
CHAPTER 2: TODA BRACKETS 

1. I n t r o d u c t i o n  

As we saw in the previous chapter, there is one very important step in our 

computation that is not algorithmic: the determination of the additive and 

multiplicative structure of g~ from the composition series which has been 

deduced from the Atiyah-Hirzebruch spectral sequence. One of the main tools 

we will use to determine these extensions is the relationship between Toda 

brackets in ~ and differentials in the spectral sequence. This idea was 

originated by J. P. May [40,Section 4]. May's three basic theorems regarding 

the behaviour of Massey products in spectral sequences defined from a 

filtered differential graded algebra were generalized to the Adams and Atiyah- 

Hirzehruch spectral sequences in [28]. In addition to these classical 

results, we will derive and use several new theorems of this type. 

S 
In Section 2 we give two definitions of Toda brackets in H,: one using the 

composition product and one using the the smash product. By [29], these two 

Toda brackets are always equal. We will find that there are situations in 

which one point of view is advantageous over the other. In Section 3, we 

derive the basic properties of these Toda brackets. In Section 4, we prove 

several theorems which relate these Toda brackets to the differentials in the 

Atiyah-Hirzebruch spectral sequence. We will only be using three-fold and 

four-fold Toda brackets in our applications. Therefore, we do not hesitate to 

s p e c i a l i z e  t o  t h e s e  c a s e s .  

2. Definitions 

We will find it convenient to work with spectra in the coordinate-free setting 
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of J. P. May [41]. After introducing coordinate-free notation, we give two 

defininitions of Toda brackets: one based on the smash product and one based 

on the composition product. These definitions were first given in [29]. Our 

composition Toda bracket generalizes Toda's orginal three-fold product [60] 

and Oguchi's four-fold product [51]. It agrees with Spanier's Toda bracket 

[58] but it is not clear whether it agree's with Gershenson's Toda bracket 

[21]. Our smash Toda bracket agrees with that of Porter [51] and corresponds 

under the Pontrjagin-Thom isomorphism to the Massey product of manifolds 

defined in [28]. In Theorem 2.2.3 we state the theorem from [29] that our two 

Toda brackets are equal. In addition, our Toda bracket is contained in Joel 

Cohen's Toda bracket [18]. We conclude this section with several practical 

criteria for concluding that a four-fold Toda bracket is defined. 

The following notation will be used throughout. Let R ~ be the real inner 

product space with orthonormal basis B = {bl,b 2 .... }. We consider only finite 

dimensional subspaces W of R ~ which have a subset of B as a basis. Internal 

direct sum is denoted by +, and if W' is a subspace of W then W '± denotes the 

orthogonal complement of W' in W. All spaces are based CW complexes, all maps 

are based and all homotopies, cones and suspensions are reduced. Let S denote 

S n one point compactification. The n-sphere is defined as m S(Rn). The 

isomorphism from a subspace V to R dimv which preserves the ordered standard 

bases induces a canonical homeomorphism from SV to S dlmV. Thus a map from SV 

(sdimW). If i <" <i then define the disc to SW determines an element of ~ '' 
dimV 1 t 

D(Rb +...+Rb ) as CS(Rb ) A S(Rb +-..+Rb ) where C(-) = (I,{l}) A (-) is 
i | i i i 
1 t 1 2 t 

• " st and f:SU A...A SU A X > SU A...A SU A y the cone functor. If 1~j1<'''<jk I t 1 t 

]l...jk(f) ..... A...A sUtA X) then define C as the canonical map from Cll lk(SUl 

m SU A...A DU A...A DU A...A SU A X to C (SU A...A SU A y] 
I Jl Jk t Jl .... 'Jk I t 

m SU A...A DU A...A DU A..-A SU A y induced by f. Define an equivalence 
I 11 i k t 
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r e l a t i o n  o n  a I  t -1  b y  ( a  1 . . . . .  a t _  l )  z ( b  1 . . . . .  b t _ l )  i f  m a x ( a  1 . . . .  a t _  l )  = 1 a n d  

., :S t-2 ) ( o I t - 1 ) / z .  max(b  I ,  . , b t _  I )  = 1. F o r  t m 3 c h o o s e  homeomorph i sms  h t 

Let T denotes the canonical interchange map. Then the maps 

T°(htAlsv ^ ' ' - A S V  ) d e f i n e  h o m e o m o r p h i s m s  
1 t 

h:S(R t-2 + V + ''' + V ) > B[DV A... ADV ASV ] 
1 t 1 t-I t 

Our spectra will be functors E defined on all finite dimensional subspaces W 

of R m with basis a subset of B. We will use the symbol c to denote either the 

structure map S A E > E of a spectrum or the product E A E > E of a ring 

spectrum. Then n E is defined as the direct limit over all W of the groups 
N 

[SW, EW'] where W' is a subspace of W with N = dim (W/W'). The structure maps 

of this direct limit are co(BY A - ) where V i W. We now have the notation to 

give the two definitions of the Toda bracket <X ..... Xt> where 

S 
X I ..... Xt_ I e n,, X t ~ n.(E) and E is any spectrum. We begin with the 

definition based on the composition of maps. 

DEFINITION 2.2.1. Let E be a spectrum, 
S 

let X I ..... Xt_ I g ~. and let X t 

Let G :SV A...A SV A SU > SV A...A SV A E U represent X , I -~ i 
l - l , i  i t i + l  t i i 

where R t-2 ± V ± .., ± V ± U, E = S for i -< i -< t-I and E = E. 
1 t i t 

system for ,G >' consists of maps <Go,l' " " " t-l,t o 

G :DV A...A DV A SV A...A SV A SU > SV A...A SV A E U 
l j  1+1 J - 1  j t J + l  t J 

for 0 -< i < j-I <t, (i,j) ~ (0, t), such that 

Gij] a (DVi+IA'" .A DVj_IA SVjA'' .A sVtA SU) = Uk=i+lJ-I G kll 

where G k is the composite map 
lJ 

DV A...A DV A SV A DV A...A DV A SV A-.-A SV A SU 
i+1  k - 1  k k + l  j - 1  ] t 

n , E .  

-~ t, 

A d e f i n i n g  

c (c) 
k÷1,...,J-1 l k  ) 

G 
DV A . . . A  DV A SV A . . . A  SV A SU k j > SV A . . . A  SV A E U. 

k+1 J-1 J t J+1 t J 

If <Gol ..... G >' has a defining system then define <G ..,g >' as 
t-l,t o 01' " t-l,t o 
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the set of homotopy classes of the maps 

Lot = Ut-lk=l GkOt°(h A Isu): S(Rt-2+V1+..-+Vt ) A SU > EU 

{Glj} >' . Define for all defining systems of <Go1 ..... Gt-l,t o 

> = lim <G A G A ¢o(G A 
<Gol ..... Gt-l,t o W > 01 ISW ..... t-2,t-1 ISW' t-l,t ISW)>'o" 

This direct limit is taken over all W with W ± (Rt-z+V +-''+V +U). If W' is a 
I t 

subspace of W then the map - A Is(w I ) sends a defining system of 

(C t_  1 , t A l s w  , ) ' <GolAIsw, .... ,¢o >o to a defining system of 

<G01AIsw .... , eo(Gt_l,tAlsw)>'o. Finally, define <Xl, .... Xt>o as the union of 

> for all choices of representatives G of X l-<i-<t. <G01'" " " 'Gt-l,t o l-l,± i' 

The following definition of the Toda bracket based on the smash product is a 

direct analogue of the usual algebraic definition of the Massey product in the 

homology of a differential graded algebra. 

