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INTRODUCTION.  If X is a CW complex with cells only in even dimensions and R 
is a ring, then, by an elementary result in cellular cohomology theory, the ordinary 
eohomology H*(X;R) of X with R coefficients is a free, 7/-graded R-module. Since 
this result is quite useful in the study of well-behaved complex manifolds like 
projective spaces or Grassmannians, it would be nice to be able to generalize it to 
equivariant ordinary eohomology. The result does generalize in the following sense. 
Let G be a finite group, X be a G-CW complex (in the sense of [MAT, LMSM]), and 
R be a ring-valued eontravariant coefficient system JILL]. Then the G-equivariant 
ordinary Bredon cohomology H*(X; R) of X with R coefficients may be regarded as a 
coefficient system. If the cells of X are all even dimensional, then H*(X;R) is a free 
module over R in the sense appropriate to coefficient systems. Unfortunately, this 
theorem does not apply to complex projective spaces or complex Grassmannians with 
any reasonable nontrivial G-action because these spaces do not have the right kind of 
G-CW structure. In fact, if G is ~/p,  for any prime p, and r / is a nontrivial 
irreducible complex G-representation, then the theorem does not apply to S ~, the one- 
point compactification of r 1. Moreover, the 2~-graded Bredon cohomology of S n with 
coefficients in the Burnside ring coefficient system is quite obviously not free over the 
coefficient system. 

The purpose of this paper is to provide an equivariant generalization of the 
"freeness" theorem which does apply to an interesting class of G-spaces and to use 
this result to describe the equivariant ordinary cohomotogy of complex projective 
spaces with linear :Y/p actions. These results are obtained by regarding equivariant 
ordinary cohomology as a Mackey functor-vatued theory graded on the real 
representation ring RO(G) of G [LMM, LMSM]. To obtain such a theory, we take 
the Burnside ring Mackey funetor as our coefficient ring. Instead of using cells of the 
form G/H  x e n, where H runs over the subgroups of G, we use the unit disks of real 
G-representations as cells. Our main theorem, Theorem 2.6, then has roughly the 
following form. 

THEOREM.  Let G be 2[/p and let X be a G-CW complex constructed from the unit 
disks of real G-representations. If these disks are all even dimensional and are 
attached in the proper order, then the equivariant ordinary cohomology H~X of X is 
a free RO(G)-graded module over the equivariant ordinary eohomology of a point. 

To  show that  this theorem is not without applications, we prove in Theorem 3.1 that  
if V is a complex G-representation and P(V) is the associated complex projective 
space with the induced linear G-action, then P(V) has the required type of cell 
structure. Theorems 4.3 and 4.9, which describe the ring structure of H~P(V),  follow 
from the freeness of H~P(V) .  As a sample of these results, assume that p = 2 and V 
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is a complex G-representation consisting of countably many copies of both the 
(complex) one-dimensional sign representation ,~ and the one dimensional trivial 
representation 1. Then P(V) is the classifying space for G-equivariant complex line 

*p  bundles. As all RO(G)-graded ring, i t  G (V) is generated by an element c in 
dimension 1t and an element C ill dimension 1 + A. The second generator is a 
polynomial generator; the first, satisfies the single relation 

c 2 = e2c + ~C, 

where e and ~ are elements in the cohomology of a point. If, instead, V contains an 
equal, but finite, number of copies of A and 1, then the only change in HOP(V ) is 
that the polynomial generator C is truncated in tile appropriate dimension. If the 
number of copies of 1 in V is different from the number of copies of A in V, or if p is 
odd, then the ring structure of H~P(V)  is more complex. 

Equivariant ordinary Bredon cohomology with Burnside ring coefficients is 
just the part of RO(G)-graded equivariant ordinary cohomology with Burnside ring 
coefficients that is indexed on the trivial representations. All of the generators of 
HOP(V ) occur in dimensions corresponding to nontrivial representations of G. This 
behavior of the generators offers a partial explanation of the difficulties encountered 
in trying to compute Bredon cohomology. All that can been seen of HOP(V ) with 
Z-graded Bredon eohomology is some junk connected to the RO(G)-graded 
cohomology of a point whose presence in H~P(V) is forced by the unseen generators 
in the nontrivial dimensions. 

Using t t~P(V),  tt is possible to give an alternative proof of the homotopy 
rigidity of linear 2~/p actions on complex projective spaces [LIU]. Moreover, the 
"freeness" theorem should apply to complex Grassmannians with linear Z /p  actions, 
and it should be possible to compute the ring structure of the equivariant ordinary 
cohomology of these spaces. Of course, it would be nice to extend the main theorem 
to groups other than Z/p. Unfortunately, the obvious generalization of this theorem 
fails for groups other than 7//p. The counterexamples have some interesting 
connections with the equivariant Hurewicz theorem [LE1]. All of these topics are 
being investigated. 

All of the results in this paper depend on the observation that  equivariant 
cohomology theories are Mackey functor-valued. Therefore, the first section of this 
paper contains a discussion of Mackey Mnctors for the group 7//p. In the second 
section, we discuss the RO(G)-graded cohomology of a point, precisely define what 
we mean by a G-CW complex, and prove our "freeness" theorem. The G-cell 
structure of complex projective spaces with linear 2~/p actions is discussed in section 
3. There the cohomology of these spaces is shown to be free over the cohomology of 
a point. Section 4 is devoted to the multiplicative structure of the eohomology of a 
point. The multiplicative structure of the cohomology of complex projective spaces is 
discussed in section 5. The results stated in this section are proved in section 6. The 
results on the cohomology of a point stated in sections 2 and 4 are proved in the 
appendix. 

A few comments on notational conventions are necessary. Hereafter, all 
homology and cohomology is reduced. If X is a G-space and we wish to work with 
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the unreduced cohomolgy of X, then we take the reduced cohomology of X +, the 
disjoint union of X and a G-trivial basepoint. In particular, instead of speaking of 
the cohomology of a point, hereafter we speak of the cohomology of S °, which always 
has trivial G action. If V is a G-representation, then SV and DV are the unit sphere 
and unit disk of V with respect to some G-invariant norm. The one-point 
compactification of V is denoted S V and the point at infinity is taken as the 
basepoint. If X is a based G-space, then NVx denotes tile smash product of X and 
S V. Unless otherwise noted, all spaces, maps, homotopies, etc., are G-spaces, 
G-maps, and G-homotopies, etc. We will shift back and forth between real and 
complex G-representations; in general, real representations will be used for grading 
our cohomology groups and complex representations will be used in discussions of the 
structure of projective spaces. If the virtual representation c~ is represented by the 
difference V -  W of representations V and W, then lal = dim V - dim W is the real 
virtual dimension of a and a G = V  G -  W G is the fixed virtual representation 
associated to a. The trivial virtual representation of real dimension n is denoted by 
n. Recall that the set of irreducible complex representations of G forms a group 
under tensor product. If 7/is an irreducible complex representation, then r1-1 denotes 
the inverse of r] in this group. The tensor product of r / and any representation V is 
denoted 77 V. Many of our formulas contain terms of the form A/p,  where A is some 
integer-valued espression. The claim that A is divisible by p is implicitly included in 
the use of such a term. 

I would like to thank Tammo tom Dieck, Sonderforschungsbereich 170, and 
the Mathematisches Institut at GSttingen for their hospitality during the initial 
stages of this work. I would especially like to thank Tammo tom Dieck for 
suggesting the problem which led to this paper and for invaluable comments, 
especially on the main theorem, Theorem 2.6. 

Equivariant cohomology theories graded on RO(G) are not universally 
familiar objects, so a few remarks about what this paper assumes of its readers seem 
appropriate. Equivariant ordinary cohomology with Burnside ring coefficients assigns 
to each virtual representation c~ in RO(G) a contravariant functor I t~  from the 
homotopy category of based G-spaces to the category of Mackey functors. It also 
assigns a suspension natural isomorphism 

t t~+v( ,~Vx)  =~ tiGX~( ) 

to each pair (a ,V)  consisting of a virtual representation o~ and an actual 
representation V. The isomorphisms associated to the three pairs (c~, V), (c~, W), and 
((~,V + W) are required to satisfy a coherence condition. The functors H~ are 
required to be exact in the sense that they convert cofibre sequences into long exact 
sequences. The dimension axiom requires that  H~S ° be the Burnside ring Mackey 
functor and that n 0 tIGS be zero if n E 7/ and n@0.  If a is a nontrivial virtual 
representation, then ~ 0 IIGS need not be zero, but it is uniquely determined by the 
axioms. Note that  because • 0 ttGS is nonzero in dimensions other than zero, the 
assertion that  the cohomology of certain spaces is free over the cohomology of S O is 
very different from the assertion that the cohomology is free over the coefficient ring. 
Our cohomology theory is ring calued; that is, any pair of elements drawn from tI~X 
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n~+ZX and t t~X have a cup product wtfich is in a, o . We will also work with 

RO(G)-graded, Mackey functor-valued, reduced equivariant ordinary homology with 
Burnside ring coefficients. This homology theory satisfies the obvious analogs of the 
cohomology axioms. Also, it has a Hurewicz map, which we use to convert various 
space level maps into homology classes. Finally, we assume that  S O and the free 
orbit G + satisfy equivariant Spanier-Whitehead duality [WIR, LMSM]; that  is, for 
any e~ in RO(G) there are isomorphisms 

I-I~S ° ~H-6~S ° and It~G~ + --~ tI-C~G +. 

The proofs of all our results flow from these basic assumptions. In fact, most 
of the proofs are simple long exact sequence arguments which would be left to the 
reader in a paper dealing with a g-graded, abelian group-valued, nonequivariant 
cohomology. One of the points of this paper is that these simple techniques work 
perfectly well in RO(G)-graded, Mackey functor-valued, equivariant cohomology 
theories and yield useful results. The one serious demand made of the reader is a 
willingness to work with Mackey functors. When the group is g /p ,  these are really 
very simple objects. Section one is intended as a tutorial on them. 

1. MACKEY FUNCTORS FOR Z/p. Since the language of Mackey functors 
pervades this paper, this section contains a brief introduction to Mackey functors for 
the groups 7//p. For any finite group G, a G-Mackey functor M is a contravariant 
additive functor from the Burnside category B(G) of G to the category Ab of abelian 
groups [DRE, LE2, LIN]. However, since we are only concerned with G = g /p ,  
rather than describing B(G) in detail, we simply note that  a g/p-Mackey functor M 
is determined by two abelian groups, M(G/G)  and M(G/e);  two maps, a restriction 
map 

and a transfer map 

p :  M(G/G) -+ M(G/e) 

r :  M ( G / e ) +  M(G/G);  

and an action of G on M(G/e).  The trace of this action and the composite p r  are 
required to be equal by the definition of the composition of maps in B(G); that is, if 
x 6 M(G/e) ,  then 

p (x) =  gx. 
geG 

The abelian groups M(G/G)  and M(G/e)  are the values of the Mackey functor M at 
the trivial orbit and the free orbit; or, if one prefers to think in terms of subgroups 
instead of orbits, the values of M at the group and at the trivial subgroup. For 
convenience, we abbreviate G / G  to 1 and write M(e) for M(G/e).  Frequently the 
G-action on M(e) is trivial; in these cases the composite pr  is just multiplication by 
p. 

A map f : M + N between Mackey functors consists of l lomomorphisn~s 

f(1): M(1) ~ N(1) and f(e) : M(e) -+ N(e) 
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which commute with p and r in the obvious sense. The map f(e) must also be 
G-equivariant. The category ~fft of Mackey functors is a complete and cocomplete 
abelian category. The limit or colimit of a diagram in ~ is formed by taking the 
limit or colimit of the corresponding two diagrams consisting of the abelian groups 
associated to G/G and to G/e. The maps p and r and the group action on the limit 
or colimit are the obvious induced maps and action. 

We wilt describe Mackey functors diagramatically in the form 

M(1) 

l 
M(e) 

t¢ 
0 

where M(1) and M(e) will be replaced by the appropriate abelian groups, p and r 
may be replaced by explicit descriptions of the restriction and transfer maps, and 0 
may be replaced by an explicit description of the group action. If p or r is replaced 
by a number (usually 0, 1, or p), then the map is just multiplication by that number. 
If 0 is omitted or replaced by 1, then the group action on M(e) is trivial. If p = 2 
and 0 is replaced by -1, then the generator of G = Z/2 acts by multiplication by -1. 

EXAMPLES 1.1 The following Mackey functors and maps appear repeatedly in our 
cohomology computations. 

(a) The Burnside ring Mackey functor A is given by 

Z®Z 

(1,P) l l(o,1) 

2[ 

where the notation (1,p) means that the restriction map p is the identity on the first 
component and multiplication by p on the second. Similarly, (0,1) means that the 
transfer map is the inclusion into the second factor. For any Mackey functor M, 
there is a one-to-one correspondence between maps f : A ~ M and elements of M(1). 
The correspondence relates the map f to the element f(1)((1,0)) of M(1). It follows 
from this correspondence that A is a projective Mackey functor. 

(b) The d-twisted Burnside ring Mackey functor Aid] is given by 

ZOZ 

(d,P) 1 7 (  0,1 ) 
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where d E g. Note tha t  A = A[1]. If d _= + d '  mod  p, then there is an 
i somorph i sm f :  Aid] ~ A[d'] of  Mackey functors.  The  m a p  f(e) is the ident i ty  and  if 
d '  = + d  + np, then 

f(1)(1,0) = ( + l , n )  E igGT/ 

f (1)(0 , i )  = (0,1). 

I f  d = 0 m o d  p, then Aid] decomposes  as the sum of two other  Mackey functors;  thus 
A[d] is only of  interest  when d ~k 0 rood p. In this ease, it is a project ive  Mackey 
functor .  An a l te rna t ive  ~-basis  for A[d](1) will be used in some of our cohomology  
calculat ions.  To  dist inguish the two bases, we denote (1,0) and (0,1) in the present  
basis by # and r respectively.  Select integers a and b such tha t  ad + bp = 1. The  
a l te rna t ive  g-basis  consists of ~ = a#  + b r  and ~ = p#  - d r .  Note t ha t  p(~r) = 1, 
p(~)  = 0, and r (1 )  = r .  In fact, ~ generates the kernel of p, and r generates  the 
image  of the m a p  r for which it is named.  Of  course, c~ depends on the choice of  a 
and b; in our applicat ions,  these choices will a lways be specified. 

(c) If  C is any  abel ian group, then we use (C) to denote  the Mackey functor  
described by the d i ag ram 

C 

°I l° 
0 

(d) If  d 1 and d2 are integers pr ime to p, then there is an i somorph ism 

g12: A[dm] ® (77} - ,  A[d2] G (g}. 

Let #i and r i be the s tandard  generators  for A[di], and let z 1 and  z 2 be genera tors  of 
(77)(1) in the domain  and range of g~2. Select integers a i and b i such t ha t  
aid i q- bip  = 1, for i = 1 or 2. The  m a p  g12(e) : 77 -~ 77 is the ident i ty  map ,  and the 
m a p  g12(1) is given by 

g l ; ( 1 ) ( t q )  = d 1(a2/*2 + b2r2)  + (bl + b2 - blb2P )z2 

g12(1)(r l )  = r 2 

and 

g12(1)(zl) = P#2 - d2r~ - a ld~z>  

T h e  inverse of  g12 is jus t  g~l- The  existence of  this i somorph i sm will explain an 
appa ren t  inconsistency in our descript ion of the equivar iant  cohomology  of  project ive 
spaces. 

(e) Associated to an abel ian group B with a G-act ion,  we have the Mackey 
functors  L(B) and R(B) given by 
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L(B) R(B) 
B /G B G 

I 
B B 
t2 
0 0 

Here, ~ : B c -* B is the inclusion of the fixed point subgroup and 7r : B -* B / G  is the 
projection onto the orbit group. The two maps tr are variants of the trace map. The 

map t r : B - * B  c takes x E B to ~ g x  E B e. I f x  E B and Ix] is the associated 

equivalence class in B/G,  then tr : ~ f G  --* B is given by 

tr([x]) = 2 g x  E B. 
gcG 

These two constructions give functors from the category of 7/[G]-modules to the 
category of Mackey functors. These functors are the left and right adjoints to the 
obvious forgetful functor from the category of Mackey functors to the category of 
2r[G]-modules. We will encounter these functors most often when B is 7/ with the 
trivial action or, if p = 2, with the sign action. Denote the resulting Mackey functors 
by L, R, L_, and R_. These functors are described by the diagrams 

L R 
Z 

7/ 7/ 

1 1 

L_ P~_ 
z/2 

-1 

0 

Z 
U" 
-1 

If C is any abelian group, there is an obvious permutation action of G on C p, 
the direct sum of p co~es of C. Unless otherwise indicated, this action is assumed 

I1 ~ P when we refer to L(C ) or R(C ). These two functors are isomorphic and are 
described by the diagram 
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C 

C p 

d 
0 

where A is the diagonal map. V is the folding map, and 0 is the permutation action. 

(f) If M is a Mackey functor, then L(M(e) p) ~ R(M(e) p) is denoted M G. 

There are two reasonable choices of a G action on M(e) p, the permutation action or 

the composite of the permutation action and the given action of G on each factor 
M(e). These actions yield isomorphic g[G]-modules, so the choice is not important.  
The simple permutation action is always assumed here. The assignment of M G to M 
is a special case of an important  construction in induction theory [DRE, LE2] that  
assigns a Mackey functor M b to each object b of B(G) and each Mackey functor M. 

The restriction map p : M ( 1 ) - + M ( e ) ~ M G ( t  ) and the diagonal map 

A: M(e)-4 M(e )P~MG(e )  form a natural transformation p from M to M G. 

Similarly, r :  MG(1) ~ M ( e )  + M(1) and the folding map V:  MG(e ) ~ M ( e )  p + M(e) 

form a natural transformation r : M G -+ M. The Mackey functor A c = L(77 p) is 
characterized by the fact that, for any Mackey functor M, there is a one-to-one 
correspondence between maps f : Ao -+ M and elements of M(e). This correspondence 
relates the map f to the element f(e)((1,0,0 . . . . .  0)) of M(e). It follows that A G is a 
projective Mackey functor. 

G (g) If Y is a G-space, M is a Mackey functor, c, 6 RO(G), and H~(Y;M) 
and Ha(Y; M) denote the abelian group-valued equivariant ordinary cohomology and 
homology of Y with coefficients M in dimension a, then the Mackey functor valued 
cohomology H~(Y; M) and homology H~(Y; M) are described by the diagrams 

M) Hg(Y; r,1) 

Ha(G × Y; M) H~(G x Y; M) 

6 

where the maps rr*and rr. are induced by the projection r r : G  x Y-+ Y, and the 
maps rr t and rr! are the transfer maps arising from regarding the projection rr as a 
covering space. The group H~(G x Y;M) is isomorphic to the nonequivariant 
cohomology group HIm(Y;M(e)). If r~ is represented by the difference V - W  of 
representations V and W, then, under this isomorphism, the action of an element g of 
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G on H~(G x Y;M) may be described as the composite of multiplication by the 
degrees of the maps g : S  V ~ S  V and g : S  W - * S  W and the actions of g on 

HIm(Y; M(e)) induced by the action of g on M(e) and the action of g-1 on Y. Similar 

remarks apply in homology. If no coefficient Mackey functor M is indicated in 
equivariant cohomology or homology, then Burnside ring coefficients are intended. 

(h) For any Mackey functor M and any abelian group B, the Mackey functor 
M ® B has value M(G/H)  ® B for the orbit G / H  and the obvious restriction, transfer, 
and action by G. If M* is an RO(G)-graded G-Mackey functor and B* is a Z-graded 
abelian group, then M* ® B* is the RO(G)-graded G-Mackey functor defined by 

(M*® B*) c~ = ~ M z ®  B '~. 
/~+n=a 

If a CW complex Y with cells only in even dimensions is regarded as a G-space by 
assigning it the trivial G-action, then there is an isomorphism of RO(G)-graded 
Mackey functors 

* ~ ® H * ( Y ;  77) H e  Y = ~H* S o 

which preserves cup products. 

For any finite group G, there is a box product operation [] on the category 
~Jl of G-Mackey functors which behaves like the tensor product on the category of 
abelian groups. In particular, ~0l is a symmetric monoidal closed category under the 
box product. The Burnside ring Mackey functor A is the unit for •. If G = 27/p, 
then the box product M [] N of Mackey functors M and N is described by the diagram 

I-M(1) ® N(1) ® M(e) ® N ( e ) ] / ~  

M(e) ® N(e) 

0 

The equivalence relation ~ is given by 

x ® r y  ~ p x ® y  

r v ® w  ,,~ v ® p w  

for x C M(1) and y e N(e) 

for v C M(e)and  w C N(1). 

