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 TRANSACTIONS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 276, Number 2, April 1983

 STEENROD AND DYER-LASHOF OPERATIONS ON BU

 BY

 TIMOTHY LANCE1

 ABSTRACT. This paper describes a simple, fast algorithm for the computation of
 Steenrod and Dyer-Lashof operations on BU. The calculations are carried out

 in H*(BU, Z(P)) and H*(BU, Z(P)) where p local lifts are determined by the
 values on primitives and Cartan formulas. This algorithm also provides a

 description of Steenrod and Dyer-Lashof operations on the fiber of any H map

 (or infinite loop map) BU -- BU, and applications to the classifying spaces of
 surgery which arise in this fashion will appear shortly.

 1. Introduction. This paper describes a simple, fast algorithm for the computation

 of Steenrod and Dyer-Lashof operations on BU. The calculation is made by lifting

 to cohomology and homology with coefficients in Z (p), the integers localized at p,
 where polynomial bases can be defined directly in terms of the primitives. These

 bases occur naturally in the study of the fibers of H mapsf: BU -+ BU, and applica-
 tions of this work in the computation of the bordism and description of the geometry

 of the classifying spaces of surgery which arise in this fashion will appear shortly.

 For convenience we assume throughout that p is an odd prime, although the same

 arguments work for p = 2 with minor modifications. Let {dei de2 ** } and {Cel

 Ce2, ... } denote the usual bases for the primitives in H*(BU, Z(p)) and H*(BU, Z(p)),
 respectively. For example, den is dual in the basis of monomials to the nth Chern

 class cn.

 Let Tk(to, tl, * , tk) = tpk + ptPk1 + * + pktk be the kth Witt polynomial.
 Using the Waring formula for the primitives and some elementary number theory

 of multinomial coefficients we show that the equations

 denpk = Tk(an, O an, 1, * * * an, k)

 and

 Cen k = Tk(a*o, a* * * a*lk)

 inductively define bases {an, k} and {a*k} for H*(BU, Z(p)) and H*(BU, Z(p)), re-
 spectively, where n ranges over the positive integers which are prime to p and k > 0.

 Our general approach is to use the above formulas to define maps of polynomial al-

 gebras with the correct values on primitives, and then check that the maps are indeed

 well defined for Z(p) coefficients and have the desired mod p reductions. For the
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 498 TIMOTHY LANCE

 Steenrod operations we obtain the following (where (a) equals the binomial coeffi-
 cient if 0 < b < a and 0 otherwise).

 THEOREM 1. There is a map of polynomial algebras P = PO + pl +

 H*(BU, Z (p)) -- H*(BU, Z (p)) defined inductively for n prime to p and k > 0 by

 j(npk) Cepk+s( 1) = Tk(Pa* O, * , Pa*)

 The component homomorphisms Ps: Hm(BU, Z(p) Hm+2s (P-1)(BU, Z(p)) reduce
 mod p to Steenrod operations. Dually, there is a map P* = PO + Pl +
 H*(BU, Z (p)) -- H*(BU, Z (p)) of polynomial algebras defined inductively by

 E (n 5 ) np k - S (p ) denpk-s(pI) = Tk(P*an,o, .. ., P*an, k)

 where the component maps Ps: Hm(BU, Z(p)) - Hm-2s(pl)(BU, Z (p)) reduce mod p
 to the dual Steenrod operations.

 The proof is quite easy thanks to a result of Borel and Serre [3] giving Ps(Cn) as an
 integral polynomial on the Chern classes defined by its effect on elementary symmetric

 functions.

 THEOREM 2. There is a ring homomorphism Q = QO + Q1 + H*(BU, Z(p))
 H**(BU, Z (p)) defined inductively for n prime top and k > 0 by

 ( - I )n+r p - 1 denpk+r(p-1) = Tk(Qan,o, *Qan,

 The component maps Qn: Hm(BU, Z (p)) -+ Hm+2r (p-)(BU, Z (p)) reduce modulo p to the
 Dyer-Lashof operations.

 Here H**(BU, Z (p)) denotes the ring of formal series XO + X1 + X2 + * with
 Xi e H2j(BU, Z (p)). For the proof we must rely on Kochman's [8] computation of
 Qr(dem) to define our lift, and then check that its mod p reduction satisfies the condi-

 tions of his algorithm. The hardest verification is of the Nishida relations; the proof

 makes use of the particular lift Ps defined above and a monstrous identity involving
 binomial coefficients whose proof was supplied by Leonard Carlitz.

