CHAPTER 2: TODA BRACKETS
1. Introduction

As we saw in the previous chapter, there is one very important step in our
computation that is not algorithmic: the determination of the additive and
multiplicative structure of nf from the composition series which has been
deduced from the Atiyah-Hirzebruch spectral sequence. One of the main tools
we will use to determine these extensions is the relationship between Toda
brackets in nf and differentials in the spectral sequence. This idea was
originated by J. P. May [40,Section 4]. May’'s three basic theorems regarding
the behaviour of Massey products in spectral sequences defined from a
filtered differential graded algebra were generalized to the Adams and Atiyah-
Hirzebruch spectral sequences in [28]. In addition to these classical

results, we will derive and use several new theorems of this type.

In Section 2 we give two definitions of Toda brackets in nf: one using the
composition product and one using the the smash product. By [29], these two
Toda brackets are always equal. We will find that there are situations in
which one point of view is advantageous over the other. In Section 3, we
derive the basic properties of these Toda brackets. In Section 4, we prove
several theorems which relate these Toda brackets to the differentials in the
Atiyah-Hirzebruch spectral sequence. We will only be using three-fold and
four-fold Toda brackets in our applications. Therefore, we do not hesitate to

specialize to these cases.

2. Definitions

We will find it convenient to work with spectra in the coordinate-free setting



13

of J. P. May [41]. After introducing coordinate-free notation, we give two
defininitions of Toda brackets: one based on the smash product and one based
on the composition product. These definitions were first given in [29]. Our
composition Toda bracket generalizes Toda’s orginal three-fold product [60]
and Oguchi’s four-fold product [51]. It agrees with Spanier’s Toda bracket
[58] but it is not clear whether it agree’s with Gershenson’s Toda bracket
[21]. Our smash Toda bracket agrees with that of Porter [51] and corresponds
under the Pontrjagin-Thom isomorphism to the Massey product of manifolds
defined in [28]. In Theorem 2.2.3 we state the theorem from [29] that our two
Toda brackets are equal. In addition, our Toda bracket is contained in Joel
Cohen’s Toda bracket [18]. We conclude this section with several practical

criteria for concluding that a four-fold Toda bracket is defined.

The following notation will be used throughout. Let R” be the real inner
product space with orthonormal basis B = {b1’b2""}' We consider only finite
dimensional subspaces W of R” which have a subset of B as a basis. Internal
direct sum is denoted by +, and if W is a subspace of W then W' denotes the
orthogonal complement of W’ in W. All spaces are based CW complexes, all maps
are based and all homotopies, cones and suspensions are reduced. Let S denote

one point compactification. The n-sphere is defined as S" = S(R"). The

isomorphism from a subspace V to R¥™ uhich preserves the ordered standard

bases induces a canonical homeomorphism from SV to Sdnw. Thus a map from SV

to SW determines an element of nd.v(Sdimw

). If il<--'<it then define the disc
im

D(Rbi +'--+Rbi ) as CS(Rbi ) A S(Rbi +-'-+Rbi ) where C{-) = (I,{1}) A (=) is
1 t 1 2 t

the cone functor. If 1=j <---<j st and f:SUlA---A SUtA X — SUlA---A SUtA Y

then define Cj j(f) as the canonical map from Cj . (SUlA---A SUtA X)

IS N proedy

SUA-++A DU A=A DU AoA SUA X to C (SUA-A SUA V)
J

1 k 1 g

SUIA---A DUj AL A DUj Ao A SUtA Y induced by f. Define an equivalence
1 x



relation on 817} by (al,...,a } = (b ,...,b_l) if max(al,...at_l) = 1 and

max(bl,...,bt_l) = 1. For t z 3 choose homeomorphisms ht:St_2 — (81" /e
Let T denotes the canonical interchange map. Then the maps

To(h M ) define homeomorphisms
t TSV A"+ -ASV

hiS(RZ2+V + <+ +V) — 3[DVA--- ADV _ASV ]
1 4 1 t-1 t

Our spectra will be functors E defined on all finite dimensional subspaces W
of R” with basis a subset of B. We will use the symbol € to denote either the
structure map S A E —> E of a spectrum or the product EAE —— E of a ring
gpectrum. Then nNE is defined as the direct limit over all W of the groups
[SW,EW’ ] where W' is a subspace of W with N = dim (W/W ). The structure maps
of this direct limit are £o(SV A - ) where V 1 W. We now have the notation to
give the two definitions of the Toda bracket <X1, . ,Xt> where

XivooonX | € nf, X, € n,(E) and E is any spectrum. We begin with the

1 t-

definition based on the composition of maps.

DEFINITION 2.2.1. Let E be a spectrum, let X1,.. L X € nf and let Xt € n.E.

t-1
let G 18V A A GV ASU —3 SV A..ASVA EU represent X, 1 =i = t,
i-1,i i t i+1 t i i

»

where R™Z | Vol...L1V 1U E =Sfori=ist-1landE =E A defining
system for <G ,...,G >’ consists of maps
0,1 t-1,t o©
G :DV. A--ADpv  ASVA...ASVASYy —>5 SV A--ASVAEU
ij 1+1 j-1 i t j* t J

for 0 = 1 < j-1 <t, (i,J) # (0,t), such that

G..l8(DvV. A---ADy ASVA--.AsvAsy) =Wt 6k
ij i+1 j-1 j t k=i+1 Tij

where Gl:j is the composite map

c ()
DV A-A DV A SYA DV A--A DV A SVA-..A SyA sy Kheredit Ik
i k-1 k k+1 3-1 3 t

i+l

G
DV A-.ADV ASVA...AgyAsy X sy A..ASYAEU
k+1 -1 i t j+1 t 3

If <G ,...,G > has a defining system then define <G ,...,G >’ as
01 t-1,t" o 01 t-1,t o
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the set of homotopy classes of the maps

g =W eth A1 ):iS(R"™V 4.4V ) ASU — EU
oL sU 1 t

ot k=1
for all defining systems {G } of <G ,...,G >’. Define
1j 01 t-1,t ©
<G _,...,G > = lim_ <G A 1 _,...,G A1 _,eo(G Al ).
01 t-1,t o B 01 SW t-2,t-1 SW t-1,t sW’ e

This direct limit is taken over all W with W 1 (Rt~2+V1+---+Vt+U). If W is a

subspace of W then the map - A 1 1 sends a defining system of

Sy
<G M, ..., e0(C A1 )> to a defining system of
01 " sw t-1,t SW 7o
<G M _,...,e(G A1 _)>'.  Finally, define <X ,...,X> as the union of
01 "SW t-1,t SW e 1 t” o
<G_,..., > for all choices of representatives G of X, 1=ist.
o1 t-1,t" o 1-1,1 1

The following definition of the Toda bracket based on the smash product is a
direct analogue of the usual algebraic definition of the Massey product in the

homology of a differential graded algebra.

