are
attached in the proper order, then the equivariant ordinary cohomology HgX of X is
a free RO(G)-graded module over the equivariant ordinary cohomology of a point.

To show that this theorem is not without applications, we prove in Theorem 3.1 that
if V is a complex G-representation and P(V) is the associated complex projective
space with the induced linear G-action, then P(V) has the required type of cell
structure. Theorems 4.3 and 4.9, which describe the ring structure of HEP(V), follow
from the freeness of H5P(V). As a sample of these results, assume that p =2 and V
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is a complex G-representation consisting of countably many copies of both the
(complex) one-dimensional sign representation A and the one dimensional trivial
representation 1. Then P(V) is the classifying space for G-equivariant complex line
bundles. As an RO(G)-graded ring, H5P(V) is generated by an element c in
dimension A and an element C in dimension 1+ A. The second generator is a
polynomial generator; the first satisfies the single relation

¢? = ¢c + €C,

where ¢ and € are elements in the cohomology of a point. If, instead, V contains an
equal, but finite, number of copies of A and 1, then the only change in H&P(V) is
that the polynomial generator C is truncated in the appropriate dimension. If the
number of copies of 1 in V is different from the number of copies of X in V, or if p is
odd, then the ring structure of H5P(V) is more complex.

Equivariant ordinary Bredon cohomology with Burnside ring coefficients is
just the part of RO(G)-graded equivariant ordinary cohomology with Burnside ring
coefficients that is indexed on the trivial representations. All of the generators of
HEP(V) occur in dimensions corresponding to nontrivial representations of G. This
behavior of the generators offers a partial explanation of the difficulties encountered
in trying to compute Bredon cohomology. All that can been seen of HEP(V) with
Z-graded Bredon cohomology is some junk connected to the RO(G)-graded
cohomology of a point whose presence in HEP(V) is forced by the unseen generators
in the nontrivial dimensions.

Using HGP(V), It is possible to give an alternative proof of the homotopy
rigidity of linear Z/p actions on complex projective spaces [LIU]. Moreover, the
“freeness” theorem should apply to complex Grassmannians with linear Z/p actions,
and it should be possible to compute the ring structure of the equivariant ordinary
cohomology of these spaces. Of course, it would be nice to extend the main theorem
to groups other than Z/p. Unfortunately, the obvious generalization of this theorem
fails for groups other than Z/p. The counterexamples have some interesting
connections with the equivariant Hurewicz theorem [LEI1]. All of these topics are
being investigated.

All of the results in this paper depend on the observation that equivariant
cohomology theories are Mackey functor-valued. Therefore, the first section of this
paper contains a discussion of Mackey functors for the group Z/p. In the second
section, we discuss the RO(G)-graded cohomology of a point, precisely define what
we mean by a G-CW complex, and prove our “freeness” theorem. The G-cell
structure of complex projective spaces with linear Z/p actions is discussed in section
3. There the cohomology of these spaces is shown to be free over the cohomology of
a point. Section 4 is devoted to the multiplicative structure of the cohomology of a
point, The multiplicative structure of the cohomology of complex projective spaces is
discussed in section 5. The results stated in this section are proved in section 6. The
results on the cohomology of a point stated in sections 2 and 4 are proved in the
appendix.

A few comments on notational conventions are necessary. Hereafter, all
homology and cohomology is reduced. If X is a G-space and we wish to work with
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the unreduced cohomolgy of X, then we take the reduced cohomology of X¥, the
disjoint union of X and a G-trivial basepoint. In particular, instead of speaking of
the cohomology of a point, hereafter we speak of the cohomology of SO, which always
has trivial G action. If V is a G-representation, then SV and DV are the unit sphere
and unit disk of V with respect to some G-invariant norm. The one-point
compactification of V is denoted SV and the point at infinity is taken as the
basepoint. If X is a based G-space, then VX denotes the smash product of X and
SY.  Unless otherwise noted, all spaces, maps, homotopies, etc., are G-spaces,
G-maps, and G-homotopies, etc. We will shift back and forth between real and
complex G-representations; in general, real representations will be used for grading
our cohomology groups and complex representations will be used in discussions of the
structure of projective spaces. If the virtual representation o is represented by the
difference V~W of representations V and W, then |aj=dim V - dim W is the real
virtual dimension of a and a®=V®- WS is the fixed virtual representation
associated to «. The trivial virtual representation of real dimension n is denoted by
n. Recall that the set of irreducible complex representations of G forms a group
under tensor product. If 5 is an irreducible complex representation, then 7~ denotes
the inverse of 7 in this group. The tensor product of 7 and any representation V is
denoted 7 V. Many of our formulas contain terms of the form A/p, where A is some
integer-valued espression. The claim that A is divisible by p is implicitly included in
the use of such a term.

I would like to thank Tammo tom Dieck, Sonderforschungsbereich 170, and
the Mathematisches Institut at Gottingen for their hospitality during the initial
stages of this work. I would especially like to thank Tammo tom Dieck for
suggesting the problem which led to this paper and for invaluable comments,
especially on the main theorem, Theorem 2.6.

Equivariant cohomology theories graded on RO(G) are not universally
familiar objects, so a few remarks about what this paper assumes of its readers seem
appropriate. Equivariant ordinary cohomology with Burnside ring coefficients assigns
to each virtual representation « in RO(G) a contravariant functor H from the
homotopy category of based G-spaces to the category of Mackey functors. It also
assigns a suspension natural isomorphism

HEY(2VX) = HE(X)

to each pair («,V) consisting of a virtual representation & and an actual
representation V. The isomorphisms associated to the three pairs («, V), (a, W), and
(a,V+ W) are required to satisfy a coherence condition. The functors Hg are
required to be exact in the sense that they convert cofibre sequences into long exact
sequences. The dimension axiom requires that _H_OGS0 be the Burnside ring Mackey
functor and that HES® be zero if n € Z and n#0. If o is a nontrivial virtual
representation, then H%SO need not be zero, but it is uniquely determined by the
axioms. Note that because H*GSO is nonzero in dimensions other than zero, the
assertion that the cohomology of certain spaces is free over the cohomology of S° is
very different from the assertion that the cohomology is free over the coefficient ring.
Our cohomology theory is ring valued; that is, any pair of elements drawn from HgX
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and HgX have a cup product which is in H?;ﬂX. We will also work with

RO(G)-graded, Mackey functor-valued, reduced equivariant ordinary homology with
Burnside ring coefficients. This homology theory satisfies the obvious analogs of the
cohomology axioms. Also, it has a Hurewicz map, which we use to convert various
space level maps into homology classes. Finally, we assume that SY and the free
orbit G satisfy equivariant Spanier-Whitehead duality {WIR, LMSM]; that is, for
any « in RO{G) there are isomorphisms

HES*=HC.S° and HEGY =HS.GY.

The proofs of all our results flow from these basic assumptions. In fact, most
of the proofs are simple long exact sequence arguments which would be left to the
reader in a paper dealing with a Z-graded, abelian group-valued, nonequivariant
cohomology. One of the points of this paper is that these simple techniques work
perfectly well in RO(G)-graded, Mackey functor-valued, equivariant cohomology
theories and yield useful results. The one serious demand made of the reader is a
willingness to work with Mackey functors. When the group is Z/p, these are really
very simple objects. Section one is intended as a tutorial on them.

1. MACKEY FUNCTORS FOR Z/p.  Since the language of Mackey functors
pervades this paper, this section contains a brief introduction to Mackey functors for
the groups Z/p. For any finite group G, a G-Mackey functor M is a contravariant
additive functor from the Burnside category B(G) of G to the category Ab of abelian
groups [DRE, LE2, LIN]. However, since we are only concerned with G =12Z/p,
rather than describing B{G) in detail, we simply note that a Z/p-Mackey functor M
is determined by two abelian groups, M(G/G) and M(G/e); two maps, a restriction
map

p: M(G/G) » M(G/e)
and a transfer map
T : M(G/e) » M(G/G);

and an action of G on M(G/e). The trace of this action and the composite p T are
required to be equal by the definition of the composition of maps in B(G); that is, if
x € M(G/e), then
prix) = Yex
geG
The abelian groups M(G/G) and M(G/e) are the values of the Mackey functor M at
the trivial orbit and the free orbit; or, if one prefers to think in terms of subgroups
instead of orbits, the values of M at the group and at the trivial subgroup. For
convenience, we abbreviate G/G to 1 and write M(e) for M(G/e). Frequently the
G-action on M(e) is trivial; in these cases the composite pr is just multiplication by
p.
A map f: M = N between Mackey functors consists of homomorphisms

f(1) : M(1) » N(1) and  f(e) : M(e) = N(e)
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which commute with p and 7 in the obvious sense. The map f(e) must also be
G-equivariant. The category M of Mackey functors is a complete and cocomplete
abelian category. The limit or colimit of a diagram in MM is formed by taking the
limit or colimit of the corresponding two diagrams consisting of the abelian groups
associated to G/G and to G/e. The maps p and 7 and the group action on the limit
or colimit are the obvious induced maps and action.

We will describe Mackey functors diagramatically in the form

M(1)

’ L :
M(e)

Y
0

where M(1) and M(e) will be replaced by the appropriate abelian groups, p and 7
may be replaced by explicit descriptions of the restriction and transfer maps, and 4
may be replaced by an explicit description of the group action. If p or 7 is replaced
by a number (usually 0, 1, or p), then the map is just multiplication by that number.
If 6 is omitted or replaced by 1, then the group action on M(e) is trivial. If p = 2
and 6 is replaced by -1, then the generator of G = Z/2 acts by multiplication by -1.

EXAMPLES 1.1 The following Mackey functors and maps appear repeatedly in our
cohomology computations.

(a) The Burnside ring Mackey functor A is given by

VAV A

(l,p)(/ )(0,1)

z

where the notation (1,p) means that the restriction map p is the identity on the first
component and multiplication by p on the second. Similarly, (0,1) means that the
transfer map is the inclusion into the second factor. For any Mackey functor M,
there is a one-to-one correspondence between maps f: A - M and elements of M(1).
The correspondence relates the map f to the element f(1)((1,0)) of M(1). It follows
from this correspondence that A is a projective Mackey functor.

(b) The d-twisted Burnside ring Mackey functor A[d] is given by

oz

(dap)k 7(0,1)

VA
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where d € Z. Note that A = A[l]. If d = % d’ mod p, then there is an
isomorphism f: A[d] = A[d'] of Mackey functors. The map f(e) is the identity and if
d’ = £d + np, then

f(1)(1,0) = (£1n) € Z&Z
£(1)(0,1) = (0,1).

If d = 0 mod p, then A[d] decomposes as the sum of two other Mackey functors; thus
Al[d] is only of interest when d # 0 mod p. In this case, it is a projective Mackey
functor. An alternative Z-basis for A[d](1) will be used in some of our cohomology
calculations. To distinguish the two bases, we denote (1,0) and (0,1) in the present
basis by p and 7 respectively. Select integers a and b such that ad + bp = 1. The
alternative Z-basis consists of ¢ = ay + b7 and k = pp - dr. Note that p(c) = 1,
p(r) = 0, and (1) = r. In fact, x generates the kernel of p, and = generates the
image of the map 7 for which it is named. Of course, o depends on the choice of a
and b; in our applications, these choices will always be specified.

(¢} If Cis any abelian group, then we use (C) to denote the Mackey functor
described by the diagram
0 \( 0

0

(d) If dy and d, are integers prime to p, then there is an isomorphism
812: Ald)] @ (Z) » Ald,] & (Z).
Let u; and 7, be the standard generators for A[d,], and let z; and z, be generators of
(Z)(1) in the domain and range of g;,. Select integers a, and b, such that
a;d; +b;,p=1, for ¢ = 1 or 2. The map g;,(e): Z + Z is the identity map, and the
map g,5(1) is given by
g12(1)(11) = dy(agpy + by7y) + (by + by ~ bybyp)z,
g12(1)(r)) = 73
and
812(1)(z1) = ppy - dy7y - a;dyz,.

The inverse of g;, is just g,;. The existence of this isomorphism will explain an
apparent inconsistency in our description of the equivariant cohomology of projective
spaces.

(e) Associated to an abelian group B with a G-action, we have the Mackey
functors L(B) and R(B) given by



L(B) R(B) .
B/G B

tr T L tr

B
\}
6

mCAw

Here, ¢ : BS = B is the inclusion of the fixed point subgroup and = : B = B/G is the
projection onto the orbit group. The two maps tr are variants of the trace map. The

map tr: B —» B® takes x € B to S gx € BC. If x € B and [x] is the associated
G
equivalence class in B/G, then tr : %E/G — B is given by

tr((x]) = > gx € B.
geG

These two constructions give functors from the category of Z[G]-modules to the
category of Mackey functors. These functors are the left and right adjoints to the
obvious forgetful functor from the category of Mackey functors to the category of
Z[G]-modules. We will encounter these functors most often when B is Z with the
trivial action or, if p = 2, with the sign action. Denote the resulting Mackey functors
by L, R, L_, and R.. These functors are described by the diagrams

L R
p 1 1 p
Z
\r £
1 1
L. R.
Z/2 0
0 T 0 0

»‘.;(;N
LQN

If C is any abelian group, there is an obvious permutation action of G on cP ,
the direct sum of p co%ies of C. Unless otherwise indicated, this action is assumed
when we refer to L(C") or R(Cp). These two functors are isomorphic and are
described by the diagram
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where A is the diagonal map. V is the folding map, and ¢ is the permutation action.

(f) ¥ M is a Mackey functor, then L(M(e)p) gR(M(e)p) is denoted Mg.
There are two reasonable choices of a G action on M{e)p, the permutation action or

the composite of the permutation action and the given action of G on each factor
M(e). These actions yield isomorphic Z[G]-modules, so the choice is not important.
The simple permutation action is always assumed here. The assignment of Mg to M
is a special case of an important construction in induction theory {DRE, LE2] that
assigns a Mackey functor My to each object b of B(G) and each Mackey functor M.

The restriction map p: M(1) »+ M(e) =Mg(1) and the diagonal map
A M(e) - M(e)p =Mg(e) form a natural transformation p from M to Mg.
Similarly, 7: Mg(1) =M(e) » M(1) and the folding map V: Mg(e) EM(e)p — M(e)
form a natural transformation 7: Mg - M. The Mackey functor Ag = L(ZP) is
characterized by the fact that, for any Mackey functor M, there is a one-to-one
correspondence between maps f: A5 =+ M and elements of M(e). This correspondence

relates the map f to the element f(e)((1,0,0, ... ,0)) of M(e). It follows that A5 is a
projective Mackey functor.

(g) Y is a G-space, M is a Mackey functor, @ € RO(G), and H(Y; M)
and Hy (Y M) denote the abelian group-valued equivariant ordinary cohomology and
homology of Y with coefficients M in dimension «, then the Mackey functor valued
cohomology H(Y; M) and homology HS(Y; M) are described by the diagrams

HE(Y; M) HS(Y; M)
W*'(/ )71', ! £ )71'*
' and
HE(G x Y; M) HS(G x Y; M)
U o
g g

where the maps 7 and 7, are induced by the projection 7:GxY =Y, and the
maps 7, and 7! are the transfer maps arising from regarding the projection 7 as a
covering space. The group HG(G xY;M) is isomorphic to the nonequivariant
cohomology group H'® (Y M(e)). If « is represented by the difference V- W of
representations V and W, then, under this isomorphism, the action of an element g of
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G on HG(G xY;M) may be described as the composite of multiplication by the
degrees of the maps g:SY =S¥ and g:S"™ -+ SYW and the actions of g on

HM(Y; M(e)) induced by the action of g on M(e) and the action of g~* on Y. Similar
remarks apply in homology. If no coefficient Mackey functor M is indicated in
equivariant cohomology or homology, then Burnside ring coefficients are intended.

(h) For any Mackey functor M and any abelian group B, the Mackey functor
M ® B has value M{G/H) ® B for the orbit G/H and the obvious restriction, transfer,
and action by G. If M" is an RO(G)-graded G-Mackey functor and B" is a Z-graded
abelian group, then M™ @ B* is the RO(G)-graded G-Mackey functor defined by

M@ BY) = ¥ M°eB".

B4+n=a

If a CW complex Y with cells only in even dimensions is regarded as a G-space by
assigning it the trivial G-action, then there is an isomorphism of RO(G)-graded
Mackey functors

HLY =2 HES" @ HY(Y;Z)

which preserves cup products.

For any finite group G, there is a box product operation O on the category
M of G-Mackey functors which behaves like the tensor product on the category of
abelian groups. In particular, M is a symmetric monoidal closed category under the
box product. The Burnside ring Mackey functor A is the unit for 0. If G = Z/p,
then the box product MON of Mackey functors M and N is described by the diagram

[M(1) ® N(1) & M(e) ® N(e) |/~

A )
M(e) ® Ne)

8
The equivalence relation =2 is given by
xX®@ty = px®y forx € M(1)andy € N(e)
VW ~ v®pw forv € M(e) and w € N(1).

The action 6 of G on M(e) ® N(e) is just the tensor product of the actions of G on
M(e) and N(e). The map 7 is derived from the inclusion of M(e) ® N(e) as a
summand of the direct sum used to define MON(1). The map p is induced by p® p
on the first summand and the trace map of the action ¢ on the second.

EXAMPLES 1.2(a) For any integers d; and d,, there is an isomorphism
Ald,]0A[d,] = Ald; dy]
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of Mackey functors.

(b) If B is a Z[G]-module and M is any Mackey functor, then there is an
isomorphism

L(B)OM = L(B® M(e)).

(¢) For any Mackey functor M, the product RIM is described by the
diagram

M(1)/(p ~ 7p)

\ )

M(e)
6

where M(1)/(p — 7p) is the cokernel of the difference between the multiplication by p
map and the composite 7p. The maps p’ and 7/ are induced by the restriction and
transfer maps for M. In particular, if M = R(B) for some Z[G]-module B, then
ROR(B) = R(B). Also, for any abelian group C, RO<C> = <C/pC>.