DEFINITION 2.2,2 Let E. be a spectrum, let X i ..... Xt_ I • K S and let X t e ~,E. 

Let G : SV A SU 
1 - 1 , 1  i i 

R t-2 ± V I ± U I ± ''- ± V t ± Ut, E l = S for I -< i -< t-i and E t = E. A defining 

>' consists of maps system for < G o 1 , . . .  , G t _ l ,  t A 

G :DV A SU A...A DV A SU A SV A SU 
1] 1+1 i+1 ]-1 ] -1  ] ] 

f o r  0 -~ i < j - 1  < t ,  ( i , j ) ~ ( O , t ) ,  s u c h  t h a t  

) E U represent X for I ~ i ~ t where 
|i | 

) E (U +...+U ) ] i+l j 

A SU A...A DV A SU A SV A SUj) = U j-I G k Gi] la(mvi+1 i+i j-1 ]-i ] k=i+1 ,j 

where Gki] iS the composite map ¢oTo(GikA Gk]). If <Go1, .... Gt_l, t>'A has a 

defining system, then define <Go1 ..... Gt_ I t>~ as the set of homotopy classes 

of the maps 

GOt = (ut-IGkk=l Ot)°T°(h A Isu A" " " aSO ):S(Rt-2+VI+. • .+Vt ) A SU A---A1 SUt 
[ t 

> E(U+'-'+U ) 
I t 

for all defining systems {Gi]} of <Gm ..... Gt_l,t>~. Define 
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.... Gt_1, = <G A I G A i ,co(G A I )>~ <Gol, t>A i im ; 01 sw ..... t-2,t-1 sw t-l,t sw 
W I , . . . , W t I t-I t 

where the direct limit is taken over all W i ..... W t with 

W I i --. ± W t I (Rt-2+V l+U1+---+vt+Ut )" If W'i is a subspace of W i, I -~ i -~ t, 

then the maps ~oTo(-AIs(w I )A...As(wi))oT send a defining system of 
i+l J 

< G o 1 A t s w , , . . . , c o ( G t _ I , t A l s w , ) > X  t o  a d e f i n i n g  s y s t e m  o f  
1 t 

<Go 1A lsw ' ' ' ' ' c ° ( G t - l , t  A Isw )>A" F i n a l l y ,  d e f i n e  < X I , , . . , X t >  A a s  t h e  u n i o n  
1 t 

o f  <Gol . . . . .  Gt_l , t>A f o p  a l l  c h o i c e s  o f  r e p r e s e n t a t i v e s  Gi_l, t o f  X I, 1-<i-<t. 

The reader can find the proof of the following theorem in [29,Theorem 3.2]. 

THEOREM 2 . 2 . 3  S 
Let E be a spectrum, let Xl,... ,Xt_ I ~ ~ and let X t e ~E. 

Then <X i ..... Xt>o is defined if and only if <XI,...,Xt> A is defined. 

Moreover, if these Toda brackets are defined then they are equal. 

NOTATION: In view of this theorem, we will use the symbol <Xl,...,Xt> to 

denote <X I ..... Xt> ° = <XI,...,Xt>A. 

We will try to imitate proofs of results for algebraic Massey products to 

construct proofs of the Corresponding results for Toda brackets with defining 

systems constructed with the smash product. An obvious ingredient which we 

will require is the ability to add maps defined on cones. 

DEFINITION 2.2.4 Let f and g be two maps from C]I ..... ]k(XASUIA-.-ASUt) to Y, 

where U I -'' i U and O~k~t. 
I t 

+- • -+U Let  {b I . . . . .  b i } be a b a s i s  f o r  U 1 t 
1 N 

with i i < .,. < iN and let N(f) = N(X A SUIA...A SUt ) = il. Define 

f • g:C (X A SU A...A SU ) Y 
jl,...,] k I t 

in the usual way by pinching in the g(f) = i coordinate. Also define -f in 
1 
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t h e  u s u a l  way r e v e r s i n g  t h e  p ( f )  = i c o o r d i n a t e .  L e t  f o g = f ® ( - g ) .  
1 

Now we have a sum e and a product A defined for the maps that arise in 

defining systems of Toda brackets. Unfortunately most of the usual algebraic 

identities only hold up to homotopy for these operations. However, there are 

five identities which these operations do satisfy. 

THEOREM 2.2.5 

appearing in them are defined. 

(a) 

(b) 

(c) 

(d) 

(e) 

The following identities hold whenever the expressions 

f A (g A h) = (f A g) A h 

-(fag) = (-f)e(-g) 

If p(f) < p(W) then I A (f e g) = (I A f) e (I A g). 
sw s w  sw 

If ~(f) > p(g) then f A (g e h) = (f A g) e (f A h). 

If p(f) > ~(g) then -(f A g) = f A (-g). 

PROOF: The proofs of these properties are straightforward and are left to 

the reader. I 

NOTATION: In view of property (e) above, -f A...A f will mean 
1 t 

flA'''A (-fk) A...A ft where ~(fk ) = min(P(fl) .... '~(ft ))' 

We state next a useful technical result which says that <XI,...,Xt>A can be 

defined from any fixed set of representatives of X I .... X t. 

THEOREM 2.2.8 Assume that <X I .... X > is defined. Let G represent X 
' t i-l,i " 

<Xi, > has a representatives for i ~ i ~ t. Then any element Z of .... X t ot 

where {G..10 ~ i < j ~ t, (i,j) ~ (O,t)} is a defining system which contains 
,j 

the given {G II ~ i s t}. 
i-l,i 

PROOF. Let {AIj[0 ~ i < j ~ t, (i,j) ~ (0, t)} be a defining system such that 

is a representative of Z. By induction on k = j - i ~ i, we construct a lj 
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defining system {G } and homotopies H from A to G such that 
l ]  l ]  1i lJ 

H ] D o m a i n ( G  A C ) = H A H f o r  i < r < j .  When k = 1, t h e  C a r e  
l j  i r  r j  l r  r j  1 -1 ,1  

given, and the H can be found since A and C both represent X . 
i - l , i  i - l , i  i - - l ,  i i 

Let j - i  = k and assume that the C and H have been constructed for 
st st 

I -< t-s < k. Since (Domain Gij,Domain Gij) is homeomorphic to some (DN,SN), 

it has the homotopy extension property. By the induction hypothesis the 

A H i < r < j, agree where their domains intersect and thus homotopies Hit r l '  

define a homotopy H = UJ-lr=l+l(HirA Hr]) from All to Gii" By the homotopy 

extension property, there is a homotopy H of A which extends both H and 
l ]  tj  

A . . .  D e f i n e  G = H ] D o m a i n  (G × { t } ) .  T h i s  c o m p l e t e s  t h e  i n d u c t i v e  s t e p .  
i J  i j  l j  l ]  

T h u s  we h a v e  c o n s t r u c t e d  a d e f i n i n g  s y s t e m  {Gi i}  a n d  a h o m o t o p y  

U t-1 (H A H ) from A to I 
r = l  Or rt Ot Ot 

Observe that the three-fold Toda bracket <XI,X2, X3> is defined if and only if 

Xl.X2= 0 and X2.X3= O. The following theorem gives practical criteria for 

concluding that a four-fold Toda bracket is defined. 

