CHAPTER 2: TODA BRACKETS

1. Introduction

As we saw in the previous chapter, there is one very important step in our computation that is not algorithmic: the determination of the additive and multiplicative structure of π_{*}^{S} from the composition series which has been deduced from the Atiyah-Hirzebruch spectral sequence. One of the main tools we will use to determine these extensions is the relationship between Toda brackets in π_{*}^{S} and differentials in the spectral sequence. This idea was originated by J. P. May [40, Section 4]. May's three basic theorems regarding the behaviour of Massey products in spectral sequences defined from a filtered differential graded algebra were generalized to the Adams and AtiyahHirzebruch spectral sequences in [28]. In addition to these classical results, we will derive and use several new theorems of this type.

In Section 2 we give two definitions of Toda brackets in π_{*}^{S} : one using the composition product and one using the the smash product. By [29], these two Toda brackets are always equal. We will find that there are situations in which one point of view is advantageous over the other. In Section 3, we derive the basic properties of these Toda brackets. In Section 4, we prove several theorems which relate these Toda brackets to the differentials in the Atiyah-Hirzebruch spectral sequence. We will only be using three-fold and four-fold Toda brackets in our applications. Therefore, we do not hesitate to specialize to these cases.

2. Definitions

We will find it convenient to work with spectra in the coordinate-free setting
of J. P. May [41]. After introducing coordinate-free notation, we give two defininitions of Toda brackets: one based on the smash product and one based on the composition product. These definitions were first given in [29]. Our composition Toda bracket generalizes Toda's orginal three-fold product [80] and Oguchi's four-fold product [51]. It agrees with Spanier's Toda bracket [58] but it is not clear whether it agree's with Gershenson's Toda bracket [21]. Our smash Toda bracket agrees with that of Porter [51] and corresponds under the Pontrjagin-Thom isomorphism to the Massey product of manifolds defined in [28]. In Theorem 2.2.3 we state the theorem from [29] that our two Toda brackets are equal. In addition, our Toda bracket is contained in Joel Cohen's Toda bracket [18]. We conclude this section with several practical criteria for concluding that a four-fold Toda bracket is defined.

The following notation will be used throughout. Let R^{∞} be the real inner product space with orthonormal basis $B=\left\{b_{1}, b_{2}, \ldots\right\}$. We consider only finite dimensional subspaces W of R^{∞} which have a subset of B as a basis. Internal direct sum is denoted by + , and if W^{\prime} is a subspace of W then W^{\perp} denotes the orthogonal complement of W ' in W. All spaces are based $C W$ complexes, all maps are based and all homotopies, cones and suspensions are reduced. Let S denote one point compactification. The n-sphere is defined as $S^{n} \equiv S\left(R^{n}\right)$. The isomorphism from a subspace V to $R^{\text {dimV }}$ which preserves the ordered standard bases induces a canonical homeomorphism from $S V$ to $S^{\text {dimV }}$. Thus a map from $S V$ to $S W$ determines an element of $\pi_{d i m V}\left(S^{\text {dimW }}\right)$. If $i_{1}<\cdots<i_{t}$ then define the disc
 the cone functor. If $1 \leq j_{1}<\cdots<j_{k} \leq t$ and $f: S U_{1} \wedge \cdots \wedge S U_{t} \wedge X \longrightarrow S U_{1} \wedge \cdots \wedge \operatorname{SU}_{t} \wedge Y$ then define $C_{j_{1} \ldots j_{k}}(f)$ as the canonical map from $C_{j_{1}}, \ldots, j_{k}\left(S U \wedge \ldots \wedge S U_{t} \wedge X\right)$ $\equiv S U_{1} \wedge \ldots \wedge \operatorname{DU}_{j_{1}} \wedge \ldots \wedge \operatorname{DU}_{j_{k}} \wedge \ldots \wedge \operatorname{SU}_{t} \wedge X$ to $C_{j_{1}, \ldots, j_{k}}\left(S U_{1} \wedge \ldots \wedge S_{t} \wedge Y\right)$ $\equiv \operatorname{SU}_{1} \wedge \ldots \wedge \operatorname{DU}_{j_{1}} \wedge \ldots \wedge \mathrm{DU}_{j_{k}} \wedge \ldots \wedge \operatorname{SU}_{\mathbf{t}} \wedge \mathrm{Y}$ induced by f . Define an equivalence
relation on ∂I^{t-1} by $\left(a_{1}, \ldots, a_{t-1}\right) \approx\left(b_{1}, \ldots, b_{t-1}\right)$ if $\max \left(a_{1}, \ldots a_{t-1}\right)=1$ and $\max \left(b_{1}, \ldots, b_{t-1}\right)=1$. For $t \geq 3$ choose homeomorphisms $h_{t}: S^{t-2} \longrightarrow\left(\partial I^{t-1}\right) / \approx$. Let T denotes the canonical interchange map. Then the maps

$$
h: S\left(R^{t-2}+v_{1}+\cdots+v_{t}\right) \longrightarrow \partial\left[D V_{1} \wedge \cdots \wedge D V_{t-1} \wedge S V_{t}\right]
$$

Our spectra will be functors E defined on all finite dimensional subspaces W of R^{∞} with basis a subset of B. We will use the symbol ε to denote either the structure $\operatorname{map} S \wedge E \longrightarrow E$ of a spectrum or the product $E \wedge E \longrightarrow E$ of a ring spectrum. Then $\pi_{N} E$ is defined as the direct limit over all W of the groups [SW, EW'] where W ' is a subspace of W with $N=\operatorname{dim}(W / W$) . The structure maps of this direct limit are $\varepsilon \circ(S V \wedge-)$ where $V \perp W$. We now have the notation to give the two definitions of the Toda bracket $\left\langle X_{i}, \ldots, X_{t}\right\rangle$ where $X_{1}, \ldots, X_{t-1} \in \pi_{*}^{S}, X_{t} \in \pi_{*}(E)$ and E is any spectrum. We begin with the definition based on the composition of maps.

DEFINITION 2.2.1. Let E be a spectrum, let $X_{1}, \ldots, X_{t-1} \in \pi_{*}$ and let $X_{t} \in \pi_{*} E$. Let $G_{i-1, i}: S V_{i} \wedge \ldots \wedge S V_{t} \wedge S U \longrightarrow S V_{i+1} \wedge \ldots \wedge S V_{t} \wedge E_{i} U$ represent $X_{i}, 1 \leq i \leq t$, where $R^{t-2} \perp V_{1} \perp \ldots \perp V_{t} \perp U, E_{i}=S$ for $i \leq i \leq t-1$ and $E_{t}=E$. A defining system for $\left\langle G_{0,1}, \ldots, G_{t-1, t}\right\rangle_{0}^{\prime}$ consists of maps

$$
G_{i j}: D V_{i+1} \wedge \cdots \wedge D V_{j-1} \wedge S V_{j} \wedge \cdots \wedge \operatorname{SV}_{t} \wedge S U \longrightarrow S V_{j+1} \wedge \cdots \wedge S V_{t} \wedge E_{j} U
$$

for $0 \leq i<j^{-1}<t,(i, j) \neq(0, t)$, such that

$$
G_{i j} \mid \partial\left(D V_{i+1} \wedge \ldots \wedge D V_{j-1} \wedge S V_{j} \wedge \ldots \wedge S V_{t} \wedge S U\right)=U_{k=i+1}^{j-1} G_{i j}^{k}
$$

where $G_{i j}^{k}$ is the composite map
$D V_{i+1} \wedge \ldots \wedge V_{k-1} \wedge \operatorname{SV}_{k} \wedge D V_{k+1} \wedge \ldots \wedge D_{j-1} \wedge \operatorname{SV}_{j} \wedge \ldots \wedge \operatorname{SV}_{t} \wedge S U \xrightarrow{C_{k+1, \ldots, j-1}\left(G_{i k}\right)}$ $D V_{k+1} \wedge \cdots \wedge D_{j-1} \wedge \operatorname{SV}_{j} \wedge \cdots \wedge \operatorname{SV}_{t} \wedge S U \xrightarrow{G_{k j}} \operatorname{SV}_{j+1} \wedge \cdots \wedge \operatorname{SV}_{t} \wedge E_{j} U$. If $\left\langle G_{01}, \ldots, G_{t-1, t}\right\rangle^{\prime} ;$ has a defining system then define $\left\langle G_{01}, \ldots, G_{t-1, t}\right\rangle_{0}^{\prime}$ as
the set of homotopy classes of the maps

$$
\tilde{G}_{o t}=U_{k=1}^{t-1} G_{o t}^{k} \wedge\left(h \wedge 1_{S U}\right): S\left(R^{t-2}+V_{1}+\cdots+V_{t}\right) \wedge S U \longrightarrow E U
$$

for all def'ining systems $\left\{G_{i j}\right\}$ of $\left\langle G_{01}, \ldots, G_{t-1, t}\right\rangle_{\circ}^{\prime}$ Define
$\left\langle G_{01}, \ldots, G_{t-1, t}\right\rangle_{\circ}=\underset{W}{l i m}\left\langle G_{01} \wedge 1_{s W}, \ldots, G_{t-2, t-1} \wedge 1_{s w}, \varepsilon \circ\left(G_{t-1, t} \wedge 1_{s W}\right)\right\rangle_{0}^{\prime}$.
This direct limit is taken over all W with $W \perp\left(R^{t-2}+V_{1}+\cdots+V_{t}+U\right)$. If W is a subspace of W then the map $-\wedge 1_{S\left(W^{\prime}\right)}$, sends a defining system of $\left\langle G_{01} A_{S W}, \ldots, \varepsilon \circ\left(G_{t-1, t} \wedge_{S W},\right)\right\rangle_{0}$ to a defining system of $\left\langle G_{01} \wedge_{1}{ }_{S W}, \ldots, \varepsilon \circ\left(G_{t-1, t} \wedge_{1}{ }_{S W}\right)\right\rangle_{0}^{\prime}$. Finally, define $\left\langle X_{1}, \ldots, X_{t}\right\rangle_{0}$ as the union of $\left\langle G_{01}, \ldots, G_{t-1, t}\right\rangle$ for all choices of representatives $G_{i-1, i}$ of $X_{i}, 1 \leq i \leq t$.

The following definition of the Toda bracket based on the smash product is a direct analogue of the usual algebraic definition of the Massey product in the homology of a differential graded algebra.