The action 0 of G on M(e) @ N(e) is just the tensor product of the actions of G on 
M(e) and N(e). The map r is derived from the inclusion of M(e)® N(e) as a 
summand of the direct sum used to define M rlN(1). The map p is induced by p ® p 
on the first summand and the trace map of the action 0 on the second. 

EXAMPLES 1.2(a) For any integers d I and d2, there is an isomorphism 

A[dl]DA[d2] ~-- A[dld2] 
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of Mackey functors. 

(b) 
isomorphism 

(c) 
diagram 

If B is a 7][G]-module and M is any Mackey functor, then there is an 

L(B)IqM ~ L(B®M(e)). 

For any Mackey functor M, the product ROM is described by the 

M(1)/(p - rp) 

pt ~ 7 r! 
M(e) 

0 

where M(1)/(p - rp) is the cokernel of the difference between the multiplication by p 
map and the composite rp. The maps pt and r t are induced by the restriction and 
transfer maps for M. In particular, if M = R(B) for some 7[G]-module B, then 
R[]R(B) ~ l%(B). Also, for any abelian group C, R •  < C >  ~ < C / p C > .  

(d) If p = 2, then for any Mackey functor M, the product R_DM is 
described by the diagram 

M(e)/(image p) 

1 - u ~  ) r r  

Ct 
-0 

Here ~r: M(e) -~ M(e)/(image p) is the projection onto the cokernel of the restriction 
map and v: M(e) --* M(e) describes the action of the nontrivial element of G on M(e). 
The action -0 is the composite of the given action 0 of G on M(e) and the sign action 
of GonM(e) .  In particular, R_[]R ~ L. 

(e) For any abelian group C and any Mackey functor M, 

< :C:>•M ~ <C®(M(1)/ image r )> .  

A Mackey functor ring (or Green functor [DRE, LE2]) is a Mackey functor S 
together with a multiplication map # : S 13 S --* S and a unit map r/: A ~ S making 
the appropriate diagrams commute. A module over S is just a Mackey functor M 
together with an action map ~:SDM--* M making the appropriate diagrams 
commute. Since the Burnside ring Mackey functor A is the unit for [], it is a Mackey 
functor ring whose multiplication is the isomorphism A []A ~ A and whose unit is 
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the identity map  A --* A. Every Mackey functor is a module over A with action map  
the isomorphism A [ ] M  -~ M. Note that  if S is a Mackey functor ring and R is a 
ring, then the Mackey functor S ® R of Examples 1.1(h) is a Mackey functor ring. 
Similar remarks apply in the graded case. The cohomology of any G-space Y with 
coefficients a Mackey functor ring S is an RO(G)-graded Mackey functor ring whose 
multiplication is given by maps 

'~ Y" • t t ~ ( Y ; S )  --* .o.~ t ; ,, I I G ( , S )  • ~+Z/y  S~ 

for ~ and /3 in RO(G).  

The following result characterizes maps out of box products and allows us to 
describe a Mackey functor ring S in terms of S(1) and S(e). This is the approach to 
Mackey functor rings used in our discussion of the ring structure of the cohomology of 
complex projective spaces. 

P R O P O S I T I O N  1.3 For any Mackey functors M, N and P, there is a one-to-one 
correspondence between maps h : M [-1N --* P and pairs H = (H1, He) of maps  

n 1 : M(1) ® N(1) -* P(1) 

H e : M(e) ® N(e) --* P(e) 

such that,  for x E M(1), y E N(1), z E M(e), and w E N(e), 

He(pX ® py) = pIq(x ® y) 
HI(Tz ® y) = T He(z ® py) 

H l ( x ® r w )  : T H e ( p x O w ) .  

The second and third of these equations are called the Frobenius relations. 

PROOF.  The maps H e and h are related by H e = h(e). Given h, H 1 is derived in 
an obvious way from h(1) using the definition of MV1N. Given H 1 and He, h(1) is 
constructed from the maps H I and T H e on the two summands  used to define 
M E N ( l ) .  

It  follows easily from the proposition that,  if S is a Mackey functor ring, then 
S(1) and S(e) are rings, p: S(1) ~ S(e) is a ring homomorphism,  and r :  S(e) --* S(1) is 
an S(1)-module map  when S(e) is considered an S(1)-module via p. Moreover, if M is 
a Mackey functor module over S, then M(1) is an S(1)-module and M(e) is an S(e)- 
module. If we regard M(e) as an S(1)-module via p:S(1)--* S(e), then the maps 
p: M(1) --* M(e) and T: M(e) --* M(e) are S(1)-module maps.  

2. H* ~0 AND SPACES W I T H  FREE COHOMOLOGY.  Here, we recall Stong's G ° 
unpublished description of the additive structure of the RO(G)-graded equivariant 
ordinary cohomology of S °. We use this to show that  if X is a generalized G-cell 
complex constructed from suitable even-dimensional cells, then H~X and H G x  are 

* 0 free over t t G S .  The additive structure of the cohomology HOG + of the free orbit is 
also described. This is used to show that  FI~X and tt.GX are projective over H~S ° 
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when X is constructed from a slightly more general class of even-dimensional  cells. 

* 0 Since 72/2 has only one nontr ivial  irreducible representat ion,  I t e S  is very 
easy to describe when G = 7//2. 

T H E O R E M  2.1. If G = 22/2 and s E RO(G),  then 

c¢ 0 H e S  = 

r A, if lal = Is el = o, 
R, if Isl = 0, [ s e l  < 0, and let el is even, 
R_, if tetl = 0, t a e i  _< 1, and t a e i i s o d d ,  
L, if letl = 0, Is el > o, and let Gi is even, 
L_, if IetI = 0, let et > 1, and let el is odd, 

(~), if Isl # 0 arid let eI = 0, 
(72/2), if letl > 0, I s e l  < 0, and ietel is even, 
(7//2), if le t l  < 0, Io,  e l  > 1, and l e t e l  is odd, 

~. 0, otherwise. 

• o FIGS for various a on The  most  effective way to visualize tIGS is to display a 0 
a coordinate  plane in which the horizontal  and vertical coordinates specify lete[ and 
lad respectively. In such a plot, given as Table  2.2 below, the zero values of HeS* 0 
are indicated by blanks. The  only values in this plot with odd horizontal  coordinate  
are the R_ and L_ on the horizontal  axis and the (7//2} in the fourth quadrant .  

• . +  (7//2) (;~/2} (7/12) 
(7//2) (~/2) (7//2) 
{27/2} (7//2) {77/2) 

(7/12) (7/lZ) 9ei2) 
R R_ R R_ R 

(z) 

R_ A 

(z) 

(7/) 

9') 

R_ L L_ L L_ L -.- 

(7//2) (~ /2)  ... 

(7//2) (7//2) . . .  

(~12) (~12) . . .  

(~/2)  (7//2) . . .  

T A B L E  2.2. H~S ° for p = 2. 

Even though the representat ion ring of G is much more complicated when 
p :/= 2, I-I~S ° is completely determined by the integers a and ]o~GI except in the 
special case where Isl = c~ c ---- 0. In this special case, II~S ° is Aid] for some integer 
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d which depends on a. Unfortunately, because of the isomorphism described in 
Examples 1.1(b), d is only determined up to a multiple of p. The major source of 
unpleasantness in the description of the multiplicative structure of the equivariant 
cohomology of a point and of complex projective spaces is this lack of a canonical 
choice for d. To explain the relation between a and d, we introduce several relatives 
of the representation ring. Let R(G) be the complex representation ring of G and 
RSO(G) be the ring of SO-isomorphism classes of SO-representations of G. Since any 
real representation of G is also an SO-representation, the difference between RO(G) 
and RSO(G) is that, in RSO(G), equivalences between representations are required to 
preserve underlying nonequivariant orientations on the representation spaces. The 
difference between R(G) and RSO(G) is that  elements of RSO(G) may contain an 
odd number of copies of the trivial one-dimensional real representation of O. Let 
R0(G ), RO0(G ), and RSO0(G ) denote the subrings of R(G), gO(G),  and RSO(G) 
containing those virtual representations a with Ic~l = [aGt = O. Note that 
R0(G ) = RSO0(G ). Let R0(G) be the free abelian monoid generated by the formal 
differences C-r]  of complex isomorphism classes of nontrivial irreducible complex 
representations. Note that  R0(G ) is the quotient of R0(G) obtained by allowing the 
obvious cancellations and that RO0(G ) is the quotient of R0(G ) obtained by 
identifying conjugate representations. Let A be the irreducible complex 
representation which sends the standard generator of 7//p to e 2'~i/p. The monoid 
R0(G) is generated by elements of the form Am _ An where 1 < m , n  _< p - 1 .  
Define a homomorphism from R0(G) to 77, regarded as a monoid under 
multiplication, by sending the generator A m - A n to m(n-1), where n -1 denotes the 
unique integer such that  1 _< n -1 _< p -  1 and n(n - 1 ) -  1 mod p. Define functions 
from RSO0(G ) and RO0(G ) into 77 by composing this homomorphism with sections 
of the projections from R0(G ) to RSOo(G ) or RO0(G ). Let d~ denote the integer 
assigned to the virtual representation oe by either map. The sections can not be 
chosen to be homomorphisms, so the assignment of dc~ to a will not be a 
homomorphism from RSO0(G ) or RO0(G ) to the multiplicative monoid g. However, 
the assignment of da to o~ does give a homomorphism from R0(G ) to the group of 
units (77/p)* of g / p  and a homomorphism from RO0(G ) to the quotient 
(77/p)*/{+1} of (g/p)*. For later convenience, we select our sections so that  d o is 1. 

Stong's description of the additive structure of * 0 HGS can now be translated 
into the Mackey functor language of section one. 

THEOREM 2.3. If p is odd, then 

A[d~J 
R 
L 

0 
JaG s = (7/) 

<77/p) 
(X/p) 

0 

if 
if 
if 
if 
if 
if lal < 0, 
otherwise 

lai  = laGt  = 0 
Ic~l = 0 and taG] <: 0 
lal = 0 and la G ] > 0 
tal :fi 0 and la c] = 0 
tal > 0, lae]  < 0, and la Gl is an even integer 

laGI > 1, and let GI is an odd integer 
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As in the case p = 2, H~S ° is best visualized by plotting it on a coordinate 
plane whose horizontal and vertical axes specify faGl and lal respectively, In this 
plot, given as Table 2.4 below, the zero values • 0 of ItGS are indicated by blanks. The 
vertical and horizontal coordinates of all the nonzero values, except the (2r/p) values 
in the fourth quadrant,  are even, Notice in the plots for both the odd primes and 2 
that  the vanishing of * 0 2) is ttGS on the vertical line laGl = 1 (for I~l ¢ 0 if p = 
unlike its behavior on the vertical lines corresponding to the other odd positive values 
for lc*c[. These unusual zeroes for H~S  ° are the key to our freeness and projectivity 
results. When G = ?7/pn for n > 1, the corresponding values are not zero, so our 
techniques do not extend to these groups. 

Hereafter, we will often describe elements in H~S ° by their position in these 
plots• For example, we may refer to the torsion in the fourth quadrant  or the copies 
of (7]} on the positive vertical axis. 

(Z/p) (Z/p) (Z/p) (~) 

<~/p> (~/p> <~/p} (~> 

... (~/p} (~/P) (~/P) (~) 

R R R A[d~] L L L 

(iV/p} (~/p} 

9z) 
(~/P} (~/P} 

(Z/p> {~/p) 

TABLE 2.4. H~S ° for p odd. 

Recall, from Examples 1.1(f), the new Mackey functor M G which can be 
derived from any Mackey functor M, and the observation that  A 6 = L(~ 'p) = R(gP).  

. + 
r ~  ~S0~ and from this, to compute ttGG . It is easy to check that  I-I~G + is ~G~ JG, 
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C O R O L L A R Y  2.5. For any prime p, 

• + f A o if  lal  : 0 
HGG = 

0 otherwise 

, + 
Proposition 4.12 tells us that  IIGG is an RO(G)-graded projective module 

* 0 over IIGS , and that. any map  

f: * + M* HGG -* 

of RO(G)-graded modules over H~S ° is completely determined by the image of 
(1,0,0 . . . .  ,0) E gP = H~(G+)(e)  in M°(e). 

A generalized G-cell complex X is a G-space X together with an increasing 
sequence of subspaces X,~ of X such that  X 0 is a single orbit, X = tO Xn,  X has the 
colimit (or weak) topology from the X,~, and Xn+l is formed from X,~ by attaching 
G-cells. We will allow two types of G-cells. If V is a G-representation and DV and 
SV are the unit disk and sphere of V, then the first type of allowed cell is a copy of 
DV attached to X ,  by a G-map  from SV to X,~. The second type of cell is a copy of 
G x e  "~, where e rr̀  is the unit m-disk with trivial G action, at tached to Xn by a 
G-map  from G x S m-1 to Xn. For each n, we let J , + l  denote the set of cells added 
to X ,  to form X,+  1. Regard a cell DV of the first type as even-dimensional if IV] 
and ]V G] are even. Regard a cell G x e m as even dimensional if m is even. 

T H E O R E M  2.6. Let X be a generalized G-cell complex with only even-dimensional 
cells. 

(a) Assume that  X 0 = • and all the cells of X are of the first type; that  is, 
disks DV of G-representations V. Assume also that  IV c] >_ IwGI whenever DV 6 J,~, 
DW 6 ak, 1 < k < n, and IVI > Iwl. Then * + t t c X  is a free RO(G)-graded module 

• 0 over H~S with one generator in dimension 0 and one generator in dimension V for 

each DV 6 J, , ,  n > 1. The homology I-I,~X + of X is also a free RO(G)-graded 
• 0 ; "  module over H o S  vlth generators in the same dimensions. 

(b) If X contains cells of both types and all the cells of X of the first type 
satisfy the condition in part  (a), then * + H c X  is a projective RO(G)-graded module 

l- l* X + l-l* X + • 0 over H~S °. Moreover, ~ G  is the sum of one copy of ~ G  0, which is I-ItS or 
u. G + . o ~ G  , in dimension 0, one copy of HGS in dimension V for each DV 6 Jn ,  and one 

. + 
copy of HGG in dimension 2k for each G x e 2k E J , ,  n > I. The homology I-I,GX + 
of X is also a projective RO(G)-graded module over H~S -d and decomposes into the 
s a n l e  summands.  

PROOF.  Abusing notation, we let J,~+l denote both the set of cells to be added to 
X~ and the space consisting of the disjoint union of those cells. Let OqJn+ 1 denote the 
space consisting of the disjoint union of the boundaries of the cells in J,~+l- 
Associated to the cofibre sequence 
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+ 
X~ + -. X~+ 1 ~ Jn+l/0J,~+i,  

we have the long exact sequences 

G + 
• . .  - .  . - ,  a X _ ,  . . .  

and 

o~ + l~c~X+ ~ c~+1 • "" ~ ItGX-+~ ~ .~O '~ t tG (J~+i/cgJ,~+l) ~ . . . .  

The space J,~+i/cgJ~+l is a wedge of one copy of S V for each DV E J~+l and one 

• j copy of G+^ S 2k for each G x e 2k E Jn+l. Thus, HG(n+l/O.Jn+l) and 

H.Gj( n+i/cgjn+l ) are projective modules over H~S ° with generators in dimensions 

corresponding to the cells added to X~ to form X~+ 1. Moreover, if J~+l contains 

only type, t ] G ( , J  n + l / (  * J n + l )  cells of the first then and HG(j~+l/cgJ,~+i) are free 

I:l* X + modules over H~S °. The space X 0 is either a point or tile free orbit G, so ~G 0 and 

H.GX0+ are projective, and perhaps free, modules over I t , S  ° generated by single 

elements in dimension 0. 

We will show inductively that the boundary maps 0 in both long exact 

sequences are zero. The long exact sequences rnust then break up into short exact 
* + 

sequences which split by the projectivity of HG(Jn+l /0Jn+l)  and t IGX, .  Thus, by 

I I *  X + G + , 0 H. X,~ are projective, as appropriate, over HGS , with induction, -~G n and free or 

the indicated generators. It follows by the usual colimit argument that HGx + is free, 

or projective, with the appropriate generators. Since the map 

I-I oe X + l.[ce X + 
i k G  n + l  -*  .l~/. G n 

is always a surjection, the appropriate lim 1 term vanishes, and the cohomology of X, 

being the limit of the cohomologies of the X,~, is free (or projective) with the 

appropriate generators. 

The graded Mackey functors H;(J~+l/cgJ~+l) ,  I-I.6(J~+i/cgJ~+i) , n* X + S~G 0 

G + , + and t I . X  0 are sums of copies of • 0 ttGS and HGG in various dimensions. By 

induction, we may assume that . + G + HGX~ and It. X~ are also of this form. To show 

that the maps 0 are zero, it therefore suffices to show that they are zero from each 

summand of the domain to each summand of the range. For the cohomology 

sequence, the four possibilities for the summands and the map between them are: 



and 

• - 2 k  + 
H G G ~-- H~(G+^S 2k) 

• - w  0 ~ t I ~  t t  G S = S w 

H , - 2 k r _ +  ~ H~(G+^ ) G "J : S2k 

t t5-Ws ° =~ t i e s  w 

69 

T r * + l z , ~  + c~2rn\ l ~ . + l - 2 r n G +  
- ~  116  t, t J  A ~  ) ~ " ~ G  

T T * + I / , ~ +  c~2m\  ~ u * + l - - 2 m ( 2 +  
- ~  r l  G t, kJr A O ) ~ " ~ G  "~ 

* + 1  V ~ I T * + I - V N 0  
tt  G S = -~G 

*+1 V ~ U * + I - V s 0  tIG S = ~-G 

lff* X + Here, we use I-I~(G+A S 2k) and H~S w to denote summands  of .u. G n isomorphic to 

H* G + in dimension 2k or H~S  ° in dimension W. The four maps  above are all maps G 

• 0 of RO(G)-graded modules over I-IGS . Any such map  out of * 0 t tGS is determined by 
. + 

the image of 1 E A(1) = H~(S°)(1).  By Proposition 4.12, such a map out of IIGG 

is determined by the image of (1,0,0 . . . . .  0) E 7/P = H~(G+)(e) .  Thus, to show that  

T r 2 k + l - - 2 r n / , ~  + x /  x the four maps  are zero, it suffices to show that  the groups zl. G ~o )~,e), 

W+l-2m + 1 W+I-V 0 tt G ( G ) ( ) ,  H ~ + l - V ( s ° ) ( e ) ,  and tt G (S ) (1 )  are zero. The integers 

1 2 k + l - 2 m l  and I W + l - 2 m ]  are odd and ~ + ttGG vanishes whenever Ictl is odd, so the 

first two groups are zero. The integer 12k+l VI is odd and ~ 0 t tG(S )(e) vanishes when 

lal is odd, so the third group is zero. For the fourth group, if IVI <IWI,  then 

tt GW+I-VS0 is zero because ] w G + I - V  G] is odd and ] W + I - V ]  is positive. Otherwise, 

W + l - V  o IvGI _> IwGI, and tt G S is zero because Iw + -vq is at most  one. An 

analogous proof shows that  the map  (9 in the homology sequence is zero. Note that  if 

n W + l - V s °  is a result of the Ivl>lwl and IVGI=Iw% then the vanishing of ~G 

anomalous zeroes on the I GI = 1 line in the graph of H~S °. 

In order to compute the ring structure of the equivariant cohomology of X, 
we must  compare it with more familiar objects, such as the nonequivariant ordinary 
cohomology of X and X G. If X is a generalized G-cell complex satisfying the 
conditions of either part  of Theorem 2.6, then so is X G. Thus, Examples 1.1(h) 

describes H ~ ( X 6 )  + in terms of the nonequivariant cohomology of X G. Since the 

tIG(X )(e) is just  the nonequivariant ordinary cohomology of X with 7/ group * + 

coefficients, the map  

p G i* : H~(X+)(1)  --* H~(X+)(e)  O H ~ ( ( x G ) + ) ( 1 )  
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offers a comparison between H~(X+)(1) and two more easily understood cohomology 

rings. This map does not detect the torsion in H~(X+)(1) coming from the fourth 

* 0 * G + quadrant torsion in HGS . Moreover, the torsion in tiG((X ) )(1) makes it hard to 

compute the image of p @ i*. These difficulties suggest that we also consider the 

image of * + ~ + tIG(X )(1)/ torsion in ( H ~ ( X ) ( e ) @ H ~ ( ( X a ) + ) ( 1 ) ) / t o r s i o n .  Since 
* + 

I-I6(X )(e) contains no torsion, in the range we are only collapsing out the torsion in 

I4~((X6)4-)(1). The most useful comparison map is produced by also collapsing out 

* G + the image of the transfer map r from t Ic ( (X ) )(e). The quotient 

t I ; ( (xG)+) (1 ) / ( t o r s ion  @ im r )  

consists of copies of 2 in various dimensions; there is one ~' in the quotient for each 

A[d] or (77) which appears in I-I~((XG)+)(1). 