THEOREM 2.2.7 Assume 

N l = D e g r e e  X1, 1 ~ i ~ 4 .  

conditions i s  true. 

that 0 ~ <XI,X2, X3> and 0 ~ <X2, X3, X4>. Let 

In addition assume that one of the following 

( a )  <X1,Xz,  X3> = O. 

(b) <Xz, X3, X > = O. 

S 
(c) XI"~I+N +N = O. 

2 3 

S 
(d) X4*~I+N2+N 3 = O. 

S 
(e) If Y ~ ~I+~,, +N then Y = YI 

2 3 

(f) x = x .  
1 3 

(g) x = x .  
2 4 

+ Y such that X -Y = 0 and X -Y 
2 1 1 4 2 

Then <Xl,X2, X3, X4 > iS defined. 

=0. 
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PROOF: We use the smash product and the smash product Toda bracket of 

D e f i n i t i o n  2.2.2 throughout the proof. 

(a) Let G12 , C23 , C34 , G13, fi24 be a defining system for <X2, X3, X4> which 

defines 0 in <X2, X3, X4>. Extend this defining system by choosing any Gol and 

Go2. Then Go3 ~ <XI,X2, X3> = O, and thus we can find C03 to complete the 

defining system. 

(b)  The p r o o f  o f  (b)  i s  a n a l o g o u s  to  t he  p r o o f  o f  ( a ) .  

(c )  As i n  the  p r o o f  o f  (a)  s e l e c t  Col, G12, G23, G34, Go2, G13, G24 and G14. 

C' of By the  p r e v i o u s  theorem, t h e r e  i s  a d e f i n i n g  sys tem C01, C12, C23, C02, 13 

, A (C13 8 C' ) represents an <X I X2, X3> which defines 0 ~ <XI,X2, X3>. Then Gol 13 

S 
element of XI'~I+ N +N = O. Thus we can find C03 to complete the defining 

2 3 
system. 

(d) The p r o o f  o f  (d) i s  a n a l o g o u s  to  t he  p r o o f  o f  ( c ) .  

(e )  As in  t h e  p r o o f  o f  (a )  s e l e c t  Go,, G12, G23, G34, Go2, G13, G24 and G14. 

By the previous theorem, there is a defining system C01, C12, C23, Go2, G~3 of 

<Xl,X2, X3 > which defines 0 ~ <XI,X2, X3 >. Write G13@ G~3 = Y2 e Y1 where 

X A y and X A y a r e  n u l l  homotop ic .  Then we can  r e p l a c e  C by 
1 1 4 2 13 

(-Y2 ® G13) ® (-C13 ® C13) and f i n d  a new a p p r o p r i a t e  C14. S ince  t h e  new C13 

e q u a l s  (-Y2 • Y2 ) e (Y1 e G'3)l we can  f i n d  a G03 to  c o m p l e t e  t he  d e f i n i n g  

system. 

(f) Let G12 , G23, G34, G13, C24 be a defining system for <X2, X3, X4> which 

defines 0 in <X2, X3, X4>. Extend this defining system by choosing Go1 = G23 

and any Go2. There are other choices C'02 = Go2 ® X and G'13 = C13 e Y such 

' G' defines G which represents 0 that the defining system Go1, G12, C23, Go2, 13 

>. Replace G by (G ® X ® Y) u (Y u C ) Now G = G, and i n  <X1,X2, X 3 02 02 1 23 " 03 

we can find a C to complete the defining system. 
o3 

(g) The proof of (g) is analogous to the proof of (f).~ 
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3. Properties of the Toda Bracket 

I n  t h i s  s e c t i o n ,  we d e r i v e  t h e  i n d e t e r m i n a c y  a s  w e l l  a s  t h e  a d d i t i v e  a n d  

a s s o c i a t i v e  p r o p e r t i e s  o f  t h e  t h r e e - f o l d  a n d  f o u r - f o l d  T o d a  b r a c k e t s  d e f i n e d  

i n  t h e  p r e v i o u s  s e c t i o n .  M o s t  o f  t h e s e  r e s u l t s  a r e  d i r e c t  a n a l o g u e s  o f  t h e  

algebraic results for Massey products given by May in [39]. As with algebraic 

Massey products we say that <XI,...,Xt> is strictly defined if <Xm .... Xn > = 0 

whenever I ~ m < n m t and n-m < t-1. Note that every triple product which is 

defined is automatically strictly defined. We define the indeterminacy of a 

Toda bracket by 

= > - <X I,.. . ,Xt>. Indet <X I ..... Xt> <X I ..... X t 

In all of the proofs of this section we use defining systems as in 

Definition 2.2.2 which are based upon the smash product. 

Before embarking on manipulating our Toda brackets, we should remark that 

there is a hidden sign convention built into our definitions. The easiest way 

to deal with this problem is to consider a defining system {Gij} of 

<XI,...,Xt> A in which the G01 , .... Gt_l, t use subspace V I .... ,V t of R m such 

that V i has basis {bN(i,j)ll -~ j -~ dim(Vi)} and 

{bN(i,i)ll -< i -< t, 1 -< j -< dim(V )}I in the lexicographical order of the 

N(i,j) is the same ordering as the given ordering of B. Now think of Got as 

u s i n g  t - 2  a d d i t i o n a l  b a s i s  v e c t o r s  b k . . . . .  b k w h e r e  
1 t-2 

< N ( 1 , J l )  < k2< N ( 2  j 2 )  < k3< ' ' '  < k < N ( t - 2  " ) f o r  a l l  " k l  ' t - 2  ' J r - 2  J1 . . . . .  3 t - 2 "  

THEOREM 2 . 3 .  1 L e t  X E S f o r  1 -~ i -~ t .  
1 N 

i 

(a) 

(b) 

Indet > is the ideal spanned by X and X < X l ' X 2 ' X 3  1 3" 

S S S S 
If X "~ n X .~ = 0 and X .~ n X .~ = 0 then 

3 N +N +I I N ÷N ÷I 2 N +N +I 4 N +N +I 
12 2 3  3 4  2 3  

Inde t  <Xl,Xz, Xs, X>  = U A <A, X3,X4> u U B <X1,B, X4> u U C <Xl,X2, C> 
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S 
where the first union is taken over all A e ~ such that A-X =0, the 

N +N +I 3 
1 2 

S 
s e c o n d  u n i o n  i s  t a k e n  o v e r  a l l  B ~ it s u c h  t h a t  B-X = B ' X  : 0  a n d  t h e  

N +N +1 1 4 
2 3 

S 
t h i r d  u n i o n  i s  t a k e n  over-  a l l  C 6 ~ s u c h  t h a t  C-X =0.  

N +N +1 2 
3 4 

PROOF: The proof of is this theorem is a direct analogue of the proof of the 

c o r r e s p o n d i n g  a l g e b r a i c  r e s u l t  f o r  M a s s e y  p r o d u c t s  [ 4 0 , P r o p .  2 . 4 ] . |  

NOTE: The  h y p o t h e s i s  i n  ( b )  a b o v e  i s  s a t i s f i e d  i f  <X ,X ,X ,X > i s  s t r i c t l y  

defined. 

THEOREM 2.3.2 Assume that <Xl, . . . ,X'k+X k ..... Xt> is defined and 

<X1,... ,X' k .... Xt> is strictly defined. Then <XI,...,X k ..... Xt> is defined and 

< x  . . . . .  x ' k %  . . . . .  xt> c <x 1 . . . . .  x '  . . . . .  xt> + % . . . . .  . . . . .  x d .  

