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THE ADAMS-NOVIKOV SPECTRAL SEQUENCE AND

VOEVODSKY’S SLICE TOWER

MARC LEVINE

Abstract. We show that the spectral sequence converging to the stable ho-
motopy groups of spheres, induced by the Betti realization of the slice tower
for the motivic sphere spectrum, agrees with the Adams-Novikov spectral se-
quence, after a suitable re-indexing. The proof relies on a partial extension of
Deligne’s “décalage” construction to the Tot-tower of a cosimplicial spectrum.
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Introduction

Voevodsky has defined a natural tower in the motivic stable homotopy category
SH(k) over a field k, called the slice tower (see [27, 28]). Relying on the computation
of the slices of MGL by Hopkins-Morel [13], complete proofs of which have been
recently made available through the work of Hoyois [10], we have filled in the details
of a proof of the conjecture of Voevodsky [28], identifying the slices of the motivic
sphere spectrum with a motive built out of the E2-complex in the classical Adams-
Novikov spectral sequence for the stable homotopy groups of spheres (cf. [1]). In
addition, we have shown that the Betti realization of the slice tower yields a tower
over the classical sphere spectrum S, and the resulting spectral sequence strongly
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2 MARC LEVINE

converges to the homotopy groups of S. Furthermore, we have also shown that
the resulting comparison map from the homotopy sheaves πn,0 of the slice tower,
evaluated on any algebraically closed subfield of C, to the homotopy groups of the
Betti realization, is an isomorphism. For all these results, we refer the reader to
[18].

Putting all this together, we have a spectral sequence, strongly converging to
π∗S, of “motivic origin” and whose E2-term agrees with the E2-term in the Adams-
Novikov spectral sequence, after a reindexing. The question thus arises: are these
two spectral sequences the same, again after reindexing? The main result of this
paper is an affirmative answer to this question, more precisely:

Theorem 1. Let k be an algebraically closed field of characteristic zero. Consider
the Adams-Novikov spectral sequence

Ep,q
2 (AN) = Extp,−q

MU∗(MU)(MU∗,MU∗) =⇒ π−p−q(S)

and the “Atiyah-Hirzebruch” spectral sequence for Π∗,0Sk(k) associated to the slice
tower for Sk,

Ep,q
1 (AH) = π−p−q,0(spSk)(k) =⇒ π−p−q,0Sk(k) = π−p−q(Sk).

Then there is an isomorphism

γp,q1 : Ep,q
1 (AH) ∼= E3p+q,−2p

2 (AN)

which induces a sequence of isomorphisms of complexes

⊕p,qγ
p,q
r : (⊕p,qE

p,q
r (AH), dr)→ (⊕p,qE

3p+q,−2p
2r+1 (AN), d2r+1)

Note that the fact that the homotopy groups of MU∗ are concentrated in even de-
gree implies that the Adams-Novikov differentials d2r are all zero, and so Ep,q

2r (AN) =
Ep,q

2r+1(AN).

Remark . The Atiyah-Hirzebruch spectral sequence is often presented as an E2-
spectral sequence:

Ep,q
2 (AH ; E , X)′ := Hp−q(X, πµ

−q(n− q)) =⇒ E
p+q,n(X).

Here πµ
n(E) is the homotopy motive of E , that is, a canonically determined object

of DM(k) with EMA1(πµ
n(E)(n)[2n])

∼= stnE . Thus, for E = Sk, X = Spec k, this
gives

Ep,q
2 (AH)′ = E−q,p+2q

1 (AH)

and theorem 1 yields the isomorphism

Ep,q
r (AH)′ ∼= Ep−q,2q

2r−1 (AN),

answering affirmatively the question raised in [18, Introduction].

In the first four sections, we collect and review some material on various struc-
tures arising from functor categories with values in a model category. This material
is to a varying degree quite well known; we include it here to aid the reader who
may not be so familiar with this material and to fix notation.

In section 1, we review two constructions of a model category structure on the
functor category, the projective model structure and the Reedy model structure.
We apply this material to give constructions of slice towers and Betti realizations for



THE ADAMS-NOVIKOV SPECTRAL SEQUENCE AND VOEVODSKY’S SLICE TOWER 3

motivic homotopy categories associated to functor categories. In section 2 we spe-
cialize to the case of the category ∆ of finite ordered sets, and recall the Bousfield-
Kan functor Tot and the associated tower and spectral sequence. In section 3 we
describe how the Tot-tower can be described using cubical constructions, which
are technically easier to handle. As an application, we show how applying the
slice tower termwise to the truncated cosimplicial objects arising in of the motivic
Adams-Novikov tower give approximations to the slice tower for the motivic sphere
spectrum (proposition 3.5).

We then turn to some new material. In section 4 we adapt Deligne’s décalage
construction to the setting of cosimplicial objects in a stable model category that
admits a t-structure and associated Postnikov tower, this latter construction re-
placing the canonical truncation of a complex. The main comparison result is
achieved in proposition 4.3. This is the technical tool that enables us to compare
the Atiyah-Hirzebruch and Adams-Novikov spectral sequences. The treatment of
this topic is less than optimal, as one should expect a more general extension of
Deligne’s décalage construction to some version of filtered objects in a model cat-
egory. In section 5 we examine the Adams-Novikov spectral sequence, both in the
motivic as well as the classical setting, and relate this to the slice tower for the
motivic sphere spectrum. With the help of recent work on Betti realizations and
the slices for MGL, it is rather easy to show that the Betti realization of the slice
tower for the motivic sphere spectrum agrees with the décalage tower associated
to the classical Adams-Novikov tower. We then apply our results on the décalage
construction to achieve the desired comparison.

1. Constructions in functor categories

It is convenient to perform constructions, such as Postnikov towers in various
settings, or realization functors, in functor categories. This can be accomplished
in a number of ways. The Postnikov towers may be constructed via cofibrant
replacements associated to a right Bousfield localization; by making the cofibrant
replacement functorial, this extends immediately to functor categories. The Betti
realization is similarly accomplished as the left derived functor of a left Quillen
functor, so again, applying this functor to a functorial cofibrant replacement extends
the Betti realization to a realization functor between functor categories. However,
it is often useful to have more control over these constructions, for which a full
extension to the appropriate model category structure on the functor category is
useful; we give some details of this approach here. None of this material is new; it
is assembled from [3, 8, 12] and collected here for the reader’s convenience.

1.1. Model structures on functor categories. Let S, T be small categories,M
a complete and cocomplete category,MS the category of functors X : S →M. For
f : T → S a functor, we have the restriction functor f∗ :MS →MT , f∗X := X ◦f ,
with left adjoint f∗ and right adjoint f !. For X ∈MT , f∗X , resp., f !X , is the left,
resp. right, Kan extension in the diagram

T
X //

f

��

M

S.
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In particular, for s ∈ S, we have is : pt → S, the inclusion functor with value s,
inducing the evaluation functor is∗ : MS → M, the left adjoint i∗s : M → MS ,
and right adjoint i!s :M→M

S .
We takeM to be a simplicial model category and consider two model structures

on MS . If M is cofibrantly generated, we may give MS the projective model
structure, that is, weak equivalences and fibrations are defined pointwise, and cofi-
brations are characterized by having the left lifting property with respect to trivial
fibrations.

In case S is a Reedy category, one can also giveMS the Reedy model structure.
We first recall the definition of a Reedy category S: There is an ordinal λ, a
function (called degree) d : ObjS → λ and two subcategories S+, S−, such that all
non-identity morphisms in S+ increase the degree, all non-identity morphisms in
S− decrease the degree, and each morphism f in S admits a unique factorization
f = a◦ b with a ∈ S+, b ∈ S−. For s ∈ S, we let Ss− be the category of non-identity
morphisms s → t in S−, and let Ss+ be the category of non-identity morphisms

t→ s in S+. Given an object X ∈MS , and s ∈ S, we have the latching space LsX
and matching space M sX :

LsX := lim
−→

t→s∈Ss
+

X (t), M sX := lim
←−

s→t∈Ss
−

X (t),

with the canonical morphisms LsX → X (s), X (s)→M sX .
The Reedy model structure onMS has weak equivalences the maps f : X → Y

such that f(s) : X (s) → Y(s) is a weak equivalence in M for all s ∈ S, fibrations
the maps f : X → Y such that X (s)→ Y(s)×MsY M

sX is a fibration inM for all
s ∈ S and cofibrations the maps f : X → Y such that X (s) ∐LsX LsY → Y(s) is a
cofibration for all s ∈ S. This makesMS a model category without any additional
conditions onM.

In each of these two model structures, the evaluation functor is∗ preserves fibra-
tions, cofibrations and weak equivalences, and admits i∗s as left Quillen functor and
i!s as right Quillen functor.

Remark 1.1. Suppose M is cofibrantly generated. If S is a direct category, these
two model structures agree; if S is a general Reedy category, the weak equivalences
in the two model structures agree, every fibration for the Reedy model structure
is a fibration in the projective model structure, and thus every cofibration in the
projective model structure is a cofibration in the Reedy model structure. Further-
more, the projective model structure is also cofibrantly generated, and is cellular,
resp. combinatorial, if M is cellular, resp. combinatorial; we refer the reader to
[8, theorem 11.6.1, theorem 12.1.5], [3, theorem 2.14] for proofs of these assertions.
The Reedy model structure likewise inherits the combinatorial property from M
[3, lemma 3.33].

Left and right properness are similarly passed on from M to the projective
model structure onMS [3, proposition 2.18]. For the Reedy model structure, the
inheritance of left and right properness is proven in [3, lemma 3.24].

Example 1.2. The classical example of a Reedy category is the category of finite
ordered sets. Let ∆ denote the category with objects the finite ordered sets [n] :=
{0, . . . , n}, with the standard order, n = 0, 1, . . .. For a category C the functor
categories C∆, C∆

op

are as usual called the category of cosimpliicial, resp. simplicial
objects in C.
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We let ∆inj , ∆surj denote the subcategories of ∆ with the same objects, and with
morphisms the injective, resp. surjective order-preserving maps. Taking ∆+ :=
∆inj , ∆− := ∆surj and d : ∆ → N the function d([n]) = n makes ∆ a Reedy
category. We have the standard co-face maps dj : [n] → [n + 1], j = 0, . . . , n + 1]
and co-degeneracy maps si : [n]→ [n− 1], i = 0, . . . , n− 1.

Let Spc denote the category of simplicial sets, Spc• the category of pointed
simplicial sets, each with the standard model structures, cf. [12, §3.2]. Note that
this is not the Reedy model structure!

Let ∆[n] be the representable simplicial set, ∆[n] := Hom∆(−, [n]) and let ∆[∗] :
∆→ Spc the cosimplicial space n 7→ ∆[n].

1.2. Simplicial structure. We consider a small category S and a simplicial model
categoryM satisfying the conditions discussed in the previous section. Both model
structures forMS discussed above yield simplicial model categories: for a simplicial
set A and a functor X : S →M, the product X⊗A and Hom-objectHom(A,X ) are
the evident functors (X ⊗A)(s) := X (s)⊗A and Hom(A,X )(s) := Hom(A,X (s)).
The simplicial Hom-object MapMS (X ,Y) is given as the simplicial set

n 7→ HomMS (X ⊗∆[n],Y),

or equivalently, as the equalizer

MapMS (X ,Y)→
∏

s∈S

MapM(X (s),Y(s))

∏
g∗

//

∏
g∗

//

∏

g:s→s′

MapM(X (s),Y(s′)).

Together with the evident adjunction Hom(X ,Hom(A,Y)) ∼= Hom(X ⊗A,Y), this
makesMS into a simplicial model category (see below).

We have as well the object Hom(A, X) in MS for A ∈ SpcS
op

, X ∈ M, with

Hom(A, X)(s) := Hom(A(s), X) and the object X ⊗ A in MS for A ∈ SpcS ,
X ∈M, with (X ⊗A)(s) := X ⊗A(s).

For A ∈ SpcS , X ∈ MS , we have HomS(A,X ) inM defined as the equalizer

HomS(A,X )→
∏

s∈S

Hom(A(s),X (s))

∏
g∗

//

∏
g∗

//

∏

g:s→s′

Hom(A(s),X (s′)).

Similarly, for A ∈ SpcS
op

, X ∈ MS , we have X ⊗S A in M, defined as the co-
equalizer

∐g:s′→sX (s
′)⊗A(s)

∏
X (g)⊗id

//

∏
id⊗A(g)

// ∐s∈S X (s) ⊗A(s)→ X ⊗
S A.

