
CHAPTER 1: INTRODUCTION 

1. H i s t o r y  o f  the P r o b l e m  

The calculation of the stable homotopy groups of spheres is one of the most 

central and intractable problems in algebraic topology. In the 1950s Serre 

[57] used his spectral sequence to study this problem. In 1982, Toda [60] 

used his triple brackets and the EHP sequence to calculate the first 19 stems. 

These methods were later extended by Mimura, Mori, Oda and Toda [44], [45], 

[48], [50] to compute the first 30 stems. In the late 1950s the study of the 

classical Adams spectral sequence was begun [I]. Computations in this 

spectral sequence are still being pursued using the May spectral sequence and 

the lambda algebra. The best published results are May's thesis [39] and the 

computation of the first 45 stable stems by Barratt, Mahowald, Tangora [19], 

[37] as corrected by Brunet [18]. The use of the BP Adams spectral sequence 

on this problem was initiated by Novikov [49] and Zahler [62]. Its most 

spectacular success has been at odd primes [42]. A recent detailed survey of 

the status of thls computation and the methods that have been used has been 

written by Ravenel [55]. 

An exotic method for computing stable stems was developed in 1970 by 

Joel Cohen [19]. Recall [20] that for a generalized homology theory E, and a 

spectrum X there is an Atiyah-Hirzebruch spectral sequence: 

(1.1.1) E 2 = H (X;E) > E X. 
N,p N p N+p 

Joel Cohen studied this spectral sequence with X an Eilenberg-MacLane spectrum 

and E equal to stable homotopy oF mod p stable homotopy. His idea was to 

take advantage of the fact that in these cases the spectral sequence is 

converging to zero in positive degrees. Since the homology of the 

Eilenberg-MacLane spectra are known, one can inductively deduce the stable 



stems. This is analogous to the usual inductive computation of the cohomology 

of Eilenberg-MacLane spaces by the Serre spectral sequence [17]. In that 

example, however, all the work can be incorporated into the Kudo transgression 

theorem. Joel Cohen was able to compute a few low stems, but the computation 

became too complicated to continue. His method was discarded since the Adams 

spectral sequence computations seemed much more efficient. In 1972, however, 

Nigel Ray [aS] used this spectral sequence with X = MSU and E = MSp. He took 

advantage of the fact that H.MSU and MSp~MSU are known to compute the first 19 

homotopy groups of MSp. Again this method was discarded since David Segal had 

computed the first 31 homotopy groups of MSp by the Adams spectral sequence 

and his computations were extended to ]00 stems in [31]. 

My interest in Atiyah-Hirzebruch spectral sequences began in 1978. In a joint 

paper with Snaith [32] we studied the case where X is BSp and E~ is stable 

homotopy. The methods we developed there, in particular the use of 

Landweber-Novikov operations to study differentials, were clearly applicable 

to a wide class of examples. In 1983, I observed that if Joel Cohen's method 

were applied to the case where X is BP and E, is stable homotopy then the 

computations would be greatly simplified over Cohen's case because of the 

sparseness of H~BP and because Quillen operations could be used to compute the 

differentials. So, I began computing at the prime two. I soon discovered 

that the computations became too complicated to do by hand, but since they 

were mostly algorithmic they could be done by a computer. Using an IBM PC/AT 

micro-computer I was able to compute the first 64 stable stems. This work is 

the account of that computation. 

Kaoru Morisugi informed me that in 1972 he attempted to use this method to 

compute ~ at the prime three, but he became bogged down with technical 

problems. 
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2. The Brown-Peterson Spectrum and Quillen Operations 

In this section we list some of the basic facts about the Brown-Peterson 

spectrum BP. The notation introduced here will be used throughout the 

computation. 

Let MU denote the unitary Thom spectrum. By the Pontryagin-Thom isomorphism, 

U 
~,MU is isomorphic to ~, the ring of bordism classes of compact smooth 

manifolds without boundary which have a complex structure on their stable 

normal bundles. Using the Adams spectral sequence, Milnor [43] computed ~MU 

to be a polynomial algebra over Z with one generator in each even degree. 

Brown and Peterson [iH] discovered that when the spectrum MU is localized at a 

prime p, it decomposes into a wedge of various suspensions of a spectrum BP. 

This spectrum defines a generalized homology theory BP. and a generalized co- 

homology theory BP . We list several basic properties of BP at the prime two. 

The standard references are the expositions of Adams [7] and Wilson [61]. 