DEFINITION 2.2.2 Let E.be a spectrum, let Xl,...,X € n;s and let Xt € nE.

t-1

Let Gi L i:S\!i A SUi E— I:'Z,Ui represent X1 for 1 = 1 = t where
-1, i
R*? 1 VLU L+ LV, 21U, E =Sfor1=is=t-1andE =E A defining

syst <G ,...,G >4 ist
ystem for G01 1,0 A consists of maps

G :Dv. Asu A..Apv Asu ASVASU —s E (U +---+U)
13 i+ 1+1 j-1 j-1 j 3 Joi+ j

1 1

for 0 =1 < j~1 < t, (i,]j)#(0,t), such that

G latov,  Asu A--ADv_Asu AsvAsu)=UT o
ij §+1 1+1 -1 -1 i J

k=i+1 1]
where Glf is the composite map e¢To(G A G ). If <G _,...,G >}\ has a
i} ik kj 01 t-1,t
defining system, then define <G01""’Gt-1 t>)\ as the set of homotopy classes

of the maps

G
ot

):S(RV%Y +---4V ) A SUA.-..A sy
‘ASUt 1 1 t

-1 .k
oTo A
(Uk=1G0t) Te(h ISUIA
—— E(U +---+U)
1 t

for all defining systems (GU} of <Go1""’Gt-1 A Define
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< > = 1 <G A .. A A >4
Gox’ ’Gi—x,t A ljl&a Go1 1sw ' 'Gt—z,t—l 1sw ’EO(Gt—l,t 1sw >N
W oy, , W 1 t-1
1 t
where the direct limit is taken over all wl,...,wt with
W, L -+ LW 1 (RR%vV 4+U+---+V+U ). If W is a subspace of W, 1 = i = t,
1 t 11 t ot i i
th -A ° ini
en the maps goTo( 15“§11’A"‘A5““1)) T send a defining system of
<G A .. A ’ ini
G(n 1swi,. ,s:o((}t_l’t 1su;)>/\ to a defining system of
< A A ’ 3 . .
qn 1SW""’€°(Gt4,t 1su)>A' Finally, define <Xf,.,,Xt>A as the union
< Ceey > i i R =is=t.
of G01’ Gt-Lt A for all choices of representatives Gl_l,i of Xi 1=i=t

The reader can find the proof of the following theorem in [29, Theorem 3.2].

THEOREM 2.2.3 Let E be a spectrum, let Xf...,X € nf and let Xt € n E.

t-1
Then <X1,...,Xt>o is defined if and only if <X1,...,Xt>A is defined.
Moreover, if these Toda brackets are defined then they are equal.
NOTATION: In view of this theorem, we will use the symbol <X1,...,Xt> to

< . = S .
denote X1’ ’Xt>o <X1’ ’Xt>A
We will try to imitate proofs of results for algebraic Massey products to
construct proofs of the corresponding results for Toda brackets with defining
systems constructed with the smash product. An obvious ingredient which we
will require is the ability to add maps defined on cones.

DEFINITION 2.2.4 let f and g be two maps from Cj ; (XASUlA--'ASUt) to Y,

yrr ey

1 X
where U1 1o 1 Ut and Oskst. Let {bi ,...,bi } be a basis for U1+---+Ut
1 N
with 1, < -+v < i and let p(f) = p{xX A SUlA---A SUt) = il. Define
f o g:Cj ) (X A SUIA---A SUt) R —'t

1 k

in the usual way by pinching in the u(f) = i1 coordinate. Also define -f in
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the usual way reversing the p(f) = i1 coordinate. Let f o g = £ o (-g).

Now we have a sum ® and a product A defined for the maps that arise in
defining systems of Toda brackets. Unfortunately most of the usual algebraic
identities only hold up to homotopy for these operations. However, there are

five identities which these operations do satisfy.

THEOREM 2.2.5 The following identities hold whenever the expressions
appearing in them are defined.

(a) £A(gAnh) =(fAg)Ah

(b) -(feg) = (-fle(~g)

(c)} If p(f) < p(W) then 1sw/\ (f @ g) = (15w/\ f) e (1sw Ag).

(d) If p(f) > ulg) then £ A (ge h) = (f Ag) e (f Ah).

(e} If p(f) > plg) then -(f AN g) =1 A (-g).

PROOF: The proofs of these properties are straightforward and are left to
the reader.}}

NOTATION: In view of property (e} above, —fiA---A £ will mean

A A - Ao A 2= i
f1 ( fk) ft where u(fk) mln(u(fl),...,u(ft)L
We state next a useful technical result which says that <X1""’Xt>A can be
defined from any fixed set of representatives of Xl,..,X(
THEOREM 2.2.8 Assume that <X1,...,Xt> is defined. Let Gi-li represent Xi
for 1 =1 = t. Then any element Z of <X1,..‘,Xt> has a representatives éOt

where {G_ |10 s 1 < j=t, (i,jJ) = (0,t)} is a defining system which contains
1]

the given {G1 1i!1 =i =t}

PROOF. Let {AIJ[O =1 < jg=t, (i,J) # (0,t)} be a defining system such that

A1j is a representative of Z. By inductiononk = j - i 2 1, we construct a
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defining system (G”} and homotopies HU from AU to Gij such that

H |Domain(G. AG ) =H AH for i <r < j. When k = 1, the G are
ij ir rj ir r) i-1,1

given, and the H
1-1,1

»

can be found since Ax and Gx-1 .

»

11 both represent Xs'
let j-1 = k and assume that the G'st and HSt have been constructed for

1 = t-s < k. Since {Domain GU,Domain f}U) is homeomorphic to some (DN,Su),
it has the homotopy extension property. By the induction hypothesis the
homotopies Hh_/\ Hrj, i < r < j, agree where their domains intersect and thus
define a homotopy H = Uj;:d(Hir/\ Hrj) from 7&11 to f;ij. By the homotopy
extension property, there is a homotopy HU of Ai which extends beth H and
Aij' Define Gij = HuiDomain (G” x {1})}. This completes the inductive step.
Thus we have constructed a defining system {G”} and a homotopy

U (5 AH ) fromA_ to G .|
r=1 Or rt ot ot

Observe that the three-fold Toda bracket <X1,X2,X3> is defined if and only if
Xl-X2= 0 and X2-X3= 0. The following theorem gives practical criteria for

concluding that a four-fold Toda bracket is defined.

