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THE ADAMS-NOVIKOV SPECTRAL SEQUENCE AND
VOEVODSKY’S SLICE TOWER

MARC LEVINE

ABSTRACT. We show that the spectral sequence converging to the stable ho-
motopy groups of spheres, induced by the Betti realization of the slice tower
for the motivic sphere spectrum, agrees with the Adams-Novikov spectral se-
quence, after a suitable re-indexing. The proof relies on a partial extension of
Deligne’s “décalage” construction to the Tot-tower of a cosimplicial spectrum.
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INTRODUCTION

Voevodsky has defined a natural tower in the motivic stable homotopy category
SH (k) over a field k, called the slice tower (see [27,28]). Relying on the computation
of the slices of MGL by Hopkins-Morel [13], complete proofs of which have been
recently made available through the work of Hoyois [10], we have filled in the details
of a proof of the conjecture of Voevodsky [28], identifying the slices of the motivic
sphere spectrum with a motive built out of the Fs-complex in the classical Adams-
Novikov spectral sequence for the stable homotopy groups of spheres (¢f. [1]). In
addition, we have shown that the Betti realization of the slice tower yields a tower
over the classical sphere spectrum S, and the resulting spectral sequence strongly
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converges to the homotopy groups of S. Furthermore, we have also shown that
the resulting comparison map from the homotopy sheaves m, o of the slice tower,
evaluated on any algebraically closed subfield of C, to the homotopy groups of the
Betti realization, is an isomorphism. For all these results, we refer the reader to
[18].

Putting all this together, we have a spectral sequence, strongly converging to
.S, of “motivic origin” and whose Es-term agrees with the Es-term in the Adams-
Novikov spectral sequence, after a reindexing. The question thus arises: are these
two spectral sequences the same, again after reindexing? The main result of this
paper is an affirmative answer to this question, more precisely:

Theorem 1. Let k be an algebraically closed field of characteristic zero. Consider
the Adams-Novikov spectral sequence

EPU(AN) = Exthy ! (30 (MU, MUL) = 7_p(S)

and the “Atiyah-Hirzebruch” spectral sequence for I, oSk (k) associated to the slice
tower for Sg,

EVYAH) = m_p—q,0(5pSk) (k) = m—p—q,0Sk(k) = m_p—q(Sk).
Then there is an isomorphism
A9 BPI(AH) & B (AN)
which induces a sequence of isomorphisms of complezes
O (Bp,g BV (AH), dy) — (@p,qufif’_%(AN)v d2r41)

Note that the fact that the homotopy groups of MU™ are concentrated in even de-
gree implies that the Adams-Novikov differentials do, are all zero, and so E5'?(AN) =
E5%  (AN).

Remark. The Atiyah-Hirzebruch spectral sequence is often presented as an Fs-
spectral sequence:

EYYAH;E,X) = HP” X, 7" (n —q)) = EPT"(X).
Here 7#(€) is the homotopy motive of £, that is, a canonically determined object
of DM (k) with EM g1 (w(E)(n)[2n]) = st €. Thus, for &€ = S, X = Speck, this
gives
EYYAH) = By "PPU(AH)
and theorem [l yields the isomorphism
EP4(AH) = B, % (AN),

answering affirmatively the question raised in [I8, Introduction].

In the first four sections, we collect and review some material on various struc-
tures arising from functor categories with values in a model category. This material
is to a varying degree quite well known; we include it here to aid the reader who
may not be so familiar with this material and to fix notation.

In section [Il we review two constructions of a model category structure on the
functor category, the projective model structure and the Reedy model structure.
We apply this material to give constructions of slice towers and Betti realizations for
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motivic homotopy categories associated to functor categories. In section [2] we spe-
cialize to the case of the category A of finite ordered sets, and recall the Bousfield-
Kan functor Tot and the associated tower and spectral sequence. In section [3] we
describe how the Tot-tower can be described using cubical constructions, which
are technically easier to handle. As an application, we show how applying the
slice tower termwise to the truncated cosimplicial objects arising in of the motivic
Adams-Novikov tower give approximations to the slice tower for the motivic sphere
spectrum (proposition B.5]).

We then turn to some new material. In section Ml we adapt Deligne’s décalage
construction to the setting of cosimplicial objects in a stable model category that
admits a t-structure and associated Postnikov tower, this latter construction re-
placing the canonical truncation of a complex. The main comparison result is
achieved in proposition .3 This is the technical tool that enables us to compare
the Atiyah-Hirzebruch and Adams-Novikov spectral sequences. The treatment of
this topic is less than optimal, as one should expect a more general extension of
Deligne’s décalage construction to some version of filtered objects in a model cat-
egory. In section [f] we examine the Adams-Novikov spectral sequence, both in the
motivic as well as the classical setting, and relate this to the slice tower for the
motivic sphere spectrum. With the help of recent work on Betti realizations and
the slices for MGL, it is rather easy to show that the Betti realization of the slice
tower for the motivic sphere spectrum agrees with the décalage tower associated
to the classical Adams-Novikov tower. We then apply our results on the décalage
construction to achieve the desired comparison.

1. CONSTRUCTIONS IN FUNCTOR CATEGORIES

It is convenient to perform constructions, such as Postnikov towers in various
settings, or realization functors, in functor categories. This can be accomplished
in a number of ways. The Postnikov towers may be constructed via cofibrant
replacements associated to a right Bousfield localization; by making the cofibrant
replacement functorial, this extends immediately to functor categories. The Betti
realization is similarly accomplished as the left derived functor of a left Quillen
functor, so again, applying this functor to a functorial cofibrant replacement extends
the Betti realization to a realization functor between functor categories. However,
it is often useful to have more control over these constructions, for which a full
extension to the appropriate model category structure on the functor category is
useful; we give some details of this approach here. None of this material is new; it
is assembled from [3] [8 [T2] and collected here for the reader’s convenience.

1.1. Model structures on functor categories. Let S,7 be small categories, M
a complete and cocomplete category, M< the category of functors X' : S — M. For
f: T — S a functor, we have the restriction functor f, : MS — M7, f,X := Xof,
with left adjoint f* and right adjoint f'. For X € M7, f*X, resp., f'X, is the left,
resp. right, Kan extension in the diagram

T2 M

|

S.
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In particular, for s € S, we have is : pt — S, the inclusion functor with value s,
inducing the evaluation functor ig, : MS — M, the left adjoint i¥ : M — M5,
and right adjoint i}, : M — M.

We take M to be a simplicial model category and consider two model structures
on MS. If M is cofibrantly generated, we may give M the projective model
structure, that is, weak equivalences and fibrations are defined pointwise, and cofi-
brations are characterized by having the left lifting property with respect to trivial
fibrations.

In case S is a Reedy category, one can also give M® the Reedy model structure.
We first recall the definition of a Reedy category S: There is an ordinal A, a
function (called degree) d : ObjS — X and two subcategories S;, S—, such that all
non-identity morphisms in Sy increase the degree, all non-identity morphisms in
S_ decrease the degree, and each morphism f in § admits a unique factorization
f=aobwithae S, ,beS_. For s € S, we let S® be the category of non-identity
morphisms s — ¢t in S_, and let S be the category of non-identity morphisms
t — sin Sy. Given an object X € M®, and s € S, we have the latching space L°X
and matching space M°X:

L*X = hg X(t), M°X .= ]£1 X(t),
t%SESi s—teSS
with the canonical morphisms L5X — X(s), X(s) - M*X.

The Reedy model structure on M has weak equivalences the maps f: X — )
such that f(s) : X(s) = Y(s) is a weak equivalence in M for all s € S, fibrations
the maps f : X — Y such that X(s) — Y(s) Xasy M*X is a fibration in M for all
s € § and cofibrations the maps f : X — Y such that X(s) Iz sx L°Y — Y(s) is a
cofibration for all s € S. This makes MS a model category without any additional
conditions on M.

In each of these two model structures, the evaluation functor i, preserves fibra-
tions, cofibrations and weak equivalences, and admits ¢% as left Quillen functor and
i, as right Quillen functor.

Remark 1.1. Suppose M is cofibrantly generated. If S is a direct category, these
two model structures agree; if S is a general Reedy category, the weak equivalences
in the two model structures agree, every fibration for the Reedy model structure
is a fibration in the projective model structure, and thus every cofibration in the
projective model structure is a cofibration in the Reedy model structure. Further-
more, the projective model structure is also cofibrantly generated, and is cellular,
resp. combinatorial, if M is cellular, resp. combinatorial; we refer the reader to
[8, theorem 11.6.1, theorem 12.1.5], [3] theorem 2.14] for proofs of these assertions.
The Reedy model structure likewise inherits the combinatorial property from M
[3, lemma 3.33].

Left and right properness are similarly passed on from M to the projective
model structure on MS [3 proposition 2.18]. For the Reedy model structure, the
inheritance of left and right properness is proven in [3] lemma 3.24].

Ezxample 1.2. The classical example of a Reedy category is the category of finite
ordered sets. Let A denote the category with objects the finite ordered sets [n] :=
{0,...,n}, with the standard order, n = 0,1,.... For a category C the functor
categories C2, CA”" are as usual called the category of cosimpliicial, resp. simplicial
objects in C.
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We let Aypj, Agur; denote the subcategories of A with the same objects, and with
morphisms the injective, resp. surjective order-preserving maps. Taking A, :=
ANinj, A_ = Agyrj and d : A — N the function d([n]) = n makes A a Reedy
category. We have the standard co-face maps &’ : [n] = [n+1], 7 =0,...,n+ 1]
and co-degeneracy maps s; : [n] = [n—1],1=0,...,n— 1.

Let Spc denote the category of simplicial sets, Spc, the category of pointed
simplicial sets, each with the standard model structures, c¢f. [12 §3.2]. Note that
this is not the Reedy model structure!

Let A[n] be the representable simplicial set, A[n] := Homa (—, [n]) and let A[*] :
A — Spc the cosimplicial space n — A[n].

1.2. Simplicial structure. We consider a small category S and a simplicial model
category M satisfying the conditions discussed in the previous section. Both model
structures for M discussed above yield simplicial model categories: for a simplicial
set A and a functor X : § — M, the product X® A and Hom-object Hom(A, X) are
the evident functors (X ® A)(s) := X (s) ® A and Hom(A, X)(s) := Hom(A, X(s)).
The simplicial Hom-object Map ys (X, )) is given as the simplicial set

n +— HOHlMS(X®A[n];y)7

or equivalently, as the equalizer

[T
Map s (X, ¥) = [ | Map u (X(s), Y(s)) - IT Map, (X(s), 2(5)).
seS 9= g:s—s’

Together with the evident adjunction Hom (X, Hom(A4,Y)) = Hom(X ® A, Y), this
makes M into a simplicial model category (see below).