(d) If p =2, then for any Mackey functor M, the product R.OM is
described by the diagram

M(e)/(image p)

=\ )

e

U
-9

Here w: M(e) » M(e)/(image p) is the projection onto the cokernel of the restriction
map and v: M(e) = M(e) describes the action of the nontrivial element of G on M(e).
The action -0 is the composite of the given action 6 of G on M(e) and the sign action
of G on M(e). In particular, R_.OR. = L.

(e) For any abelian group C and any Mackey functor M,
<C>0OM = <C® (M(1)/image 7)>.

A Mackey functor ring (or Green functor [DRE, LE2]) is a Mackey functor S
together with a multiplication map p: SOS - S and a unit map n: A - S making
the appropriate diagrams commute. A module over S is just a Mackey functor M
together with an action map £:SOM — M making the appropriate diagrams
commute. Since the Burnside ring Mackey functor A is the unit for O, it is a Mackey
functor ring whose multiplication is the isomorphism AOA -+ A and whose unit is
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the identity map A - A. Every Mackey functor is a module over A with action map
the isomorphism AOM — M. Note that if S is a Mackey functor ring and R is a
ring, then the Mackey functor S® R of Examples 1.1(h) is a Mackey functor ring.
Similar remarks apply in the graded case. The cohomology of any G-space Y with
coefficients a Mackey functor ring S is an RO(G)-graded Mackey functor ring whose
multiplication is given by maps

HE(Y;S) OHA(Y;S) - HETP(Y;9),
for & and 8 in RO(G).

The following result characterizes maps out of box products and allows us to
describe a Mackey functor ring S in terms of S(1) and S(e). This is the approach to
Mackey functor rings used in our discussion of the ring structure of the cohomology of
complex projective spaces.

PROPOSITION 1.3 For any Mackey functors M, N and P, there is a one-to-one
correspondence between maps h: MON — P and pairs H = (H,, He) of maps

H, : M(1) ® N(1) » P(1)
He : M(e) ® N(e) = P(e)
such that, for x € M(1), y € N(1), z € M(e), and w € N(e),

He(px® py) = pHi(x®Yy)
Hi(rz®y) = 7He(z® py)
Hi(x®71w) = 7He(px®w).

The second and third of these equations are called the Frobenius relations.

PROOF. The maps He and h are related by He = h(e). Given h, H; is derived in
an obvious way from h(l) using the definition of MON. Given H; and He, h(1) is

constructed from the maps H; and 7He on the two summands used to define
MON (1).

It follows easily from the proposition that, if S is a Mackey functor ring, then
S(1) and S(e) are rings, p:S(1) -» S(e) is a ring homomorphism, and 7:S(e) - S(1) is
an S(1)-module map when S(e) is considered an S(1)-module via p. Moreover, if M is
a Mackey functor module over S, then M(1) is an S(1)-module and M(e) is an S(e)-
module. If we regard M(e) as an S(1)-module via p:S(1) = S(e), then the maps
p:M(1) = M(e) and 7:M(e) -+ M(e) are S(1)-module maps.

2. HE;SO AND SPACES WITH FREE COHOMOLOGY. Here, we recall Stong’s
unpublished description of the additive structure of the RO(G)-graded equivariant
ordinary cohomology of S°. We use this to show that if X is a generalized G-cell
complex constructed from suitable even-dimensional cells, then HzX and H,.GX are
free over HE;SO. The additive structure of the cohomology ];["GG+ of the free orbit is
also described. This is used to show that H*GX and H?X are projective over HE;SO
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when X is constructed from a slightly more general class of even-dimensional cells.
Since Z/2 has only one nontrivial irreducible representation, H%SO is very

easy to describe when G = Z/2.

THEOREM 2.1. If G = Z/2 and a € RO(G), then

A, if 1ol =la G| =0,
R, if lal =0, |aS| <0, and laG|is even,
R., if lal =0, laGl <1, and laGlis odd,
L, if lol =0, la Sl >0, and |a G| is even,
H%SO = L., if lal =0, |aGl>1, and laG|is odd,
(Z), if lal # 0 and |aS| =0,
(2/2), if 1ol >0, laS| <0, and|aSlis even,
(2/2), if lal <0, laS] > 1, and|a%lis odd,
0, otherwise.

The most effective way to visualize HE;SO is to display H%SO for various « on
a coordinate plane in which the horizontal and vertical coordinates specify o] and
lal, respectively. In such a plot, given as Table 2.2 below, the zero values of H*‘GSG
are indicated by blanks. The only values in this plot with odd horizontal coordinate
are the R_ and L_ on the horizontal axis and the (Z/2) in the fourth quadrant.

) ) (Z/2) (Z)
(z/2)  (z2/2)  (2/2) (Z)
/2y /2y  (Z/2) {Z)
/2y (/2 (Z/2) {Z)

R R R R R R A R L L L L L

(Z) /2y (2/2)
(Z) (2/2)  (2/2)
(Z) (2/2)  (2/2)
(Z) (z/2)  (2/2)

TABLE 2.2. HS’ forp = 2.

Even though the representation ring of G is much more complicated when
p # 2, H&S® is completely determined by the integers |a| and |G except in the
special case where lal = [a®| = 0. In this special case, H&S° is A[d] for some integer
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d which depends on «. Unfortunately, because of the isomorphism described in
Examples 1.1(b), d is only determined up to a multiple of p. The major source of
unpleasantness in the description of the multiplicative structure of the equivariant
cohomology of a point and of complex projective spaces is this lack of a canonical
choice for d. To explain the relation between « and d, we introduce several relatives
of the representation ring. Let R(G) be the complex representation ring of G and
RSO(G) be the ring of SO-isomorphism classes of SO-representations of G. Since any
real representation of G is also an SO-representation, the difference between RO(G)
and RSO(G) is that, in RSO(G), equivalences between representations are required to
preserve underlying nonequivariant orientations on the representation spaces. The
difference between R(G) and RSO{G) is that elements of RSO(G) may contain an
odd number of copies of the trivial one-dimensional real representation of G. Let
Ry(G), ROy(G), and RSOy(G) denote the subrings of R(GR, RO{G), and RSO(G)
containing those virtual representations o with (ol = [a”] = 0. Note that
Ry(G) = RSOy(G). Let Ry(G) be the free abelian monoid generated by the formal
differences ¢ ~1n of complex isomorphism classes of nontrivial irreducible complex
representations. Note that Ry(G) is the quotient of R4(G) obtained by allowing the
obvious cancellations and that ROy(G) is the quotient of Ry(G) obtained by
identifying conjugate representations. Let X be the irreducible complex
representation which sends the standard generator of Z/p to e?™/?. The monoid
Ry(G) is generated by elements of the form A™ - A", where 1 < m,n < p-1.
Define a homomorphism from Ry(G) to Z, regarded as a monoid under
multiplication, by sending the generator A™ — A" to m(n™!), where n~! denotes the
unique integer such that 1 < n™'< p-1 and n(n"!)=1 mod p. Define functions
from RSOy{G) and ROy(G) into Z by composing this homomorphism with sections
of the projections from Rg(G) to RSO, (G) or RO(G). Let do denote the integer
assigned to the virtual representation o by either map. The sections can not be
chosen to be homomorphisms, so the assignment of do to o will not be a
homomorphism from RSO4(G) or ROy(G) to the multiplicative monoid Z. However,
the assignment of do to o does give a homomorphism from Ry(G) to the group of
units (Z/p)" of Z/p and a homomorphism from RO,(G) to the quotient
(Z/p)*/{£1} of (Z/p)". For later convenience, we select our sections so that d, is 1.

Stong’s description of the additive structure of H’éso can now be translated
into the Mackey functor language of section one.

THEOREM 2.3. If p is odd, then

Alda] if jal =]aGl =0
R if ol =0 and a6 <0
L if lal =0 and @S] >0
ﬁaGSO = (Z) if jal 20 and oG] =0
(Z/p) if jal >0, |aG| < 0, and|aG|is an even integer
(Z/p) if 1al <0, laGl > 1, and |eGlis an odd integer

0 otherwise
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As in the case p = 2, H%SO is best visualized by plotting it on a coordinate
plane whose horizontal and vertical axes specify |a”| and {of respectively. In this
plot, given as Table 2.4 below, the zero values of H*GSO are indicated by blanks. The
vertical and horizontal coordinates of all the nonzero values, except the (Z/p) values
in the fourth quadrant, are even. Notice in the plots for both the odd primes and 2
that the vanishing of _H"GSO on the vertical line ]aGI =1(forjal Z0ifp=2)is
unlike its behavior on the vertical lines corresponding to the other odd positive values
for |a®|. These unusual zerces for H%SO are the key to our freeness and projectivity
results. When G = Z/p? for n > 1, the corresponding values are not zero, so our
techniques do not extend to these groups.

Hereafter, we will often describe elements in H&SO by their position in these
plots. For example, we may refer to the torsion in the fourth quadrant or the copies
of (Z) on the positive vertical axis,

-A{Z/p)y  (Z/p)  (Z/p) (Z)
- A{z/p)  (Z/p)  (Z/p) (Z)

- (2/p) (Z/p)  (Z/p) (Z)

R R R Alda) L L L
(Z/p) (Z/p)
(2)
(Z/p) (Z/p)
(z)
(Z/p)  (Z/p)

TABLE 2.4. HgS° for p odd.

Recall, from Examples 1.1(f), the new Mackey functor Mg which can be
derived from any Mackey functor M, and the observation that A5 = L(Zp) = R(Zp).
It is easy to check that H%G+ is H%(SO)G, and from this, to compute _H”C‘;G+.
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COROLLARY 2.5. For any prime p,

A if ol = 0
HiG* = { G

0 otherwise

Proposition 4.12 tells us that _H*GG+ is an RO(G)-graded projective module
over H‘(‘;SO, and that any map

f: H5G™ » M*

of RO(G)-graded modules over _HES0 is completely determined by the image of
(1,0,0, ... ,0) € Z° = HY(G*)(e) in M(e).

A generalized G-cell complex X is a G-space X together with an increasing
sequence of subspaces X, of X such that X; is a single orbit, X = UX,, X has the
colimit (or weak) topology from the Xn, and X,,,; is formed from X, by attaching
G-cells. We will allow two types of G-cells. If V is a G-representation and DV and
SV are the unit disk and sphere of V, then the first type of allowed cell is a copy of
DV attached to X, by a G-map from SV to X,. The second type of cell is a copy of
G xe™, where e” is the unit m-disk with trivial G action, attached to X, by a
G-map from G xS™! to X,. For each n, we let J,,, denote the set of cells added
to Xn to form X, ;. Regard a cell DV of the first type as even-dimensional if |V|
and | VO] are even. Regard a cell G xe™ as even dimensional if m is even.

THEOREM 2.6. Let X be a generalized G-cell complex with only even-dimensional
cells.

(a) Assume that X; = * and all the cells of X are of the first type; that is,
disks DV of G-representations V. Assume also that IVGI > kWG; whenever DV €J,,
DWelJ,, 1<k<n, and |V|>|W|. Then H_*GX+ is a free RO(G)-graded module

over 55" with one generator in dimension 0 and one generator in dimension V for

each DV€J,, n > 1. The homology HSX* of X is also a free RO(G)-graded
module over H,E;SO with generators in the same dimensions.

(b) If X contains cells of both types and all the cells of X of the first type
satisfy the condition in part (a), then HBXJ' is a projective RO(G)-graded module
over H_E;SO. Moreover, H*G}(+ is the sum of one copy of HE;XBL, which is H&So or
H”C‘;G+, in dimension 0, one copy of HgSO in dimension V for each DV € J,, and one
copy of HEG+ in dimension 2k for each G xe?* € J,, n > 1. The homology Héx+*
of X is also a projective RO(G)-graded module over H%SO and decomposes into the
same summands.

PROOF. Abusing notation, we let J,,, denote both the set of cells to be added to
Xn and the space consisting of the disjoint union of those cells. Let 8J, ., denote the
space consisting of the disjoint union of the boundaries of the cells in J, ;.
Associated to the cofibre sequence
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X: - X:-H - ‘]n+1/a‘]n+1’
we have the long exact sequences

- HSX:H I HC’G(JrH»}/a'}n—H) ?’ HS—IXZ -+ ...
and

- HEXE,, - BeX: 9 EST(./000,0) o
The space J,,,/0],,1 is a wedge of one copy of SV for each DV € J,,, and one
copy of GYAS™ for each Gxe?f e J et Thus, Hg(J,41/0J,41) and
H*G(Jn,rl/@JnH) are projective modules over H_’“GSO with generators in dimensions
corresponding to the cells added to X, to form X,,,. Moreover, if J_,; contains
only cells of the first type, then H%(J,,,/0J,,;) and H*G(JHH/@JnH) are free
modules over H%SO. The space X, is either a point or the free orbit G, so HféXg and

ESXE; are projective, and perhaps free, modules over _H%SO generated by single

elements in dimension 0.

We will show inductively that the boundary maps ¢ in both long exact
sequences are zero. The long exact sequences must then break up into short exact
sequences which split by the projectivity of H?(Jnﬂ/&lnﬂ) and HEX:{. Thus, by
induction, HEX?{ and HEX} are free or projective, as appropriate, over HESO, with
the indicated generators. It follows by the usual colimit argument that H9X+ is free,

or projective, with the appropriate generators. Since the map
LEX0, — HEXR
is always a surjection, the appropriate lim" term vanishes, and the cohomology of X,

being the limit of the cohomologies of the X., is free (or projective) with the

appropriate generators.

The graded Mackey functors H&(J,,1/07,41), H*G(Jn+1/6.]n+1), HEXs
and H?Xg are sums of copies of HESO and H&G+ in various dimensions. By
induction, we may assume that H*GX: and H*GX; are also of this form. To show
that the maps & are zero, it therefore suffices to show that they are zero from each
summand of the domain to each summand of the range. For the cohomology

sequence, the four possibilities for the summands and the map between them are:
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H* 2k‘G+ o~ H%(G+/\S2k) - H*G+1(G+A82m) >~ H*G+l—2mG+
HE;_WSO o~ HE;SW - H*+1(G+A82m) H +1— '7mG+

H*G~2kG+ o~ H%(G+A82k) - H*+ISV ~ H*+1 V
and

H*—Wso g H*GSW - H*-}-lsv E H*G+1—VSO.

Here, we use H%(G+A S%) and H_*GSW to denote summands of HESXZ isomorphic to
_E[‘é;G+ in dimension 2k or H%SO in dimension W. The four maps above are all maps
of RO(G)-graded modules over H*GSO. Any such map out of H*GSO is determined by
the image of 1 € A(1) = H%(SO)(I). By Proposition 4.12, such a map out of _H_%Gr+
is determined by the image of (1,0,0, ... ,0) € ZP = H%(G+)(e . Thus, to show that
the four maps are zero, it suffices to show that the groups H2k+l G (e),
HW+1 2m(G W1), 2L+1 V(S )(e), and Hg W1~ V( )(1) are zero. The integers
|2k+1 - 2m| and |W+1*2m| are odd and HEG" vanishes whenever |al is odd, so the
first two groups are zero. The integer |2k+1-V| is odd and Hg(SO)(e) vanishes when
lal is odd, so the third group is zero. For the fourth group, if |V|<|W|, then
H\é\”l—VSO is zero because |WG+1—VG| is odd and |W+1-V]| is positive. Otherwise,
’VG] > ’WGl, and H\éVH_VSO is zero because ’WG—{—l—VGl is at most one. An
analogous proof shows that the map & in the homology sequence is zero. Note that if
VI >|W| and IVG|—’WG| then the vanishing of .H_W+1 VS0 is a result of the

anomalous zeroes on the IaGl = 1 line in the graph of HGSO.

In order to compute the ring structure of the equivariant cohomology of X,
we must compare it with more familiar objects, such as the nonequivariant ordinary
cohomology of X and X6, If Xis a generalized G-cell complex satisfying the
conditions of either part of Theorem 2.6, then so is X©. Thus, Examples 1.1(h)

describes _H;*G(XG)Jr in terms of the nonequivariant cohomology of X®. Since the
group H¥(X7)(e) is just the nonequivariant ordinary cohomology of X with Z

coefficients, the map

p@ : HEX)(1) - HEX")(e) @ HE(X®) ()
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offers a comparison between H%(X"’)( 1) and two more easily understood cohomology
rings. This map does not detect the torsion in H_E(X‘F)(D coming from the fourth
quadrant torsion in H%SO. Moreover, the torsion in H&((XG)+)(1) makes it hard to
compute the image of p &¢*. These difficulties suggest that we also consider the
image of H&(X™)(1)/torsion in (HE(XT)(e) @H%((XG)+)(1))/torsi0n. Since
H%(X™)(e) contains no torsion, in the range we are only collapsing out the torsion in
H%((XG)+)(1). The most useful comparison map is produced by also collapsing out

the image of the transfer map 7 from H&((XG))r)(e). The quotient

HE((X®))(1) /(torsion @ im 7)
consists of copies of Z in various dimensions; there is one Z in the quotient for each
A[d] or (Z) which appears in H’&((XG)+)(1).

For many spaces, including complex projective spaces with linear actions, the
cells can be ordered so that |V|>|W| whenever DV €J,, DWeJ,, and k<n.
When the cells can be so ordered, there is no torsion in H5(X")(1) in the dimensions
of the generators of H’éX+ as a module over H*GSO. Therefore, the collapsing we have
done causes a minimal loss of information. The following result describes the extent
to which HE(X+)(1) is detected by p @ *.