For many spaces, including complex projective spaces with linear actions, the 
cells can be ordered so that Ivl_> Iwl whenever DVEJ,~ ,  D W ~ J  k, and k < n .  

* X + t When the cells can be so ordered, there is no torsion in ItG( )( ) in the dimensions 
of the generators of * + H6X as a module over H~S °. Therefore, the collapsing we have 
done causes a minimal loss of information. The following result describes the extent 

, X + to which tIG( )(1) is detected by p ® i*. 

COROLLARY 2.7. Let X be a generalized G-cell complex satisfying the conditions 
of either part  of Theorem 2.6 and let i: X G ~ X be the inclusion of the fixed point 
set. Then, for any a E RO(G) with Ic~l even, the map 

1 4 -  _ ~  p • i* : J G( ja&(x4-)(e) 

is a monomorphism. Moreover, for any a E RO(G), the map 

p@i*: (H~(X+)(1)) / tors ion ~ ~ X4- HG( )(e) @ (H~((XG)+)(1)) / ( torsion @ im T) 

is a nmnomorphism. 

PROOF.  Since the equivariant cohomology of X is the limit of the cohomologies of 
the Xn, it suffices to show that the result holds for every X,~. It is easy to check the 
second part for X 0. Assume the second part for X~, and let x be an element of 
I-IG(X,~+l)(1)/torsmn vanishing under the map into 

X + H a ( , ~ + l ) ( e )  ® (H~((xG+l)+)(1)) / ( tors ion @ im r )  

X + 1 induced by p G i*. We must show that x is zero. The group ttG( n+l)( ) is the 
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direct sum of the groups I-I~(Jn+z/0J,+l)(1 ) and ~ + t t6(Xn)(1) ,  and this decomposition 

is respected by the map p ®  i*. Thus, x is the sum of classes y and z in 

o¢ X + • It~(J,~+z/C0Jn+~)(1)/torsion and t i c (  ,~)(1)/torsmn, respectively, which vanish 

under the analogous maps. By our inductive hypothesis, z is zero. Since J,~+l/COJ,~+l 
is a wedge of copies of S V and G+^S ~k for various V and k, y vanishes by our remark 
about X 0. Thus, x is zero. The proof of the first part is similar. For this part, we 
must assume that ic~l is even because the map p O i* does not detect the torsion in 
the fourth quadrant of H~(S°)(1).  

3. THE COHOMOLOGY OF COMPLEX PP~OJECIVE SPACES. As an application 
of the results from section two, we show that the cohomology of a complex projective 

" *  S O Let V be a finite or countably infinite space with a linear action is free over .u. G . 
dimensional complex G-representation and let C* be C -  {0}. The complex projective 
space P(V) with linear G-action associated to V is the quotient G-space ( V -  {0})/C*. 
Note that  if W C V, then P(W) may be regarded as a subspace of P(V). If V is 
infinite dimensional, then we topologize V as the eolimit of its finite dimensional 
subspaces W; the quotient topology on P(V) is then the same as the colimit topology 
from the associated subspaces P(W). To describe the cohomology of P(V), we must 

write V as the sum ~ ¢i of irreducible complex representations (including possibly 
i = 0  

the trivial complex representation). Of course, if V is infinite dimensional, then 
n = oo. Points in P(V) will be described by homogeneous coordinates of the form 

<x0, xl, x2 . . . . .  x~), xi e ¢i 

with the conventions that  not all of the x i are zero, and if V is infinite dimensional, 
that  all but finitely many of the x i are zero. Each element of the group G acts on 
each homogeneous coordinate of P(V) by multiplication by a complex number. 
Therefore, if all the irreducibles in V are isomorphic, then the action of G on P(V) is 
trivial. Moreover, if r] is any irreducible complex representation, then P(V) and 
P(r 1V) are isomorphic G-spaces. If 7/ and ¢ are irreducible complex representations, 
then P(rl) is just a point and P(r I O ¢) is G-homeomorphic to the one-point 
compactification of either r] -1 ¢ or 7/¢-1. 

Since we have selected a eolimit topology on P(V) when V is infinite, to show 
that P(V) is a generalized G-cell complex for any G-representation V, it suffices to 

k - 1  
show this when V is finite dimensional. Let V k be the representation ~ ¢i and let 

i = 0  
W be the representation -1 ¢,, V,~_ 1. Describe points in the unit disk DW by complex 

-1  coordinates (x0, xl, ... ,xn_l) , with x i C Cn ¢i" Define a map f: DW -~ P(V) by 

f((xo, x 1 . . . . .  Xn_l) ) = <Xo, Xz, x 2 . . . . .  xn_l, 1 - E txil2)" 
i = 0  

The tensor product with ~ n  I is  inserted in the definition of W to ensure that  the map 
f is equivariant. The image of SW in P(V) lies in the subspace P(Vn_I) of P(V), and 
f is a homeomorphism from D W -  SW to its image in P(V). Thus P(V) is formed 
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from P(Vn_l)  by adjoining the G-cell DW along the map f l S W :  SW-*  P(V~_~). 
Working backwards through the sequence of representations Vk, we conclude that  
P(V) is a generalized G-cell complex with cells the unit disks of the representations 

¢~lVk for 1 _< k _< n. 

In order to show that the equivariant cohomology of P(V) is free over H~S °, 
we must show that  the cells of P(V) can be attached in an order satisfying the 
condition in Theorem 2.6(a). This proper ordering of cells is derived from a careful 
ordering of the set q~ of irreducible summands of V. Since the remainder of our 
discussion focuses on ~, we write P(~)  for P(V). An ordering ¢0, ¢~, ¢2 . . . .  of the 

elements of • is said to be proper if the number of irreducibles in the se t  {¢i}O<_i<_k-1 
isomorphic to ¢~ is a nondecreasing function of k. For example, if ¢ and r} are 
distinct complex irreducibles and q5 consists of two copies of ¢ and one of q, then 
r], ¢, ¢ and ¢, r], ¢ are proper orderings of ~, but ¢, ¢, 7/ is not. The dimension of 

lk--1 
the fixed subrepresentation of the representation ¢~- ~ ¢ i  is the number of 

i=0 
irreducibles in the s e t  {¢i}o<i<k-1 isomorphic to Ck- Thus, if q~ is properly ordered, 
then the cell structure described above satisfies the conditions of Theorem 2.6.(a). 

PROPOSITION 3.1. If ¢0, ¢2, ¢2, -.. is any ordering of the elements of a set • of 
irreducible representations, then p(dp) is a generalized G-cell complex with cells the 

unit disks of the G-representations ¢ - tk-1  k ~ ¢~, for k > I. Moreover, H~P(~5) + and 
i = 0  * 0 

I I~P(~)  + are free RO(G)-graded modules over I t , S  . If the ordering of ~ is proper, 
then the homology and cohomology of P(~)  are each generated by one element in 

k-1 
dimension zero and one in each of the dimensions 6~-1 ~ ¢i ,  for k _> 1. 

i=0 

The G-fixed subspace of P(q~) is a disjoint union of complex projective 
spaces, one for each isomorphisnl class of irreducibles in ~5. The (complex) dimension 
of the complex projective space in P(e)) a associated to the irreducible ¢ is one less 
than the multiplicity of ¢ in ~. Thus, the effect of properly ordering the irreducibles 
is that the maximal dimension of the components of the G-fixed subspace of 
P({¢i}0</_<k) increases as slowly as possible with increasing k. 

REMAl~KS 3.2. Our description of the eohomology of P(~)  contains one apparent 
anomaly. Suppose that (,  r/, and 4) are distinct complex irreducible representations 
and • = {(, q, 6}. If we assign the proper ordering (, r/, ¢ to ~, then we find that 
the generators of * + HGP((P ) are in dimensions 0, r] -1 ¢, and ¢-1 (¢ • r/). However, if 
we select the proper ordering 6, (~, q, we find that the generators are in dimensions 0, 
¢-1 6, and r] -1 (6 O (). In particular, the cohomology in dimension r]-1¢ must be 
A ® <2[) ® <2[) if we use the first set of generators, and A[d] ® <N> ® <7/) if we use the 

second, where d is the integer associated to the element rl - t ( - ( - 1 ¢  of RO0(G). 

There is no contradiction in these two claims about the cohomology in dimension 
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r / - l (  because these two Mackey functors are isomorphic by Examples 1.1.(d). The 
apparent difficulties in all the other dimensions are resolved in exactly the same way. 

This example illustrates the latitude that one has in selecting the dimensions 
of the generators of the cohomology of P(~)  for almost any set • of irreducibles. 
This latitude is necessary because, for most ~, there are many proper orderings and a 
choice of a proper ordering corresponds to a selection of the dimensions of the 
generators. 

It would be nice to have some simple cohomology invariants of P((I,) which 
could be used for problems like comparing the cohomology of projective spaces with 
different G-actions. The fact that the dimensions for the cohomology generators 
don' t  provide such an invariant is a disappointment. However, one invariant related 
to the dimensions of the generators is readily available. Select a proper ordering of ¢5 
and plot the dimensions c~ of the resulting set of generators of I-I~P(~) + on a 

coordinate plane whose horizontal and vertical axes indicate laGI and I~1, 

respectively. The dimensions lie on a stair-step pattern whose foot is at the origin. 
This plot is an invariant of P(q@ The height of the steps in the plot decreases, or 
remains constant, as one goes up the steps (that is, moves in the direction of 
increasing laGI and loci). The height remains constant only if irreducible types 
appearing in (I) have equal multiplicity. The step-like structure of the plot reflects a 
filtration on (I) which plays an important  role in our discussion of the ring structure 

, + 
ofttGP((I) ) . An increasing filtration 

0 = qS(0), ~(1), (P(2) . . . . .  ~(r)  . . . .  

of the set • is said to be proper if, for every r and every complex irreducible ¢, the 
number of irreducibles in (I)(r) isomorphic to ¢ is the lesser of r mad the number of 
irreducibles in • isomorphic to ¢. Any two proper filtrations of ~5 differ only by an 
interchange of isomorphic irreducible complex representations, so there is essentially 
only one proper filtration of ~. The steps in the plot of the dimensions of the 
generators are in a one-to-one correspondence with the stages in the filtration of ~. 
The height of the step corresponding to filtration level r is the number of elements in 
~5(r) - ~(r  - 1). 

4. CUP PRODUCTS IN • 0 H G S .  Here we describe the multiplicative structure of 
• 0 ttGS . We begin with the case p = 2, which is due to Stong. 

DEFINITIONS 4.1. Let ( be the real one-dimensional sign representation of 

G = ?7/2. The identity element 1 in A(1) = H~(S°)(1) is the identity element of the 

RO(G)-graded Macl(ey functor ring tIGS* 0. Let n E It~(S°)(1) be 2 -  rp(1) .  Observe 

that n ' - =  2n. Let ~ E H~(S°)(1) be the Euler class; that  is, the image of 

1 E H~(S°)(1) under the map induced by the inclusion S ° C  S ¢. Select a 
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nonequivariant identication of S C with S 1 and let h - (  • H~-i(S°)(e) -~tt~(S~)(e) 

and L(_ 1 • H~-a(S°) (e)~H~(S~)(e)  be the images of p ( 1 ) •  H~(S° ) (e )~H~(S~) (e )  

under the maps induced by this identification. Let ( • tt~<-2(S°)(1) be the unique 

element with p ( ( ) :  Q_> The elements 1 and n generate the abelian group 

H~(S°)(1) and the Mackey functor H~S °. Each of the elements e ~, (~ ,  and era( ~, 
a 0 for m, n _> 1, generates the abelian group ttG(S )(1) and the Mackey functor ~Gn~S° in 

the appropriate dimension a. For m > 1, the element L~_ i or L~_ 1 generates the 

abelian group H~(S°)(e) in the appropriate dimension and L~_< generates the Mackey 

functor . o I-IGS in the appropriate dimension. For m > 2, r(L~_~) generates the 

• 0 1 abelian group I-IG(S )( ) in the appropriate dimension. 

LEMMA 4.2. 

, 2 n + 1 ,  (2n+l)(l-() 0 
r t h - <  ) 6 t t  G ( S ) ( 1 )  

are infinitely divisible by e 6 H~(S°)(1); that is, for m 
elements 

and 

The class g • H~(S°)(1) and, tbr n _> 1, the classes 

_> 1, there are unique 

e - ' ~  6 tt~'~¢(S°)(1) 

- m  / 2 n + l ~  . 2 n + l -  e T i L l _  ~ ) 6 H G (2n+m+l)¢(sO)(1)" "" " 

such that 

e m ( e - m ~ )  ~ a n d  . . . . . . .  2~+1,,  , 2~+1, = e (,e r(q_¢ )) = riq_ (). 

Moreover, each of the elements e-m,~ o r  e--r*~T(/~ 2 n + 1 )  generates the abelian group 
H~(S°)(1) and the Maekey functor * 0 tlGS in its dimension. 

THEOREM 4.3. The elements 

e 6 H~(S°)(1) 

q_< ~ ~-((S°)(e)  

q-1 e l{~-~(S°)(e) 
2 ( - 2  o ettG (S)(1) 

~-~ ,~  e t t ~ ' ~ ( s ° ) ( 1 ) ,  

and 

f o r m  _> i, 

- - m  z 2 n + I \  ~ 2 n + 1  
g r t ,  t l _  ( ) E H G - ( 2 n + m + l ) ( ( S ° ) ( 1 ) ,  f o r  m ,  n _> 1, 
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• 0 RO(G) -g raded  Mackey functor  a lgebra  over the Burnside generate  I tGS as an 
Mackey functor  ring A. The  only relat ions a m o n g  these elements,  other  than  those 
forced by the Frobenius  relat ions or the vanishing of I-I~S ° in various dimensions,  are 
genera ted  by the relat ions 

p(~) = o 

*1-¢ ~¢-I = p(1) 

r(q_<) = 0 
/ 2 r e + l \  r(~¢_ ~ ) = O, 

{0 
~-(,7_~) ~(,?_~) = 2~(,7._~), 

2 e ~ = O  

p ( c - ~ )  = O, 

( ~ - ~ ) ( , - ~ )  = 2~-(~+~>~,  

/ 2 r~+lx  2e - m r ( t l _  ~ ) = O, 

p(C.-m z 2 n + l ~ \  
rk t l _  ¢ )) = O, 

- m  2 n + l  = ( ~ l - r n  / 2 r t + l x  

(¢-m , 2 ~ + 1 , , ( - % )  0, r t t l - ¢  )) = 

and  

-rr~ 2 n + l  
(~ ~-('1-~ )) 6 - m  / 2 n - l x  

T ( L I - ( ) ,  

for m _> 0, 

f o r m  _> 1, 

if m or n is odd, 

if m and n are even, 

f o r m  > 0, 

for m >__ 1, 

for m,  n > 0, 

for m _> 0 and n > 1, 

for m _> 0 and  n _> 1, 

for m,  n _> 1, 

f o r m ,  q >_ 0 a n d n  > 1, 

f o r m  >_ 0 a n d n  >_ 2. 

R E M A R K S  4.4. (a) The  last relation indicates that ,  for m _  0 and n _> 1, 
~ - m  i 2 r t + l x  r t , l _  ¢ ~ is infinitely divisible by ~. Thus,  we can think of  all the e lements  in 

the four th  quad ran t  of the graph  of * 0 t tG(S ) as being derived f rom r(L3 ¢) via division 
by powers of  e and ~. One mnemon ic  for the effect of e and ~ on the e lements  in the 

four th  quad ran t  is to denote  the nonzero e lement  in H~-"~ -~" (¢ -1 ) (S° ) (1 ) ,  for m _ 2 

and n _> 1, by e - m  ~ - "  w, where w is regarded as a ficti t ious e lement  in d imension  1. 
T h e  reason for selecting a fictit ious e lement  in dimension 1, instead of the actual  
e lement  in d imension 3 -  34, is discussed in Remarks  4.10(b). 

(b) For p = 2, the e lements  + ( 1 - r p ( 1 ) )  in A(1) are units,  and l - r p ( 1 )  
appears  in the fo rmula  describing the a n t i c o m m u t a t i v i t y  of  cup products .  For any  

I-I i + J ( X +  I-l-m + n  i X +  then G-space X, if a E z~ G and b E -~'G , 
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a b  = ( - 1 ) i v * ( 1 - r p ( 1 ) ) J n b a .  

The generators L1_¢, t¢_1, e, e - n n ,  and c - m  , 2n+l, r~q_¢ ) are in dimensions where the 

behavior of this nontrivial unit matters.  Of course, since e - ~  ; 2~,+1, rt~l_ ¢ ) has order 2, 
any unit acts trivially on it. It is easy to check that  

(1-rp(1))~l_¢ = - t1-¢  and ( 1 - r p ( 1 ) ) L ¢ _  1 = -#¢-1" 

This action of 1 -  rp(1)  on LI_ ¢ aI]d re_ 1 never affects cup products in tI~S ° because 
it is always balanced by the ( -1)  'm term in the commuta t iv i ty  formula. However, 

n*  S o where the effects of this unit on q_¢ and re_ 1 are there are algebras over -~-G 
visible. The unit 1 rp(1)  acts trivially on e and e - ' ~ .  This shows up dramatical ly 
in ~a* S O The elements e and e->~+l~ are odd-dimensional, so our intuition about 

a ,a ,  G • 

graded algebras Dom the nonequivariant context suggests that  their squares should 
vanish, or at  least be 2-torsion. In fact, the squares are not torsion elements, an 
apparent  anomaly possible only because the action of 1 -  rp(1)  is trivial. The overall 
effect of the actions of the units of A on tile generators of * 0 I-IGS is that  t t~S ° is 
commuta t ive  in both the graded and the ungraded seuse. 

When p is odd, several complications ill the multiplicative structure of I-I~S ° 
arise from the greater complexity of RO(G).  Tile most obvious are a host of sign 
problems coming fl'om the identification of representations with their complex 
conjugates. Initially,. we resolve these sign problems by grading HG S ,  0 on RSO(G) 
instead of RO(G).  In Remark 4.11, we explain steps which must  be taken to pass 
back to an RO(G)-grading.  The most serious complication arises from the 
misbehavior of the integers da associated to the virtual representations c, in 
RSO0(G ). One way to deal with this complication is to avoid it. This can be done 
very nicely if one is only interested in • 0 HGS . Because of the intuition this approach 
offers, we outline it as an introduction to the odd primes case. 

The stable homotopy groups reds °, for ~ E RSO0(G ), have been studied 
extensively by tom Dieck and Petrie [tDP], and the stable Hurewicz map  

h: ~r~_~S °-~tIG_oS ° ~--u~S° 
- -  .~,,,L G 

is an isomorphism [LE1] if 3 C RSO0(G). Thus, many of their results can be applied 
to homology in the appropriate  dimensions. They have shown that  the 
multiplication map 

° + ze+ G s o 

is an isomorphism for any /3 E RSO0(G ) and any 7 E RSO(G).  By similar 
reasoning, the multiplication map 

0 01-1 y 0 H~+~S0 I-t~S ttGS -~ 

is an isomorphism under the same conditions on /3 and 7. Thus, to understand all of 
I-I~S °, it suffices to understand the part  of * 0 tlGS which tom Dieck and Petrie have 
already described and the part  indexed on some subset of RSO(G) complementary  to 
RSO0(G ). Recall that  k is the irreducible complex representation that  takes the 
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standard generator of 7]/p to e 2'ri/p. Let RSOz(G) be the additive subgroup of 
RSO(G) generated by 1 and I .  As an additive group, RSO(G) is the internal direct 
sum of RSO0(G ) and RSOx(G). To complete our description of II~S °, it suffices to 
describe that  part of it indexed on RSOx(G). This part is almost identical to H~S ° 

* 0 for G = ~/2.  Consider the description given above of that  part of I l l s  for p = 2 
indexed on the additive subgroup of RO(i7/2) generated by 1 and 2C. Replace 24 by 

f . . . .  0 for p ,k and all the other 2's by p's. The result is a description of the part o r t6~ 
odd indexed on RSO:~(G). This approach describes * o t t c S  as the graded box product 
of two subrings indexed on complementary subsets of RSO(G). The unpleasant 
behavior of the integers d~ is buried in the computations of the box products. 