We have as well the object Hom (A, X) in M for A € Spc®”, X € M, with
Hom(A, X)(s) := Hom(A(s),X) and the object X ® A in M for A € Spc®,
X e M, with (X ® A)(s) = X ® A(s).

For A € Spc®, X € M3, we have Hom® (A, X) in M defined as the equalizer

Hom® (A, X) — H Hom(A(s), X(s)) —= H Hom(A(s), X(s")).
seS IT9- g:s—s’
Similarly, for A € Spcsop, X € MS, we have X ®° A in M, defined as the co-
equalizer
, [Tx(9)®id s
gy s X(s") @ A(s) T s X(s) ® A(s) = X ®@° A
[Tid®-A(9)
Besides the adjunction already mentioned, one has the adjunction, for X € M,
A€Spc®, Ve MS,
Hom (X, Hom® (A, Y)) = Hom s (X ®@ A, )
and for ¥ € MS, A€ Spe®”, Y e M,
Hom s (X, Hom(A,Y)) = Hompa (X @° A,Y)
These all follow directly from the adjunctions for Hom and ®.
Both adjunctions are Quillen adjunctions of two variables. In case M is cofi-

brantly generated and we use the projective model structure, this is [8, theorem
11.7.3]; if S is a Reedy category and we give M the Reedy model structure, this



6 MARC LEVINE

is [3, lemma 3.24]. This gives M the structure of a Spc® model category and a
SpcSop model category.

1.3. Monoidal structure. We now suppose that M has a symmetric monoidal
structure ® o, making M into a closed symmetric monoidal simplicial model cat-
egory, with internal Hom Homa(—, —).

For X € M, Y € MS, we have X @ Y and Hom(X,)) in M, with the
adjunction, for Y, Z € MS, X ¢ M,

Hom s (X @ pm YV, Z) = Hom s (Y, Homm (X, 2))
This extends to the adjunction on mapping spaces
Map s (X @m YV, Z) 2 Map s (Y, Homm (X, Z)).
We define the M-valued internal Hom
Hom%y : (MS)°P x MS — M

as the equalizer

[l
Hom, (X,Y) — H Hompa (X (), V(s)) 1‘[—; H Homp (X (s),V(s)).
s€S 9 gis—s!

Similarly, for X € MS, ¥ € MS™ we have X ®3, Y in M, defined as the co-
equalizer

[Tx(9)®id
Iys s X (5) @pq V(s) %ﬁ Mies X(s) @am V(s) = X @F A.
id®Y(g

We have the adjunctions, for A € Spc®, Y e MS, X e M,
Hom® (A, Homm(X, D)) = Hom5y (X @ A, V) = Hom (X, Hom® (A, ),
induced by the adjunctions
Hom(A, Homm (X, Y)) 2 Homm (X @ A,Y) =2 Homm (X, Hom(A,Y))
for X, Y € M, A € Spc. The analogous constructions and statements hold in the
pointed setting.

Lemma 1.3. Give MS either the Reedy model structure or, in case M is cofibrantly
generated, the projective model structure. Then the operations @ and Hom‘ﬁ/[ are
a Quillen adjunction of two variables, that is, these make M into an M-model
category.

Proof. For the projective model structure, the proof of [8, theorem 11.7.2] extends
word for word to prove the result; the case of the Reedy model structure is proven
in [3 lemma 3.36] O

M is a closed symmetric monoidal category, with (A @ s B)(s) := A(s) @ m
B(s) for A, B € M?®. The internal Hom is given as
Hompys (A, B)(s) :== Hom*'S(s/ A, s/B)
where 5/ A € M*/S is the functor s/ A(s — t) := A(t); for f: s — s, the induced
map Hom s (A, B)(s) — Hompys (A, B)(s') is the map Hom*/S(s/A,s/B) —
Hom® /S (s' /A, s'/B) induced by the functor f* : s/S — s'/S, noting that (s'/.A) o
f* =s/A. The unit is the constant functor with value the unit in M.
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The question of when this gives MS the structure of a symmetric monoidal
model category does not appear to have a simple answer. In the case of the Reedy
model structure, Barwick proves the following result:

Proposition 1.4. Let S be a Reedy category and give MS the Reedy model struc-
ture. Suppose that either

a. all morphisms in S_ are epimorphisms and for each s € S the category S s
connected

or the dual

b. all morphisms in S are monomorphisms and for each s € S, the category S%
is connected

Then @ s and Hompgs (—,—) is a Quillen adjunction of two variables, making
MS a symmetric monoidal model category.

The condition (a) is satisfied for S = A and the dual (b) is satisfied for S = A°P,
so the categories of cosimplicial or simplicial objects in a symmetric monoidal model
category have the structure of a symmetric monoidal model category. As another
example of an S satisfying (a), one can take for S the category associated to a finite
poset having a final object, with Reedy structure S = S_; a finite poset with initial
object similarly satisfies (b) if one takes S = S.

1.4. Bousfield localization. We suppose that M is cellular and right proper. Let
K be a set of cofibrant objects in M. We have the right Bousfield localization Rx M
with associated functorial cofibrant replacement Qg — id (see [8, theorem 5.1.1]).
Let K be the set of cofibrant objects i*a, a € K, s € S, and let Rys M be the
right Bousfield localization of M with respect to K (as noted in remark [T, M
inherits celluarity and right properness from M).

Lemma 1.5. Suppose that M is cellular and right proper, and give MS the pro-
jective model structure. Let K be a set of cofibrant objects in M.

1. The right Bousfield localization RysM?S is the same as the projective model
structure on (Rg M)S.

2. Take x € M® and let Qx — x be a cofibrant replacement in Rys MS. Then for
all s € S, i5.Qx — ig.x 1S a cofibrant replacement of is«x in Rxg M.

Proof. Right Bousfield localization leaves the fibrations unchanged, hence Ry s M*S
and (RxM)® have the same fibrations. The weak equivalences in a right Bousfield
localization with respect to a set of objects K are the K-colocal weak equiva-
lences, that is, maps X — Y that induce a weak equivalence on the Hom spaces
Hom(a, RX) — Hom(a, RY) for all a € K, where RX, RY are fibrant replace-
ments. From this it follows that X — Y is a weak equivalence in Ry s MS if and
only if i5, X — isY is a weak equivalence in RxM for all s, that is, the weak
equivalences in RgsMS and (RgM)S agree.

(2) follows from (1), noting that s, preserves cofibrations, fibrations and weak
equivalences (for the projective model structure). O

Examples 1.6. 1. “Topological” Postnikov towers. We recall a functorial construc-
tion of the n — 1-connected cover f,X — X of a pointed space. Fix an integer
n > 0 and let K, be the set of spaces of the form ™ X, with X in Spc, and
m > n. Spc, is a right proper cellular simplicial model category, hence by [8|
theorem 5.1.1], the right Bousfield localization Rk, Spc, of Spc, with respect to
the K, -colocal maps exists. In addition, there is a cofibrant replacement functor
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fn : Rk, Spc, — Rk, Spc,. By the definition of right Bousfield localization ([8]
definition 3.3.1], see also [18, theorem 2.5]) f,X — X in HoSpc, is universal for
maps from n — 1-connected Y to X'; by obstruction theory, it follows that f, X — X
is an n— 1-connected cover of X. Using lemmal[l.5l we may form the n—1-connected
cover fSX — X in the functor category Spcf as the cofibrant replacement with
respect to the right Bousfield localization RsSpc,.

Varying n and noting that K,, C K,, if n > m gives the tower of cofibrant
replacement functors

o IS S o S =id
Let Spt be the category of S'-spectra in Spt,, with stable model structure
as defined in [I1I]. We have the nth evaluation functor ev, : Spt — Spt,,
evn (S0, S1,...) := Sy, and its left adjoint F,, : Spc, — Spt,

F.(S) := (pt,...,pt,S, %8, %%8,...).

We repeat the construction of the Postnikov tower, with Spt replacing Spc, and
taking K, to be the set of objects F,X?X, with X € Spc,, b—a > n, n € Z. This
gives us the Postnikov tower in the functor category Spts (with n € Z)

o I = S o —id

We may extend these constructions to other model categories. Rather than at-
tempting an axiomatic discussion, we content ourselves with the examples arising
in motivic homotopy theory. Let S be a noetherian separated base-scheme and let
Spc,(S) be the category of pointed spaces over S, that is, Spc,-valued presheaves
on the category Sm/S of smooth S of finite type. We give Spc,(S) the motivic
model structure; this gives Spc,(S) the structure of a proper combinatorial sym-
metric monoidal simplicial model category (for details see [9, corollary 1.6], [14]
§1, theorem 1.1], [I5] Appendix A] and [25, theorem 2.3.2]). Letting K, (S) be
the set of objects of the form XX, with X € Spc,(S) and m > n, we have the
right Bousfield localization, Rk, (5)Spc,(S) and the cofibrant replacement functor
fn, with universal property for maps with source in the K, (5)-cellular objects of
Spc,(S). These turn out to be the n — 1-connected objects in Spc,(S), that is,
those objects with vanishing homotopy sheaves m,, for m < n (see e.g. [24]. See
[18, theorem 3.1, remark 3.3] for a discussion of the stable case and an indication
of how this construction works in the unstable case).

We may also use categories of S* or P! spectra, Sptg:(S), Sptp:(S), with the
respective motivic model structures (see [I5] for a description of the model struc-
tures and e.g. [25, theorem 2.5.4] for the fact that these are cellular). For S?
spectra, replace K, with K;?I(S) = {FflEpX,X € Spc,(S),p — ¢ > n}. Here
FqS1 : Spc,(S) — Sptg:(S) is given by using the functor Fy : Spc, — Spt, that
is,

1
Fy(X)(T) = Fy(X(T))

for each T — S in Sm/S. Again, the Kfl(S)—cellular objects are those E €
Spt g (S) with stable homotopy sheaves 7, E zero for n < m. Suppose S = Speck,
k a perfect field. Then in this stable model category, the subcategory SHs1(S) <o :=
HORKOSl(S)Sptsl (S) of the homotopy category SHg1(S) of Sptg:(S) is half of a

t-structure with heart the strictly Al-invariant Nisnevich sheaves on Sm/S. and
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with SHs1(S)>0 the full subcategory of the E with 7, E = 0 for n > 0. This all
follows from results of Morel, ¢f. [20, theorem 4.3.4, lemma 4.3.7].