 The construction of the lifted map Q requires only that it is a ring homomorphism

 with the right values on primitives. Hence by working p locally instead of mod p the

 list of necessary properties in Kochman's algorithm ([8, Theorem 97] or Theorem 4.1

 in this paper) can be trimmed substantially.

 COROLLARY. There is an algorithm for computing the p-local lift Qr: Hm(BU, Z (p))
 Hm+2r (p-i) (BU, Z (p) of the Dyer-Lashof operation using the following properties:

 (1) Qr is linear for all r > 0.

 (2) Qr(xy) = (Qix)(Qr-iy)for all r > 0.

 (3) Qr(dem) = (tm)dem+r(pl) for r > 0, m > 0.

 Several spaces of geometric interest, such as Im(J) or the factor N of PL/O with
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 STEENROD AND DYER-LASHOF OPERATIONS ON BU 499

 Xlr(N) equal to the p torsion in bPk+l, are defined as the fibers of p local H maps

 f: BU -+ BU. Such maps are studied in [9], and a simple description of the cohomology
 of the fiber F is given in terms of the basis elements a *k and their suspensions. In [11]

 the algorithm of Theorem 1 is then applied in an Adams spectral sequence computa-

 tion of the complex bordism of N and the spaces in its Postnikov tower. Iff is an

 infinite loop map then Theorem 2 provides a similar description of the Dyer-Lashof

 operations on F. This is exploited in [10], particularly in the construction of smooth-

 ings classified by N.

 A number of detailed calculations of these operations on BO and BU have already

 appeared. Brown, Peterson, and Davis have some partial descriptions of the Steenrod

 operations in [4, 5], while in [17] Peterson obtains a formula for Ps(Cn) in terms of
 Chern classes and certain symmetric polynomials. Closed formulas for the Dyer-

 Lashof operations have been obtained by Priddy [18] for p = 2 and D. Moore [15]

 for p > 2 extending some low dimensional computations of Kochman [8]. Shay [20]

 constructs integral lifts of both families of operations, deriving closed expressions

 using the Newton and Waring formulae. The algorithms above also yield closed

 formulas in terms of the bases {an, j} and {a*, j which are relatively efficient; Qr(an k),

 for example, is a polynomial of < (r - mpk + y)Pk terms. All of these formulas,
 however, are complicated and difficult to work with. For the applications in [10, 11]
 it is essential to have the simple recursive description of P and Q above.

 I would like to thank Stewart Priddy and Stan Kochman for very helpful comments

 about this work. I am indebted to Leonard Carlitz for providing a proof of Proposi-

 tion 5.3 when I had despaired of ever finding one. Finally, it is a pleasure to thank

 Peter May for asking the question which led to this research and for his help and

 encouragement.

 2. Witt polynomials and the homology of classifying spaces. Given indeterminants

 to, t1, ... and a fixed odd prime p we define the kth Witt polynomial at p by

 Tk(t) = tpk + ptpk1 * + +pktk

 where we abbreviate t = (to, t1, .. .). Classically, these polynomials were used to
 invert functors which one might not have suspected were invertible [2]. For us their

 usefulness stems from the following p-integrality result, where R denotes either the

 integers or a p-local ring and tP = (to, tp, ..

 2.1. LEMMA. Let go, gl, g2, ... be polynomials or formal power series in to, tl, ...
 with coefficients in R such that gk(t) gk}l(tP) mod pk, k = 1, 2, . Then the equa-
 tions

 gk(t) = Tk(qO(t), q(t), * * *, fk(t))

 inductively define polynomials or formal series with coefficients in R.

 PROOF. Since (po = go, we suppose inductively that .po, . . , Pk-, are polynomials
 in R for some k > 0. But Tk(t) = Tk_l(tP) + pktk, so we must verify that gk(t) -
 Tk-1((o(t0))P, . . ., ((Pk-1(t))P) vanishes mod pk.
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 500 TIMOTHY LANCE

 Evidently the polynomials ((pj(t))P and pj(tP) are congruent mod p. Applying the
 binomial theorem inductively it follows that (/j(t))Pj+1 and ((oj(tP))Pi are congruent
 mod pj+l. Consequently,

 Tk-1((0(t))***X, (ok-1(t))P) Tk 1(0(tP), * (P * kq-(tP)) mod pk

 But gk-l(t) = Tk l(q(t), * *., -1(0)) by definition, and so

 gk-l(tP) = Tk-(PO(t.)X * Xk-1(tA))