COROLLARY 2.7. Let X be a generalized G-cell complex satisfying the conditions
of either part of Theorem 2.6 and let i: X© — X be the inclusion of the fixed point
set. Then, for any o € RO(G) with |« even, the map

p@ s HE(XM)(D) - HE(X')(e) & HE((X®)")(1)
is a monomorphism. Moreover, for any @ € RO(G), the map
p@®i": (HE(XT)(1))/torsion - HE(X*)(e) ® (HE((XC)")(1))/(torsion & im 7)

is a monomorphism.

PROOF. Since the equivariant cohomology of X is the limit of the cohomologies of
the Xy, it suffices to show that the result holds for every X,. It is easy to check the
second part for X;. Assume the second part for X, and let x be an element of
H%(X:H)(l)/torsion vanishing under the map into

HE(XE,1)(e) © (HE((XE,1)T)(1))/ (torsion & im 7)

induced by p @ i". We must show that x is zero. The group HE(X;,,)(1) is the
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direct sum of the groups H&(J,,1/07,,1)(1) and HE(X%)(1), and this decomposition
is respected by the map p& 1. Thus, x is the sum of classes y and z in

H%(3,,1/03 ,41)(1)/torsion and HE(X7)(1)/torsion, respectively, which vanish

under the analogous maps. By our inductive hypothesis, z is zero. Since J,,,/0J,,,
is a wedge of copies of SY and G*AS?* for various V and k, y vanishes by our remark
about X;. Thus, x is zero. The proof of the first part is similar. For this part, we
must assume that [l is even because the map p @ * does not detect the torsion in

the fourth quadrant of H”(';(SO)(l).

3. THE COHOMOLOGY OF COMPLEX PROJECIVE SPACES. As an application
of the results from section two, we show that the cohomology of a complex projective
space with a linear action is free over HZ;SO. Let V be a finite or countably infinite
dimensional complex G-representation and let C* be C~{0}. The complex projective
space P(V) with linear G-action associated to V is the quotient G-space (V -{0})/C".
Note that if W C V, then P(W) may be regarded as a subspace of P(V). If V is
infinite dimensional, then we topologize V as the colimit of its finite dimensional
subspaces W; the quotient topology on P(V) is then the same as the colimit topology
from the associated subspaces P(W). To describe the cohomology of P(V), we must

n
write V as the sum Y ¢, of irreducible complex representations (including possibly
i=0
the trivial complex representation). Of course, if V is infinite dimensional, then
n = oo. Points in P(V) will be described by homogeneous coordinates of the form

(Xgy X1y X9 ...y Xn)y  X; € B,

with the conventions that not all of the x, are zero, and if V is infinite dimensional,
that all but finitely many of the x; are zero. Each element of the group G acts on
each homogeneous coordinate of P(V) by multiplication by a complex number.
Therefore, if all the irreducibles in V are isomorphic, then the action of G on P(V) is
trivial. Moreover, if 7 is any irreducible complex representation, then P(V) and
P(n V) are isomorphic G-spaces. If 5 and ¢ are irreducible complex representations,
then P(n) is just a point and P(n & ¢) is G-homeomorphic to the one-point
compactification of either ™1 ¢ or n o1

Since we have selected a colimit topology on P(V) when V is infinite, to show
that P(V) is a generalized G-cell complex for any G-representation V, it suffices to

k=1
show this when V is finite dimensional. Let V, be the representation ) ¢; and let
1=0
W be the representation ¢5'V,_;. Describe points in the unit disk DW by complex
coordinates (Xq, Xy, ... yXn_1), With x; € ¢n'¢,. Define a map f: DW = P(V) by

-1
f((xgy X15 - Xnoy)) = (Xgy Xys X9y oo s Xppoqy 1 — ‘Zo jxilz).
T

The tensor product with ¢;' is inserted in the definition of W to ensure that the map
f is equivariant. The image of SW in P(V) lies in the subspace P(V,,_,) of P(V), and
f is a homeomorphism from DW -SW to its image in P(V). Thus P(V) is formed



72

from P(V,_;) by adjoining the G-cell DW along the map {|SW:SW - P(V,,_,).
Working backwards through the sequence of representations V,, we conclude that
P(V) is a generalized G-cell complex with cells the unit disks of the representations

¢7 'V, for1 <k < n.

In order to show that the equivariant cohomology of P(V) is free over HE;SO,
we must show that the cells of P(V) can be attached in an order satisfying the
condition in Theorem 2.6(a). This proper ordering of cells is derived from a careful
ordering of the set & of irreducible summands of V. Since the remainder of our
discussion focuses on @, we write P(®) for P(V). An ordering ¢, é,, ¢,, ... of the

elements of @ is said to be proper if the number of irreducibles in the set {¢;}o<;<k—1

isomorphic to ¢, is a nondecreasing function of k. For example, if ¢ and 7 are
distinct complex irreducibles and ¢ consists of two copies of ¢ and one of 5, then
7, ¢, ¢ and ¢, 1, ¢ are proper orderings of @, but ¢, ¢, 7} is not. The dimension of

the fixed subrepresentation of the representation ¢k Zq& is the number of

irreducibles in the set {¢;};<;<;_; isomorphic to ¢,. Thus, 1f ® is properly ordered,
then the cell structure described above satisfies the conditions of Theorem 2.6.(a).

PROPOSITION 3.1. If ¢4, ¢4, ¢, ... is any ordering of the elements of a set & of
irreducible representations, then P(®) is a generalized G-cell complex with cells the

unit disks of the G-representations gb& z ¢;, for k > 1. Moreover, _H“‘GP(<I))+ and

HGP((P) are free RO(G)-graded modules over HGSO If the ordering of @ is proper,
then the homology and cohomology of P(®) are each genelated by one element in

dimension zero and one in each of the dimensions ¢k Z ¢,, fork > 1.

i=0

The G-fixed subspace of P(®) is a disjoint union of complex projective
spaces, one for each isomorphism class of irreducibles in ®. The (complex) dimension
of the complex projective space in P(<1>)G associated to the irreducible ¢ is one less
than the multiplicity of ¢ in ®. Thus, the effect of properly ordering the irreducibles
is that the maximal dimension of the components of the G-fixed subspace of
P({¢;}o<i<y) increases as slowly as possible with increasing k.

REMARKS 3.2. Our description of the cohomology of P(®) contains one apparent
anomaly. Suppose that {, 7, and ¢ are distinct complex irreducible representations
and ® = {¢, 5, ¢}. If we assign the proper ordering (, 7, ¢ to ®, then we find that
the generators of HgP(® ®)" are in dimensions 0, n71¢, and 71 (¢ ® n). However, if
We select the proper ordering ¢, ¢, 77, we find that the generators are in dlmenswns 0,
¢, and N7 (¢ @ ¢). In particular, the co homology in dimension 7~ !¢ must be
A ®(Z)® (Z) if we use the first set of generators, and A[d] & (Z) ® (Z) if we use the

second, where d is the integer associated to the element 5™ (¢ -("1¢ of RO {(G).

There is no contradiction in these two claims about the cohomology in dimension
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771 ¢ because these two Mackey functors are isomorphic by Examples 1.1.(d). The
apparent difficulties in all the other dimensions are resolved in exactly the same way.

This example illustrates the latitude that one has in selecting the dimensions
of the generators of the cohomology of P(®) for almost any set & of irreducibles.
This latitude is necessary because, for most ®, there are many proper orderings and a
choice of a proper ordering corresponds to a selection of the dimensions of the
generators.

It would be nice to have some simple cohomology invariants of P(®) which
could be used for problems like comparing the cohomology of projective spaces with
different G-actions. The fact that the dimensions for the cohomology generators
don’t provide such an invariant is a disappointment. However, one invariant related
to the dimensions of the generators is readily available. Select a proper ordering of ¢
and plot the dimensions « of the resulting set of generators of ;[:’[*(‘SPI(Q{))+ on a
G

coordinate plane whose horizontal and vertical axes indicate la and |al,

respectively. The dimensions lie on a stair-step pattern whose foot is at the origin.
This plot is an invariant of P(®). The height of the steps in the plot decreases, or
remains constant, as one goes up the steps (that is, moves in the direction of
increasing a9 and fal).  The height remains constant only if irreducible types
appearing in ® have equal multiplicity. The step-like structure of the plot reflects a
filtration on ® which plays an important role in our discussion of the ring structure
of HEP(Q)J". An increasing filtration

b = &(0), (1), B(2), ..., B(r), ...

of the set @ is said to be proper if, for every r and every complex irreducible ¢, the
number of irreducibles in ®(r) isomorphic to ¢ is the lesser of r and the number of
irreducibles in @ isomorphic to ¢. Any two proper filtrations of @ differ only by an
interchange of isomorphic irreducible complex representations, so there is essentially
only one proper filtration of ®. The steps in the plot of the dimensions of the
generators are in a one-to-one correspondence with the stages in the filtration of @.

The height of the step corresponding to filtration level r is the number of elements in
B(r)-®(r-1).

4. CUP PRODUCTS IN HE;SO. Here we describe the multiplicative structure of
H%SO. We begin with the case p = 2, which is due to Stong.

DEFINITIONS 4.1. Let { be the real one-dimensional sign representation of
G =Z/2. The identity element 1 in A(1) = H%(SO)(l) is the identity element of the

RO(G)-graded Mackey functor ring H*GSO. Let k € H%(SO)(I) be 2-71p(1). Observe
that x? = 2k. Let ¢ EHé(SO)(l) be the Euler class; that is, the image of
1le H%(SO)(I) under the map induced by the inclusion S° C S¢.  Select a
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nonequivariant identication of S¢ with S! and let t¢ € HIG-C(SO)(e)%HlG(SC)(e)
and to_; € HS '(S%)(e) HE(S")(e) be the images of p(1) € HY(S®)(e) Z=HE(S")(e)
under the maps induced by this identification. Let £ € HZC 2( $%)(1) be the unique
element with p(¢) = L%_l. The elements 1 and « generate the abelian group
H%(SO)(l) and the Mackey functor H%SO. Each of the elements €™, ™, and ¢™&",
for m, n > 1, generates the abelian group H_%(SO)(l) and the Mackey functor H%SO in
the appropriate dimension «. For m > 1, the element L{”_C or LG_l generates the
abelian group H%(SO)(e) in the appropriate dimension and ¢7°, generates the Mackey
functor H_ES0 in the appropriate dimension. For m > 2, 7(1",) generates the

abelian group HE(SO)(I) in the appropriate dimension.

LEMMA 4.2. The class « € H%(S°)(1) and, for n > 1, the classes
( 2n+1) € H(2”+U (1— C)(S )(1)

are infinitely divisible by ¢ EHé(SO)(I); that is, for m > 1, there are unique
elements

"™k € H3™(SY)(1)

and
2n+1 — (2n+m+1)¢

T(L2n+l) H (S )(1)

such that

6m(e-m,‘;) — and €m(€—-m ( 2n+l)) — ( 2n+1)‘

- 2n+1

Moreover, each of the elements ¢ 7'k or ¢ "r(s ) generates the abelian group
Hy(s° )(1) and the Mackey functor HS® in its dimension.

THEOREM 4.3. The elements
¢ € H5(SO)(1)
boc € Hg *(8%)(e)
beoy € BE(S")(e)
€ € Hg (8N

e ™k € Hg"(S0)(1), form > 1,
and
(2R € Han+1 _(2n+m+1)4(80)(1), form,n > 1,
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generate ,H_}“;S0 as an RO(G)-graded Mackey functor algebra over the Burnside
Mackey functor ring A. The only relations among these elements, other than those
forced by the Frobenius relations or the vanishing of H&SO in various dimensions, are
generated by the relations

ple) =0
gty = p(1)
(o) =0
T(L2m+1) =0, form > 0,
(LC ™) = 28T, form > 1,
0, if m or n is odd,
) () = { |
27 (] C ™), if m and n are even,
p(&) = L%-l
2¢£ =10
p(e™™k) = 0, for m > 0,
e(e7™K) = 7k, form > 1,
(7K} k) = 25_(m+n}x, form,n > 0,
27 (G0 = 0, form > 0andn > 1,
ple m(2"“))—0 form > 0andn > 1,
e(e™™ (e 2n+1)) =el” mr(ﬁ”’“), form,n > 1,
(e r(s 2"“)) (e 'k) = 0, form,q » 0and n > 1,
and
E(e” T(L2n+l)) r(drh, form > 0andn > 2.

REMARKS 4.4. (a) The last relation indicates that, for m > 0 and n > 1,
€ T(LGH) is infinitely divisible by £. Thus, we can think of all the elements in

the fourth quadrant of the graph of HG(SO) as being derived from T(LI__C) via division
by powers of € and £. One mnemonic for the effect of ¢ and £ on the elements in the

L2l g0y for m > 2
and n > 1, by €™ 7" w, where w is regarded as a fictitious element in dimension 1.

The reason for selecting a fictitious element in dimension 1, instead of the actual
element in dimension 3 -3¢, is discussed in Remarks 4.10(b).

fourth quadrant is to denote the nonzero element in Hg

(b) For p = 2, the elements +(1~7p(1)) in A(1) are units, and 1-7p(1)
appears in the formula describing the anticommutativity of cup products. For any

G-space X, ifa € J;[H”]CX+ and b € Hg+nCX+, then
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ab = (=1)™(1-7p(1))""ba.
The generators ¢;_, ¢y, ¢, € "%, and €™ T(Lfle) are in dimensions where the

. . .. . . - In 41
behavior of this nontrivial unit matters. Of course, since ¢ mr(alfc } has order 2,

any unit acts trivially on it. Tt is easy to check that
(I-tp(1))t1_c = —4_ and (A-mp()) ey = —teoy

This action of 1-7p(1) on ti_¢ and ¢, never affects cup products in HZ‘;SO because
it is always balanced by the (~1)'™ term in the commutativity formula. However,
there are algebras over _HE;SO where the effects of this unit on Ly_¢ and Loy are
visible. The unit 1—7p(1) acts trivially on ¢ and ¢ "x. This shows up dramatically
in ,H’éSO. The elements ¢ and ¢—27+1g are odd-dimensional, so our intuition about
graded algebras from the nonequivariant context suggests that their squares should
vanish, or at least be 2-torsion. In fact, the squares are not torsion elements, an
apparent anomaly possible only because the action of 1-7p(1) is trivial. The overall
effect of the actions of the units of A on the generators of H%SO is that _HZ;SO is
commutative in both the graded and the ungraded seuse.

When p is odd, several complications in the multiplicative structure of _H'(‘ESO
arise from the greater complexity of RO(G). The most obvious are a host of sign
problems coming from the identification of representations with their complex
conjugates. Initially, we resolve these sign problems by grading H*GSO on RSO(G)
instead of RO(G). In Remark 4.11, we explain steps which must be taken to pass
back to an RO(G)-grading. The most serious complication arises from the
misbehavior of the integers do associated to the virtual representations o in
RSOy(G). One way to deal with this complication is to avoid it. This can be done
very nicely if one is only interested in H%SO. Because of the intuition this approach
offers, we outline it as an introduction to the odd primes case.

The stable homotopy groups _71;?80, for B € RSOy(G), have been studied
extensively by tom Dieck and Petrie [tDP], and the stable Hurewicz map

h: 2%,5° - HS,8° = HES".

is an isomorphism [LE1] if 8 € RSO4(G). Thus, many of their results can be applied
to homology in the appropriate dimensions. They have shown that the
multiplication map

jL%SOD,zr_EfSO - zr.%MSO
is an isomorphism for any f € RSOy(G) and any ¥ € RSO(G). By similar
reasoning, the multiplication map

HgSODHéSO = Hg+'rso

is an isomorphism under the same conditions on # and y. Thus, to understand all of
HESO, it suffices to understand the part of HESO which tom Dieck and Petrie have
already described and the part indexed on some subset of RSO(G) complementary to
RSO((G). Recall that X is the irreducible complex representation that takes the
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standard generator of Z/p to e2™/?. Let RSO, (G) be the additive subgroup of
RSO(G) generated by 1 and A. As an additive group, RSO(G) is the internal direct
sum of RSOy(G) and RSO,(G). To complete our description of IS, it suffices to
describe that part of it indexed on RSO,(G). This part is almost identical to H‘éSG
for G=2Z/2. Consider the description given above of that part of HESO forp =2
indexed on the additive subgroup of RO(Z/2) generated by 1 and 2{. Replace 2¢ by
A and all the other 2’s by p’s. The result is a description of the part of H‘C‘;SO for p
odd indexed on RSO,{G). This approach describes H_*GSO as the graded box product
of two subrings indexed on complementary subsets of RSO(G). The unpleasant
behavior of the integers do is buried in the computations of the box products.

Unfortunately, because of peculiarities in the dimensions of the algebra
generators of H&P(V)+, this description of _H“GS0 as the box product of two subrings
can not be used to describe the ring structure of the cohomology of complex
projective spaces. Thus, we offer an alternative description of the ring structure of
H*GSD for p odd. In section 2, we defined a function from ROy(G) to Z using a
section of the projection from Ry(G) to ROy (G). Since we are now working with
RSOy(G) instead of ROy(G), we define an analogous function from RSOy(G) to Z
using a section s: RSO4(G) = Ro(G) of the projection from Ro(G) to ROy(G). We
insist that s(0) = 0 and that our original section ROy(G) = R4(G) factor through s.

DEFINITIONS 4.5. (a) If a € RSOy(G) and s(a) = 324, -n;, then we wish to
define an equivariant map pe: S¥7 4 8%% with none:;uivariant degree do. If
a=A"-XA" with 0 <m,n <p and n~! is the unique integer such that 1<n~'<p-1
and nn~' =1 mod p, then pe is the extension to one-point compactifications of the
complex power map z — zm("_l), for z € C. In general, we identify $¥% and §¥"
with /i\S(bi and /i\Sni, respectively, and take the smash product of the appropriate
complex power maps to obtain the equivariant map pe from $7% to 77 with
nonequivariant degree do. Also denote by uo the image of this map in H%(SO)(l)
under the Hurewicz map. Clearly, if the ¢, and the 5, were paired off in a different
order, then a different map from S¥% to $%" would be obtained. However, the
maps coming from the two pairings would be equivariantly homotopic and so would

give the same element in H%(SO)(I).