PROOF. The p r o o f  i s  a d i r e c t  a n a l o g e  o f  t h e  a l g e b r a i c  p r o o f  o f  [ 4 0 , P r o p .  2 . 7 1 . ~  

The following associative properties of the three-fold Toda bracket are proved 

by Toda  i n  [80]. 

THEOREM 2.3.3 Let degree X = N(i) for 0 -~ i -~ 3 and let degree Y = M. 
I 

(a) If <XI,X2, X3> is defined then 

Y-<XI,Xe, X3 > c (-1) M <Y.Xl,X2, Xs > and <XI,X2, X3>.Y c <XI,X2, X3-Y>. 

(b) If X -X = X .X = X -X = 0 then 
0 1 1 2 2 3 

Xo'<XI,X2, X3> = (_i) N(O)÷N(1) <Xo, Xl,X2>-X3. 

(c) If the second of the three Toda brackets below is defined then they ave 

all defined and 

0 E ( - 1 )  N(O) <<Xo, XI ,X2>,X3,  X4> + <Xo,<XI,X2,  X3 >, X4 > 

+ (-l)N(1) <Xo'XI'<X2'X3 'X4>>" 

(d) If XI"Y'X2 = 0 and X2.X3 = 0 then <Xl "Y'X2'X3> c (-i) M <XI,Y'X2, X3 >" 

(e) If XI.X 2 = 0 and X2,Y.X 3 = 0 then <XI,X2, Y.X3 > c <XI,X2"Y, X3 >. 
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In the next three theorems we give the analogous results for four-fold Toda 

brackets. Most of these results were proved by Oguchl [Sl] for his 

composition four-fold products. However, his Toda brackets are only defined 

under more restrictive conditions than ours. As a result some of his 

conclusions are sharper than ours. 

THEOREM 2.3.4 Let degree X = N(i) for 1 ~ i -< 4 and let degree Y = M. 
i 

(a) If <XI,X2, X3, X4> is defined then <XI,X2, X3, X4> (-I) P <X4,X3, X2, XI = > 

where P = N(4)[N(1)+N(2)+N(3)+l] + N(3)[N(1)+N(2)] + N(1)[N(2)+1]. 

(b) If <XI,X2, X3, X4> is defined then 

Y'<X ,X2, X3, X4> c (-1} M <Y'XI,X2, X3, X4> and 

>'Y c <X X 2,X 3,x 4"Y>. <Xl' X2' X3' X4 1' 

(c) If <XI.Y, X2, X3, X4> is defined then <XI,Y.X2, X3, X4 > is defined and 

<XI'Y, X2,Xs, X4> c (-1) M <X1,Y'X2, X3, X¢>. 

(d) If  <X1,X2, X3, Y'X4> is defined then <X1,X2, Xs.Y, X4> is defined and 

, >. <X 1,x z,x 3,Y.X4> c <X I X 2,X 3.Y,X¢ 

(e) Assume that <X ,X2-Y, X3, X4> and <XI,X2, Y.Xa,X4> are defined, and that 

= > n <XI,X2, Y'X3, X4> ~ ¢. Moreover <XI,X2, YX3> O. Then I - <XI,X2.Y, X3, X 4 

the indeterminacy is given by Indet(1) --- I-I = U A <A, X3,X4> u U B <XI,X2, B> 

S S 
where the first union is taken over all A ~ ~N(1)+N(2)+N+I / Y'~N(1)+N(2)+I 

with AX = 0 and the second union is taken over all 3 

S B=O. B E ~N(3)+N(4)+M+I/ Y'~S(3)+N(4)+I with X 2 

PROOF. (a) If {GijlO -< i< j -~ 4, (i,j) ~ (0,4)} is a defining system for 

<XI,X2, X3, X I>, let Aij = G4_j,4_ i. Then {AijlO -< i < j -~ 4, (i,j) ~ (0,4)} is 

a defining system for <X4, X3,X2, X1 >. Since Gij = Aij' <Xl'X2'X3'X4 > 

c (-I)P<x4, x3, x2, xI>, and by symmetry the two Toda brackets are equal. 

(b) Let {G I0 -~ i < j -< 4, (i,j) ~ (0,4)} be a defining system for lj 

<X1,X2, X3, X4> and let J represent Y. Then the following display is a defining 
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s y s t e m  f o r  <Y" X 1, X2, X3, X4> : 

J A G  
Ol 

j A G  
02 

G G G 
12 23 34 

G G 
13 24 

J A G  G 
0 3  14 

<Y'XI ,X2,  X3, X4> iS  d e f i n e d  and  c o n t a i n s  J A Go4" 

> X3, X4 > c (-1)M<Y-XI,X2,  X3, X4 . 

Thus, 

Y- <X I , X 2, 

T h e r e f o r e  

The s e c o n d  i d e n t i t y  i n  (b )  f o l l o w s  

f r o m  t h e  f i r s t  o n e  by  ( a ) .  

(c) Let 

<X I • Y, X 2, 

Then the 

{ G l j l 0  s i < j ~ 4, ( i , j )  ~ ( 0 , 4 ) }  be a d e f i n i n g  s y s t e m  f o r  

= G' A J where ' J represents XI, Xa, X4>. Assume that Gol ot Got' 

following display is a defining system for <XI,Y-X2, X3, X4>: 

G' J A G G G 
O1 12 23 34 

G J A G G 
02 13 24 

G J A G 
03 14 

Y, resp. 

Thus <XI'Y'X2'X3'X4 > is defined and contains G04 because G'01A (j A G14) 

= GoIA G14. Therefore <Xl "Y'X2' X3'X4 > c (-I) M <Xl, Y'X2, X3, X4>. 

(d)  T h i s  i d e n t i t y  f o l l o w s  f r o m  t h e  i d e n t i t y  i n  ( c )  by a p p l y i n g  t h e  i d e n t i t y  

i n  ( a ) .  

( e )  Let C represent X for I -< i -~ 4, and let J represent Y. Extend 
i - l , i  l 

Go1, G12 A J, G23, G34 to a defining system {Gi]lO -~ i < j -< 4, (i,j) ~ (0,4)} 

Of <XI,X2"Y, X3, X4>. Extend Go1 , G12 , J A G23, GI3 by finding a G'02 to get a 

defining system of <XI,X2, YX3 >. Since <X I,X2,YX3 > = O, we can find a G'03 such 

that 8G03 = (GoIA G13) u (GoeA (J A G23)). Then the following diagram 

exhibits two defining systems, one for <XI,X2-Y, X3, X4> and the other for 

<X 1 , X 2, Y" X3~, X4> : 

G G AJ G G G G JAG G 
01 12 23 34 O1 12 23 34 

G' A j G G G' G J A G 
02 13 24 02 13 24 

G' G G' G 
03 14 03 14 

Both of these defining systems define the same element, and thus the two Toda 
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brackets have an element in  common. The indeterminacy arises because not all 

defining systems of <XI.Y, X2, X3, Xd> have a (0,2) entry of the form ?Aj and not 

all defining systems of <Xl,Y.X2, X3, Xd> have a (2,4) entry of the form jA?.i 

THEOREM 2.3.5 Let degree X i = N(i) for 0 -< i -< 4. Assume that <XI,X2, X3, Xd> 

and <Xo, XI,X2, X3 > are strictly defined• Then 

Xo<XI,X2, X3, Xd> = ( _ 1 )  N(O)+N(1)  <Xo, Xl,X2, X3>.X4. 