For Sptp:(S), we use K () := {FglEng,X € Spc,(S),p — ¢ > n}, with
FEX = (FF X, FE Xy,..), FS X, = pt for n < q, Fy&, = S X for n > g
and identity bonding maps. The KEI (S)-cellular objects are those £ € Sptp: (S)
with stable homotopy sheaves 7, (& zero for n < m, ¢ € Z. Assuming that S =
Speck, k a field, then in this stable model category, the subcategory SH(S)<o :=
HoR 1 5Sptp: (S) of the homotopy category SH(S) of Sptp:(S) is half of a t-

0
structure with SH(S)>¢ the full subcategory of the £ with 7, .E = 0 for n > 0.
The other half is SH(S)>o: the full subcategory of the £ with 7, .E = 0 for n < 0.
The heart is Morel’s category of “homotopy modules” [20, definition 5.2.4], see [20}
theorem 5.2.3, theorem 5.2.6] for detailed statements.

2. Slice towers. This is modification of the construction in (1) in Spc,(S), us-
ing the set K! of objects of the form Eale%mX, with b > n. The S'-stable version
uses the set of objects of the form F,;,3¢, EfémX with b > n and the P!-stable
version uses the set of objects of the form FmEale%mX with b —m > n. Varying
n, the first two yield the slice tower

o X s flX s s =X
while the Pl-version gives us the doubly infinite tower
o flaES lE— Lo X
Replacing K, with K% gives the slice towers
o R o S - =

and
e fROE S fESE L €

in Spc,(S)°, Sptgi(9)° and Sptp: (S)°. There are similarly defined versions in
categories of T-spectra (T'= A'/A'\ {0}) or the various flavors of symmetric spec-
tra. As above, we refer the reader to [24] and [I8| theorem 3.1, remark 3.3] for
details.

3. Betti realizations. Betti realizations are left derived functors of functors of a
left Quillen functor An*, either on categories of spaces over k, or the various spec-
trum categories, where An™ is a left Kan extension of the functor sending a smooth
k-scheme X to the topological space of its C-points (with respect to a fixed em-
bedding k < C) or if one prefers Spc as target category, the singular complex of
this space. As a left derived functor of a left Quillen functor, the result Betti re-
alization functor on the appropriate homotopy category is constructed by applying
An™ (or some allied construction, in the case of spectra) to a cofibrant resolution
for a suitable (cellular) model structure. Thus, we may form a Betti resolution for
functor categories by noting that An* extends by applying it pointwise to a left
Quillen functor between functor categories, and by taking the cofibrant resolution
in the domain functor category.

Fix an embedding o : k — C. We use the Betti realization of Panin-Pimenov-
Rondigs [22], modified to pass to Spc instead of locally compact Hausdorff spaces.
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This functor arises from the left Quillen functor
An* : Spc, (k) — Spc,

which is the Kan extension of the functor sending X € Sm/k to the singular
complex of X" this latter being the topological space of C-points of X7, with the
classical topology.

One extends to Pl-spectra using the fact that (P1)®" =2 S2 An* is symmetric
monoidal and using an equivalence of Spt and S2-spectra. Glossing over this latter
equivalence, we have the isomorphism (in SH)

Rep(MGL) = MU

There is a similar version from symmetric P!-spectra to symmetric S?-spectra,
inducing an equivalent functor on the homotopy categories.
Finally, the Betti realization functor extends to a left Quillen functor

An®* : Spt(5)S — Spt%.,

with a natural isomorphism 4} o AnS* = An* o i¢%; Note that one needs to use a
different model structure on Spt;(S) than the one we have been using, see [22]
§A4] and [I8, §5] for details. For other versions of the Betti realization, see [2]
definition 2.1], [26] and [29, §4].

We still use the projective model structure on Spt,(S)®, but with respect to
the Panin-Pimenov-Rondigs model structure on Spt(.9).

We let

Re3, : HoSpt,(S)S — HoSpt®

be the left derived functor of AnS* composed with the equivalence HoSpt‘gg ~
HoSpt®.

In what follows, M will be either Spc, or Spc,(S). We will also consider the
corresponding spectrum categories, Spt, Sptg:1(S) or Sptp:(S). We will refer to
an object in any one of these latter categories as a “spectrum”, an object in the
underlying model category M will be referred to as a “space”. In the unstable
motivic setting, Spc,(S), 7, will be the Nisnevich sheaf of homotopy groups (sets
for n = 0). Similarly, for a Nisnevich sheaf of abelian groups A on Sm/S, we
have the associated motivic Eilenberg-MacLane space K(A,n) € Spc,(S), with
K (A,n) = A, 7, K(A,n) =0 for m # n. At least for n > 2, K(A,n) is Al-local
exactly when A is strictly Al-invariant.

Lemma 1.7. Take £ € Spt° such that i4.E is n — 1-connected for each s € S.
Then fS& — & is a weak equivalence.

Proof. Since ig, fSE€ = fnis&, our assumption on € implies that ig. fO€ — 1..E is
a weak equivalence for each s € S, and thus f5& — £ is a weak equivalence. (]

Definition 1.8. Recall that a P!-spectrum & is said to be topologically c-connected
if the homotopy sheaf 7, mE& is zero for all n < c and all m € Z.

Lemma 1.9. Take £ € (Spt]PE& (k)S and suppose that i4.E is topologically -1 con-
nected for each s € S. Then there is a canonical morphism

Y (E) : Rep(fio€) — fSRepE
mn HoSptS.
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Proof. We have canonical isomorphisms
isx fOReBE =2 frRepisE, isRep(fi°€ =2 Rep(flisE.

By [18] theorem 5.2], Rep(fLis«E) is n—1-connected for each n, hence by lemmal[l7]
the canonical map

3 Rep(fy°€) = Rep(f;°€)

is a weak equivalence. Inverting this map in HoSpt® and using the commutative
diagram

n (Re .;‘SE
J$ Rep(11:5€) P I, Reg(f15€)
fSRes (pfg(f)))l lReB (P (£)
s
fo Rep€ T Rep&
gives the desired map. ([

2. COSIMPLICIAL OBJECTS IN A MODEL CATEGORY

We will work in a fairly general setting, letting M be a pointed closed symmetric
monoidal simplicial model category. The reader can keep in mind the example
M = Spc,, the category of pointed spaces, that is, pointed simplicial sets. We will
eventually require M to be a stable model category, such as spectra.

This material, as well as much of the material in the next section, may be found
in the beginning portions of [4]

We have the functor category M of cosimplicial objects in M. For X : A — M,
we often write X" for X([n]). We let X~! denote the maximal augmentation of X,
that is, the equalizer

d()
Xt a0 —= al
dl
We give M% the Reedy model structure. In fact, a map f : & — ) is a
cofibration if and only if f™ : X™ — Y" is a cofibration for each n > 0, and the
map f~': X~! = Y~ ! is an isomorphism.

Remark 2.1. The unit for the monoidal structure on M* is the constant cosimplicial
object on the unit 1 in M; this is not a cofibrant object in M=,

If A is an object in M, write cA for the constant cosimplicial object. The functor
¢ does not preserve cofibrations, however, if i : A — B is a cofibration in M and
p: X — Y is a fibration in M? with ) (and hence X) fibrant, then

Hom(cB, X) — Hom(cA, X) X3gom(ca,y) Hom(cB,Y)
is a fibration, and is a trivial fibration if either 7 or p is a weak equivalence.

We may also consider the full subcategory AS™ of A, with objects [k], k =
0,...,n; AS" is also a Reedy category with the evident + and — subcategories.
We usually give MA=" the Reedy model category structure.

For T' € M, we write Qp for the functor Hom(T, —) : M — M, right adjoint to
Y7, ¥7(X) = X AT. We also write Qp for the functor Hom(cT, =) : M2 — M2,
leaving the context to determine the precise meaning. Similarly, we may use the
Spc,-structure to define Qi = Hom(K,—) : M — M, right adjoint to Xk,
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Yr(X) =X AK, and also Qf := Hom(K,—) : M> — M?. We write Q and ¥
for Qsl and Zsl.

2.1. The total complex and associated towers. We recall the construction
of towers associated to cosimplicial objects, recapping the construction of [5] for
cosimplicial spaces, generalized to cosimplicial objects in a simplicial model category
in [4].

Let X be a cosimplicial object in M. We have the associated total object
TotX := Hom™(A[%],X) in M; note that A[] is a cofibrant object in Spc®,
hence the functor Tot : M? — M is a right Quillen functor with left adjoint
A — A x A[x]. We make the analogous definition in the pointed setting.

For T € M, X € M*, the adjoint property of Hom gives the isomorphism in
M

Hom™ (T, TotX) = Hom™" (T x Al+], X)
>~ Hom™ (A[x], Hom™ (T, X)) = Tot(Hom™ (T, X)).

Remark 2.2. Suppose M is a category of T-spectra in some model category My.
For £: A — Spt%/10 a cosimplicial T-spectrum,

E=(EoevyEnye.)s

with bonding maps €, : &, — Qr&pt+1, Tot€ is the spectrum (Toty, Totéy,. . .)
with bonding maps Tote,, : TotE,, — TotQr&p+1 = QrTotEy 1.

Let i : AS¥ — A be the inclusion functor, and let Spc(k) be the category of
preheaves of sets on ASF. Restricting via iy, gives the functor iz, : Spc — Spc(k)7
which admits the left adjoint ; : Spc(k) — Spc; the k-skeleton functor sky is the
composition @} o i, and co-unit sky — id. We write A®) for sk, A. We have
the canonical natural transformations iy, : sky — sk, for 0 < k < m, with
bnym © bk = tn i for k <m < mn.

Let u, @ A¥]®) — A[%] be the k-skeleton of A[#], that is, the cosimplicial
simplicial set n ~— A[n]*). For X a cosimplicial object of M, let Tot( X =
Hom™ (A[x]*), X). The sequence of inclusions

0:=ACY 5 Al 5 AW s AP L Af¥]
thus gives the tower in M
(2.1) TotX —...— TOt(k)X — ... TOt(l)X — TOt(O)X — TOt(,l)X =pt

which is a tower of fibrations if X’ is fibrant.
We let Tot™™ X — TotX be the homotopy fiber of X — Tot(;_1)X, giving the
tower in M

(2.2) o= TotF Dy 5 Tot®r — = TotWx — Tot @ = Totx.

For m > k, let Tot(,, )X be the homotopy fiber of Tot(,,)X — Tot)X. We
assume we have a chosen fibrant cosimplicial object ) and chosen isomorphism
X = 0%2Y in HoM?. Via this data, we have an isomorphism of the tower (1))
for X with 2 applied to the tower @I) for Y. For m > k, let Tot/ ™ x =
Qhoﬁb(Tot(m)y — Tot(k)y), giving us the homotopy fiber sequence

Tot™ X — Tot®x — Tot™/® x.
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In case M is a stable model category, the loops functor €2 is invertible in the
homotopy category, so this assumption is automatically satisfied, and we just define
Tot™* X as the homotopy fiber of f]Tot(m)X — f]Tot(k)X, where ¥ mean the
functorial fibrant model of the suspension.