(b) Let o be an element of RSO(G) with |al = 0. Then o must be
represented by a sum Z:qﬁi—ni, where the ¢, and 7, are irreducible complex
representations, some of :Nhich may be trivial. Since the ¢, and 75, are complex
representations, they have canonical nonequivariant orientations. Combine these to

produce a nonequivariant identification ¢, of S¥% with S*"¢ which is unique up to



78

homotopy. Let (o also denote the image of this identification in H&(S%)(e). The
resulting cohomology classes ¢o are then independent of the ordering of the ¢; and
the n,. The abelian group H%(SO)(e) is generated by iq. If Iaq > 0, then 7(ta)
generates the abelian group H%(SO)(I) and ¢ generates the Mackey functor H%SO.

() If & € RSOH(G), then in HES®,
plppa) = date and pr(ia) = Dla-

We have already asserted that H%SO is Alde]. Under this identification, o and
7(to) become the elements g and 7 of A[da](1) and to becomes 1 € Z = Alda](e).
There is a unique integer by such that d_oda + bap = 1. Let ko = p o ~da7(ta)
and 04 = d-o fla + baT(te). Then, oo and ko form an alternative Z-basis for

HE(S")(1).

(d) Let 8 be an element of RSO(G) with || > 0 and |3C| = 0. There exist
an « in RSOy(G) and a G-representation V such that V¢ = 0and 8 = o + V. Let
€5 € HZ(SO)(l) be the image of uo € H_%(SO)(I) under the map from H%(SO)(I) to
Hé(s‘))(l) induced by the inclusion S° € SY. In Lemma A.11, it is shown that this
Euler class € is independent of the choice of the decomposition of § into the sum of
the representation V and the element a of RSOy(G). The class ¢, generates the
abelian group Hg(so)(l) and the Mackey functor HgSO.

(e) Iflal=0 and |28l < 0, let €4 be the unique element of HEZ(S°)(1) with
p(€a) = Las this class generates the abelian group H&(S°)(1) and the Mackey functor
Ha SG

G .

When p is odd, it is harder to pick a multiplicative basis for the torsion in
the fourth quadrant of the graph of H%SO. In each dimension there is a choice of
p~1 generators, instead of a single nonzero element. Moreover, since these torsion
elements are not tied by an Euler class to elements on the positive horizontal axis,
there is no way to base the choice of a generator on choices already made for the axis.
The following lemma justifies the procedure we employ to select multiplicative
generators for the fourth quadrant.

LEMMA 4.6. Let 8 be an element of RSO,(G) and let «, v, and & be elements of
RSO(G) such that
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161 = |G| = 0,
lal, 56| < 0,
l7f >0,
o] > 3,
and
|aG| is odd.
a+f

If x is any nonzero element in HE(SO)(l), then pgx is a generator in Hg (SH(1).
Moreover, x and pgx are uniquely divisible by both ¢ and &,.

DEFINITIONS 4.7. Select a generator in Hé‘n(so)(l) and denote it by v4_o,. If
a=1-m(A-2)-nA, for m, n> 1, then let v, be the unique element in H%(SO)(I)
such that

€n-1)a §(m-1)(A=2) Y& = V3_2»

For any o € RSO(G), there are unique integers m, n, and q such that ¢ = 0 or 1

and
a-{g-m(A-2)-nA] € ROLG).
Denote by <a> the element q—m(A—-2)~nA associated to « by these conditions. If

a € RSO(G) with ol < 0, |aG| > 3, |aG| odd, and « # <a>, then define
ve € HE(S%)(1) by

Vo = Ha—<ca>V<a>-

The element vo generates the abelian group HE(S°)(1) and the Mackey functor
0
HgS".

LEMMA 48. If @ € RSO,(G), then xo € HE(S®)(1) is divisible by €5, for any
B € RSO(G) with |3| > 0 and ‘,BG’ = (; that is, there is a unique element

Glra € HE (S
such that

fﬂ (6/31 K:a) = Ka-

The element 651 Ko generates the abelian group Hé—ﬁ(so)(l) and the Mackey functor
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THEOREM 4.9. The eleme

nts

pa € HE(SM(),

ta € HE(S")(e),

e € Hg(8M)(W)
€xoz € HE3(SMH(D)

lg_y € Hé‘A(S

°)e)

€ Ko € Hc—sm/\(se)(l)’

and

ve € H(S)(D),

80

for @ =+(A"-1), with1 < n < p,
for a =+(A"-}), with1 < n < p,

form>1,

fora=1~-m(A-2)-nA, withm, n>1,

generate HGSO as an RSO(G)-graded Mackey functor algebra over the Burnside
Mackey functor ring A. All of relations among the elements of HGS other than
those forced by the Frobenius relations or the vanishing of HG in various
dimensions, are generated by the relations

p(/la) = dataa

Hallp = Farp T [

pleg) =0,

faﬁﬁ = €a+ﬁ7

Hotg = €45,
P(ga) = to,

7(ta) = p&a,
601513 = Ea-{»ﬁ&

ﬂagg = da€a+ﬁv

for &« € RSO(G);

dad, - d

p

a+ﬂJT(La+ﬁ)v for o, ﬂ € RSOQ(G),

for |3] > 0 and ‘,BGI = 0;

for lal, || >0 and
|8l =[5 =0;

for « € RSOL(G), |8] >0,
and 1561 = 0

for lat = 0 and laGl < 0;
for laj =0 and laGI < 0

for jal =|8|=0 and
oS, IﬁGi <0

for & € RSOL(G), |8] =0,
and !ﬁG‘ < 0;



Pe,sﬁe

eﬁﬁa

p(c5" Ra)

Hy (551 Ka)

fﬁ (651 lﬁa)

€y (651 Ka)

(65150)(€;lﬁa)

PVa

p(Va)

Hp Vo

= €4 Kg,

= Ka

=V

-1
= €3 Koty

€pq Ko

-1 .
P€piyBoss>

a4+
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for o) = l,@’G} =0, IaGI <0,
and |3|>0;

for lal = 6] = ‘5(3‘ =|y6| =0,
|aSl,18% < 0, |8}, 171 >0,
and o+ S8 =7+

for o, 6 € RSO4(G),

89| =|ve] =0,
181, [7]>0, and
a+y=p8+6;

for « € RSO4(G), ‘,BG’ =0,
and || > 0;

for @, v € RSO,(G), |89 =0,
and ’ﬂl > 0;

for @ € RSOy (G), ’ﬂG‘ =0,
and || > 0;

for o € RSO4(G),
8% =176 =0, and
Bl > 171> 0;

for @, § € RSOy(G),
18] =|v5] =0,
and |8, || > 0;

for ja] < 0, lan >3, and
laG‘ odd;

for jal <0, |aG| >3, and
IaGl odd;

for # € RSO4(G), lal <0,
laG} >3, and laGI odd;
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€gla = Vyig for|a+,6'|<0, laG|23,
|aG| odd, || >0, and
ENE
EpVa =degs_gVayps for |lal <0, IaG+ﬂG|Z3,
2%l 0dd, |8| = 0, and
18] < 0;
(651 Ky)Va = 0, for v € RSOy(G), 1ol <0,

laG|Z3, |aGl odd,
|ﬁG[: 0, and |ﬂ|>0;

talg = loygs f0r|a|:|ﬂ|:0.

REMARKS 4.10. (a) For p odd, the only units in A(l) are £1. The only
generators in odd dimensions are the vo. Since vavj is zero for any a and S, no
sign problems occur in commuting products in H"(‘;SO. Thus, ];["GS0 is commutative in
both the graded and ungraded senses.

(b) As an alternative to using the v, as a basis in the fourth quadrant, one

may define elements eglfglw in HlG_a_ﬁ(So)(l), for [a[:lﬂG':O, |aG|<0, and

|8] >0, by

N
€ faw = do_casVi_g-p-

Here, w 1is regarded as a fictitious element in dimension 1 which is divisible by any
product {a€g. We employ a fictitious element because there is no canonical choice
for the dimension of an actual element. The relations satisfied by the elements
cgllew are

e (65'€31w) = 5L Eat, for la1 =[8%| =|9| =,
|IB| > |7| >0,
and !aG| < 0
57(651531w) = eglézl_yw, for Ial:l—ﬂ:’ﬂG,:O,
|28l <|y5] <0,

and |8]>0;
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By (egllew) = e}giyfalw, for v € RSO4(G),
!alzlﬁGlZO, laGl<0s
and |8]> 0;

fy (eglgglw) = d<7>_7e§1£;£7w, for ¥ € RSOy(G),
!ai:IﬂGlzﬂ, la*Gl<0,
and |4]>0.

The one difficulty with this alternative basis is that if @« + § = v + 8, then eglﬁglw
and €5 €5 w are in the same dimension, but they need not be equal. In fact,

-1 g1 _ —1e—1
€glaw = dayocamy>€; 7 w-

(c) Observe that in the formulas for the product of us with any of €4,
6'[;1 Kv, O Vg there is no da, but there is such a constant in the formula for the

product pia . On the other hand, 0o €5 =§,,4, but there is a d_o in the formula

for the product of 5o with any of g, 651 K+, or vg. This difference in the behavior

of the elements po and oo of H_%(SO)(I) reflects the fact that there is a conjugacy

class of subgroups of G associated to any well chosen element of any G-Mackey
functor M for any finite group G. This association is based on the splitting of M
which occurs when M is localized away from the order of G. This splitting can not
be observed directly before localization, but it can be seen indirectly in the association
of subgroups to well chosen elements in the Mackey functor. The elements uo, €4,

GEI Ky, and v are all associated to the subgroup G of G, and products of pairs of

them behave nicely. The elements 0o and 4 are associated to the trivial subgroup,
and their product is nice. However, the product of elements associated to two
different subgroups will either be zero or involve some fudge factor like a do. We
have introduced both g and o4 so that, when one of these elements is needed in our
description of the relations in H*G?(V)+, we can always choose the one that will give
us the simpler formula.

REMARKS 4.11. In order to explain the passage from an RSO(G) grading on J:_T"‘GSG
to an RO(G) grading, we must first clarify what is meant by the assertion that HE;SG

is RO(G)-graded. The assertion does not mean that, for « € RO(G), HESG can be
described without reference to a choice of a representative for a. Rather it means
that if V;- W, and V,- W, are two representatives for a and H! and H? are the

values of J;[gSO obtained using these representatives, then we can construct an
isomorphism between H' and H? in a natural way from any isomorphism

f: Vo® W, 2V, & W, of representations illustrating the equivalence of V, - W,

and V,—- W, in RO(G). This is exactly what we mean when we say that
nonequivariant homology is Z graded. To define the nonequivariant homology group
H"X, we must pick a standard n-simplex. Different choices of the n-simplex lead to
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different groups, as anyone who has been embarrassed by an orientation mistake
knows all too well.

Let §=V,® W, -V, ® W, and let { denote the image of f in HZ(S°)(1).
Then the isomorphism from H' to H? is just multiplication by f. To provide a
means of computing the effect of this isomorphism, we write f in terms of the
standard generators of Hé(SO)(l). The map f induces a map fC between the fixed
point subspaces of the representations. If nonequivariant orientations are choose for
their domains and ranges, then the maps f and {C have well-defined nonequivariant
degrees. It follows from Lemma A.12 that
(deg 1) - (deg °)

p

. d
f = (deg fG)u[, + ﬂT(L/j).

The structure of HE;G+ as an algebra over HESO follows easily from our
results on H"GSO and the description of the additive structure of H6G+ given in
section 2.

PROPOSITION 4.12. As an RO(G)-graded module over H%SO, H5G™ is generated
by the single element ¥ =(1,0,0,...,0) of H%(G+)(e) =7P. Moreover, for any
RO{G)-graded module M” over H"GSD, there is a one-to-one correspondence between
maps f: H5G" —» M" of RO(G)-graded modules over 0587 and elements in M%(e).
This correspondence associates the map f with the element f(e)(¢) of M%e). Thus,

H’"C_;Gr+ is a projective RO(G)-graded module over HESSO.

PROOF. Unless |al =0, Hg(G+) =0. If |a| =0, then 1o generates _HEG+ as a
module over A. Thus, ¥ generates H5G" as an RO(G)-graded module over H&SO,
and any RO(G)-graded module map f: _[—]_’E;G+ - M" is determined by f(¥). On the
other hand, recall the observation from Examples 1.1(f) that a map from A4 to any
Mackey functor N can be specified by giving the image of (1,0, 0, ..., 8) € Ag(e) in
N(e). Let m be an element of M°(e). For each o € RO(G) with (ol =0, 1om is in
M%(e) and there is a unique map f*:HEG" —» M® of Mackey functors sending
tap € HE(GT)(e) to tam € M%(e). These maps fit together to form a map
f: HG* » M" of RO(G)-graded modules over H5S®. The projectivity of H5G™

follows immediately.



85

5. THE MULTIPLICATIVE STRUCTURE OF H*GP(V)+. We assume that there
are at least two distinct isomorphism classes of irreducibles in V; otherwise, the
multiplicative structure of ‘H'éP(V)+ is completely described in Examples 1.1.(h). As
in section 3, we take ® to be the set of irreducible summands of the complex
representation V. Let ®(0), ®(1), ®(2), ... be a proper filtration of ®. Then &(1)
consists of exactly one representative of each of the isomorphism classes of
irreducibles that appears in ®. Let ¢4, ¢1, ¢4, ... , ém be an enumeration of the
elements in ®(1), and let n; be the number of elements of ® isomorphic to ¢; (with
n; =oco allowed). Arrange the enumeration of the elements of ®(1) so that
ng>n;>...>2nm. Extend the ordering of ®(1) to ® by selecting the unique proper
ordering of & which is consistent with the. filtration and in which, for each r > 1, the
ordering of the representations in ®(r+1)—®(r) is the same as the ordering of the
corresponding representations in ®(1). If the irreducibles which appear in ® appear
with equal multiplicity, then, regarded as an ordered set, ® is a sequence of blocks,
each of which is a copy of ®(1). If the multiplicities are not equal, then ® is still a
sequence of blocks, but each block after the first will be either a copy of ®(1) or of an
initial segment of ®(1). The lengths of the initial segments in the sequence can not
increase. We will abuse notation by writing ¢, € ®(r+1)-®(r) to mean that
®(r+ 1) — ®(r) contains an irreducible representation isomorphic to ¢,. We say that
two sets of irreducible representations are equivalent if they contain the same number
of irreducibles in each isomorphism class.  Moreover, we sometimes identify
equivalent sets of irreducibles.

Corollary 2.7 will be used to derive the multiplicative structure of _H*GP(V)+
from the multiplicative structures of H"G(P(V)+)(e) and H*G((P(V)G)+)(1). The

group H%(P(Vf)(e) is isomorphic to the nonequivariant cohomology group
H'aI(P(V)+;Z), and we will think of the restriction map p as a map from
H_%(P(V)+)(1) to HIQI(P(V)+;Z). Select an algebra generator x € H*(P(V)";Z) for
H*(P(V)+;Z). The fixed point space of P(V) is the disjoint union of the spaces
P(n; ¢;) =P(n;). Let q; denote both the inclusion of the subspace P(n;) into P(V)
and the map HE(P(V)+)(1)—vH*é(P(n,;)+)(1) induced by this inclusion. By
Examples 1.1.(h), _H"‘6P(ni)+ is a truncated polynomial algebra over H_%SO generated
by an element x; in HZ’G(P(ni)+)(1). Let

4,1 H5(P(V))(1) » H5(P(n,) ")(1)/ (torsion & im p)

denote the composition of g, and the projection onto the quotient. If y is in
H%(P(ni)Jr)(l), then [y] denotes its image in H*G(P(ni)+)(1)/(torsion ®im p).
Throughout this section, we will index H_E,;P(V)Jr on RSO(G) to simplify the
selection of the integers do. The comments in Remarks 4.11 on the passage from
RSO(G)-grading to RO(G)-grading for H_E;SO apply equally well to H%P(V)+. Recall
that A is the irreducible complex representation that sends the standard generator of
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Z/p to e?™i/? and that ( is the real one-dimensional sign representation of Z/2. If p
is 2, then A, regarded as a real representation, is just 2¢.

We begin with the case p=2. Any complex irreducible representation is
isomorphic to either the complex one-dimensional trivial representation or the
complex one-dimensional sign representation A.  Since P(V) and P(AV) are
G-homeomorphic, we may assume that there are at least as many copies of the trivial
representation in @ as there are copies of the sign representation. Thus, we may take
¢ to be the trivial representation and ¢, to be the sign representation.

By Theorem 3.1, H%P(V)+, regarded as a module over HESO, has one
generator in each of the dimensions

2k + 2k¢ and 2k + 2(k + 1)¢,
for 0 <k < n;, and one in each of the dimensions
2k + 2n, ¢,

for n; <k <ngy. If one assumes ny =n,, or ignores the generators special to the case
ng>1,, then one might guess that, as an algebra, J;['é}"’(V)+ had an exterior
generator in dimension 2( and a truncated polynomial generator in dimension
2(1+4¢). Except for the fact that the generator in dimension 2( is not quite an
exterior generator and for some difficulties in the higher dimensions when ny > n,
this guess is a good description of H%P(V)+. However, in order to describe the
behavior in the higher dimensions as simply as possible, we adopt a notation that
does not immediately suggest this.

THEOREM 5.1. (a) As an algebra over H*GSO, H"’GP(V)+ is generated by an
element ¢ of HE(P(V)+)(1) in dimension 2¢ and elements C(k) of HE(P(V)+)(1) in
dimensions 2k + 2min(k, n;){, for 1 <k <n,.