DEFINITION 2.2.2 Let E.be a spectrum, let $X_{1}, \ldots, X_{t-1} \in \pi_{*}^{S}$ and $\operatorname{let} X_{t} \in \pi_{*} E$. Let $G_{i-1, i}: S V_{i} \wedge S_{i} \longrightarrow E_{i} U_{i}$ represent X_{i} for $1 \leq i \leq t$ where $R^{t-2} \perp V_{1} \perp U_{i} \perp \cdots \perp V_{t} \perp U_{t}, E_{i}=S$ for $1 \leq i \leq t-1$ and $E_{t}=E$. A defining system for $\left\langle G_{01}, \ldots, G_{t-1, t}>\wedge\right.$ consists of maps

$$
G_{i j}: D V_{i+1} \wedge \operatorname{SU}_{i+1} \wedge \cdots \wedge \mathrm{DV}_{j-1} \wedge \mathrm{SU}_{j-1} \wedge \mathrm{SV}_{j} \wedge \mathrm{SU}_{j} \longrightarrow \mathrm{E}_{j}\left(\mathrm{U}_{i+1}+\cdots+\mathrm{U}_{j}\right)
$$

for $0 \leq i<j-1<t,(i, j) \neq(0, t)$, such that

$$
G_{i j} \mid \partial\left(D V_{i+1} \wedge S U_{i+1} \wedge \cdots \wedge D V_{j-1} \wedge S U_{j-1} \wedge S V_{j} \wedge S U_{j}\right)=U_{k=1+1}^{j-1} G_{i j}^{k}
$$

where $G_{i j}^{k}$ is the composite map $\varepsilon \circ T \circ\left(G_{i k} \wedge G_{k j}\right)$. If $\left\langle G_{01}, \ldots, G_{t-1, t}\right\rangle^{\prime} \wedge$ has a defining system, then define $\left\langle G_{o 1}, \ldots, G_{t-1, t}\right\rangle \wedge$ as the set of homotopy classes of the maps

$$
\begin{aligned}
& \tilde{G}_{o t} \equiv\left(U_{k=1}^{t-1} G_{o t}^{k}\right) \circ T \circ\left(h \wedge 1_{S U_{1} \wedge \cdots \wedge S U_{t}}\right): S\left(R^{t-2}+V_{1}+\cdots+V_{t}\right) \wedge S U_{1} \wedge \cdots \wedge S U_{t} \\
& E\left(U_{1}+\cdots+U_{t}\right)
\end{aligned}
$$

for all defining systems $\left\{G_{i j}\right\}$ of $\left\langle G_{01}, \ldots, G_{t-1, t}\right\rangle^{\prime}$ Define
$\left\langle G_{01}, \ldots, G_{t-1, t}\right\rangle \wedge=\underset{W_{1}, \ldots, W_{t}}{1 i m}\left\langle G_{01} \wedge 1_{S W_{1}}, \ldots, G_{t-2, t-1} \wedge 1_{S H_{t-1}}, \varepsilon \circ\left(G_{t-1, t} \wedge 1_{S W_{t}}\right)>_{\wedge}^{\prime}\right.$
where the direct limit is taken over all W_{1}, \ldots, W_{t} with $W_{1} \perp \cdots \perp W_{t} \perp\left(R^{t-2}+V_{i}+U_{1}+\cdots+V_{t}+U_{t}\right)$. If W_{i}^{\prime} is a subspace of $W_{i}, 1 \leq i \leq t$,

 $\left\langle G_{01} \wedge 1_{S_{1}}, \ldots, \varepsilon \circ\left(G_{t-1, t} \wedge 1_{S H}\right)>\wedge^{\prime}\right.$. Finally, define $\left\langle X_{1}, \ldots, X_{t}\right\rangle \wedge$ as the union of $\left\langle G_{01}, \ldots, G_{t-1, t}>\wedge\right.$ for all choices of representatives $G_{1-1,1}$ of $X_{i}, 1 \leq i \leq t$.

The reader can find the proof of the following theorem in [29, Theorem 3.2].

THEOREM 2.2.3 Let E be a spectrum, let $X_{1}, \ldots, X_{t-1} \in \pi_{*}^{S}$ and let $X_{t} \in \pi_{*} E$. Then $\left\langle X_{1}, \ldots, X_{t}\right\rangle$ is defined if and only if $\left\langle X_{1}, \ldots, X_{t}\right\rangle \wedge$ is defined.
Moreover, if these Toda brackets are defined then they are equal.
NOTATION: In view of this theorem, we will use the symbol $\left\langle X_{1}, \ldots, X_{t}\right\rangle$ to denote $\left\langle X_{1}, \ldots, X_{t}\right\rangle_{0}=\left\langle X_{1}, \ldots, X_{t}\right\rangle_{\Lambda}$.

We will try to imitate proofs of results for algebraic Massey products to construct proofs of the corresponding results for Toda brackets with defining systems constructed with the smash product. An obvious ingredient which we will require is the ability to add maps defined on cones.

DEFINITION 2.2.4 Let f and g be two maps from $C_{j}, \ldots, j_{k}\left(X \wedge S U \wedge_{1} \wedge \ldots \wedge S U_{t}\right)$ to Y, where $U_{1} \perp \cdots+U_{t}$ and $0 \leq k \leq t$. Let $\left\{b_{i_{1}}, \ldots, b_{i}\right\}$ be a basis for $U_{1}+\cdots+U_{t}$ with $i_{1}<\cdots<i_{N}$ and let $\mu(f)=\mu\left(X \wedge S U_{1} \wedge . . \wedge \mathrm{SU}_{\mathrm{t}}\right)=\mathrm{i}_{1}$. Define $f \oplus g: C_{j_{1}, \ldots, j_{k}}\left(X \wedge \mathrm{SU}_{1} \wedge \ldots \wedge \mathrm{SU}_{\mathrm{t}}\right) \longrightarrow Y$
in the usual way by pinching in the $\mu(f)=i_{1}$ coordinate. Also define $-f$ in
the usual way reversing the $\mu(f)=i_{i}$ coordinate. Let $f \ominus g=f \oplus(-g)$.

Now we have a sum \oplus and a product \wedge defined for the maps that arise in defining systems of Toda brackets. Unfortunately most of the usual algebraic identities only hold up to homotopy for these operations. However, there are five identities which these operations do satisfy.

THEOREM 2.2.5 The following identities hold whenever the expressions appearing in them are defined.
(a) $f \wedge(g \wedge h)=(f \wedge g) \wedge h$
(b) $\quad-(f \oplus g)=(-f) \oplus(-g)$
(c) If $\mu(f)<\mu(W)$ then $1_{S W} \wedge(f \oplus g)=\left(1_{S W} \wedge f\right) \oplus\left(1_{S W} \wedge g\right)$.
(d) If $\mu(f)>\mu(g)$ then $f \wedge(g \oplus h)=(f \wedge g) \oplus(f \wedge h)$.
(e) If $\mu(f)>\mu(g)$ then $-(f \wedge g)=f \wedge(-g)$.

PROOF: The proofs of these properties are straightforward and are left to the reader.

NOTATION: In view of property (e) above, $-f_{1} \wedge \ldots \wedge f_{t}$ will mean $f_{1} \wedge \ldots \wedge\left(-f_{k}\right) \wedge \cdots \wedge f_{t}$ where $\mu\left(f_{k}\right)=\min \left(\mu\left(f_{1}\right), \ldots, \mu\left(f_{t}\right)\right)$.

We state next a useful technical result which says that $\left\langle X_{1}, \ldots, X_{t}\right\rangle \wedge$ can be defined from any fixed set of representatives of X_{1}, \ldots, X_{t}.

THEOREM 2.2.6 Assume that $\left\langle X_{1}, \ldots, X_{t}\right\rangle$ is defined. Let $G_{i-1, i}$ represent X_{i} for $1 \leq i \leq t$. Then any element Z of $\left\langle X_{1}, \ldots, X_{t}\right\rangle$ has a representatives $\tilde{G}_{0 t}$ where $\left\{G_{i j} \mid 0 \leq i<j \leq t,(i, j) \neq(0, t)\right\}$ is a defining system which contains the given $\left\{G_{1-1,1} \mid 1 \leq i \leq t\right\}$.
PROOF. Let $\left\{A_{1 j} \mid 0 \leq i<j \leq t,(i, j) \neq(0, t)\right\}$ be a defining system such that $\tilde{A}_{i j}$ is a representative of Z. By induction on $k=j-i \geq 1$, we construct a
defining system $\left\{G_{i j}\right\}$ and homotopies $H_{i j}$ from $A_{i j}$ to $G_{i j}$ such that $H_{i j} \mid \operatorname{Domain}\left(G_{i r} \wedge G_{r j}\right)=H_{i r} \wedge H_{r j}$ for $i<r<j$. When $k=1$, the $G_{i-i, i}$ are given, and the $H_{i-1, i}$ can be found since $A_{1-1, i}$ and $G_{i-1, i}$ both represent X_{i}. Let $j-i=k$ and assume that the $G_{s t}$ and $H_{s t}$ have been constructed for $1 \leq t-s<k$. Since (Domain $G_{i j}$, Domain $\tilde{G}_{i j}$) is homeomorphic to some (D^{N}, S^{N}), it has the homotopy extension property. By the induction hypothesis the homotopies $H_{1 r} \wedge H_{r j}, i<r<j$, agree where their domains intersect and thus define a homotopy $H=U_{r=1+1}^{j-1}\left(H_{i r} \wedge_{H_{j}}\right)$ from $\tilde{A}_{1 j}$ to $\tilde{G}_{i j}$. By the homotopy extension property, there is a homotopy H_{1}, of A_{i}, which extends both H and $A_{i j}$ Define $G_{i j}=H_{i j}$ Domain $\left(G_{i j} \times\{1\}\right)$. This completes the inductive step. Thus we have constructed a defining system $\left\{G_{i j}\right\}$ and a homotopy
$U_{r=1}^{t-1}\left(H_{O r} \wedge H_{r t}\right)$ from $\tilde{A}_{o t}$ to $\tilde{G}_{O t} \cdot D$

Observe that the three-fold Toda bracket $\left\langle X_{1}, X_{2}, X_{3}\right\rangle$ is defined if and only if $X_{1} \cdot X_{2}=0$ and $X_{2} \cdot X_{3}=0$. The following theorem gives practical criteria for concluding that a four-fold Toda bracket is defined.

THEOREM 2.2.7 Assume that $0 \in\left\langle X_{1}, X_{2}, X_{3}\right\rangle$ and $0 \in\left\langle X_{2}, X_{3}, X_{4}\right\rangle$. Let $N_{i}=$ Degree $X_{i}, 1 \leq i \leq 4$. In addition assume that one of the following conditions is true.
(a) $\left\langle X_{1}, X_{2}, X_{3}\right\rangle=0$.
(b) $\left\langle X_{2}, X_{3}, X_{4}\right\rangle=0$.
(c) $X_{1} \cdot \pi_{1+N_{2}+N_{3}}^{S}=0$.
(d) $X_{4} \cdot \pi_{1+N_{2}+N_{3}}^{S}=0$.
(e) If $Y \in \pi_{1+N_{2}+N_{3}}^{S}$ then $Y=Y_{1}+Y_{2}$ such that $X_{1} \cdot Y_{1}=0$ and $X_{4} \cdot Y_{2}=0$.
(f) $X_{1}=X_{3}$.
(g) $X_{2}=X_{4}$.

Then $\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle$ is defined.

PROOF: We use the smash product and the smash product Toda bracket of Definition 2.2.2 throughout the proof.
(a) Let $G_{12}, G_{23}, G_{34}, G_{13}, G_{24}$ be a defining system for $\left\langle X_{2}, X_{3}, X_{4}\right\rangle$ which defines 0 in $\left\langle X_{2}, X_{3}, X_{4}\right\rangle$. Extend this defining system by choosing any G_{01} and G_{02}. Then $\tilde{G}_{03} \in\left\langle X_{1}, X_{2}, X_{3}\right\rangle=0$, and thus we can find G_{03} to complete the defining system.
(b) The proof of (b) is analogous to the proof of (a).
(c) As in the proof of (a) select $G_{01}, G_{12}, G_{23}, G_{34}, G_{02}, G_{13}, G_{24}$ and G_{14}. By the previous theorem, there is a defining system $G_{01}, G_{12}, G_{23}, G_{02}, G_{13}^{\prime}$ of $\left\langle X_{1}, X_{2}, X_{3}\right\rangle$ which defines $0 \in\left\langle X_{1}, X_{2}, X_{3}\right\rangle$. Then $G_{01} \wedge\left(G_{13} \ominus G_{13}\right)$ represents an element of $X_{1} \cdot \pi_{1+N_{2}+N_{3}}^{S}=0$. Thus we can find G_{03} to complete the defining system.
(d) The proof of (d) is analogous to the proof of (c).
(e) As in the proof of (a) select $G_{01}, G_{12}, G_{23}, G_{34}, G_{02}, G_{13}, G_{24}$ and G_{14}. By the previous theorem, there is a defining system $G_{01}, G_{12}, G_{23}, G, G, G_{13}^{\prime}$ of $\left\langle X_{1}, X_{2}, X_{3}\right\rangle$ which defines $0 \in\left\langle X_{1}, X_{2}, X_{3}\right\rangle$. Write $G_{13} \oplus G_{13}^{\prime}=Y_{2} \oplus Y_{1}$ where $X_{1} \wedge Y_{1}$ and $X_{4} \wedge Y_{2}$ are null homotopic. Then we can replace G_{13} by $\left(-Y_{2} \oplus G_{13}\right) \oplus\left(-G_{13}^{\prime} \oplus G_{13}^{\prime}\right)$ and find a new appropriate G_{14}. Since the new G_{13} equals $\left(-Y_{2} \oplus Y_{2}\right) \oplus\left(Y_{1} \oplus G_{13}^{\prime}\right)$ we can find a G_{03} to complete the defining system.
(f) Let $G_{12}, G_{23}, G_{34}, G_{13}, G_{24}$ be a defining system for $\left\langle X_{2}, X_{3}, X_{4}\right\rangle$ which defines 0 in $\left\langle X_{2}, X_{3}, X_{4}\right\rangle$. Extend this defining system by choosing $G_{01}=G_{23}$ and any G_{02}. There are other choices $G_{02}^{\prime}=G_{02} \oplus X$ and $G_{13}^{\prime}=G_{13} \oplus Y$ such that the defining system $G_{01}, G_{12}, G_{23}, G_{02}^{\prime}, G_{13}^{\prime}$ defines G which represents 0 in $\left\langle X_{1}, X_{2}, X_{3}\right\rangle$. Replace G by $(G O 2 \oplus X \oplus Y) \cup\left(Y \cup_{1} G_{23}\right)$. Now $\tilde{G}_{03}=G$, and we can find a G_{03} to complete the defining system.
(g) The proof of (g) is analogous to the proof of (f).
3. Properties of the Toda Bracket