PROOF. Let {GijIO -< i < j -< 4, (i,j) ~ (0,4)} be a defining system for 

>. Extend 03 <XI,X2, X3, X ¢ {GoI,G12, G23, Go2, GI3, G } to a defining 

system {Gijl-I -< i < j -< 3, (i,j) ~ (-1,3)} of <Xo, X1,X2, X3>. Then 

(G_I,I A G14) u (G_I,2 A G24) restricted to the boundary of its domain is 

(G_I,oA ~04) u (G_1,3 A G34). Thus Xo-<XI,X2, X3, Xd> 

.N(O)+N(1) 
C (-lJ <Xo, XI,X2, X3>'X4 and by symmetry the theorem follows, ll 

= N(i) for 0 ~ i ~ 4. THEOREM 2.3.6 Let degree X 
i 

(a) Assume that <X1,X ,X3,X4 > is defined and that Xo-X 1 = O. Then 

N ( 1 ) + I  
• >. X ° <X l,x z,x 3,x4> c (-i) <<X o,x I,Xz>,X 3,x 4 

(b) Assume that <Xo, XI,X ,X3 > is defined and that X3-X 4 = O. Then 

<Xo, XI,X2, X 3>'x4 C (-1) N(1)÷I <Xo, XI,<X2, X3, Xd>> 

• = O, X "X = O, X "X = 0 and 0 E <Xo, XI, X2>.X 3. Then (c )  Assume t h a t  X ° X 1 1 2 3 4 

<X o,X 1,X 2"x 3,X4> i s  d e f i n e d  and c o n t a i n s  (-1)N(°)+1 <<Xo ,X1 ,X2>,X3 ,X4>. 

= = 0 and 0 ~ XI'<X2, X3, X4 >. Then (d) Assume that Xo'X I = O, Xz-X 3 O, X3"X 4 

<Xo, XI-X2, X3, Xd> is defined and contains (-I) N(1)÷1 <Xo, XI,<Xz, Xs, Xd>>- 

PROOF. (a) Let {GijlO -< i < j -< 4, (i,j) ~ (0,4)} be a defining system for 

<X I,X 2,X 3,X4> and let G 1,o represent X o- 

defining system for <<X o,X 1,X2>,Xa,X4>: 

-1,2 
(C AG )uCG /~ ) 

-1,0 03 -1,1 13 

Then the following display is a 

G G 
23 34 

G 
24 
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Now G A G restricted to the boundary of its domain is the element of 
-I,I 14 

> determined by the above d e f i n i n g  system u n i o n  G A <<Xo' X l '  X2>' X3' X4 -1,0 04" 

Thus X o- <X1, X2, X3, X4> C ( - I ) N(I) +l<<Xo ' Xi ' X2>, X3 ' X4>. 

(b)  T h i s  i d e n t i t y  f o l l o w s  f rom t h e  one  i n  ( a )  by  Theorem 2 . 3 . 4 ( a ) .  

( c )  Le t  {G I -1  <- i < j -< 2, ( i , j )  ~ ( - 1 , 2 ) }  be a d e f i n i n g  s y s t e m  f o r  l j  

<Xo, X1,X2>. Le t  G23, G34 r e p r e s e n t  X3, X4, r e s p e c t i v e l y .  F i n d  G24 s u c h  t h a t  

= G A G and find G such that G = ~ A G . Then the 
24 23 34 - 1 , 3  - 1 , 3  - 1 , 2  23 

f o l l o w i n g  d i s p l a y  i s  a d e f i n i n g  s y s t e m  f o r  <Xo, X1,X2-X3, X4>: 

G G G AG G 
-1,0 01 12 23 34 

G G A G  G A G  
- 1 , 1  02 23 12 24 

G GAG 
-I ,3 02 24 

This defining system defines 

A G A G24) u (G I A G A G24 ) u (G I A G ) (G-I,O 02 - ,1 12 - ,3 34 

= (G-I,2A G24) U (G_1,3 A G34), an arbitrary element of <<X o, X 1, X2>, X 3, X4> 

Thus <<Xo, XI,Xz>,X3, X¢> c (-1)N(°)+1<Xo' XI'X2"X3'X4 >" 

(d) This identity follows from the identity in (c) by Theorem 2.3.4(a). R 

We conclude this section by recording a useful theorem of Toda [60,3.10]. 

S 
THEOREM 2.3.7 Let ~ and ~ be elements of ~. 

(a) If degree ~ is odd then <~,B,~> n (-i) deg B<~,~, 

(b) If degree ~ is even then <~,~,a> n ~-~ ¢ ~. 

2~> ~ 0. 

4. The Atiyah-Hirzebruch Spectral Sequence 

Toda brackets in the limit of a spectral sequence are related to the 

differentials in the spectral sequence. In this section we prove several 

theorems which depict this relationship in the Atiyah-Hirzebruch spectral 

sequence for the homotopy of a spectrum B: 
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E 2 = H (B;~ s) , > S (B) 
pq p q p +q 

Of course, the case in which we are inerested is when B = BP, and we 

specialize to that case in the last three theorems of this section. The idea 

of the following theorem is to analyze a Toda bracket by passing to an 

appropriate mapping cone. This idea is due to Joel Cohen [18] where he used 

it to decompose elements of g~ as Toda brackets of Hopf classes. 

S 
THEOREM 2 . 4 . 1  Let X e rl X 

0 N(O) ' 2 

Let C be the mapping cone of X . 
2 

S 
( i )  X2"X 3 = 0 i n  ~ . .  

( i i )  d r (X  .Y) = X . 
3 o 

( i i i )  

Let X 
I 

map. 

PROOF. 

S S 
E ~ X ~ ~ 

N(2}' 3 N(3)' 

Assume that: 

Y ~ H.B and let r z 2. 

Y t r a n s g r e s s e s  t o  t h e  p r o j e c t i o n  o f  X e C,  i n t o  t h e  
o2 

A t i y a h - H i r z e b r u c h  s p e c t r a l  s e q u e n c e  f o r  C.B. 

~.(Xo2 ) ~ S where ~:C ~ S ~(2)+I i s  the canonical collapsing 
N(1) 

> i s  defined and contains X Then <X1,X2, X 3 o" 

We u s e  t h e  c o m p o s i t i o n  p r o d u c t  Toda  b r a c k e t  o f  D e f i n i t i o n  2 . 2 . 1  t o  

prove this theorem. Let C represent X for 0 ~ i ~ 3, and let G repre- 
l - l , l  i 0 2  

s e n t  X02. C o n s i d e r  F i g u r e  2 . 4 . 1 .  I n  t h a t  d i a g r a m ,  j i s  t h e  c a n o n i c a l  i n c l u -  

s i o n  map and  G13 e x i s t s  by ( i ) .  L e t  G13 , be t h e  map o f  s p e c t r a l  s e q u e n c e s  

i n d u c e d  by  C13. Then  X ° = dr(X3"Y) = droG13.(Y)  = C13. o d r ( y )  = G13.(X02).  

Thus  X ° i s  r e p r e s e n t e d  by  013oSC02 w h i c h  i s  an  e l e m e n t  o f  <X1,Xz, X3>.~ 

SN( 3 ) - I C 

~ ~  sN( a)-1 o. 

sN(1)+N(2) +N(3) (2)+N(3) C-12 

sN(3)j 

g 
~N(3) 23 

> > S 

1 
SN(3) C 

FIGURE 2 . 4 . 1  
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S 
The next theorem is the most direct way of detecting a triple product in ~, 

from differentials in the Atiyah-Hirzebruch spectral sequence. 