(b) For any positive integer k, let k denote the minimum of k and n,. Then
the generators ¢ and C(k) are uniquely determined by

‘30(0) = [0]
dy(e) = [¢7
p(c) = x € H{(P(V)%; 2)

do(C) = [*x}]

a;(C(K)) = [ xt]

and

p(Ck)) = x**F.

Moreover,
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qoc) = €xo € Hi(P(ng)*)(1)
a(c) = ¢ + €x, € Hg(P(ny)")(1)

2(k+E()

2w(CK) = xE(e® + £xo)F € Ha " (P(ne)")(1)
and

a(CH) = xE(? + £x)F € HXFO(Pm) ().

If n, is finite, then x?i =0 and some of the terms in the last two sums above may
vanish.
(c) The generators ¢ and C(k) satisfy the relations
c? = €?c + £C(1),
cC(k) = €Ck+1), fork >ny,

and
C(j+k), for j+k <ny,
C(j)C(k>={ Sehmy e
z (}+ki~n1)€2(1+k ny 1)550(‘]_*_1{*‘!), forj+k>n1.
i=0

In these relations, we take C(i) to be zero if i > n,.

REMARKS 5.2. (a) By iteratively applying the third relation, we obtain
C(k) = (C(1))*,  for k<n,,

so that below the dimensions where we run short of copies of the sign representation,
_H*(‘;P(V)+ is generated by ¢ and C(1). Moreover, in these dimensions, C(1) acts like a
polynomial generator.

(b) If nyg=n,, then HEP(V)+ is generated by ¢ and C(1). The only
relations satisfied by these two generators are the relation

c?=€lc 4+ £C(1)

and, if ny < oo, the relation

c(™ =o.

REMARKS 5.3. Notice that the maps §; and q,; behave differently on the generator
c. The element &¢=c+¢e’-kc of Hé’ﬁ’(V)+ may be used as a generator in the

place of ¢ and its behavior with respect to d; and &, is exactly the reverse of the
behavior of ¢c. To understand the geometric relation between these elements, observe
that ¢ and € can be detected in the cohomology of any subspace P(1+ ) of P(V)
arising from an inclusion 1+ X C V. The space P(1+ ) is G-homeomorphic to S,
but unlike S*, it lacks a canonical basepoint. Either choice for the basepoint of
P(1+ A) determines a splitting of H%P(I—{—)\f into the direct sum of one copy of
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H*GSD and one copy of H*GS’\. The canonical generator of H%S)‘ in dimension 2¢ is
identified with ¢ by one of the two splittings and with & by the other.

When p is 2, the multiplicative structure of ,H*GP(V)+ does not really exhibit
any complexities beyond those one might experience in a Z-graded ring. However,
when p is odd, there are quirks in the multiplicative structure of _H,*GP(V)+ which are
only possible because of the RSO(G)-grading. For the odd prime case, recall the
stairstep diagram obtained by plotting the dimensions « of the generators of
HEP(V)+ in terms of || and |a G|. Looking at this diagram in the special case where
the irreducibles appearing in V appear with equal multiplicity, one might guess that
H&P(Vf was generated by two truncated polynomial generators, one in a dimension
o with {@l=2 and |aS/=0 and one in a dimension B with |I8]=2m + 2 and
,{36 = 2. Unfortunately, such a guess would badly underestimate the complexity of
H,E;P(V)-". The set of dimensions for a full set of additive generators must generate a
larger additive subgroup of RSO(G) than can be accounted for by a pair of truncated
polynomial generators. For example, recall that the first two additive generators of
H&P(V)+ are in dimensions ¢7'¢, and ¢5'(¢y + 4;). If the additive generator in
dimension ¢7'¢, were to serve as a truncated polynomial generator, then the additive
generator in the next higher dimension would need to be in dimension 2¢7 ¢,
instead of ¢3'(¢y + #;). Any replacement of these two generators by an element
and its square requires the introduction of further generators in some other
dimensions inconsistent with a simple truncated polynornial structure. To provide a
better feeling for the multiplicative structure of HEP(V)+, we give two sets of
multiplicative generators. The first is a natural set with a great deal of symmetry.
It does not exhibit a preference for any one ordering of ®. Unfortunately, this set is
much too large. By selecting an ordering on @, we are able to construct a much
smaller, but very asymmetrical, set of algebra generators.

In order to describe the effect of the maps q; on our algebra generators, we
must introduce more notation related to the integers de.

DEFINITIONS 5.4. (a) For any two distinct integers i and j with 0<i, j <m, let
B;; denote the irreducible representation d)i_l(z)j, and let d;} denote the integer dg,

for o = B;;— PBrs. Note that dzj is 1 for any pair of distinct integers i and j. For any
integer i and any distinct pair of integers r and s such that 0 <i, r, s <m, let d} be

zero. The integers di satisfy the relations

i TS i
drsduy = duy mod p,

ij ik __ ik
drs + drs = drs mod P,

and

ij Jtu _ tu g
rsdow = drs dow mod P.
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(b) If ¢, € ®(r+1)-®(r), then let «,r) denote the representation

¢;' Z( ?, and let (Nifj be da, for o = a,(r) ~ a,(r). Note that, if ¢, € ®(r+1)-&(1r),
¢ed(r

a’."‘ = 1. If either ¢, or ¢; is not in ®(r+ 1) ~ ®(r), then let dr be zero. If ¢;, ¢,
and ¢, are in @(r+ 1)~ ®(r), then the integers d[ ; satisly the relations

d’" d’k =dl, mod p
and, if i #],
~p iiT it Bk
dj; 5(dj§) H (dj) mod p,
0<k<m
k#1,j7

where a, is the multiplicity of ¢, in ®(r).

THEOREM 5.5. (a) Ifl and j are distinct integers with 0 <i, ] <m, then there is a
unique element ¢, in 1 ”( w* )(1) such that

dplei;) = [df; Eﬁij:" for 0 <k <m,
and
plei;) = x.

If r>0 and ¢; € &(r+1)-2(r), then there is a unique element C,(r) in
3( )(P(V) Y1) such that

q;(C,(x)) = [ak] aj(r)=r xZ:], for 0 <k <m,

and

oy =N,

The elements c¢;;, for 0<i,j<m and 1#]}, and the elements C,(r), for r>1 and

ij0
¢ € ®(r+1) - ®{r), generate H%P(V)+ as an algebra over H”C‘;SO.

(b) For 0<i,j,k<m andi#j,

qk(czj)_dz; ﬁ +Eﬂ ch‘

(c) Forr>1and ¢, € ®(r+1)-9(r),
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L I Lep,, + € x,)
G(CeD) = xL| g ca H k=2 B

itk
If ¢, € ®(r+1)-P(r) and j # k, then

k T (dhe x,)
Qk(cj(r)):\k<djieﬁ L TE ,Xk> ¢, co(r) ﬁ“ ﬁji'z LA
ﬁjk-z ;[:] X
dp; - (@) T () .

b ¢ B(r) €aj(r)=—r Xk

iF ik
If ¢, ¢ @(r+1)-(r), then q,(C;(r)) is zero.

i=1
(d) For 1<j<m, let 7, be the representation qS]_-l 'Z:o #; and let D; be the

j-1 .
element []c;; in HéJ(P(V)+)(1). Then the elements D, for 1 <j <m, the elements
1=0

Co(r), for r>1 and ¢g € ®(r+1)-®(r), and the elements D;C,(r), for r>1 and
¢; € @(r+1)-d(r), generate ,E["GP(V)+ as an algebra over H*GSO.

REMARKS 5.6. In order to simplify our indexing, we define Dy and C;(0), for
0<j<m, to be 1€ H%(P(V)+)(l). We also define 7, and «;(0) to be 0. Our
second set of generators for _H"‘GP(’V)+ is then just the set of elements D;C,(r), for

r>0and ¢; € ®(r+1)-®(r). This set of elements of H'(‘;(P(V)+)(1) is also a set of

additive generators of ‘H*(‘;P(V)+ as a module over HESO. One might hope that a set
of multiplicative generators could be much smaller than a set of additive generators,
but if the various irreducibles in ® appear with very different multiplicities, then
small sets of multiplicative generators do not exist.

We will order the set of generators D, C,(r) by the dictionary order on r and
then j. On the stairstep plot of the dimensions of these generators, moving in the
direction of increasing order corresponds to moving up and to the right.

REMARKS 5.7. Nothing that has been said in the discussion of the odd prime case
actually depends on p being odd; rather, mod 2 arithmetic is so simple that most of
the technicalities necessary when p is odd are unnecessary when p == 2. The elements
¢ and € in the case p =2 are ¢, and ¢y;. The element C(j) is Cy(j)-
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In order to describe the relations among the generators in H%P(Vf in a
palatable form, we must introduce one more batch of elements in H%(P(V)+)(1).

DEFINITION 5.8. Observe that, for 1 <j<m, kD; is divisible by €.~ Moreover,
p(e7 . kD;) =0, and

=1
qk(f nD i) = [p 11 d];::‘ € H%(P(nkqsk)*)/(torsion ®im 7).
1x=0
j=1 ji-1
Since [] d},: is zero if k<j and 1 if k =], the coefficients p [] d’:: which appear in
i=0 i=0

the qk(e;l_ kD;) form a matrix which is p times an upper triangular matrix with 1’s
j
on the main diagonal. Applying the obvious analog of the process for diagonalizing

an upper triangular matrix to the elements 5;1 kD; produces elements &; of
i
H%(P(V)+)( 1) characterized by the conditions

and

{ (s itk =j,

0, otherwise.

and, for 1 <j < m,

Ry = c3haD; k%:+1(zHOd];:)

Define &, € H%(P(Vf}(l) to be & E The equations above characterizing & ;

for j # 0 then also characterize & . Mgreover,

P, if k=j,
Qk(’%j) = {

0, otherwise.

For r>1 and ¢; € ®(r+1)-®(r), define &;(r) EHGJ( :

k;C;(r). These elements % ;(r) are characterized by the equations

p(k;(r) =0,

(P(V)*)(1) to be

and
[peaj(r)_rxﬂ, ifk=j,
0, otherwise.

‘ik(&j(r)) = {

Moreover,
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p{a,(r)_rxz, ifk=ij,
. _ j
Qi) = |
0, otherwise.
For convenience, we define ;%j(()) to be &.. Observe that, for r > 1, the elements

k;(r) can also be constructed from the elements xD; C,(r) in the same way that the

elements /%j are constructed from the chj.

We begin our list of relations with the relation between any two of the ¢,
and the relation between any two of the C,(r).

PROPOSITION 5.9. (a) Let i,j,1,and s be integers with 0 <4i,j, r,s<m and
i#£j, r#s. Then
kj
; ar g d d,»s
— s ij —Yij .
Cij -G'ﬁij_ﬁr‘gCrs +d1] +k§‘ P €ﬁi]_)€k.

(b) Let r>1 and let i and j be integers such that ¢, and ¢, are in
@(r+1)-@{r). Then
dy, -dj;d’
Cy(r) = Gai(r)—aj(r)cj(r) + Z"T‘—

Py
iz u"z( )—ap(r) k( )

An obvious initial response to this result is to assume that HGP(V) can be
generated as an algebra over HGS by any one of the ¢;; and, for each r with
®(r+1) - ®(r) nonemepty, any one of the C,(r). The &, and &,(r) in the formulas
spoil this simplification, especially since they are defined in terms of precisely the
generators one would hope to omit. Solving this by taking the elements &, and & ,(r)
as part of a generating set is hardly satisfactory since, from a Mackey functor point of
view, these are torsion elements (because p(%,) and p(%,(r)) are zero).

The remaining results in this section describe the products of pairs of
elements from either of the generatmg sets in terms of the smaller generating set. All
of the relations in HgP(V )* follow from the relations in Proposition 5.9 and the
relations below. If V is finite, then some of the elements appearing on the right hand
side of these relations may not appear in the list of generators of H%P(V)+. Any
such element is to be regarded as zero. We begin with the products which land in
dimensions where there is no torsion. These are easily computed using the maps q,
and p.

PROPOSITION 5.10. (a) Let i,j,r, and s be integers with 0 <i,j,r,s<m and
i#j, r#s. fm>2, then

cijers = dildrue + (A dr-dY drh)e

i ﬁ,’j""ﬁrs €0 + Oa D2 +

Bij+Brs=Big

; 1 k k k
A dri—df7 e - (dildrs - %7 d73)dyp — g dgy da )

P 5ij+ﬁrs Rk
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where a =8, + Brs —7,-
If m=1, then

07 ,0s i1 04 .0
C;;Crs = d,’jdra 6ﬁ + (d:;dr‘;‘d,jdr:)

i 0+

€ C
ijtPrs Byj+Brs—P1g !

Co(1).

Byj+Brs—op(l)
(b) Let i, j, and r be integers with 0 <i,j<m, i#j, and 1<r<m. Then

Ty
CijDr: dij 6}3ijDr + UaDr‘i—l -+

ki riy o ks T ks
m (dij _dij) Il dyy —d-o J] Clr+1 s
s=0 5=0 ? € s
p ,@i]’+7r k>

kz=ral

where o= f3;; + vr—7,44-

(¢} Let i, ] be integers with 0 <i, j<m and i #%j. Then

¢;jDm = d?;je ij + & Co(1).

B; ﬂ,‘j+7m“ao(1)

(d) Let i,j,r,and s be integers with 0<i,j,s<m, i#j, r>1, and
¢s € P(x+1)-P(r). If ¢, € (r+1)— (1), then

05 % .
¢;; Cs(r) = d;7 dg, 6,52-3-«;»&3(1")—(10(1‘)60(1‘) + 0aD,Ci(x) +

i~y 0j3r 37 kO 5
d;;dy,—d;;dg,dig-dipd}d-a . %, (1)
P Bijras(r)~ay(r) Frll)

E31
bp e B(rl)=(r)

where o = 3, ; + as(r) — v, - ay(r).

¢, g ®(r+1)-®(r), then

0f 53¢
Cz'j Cs(l‘) = dtj d08 €ﬁij CO(I‘) + 55;’3“*“’0(’}“QO(T+1)CO(I+1)'

(e) Let i,j,r,and s be integers with 0<i,j,s<m, i#j, r>1, and

¢s € O(x+1)-®(r). If ¢,,., € B(r+1)-P(r), then
61 Ds Ca(r) = dij €5, Ds Cor) + 00D 43 Cora(r) +
Troqkd _ siNE ke e Sk
ks (dz'j _dij)tl:lodst - k>3+1d_atl:l0dsil,t )
) = €5, (1),

k2s+1
(}5& € Q(?"{"l)"é(?’)
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where o = 8 + 75 + as(r) = V41~ @4y (1) and 6 = B;; + s + os(r) — o (r).
f g € 2(+1)-2(r), then

D C (I‘) - ds] fﬁ D3 C (r) + 5;3 +’Ys+as(f) 00(T+1)CO(I+1)

(f) Let r, s>1 and assume that 1 <j<m. If the irreducibles that appear in

®(r+ s) appear with equal multiplicities, then
a a; _dr+3
C;(r)Cy(s) = C;(r+s) + Z "“—p——ﬂa (r4a)—ay (r+s) RR(TS).

k#j
¢ P{r+s+1)~S(r+s)

Moreover, the integers &2;‘3 may be selected to be the products d " so that the
£,(r+5) correction terms are not needed.

Since the elements &.(r) appear in so many formulas, we include a
description of products involving them.

LEMMA 5.11. Let i, j, k, r, and s be integers with 0<i,j,k<m, r,s>0, and
¢ € @(S+ 1)*@(8).
(a) Ifi#]j, then

. kj R
c;; Ryl(s) = dyj cﬁijnk(s).

(b) If ¢; € ®(r+ 1)~ P(r) and ¢, € O(r +s+ 1)~ &(r +5), then

C;(r) ky(s) = a €aj(ryray(r )_ak(r+s)/~:k(r+s)
and
- Ir il kt -
D;C;(r) kyls) = di; :I:Igdﬂ 67]_+aj(r>+ak(s)_ak(rﬂ)nk(r%—s}.
In  the formula for  C,(r)&,(s), replace €aj(r)+ ag(s) - ag(r+s) by

“a]( Y+ apl(s) — ap(r+s) 1f‘a + ay(s) - oy r+s)| is zero.

() ¢, € @r+1)-®(r) and ¢, ¢ O(r +s+ 1)~ 8(r +5), then C;(r) & (s)

and D; C;(r) &,(s) are zero.

To complete our description of the multiplicative structure of H”(‘SP(V)+ we

need to describe the products of various pairs made from elements of the types C,(r),
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D;C,(r), and D;. If we use the convention that Dy = C;(0) =1, then the products
we must describe are all special cases of the general product (D, Ci(r))(Dj, C;(s))s
where 1,5 >0, ¢, € &(r+1)- (1), ¢; € P(s+1)-P(s), i"is O ori, and j is 0 or
j. We may assume that i’ >j’. Recall the formula given in Theorem 5.1(c) for the
product C{j)C(k) when p=2 and j+k>n,. Observe that this formula may be
obtained from the binomial expansion of (e + fx)3+§"n1 by replacing the powers of
% by various generators C(t). The formula for our general product is related in a
similar way to the expansion of an expression of the form ﬁ (a; +b,;x). The
summands in this expansion are indexed on the subsets of the sezt:?O, 1, ...,n}. The
summand corresponding to the subset I is

(121 p)"

i1 i€]1
where |I| denotes the number of elements in I. To describe the analogous part of our
formula for (D, Ci(r))(Dj,Cj(s)), we must specify the indexing set which replaces
{0, 1, ... n}, the factors which replace [[a, and []b;, and the procedure for
replacing the powers of x by the appropriate D, C.(t}.