 The lemma now follows from the congruence gk(t) gk}l(tP) mod pk. El
 We use this to describe a p local decomposition of the homology and cohomology

 of BU. Recall that H*(BU, R) is a polynomial Hopf algebra R[cl, c2, ...] on the
 universal Chern classes whose coproduct, coming from the Whitney sum map a,u

 is given by SU*cn = ci (0 cn-j. If dn e H2"(BU, R) is dual (in the basis of monomials)
 to Cn, then the correspondence cn + dn defines an isomorphism of Hopf algebras

 H*(BU, R) -+ H*(BU, R).
 For any n-tuple of nonnegative integers a (=i, .(., an) of weight w(a) = al +

 2ca2 + * **+ natn let ca = cot ..* can E H2w(a)(BU, Z(p)) and da = dal ... dann E
 H2w(a)(BU, Z(p)) denote the cup and Pontrjagin products, respectively. Denote the

 classes dual (in the basis of monomials) to ca and da by da and ca, respectively. We

 describe these classes directly. Let part (a) denote the partition I = il, . . ., i4 of w(a)

 in which the number j appears exactly aj times, and define SI to be the unique poly-
 nomial satisfying S1(a1, ..., o'(a)) = tf' *-- tri where O,, 2, ... are the
 elementary symmetric polynomials in t1, ..., tM, m > w(a) (we follow the notation
 of [14, p. 188]). Then by a straightforward generalization of arguments in [12] we
 obtain the following.

 2.2. LEMMA. C = Spart(a) (C1, ..., C2w(a)) with coproduct

 / *Ca = E Cct1 (D Ca2.
 al+a2=a

 The primitives of H*(BU, R) are generated as an R module by ce1, Ce2, ... where
 en = (0, 0, ..., 0, 1) is the nth unit vector. These are given explicitly by the Waring
 formula

 Cen = Sn(C1, * ** Cn) = E ( 1)ea 1 {a} Ca
 w(a)=n cal

 where lal = al + a2 + *. + an and {a} = jal !/(al! ... an!). The corresponding
 statements about da and den are also true.

 2.3. THEOREM [7, 9]. For any p local ring R and n prime to p the equations

 Cenpk = Tk(a* * *, a, k)

 and

 denpk = Tk(an, O I * * an, k)

 inductively define elements a",* e H2nPA(BU, R) and a", k E H2n1,(BU, R). If A* denotes
 the polynomial Hopf algebra R[a*, 0, a*, 1, ...] and A = R[a",0, a",i, .. .], then there
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 STEENROD AND DYER-LASHOF OPERATIONS ON BU 501

 are canonical isomorphisms of Hopf algebras

 H*(BU, R) ? A*
 n Prime to p

 and

 H* (BU, R) ( )An-
 n Prime to p

 PROOF. We first check that an, k is p-integral. By Lemmas 2.1 and 2.2 it suffices to
 show that

 Snpk(dl, ..., dnpk) - Snpk-l(dj, *.., dtpk-1)

 vanishes mod pk. But for any a of weight npk with some entry prime to p the coefficient

 of da is given by the Waring formula as +npk{a}/IaI, and {a}/lIal is p integral by

 Proposition 5.1. If a = pp, then the coefficient of da is +npk-{pp} - {P})/IPI
 (apply Lemma 2.2 twice). But ({pP} - {P})/IPI is p divisible in Z(p) by Proposition

 5.2, so a, k is well defined. Since a., k = ndpk + decomposables by the Waring for-
 mula again, for any p local R the elements an, k with n prime to p and k > 0 form a
 polynomial basis of H*(BU, R).

 Note that An 0 Q is clearly a sub Hopf algebra of H*(BU, Q) since both are
 primitively generated, and hence An is a sub Hopf algebra of the torsion free
 H*(BU, Z(p)). It follows that the map above is an isomorphism of Hopf algebras.
 The proof for cohomology is the same. El

 The subalgebras An and A* are in fact isomorphic bipolynomial Hopf algebras.

 Identify H*(BU, Z(p)) with the dual of H*(BU, Z(p)) and give the latter free Z(p)
 module the basis of all monomials in the elements an, j for n prime to p and j > 0.
 The dual of any element of An lies in A*; for example, ((- l)n+lln)Cenpk is dual to
 an, k. The correspondence a", j a"* defines an isomorphism of Hopf algebras.