Unfortunately, because of peculiarities in the dimensions of the algebra 
generators of H~P(V) +, this description • 0 of HaS  as the box product of two subrings 
can not be used to describe the ring structure of the cohomology of complex 
projective spaces. Thus, we offer an alternative description of the ring structure of 
It* S O for p odd. In section 2, we defined a function from RO0(G ) to Z using a G 
section of the projection from R0(G) to RO0(G ). Since we are now working with 
RSO0(G ) instead of RO0(G), we define an analogous function from RSO0(G ) to 7] 
using a section s: RSO0(G ) -* Ro(G) of the projection from t~0(G ) to RO0(G). We 
insist that  s(0) = 0 and that  our original section RO0(G ) -* R0(G) factor through s. 

DEFINITIONS 4.5. (a) If ct E RSO0(G ) and s(a) = ~ ¢ i - r h ,  then we wish to 

define an equivariant map #~:  S ~ i - *  S ~¢i with nonequivariant degree d~. If 

a = I m - I '~ with 0 < m,n  < p  and n -1 is the unique integer such that 1 _<n -1 _<p-  1 

and nn  -1 ~ 1 rood p, then ~t~ is the extension to one-point compactifications of the 

complex power map z -~ z "~('~-1), for z E C. In general, we identify S x t i  and S "~ni 

with Ai Sci and A S ~i, respectively, and take the smash product of the appropriate 

complex power maps to obtain the equivariant map #~ from S ~¢i to S ~ ' i  with 

nonequivariant degree d~. Also denote by #~ the image of this map in It~(S°)(1) 

under the Hurewicz map. Clearly, if the 8i and the ~?i were paired off in a different 

order, then a different map from S ::el to S ~"i would be obtained. However, the 

maps coining from the two pairings would be equivariantly homotopic and so would 

give the same element in H~(S°)(1).  

(b) Let a be an element of RSO(G) with lal = 0. Then a must be 

represented by a s u m  E~i-?]i, where the ¢i and r h are irreducible complex 
i 

representations, some of which may be trivial. Since the 8i and r h are complex 

representations, they have canonical nonequivariant orientations. Combine these to 

produce a nonequivariant identification t~ of S ~¢i with S ~ni which is unique up to 
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homotopy. Let Le also denote the image of this identification in I-I~(S°)(e). The 

resulting cohomology classes L~ are then independent of the ordering of the ¢i and 

the Vi. The abelian group H~(S°)(e) is generated by L~. If lc~GI > 0, then 7"(~) 

generates the abelian group H~(S°)(1) and L~ generates the Mackay functor ltGS~ 0. 

(c) If c~ E RSO0(G), then in HGS ~ 0, 

p(#~) = d~ ~ and pr(L~,)  = p ~ .  

We have already asserted that I t , S  ° is A[d~]. Under this identification, #~ and 

r ( t~)  become the elements /~ and r of A[d~](1) and ~ becomes 1 E 7/ = A[d~](e). 

There is a unique integer b ~ s u c h t h a t d _ ~ d ~  + b~p  = 1. Let ~ = p # ~ - d ~ T ( L ~ )  

and G~ = d - ~ # ~  + b~T(L~). Then, cr~ and ~ form an alternative Z-basis for 

tt~(S°)(1). 

(d) Let /3 be an element of P~SO(G) with 1/31 > 0 and 19GI = 0 There exist 

an c~ in RSO0(G ) and a G-representation V such that V G = 0 and /5 = c~ + V. Let 

ep E linG(S°)(1) be the image of #c~ E t t ; (S°) (1)  under the map from It~(S°)(1) to 

ttZG(S°)(1) induced by the inclusion S o C S v.  In Lamina A.11, it is shown that  this 

Euler class eZ is independent of the choice of the decomposition of/5 into the sum of 

the representation V and the element c~ of RSO0(G). The class eZ generates the 

abelian group HZG(S°)(1) and the Mackay functor tt~GS °. 

(e) If I~l = 0 and < 0, let be the unique element of I-I~(S°)(1) with 

p({~) = L~; this class generates the abelian group H~(S°)(1) and the Mackay functor 

tt s °. 

When p is odd, it is harder to pick a multiplicative basis for the torsion in 
the fourth quadrant of the graph of u* S o In each dimension there is a choice of " ~ ' G  " 

p - 1  generators, instead of a single nonzero element. Moreover, since these torsion 
elements are not tied by an Euler class to elements on the positive horizontal axis, 
there is no way to base the choice of a generator on choices already made for the axis. 
The following lemma justifies the procedure we employ to select multiplicative 
generators for the fourth quadrant. 

LEMMA 4.6. Let 13 be an element of RSO0(G ) and let a, 7, and 6 be elements of 
RSO(G) such that 
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and 

lal = I~GI = 0, 

I~1, la~l < 0, 

Ivl > 0, 

Is~l > 3, 

Io~GI is odd. 

If x is any nonzero element in I-IG(S~ 0)(1), then p z x  is a generator in ttG+Z(S°)(1). 
Moreover, x and #Z x are uniquely divisible by both c-~ and ~e" 

DEFINITIONS 4.7. Select a generator in I-I~-~a(S°)(1) and denote it by ~'3-~a- If 

~ =  1 - m ( ) , - 2 ) - n l ,  for m, n_> 1, then let us  be the unique element in H~(S°)(1) 

such that 

For any o~ C RSO(G), there are unique integers m, n, and q such that q = 0 or 1 

and 

c t - [ q - m ( , k - 2 ) - n & ]  E RO0(G). 

Denote by < a >  the element q - m ( , k - 2 ) - n , k  associated to a by these conditions. If 

ct E RSO(G) with lal < 0, laGI _> 3, laGI odd, and a :~ < a > ,  then define 

uo" E tt~(S°)(1) by 

P'o" : t / o ' _ < a >  b ' < o ' > .  

The element uo" generates the abelian group H~(S°)(1) and the Mackey functor 
a 0 ttGS . 

LEMMA 4.8. If a E RSO0(G), then /go" E It~(S°)(1) is divisible by ee, for any 

fl e RSO(G) with ]fl[ > 0 and ]fiG] = 0; that is, there is a unique element 

~71/gs e ~ 9(s°)(1) 

such that  

~5,8 ((T~ 1 /gO,) = /go', 

The element e~ 1/go" generates the abelian group I-I~-P(S°)(1) and the Mackey functor 
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T H E O R E M  4.9. The  e lements  

and  

c~ o ~ e ttG(s )(1), 
0 ~ ~ t tG(s  )(e), 

% • t t~ (S°) (1 )  

~ - 2  • t t~-~(S°) (1)  

~:_~ e e~-~(s°)(e) 

~;~,~o • I~;~(s°)(1),  

a 0 ~,~ c t tG(s  )(1), 

for c~ = : t : ( A n - A ) ,  with 1 < n < p, 

for o~ =: t : ( )~n- ,x) ,  with t < n < p, 

f o r  m > 1,  

dimensions,  are generated by the relat ions 

p ( ~ )  = d ~ ,  

p(~e) = 0, 

T(~)  = p¢~ ,  

~- ¢~ = ¢~+e, 

~ ¢ ~  = d~4~+~,  

for a c RSOo(G); 

for c~, fl E RSO0(G);  

for 191 > 0 and 191 = 0; 

for lal, Ifl] > 0 and 

I~1 =1~[_=0; 

for ~ e a S O o ( 6 ) ,  f~l > o, 

and I~ l - -  O; 

for lal = 0 and laG[ < 0; 

for Iod = 0 and I~I < 0; 

for la'I = I~I = 0 and 

l~el, b q  < 0; 

for a E RSO0(G) ,  t/31 = 0, 

and triG] < 0; 

• 0 RSO(G) -g raded  Mackey functor  a lgebra  over the Burnside generate  H a S  as an 
Maekey functor  ring A. All of relat ions a m o n g  the e lements  of  * o I t6S  , o ther  than  
those forced by the Frobenius  relat ions or the vanishing of • 0 I-I6S in var ious 

for a = l - - i n ( A - 2 ) - n A ,  w i t h i n ,  n_>1,  



p ee {~ = 0, 

e/~ {~, = da_ ~ e-r {~, 

p ( { ~ ; l ~ a )  = O, 

/*3' ( e ;  1 /~oe) = ,£;1 K:°c+7 ' 

eft (£.;1 /~0,) ~- KOe, 

e7 (e~ 1 ~ )  = e~l_~ ~c~, 

-1 (e~l~a)(c;l '~6) = PQ~+-r ha+o, 

pu~  = O, 

p ( ~ )  = o, 

81 

for ~ = t g q  : 0, i ~ q  < 0, 

~nd I,< > 0; 

for Iod = [81--1t3GI = 17GI = 0, 

I~q, leq < 0, I~1,1:1 > o, 
and a + / 3 = 7 + 6 ;  

for a,  ~5 E RSOo(G), 

Ieq=i:q=o, 
I~t, 171 > 0, and 

a + 7 = , ~ + 6 ;  

for ~ 6 RSO0(G), I s g  = 0 ,  

~nd t~1 > 0; 

for a, 7 E  RSOo(G), I~g ;o, 
and 191 > o; 

['or c~ E RSOo(G ), I f lGl=0,  

and I~l > 0; 

for a E RSOo(G), 

I ~ q - - I ~ q = o ,  and 

]/~1 > 171 > 0; 

for a, 6 E RSOo(G), 

19[  = I'~g ; o ,  

and 1/31, [7I > 0; 

for t~1 < 0, ic~GI > 3, and 

l~q odd; 

f o r l a l < O ,  [aG[>a, and 

I~q odd; 

for /3 E RSOo(G), lat < O, 

IaGI _> 3, and ioeGI odd; 
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(3  ~'c~ --~ /"c,+~,  

( E ;  1 //;7) /JOe = O, for 

tc~ I.fi ~ tcx+fi ,  

for Io~-4- ~1 < 0, IsGI ~ 3, 

lonG] odd, I'~1 > 0, and 

I~GI--0; 

for ,~, < 0, Io~ ~ + ,~GI > 3, 

[czGI odd, I~1 = o, and 

19Gi < 0; 

7 E RSO0(G), Ic~l < 0, 

IsGI >_ a, I~GI odd, 

[fiG[= 0, and I~1 > 0; 

i~1 = l ~ l = 0 .  for 

REMARKS 4.10. (a) For p odd, the only units in A(1) are +1. The only 
generators in odd dimensions are the v~. Since v~vZ is zero for any c~ and fl, no 
sign problems occur in commuting products in H~S °. Thus, H~S ° is commutative in 
both the graded and ungraded senses. 

(b) As an alternative to using the v~ as a basis in the fourth quadrant, one 

may define elements e71~1co in ttG-~-QS°)(1), for l a l = [ / 3 G ] = 0 ,  l aG]<0 ,  and 

191 > 0, by 

( 7 1 ~ 1 C 0  = d~,_<~>//1-a'--fi" 

Here, aa is regarded as a fictitious element in dimension 1 which is divisible by any 
product ~<, e/~. We employ a fictitious element because there is no canonical choice 
for the dimension of an actual element. The relations satisfied by the elements 
e~z~lo~ are 

- 1  - 1  for ,~, = I~ G] : I 'r~ I : O, 

191 > 171 > o, 

and [a G] < O; 

for I~, = rTJ = f~GJ = o, 

I~1 < I,r~ I < 0, 

and ]fi[ > O; 
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#7 (e71~7'1w) = d<v>-~ e7 l ~ a !~ w '  

for 7 E RSO0(G), 

= 1/3 1 = o, l s e i  < o, 

and 1/31 > 0; 

for 7 e RSO0(G), 

and 1/31 > 0. 

The one difficulty with this alternative basis is that  if a + / 3  = 7 + 5, then e~l~gl~o 
and e}-l~71w are in the same dimension, but they need not be equal. In fact, 

(c) Observe that  in the formulas for the product of #~ with any of e/~, 
e~ 1 ~ ,  or v5 there is no de,, but there is such a constant in the formula for the 
product p~ f~ .  On the other hand, er~ f/~ = ~ + ~ ,  but there is a d -~  in the formula 

for the product of ~ ,  with any of e/~, e~ 1 ~v,  or t@. This difference in the behavior 

• 0 1 of the elements #~ and er~ of HG(S )( ) reflects the fact that  there is a conjugacy 

class of subgroups of G associated to any well chosen element of any G-Mackey 
functor M for any finite group G. This association is based on the splitting of M 
which occurs when M is localized away from the order of G. This splitting can not 
be observed directly before localization, but it can be seen indirectly in the association 
of subgroups to well chosen elements in the Mackey functor. The elements #~ ,  e~, 

e~ 1 ~y,  and v~ are all associated to the subgroup G of G, and products of pairs of 

them behave nicely. The elements era and ~Z are associated to the trivial subgroup, 
and their product is nice. However, the product of elements associated to two 
different subgroups will either be zero or involve some fudge factor like a d a .  We 
have introduced both #a  and era so that,  when one of these elements is needed in our 
description of the relations in H~P(V)  +, we can always choose the one that  will give 
us the simpler formula. 

• 0 REMARKS 4.11. In order to explain the passage from an RSO(G) grading on HGS 

to an RO(G)  grading, we must  first clarify what is meant  by the assertion tha t  HGS* 0 

is RO(G)-graded.  The assertion does not mean that ,  for a C RO(G),  ~ 0 ] t6S  can be 
described without reference to a choice of a representative for a.  Rather  it means 
that  if V I - W 1 and V 2 -  W2 are two representatives for a and I-I 1 and H 2 are the 

values of ~ 0 FIGS obtained using these representatives, then we can construct an 

isomorphism between I-I 1 and H 2 in a natural  way from any isomorphism 

f: V2 O W1 ~ V1 G \¥~ of representations illustrating the equivalence of V 1 -  W1 

and V 2 -  W 2 in RO(G).  This is exactly what we mean when we say that  
nonequivariant homology is 7/ graded. To define the nonequivariant homology group 
H~X, we must  pick a standard n-simplex. Different choices of the n-simplex lead to 
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different groups, as anyone who has been embarrassed by an orientation mistake 
knows all too well. 

Let fl---- V 2 G W 1 -V~ ® W 2 and let f denote the image of f in Ji~(S°)(1).  
Then the isomorphism from H 1 to H 2 is just  multiplication by f. To provide a 
means of computing the effect of this isomorphism, we write f in terms of the 

s tandard generators of tI~(S°)(1).  The map  f induces a map  1¢ 3 between the fixed 

point subspaces of the representations. If nonequivariant orientations are choose for 
their domains and ranges, then the maps f and fG have well-defined nonequivariant 
degrees. It follows from Lemma A.12 that  

(deg f ) -  (deg fG)d~ 
= (deg fG)/2~ + p r(L/~). 

The structure of • + • 0 HGG as an algebra over JIGS follows easily from our 
• 0 results on ttGS and the description of the additive structure of * + JIGG given in 

section 2. 

. 0 • + P R O P O S I T I O N  4.12. As an RO(G)-graded module over ttGS , is HGG generated 

by the single element ~ = (1, 0, 0 . . . . .  0) of J I ~ ( G + ) ( e ) =  Z p. Moreover, for any 

RO(G)-graded module M* over H~S °, there is a one-to-one correspondence between 

maps f: * + M* HGG --* of RO(G)-graded modules over H~S ° and elements in M°(e). 

This correspondence associates the map f with the element f(e)(~) of M°(e). Thus, 

• + * 0 JIGG is a projective RO(G)-graded module over ttGS . 

PROOF.  Unless lal 0, ~ + ~ + = ItG(G ) = 0 .  If l a l = 0 ,  then t ~  generates HGG as a 

module over A. Thus, ~ generates H* G + • 0 ~-G as an RO(G)-graded module over JIGS , 
, + 

and any RO(G)-graded module map f: HGG + M* is determined by f(~).  On the 

other hand, recall the observation from Examples 1.1(f) that  a map  from A G to any 

Mackey funetor N can be specified by giving the image of (1, 0, 0 . . . . .  0) E AG(e ) in 

N(e). Let m be an element of M°(e). For each o E R O ( G )  with I c d = 0 ,  Lore is in 

c~ + M~(e) and there is a unique map  f ~ : H G G  + M ~ of Maekey functors sending 

tc~b C I-I~(G+)(e) to t a m  C M~(e). These maps fit together to form a map  

f: * + M* tt* S o The projectivity of * + JIGG ~ of RO(G)-graded modules over z~ G . JIGG 

follows immediately.  
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5. TH E MULTIPLICATIVE STRUCTURE OF t t~P(V)  +. We assume that  there 
are at least two distinct isomorphism classes of irreducibles in V; otherwise, the 

. + 
mnltiplicative structure of l tGP(V ) is completely described in Examples 1.1.(h). As 
in section 3, we take 4) to be the set of irreducible summands of the complex 
representation V. Let 4)(0), 4)(1), (I)(2), ... be a proper filtration of 4). Then 4)(1) 
consists of exactly one representative of each of the isomorphism classes of 
irreducibles that  appears in (I). Let ¢0, ¢1, ¢2, -.. , ¢,~ be an enumeration of the 
elements in 4)(1), and let n i be the number of elements of 4) isomorphic co ¢i (with 
n i ----(x> allowed). Arrange the enumeration of the elements of 4)(1) so that 
n o > n 1 _> ... _> nm. Extend the ordering of 4)(1) to (I) by selecting the unique proper 
ordering of 4) which is consistent with the filtration and in which, for each r > 1, the 
ordering of the representations in 4)(r+1) (l)(r) is the same as the ordering of the 
corresponding representations in dp(1). If the irreducibles which appear in 4) appear 
with equal multiplicity, then, regarded as an ordered set, • is a sequence of blocks, 
each of which is a copy of 4)(1). If the multiplicities are not equal, then 4) is still a 
sequence of blocks, but each block after the first will be either a copy of 4)(1) or of an 
initial segment of 4)(1). The lengths of the initial segments in the sequence can not 
increase. We will abuse notation by writing ¢i E 4 ) ( r + l ) - 4 ) ( r )  to mean that 
4)(r+ 1)-4)( r )  contains an irreducible representation isomorphic to ¢i- We say that 
two sets of irreducible representations are equivalent if they contain the same number 
of irreducibles in each isomorphism class. Moreover, we sometimes identify 
equivalent sets of irreducibles. 

Corollary 2.7 will be used to derive the multiplicative structure of H~P(V)  + 
. + 

from the multiplicative structures of I-IG(P(V ) )(e) and I-I~((P(v)G)+)(1). The 

group I-I~(P(V)+)(e) is isomorphic to the nonequivariant cohomology group 

HI~(P(V)+;7/),  and we will think of the restriction map p as a map from 

H~(P(V)+)(1)  to KI~I(p(v)+;7/). Select an algebra generator x E tt2(P(V)+;7/) for 

H*(P(V)+;7/). The fixed point space of P(V) is the disjoint union of the spaces 

P(ni ¢i) ~ P(ni)- Let qi denote both the inclusion of the subspace P(ni) into P(V) 

and the map H~(P(V)+)(1)  * + --*I-IG(P(ni) )(1) induced by this inclusion. By 

Examples 1.1.(h), * + HGP(ni) is a truncated polynomial algebra over H~S ° generated 

2 + by an element x i in Hc(P(n i )  )(1). Let 

c i: * + --* HG(P(ni) ) (1) /( torsion G im p) 

denote the composition of qi and the projection onto the quotient. If y is in 
* + . 

H~(P(ni)+)(1) ,  then [y] denotes its image in t tG(P(ni) ) (1) / ( tors ion ® i m p ) .  

Throughout  this section, we will index H~P(V)  + on RSO(G) to simplify the 
selection of the integers d~. The comments in Remarks 4.11 on the passage from 
RSO(G)-grading to RO(G)-grading for * 0 I-IGS apply equally well to I-I~P(V) +. Recall 
that  ,~ is the irreducible complex representation that sends the standard generator of 
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7]/p to e 2'~i/p and that  ( is the real one-dimensional sign representation of 7//2. If p 
is 2, then 1, regarded as a real representation, is just  2~. 

We begin with the case p = 2. Any complex irreducible representation is 
isomorphic to either the complex one-dimensional trivial representation or the 
complex one-dimensional sign representation A. Since P(V) and P(AV) are 
G-homeomorphic,  we may assume that  there are at least as many  copies of the trivial 
representation in ~5 as there are copies of the sign representation. Thus, we may  take 
¢0 to be the trivial representation and ¢1 to be the sign representation. 

* + * 0 By Theorem 3.1, t tGP(V ) , regarded as a module over ttGS , has one 
generator in each of the dimensions 

2k + 2 k ~  and 2k + 2(k + 1)~, 

for 0 < k < n 1 , and one in each of the dimensions 

2k + 2 n 1 (  , 

for n I < k < n o . If  one assumes n o = n 1 , or ignores the generators special to the case 
n o >111, then one might guess that,  as an algebra, H~P(V)  + had an exterior 
generator in dimension 2~ and a truncated polynomial generator in dimension 
2(1 + ~). Except for the fact that  the generator in dimension 2~ is not quite an 
exterior generator and for some difficulties in the higher dimensions when n o > nl, 
this guess is a good description of H~P(V)  +. However, in order to describe the 
behavior in the higher dimensions as simply as possible, we adopt  a notation that  
does not immediately suggest this. 

r-r* S 0 H~P(V)  + is generated by an T H E O R E M  5.1. (a) As an algebra over ~G , 

element c of H~(P(V)+)(1)  in dimension 2 I  and elements C(k) of H~(P(V)+)(1)  in 

d imens ions2k  + 2min(k,  n l ) ( ,  for l _ < k < n  0. 