In this section, we derive the indeterminacy as well as the additive and associative properties of the three-fold and four-fold Toda brackets defined in the previous section. Most of these results are direct analogues of the algebraic results for Massey products given by May in [39]. As with algebraic Massey products we say that $\left\langle X_{1}, \ldots, X_{t}\right\rangle$ is strictly defined if $\left\langle X_{m}, \ldots, X_{n}\right\rangle=0$ whenever $1 \leq m<n \leq t$ and $n-m<t-1$. Note that every triple product which is defined is automatically strictly defined. We define the indeterminacy of a Toda bracket by

$$
\text { Indet }\left\langle X_{1}, \ldots, X_{t}\right\rangle=\left\langle X_{1}, \ldots, X_{t}\right\rangle-\left\langle X_{1}, \ldots, X_{t}\right\rangle
$$

In all of the proofs of this section we use defining systems as in
Definition 2.2.2 which are based upon the smash product.

Before embarking on manipulating our Toda brackets, we should remark that there is a hidden sign convention built into our definitions. The easiest way to deal with this problem is to consider a defining system $\left\{G_{i j}\right\}$ of $\left\langle X_{1}, \ldots, X_{t}\right\rangle \wedge$ in which the $G_{01}, \ldots, G_{t-1, t}$ use subspace V_{1}, \ldots, v_{t} of R^{∞} such that V_{i} has basis $\left\{b_{N(i, j)} \mid 1 \leq j \leq \operatorname{dim}\left(v_{i}\right)\right\}$ and $\left\{b_{N(i, j)} \mid 1 \leq i \leq t, 1 \leq j \leq \operatorname{dim}\left(V_{i}\right)\right\}$ in the lexicographical order of the $N(i, j)$ is the same ordering as the given ordering of B. Now think of $\tilde{G}_{o t}$ as using $t-2$ additional basis vectors $b_{k_{1}}, \ldots, b_{k_{t-2}}$ where $k_{1}<N\left(1, j_{1}\right)<k_{2}<N\left(2, j_{2}\right)<k_{3}<\cdots<k_{t-2}<N\left(t-2, j_{t-2}\right)$ for all j_{1}, \ldots, j_{t-2}.

THEOREM 2.3.1 Let $X_{i} \in \pi_{N_{i}}^{S}$ for $1 \leq i \leq t$.
(a) Indet $\left\langle X_{1}, X_{2}, X_{3}\right\rangle$ is the ideal spanned by X_{1} and X_{3}.
(b) If $X_{3} \cdot \pi_{N_{1}+N_{2}+1}^{S} \cap X_{1} \cdot \pi_{N_{2}+N_{3}+1}^{S}=0$ and $X_{2} \cdot \pi_{N_{3}+N_{4}+1}^{S} \cap X_{4} \cdot \pi_{N_{2}+N_{3}+1}^{S}=0$ then Indet $\left.\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle=U_{A}\left\langle A, X_{3}, X_{4}\right\rangle \cup U_{B}\left\langle X_{1}, B, X_{4}\right\rangle \cup U_{C}<X_{1}, X_{2}, C\right\rangle$
where the first union is taken over all $A \in \pi_{N_{1}+N_{2}+1}^{S}$ such that $A \cdot X_{3}=0$, the second union is taken over all $B \in \pi_{N_{2}+N_{3}+1}^{S}$ such that $B \cdot X_{1}=B \cdot X_{4}=0$ and the third union is taken over all $C \in \pi_{N_{3}+N_{4}+1}^{S}$ such that $C \cdot X_{2}=0$.
PROOF: The proof of is this theorem is a direct analogue of the proof of the corresponding algebraic result for Massey products [40, Prop. 2. 4].

NOTE: The hypothesis in (b) above is satisfied if $\langle X, X, X, X>$ is strictly defined.

THEOREM 2.3.2 Assume that $\left\langle X_{1}, \ldots, X_{k}^{\prime}+X_{k}^{\prime \prime}, \ldots, X_{t}\right\rangle$ is defined and $\left\langle X_{1}, \ldots, X_{k}^{\prime}, \ldots X_{t}\right\rangle$ is strictly defined. Then $\left\langle X_{1}, \ldots, X_{k}^{\prime \prime}, \ldots, X_{t}\right\rangle$ is defined and $\left\langle X_{1}, \ldots, X_{k}^{\prime}+X_{k}^{\prime \prime}, \ldots, X_{t}\right\rangle<\left\langle X_{i}, \ldots, X_{k}^{\prime}, \ldots, X_{t}\right\rangle+\left\langle X_{1}, \ldots, X_{k}^{\prime \prime}, \ldots, X_{t}\right\rangle$.

PROOF. The proof is a direct analoge of the algebraic proof of [40, Prop.2.7].

The following associative properties of the three-fold Toda bracket are proved by Toda in [60].

THEOREM 2.3.3 Let degree $X_{i}=N(i)$ for $O \leq i \leq 3$ and let degree $Y=M$.
(a) If $\left\langle X_{1}, X_{2}, X_{3}\right\rangle$ is defined then

$$
Y \cdot\left\langle X_{1}, X_{2}, X_{3}\right\rangle \subset(-1)^{M}\left\langle Y \cdot X_{1}, X_{2}, X_{3}\right\rangle \text { and }\left\langle X_{1}, X_{2}, X_{3}\right\rangle \cdot Y \subset\left\langle X_{1}, X_{2}, X_{3} \cdot Y\right\rangle
$$

(b) If $X_{0} \cdot X_{1}=X_{1} \cdot X_{2}=X_{2} \cdot X_{3}=0$ then

$$
X_{0} \cdot\left\langle X_{1}, X_{2}, X_{3}\right\rangle=(-1)^{N(0)+N(1)}\left\langle X_{0}, X_{1}, X_{2}\right\rangle \cdot X_{3} .
$$

(c) If the second of the three Toda brackets below is defined then they are all defined and
$0 \in(-1)^{N(0)}\left\langle\left\langle X_{0}, X_{1}, X_{2}\right\rangle, X_{3}, X_{4}\right\rangle+\left\langle X_{0},\left\langle X_{1}, X_{2}, X_{3}\right\rangle, X_{4}\right\rangle$

$$
+(-1)^{N(1)}<X_{0}, X_{1},\left\langle X_{2}, X_{3}, X_{4} \gg\right.
$$

(d) If $X_{1} \cdot Y \cdot X_{2}=0$ and $X_{2} \cdot X_{3}=0$ then $\left\langle X_{1} \cdot Y, X_{2}, X_{3}\right\rangle \subset(-1)^{M}\left\langle X_{1}, Y \cdot X_{2}, X_{3}\right\rangle$.
(e) If $X_{1} \cdot X_{2}=0$ and $X_{2} \cdot Y \cdot X_{3}=0$ then $\left\langle X_{1}, X_{2}, Y \cdot X_{3}\right\rangle c\left\langle X_{1}, X_{2} \cdot Y, X_{3}\right\rangle$.

In the next three theorems we give the analogous results for four-fold Toda brackets. Most of these results were proved by Oguchi [51] for his composition four-fold products. However, his Toda brackets are only defined under more restrictive conditions than ours. As a result some of his conclusions are sharper than ours.

THEOREM 2.3.4 Let degree $X_{i}=N(i)$ for $1 \leq i \leq 4$ and let degree $Y=M$. (a) If $\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle$ is defined then $\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle=(-1)^{P}\left\langle X_{4}, X_{3}, X_{2}, X_{1}\right\rangle$ where $P=N(4)[N(1)+N(2)+N(3)+1]+N(3)[N(1)+N(2)]+N(1)[N(2)+1]$.
(b) If $\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle$ is defined then

$$
\begin{gathered}
Y \cdot<X_{1}, X_{2}, X_{3}, X_{4}>\subset(-1)^{M}\left\langle Y \cdot X_{1}, X_{2}, X_{3}, X_{4}\right\rangle \text { and } \\
<X_{1}, X_{2}, X_{3}, X_{4}>\cdot Y \subset\left\langle X_{1}, X_{2}, X_{3}, X_{4} \cdot Y\right\rangle
\end{gathered}
$$

(c) If $\left\langle X_{1} \cdot Y, X_{2}, X_{3}, X_{4}\right\rangle$ is defined then $\left\langle X_{1}, Y \cdot X_{2}, X_{3}, X_{4}\right\rangle$ is defined and

$$
\left\langle X_{1} \cdot Y, X_{2}, X_{3}, X_{4}\right\rangle \subset(-1)^{M}\left\langle X_{1}, Y \cdot X_{2}, X_{3}, X_{4}\right\rangle .
$$

(d) If $\left\langle X_{1}, X_{2}, X_{3}, Y \cdot X_{4}\right\rangle$ is defined then $\left\langle X_{1}, X_{2}, X_{3} \cdot Y, X_{4}\right\rangle$ is defined and

$$
\left\langle X_{1}, X_{2}, X_{3}, Y \cdot X_{4}\right\rangle c\left\langle X_{1}, X_{2}, X_{3} \cdot Y, X_{4}\right\rangle .
$$

(e) Assume that $\left\langle X_{1}, X_{2} \cdot Y, X_{3}, X_{4}\right\rangle$ and $\left\langle X_{1}, X_{2}, Y \cdot X_{3}, X_{4}\right\rangle$ are defined, and that $\left\langle X_{1}, X_{2}, Y X_{3}\right\rangle=0$. Then $I \equiv\left\langle X_{1}, X_{2} \cdot Y, X_{3}, X_{4}\right\rangle \cap\left\langle X_{1}, X_{2}, Y \cdot X_{3}, X_{4}\right\rangle \neq \phi$. Moreover the indeterminacy is given by $\operatorname{Indet}(I) \equiv I-I=U_{A}\left\langle A, X_{3}, X_{4}\right\rangle \cup U_{B}\left\langle X_{1}, X_{2}, B\right\rangle$ where the first union is taken over all $A \in \pi_{N(1)+N(2)+M+1}^{S} / X \cdot \pi_{N(1)+N(2)+1}^{S}$ with $\mathrm{AX}_{3}=0$ and the second union is taken over all $B \in \pi_{N(3)+N(4)+K+1}^{S} / Y \cdot \pi_{N(3)+N(4)+1}^{S}$ with $X_{2} B=0$.
PROOF. (a) If $\left\{G_{i j} 10 \leq i<j \leq 4,(i, j) \neq(0,4)\right\}$ is a defining system for $\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle$, let $A_{i j}=G_{4-j, 4-i}$. Then $\left\{A_{i j} 10 \leq i<j \leq 4,(i, j) \neq(0,4)\right\}$ is a defining system for $\left\langle X_{4}, X_{3}, X_{2}, X_{1}\right\rangle$. Since $\tilde{G}_{1 j}=\tilde{A}_{1 j},\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle$ $C(-1)^{P}<X_{4}, X_{3}, X_{2}, X_{1}>$, and by symmetry the two Toda brackets are equal.
(b) Let $\left\{G_{i j} 10 \leq i<j \leq 4,(i, j) \neq(0,4)\right\}$ be a defining system for $\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle$ and let J represent Y. Then the following display is a defining
system for $\left\langle Y \cdot X_{1}, X_{2}, X_{3}, X_{4}\right\rangle$:

Thus, $\left\langle Y \cdot X_{1}, X_{2}, X_{3}, X_{4}\right\rangle$ is defined and contains $J \wedge \tilde{G}_{04}$. Therefore $Y \cdot\left\langle X_{1}, X_{2}, X_{3}, X_{4}>\subset(-1)^{M}<Y \cdot X_{1}, X_{2}, X_{3}, X_{4}\right\rangle$. The second identity in (b) follows from the first one by (a).
(c) Let $\left\{G_{i j} 10 \leq i<j \leq 4,(i, j) \neq(0,4)\right\}$ be a defining system for $\left\langle X_{1} \cdot Y, X_{2}, X_{3}, X_{4}\right\rangle$. Assume that $G_{01}=G_{01}^{\prime} \wedge J$ where G_{01}^{\prime}, J represents X_{1}, Y, resp. Then the following display is a defining system for $\left\langle X_{1}, Y \cdot X_{2}, X_{3}, X_{4}\right\rangle$:

$$
\begin{array}{cccccc}
G_{01}^{\prime} & & J \wedge G_{12} & & G_{23} & \\
& & & & G_{34} \\
& & & J \wedge G_{13} & & G_{24} \\
& & G_{03} & & & J \wedge G_{14}
\end{array}
$$

Thus $\left\langle X_{1}, Y \cdot X_{2}, X_{3}, X_{4}\right\rangle$ is defined and contains \tilde{G}_{04} because $G_{01}^{\prime} \wedge\left(J \wedge G_{14}\right)$ $=G_{01} \wedge G_{14}$. Therefore $\left\langle X_{1} \cdot Y, X_{2}, X_{3}, X_{4}\right\rangle \subset(-1)^{M}\left\langle X_{1}, Y \cdot X_{2}, X_{3}, X_{4}\right\rangle$.
(d) This identity follows from the identity in (c) by applying the identity in (a).
(e) Let $G_{1-1, i}$ represent X_{1} for $1 \leq i \leq 4$, and let J represent Y. Extend $G_{01}, G_{12} \wedge J, G_{23}, G_{34}$ to a defining system $\left\{G_{1 j} 10 \leq i<j \leq 4,(i, j) \neq(0,4)\right\}$ of $\left\langle X_{1}, X_{2} \cdot Y, X_{3}, X_{4}\right\rangle$. Extend $G_{01}, G_{12}, J \wedge G_{23}, G_{13}$ by finding a G_{02}^{\prime} to get a defining system of $\left\langle X_{1}, X_{2}, Y X_{3}\right\rangle$. Since $\left\langle X_{1}, X_{2}, Y X_{3}\right\rangle=0$, we can find a G_{03}^{\prime} such that $\partial G_{03}^{\prime}=\left(G_{01} \wedge G_{13}\right) \cup\left(G_{02}^{\prime} \wedge\left(J \wedge G_{23}\right)\right)$. Then the following diagram exhibits two defining systems, one for $\left\langle X_{1}, X_{2} \cdot Y, X_{3}, X_{4}\right\rangle$ and the other for $\left\langle X_{1}, X_{2}, Y \cdot X_{3}, X_{4}>:\right.$

$$
\begin{array}{cccccccc}
G_{01} & G_{12} \wedge J & G_{23} & G_{34} & G_{01} G_{12} J \wedge G_{23} & G_{34} \\
G_{02}^{\prime} \wedge J & G_{13} & G_{24} & G_{02}^{\prime} & G_{13} & & J \wedge G_{24}
\end{array}
$$

Both of these defining systems define the same element, and thus the two Toda
brackets have an element in common. The indeterminacy arises because not all defining systems of $\left\langle X_{1} \cdot Y, X_{2}, X_{3}, X_{4}\right\rangle$ have a $(0,2)$ entry of the form ? N and not all defining systems of $\left\langle X_{1}, Y \cdot X_{2}, X_{3}, X_{4}\right\rangle$ have a $(2,4)$ entry of the form $J \wedge$?.

THEOREM 2.3.5 Let degree $X_{i}=N(i)$ for $0 \leq i \leq 4$. Assume that $\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle$ and $\left\langle X_{0}, X_{1}, X_{2}, X_{3}\right\rangle$ are strictly defined. Then

$$
X_{0}<X_{1}, X_{2}, X_{3}, X_{4}>=(-1)^{N(0)+N(1)}<X_{0}, X_{1}, X_{2}, X_{3}>\cdot X_{4} .
$$

PROOF. Let $\left\{G_{i j} 10 \leq i<j \leq 4,(i, j) \neq(0,4)\right\}$ be a defining system for
$\left\langle X_{1}, X_{2}, X_{3}, X_{4}>\right.$. Extend $\left\{G_{01}, G_{12}, G_{23}, G_{02}, G_{13}, G_{03}\right\}$ to a defining
system $\left\{G_{i j} \mid-1 \leq i<j \leq 3,(i, j) \neq(-1,3)\right\}$ of $\left\langle X_{0}, X_{1}, X_{2}, X_{3}\right\rangle$. Then
$\left(G_{-1,1} \wedge G_{14}\right) \cup\left(G_{-1,2} \wedge G_{24}\right)$ restricted to the boundary of its domain is $\left(G_{-1,0} \wedge \tilde{G}_{04}\right) \cup\left(\tilde{G}_{-1,3} \wedge G_{34}\right)$. Thus $X_{0} \cdot\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle$ $c(-1)^{N(0)+N(1)}<X_{0}, X_{1}, X_{2}, X_{3}>X_{4}$ and by symmetry the theorem follows.

THEOREM 2.3.6 Let degree $X_{i}=N(i)$ for $0 \leq i \leq 4$.
(a) Assume that $\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle$ is defined and that $X_{0} \cdot X_{1}=0$. Then

$$
X_{0} \cdot<X_{1}, X_{2}, X_{3}, X_{4}>c(-1)^{N(1)+1} \ll X_{0}, X_{1}, X_{2}>, X_{3}, X_{4}>.
$$

(b) Assume that $\left\langle X_{0}, X_{1}, X_{2}, X_{3}\right\rangle$ is defined and that $X_{3} \cdot X_{4}=0$. Then

$$
\left\langle X_{0}, X_{1}, X_{2}, X_{3}\right\rangle \cdot X_{4} \subset(-1)^{N(1)+1}\left\langle X_{0}, X_{1},\left\langle X_{2}, X_{3}, X_{4}\right\rangle\right\rangle
$$

(c) Assume that $X_{0} \cdot X_{1}=0, X_{1} \cdot X_{2}=0, X_{3} \cdot X_{4}=0$ and $0 \in\left\langle X_{0}, X_{1}, X_{2}\right\rangle \cdot X_{3}$. Then $\left\langle X_{0}, X_{1}, X_{2} \cdot X_{3}, X_{4}\right\rangle$ is defined and contains $\left.(-1)^{N(0)+1}\left\langle<X_{0}, X_{1}, X_{2}\right\rangle, X_{3}, X_{4}\right\rangle$.
(d) Assume that $X_{0} \cdot X_{1}=0, X_{2} \cdot X_{3}=0, X_{3} \cdot X_{4}=0$ and $0 \in X_{1} \cdot\left\langle X_{2}, X_{3}, X_{4}\right\rangle$. Then $\left\langle X_{0}, X_{1} \cdot X_{2}, X_{3}, X_{4}\right\rangle$ is defined and contains $(-1)^{N(1)+1}\left\langle X_{0}, X_{1},\left\langle X_{2}, X_{3}, X_{4}\right\rangle\right\rangle$. PROOF. (a) Let $\left\{G_{i j} 10 \leq i<j \leq 4,(i, j) \neq(0,4)\right\}$ be a defining system for $\left\langle X_{1}, X_{2}, X_{3}, X_{4}>\right.$ and let $G_{-1,0}$ represent X_{0}. Then the following display is a defining system for $\ll X_{0}, X_{1}, X_{2}>, X_{3}, X_{4}>$:

$$
\begin{array}{llll}
\tilde{G}_{-1,2} & G_{23} & G_{34} \\
\left(G_{-1,0} \wedge G_{03}\right) \cup\left(G_{-1,1} \wedge\right) & & G_{24} &
\end{array}
$$

Now $G_{-1,1} \wedge G_{14}$ restricted to the boundary of its domain is the element of $\ll X_{0}, X_{1}, X_{2}>, X_{3}, X_{4}>$ determined by the above defining system union $G_{-1,0} \wedge \tilde{G}_{04}$. Thus $X_{0} \cdot\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle \subset(-1)^{N(1)+1}\left\langle\left\langle X_{0}, X_{1}, X_{2}\right\rangle, X_{3}, X_{4}\right\rangle$.
(b) This identity follows from the one in (a) by Theorem 2.3.4(a).
(c) Let $\left\{G_{i j} \mid-1 \leq i<j \leq 2,(i, j) \neq(-1,2)\right\}$ be a defining system for $<X_{0}, X_{1}, X_{2}>$. Let G_{23}, G_{34} represent X_{3}, X_{4}, respectively. Find G_{24} such that $\tilde{G}_{24}=G_{23} \wedge G_{34}$ and find $G_{-1,3}$ such that $\tilde{G}_{-1,3}=\tilde{G}_{-1,2} \wedge G_{23}$. Then the following display is a defining system for $<X_{0}, X_{1}, X_{2} \cdot X_{3}, X_{4}>$:

This defining system defines
$\left(G_{-1,0} \wedge G_{02} \wedge G_{24}\right) \cup\left(G_{-1,1} \wedge G_{12} \wedge G_{24}\right) \cup\left(G_{-1,3} \wedge G_{34}\right)$
$=\left(\tilde{G}_{-1,2} \wedge G_{24}\right) \cup\left(G_{-1,3} \wedge G_{34}\right)$, an arbitrary element of $\left.\left\langle<X_{0}, X_{1}, X_{2}\right\rangle, X_{3}, X_{4}\right\rangle$.
Thus $\left.\left\langle<X_{0}, X_{1}, X_{2}\right\rangle, X_{3}, X_{4}\right\rangle \subset(-1)^{N(0)+1}\left\langle X_{0}, X_{1}, X_{2} \cdot X_{3}, X_{4}\right\rangle$.
(d) This identity follows from the identity in (c) by Theorem 2.3.4(a).

We conclude this section by recording a useful theorem of Toda [60,3.10].

THEOREM 2.3.7 Let α and β be elements of π_{*}^{S}.
(a) If degree α is odd then $\langle\alpha, \beta, \alpha\rangle \cap(-1)^{\text {deg } \beta}\langle\beta, \alpha, \quad 2 \alpha\rangle \neq \varnothing$.
(b) If degree α is even then $\langle\alpha, \beta, \alpha\rangle \cap \beta \cdot \pi_{*}^{S} \neq \varnothing$.
4. The Atiyah-Hirzebruch Spectral Sequence

Toda brackets in the limit of a spectral sequence are related to the differentials in the spectral sequence. In this section we prove several theorems which depict this relationship in the Atiyah-Hirzebruch spectral sequence for the homotopy of a spectrum B :

$$
E_{p q}^{2}=H_{p}\left(B ; \pi_{q}^{S}\right) \Longrightarrow \pi_{p+q}^{S}(B)
$$

Of course, the case in which we are inerested is when $B=B P$, and we specialize to that case in the last three theorems of this section. The idea of the following theorem is to analyze a Toda bracket by passing to an appropriate mapping cone. This idea is due to Joel Cohen [18] where he used it to decompose elements of π_{*}^{S} as Toda brackets of Hopf classes.