Besides the adjunction already mentioned, one has the adjunction, for X ∈ M,
A ∈ SpcS , Y ∈MS ,

HomM(X,HomS(A,Y)) ∼= HomMS (X ⊗A,Y)

and for X ∈MS , A ∈ SpcS
op

, Y ∈M,

HomMS (X ,Hom(A, Y )) ∼= HomM(X ⊗S A, Y )

These all follow directly from the adjunctions for Hom and ⊗.
Both adjunctions are Quillen adjunctions of two variables. In case M is cofi-

brantly generated and we use the projective model structure, this is [8, theorem
11.7.3]; if S is a Reedy category and we giveMS the Reedy model structure, this
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is [3, lemma 3.24]. This givesMS the structure of a SpcS model category and a

SpcS
op

model category.

1.3. Monoidal structure. We now suppose that M has a symmetric monoidal
structure ⊗M, makingM into a closed symmetric monoidal simplicial model cat-
egory, with internal Hom HomM(−,−).

For X ∈ M, Y ∈ MS , we have X ⊗M Y and HomM(X,Y) in MS , with the
adjunction, for Y,Z ∈MS , X ∈M,

HomMS (X ⊗M Y,Z) ∼= HomMS (Y,HomM(X,Z))

This extends to the adjunction on mapping spaces

MapMS (X ⊗M Y,Z) ∼= MapMS (Y,HomM(X,Z)).

We define theM-valued internal Hom

HomS
M : (MS)op ×MS →M

as the equalizer

HomS
M(X ,Y)→

∏

s∈S

HomM(X (s),Y(s))

∏
g∗

//

∏
g∗

//

∏

g:s→s′

HomM(X (s),Y(s′)).

Similarly, for X ∈ MS , Y ∈ MSop

, we have X ⊗S
M Y in M, defined as the co-

equalizer

∐g:s′→sX (s
′)⊗M Y(s)

∏
X (g)⊗id

//

∏
id⊗Y(g)

// ∐s∈S X (s)⊗M Y(s)→ X ⊗
S
M A.

We have the adjunctions, for A ∈ SpcS , Y ∈ MS , X ∈M,

HomS(A,HomM(X,Y)) ∼= HomS
M(X ⊗A,Y) ∼= HomM(X,HomS(A,Y)),

induced by the adjunctions

Hom(A,HomM(X,Y )) ∼= HomM(X ⊗A, Y ) ∼= HomM(X,Hom(A, Y ))

for X,Y ∈ M, A ∈ Spc. The analogous constructions and statements hold in the
pointed setting.

Lemma 1.3. GiveMS either the Reedy model structure or, in caseM is cofibrantly
generated, the projective model structure. Then the operations ⊗M and HomS

M are
a Quillen adjunction of two variables, that is, these make MS into an M-model
category.

Proof. For the projective model structure, the proof of [8, theorem 11.7.2] extends
word for word to prove the result; the case of the Reedy model structure is proven
in [3, lemma 3.36] �

MS is a closed symmetric monoidal category, with (A ⊗MS B)(s) := A(s) ⊗M

B(s) for A,B ∈ MS . The internal Hom is given as

HomMS (A,B)(s) := Homs/S(s/A, s/B)

where s/A ∈ Ms/S is the functor s/A(s → t) := A(t); for f : s → s′, the induced

map HomMS (A,B)(s) → HomMS (A,B)(s′) is the map Homs/S(s/A, s/B) →

Homs′/S(s′/A, s′/B) induced by the functor f∗ : s/S → s′/S, noting that (s′/A) ◦
f∗ = s/A. The unit is the constant functor with value the unit inM.
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The question of when this gives MS the structure of a symmetric monoidal
model category does not appear to have a simple answer. In the case of the Reedy
model structure, Barwick proves the following result:

Proposition 1.4. Let S be a Reedy category and giveMS the Reedy model struc-
ture. Suppose that either
a. all morphisms in S− are epimorphisms and for each s ∈ S the category Ss− is
connected
or the dual
b. all morphisms in S+ are monomorphisms and for each s ∈ S, the category Ss+
is connected
Then ⊗MS and HomMS (−,−) is a Quillen adjunction of two variables, making
MS a symmetric monoidal model category.

The condition (a) is satisfied for S = ∆ and the dual (b) is satisfied for S = ∆op,
so the categories of cosimplicial or simplicial objects in a symmetric monoidal model
category have the structure of a symmetric monoidal model category. As another
example of an S satisfying (a), one can take for S the category associated to a finite
poset having a final object, with Reedy structure S = S−; a finite poset with initial
object similarly satisfies (b) if one takes S = S+.

1.4. Bousfield localization. We suppose thatM is cellular and right proper. Let
K be a set of cofibrant objects inM. We have the right Bousfield localization RKM
with associated functorial cofibrant replacement QK → id (see [8, theorem 5.1.1]).
Let KS be the set of cofibrant objects i∗sa, a ∈ K, s ∈ S, and let RKSMS be the
right Bousfield localization ofMS with respect to KS (as noted in remark 1.1,MS

inherits celluarity and right properness fromM).

Lemma 1.5. Suppose that M is cellular and right proper, and give MS the pro-
jective model structure. Let K be a set of cofibrant objects in M.
1. The right Bousfield localization RKSMS is the same as the projective model
structure on (RKM)S .
2. Take x ∈MS and let Qx→ x be a cofibrant replacement in RKSMS. Then for
all s ∈ S, is∗Qx→ is∗x is a cofibrant replacement of is∗x in RKM.

Proof. Right Bousfield localization leaves the fibrations unchanged, hence RKSMS

and (RKM)S have the same fibrations. The weak equivalences in a right Bousfield
localization with respect to a set of objects K are the K-colocal weak equiva-
lences, that is, maps X → Y that induce a weak equivalence on the Hom spaces
Hom(a,RX) → Hom(a,RY ) for all a ∈ K, where RX , RY are fibrant replace-
ments. From this it follows that X → Y is a weak equivalence in RKSMS if and
only if is∗X → is∗Y is a weak equivalence in RKM for all s, that is, the weak
equivalences in RKSMS and (RKM)S agree.

(2) follows from (1), noting that is∗ preserves cofibrations, fibrations and weak
equivalences (for the projective model structure). �

Examples 1.6. 1. “Topological” Postnikov towers. We recall a functorial construc-
tion of the n − 1-connected cover fnX → X of a pointed space. Fix an integer
n ≥ 0 and let Kn be the set of spaces of the form ΣmX , with X in Spc• and
m ≥ n. Spc• is a right proper cellular simplicial model category, hence by [8,
theorem 5.1.1], the right Bousfield localization RKnSpc• of Spc• with respect to
the Kn-colocal maps exists. In addition, there is a cofibrant replacement functor
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fn : RKnSpc• → RKnSpc•. By the definition of right Bousfield localization ([8,
definition 3.3.1], see also [18, theorem 2.5]) fnX → X in HoSpc• is universal for
maps from n−1-connected Y to X ; by obstruction theory, it follows that fnX → X
is an n−1-connected cover of X . Using lemma 1.5, we may form the n−1-connected
cover fS

nX → X in the functor category SpcS• as the cofibrant replacement with
respect to the right Bousfield localization RKS

n
Spc•.

Varying n and noting that Kn ⊂ Km if n ≥ m gives the tower of cofibrant
replacement functors

. . .→ fS
n+1 → fS

n → . . .→ fS
0 = id.

Let Spt be the category of S1-spectra in Spt•, with stable model structure
as defined in [11]. We have the nth evaluation functor evn : Spt → Spt•,
evn(S0, S1, . . .) := Sn, and its left adjoint Fn : Spc• → Spt,

Fn(S) := (pt, . . . , pt, S,ΣS,Σ2S, . . .).

We repeat the construction of the Postnikov tower, with Spt replacing Spc• and
taking Kn to be the set of objects FaΣ

bX , with X ∈ Spc•, b− a ≥ n, n ∈ Z. This

gives us the Postnikov tower in the functor category SptS (with n ∈ Z)

. . .→ fS
n+1 → fS

n → . . .→ id.

We may extend these constructions to other model categories. Rather than at-
tempting an axiomatic discussion, we content ourselves with the examples arising
in motivic homotopy theory. Let S be a noetherian separated base-scheme and let
Spc•(S) be the category of pointed spaces over S, that is, Spc•-valued presheaves
on the category Sm/S of smooth S of finite type. We give Spc•(S) the motivic
model structure; this gives Spc•(S) the structure of a proper combinatorial sym-
metric monoidal simplicial model category (for details see [9, corollary 1.6], [14,
§1, theorem 1.1], [15, Appendix A] and [25, theorem 2.3.2]). Letting Kn(S) be
the set of objects of the form ΣmX , with X ∈ Spc•(S) and m ≥ n, we have the
right Bousfield localization, RKn(S)Spc•(S) and the cofibrant replacement functor
fn, with universal property for maps with source in the Kn(S)-cellular objects of
Spc•(S). These turn out to be the n − 1-connected objects in Spc•(S), that is,
those objects with vanishing homotopy sheaves πm for m < n (see e.g. [24]. See
[18, theorem 3.1, remark 3.3] for a discussion of the stable case and an indication
of how this construction works in the unstable case).

We may also use categories of S1 or P1 spectra, SptS1(S), SptP1(S), with the
respective motivic model structures (see [15] for a description of the model struc-
tures and e.g. [25, theorem 2.5.4] for the fact that these are cellular). For S1

spectra, replace Kn with KS1

n (S) := {FS1

q ΣpX ,X ∈ Spc•(S), p − q ≥ n}. Here

FS1

q : Spc•(S) → SptS1(S) is given by using the functor Fq : Spc• → Spt, that
is,

FS1

q (X )(T ) := Fq(X (T ))

for each T → S in Sm/S. Again, the KS1

n (S)-cellular objects are those E ∈
SptS1(S) with stable homotopy sheaves πnE zero for n < m. Suppose S = Spec k,
k a perfect field. Then in this stable model category, the subcategory SHS1(S)≤0 :=
HoR

KS1

0 (S)
SptS1(S) of the homotopy category SHS1(S) of SptS1(S) is half of a

t-structure with heart the strictly A1-invariant Nisnevich sheaves on Sm/S. and
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with SHS1(S)≥0 the full subcategory of the E with πnE = 0 for n > 0. This all
follows from results of Morel, cf. [20, theorem 4.3.4, lemma 4.3.7].

For SptP1(S), we use KP
1

n (S) := {F P
1

q Σp
S1X ,X ∈ Spc•(S), p − q ≥ n}, with

F P
1

q X := (F P
1

q X0, F
P
1

q X1, . . .), F
S1

q Xn = pt for n < q, FqXn = Σn−q
P1 X for n ≥ q

and identity bonding maps. The KP
1

n (S)-cellular objects are those E ∈ SptP1(S)
with stable homotopy sheaves πn,qE zero for n < m, q ∈ Z. Assuming that S =
Spec k, k a field, then in this stable model category, the subcategory SH(S)≤0 :=
HoR

KP1

0 (S)
SptP1(S) of the homotopy category SH(S) of SptP1(S) is half of a t-

structure with SH(S)≥0 the full subcategory of the E with πn,∗E = 0 for n > 0.
The other half is SH(S)≥0: the full subcategory of the E with πn,∗E = 0 for n < 0.
The heart is Morel’s category of “homotopy modules” [20, definition 5.2.4], see [20,
theorem 5.2.3, theorem 5.2.6] for detailed statements.

2. Slice towers. This is modification of the construction in (1) in Spc•(S), us-
ing the set Kt

n of objects of the form Σa
S1Σb

Gm
X , with b ≥ n. The S1-stable version

uses the set of objects of the form FmΣa
S1Σb

Gm
X with b ≥ n and the P1-stable

version uses the set of objects of the form FmΣa
S1Σb

Gm
X with b −m ≥ n. Varying

n, the first two yield the slice tower

. . .→ f t
n+1X → f t

nX → . . .→ f t
0X = X

while the P1-version gives us the doubly infinite tower

. . .→ f t
n+1E → f t

nE → . . .→ X .

Replacing Kt
n with Kt,S

n gives the slice towers

. . .→ f t,S
n+1X → f t,S

n X → . . .→ f t,S
0 X = X

and

. . .→ f t,S
n+1E → f t,S

n E → . . .→ E .

in Spc•(S)
S , SptS1(S)S and SptP1(S)S . There are similarly defined versions in

categories of T -spectra (T = A1/A1 \ {0}) or the various flavors of symmetric spec-
tra. As above, we refer the reader to [24] and [18, theorem 3.1, remark 3.3] for
details.

3. Betti realizations. Betti realizations are left derived functors of functors of a
left Quillen functor An∗, either on categories of spaces over k, or the various spec-
trum categories, where An∗ is a left Kan extension of the functor sending a smooth
k-scheme X to the topological space of its C-points (with respect to a fixed em-
bedding k →֒ C) or if one prefers Spc as target category, the singular complex of
this space. As a left derived functor of a left Quillen functor, the result Betti re-
alization functor on the appropriate homotopy category is constructed by applying
An∗ (or some allied construction, in the case of spectra) to a cofibrant resolution
for a suitable (cellular) model structure. Thus, we may form a Betti resolution for
functor categories by noting that An∗ extends by applying it pointwise to a left
Quillen functor between functor categories, and by taking the cofibrant resolution
in the domain functor category.