(b) For any positive integer k, let k denote the min imum of k and n I. Then 
the generators c and C(k) are uniquely determined by 

 0(e) = [0] 

p(c) = x E H2(P(V)+; 7/) 

and 

; ( C ( k ) )  = x 

Moreover, 
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and 

2C + 
qo(c) = e x  o e H G ( P ( n o ) ) ( 1 )  

2~ + 
ql(C) ~-- e 2 -~" ~X 1 E H G ( P ( n l ) ) ( 1 )  

qo(C(k)) = xok(e 2 + ~xo) i e t t~k+kt)(P(no)+)(1) 

q](C(k)) = x~(e 2 + ~X1) ~ e H~(k+ki)(P(nl)+)(1 ). 

n i 
If n i is finite, then x i = 0 and some of the terms in the last two sums above may 
vanish. 

(c) The generators c and C(k) satisfy the relations 

c 2 = e2c + ~C(1), 

cO(k) = ~ C ( k + l ) ,  for k_>n, ,  

and 

C O + k ) ,  
C@)C(k) = ?+~:_ ,~ . . ._  

C ( j + k + i ) ,  

fo r j  + k _ < n l ,  

fo r j  + k > n  I • 

In these relations, we take C(i) to be zero if i >_ n o . 

REMARKS 5.2. (a) By iteratively applying the third relation, we obtain 

C(k) = (C(1)) k, for k _< n 1, 

so that below the dimensions where we run short of copies of the sign representation, 
• p + 

tIG (V) is generated by c and C(1). Moreover, in these dimensions, C(1) acts like a 
polynomial generator. 

(b) If n 0 = n l ,  then H~P(V)  + is generated by c and C(1). The only 
relations satisfied by these two generators are the relation 

c 2 = e2c + ~C(1)  

and, if n o < ec, the relation 

C(1) n° = 0. 

REMARKS 5.3. Notice that  the maps q0 and ql behave differently on the generator 

c. The element ~ = c + e 2 - n c  of t tGP(V ) may be used as a generator in the 

place of c and its behavior with respect to q0 and q1 is exactly the reverse of the 
behavior of c. To understand the geometric relation between these elements, observe 
that c and ~ can be detected in the cohomology of any subspace P(1 + A) of P(V) 
arising from an inclusion 1 + A C V. The space P(1 + A) is G-homeomorphic to S ~, 
but unlike S ~, it lacks a canonical basepoint. Either choice for the basepoint of 
P(1 + A) determines a splitting of I-I~P(1 + A) + into the direct sum of one copy of 
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• 0 • A I-IGS and one copy of PIGS . The canonical generator o f  * A PIG S in dimension 2~ is 
identified with c by one of the two splittings and with ~ by the other. 

, + 
When p is 2, the multiplicative structure of t tGP(V ) does not really exhibit 

any complexities beyond those one might experience in a Z-graded ring. However, 
when p is odd, there are quirks in the multiplicative structure of H~P(V) + which are 
only possible because of the RSO(G)-grading. For tile odd prime case, recall the 
stairstep diagram obtained by plotting the dimensions a of the generators of 
I-I~P(V) + in terms of tctl and I~GI. Looking at this diagram in the special case where 
the irreducibles appearing in V appear with equal multiplicity, one might guess that  
I /~P(V) + was generated by two truncated polynomial generators, one in a dimension 
a with levi=2 and I a G t = 0  and one in a dimension ~ with Ifil=2m + 2 and 
lfiGl = 2. Unfortunately, such a guess would badly underestimate the complexity of 
I-I~P(V) +. The set of dimensions for a full set of additive generators must generate a 
larger additive subgroup of RSO(G) than can be accounted for by a pair of truncated 
polynomial generators. For example, recall that the first two additive generators of 
t t~P(V) + are in dimensions ¢~-1¢ 0 and ¢ ~ ( ¢ 0  + ¢1). If the additive generator in 
dimension ¢{1¢0 were to serve as a truncated polynomial generator, then the additive 
generator in the next higher dimension would need to be in dimension 2¢~-1¢0 
instead of ¢~i(¢  0 + ¢1). Any replacement of these two generators by an element 
and its square requires the introduction of further generators in some other 
dimensions inconsistent with a simple truncated polynomial structure. To provide a 
better feeling for the multiplicative structure of H~P(V)  +, we give two sets of 
multiplicative generators. The first is a natural set with a great deal of symmetry.  
It does not exhibit a preference for any one ordering of ~. Unfortunately, this set is 
much too large. By selecting an ordering on ~, we are able to construct a much 
smaller, but very asymmetrical,  set of algebra generators. 

In order to describe the effect of the maps qi on our algebra generators, we 
must introduce more notation related to the integers d~. 

DEFINITIONS 5.4. (a) For any two distinct integers i and j with 0_<i, j _< m, let 

~i j  denote the irreducible representation ¢}-1¢j, and let di-{ denote the integer d~, 
i j  

for c~ = f i i j  - f i r s .  Note t h a t  dij is 1 for any pair of distinct integers i and j. For any 

integer i and any distinct pair of integers r and s such that 0 _ i, r, s _< m, let d/ /  be 

zero. The integers di.{ satisfy the relations 

dirt d~; _= d / j  mod p, 

d~.{ + d¢~ _= d ~  mod p, 

and 

d~ j t~, t,, ~j dvw -= d ~  d,,~ rood p. 
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(b) If ¢i E t ( r + l ) - I ( r ) ,  then let c~i(r) denote the representation 

¢ ~ 1 ~  ¢, and let ~l~j b e d o , f o r  a = a i ( r ) - c ~ j ( r ) .  Note that,  i f ¢ i  E i ( r + l ) - i ( r ) ,  

d~i = 1. If either ¢i or Cj is not in i ( r + l ) - i ( r ) ,  then let d~j be zero. If ¢ i ,  ¢5'  

and Ck are in I ( r +  1 ) -  i ( r ) ,  then the integers d~j satisfy the relations 

d~jd~k =_ dik mod p 

and, if i :/= j, 

d~'5 : (cti'J~r ik  ak - -  , - . 7 ~  ~ ( d j k )  m o d  p, 
O<k<rn 
k ¢ i , j  

where a k is the multiplicity of Ck in if(r). 

THEOREM 5.5. (a) If i and j are distinct integers with 0 < i, j < m, then there is a 
unique element el5 in HZGiJ(P(V)+)(1) such that  

I kJ jl,  f o r 0 < k < m ,  ~k(cij) = di je~  i 

and 

P(eih) = x. 

If r_>0 and ¢5 E I ( r + l ) - I ( r ) ,  then there is a unique element Ch(r ) in 

I-I;J(~)(P(V)+)(1) such that  

~'tk(Cj(r)) = e j%j (~ )_ rx  , f o r 0 < k < m ,  

and 

p ( % ( r ) )  = x 

The elements Cij , for 0 < i,j _< m and i ¢ j ,  and the elements Ck(r), for r_> 1 and 
* + * 0 Ck E i ( r  + 1) - i ( r ) ,  generate HGP(V ) as an algebra over ItGS . 

(b) For 0 < i , j , k < m  and i :~ j ,  

~j 
qk(cij) : dij fJ3ij "t- ~ ~ i j  - 2 Xk"  

(c) For r > 1 and Ck e I ( r +  1 ) - i ( r ) ,  
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1-[ (e&i + 2xk) 1 qk(Ck(r)) = x~ | ¢ i  c #(r) ¢#/~i- • 

If Cj e ~ ( r +  1 ) - ~ ( r )  and j ¢ k, then 

~[,<i )~I I-I (d"e#ji+~#ji_2xk) l %(Cj(r))  = xkka~k co5 ~ + Ce~_ xk ¢i~#(~) 
k 

r [ A k J ~  r ki ak~ - ~'vk) 1-I (d~) 
¢i e ~(r) iSkj,k 

%j(~)_~x~. 

+ 

If ¢~ ~ ~ ( r +  1)-49(r), then qk(C/(r)) is  zero. 

(d) For 1 _<j _< m, let 7j be the representation ¢71 ¢i and let Dj be the 
i=0 

j -1 
element l-I cji in H;J(P(V)+)(1). Then the elements D j ,  for 1 <__j _< m, the elements 

i=0 
C0(r), for r>_l and ¢0 • ¢5(r+l)-qS(r) ,  and the elements DjCj( r ) ,  for 1"_>1 and 

* p + n ,  S O ¢bj • ~ ( r +  1)-¢5(r), generate H G (V) as an algebra over . ,G . 

REMARKS 5.6. In order to simpli~ our indexing, we define D O and C j(0), for 

0_<j_<m, to be 1 C H~(P(V)+)(1). We also define 70 and oej(0) to be 0. Our 

second set of generators for H~P(V) + is then just the set of elements DjCj( r ) ,  for 

r _> 0 and Cj • ¢5(r+ 1 ) -  q~(r). This set of elements of I-I~(P(V)+)(1) is also a set of 
• 0 additive generators of H~P(V) + as a module over t i cS  . One might hope that a set 

of multiplicative generators could be much smaller than a set of additive generators, 
but if the various irreducibles in • appear with very different multiplicities, then 
small sets of multiplicative generators do not exist. 

We will order the set of generators Dj Cj( r )  by the dictionary order on r and 
then j. On the stairstep plot of the dimensions of these generators, moving in the 
direction of increasing order corresponds to moving up and to the right. 

REMARKS 5.7. Nothing that has been said in the discussion of the odd prime case 
actually depends on p being odd; rather, mod 2 arithmetic is so simple that  most of 
the technicalities necessary when p is odd are unnecessary when p = 2. The elements 
c and ~ in the case p = 2 are c10 and c01. The element C(j) is C0(j). 
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In order to describe the relations among the generators in H~P(V) + in a 
palatable form, we must introduce one more batch of elements in H~(P(V)+)(1). 

DEFINITION 5.8. Observe that, for 1 _<j < m, tcDj is divisible by e.~j. Moreover, 
and 

I -'d l o + qk(e~ ~Dj) = Pi~0 ji e HG(P(nkCk) ) / ( tors ionOim r). 
j - 1  j -1  

Since l~ d~! is zero if k < j  and 1 if k = j ,  the coefficients p I-t dk.! which appear in 
i = 0  jz i = 0  O~ 

the O k ( ~  ~Dj) form a matrix which is p times an upper triangular matrix with 1% 

on the main diagonal. Applying the obvious analog of the process for diagonalizing 

an upper triangular matrix to the elements e ~ D j  

H~(P(V)+)(1) characterized by the conditions 

and 

p(k ) = 0, 

( [p], 

[ 0, 

These elements can be described inductively by the equations 

km ~ ¢-r I ~Dm 

and, for l < j < m ,  
kj = ¢-1 ~cDj m ~ I d k  i 

7j k=~j+l(i~O ji) ~k" 
m 

Define k 0 ¢ H~(P(V)+)(1) to be ~ - E  k j .  

for j ¢ 0 then also characterize k 0 . 

produces elements kj of 

if k ----j, 

otherwise. 

The equations above characterizing kj 
j = l  

Moreover, 

f p, if k = j ,  
q k ( k j )  

0, otherwise. 

kj  Cj(r). These elements kj(r) are characterized by the equations 
H;J(~)(p(v)+)(1) For r_>l and Cj e • ( r + l ) - ¢ ( r ) ,  define &j(r)E to be 

= 0, 

and 

p%5(~)_~x~ , 

O, 

if k = j ,  

otherwise. 

Moreover, 
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qk(kJ (r)) = { p%j(,.)_~x~, i f k = j ,  

0, otherwise. 

For convenience, we define kj(0) to be k j .  Observe that,  for r > I, the elements 
kj(r)  can also be constructed from the elements KDj Cj(r) in the same way that the 
elements kj  are constructed from the ~cDj. 

We begin our list of relations with the relation between any two of the Cij 
and the relation between any two of the Cj(r).  

PROPOSITION 5.9. (a) Let i, j, r, and s be integers with 0_<i, j, r, s ~ m  and 
i @ j , r ¢ s .  Then 

kj sj rs ks 
sj dij - dij - dij drs 

Cij : (7flij-flrsCrs -~- dij ~Zij -1- E p ~[3ij kk" 
kCs 

(b) Let r>_l  and let i and j be integers such that  ¢i and Cj are in 
• (r+l)-~(r). Then 

-dkjdji 
Ci(r) = ~ i ( , - ) -~ j ( r )  Cj(r) -t- ~ p /~i(~)_~k(r ) kk(r ) . 

kCj 

An obvious initial response to this result is to assume that H~P(V)  + can be 
generated as an algebra over H~S ° by any one of the cij and, for each r with 
q~(r+l ) -qS(r )  nonemepty, any one of the Cj(r).  The k k and kk(r ) in the formulas 
spoil this simplification, especially since they are defined in terms of precisely the 
generators one would hope to omit. Solving this by taking the elements k k and kk(r ) 
as part of a generating set is hardly satisfactory since, from a Mackey functor point of 
view, these are torsion elements (because P(kk) and p(kk(r)) are zero). 

The remaining results in this section describe the products of pairs of 
elements from either of the generating sets in terms of the smaller generating set. All 
of the relations in I-I~P(V) + follow from the relations in Proposition 5.9 and the 
relations below. If V is finite, then some of the elements appearing on the right hand 

• V + side of these relations may not appear in the list of generators of It G (V) . Any 
such element is to be regarded as zero. We begin with the products which land in 
dimensions where there is no torsion. These are easily computed using the maps ~ 
and p. 

PROPOSITION 5.10. (a) Let i, j, r, and s be integers with 0 < i , j , r , s _ < m  and 
i @ j , r @ s .  If I n > 2 ,  then 

c i jcr '  = d0Jd0;~ lj is A0 j 0 s ) g  -1310 C10 + a~D2 + ~j ~ij+/~rs -}- (d i j  d r , ~  u i j  drs Pij+~r s 

kj  k5 A0JA0~ [,41 j Is Oj Os kO kO kl 
- - drs)dl0 d-~  ~ d i j  drs "-~ij "~rs -- k'~ij drs d i j  - d20 d21 

k=2 P e~3i j+flrs 
kk ,  
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where a = f l i t  + ~ - 72" 

If m = l ,  then 

Oj O~ 
eij Crs = di j  dr~ f~ij+~r s 

Co(l). 
~S i j+J3r~-OeO(1) 

(b) Let i, j, and r be integers with- 0 _< i, j < m, i @j, and 

( , l j  1~ ,Oj ,0s, 
-Jr- ~ d i j d r s - d i j  dr~)e/3i j+~rs_fl loclO q- 

rj 
e i j  Dr = d i j  ~'~.. D~ + o-~ D~+ t + 

~3 

(dkJ drj)rI:[1 "k~ r dk ~ 
m ,--ij  - - - - i j ,  xxdrs  - d - a  1-I r+l,s 

E s=0 s=0 p 
k=r+l 

l < r < m .  Then 

^ 

¢ ~ij+Tr ~k ' 

where ~ = t3ij + 7,- - 7~+a. 

(e) Let i, j be integers with 0 _< i, j _< m and i =)kj. Then 

"~J Dm + { Co(1 ). 
ei j  Dm = d i j  £~ij  flij+'~rn--aO(1 ) 

(d) Let i , j ,  r, and s be integers with 0_< i , j , s_<m,  i ¢ j ,  r_>l,  and 
¢~ E O ( r + l ) - ~ ( r ) .  I f¢1 E ~ ( r + l ) - d p ( r ) , t h e n  

Oj ~r 
e i jC, ( r )  = di j  do, e&j+~,(~)_~o(~)Co(r) + a ~ D  1Cl(r ) + 

k j ~ r  _,.tOJ~ir r AkO~Ir d-cr ~] d i j d k ,  "*ij=o, d k o - ~ l o ~ k l  
P k>l 

Ck e ~(r+l)-~(r) 
e ~ij+as(r)-ak(r ) kk(r), 

where a = f l i j  + a s ( r ) -  7 1 -  %(r).  

If 81 ~ ~(r + 1 ) -  ~i'(r), then 
Oj ~r 

e i jC . ( r )  = d i j d o ,  e&jCo(r  ) + 4&j+a0(r)_~0(r+l)C0(r+l  ). 

(e) Let i , j , r ,  a n d s  be integers with 0_< i , j , s_<m,  ig : j ,  
8~ e ¢ 5 ( r + l ) - ~ ( r ) .  If ¢,+1 E ~ ( r + l ) - e ( r ) ,  then 

cij D, C~(r) 'J = di j  epi j D, Cs(r) q- ere, Ds+ 1Cs+l(r) q- 

dk.s+ 1 d_a I~I d kt Z a L  (d:} - d:~)t*=Iff°d:: - - ~ t=O s+l,t 

P 
k>s+l 

r_> 1, and 

% ~k(r), 
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where c ~ = / 3 i j + 7 ~ + o ~ , ( r ) - 7 , + l - c % + l ( r )  and 6 k = / 3 i j + 7 " + ~ , ( r ) - c ~ k ( r  ). 

If ¢s+1 ff ~(r  -t- 1) - ~(r), then 

*J Cs(r) + ~/3ij+.rs+as(r)_c~o(r+l)Co(r+l ). Cij  D ,  C s ( r )  : dij ePijDs 

(f) Let r, s_> 1 and assume that i < j  _< m. 
O(r + s) appear with equal multiplicities, then 

~ r ~ S . ~ r + s  

%(r)%(s) = %(r+s) + E dkjdk -    p 
Ck e q~(r+s+l )--q~(r+s) 

If the irreducibles that appear in 

Poj(r+,)-ak(r+,  ) kk(r +s)" 

Moreover, the integers "~kj may be selected to be the products dk jdk j  so that the 
kk(r + s) correction terms are not needed. 

Since the elements kk(r ) appear in so many formulas, we include a 
description of products involving them. 

LEMMA 5.11. Let i, j, k, r, and s be integers with 0_<i,j ,k_<m, 
¢k E ~ ( s +  1 ) -~ ( s ) .  

(a) If i C j, then 
kj 

cijkk(s ) = dij e&jkk(s ). 

r, s>O,  and 

and 

(b) If ¢j E ¢(r  + 1) -  ~(r) and ¢~ E ~(r  + s + 1) -  qS(r + s), then 

C/(r) kk(s ) "" -= dkj ¢oej(r)+ok(r)_ok(r+s) k~(r + s) 

f j -1 :l 
~t r k t  

Dj Cj(r) kk(s ) = kj t~=odj e T j  + o j ( r )  + ok(s  ) - ok(r+s ) ;¢k(r+s)" 

In the formula for Cj(r) kk(s), replace %j(r)  + %(s) - ok(~+s ) by 

#oj(r)  + % ( , ) -  %(~+s) if ]aj(r) + C%(S) - ak(r+s)] is zero. 

(c) If ¢j C ¢(r  + 1 ) - ¢ ( r )  and ¢k 6 ¢(r  + s + 1 ) - ¢ ( r  +s ) ,  then Cj(r) kk(s ) 

and Dj Cj(r) kk(s ) are zero. 

To complete our description of the multiplicative structure of HOP(V) + we 

need to describe the products of various pairs made from elements of the types Ci(r), 
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DjCj( r ) ,  and D k, If we use the convention that D O = Cj(O) = 1, then the products 

we must describe are all special cases of the general product (Di, Ci( r ) ) (Dj ,  Cj(s)), 

where r , s_>0,  ¢i E ~ ( r + l ) - ~ ( r ) ,  ¢j  C ~ ( s + l ) - ~ ( s ) ,  i' is 0 or i, a n d j '  is 0 or 

j. We may assume that i' > j ' .  Recall the formula given in Theorem 5.1(c) for the 

product C(j)C(k)  when p = 2  and j + k > n  I. Observe that this formula may be 

o b t a i n e d  from the binomial expansion of (¢ 2 + ~x) j+k-nl  by replacing the powers of 

x by various generators C(t). The formula for our general product is related in a 

similar way to the expansion of an expression of the form l~I (ai + b/x).  The 
i r a0  

summands in this expansion are indexed on the subsets of the set {0, 1, ... ,n}. The 

summand corresponding to the subset I is 

( l ~  a i ) ( ] ~  b i ) x  [I[, 
i~I  i~I 

where ]I] denotes the number of elements in I. To describe the analogous part of our 

formula for (Di, Ci(r))(D j,Cj(s)), we must specify the indexing set which replaces 

{0, 1 . . . .  ,n}, the factors which replace y [ a  i and l~b i ,  and the procedure for 

replacing the powers of x by the appropriate D~ Ck(t ). 