To unify the notation, we define Tot® := Tot =: Tot (), and Tot(™/>) .=
Tot™). We let Tot (k) denote the homotopy fiber of Tot — Tot .

We fix a homotopy functor m, on M. Rather than try to give an axiomatic
treatment, we list the examples of interest:

(1) M = Spc,, 7« the usual direct sum of the homotopy groups (set for * = 0).
(2) M = Spc,(S), 7. the Nisnevich sheaf of A'-homotopy groups (sets for
x = 0).
(3) M =8Spc,(S), T := Bm>0Tn+m,m-
These all have the property that a map f: X — Y in M is a weak equivalence if
and only if f induces an isomorphism on m, for all choices of base-point in X. For
the case of a stable model category, we will assume that 7, is the graded truncation
functor associated to a non-degenerate t-structure on HoM and again that a map
f:X —Y in M is a weak equivalence if and only if f induces an isomorphism on
.. Our main examples of interest are
(1) T =S, M = Sptg: (S), m, the stable homotopy sheaf.
(2) T = S, M = Sptg:(9), ™ = ®m>0Tntmm, N € Z, with 7, the bi-
graded stable homotopy sheaf.
(3) T =P Al/AY\ {0} or some other convenient model of P!, M = Spt,(9),
Tp = EBmEZﬂ-n-l—m,ma ne Zu
For a cosimplicial abelian group n +— A™, we have the associated complex A*
with differential the alternating sum of the co-face maps. We also have the quasi-

isomorphic normalized subcomplex NA* with NA" := ﬂ?;ol ker s;. Consider the
following condition on a cosimplicial pointed space X':
(2.3)
(1) There is a fibrant cosimplicial object ) in M*“ and an isomorphism &' =2
Q%Y in HoMA.

(2) Given an integer ¢ > 0, there is an integer N; such that (Nm;X)" = 0 for
n> N, j<i+n.

In the stable case, we have the analog of these conditions for X € M?, namely,
(2.4)
(1) X is fibrant.
(2) Given an integer ¢, there is an integer N, such that (N7;X)" = 0 for
n>N;, j<i+n.

For a cosimplicial object X € M, let NX™ be the fiber of s : X" — M"™(X)
(over the base-point).

Lemma 2.3. There is a natural isomorphism of Qam)/oamNX™ with the fiber of
the map Tot(,,) X — Tot(,_1)X. If X if fibrant, the induced map Qan) /oA NX"™ —
Tot(,/n—1)X gives rise to an isomorphism

(2.5) QPNX™ TOt(n/n,l)X.

in HoM. In particular, we have an isomorphism miNX" = (N7 X)".
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Proof. The fiber of Tot,,) X — Tot(,,_1)X is equal to Hom™M (A[x]™ /A[]"—1) | X).
This in turn is isomorphic to the equalizer
n—1
Hom™M (A[+]™ /A[x] "V X)) = Hom(A[n]/OA[n], X™) — H xnt
B o
where a(f) = [[,si o f and 3 is the map to the base-point. This gives the as-
serted identification of Hom™ (A[+]™ /A[x]»~D X)) with the fiber of Tot ()X —
TOt(n,l)X.
As A[]»~D — A[«](™ is a cofibration, the map Tot(,)X — Tot,—1& is a
fibration, hence the induced map
QA[n]/BA[n]NXn — TOt(n/n,l)X

is a weak equivalence. If X is fibrant, so is NA™, hence a weak equivalence (S1)"\" —
Aln]/0A[n] induces a weak equivalence Qan)/o9a[m NA" = Q"NA™. O

In other words, under the assumption [23))(1), the condition [23])(2) is equiva-
lent to
7 Tot (/n—1)X = 0 for j <i,n > Nj.

2.2. Spectral sequences and convergence. Suppose that X € M2 is fibrant.
The tower of fibrations (21]) gives the spectral sequence

(2.6) *E;f’q(X) = F_p_qTOt(p/p,l)X - W_p_qTOt(A/B)X; B<p<A,

for —1 < B < A < 0o. Note that we use a different indexing convention than that
of [B].

Under the assumption (Z3)(1) or (Z4)(1), we have canonical isomorphisms in
the respective homotopy categories Tot*/™) x = Tot(;,—1/k—1)~X. In addition, the
spectral sequence (2.6]) is isomorphic to the spectral sequences of the tower ([2.2):

(2.7) EPU(X) = 1y Tot®/PH) ¥ — 7/ Totx; A < p < B,
for 0 < A < B < co. Furthermore, using (2.5), the E;-terms are
EPU(X) = Nr_o XP.

Lemma 2.4. 1. If X € M5 satisfies @3)(1), (resp. @A) (1) if M is a stable
model category), then the spectral sequence ([20) is strongly convergent if A < oo
and the spectral sequences [271), is strongly convergent if B < co.

2. Suppose X € ML satisfies @3) (resp. (Z4) if M is a stable model category).
Then the spectral sequences 28) (for A= oc0) and Q) (for B = c0) are strongly
convergent.

Proof. Tt suffices to give the proof in the unstable case. (1) follows easily, as in all
cases, the associated tower is finite.

For (2), since X = Q2. there are no low dimensional subtleties, and all the
statements we will be using from [5] make sense and are valid for m and 7.

We first show that for each (p, q), there is an ro such that £ = E;)ng for all
r > ro. Indeed, E} , = 0 for p > 0, and if p+ ¢ = 4, then E} ., , = 0 for
r—p > N;—1. Thus we have £, , = E;:;l for r > ro := max(p + N;—1, —p,0) + 1.

Thus, the terms {E"} are “Mittag-Leffler in dimension ¢” for all ¢ > 0 [5 IX,
85, pg. 264] and hence, by [5, IX, proposition 5.7] the spectral sequence converges
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completely to . TotX. Fix an integer n > 0. Then EJ, = 0forp+q=mn,p>0or
p < N,,, and so the filtration of m, TotA induced by the spectral sequence is finite,
giving the strong convergence. (Il

Lemma 2.5. Suppose X™ is ¢ — 1-connected for all n. Then for allv >0, m >0
with c—m < r < oo:
1. The map Tot'“™™/Mx — Tot®/" X induces a surjection
T Tot ™™/ x — 7, Tot /") x.

2. The map Tot ™" x — Tot(’/" X induces a isomorphism

T Tot ™™=V 5 1 Tot /M) x.
Proof. We have the strongly convergent spectral sequence

EPUX) =71 JTotPP DY — 7 Tot®Px; 0<p<b-—1.
By @3), EPY = 7_¢NXP C 7_4XP, so E{"? = 0 for —¢ < ¢. Since E}"? = 0 for
p > b— 1 this implies that E”? = 0 for —p — ¢ < ¢ — b and thus 7, Tot/Yx =0
for s < ¢ —b. Using the homotopy fiber sequence
Tot“™™/Mx — Tot /M x — Tot(*/e=™x

proves (1). Similarly, 7,Tot(*/¢™™ D x = 0 for s < m + 1, and (2) follows by a
similar argument. (I

3. COSIMPLICES AND CUBES

The functors Tot,) are complicated by the mixture of codegeneracies and coface
maps in A; in this section we discuss the reduction of Tot(,) to a homotopy limit
over an associated direct category, namely, a punctured n + 1-cube.

As above, we have the full subcategory AS" of A with objects [¢], 0 < ¢ < n, and
inclusion ¢, : AS" — A. We have the restriction functor tn, : Spes — Spc.ASn
with left adjoint ¢}. We have as well the representable simplicial sets Aln] :=
Homa (—, [n]) and the cosimplicial space A[x], [n] — A[n].

Throughout this section we fix a pointed simplicial model category M; we will
eventually restrict to the case of a stable model category, but the intial portions of

this section do not require this.

Lemma 3.1. Tuke X in M?. There is a natural isomorphism
Tot () X' = Hom(tn« Al*], tnsX);
if X is fibrant, there is a natural weak equivalence

holim 5, X — Tot () X
Asn

Proof. We note that we have a canonical isomorphism of cosimplicial spaces
sk Al%] 22 05 L Al].
Indeed, (sk,A[m])([k]) is the colimit over [k] — [(] € ([k]/AS™)°P of Homa ([/], [m]),
while (¢ Ln A¥])[m]([k]) is the colimit over [(] — [m] € AS"/[m] of Homa ([k], [€]).
Both colimits are equal to the subset of Homa ([k], [m]) consisting of maps that
admit a factorization [k] — [¢] — [m] with £ < n.
This gives us the isomorphism in M

Tot, X := Hom(sk, Alx], X) = Hom (tps A*], trsX).
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For 0 < k < n, the nerve of AS"/[k] is the barycentric subdivision of A[k] and
sending the non-degenerate k-simplex of A[k] to the k-simplex

{0}—— {0, 1) . {0,...,k}

\\

{0,....k}

in AS"/[k] gives an acyclic cofibration a : 1, A[x] — [[k] = NAS"/[K]] in Spc,ASn.
As X is fibrant in M%, it follows that ¢, X is fibrant in MASTL, so « induces the
desired weak equivalence

a” : holim 15, & — Tot(,,) X'
A<n

O

Let O™ be the category associated to the set of subsets of {1,...,n}, with mor-
phisms being inclusions of subsets, and let O the full subcategory of non-empty
subsets. Letting i7 s : J — I denote the morphism associated to an inclusion I C J,
the split n-cube 07 is formed by adjoining morphisms pyr : I — J for each inclusion
J C I, with pg jops1 = px,1 for K C J C I and with pjrusoirusr = i51nsoping1
for I,J C{1,...,n}.

" and Dg“ are both direct categories and 07 is a Reedy category with
(O72)+ = 0" and (O7)_ the subcategory with morphisms ps;. For a model cat-
egory M and for C = DgH,D”,DQ, we give MC the Reedy model structure; as
Dg“ and " are direct categories, this agrees with the projective model structure
in these cases.

Give {1,...,n} the opposite of the standard order. The maps i; j are clearly
order-preserving, so sending I to the ordered set [|I| — 1] by the unique order-
preserving bijection defines a functor

n+1 . n+1 <n
wo AT = A

Similarly, sending I to [|I|] by the unique order-preserving injection which avoids
0 defines a functor

PO — AT
We may extend 9™ to
Pr - Of — AS"

S

as follows: given an inclusion J = {j1 < ... < j.} C I = {i1 < ... < is} C
{1,...,n}, define Y7 (psr) : [[I|] = [|J]] by sending j to £ if j, <1i; < jey1 and to
0 if 4; < j1. These are all functors of Reedy categories.