 3. Lifting the Steenrod operations. Let Ps: Hq(X, Z/p) -+ Hq+2s(P-l) (X, Z/p) denote
 the Steenrod reduced pth powers with dual operations

 P*: Hq+2s(p-l)(X, Z/p) -+ Hq(X, Z/p)

 (i.e. Ps = Hom(Ps, 1) where

 H*(X, Zlp) = Homzip(H*(X, Z/p), Z/p)).

 For X = BU Borel and Serre described the action of ps as follows.

 3.1. THEOREM [3]. PsCn = Spart(n-s, O...0, S) (c1, I Cn+S (P-1)) (the s is in the pth posi-
 tion).

 This is usually treated as a mod p formula and in principle determines ps on

 H*(BU, Zlp) because of the Cartan formula. In what follows we regard Theorem
 3.1 as an integral lift of the Steenrod operation on Cn and examine its p local prop-
 erties. In particular, we assume all calculations are carried out in H*(BU, Z (p)).
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 3.2. COROLLARY.

 Psc n + s(p - 1) c ) + decomposables.

 PROOF. The fundamental symmetry principle of symmetrical algebra [13, Volume 1]

 states that, given a, p of equal weight, the coefficient of ca in Spart(p)(c) equals the

 coefficient of c: in Spart(a)(c). In particular, the coefficient of Cn+s(p(-) in Ps(c,) equals
 that o?f C77SC in Sf+s(p-l)(c). By Lemma 2.2 this equals [(n + s(p - 1))/n](n). O

 Note that this result agrees modulo p with Brown and Peterson's Psc,=
 (8Sl)cn+s(p-l) + decomposables [4] (and dually with Kochman's Lemma 96 in [8]).
 Their formula, however, cannot be satisfied integrally by any family of lifts

 Ps: H*(BU, Z(p)) -4 H*(BU, Z(p))

 which send primitives to primitives and satisfy the Cartan formula. If such lifts do

 exist and satisfy Corollary 3.2 then Ps(Ce,) = (n)Cen+s(p_1) since Cen = (- )n+lncg +
 decomposables by Lemma 2.2. We use this to construct the desired lift.

 3.3. THEOREM. There is a map of polynomial algebras P = PO + p1 + ...

 H*(BU, Z (p)) -- H*(BU, Z (p)) defined inductively for n prime to p and k ? 0 by

 n(ni9) CeTpk+s(pl) k(PaP,o a * , a,k)

 The component homomorphisms

 Ps: Hm(BU, Z(p)) Hm+2s(P-l)(BU, Z(p))

 satisfy multiplicative and comultiplicative Cartan formulae, vanish if 2s > m, are
 given on the Chern classes by Theorem 3.1, and reduce mod p to the Steenrod operations.

 The comultiplicative Cartan formula (or co-Cartan formula) states that Ps/i*x =

 L E(Pix') 0 (Ps-ix") where ,u*x = Ex' 0 x" and follows modulo p by naturality
 and the Cartan formula. The Adem relations seem to be an intrinsically mod p result

 and do not lift to Z (p) coefficients.
 PROOF. We first check that P is well defined. By Theorem 2.3 we may write the

 degreej term of

 E (n)Cenpk +S(pl)

 as a polynomial cFk, j(a) where a denotes the sequence, ordered by degree, of poly-
 nomial generators a*,i for m prime to p and i > 0. By Lemma 2.1 it suffices to show

 that cFk, j(a) vanishes mod pk if j is prime to p, and cFk, j(a) (Dk-1, j1p(aP) mod pk
 when p divides j.

 Since

 Fk, ((a) S ) cepk +s(pl)

 with s prime to p when j is, the first requirement follows by Proposition 5.1. Thus

 suppose pi is the highest power of p dividing j for some i > 0, and set m = jlpi,
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 STEENROD AND DYER-LASHOF OPERATIONS ON BU 503

 = npk + s(p -1), and am = (am, o, am, 1, . ). Then

 (Dk, ,(a) - 4k-1, j1p(aP)

 =(nSk) (Tiam) T ((aP)) + ((nT) (nSpl)) i(aPm).

 But

 (S) (S/P) modpk

 by Proposition 5.2, while Ti(a) - Ti_(aP) = piam, i. If i > k we are done, and if
 i < k then pi exactly divides s (i.e. no higher power divides it) so that

 (nPk) - 0 mod pk-i

 by Proposition 5.2.