(1.2.1) There are M N ~ H~BP of degree 2(2N-1) such that M ° = I and 

H.BP = Z(2)[M I .... M N .... ]. 

(1.2.2) The Hurewicz homomorphism h:~.BP ---9 HIBP is a monomorphism. 

Henceforth we consider h as an inclusion. 

(1.2.3) Define V N ~ HIBP of degree 2(2N-I) recursively by V ° = 2 and for Nal: 

~ N-1 . v2k 

= - Mk N-k' VN 2MN k=l 

The V /2 N z 1, are polynomial generators fop H~BP. Moreover, all the V 
N ' N 

are in the image of h and ~BP = Z(a)[V I ..... V N .... ]. The V N are called the 

Hazewinkel generators [22], [23]. 

(1.2.4) BP BP is the algebra of BP-operations. These operations act on BP~X 

for any spectrum X including BP.S = ~.BP and BP~I<Z = H.BP. These operations 

are natural. In particular, they commute with the Hurewicz homomorphism h. 



( 1 . 2 . 5 )  BP BP = ~,BP[[ r 

The r are called the Quillen operations [54]. 

properties. 

(a) 

(b) 

(c) 

4 

I ~ is a finite sequence of nonnegative integers]]. 

They have the following 

The r are Z -module homomorphisms. 
(2) 

If f:X > Y iS a map of spectra then f~or = r69of~. In particular, 

hor = r oh. 
69 69 

If X is a ring spectrum and A,B ~ BP~X then we have the Cartan formula 

r (A-B) = ~ w=~'+~" rw'(A)'r~"(B)" 

In [32] we showed how Landweber-Novikov operations act on the Atiyah- 

S 
Hirzebruch spectral sequences for ~BU and ~BSp. The following theorem 

shows that the Quillen operations act on Atiyah-Hirzebruch spectral sequences 

for BP~X. 

THEOREM 1.2.6 Let F be a ring spectrum. Consider the Atiyah-Hirzebruch 

spectral sequence for F.BP: 

E 2 
N,t 

Then each Quillen operation r 
tO 

=HBP®F => F 
N t N+t 

of degree K induces a map of spectral 

sequences : 

r : E s > E s 
O~ N,t N-K,t" 

These r have the following properties: 

(a) The r are Z -module homomorphisms. 
(2) 

(b) The r are natural with respect to maps of spectral sequences induced by 
O) 

maps of spectra. 

(c) The r satisfy the Caftan formula 
69 

r (A-B) = ~ ~=_69,+69,, P69,(A)-P ,,(B) for all A, B e E s. 

E 2 (d) The action of r on is given by r ® 1 where the latter r 
69 ~ 

usual Quillen operation on H~BP. 

i s  the 

(e) dSor = rod s for all s m I. 



= E s" (f) The action of r on E s+l H~(ES,d s) is  induced by the action of r~ on 

E ~ E s" (g) The action of r on the E s induce an action of r on = lim 
) 

E m E ~ (h) The action of r on defined by (g) agrees with the action of r on 

induced by the usual action of the Quillen operations on FjBP = BP~F. 

PROOF. Since r ~ BpkRp, we can represent r by a map of spectra 

r :xKBp > BP. Since the Atiyah-Hirzebruch spectral sequence is natural we 

have an induced map of spectral sequences. All of the properties are 

immediate except for the Caftan formula (c). It follows from the observation 

that the following diagram must commute up to homotopy: 

EkBp ° /  
I~kBPABp ,,< 
V~o=~' ,~o,,EkBPABP T 

r 
~A ) BP 

, ,, r, A r , ,  

> V~=~,+~,,EkBp A EkBp > BPABP 

In this diagram ¢ is product map of BP and @ is the pinching map. In each 

wedge summand k = k'+k" and T is the switching map. R 

3. The Inductive Procedure 

In this section we will describe in detail the inductive procedure that we 

will use to compute the stable stems. However, before we apply this procedure 

in Chapters 5 to 7 we will digress to compute the first eight rows of the 

spectral sequence in Chapter 3 and to study two of the basic ingredients of 

our procedure: Toda brackets in Chapter 2 and the image of J in Chapter 4. 

This section concludes with an exposition of the notation that we will use to 

S 
denote the elements of ~. 

Consider the Atiyah-Hirzebruch spectral sequence: 

(1.3. i) E 2 - H BP ® S ~> ~ BP. 
N,t N t N+t 
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Since H.BP is zero in odd degrees we see that in this spectral sequence: 

E r = 0 if N is odd, 

( 1 . 3 . 2 )  d 2r+l = 0 a n d  

E 2r+l = E 2r+2 f o r  a l l  r .  