Fix an embedding σ : k → C. We use the Betti realization of Panin-Pimenov-
Röndigs [22], modified to pass to Spc instead of locally compact Hausdorff spaces.
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This functor arises from the left Quillen functor

An∗ : Spc•(k)→ Spc•

which is the Kan extension of the functor sending X ∈ Sm/k to the singular
complex of Xan, this latter being the topological space of C-points of Xσ, with the
classical topology.

One extends to P1-spectra using the fact that (P1)an ∼= S2, An∗ is symmetric
monoidal and using an equivalence of Spt and S2-spectra. Glossing over this latter
equivalence, we have the isomorphism (in SH)

ReB(MGL) ∼= MU

There is a similar version from symmetric P1-spectra to symmetric S2-spectra,
inducing an equivalent functor on the homotopy categories.

Finally, the Betti realization functor extends to a left Quillen functor

AnS,∗ : SptT (S)
S → SptSS2 ,

with a natural isomorphism i∗s ◦ An
S,∗ ∼= An∗ ◦ is∗; note that one needs to use a

different model structure on SptT (S) than the one we have been using, see [22,
§A4] and [18, §5] for details. For other versions of the Betti realization, see [2,
definition 2.1], [26] and [29, §4].

We still use the projective model structure on SptT (S)
S , but with respect to

the Panin-Pimenov-Röndigs model structure on SptT (S).
We let

ReSB : HoSptT (S)
S → HoSptS

be the left derived functor of AnS,∗ composed with the equivalence HoSptSS2
∼=

HoSptS .

In what follows, M will be either Spc• or Spc•(S). We will also consider the
corresponding spectrum categories, Spt, SptS1(S) or SptP1(S). We will refer to
an object in any one of these latter categories as a “spectrum”, an object in the
underlying model category M will be referred to as a “space”. In the unstable
motivic setting, Spc•(S), πn will be the Nisnevich sheaf of homotopy groups (sets
for n = 0). Similarly, for a Nisnevich sheaf of abelian groups A on Sm/S, we
have the associated motivic Eilenberg-MacLane space K(A, n) ∈ Spc•(S), with
πnK(A, n) = A, πmK(A, n) = 0 for m 6= n. At least for n ≥ 2, K(A, n) is A1-local
exactly when A is strictly A1-invariant.

Lemma 1.7. Take E ∈ SptS such that is∗E is n − 1-connected for each s ∈ S.
Then fS

n E → E is a weak equivalence.

Proof. Since is∗f
S
n E
∼= fnis∗E , our assumption on E implies that is∗f

S
n E → is∗E is

a weak equivalence for each s ∈ S, and thus fS
n E → E is a weak equivalence. �

Definition 1.8. Recall that a P1-spectrum E is said to be topologically c-connected
if the homotopy sheaf πn+m,mE is zero for all n ≤ c and all m ∈ Z.

Lemma 1.9. Take E ∈ (SptΣP1(k)S and suppose that is∗E is topologically -1 con-
nected for each s ∈ S. Then there is a canonical morphism

γn(E) : ReB(f
t,S
n E)→ fS

nReBE

in HoSptS .
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Proof. We have canonical isomorphisms

is∗f
S
nReBE

∼= fnReBis∗E , is∗ReB(f
t,S
n E

∼= ReB(f
t
nis∗E .

By [18, theorem 5.2], ReB(f
t
nis∗E) is n−1-connected for each n, hence by lemma 1.7,

the canonical map

fS
nReB(f

t,S
n E)→ ReB(f

t,S
n E)

is a weak equivalence. Inverting this map in HoSptS and using the commutative
diagram

fS
nReB(f

t,S
n E)

fS
n ReB(ρt

n(E)))

��

ρn(ReB(ft,S
n E))

// ReB(f
t,S
n E)

ReB(ρt
n(E))

��

fS
nReBE ρn(ReBE)

// ReBE

gives the desired map. �

2. Cosimplicial objects in a model category

We will work in a fairly general setting, lettingM be a pointed closed symmetric
monoidal simplicial model category. The reader can keep in mind the example
M = Spc•, the category of pointed spaces, that is, pointed simplicial sets. We will
eventually requireM to be a stable model category, such as spectra.

This material, as well as much of the material in the next section, may be found
in the beginning portions of [4]

We have the functor categoryM∆ of cosimplicial objects inM. For X : ∆→M,
we often write Xn for X ([n]). We let X−1 denote the maximal augmentation of X ,
that is, the equalizer

X−1 → X 0
d0

//

d1

// X 1.

We give M∆ the Reedy model structure. In fact, a map f : X → Y is a
cofibration if and only if fn : Xn → Yn is a cofibration for each n ≥ 0, and the
map f−1 : X−1 → Y−1 is an isomorphism.

Remark 2.1. The unit for the monoidal structure onM∆ is the constant cosimplicial
object on the unit 1 inM; this is not a cofibrant object inM∆.

If A is an object inM, write cA for the constant cosimplicial object. The functor
c does not preserve cofibrations, however, if i : A → B is a cofibration in M and
p : X → Y is a fibration inM∆ with Y (and hence X ) fibrant, then

Hom(cB,X )→ Hom(cA,X ) ×Hom(cA,Y) Hom(cB,Y)

is a fibration, and is a trivial fibration if either i or p is a weak equivalence.

We may also consider the full subcategory ∆≤n of ∆, with objects [k], k =
0, . . . , n; ∆≤n is also a Reedy category with the evident + and − subcategories.

We usually giveM∆≤n

the Reedy model category structure.
For T ∈M, we write ΩT for the functor Hom(T,−) :M→M, right adjoint to

ΣT , ΣT (X) = X ∧ T . We also write ΩT for the functor Hom(cT,−) :M∆ →M∆,
leaving the context to determine the precise meaning. Similarly, we may use the
Spc•-structure to define ΩK := Hom(K,−) : M → M, right adjoint to ΣK ,
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ΣK(X) = X ∧K, and also ΩK := Hom(K,−) :M∆ → M∆. We write Ω and Σ
for ΩS1 and ΣS1 .

2.1. The total complex and associated towers. We recall the construction
of towers associated to cosimplicial objects, recapping the construction of [5] for
cosimplicial spaces, generalized to cosimplicial objects in a simplicial model category
in [4].

Let X be a cosimplicial object in M. We have the associated total object
TotX := Hom∆(∆[∗],X ) in M; note that ∆[∗] is a cofibrant object in Spc∆,
hence the functor Tot : M∆ → M is a right Quillen functor with left adjoint
A 7→ A×∆[∗]. We make the analogous definition in the pointed setting.

For T ∈ M, X ∈ M∆, the adjoint property of Hom gives the isomorphism in
M

HomM(T,TotX ) ∼= HomM∆

(T ×∆[∗],X )

∼= HomM(∆[∗],HomM(T,X )) = Tot(HomM(T,X )).

Remark 2.2. Suppose M is a category of T -spectra in some model categoryM0.
For E : ∆→ SptM0

T a cosimplicial T -spectrum,

E = (E0, . . . , En, . . .),

with bonding maps ǫn : En → ΩT En+1, TotE is the spectrum (TotE0,TotE1, . . .)
with bonding maps Totǫn : TotEn → TotΩT En+1

∼= ΩTTotEn+1.

Let ik : ∆≤k → ∆ be the inclusion functor, and let Spc(k) be the category of

preheaves of sets on ∆≤k. Restricting via ik, gives the functor ik∗ : Spc→ Spc(k),

which admits the left adjoint i∗k : Spc(k) → Spc; the k-skeleton functor skk is the

composition i∗k ◦ ik∗, and co-unit skk → id. We write A(k) for skkA. We have
the canonical natural transformations ιm,k : skk → skm, for 0 ≤ k ≤ m, with
ιn,m ◦ ιm,k = ιn,k for k ≤ m ≤ n.

Let ιk : ∆[∗](k) → ∆[∗] be the k-skeleton of ∆[∗], that is, the cosimplicial
simplicial set n 7→ ∆[n](k). For X a cosimplicial object of M, let Tot(k)X :=

HomM(∆[∗](k),X ). The sequence of inclusions

∅ := ∆(−1) →֒ ∆[∗](0) →֒ ∆[∗](1) →֒ . . . →֒ ∆[∗](k) →֒ . . .∆[∗]

thus gives the tower inM

(2.1) TotX → . . .→ Tot(k)X → . . .→ Tot(1)X → Tot(0)X → Tot(−1)X := pt

which is a tower of fibrations if X is fibrant.
We let Tot(k)X → TotX be the homotopy fiber of X → Tot(k−1)X , giving the

tower inM

(2.2) . . .→ Tot(k+1)X → Tot(k)X → . . .→ Tot(1)X → Tot(0)X = TotX .

For m ≥ k, let Tot(m/k)X be the homotopy fiber of Tot(m)X → Tot(k)X . We
assume we have a chosen fibrant cosimplicial object Y and chosen isomorphism
X ∼= Ω2Y in HoM∆. Via this data, we have an isomorphism of the tower (2.1)

for X with Ω2 applied to the tower (2.1) for Y. For m ≥ k, let Tot(k/m)X =

Ωhofib(Tot(m)Y → Tot(k)Y), giving us the homotopy fiber sequence

Tot(m)X → Tot(k)X → Tot(m/k)X .
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In case M is a stable model category, the loops functor Ω is invertible in the
homotopy category, so this assumption is automatically satisfied, and we just define

Tot(m/k)X as the homotopy fiber of Σ̃Tot(m)X → Σ̃Tot(k)X , where Σ̃ mean the
functorial fibrant model of the suspension.

To unify the notation, we define Tot(0) := Tot =: Tot(∞), and Tot(m/∞) :=

Tot(m). We let Tot(∞/k) denote the homotopy fiber of Tot→ Tot(k).
We fix a homotopy functor π∗ on M. Rather than try to give an axiomatic

treatment, we list the examples of interest:

(1) M = Spc•, π∗ the usual direct sum of the homotopy groups (set for ∗ = 0).
(2) M = Spc•(S), π∗ the Nisnevich sheaf of A1-homotopy groups (sets for
∗ = 0).

(3) M = Spc•(S), πn := ⊕m≥0πn+m,m.

These all have the property that a map f : X → Y in M is a weak equivalence if
and only if f induces an isomorphism on π∗ for all choices of base-point in X . For
the case of a stable model category, we will assume that π∗ is the graded truncation
functor associated to a non-degenerate t-structure on HoM and again that a map
f : X → Y inM is a weak equivalence if and only if f induces an isomorphism on
π∗. Our main examples of interest are

(1) T = S1,M = SptS1(S), πn the stable homotopy sheaf.
(2) T = S1, M = SptS1(S), πn := ⊕m≥0πn+m,m, n ∈ Z, with πa,b the bi-

graded stable homotopy sheaf.
(3) T = P1,A1/A1 \ {0} or some other convenient model of P1,M = SptT (S),

πn := ⊕m∈Zπn+m,m, n ∈ Z,

For a cosimplicial abelian group n 7→ An, we have the associated complex A∗

with differential the alternating sum of the co-face maps. We also have the quasi-
isomorphic normalized subcomplex NA∗ with NAn := ∩n−1

i=0 ker si. Consider the
following condition on a cosimplicial pointed space X :
(2.3)

(1) There is a fibrant cosimplicial object Y in M∆ and an isomorphism X ∼=
Ω2Y in HoM∆.

(2) Given an integer i ≥ 0, there is an integer Ni such that (NπjX )n = 0 for
n ≥ Ni, j ≤ i+ n.

In the stable case, we have the analog of these conditions for X ∈M∆, namely,
(2.4)

(1) X is fibrant.
(2) Given an integer i, there is an integer Ni such that (NπjX )n = 0 for

n ≥ Ni, j ≤ i+ n.

For a cosimplicial object X ∈ M∆, let NXn be the fiber of sn : Xn → Mn(X )
(over the base-point).

Lemma 2.3. There is a natural isomorphism of Ω∆[n]/∂∆[n]NX
n with the fiber of

the map Tot(n)X → Tot(n−1)X . If X if fibrant, the induced map Ω∆[n]/∂∆[n]NX
n →

Tot(n/n−1)X gives rise to an isomorphism

(2.5) ΩnNXn ∼= Tot(n/n−1)X .

in HoM. In particular, we have an isomorphism πjNXn ∼= (NπjX )n.
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Proof. The fiber of Tot(n)X → Tot(n−1)X is equal toHomM(∆[∗](n)/∆[∗](n−1),X ).
This in turn is isomorphic to the equalizer

HomM(∆[∗](n)/∆[∗](n−1),X )→ Hom(∆[n]/∂∆[n],Xn)
α //

β
//

n−1
∏

i=0

Xn−1

where α(f) =
∏

i si ◦ f and β is the map to the base-point. This gives the as-

serted identification of HomM(∆[∗](n)/∆[∗](n−1),X ) with the fiber of Tot(n)X →
Tot(n−1)X .