 Since P is a map of polynomial algebras, the component maps Ps: Hm(BU, Z (p))

 Hm+2s (P-1) (BU, Z (p)) satisfy the Cartan formula. By convention (nP) = 0 if s > npk
 so that Ps vanishes for s > m. To verify the co-Cartan formula and the value of

 ps on ce let P = P0 + P1 + * * denote the map of polynomial algebras given on
 the Chern classes by Theorem 3.1. We show that P = P by checking that they agree

 on primitives. But by Theorem 3.1 and Lemma 2.2

 It*Pcn = Al*c (n-s, O_., 0, s)

 = E C(s1, 0, ..., 0, i) ( C(n-i-s2, 0, ..., 0, S2)
 Sl, S2,

 = E PCi ( PCn-i,

 If follows that ,u*P = (P 0 P),u* (that is, P satisfies the co-Cartan formula) and hence

 that P sends primitives to primitives. Using Lemma 2.2 and Corollary 3.2 it follows

 that PsCen = (Sn)Cen+s(p_j) = PsCen, and hence P = P. LI
 By dualizing we obtain a lift of the Steenrod homology operations Ps. This par-

 ticular lift will be crucial in determining that the maps constructed in the next section

 actually reduce modulo p to the Dyer-Lashof operations.

 3.4. THEOREM. There is a mapping of polynomial algebras P* = PO + P' +
 H*(BU, Z (p)) -+ H*(BU, Z (p)) defined inductively for n prime to p and k > 0 by

 (0 - S ) npk - S(p-1) denp s(p-l) = Tk(P*an, o * , P*an k)-

 The component maps Ps: Hm(BU, Z(p)) -+ Hm-2s(p-i)(BU, Z(p)) satisfy multipli-
 cative and comultiplicative Cartan formulae and reduce mod p to the dual Steenrod

 operations. In fact, Ps = Hom(Ps, 1) under the identification H*(BU, Z(p)) =

 Hom z(P,)(H*(BU, Z (p)), Z(p)).

 PROOF. P* is shown to be well defined exactly as in the proof of Theorem 3.3. By
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 Corollary 3.2 and Theorem 3.3 the dual of the Z (p) lift of P constructed in Theorem

 3.3 is a map of polynomial Hopf algebras which agrees with P* on the primitives
 and hence equals it. [1

 4. Dyer-Lashof operations on BU. For any infinite loop space Xlet Qr: Hm(X, Z/p)

 Hm+2r(pl)(X, Z/p) denote the Dyer-Lashof operation. In constructing a lift to Z(p)
 homology when X = BU we use as our starting point the following algorithm of

 Kochman [8, Theorem 97].

 4. 1. THEOREM. There is an inductive algorithm for computing Qr(d,) using the follow-

 ing properties of Dyer-Lashof operations on H*(BU, Zlp):
 (a) Qr: Hm(BU, Z/p) -+ Hm+2r(p_l)(BU, Zip) is linear.
 (b)Qrdm = Oifm > r.

 (c) Qr(xy) = E iQiX Qr-iy (Cartan formula).

 (d) /\*Qrx = QiX1 0 Qr-ix" where l\ is the diagonal and N*x = Jx' 09 x"
 (co-Cartan formula).

 (e) Qrdr = dfor all r > 0.

 (f) PSQr = I (. )i (((r-s)(P-1)) Qr-s+ipi (Nishida relation).
 (g) Qrde = (- )r+m(r-1 ) dem?r(pl)

 (h) Qrdm - (-1)r+m+1(rm') dm+r(p-i) + decomposables.

 The Dyer-Lashof operations also satisfy certain naturality conditions and an

 Adem type relation. We will use condition (g) and the Witt polynomial to construct

 a lift of Qr just as we did for Steenrod operations. Identifying the mod p reduction

 is a lot harder this time, though, since we no longer have a Borel-Serre theorem giving

 Qrdn as the mod p reduction of an integral class with nice coproduct.

 Our construction uses, as before, formal sums QO + Ql + ... . But by (g) or

 (h) Qrx will in general be nonzero for infinitely many r, so we work in the ring

 H**(BU, Z (p)) of formal series x0 + x1 + ... where xi E H21(BU, Z (p)). Finally,
 recall again our convention that the binomial coefficient (a) vanishes if b < 0 or a < b.

 4.2. THEOREM. Let Q = QO + Q1 + ... H*(BU, Z(p)) + H**(BU, Z(p)) be
 the ring homomorphism defined inductively for n prime to p and k > 0 by

 (_ 1) (+r[npk- ) denPk+r(p_1) = Tk(Qan,o, .. ., Qa, k)

 The component maps Qr: Hm(BU, Z(p)) + Hm+2r(p_l)(BU, Z(p)) satisfy Cartan and
 co-Cartan formulae, vanish if m > r, and reduce modulo p to the Dyer-Lashof maps.