S 
THEOREM 2.4.2 Assume that <XI,X2, X3 > is defined in n.. Assume that 

dr(1)(Y 1) = X I and dr(S)(Y 3) = X 3. Then X2"YI "Y3 survives to E r(1)+r(3) and 

there is an element of <XI,X2, X3> which projects to dr(1)÷r(3)(X2 "YI "Y3 )" 

PROOF. We use the smash product Toda bracket of Definition 2.2.2 to prove 

this theorem. Let N(i) = degree X . For i=I,3, represent Y e E r(1) by 
i i r ( i ) , p ( t )  

A DUI,SVA SU ) ) (suA B [r(i)] SU ) where G ]svA SU = G 
G i :  (SVi  l i i ' i l l i i - 1 ,1  

represents X . Represent X by G :SV A SU > SU . Find maps G and G 
1 2 12  2 2 2 0 2  13 

as in Definition 2.2.2 to complete the defining system {Gij} of <Xl,X2, X3>. 

Define F: (SV IA DuIA SV2A SU2A SV3A DU3) u (DVIA suIA sv2A su2A sv3A DU3) 

u (SV A DU A DV A SU A SV A SU ) ~ SU A SU A SU A B [r(1)+r(3)] 
1 1 2 2 3 3 1 2 3 

as [eo(G IA GI2A G3)] u [¢o(G02 A G3)] u [co(GIA 013)] . Then Domain F is 

homeomorphic to a disc and 

F: (Domain F, ODomain F) > (SU A SU A SU A B[r(1)+rt3)],SU A SU A SU ) 
1 2 3 1 2 3 

represents X "Y "Y . Thus X "Y "Y survives to E r(1)+r(3) and 
2 1 3 1 2 3 r (1) +r(3)  ,p(1)  +p(3) ÷N(2) 

d r ( 1 ) + r ( 3 ) ( X 2 " Y l " Y  3) i s  r e p r e s e n t e d  b y  F l a D o m a i n ( F )  = (Go2 A G23) v ( C o l a  G13) 

= [:::-03 ~ <X 1 , X 2, X3>.  I I  

The previous theorem generalizes to longer Toda brackets. Unfortunately, 

technical hypotheses need to be added and the conclusion has indeterminacy. 

We give such a generalization for four-fold brackets. 

S 
THEOREM 2.4.3 Assume that <XI,X2, X3, X4> is defined in n ~ ,  and let 

N(i) = degree X for 1 ~ i ~ 4. Assume that dr(1)(Y ) = X for i=1,3,4 where 
i I i 

Yl e E r(1) . Assume that one of the following hypotheses hold: 
r(1),p(1) 

( i )  E r (4 )÷h  = 0 f o r  0 ~ h ~ r ( 1 ) .  
r ( 1 ) - h , p ( 1 )  + N ( 2 )  +h 
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( i i )  E r(4)+k = 0 for 0 -~ k -~ r ( 3 ) .  
r(3)-k,p(3)+N(4)÷k 

Then X -Y .Y "Y s u r v i v e s  t o  E r(1)+r(3)+r(4) and t h e r e  i s  an e lement  
2 1 3 4 N(1) +N(3) +N(4) +3, N(2) 

<Xl, X2, X3, X4> which projects t o  d r(1)+r(3)+r(4) (X2"YI "Y3 "Y4 ) 

PROOF. We use  the  smash p r o d u c t  Toda b r a c k e t  o f  D e f i n i t i o n  2 . 2 . 2  t o  p rove  

of  

this theorem. Let {Ci]I0 -~ i < j -~ 4, (i,j) * (0,4)} be a defining system 

Er(l) >. For i=1,3,4 represent Y e by for <Xl, X2, X3, X4 i r t i ) , p ( t )  

G i : ( s v i A  DUI,SVIA SUI ) > (SUIA B [ r t i ) ] ,SUi )  where GtlSVi A SUI = Gl_l , l  

r e p r e s e n t s  X i . Let  

F = (G1A G12A G3A G4 ) u (Go2 A G3A G4) u (G1A GlsA G4 ) u (GO3 A G 4) W (G1A G14): 

A DU3A SV4A DU 4) w (DV A SU A sv2AsU2ASV3ADU3ASV4ADU4) [sv1A DU1A sv2A Su2A SV3 1 1 

u (SV A DU A DV A SU A SV A SU A SV A DU ) u (DV ASU ADV ASU ASV ASU ASV ADU ) 
I 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 

W (SV A DU A DV A SU A DV A SU A SV A SU ),(DV A SU A DV ASU ASV ASU ASV ASU ) 
1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 

U (SV A SU A DV A SU A DV A SU A SV A SU ) u (SV ADU ASV ASU ASV ADU ASV ASU ) 
1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 

u ( SV I A DUI A SV2A SU2A DV3A Su3A SV4ASU4 ) u (DV i ASUI ASV2~U2~V3ADU3ASV4~U4 )) 

) (B[r(1)+r(3)÷r(4) ] ,Bir(1)+r(3) ] ) .  

F has a disk as its domain and F restricted to the boundary of its domain is 

[ (C03A C34) U (COLA C14)] U [(C][A c12A C3~34) U (01/~12~26 ) L/ (C02/~3AG34) ] . 

C l e a r l y  F rep resen ts  X -Y "Y .Y . Moreover, F r e s t r i c t e d  to  the boundary o f  2 1 3 4 

i t s  domain is  the sum of  (ColA C14) u (Go2A G24) w (Go3 A 634) and the product  

[ (C IA G12) L; 602] A [ (c3A G34 ) U 624] . The first summand is an element of 

<XI,X2, X3, X4>. Under hypothesis (i), the first factor of the product is the 

boundary of a map of filtration degree less than r(1)+r(4) while the second 

factor is in filtration degree rC3) so that the product is the boundary of a 

map of filtration degree less than [r(1)+r(4)]+r(3). Under hypothesis (ii), 

the second factor of the product is the boundary of a map of filtration degree 

less than r(3)+r(4) while the first factor is in filtarion degree r(1) so that 

the product is the boundary of a map of filtration degree less than 

r(1)+[r(3)+r(4)]. Thus, in either case we can represent X -Y -Y .Y by a map 2 1 3 4  
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>. Thus, X .Y-Y-Y survives to whose boundary is an element of <X1,X2, Xs, X ~ 2 I 3 4 

E r(1)+r(s)+r(4) and dr(1)+r(3)+r(4)(X "Y "Y "Y ) is the projection into 
2 1 3 4 

Er(1)+r(3)+r(4) of an element of <Xl, X2, X3, X4>.~ 
0,N(I) +N(2) +N(3) +N(4) +2 

We conclude this section with three theorems that refer only to our 

Atiyah-Hirzebruch spectral sequence, i.e., we take B = BP. As we shall see, 

the Toda brackets constructed there are common and useful for detecting 

nontrivial extensions in our spectral sequence. In Chapter 3, we shall see 

that we have elements of H.BP with the following differentials: 

: d CM) : d 22 de(M 1) W, wM~, d4(M~) = u, (M = PM1, d4(M ) = uM , dS<M¢>1 = Cr 

and dS<M2>2 = °'M2"1 We will represent MI, M2' M21' M2' M22' <M~>, <M~> by ~I' 

~/01' ~2' ~01' go2' ~/4' <~02 >' respectively. The reader may prefer to read the 

remainder of this section after reading Chapter 3. 

S 
THEOREM 2.4.4 Let X e ~ .  

(a) X.M 3 survive to E s if and only if ~'X = 0 and v.X = O. 
1 

<~,X,u> is defined and p r o j e c t s  t o  ds(X.M~). 