In the p = 2 case, describing how the powers of x are to be replaced by the 

generators C(j) is very simple because, if j > n~, then the next generator after C(j) is 

always C(j + 1). However, when p is odd, the generator after D k Ck(r ) may be either 

Dk+ 1Ck+l(r ) or C0(r+ 1). To handle this complication, we introduce two functions f 

and g from the nonnegative integers to the nonnegative integers. These functions are 

to be chosen so that, for any i_> 0, Cf(i+l)(g(i+ 1)) is the generator immediately 

following Cf(i)(g(i)) in our stairstep ordering. If Cf(,~)(g(n)) is the last generator in 
• ~ +  H~P(  ) , then we define f ( i ) = 0  and g ( i ) = g ( n ) + i - n  for i > n  and use the 

convention that Dj Cj(r) is to be regarded as zero if it does not appear in the list of 

generators of I I~P(~)  +. Each time we use this notation, the initial values, f(0) and 

g(0), of the functions will be specified to suit the particular application. 

The indexing set which replaces the set {0, 1 . . . . .  n} is related to the 

difference in dimension between the product (Di, Ci(r))(Dj, Cj(s)) and the lowest 

dimensional generator D i , C i ( r + s  ) which should appear in its description. If r_> 0 
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and 0 < j  _< m, then define the subset ~j(r)  of d2(r+ 1) by 

(I)j(r) = ~(r) U {¢i: i < j  and ¢i E ~ ( r + l ) - ~ ( r ) } .  

Let ~i,(r) U ¢sj,(s) denote the disjoint union of the sets ~i,(r) and ~/,(s).  Our 

replacement for the set {0, 1 . . . .  ,n} is the set • obtained by deleting from 

• i,(r) U ~j,(s) a subset equivalent to the set (I)i,(r+s). We abuse notation by 

writing ~ as ~i,(r) 1_1 ~ j , ( s ) - ( I ) i , ( r+s  ). Observe that ~j,(s) is equivalent to the 

disjoint union of • and ~ i , ( r + s ) -  ¢5i,(r). Let u be l ~ l - 1  and number the elements 

of ~ from 0 to u. Let h be a function from the set {0, 1 , . . . , u }  to the set 

{0, 1 . . . .  , m} such that the i th element of • is isomorphic to the irreducible 

representation q ) h ( i )  " 

One of the coefficients appearing in our formula is determined by a certain 

element a of RSO(G) with Ic~l = 0 and tc,~I _< 0. This coefficient will be go if 

Ic~GI < 0 or c o if laGI = 0. To simplify our notation, we write )~o for either of these, 

relying on Ic~cl to indicate whether ~ or ao is intended. Another coefficient will 

depend on a certain element f3 of RSO(G) with 19 I- 0 and I~31 _> o. This coefficient 

will be e5 if I/3I > 0 a n d / ~  if It31 = 0. We write 0~ for either of these, relying on 1/31 

to indicate which is intended. 

PROPOSITION 5.12. Let i, i', j, j ' ,  r; and s be integers with r,s_>0, 

¢ i E ~ ( r + l ) - q S ( r ) ,  C j E ~ ( s + l )  ~(s), i ' = 0  or i, j ' = 0  or j, and i ' > j ' .  Let 

= ¢5i,(r ) t_J ~j,(s) - (I)v(r + s  ). Initialize the functions f and g by 

and 

i', i f¢ i ,  E ¢ ( r + s + l ) ,  
f(0) = 

0, otherwise, 

r+s ,  i f¢ i ,  C ( I ) ( r+s+l ) ,  

g(0) = r + s + i, otherwise. 

Let u : l q * l - 1  and number the elements of 9 from 0 t o u .  Let A C 9  and let s ' a n d  
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s" be the number of elements isomorphic to Cj in A and q~i , ( r+s ) -~ i , ( r ) ,  

respectively. If the subset A of • contains the elements numbered J0, J l ,  ... , j~o, 

with J0 < J l  < . . .  <J~ ,  then let 

and 

I df(Jt-~)'h(Jd~ I df(J~-t)'J~ d~ = t~=o j ,h ( j t )~ t~=o jk ~, 
h ( j t ) ¢ j  h ( J t )=J  

t = 0  j , h ( j  t t = 0  /3j  
h ( j t ) ~ j  h ( J t ) = J  

where 

Xz~ Xa , 

a = c - i F  ~ '  1 

Lh(  j t )7~ j C t ~ O i¢( r + s ) - ~  ir( r 

¢ i Ct eOi~(r) 

e ~f(l AI)(g(IAI)) 

The tag j :/= 0 

present only if j ~ 0. 

trivial representation. 

on the bracket about the (s' + s " ) ¢ j l ¢ 0  indicates that this term is 

The 2s term in a indicates 2s copies of the real one-dimensional 

If a E RSO0(G), then let. 

d a  = d o. 

I f A = ~ , t h e n l e t  d~x, e ~ , ( t , a , a n d  X be 1. 
A 

where 

I f i ' < k < m a n d  ¢ ~ E ~ ( r + s + l ) - ~ ( r + s ) , l e t  

O k = 0/~, 
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= ~'dr) + %.(s) + -y~, + L , - ~ , ( r + s ) ,  

and let A k be 

1 ~ i ~  i ' -1  kJ(t~=od~tt)( I-I dkt ~ -" ~ [-'~r+s(v-I kt\ 0 rid.) E 
- t=0 J'*] v=i' t=0 lal=v-i'ac~' 

Then 

0 0 Cf(taf)(g(1Al)) (Di, Ci ( r ) ) (Dj ,  Cj(s)) = ~ d~,_~ ee-za X Df(Iz~f) 
~ c ~  z~ 

Ak 0k kk( r+s) .  
k=i I 

+ 

REMARKS 5.13. (a) Let r_> 1. If d2(r) contains r copies of every irreducible 
complex G-representation, then (~i(r) is independent of i and it is easy to see that  
C i ( r ) = C j ( r  ) for every i and j such that ¢ i ,  4~j E ~ ( r + l ) - q ) ( r ) .  Moreover, 
Cj(r)  = C j(1) r. Thus, if ~ contains every irreducible complex G-representation and 
these representations appear with equal multiplicities in ~, then Ci(r) generates a 
polynomial, or truncated polynomial, subalgebra of H~P(O)  +. In this case, the 
elements Dj ,  for 1 _<j _< m, and Ci(1), for any i, generate I-I~P((I)) + as an algebra 

* 0 over HaS . 

(b) If p = 3, then we may choose the integers d ,  so that  da = +1 for every 
a in RSO0(G ). When this is done, the assignment of d~ to a is a homomorphism 
fl'om the additive group of RSO0(G ) to the multiplicative group {5:1}. With this 

choice of the integers d~, all the relations among the d~ j and the d~;j given in 

Definitions 5.4, except the one involving a sum, hold in 7/as well as in g/3.  If r _> 1 
and ¢i ,  Cj E ~ ( r +  1), then 

CAr) = %d~) -~¢~)  C~(r). 

Thus, the only elements of the form Cj(r) needed to generate H~P((I)) + as an algebra 
over H~S ° are the elements C0(r ) for r > 1. Also, a pair of elements cij and c~, will 
generate D 1 and D 2 if (tk(cijcr~) is nonzero for only one value of k. In particular, c01 
and %o generate D 1 and Du. When all three irreducible complex G-representations of 
7//3 appear in • with equal multiplicities, c01 , c~0 , and C0(1 ) generate I-I~P(~) + as 
an algebra over I t , S  °. 

6. PROOFS. Tile results stated in section 5 are proved here. As indicated in 
Remark 5.7, our results for p = 2 are a special case of the results asserted for odd 
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primes. They have been presented separately only because they can be stated so 
simply. The proofs given here are independent of whether p is 2 or odd. We begin 
by construct the elements c~j and Cj(r). We then show that  they generate H~P(V) + 

• 0 as an algebra over H~S . Finally, the relations stated at the end of section 5 are 
verified. Throughout this section, • is a set of irreducible complex representations of 
7//p and ~(0), ~(1) . . . .  is a proper filtration of ~. We order the elements of q~ in the 
standard proper ordering introduced in section 5. Recall the maps qi and Cti and the 
cohomology classes x and x i from the introductory remarks in section 5 and the 
representations a~(r), /3~j, and 7j from Definitions 5.4 and Theorem 5.5(d). If 
A C q,  then x also denotes the image of x E t t~(P(¢)+)(e)  in H~(P(A)+)(e);  thus, 
the powers of x are thought of as the standard additive generators for the 
nonequivariant cohomology of all the sub-projective spaces of P(q) .  For each integer 
j with 0_<j < m ,  let pj(4~) be the component of the fixed point space of P(¢)  
associated to the irreducible representation 6 j .  

The classes cij and Cj(r) are constructed by defining them on the smallest 
possible projective space and then inductively lifting them to larger projective spaces. 

CONSTRUCTION 6.1. (a) Let i and j be distinct integers with 0_< i, j _< m. The 

space P({¢j}) is just a point and the space P({¢i ,  C j}) is G-homeomorphic to S #ij. 
The inclusion of P({¢j}) into P({¢i ,  ¢j}) induces the cofibre sequence 

p({¢j})+ q4 5 s ei . 
~ i j fig * 

Let ciy ~ ttG (P({¢g, ¢i})+)(1) be the image of 1 e A(1) ~ H  iJ(sZiJ)(1) under ~r . 

Then q j ( c ~ j ) = 0  by exactness and q~(cij ) = e#ij by the commutativity of the 
diagram 

p({qSi})+ qi , p({q~i,q~j})+ 

S O efliJ~ 813ij. 

These are the correct values for qi(cij) and qj(cij ) because x i and xj are zero. Since 

the map 7r*: H~iJ(S#iJ)(e).-, H~iJ(P({6i ,6j})+)(e) is an isomorphism in dimension 

/3~j, p(c~j) = x. 

Let ~ be a subset of (I, which properly contains the set {¢i,  ¢j} and assume 
that, for every proper subset A of • containing {6 i ,6 j} ,  cij has been defined in 

HGiJ(P(A)+)(1) and has the proper images under the maps qk and p. Pick an 

irreducible representation 6t which appears in • at least as often as any other 
irreducible. If no irreducible appears more than once in tit, then we may also insist 
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that t ¢ i ,  j. Let Z X = ~ - { ¢ t } ,  and let V be the representation ~b~-lEqS. 

inclusion of A into • induces the cofibre sequences 

The 

p(A)+ 0 p ( , ) +  -~ S v 

and 

Pt(A) + ~ P,(•)+ -~ S VG. 

We will lift the class cij ¢ H~iJ(P(A)+)(1) along the map 

e*(1): It G (P(~)+)(1) -, H~iS(P(A)+)(1) 

induced by 0. To distinguish the class ci5 and its lifting, we will denote the class in 
r ~  

H~'J(P(&)+)(1) by cij. The maps qk, for k 5Lt, factor through 0"(1), so any lifting 

of cij along 0"(1) will have tile right image under q~, for k ~ t. Moreover, since 
0*(e) is an isomorphism in dimension /3ij , any lifting of aij will also have tile right 
image under p. 

It remains to show that we can choose a lifting of cij with the correct image 
under qt .  We have chosen t so that the long exact cohomology sequences associated 

to our cofibre sequences have zero boundary maps. If IvGt > 2, then HGiS(sV)(1)= 0 

and we take cij to be the unique lifting of e O. If IVGt > 2 ,  then 0 t induces a 
cohomology isomorphism in dimension /3ij and this lifting of cij along 0"(1) must 
have the correct image under q,. If IvGI = 2, then the short exact, sequence 

splits. The end terms are 

tt "s ~ at " (zx) + ~  = R and P t  = • 

The image of 1 ¢ ?7 = R(1) in H ~ J P t ( ~ ) +  is {&j_2xt.  By our induction hypothesis, 

tj O;(1)qt(cij) = qt(aij) = dij e&j. 

Since P ( c i j ) = x ,  pq,(ei j)  is the generator of H~iJ(P,(O)+)(e). It follows ttlat 
tj 

q t ( c i j )  = dij e~i j + ~i3ij_2 x t "  

If IvGI = 0, then no irreducible appears more than once in ~ and we have 
selected qS, so that  t :/: i, j. In the diagram 

L ev I q~ ~ q, 

o - .  + o 

-~ 0 
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comparing the cohomology sequences of our two cofibre sequences, we have that 

I-I~ ijS V and tt~ ijS ° are (g) and the map e V is multiplication by p. Thus, if z is a 

lifting of ci j ,  then by adding elements from the image of I-I~GiJs V to Z, we can adjust 

qt(z) by any multiple of p. It now suffices to show that there is a lifting z with 

tj mod p. The lifting problems for P(g/) and P({¢i ,  Cj,  Ct}) can be q~(z) ~ dij e~i j 
compared via the cohomology maps induced by the inclusion of {¢i, Cj,  Ct} into ~.  

This comparison indicates that  it suffices to show that  the lifting problem can be 

solved when k0 = {¢i,  C j ,  Ct}. In this case, consider the diagram 

0 --+ H P G i J s  V /3 i j  + O* "" H G P ( ~ )  -~ l t ~ ' e ( z x )  + -+ 0 

l e  [ q  ~qj 

0 -~ It~iJs ~tj 7 ; i j e  -* tt G })+ -+ H ({¢d' Ct})+ qj i jp({¢j  -'+ 0 

comparing the cohomology exact sequences for the pairs (p(ko), p(A)) and 

(P({¢ j ,¢ t} ) ,  P({¢j})). Let a = (3ij - /3 t j .  If z is a lifting of eij along 0"(1), then 
_~_ LI fl i J [ ~ fl qj(z) q j q ( z ) = 0 .  Thus, q ( z ) = 7 ( y )  for some y e .~G ,~" tJ)(1) ' Since pq(z) is 

the generator x of H~ (P({¢j,¢¢})+)(e), p(y) must generate H~iJs&J(e), and y 

must be a~ + na~ for some integer n. The diagram 

G 

*e -[qt 

commutes and gives that qt(z) = qqt(z) = e(y) _= e(c~) mod p. By the definition of 
tj o'~,, e(o'~) = dij e&j.  

(b) Let r_> 1 and let Cj E q~(r+l). The cofibre sequence associated to the 
inclusion of P(~(r)) into P(O(r) W {¢~}) is 

P(~(r)) + -* P(~(r)  U {¢j})+ -~ S ~'j('). 

Define C j ( r ) e t t  G (P((I)(r)U{¢j})+)(1) to be the image under ~*(1) of 

1 E A ( 1 ) = H  Since Tr* is an isomorphism in dimension c~j(r), 

p(Cj(r)) = x The cohomology diagram in dimension c~j(r) induced by the 

diagram 
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Pj(¢(r)  u {%})+ 
7rj 

S~ 

qJ P(@(r) U {¢j})+ 

l- 
e ~j(~) 

---* S 

indicates that qj(Cj(r))=ec,  j(r)_~x~j. If k@j ,  q k ( C j ( r ) ) = 0  for dimensional 

reasons. As we did with the definition of cij in part (a), we extend the definition of 
Cj(r) to H~P(@) + by working inductively along a sequence of subsets of ¢5 between 
~5(r) U {¢j} and ~. The only difference between the argument given for cij and the 
one which should be used for Cj(r) is that the liftings of Cj(r) should be chosen to 
behave properly with respect to p and ~1~ instead of p and qk. This change is 
necessary because %(Cj( r ) )  is more complicated than qk(cij). The behavior of the 
Cj(r) with respect to the maps qk is established in the lemma below. 

LEMMA 6.2. Let r _ > l a n d  ¢~ E d 2 ( r + l ) - ~ ( r ) .  Then 

r q/c(Ck(r)) = X k 
1-I (~9~, + )] 

¢i e q~(r) ~ fiki - 2 x k  • 

i¢:k 

If Cj e ~ ( r +  1)-4p(r) and j # k, then 

r d ~i e 
= + . %,_ 

' k ~¢j,k 

+ 

r [dkJ~ r ki 21 ~kj ~ jk) 

i=/=j,k 

%j(~)_~x~. 

If Ck ~ q?(r+ 1) q)(r), then qk(Cj( r ) ) i s  zero. 

PROOF.  If ¢~ ~ 4p(r+ 1) -  qS(r), then %(Cj( r ) )  vanishes for dimensional reasons. 
Therefore, assume that Cj, Ck ¢ ~5(r+l)-dp(r) .  Let 

= ¢(r) u {¢:  ¢ • ¢ ¢(r) and ¢ ~- Ck}" 

The {mage of the class Cj(r) in II;P(dp) + under the map 

H~P(¢~) + + ItSP(k~ U {¢j})+ 

may be computed using the maps p and ~!i- It is the class Cj(r) in t t ~ P ( ~  U {¢j})+. 
The image of this class under the map 

HEP('I '  U {Ca})+ -~ J.[~P(~)+ 
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is the class O'aj(r)_c~k(r)Ck(r ). Thus, 

qk(Cj(r)) = qk((raj(~)_ak(~) Ck(r)) : aaj(r)_~k(r ) qk(Ck(r)), 

since Pk(~) = Pk(9)  and the map qk for P(~) factors as the composite of the map 

I t~P(~)  + -* I-I~P(9) + and the map qk for 9.  Observe that  

(r~J (~)-~k(~) ---- (crPjk-Pkj ¢i t~c~ j ( r ) - ~ k ( r )  

for some integer a. With this description of  O~c~j(r)_c~k(r), it is easy to derive the 

formula for qk(Cj(r)) from the formula, for qk(Ck(r)). The formula for qk(Ck(r) is 

derived using an iterative procedure. Let s > r  and pick Ct E • with t :~k. The 

image of Ck(s ) E I-I~(P(~)+)(1) under the map I t~P(~)  + --* I-I~P(~ - {¢~})+ is 

czktCk(s ) + {Zkt_2Ck(s+ 1). 

Iterating this process to eliminate from q~ all the irreducible representations not 
isomorphic to Ck, we move from H~P(~)  + to It~P(n~ ¢~)+ ~H~P~(gl )  + and from 
C~(r) to the expansion of 

(%,+ t 
[¢i ~ ~(r) ~ i  - 

On the other hand, the image of Ce(r) under this sequence of transformations must 
be q~(Ck(r)). 

Now that we have defined the classes cij and Cj(r), we must show that  they 
• 0 generate H~P(¢)  + as an algebra over ttGS . 

PROPOSITION 6.3. The classes cij , for ¢ i ,  Cj E (I)(1), and the classes Cj(r), for 

r > 1 arid Cj C ~(1" + 1) - ~(r), generate H~P((P) + as an algebra over H~S °. 

PROOF. If • is infinite, then, by the proof of Theorem 2.6, H~P(~)  + is the limit of 
the ~ P ( A )  + where A runs over the finite subsets of ~. Thus, it suffices to prove 
the result for • finite. Recall the functions f and g and the subsets ~j(r)  of 
defined in the remarks preceding Proposition 5.12. For this proof, initialize f and g 
by f(0) = 0 and g(0) = 0. We will show, by induction on n, that the classes cij and 

, + 
Cj(r) which are defined in HGP(~f(,~)(g(n)) ) generate that  Mackey functor as an 

• 0 algebra over t t G S .  The result is obvious for n = 1, since (I)f(1)(g(1))= {¢0} and 
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P({¢50} ) is a point. Assume the result, for n. Denote c~f(n+l)(g(n+l)) + 7f(n+l) by 

ct. The boundary map is zero in the cohomology long exact sequence associated to 

the cofibre sequence 

p(~f(,0(g(n)))+ O p(~f(n+l)(g(n+l)))+ + S ~. 

Thus, we have a split short exact sequence 

0 --~ fIGS --. " + t tGP(~f(n+l)(g(n+l))  ) -+ I-IGP(~f(n)(g(n)) ) ~ 0. 

. + 
All of the classes ci# and Cj(r) which are defined in ItGP(¢f(,~)(g(n))) are also 

defined in * + HGP(~f(n+l)(g(n+l))  ) . Moreover, 0* takes these classes in 
. + 

H~P(<I)f(n+l)(g(n+l))) + to the corresponding classes in HGP(¢f(,~)(g(n)) ) . Thus, to 
• + * 0 generate HcP(45f(,~+~)(g(n+l)) ) as an algebra over HGS , it suffices to add to these 

classes the image z of the canonical generator of A ( 1 ) =  H~(S~)(1). Clearly, p(z) is 
O' + the generator of HG(P(~f(=+l)(g(n+l))  ) )(e). Moreover, for k : f i f (n+l ) ,  ~ k ( z ) = 0  

since qk factors through H~P(<l)f(,~)(g(n))) +. Finally, 

qf(n+1)(Z) z ~(:c~_g(n+1)(Xf(n+1)) g(n+l)} 

since the diagram 

pf(,~+~)(~f(~+~)(g(n+l))) + qf('~+})p(@f(~+~)(g(n+l))) + 

Sg(~+1) e , S ~ 

commutes. The elements z and Df(n+l)Cf(n+u(g(n+l))  must be equal since they 

have the same image under the maps qk and p. 