 PROOF. The fact that Q is well defined follows just as in Theorem 3.3 using the fol-

 lowing ((2) follows from Proposition 5.2):

 (1) r(npk-1~~) = (n;r) * npk _ 0 mod pk.

 (2) (rPk-1) - (;Dk-!) =nrPnk((rP*) (p_-, )) 0 mod pk.
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 STEENROD AND DYER-LASHOF OPERATIONS ON BU 505

 We check that the mod p reductions of the component maps Qr satisfy the condi-

 tions of Theorem 4.1 and hence equal the Dyer-Lashof operations.

 By definition we have forced (g), and since den = (-l1)+lndn + decomposables

 by Lemma 2.2 it follows that

 Qrd. = (_1)n+r( r1) n + r(p -1) dn+r(p-l) + decomposables.

 But

 ( )n+r(r-1) n+r(p-1) - (_ l)f+r+l(r-1) I (_1)r+n()r P

 and (h) is satisfied. The maps Qr satisfy the Cartan formula in H*(BU, Z(p)) since
 Q is multiplicative, and they satisfy the co-Cartan formula since H*(BU, Q) is
 primitively generated, Q is multiplicative and sends primitives to primitives. Since

 Qrdem = 0 for m > r by definition, a straightforward application of Lemma 2.2 and

 the Cartan formula shows that Qrdm = 0 if m > r.

 To prove (e), note first that Qldl = Qlde1 = dep, and

 de ,=E (- 1)P+ al {P } da dPel = dP ep w(a)=P ~~~lal 1

 Assume inductively that Qidi =-dP mod p for all i < r, and let a = (a, .. , ar)
 be an r-tuple of weight r. Then

 Qrda = E Qil(dj,) ... Qir(dcr)
 il+ * **+ir=r

 - Qa1(da1)Q2a2(d22) ... Qrar(darr)

 The second equality follows from the fact that for any other partition we must have

 ij < jfj for some j and hence Qij(d7j) = 0 by the Cartan formula. If a # er, then
 by the Cartan formula again, property (b) and induction it follows that Qjaj(dqj) =

 dXPi for eachj = 1, .. .,r-1. Thus

 Qr((. I)r+lrdr) = Qr(der - (-)r+lal r { da)
 w(a)=

 - derp I E (_ 1)r+lal r {a} dPa
 w(a)=

 - Y7(_ I)r+lal pr {a} da I (-1)r+lal r {a} dPa.
 w(a)pr

 If a # p/ for any r-tuple / then {ac}/IaI E Z(p) by Proposition 5.1 so that (pr/jaj){a}
 da vanishes mod p. Thus the above difference of sums is congruent modp to

 (-I)r+PrdP + ( (-1)r+lal ( pr {pa} - r {a})dPa
 rte which equal (- Ppal miil

 which equals (- I)r+lrdr mod p by Proposition 5.2, proving (e).
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 We are left with verifying the Nishida relations. Let (D,s, 4rpS: H*(BU, Z p,-
 H*(BU, Z(p)) be defined by

 4trps = p*Qr and

 (Dr = (- l)i+s ((r -S (is 1)) Qr-s+iP i

 We show that Drp s = -Drp s_Drp s vanishes identically mod p.
 ASSERTION 1 (DOUBLE CARTAN FORMULA).

 4trp S(xy) = E (cI( lX)(kp sI y).
 k, I

 PROOF. Since the integral lifts Ps and Qr satisfy a Cartan formula, Dr s' clearly
 satisfies a double Cartan formula. For 4Dr s note that

 4trp 5(xy) = E ( )i+s ((r -s)(p.- 1)) Qr-s+i pi(xy)

 = E (._ l)i+j+s((r-s)(P- 1)) Qr-s+i+j(E(Pix)(p4y))
 i+j ~ s -p(i+j)

 = ( _ )i+j+s ((r -s)(p -1 ) (Qk+ip*x) (Qr-s-k+jp*y) ip i, k s- (+j

 = E (-_ )i+j+s E(k - 1) (p - 1) r-s-k 1)(p- 1))

 (Qk-l+iPix)(Qr-s-k+l+jp*y)

 = (cIk' IX) (Dr-k s-Iy)
 k, I

 This uses the identity (a+b) = (a (cb) which follows by applying the binomial
 theorem to both sides of (x + y)a+b = (x + y)a(x + y)b.