THEOREM 2.2.7 Assume that 0 ¢ <X1,X2,X3> and O € <X2,X3,X4>. Let
Ni = Degree Xl, 1=i=4. In addition assume that one of the following

conditions is true.

{a} <X ,X ,X> =0,
17723
{b) <X ,X,X> =0,
273" s
S —
(e) X1'HI+N NS 0.
2 3
5 -
(d) X4'K1+N N 0.
2 3
) = Y =
(e) If Ye ﬂ1+N2+N3then Y = Y1 + Y2 such that X1 Y1 = 0 and X4 Y2 0.
(£} X1 = X3.
(g) X2 = X4.

Then <X ,X ,X ,X > is defined.
1772°73 s
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PROOF: We use the smash product and the smash product Toda bracket of
Definition 2.2.2 throughout the proof.

(a) Let G, G, G, G _, G be a defining system for <X ,X ,X > which
12 24 2’73’ s

23 34 13

defines 0 in <X2,X3,X4>. Extend this defining system by choosing any G01 and

G . Then G € <X ,X ,X> = 0, and thus we can find G_ to complete the
02 03 1 2 3 03

defining system.
(b) The proof of (b) is analogous to the proof of (a).

(c) As in the proof of (a) select G , G , G , G , G _, G _, G and G .
01 12 23 34 02 13 24 14

By the previous theorem, there is a defining system Gm’ G12, G23, Goz’ G13 of

<X ,X ,X > which defines 0 € <X ,X ,X>. Then G_ A (G e G’ ) represents an
1’ 72" %3 1’72’ %3 o1 13 13

S

element of Xl.n1+N2+N3 = 0. Thus we can find G03 to complete the defining

system.
(d) The proof of (d) is analogous to the proof of (c).

(e} As in the proof of (a) select Gm’ G, G,

, G, G, G and G .
12 23 24 14

G
34 02 13

By the previous theorem, there is a defining system Go1’ G12’ G23, Goz’ G13 of

<X ,X ,X > which defines 0 € <X ,X ,X>. Write G _ e G _ =Y @Y where

1’72 " 1" 72" g 13 13 2 1
XI/\ Y, and X4/\ Yzar‘e null homotopic. Then we can replace G _ by
(—Y2 ® G13) @ (—G13 @ Gw) and find a new appropriate 014' Since the new G13
equals (—Y2 ® Yz) ® (Y1 ® G’m) we can find a Goa to complete the defining
system.

(f) Let G, G
12

, G, G, G be a defining system for <X ,X ,X > which
23 34 13 24 2’3" "a

defines O in <X2,X3,X4>. Extend this defining system by choosing G01 = G23

and any G . There are other choices G> =G _® X and G)_ = G,_ ® Y such
02 02 02 13 13

that the defining system G01’ G , G, G(’)z, G;s defines G which represents 0O

12 23
in <X1,X2,X3>. Replace G02 by (G02 @ X oY) u (Y v, Gza)' Now Goa = G, and
we can find a G03 to complete the defining system.

(g) The proof of (g) is analogous to the proof of (f‘).l
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3. Properties of the Toda Bracket

In this section, we derive the indeterminacy as well as the additive and
associative properties of the three-fold and four-fold Toda brackets defined
in the previous section. Most of these results are direct analogues of the
algebraic results for Massey products given by May in [338]. As with algebraic
Massey products we say that <X1,.,.,Xt> is strictly defined if <Xm,..,X > =0
whenever 1 =m < n =<t and n~m < t-1. Note that every triple product which is
defined is automatically strictly defined. We define the indeterminacy of a
Toda bracket by

Indet <X1,...,Xt> = <X1,...,Xt> - <X1,...,Xt>.
In all of the proofs of this section we use defining systems as in

Definition 2.2.2 which are based upon the smash product.

Before embarking on manipulating our Toda brackets, we should remark that
there is a hidden sign convention built into our definitions. The easiest way
to deal with this problem is to consider a defining system {Gij} of

<X,...,X >, in which the G_,...,G use subspace V...,V of R* such
1 t 01 t-1,t 1 t.

that Vs has basis {b [t =3 = dim(Vi)} and

NCiL 3D
bNH j)ll =i=1t,1=j=dim(V )} in the lexicographical order of the
> 1

N{i, j) is the same ordering as the given ordering of B. Now think of ébt as

using t-2 additional basis vectors bk ,.-.sD where
1 -2

< . . . P N
k1 N (1,J1) < k2< N(Z,Jz) < k3< < kt_2< N(t 2,Jt_2) for all Jp» 2y,
THEOREM 2.3.1 Let Xie ni for 1 =1 = t.

i
(a) Indet <X1,X2,X3> is the ideal spanned by X1 and X3
(b) If X > nX -nS = 0 and X -ns n X -nS = 0 then
3 N +N +1 1 N _+N +1 2 N _+N +1 4 N +N +1
-] 23 3 4 2 3

S < >
Indet <x1,x2,x3,x4> UA <A XX > UB <X,B,X> v UC xl,xz,c
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where the first union is taken over all A € ni W el such that A-X3=O, the
12
second union is taken over all B € ni N 1 such that B-X1=B-X4=0 and the
2 3
third union is taken over all C ¢ nS such that C-¥X =0.
N3+N4+1 2

PROOF: The proof of is this theorem is a direct analogue of the proof of the
corresponding algebraic result for Massey products [40,Prop.2.4].l

NOTE: The hypothesis in (b) above is satisfied if <X ,X ,X ,X > is strictly
def'ined.

THEOREM 2.3.2 Assume that <X1,...,X;+X;,...,Xt> is defined and
<X1,...,X;,...Xt> is strictly defined. Then <X1,...,X;,...,Xt> is defined and
L9 G 5 2. SR I NS (NN (IS 45T Y. (RN (U

1 Xk k t 1 k [3 1 X t

PROOF. The proof is a direct analoge of the algebraic proof of [40,Prop.2.7].l

The following associative properties of the three-fold Toda bracket are proved

by Toda in [BO].