The equations in Propositions 5.9 and 5.10 describe elements in dimensions 
where there is no torsion. As a result, these equations can be checked easily by 
applying the maps p and qk to both sides. The equations in Lemma 5.11 are easily 
checked using the maps # and qk because the images of the classes kj(r) under the 
maps qk are so simple. However, the formula in Proposition 5.12 is more difficult to 
verify. 

PROOF OF PROPOSITION 5.12. We may assume that l~I _> ]~i,(r) I + qsj,(s) so 
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that  all of the Df(lal)Cf(iz~l)(g(lAI)) on the right hand side of the equation are 

nonzero. If I¢1 is too small, then form a sufficiently large set ~ '  by adding enough 
copies of ¢0 to ~. The proof below applies to 4p'; the result for ~ is obtained using 
the cohomotogy map induced by the inclusion of • into ~' .  We show the equality of 
the images of the two sides of the equation under the maps p and q~. Since the map 
p preserves products, p(D i, C i ( r ) D ,  Cj(s)) is the generator of H~(P((IS)+)(e) in the 
appropriate dimension. The only term on the right hand side of the equation in 
Proposition 5.12 which is not in the kernel of p is the summand corresponding to 

regarded as a subset of itself. This term is X Df(u)Cff~)(g(u)) and its image under p 

is the generator of H~(P((I))+)(e) in the same dimension. Thus, the expressions on 
the two sides of the equation have the same image under p. 

Let k be an integer with 0 < k < m .  If Ck ~ ~ ( r + s +  1 ) -  <I)(r+s), then both 
sides of the equation vanish under % .  If Ck C (I ) ( r+s+ 1) <I)(r+s), then expand the 
polynomial obtained by applying qk to Di, Ci(r)Dj, Cj(s ). Each term in the 
expansion consists of the product of an integer, a power of x k , and an element of the 

, HaS . We classify these terms according to the factor form ~ , ~ or e ~  from * 0 

from . 0 HaS  . There is exactly one term with a ~ ; its integer coefficient is one. There 

is exactly one term with an c~; its integer coefficient may be zero. This term is 

exactly the part of qk which is detected by qk. There may be any number, including 
zero, of terms containing a product e~ ~ . These terms are all torsion elements of 
order p. 

Expand the polynomial obtained by applying qk to the right hand side of the 
equation and observe that the same three types of terms appear. The su mma n d  

indexed on q~ regarded as a subset of itself is the only source of a ~ . It is easy to 

see that this ~ term exactly matches the corresponding term from the left hand side 
of the equation. If i ' >  k, then the expansion of the image of the right hand side 
under qk will contain no ~ term. In this case, ~k(Di~) is zero and the image of the 
left hand side under qk also lacks an ~ term. If i ' <  k, then numerous summands 
contribute to the c~ term of the left hand side, but the coefficient of the k k ( r + s  ) 
term is explicitly designed to ensure that the c z terms of the expansions of both sides 
match. The only problem here is that it is not obvious that the coefficient A k of 
k k ( r + s  ) is an integer. To show that  A k is an integer, it suffices to show that,  
modulo p, the image under qk of the left hand side is equal to the image of the part 
of the right hand side indexed on the subsets of ~. Since the e ~  terms are all 

O~. 
torsion of order p and the k t ( r + s )  summands on the right hand side contribute 
nothing to them, proving the equation 

q~ }--~ d~,_A ~ _ A  xADf(i,al)Cf(l~l)(g(]A]))) m o d p  qk(Di, Ci(r) D j, Cj(s)) -- (~,c,, 

also shows that the c~ ~ terms of the two sides agree and so completes the proof of 
the proposition. 

We prove this equation modulo p by transforming the right hand side into 
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the left. In Theorem 5.5(c), %(Cj ( r ) )  is described as a sum of two terms when j ¢ k. 
The second term can be ignored in this t ransformation process because it vanishes 

modulo p. Recall that  each * a  is a ~ ,  for some virtual representation a'. We 

accomplish our transformation by writing a as a sum of differences r / - ¢  of 

irreducible complex representations. We then rewrite X a = Xa as the product of the 

elements X _ ¢ .  To see that  such a rewriting is justified, recall that  if /3 and 7 in 

RSO(G) are chosen so that  the elements below are defined, then in H~(S°)(1)  

( ~ 7  = {0+y {~ % = 0 e 0 % = pc0+ 7 

and 

(r 0 o "  = ~ 0 + ~  + A~0+~,  

where A is some integer depending on /3 and 7. Now observe that  every summand  in 

the expansion of %(Df(l~l)Cf(lai)(g(IAt)) ) contains either an c a or a ~ . Thus, the 

as the product of the X ~ + ~  error terms that  might arise in the rewriting of Xa ~-¢ 

are killed by the e~ and ~ from %(Df(l,~t ) Cf(lz~l)(g(lAt)) ). 

We perform our transformation of the left hand side in four stages. During 
the first three stages, we think of the left hand side as a sum indexed on the subsets 
of q* and work on each summand separately. Therefore, fix a subset A of • and let 

a be the virtual representation such that  ;(a = )~"  Recall that  s' and s" are the 

number  of elements isomorphic to ¢j  in A and ~ , ( r + s )  ~ , ( r ) ,  respectively. Recall 

that  u = Ig'l- 1, that  the elements of q~ are numbered from 0 to u, and that  h is a 
function from the set {0, 1 . . . . .  u} to  the set {0, 1 . . . . .  m} such that  the i th element 
in • is isomorphic to Oh(i)" Assume that  the elements of • numbered 
J0, J l ,  --- , jw, with J0 < J l  < - - - < J * ~ ,  are in A and that  the elements numbered i0, 
i 1 . . . .  , i~, with i 0 < i  1 < . . .  < i ~ ,  are in g~ -A .  For any integers q and t, with 
0_<q, t_<m,  abbreviate e~q t and ~ q t _ 2  by eqt and 4q~. Define the elements a l ,  

a2 ,  and a a of RSO(G) by 

z 
f(I,al)J| ¢~ '~i,(") | 

Lt.~f( ~ ),i,k J 

[(r -F 6)(qSi -I CfdA] ) - qSf-(i~[ ) Ck)]f([ A] ) ¢ i,k -+" 
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[~71¢k_¢f--(~/q) ¢k]f(,z~l)>i>k q- [ (~7"l¢k-2]i>f(l~'),k 

)[ 2 < 
tef(lal),j ,k _] 

[ ( s -  s' - s") (¢7 '  Ck - ¢7  t ¢ o ) ~ o ,  5, k + 

-~ ¢ + [Stt((~71~k-'~f(IAl) J)~j~f(IAI),k 

and 

where 

= 

Ct 3 ~ O~ C~ 1 -- O~ 2 

1, if i' > f(lA[), 

O, otherwise. 

In the first stage of our transformation~ Xc~I is used to convert  

into the product  of 

and 

o eo (Di, Ci(r)) 
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g(Im)-"-<~' l I'-[ (d~t ~f(l~l),* 
x~ ¢~ ~ @f(l~l)(g(i al))_ @i,(,.)k 

f(tAI),~ 

~#f(t ,-al),~ 

H- ~f(!al),t x~) I - 

I(dS<,f(l~l) 
t, f(lal)>~ ef(l~i),~ 

x~)g( la l ) -~-6]  
[~ f(13l),~ x~] 

i' >f( lal)> k or 
f(Iz~l) > k > i' 

Here, 6 is as in the definition of 6% 1 and 

~- 1, if i' > f ( l~ l ) ,  k; 
6' 

0, otherwise. 

In the second stage of the transformation,  ; ~  is used to convert this product into 

the product of d~_~ ~+_/, ~,o, ~ (>~, C~(~))with the three factors 

H )][( 
Xk Ct e ~i,(#+.~s)_ '~i '(r) \ at ~jt + ~jt djk (jk 4- ~jk , .~j#k 

t ¢ j , ~  

xkg(l~I) . . . . .  ~' tdf(t,a l),f(t) cf(l~l),f(t) 4- ~f(lal),f(t) xk , -j 

and 

f/~ k,f(Iz~l) 
~Gf(lal),~ ef(Izal),k 4- 

~f(lal/~ _lf(Izll) ¢ k k 
i' >f(l~l)> k or 
f(I~l) > k _> i' 

. . . . .  d ~ e k factor. Observe that  the (1S ~ e S a factor has been transformed into a ~ - ~  ~ - a  

This is accomplished by the [ ( s - s '  s " ) (4 ;71% ¢)-1 ~50)]0 # j,k summand  in a~.  If 

k = 0, then obviousiy no such transformation is needed. If j = 0, then there will not 

k k will not depend be any elements of 9 isomorphic to 4D j ,  and the value of d ~ _ a  e e _ a  

on k. In the description of the factor above indexed on t, for 0 < t  < w, and 

throughout  the third stage of the transformation,  the set Ofd~[)(g(IA[)) - (I)i,(r 4- s) is 
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identified with the set {¢f(t) : 0 < t < W). By this identification, constructions that 

would naturally be indexed on (I)f(t~l)(g(]AI))-¢i,(r + s) may be indexed on t. The 

description of the set {¢f(t) : 0 < t < w} involves our usual abuse of notation in that, 

whenever q ¢ t and f(q) = f(t), the representations el(q) and ef(t) are intended to be 

distinct, but isomorphic, elements of the set. 

The factor 

qk(Di '  C~(r)) x~ I¢t  
]-I (d kt 

¢¢it(ra'+~s)-q~it(r)\ jt  (jr 
tJj,k 

"4- ~ jt Xk djk 6jk $ t t  

appears in every summand of the transformation of the right hand side of the 

equation. We therefore factor it out of the sum and ignore it for the rest of the 

transformation. Observe that this factor consists of qk(Di, Ci(r)) and that part of 
\ / 

% ( D / C j ( s ) )  which is associated with the set ~ i , ( r+s ) - ( I ) i , ( r )  when q) i , ( s ) i s  

regarded as the disjoint union of • and ~ i , ( r+s ) -ep i , ( r ) .  Thus, we must transform 

what remains of the sum after this factor is removed into the part of q ~ ( ' ~ , % I s ) )  

coining from ~. 

In the third stage of the transformation, X 3 is used to transform the 

remaining part of the A summand into 

{,  x,) n + ~'-z.4 q~-A I t~3 \ j,h(jt) j,h(jt) ~- 
Lh(57)~5 J,,(h) _] Lh (}7)o= j 

For the fourth stage of the transformation, consider the subsets A of ~ that 

contain the last element eh(u) of ql. The summands indexed on A and A-{¢h (u )}  

contain the common factor 

h(~t)O j Lh (: =)~: j j,h(it: ~(i~)=j j 
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te--i dk,f(t ) ) i  w-i ~,f(t) ) l  

Lh(J?i#j J'h(Jt) Lh(Jt)=j 

which we have written down using the i, and Jt numbering of the elements in ~ - A  

and A. Each of the two summands contains exactly one term not in this common 

factor. If h(u) ¢ j ,  then these terms are 

= d k,h(u) dfj(hg'~(*')ej,h(,~ ) + d k ' ~ ) e  h~  + x~. , J, ( ) J, ( ) ~j,h(u)Xk j,h(u) ej,h(u) 4- ~j,h(u) 

If h(u) = j ,  then these terms are 

df(~),/ dk,f(w) k,j j,k e l k  + j,k e lk  + ~j,k xk = dj,~ ej,k + ~j,k xk" 

In either case, the result is independent of A and may be factored out of the sum. 

Moreover, this factor is exactly the contribution that Ch(~) should make to 

%(, Dj,  C/(s))~ when Ch(~) is regarded as an element of Cj,(s) under the identification 
% 

of Cj,(s) with the disjoint union of • and ~i,(r + s ) -  ~pi,(r). 

The sum that remains after the factor associated to Ch(~) is removed may be 

regarded as one indexed on the subsets A of * - {¢h(~)}" We now pair the summand 

indexed on a subset A containing the last element Ch(~-i) of q - { ¢ h ( ~ ) }  with the 

sumrnand indexed on A - { ¢ h ( ~ _ i )  } to obtain the factor of % ( D j ,  Cj(s) )  associated 
% 

% 

to Oh(u-i)" Repeating this process until the elements of ~ are exhausted, we recover 

the part of q JD\  j, Cj(s)]] associated with kl/. 

APPENDIX.  Computing H~S °. Here, we outline the calculation of * o HGS . The 
computation of the additive structure and, for G = 7//2 or 7]/3, the computation of 
the multiplicative structure are unpublished work of Stong. 

Three cofibre sequences suffice for the computation of the additive structure 
of H~(S°).  Recall that ( is the real 1-dimensional sign representation of 7//2. Let r/ 
be a nontrivial irreducible complex representation of G = Z/p,  for any prime p. Let 
G+--* Sr] + be the inclusion of an orbit and let Srj+~ S O and S~+~  S O be the maps 
collapsing the unit spheres Sr] and S( to the non-basepoint in S o . The cofibre 
sequences associated to these maps are 

G + ~ St/+ -, EG + 

S +  -, S O e S ~ 
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and 

G + ~ S¢+_+S O e_, S(" 

The first step in the computation is obtaining the values of H,GSrj + and 
* + 

H GSq from the first cofibre sequence. 

LEMMA A.1. For any nontrivial irreducible complex representation rl of G, 

t L, 
g _ ,  

t t 0  s ~  + = < a ,  

R_, 

0, 

iflc~l = 0 a n d ]  G]iseven,  

if lal = 0 and ]c~ G] is odd, 

if Ic~l = 1 and ]e~GI is odd, 

if lal = 1 and la G ] is even, 

otherwise, 

t t ~ S v  + = 

"R, 

R_, 

L, 

L_, 

0, 

if Ic~l = 0 and [c~GI is even, 

if Ic~l = 0 and I~GI is odd, 

if Ic~l = 1 and I~GI is odd, 

if Ic~l --= 1 and I~GI is even, 

otherwise. 

PROOF.  The next map E G + +  EG + in the first cofibre sequence is l - g ,  the 
difference of the identity map and the multiplication by g map, for some element g of 
G which depends on 7/. The homology and cohomology long exact sequences 
associated to the first cofibre sequence have the form 

G G + O G + . . .  - .  t t  G G + - Jag G + - J t~  s,7 + - ,  H~_~ - .  ~ _ ~  - ~ . . .  

and 

"~ ~GT][(~--I"~+~ T T ~ - - I ~ +  c~ + G + . . . .  • .. - * x t G  t .  - . H ~ S 7 1 + - + I t c G  - . H ~  - .  

The Mackey functor t t ~ G  + may be identified with the Mackey functor (I t~S°)G 
defined in Examples 1.1(0. The difference 1 - g  may be regarded as a map in B(G). 
Under the identification of H ~ G  + with ( I t ' S ° ) 6 ,  the first map in the part of the 
homology long exact sequence displayed above becomes the map from (H~S°)G to 
(H~S°)G induced by the map 1 - g  in B(G). It follows that the cokernel of the map 

G 0 ( 1 - g ) , : l i ~ G  + -+HGG + is the Mackey functor L(I-Io(S )(e)) defined in Examples 
1.1(e). Similar observations reduce the homology and cohomology long exact 
sequences of the first cofibre sequence to the short exact sequences 

o - .  L ( H ~ ( S ° ) ( e ) )  --, r I~  s ~  + - .  R ( H ~ < ( S ° ) ( e ) )  --, 0 

a n d  

0 --+ L(H~-l(S°)(e))  --+ H~ Sq + --+ R(H~(S°)(e)) --+ 0, 



1 1 2  

Since I - I G ( s ° ) ( e ) "  0 = HI<(S  ;?7), L( I IG(s° ) (e ) )  is zero if lal :/: 0. If  lal = 0, then 

L(I-I~(S°)(e))  is L(7/) for some act ion of G on 7/. This  act ion is the sign act ion of 7//2 

on 7/ when p = 2 and a contains  an odd number  of copies of  ~; otherwise,  the act ion 

is tr ivial .  Similar  r emarks  app ly  to L(H~-I (S0) (e ) ) ,  G 0 R ( t t a _ , ( S  )(e)), and  

R ( H S ( S ° ) ( e ) ) .  

T*Ot S + Notice the frequency with which £t e 7? and I-IaGS~ + vanish.  F r o m  the 

d imension  ax iom,  we also obta in  tha t  ~ + t-leG = t t ~ G  + =  0 if l a I ¢ 0 .  These  

vanishing results de te rmine  mos t  of  the homological  and cohomological  behavior  of  
the m a p s  e in our second and the third cofibre sequences. 

L E M M A  A.2. Let a C RSO(G) .  

(a) T h e r n a p  e*: ~-~ 0 ~ ~ TJ~(S % t t  e S ~ H ~ ( S  ) - * * , C ~  J 

is 
mono  f o r l a l @ l ,  2, 
epi for Ic~l @0, 1, 
iso for tc~l @0, t, 2. 

a ~ ~ 0 ~ - < S  0 ~ t te(S ) (b) If  p = 2, then the m a p  e*:,u. G ~ HG(S ) 

is 
mono  for lal @ 1, 
epi for Ic~I @ 0, 
iso for lal @ 0, 1. 

The  divisibil i ty results involving Euler classes in L e m m a s  4.2, 4.6, and  4.8 
of ~ n  <0 follow f rom this l emma.  Moreover,  from this l e m m a  and the vanishing ~G~, , for 

n E 7/ and n @ O, one can derive all of the zeroes in the first and third quadran t s  of 
o f  H *  ~0 our s t andard  plot ~ e o  . 

L E M M A  A.3. Let a e RSO(G) .  Then  H~S ° = 0 if lal and la e] are both  posit ive or 
bo th  negative.  

L e m m a  A.2 indicates tha t  all of  H ~ S  ° can be deterrrfined f rom the values of  
a 0 I tGS for the a in RSO(G)  with - 2 _ < ! a t < 2 .  If  p = 2 ,  it suffices to know ~ 0 t tGS for 

the a in R S O ( G )  with -1  _< Ial _< 1. The  next  l e m m a  describes * 0 H e S  on the edges of  
these two ranges of values for lal. 

L E M M A  A.4. Let a E R S O ( G )  and let r/ be any nontr ivia l  irreducible complex  
representa t ion  of G. 

(a) If  lal = 2, then 

0 ~ ~ , ~ - , , ~ +  H~-~S0) .  HGS = coker ( r : ~  ,~ -~ 
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(b) If  laJ = - 2 ,  then 
o~ 0 ~ + r l  0 o~+r; + 

HGS ~ ker ( p : t t  G S - 4 H  G G ). 

(c) If  p = 2 and  lal = 1, then 

a, 0 t tGS = coker ( r  : tI G~-¢G+ -4 I-I~-¢S °). 

(d) If  p = 2 and lal = - 1 ,  then 

,.~ a + (  0 a + (  + "~Gu~S° : ker (p :  It G S - 4 I t  G G ). 

Moreover,  in all four cases, I-I~(S°)(e) = 0. 

P R O O F .  Pa r t  (d) follows immedia te ly  f rom the cohomology  long exact  sequence 
associated to the third cofibre sequence. Pa r t  (c) follows via dual i ty  f rom the 
homology  long exact  sequence associated to the third cofibre sequence. For par t  (b), 
consider the d i ag ram 

ua+nS0  f TTe+n S + 0 -4 I-I~S ° -4 ~.G .0. G 77 

l h  

H~+nG+ 
G 

in which the row is f rom the cohomology exact  sequence of the second cofibre 
sequence and the vertical  arrow comes f rom the inclusion of an orbit  G into St/. 
Clearly,  ~ 0 . . . .  S + ttGS = k e r f .  By our c o m p u t a t i o n  of n G 7/ , the m a p  h is mono,  so 
k e r f  ~ ker h f .  The  composi te  h f  is jus t  p. The  proof  for pa r t  (a) is s imilar ,  but  

uses the homology  long exact  sequence to describe t t - ~  S o as the cokernel of  the m a p  

I-I~_~ G + -4 ItG_~ S o induced by the collapse m a p  G + -4 S °. Dualizing the homology  

Mackey functors  to cohomology Mackey functors  gives the result since the t ransfer  is 
the dual of  the collapse map .  In all four cases, the group H~(S° ) (e )  is zero either 
because r (e)  is SUljective or because p(e) is injective. 