THEOREM 2.4.1 Let $X_{0} \in \pi_{N(0)}^{S}, X_{2} \in \pi_{N(2)}^{S}, X_{3} \in \pi_{N(3)}^{S}, Y \in H_{n} B$ and let $r \geq 2$. Let C be the mapping cone of X_{2}. Assume that:
(i) $\quad X_{2} \cdot X_{3}=0$ in π_{3}^{S}.
(ii) $\quad d^{T}\left(X_{3} \cdot Y\right)=X_{0}$.
(iii) Y transgresses to the projection of $X_{02} \in C_{*}$ into the

Atiyah-Hirzebruch spectral sequence for $C_{*} B$.
Let $X_{1}=\sigma_{*}\left(X_{02}\right) \in \pi_{N(1)}^{S}$ where $\sigma: C \longrightarrow S^{N(2)+1}$ is the canonical collapsing map. Then $\left\langle X_{1}, X_{2}, X_{3}\right\rangle$ is defined and contains X_{0}.

PROOF. We use the composition product Toda bracket of Definition 2.2.1 to prove this theorem. Let $G_{i-1, i}$ represent X_{i} for $0 \leq i \leq 3$, and let G_{02} represent X_{02}. Consider Figure 2.4.1. In that diagram, j is the canonical inclusion map and G_{13} exists by (i). Let $G_{13 *}$ be the map of spectral sequences induced by $G_{13^{*}}$ Then $X_{0}=d^{r}\left(X_{3} \cdot Y\right)=d^{r} \circ G_{13^{*}}(Y)=G_{13^{*}} \circ d^{r}(Y)=G_{13^{*}}\left(X_{02}\right)$. Thus X_{0} is represented by $G_{13}{ }^{\circ} S_{02}$ which is an element of $\left\langle X_{1}, X_{2}, X_{3}\right\rangle$.

FIGURE 2.4.1

The next theorem is the most direct way of detecting a triple product in n_{*} from differentials in the Atiyah-Hirzebruch spectral sequence.

THEOREM 2.4.2 Assume that $\left\langle X_{1}, X_{2}, X_{3}\right\rangle$ is defined in π_{*}^{S}. Assume that $d^{r(1)}\left(Y_{1}\right)=X_{1}$ and $d^{r(3)}\left(Y_{3}\right)=X_{3}$. Then $X_{2} \cdot Y_{1} \cdot Y_{3}$ survives to $E^{r(1)+r(3)}$ and there is an element of $\left\langle X_{1}, X_{2}, X_{3}\right\rangle$ which projects to $d^{r(1)+r(3)}\left(X_{2} \cdot Y_{1} \cdot Y_{3}\right)$.

PROOF. We use the smash product Toda bracket of Definition 2.2.2 to prove this theorem. Let $N(i)=$ degree X_{i}. For $i=1,3$, represent $Y_{i} \in E_{r(i), p(i)}^{r(i)}$ by $G_{i}:\left(S V_{i} \wedge D U_{i}, S V_{i} \wedge S U_{i}\right) \longrightarrow\left(S U_{i} \wedge B^{[r(i)]}, S U_{i}\right)$ where $G_{i} I S V_{i} \wedge S U_{i} \equiv G_{i-1, i}$ represents X_{1}. Represent X_{2} by $G_{12}: \mathrm{SV}_{2} \wedge \mathrm{SU}_{2} \longrightarrow \mathrm{SU}_{2}$. Find maps G_{02} and G_{13} as in Definition 2.2.2 to complete the defining system $\left\{G_{i\}}\right\}$ of $\left\langle X_{1}, X_{2}, X_{3}\right\rangle$. Define $F:\left(S V_{1} \wedge \operatorname{DU}_{1} \wedge \mathrm{SV}_{2} \wedge \mathrm{SU}_{2} \wedge \mathrm{SV}_{3} \wedge \mathrm{DU}_{3}\right) \cup\left(\mathrm{DV}{ }_{1} \wedge \mathrm{SU}_{1} \wedge \mathrm{SV}_{2} \wedge \mathrm{SU}_{2} \wedge \mathrm{SV}_{3} \wedge \mathrm{DU}_{3}\right)$ $\cup\left(\mathrm{SV}_{1} \wedge \mathrm{DU}_{1} \wedge \mathrm{DV}_{2} \wedge \mathrm{SU}_{2} \wedge \mathrm{SV}_{3} \wedge \mathrm{SU}_{3}\right) \longrightarrow \mathrm{SU}_{1} \wedge \mathrm{SU}_{2} \wedge \mathrm{SU}_{3} \wedge \mathrm{~B}^{[\mathrm{Tr(1)+r(3)]}}$ as $\left[\varepsilon \circ\left(G_{1} \wedge G_{12} \wedge G_{3}\right)\right] \cup\left[\varepsilon \circ\left(G_{02} \wedge G_{3}\right)\right] \cup\left[\varepsilon \circ\left(G_{1} \wedge G_{13}\right)\right]$. Then Domain F is homeomorphic to a disc and
$\mathrm{F}:($ Domain F, adomain F$) \longrightarrow\left(\mathrm{SU}_{1} \wedge \mathrm{SU}_{2} \wedge \mathrm{SU}_{3} \wedge \mathrm{~B}^{[r(1)+r(3)]}, \mathrm{SU}_{1} \wedge \mathrm{SU}_{2} \wedge \mathrm{SU}_{3}\right)$
represents $X_{2} \cdot Y_{1} \cdot Y_{3}$. Thus $X_{1} \cdot Y_{2} \cdot Y_{3}$ survives to $E_{r(1)+r(3), p(1)+p(3)+N(2)}^{r(1)+r(3)}$ and $d^{r(1)+\Gamma(3)}\left(X_{2} \cdot Y_{1} \cdot Y_{3}\right)$ is represented by $F \mid \partial \operatorname{Domain}(F)=\left(G_{02} \wedge G_{23}\right) \cup\left(G_{01} \wedge G_{13}\right)$ $=\tilde{G}_{03} \in\left\langle X_{1}, X_{2}, X_{3}\right\rangle$.

The previous theorem generalizes to longer Toda brackets. Unfortunately, technical hypotheses need to be added and the conclusion has indeterminacy. We give such a generalization for four-fold brackets.

THEOREM 2.4.3 Assume that $\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle$ is defined in π_{*}, and let $N(i)=$ degree X_{i} for $1 \leq i \leq 4$. Assume that $d^{r(i)}\left(Y_{i}\right)=X_{i}$ for $i=1,3,4$ where $Y_{i} \in E_{r(1), p(1)}^{r(1)}$. Assume that one of the following hypotheses hold:
(i) $E_{r(1)-h, p(1)+N(2)+h}^{r(4)+h}=0$ for $0 \leq h \leq r(1)$.
(ii) $E_{r(3)-k, p(3)+N(4)+k}^{r(4)+k}=0$ for $0 \leq k \leq r(3)$.

Then $X_{2} \cdot Y_{1} \cdot Y_{3} \cdot Y_{4}$ survives to $E_{N(1)+N(3)+N(4)+3, N(2)}^{r(1)+(3)+r(4)}$ and there is an element of $\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle$ which projects to $d^{r(1)+r(3)+r(4)}\left(X_{2} \cdot Y_{1} \cdot Y_{3} \cdot Y_{4}\right)$.

PROOF. We use the smash product Toda bracket of Definition 2.2.2 to prove this theorem. Let $\left\{G_{i j} \mid 0 \leq i<j \leq 4,(i, j) \neq(0,4)\right\}$ be a defining system for $\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle$. For $i=1,3,4$ represent $Y_{i} \in E_{r(i), p(i)}^{r(1)}$ by $G_{i}:\left(S V_{i} \wedge D U_{i}, S V_{i} \wedge S U_{i}\right) \longrightarrow\left(S U_{i} \wedge B^{[r(i)]}, S U_{i}\right)$ where $G_{i} \mid S V_{i} \wedge S U_{i} \equiv G_{i-1, i}$ represents X_{i}. Let
$F=\left(G_{1} \wedge G_{12} \wedge G_{3} \wedge G_{4}\right) \cup\left(G_{02} \wedge G_{3} \wedge G_{4}\right) \cup\left(G_{1} \wedge G_{13} \wedge G_{4}\right) \cup\left(G_{03} \wedge G_{4}\right) \cup\left(G_{1} \wedge G_{14}\right):$ $\left(\mathrm{SV}_{1} \wedge \mathrm{DU}_{1} \wedge \mathrm{SV}_{2} \wedge \mathrm{SU}_{2} \wedge \mathrm{SV}_{3} \wedge \mathrm{DU}_{3} \wedge \mathrm{SV}_{4} \wedge \mathrm{DU}_{4}\right) \cup\left(\mathrm{DV}_{1} \wedge \mathrm{SU}_{1} \wedge \mathrm{SV}_{2} \wedge \mathrm{SU}_{2} \wedge \mathrm{SV}_{3} \wedge \mathrm{DU}_{3} \wedge \mathrm{SV}_{4} \wedge \mathrm{DU}_{4}\right)$ $\cup\left(S V_{1} \wedge \operatorname{DU}_{1} \wedge \mathrm{DV}_{2} \wedge \mathrm{SU}_{2} \wedge \mathrm{SV}_{3} \wedge \mathrm{SU}_{3} \wedge \mathrm{SV}_{4} \wedge \mathrm{DU}_{4}\right) \cup\left(\mathrm{DV}_{1} \wedge \mathrm{SU}_{1} \wedge \mathrm{DV}_{2} \wedge \mathrm{SU}_{2} \wedge \mathrm{SV}_{3} \wedge \mathrm{SU}_{3} \wedge \mathrm{SV}_{4} \wedge \mathrm{DU}_{4}\right)$ $\cup\left(\mathrm{SV}_{1} \wedge \mathrm{DU}_{1} \wedge \mathrm{DV}_{2} \wedge \mathrm{SU}_{2} \wedge \mathrm{DV}_{3} \wedge \mathrm{SU}_{3} \wedge \mathrm{SV}_{4} \wedge \mathrm{SU}_{4}\right),\left(\mathrm{DV}_{1} \wedge \mathrm{SU}_{1} \wedge \mathrm{DV}_{2} \wedge \mathrm{SU}_{2} \wedge \mathrm{SV}_{3} \wedge \mathrm{SU}_{3} \wedge \mathrm{SV}_{4} \wedge \mathrm{SU}_{4}\right)$ $\cup\left(\mathrm{SV}_{1} \wedge \mathrm{SU}_{1} \wedge \mathrm{DV}_{2} \wedge \mathrm{SU}_{2} \wedge \mathrm{DV}_{3} \wedge \mathrm{SU}_{3} \wedge \mathrm{SV}_{4} \wedge \mathrm{SU}_{4}\right) \cup\left(\mathrm{SV}_{1} \wedge \mathrm{DU}_{1} \wedge \mathrm{SV}_{2} \wedge \mathrm{SU}_{2} \wedge \mathrm{SV}_{3} \wedge \mathrm{DU}_{3} \wedge \mathrm{SV}_{4} \wedge \mathrm{SU}_{4}\right)$ $\left.\cup\left(S V_{1} \wedge \mathrm{DU}_{1} \wedge \mathrm{SV}_{2} \wedge \mathrm{SU}_{2} \wedge \mathrm{DV}_{3} \wedge \mathrm{SU}_{3} \wedge \mathrm{SV}_{4} \wedge \mathrm{SU}_{4}\right) \cup\left(\mathrm{DV}_{1} \wedge \mathrm{SU}_{1} \wedge \mathrm{SV}_{2} \wedge \mathrm{SU}_{2} \wedge \mathrm{SV}_{3} \wedge \mathrm{DU}_{3} \wedge \mathrm{SV}_{4} \wedge \mathrm{SU}_{4}\right)\right)$ $\longrightarrow\left(B^{[r(1)+r(3)+r(4)]}, B^{\operatorname{Ir}(1)+r(3) 1}\right)$. F has a disk as its domain and F restricted to the boundary of its domain is $\left[\left(G_{03} \wedge G_{34}\right) \cup\left(G_{01} \wedge G_{14}\right)\right] \cup\left[\left(G_{1} \wedge G_{12} \wedge G_{3} \wedge G_{34}\right) \cup\left(G_{1} \wedge G_{12} \wedge G_{24}\right) \cup\left(G_{02} \wedge G_{3} \wedge G_{34}\right)\right]$. Clearly F represents $X_{2} \cdot Y_{2} \cdot Y_{3} \cdot Y_{4}$. Moreover, F restricted to the boundary of its domain is the sum of ($\left.G_{01} \wedge G_{14}\right) \cup\left(G_{02} \wedge G_{24}\right) \cup\left(G_{03} \wedge G_{34}\right)$ and the product $\left[\left(G_{1} \wedge G_{12}\right) \cup G_{02}\right] \wedge\left[\left(G_{3} \wedge G_{34}\right) \cup G_{24}\right]$. The first summand is an element of $<X_{1}, X_{2}, X_{3}, X_{4}>$. Under hypothesis (i), the first factor of the product is the boundary of a map of filtration degree less than $r(1)+r(4)$ while the second factor is in filtration degree $r(3)$ so that the product is the boundary of a map of filtration degree less than $[r(1)+r(4)]+r(3)$. Under hypothesis (ii), the second factor of the product is the boundary of a map of filtration degree less than $r(3)+r(4)$ while the first factor is in filtarion degree $r(1)$ so that the product is the boundary of a map of filtration degree less than $r(1)+[r(3)+r(4)]$. Thus, in either case we can represent $X_{2} \cdot Y_{1} \cdot Y_{3} \cdot Y_{4}$ by a map
whose boundary is an element of $\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle$. Thus, $X_{2} \cdot Y_{1} \cdot Y_{3} \cdot Y_{4}$ survives to $E^{r(1)+r(3)+\Gamma(4)}$ and $d^{r(1)+r(3)+\Gamma(4)}\left(X_{2} \cdot Y_{1} \cdot Y_{3} \cdot Y_{4}\right)$ is the projection into $E_{0, N(1)+N(2)+N(3)+N(4)+2}^{r(1)+r(3)+r(4)}$ of an element of $\left\langle X_{1}, X_{2}, X_{3}, X_{4}\right\rangle$.