THECREM 2.3.3 Let degree Xi = N{(i) for 0 = i = 3 and let degree Y = M.
(a) If <X1,X2,X3> is defined then
V<X X, X> ¢ (DM <X X ,X> and <X, X ,X>'Y € <X, X, X -Y>.
1’72’73 1772 s 1’7273 1772’ s

{(b) If X -X =X'X =X+X =0 then
o1 1 T2 2 73

(4 N(OYeN(D)
X0 <x1,X2,X3> = (~1)

<X ,X ,X>-X%
0’1’2 '3
{(c} If the second of the three Toda brackets below is defined then they are

all defined and

0e (-1 «eX X X5, X ,X> + <X <X .X.,X>.X>
(o) 1 2 3 4 0 1 2 3 4

+ (—I)N“) <X K <X X KX >>.
o 1 2 3 4

(d) If X -Y-X =0 and X X 0 then <X -Y,X ,X> ¢ (—1)M <X ,Y-X ,X>.
1 2 2 "3 1 2’73 1 2’73

(e) If XX =0 and X rY-X 0 then <X ,X%X ,Y-X > c <X ,X *Y,X >.
1 72 2 3 1" 72 3 1’72 3
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In the next three theorems we give the analogous results for four-fold Toda
brackets. Most of these results were proved by Oguchi {51] for his
composition four-fold products. However, his Toda brackets are only defined
under more restrictive conditions than ours. As a result some of his

conclusions are sharper than ours.

THECREM 2.3.4 Let degree Xi= N(i) for 1 = i < 4 and let degree Y = M.
(a) If <X ,X ,X ,X > is defined then <X ,X ,X ,X> = ("1)P <X ,X ,X ,X>
1" 72’ 3" %y 172" "3 e P M-Sl
where P = N(4J[N(1)+N(2)+N(3)+1] + N{3)IN(1)+N(2)] + N{1)[N(2)+1].
(b) If <X ,X ,X ,X> is defined then
1° 72" %3’ Ty
V<X X ,X,X>c (-1)" <¥-X ,X,X_,X> and
1" %27 %" % 1" 727 3 e
<X , X , X ,X>Y c <X ,X,X X Y>.
172" 73" M 1’723’ "
(c) If <X -Y,X ,X,X> is defined then <X ,Y:X ,X ,X > is defined and
1 2" 73" % 1 2" 73" M
<X Y, XLXLX> (1) <X, YK X LK >
1 2’ 73" % 1 2’3" Ta
(d) If <X ,X ,X,Y-X> is defined then <X ,X ,X :Y,X > is defined and
1" %2° 73 V- 1" 72° %3 4
<X , X , X ,Y'X> c <X ,X , X Y, X>
1”727 %3 4 1" %2’ %3 4
(e} Assume that <X ,X -Y,X ,X> and <X ,X,Y'¥ ,X> are defined, and that
%2 3' g 1’02 3’
<X ,X ,YX>» = 0. Then I = <X ,X ‘¥, X ,X> n <X ,X,¥Y'X ,X> # ¢. Moreover
1’72 s 1’ %2 3" s 1’72 3’ "a
the indeterminacy is given by Indet(I) = I-I = <A XX > U UB <X,X,B>

A

S S
where the fi i i L 4
er first union is taken over all A e nu(1)+n(2)+n+1/ Y N(1)eN(2)o1

with AX3 = 0 and the second union is taken over all

s s . _
B e ”x(s)mu)mn/ Y T3y +N(a) +1 with X.B = 0.

PROOF. (a) If (Gijl() = i< j =4, (i,j) = (0,4)} is a defining system for

< _ < ;< . .
X1’X2’X3’X4>’ let AU G Then {AUIO =1 < J=4, (i,3) = (0,4)} is

4-3,8-1"
a defining system for <X ,X ,X ,X>. Since & = A , <X ,X,X,X>
473 2" Ty 13 1} 17727737 e
C (—1)P<X4,X3.X2,X1>, and by symmetry the two Toda brackets are equal.
(b) Let {GU!O =i < j=4, (i,J) # (0,4)} be a defining system for

<X1,X2,X3,X4> and let J represent Y. Then the following display is a defining
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system for <Y-X ,X ,X ,X >:
1’72’73 s
JAG G G G
o1 12 23 34
JAGC G G
02 13 24
JAG G
03 14
Thus, <Y-X1,X2,X3,X4> is defined and contains J A §04’ Therefore
Y-<X X ,X ,X> ¢ {—1}H<Y-X ,X ,X ,X>  The second identity in (b) follows
1772"73 s 17727737 s
from the first one by (a).
(c) Let {GUIO =1i< j=4, (1,J) # (0,4)} be a defining system for
<X Y, X ,X ,X>  Assume that G = G’ A J where G’ , J represents X, Y, resp.
1 2’3" s o1 o1 o1 1
Then the following display is a defining system for <X1,Y'X2,X3,X4>:
G’ JAG G G
o1 12 23 34

G JAG G
02 13 24

JAG
03 14
Thus <X ,Y-X ,X ,X > is defined and contains G__ because G’ A (J A G_ )
1 2 3 4 04 01 14
=G AG . Therefore <X ‘Y,X ,X,X> ¢ (-1)" <X ,¥-X ,X_,X>.
01 14 1 2 3 4 1 2 3 4
(d) This identity follows from the identity in (¢) by applying the identity

in (a).

(e) Let G
1-1,1

s

represent X1 for 1 =i = 4, and let J represent Y. Extend

G , G NANJ, G, G to a defining system {G |0 = i < j = 4, (i,j) = (0,4)}

01 12 23 34 ij

of <X ,X -Y,X,X> Extend G , G , JAG , G _ by finding a G'_ to get a

1’72 3’ g 01 12 23 13 02

defining system of <X ,X ,YX>. Since <X ,X ,YX> = 0, we can find a G’ _ such
1772 73 1772 T3 03

that 8¢ = (G A G ) v (G A (JAG )). Then the following diagram

03 o1 13 02 23

exhibits two defining systems, one for <X1,X2~Y,X3,X4> and the other for

<X ,X,¥-X ,X>:
1772 3’4

G G AJ G G G G JAG G
01 12 23 34 01 12 23 34
» A ’ JAG
GOZ J GIB G24 GO2 GlB 24
GO3 GM GOS G14

Both of these defining systems define the same element, and thus the two Toda
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brackets have an element in common. The indeterminacy arises because not all
defining systems of <X1'Y,X2,X3,X4> have a (0,2) entry of the form ?AJ and not

all defining systems of <X1,Y-X2,X3,X4> have a (2,4) entry of the form JA?.}}

THEOREM 2.3.5 Let degree X = N(i) for 0 = 1 = 4. Assume that <X1,X2,X3,X4>

and <XO,X1,X2,X3> are strictly defined. Then

Xe<X X X X > = (-1 MOy XX XX
[¢] 1 2 3 4 0 1 2 3 4

PROOF. Let {GUiO = i< j=4, (i,J) = (0,4)} be a defining system for

< >, s
X1'X2’X3’X4 Extend {Gm,Glz,G23,G02,G13,G03} to a defining

system {GUI—l =i < §=3, (i,J) = (-1,3)} of <XO,X1,X2,X3>. Then

(G, NG ) v (G, AG ) restricted to the boundary of its domain is
-1,1 14 -1,2 Tz

3 ’

» >

A g e A .
(G o Go4) v (G_1 5 (}34). Thus Xo <X1,X2,X3,X4>

< ('1}N(0)+N“)<XO,X1,X2,X3>-X4 and by symmetry the theorem follows.l

THEOREM 2.3.6 Let degree X = N(i) for 0 = i = 4.