In the p=2 case, describing how the powers of x are to be replaced by the
generators C(j) is very simple because, if j >n;, then the next generator after C(j) is
always C{j+1). However, when p is odd, the generator after D, C,(r) may be either
D41 Cpir(r) or Cy(r+1). To handle this complication, we introduce two functions f
and g from the nonnegative integers to the nonnegative integers. These functions are
to be chosen so that, for any i>0, Ctir1y(8(i+1)) is the generator immediately
following Cg(;,(g(1)) in our stairstep ordering. If Cf(n)(g(n)) is the last generator in
HEP(®)+, then we define f(i)=0 and g(i)=g(n)+i-n for i>n and use the
convention that D;C,(r) is to be regarded as zero if it does not appear in the list of
generators of H*GP(<I>)+. Each time we use this notation, the initial values, {(0) and

g(0), of the functions will be specified to suit the particular application.

The indexing set which replaces the set {0, 1, ... n} is related to the
difference in dimension between the product (D, Ci(r))(Dj, C,(s)) and the lowest

dimensional generator D, C;(r+s) which should appear in its description. If r>0



86

and 0 <j <m, then define the subset @ ;(r) of ®(r+ 1) by
Q,(r)=&(r) U {p;:i<jand ¢, € &(r+1)-d(r)}.

Let @ .,(r) U @j,(s) denote the disjoint union of the sets @ ,(r) and <I>j,(s). Our
replacement for the set {0, 1,...,n} is the set ¥ obtained by deleting from
®.(r) v <1>j,(s) a subset equivalent to the set @ ,(r+s). We abuse notation by
writing ¥ as @,(r) U <I>j,(s)~<I>i,(r+s). Observe that <I>],,(s) is equivalent to the
disjoint union of ¥ and @ ,(r+s)-®,(r). Let u be [¥]-1 and number the elements
of ¥ from 0 to u. Let h be a function from the set {0,1,..., u} to the set
{0, 1, ..., m} such that the ith element of ¥ is isomorphic to the irreducible

representation ¢’h(i) .

One of the coefficients appearing in our formula is determined by a certain
element o« of RSO(G) with lai=0 and &aGlg(). This coefficient will be £, if
|aGi <0oro, if |aG‘ = (. To simplify our notation, we write X, for either of these,
relying on laGl to indicate whether fa or o, is intended. Another coefficient will
depend on a certain element 8 of RSO(G) with ]ﬁG] =0 and |8| > 0. This coefficient
will be €, if |8] >0 and pg if |8l =0. We write ¢4 for either of these, relying on 18]

to indicate which is intended.

PROPOSITION 5.12. Let i, i, j, j’, r, and s be integers with r,s>0,
$; € ®(r+1) - ¥(r), ¢, €P(s+1)-®(s), !'=0 or i, j'=0 or j, and I'>j. Let
¥=2&,r)u <I>].,(s)—<I>Z,,(r+s). Initialize the functions f and g by

i, if ¢, € O(r+s+1),
f(0) = ‘
0, otherwise,
and
r+s, if¢, € P(r+s+1),
g(0) = .
r+s+1, otherwise.

Let u==|{¥|-1 and number the elements of ¥ from 0 to u. Let A C ¥ and let s’ and
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s’ be the number of elements isomorphic to ¢; in A and <I>i,(r+s)-<1>i,(r),
respectively. If the subset A of ¥ contains the elements numbered jg, i, ... Jw,

with jo <j; <... < jw, then let

koo S TP U R L Ry G TGe-tg
da = tI::[O dihiio zgo 9is }
h(js)#i h(i¢)=7

s = [ f f

€4 = € € R
t=0 ﬁ,h() t=0 ’6}1:
hGozi Y || nGn=i

and

where

_1 w
o =97 X gy * +

1
h(io)#i AN

10,5

¢_ili:¢tf§l(r)¢t} + [(Sl+S,r)¢;l¢O]j¢0 +

s - (}S”l Z ?y .

The tag j #0 on the bracket about the (s’ +s') qSJ'-laSo indicates that this term is
present only if j £ 0. The 2s term in « indicates 2s copies of the real one-dimensional

trivial representation. If & € RSO4(G), then let

&A: d

If A =0, then let d%, €%, d,, and X, be 1.
Hi<k<mand ¢, € P(x+s+1)-P(r +5), let
ekzgﬁ,

where
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Bo= oy(t) + as) + 7, + 7j;—ak(r+s)}

and let Ay be

Then

(D, G (D Cy() = 5 dy g X, Drgapy Croan(®1AD) +

Z A0y Ri(r+s).

k=
by € Q(r+s+l) F(r+s)

REMARKS 5.13. (a) Let r>1. If ®(r) contains r copies of every irreducible
complex G-representation, then «,{r) is independent of i and it is easy to see that
Ci(r) =C,(r) for every i and j such that ¢;, ¢; € ®(r+1)-®(r). Moreover,
C;(r)=C;(1)". Thus, if ® contains every irreducible complex G-representation and
these representations appear with equal multiplicities in &, then C,(r) generates a
polynomial, or truncated polynomial, subalgebra of H&P(¢)+. In this case, the
elements D , for 1<j<m, and C,(1), for any i, generate H_E;P((l?)+ as an algebra
over HGS

(b) If p=23, then we may choose the integers d« so that dg = %1 for every
a in RSO4(G). When this is done, the assignment of do to o is a homomorphism
from the additive group of RSOy (G) to the multiplicative group {+£1}. With this
choice of the integers d, all the relations among the d;3 and the a;j given in

Definitions 5.4, except the one involving a sum, hold in Z as well as in Z/3. H{r>1
and ¢;, ¢; € $(r+4 1), then

Cix) =0, i(r=as(r , C (1)

Thus, the only elements of the form C;(r) needed to generate H5P(® )+ as an algebra
over HGS are the elements Cy(r) for r> 1. Also, a pair of elements c,; and cr, will
generate Dy and D, if §;(c;;crs) is nonzero for only one value of k. In particular, ¢y,
and ¢, generate D; and Dy. When all three irreducible complex G- representatlons of
Z/3 appear in ® with equal multiplicities, gy, ¢, and Cy{1) generate HGP(Q)

an algebra over HGS

6. PROOFS. The results stated in section 5 are proved here. As indicated in
Remark 5.7, our results for p =2 are a special case of the results asserted for odd
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primes. They have been presented separately only because they can be stated so
simply. The proofs given here are independent of whether p is 2 or odd. We begm
by construct the elements c,; and C;(r). We then show that they generate _HGP(V)
as an algebra over HESO. Finally, the relations stated at the end of section 5 are
verified. Throughout this section, ¢ is a set of irreducible complex representations of
Z/p and ®(0), ®(1), ... is a proper filtration of ®. We order the elements of ® in the
standard proper ordering introduced in section 5. Recall the maps q; and §; and the
cohomology classes x and x; from the introductory remarks in section 5 and the
representations o,(r), f,;, and 7v; from Definitions 54 and Theorem 55((:1) If
A C P, then x also denates the image of x € H(P(®) "Ye) in HG(P(A) }(e); thus,
the powers of x are thought of as the standard additive generators for the
nonequivariant cohomology of all the sub-projective spaces of P(¥). For each integer
j with 0<j<m, let P;(®) be the component of the fixed point space of P(®)
associated to the irreducible representation ¢;.

The classes ¢,; and C,(r) are constructed by defining them on the smallest
possible projective space and then inductively lifting them to larger projective spaces.

CONSTRUCTION 6.1. (a) Let i and j be distinct integers with 0 <i, j <m. The
space P({¢;}) is just a point and the space P({¢,,¢;}) is G-homeomorphic to S b1,

The inclusion of P({¢;}) into P({¢i »¢;}) induces the cofibre sequence
P({e;)" < Psr et 3 "0
Let ¢;; € Hg""(P({¢i,¢j})")(1) be the image of 1 € A(1) zﬂg”(s )(1) under 7.

Then q]»(cij):O by exactness and q,(c;;) =€5.. by the commutativity of the
diagram "

Bij

P({e:;N" =2 P({4;, 6,7

| |

€
s° -——oﬁij Sﬁ”.

These are the correct values for qz(c ) and q;(c;;) because x; and x; are zero. Since
the map W*'Hﬁ”( S Y e) —tHG”(P({cﬁi,qJ) D¥)e) is an isomorphism in dimension
Bijr ple;) =x

Let ¥ be a subset of & which properly contains the set {¢; ,¢;} and assume
that, for every proper subset A of ¥ containing {qﬁl.d) }, ¢;; has been defined in

HG”(P(A) }(1) and has the proper images under the maps g, and p. Pick an

irreducible representation ¢, which appears in ¥ at least as often as any other
irreducible. If no irreducible appears more than once in ¥, then we may also insist
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that t#1i, j. Let A=U-{¢,}, and let V be the representation ¢;'3Y 6. The
inclusion of A into ¥ induces the cofibre sequences pea

pa)t 4 Pyt o sV
and
6 G
P(8)" S P (1) - sV
B8
We will lift the class ¢;; € Hg Y(P(AYT)(1) along the map
By Bis
0"(1): Hg ' (P()")(1) ~ Hg (P(4)7)(1)
induced by 8. To distinguish the class ¢;; and its lifting, we will denote the class in
Bi; oy
Hg (P(A)YT)(1) by ¢;;. The maps qy, for k #t, factor through 67(1), so any lifting

of ¢;; along 67(1) will have the right image under q;, for k #t. Moreover, since
6*(e) is an isomorphism in dimension G, ., any lifting of ¢;; will also have the right
image under p.

179

It remains to show that we can choose a lifting of ¢;; with the correct image
under q,. We have chosen t so that the long exact cohomology sequences associated

to our cofibre sequences have zero boundary maps. IfIVGI > 2, then Hgij(SV)(l) =0
and we take c;; to be the unique lifting of ¢,,. If |6 > 2, then ¢, induces a
cohomology isomorphism in dimension B;; and this lifting of ¢,; along 67(1) must
have the correct image under q,. If }V = 2, then the short exact sequence

8. 8 ax B,
0 = HGzJSQ o HG ]Pt(\ll)+ vt HG“Pz(A)+ 50
splits. The end terms are
By Bi; ~
HG7'S* 2 R and  HG'P(A)T = (2).
Bij . . . .
The image of 1 € Z=R(1) in Hgs JPt(\Il)+ is éﬁi _»X;. By our induction hypothesis,

9:(1)%(01‘]'):%(6“): :}7 5

Since plc Z-j)::x, palc;;) is the generator of HG (Pt( y")(e). It follows that
Q:(Cz;) z_} 63@ +€6ij-2xt'
If IVGl =0, then no irreducible appears more than once in ¥ and we have
selected ¢, so that t £1, j. In the diagram
0 - HESY = HG/P(#)* —» He'P(8)* = 0
ley lqq Lq,
0 - ngso - HgijI’t(\Il)+ - 0
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comparing the cohomology sequences of our two cofibre sequences, we have that
8,4 Bis . T . .
Hs 7SV and HG”S0 are (Z) and the map ¢, is multiplication by p. Thus, if z is a

lifting of ¢, ., then by adding elements from the image of Hgifs\" to z, we can adjust

ijs
q:{(z) by any multiple of p. It now suffices to show that there is a lifting z with
q.(z) Edzf; Eﬁij mod p. The lifting problems for P(¥) and P({¢;, ¢;, ¢;}) can be
compared via the cohomology maps induced by the inclusion of {¢,, ¢ ;s ¢,} into 0.
This comparison indicates that it suffices to show that the lifting problem can be
solved when ¥ = {¢,, ¢ ¢.}. In this case, consider the diagram
0 — Héz‘jsv N Hgijp(q!)+ 97 HgijP(A)+ 50
le la L q;

0 - mais’ HGP({8;,60)" < HGP{s,)" - 0

comparing the cohomology exact sequences for the pairs (P(¥), P(A)) and
(P({¢;,9:}), P({¢;})). Let a =p3,;-5,;. If z is a lifting of ¢,; along 67(1), then
q;(z) =q;q(z) =0. Thus, g(z) =(y) for some y € Hﬂ”( ﬁtj)(l). Since pq(z) is
the generator x of Hgij(P({d)j,qﬁt} ){e), p(y) must generate HgijSﬁtj(e), and y
must be ¢4 + nke for some integer n. The diagram
BijePi; T By
HG7S™Y = HG'P({6;,6.0)"
le P
Bija0 = Bij . +
HG S i .HG P({‘?s})
commutes and gives that q,(z} = qq,(2) = ¢(y} = €¢(0a) mod p. By the definition of
4t
O, €{0a)= tj ﬁ

{b} Letr 21 and let ¢; € ®(r+1). The cofibre sequence associated to the
inclusion of P(®(r)) into P(®(r) U {¢,}) is

P(@(r))" » P(e(uU{s;})" S %),

Define (r)EHG ®(r) U {4, DT)(1) to be the image under 7*(1) of
i(r) oi(r

IEA(l):HGJ (S it ))(1). Since 7" is an isomorphism in dimension «(r),
‘a~(r)’/2

p(Cy(r) = x

diagram

The cohomology diagram in dimension «(r) induced by the
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Pamuis)) —b P@@U{s)*

T 7
Sr _6’ S(’j(")
indicates that q;(C;(r))=¢, ., ,x;. I k#j, q(C;(r))=0 for dimensional
j

reasons. As we dxd with the definition of ¢;; in part (a), we extend the definition of
C;(x) to HGP(Q) by working inductively along a sequence of subsets of & between

(r) U{¢;} and ®. The only difference between the argument given for ¢; ;; and the
one which should be used for C,(r) is that the liftings of C,(r) should be chosen to
behave properly with respect to p and §, instead of p and q,. This change is
necessary because q;(C;(r)) is more complicated than qi(c;;). The behavior of the
C;(r) with respect to the maps q, is established in the lemma below.

LEMMA 6.2. Letr>1and ¢, € ®(r+1)-®{r). Then

. 1 (e5, + € X, )
Qe (Ci(r)) = xj ¢, € o(r) Oki Bri—2 *

ik
If ¢,€ ®(r+1)-@(r) and j # k, then
kj T (dfies. +€ x,)
qk(c (r)) = xi (djifgjk***ﬁ k—zxk) ¢, o(r) L Bji—2 K| 4

itk

; ki
o oW,
pred(n) aj(r)=r Xk -

iF ik
If ¢, & (r+1)-2(r), then q,(C;(x)) is zero.
PROOF. If ¢, & ®(r+1)-®(r), then q,(C,(r)) vanishes for dimensional reasons.
Therefore, assume that ¢;, ¢, € ®(r+1) - &(r). Let
U=>0(r)U{¢: ¢ € D-P(r) and ¢ = ¢,}.
The image of the class C,(r) in HEP(®)+ under the map

H5P(®)" — H5P(¥ U {s, )"

may be computed using the maps p and q,. It is the class C;(r) in HGP(Y U {¢j})+.
The image of this class under the map

HEP(W U {¢,; )" » L5P(¥)"
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is the class o, (r)=arp(r) Cy(r). Thus,
j

q,(C;(r)) = qk(oaj(r)—ak(r) Ci(r)) = 0aj(r)_ak(r)Qk(Ck(1’))»

since P (®) =P, (¥) and the map q; for P(®) factors as the composite of the map
HEP(¢)+ -+ ,H’E_]P(\I!)+ and the map q; for ¥. Observe that
Taj(ry—ag(r) = (aﬁjk‘ﬁkj) ¢<E§(r)aﬂji‘ﬁki R FIORENG!
iF 5k

for some integer a. With this description of o ) it is easy to derive the

@ v(r)—ak(r
j
formula for q,(C,(r)) from the formula for q,(Cy(r)). The formula for q,(C.(z) is

derived using an iterative procedure. Let s>r and pick ¢, € ¥ with t #k. The
image of C(s) € H5(P(¥)")(1) under the map HEP(¥)" - HEP(¥ - {¢,})"

0, Ce) + €, Culst1)

Iterating this process to eliminate from ¥ all the irreducible representations not
isomorphic to ¢, we move from HE;P(\II)+ to HGP(n, N E_H"Gl:‘k(\ll)+ and from
C,(r) to the expansion of

x| 1 (e, + € x,) |
¢, o(r) Pki Bri=2 F

itk
Oun the other hand, the image of Ci{r) under this sequence of transformations must
be q;(Cy(r)).

Now that we have defined the classes ¢; ; and Cj(r), we must show that they
0
generate HEP(® )* as an algebra over 5s.

PROPOSITION 6.3. The classes c,;, for ¢;, ¢, € ®(1), and the classes C(r), for
r>1and ¢; € ®(r+1)- &(r), generate H%P(®)+ as an algebra over H&SO.

PROOF. If <I> is infinite, then, by the proof of Theorem 2.6, H5P (<I>) is the limit of
the H5P(A )" where A runs over the finite subsets of ®. Thus, it suffices to prove
the result for @ finite. Recall the functions f and g and the subsets @,(r) of ®
defined in the remarks preceding Proposition 5.12. For this proof, initialize f and g
by f(0) = 0 and g(0) =0. We will show, by induction on n, that the classes ¢;; and

C;(r) which are defined in H’“GP(<I)f(n)(g(n)))+ generate that Mackey functor as an
algebra over H5S°. The result is obvious for n = 1, since Qf(l)(g(l)):{cﬁo} and
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P({#y}) is a point. Assume the result for n. Denote af(n+1)(g(n+1)) + Yf(n+1) BY
a. The boundary map is zero in the cohomology long exact sequence associated to

the cofibre sequence

P(®q, (5)* 5 (@, (0+1)" ~ S

Thus, we have a split short exact sequence

+ 8"

0 - HES™ - HGP(®¢,,(g(n+1)" > HGP(¥¢,(e(m)” - 0.