As ∆[∗](n−1),→ ∆[∗](n) is a cofibration, the map Tot(n)X → Tot(n−1)X is a
fibration, hence the induced map

Ω∆[n]/∂∆[n]NX
n → Tot(n/n−1)X

is a weak equivalence. IfX is fibrant, so isNXn, hence a weak equivalence (S1)∧n →
∆[n]/∂∆[n] induces a weak equivalence Ω∆[n]/∂∆[n]NX

n → ΩnNXn. �

In other words, under the assumption (2.3)(1), the condition (2.3)(2) is equiva-
lent to

πjTot(n/n−1)X = 0 for j ≤ i, n ≥ Ni.

2.2. Spectral sequences and convergence. Suppose that X ∈ M∆
• is fibrant.

The tower of fibrations (2.1) gives the spectral sequence

(2.6) ∗E
p,q
1 (X ) = π−p−qTot(p/p−1)X =⇒ π−p−qTot(A/B)X ;B < p ≤ A,

for −1 ≤ B ≤ A ≤ ∞. Note that we use a different indexing convention than that
of [5].

Under the assumption (2.3)(1) or (2.4)(1), we have canonical isomorphisms in

the respective homotopy categories Tot(k/m)X ∼= Tot(m−1/k−1)X . In addition, the
spectral sequence (2.6) is isomorphic to the spectral sequences of the tower (2.2):

(2.7) Ep,q
1 (X ) = π−p−qTot

(p/p+1)X =⇒ π
(A/B)
−p−q TotX ;A ≤ p < B,

for 0 ≤ A < B ≤ ∞. Furthermore, using (2.5), the E1-terms are

Ep,q
1 (X ) = Nπ−qX

p.

Lemma 2.4. 1. If X ∈ M∆
• satisfies (2.3)(1), (resp. (2.4)(1) if M is a stable

model category), then the spectral sequence (2.6) is strongly convergent if A < ∞
and the spectral sequences (2.7), is strongly convergent if B <∞.
2. Suppose X ∈ M∆

• satisfies (2.3) (resp. (2.4) if M is a stable model category).
Then the spectral sequences (2.6) (for A =∞) and (2.7) (for B =∞) are strongly
convergent.

Proof. It suffices to give the proof in the unstable case. (1) follows easily, as in all
cases, the associated tower is finite.

For (2), since X ∼= Ω2Y, there are no low dimensional subtleties, and all the
statements we will be using from [5] make sense and are valid for π1 and π0.

We first show that for each (p, q), there is an r0 such that Er
p,q = Er+1

p,q for all

r ≥ r0. Indeed, E1
p,q = 0 for p > 0, and if p + q = i, then E1

p−r,q+r−1 = 0 for

r − p ≥ Ni−1. Thus we have Er
p,q = Er+1

p,q for r ≥ r0 := max(p+Ni−1,−p, 0) + 1.
Thus, the terms {Er} are “Mittag-Leffler in dimension i” for all i ≥ 0 [5, IX,

§5, pg. 264] and hence, by [5, IX, proposition 5.7] the spectral sequence converges
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completely to π∗TotX . Fix an integer n ≥ 0. Then E∞
p,q = 0 for p+ q = n, p > 0 or

p ≤ Nn, and so the filtration of πnTotX induced by the spectral sequence is finite,
giving the strong convergence. �

Lemma 2.5. Suppose Xn is c− 1-connected for all n. Then for all r ≥ 0, m ≥ 0
with c−m ≤ r ≤ ∞:
1. The map Tot(c−m/r)X → Tot(0/r)X induces a surjection

πmTot(c−m/r)X → πmTot(0/r)X .

2. The map Tot(c−m−1/r)X → Tot(0/r)X induces a isomorphism

πmTot(c−m−1/r)X → πmTot(0/r)X .

Proof. We have the strongly convergent spectral sequence

Ep,q
1 (X ) = π−p−qTot

(p/p+1)X =⇒ π−p−qTot
(0/b)X ; 0 ≤ p ≤ b− 1.

By (2.5), Ep,q
1 = π−qNX p ⊂ π−qX p, so Ep,q

1 = 0 for −q < c. Since Ep,q
1 = 0 for

p > b − 1 this implies that Ep,q
1 = 0 for −p− q ≤ c − b and thus πsTot

(0/b)X = 0
for s ≤ c− b. Using the homotopy fiber sequence

Tot(c−m/r)X → Tot(0/r)X → Tot(0/c−m)X

proves (1). Similarly, πsTot
(0/c−m−1)X = 0 for s ≤ m + 1, and (2) follows by a

similar argument. �

3. Cosimplices and cubes

The functors Tot(n) are complicated by the mixture of codegeneracies and coface
maps in ∆; in this section we discuss the reduction of Tot(n) to a homotopy limit
over an associated direct category, namely, a punctured n+ 1-cube.

As above, we have the full subcategory ∆≤n of ∆ with objects [ℓ], 0 ≤ ℓ ≤ n, and

inclusion ιn : ∆≤n → ∆. We have the restriction functor ιn∗ : Spc∆• → Spc∆
≤n

•

with left adjoint ι∗n. We have as well the representable simplicial sets ∆[n] :=
Hom∆(−, [n]) and the cosimplicial space ∆[∗], [n] 7→ ∆[n].

Throughout this section we fix a pointed simplicial model categoryM; we will
eventually restrict to the case of a stable model category, but the intial portions of
this section do not require this.

Lemma 3.1. Take X in M∆. There is a natural isomorphism

Tot(n)X ∼= Hom(ιn∗∆[∗], ιn∗X );

if X is fibrant, there is a natural weak equivalence

holim
∆≤n

ιn∗X → Tot(n)X .

Proof. We note that we have a canonical isomorphism of cosimplicial spaces

skn∆[∗] ∼= ι∗nιn∗∆[∗].

Indeed, (skn∆[m])([k]) is the colimit over [k]→ [ℓ] ∈ ([k]/∆≤n)op of Hom∆([ℓ], [m]),
while (ι∗nιn∗∆[∗])[m]([k]) is the colimit over [ℓ]→ [m] ∈ ∆≤n/[m] of Hom∆([k], [ℓ]).
Both colimits are equal to the subset of Hom∆([k], [m]) consisting of maps that
admit a factorization [k]→ [ℓ]→ [m] with ℓ ≤ n.

This gives us the isomorphism inM

TotnX := Hom(skn∆[∗],X ) ∼= Hom(ιn∗∆[∗], ιn∗X ).
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For 0 ≤ k ≤ n, the nerve of ∆≤n/[k] is the barycentric subdivision of ∆[k] and
sending the non-degenerate k-simplex of ∆[k] to the k-simplex

{0} �
�

//

))❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚
{0, 1} �

�
//

%%❑
❑❑

❑❑
❑❑

❑❑
❑

. . .
� � // {0, . . . , k}

xxqq
qq
qq
qq
qq
q

{0, . . . , k}

in ∆≤n/[k] gives an acyclic cofibration α : ιn∗∆[∗]→ [[k] 7→ N∆≤n/[k]] in Spc∆
≤n

• .

As X is fibrant inM∆, it follows that ιn∗X is fibrant inM∆≤n

, so α induces the
desired weak equivalence

α∗ : holim
∆≤n

ιn∗X → Tot(n)X .

�

Let �n be the category associated to the set of subsets of {1, . . . , n}, with mor-
phisms being inclusions of subsets, and let �

n
0 the full subcategory of non-empty

subsets. Letting iI,J : J → I denote the morphism associated to an inclusion I ⊂ J ,
the split n-cube �n

s is formed by adjoining morphisms pJ,I : I → J for each inclusion
J ⊂ I, with pK,J◦pJ,I = pK,I forK ⊂ J ⊂ I and with pJ,I∪J◦iI∪J,I = iJ,I∩J◦pI∩J,I

for I, J ⊂ {1, . . . , n}.
�

n and �
n+1
0 are both direct categories and �

n
s is a Reedy category with

(�n
s )+ = �

n and (�n
s )− the subcategory with morphisms pJ,I . For a model cat-

egory M and for C = �
n+1
0 ,�n,�n

s , we give MC the Reedy model structure; as
�

n+1
0 and �

n are direct categories, this agrees with the projective model structure
in these cases.

Give {1, . . . , n} the opposite of the standard order. The maps iI,J are clearly
order-preserving, so sending I to the ordered set [|I| − 1] by the unique order-
preserving bijection defines a functor

ϕn+1
0 : �n+1

0 → ∆≤n

Similarly, sending I to [|I|] by the unique order-preserving injection which avoids
0 defines a functor

ψn : �n → ∆≤n

We may extend ψn to

ψn
s : �n

s → ∆≤n

as follows: given an inclusion J = {j1 < . . . < jr} ⊂ I = {i1 < . . . < is} ⊂
{1, . . . , n}, define ψn

s (pJ,I) : [|I|] → [|J |] by sending j to ℓ if jℓ ≤ ij < jℓ+1 and to
0 if ij < j1. These are all functors of Reedy categories.

Take an integer n ≥ 1. We decompose �
n+1
0 into three pieces, by defining �

n−
0

to be the full subcategory with objects I, n 6∈ I, �n+
0 the full subcategory with

objects I, n ∈ I, I 6= {n} and ptn := {n} (with identity morphism). We have the
isomorphisms j−n : �n

0 → �
n−
0 , j+n : �n

0 → �
n+
0 : let jn : {1, . . . , n} → {1, . . . , n+1}

be the inclusion jn(i) = i for 1 ≤ i < n, jn(n) = n + 1. j−n is just the functor
induced by jn, and j

+
n (I) = jn(I)∪ {n}. Let i+n : �n

0 → �
n+1
0 and i−n : �n

0 → �
n+1
0

be the inclusions induced by j+n and j−n .
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The inclusions I ⊂ I ∪ {n} defines a natural transformation αn : i−n → i+n , and
the inclusions {n} ⊂ I, I ∈ �

n+
0 , define the morphisms βI : {n} → i+n (I). For each

X ∈M�
n+1
0 , we thus have the diagram inM

holim�n
0
i−n∗X

αn // holim�n
0
i+n∗X

X ({n})

β∗

OO

This defines a functor
holim+,−

n+1 :M�
n+1
0 →M�

2
0

and we have a natural isomorphism inM

holim
�

n+1
0

X ∼= holim
�2

0

holim+,−
n+1(X ).

In case X ({n}) = pt, we have the natural isomorphisms

(3.1) holim
�

n+1
0

X ∼= holim
�2

0

holim+,−
n+1(X )

∼= hofib(αn : holim
�n

0

i−n∗X → holim
�n

0

i+n∗X )

Let ρ+n : �n → �
n+1
0 be the functor ρ+n (I) := I ∪ {n+ 1}, giving the restriction

functor
ρ+n∗ :M�

n+1
0 →M�

n

and the left adjoint ρ+∗
n : M�

n

→ M�
n+1
0 . Explicitly, for X ∈ M�

n

, ρ+∗
n X ∈

M�
n+1
0 is given by ρ+∗

n X (ρ
+
n (I)) = X (I) and ρ

+∗
n X (J) = pt for J ⊂ {1, . . . , n}.

The inclusion ρ−n : {1, . . . , n} → {1, . . . , n+ 1} induces the restriction functor

ρ−n∗ :M�
n+1
0 →M�

n
0

with right adjoint ρ−!
n : M�

n
0 → M�

n+1
0 given by ρ−!

n X (ρ
−
n (I)) = X (I) and

ρ−!
n X (J) = pt if n+ 1 ∈ J .
Finally, the inclusion functor ptn+1 : pt → �

n+1
0 , ptn+1(pt) = {1, . . . , n + 1}

induces the restriction functor

ptn+1∗ :M�
n+1
0 →M

with left adjoint pt∗n+1 :M→M�
n+1
0 given explicitly by

pt∗n+1(X)(I) =

{

X for I = {1, . . . , n+ 1}

pt else.