{a) Assume that <X1,X2,X3,X4> is defined and that XO'X1 = 0. Then

X <X, X, %X ,X> ¢ (=YD cex X %> XX >
0 1 2 3 4 0 1 2 3 4

(b} Assume that <XO,X1,X2,X3> is defined and that )(3-)(4 = 0. Then

N(1)+1

<X, X , X, X>X ¢ (-1) <X ,X <X ,X ,X >>,
0’1" "2’ s s 0’1 2'73" s
(c) Assume that X X =0, XX =0, XX =0 and 0 € <X ,X ,X>-X . Then
0o 1 1 72 3 s 0’1’ 2" T3
<X ,X ,X X ,X> is defined and contains (*-1)"“”“ <KX X X >, X X >,
0’71’72 73" 0’1’2 T8 e

(d) Assume that X X =0, XX =0, X*X =0 and 0 € X <X ,X ,X>. Then
0o "1 2 '3 3 s 1 2’73 s

. N . N(1)+1
<X X X X ¥ S def ned and contains -
0’1 T2’ 73’ 4> t ! ! ( b

<X X ,<X X ,X>>.
0’1 2”73’ s
PROOF. (a) Let {Gijlo =i < j=4, (i,J) # (0,4)} be a defining system for
<X1,X2, XS, X4> and let G_1 o represent Xo’ Then the following display is a
defining system for <<¥ ,X ,X >, X ,X >:
0’1’2 3 e
G
-1,2 23 34

(G-l,oAGos)U(G~1,1AG13) Gz4
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Now G_IlA G14 restricted to the boundary of its domain is the element of

’

<X X ,X>,%X ,X> determined by the above defining system union G AG .
[V R~ T At -1,0 04

Thus X <X , X, X ,X> ¢ (-1 ey X ,X>,%X ,X>.
[¢] 1 2 3 4 o} 1 2 3 4

{(b) This identity follows from the one in (a) by Theorem 2.3.4{a).

{(c) Let {szl—l = i< j=2, (i,J) # (-1,2)} be a defining system for

<X X ,X >, Let G, G represent X, X, respectively. Find G such that
o' 1772 23" 34 3" s 24

G =G _ANG _ and find G
24 23 34 -1,3

such that & = G A G_. Then the
-1,3 1,2 23

>

following display is a defining system for <XO,X1,X2-X3,X4>:

G G G AG
12 23

G
-1,0 01 34

G G AG G AG
-1,1 02 23 12 24

G G NG
-1,3 02 24

This defining system defines
(G, AGAGC Jul(lG AGAG YulG AG_ )
-1,0 02 21 -1,1 12 22 -1,3 34

= (6 AG )ullcG Ag
- 24 -1

)}, an arbitrary element of <<X X ,X >, X ,X>.
1,2 ,3 a4 (eI S~ Mt

Thus <<X_,X,X > X ,X> ¢ (-0 " ex X X X, X >.
O 1 2 3 4 0 1 2 3 L3

(d) This identity follows from the identity in (c)} by Theorem 2.3.4(a).l

We conclude this section by recording a useful theorem of Toda [60,3.10].

THEOREM 2.3.7 Let « and B be elements of nf.

deg I3

{a)} If degree « is odd then <«,B,a> n (-1) <B,x, 20> # @.

(b} If degree a is even then <u,B,a> n 8~n§ % 2.

4. The Atiyah-Hirzebruch Spectral Sequence

Toda brackets in the limit of a spectral sequence are related to the
differentials in the spectral sequence. In this section we prove several
theorems which depict this relationship in the Atiyah-Hirzebruch spectral

sequence for the homotopy of a spectrum B:
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E2 = H (Bjn0) —> =
Pq P q

S
p+d

(B)

Of course, the case in which we are inerested is when B = BP, and we
specialize to that case in the last three theorems of this section. The idea
of the following theorem is to analyze a Toda bracket by passing to an
appropriate mapping cone. This idea is due to Joel Cohen [18] where he used

it to decompose elements of nf as Toda brackets of Hopf classes.

THEOREM 2.4.1 Let X_ e o X s g

, n , X , Y € H,B and let r z 2.
N(O) 2 N(2) 3 N(3)

Let C be the mapping cone of Xz' Assume that:

. . S
(1) XX, =0 in m,.

(ii) d (XG-Y) = Xo'

(iii) Y transgresses to the projection of sze Cy into the

Atiyah-Hirzebruch spectral sequence for C,B.

N(2)+1

Let X = c,(on) € where ¢:C —— S is the canonical collapsing

T
N{1}

map. Then <X1,X2,X3> is defined and contains Xo‘

PROOF. We use the composition product Toda bracket of Definition 2.2.1 to
prove this theorem. Let Gb4,i represent Xi for 0 = 1 = 3, and let G02 repre-
sent on' Consider Figure 2.4.1. In that diagram, Jj is the canonical inclu-

sion map and G13 exists by (i). Let G1 be the map of spectral sequences

¥
(X ).

. - r . = !‘0 - F =
induced by G . Then X = d {X3 Y) d oG . (Y) G, e°d (Y) G (X,

Thus X is represented by G,,°SG, which is an element of <X1,X2,X3>.I

SN(3)—1C
3 .
G SN( 3 10
02
N(1}+N(2)+N(3) GOl N{2)+N(3) G12 N(3) G23
S — ey 8 * ———— 3 § S
SN(3) N G
13
N(3
V¢

FIGURE 2.4.1
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The next theorem is the most direct way of detecting a triple product in rzf

from differentials in the Atiyah-Hirzebruch spectral sequence.