(b) X.M survives to E s if and only if ~-X = O. 
2 

defined and p r o j e c t s  t o  d6(X.M ). 
2 

(e)  X.M s u r v i v e s  t o  E s i f  and o n l y  i f  u.X = O. 
2 

d e f i n e d  and p r o j e c t s  to  d6(X.M2). 

PROOF. Represen t  M 1 ~ E~,obY g l : ( S  1A DA, S 1A SA) 

~I]S IA SA = ~. Represent M 2 ~ E 4 by g2:(S 3A DB, S 3A SB) 
1 4,0 

such that ~21S 3A SB = p. Let G:SV A SU ) SU represent X. 

In that case 

In that case <u,~,X> is 

In that case <D,u,X> is 

) (SA A Bp[2],SA) such that 

> (SB A Bp[4] SB) 

We use the smash 

product Toda bracket of Definition 2.2.2 throughout the proof. Observe that 

all three Toda brackets in this theorem have indeterminacy contained in  (~,u) 

which projects to zero in E s. 

(a) d2(X.M 3) = D.X.M e and if ~'X = 0 then d4(X'M 3) = u-X'M . Thus, X'M 3 
1 1 1 1 1 

survives to E s if and only if ~'X = 0 and u-X = O. The latter condition is 
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equivalent to <~,X,u> being defined. In this case we can apply Theorem 2.4.2 

to conclude that ds(X.M~) is the projection of <n,X,u> into E s. 

(b) Represent M ~ E 2 by 
2 6 , 0  

~o1: CD 4A DB AsIA SA A SC,(SSA DB ASIA SA A SC) u (D 4A SB h sIA SA A SC)) ) 

($13 A SA A SC A Bp Is] SB A SA A SC A Bp TM) 

such that ~01 restricted to the boundary of its domain is (~2 A n) u Bu~ where 

Bun ' [ S 3 A SB ASIA SA A SC = u A n. Let 

13 :D 2A SA A SC A SV A SU ) SA A SC A SU such that 
Wx 

Bnx]SIA SA A SC A SV A SU = n A G Aisc. Then X-M 2 ~ E s is represented by 

F = (~01A g A lsc ) u (~2A Bnx): 

[(D 4A DB A SIA SA A SC A SV A SU) u (S 3A D13 A D2A SA A SC A SV A SU), 

(D 4A SB AsIA SA A SC A SV A SU) u (S 3A SB A D2A SA A SC A SV A SU)) 

> (SB A SA A SC A SU A BpISI,SB A SA A SC A SU). 

Thus, dS(X'M2) is represented by F restricted to the boundary of its domain 

which is (Bu A G) u (u A Bn× ) ~ <u,n,X>. 

(c) Represent M e E 4 by 
2 6,0 

~'-01: [ D2A DA A s3A SB ASH, (S 1A DA A S3A SB ASH) u (D 2A SA A S3A SB ASH))  

(SA A SB A SH A Bp[SI,SA A $B A SH A Bp [2]) 

such that ~oI restricted to the boundary of its domain is 

• :D 4 A SB A SH A SV A SU [ ( ~ l  A u) u Bnu] A Is H Let Bux 

that lJux I S 3A SB A SH A SV A SU = u A G A ISH. Then X.M 2 

by F = (~oI A G) u (~IA Bux): 

[(D 2A DA A SJA SB A SH A SV A SU) u (S IA DA A D4A SB ASH A SV A SU), 

(D 2A SA AS 3A SB ASH A SV A SU) u (S IA SA A D4A SB A SV A SU)) ) 

(SA A SB A SH A SU A Bp [s],SA A SB A SH A SU). 

SB ASH A SU such 

E 6 is represented 

Thus, ds(X.%) is represented by F restricted to the boundary of its domain 

which is (Bnu A G A ISH) U (~ A Bvx) E <~,u,X>.~ 
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S 
THEOREM 2.4.5 Let X ~ ~. 

(a) <u,n,X,n> is defined if and only if X'MIM 2 survives to E 8. In this case 

<u,w,X,n> projects to dS(x-MIM2 ). Moreover, uX is divisible by 0. 

(b) Assume that <n,u,X,u> is defined. Then X.M2M survives to E 10, and 
I 2 

<#,u,X,u> projects to dl°(X-M2%). Moreover, (rX is divisible by u. 

PROOF. Let G:SV A SU ) SU represent X 6 S We use the smash 

product Toda bracket of Definition 2 . 2 . 2  throughout this proof and 

the notation of the proof of the preceding theorem. 

(a) XM M survives to E 4 if and only if nX = O. In this case, XM M survives 
12 12  

to E s if and only if uX is divisible by ~0, i.e. 0 e <#,X,D>. Then ds(XMIM2) 

= ds(XM2)M1 and dS(XM2) e <u,n,X>. 

dB(XM ) ~ (v), i.e. 0 e <u,n,X>. 
2 

if 0 e <w,X,w> and 0 ~ <v,w,X>. 

E s if and only if <u,~,X,n> is defined. 

Thus XM M survies to E s if and only if 
I 2 

T h e r e f o r e ,  XM M s u r v i v e s  t o  E 8 i f  a n d  o n l y  
1 2 

Then by  The o r e m 2 . 2 . 7 ( f ) ,  XM M s u r v i v e s  t o  
1 2 

In  t h a t  c a s e  l e t  t h e  f o l l o w i n g  

diagram depict a def ining system for <u,~,X,n> A : 

v ~ G 

B B B 
u~ ~x ×~ 

B B 
<V,T/,X> <W,X,~> 

Here B×T: DV A SU A S1A SA' ) SU A SA' such t h a t  BxnlSV A SU A S1A SA' 

= G A ~;, B :D 4A SB A D2A SA A SC A SV A SU > SB A SA A SC A SU such 
<P,~,X> 

that B<u,n,x>la [Domain B<u,n,x >] = (BuA G) u (u A B ix ) and 

B :D 2A SA A SC A DV A SU A SIA SA' ) SA A SC A SU A SA' s u c h  t h a t  
<]9,), ]9> 

B<n,x,n>la [Domain B<~,x,~ >] = (~q A Bx ~) u (BnxA B).  Then the following map F 

represents X-M M in E s. F = 
i 2 

(go2 A G A gl) u (g2A Bnx A gl) u (gozA Bx ) u (B<u,n,x>A gl) u (~2 A B<n,x,n>): 

((D 4A DB ASIA SA A SC A SV A SU ASIA DA') u (SSADBAD2ASAASCASVASUASIADA ' ) 

u (D 4A DB AS IA SA A SC A DV A SU AsIA SA') u (D 4A SB A D2ASAASCASVASUASIADA ') 

u (S 3A DB A D2A SA A SC A DV A SU ASIA SA' ), (ssASBAD2ASAASCADVASUASIASA ' ) 

u (D 4A SB AsIA SA A SC A DV A SU AsIA SA') u [DdASBAD2ASAASCASVASUASIASA ' )) 
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(SB A SA A SC A SU A SA'ABP[a],SB A SA A SC A SU A SA'). 

Thus dS(x.MIM 2) is represented by Fla [Domain F] 

= (v A B ) u (B A B ) u (B A n) ~ <u,n,x,n>. 
<w,x,w> uw x~ <u,w,x> 

The indeterminacy of <u,w,X,n> is a sum of elements of the form HA, uB, 

<u,~,C> and <v,D,n>. All such elements project to zero in E 8. Thus, 

<u,w,X,w> projects to a singleton in E 8. By Theorem 2.4.2, v.X E <w,X,w>. 