Clearly, ptn+1 factors through ρ+n , giving us the commutative diagram of natural
transformations

pt∗n+1ptn+1∗
//

&&◆
◆◆

◆◆
◆◆

◆◆
◆◆

ρ+∗
n ρ+n∗

��

id

We have the canonical isomorphisms

holim
�n

0

ρ−n∗X
∼= holim

�
n+1
0

ρ−!
n ρ−n∗X

and a morphism
βn : holim

�
n+1
0

pt∗n+1(X)→ ΩnX.
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that is a weak equivalence if X is fibrant. Indeed, N (�n+1
0 /{1, . . . , n + 1}) has

geometric realization homeomorphic to [0, 1]n, where the boundary of [0, 1]n is the
geometric realization of lim

−→I
|N (�n+1

0 /I)|, the colimit being over I with ∅ 6= I (

{1, . . . , n+ 1}. Since

holim
�

n+1
0

pt∗n+1(X) = HomM(N (�n+1
0 /{1, . . . , n+ 1})/ lim

−→
I

|N (�n+1
0 /I)|, X)

a choice of a non-degenerate n-simplex in N (�n+1
0 /{1, . . . , n + 1}) defines a weak

equivalence in Spc•

π : N (�n+1
0 /{1, . . . , n+ 1})/ lim

−→
I

|N (�n+1
0 /I)| → ∆[n]/∂∆[n];

this defines the morphism

π∗ : HomM(N (�n+1
0 /{1, . . . , n+ 1})/ lim−→

I

|N (�n+1
0 /I)|, X)→ ΩnX,

which is a weak equivalence if X is fibrant. In addition, the morphisms π and π∗

are independent up to homotopy of the choice of non-degenerate n-simplex.

For a fibrant X ∈M�
n+1
0 we have the fiber sequence

ρ+∗
n ρ+n∗X → X → ρ−!

n ρ−n∗X

inducing the homotopy fiber sequence

(3.2) holim
�

n+1
0

ρ+∗
n ρ+n∗X → holim

�
n+1
0

X → holim
�n

0

ρ−n∗X

via the evident isomorphism holim�n
0
ρ−n∗X ∼= holim

�
n+1
0

ρ−!
n ρ−n∗X . All this extends

to spectra in the evident manner.
Let X be inM�

n
s . Define NXn to be the fiber (over the base-point) of the map

X ({1, . . . , n})
(...,pI⊂{1,...,n}...)
−−−−−−−−−−−→

∏

I⊂{1,...,n},|I|=n−1

X (I)

Let Xs denote the restriction of X toM�
n

; we sometimes write X for Xs when the
context makes the meaning clear.

The inclusion NXn ⊂ X ({1, . . . , n}) gives us the morphism

ξn : holim
�

n+1
0

pt∗n+1NX
n → holim

�
n+1
0

ρ+∗
n Xs

defined as the composition

holim
�

n+1
0

pt∗n+1NX
n → holim

�
n+1
0

pt∗n+1X ({1, . . . , n})

= holim
�

n+1
0

ρ+∗
n pt∗nptn∗Xs → holim

�
n+1
0

ρ+∗
n Xs,

where ptn : pt→ �
n is the inclusion with value {1, . . . , n}.

Lemma 3.2. Suppose M is a stable model category and let E be in M�
n
s . Then

the map

ξ̃n : holim
�

n+1
0

pt∗n+1NE
n → holim

�
n+1
0

ρ+∗
n Es

is a weak equivalence in M and induces an isomorphism

ξn : ΩnNEn → holim
�

n+1
0

ρ+∗
n Es
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in HoM.

Proof. We may assume that E is a fibrant. We proceed by induction on n. In
case n = 0, the map ξ̃0 is just the identity map on E(∅). In the general case,
let τ+n−1, τ

−
n−1 : �n−1

s → �
n
s be the “top” and “bottom” inclusion functors, given

by the same formulas as ρ+n−1 and ρ−n−1. We have the natural transformations

βn−1 : τ−n−1 → τ+n−1 and γn−1 : τ+n−1 → τ−n−1, defined by βn−1(I) := iτ−
n−1

(I)⊂τ+
n−1

(I)

and γn(I) := pτ−
n−1

(I)⊂τ+
n−1

(I).

We have identities

i−n∗ρ
∗
nE = ρ+∗

n−1τ
−
n−1∗E

i+n∗ρ
∗
nE = ρ+∗

n−1τ
+
n−1∗E

(ρ̃∗nE)({1, . . . , n+ 1}) = pt.

and the commutative diagram

ρ+∗
n−1τ

−
n−1∗E

ρ+∗
n−1

(βn−1)
// ρ+∗

n−1τ
+
n−1∗E

i−n∗ρ̃
∗
nE αn

// i+n∗ρ̃
∗
nE .

As ρ+∗
n E({n}) = pt, this gives us, via (3.1), the isomorphism

hofib(ρ+∗
n−1(βn−1)) ∼= holim

�
n+1
0

ρ̃∗nE .

Write Ω̃nE for holim
�

n+1
0

pt∗n+1E. Assuming the result for n − 1, we have the

commutative diagram

hofib(Ω̃n−1Nβn−1) //

��

Ω̃n−1N(τ−n−1∗E)
n−1

Ω̃n−1Nβn−1
//

ξ̃n−1

��

Ω̃n−1N(τ+n−1∗E)
n−1

ξ̃n−1

��

holim
�

n+1
0

ρ+∗
n E // holim

�n
0

ρ+∗
n−1τ

−
n−1∗E

ρ+∗
n−1

(βn−1)

// holim
�n

0

ρ+∗
n−1τ

+
n−1∗E ,

with rows homotopy fiber sequences, inducing a weak equivalence

hofib(Ω̃n−1Nαn)→ holim
�

n+1
0

ρ+∗
n E .

Thus, we just need to see that the inclusion i : NEn → N(τ+n−1∗E)
n−1 induces a

weak equivalence Ω̃nNEn → hofib(Ω̃n−1Nαn), making the relevant diagram com-
mute.

For this, we note that the map Nβn−1 : N(τ−n−1∗E)
n−1 → N(τ+n−1∗E)

n−1 is the
restriction of i{1,...,n−1}⊂{1,...,n}, hence is split by p := p{1,...,n−1}⊂{1,...,n}. Also,

NEn is the fiber over the base-point of the map p : N(τ+n−1∗E)
n−1 → N(τ−n−1∗E)

n−1;
since E is fibrant, the sequence

NEn
i
−→ N(τ+n−1∗E)

n−1 p
−→ N(τ−n−1∗E)

n−1
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is a homotopy fiber sequence, with splitting given by Nβn−1. This gives rise to the
isomorphism in the triangulated category HoM

N(τ−n−1∗E)
n−1 ⊕NEn

(Nβn−1,i)
−−−−−−→ N(τ+n−1∗E)

n−1

and thereby the desired isomorphism hofib(Ω̃n−1Nαn) ∼= ΩnNEn. By construction,

the composition Ω̃nNEn → ΩnNEn → holim
�

n+1
0

ρ+∗
n E is equal to ξ̃n (in HoM),

completing the proof. �

Proposition 3.3. SupposeM is a stable model category and take E in M∆. The
map

ϕn+1∗
0 : holim

∆≤n
ιn∗E → holim

�
n+1
0

ϕn+1
0∗ ιn∗E

induced by the functor ϕn+1
0 : �n+1

0 → ∆≤n is a weak equivalence.

Proof. As replacing E with a fibrant model induces a weak equivalence on the
respective homotopy limits, we may assume that E is fibrant.

We note that we have natural isomorphisms

holim
�

n+1
0

ρ−∗
n ϕn+1

0∗ ιn∗E ∼= holim
�n

0

ϕn
0∗ιn−1∗E

ψn
∗ E
∼= ρ+n∗ϕ

n+1
0∗ ιn∗E .

Applying the homotopy fiber sequence arising from lemma 2.3, the isomorphism
of lemma 3.1, and the homotopy fiber sequence (3.2) gives us the commutative

diagram (in HoSptMT ), with rows homotopy fiber sequences

ΩnNEn //

ξn

��

holim∆≤n ιn∗E //

ϕn+1∗
0

��

holim∆≤n−1 ιn−1∗E

ϕn∗
0

��

holim
�

n+1
0

ρ+∗
n ψn

∗ E // holim
�

n+1
0

ϕn+1
0∗ ιn∗E // holim�n

0
ϕn
0∗ιn−1∗E

The map ξn : ΩnNEn → holim
�

n+1
0

ρ+∗
n ψnE is a weak equivalence by lemma 3.2.

the result then follows by induction. �

Example 3.4. We let M0 be one of the model categories discussed below in §4
(4.1) and apply the above results to the stable model category M of symmetric

T -spectra Spt
Σ,M0

T , with T = S1 or some model of P1. Let E be a commutative

monoid in Spt
Σ,M0

T . Form the cosimplicial (symmetric) spectrum n 7→ E∧n+1,
with coface maps given by the appropriate multiplication maps and codegeneracies
by unit maps. Letting Ẽ∧∗+1 be a fibrant model, we have the isomorphisms in

HoSpt
Σ,M0

T
∼= HoSptM0

T

TotnẼ
∧∗+1 ∼= holim

∆≤n
ιn∗E

∧∗+1 ∼= holim
�

n+1
0

ϕn+1
0 E∧∗+1.

Let S ∈ Spt
Σ,M0

T be the unit. We have as well the map S ∼= TotncS →

TotnẼ∧∗+1, induced by the unit map cS → Ẽ∧∗+1. Letting Ē be the homotopy
cofiber of the unit map S→ E , we claim there is a natural isomorphism in SH

ΩnĒ∧n+1 ∼= hocofib(S→ TotnẼ
∧∗+1).
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Indeed, let [S → E ]∧n+1 be the evident n + 1 cube in spectra. The distinguished
triangle S→ E → Ē → S[1] gives the isomorphism

Ωn+1Ē∧n+1 ∼= holim
�

n+2
0

ρ+∗
n+1[S→ E ]

∧n+1

in HoSpt
Σ,M0

T . On the other hand, fill in the punctured n + 1-cube ϕn+1
0 E∧∗+1

to an n + 1-cube ϕ̃n+1
0 E∧∗+1 by inserting pt at the entry ∅, and similarly extend

S to an n + 1-cube S̃ with value S at ∅ and value pt at I 6= ∅. This gives us the

homotopy fiber sequence in (SptΣ,M0

T )�
n+2
0

ρ+∗
n+1ϕ̃

n+1
0 E∧∗+1 → ρ+∗

n+1[S→ E ]
∧n+1 → ρ+∗

n+1S̃.

Applying holim
�

n+2
0

and noting the isomorphisms (in HoSpt
Σ,M
T )

Ω holim
�

n+1
0

ϕn+1
0 E∧∗+1 ∼= holim

�
n+2
0

ρ+∗
n+1ϕ̃

n+1
0 E∧∗+1

Ωn+1Ē∧n+1 ∼= holim
�

n+2
0

ρ+∗
n+1[S→ E ]

∧n+1

S ∼= holim
�

n+2
0

S̃

gives the distinguished triangle in HoSpt
Σ,M0

T

Ωholim
�

n+1
0

ϕn+1
0 E∧∗+1 → Ωn+1Ē∧n+1 → S→ holim

�
n+1
0

ϕn+1
0 E∧∗+1,

which yields the desired result.

We consider the case of E = MGL in SptΣT (S). For the construction of MGL
we refer the reader to [27]; for the structure as a symmetric monoidal object in

SptΣT (S), we cite [23, §2.1]. Applying the above example, we have the distinguished
triangle in SH(S)

(3.3) SS
in−→ holim

�
n+1
0

ϕn+1
0 MGL∧∗+1 → ΩnMGL

∧n+1
→ SS [1].

Since f t
m is an exact functor, we have the isomorphism in SH(S)

holim
�

n+1
0

f
t,�n+1

0
m ϕn+1

0 MGL∧∗+1 ∼= f t
m holim

�
n+1
0

ϕn+1
0 MGL∧∗+1

Proposition 3.5. 1. The morphism in induces an isomorphism

f t
m/NSS → holim

�
n+1
0

f
t,�n+1

0

m/M ϕn+1
0 MGL∧∗+1

for all m ≤M ≤ n+ 1.
2. There is a natural isomorphism

ξm/N,n : f t
m/NSS → Totnf̃

t,∆
m/NMGL∧∗+1

for m ≤ N ≤ n + 1, compatible with the maps in the Totn-tower (for fixed m,N
and varying n) and the maps in the slice tower (for fixed n and varying m,N).

Proof. The map SS → MGL induces an isomorphism st0SS → st0MGL, and hence

st0MGL = 0. As both SS andMGL are in SHeff (S), it follows that f t
1MGL = MGL,

and thus f t
n+1Ω

nMGL
∧n+1 ∼= ΩnMGL

∧n+1
. From this follows

f t
m/NΩnMGL

∧n+1
= 0 for m ≤ N ≤ n+ 1.
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Applying fm/N to the distinguished triangle (3.3) completes the proof of (1).

For (2), the restriction ιn∗f̃
t,∆
m/NMGL∧∗+1 is fibrant in HoSptΣP1(S)∆

≤n

since

f̃ t,∆
m/NMGL∧∗+1 is a fibrant object in HoSptΣP1(S)∆. In addition, we have an iso-

morphism in HoSptΣP1(S)∆
≤n

ιn∗f̃
t,∆
m/NMGL∧∗+1 ∼= f̃ t,∆≤n

m/N ιn∗MGL∧∗+1.