THEOREM 2.4.2 Assume that <X1,X2,X3> is defined in nf. Assume that

r(1) r(3)

d (Y)Y = X and d r{1)+r(3)
1 1

(vy) = X Then X -Y 'Y survives to E and
3 2 1 3

~

there is an element of <X1,X2,X3> which projects to dr(“*rm)

(Xz-Yl-YS).
PROOF. We use the smash product Toda bracket of Definition 2.2.2 to prove

ri)
r{i),p(1)

G (SVA DU,SVA SU) — (SUA B”“”,SUi) where G |SVA SU =G
1

this theorem. Let N(i) = degree Xl. For i=1,3, represent Yie E by
. A s
represents Xi. Represent X2 by GIZ‘SV2 SU2 — SUZ. Find maps Goz and G13
as in Definition 2.2.2 to complete the defining system {GU} of <X1,X2,X3>.
Define F: (SVA DUA SVASUA SYA DU ) v (DVA SUA SVA SUA SV A DU)
1 1 2 2 3 3 1 1 2 2 3 3
U (SVADUADVASUASVASU) —s SUA SUA SyA plrt ]
1 1 2 2 3 3 1 2 3
Qo A A o A [ A i i
as [e (G1 G12 Gg)] u [e (GO2 Gs)] u le (G1 G13)]’ Then Domain F is

homeomorphic to a disc and

F: (Domain F,8Domain F) — (SUA SUA SUA BT sy A sy su)
represents X2-Y1-Y3. Thus Xl-‘{2~Y3 survives to E:Ei:::g; (1) +p(3)+N(2) and
r(1)+r(3) . :

- - - A A
d (X2 Y1 ‘{3) is represented by F|{dDomain(F) (G02 G23) v (G01 G13)

=G e <X, X ,X>.1
03 12 3

The previous theorem generalizes to longer Toda brackets. Unfortunately,
technical hypotheses need to be added and the conclusion has indeterminacy.

We give such a generalization for four-fold brackets.

THECREM 2.4.3 Assume that <X1,X2,X3,X4> is defined in ni’, and let

r{i)

N(i) = degree Xi for 1 =i = 4. Assume that d (Yl) = Xi for i=1,3,4 where

r{i)

Y .
i r{1),p(1)

Assume that one of the following hypotheses hold:

(1) r{4)+h

=0 for 0 = h =r(1).
r{1)-h,p(1)+N(2) +h
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r{4})+k

(ii) E
r{3)-k,p({3)+N(4) +k

=0 for 0 = k = r(3).

. 1 4 .
Then X -Y -Y -Y survives to E- 1 *r(®ri4) and there is an element of
2 13 'a N(1)+N(3) +N(4)+3,N(2)

. . (1)+r(3)+r(4)
< > r . . .
X1'X2’x3’x4 which projects to d (X2 Y, Y3 Y4)
PROOF. We use the smash product Toda bracket of Definition 2.2.2 to prove

this theorem. Let {G‘JIO = i< j=4, (i,J) = (0,4)} be a defining system

r{i)
r{i),p(i)

G: (SVA DU,SVA SU) — (SUA B““”,SUi) where G |SVA SU =G

for <X1,X2,X3,X4>‘ For i=1,3,4 represent Yl € E by

i-1,1
represents Xi. Let
= A AGA AGgA A A A A :
F (G1 G12 G3 G4) ] (602 G3 G4) V] (G1 G13 G4) V] (G03 G4) uv (Gl 014)
(svADUASVASUASVADUASYADU) u (DVASUA SV ASUASY ADU ASV ADU )
1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4
v (SVADUADVASUASYASUASYADU) u (DV.ASU ADV ASU ASV_ASU ASV ADU )
1 1 2 2 3 3 4 5 1 1 2 2 3 3 4 &
v (SVADUADVASUADVASUASYASY),(DVA SUA DV ASU ASV_ASU ASV ASU )
1 1 2 2 3 3 4 4 1 1 2 273 737 a4 4
u (8V.A SUA DVA SUA DV A SUA SVA SU) u (SVADU ASV_ASU_ASY_ADU_ASV ASU )
1 1 2 2 3 3 4 4 1 1 2 2 3 3 & 4
U (SVA DUA SVA SUA DVA SUA SVASU) v (DV ASU ASV_ASU ASV_ADU Asv ASU )
1 1 2 2 3 3 4 4 1 1 2 Tz 3 374 &
N (B[r(1)+r(3)+r(4)],B[r(l)*r(S)}).
F has a disk as its domain and F restricted to the boundary of its domain is
A A A A .
{(Goa G34} Y (Goz 014)} Y {(Gx G:z GsAcaé) d (61A612A024) v (GozAcaAcaa)]
Clearly F represents X2-Y1-Y3~Y4. Moreover, F restricted to the boundary of
its domain is the sum of (G AG ) v (G_AG ) v (G _AG ) and the product
01 14 02 24 03 34
[{GAG ) uG 1 AN[(GAG ) uG 1. The first summand is an element of
1 12 02 3 34 24
<X1,X2,X3,X4>. Under hypothesis (i), the first factor of the product is the
boundary of a map of filtration degree less than r(1)+r(4) while the second
factor is in filtration degree r(3) so that the product is the boundary of a
map of filtration degree less than [r(1)}+r(4)]+r(3). Under hypothesis (ii},
the second factor of the product is the boundary of a map of filtration degree
less than r(3)+r(4) while the first factor is in filtarion degree r{(1) so that

the product is the boundary of a map of filtration degree less than

r{1)+[r(3)+r(4)]. Thus, in either case we can represent XZ-YI-YS-Y4 by a map
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whose boundary is an element of <X ,X ,X ,X >. Thus, X 'Y -Y -Y survives to
1°72°73" " 2 1 3 4

r(1)+r(3)+r(4) r{1)+r(3)+r(4)

E and d (XZ-YI-YB-Y4) is the projection into

r(1)+r(3)+r(4)

< >,
0,N(1)+N(2) +N(3)+N(4)+2 of an element of XI,X2,X3,X4 I

We conclude this section with three theorems that refer only to our

Atiyah-Hirzebruch spectral sequence, i.e., we take B = BP. As we shall see,

the Toda brackets constructed there are common and useful for detecting

nontrivial extensions in our spectral sequence. In Chapter 3, we shall see

that we have elements of H,BP with the following differentials:

M) =, ) = o, D) = v, d*M) = vM, M) = oM}, P> = o
1 2 1 1 2 1 2 1 1

and d°<M°> = oM°. We will represent M, M, M, M, M, <M>, <> by p,
2 1 1 2 1 2 2 1 2 1

o, K, M, “02' u4, <u02>, respectively. The reader may prefer to read the

remainder of this section after reading Chapter 3.