 ASSERTION 2. If Drp sX 0 O mod p for all r, s, then Dr' s(XPj) - 0 mod pj+l.

 PROOF. From Assertion 1 it follows that 4V = EsV s satisfies a Cartan formula,
 i = 1, 2. Suppose deg x > 0 (the deg x = 0 case is clear) so that 4Dx = 0. Then

 4)r(XPj) =-j {a}(cX)a

 where (cix)a = (cIqx)a * (cIX)ar. By assumption there is a formal series Yr such
 that 4DrX = (r2X + PYr. Suppose, for some a, that pk exactly divides a. Then pj-k
 divides {a} by Proposition 5.1. It follows that

 aj

 {a}(I4)x)ai = {a}((2x)a + E {a}(W)PIYr((a4)i

 where each coefficient in 2g2-i- vanishes at least mod pi+' by Proposition 5.1. Thus

 cIDr(XPj) = {=}(42x) - 4)2(xpj) modpj+l.

 The assertion follows by taking components.

 ASSERTION 3. VDr' sde,pk 0 O mod pk+l.
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 PROOF. If r = O thenflc^sde = 0 - Y2'sdem, while ifs = O we have rSde = Qrde.
 = S 2de,,e In general, since

 Qrde = (-I)m+r( Cm)dem+r(p-l)

 and

 Psd _ ms(p-1 m d * em = s 1 m-s(p-1) dems(p_l)9

 the proof of the assertion reduces to showing that

 (r1(m + (r -s)(p -1))

 = (r-s) (p-i ) - i(p-1)0 r-s+i-I m
 = s -pi J i _i J\l)_1m-i(p-1)

 modulo pk+l if pk divides m and r, s > 0. This is established in the next section

 (Proposition 5.4).

 To verify the Nishida relations it suffices by Assertion 1 to show that r, Sans k 0
 mod p for all r, s > 0, n prime to p, and k > 0. When k = 0 this is just Assertion

 3 with k = 0, so we assume inductively that Dr, san, j 0 mod p for 0 < j < k. Then

 pk4~r, s(an k) = 4r'S(denpk) - Dr,s(a.Pko) - .. . - pkl4r,s(aP k-1).

 But each term on the right vanishes mod pk+l, the first by Assertion 3 and the remain-

 ing terms by Assertion 2 and induction. Thus Vrosan, k-0 mod p, as desired. D

 5. Appendix-some p local properties of multinomial coefficients. For any n-tuple

 a = (a,, .. ., aJ) of nonnegative integers we let lal = a1 + * * * + a,, and {a} =
 jaj !/( a1! ... a,,!). We say that pk divides a if it divides each ai, and it exactly divides
 a if no higher power divides a.

 5.1. PROPOSITION. If pk divides lal and pi exactly divides a, j < k, then pk-i divides

 {a}.

 PROOF. Since {a} = {a1, a2 + + an} {a2, ..., aJ} it suffices to verify the case
 n = 2. If a = (al, a2) with a1 prime to p the result is well known, so suppose a = pip3
 with /1 prime to p. Let Hl (i) denote the product of all natural numbers < i which are
 prime to p. By some simple bookkeeping we obtain

 {P0}/{4} = Hl(P,1 + P/32)/H(P/3MP(p2)

 and hence

 {Pj} 1 HW( OMi)H(Wp32) = {3} 171 H(Pi(1+P2)).

 Since Hl takes values prime top, the p divisibility of {pji} equals that of {p} and hence
 is at least pk-j. Ii

 5.2. PROPOSITION. If pk divides lal, then {pac} - {a} mod pk+l.
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 PROOF. Generalizing the formula in the proof above, for any n-tuple a we have

 {p}/{a} = 1l (Ipa)/ H (pal) ... Hl (pan) and hence Hl (pal) ... f (pap)({pa} - {a})
 = {a}(TH(LpaI) - FL(pal) ... f *(pan)). Suppose pi exactly divides a, so that pk-
 divides {a} by Proposition 5.1. But by Wilson's Theorem [6] we have that fl (Ipal)
 (- ) aI/lPi mod pi+l and Tl (pai ) = (- 1)_i'P' mod pi+l. Since fl takes values prime
 to p, pi+l divides {pa} - {a}. [L

 The proof of the following result, which is essential in establishing the Nishida

 relations on the primitives, was supplied by L. Carlitz.