Thus, we have a canonical isomorphism in SH(S)

holim
∆≤n

f t,∆≤n

m/M ιn∗MGL∧∗+1 ∼= Tot(n)f̃
t,∆
m/NMGL∧∗+1

Similarly, by proposition 3.3, we have the isomorphism

holim
∆≤n

f t,∆≤n

m/M ιn∗MGL∧∗+1 ∼= holim
�

n+1
0

f
t,�n+1

0

m/M ϕn+1
0 MGL∧∗+1

in SH(S); together with (1), these isomorphisms yield (2). �

4. Décalage

Deligne’s décalage operation [6, (1.3.3)] constructs a new filtration DecF on a
complex K from a given filtration F on K; this change of filtration has the effect
of accelerating the associated spectral sequence associated to the filtered complex
K. Here we replace the filtered complex K with a cosimplicial spectrum object

together with the tower Tot(∗). The tower replacing DecF turns out to arise from
a suitable Postnikov tower, where the nth term is formed by applying the functor
of the n − 1-connected cover termwise to the given cosimplicial object. Our main
result in this section is the exact analog of Deligne’s comparison of the spectral
sequences for (K,F ) and (K,DecF ) [6, proposition 1.3.4].

For the application of this construction to the comparison of the slice and Adams-
Novikov spectral sequence, we need only consider the model categories of simplicial
sets and suspension spectra. However, with an eye to possible future applications,
we will present this section in a somewhat more general setting. We were not
able to formulate a good axiomatic description of the appropriate setting for this
construction, rather, we give a list of examples, which we hope will cover enough
ground to be useful.

We take M0 to be one of the following pointed closed symmetric monoidal
simplicial model categories:
(4.1)

(1) Spc•, the category of pointed simplicial sets, with the usual model structure
(2) Take C to be a small category, τ a Grothendieck topology on C andM the

category of Spc•-valued presheaves on C with the injective model structure.
(3) B a scheme, C = Sm/B, the category of smooth quasi-projectiveB-schemes

andM the category Spc•(B) with the motivic model structure, that is, the
left Bousfield localization of example (2) with C = Sm/B, τ the Nisnevich
topology, and the localization with respect to maps X ∧ (A1, 0) → pt. As
a variant, one can replace the Nisnevich topology with the étale topology;
we denote this model category by Spcét• (B)
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We note that these are all cofibrantly generated, cellular and combinatorial model
categories. In case (2), we recall that the weak equivalences are given via the τ -
homotopy sheaves πτ

n(X ), this being the τ -sheaf associated to the presheaf U 7→
[ΣnU+,X ]HoM, and in case (3), the weak equivalences are given via the A1-

homotopy sheaves πA
1

n (X ), these being similarly defined as the Nisnevich (resp.
étale) sheaf associated to the presheaf U 7→ [ΣnU+,X ]HoM.

For the stable model categoriesM := SptTM0 we will use the model structure
induced from M0 by the construction given in [12, chapter 7]. We take in case
(1) T = S1, giving us the category of suspension spectra, with weak equivalences
the stable weak equivalences. In (2), we take again the category of suspension
spectra, where now T = S1 acts through the simplicial structure. We assume
that the weak equivalences are the stable weak equivalences, that is, maps that
induce an isomorphism on the stable homotopy sheaves πs

n(E) := lim
−→N

πτ
n+N (EN )

if E = (E0, E1, . . .). In case (3), we may take T = S1, giving the category of S1-

spectra SptS1(B) or for the étale version SptétS1(B). Here the weak equivalences

are the stable weak equivalences, using the A1 homotopy sheaves πA
1

n in place of
πτ
n. These are all cofibrantly generated, cellular, combinatorial stable simplicialM

model categories. If at some point we require the stable category to have a monoidal
model category structure, we will replace the spectrum category with symmetric
spectra.

In all cases, one has for X homotopy objects πn(X ), n = 0, 1, . . ., with πn an
abelian group object for n ≥ 2, and a group object for n = 1, so that the {πn, n ≥ 0}
detects weak equivalences, a loops functor X → ΩX with πn(ΩX ) = πn+1(X ), so
that a homotopy fiber sequence induces a long exact sequence in the πn in the usual
extended sense, a functorial (left) Postnikov tower

. . .→ fn+1X → fnX → . . .→ f0X = X

with fnX → X inducing an isomorphism on πm for m ≥ n and with πmfnX = {∗}
for m < n. Furthermore, for an integer n ≥ 2, there is an Eilenberg-MacLane space
K(A, n) associated to an abelian group (in case (1)) or τ -sheaf of abelian groups
(in case (2)) or strictly A1-invariant sheaf of abelian groups (in case (3)), which is
determined up to unique isomorphism in HoM by the vanishing of πmK(A, n) for
m 6= n and the choice of an isomorphism A ∼= πnK(A, n).

For the spectrum categories, stabilizing the πn gives the collection of stable ho-
motopy objects {πn, n ∈ Z} which detect weak equivalences and which are abelian
group objects for all n, one has a functorial (left) Postnikov tower

. . .→ fn+1E → fnE → . . .→ E

and Eilenberg-MacLane spectrumEM(A, n) forA an abelian group object as above,
and n ∈ Z.

In the sequel, we will treat all these cases simultaneously; we will usually not
need to distinguish between the stable and unstable setting, and will refer to the
model category at hand as M, whether stable or unstable. We will retain the
notation K(A, n) for the Eilenberg-MacLane space in the unstable setting, and
write K(A, n) for the Eilenberg-MacLane spectrum EM(A, n) in the stable case.

We apply the Postnikov tower construction in functor categories, as described in
example 1.6(1), to an object X ∈ M∆, giving the cosimplicial object fnX ∈M∆:

fnX := [m 7→ fnX
m]
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and the resulting tower

. . .→ fn+1X → fnX → . . .→ X .

As the notation suggests, this tower has the property that evaluation at some
[m] ∈ ∆ yields the Postnikov tower for Xm.

We will assume that we have a double de-looping Y of X , that is, a weak equiv-
alence of cosimplicial spaces X → Ω2Y; we will simply replace X with Ω2Y, so we
may assume that this weak equivalence is an identity. This assumption is of course
fulfilled for all X if we are in the stable case.

Definition 4.1. Fix an integerA and an extended integer B, with 0 ≤ A < B ≤ ∞.

Let X be inM∆. Applying the functor Tot(A/B) to the Postnikov tower for X gives
the tower décalé of spaces

(4.2) . . .→ Tot(A/B)(fn+1X )→ Tot(A/B)(fnX )→ . . .→ Tot(A/B)(X )

Using our chosen de-looping X = Ω2Y, let fk/mX := Ωhofib(fm+2Y → fk+2Y).
This gives us the homotopy fiber sequences

fmX → fkX → fk/mX .

The tower (4.2) gives rise to the spectral sequence

(4.3) Ep,q
1 (Dec,X ) = π−p−qTot

(A/B)f(p/p+1)X =⇒ π−p−qTot
(A/B)X

for 0 ≤ A < B ≤ ∞.
The constructions Tot(m/k), fq are strictly functorial and natural. In particular,

we have the commutative diagram of natural transformations (for 0 ≤ m < N ≤ ∞,
0 ≤ p)

Tot(m+1/N)(fp+1(−)) //

��

Tot(m+1/N)(fp(−))

��

Tot(m/N)(fp+1(−)) // Tot(m/N)(fp(−))

Define F
m/m+1
p/p+1 (Y) to the the homotopy fiber of the map

Tot(m+1/N)(fp+3(Y))→ Tot(m/N)(fp+2(Y)).

Note that, up to weak equivalence, F
m/m+1
p/p+1 (Y) is, as the notation suggests, inde-

pendent of the choice of N . For X = Ω2Y, define

Tot
(m/m+1)
p/p+1 (X ) := ΩF

m/m+1
p/p+1 (Y).

As fn ◦Ω is isomorphic to Ω ◦ fn+1 as natural transformations to HoM, this gives
us the commutative diagram

(4.4) Tot(
m+1
N )(fp+1(X )) //

�� ))❙❙
❙❙❙

❙❙❙
❙

Tot(
m+1
N )(fp(X ))

��

// Tot(
m+1
N )(f p

p+1
(X ))

��

Tot(
m
N )(fp+1(X )) //

��

Tot(
m
N )(fp(X ))

��

//

))❙❙
❙❙❙

❙❙❙
❙

Tot(
m
N )(f p

p+1
(X ))

Tot(
m

m+1
)(fp+1(X )) // Tot(

m
m+1

)(fp(X )) Tot
( m
m+1

)
p

p+1

(X )
β

oo

α
OO
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with top two rows, the two left-hand columns and the diagonal all homotopy fiber
sequences.

Lemma 4.2. Let p, q be integers with p ≥ 0, and −2p ≤ q ≤ −p. Take N with
2p+ q + 1 ≤ N ≤ ∞, and consider the diagram

π−p−qTot
( 2p+q

N )(f p
p+1

(X ))

π−p−qTot
( 2p+q
2p+q+1

)(fp(X )) π−p−qTot
( 2p+q
2p+q+1

)
p

p+1

(X )
β

oo

α

OO

Then the map α is an isomorphism and the map β is injective.

Proof. Let us first consider the map α. The diagram (4.4) gives us the homotopy
fiber sequence

Tot(
2p+q

2p+q+1
)(fp+1(X ))→ Tot

( 2p+q
2p+q+1

)
p

p+1

(X )
α
−→ Tot(

2p+q
N )(f p

p+1
(X )).

Using the canonical isomorphism in H•, fn(Ω(T )) ∼= Ωfn+1(T ), the isomorphism

Ω ◦ Tot(a/b) ∼= Tot(a/b) ◦ Ω, and the de-looping X ∼= Ω2Y gives us the isomorphism
in HoM,

Ω2Tot(
2p+q

2p+q+1
)(fp+3(Y)) ∼= Tot(

2p+q
2p+q+1

)(fp+1(X ))

which allows us to extend α to a homotopy fiber sequence in HoM

Tot
( 2p+q
2p+q+1

)
p

p+1

(X )
α
−→ Tot(

2p+q
N )(f p

p+1
(X ))→ ΩTot(

2p+q
2p+q+1

)(fp+3(Y)).

We have by (2.5)

ΩTot(
2p+q

2p+q+1
)(fp+3(Y)) ∼= Ω2p+q+1Nfp+3(Y

2p+q),

hence π−p−q+ǫΩTot
( 2p+q
2p+q+1

)(fp+3(Y)) is a subgroup of πp+1+ǫfp+3(Y2p+q). As
πp+1+ǫfp+3(Y2p+q)) is zero for ǫ = 0, 1, α is an isomorphism.

For β, we have the homotopy fiber sequence

Tot(
2p+q+1

N )(f p
p+1

(X ))→ Tot
( 2p+q
2p+q+1

)
p

p+1

(X )
β
−→ Tot(

2p+q
2p+q+1

)(f p
p−1

(X )).

The cosimplicial object f p
p+1

(X ) is weakly equivalent to the cosimplicial Eilenberg-

MacLane object
n 7→ K(πp(X

n), p)

hence πtTot
( 2p+q+1

N )(f p
p+1

(X )) is the cohomology in degree −t of the complex

Nπp(X
2p+q+1)→ Nπp(X

2p+q+2)→ . . .→ Nπp(X
N−1),

concentrated in degrees [p+ q+1, N−p−1]. Thus π−p−qTot
( 2p+q+1

N )(f p
p+1

(X )) = 0

and β is injective. �

We consider the spectral sequences (2.7) and (4.3) for A = 0 and 0 < B ≤ ∞.
Take integers p, q with 0 ≤ −p and 0 ≤ 2p+ q < B. We have

Em,−p
1 (X ) = NπpX

m;

the E1-complex E∗,−p
1 (X ) is the (truncated) normalized complex (shifted to be

supported in degrees d, −p ≤ d < B − p)

σ<BNπpsX
∗ := πpX

0 → . . .→ NπpX
2p+q → NπpX

2p+q+1 → . . .→ πpX
B−1
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and E2p+q,−p
2 = Hp+q(E∗,−p

1 (X )).
As fp/p+1(X ) is weakly equivalent to the cosimplicial object

m 7→ K(πp(X
m), p)

it follows that Ep,q
1 (Dec,X ) := π−p−qTot

(0/B)fp/p+1(X ) is Hp+q of the complex
(shifted to be supported in degrees d, −p ≤ d < B − p)

σ<BNπpX
∗ := NπpX

0 → . . . ,→ NπpX
2p+q → NπpX

2p+q+1 → . . .→ NπpX
B−1.