Take an integer n > 1. We decompose Dg“ into three pieces, by defining 0Oy~
to be the full subcategory with objects I, n ¢ I, 0§t the full subcategory with
objects I, n € I, I # {n} and pt,, := {n} (with identity morphism). We have the
isomorphisms j,, : 08 — 0§, 55 08 — O let j, 0 {1,...,n} = {1,...,n+1}
be the inclusion j,(i) =i for 1 < i < n, jo(n) = n+ 1. j, is just the functor
induced by j,,, and j;* (I) = j,(I)U{n}. Let it : Oy — Op*" and 4, : Op — Op ™!
be the inclusions induced by j and 7, .



THE ADAMS-NOVIKOV SPECTRAL SEQUENCE AND VOEVODSKY’S SLICE TOWER 17

The inclusions I C I U {n} defines a natural transformation a, : i, — i,}}, and

the inclusions {n} C I, I € 0§, define the morphisms S : {n} — ;" (I). For each
X € MY we thus have the diagram in M

holimpy i, & — holimgy i;f, X

B
x({n})

This defines a functor
holim;* 1 : M5
olim, | :
and we have a natural isomorphism in M

holim X" hohm holim; 17 (X).

Dn+1

2
— M

0

In case X({n}) = pt, we have the natural isomorphisms

(3.1) hohgl X hohm holim;’ 17 (X) 2 hofib(a, : h%lim i X = h%lim it X)
0g 03 : 3

Let pif : 0" — 05+ be the functor pt(I) := I U {n + 1}, giving the restriction
functor
pi s MIET 5 T
and the left adjoint p;f* : MP" — MO Explicitly, for X € MP" pt*Xx €

M5 s given by pt* X (pf (1)) = X(I) and pi*X(J) =pt for J C {1,...,n}.
The inclusion p,, : {1,...,n} = {1,...,n+ 1} induces the restriction functor

_ On+1 or

P 2 M0 — Mo

with right adjoint p;' : M50 — M given by pntX(p; (1)) = X(I) and
ot X(J)=ptifn+1elJ.

Finally, the inclusion functor pt,y; : pt — Dg“, ptayi(pt) = {1,...,n + 1}
induces the restriction functor

Phasrs : MET M
with left adjoint pt}, ; : M — MET given explicitly by

X forI={1,...,n+1}
pt  else.

ply 1 (X)) = {

Clearly, pt,+1 factors through p;', giving us the commutative diagram of natural
transformations

ptn+1ptn+1* — pn pn*

U

id
We have the canonical isomorphisms

hohm P X = holim p, ' p, X
Dn+1
and a morphism

Bn : hDoogrpptz_H(X) - Q"X
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that is a weak equivalence if X is fibrant. Indeed, N (Oj*'/{1,...,n + 1}) has
geometric realization homeomorphic to [0, 1]™, where the boundary of [0, 1]™ is the

geometric realization of lim IN(@§t/T)|, the colimit being over I with § # I C
{1,...,n+ 1}. Since

holim pt; 1 (X) = Homa (T3 /{1 m + 11)) lim N (O /1) X)
0 I

a choice of a non-degenerate n-simplex in N'(O05"*/{1,...,n 4 1}) defines a weak
equivalence in Spc,

W:N(Dg+1/{1,...,n+ 1})/@|N(D8+1/I)| — Aln]/0An];
I

this defines the morphism
™ Hompm (N (O /{1, ... n + 1})/lim V(@) X) = Q" X,
I

which is a weak equivalence if X is fibrant. In addition, the morphisms 7 and 7*
are independent up to homotopy of the choice of non-degenerate n-simplex.

For a fibrant X € M55 we have the fiber sequence
P pEA = X =y o X
inducing the homotopy fiber sequence

(3.2) holiglp ot X — holim & — hohm Pk
ar opt
via the evident isomorphism holimgy p;,, X' = holing+1 o' pm.X. All this extends

to spectra in the evident manner.
Let X be in M2, Define NX™ to be the fiber (over the base-point) of the map

X({1,...,n}) Loopreqmy ), I1 X(I)

Ic{1,...n},|I|=n—1

Let X, denote the restriction of X to MD"; we sometimes write X for X5 when the
context makes the meaning clear.
The inclusion NX™ C X({1,...,n}) gives us the morphism

&n hDoglmpt aNar —>hohmp:[*XS

defined as the composition

holimpt;, | NX™ — hohmpthrlX({l .,n})

Dn+1 D
= holim p;} *pt* pt,,. Xs — holim p;* X,
|:|7l+1 n+1
where pt,, : pt — O" is the inclusion with value {1,...,n}.

Lemma 3.2. Suppose M is a stable model category and let € be in M5:. Then
the map

s : * n : + %

n th;ggppthNE —>fé>gllgppn Es
is a weak equivalence in M and induces an isomorphism

& QPNE™ — holimp:{*c‘)S
op+t
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in HoM.

Proof. We may assume that £ is a fibrant. We proceed by induction on n. In
case n = O the map 50 is just the identity map on £(0). In the general case,
let 7,7, 7, : 021 — O be the “top” and “bottom” inclusion functors, given
by the same formulas as pi_, and Prn_1- We have the natural transformations

ﬁn—l :Tn_—l — T 1 and Yn—1 n 1 — T, n—1» defined by Bn 1( ) - Z - (I)C‘rn (D
and (D) = po— (et 1)
‘We have identities
’L;*ng = pjz_ilTn_—l*g
Zrt*p:,g = pszrilT:LL—l*g
(PRE){1,...,n+1}) = pt.

and the commutative diagram

4
pnfl(ﬁ"*l)
Pn 17, 1*54>P:§*1 i 1€

HE it e

n*pn
As pf*E({n}) = pt, this gives us, via ([3]), the isomorphism
hofib(pt*, (B,—1)) = holim % €.
Optt

Write Q"E for hOling+1 pty 1. Assuming the result for n — 1, we have the
commutative diagram

hofib(Q" 1N By 1) —— - IN(r &)1 T N Gty gy

| | -

hollmp+*8—>hohmpn 1T, 1*ST>hohmpn T LE
Dn n—1

with rows homotopy fiber sequences, inducing a weak equivalence

hofib(Q2" "' Na,,) — holim pt*€.
op
Thus, we just need to see that the inclusion i : NE™ — N(7;7,,€)""! induces a

weak equivalence Q" NE™ — hofib(Q" ! Nay,), making the relevant diagram com-

mute.

For this, we note that the map NB,_1: N(7,_,,E)" ! — N(r;_,,&)" 1 is the
restriction of igy . ,_1}cq1,...,n}, hence is split by p := pg1 . n—1ycq1,...,n}- Also,
NE™ is the fiber over the base-point of the map p : N(7,7 )"t — N(7,_.&)" 1

since & is fibrant, the sequence

Tn—1x

NE™ 5 N(rf 1, 8)" 1 & N(ry_,&)" !

Tn—1x
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is a homotopy fiber sequence, with splitting given by N3, _1. This gives rise to the
isomorphism in the triangulated category HoM
N(rr &)t o Nem L2,

n—1x% n—1x

g)n—l

and thereby the desired isomorphism hofib(Q" ' Na,,) = Q" NE™. By construction,
the composition Q"NE™ — Q"NE™ — hOling+1 p*E is equal to &, (in HoM),
completing the proof. O

Proposition 3.3. Suppose M is a stable model category and take € in M*. The
map

n—+1x*
0

holi ot
® : h2151£n tnx€ — hoh+rln 0o tns

n
DO

induced by the functor cng : Dg“ — AS" s g weak equivalence.

Proof. As replacing £ with a fibrant model induces a weak equivalence on the
respective homotopy limits, we may assume that £ is fibrant.
We note that we have natural isomorphisms

holim p;*goglen*é' = holim ¢, tn—1+&

aptt Oz

VLE 2 ph gt i
Applying the homotopy fiber sequence arising from lemma 23] the isomorphism
of lemma Bl and the homotopy fiber sequence [B.2) gives us the commutative
diagram (in HoSpt%/l), with rows homotopy fiber sequences

QP"NE" ———————— holimpa<n € —— holimpa<n—1 ty,—14E

Enl L{%‘“* lwg*

holing+1 prEYPnE —— holimugﬂ ot —— holimpgy pf,tn—1+€

The map &, : Q"NE™ — holing+1 pr* " E is a weak equivalence by lemma
the result then follows by induction. ([l

Ezample 3.4. We let My be one of the model categories discussed below in §
(1) and apply the above results to the stable model category M of symmetric

T-spectra Spt?’MO7 with T = S! or some model of P'. Let £ be a commutative
monoid in Spt?MO. Form the cosimplicial (symmetric) spectrum n s £+

with coface maps given by the appropriate multiplication maps and codegeneracies
by unit maps. Letting £'**! be a fibrant model, we have the isomorphisms in
HoSpt?M“ > HoSpt%/lO

Tot, £ = holim 1, €1 2 holim cp6’+18/\*+1.
A<n Dg+1

Let S € Spt?’M0 be the unit. We have as well the map S = Tot,cS —
Tot, £t induced by the unit map ¢S — £"**t1. Letting £ be the homotopy
cofiber of the unit map S — &, we claim there is a natural isomorphism in SH

Q"ENT = hocofib(S — Tot, £MT).
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Indeed, let [S — 51’\”*1 be the evident n + 1 cube in spectra. The distinguished
triangle S — & — £ — SJ1] gives the isomorphism

Qrrignntl o~ holim p[S — gt
D’Vl
in HoSpt?MO. On the other hand, fill in the punctured n + 1-cube @p &N +1
to an n + 1-cube 4,56’“5 AN+ by inserting pt at the entry @, and similarly extend
S to an n + 1-cube S with value S at § and value pt at I # (). This gives us the
homotopy fiber sequence in (SptZ M”)Dn+2

+ ¢n+15A*+1

pn+1 — anrl[S — g]/\n-{-l — anrlS

Applying hOlimDn+2 and noting the isomorphisms (in HoSpt ' )

Q2 holim pptlentl = holim pn+lgpg+18/\*+l

Dn D’Vl
Qn—i-lg/\n-i-l ~ hDO}an +1[S N 5]/\71—1—1
S 2 holim S

DS+2

gives the distinguished triangle in HoSptE Mo

Qhohm pptlentl o gniignntl 5 holiﬂl pptien i
on
0 0

which yields the desired result.