However, 0 ~ <B,X,n> since <u,B,X,B> is defined. Thus, u.X is in the 

indeterminacy of <~,X,~> which is the ideal geneerated by n. 

(b) Let the following diagram depict a defining system for <~,v,X,v>: 

7] V G L, 

B B B 
1~u ux xu 

B B 
<~P,X> <V,X, >I) 

Here B :DV A SU A s3A SB' ) SU A SB' such that B J SV A SU A s3A SB' 
XU XP 

= G A v, B :D 2A SA A D4A SB A SH A SV A SU -----> SA A SB A SH A SU such 
<~,V,X> 

that B<~,u,x>l[3 Domain B<~,u,x >] = (n A Bvx) u (B uA G) and 

B :D 4A SB ASH A DV A SU A s3A SB' ~ SB A SH A SU A SB' such that 
<U,X,V> 

B l[a Domain B ] = (u A B ) u (B A u). Then the following map F 
<U,X,U> <V,X,V> XV VX 

represents X-M2M in El°: F = 
I 2 

A ~2 ) u (B A //2) u (//02 A Bxv) u (~IA G ): (~02 A G A i/2) U CILIA BVX <n,u,X> <U,X,U> 

[(D 2A DA A S3A SB ASH A SV A SU A S3A DB' ) u (SIADAAD4ASBASHASVASUAS3ADB ' ) 

u (D 2A SA A D4A SB ASH A SV A SU A s3A DB') u (D2ADAAS3ASBASHADVASUAS3ASB ' ) 

u (S IA DA A D4A SB ASH A DV A SU A s3AsB ' ), (sIASAAD4ASBASHADVASUAS3ASB ' ) 

u (D 2A SA A s3A SB A SH A DV A SU A s3A SB') u (D2ASAADgASBASHADVASuAs3ASB ')) 

--) (SA A SB ASH A SU A sB'A Bp[I°] SA A SB ASH A SU A SB' ). 

Thus X'M~% survives to E 10 and dl°(x-M~M2) is represented by F,a [Domain F] 

ISH A A B A B )u(l A B A u) ~ <n,u,X,u> The = ( n A B<u,x,u>) u (lsH Du xu SH <n,u,X> 

indeterminacy of <W,u,X,u> is the sum of elements of the form wA, uB, <~,u,C> 

and <~,D,u>. All such elements project to 0 in E s. Therefore, <~,v,X,u> 
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pmojects to a singleton in E I°. By Theorem 2.4.2, ~,X ~ <u,X,v>. 

0 e <u,X,u> because <W,u,X,u> is defined. ThePefore ~.X is in the 

indeterminacy of <u,X,u> which is the ideal generated by u. I 

However, 

The following theorem g i v e s  three special cases of Theorem 2.4.3 where no 

technical hypotheses are required. 

THEOREM 2 . 4 . 6  

M 2 s u r v i v e s  t o  E 14 and  d14(XM1M~) e < ~ , u , X , ~ > .  XM 2 

S 
(b )  Le t  X E ~ ,  and assume t h a t  < u , ~ , X , ~ >  i s  d e f i n e d .  

t o  E 14 and  d14(XM <M2>) E < u , ~ , X , n > .  
1 2 

S S ( e )  L e t  d2r(Y) = X E g .  and l e t  g e ~ . .  Assume t h a t  <X,~,u,n> i s  d e f i n e d .  

Then  ~¥M2 s u r v i v e s  t o  E 2r÷s and d2r÷s(~YM 2) ~ < X , ~ , u , ~ > .  

S S 
(d)  L e t  d2r(Y) = X ~ ~ .  and l e t  ~ e ~ . .  Assume t h a t  < X , ( , n , u >  i s  d e f i n e d .  

Then  ~YM 2 s u r v i v e s  t o  E 2r÷s and  d2r÷S(~YM2) ~ <X,~,n,v>, 

PROOF. (a )  L e t  t h e  f o l l o w i n g  d i a g r a m  d e p i c t  a d e f i n i n g  s y s t e m  f o r  

S 
(a) Let X ~ ~, and assume that <¢r,u,X,n> is defined. Then 

Then XM <M2> survives 
1 2 

<v,u,X,~> A using the same notation as i n  the previous theorems: 

u G n 

B B B 
on) ux XD 

B B 
<~,P,X> <P,X,~> 

Let _~4 represent <M4>I such that ~4 restricted to the boundary of its domain is 

Let ~o2 represent M 2 such that restricted to the boundary of its 
2 gO2 

M 2 i s  r e p r e s e n t e d  by ~ = domain is (g4 A u) u Bo. u. Then XM 1 2 

A gl ) u (~4 A B A gl )" (g12 A G A gl) u (go2 A Bxn) u (g4 A B<u,x,w>) u (B<v,u,x > ux 

Note that # restricted to the boundary of its domain is 

(or A B ) u (B A B ) u (B A n) which is an element of <v,u,X,n>. 
<l),x,~)> oi) XTt <cr,v,x> 

M 2 survives to E 14 and dI4(XMIM2) ~ <o~,u,X,~>. Thus, XM 1 2 

(b) Let the following diagram depict a defining system for- <u,v,X,n> A using 

the above notation: 
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u ¢ G n 

B B B u~  o3( xn 

B B <V,~,X> <~,X,n> 

Let <~02> represent <M2>2 such that <~02> restricted to the boundary of its 

Then XM <M2> is represented by d o m a i n  is (~2 A ~) u Bv . 1 2 

¢ = (<~o2> A G A ~1 ) u (<~02> A Bxn ) u (~2 A B A ~i ) u (~2 A B<~,x,n>) 

u (B<u,~,X > A ~i). Note that ¢ restricted to the boundary of its domain is 

(B A Bxn) u (v A B<~,X,W> ) u (B A n) which i s  a n  element of 

<M2> survives to E 14 and di4(XMi<M~>) ~ <u,~,X,n>. <u,~,X,n>. Thus, XM i 2 

(c) Let the following diagram depict a defining system for <X,~,u,n> A using 

the above notation: 

C ~ v n 

Sx~ B& Bun 

B<x,~,v> B<~,u,n> 

Then ~Y% is represented by ¢ = (Y A ~ A ~Li) u (Y A B~ u A pl ) u (Bxc A p-ol ) 

u (B<x,~,u > A BI ) u (Y A B<~,v,W>). Note that ¢ restricted to the boundary of 

its domain is (Bx~ A Bun ) u (B<x,~,v > A n) u (X A B<~,v,n>) which is an 

element of <X,~,u,W>. Thus, ~Y~ survives to E 2r+s and 

d2r*6( yM 2 ) e < X , ~ , v , ~ > .  

(d) Let the following diagram depict a defining system for <X,~,n,v> A using 

the above notation: 

G ~ n v 

Bx~ B~# Bnv 

B<x,~,n> B<~,#,v> 

Then ~YM 2 is represented by ¢ = (Y A ~ A Bol) u (Y A B~n A ~2 ) u (Bx~ A ~oi) 

u (B<x,~,n > A ~2 ) u (Y A B<~,n,v>). Note that ¢ restricted to the boundary of 

its domain is (Bx~ A Bnu) u (B<x,~,n>A u) u (X A B<{,n,u> ) which is an element 

of <X,~,#,u>. Thus, ~YM 2 survives to E 2r+s and d2r+S(~YM 2) e <X,{,n,v>.~ 