As this complex is equal to E∗,−p
1 (X ), the identity maps on NπpX ∗ induce the

isomorphism

(4.5) γp,q1 : Ep,q
1 (Dec,X )→ E2p+q,−p

2 (X ).

Proposition 4.3. Take A = 0, 0 < B ≤ ∞. The maps (4.5) give rise to an
isomorphism of complexes

γ∗,q1 : E∗,q
1 (Dec,X )→ E2∗+q,−∗

2 (X )

and inductively a sequence of isomorphisms

γp,qr : Ep,q
r (Dec,X )→ E2p+q,−p

r+1 (X ).

which give an isomorphism of complexes

γ∗,∗r : (⊕p,qE
p,q
r (Dec,X ), dr)→ (⊕p,qE

2p+q,−p
r+1 (X ), dr+1)

for each r ≥ 1.

Proof. The spectral sequence (2.7) is the spectral sequence associated to the exact
couple

D1
i1 // D1

π1
~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

E1

∂1

aa❇❇❇❇❇❇❇❇

with

Dp,q
1 := π−p−qTot

(p/B)(X ), Ep,q
1 := π−p−qTot

(p/p+1)(X ),

the maps ip,q1 : Dp+1,q−1
1 → Dp,q

1 and πp,q
1 : Dp,q

1 → Ep,q
1 induced by the canonical

morphisms

Tot(p+1/B)(X )→ Tot(p/B)(X ),

Tot(p/B)(X )→ Tot(p/p+1)(X ),

respectively, and with ∂p,q1 : Ep,q
1 → Dp+1,q

1 the boundary map associated to the
homotopy fiber sequence

Tot(p+1/B)(X )→ Tot(p/B)(X )→ Tot(p/p+1)(X ).

Similarly, the spectral sequence (4.3) arises from the exact couple

D1,Dec
i // D1,Dec

π
zz✉✉
✉✉
✉✉
✉✉
✉

E1,Dec

∂

dd■■■■■■■■■
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defined in a similar manner, where we replace Tot(p/B)(X ), Tot(p+1/B)(X ) and

Tot(p/p+1)(X ) with Tot(0/B)fp(X ), Tot(0/B)fp+1(X ) and Tot(0/B)fp/p+1(X ). To
prove the result, it suffices to define maps

δp,q1 : Dp,q
1,Dec → D2p+q,−p

2

such that

(

δ1 δ1
γ1

)

:

D1,Dec
i1 // D1,Dec

π1
zz✉✉
✉✉
✉✉
✉✉
✉

E1,Dec

∂1

dd■■■■■■■■■
→

D2
i2 // D2

π2
~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

E2

∂2

aa❇❇❇❇❇❇❇❇

defines a map of (reindexed) exact couples.
We recall that E2 is the cohomology of the complex (E1, d1), with d1 = π1 ◦ ∂1.

Let Z2 ⊂ E1 be the kernel of d1 and note that Z2 ⊃ π1(D1). By definition,

Dp,q
2 = i1(D

p,q
1 ) ⊂ Dp−1,q+1

1 , i2 : D2 → D2 is the map induced by i1, the map
π2 : D2 → E2 is defined by the commutative diagram

D2� _

��

π1|D2

//

π2

&&
Z2

// //
� _

��

E2

D1 π1

// E1

and ∂2 : E2 → D2 is induced by restricting ∂1 to Z2, noting that this restriction
sends Z2 to i1(D1) ⊂ D1, and descends to E2.

Next, we note that the maps

π−p−qTot
(2p+q/B)fpX → π−p−qTot

(0/B)fpX

π−p−qTot
(2p+q/B)fp/p+1X → π−p−qTot

(0/B)fp/p+1X

π−p−q−1Tot
(2p+q+2/B)fp+1X → π−p−q−1Tot

(0/B)fp+1X

are surjective and

π−p−qTot
(2p+q−1/B)fpX → π−p−qTot

(0/B)fpX

π−p−qTot
(2p+q−1/B)fp/p+1X → π−p−qTot

(0/B)fp/p+1X

π−p−q−1Tot
(2p+q+1/B)fp+1X → π−p−q−1Tot

(0/B)fp+1X

are isomorphisms, by lemma 2.5. By considering the commutative diagram

π−p−qTot
(2p+q/B)fpX // //

��

π−p−qTot
(2p+q−1/B)fpX

∼ //

��

π−p−qTot
(0/B)fpX

π−p−qTot
(2p+q/B)X // π−p−qTot

(2p+q−1/B)X

we arrive at the well-defined map

Dp,q
1,Dec = π−p−qTot

(0/B)fpX
δp,q1−−→ D2p+q,−p

2

= im[π−p−qTot
(2p+q/B)X → π−p−qTot

(2p+q−1/B)X ].
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The identity

i2 ◦ δ1 = δ1 ◦ i1,Dec

follows directly.
To show that π2 ◦δ1 = γ1 ◦π1,Dec, we consider the diagram (which is well-defined

by lemma 4.2)
(4.6)

π−p−qTot
(0/B)fpX

δp,q1

$$

π1,Dec
// π−p−qTot

(0/B)fp/p+1X
γp,q
1

��

π−p−qTot
(2p+q/B)fpX //

��

**❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

OOOO

π−p−qTot
(2p+q/B)fp/p+1X

_�

β◦α−1

��

OOOO

γ̃p,q
1

��

π−p−qTot
(2p+q/2p+q+1)fpX

��

Ep,q
2

π−p−qTot
(2p+q/B)X π1

// π−p−qTot
(2p+q/2p+q+1)X Z2p+q,−p

2
? _oo

π

OOOO

D2p+q,−p
2

� ?

OO

π1|D2

99

The right-hand column may be described explicitly as follows: let

σ<BNπpX
∗ := [NπpX

0 → NπpX
1 → . . .→ NπpX

B−1]

be the (truncated) normalized complex associated to the cosimplicial abelian group
object n 7→ πpX

n, shifted to be supported in degrees [−p,B − p − 1]. Then the
right-hand column is the sequence of evident maps

Hp+q(NπpX ∗) Zp+q(NπpX ∗)oooo � � // NπpX 2p+q NπpX 2p+q

The map γ̃p,q1 is the evident identification of Zp+q(σ<BNπpX ∗) with Z2p+q,−p
2 .

The commutativity of (4.6) follows from this computation and the commutativity
of diagram (4.4). Since π2 = π ◦ π1|D2

, this shows that π2 ◦ δ1 = γ1 ◦ π1,Dec.
For the remaining identity ∂2 ◦ γ1 = δ1 ◦ ∂1, we extract from the diagram (4.4)

a commutative diagram (inM) with rows being homotopy fiber sequences

Tot(
2p+q+1

B )fpX // Tot(
2p+q

B )fpX // Tot(
2p+q

2p+q+1
)fpX

Tot(
2p+q+1

B )fp+1X //

��

OO

Tot(
2p+q

B )fpX // Tot
( 2p+q
2p+q+1

)
p

p+1

X

∼ α

��

?�

β

OO

Tot(
2p+q

B )fp+1X // Tot(
2p+q

B )fpX // Tot(
2p+q

B )f p
p+1
X .
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This gives us the commutative diagram

π−p−qTot
( 2p+q
2p+q+1

)X
∂ // π−p−q−1Tot

( 2p+q+1
B )X

π−p−qTot
( 2p+q
2p+q+1

)fpX
∂

2p+q
2p+q+1

//

γ̃

OO

π−p−q−1Tot
( 2p+q+1

B )fpX

δ̃

OO

π−p−qTot
( 2p+q
2p+q+1

)
p

p+1

X

∼α

��

� ?

β

OO

∂̃ // π−p−q−1Tot
( 2p+q+1

B )fp+1X

∼ α̃

��

j

OO

π−p−qTot
( 2p+q

B )f p
p+1
X

∂p/p+1

//

∼ϕ

��

π−p−q−1Tot
( 2p+q

B )fp+1X

∼ ϕ̃

��

π−p−qTot
( 0
B )f p

p+1
X

∂1,Dec

// π−p−q−1Tot
( 0
B )fp+1X .

The map ∂2 is induced from ∂, the map δ1 is induced from δ̃ ◦ j ◦ α̃−1 ◦ ϕ̃−1 (noting

that this latter map has image in D2p+q+2,−p−1
2 ), and γ1 = γ̃ ◦ β ◦ α−1 ◦ ϕ−1 (as

we have noted above). This gives the identity ∂2 ◦ γ1 = δ1 ◦ ∂1,Dec, completing the
proof. �

Remark 4.4. Proposition 4.3 may be viewed as a homotopy-theoretic analog of a
special case of Deligne’s result [6, proposition 1.3.4]. Indeed, let K∗∗ be a double
complex and let K∗ be the associated (extended) total complex

Kn :=
∏

a+b=n

Ka,b.

Give Kn the filtration by taking the stupid filtration in the first variable, that
is, (FmK)n :=

∏

a+b=n,a≥mKa,b. Then Deligne’s filtration DecmK∗ is given by

DecmKn =
∏

a+b=n DecmKa,b with

DecmKa,b =











Ka,b for b < −m

0 for b > −m

ker(∂2 : Ka,−m → Ka,−m+1) for b = m.

That is, DecmK∗ is the extended total complex of the double complex

a 7→ τcan≤−m(Ka,∗, ∂2),

τcan≤−mC
∗ being the canonical subcomplex of a complex C∗.

If Ka,b = 0 for a < 0, we may use the Dold-Kan correspondence to give a
cosimplicial object in complexes

n 7→ K̃n,∗

such that Ka,∗ = NK̃a,∗ as complexes, and the differential ∂1 : Ka,b → Ka+1,b

is the differential NK̃a,∗ → NK̃a+1,∗ given as the usual alternating sum of co-
face maps. If we let EMK̃a,∗ be the Eilenberg-MacLane spectrum associated to
the complex K̃a,∗, then Tot[n 7→ EMK̃n,∗] is the Eilenberg-MacLane spectrum
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associated to TotK∗, the tower Tot(∗)[n 7→ EMK̃n,∗] is the tower associated to

the filtration F ∗K∗, and the tower Tot[n 7→ f∗EMK̃n,∗] is associated to Dec∗K.
Furthermore, the spectral sequences (2.7) and (4.3) are the same as the ones asso-
ciated to the filtered complex F ∗K and Dec∗K, respectively, and the isomorphism
of Proposition 4.3 is the same as that of [6, proposition 1.3.4]. The proof given here
is considerably more involved than that in [6], due to the fact that one could not
simply compute with elements as was possible in the setting of filtered complexes.

5. The Adams-Novikov spectral sequence

For E = Sk the motivic sphere spectrum and k an algebraically closed field with
an embedding σ : k →֒ C, the Betti realization of the slice tower for Sk gives a
tower in SH

. . .→ Reσf
t
n+1Sk → Reσf

t
nSk → . . .→ Reσf

t
0Sk = S,

where S is the usual sphere spectrum in SH, with nth layer equal to Reσs
t
nSk. This

gives the spectral sequence

Ep,q
2 (AH)′ = π−p−qReσs

t
−qSk(k)

∼= Hp−q(k, πµ
−q(−q)) =⇒ π−p−qS;

we have shown in [16, theorem 4] that this spectral sequence is strongly convergent.
In addition, we have identified Ep,q

2 (AH)′ with an E2 term of the Adams-Novikov
spectral sequence for S:

Ep,q
2 (AH)′ ∼= Ep−q,2q

2 (AN).

Our purpose in this section is to show that the spectral sequence E(AH) agrees
with the Adams-Novikov spectral sequence, after a suitable reindexing.

In principle, the argument should go like this: Let M̃U be a strict monoid ob-

ject in symmetric spectra representing the usual MU in SH. Let M̃U
∧∗+1

be

the cosimplicial (symmetric) spectrum n 7→ M̃U
∧n+1

with the ith co-face map
inserting the unit map in ith spot, and the ith co-degeneracy map taking the
product of the ith and i + 1st factors. The Adams-Novikov spectral sequence is
just the spectral sequence (2.6) associated to the cosimplicial symmetric spectrum

M̃U
∧∗+1

. Let ˜MGL
∧∗+1

be the motivic analog, giving us a cosimplicial T -spectrum

n 7→ ˜MGL
∧n+1

, with co-face and co-degeneracy maps defined as for M̃U
∧∗
. One

could hope to have a “total T -spectrum functor” Tot : SptT (k)
∆ → SptT (k) and

weak equivalences

Sk ∼= Tot ˜MGL
∧∗+1

; f t
pSk
∼= Totf t

p
˜MGL

∧∗+1
,

where f t
p

˜MGL
∧∗+1

is the cosimplicial spectrum n 7→ f t
p

˜MGL
∧n+1

, using a suitable

functorial model f t
p in SptΣT (k).