We consider the case of & = MGL in Spt}(S). For the construction of MGL
we refer the reader to [27]; for the structure as a symmetric monoidal object in
Spt7(S), we cite 23] §2.1]. Applying the above example, we have the distinguished
triangle in SH(S)

———An+1

(3.3) Sg hohm e PTMGLM T 5 Q"MGL — Ss1].

Since f!, is an exact functor, we have the isomorphism in SH(S)

Dn+1

i
holim fi° U IMGLA*H! = ft. hDogiJ{l e IMGL
0

Proposition 3.5. 1. The morphism i, induces an isomorphism

fr/nSs —>hohm T M gpo"'lMGL/\*Jrl

forallm < M <n+1.
2. There is a natural isomorphism

Em/Non ¢ fioynSs = Toty fr MGLN*

form < N < n+ 1, compatible with the maps in the Tot,-tower (for fized m, N
and varying n) and the maps in the slice tower (for fized n and varying m, N ).

Proof. The map Sg — MGL induces an isomorphism s{Ss — s{MGL, and hence
stMGL = 0. As both Sg and MGL are in SH// (), it follows that ff/MGL = MGL,

and thus ffl+1Q"MGLAn+1 ~ O"MGL"""". From this follows

———An—+1

f/NQ"MGL =0form<N<n-+1.
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Applying f,,/n to the distinguished triangle ([3.3) completes the proof of (1).
] For (2), the restriction Ln*ffrﬁNMGLA*‘H is fibrant in HoSptH (S)AS" since
f:?ﬁNMGLA*+1 is a fibrant object in HoSpt3: (S)2. In addition, we have an iso-

morphism in HoSpt: (S)2~"

oA As+1 St AST As+1
Ln*fm/NMGL =+l m/N Ln*MGL *+ .

Thus, we have a canonical isomorphism in SH(.S)

holim S0 e MGLM L = Tot,, F20 MGLA !

Similarly, by proposition [3.3] we have the isomorphism

. <n .t Optt
holim Fyond tneMGLA"H = holi fro/ur ep TTMGL
- 0

in SH(S); together with (1), these isomorphisms yield (2). O

4. DECALAGE

Deligne’s décalage operation [6] (1.3.3)] constructs a new filtration DecF on a
complex K from a given filtration F' on K; this change of filtration has the effect
of accelerating the associated spectral sequence associated to the filtered complex
K. Here we replace the filtered complex K with a cosimplicial spectrum object
together with the tower Tot™). The tower replacing DecF turns out to arise from
a suitable Postnikov tower, where the nth term is formed by applying the functor
of the n — 1-connected cover termwise to the given cosimplicial object. Our main
result in this section is the exact analog of Deligne’s comparison of the spectral
sequences for (K, F') and (K, DecF) [0, proposition 1.3.4].

For the application of this construction to the comparison of the slice and Adams-
Novikov spectral sequence, we need only consider the model categories of simplicial
sets and suspension spectra. However, with an eye to possible future applications,
we will present this section in a somewhat more general setting. We were not
able to formulate a good axiomatic description of the appropriate setting for this
construction, rather, we give a list of examples, which we hope will cover enough
ground to be useful.

We take My to be one of the following pointed closed symmetric monoidal
simplicial model categories:

(4.1)

(1) Spc,, the category of pointed simplicial sets, with the usual model structure

(2) Take C to be a small category, 7 a Grothendieck topology on C and M the
category of Spc,-valued presheaves on C with the injective model structure.

(3) B ascheme, C = Sm/ B, the category of smooth quasi-projective B-schemes
and M the category Spc, (B) with the motivic model structure, that is, the
left Bousfield localization of example (2) with C = Sm/B, 7 the Nisnevich
topology, and the localization with respect to maps X A (A!,0) — pt. As
a variant, one can replace the Nisnevich topology with the étale topology;
we denote this model category by Spc‘ft(B)
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We note that these are all cofibrantly generated, cellular and combinatorial model
categories. In case (2), we recall that the weak equivalences are given via the 7-
homotopy sheaves 77 (X), this being the 7-sheaf associated to the presheaf U —
[X"UL, Xlgom, and in case (3), the weak equivalences are given via the Al-
homotopy sheaves 72" (X), these being similarly defined as the Nisnevich (resp.
étale) sheaf associated to the presheaf U — [E"Uy, X|Hom.

For the stable model categories M := Spt;M, we will use the model structure
induced from Mj by the construction given in [I2, chapter 7]. We take in case
(1) T = S!, giving us the category of suspension spectra, with weak equivalences
the stable weak equivalences. In (2), we take again the category of suspension
spectra, where now T = S! acts through the simplicial structure. We assume
that the weak equivalences are the stable weak equivalences, that is, maps that
induce an isomorphism on the stable homotopy sheaves 75 (&) := h_ng ~N Tt ~(EN)
if £ = (€,&1,...). In case (3), we may take T = S', giving the category of S!-
spectra Sptg: (B) or for the étale version Spti«tl (B). Here the weak equivalences
are the stable weak equivalences, using the A! homotopy sheaves ﬂ'f‘;l in place of
7). These are all cofibrantly generated, cellular, combinatorial stable simplicial M
model categories. If at some point we require the stable category to have a monoidal
model category structure, we will replace the spectrum category with symmetric
spectra.

In all cases, one has for X homotopy objects m,(X), n = 0,1,..., with m, an
abelian group object for n > 2, and a group object for n = 1, so that the {m,,n > 0}
detects weak equivalences, a loops functor X — QX with 7, (QX) = mp41(X), so
that a homotopy fiber sequence induces a long exact sequence in the 7, in the usual
extended sense, a functorial (left) Postnikov tower

oo > o X = ol > = fo X=X

with f,X — X inducing an isomorphism on 7, for m > n and with 7, f, X = {x}
for m < n. Furthermore, for an integer n > 2, there is an Eilenberg-MacLane space
K (A,n) associated to an abelian group (in case (1)) or 7-sheaf of abelian groups
(in case (2)) or strictly Al-invariant sheaf of abelian groups (in case (3)), which is
determined up to unique isomorphism in HoM by the vanishing of 7, K(A4, n) for
m # n and the choice of an isomorphism A = 7, K(A,n).

For the spectrum categories, stabilizing the 7, gives the collection of stable ho-
motopy objects {m,,n € Z} which detect weak equivalences and which are abelian
group objects for all n, one has a functorial (left) Postnikov tower

oo > o1l = € — .. =&

and Eilenberg-MacLane spectrum EM (A, n) for A an abelian group object as above,
and n € Z.

In the sequel, we will treat all these cases simultaneously; we will usually not
need to distinguish between the stable and unstable setting, and will refer to the
model category at hand as M, whether stable or unstable. We will retain the
notation K(A,n) for the Eilenberg-MacLane space in the unstable setting, and
write K (A, n) for the Eilenberg-MacLane spectrum EM (A, n) in the stable case.

We apply the Postnikov tower construction in functor categories, as described in
example [LB(1), to an object X € M?, giving the cosimplicial object f,X € M?:

faX i=m— frX™]
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and the resulting tower
coe = fop1 X = o > L= AL

As the notation suggests, this tower has the property that evaluation at some
[m] € A yields the Postnikov tower for X™.

We will assume that we have a double de-looping Y of X, that is, a weak equiv-
alence of cosimplicial spaces X — Q2)); we will simply replace X with Q2)), so we
may assume that this weak equivalence is an identity. This assumption is of course
fulfilled for all X if we are in the stable case.

Definition 4.1. Fix an integer A and an extended integer B, with 0 < A < B < 0.
Let X be in M2, Applying the functor Tot/B) to the Postnikov tower for X gives
the tower décalé of spaces

(4.2) = TotW B (f18) = Tot A/ B (£,X) — ... — Tot™/B)(x)

Using our chosen de-looping X = Q2Y, let Jrymd& = Qhofib(fri2Y = fri2)).
This gives us the homotopy fiber sequences

fm& = kX = fromd.
The tower ([£2) gives rise to the spectral sequence
(4.3)  EPYDec, X) = m_p_gTot Y B f 1 X = 1, Tot W B x

for 0 < A< B < .

The constructions Tot(™/ k), fq are strictly functorial and natural. In particular,
we have the commutative diagram of natural transformations (for 0 < m < N < oo,
0<p)

Tot(m+1/N) (fpt1(=)) — Tot(m+1/M) (fp(=))

| |

Tot ™/ ™) (fp11(=)) —— Tot ™™ (f,(-))

Define Fm/erl

o/t () to the the homotopy fiber of the map

Tot"™ /M (f13(D)) = Tot"™ ™ (f12(P)).

Note that, up to weak equivalence, F;% T;r '(V) is, as the notation suggests, inde-

pendent of the choice of N. For X = 2, define
(m/m+1) L m/m+1
TOtp/p+1 () = QFP/p—H (V).
As f,, 0 Q is isomorphic to Qo f,, 11 as natural transformations to HoM, this gives
us the commutative diagram

m+1 m—+41

(4.4) Tot ) (f41(X)) = Tot %) (£, (X)) = Tot ) (£ (X))

p+1

+
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with top two rows, the two left-hand columns and the diagonal all homotopy fiber
sequences.

Lemma 4.2. Let p,q be integers with p > 0, and —2p < q < —p. Take N with
2p+q+ 1< N < oo, and consider the diagram

P
[Es

7 g Tot 2 F ) (£, () ey Tot 377 ()

-

Then the map « is an isomorphism and the map 5 is injective.

Proof. Let us first consider the map «. The diagram (4]) gives us the homotopy
fiber sequence
( 2p+q

i) () 25 Tot (R (f

P
1

TotZef1) (f,41(X)) — Tot X)).

2 (
Using the canonical isomorphism in Hae, fn(Q(7)) = Qfni1(T), the isomorphism
Qo Tot(®? =~ Tot(4/%) o O, and the de-looping X = Q2 gives us the isomorphism
in HoM,
Q2 Tot! 5550 (f,4.5()) = Tot =5t (f,11())
which allows us to extend « to a homotopy fiber sequence in HoM
2p+q

ptq o 2p+q 2p+gq
Tot(z)pp”“)(ﬂf‘) 2y Tot! qu)(f# (X)) — QTot(2P+q+1)(fp+3(y)).

p+1

We have by (2.5
QTot(izﬁﬂil)(pr(y)) o~ ()2ptatl pr+3(y2p+q),

hence ﬂ',p,qﬂQTot(hfﬁil)(fp+3(y)) is a subgroup of mpiitefprs(V?PTI). As

Tptitefpr3(Y?PT9)) is zero for € = 0,1, v is an isomorphism.
For 3, we have the homotopy fiber sequence

pia 2p+q
LNH)(fL (X)) = Tot(?““)()() i Tot(—22$$il)(fi (X)).

p+1 L p—1

Tot!