The  H u r e w i c z  h o m o m o r p h i s m  i s  g i v e n  i n  t e r m s  o f  t h i s  s p e c t r a l  s e q u e n c e  b y  t h e  

following commutative square: 

( 1 . 3 . 3 )  

h 
BP .... ) H BP 

N N 

E ~ > ............ ~ E 2 
N,O N,O 

Since h is one-to-one, it follows that: 

(1.3.4) E m = ~ 0 if t m 0 

,,t L xNBP if t : 0 

(1.3.5) E ~ = ",0 ZC2)[Vi'''''V, .... ]" 

a n d  

Thus, there must be nonzero differentials originating on the 0 row so that 

each monomial K(2-eve(1).--V e(")) in E 2 survives to E m if and only if K is 
I M 

divisible by 2 e where e = e(1)+...+e(M). We will prove in Chapter 4 that, in 

OUr range of computations, all nonzero differentials which originate on the 

0 row land in ImJ ® H~BP. We will assume that ImJ is known. The first step 

in our analysis of the spectral sequence (1.3.1) will be to compute all these 

differentials which originate on the 0 row in degrees 2 through 70. This 

computation is entirely algorithmic, is done by computer with no human 

assistance and is carried out in Section 4.4. The purpose of this computation 

is to record the cokernels of all of these differentials. 

The behavior of the following elements in the spectral sequence is the key to 

the determination of differentials which originate above the 0 row. 



DEFINITION 1 . 3 . 6  

( a )  

( b )  

( c )  

L e t  ¢ e S h a v e  o r d e r  q a n d  l e t  V e H BP. Assume t h a t :  
t 2N 

¢ -V  e E 2 s u r v i v e s  t o  a n  e l e m e n t  o f  E 2r f o r  some 2 -~ r -~ ~;  
2N,t 2N,t 

if r = ~ then V = O; 

we know all differentials which originate or land on elements of E 2s 
2k, t 

which have a rppresentative in Z ¢ ® H,BP for all s and all 0 -< k < N' 
q 

where N' = N if r < ~ or N' = m if r = m. 

We c a l l  s u c h  a n  e l e m e n t  ¢ . V  a C - l e a d e r .  

Note: A C-leader can be zero. In that case our assumption is that we know 

a l l  d i f f e r e n t i a l s  w h i c h  o r i g i n a t e  o r  l a n d  i n  Z ¢ ® H.BP. 
q 

The following unfortunate phenomenon is the obstruction to using 

Theorem 1.2. S(e) to computing d2r-differentials on ¢.V", degree V" > degree V, 

from the d2r-differential on a ¢-leader ¢.V. 

DEFINITION 1 . 3 . 7  L e t  ¢ - V  b e  a C - l e a d e r ,  a n d  a s s u m e  a l l  t h e  n o t a t i o n  o f  

D e f i n i t i o n  1 . 3 . 6 .  A n o n z e r o  d i f f e r e n t i a l  d2U(¢ .V ' )  i s  c a l l l e d  a h i d d e n  

d i f f e r e n t i a l  i f :  

(a}  ¢ . V '  i s  a l s o  a C - l e a d e r ;  

( b )  d e g r e e  V' > d e g r e e  V; 

( c )  u < r .  

T h u s ,  i f  t h e r e  i s  a h i d d e n  d i f f e r e n t i a l ,  t h e  d e U - d i f f e r e n t i a t s  d e t e r m i n e d  b y  

d2U(¢-V ' ) m u s t  b e  c o m p u t e d  b e f o r e  t h e  d 2 r - d i f f e r e n t i a l s  d e t e r m i n e d  b y  d 2 r ( ¢ ' V )  

S 
e v e n  t h o u g h  d e g r e e  ¢ . V '  > d e g r e e  ¢ .V .  The i n d u c t i v e  c o m p u t a t i o n  o f  ~N now 

p r o c e e d s  a s  f o l l o w s .  Assume t h a t  t h e  i n f o r m a t i o n  c o n t a i n e d  i n  t h e  f o l l o w i n g  

induction hypothesis is known. 