 5.3. PROPOSITION. Let a, b, c, d be nonnegative integers, a # 0. Then

 /(b j)(d j)b+d+ j-1) _ (a+d)(b+c-yl bd+ab+cd
 a-j c-jJ j - c JVa-I a(a +d)

 PROOF. For any m and integer j > 0 define (m)j = m(m + 1) ... (m + j - 1),
 and set (m)o = 1. Then (m) - (- -k)k, and using (m) + (kml) = (m+l) it follows that

 S = ~(a-j)(c-j)(+ki kJ )

 _ b (d )(b+d+)- I (abt ) )b+d+i)
 -\ -jJ c-jJ j J a-j-lJ c-j-1J j

 1b\ d\ (-a)j(-c)j(b +d+ 1)j
 aJc J j!(b - a+ I)j(d - c+ I)j

 b td a (-+ Ij- c + I)j(b +d + I)j
 \\a-1,/kc-1}'E j!(b-a + 2)j(d-c + 2)j

 To get a closed form for the above sums we appeal to the theorem of Saalschutz
 [19, p. 87]: If q, r, s, t are integers with q 2 0 then

 E (-q)j(r)j(s)j _ (t-r)q(t-S)q
 j j!(t)j(r+s-q-t+ 1)j (t)q(t-r-S)q

 Applying this to each of the sums above yields

 S _{0d (d +l)a(-b- 0a b d (d+ I)a-l(-b-c+ I)a-1
 Va c J(d-c +l )a(- b)a a-1 J c-1 (d-c +2)a-l(- b)a-1
 b! d! (a+d)!(d-c)! (b-a)!(b+c)!

 a!(b-a)! c!(d-c)! d!(d-c+a)! b!(b+c-a)!

 b! d!
 (a-1)!(b-a+ 1)! (c-1)!(d-c+ 1)!

 (a+d-l)!(d-c+1)! (b-a+l)!(b+c-1)!
 d!(d-c+a)! b!(b+c-a)!

 (+ d)(+c-1) bd?ab+cd-
 (c )(a-I a(a +d)

 The binomial coefficient (m) is often defined for any complex number m and

 integer k ? 0 by (m) = (-M)k/(- k)k. With this definition the above result and proof
 are valid for any nonzero complex numbers a, d with a + d # 0 and integers c, d.
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 We have not adopted that convention here since, for example, the Nishida relations
 would then be incorrect if s > r.

 5.4. PROPOSITION. Suppose m, r, s are positive integers such that m + (r - s) (p - 1)
 > 0 and pk divides m. Then

 (r- m + (r-s)(p-l1) m + r(p-1)
 km-I/ s m+ (r-s)(p-1)

 ((r-psi- l))(mi(P l))( (p 1- i)m-i(p-1) modpk+l.

 The above sum is assumed taken over all values of i such that the binomial coeffi-

 cients involved are nonzero. In particular, m - i(p - 1) 2 1 for all such i.
 PROOF. By our conventions on binomial coefficients it is easy to check that if s > r

 the above congruence is actually 0 = 0. When s = r it reduces to the identity p = p
 or 0 = 0 depending on whether or not m = r = s 0_ mod p. Thus suppose r > s.
 Using the identity (a)(b) = (a)(b-a) it follows that

 R = ~~((r-s)(p-1) (m-i(p-1) ( r-s+i-1 i m
 s -pi \ i y\-i(p-1) -1 m-i(p-1)

 ((r-s)(p- 1))(m-i(P -1))( r-s+i) m
 s \ s-pi y\ z /\m-i(p-1)J r-s+i

 - {j ((r-s)(p-)1)(r-s+i) (r-s ) m
 - s-pi JV i J\-Wp r-s+i'

 But note that if p' divides r - s + i then

 (r-s + i) (pr-ps+ pi) mod+

 by Proposition 5.2 and hence

 (r-s+ i) m + (p(r-s) + pi Pm mod pk+l.
 i r r-s + i \ pi /p(r -s) +pi

 Thus

 ((r-s)(p-1)" ((r-s)p+pi)( r-s PM mod pk+l

 R (r-sp-1 pir p(r-s) + mod pk+l
 =((r -s)(p - 1))(r -s)p j+ r- 1)(rPM )

 where the second line is congruent to the first modulo pk+l since we have added terms

 with j prime to p so that mp/[(r - s)p + j] 0 mod pk+l. The desired result now
 follows from Proposition 5.3 by setting a = m, b = (r - s), c = s, and d = (r - s)
 .(p- 1). D
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