The cosimplicial object f_z_ (X) is weakly equivalent to the cosimplicial Eilenberg-
MacLane object
n i K(my(X"), p)

2ptg+1

hence m Tot! ™ ¥ )(fﬁ (X)) is the cohomology in degree —t of the complex

N7, (X2PFthy o Ny, (X2PF9+2) o N, (AN 1),

concentrated in degrees [p+q+1, N —p—1]. Thus 7T_p_qT0t(2p+1\L71+1 N(fe (X)) =0

. . . . ﬁ
and ( is injective. O

We consider the spectral sequences ([2.7) and [@3) for A =0 and 0 < B < 0.
Take integers p,q with 0 < —p and 0 < 2p + ¢ < B. We have

E"7P(X) = Nmp,X™,;
the Ej-complex E}' " P(X) is the (truncated) normalized complex (shifted to be
supported in degrees d, —p < d < B — p)

0<pNmpsX™ 1= WPXO ... NﬁpX2p+q — NWPX2P+Q+1 ... ﬂ'pXB_l



26 MARC LEVINE
and E3PTO7P = Hrta(EPTP(X).
As fp/p+1(X) is weakly equivalent to the cosimplicial object
m — K(mp,(X™),p)

it follows that EPY(Dec, X) := ﬁ,p,qTot(O/B)fp/pH (X) is HPT9 of the complex
(shifted to be supported in degrees d, —p < d < B —p)

ocpNTpX* := Nmpx® — ..., = Nm, X4 - Nr x%tatt o Np,xB-1

As this complex is equal to E}" P(X), the identity maps on Nm,X* induce the
isomorphism

(4.5) AP0 EP9(Dec, X) — E3PTOTP(X).

Proposition 4.3. Take A = 0, 0 < B < co. The maps [&H) give rise to an
isomorphism of complezes

vl EYY(Dec, X) — B3 T 0TH(X)
and inductively a sequence of isomorphisms
AP4 : EP9(Dec, X) — EXTP7P(X).
which give an isomorphism of complezxes
V" (@p,g ER Y (Dec, X), dy) — (@p,quf-—{q’ P(X), drt1)
for each r > 1.

Proof. The spectral sequence ([2.7)) is the spectral sequence associated to the exact
couple

D1—>D1

AN,

DY =, Tot P/ B (x), EPY =7 ,  Tot®/P)(x),

the maps ¢ : DPTHITY o DP9 and 79 PP 5 EPY induced by the canonical
morphisms

with

Tot P+ B (x) — Tot P/ B) (),
TotP/B)(x) — Tot®/PH1)(x),

respectively, and with 979 : EP? — DPTH9 the boundary map associated to the
homotopy fiber sequence

Tot ™/ B (x) = Tot®/B) (X)) — Tot®/P1) (x).

Similarly, the spectral sequence (@3] arises from the exact couple

Dl Dec Dl Dec

S~ <

El,Dcc
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defined in a similar manner, where we replace Tot®/®) (X)), Tot(pH/ B)(x) and
TotP/PT1) () with Tot™?) f,(x), Tot'”’®) f,,1(X) and Tot /B f, 11 (X). To
prove the result, it suffices to define maps

D4 . TYP:4q 2p+q,—p
0t D — Dj

1,Dec
such that
D pec Dipec D2 — D,
01 01 .
( 7 ) ' \ / \ /
El Dec

defines a map of (reindexed) exact couples.

We recall that Es is the cohomology of the complex (E7,d), with dy = w1 0 0.
Let Zy C Ei be the kernel of d; and note that Zo D m1(D1). By definition,
DY = i (DY) C fol’qﬂ, ia : Dy — Dy is the map induced by i1, the map
o : Dy — E5 is defined by the commutative diagram

772

JAFID Zf -
Dy 77—1>E1

and Oy : Fo — Dy is induced by restricting 9, to Zs, noting that this restriction
sends Zs to i1(D1) C D1, and descends to Fs.
Next, we note that the maps

g Tot P/ Bl p x qTot(O/B)f X
Tot(2p+q/3)f b/p +1X — MT_p—q Tot fp/p-i—lX
wfp7q71T0t(2p+q+2/B)fp+1X - 7"'*;D*qflTOt 0/8) o1&
are surjective and
T pgTot@Pra=1/B) g x o TotO/B) g x
7T_p_qTOt(Zfothk1/B)fp/wl)( — w_p_qTot(O/B)fp/pﬂX
7LZ[HF1T0t(2p+q+1/B)prrlX N 7TﬂDﬂFlT()t(o/ffs)fpﬂ/w(

are isomorphisms, by lemma By considering the commutative diagram
Ty Tt By yp  TotPrraVB g x = o0 TotO/B g x
Ty TotPPr /By 7 Tot(Prra1l/B) y
we arrive at the well-defined map
X 0/B) ¢y ' p2pta—p
DY bec = T—p—qTot fpX — D;

= im[r_,_,Tot®+/Bly 5 7 Tot@rra=l/B) ).
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The identity
12 001 = 61 011 Dec

follows directly.
To show that m3 081 = 71 071 Dec, We consider the diagram (which is well-defined

by lemma [4.2))
(4.6)

pP,q
T1,Dec

Tt OB px 2 Tt OB X

Ty qTotPry/B g w_p_qTot@P:q/ B f pia X

\ Boa ™! 5o

w,p,qTot(szrq/szrqH) foX ED1

D,q
61

W_p_qTot(Qerq/B)X — 7T_p_qTot(szrq/szqurl)X )Z22p+q,_p

Dgp-i-\fz,—p
T1| Doy
The right-hand column may be described explicitly as follows: let
o<pNmX* := [Nm,X° = Nm, &' — ... = Nm, X571

be the (truncated) normalized complex associated to the cosimplicial abelian group
object n — w,X™, shifted to be supported in degrees [—p, B — p — 1]. Then the
right-hand column is the sequence of evident maps

HPH(NmpX*) 4—— ZPH4(NmpX*)— N, X2P+e —— N, X2+
The map 57 is the evident identification of ZPt9(s.gNm,X*) with Z;*+0~?
The commutativity of (@8] follows from this computation and the commutativity
of diagram (4.4)). Since my = 7 o my|p,, this shows that m 0 61 =71 0 71 Dec-

For the remaining identity d; 0 y1 = 1 0 91, we extract from the diagram (€4)
a commutative diagram (in M) with rows being homotopy fiber sequences

Tot ™5 ) £, — Tot 5™ f,& — Tot (= at) f,x
B
PT4q PT4a 2p+q
TotF ) f, ¥ — 5 TotF ) f 00— Tot(i’““))(
+
Tot* 5 £, X — Tot( B q>pr.
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This gives us the commutative diagram
2p+q o 2ptg+1
T pgTotlmrely — 2 p Tty
5 5
2p+ a% 2p+q+1
pPTq prPtq pPT4q
ﬂ',p,qTot(%ﬂH)pr ﬂ',p,q,lTot( B )pr
B J
(2p+q ) 5
o 2p+g+1
T p—qTot T X —2 sn o aTot T ) f, X
al~ ~|a
(QP};’Q) (QP};’Q)
WfpquOt f# X m WfpqulTOt fp+1X
|~ ~| e
(%) (%)
F_p_qTOt B fﬁXWﬂ-—P—q—lTOt B fp_;,_lX.
The map 9, is induced from 9, the map &, is induced from dojod Lo @1 (noting
that this latter map has image in D3?T4"> 771 and 4 = 5o foa "t o™ ! (as

we have noted above). This gives the identity d2 o 1 = 1 © 91 Dec, completing the
proof. (I

Remark 4.4. Proposition may be viewed as a homotopy-theoretic analog of a
special case of Deligne’s result [6, proposition 1.3.4]. Indeed, let K** be a double
complex and let K* be the associated (extended) total complex
K= [ K.
a+b=n
Give K™ the filtration by taking the stupid filtration in the first variable, that

is, (F"K)" = [lotpn.a>m K% Then Deligne’s filtration Dec™ K* is given by
Dec™ K™ =[], p—rn, Dec™ K*" with
Kb for b < —m
Dec™ K" = {0 for b > —m
ker(Qy : K»~™ — K%~™m+1)  for b =m.

That is, Dec™ K* is the extended total complex of the double complex
(Ka)*a 62)7

being the canonical subcomplex of a complex C*.

a— T

can *
T<_m

CIf Kb = 0 for a < 0, we may use the Dold-Kan correspondence to give a
cosimplicial object in complexes

n— K™*

such that K** = NK%* as complexes, and the differential 9; : K%0 — Kotlb
is the differential NK®* — NK%t1* given as the usual alternating sum of co-
face maps. If we let EM K%* be the Eilenberg-MacLane spectrum associated to
the complex K%*, then Tot[n — EMK™*| is the Eilenberg-MacLane spectrum
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associated to TotK*, the tower Tot™)[n — EMK™*] is the tower associated to
the filtration F*K*, and the tower Tot[n — f,EMK™*] is associated to Dec*K.
Furthermore, the spectral sequences (2.7) and (3] are the same as the ones asso-
ciated to the filtered complex F*K and Dec* K, respectively, and the isomorphism
of Proposition @3] is the same as that of [0 proposition 1.3.4]. The proof given here
is considerably more involved than that in [6], due to the fact that one could not
simply compute with elements as was possible in the setting of filtered complexes.

5. THE ADAMS-NOVIKOV SPECTRAL SEQUENCE

For £ = Sy, the motivic sphere spectrum and k an algebraically closed field with
an embedding ¢ : £ — C, the Betti realization of the slice tower for Sj gives a
tower in SH

el Rea’f,,tl_i_lSk — Regf:;Sk — .. RengtSk = S,

where S is the usual sphere spectrum in SH, with nth layer equal to Re, st Sy. This
gives the spectral sequence

EYUAH) =7__gRegs' Si(k) = HP Uk, 7" (—q) = 7_p_¢S;

we have shown in [16] theorem 4] that this spectral sequence is strongly convergent.
In addition, we have identified EY?(AH)" with an Fs term of the Adams-Novikov
spectral sequence for S:

EPY(AH) =~ EV-9?1(AN).

Our purpose in this section is to show that the spectral sequence E(AH) agrees
with the Adams-Novikov spectral sequence, after a suitable reindexing.