(1.3.8) 

(1) 

(2 N) 

(3 N) 

INDUCTION HYPOTHESIS 

S 
We know ~ for 0 -~ k < N. 

k 

E 2r with Write each nonzero differential on a C-leader ¢-V ~ 2a,b' 

a+b -~ N, in the form d2r(¢'V) = AV'~ 0 where ¢ g nb 5 -- A ~ S 
' b+2r-I ' 

V ~ H BP and V' ~ H BP. Assume that we have "computed" 
2a 2a-2r 

d 2r(¢.v'') = ~ ~x I k V I for all V" E H2a,,BP. 

¢ ~ S, 0 < k < N, the C-leader of largest known degree For each is 

~-V where either V = 0 or degree ¢-V z N+I. 

The information in (2 N) is called a "tentative differential table" and the 

information in (3) is called a "list of leaders". In condition (2N), the 

word computed is in quotation marks because what we assume that we have done 

od2r(¢'V '' ) = d2ror (¢'V") for all Quillen is that we have computed r 

operations r of degree 2a"-2a. This would give an accurate computation of 

d2r(~'V") if there were no hidden differentials. Unfortunately, there are 

examples of hidden differentials. 

To accomplish the inductive step we must go through the procedure below. We 

use the terminology "A e E 2r transgresses" if A survives to E 2N. In that 
2N, t 

case d2X(A) e E 2N S 
0,2N+t-1' a subquotient of 712N+t_l. 

(1.3.9) INDUCTION STEP 

(a) Construct the following list of leaders of degrees N+I and N+2: 

Leaders in De~ree N+I Leaders in DeRree N+2 

p q 



Each ~I ~ E2a(1)2a(1),N-2a(1)+l will either be hit by some ~] or it will transgress 

to determine a nonzero element of S. In either case ~ transgresses to an 
N I 

element d2a(1)(~ ) = ~ E S. In the former case ~ = O, and in the latter 
1 ! N l 

case ~ ~ O. 
i 

(b) Search for hidden differentials d2U(~) = ~ , where d2r(~) = ~' was one of 
i 

the differentials in the tentative differential table of 1.3.8(2N). If a 

hidden differential is found then ~ must be removed from the list in (a) and 
i 

replaced with ~'. Assume that any necessary adjustments of this sort have 

b e e n  made t o  t h e  l i s t  i n  ( a ) .  

(c) Use Toda bracket methods from Chapter 2 and consequences of differen- 

tials which follow from Theorem 1.2.6(e) to make the following deductions: 

(i) some of the ~ are zero; 
i 

( i  i )  some o f  t h e  ~j  t r a n s g r e s s .  

T h i s  s t e p  i s  c o m p l e t e  when 
^ 

c a r d  { e l l  ~x I = O} --- c a r d  {Bj 

(d)  C o n s t r u c t  t h e  f o l l o w i n g  l i s t  o f  a l l  cx,  
I 

known to transgress: 

i(1) 

I ~] is not known to transgress}. 

^ 

~] = 0 and ~. such that ~i j 

~j(1) 

is not 

~i(s) ~j(s) 

There is a nonzero differential on each ~J(k) with image some ~i(h)" Use Toda 

bracket methods from Chapter 2, consequences of differentials deduced from 

Theorem 1.2.6(e) and ad hoc monoid chain arguments to match which ~j(k)S hit 

which a s. 
i(h) 

(e) Use Toda bracket methods from Chapter 2 to solve the additive extension 

problems to determine S from its composition series {E 2r Jl ~ rs [(N+I)/2]}. 
N O,N 

This gives the information required in (I ). This step is not absolutely 
N+I 
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e s s e n t i a l  a n d  t h e  c o m p u t a t i o n  c a n  p r o c e e d  e v e n  i f  a l l  t h e  a d d i t i v e  e x t e n s i o n  

p r o b l e m s  c a n  n o t  b e  s o l v e d .  

( f )  Use t h e  c o m p u t e r  p r o g r a m  o f  S e c t i o n  9 . 3  t o  e x t e n d  t h e  t e n t a t i v e  

differential table for each of the nonzero differentials determined in (d). 