All of the classes ¢;; and C;(r) which are defined in HgP(CDf(n)(g(n)))+ are also
defined in ng(éf(nﬁ)(g(n—%l)))f Moreover, 6* takes these classes in
H*GP(Qf(n+l)(g(n+1)))+ to the corresponding classes in HEP(Qf(n)(g(n)))+. Thus, to
generate H%P(Qf(n+l)(g(n+l)))+ as an algebra over HESO, it suffices to add to these
classes the image 2z of the canonical generator of A(1)=H&(S")(1). Clearly, p(z) is
the generator of Hg(P(<I>f(n+1>(g(n+l)))+)(e). Moreover, for k #f(n+1), q,(z) =0
since g, factors through H"GP(éf(n)(g(ll)))+. Finally,

Afne1)(2) = | € (Xf )g(nH)
n a~g(n+1) \"T(n+1)

since the diagram

Qf 1 )
Petnan)(Prinry @8+ T2 (P (g(nt1))”

SQ(”+1) 4

RSSO, — g

s

commutes. The elements z and Df(n+1)cf(n+1)(g(“+1)) must be equal since they

have the same image under the maps G, and p.

The equations in Propositions 5.9 and 5.10 describe elements in dimensions
where there is no torsion. As a result, these equations can be checked easily by
applying the maps p and §; to both sides. The equations in Lemma 5.11 are easily
checked using the maps p and q; because the images of the classes & ;(r) under the
maps q, are so simple. However, the formula in Proposition 5.12 is more difficult to
verify.

PROOF OF PROPOSITION 5.12. We may assume that |®] Z}@i,(r)‘ +;'I>j,(s)! s0
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that all of the Df(lA])Cf(lAl)(g(IN)) on the right hand side of the equation are

nonzero. If |®| is too small, then form a sufficiently large set ® by adding enough
copies of ¢, to ®. The proof below applies to ®’; the result for ¢ is obtained using
the cohomology map induced by the inclusion of & into ®’. We show the equality of
the images of the two sides of the equation under the maps p and q;. Since the map
p preserves products, p(D,C; (r)D C,(s)) is the generator of H(P (<I>)+)(e) in the
appropriate dimension. The only term on the right hand side of the equation in
Proposition 5.12 which is not in the kernel of p is the summand corresponding to ¥

regarded as a subset of itself. This term is XWDf(u)Cf(u)(g(u)) and its image under p

is the generator of H*G(P(CI))+)(e) in the same dimension. Thus, the expressions on
the two sides of the equation have the same image under p.

Let k be an integer with 0 <k<m. If ¢, &€ P{(r+s+1)-O(r+s), then both
sides of the equation vanish under q;. If ¢, € ®(r+s+1) - ®(r+s), then expand the
polynomial obtained by applying g, to D, C,(r) D C,(s). Each term in the
expansion consists of the product of an mteger, a power of x,, and an element of the

form ¢ 5 Ea, or €, fa from H"(‘SSO. We classify these terms according to the factor
from H"GSO. There is exactly one term with a £ s its integer coefficient is one. There

is exactly one term with an € its integer coefficient may be zero. This term is

exactly the part of q, which is detected by §,. There may be any number, including
zero, of terms containing a product € f These terms are all torsion elements of
order p.

Expand the polynomial obtained by applying qj, to the right hand side of the
equation and observe that the same three types of terms appear. The summand

indexed on ¥ regarded as a subset of itseif is the only source of a éa. It is easy to

see that this £ term exactly matches the corresponding term from the left hand side
of the equation. If i’ >k, then the expansion of the image of the right hand side
under q; will contain no €4 term. In this case, ;(D,,) is zero and the image of the
left hand side under q; also lacks an ¢4 term. If i’ <k, then numerous summands
contribute to the €, term of the left hand side, but the coefficient of the &;(r+s)
term is explicitly designed to ensure that the €5 terms of the expansions of both sides
match. The only problem here is that it is not obvious that the coefficient A, of
kp(r+s) is an integer. To show that A, is an integer, it suffices to show that,
modulo p, the image under q, of the left hand side is equal to the image of the part
of the right hand side indexed on the subsets of W. Since the g4 §  terms are all
torsion of order p and the &,(r+s) summands on the right hand side contribute
nothing to them, proving the equation

Qk(D,-/Ci(T)DjICj(S)) = Qk(AXC: dy i€y X A f(|A|)Cf(|A|)(g(IA|))) mod p

also shows that the ¢ 5 terms of the two sides agree and so completes the proof of
the proposition.

We prove this equation modulo p by transforming the right hand side into
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the left. In Theorem 5.5(c), q,(C,(r)) is described as a sum of two terms when j # k.
The second term can be ignored in this transformation process because it vanishes

modulo p. Recall that each x a8 2 X, for some virtual representation a«. We
accomplish our transformation by writing o as a sum of differences n—¢ of
irreducible complex representations. We then rewrite X, =X, 88 the product of the
elements Xn—¢' To see that such a rewriting is justified, recall that if § and v in
RSO(G) are chosen so that the elements below are defined, then in H¥(S°)(1)

£ £ =¢ fﬁn7:0 €ghy =Pes,

and

76777 Tpiq +A Foeqy:

where A is some integer depending on 8 and v. Now observe that every summand in

the expansion of qk(Df{lAl)Cf(lA[)(g(]Am) contains either an €gora fﬁ. Thus, the

Ky, CITOT terms that might arise in the rewriting of X, as the product of the x
n

are killed by the € and fﬁ from qk(DmA')Cf(mh(g(‘Al})).

We perform our transformation of the left hand side in four stages. During
the first three stages, we think of the left hand side as a sum indexed on the subsets
of ¥ and work on each summand separately. Therefore, fix a subset A of ¥ and let

a be the virtual representation such that y = X, - Recall that s’ and s’/ are the
A

number of elements isomorphic to ¢, in A and ®./(r+s) - ®,(r), respectively. Recall

that u=|¥|-1, that the elements of ¥ are numbered from 0 to u, and that h is a
function from the set {0, 1, ..., u} to the set {0, 1, ..., m} such that the i'" element
in ¥ is isomorphic to ¢h( 0 Assume that the elements of ¥ numbered
Jos Jis -0 s Jw, with jo <j; <...<Juw, are in & and that the elements numbered i,,
gy ..., 1w, with i3 <i; <...<liy, are in ¥-A. For any integers q and t, with
0 <q, t<m, abbreviate €5 and ¢ ) by €, and &,,. Define the elements o,

,@ —
g, and oy of RSO(G) by o ¢

_ - >0 _ _
Qy = (¢z T ¢f(ilA[)> qste@i/(r)t + [r(¢i1¢k“ ¢f(|1/-\|)¢i)]i¢f(|l:\|),k +

t#f(lah,:k

[(f +8) (67" 654~ Pl aly ¢’“)]f(|A|) sik T
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_1 -1 -1
i ¢V¢f<m1)¢k]f<w)>i>k + [@ qsk_z]bf(m{)»k

> b
a, = {¢71 - 71 bre@u(res)=@y(r) ) +
2 (’ f(Mi)){ t2(Al), 5.k
[(s-5 =) (87" 6467 ¢0) Jo s +

1] -1 s
[S,(d’j Py ¢f(lAl)¢j)ij¢f(lAi),k +

-1 -1
[s(éj ¢f(mly¢f(ml)¢k)]f<mt)¢j,k

and
Qg = 00y Oy,
where
1, if it > f(lAl),
o= {
0, otherwise,

In the first stage of our transformation, X, is used to convert
1

0 0
dy_ae_aX, q’”<Df(lAl) Cf(1A1>(g(W))>

into the product of

4 0y %(Dirce‘(r))

A ¥-AYo,tay

and



108

kt
glah-r-s' H € + £ Xy,
Xz by ¢ qsfdAf)(g('Ah)_Qll(T)( f{;dl),f ([AI),S f(!AI),t ) .

t£f(lal) k

k1Al g ah-r-s
d + ' b
[( flaly fdah gf(lAl),}; X‘“> ]f(m)#k [ﬁ f(lA?),k‘{kJ

i'>f(laly>k or”
flalh> k>

Here, § is as in the definition of ay and
{ 1, if i > (1A, k;
8 =

0, otherwise.

In the second stage of the transformation, X, is used to convert this product into
2

the product of d};p A GI; A X, qk<Di,Ci(r)> with the three factors

.8 H (d +€ XL) k3 s
el g rin- e T i [(d,-kﬁjk * gjk)‘k) ik

1]k

Ef()

glalhy-r—s—¢' d )
X ( f(lah) f) “ahfo * gf(lal),m)x") )

k tO
£fahk

and

LRI(PY)) g(lah-r—s~s
d € + Xy X
B flah.e flahk gmah,k ‘) ]mm)#ig flah,k kJ

d>flah>k or”
flah>k>i’

factor has been transformed into a d* ® factor.

0
—afw-a v-av-a
by the[ s —s') (qﬁ bp— ¢;1¢o)jo¢j , summand in ay. If

k =0, then obviously no such transformation is needed. If j =0, then there will not

k

be any elements of ¥ isomorphic to ¢;, and the value of dw afu_a will not depend

on k. In the description of the factor above indexed on t, for 0 <t<w, and

Observe that the d°

,—-’S

This is accomplishec

throughout the third stage of the transformation, the set ‘I)f(m[)(g(lAD) ~®,(r+s)is
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identified with the set {¢f(z) :0<t<w}. By this identification, constructions that
would naturally be indexed on (DmAD(gUAI)) ~®_,(r +s) may be indexed on t. The
description of the set {(gﬁfm : 0 <t < w} involves our usual abuse of notation in that,
whenever q # t and f(q) ={f(t), the representations ¢¢ ,, and ¢y, are intended to be

distinct, but isomorphic, elements of the set.

The factor

kt . "
qk(Di,Ci(ar; ¢t€¢il(ﬂ)‘¢il(7‘)<djt6ﬂ + 5jrx’°> [(dj’;z €t gjkxk)s ]#k

t#5k

appears in every summand of the transformation of the right hand side of the
equation. We therefore factor it out of the sum and ignore it for the rest of the
transformation. Observe that this factor consists of qk<Di, Ci(r)> and that part of
q,‘,(D].,Cj(s)> which is associated with the set @ ,(r+s)-®,(r) when &,(s) is
regarded as the disjoint union of ¥ and & ,(r+s)-®,(r). Thus, we must transform
what remains of the sum after this factor is removed into the part of qk(Dj,C j(s))

coming from V.

In the third stage of the transformation, X, is used to transform the

remaining part of the A summand into

W W
d}c k dk,f(t} (dk,f(‘é) .
7-4“9-a LIO ( ihGn SihGy) + éj,h(jt)xk) tH e T ﬁjkx’“>
h(j#7 h(je =i

For the fourth stage of the transformation, consider the subsets A of ¥ that
contain the last element ¢h(u) of ¥. The summands indexed on A and A—{qﬁh(u)}

contain the common factor

v=l f(i,—1),h(iy) u=l f(yi,—1),j Ehets —

I dn I d 0 eyl O el

=0 i) ¢=0  5h(iy) =0 Ik
L(M#J’ h(zt) j h(iy)#£;5 h{iy)=j
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g kf(‘) w=1 EF()
{ g ( LERISIEN + gj,h(iz)xk) I:IG (dzk €t 3 Xk) ;
Jt )

which we have written down using the i, and j, numbering of the elements in ¥~ A
and 4. Each of the two summands contains exactly one term not in this common
factor. If h(u) #j, then these terms are

f(w)h(u) kf(w) _kh(w)

dintw €ne T 9 Gne T ™ T Lancw Sne T8 e ™

If h(u) =], then these terms are

Lf(w) Ic]

k+£3‘)kxk = d; +§

df(w)v] . k i

ik et Ay

In either case, the result is independent of A and may be factored out of the sum.
Moreover, this factor is exactly the contribution that ¢h(u) should make to
qk(Dj, Cj(s)) when ¢, is regarded as an element of Qj,(s) under the identification
of Qj,(s) with the disjoint union of ¥ and & ,(r+s)-®(1).

The sum that remains after the factor associated to ¢h(u) is removed may be
regarded as one indexed on the subsets A of ¥ - {gﬁh(u}}. We now pair the summand
indexed on a subset A containing the last element éh(UMI) of \If~{¢h(u)} with the
summand indexed on A‘{¢h(u—1)} to obtain the factor of qk<D].,Cj(s)> associated
to 45,3(“_1}. Repeating this process until the elements of ¥ are exhausted, we recover

the part of qk(Dj, Cj(s)) associated with .

APPENDIX. Computing H*GSO. Here, we outline the calculation of HESO. The
computation of the additive structure and, for G=12Z/2 or Z/3, the computation of
the multiplicative structure are unpublished work of Stong.

Three cofibre sequences suffice for the computation of the additive structure
of HE;(SO). Recall that { is the real 1-dimensional sign representation of Z/2. Let 5
be a nontrivial irreducible complex representation of G = Z/p, for any prime p. Let
G*— Sy be the inclusion of an orbit and let Snt—= 8% and S¢T— S° be the maps
collapsing the unit spheres Sn and S¢ to the non-basepoint in S°.  The cofibre
sequernces associated to these maps are

GT ST - TG*

ST]+"’SO£’S”
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and
=gt 48985 s

The first step in the computation is obtaining the values of H?Sn+ and
Hg Sn™ from the first cofibre sequence.

LEMMA A.l. For any nontrivial irreducible complex representation n of G,

L, if ol = 0 and IaGl is even,
L, if lal = 0 and IaGl is odd,
HSSn* = <R, iflal = 1 and [a% is odd,
R_, iffal = 1 and |aG| is even,
0, otherwise,
R, if i} = 0 and laG‘ is even,
R_, if jal = 0 and ’ozG| is odd,
HESn* = <L, if ol = 1 and |a®] is odd,
L_, if la] = 1 and |aG| is even,
0, otherwise.

PROOF. The next map £G* » £G* in the first cofibre sequence is 1-g, the
difference of the identity map and the multiplication by g map, for some element g of
G which depends on 7. The homology and cohomology long exact sequences
associated to the first cofibre sequence have the form

= HSGT - HSGY 5SSyt 5 HS ,GT - HC Gt~ ..
and

L= HE'GT S HY G S HESHT » HEGT » HEG —» ...
The Mackey functor HS GT may be identified with the Mackey functor (H_S SO)G
defined in Examples 1.1(f). The difference 1 - g may be regarded as a map in B(G).
Under the identification of HS G* with (_HG )G, the first map in the part of the
homology long exact sequence displayed above becomes the map from (H,a s° )g to
(H_a )G mduced by the map 1-g in B(G). It follows that the cokernel of the map
(1-g).: HSG* » HSG" is the Mackey functor L(HS(S® )(e)) defined in Examples

1.1(e). Similar observations reduce the homology and cohomology long exact
sequences of the first cofibre sequence to the short exact sequences

0 - L(HS(S%)(e)) » HS Sn™ » R(HS_,(S°)(e)) » 0
and

0 - LEHE(S°)(e)) » HESn™ — REZ(S)(e)) -
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Since HS(5%)(e) =H,(S%2), LHESES)(e)) is zero if jal#£0. If lal=0, then
L(HS(SO)(e)) is I(Z) for some action of G on Z. This action is the sign action of Z/2
on Z when p =2 and «a contains an odd number of copies of (; otherwise, the action
is  trivial. Similar remarks apply to L(HZ'(S%)(e)), R(HE_,(S%(e)), and
R(H4(S°)(e)).

Notice the frequency with which H%S?f and HSS?}+ vanish. From the
dimension axiom, we also obtain that H_%G+:HSG+: 0 if tai#0. These

vanishing results determine most of the homological and cohomological behavior of
the maps ¢ in our second and the third cofibre sequences.

LEMMA A.2. Let a € RSO(G).
(a) The map ¢": Hg "S° = H&(S") » HE(S")

epi  for Jal #£0, 1,

mono for lal #£1, 2,
is {
iso  forlal#0,1, 2.

(b} If p==2, then the map E*:Hg—<50 = HE(SC) - H%(SO)

epi  forlal #0,

mono for jal £ 1,
is {
iso  forlal#0, 1.

The divisibility results involving Euler classes in Lemmas 4.2, 4.6, and 4.8
follow from this lemma. Moreover, from this lemma and the vanishing of H%SO, for
n€Z and n#0, one can derive all of the zeroes in the first and third quadrants of
our standard plot of H.’"GSO.

LEMMA A.3. Let o € RSO(G). Then H%SO =0 if Il and |aS/ are both positive or
both negative.

Lemma A.2 indicates that all of H%SO can be determined from the values of
H“GSO for the o in RSO(G) with -2 <ial<2. If p=2, it suffices to know H%SO for
the & in RSO(G) with -1 <ial<1. The next lemma describes H"(‘BSG on the edges of
these two ranges of values for lal.

LEMMA A4. Let o € RSO{G) and let n be any nontrivial irreducible complex
representation of G.

(a) If jai =2, then
H_%SO = coker (7: Hg_nG+ - Hg‘”so).
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(b) If |al = -2, then
HES® = ker (p: Hg' "S® -» HG'G™).
(c) If p=2 and lai=1, then
H%SO = coker ('r:J;I_QG—CG+ -—»HaG_CSO).
(d) If p=2 and jal = -1, then
H2S® = ker (p: Ho'°S® » HE™GH).

Moreover, in all four cases, H%(S")(e) = 0.

PROOF. Part (d) follows immediately from the cohomology long exact sequence
associated to the third cofibre sequence. Part (c) follows via duality from the
homology long exact sequence associated to the third cofibre sequence. For part (b),
consider the diagram

0 - H%SO - HgH’SO _f' Hé+nS7I+
lh
Hé+77G+

in which the row is from the cohomology exact sequence of the second cofibre
sequence and the vertical arrow comes from the inclusion of an orbit G into Sg.

Clearly, H%SO = kerf. By our computation of H_%Sn+, the map h is mono, so
ker f = ker hf. The composite hf is just p. The proof for part (a) is similar, but

uses the homology long exact sequence to describe HC,S° as the cokernel of the map

HS .G7 -+ HS 4 S° induced by the collapse map G - S8°. Dualizing the homology

Mackey functors to cohomology Mackey functors gives the result since the transfer is
the dual of the collapse map. In all four cases, the group H%(SO)(e) is zero either
because 7(e) is surjective or because p(e) is injective.