In principle, the argument should go like this: Let MU be a strict monoid ob-
ject in symmetric spectra representing the usual MU in SH. Let MNUA*Jrl be
the cosimplicial (symmetric) spectrum n +— MU with the ith co-face map
inserting the unit map in ith spot, and the ith co-degeneracy map taking the
product of the ith and i + 1st factors. The Adams-Novikov spectral sequence is

just the spectral sequence (2.6) associated to the cosimplicial symmetric spectrum
~ Ax+1 P2 +1 .. .. . ..
MU, Let MGL"™™" be the motivic analog, giving us a cosimplicial T-spectrum

n — MCLAHH, with co-face and co-degeneracy maps defined as for MU, One
could hope to have a “total T-spectrum functor” Tot : Spty(k)® — Spt,(k) and
weak equivalences

S =~ TotMGL

L LiSE = TotsMGL™
inry AL . .. tn gy AL . :
where fyMGL is the cosimplicial spectrum n — f;MGL , using a suitable
functorial model f! in Spty(k).
The layers of MGLAWrl for the slice filtration are known, and one can show that
the Betti realization ]*26,,5;571\/[GLMJrl is just f2p/2p+1MUA"+1. Thus, one could

hope to have an isomorphism in HoSptA
Reo fMGL ™ = £y, MU 2 g MU

After changing the F5 Atiyah-Hirzebruch spectral sequence to an E; spectral
sequence
EYY(AH) = Wfpfq,O(SZSk)(k) = T_p—q,05,
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we would then have an isomorphism
EPY(AH) = E*7P(Dec, MU™)

leading to the isomorphisms

EP9(AH) 2 B2 (Dee, MU

T

) = E2P97P(Dec, MU™)
and corresponding isomorphisms of complexes.
Using proposition 3] (for spectra) would then give the sequence of isomorphisms
EPI(AH) = Byl {7 " (AN)

and corresponding isomorphisms of complexes. This would then give the isomor-
phisms
EP9(AH) = EY %*(AN).
for all » > 2.
We prefer to avoid the technical problems arising from the compatibility of the
Betti realization with the functor Tot, and with verifying that S — TotMGLMJrl

|
is an isomorphism; instead we work with the approximations Tot,) MGL 1 and

Tot(n)l\/fUA*H. These will suffice to give the desired isomorphisms of complexes,
by simply taking n sufficiently large and using proposition to show that the

truncation Tot(n)MGLA*Jr1 approximates S sufficiently well with respect to the
slice tower. We drop the ~ from the notation, considering both MU and MGL as
objects in the appropriate category of symmetric spectra.

We have the cosimplicial objects

MGLMT! € Spti (k)®, MUMT! € (Spt™)2,
giving us the punctured n-cubes
P PIMGLY ! € Spt ()70, o MU e (spt™) T
As the Betti realization of MGL is isomorphic to MU and Rep is a monoidal functor,
we have the isomorphism in Ho(SptE)E’g+1
n+1
Re? opMGLA* ! o grb INUAH1,
Our main task is to identify the tower

Dn+1 Dn+17t Dn+1 Dn+17t
oo Reg® [0 o 'MGLM T = Rep® fn® opt'MGLAT

Dn+1
—...— Rep® oy "MGLM T

As notation, for £ € Spty(k), I = (i1,...,4,) an index with 0 < i; € Z,
by = bl -...-br a monomial, with b; of degree n;, we define & - by := E‘TI‘E, where
11| := 3%y nj-ij. More generally, if {b%} is a set of variables, i = 1,...m, with
some assigned positive integral degrees, we let & [{b; }] denote the coproduct of the
EBY .. b

Lemma 5.1. We have an isomorphism of left MGL-modules
MGLM™ Y = MGLBLY, ... b0

where ij) is the collection of variables bgj), bgj), ..., with b%j) of degree n.
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Proof. Tt clearly suffices to handle the case m = 1. For this, [2Il lemma 6.2]
gives us elements b, € w2, ,(MGL A MGL) giving rise to an isomorphism of left
74 «MGL-modules

o (MGL A MGL) 2 7, ,MGL[by, bs, .. ].
For each monomial by in by, b, ..., we view by € my 7, ;;(MGL A MGL) as a map

by : E‘TI‘S;C — MGL A MGL; using the product in MGL, this gives us the left
MGL-map
9= by : &7 MGL — MGL A MGL.
I

Now, MGL is stably cellular [7, theorem 6.4] hence GBIElTIlMGL and MGLAMGL are
stably cellular (the second assertion follows from [7, lemma 3.4]). Clearly ¢ induces
an isomorphism on 7w, for all a, b, hence by [7, corollary 7.2] ¢ is an isomorphism

in SH(k). O

Lemma 5.2. 1. For all n,m >0, Reg(ft MGL ™) is 2n — 1 connected.
2. The map
fonRep(f, MGLN") = fon, Reg(MGL™ )

induced by the natural transformation fi — id and the map
fonRep(fEMGLY™ ) — Rep(fi MGL ™)

induced by the natural transformation fo, — id are weak equivalences.
3. The map
n+1 n+1 n+1 n4+1
f50 Rem (fu top MGLMTY) o f59° Repppt MGLNH

)

n+
induced by the natural transformation an o ' 5 id and the map

n+1 n+1
D0 DO

DS+1
o Rep

n41 n41
(n® "R MO ) = RS (£ pp T MGL)

n+1
induced by the natural transformation fQDnO — id are weak equivalences.

Proof. Tt follows from Morel’s A'-connectedness theorem [19] that 7,44 s MGL,, = 0
for a < 2n, b > 0. Thus the stable homotopy sheaves 744 MGL are zero for
a < 0, that is, MGL is topologically -1 connected. By [17, proposition 3.2] fiMGL
is also topologically -1 connected, hence by [I8, theorem 5.2] Rep(fiMGL) is n—1-
connected for all n > 0.

We have an isomorphism (of left MGL-modules)

(5.1) MGLMH =, slvaL

.....

from which it follows that f,‘;MGL/\m‘Irl is topologically -1 connected and that
RerflMGLAm‘Irl is n — 1 connected for all n > 0. Thus the tower

... = Repfh i MGLM ! — Rep fAMGL ! — ... — Rep fEMGL/ ™!

is strongly convergent. As both f% and Rep are exact functors, the £th layer in this
tower is ReBs’;HMGLAmH, so to prove (1), it suffices to show that ReBs’;HMGLAmH
is 2n — 1-connected for all £ > 0.

By the Hopkins-Morel-Hoyois theorem [10, [13] and the above computation of
MGLA™ ! sy MGLA™ " is a finite coproduct of copies of SNMZ, where MZ
is the motivic Eilenberg-MacLane spectrum representing motivic cohomology. In
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addition, Reg(MZ) = EM(Z), hence RepsyMGL"*! is a finite coproduct of
copies of L2V EM (Z), and is thus 2N — 1-connected.
For (2), applying Rep to the decomposition ([B.1I) gives

Rep(MGL ™) 2 o 221 M
since f{oXpr 2 Yo ft_ | and f,, 0¥ 2 Yo f,,_1, this reduces the proof of (2) to
the case m = 0. Since
RepstyMGL = 22N EM(Z) @ MU 2V
the strongly convergent spectral sequences
EY? =7_,_gRepsy)MGL = m_,_,RepMGL
and
Ef’q = w,p,qReBs;MGL — W,p,qRerflMGL

degenerate at 7 and show that m,, Rep fi MGL — 7, RegMGL is an isomorphism
for m > 2n and 7, Rep fLMGL = 0 for m < 2n. Thus Rep f:MGL — RegMGL =
MU is isomorphic (in SH) to the 2n — 1-connected cover of MU, proving (2).

(3) follows immediately from (2), by the definition of the weak equivalences in
the functor category MS. ([

We can now prove our main result:

Proof of theorem[1. Denote the spectral sequence (27) for fixed A < B and cosim-
plicial spectrum & as E(E; A, B). The Adams-Novikov spectral sequence may be
constructed as the spectral sequence associated to the cosimplicial spectrum

n— MU,
that is, the spectral sequence E(MU"**1;0,00). For A = 0, B < oo, we have
Er9(FE;0,B) = EPY(E;0,00), and similarly for the differentials, in a range that
goes to infinity in p,q,r as B — oc.

Letting E(Dec, &£; A, B) similarly denote the spectral sequence ([£3)) for given val-
ues of A < B and cosimplicial spectrum &, we have a similar comparison statement
for the spectral sequences E(Dec, MU' A B), A < B < .

For k C K an extension of algebraically closed fields, the base extension induces
an isomorphism of spectral sequence E(AH) for k and E(AH) for K; this follows
from e.g. [I8, theorem 8.3]. Thus, we may assume that k admits an embedding
into C, giving the associated Betti realization functor

Rep : SH(k) — SH.
By lemma and proposition B3] we have an isomorphism in SH
Rep(Tot /P £l MGL 1) 2 Tot %/ P) f, o, MU

for all a < b, including b = oo, compatible with respect to the maps in the slice
tower for MGL"*™! and the Postnikov tower for MU', Furthermore, by propo-
sition [3.5] this gives us an isomorphism in SH

Rep(fs,Sk) = Tot "/ ®) fo oMU

compatible with respect to change in a and b. Thus, we have an isomorphism of
the spectral sequence associated to the tower

R RGB(frtLJrlSk) — RGB(frtLSk) A 4 ReB(fSSk) =S
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and the one associated to the tower

<. = Tot fo oMUMTY 5 Tot fo,, MUM T —

— Tot foMUMT = TotMUM L,

Since all the odd homotopy groups of MU vanish, this latter spectral sequence

is just F(Dec, MU 0, 00), except with a reindexing.
By [18| proposition 6.4], the functor Rep induces an isomorphism

,0(87,Sk)) (k) = 7 (Re g (s7,Sk))
for all n and m. In addition, the tower
o Sk = fESE = =[Sk =Sk
and its Betti realization
... = Repfl 1Sk — Repf},Sk — ... = RepfiSk =S

yield strongly convergent spectral sequences ([I6, theorem 4], [I8, proof of theorem
6.7])

EP =1y q0(sySi) (k) = 7—pq.o(f4/S) (k)
and

EVY =m_,_qRep(s.Sp) = WfpqueB(f;/bSk)

and thus the functor Rep induces an isomorphism

Tn,0(fa/sSk) (k) = 70 (Re(f; /4Sk))

for all n and all @ < b < o0.

Putting these two pieces together, the Betti realization functor gives an isomor-
phism of the spectral sequence E(AH) with the spectral sequence E(Dec, MU™*11),
after a suitable reindexing. Explicitly, this gives

EPY(AH) = E{P7P(Dec, MUN ) = E3P7P(Dec, MU H1);

the terms EP(Dec, MU*T!) with p odd are all zero, and by induction, we have
isomorphisms

EPU(AH) = E3P7P(Dec, MU )
commuting with the differentials d,.(AH) and da,(Dec). Combined with the iso-
morphisms of proposition [£.3]

W04 BPI(Dec, £) = BRIV (E)
completes the proof. O
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