This gives the information required in (2 ). 
N+I 

(g) Update the list of leaders using the new information in the tentative 

differential table determined in (f). This gives the information required 

in (3 ) .  
N+I 

In pract ice t h i s  inductive procedure is  quite straightforward. There are 

usually no hidden d i f f e r e n t i a l s .  Also there are usually very few matchings to 

be done in (d) and those matchings are obvious. In addition, there are never 

many p o s s i b i l i t i e s  for  nontr ivial  additive extensions and many of these 

possibilities are quite easy to eliminate. As a final word of encouragement, 

the reader will see that the above procedure is merely the formalization of 

the straightforward common sense approach to the analysis of the spectral 

sequence. The following theorem is widely applicable. (See Appendix 2. ) 

THEOREM 1 . 3 ,  I0  
N 

in E r . If r > N/2 then ~ is indecomposable in the ring S. 
N,O 

PROOF. Assume that ~ i s  d e c o m p o s a b l e .  W r i t e  ~ = I~ ~ i B i ,  w h e r e  

= dS(i)(Ai), /3 i = dt(1)(B ) and s(i) -< t(i) for all i. Then s(i) 

for all i and ~ = Z dS(/31Ai) where s is the largest of all the s(i). 

s < r, ~ = 0 in E r, a contradiction. 

Assume that ~ e S is defined as ~ = dr(X) where ~ is nonzero 

< r 

S i nce 

Thus, ~ must be indecomposable.~ 

S 
We conclude with the notation that we will use to describe elements of ~. 

There are competing notations for the elements of the known stable stems. To 

add to the confusion, most methods of computing stable stems (including ours) 

only define elements of ~ modulo indeterminacy: the indeterminacy of a Toda 
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b r a c k e t  o r  o f  t h e  f i l t r a t i o n  o f  a s p e c t r a l  s e q u e n c e .  We w i l l  u s e  t h e  u s u a l  

n o t a t i o n  f o r  t h e  e l e m e n t s  o f  Hopf  I n v a r i a n t  one :  

S S S 
1 3 7 

S 
We w i l l  a l s o  u s e  t h e  f o l l o w i n g  n o t a t i o n  f o r  e l e m e n t s  i n  Im J :  a ~ ~8N+1' 

S S 
~N • 7[eN+3S and ~N • H8N+7. If an element X ~ ~. is known to be decomposable 

then we will usually write it as a product. We will use the following 

S 
notation for other elements of ~.. 

DEFINITION 1.3.11 A[N,k] denotes the k th element of S of order two, B[N,k] 
N 

denotes the k t h  e l e m e n t  o f  S o f  o r d e r  f o u r ,  C [ N , k ]  d e n o t e s  t h e  k t h  e l e m e n t  o f  
N 

S 
~ o f  o r d e r  e i g h t ,  e t c .  I f  t h e r e  i s  o n l y  one  e l e m e n t  o f  S o f  a g i v e n  o r d e r  

N N 

t h e n  we d r o p  t h e  s e c o n d  e n t r y .  

The f o l l o w i n g  e x a m p l e s  w i l l  h e l p  t o  e x p l a i n  t h i s  n o t a t i o n .  

1. The e l e m e n t  u s u a l l y  d e n o t e d  e • S o f  o r d e r  two w i l l  be  d e n o t e d  A [ 8 ] .  
8 

2. The e l e m e n t  u s u a l l y  d e n o t e d  K • S o f  o r d e r  e i g h t  w i l l  be  d e n o t e d  C [ 2 0 ] .  
2o 

3. I f  we w r i t e  D[4S] we a r e  d e n o t i n g  an  e l e m e n t  o f  S w h i c h  h a s  o r d e r  16. 
4 5  

We w i l l  a l s o  u s e  t h e  f o l l o w i n g  n o t a t i o n .  L e t  R be a PID a n d  ~ a c o m m u t a t i v e  

R - a l g e b r a  w h i c h  i s  a f r e e  R - m o d u l e .  I f  B,X 1 . . . . .  X t e ~ t h e n  RR{X 1 . . . .  ,X t} 

d e n o t e s  t h e  f r e e  R - s u b m o d u l e  o f  ~ w i t h  b a s i s  {BX 1 . . . .  ,BXt}.  F o r  e x a m p l e ,  l e t  

~ ~ h a v e  o r d e r  N. We may t a k e  R = Z N, ~ = ZN~ ® H.BP a n d  X 1 . . . . .  X t 

l i n e a r l y  i n d e p e n d e n t  e l e m e n t s  o f  H.BP. 

q 
I f  ~, ~ • ~ a n d  a . ~  = 0 t h e n  BaH d e n o t e s  a map H f r o m  a d i s c  t o  a s p h e r e  s u c h  

t h a t  H r e s t r i c t e d  t o  t h e  b o u n d a r y  o f  i t s  d o m a i n  i s  ~ '  A ~ '  w h e r e  ~ ' ,  6 '  

r e p r e s e n t s  a ,  ~ r e s p e c t i v e l y .  