Most of the values of 11%80 for lal =0 and || # 0 follow immediately from
the cohomology long exact sequence of the second cofibre sequence and Lemmas A.1
and A.3.

LEMMA A.5. Let a € RSO(G) with |a| =0. Then

R, if IaGl < -2 and |aG| is even,
0 R, if |Gl <-1and laGl is odd,
H3S™ =
G L, if laG| > 2 and |aG| is even,
L, if |G| > 3 and |G| is odd.
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PROOF. Let 5 be any nontrivial irreducible complex representation. If }chl <0
then consider the portion

- ~ o [e 4 a ~ 1
Hg "SOZHGSn - HGSO o HESHT - U +1Sn_H6+ -0
of the cohomology long exact sequence of the second cofibre sequence. The left hand
term is zero by Lemma A.3 and the right hand term is zero by the same lemma

unless 1 GI is —1. If ]aG]: -1, then p=2, a=(-1, H%S?ﬁ is R. by Lemma A.1,
and H.mH "S° is (Z) by Lemma A.4. The last identification is based on the
observations that n must be 2¢ and HOGSO is A. By inspection, there are no
nontrivial maps from R. to (Z). Thus, if |aG| < 0, the middle arrow must be an

isomorphism.

If {aGl > 2, then consider the portion

Ha-z»r; 1 Ha+n 1 N HG+nSn~HGSO H6+nso

of the cohomology long exact sequence for the second cofibre sequence. The left and
right hand terms in this portion of the sequence must be zero by Lemma A.3.
Therefore, the middle arrow is an isomorphism.

If p=2, then the results above reduce the computation of Hf{;Sa to the
determination of H%SO, which is A by the dimension axiom, and HlG_CSO, which is

given by the following lemma.
LEMMA A.6. If p=2, then Hy ‘S° =R..

PROOF. Consider the portion
HOGSO - H%G+ - HESCNHG CSO HESO

of the cohomology long exact sequence of the third cofibre sequence. By the

dimension axiom, the right hand term is zero and the first two terms from the left

~{q0

S

are A and A, respectively. The value ofH follows by computation.

If p#2, then we must still determine the value of H%SO when jaj= %1 or
a € RSOy(G). The next three lemmas dispose of the o with |a| = +1 which are not
already covered by Lemma A.3.

LEMMA A.7. Let M be a Mackey functor and f: L » M be a map. If f(e) is a
monomorphism, then so is f.

PROOF. The composite f(e) p is a monomorphism and pf(1) = {(e) p.
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LEMMA A.8. Ifp#2, a € RSO(G), lal =1, and |aS| < 0, then HES® = 0.

PROOF. Consider the portion
Hg_ﬂsogﬂgsﬂ - H%so - H%ST)+ E; HGG+IST]~HG+1 7780

of the cohomology long exact sequence associated to the second cofibre sequence. The
left hand term must be zero by Lemma A.3. By Lemma A.l, HGS *= 1. Since

la+1-79/=0, _Ha"-1 "(S°)(e) is Z. The map f: HESn* —»HGH 5% is induced by

the geometric map S” = Sy which identifies the points 0 and oo in S”. From this
description, it follows that f(e) is an isomorphism. By the lemma above, { is a
monomorphism. Therefore, H%SO must be zero.

LEMMA A.9. Assume that p#2, o € R50(G), lal = -1, and |a®l> 0. Then for
any nontrivial irreducible complex representation 7,

HES® = coker (HQMN H_‘M’7 - Sn*).
Moreover, if |aG‘ > 1,

R

HES® = (Z/p).

PROOF. Consider the portion
Ha-H} 1g0 l‘. Hé+n-1sn+ - Hamsn EH%SO ng
of the cohomology long exact sequence for the second cofibre sequence. The right
hand term must be zero by Lemma A.3. The first part of the lemma follows
immediately. By Lemma A.1, H.am 1S *= R. The map h is induced by the
collapse map Sp* — S°. Since \a-l— n-1=0,
HGTH(8%)(e) = B (S1M)(e) = Z.

The map h{e) is an isomorphism by an obvious computation in nonequivariant
cohomology. If laGl > 1, then by Lemma A.5, HaM g0 =
from L to R with h(e) an isomorphism have cokernel (Z/p).

L. The only two maps h

If d # 0 mod p, then the only maps h: A[d] = R with h(e) an isomorphism

are surjective.  Therefore, once we have shown that _H_gSQ is A[d,;] when
B € RSO4(G), it will follow from the lemma above that H%SO =0 when |} = -1 and
o] =

al=1.

Lemma 4.6 follows from Lemma A.9.

PROOF OF LEMMA 4.6. Let o and 8 be elements of RSO(G) with lal=-1,
la® >0, |#|=0, and {ﬁG{<O Let 5 be a nontrivial irreducible complex
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representation. Consider the diagram
REZHE'S o H2S® = 0
l l
REH?;ﬁM‘ISO N HaG+ﬁS() - 0

in which the vertical arrows are given by multiplication by €5 or ugz. The rows of
this diagram are exact by the proof of Lemma A.9. Let y € H%MAI(SO)(D be a
generator and let x € H"‘G(SO)(I) be its image. Since p preserves products, p(£zy)
must be a generator. Thus, {5y must be a generator and so must £gx. Similarly,
p(pgy) is dy times a generator, so gy is djy times a generator. It follows that pzx
is a generator. This proves Lemma 4.6 in the special case where |o| = -1 and
’aG > 0. The general case follows from the special case and Lemma A.2.

Let o be an element of RSOy(G). The main difficulty in identifying H%SO
with A[da] is that we must select a representative for & in R,(G) in order to define
po and da. To circumvent this difficulty, we work primarily with elements of R4(G)
instead of elements of RSOy(G) in the remainder of our discussion of the additive
structure of HESO. If o is in ﬁO(G), we write HéSG for the cohomology Mackey
functor associated to the image of o in RSO(G). To work with elements of Ry{(G),
we must introduce variants of Definitions 4.5(a) and 4.5(d).

DEFINITION A.10. Observe that the procedure used to produce the element o in
Definitions 4.5(a) actually associates a map u: S L g% ¢ any element > ¢, — ),

of Ro(G). If a is a nonzero element of Ry(G), denote this map, and its image in

H%(SO)(l), by jia. Let ji, denote the identity map of S® and 1 € H%(SO)(l). If ¢ is

wz/‘ﬂi - S¢+E¢

a nontrivial irreducible complex representation, then let ¢, FER i denote

the smash product of the map ¢:S° » S? and the map fio. We also use ¢, , to
denote the corresponding element in H_é+¢(50)(1).

If o and B are elements in R,(G) which represent the same element in
RSO0y(G), then fia and fi; need not be the same class in H%(SO)(I). However, the

class €, , in Hé+¢(80)(l) is uniquely determined by the sum « + ¢ in RSO(G). This

uniqueness can be exploited to resolve the problems caused by dependence of Jiy on
a.

LEMMA A.11. Let « and 8 be in Ry(G) and let ¢ and n be nontrivial irreducible
complex representations such that o + ¢ and B + 7 represent the same element in

RSO(G). Then the cohomology classes ¢, 4 and ¢, in H%W(SO)(l) are equal.
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PROOF. We establish the result for three special cases and then argue that the
general case follows from them. Let 7, ny, n,, &, ¢;, and ¢, be nontrivial
irreducible complex representations and let c: S?17¥2 o §%2%%1 be the switch map.
Regard a;=¢; -7, ay,=6¢,-n, and a =¢, + ¢, 27 as elements of Ry(G). Let
¢: 8% 5 8" be the usual Euler class. The two maps 1ae and eal from S” to S"*" are

obviously equivariantly homotopic. On the level of maps,

€ag,¢, = Baleal) and ealiézzc;}a(h\e).

Therefore, €ag.é and ce are equivariantly homotopic. Thus, ¢ and ¢

a3 by ag.$y @y, 937

regarded as cohomology classes, are equal. Here, the map c is, of course, absorbed in

the passage to an RSO(G)-grading for HESO.

If n and ¢, are equal and ¢': S° 5 892 is the inclusion, then the trick used
above can also be used to show that 1a¢’: 8" - §%1792 jg equivariantly homotopic to

€ag,6,+ Thus,if ag=¢;-¢; € R,(G), then ¢’ and €40, 2T€ €qual in HZZ(SO)(I).

Regard B, = (¢, - 1))+ (62-1,) and fy = (¢y-1,) + (¢, -m,) as clements
of Ry(G). By three applications of the result just proved for €agy and €ay g it is

possible to show that €5 ; and €5, , are equal in H?31+¢(SB)(I}.

If @ and 3 are in Ry(G) and ¢ and 7 are nontrivial irreducible complex
representations such that o« + ¢ and § + 7 represent the same element in RSO(G),
then we can convert the pair (w, ¢) into the pair (2, n) by some combination of the
three basic transformations for which the lemma has already been proved. Thus,

€44 and €4, must be equal in Hé+¢(50)(1).

This lemma establishes that the element ¢, of Definition 4.5(d) does not
depend on the choice of @ and V used in its definition.

LEMMA A.12. If a € RSOy(G), then HES°=A[ds]. Moreover, if 5 is any
nontrivial irreducible complex representation, then u, is the unique element of
H%(SO)(I) such that €5 o = €44, and p(pa) =data.

PROOF. Recall the map s: RSOy(G) - Ro(G) introduced in section 2. Let
a € RSO((G) and assume that s(a):znzqﬁi—ni. Let @y be 0 € Ro(G) and, for
=1



118

1<k<n, let a, be the element Zqﬁ n; of Ro(G). Denote by d(ay) the integer

assoclated to a, by our homornorphlsm from Ro(G) to Z. For 0 <k <n, let B, be
the element o + ¢, of RSO(G). We will show by induction on k that

i) HZ—,’“SO is isomorphic to Ald(ay)],

il) fio, and 7(ta,) generate Hgk(SO)(l),
iit) HﬁkSO is isomorphic to (Z), and
iv) € 5, generates Hﬁkso

By the dimension axiom and Lemma A.4, these statements are true for
k = 0. Consider the portion

ﬁk I(Sﬁkﬂ) - Hgksnkﬂ EHEMISO - Hgkso - Hg’“(snk+1)+

of the cohomology long exact sequence of the second cofibre sequence. By
Lemma A.1, The left hand term is isomorphic to L and the right hand term is zero.
By Lemma A.7, the left hand arrow is a monomorphism. Thus, we have a short
exact sequence
0L 5 HeF*'s® » HIFS® - 0.

Assume that the assertions above hold for some integer k. The element g ., in
HQGHI(SO)(l) hits the generator €, in Hgk(SO)(l) by Lemma A.11. Since f(e) is an
isomorphism, we may assume that f(e) takes the generator 1 € Z=1L(e) to the
generator (o , of HaGkH(SO)(e). It follows that fia, , and 7(iay,,) generate
Ht*Y(S%)(1). Since

plpag ) =d(ogyr) tay,, and pT(lag,y) =Plag,ys

HaGk“SO is isomorphic to A[d(a,,,)]. By Lemma A.4, Hé’““SO is isomorphic to (Z)

and is generated by Brar” Since flay, = po and d(an) =da, H%SO is isomorphic to
Aldq].

Replacing a;,; by o, .., by n, and 8, by a+ 7 in the cohomology long
exact sequence above, we obtain the short exact sequence

0 - L —» H&S° h HEY'S® = 0

Our characterization of po in terms of €, uo = h(ta) and p(pe) follows directly from
this sequence.

Two general observations suffice for the proofs of many of the multiplicative
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relations. Any product involving at least one element in the image of the transfer
map 7 is easily computed using the Frobenius property

xr(y) = 7(p(x)y).

Any relation involving an element, like ¢ ™k, obtained by divided some other
element by an Euler class may be checked by eliminating the division by the Euler
class and checking the resulting relation. The original relation then follows by
Lemma A.2.

PROOF OF THEOREM 4.1. We will describe the individual Mackey functors H%SG
of _H,"'GS0 by their positions in our standard plot of H*GSO. Since

H(8%)(e) = H{'*I(8% 7), it is easy to check that the elements t1.c and ¢,_; generate
I%5(S%(e) and satisfy no relations in H5(S")(e) other than the obvious relation
ti_¢ter = p(1). It follows immediately from the structure of the Mackey functors
R_, L, and L_ that the elements 7(:}_.), for n > 1, generate the part of HE(SO)(I) on
the positive horizontal axis. For any positive integer n, p(&") = z?fl. Therefore, £

must generate Hén(g_l)(sg)(l). The relation 7(¢72,) = 2£™ follows from the additive
structure. No other relations involving only € and ¢,_, are permitted by the additive
structure. Lemmas A.2 and A.4 ensure that the powers of ¢ generate the part of
H%(SO)(I) on the positive vertical axis. These two lemmas also indicate that the
elements ¢™ £", for m, n > 1, generate the part of H’(‘S(So)(l) in the second quadrant.

The same two lemmas indicate that the elements ¢ ™ x and the elements

e T(Lfle) generate the parts of H_*G(SO)(I) on the negative vertical axis and in the
fourth quadrant, respectively. The relations not already verifed follow easily from the
additive structure of HESO or from our general observations. The additive structure
of HESO eliminates the possibility of any unlisted relations involving a single element.
Since we have described every possible nonzero product of a pair of generators in
terms of the generators, no further relations involving products are possible.

PROOF OF THEOREM 4.9. Again, we describe the individual Mackey functors
H%SO in terms of their positions in our plot of H*GSO. Since H%(SO)(e) EH‘OI'(SO;Z),
it is easy to check that the relation taty=1,,4 holds for any o, § € RSO(G) with

jal = |B| =0 and that no other relations in H*G(SO)(e) hold among the ¢o. Therefore,
for any f € RSO(G) with |8| =0, ¢, can be written as a product of the 1o included
in the proposed list of generators of H*GSO. The elements ¢4, for # € RSO(G) with
|8] =0, generate HE(SG)(e) and the elements 7(14), for 5 € RSO(G) with |8] =0 and

lﬁG' > 0, generate the part of H*G(SO)(I) on the positive horizontal axis.
Let @ and B be in RSO,(G) and let v be an element of RSO(G) such that

}7]>0 and |yG|=0. The relation pia€y= ¢, follows from Lemma A.11. The
relation
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Hoplg = floyp T+ [(dadﬁ —da+p)/P] T(La+ﬂ)

follows from our characterization in Lemma A.12 of u,,,; as an element of
ng(S )(1). From this relation, it follows that all of the elements po can be
constructed from the y; and 15 in our proposed list of generators. By Lemma A.12,
the elements po and 1y generate all of the HGS which are plotted at the origin. The
relation flo €4 = €444 indicates that we can construct all the elements ¢4 from our
proposed list of generators. By Lemmas A.2 and A.4, these elements generate all of
the H%SO on the positive vertical axis.

Let a € RSOy(G) and B,y € RSO(G) with || =]y =0 and |59, |y5| < 0.
The element ¢4 can be obtained from pio and ¢o. The relations

pto 55) =da Loy = plda 'fa+g)7
p(aa gﬁ) = La+ﬁ = p(§a+ﬁ)a

and

P(fﬁ €y) = lgty = P(§ﬁ+-y)
follow from the fact that p is a ring homomorphism. They imply the relations
pasy=dalsip, 0ag=1E,,5, and {58y =E4,. since p is a monomorphism in
dimensions a + § and 8 + . These relations indicate that all of the elements {4 can
be produced from our proposed list of generators. These elements generate the part
of HGS on the negative horizontal axis. By Lemmas A.2 and A4, the elements
€5 £ 5 generate the part of HGS in the second quadrant.

The relations ;17(65 Ka) = €5 Kasp and €5’ ko = €51 Ky, for o+ y =+,
may be checked by our general procedure for relations involving division by an Euler
class. Together, these relations indicate that our proposed set of generators suffices to
construct all of the elements 651 ke and therefore to generate the part of H&SO on the
negative vertical axis.

Let 8 € R504(G) and let @ € RSO(G) with |al < 0 and IaGI > 0. Recall the
class v and the virtual representation <a> from Definitions 4.7. By definition,

<&+ B> = <a>, and by the Frobenius relation, vcss (¢4, 5) = 0. Therefore,

HgVa = Hg fla—ca>V<a>

= Hayp-ca>¥<a>

= Vaygp-

This relation indicates that our proposed set of generators suffices to produce all of
the elements v, and therefore the part of H}‘_;SO in the fourth quadrant.

We have now shown that our proposed set of generators does generate HESO.
Seven of the relations we have not already established deserve comments. The
relation ex€y=¢,,, follows easily from the definition of the Euler classes, the
Frobenius relation and the product relation for the classes py. The relation
€g€a =ds_, €4 &, for a + B8 =17+ 4, follows from the sequence of equations

fﬁfa = /‘tﬁ—'yg’YfO{
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= €y Pyog Ea

= dé—ae"/ 66'

The relations ko ks =pk, s and kyve =0 can be confirmed from the definitions,
the Frobenius property, and the relations which have already been established. Given
these equations, the relations

67(651%,) = 6517 Kas
- - -1
(eﬁlﬁ'(})(e'fl K&) = p€ﬁ+7 Katss

and
(G’El Ky)Vo =0

follow from our general procedure for checking relations involving classes divided by
Buler classes. For the relations €gVa=Vyyp and 5;3 Va :d<ﬁ>_ﬁ Vorg) observe
that {5 can be written as 045_ 5, € 5, and that €5 can be written as pye€,,, for
some v € RSO4(G) and some positive integer n. The relations now follow by
straightforward computations using the definitions, the Frobenius property, and the
previously established relations. All of the remaining relations in the theorem follow
directly from the definitions or the additive structure of HESO. The additive
structure of HESO eliminates the possibility of any unlisted relations involving a
single element. Since we have described every possible nonzero product of a pair of
generators in terms of the generators, no further relations involving products are
possible.
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