THEOREM 2.4.4 Let X e my.

(a) x-Mf survive to E° if and only if n-X = 0 and v-X = 0. In that case
<m,X,v> is defined and projects to ds(x-MfL

(b) X'M2 survives to ES if and only if n-X = O. In that case <v,7,X> is

defined and projects to dG(X-Mz)

1]

(c) X-ﬁz survives to E° if and only if v-X 0. In that case <7;,v,X> is
defined and projects to ds(x-ﬁz).

PROOF. Represent M e Ez’oby ul:(SlA DA,S'A SA) ——s (SA A BP'?! SA) such that
u ISA SA = m.  Represent M e E:’O by m: (S°A DB,S™A SB) —— (SB A BP'*! sB)
such that uZISSA SB = v. Let G:SV A SU —— SU represent X. We use the smash
product Toda bracket of Definition 2.2.2 throughout the proof. Observe that
all three Toda brackets in this theorem have indeterminacy contained in (7m,v)
which projects to zero in E°.

(a) da(x-Mf) = n-x-Mf and if 7-X = O then d4(X~M?) = v-X-M. Thus, X-Mf

survives to E6 if and only if n-X = 0 and v-X = 0. The latter condition is
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equivalent to <, X,v> being defined. In this case we can apply Theorem 2.4.2
to conclude that dB(X-Mj) is the projection of <%,X,v> into E°.
2
{b} Represent M2 e Es,o by
u,,: (0"A DB A S'A SA A sC, (S°A DB A S'A SA A SC) u (D'A SB A S'A SA A SC)) —

(5B A sa Asc ABp'® sB AsanscApp?

)
such that u01 restricted to the boundary of its domain is (uz Aq) v an where
B | s’ AsBAS'AsaAsc=vAg Let
an:DZ/\ SAASCASVASU-—5 SAASCASU such that
anfs‘/\ SAASCASYASU=3AGAI1 . Then XM e E® is represented by
F = (“bzA G A 1sc) U (pzA ank
((D*A DB A S'A SA A SC A SV ASU) u (S°ADB A DA SAASCASYASY),

(D*A sB A S'A SA ASC AsvAsy) v (s’ASBADNASAASC ASYASY)

— > (SBASAAsSCAsuABP® sBAsAAsCAsy.

Thus, dS(X-Mz) is represented by F restricted to the boundary of its domain
which is (an/\ G)u (v A Bm) € <v,n, X>.
{c) Represent ﬁz € Ei,o by
Zm: (0°A DA A S°A B A SH, (S'A DA A S°A SB A SH) u (D°A SA A S°A SB A SH)) —

(sa A sB A su A BP'® sa A sB A sH A BP'P

)
such that ;;1 restricted to the boundary of its domain is
[(u. Av) UB_ 1 A1 . LetB :D* ASBASHASYASU_—> SBASHASU such
1 n SH VX
that B | SSASBASHASYASU=0p AGA 1, Then x-ﬁz e E° is represented
= (g A A .
by F (u01 G) v (pl Bvx)'
((0®A DA A S°A SB A SH A SV ASU) u (S'ADAADASBASHASYASU),
(D°A SA AS®N SB A SH A SV ASU) u (S'Asa AD'ASBASY AsS) —
(SA ASB ASH A suABP'® saAsBASsHASU.

Thus, ds(X-ﬁé) is represented by F restricted to the boundary of its domain

i i A A A
which is (an G 1SH) [VIRG ) Bvx) e <,v,%X.§
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THEOREM 2.4.5 Let X € 1!5.

(a) <v,n,X,n> is defined if and only if X-MlM:2 survives to E®. In this case
<v,7,X,m> projects to dB(X-MiMz). Moreover, vX is divisible by 7.
(b} Assume that <u,v,X,v> is defined. Then X~Mf§2 survives to Em, and
<7, v,X,v> projects to dm(X-Mfgz). Moreover, oX is divisible by v.
PROOF. Let G:SV A SU —— SU represent X € ﬁf. We use the smash
product Toda bracket of Definition 2.2.2 throughout this proof and
the notation of the proof of the preceding theorem.
(a) XMlM2 survives to I-I4 if and only if »X = O. In this case, XMle survives
to EG if and only if vX is divisible by 5, i.e. 0 € <9, X, . Then dS(XMle)
= ds(XMz)Ml and ds(XMz) € <w,n,X>. Thus XMM_survies to E® if and only if
dS(XMz) € (v), i.e. 0 € <v,71,X>. Therefore, XMlM2 survives to E° if and only
if 0 € <m,X,m> and 0 € <v,m,X>. Then by Theorem 2.2.7(f), XMIM2 survives to
E8 if and only if <v,7,X,n> is defined. In that case let the following
diagram depict a defining system for <v,n,X,n>p
v n G n
B B
vn L2 xn
B B
Ww,n,X> <X, N>
Here B, :DV A SU A S'A SA’ — SU A SA’ such that B, ISV A SU A s'A sa’

=G A, B(VTID:D"‘/\SBADZASAASCASVASU—-;SBASAASC/\SUsuch
that B |8 [Domain B 1 =(B AG) u({vr AB ) and

<,m, %> W, %X vy nX
B<7) X n>:D2A SAASCADVASUAS'ASA —5 SAASCASUASA such that

i = A A i
<n,x,n>la {Domain B<n,x,1}>] (n an) v (an n). Then the following map F

representis X-MlME in ES. F =

AGA AR A A A A
(e NG Ap) v (p B x B v an) v (B pl v (/B

<7),xﬂ?>) :
((0*A DB A S'ASA AsSC AsyAsUASADA) U (SPADBAD®ASAASCASVASUAS' ADA” )

<M, X>

v (D*A DB AS'A SA ASC A DV ASUAS'ASA) u (DA SB A DPASAASCASYASUAS'ADA’ )
u (S°A DB A DA SA A sC A DV ASU A SIA SA), (SPASBADPASAASCADVASUAS ' ASA” )

v (D*A sB A S'A A ASC ADVASUASASA) u (D*ASBADPASAMASCASVASUAS! ASA” ))
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—— 5> (SBASAASC AsuAsaAr'® sB A sa Asc AsuAsa).
Thus dB(X-Mle) is represented by F|3 [Domain F)