We conclude this section with three theorems that refer only to our Atiyah-Hirzebruch spectral sequence, i.e., we take $B=B P$. As we shall see, the Toda brackets constructed there are common and useful for detecting nontrivial extensions in our spectral sequence. In Chapter 3, we shall see that we have elements of $H_{*} B P$ with the following differentials:
$\left.d^{2}\left(M_{1}\right)=\eta, \quad d^{2}\left(M_{2}\right)=\eta M_{1}^{2}, \quad d^{4}\left(M_{1}^{2}\right)=\nu, \quad d^{4}\left(\bar{M}_{2}\right)=\nu M_{1}, \quad d^{4}\left(M_{2}^{2}\right)=\nu M_{1}^{4}, \quad d^{8}<M_{1}^{4}\right\rangle=\sigma$ and $d^{8}\left\langle M_{2}^{2}\right\rangle=\sigma M_{1}^{2}$. We will represent $M_{1}, M_{2}, M_{1}^{2}, \bar{M}_{2}, M_{2}^{2},\left\langle M_{1}^{4}\right\rangle,\left\langle M_{2}^{2}\right\rangle$ by μ_{1}, $\mu_{01}, \mu_{2}, \bar{\mu}_{01}, \mu_{02}, \mu_{4},\left\langle\mu_{02}\right\rangle$, respectively. The reader may prefer to read the remainder of this section after reading Chapter 3 .

THEOREM 2.4.4 Let $X \in \pi_{*}^{S}$.
(a) $X \cdot M_{1}^{3}$ survive to E^{6} if and only if $\eta \cdot X=0$ and $v \cdot X=0$. In that case $\langle\eta, X, v\rangle$ is defined and projects to $d^{6}\left(X \cdot M_{1}^{3}\right)$.
(b) $X \cdot M_{2}$ survives to E^{6} if and only if $\eta \cdot X=0$. In that case $\langle\nu, \eta, X\rangle$ is defined and projects to $d^{6}\left(X \cdot M_{2}\right)$.
(c) $X \cdot \bar{M}_{2}$ survives to E^{6} if and only if $v \cdot X=0$. In that case $\langle\eta, v, X\rangle$ is defined and projects to $d^{6}\left(X \cdot \bar{M}_{2}\right)$.
PROOF. Represent $M_{1} \in E_{2,0}^{2}$ by $\mu_{1}:\left(S^{1} \wedge D A, S^{1} \wedge S A\right) \longrightarrow\left(S A \wedge B P^{[2]}, S A\right)$ such that $\mu_{1} \mid S^{1} \wedge S A=\eta . \quad$ Represent $M_{1}^{2} \in E_{4,0}^{4}$ by $\mu_{2}:\left(S^{3} \wedge D B, S^{3} \wedge S B\right) \longrightarrow\left(S B \wedge B P{ }^{[4]}, S B\right)$ such that $\mu_{2} \mid S^{3} \wedge S B=v$. Let $G: S V \wedge S U \longrightarrow S U$ represent X. We use the smash product Toda bracket of Definition 2.2.2 throughout the proof. Observe that all three Toda brackets in this theorem have indeterminacy contained in (η, v) which projects to zero in E^{6}.
(a) $d^{2}\left(X \cdot M_{1}^{3}\right)=\eta \cdot X \cdot M_{1}^{2}$ and if $\eta \cdot X=0$ then $d^{4}\left(X \cdot M_{1}^{3}\right)=v \cdot X \cdot M_{1}$. Thus, $X \cdot M_{1}^{3}$ survives to E^{6} if and only if $\eta \cdot X=0$ and $v \cdot X=0$. The latter condition is
equivalent to $\langle\eta, X, \nu\rangle$ being defined. In this case we can apply Theorem 2.4.2 to conclude that $d^{6}\left(X \cdot M_{1}^{3}\right)$ is the projection of $\langle\eta, X, v\rangle$ into E^{6}.
(b) Represent $M_{2} \in E_{6,0}^{2}$ by
$\mu_{01}:\left(D^{4} \wedge \mathrm{DB} \wedge \mathrm{S}^{1} \wedge \mathrm{SA} \wedge \mathrm{SC},\left(\mathrm{S}^{3} \wedge \mathrm{DB} \wedge \mathrm{S}^{1} \wedge \mathrm{SA} \wedge \mathrm{SC}\right) \cup\left(\mathrm{D}^{4} \wedge \mathrm{SB} \wedge \mathrm{S}^{1} \wedge \mathrm{SA} \wedge \mathrm{SC}\right)\right] \longrightarrow$ $\left(\mathrm{SB} \wedge \mathrm{SA} \wedge \mathrm{SC} \wedge \mathrm{BP}^{[6]}, \mathrm{SB} \wedge \mathrm{SA} \wedge \mathrm{SC} \wedge \mathrm{BP}^{[4]}\right)$
such that μ_{01} restricted to the boundary of its domain is $\left(\mu_{2} \wedge \eta\right) \cup B_{\nu \eta}$ where $B_{\nu \eta^{\prime}} \mid S^{3} \wedge S B \wedge S^{1} \wedge S A \wedge S C=v \wedge \eta . \quad$ Let
$B_{\eta X}: D^{2} \wedge S A \wedge S C \wedge S V \wedge S U \longrightarrow S A \wedge S C \wedge S U$ such that
$B_{\eta X} I S^{1} \wedge S A \wedge S C \wedge S V \wedge S U=\eta \wedge G \wedge 1_{S C}$. Then $X \cdot M_{2} \in E^{6}$ is represented by $F=\left(\mu_{01} \wedge G \wedge 1_{S C}\right) \cup\left(\mu_{2} \wedge B_{\eta X}\right):$
$\left(\left(D^{4} \wedge \mathrm{DB} \wedge \mathrm{S}^{1} \wedge \mathrm{SA} \wedge \mathrm{SC} \wedge \mathrm{SV} \wedge \mathrm{SU}\right) \cup\left(\mathrm{S}^{3} \wedge \mathrm{DB} \wedge \mathrm{D}^{2} \wedge \mathrm{SA} \wedge \mathrm{SC} \wedge \mathrm{SV} \wedge \mathrm{SU}\right)\right.$, $\left.\left(\mathrm{D}^{4} \wedge \mathrm{SB} \wedge \mathrm{S}^{1} \wedge \mathrm{SA} \wedge \mathrm{SC} \wedge \mathrm{SV} \wedge \mathrm{SU}\right) \cup\left(\mathrm{S}^{3} \wedge \mathrm{SB} \wedge \mathrm{D}^{2} \wedge \mathrm{SA} \wedge \mathrm{SC} \wedge \mathrm{SV} \wedge \mathrm{SU}\right)\right)$
$\longrightarrow\left(S B \wedge S A \wedge S C \wedge S U \wedge \mathrm{BP}^{[6]}, \mathrm{SB} \wedge \mathrm{SA} \wedge \mathrm{SC} \wedge \mathrm{SU}\right)$.
Thus, $d^{6}\left(X \cdot M_{2}\right)$ is represented by F restricted to the boundary of its domain which is $\left(\mathrm{B}_{\nu \eta} \wedge \mathrm{G}\right) \cup\left(\nu \wedge \mathrm{B}_{\eta \mathrm{X}}\right) \in\langle\nu, \eta, \mathrm{X}\rangle$.
(c) Represent $\bar{M}_{2} \in E_{\sigma, 0}^{4}$ by
$\bar{\mu}_{01}:\left(D^{2} \wedge D A \wedge S^{3} \wedge S B \wedge S H,\left(S^{1} \wedge D A \wedge S^{3} \wedge S B \wedge S H\right) \cup\left(D^{2} \wedge S A \wedge S^{3} \wedge S B \wedge S H\right)\right] \longrightarrow$ $\left(\mathrm{SA} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{BP}^{[6]}, \mathrm{SA} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{BP}^{[2]}\right)$
such that $\bar{\mu}_{01}$ restricted to the boundary of its domain is $\left[\left(\mu_{1} \wedge \nu\right) \cup \mathrm{B}_{\eta \nu}\right] \wedge 1_{\mathrm{SH}} \quad$ Let $\mathrm{B}_{\nu \mathrm{X}}: \mathrm{D}^{4} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{SV} \wedge \mathrm{SU} \longrightarrow \mathrm{SB} \wedge \mathrm{SH} \wedge$ SU such that $B_{v X} \mid S^{3} \wedge S B \wedge S H \wedge S V \wedge S U=\nu \wedge G \wedge 1_{S H}$. Then $X \cdot \vec{M}_{2} \in E^{6}$ is represented by $F=\left(\bar{\mu}_{01} \wedge G\right) \cup\left(\mu_{1} \wedge B_{\nu X}\right)$: $\left(\mathrm{CD}^{2} \wedge \mathrm{DA} \wedge \mathrm{S}^{3} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{SV} \wedge \mathrm{SU}\right) \cup\left(\mathrm{S}^{1} \wedge \mathrm{DA} \wedge \mathrm{D}^{4} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{SV} \wedge \mathrm{SU}\right)$, $\left.\left(\mathrm{D}^{2} \wedge \mathrm{SA} \wedge \mathrm{S}^{3} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{SV} \wedge \mathrm{SU}\right) \cup\left(\mathrm{S}^{1} \wedge \mathrm{SA} \wedge \mathrm{D}^{4} \wedge \mathrm{SB} \wedge \mathrm{SV} \wedge \mathrm{SU}\right)\right] \longrightarrow$ $\left(\mathrm{SA} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{SU} \wedge \mathrm{BP}^{[6]}, \mathrm{SA} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{SU}\right)$.

Thus, $d^{6}\left(X \cdot \bar{M}_{2}\right)$ is represented by F restricted to the boundary of its domain which is $\left(\mathrm{B}_{\eta v} \wedge \mathrm{G} \wedge 1_{\mathrm{SH}}\right) \cup\left(\eta \wedge \mathrm{B}_{v \mathrm{X}}\right) \in\langle\eta, v, \mathrm{X}\rangle$.