Most of the values of tIGS~ 0 for lal = 0 and la G] @ 0 follow immed ia t e ly  f rom 
the cohomology  long exact  sequence of the second cofibre sequence and L e m m a s  A.1 
and A.3. 

L E M M A  A.5. Let a E RSO(G)  with lal = 0 .  Then  

i 
, 

u ~  S O R_, 
~ G  = L, 

if laG[ _< 2 and laG] is e v e n ,  

if laG[ < - 1  and laG[ is odd, 

if laG[_ 2 and laGI is even, 

if laGI > 3 and laGI is odd. 
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PROOF.  Let r/ be any nontrivial irreducible complex representation. If  Ja'GI < 0, 
then consider the portion 

a - r /  0 ,'~ Hc~ S 0 a + ,'~ H G S = c~ r2 i ~ + l S r /  i_ia+l--r/¢/0 
H G S  ~ ~ ' G  -~ t l G S r /  -~ "~-G =-~'G 

of the cohomology long exact sequence of the second cofibre sequence. The left hand 
term is zero by Lemma A.3 and the right hand term is zero by the same lemma 

unless l GI is -1.  If  -1, then p = 2, a = 4 - 1, I-IGSr ] is R_ by Lemma  A.1, 

Lia+l--~O and ~G ~, is (:~) by Lemma A.4. The last identification is based on the 

observations that  ~ must  be 2~ and H~S ° is A. By inspection, there are no 

nontrivial maps  from R_ to {77). Thus, if I GI < 0, the middle arrow must  be an 

isomorphism. 

If JaG1 _> 2, then consider the portion 

a + r / - 1  0 , T a + r / - 1 S  + r . j ra+r /s r l  ~ i ~ a  S 0 ~ i a + r / S 0  
H G S -+ .LI. G r/ ~ ~-~G =aaG -+ "~G 

of the cohomology long exact sequence for the second cofibre sequence. The left and 
right hand terms in this portion of the sequence nmst be zero by Lemma A.3. 
Therefore, the middle arrow is an isomorphism. 

If p =  2, then the results above reduce the computat ion of I-I~S ° to the 

determination of t t~S °, which is A by the dimension axiom, and It~-¢S °, which is 

given by the following lemma. 

LEMMA A.6. If p = 2, then II~-<S ° ~ R_. 

PROOF.  Consider the portion 

s o G + ° s o 

of the cohomology long exact sequence of the third cofibre sequence. By the 
dimension axiom, the right hand term is zero and the first two terms from the left 

are A and AG, respectively. The value of ttG-~S° follows by computat ion.  

If p ~ 2 ,  then we must  still determine the value of a 0 HGS when tal = 4-1 or 
c~ E RSO0(G ). The next three lemmas dispose of the c~ with I~1 = ±1  which are not 
already covered by Lemma A.3. 

LEMMA A.7. Let M be a Mackey functor and f : L - ~ M  be a map.  If f(e) is a 
monomorphism,  then so is f. 

PROOF.  The composite f(e) p is a monomorphism and pf(1) = f(e) p. 
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LEMMA A.8. If p 5/= 2, ee e RSO(G), lee, = 1, and leeGI < 0, then I-IGS a 0 = 0. 

PROOF.  Consider the portion 

a--r1 0 ~ a ~ c~ 0 c~ + f 14a+l~ ~.~ ~+i--~7 0 
H G S H G S = t t G S r  I aa G o H G S  ~ H G S  -., = 

of the cohomology long exact sequence associated to the second cofibre sequence. The 
left hand term must be zero by Lemma A.3. By Lemma A.1, ~ + I-IGS ~ ~ L. Since 

lee+ 1 -  ql = 0, I-I~+l- '(S°)(e) is g. The map f: ttGSr/° + + i_iG~+l-nS0 is induced by 

the geometric map S ~ + ESr/+ which identifies the points 0 and oo in S ' .  From this 
description, it follows that  f(e) is an isomorphism. By the lemma above, f is a 
monomorphism. Therefore, ~ 0 t tGS must be zero. 

LEMMA A.9. Assume that p ¢ 2 ,  ee e RSO(G), leel = - 1 ,  and JeeGJ > 0. 
any nontriviat irreducible complex representation r/, 

a 0 ,~, a+rl--1 0 - - a + r l - 1 S  + \  I"IGS = coker (tIG S ~ 1 t  G r/ ). 

Moreover, if jaGI > 1, 

H a S  ° ~ / p .  

Then for 

PROOF.  Consider the portion 

at'tGIla+rl-ls0 h tlG'*a+v-1 ST] + -4 Z'tGLla+rlsrl =HGS,,-, c~ 0 _+ "~GtlC~+~S° 

of the cohomology long exact sequence for the second cofibre sequence. The right 
hand term must be zero by Lemma A.3. The first part of the lemma follows 
immediately. By Lemma A.1, gl G u = R. The map h is induced by the 
collapse map Sq + + S °. Since J a + r l -  11 = 0, 

= ttG ( S , ) ( )  Z. 

The map h(e) is an isomorphism by an obvious computation in nonequivariant 
c~+rl--1 0 ,',., cohomology. If JaGj > 1, then by Lemma A.5, I t  G S = L. The only two maps h 

from L to R with h(e) an isomorphism have cokernel {g/p}. 

If d ~ 0 mod p, then the only maps h: Aid] -* P~ with h(e) an isomorphism 

are surjective. Therefore, once we have shown that I t , S  ° is A[dz] when 

fl E RSO0(G), it will follow from the lemma above that ~a~S° a, G = 0 w h e n l a I =  1 and 

lofiJ = 1. 

Lemma 4.6 follows from Lemma A.9. 

PROOF OF LEMMA 4.6. Let a and fl be elements of RSO(G) with leel = - 1 ,  
G Gt>0, 1~ t=0 ,  and ]flGj_<0. Let q be a nontrivial irreducible complex 
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representation. Consider the diagram 

a + r / -  1 0 LI~S0  R=I - t  c S --, , ,G -4 0 

1 1 
ilia +3+r / - - l~0  a+fl 0 

R - - ~  c ~, ~ It G S ~ 0 

in which the vertical arrows are given by multiplication by {~ or #~.  The rows of 
~+~-~ o 1 this diagram are exact by the proof of Lemma A.9. Let y C H G ( S ) (  ) be a 

generator and let x 6 H~(S°)(1) be its image. Since p preserves products, p ( f~y )  
must be a generator. Thus, @/~y must be a generator and so must @ox. Similarly, 
p(#~ y) is d/~ times a generator, so #~ y is d~ times a generator. It follows that #~ x 
is a generator. This proves Lemma 4.6 in the special case where Ic~1---1 and 
Iofil > 0. The general case follows from the special case and Lemma A.2. 

Let a be an element of RSO0(G ). The main difficulty in identifying HGSa 0 
with A[d~] is that we must select a representative for a in R0(G) in order to define 
~ and d~. To circumvent this difficulty, we work primarily with elements of R0(G) 
instead of elements of RSO0(G ) in the remainder of our discussion of the additive 
structure of * 0 t{GS . If c~ is in R0(G), we write H~S ° for the cohomology Maekey 
functor associated to the image of c~ in RSO(G). To work with elements of I~0(G), 
we must introduce variants of Definitions 4.5(a) and 4.5(d). 

DEFINITION A.10. Observe that the procedure used to produce the element #4 in 

Definitions 4.5(a) actually associates a map p:  S 2~i ~ S ~¢i to any element ~ ¢ i - ~ i  

of R0(G). If a is a nonzero element of R0(G), denote this map, and its image in 
a 0 I-IG(S )(1), by ~ ,  Let n0 denote the identity map of S O and 1 E H~(S°)(1).  If ¢ is 

a nontrivial irreducible complex representation, then let ea,¢ : S 2~i ~ S ¢+~¢i denote 

the smash product of the map e : S  ° + S  ¢ and the map no .  We also use %,¢ to 

denote the corresponding element in/ t~+*(S°)(1) .  

If a and /3 are elements in R0(G) which represent the same element in 
RS00(G),  then n~ and n0 need not be the same class in H~(S°)(1).  However, the 

class e~,~ in tt~+~(S°)(1) is uniquely determined by the sum a + ¢ in RSO(G). This 

uniqueness can be exploited to resolve the problems caused by dependence of ~ on 
Ct. 

LEMMA A.11. Let a and /3 be in R0(G) and let ¢ and r / be nontrivial irreducible 
complex representations such that a + ~b and /3 + 71 represent the same element in 

~+~ S O 1 RS0(G) .  Then the cohomology classes %,e~ and e~,~ in H G ( )( ) are equal. 
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PROOF.  We establish the result for three special cases and then argue that the 

general case follows from them. Let r/, r/1 , r/2, ¢, ¢1, and ¢2 be nontrivial 

irreducible complex representations and let c: S¢1+'2-+ S ¢2+¢1 be the switch map. 

Regard a l = ¢ l - r / ,  a 2 = ¢ 2 - r / ,  and a = ¢ l + ¢ 2 - 2 r /  as elements of R0(G). Let 

e : S  ° - + S  ~ be the usual Eulerclass. The two maps l ^ e a n d e ^ l f r o m S  ~ t o S  ~+~ are 

obviously equivariantly homotopie. On the level of maps, 

%2,¢1 = ~ (e ^ 1) and %1,¢2 = c/*~ (1 ^ e). 

Therefore, ea2,¢ I and c c~1,¢ 2 are equivariantly homotopic. Thus, e~.2,¢1 and e~1,¢2, 

regarded as cohomology classes, are equal. Here, the map c is, of course, absorbed in 

the passage to an RSO(G)-grading for tt~S °. 

If r/ and ¢1 are equal and e': S o --, S ¢2 is the inclusion, then the trick used 

above can also be used to show that 1 ̂  e' : S n --* S ¢1+e2 is equivariantly homotopic to 

¢~ 0 1 %2,¢q" Thus, if ct 3 = ¢1 - q51 e I~0(G ), then e' and e~a,¢ 2 are equal in I-IG"(S ) ( ) .  

Regard /31 = (¢1 - rh) + (¢2 - r/u) and /32 = (¢1 - r/e) + (¢2 - 711) as elements 

of t~0(G ). By three applications of the result just proved for e~2,¢ 1 and %1,¢2' it is 

possible to show that e~1,¢ and e/)2, ¢ are equal in HZGI+¢(S°)(1). 

If c~ and /3 are in R0(G) and ¢ and r/ are nontrivial irreducible complex 
representations such that c, + ¢ and /3 + r~ represent the same element in RSO(G), 
then we can convert the pair (o~, ¢) into the pair (/3, r/) by some combination of the 
three basic transformations for which the lemma has already been proved. Thus, 

%,¢ and eZ,,~ must be equal in H~+¢(S°)(1). 

This lemma establishes that the element e z of Definition 4.5(d) does not 
depend on the choice of c~ and V used in its definition. 

LEMMA A.12. If a E RSO0(G ), then ~ 0 ItGS ~A[dc~]. Moreover, if r l is any 
nontrivial irreducible complex representation, then #a is the unique element of 
t t~(S°)(1)  such that e~ >~ = e~+, and p ( # ~ ) =  d~ ~ .  

PROOF.  Recall the map s: RSO0(G ) --* R0(G) introduced in section 2. Let 
n 

o~ E RSO0(G) and assume that s ( a ) = ~ ¢ i - r / i .  Let c% be 0 C R0(G) and, for 
i = 1  



118 

k 
l < k < n ,  let ak be the element ~ ¢ i - r / i  of R0(G ). Denote by d(c%) the integer 

i = 1  
associated to ak by our homomorphism from l~0(G ) to 7/. For 0 < k < n, let /3 k be 
the element a k + ¢~+, of RSO(G). We will show by induction on k that 

i) Ta%S° is isomorphic to A[d(ak)], a.L G 

ii) ~ ~nd ~ ( ~ k )  generate H~k(S°)(1), 

iii) t-I~kS ° is isomorphic to (7/), and 

iv) e ~  generates H~GkS °. 

By the dimension axiom and Lemma A.4, these statements are true for 
k = 0. Consider the portion 

~k-~ + l t~s~k+~ ~ ~k+~ 0 H~kS 0 

of the cohomology long exact sequence of the second cofibre sequence. By 
Lemma A.1, The left hand term is isomorphic to L and the right hand term is zero. 
By Lemma A.7, the left hand arrow is a monomorphism. Thus, we have a short 
exact sequence 

0 ~ L f l'lC~k+l~0a.a. G o -+ I-I~GkS 0 "+ 0.  

Assume that  the assertions above hold for some integer k. The element #k+l in 
a k + l  0 (S)(1)  hits the generator e ~  in H~k(S°)(1) by Lemma A.11. Since f(e) is H~ an 

isomorphism, we may assume that f(e) takes the generator 1 E 7/= L(e) to the 
a k + l  0 generator t%+ 1 of H~ (S)(e).  It follows that #%+1 and r ( t%+l )  generate 

t t ;k+l(s°)(1).  Since 

P (#%+l )=d(c~k+l ) t%+l  and p r ( t % + l ) = p L % + l ,  

C~k+l 0 H G S is isomorphic to A[d(ak+l) ]. By Lemma A.4, It@k+lS° is isomorphic to (7/) 

= I-IGS is isomorphic to and is generated by e/~+ I. Since Po,~ / ~  and d ( a n ) =  do,  ~ 0 
Aid@ 

Replacing c%+ 1 by c~, r/k+1 by % and /3 k by a + 7? in the cohomology long 
exact, sequence above, we obtain the short exact sequence 

0 -~ L - .  I4~S ° h nO+,S0 ~G -* 0. 

Our characterization of #~ in terms of e, #o = h(/~o) and p(#~) follows directly from 
this sequence. 

Two general observations suffice for the proofs of many of the multiplicative 
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relations. Any product involving at least one element in the image of the transfer 
map v is easily computed using the Frobenius property 

xv(y)  = r(p(x) y). 

Any relation involving an element, like e-m~, obtained by divided some other 
element by an Euler class may be checked by eliminating the division by the Euler 
class and checking the resulting relation. The original relation then follows by 
Lemma A.2. 

PROOF OF THEOREM 4.1. We will describe the individual Maekey functors H~S ° 
of H~S ° by their positions in our standard plot of H~S °. Since 

H~(S°)(e) ~Hlal(S°;  7/), it is easy to check that  the elements ~1-~ and re_ 1 generate 

H~(S°)(e) and satisfy no relations in H~(S°)(e) other than the obvious relation 

tl_ ¢ re_ t = p(1). It follows immediately from the structure of the Mackey functors 

R_, L, and L_ that  the elements r(t~_~), for n > 1, generate the part of tt~(S°)(1) on 

the positive horizontal axis. For any positive integer n, p(~,~) = t~_12n. Therefore, ~'~ 

must generate H2"(;-1)(S%q~ /~ /. The relation r(t~_l) = 2 ~'~ follows from the additive 

structure. No other relations involving only ( and t¢-I are permitted by the additive 
structure. Lemmas A.2 and A.4 ensure that the powers of e generate the part of 
II~(S°)(1) on the positive vertical axis. These two lemmas also indicate that  the 

• 0 1 elements e m 4'~, for m, n _> 1, generate the part of HG(S )( ) in the second quadrant. 

The same two lemmas indicate that the elements e -m~ and the elements 
- r n  / 2 n + l ~  e r ( t l_  ~ ) generate the parts of H~(S°)(1) on the negative vertical axis and in the 

fourth quadrant, respectively. The relations not already verifed follow easily from the 
additive structure of * 0 I-IGS or from our general observations. The additive structure 
of H~S ° eliminates the possibility of any unlisted relations involving a single element. 
Since we have described every possible nonzero product of a pair of generators in 
terms of the generators, no further relations involving products are possible. 

PROOF OF THEOREM 4.9. Again, we describe the individual Mackey functors 
a 0 * 0 HGS in terms of their positions in our plot of t t G S .  Since H~(S° ) ( e )~  Hill(S°; ~), 

it is easy to check that  the relation ~= ~# = %+# holds for any c~, /3 E RSO(G) with 

]od = ]/3] = 0 and that no other relations in H~(S°)(e) hold among the L~. Therefore, 
for any /3 G RSO(G) with I j31 = 0, L z can be written as a product of the Lc~ included 
in the proposed list of generators of * 0 t-IGS . The elements LZ, for /3 E RSO(G) with 
I/3t = o, generate H~(S°)(e) and the elements r(L#), for /3 E RSO(G) with 1/31 = 0 and 

[fiG[ > 0, generate the part of H~(S°)(1) on the positive horizontal axis. 

Let a and /3 be in RSO0(G ) and let 7 be an element of RSO(G) such that 
17t > 0  and 17GI = 0 .  The relation pa¢.~ = %+7 follows from Lemma A.11. The 
relation 
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#o #8 = #~+~ + [(d~d8 - do+/~)/P] r(ta+/~) 

follows from ore" characterization in Lemma A.12 of /%+~ as an element, of 
}t~+5(S°)(1). From this relation, it follows that  all of the elements #~ can be 
constructed from the Iz~ and ~ in our proposed list of generators. By Lemma  A.12, 
the elements #0 and ~ generate all of the u ~ S  ° which are plotted at the origin. The 

a.~ G 

relation #~ e~ = e~+~ indicates that  we can construct all the elements e7 from our 
proposed list of generators. By Lemmas A.2 and A.4, these elements generate all of 
the o 0 fIGS on the positive vertical axis. 

Let ~ E RSO0(G ) and 13,7 • RSO(G) with I~/I =171 = 0 and I/3(31, 1 (31 < 0 .  
The element ~ro can be obtained from #4 and t~. The relations 

P(/J~ ~8) = do to+ 8 = p(do ~ + 8 ) ,  

and 

follow- from the fact that  p is a ring homomorphism.  They imply the relations 
#o ~4 = d ~ + 8 ,  ~°~8 = 4o+~, and ~p ~ = ~ + ~  since p is a monomorphism in 
dimensions c~ + fl and fl + 7- These relations indicate that  all of the elements ~ can 
be produced from our proposed list of generators. These elements generate the part  
of • 0 H(3S on the negative horizontal axis. By Lemmas A.2 and A.4, the elements 

T~* S 0 e 6 ~ generate the part  of ~G in the second quadrant.  

The relations / ~  (e5 i ~ )  = e~ i ~;~+8 and e~ i ~ca = e~ 1*%, for c~ + 7 = fl + ~, 
may be checked by our general procedure for relations involving division by an Euler 
class. Together, these relations indicate that  our proposed set of generators suffices to 
construct all of the elements e~ i Ks and therefore to generate the part  o f H ~ S  ° on the 
negative vertical axis. 

Let fl E RSO0(G) and let cr • RSO(G) with Icrl < 0 and I GI > 0 Recall the 
class ~o and the virtual representation <c~> from Definitions 4.7. By definition, 
< ~  + fl> = <c~>, and by the Frobenius relation, ~'<o> r(~o+Z) = 0. Therefore, 

# 8  ~'a = ptfl # o - < o >  z /<o> 

Ptc~+8-<c~>/ ;<0> 

b 'o+ ~ . 

This relation indicates that  our proposed set of generators suffices to produce all of 
the elements ~'o and therefore the part  of H~S ° in the fourth quadrant.  

We have now shown that  our proposed set of generators does generate I-I~S °. 
Seven of the relations we have not already established deserve comments .  The 
relation eoep = %+p follows easily from the definition of the guler classes, the 
Frobenius relation and the product relation for the classes /l~. The relation 
eO ~ = de_ ~ e~ ~a, for ct + ~ = 7 + ~, follows from the sequence of equations 
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= e-r #~_~ {~ 

= da_oe~ ~a" 

The relations ~ ~, = P ~ + e  and ~7 v~ = 0 can be confirmed from the definitions, 
the Frobenius property, and the relations which have already been established. Given 
these equations, the relations 

e~ (e51 ~) = ~l_~ ~ ,  

(G ~ ~)(~ ~ ) -~ = Pe~+v ~;~+~' 

and 
(~71 ~ )  . ~  = 0 

follow from our general procedure for checking relations involving classes divided by 
Euler classes. For the relations eZus  = u~+p and ~Zus  =d<z>_Z~,~+Z,  observe 
that  ~Z can be written as c~¢_<p>~<Z> and that  eZ can be written as #vena ,  for 
some 7 E RSO0(G ) and some positive integer n. The relations now follow by 
straightforward computat ions using the definitions, the Frobenius property, and the 
previously established relations. All of the remaining relations in the theorem follow 

* 0 directly from the definitions or the additive structure of H G S .  The additive 
structure of • 0 I-IGS eliminates the possibility of any unlisted relations involving a 
single element. Since we have described every possible nonzero product of a pair of 
generators in terms of the generators, no further relations involving products are 
possible. 
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