= A A A >
(v B<n,X,n>) U (an an) v (B<v,n,x> n) € <v,n, X, 7

The indeterminacy of <v,7,X,n> is a sum of elements of the form A, vB,
<v,n,C> and <»,D,n>. All such elements project to zero in E®. Thus,
<v,n,X,n> projects to a singleton in EB‘ By Theorem 2.4.2, v:X € <7, X, n>.
However, 0 € <0,X,n> since <v,7,X,n> is defined. Thus, v-X is in the
indeterminacy of <7,¥,n> which is the ideal geneerated by .
(b) Let the following diagram depict a defining system for <n,v,X,v>:

n v G v

B B B
v 134 xv

B B
<N,V X> <W,X,>D
Here B_:DV A SU A S°A SB* — SU A SB’ such that B, ISV A SU A S°A B’

:D°A SA AD*ASBASHA SV ASU —s SAASBASH A SU such

=GAp, B :
,v,X>

that B /{8 Domain B ] =(npAB ) u (B AG) and
<N, v,X> <N, P, X> VX nv

B x v>:D4A SB A SHADVASUASASE — SBASHASUASB such that

i = A A i
<l}’X’wl[a Domain BQLX,U>] (v va) v (Bvx v). Then the following map F

10,

represents X-Mfﬁé in E F =

L AcA A A A n A A :
(u02 G “2) v (u1 Bux “2) v (B ”2) v (“02 Bxu) v (u1 G ):

<n,v,X> <v,X,u>

((0°A DA A S°A sB A SH A sv A suAS*ADB) u (S'ADAAD*ASBASHASVASUAS ADB’ )
U (D°A sA A D*A SB A SH A Sv A sy ASADB) u (D*ADAASPASBASHADVASUAS®ASB® )
U (S'A DA A D*A SB A SH A DV A SU A SPASB’ ), (S ASAAD*ASBASHADVASUAS ASE® )

U (D°A SA A S°ASB AsH A DV AsuASAsSE) u (DPASAAD*ASBASHADVASUAS ASB’ ))

[10]

— (SAASBASHASUASBABP ,SA A SB ASH ASUASE).

Thus X-Mfﬁz survives to E'° and le(X-Mfﬁz) is represented by F|8 [Domain F]

= A A A A A A < >,
(1SH nAB }ouo(, Bm) Bxy)u(lsﬂ B v) € <n,v,X,v The

<Ww,X,U> <N,V X>

indeterminacy of <m,v,X,v> is the sum of elements of the form nmA, vB, <n,v,C>

and <7,D,v>. All such elements project to O in Ee. Therefore, <m,v,X,v>
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projects to a singleton in Em. By Theorem 2.4.2, o-X € <v,X,v>. However,
0 € <v,X,v> because <7,v,X,v> is defined. Therefore o-X is in the

indeterminacy of <v,X,v> which is the ideal generated by v.l

The following theorem gives three special cases of Theorem 2.4.3 where no

technical hypotheses are required.

THEOREM 2.4.8 {a) Let X € nf, and assume that <o,v,X,n> is defined. Then
XMle survives to E'* and dM{XMlMi) € <o,v, X, 7.

(b} Let X e nf, and assume that <v,o,X,n> is defined. Then XM1<M:> survives
to E'" and d"'(XM <M>) € w, o, X, >

(c) Let d¥(Y) = X € n% and let £ € ni’. Assume that <¥,&,v,7n> is defined.

2r+6 2r+6
d

Then EYEZ survives to E and (&Ygz) € <X, &, v,

(d) Let d”(Y) = X ¢ nE and let £ ¢ nf. Assume that <X,£€,m,v> is defined.

™6 and dzNG(EYMZ) € <X,€,mn,v>.

Then EYM2 survives to E°
PROOF. (a) Let the following diagram depict a defining system for
<o-,v,X,n>A using the same notation as in the previous theorems:

o v G n

B B B
ov X XN

B
<o, V,X> <VLX, 1>
Let p4 represent <M?> such that u4 restricted to the boundary of its domain is
o. Let Boo represent Mz such that Mo, restricted to the boundary of its
domain is (pAv) UuB_ . Then XM M° is represented by ¢ =
[ ov 12
A A A A A A A .
(pm G ”1) Y (;102 an) Y (p‘! B<v,x,n>) v (B<c',v,x> 'ul) v (p4 Bvx ul}
Note that ¢ restricted to the boundary of its domain is
(o A B }J u(B AB ) u (B A7) which is an element of <o,vu,X,w>.
<W,X, M oV X7 <o,V,X>
2 . 14 14 2
Thus, XMiM2 survives to E° and d (XMle) € <o,v, X, .

{b) Let the following diagram depict a defining system for <v,o,X, 7>, using

the above notation:
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B B B
vo oxX xn

B B
w,o,X> <o, X, >

Let <u02> represent <Mz> such that <u02> restricted to the boundary of its
domain is (p, Ao) v B, Then XM1<.M2> is represented by

= (< > A A A A A A
¢ ( “02 G “1) v (<“02> an) Y (“2 Box ”1) Y (“2 B<o*,x,-n>)

U (B<u o x> A ul). Note that ¢ restricted to the boundary of its domain is
(B AB Ju (v AB ) u (B A 3) which is an element of
vo X7 <0, X, > w,o,X>
<v,o,X, 7. Thus, XM1<M§> survives to E'* and dH{XM1<M§>) € <w,o0, X, 7>.
{c} Let the following diagram depict a defining system for <X,§,v,m>, using

the above notation:

G £ v U

Bx& Bgv an

B, g.v> B vm

M i - Ag Ay A A Ay
Then EYM2 is represented by ¢ = (Y A & “01) v (Y Bgv “1) v (BXE “01)

A A .
v (B<x,€,v> p) vy B<€,V,7l>)' Note that ¢ restricted to the boundary of
i i A A A . .
its domain is (Bxg an) U (B<x,§,v> n) v (X B<E,an>) which is an
element of <X,€,v,n>. Thus, gvﬁz survives to E=*° and

dzﬁe(EYf&‘Z) € <X, €, v,m>.

(d) Let the following diagram depict a defining system for <X,E,m,v>, using

the above notation:

G £ n v

B B B
x§ £n nw

B<x,§,n> B<E,n,v>

= Ag A A A A
Then &'YM2 is represented by ¢ = (Y A € ;101) u (Y Bin uz) v (BXS “01)

v (B A uz) v {(YAB ). Note that ¢ restricted to the boundary of

<x,E,m

its domain is (BX

<€,m,v>

A an) v (B Apy)y u (XA B, } which is an element

3 <, €,m> £.n,0>
of <X,&,n,v>. Thus, EYM2 survives to E='° and d2”8(€YM2) € <X,E,n,v>.l