THEOREM 2.4.5 Let $X \in \pi_{*}^{S}$.
(a) $\langle\nu, \eta, X, \eta\rangle$ is defined if and only if $X \cdot M_{1} M_{2}$ survives to E^{8}. In this case $\langle\nu, \eta, X, \eta\rangle$ projects to $d^{8}\left(X \cdot M_{1} M_{2}\right)$. Moreover, νX is divisible by η.
(b) Assume that $\langle\eta, v, X, v\rangle$ is defined. Then $X \cdot M_{1}^{2} \bar{M}_{2}$ survives to E^{10}, and $\langle\eta, v, X, v\rangle$ projects to $d^{10}\left(X \cdot M_{1}^{2} \bar{M}_{2}\right)$. Moreover, σX is divisible by v. PROOF. Let G: SV \wedge SU \longrightarrow SU represent $X \in \pi_{*}^{S}$. We use the smash product Toda bracket of Definition 2.2.2 throughout this proof and the notation of the proof of the preceding theorem.
(a) $X M_{1} M_{2}$ survives to E^{4} if and only if $\eta X=0$. In this case, $X M_{1} M_{2}$ survives to E^{6} if and only if νX is divisible by η, i.e. $O \in\langle\eta, X, \eta\rangle$. Then $d^{6}\left(X M_{1} M_{2}\right)$ $=d^{6}\left(X M_{2}\right) M_{1}$ and $d^{6}\left(X M_{2}\right) \in\langle\nu, \eta, X\rangle$. Thus $X M_{1} M_{2}$ survies to E^{8} if and only if $d^{6}\left(X M_{2}\right) \in(v)$, i.e. $0 \in\langle\nu, \eta, X\rangle$. Therefore, $X M_{1} M_{2}$ survives to E^{8} if and only if $0 \in\langle\eta, X, \eta\rangle$ and $0 \in\langle\nu, \eta, X\rangle$. Then by Theorem $2.2 .7(f), X M_{1} M_{2}$ survives to E^{8} if and only if $\langle\nu, \eta, X, \eta\rangle$ is defined. In that case let the following diagram depict a defining system for $\langle\nu, \eta, X, \eta\rangle \wedge$:

Here $B_{X \eta}: D V \wedge S U \wedge S^{1} \wedge S A^{\prime} \longrightarrow S U \wedge S A^{\prime}$ such that $B_{X \eta} I S V \wedge S U \wedge S^{1} \wedge S A^{\prime}$ $=G \wedge \eta, B_{<\nu, \eta, x\rangle}: D^{4} \wedge S B \wedge D^{2} \wedge S A \wedge S C \wedge S V \wedge S U \longrightarrow S B \wedge S A \wedge S C \wedge S U$ such that $\mathrm{B}_{\langle\nu, \eta, \mathrm{x}\rangle} \mid \partial$ [Domain $\mathrm{B}_{\langle\nu, \eta, \mathrm{x} \mathrm{\rangle}}$] $=\left(\mathrm{B}_{\nu \eta} \wedge \mathrm{G}\right) \cup\left(v \wedge \mathrm{~B}_{\eta \mathrm{x}}\right)$ and $\mathrm{B}_{\langle\eta, \mathrm{x}, \eta\rangle}: \mathrm{D}^{2} \wedge \mathrm{SA} \wedge \mathrm{SC} \wedge \mathrm{DV} \wedge \mathrm{SU} \wedge \mathrm{S}^{1} \wedge \mathrm{SA}, \longrightarrow \mathrm{SA} \wedge \mathrm{SC} \wedge \mathrm{SU} \wedge \mathrm{SA}^{\prime}$ such that $B_{\langle\eta, x, \eta\rangle} \mid \partial$ [Domain $\left.B_{\langle\eta, x, \eta\rangle}\right]=\left(\eta \wedge B_{x \eta}\right) \cup\left(B_{\eta x} \wedge \eta\right)$. Then the following map F represents $X \cdot M_{1} M_{2}$ in $E^{8} . \quad F=$
$\left(\mu_{02} \wedge G \wedge \mu_{1}\right) \cup\left(\mu_{2} \wedge B_{\eta x} \wedge \mu_{1}\right) \cup\left(\mu_{02} \wedge B_{x \eta}\right) \cup\left(B_{\langle\nu, \eta, x\rangle} \wedge \mu_{1}\right) \cup\left(\mu_{2} \wedge B_{\langle\eta, x, \eta\rangle}\right):$ $\left(\left(D^{4} \wedge D B \wedge S^{1} \wedge S A \wedge S C \wedge S V \wedge S U \wedge S^{1} \wedge D A^{\prime}\right) \cup\left(S^{3} \wedge D B \wedge D^{2} \wedge S A \wedge S C \wedge S V \wedge S U \wedge S^{1} \wedge D A^{\prime}\right)\right.$ $\cup\left(D^{4} \wedge D B \wedge S^{1} \wedge S A \wedge S C \wedge D V \wedge S U \wedge S^{1} \wedge S A^{\prime}\right) \cup\left(D^{4} \wedge S B \wedge D^{2} \wedge S A \wedge S C \wedge S V \wedge S U \wedge S^{1} \wedge D A^{\prime}\right)$ $\cup\left(S^{3} \wedge \mathrm{DB} \wedge \mathrm{D}^{2} \wedge \mathrm{SA} \wedge \mathrm{SC} \wedge \mathrm{DV} \wedge \mathrm{SU} \wedge \mathrm{S}^{1} \wedge \mathrm{SA}^{\prime}\right),\left(\mathrm{S}^{3} \wedge \mathrm{SB} \wedge \mathrm{D}^{2} \wedge \mathrm{SA} \wedge \mathrm{SC} \wedge \mathrm{DV} \wedge \mathrm{SU} \wedge \mathrm{S}^{1} \wedge \mathrm{SA} A^{\prime}\right)$ $\left.\cup\left(\mathrm{D}^{4} \wedge \mathrm{SB} \wedge \mathrm{S}^{1} \wedge \mathrm{SA} \wedge \mathrm{SC} \wedge \mathrm{DV} \wedge \mathrm{SU} \wedge \mathrm{S}^{1} \wedge \mathrm{SA}^{\prime}\right) \cup\left(\mathrm{D}^{4} \wedge \mathrm{SB} \wedge \mathrm{D}^{2} \wedge \mathrm{SA} \wedge \mathrm{SC} \wedge \mathrm{SV} \wedge \mathrm{SU} \wedge \mathrm{S}^{1} \wedge \mathrm{SA} A^{\prime}\right)\right)$
$\longrightarrow\left(S B \wedge S A \wedge S C \wedge S U \wedge S A^{\prime} \wedge_{B P}{ }^{[8]}, \mathrm{SB} \wedge \mathrm{SA} \wedge \mathrm{SC} \wedge \mathrm{SU} \wedge \mathrm{SA}{ }^{\prime}\right)$.
Thus $d^{8}\left(X \cdot M_{1} M_{2}\right)$ is represented by $F \mid \partial$ [Domain F]
$=\left(v \wedge B_{\langle\eta, x, \eta\rangle}\right) \cup\left(B_{\nu \eta} \wedge B_{x \eta}\right) \cup\left(B_{\langle\nu, \eta, x\rangle} \wedge \eta\right) \in\langle\nu, \eta, X, \eta\rangle$.
The indeterminacy of $\langle\nu, \eta, X, \eta\rangle$ is a sum of elements of the form $\eta A, v B$, $\langle\nu, \eta, C\rangle$ and $\langle\nu, D, \eta\rangle$. All such elements project to zero in E^{8}. Thus, $\langle v, \eta, X, \eta\rangle$ projects to a singleton in E^{8}. By Theorem 2.4.2, $v \cdot X \in\langle\eta, X, \eta\rangle$. However, $0 \in\langle\eta, X, \eta\rangle$ since $\langle\nu, \eta, X, \eta\rangle$ is defined. Thus, $\nu \cdot X$ is in the indeterminacy of $\langle\eta, X, \eta\rangle$ which is the ideal geneerated by η.
(b) Let the following diagram depict a defining system for $\langle\eta, \nu, X, v\rangle$:

η		ν		G	
	$\mathrm{B}_{\eta \nu}$		$\mathrm{B}_{v \mathrm{x}}$		v
	$\mathrm{~B}_{<\eta, \nu, \mathrm{x}\rangle}$	$\mathrm{B}_{<\nu, \mathrm{x},>\nu}$		$\mathrm{B}_{\mathrm{x} \nu}$	

Here $B_{x \nu}: D V \wedge \operatorname{SU} \wedge S^{3} \wedge S B^{\prime} \longrightarrow \operatorname{SU} \wedge S B^{\prime}$ such that $B_{X \nu} \mid S V \wedge \operatorname{SU} \wedge S^{3} \wedge S B^{\prime}$ $=G \wedge \nu, B_{<\eta, \nu, \mathrm{X}\rangle}: \mathrm{D}^{2} \wedge \mathrm{SA} \wedge \mathrm{D}^{4} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{SV} \wedge \mathrm{SU} \longrightarrow \mathrm{SA} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{SU}$ such that $\mathrm{B}_{\langle\eta, \nu, \mathrm{x}\rangle} \mid\left[\partial \operatorname{Domain} \mathrm{B}_{\langle\eta, \nu, \mathrm{x}\rangle}\right]=\left(\eta \wedge \mathrm{B}_{\nu \mathrm{x}}\right) \cup\left(\mathrm{B}_{\eta \nu} \wedge \mathrm{G}\right)$ and $\mathrm{B}_{\langle\nu, \mathrm{x}, \nu\rangle}: \mathrm{D}^{4} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{DV} \wedge \mathrm{SU} \wedge \mathrm{S}^{3} \wedge \mathrm{SB}, \longrightarrow \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{SU} \wedge \mathrm{SB}$, such that $\mathrm{B}_{\langle\nu, x, v\rangle} \mid\left[\partial\right.$ Domain $\left.\mathrm{B}_{\langle\nu, \mathrm{x}, \nu\rangle}\right]=\left(\nu \wedge \mathrm{B}_{\mathrm{x} v}\right) \cup\left(\mathrm{B}_{\nu \mathrm{x}} \wedge v\right)$. Then the following map F represents $X \cdot M_{1}^{2} \bar{M}_{2}$ in $E^{10}: \quad F=$
$\left(\bar{\mu}_{02} \wedge G \wedge \mu_{2}\right) \cup\left(\mu_{1} \wedge B_{\nu X} \wedge \mu_{2}\right) \cup\left(B_{\langle\eta, \nu, x\rangle} \wedge \mu_{2}\right) \cup\left(\bar{\mu}_{02} \wedge B_{x \nu}\right) \cup\left(\mu_{1} \wedge G_{\langle\nu, x, \nu\rangle}\right):$ $\left(\left(\mathrm{D}^{2} \wedge \mathrm{DA} \wedge \mathrm{S}^{3} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{SV} \wedge \mathrm{SU} \wedge \mathrm{S}^{3} \wedge \mathrm{DB},\right) \cup\left(\mathrm{S}^{1} \wedge \mathrm{DA} \wedge \mathrm{D}^{4} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{SV} \wedge \mathrm{SU} \wedge \mathrm{S}^{3} \wedge \mathrm{DB}{ }^{\prime}\right)\right.$ $\cup\left(D^{2} \wedge S A \wedge D^{4} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{SV} \wedge \mathrm{SU} \wedge \mathrm{S}^{3} \wedge \mathrm{DB},\right) \cup\left(\mathrm{D}^{2} \wedge \mathrm{DA} \wedge \mathrm{S}^{3} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{DV} \wedge \mathrm{SU} \wedge \mathrm{S}^{3} \wedge \mathrm{SB}{ }^{\prime}\right)$ $\cup\left(S^{1} \wedge \mathrm{DA} \wedge \mathrm{D}^{4} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{DV} \wedge \mathrm{SU} \wedge \mathrm{S}^{3} \wedge \mathrm{SB} B^{\prime}\right),\left(\mathrm{S}^{1} \wedge \mathrm{SA} \wedge \mathrm{D}^{4} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{DV} \wedge \mathrm{SU} \wedge \mathrm{S}^{3} \wedge \mathrm{SB}{ }^{\prime}\right)$ $\left.\cup\left(\mathrm{D}^{2} \wedge \mathrm{SA} \wedge \mathrm{S}^{3} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{DV} \wedge \mathrm{SU} \wedge \mathrm{S}^{3} \wedge \mathrm{SB},\right) \cup\left(\mathrm{D}^{2} \wedge \mathrm{SA}^{\prime} \wedge \mathrm{D}^{4} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{DV} \wedge \mathrm{SU} \wedge \mathrm{S}^{3} \wedge \mathrm{SB}{ }^{\prime}\right)\right)$ $\longrightarrow\left(\mathrm{SA} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{SU} \wedge \mathrm{SB}^{\prime} \wedge \mathrm{BP}^{[10]}, \mathrm{SA} \wedge \mathrm{SB} \wedge \mathrm{SH} \wedge \mathrm{SU} \wedge \mathrm{SB}\right.$) . Thus $X \cdot M_{1}^{2} \vec{M}_{2}$ survives to E^{10} and $d^{10}\left(X \cdot M_{1}^{2} M_{2}\right)$ is represented by $F \mid \partial$ [Domain F] $=\left(1_{\mathrm{SH}} \wedge \eta \wedge \mathrm{B}_{\langle\nu, \mathrm{X}, v\rangle}\right) \cup\left(1_{\mathrm{SH}} \wedge \mathrm{B}_{\eta \nu} \wedge \mathrm{B}_{\mathrm{X} \nu}\right) \cup\left(1_{\mathrm{SH}} \wedge \mathrm{B}_{\langle\eta, \nu, \mathrm{x}\rangle} \wedge v\right) \in\langle\eta, v, \mathrm{X}, v\rangle$. The indeterminacy of $\langle\eta, \nu, X, \nu\rangle$ is the sum of elements of the form $\eta A, v B,\langle\eta, v, C\rangle$ and $\langle\eta, D, v\rangle$. All such elements project to 0 in E^{8}. Therefore, $\langle\eta, v, X, v\rangle$
projects to a singleton in E^{10}. By Theorem 2.4.2, $\sigma \cdot X \in\langle v, X, v\rangle$. However, $0 \in\langle\nu, \mathrm{X}, \nu\rangle$ because $\langle\eta, v, \mathrm{X}, \nu\rangle$ is defined. Therefore $\sigma \cdot \mathrm{X}$ is in the indeterminacy of $\langle v, X, v\rangle$ which is the ideal generated by v.