The layers of ˜MGL
∧n+1

for the slice filtration are known, and one can show that

the Betti realization Reσs
t
p

˜MGL
∧n+1

is just f2p/2p+1MU∧n+1. Thus, one could

hope to have an isomorphism in HoSpt∆

Reσf
t
p

˜MGL
∧∗+1 ∼= f2p−1M̃U

∧∗+1 ∼= f2pM̃U
∧∗+1

.

After changing the E2 Atiyah-Hirzebruch spectral sequence to an E1 spectral
sequence

Ep,q
1 (AH) := π−p−q,0(s

t
pSk)(k) =⇒ π−p−q,0S,
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we would then have an isomorphism

Ep,q
1 (AH) ∼= E2p,q−p

1 (Dec, M̃U
∧∗
)

leading to the isomorphisms

Ep,q
r (AH) ∼= E2p,q−p

2r−1 (Dec, M̃U
∧∗+1

) ∼= E2p,q−p
2r (Dec, M̃U

∧∗
)

and corresponding isomorphisms of complexes.
Using proposition 4.3 (for spectra) would then give the sequence of isomorphisms

Ep,q
r (AH) ∼= E3p+q,−2p

2r+1 (AN)

and corresponding isomorphisms of complexes. This would then give the isomor-
phisms

Ep,q
r (AH)′ ∼= Ep−q,2q

2r−1 (AN).

for all r ≥ 2.
We prefer to avoid the technical problems arising from the compatibility of the

Betti realization with the functor Tot, and with verifying that S → Tot ˜MGL
∧∗+1

is an isomorphism; instead we work with the approximations Tot(n) ˜MGL
∧∗+1

and

Tot(n)M̃U
∧∗+1

. These will suffice to give the desired isomorphisms of complexes,
by simply taking n sufficiently large and using proposition 3.5 to show that the

truncation Tot(n) ˜MGL
∧∗+1

approximates Sk sufficiently well with respect to the
slice tower. We drop the ˜ from the notation, considering both MU and MGL as
objects in the appropriate category of symmetric spectra.

We have the cosimplicial objects

MGL∧∗+1 ∈ SptΣP1(k)∆, MU∧∗+1 ∈ (SptΣ)∆,

giving us the punctured n-cubes

ϕn+1
0∗ MGL∧∗+1 ∈ SptΣP1(k)�

n+1
0 , ϕn+1

0∗ MU∧∗+1 ∈ (SptΣ)�
n+1
0 .

As the Betti realization of MGL is isomorphic to MU and ReB is a monoidal functor,

we have the isomorphism in Ho(SptΣ)�
n+1
0

Re
�

n+1
0

B ϕn+1
0∗ MGL∧∗+1 ∼= ϕn+1

0∗ MU∧∗+1.

Our main task is to identify the tower

. . .→ Re
�

n+1
0

B f
�

n+1
0 ,t

n+1 ϕn+1
0∗ MGL∧∗+1 → Re

�
n+1
0

B f
�

n+1
0 ,t

n ϕn+1
0∗ MGL∧∗+1

→ . . .→ Re
�

n+1
0

B ϕn+1
0∗ MGL∧∗+1.

As notation, for E ∈ SptT (k), I = (i1, . . . , ir) an index with 0 ≤ ij ∈ Z,

bI = bi11 · . . . · b
ir
r a monomial, with bj of degree nj , we define E · bI := Σ

|I|
T E , where

|I| :=
∑r

j=1 nj · ij. More generally, if {bij} is a set of variables, i = 1, . . .m, with

some assigned positive integral degrees, we let E [{bij}] denote the coproduct of the

Eb1I1 · . . . · b
m
Im

.

Lemma 5.1. We have an isomorphism of left MGL-modules

MGL∧m+1 ∼= MGL[b
(1)
• , . . . , b

(m+1)
• ]

where b
(j)
• is the collection of variables b

(j)
1 , b

(j)
2 , . . ., with b

(j)
n of degree n.
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Proof. It clearly suffices to handle the case m = 1. For this, [21, lemma 6.2]
gives us elements bn ∈ π2n,n(MGL ∧MGL) giving rise to an isomorphism of left
π∗,∗MGL-modules

π∗,∗(MGL ∧MGL) ∼= π∗,∗MGL[b1, b2, . . .].

For each monomial bI in b1, b2, . . ., we view bI ∈ π2|I|,|I|(MGL ∧MGL) as a map

bI : Σ
|I|
T Sk → MGL ∧ MGL; using the product in MGL, this gives us the left

MGL-map

ϑ :=
∑

I

bI : ⊕IΣ
|I|
T MGL→ MGL ∧MGL.

Now, MGL is stably cellular [7, theorem 6.4] hence ⊕IΣ
|I|
T MGL and MGL∧MGL are

stably cellular (the second assertion follows from [7, lemma 3.4]). Clearly ϑ induces
an isomorphism on πa,b for all a, b, hence by [7, corollary 7.2] ϑ is an isomorphism
in SH(k). �

Lemma 5.2. 1. For all n,m ≥ 0, ReB(f
t
nMGL∧m+1) is 2n− 1 connected.

2. The map
f2nReB(f

t
nMGL∧m+1)→ f2nReB(MGL∧m+1)

induced by the natural transformation f t
n → id and the map

f2nReB(f
t
nMGL∧m+1)→ ReB(f

t
nMGL∧m+1)

induced by the natural transformation f2n → id are weak equivalences.
3. The map

f
�

n+1
0

2n Re
�

n+1
0

B (f
�

n+1
0 ,t

n ϕn+1
0∗ MGL∧∗+1)→ f

�
n+1
0

2n ReBϕ
n+1
0∗ MGL∧∗+1

induced by the natural transformation f
�

n+1
0 ,t

n → id and the map

f
�

n+1
0

2n Re
�

n+1
0

B (f
�

n+1
0 ,t

n ϕn+1
0∗ MGL∧∗+1)→ Re

�
n+1
0

B (f
�

n+1
0 ,t

n ϕn+1
0∗ MGL∧∗+1)

induced by the natural transformation f
�

n+1
0

2n → id are weak equivalences.

Proof. It follows from Morel’s A1-connectedness theorem [19] that πa+b,bMGLn = 0
for a < 2n, b ≥ 0. Thus the stable homotopy sheaves πa+b,bMGL are zero for
a < 0, that is, MGL is topologically -1 connected. By [17, proposition 3.2] f t

nMGL
is also topologically -1 connected, hence by [18, theorem 5.2] ReB(f

t
nMGL) is n−1-

connected for all n ≥ 0.
We have an isomorphism (of left MGL-modules)

(5.1) MGL∧m+1 ∼= ⊕I=(i1,...,imΣ
|I|
T MGL

from which it follows that f t
nMGL∧m+1 is topologically -1 connected and that

ReBf
t
nMGL∧m+1 is n− 1 connected for all n ≥ 0. Thus the tower

. . .→ ReBf
t
N+1MGL∧m+1 → ReBf

t
NMGL∧m+1 → . . .→ ReBf

t
nMGL∧m+1

is strongly convergent. As both f t
N and ReB are exact functors, the ℓth layer in this

tower isReBs
t
n+ℓMGL∧m+1, so to prove (1), it suffices to show thatReBs

t
n+ℓMGL∧m+1

is 2n− 1-connected for all ℓ ≥ 0.
By the Hopkins-Morel-Hoyois theorem [10, 13] and the above computation of

MGL∧m+1, sNMGL∧m+1 is a finite coproduct of copies of ΣN
T MZ, where MZ

is the motivic Eilenberg-MacLane spectrum representing motivic cohomology. In
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addition, ReB(MZ) ∼= EM(Z), hence ReBsNMGL∧m+1 is a finite coproduct of
copies of Σ2NEM(Z), and is thus 2N − 1-connected.

For (2), applying ReB to the decomposition (5.1) gives

ReB(MGL∧m+1) ∼= ⊕IΣ
2|I|MU ;

since f t
n ◦ΣT

∼= ΣT ◦ f t
n−1, and fm ◦Σ ∼= Σ ◦ fm−1, this reduces the proof of (2) to

the case m = 0. Since

ReBs
t
NMGL ∼= Σ2NEM(Z)⊗MU−2N

the strongly convergent spectral sequences

Ep,q
1 = π−p−qReBs

t
pMGL =⇒ π−p−qReBMGL

and

Ep,q
1 = π−p−qReBs

t
pMGL =⇒ π−p−qReBf

t
nMGL

degenerate at E1 and show that πmReBf
t
nMGL→ πmReBMGL is an isomorphism

for m ≥ 2n and πmReBf
t
nMGL = 0 for m < 2n. Thus ReBf

t
nMGL→ ReBMGL ∼=

MU is isomorphic (in SH) to the 2n− 1-connected cover of MU , proving (2).
(3) follows immediately from (2), by the definition of the weak equivalences in

the functor categoryMS . �

We can now prove our main result:

Proof of theorem 1. Denote the spectral sequence (2.7) for fixed A < B and cosim-
plicial spectrum E as E(E ;A,B). The Adams-Novikov spectral sequence may be
constructed as the spectral sequence associated to the cosimplicial spectrum

n 7→MUn+1,

that is, the spectral sequence E(MU∧∗+1; 0,∞). For A = 0, B < ∞, we have
Ep,q

r (E; 0, B) = Ep,q
r (E; 0,∞), and similarly for the differentials, in a range that

goes to infinity in p, q, r as B →∞.
Letting E(Dec, E ;A,B) similarly denote the spectral sequence (4.3) for given val-

ues of A < B and cosimplicial spectrum E , we have a similar comparison statement
for the spectral sequences E(Dec,MU∧∗+1;A,B), A < B ≤ ∞.

For k ⊂ K an extension of algebraically closed fields, the base extension induces
an isomorphism of spectral sequence E(AH) for k and E(AH) for K; this follows
from e.g. [18, theorem 8.3]. Thus, we may assume that k admits an embedding
into C, giving the associated Betti realization functor

ReB : SH(k)→ SH.

By lemma 5.2 and proposition 3.3, we have an isomorphism in SH

ReB(Tot
(0/B)f t

a/bMGL∧∗+1) ∼= Tot(0/B)f2a/2bMU∧∗+1

for all a ≤ b, including b = ∞, compatible with respect to the maps in the slice
tower for MGL∧∗+1 and the Postnikov tower for MU∧∗+1. Furthermore, by propo-
sition 3.5, this gives us an isomorphism in SH

ReB(f
t
a/bSk)

∼= Tot(0/B)f2a/2bMU∧∗+1

compatible with respect to change in a and b. Thus, we have an isomorphism of
the spectral sequence associated to the tower

. . .→ ReB(f
t
n+1Sk)→ ReB(f

t
nSk)→ . . .→ ReB(f

t
0Sk)

∼= S
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and the one associated to the tower

. . .→ Totf2n+2MU∧∗+1 → Totf2nMU∧∗+1 → . . .

→ Totf0MU∧∗+1 = TotMU∧∗+1.

Since all the odd homotopy groups of MU∧m+1 vanish, this latter spectral sequence
is just E(Dec,MU∧∗+1, 0,∞), except with a reindexing.

By [18, proposition 6.4], the functor ReB induces an isomorphism

πn,0(s
t
mSk))(k) ∼= πn(ReB(s

t
mSk))

for all n and m. In addition, the tower

. . .→ f t
m+1Sk → f t

mSk → . . .→ f t
0Sk = Sk

and its Betti realization

. . .→ ReBf
t
m+1Sk → ReBf

t
mSk → . . .→ ReBf

t
0Sk = S

yield strongly convergent spectral sequences ([16, theorem 4], [18, proof of theorem
6.7])

Ep,q
1 = π−p−q,0(s

t
pSk)(k) =⇒ π−p−q,0(f

t
a/bSk)(k)

and
Ep,q

1 = π−p−qReB(s
t
pSk) =⇒ π−p−qReB(f

t
a/bSk)

and thus the functor ReB induces an isomorphism

πn,0(f
t
a/bSk)(k)

∼= πn(ReB(f
t
a/bSk))

for all n and all a < b ≤ ∞.
Putting these two pieces together, the Betti realization functor gives an isomor-

phism of the spectral sequence E(AH) with the spectral sequence E(Dec,MU∧∗+1),
after a suitable reindexing. Explicitly, this gives

Ep,q
1 (AH) ∼= E2p,q−p

1 (Dec,MU∧∗+1) = E2p,q−p
2 (Dec,MU∧∗+1);

the terms Ep,q
∗ (Dec,MU∧∗+1) with p odd are all zero, and by induction, we have

isomorphisms
Ep,q

r (AH) ∼= E2p,q−p
2r (Dec,MU∧∗+1)

commuting with the differentials dr(AH) and d2r(Dec). Combined with the iso-
morphisms of proposition 4.3,

γp,qr : Ep,q
r (Dec, E)→ E2p+q,−p

r+1 (E)

completes the proof. �
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