The following theorem gives three special cases of Theorem 2.4.3 where no technical hypotheses are required.

THEOREM 2.4.6 (a) Let $X \in \pi_{*}^{S}$, and assume that $\langle\sigma, v, X, \eta\rangle$ is defined. Then $X M_{1} M_{2}^{2}$ survives to E^{14} and $d^{14}\left(X_{1} M_{2}^{2}\right) \in\langle\sigma, v, X, \eta\rangle$.
(b) Let $X \in \Pi_{*}^{S}$, and assume that $\langle\nu, \sigma, X, \eta\rangle$ is defined. Then $X M_{1}\left\langle M_{2}^{2}\right\rangle$ survives to E^{14} and $d^{14}\left(X M_{1}\left\langle M_{2}^{2}\right\rangle\right) \in\langle\nu, \sigma, X, \eta\rangle$.
(c) Let $d^{2 r}(Y)=X \in \pi_{*}^{S}$ and let $\xi \in \pi_{*}^{S}$. Assume that $\langle X, \xi, v, \eta\rangle$ is defined. Then $\bar{\xi} \overline{Y M}_{2}$ survives to $E^{2 r+6}$ and $d^{2 r+6}\left(\xi Y_{2}\right) \in\langle X, \xi, \nu, \eta\rangle$.
(d) Let $d^{2 r}(Y)=X \in \pi_{*}^{S}$ and let $\xi \in \pi_{*}^{S}$. Assume that $\langle X, \xi, \eta, v\rangle$ is defined. Then $\xi \mathrm{YM}_{2}$ survives to $\mathrm{E}^{2 r+6}$ and $\mathrm{d}^{2 r+6}\left(\xi \mathrm{YM}_{2}\right) \in\langle X, \xi, \eta, \nu\rangle$. PROOF. (a) Let the following diagram depict a defining system for $\langle\sigma, \nu, X, \eta\rangle \wedge$ using the same notation as in the previous theorems:
σ
v
G
η

$\mathrm{B}_{o v}$	$\mathrm{~B}_{\nu \mathrm{x}}$	$\mathrm{B}_{\mathrm{x} \eta}$
	$\mathrm{B}_{\langle\sigma, v, \mathrm{x}\rangle}$	$\mathrm{B}_{\langle v, \mathrm{x}, \eta\rangle}$

Let μ_{4} represent $\left\langle M_{1}^{4}\right\rangle$ such that μ_{4} restricted to the boundary of its domain is σ. Let μ_{02} represent M_{2}^{2} such that μ_{02} restricted to the boundary of its domain is $\left(\mu_{4} \wedge \nu\right) \cup B_{o v}$. Then $X M_{1} M_{2}^{2}$ is represented by $\phi=$ $\left(\mu_{12} \wedge \mathrm{G} \wedge \mu_{1}\right) \cup\left(\mu_{02} \wedge \mathrm{~B}_{\mathrm{X} \mathrm{\eta}}\right) \cup\left(\mu_{4} \wedge \mathrm{~B}_{\langle\nu, \mathrm{x}, \eta\rangle}\right) \cup\left(\mathrm{B}_{\langle\sigma, v, \mathrm{x}\rangle} \wedge \mu_{1}\right) \cup\left(\mu_{4} \wedge \mathrm{~B}_{\nu \mathrm{X}} \wedge \mu_{1}\right)$. Note that ϕ restricted to the boundary of its domain is $\left(\sigma \wedge B_{\langle\nu, x, \eta\rangle}\right) \cup\left(B_{\sigma \nu} \wedge B_{x \eta}\right) \cup\left(B_{\langle\sigma, \nu, x\rangle} \wedge \eta\right)$ which is an element of $\langle\sigma, v, X, \eta\rangle$. Thus, $X M_{1} M_{2}^{2}$ survives to E^{14} and $d^{14}\left(X M_{1} M_{2}^{2}\right) \in\langle\sigma, \nu, X, \eta\rangle$.
(b) Let the following diagram depict a defining system for $\langle\nu, \sigma, X, \eta\rangle \wedge$ using the above notation:

$\mathrm{B}_{v \sigma}$	$\mathrm{~B}_{\sigma \mathrm{x}}$	$\mathrm{B}_{\mathrm{x} \eta}$
	$\mathrm{B}_{\langle\nu, \sigma, \mathrm{x}\rangle}$	$\mathrm{B}_{\langle\sigma, \mathrm{x}, \eta\rangle}$

Let $\left\langle\mu_{02}\right\rangle$ represent $\left\langle M_{2}^{2}\right\rangle$ such that $\left\langle\mu_{02}\right\rangle$ restricted to the boundary of its domain is $\left(\mu_{2} \wedge \sigma\right) \cup B_{\nu \sigma^{*}}$. Then $X M_{1}\left\langle M_{2}^{2}\right\rangle$ is represented by $\phi=\left(\left\langle\mu_{02}\right\rangle \wedge \mathrm{G} \wedge \mu_{1}\right) \cup\left(\left\langle\mu_{02}\right\rangle \wedge \mathrm{B}_{\mathrm{x} \mathrm{\eta}}\right) \cup\left(\mu_{2} \wedge \mathrm{~B}_{\sigma \mathrm{X}} \wedge \mu_{1}\right) \cup\left(\mu_{2} \wedge \mathrm{~B}_{<\sigma, \mathrm{x}, \eta\rangle}\right)$ $u\left(B_{\langle\nu, \sigma, x\rangle} \wedge \mu_{1}\right)$. Note that ϕ restricted to the boundary of its domain is $\left(\mathrm{B}_{\nu \sigma} \wedge \mathrm{B}_{x \eta}\right) \cup\left(\nu \wedge \mathrm{B}_{\langle\sigma, x, \eta\rangle}\right) \cup\left(\mathrm{B}_{\langle\nu, \sigma, x\rangle} \wedge \eta\right)$ which is an element of $\langle\nu, \sigma, \mathrm{X}, \eta\rangle$. Thus, $\mathrm{XM}_{1}\left\langle\mathrm{M}_{2}^{2}\right\rangle$ survives to E^{14} and $\mathrm{d}^{14}\left(\mathrm{XM}_{1}\left\langle\mathrm{M}_{2}^{2}\right\rangle\right) \in\langle\nu, \sigma, \mathrm{X}, \eta\rangle$.
(c) Let the following diagram depict a defining system for $\langle X, \xi, v, \eta\rangle \wedge$ using the above notation:

$$
\begin{array}{llllll}
\mathrm{G} & & \xi & & \nu & \\
& \mathrm{~B}_{\mathrm{x} \xi} & & \mathrm{~B}_{\xi v} & & \mathrm{~B}_{\nu \eta} \\
& \mathrm{B}_{\langle\mathrm{x}, \xi, v>} & \mathrm{B}_{\langle\xi, v, \eta>}
\end{array}
$$

Then $\xi Y \bar{M}_{2}$ is represented by $\phi=\left(Y \wedge \xi \wedge \bar{\mu}_{01}\right) \cup\left(Y \wedge B_{\xi v} \wedge \mu_{1}\right) \cup\left(B_{X \xi} \wedge \bar{\mu}_{01}\right)$ $\cup\left(B_{\langle x, \xi, v\rangle} \wedge \mu_{1}\right) \cup\left(Y \wedge B_{\langle\xi, v, \eta\rangle}\right)$. Note that ϕ restricted to the boundary of its domain is $\left(B_{x \xi} \wedge B_{\nu \eta}\right) \cup\left(B_{\langle x, \xi, \nu\rangle} \wedge \eta\right) \cup\left(\mathrm{X} \wedge \mathcal{B}_{\langle\xi, v, \eta\rangle}\right)$ which is an element of $\langle X, \xi, v, \eta\rangle$. Thus, $\xi \overline{Y M}_{2}$ survives to $E^{2 r+6}$ and $d^{2 r+\varepsilon}\left(\xi Y_{M}\right) \in\langle X, \xi, \nu, \eta\rangle$.
(d) Let the following diagram depict a defining system for $\langle X, \xi, \eta, v\rangle \wedge$ using the above notation:

$$
\begin{array}{llllll}
\mathrm{G} & & \xi & & \eta & \\
& \mathrm{~B}_{\mathrm{x} \xi} & & { }^{\mathrm{B}_{\xi \eta}} & & \mathrm{B}_{\eta \nu} \\
& & \mathrm{B}_{<\mathrm{x}, \xi, \eta>} & \mathrm{B}_{<\xi, \eta, \nu>}
\end{array}
$$

Then ξY_{2} is represented by $\phi=\left(Y \wedge \xi \wedge \mu_{01}\right) \cup\left(Y \wedge B_{\xi \eta} \wedge \mu_{2}\right) \cup\left(B_{x \xi} \wedge \mu_{01}\right)$ $\cup\left(B_{\langle X, \xi, \eta\rangle} \wedge \mu_{2}\right) \cup\left(Y \wedge B_{\langle\xi, \eta, v\rangle}\right)$. Note that ϕ restricted to the boundary of its domain is $\left(B_{x \xi} \wedge B_{\eta \nu}\right) \cup\left(B_{\langle x, \xi, \eta\rangle} \wedge \nu\right) \cup\left(X \wedge B_{\langle\xi, \eta, \nu\rangle}\right)$ which is an element of $\langle X, \xi, \eta, v\rangle$. Thus, $\xi_{Y} M_{2}$ survives to $E^{2 r+6}$ and $d^{2 r+6}\left(\xi Y_{2}\right) \in\langle X, \xi, \eta, v\rangle$.

