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0 Introduction

Let G be the Adams summand ofp-local complex periodic K-theory,l its (-1)-
connected cover, i.e.l∗(S0) = Z(p) [v1], |v1| = q := 2p− 2 andp a prime. Define
the spectrum̄l by the cofibre sequence

−→ S0 −→ l
pr−→ l̄

∂−→ S1 (1)

Since l∗(S0) is torsion free every elementx in the stable homotopy groups of
spheresπS

n (S0)(p), n ≥ 1, has a liftx ∈ πS
n+1(l ) under∂ : l → S1. In this paper

we solve forp > 3 the problem of which elements inπS
∗ (l ) can be detected by

the e-invariant of Adams and Toda. It is an application of the hard computations
in [12] and the main result of[13] .

Instead of thee-invariant itself we shall use its refinement given by connected
Im(J )-theoryA∗. Im(J )-theoryA∗ is a generalized homology theory defined by
the cofibre sequence of spectra

−→ A
D−→ l

Q−→ Σql
∆−→ ΣA (2)

whereQ is thel -operation withv1 ·Q = ψk−1,ψk is the stable Adams operation
andk generates (Z/p2)∗ (k = 3 for p = 2). Alternatively if we choose in addition
k to be a prime power, then Quillen,s algebraic K-theory KFk , localized atp,
may serve as a model forA. The Im(J )-theory Hurewicz map

hA : πS
n (X)(p) → An(X)

contains all the information which thee-invariant can give. In generalizing the
2-primary case, an elementf ∈ πS

n (S0)(p) is called a Kervaire invariant one
element if it is detected by the secondary cohomology operation representing the
classbi ∈ Ext2,∗A (Fp,Fp) for p /= 2 (andh2

i ∈ Ext2,∗A (F2,F2) for p = 2) in the
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E2-term of the classical Adams spectral sequence. Forp = 2 such an element has
well known geometric and homotopy theoretic interpretations and applications;
for p /= 2 some interpretations are discussed in[15] . Our main result may then
be stated as follows.

Theorem 1 There is a non trivial stably spherical element in A2n−1(l ) if and only
if there is an element of Kervaire invariant one inπS

2n−2(S0)(p).

The negative solution of the Kervaire invariant one problem forp > 3 by
Ravenel[13] implies then that im(hA : πS

2n−1(l̄ ) −→ A2n−1(l̄ )) is Z/p for
n = p(p− 1) and zero otherwise. The situation forBΣp, the classifying space of
the symmetric group, is similar: As an application of Theorem 1 we show

Theorem 2 The element of order p in A2n−2(BΣp) is stably spherical if and only
if there is an element of Kervaire invariant one inπS

2n−2(S0)(p).

For p = 2 this is a well known result of Mahowald but apparently no complete
proof for one of the implications has appeared up to now. *)

In [4] the Im(J )-theory Chern character is defined. It is a set of natural
transformations

chA
qi−1 : An(X) −→ Hn+1−qi (X; Z/i )(p) (3)

and we may ask which elementsf of πS
∗ (S0)(p) are detected by the functional

operation associated to it (i.e. for whichf the natural transformationchA
qi−1 is

non trivial on the cofibre off modulo indeterminacy). An attractive reformulation
of Theorem 2 is then

Theorem 3 An element f∈ πS
n (S0)(p) is detected by the functional chA-operation

if and only if f has Kervaire invariant one.

Proofs and statements differ slightly for odd primes andp = 2. We have
chosen to give the detailed formulation forp odd, in particular, in Theorems
1,2,3 abovep is odd. But since the Kervaire invariant one problem is most
interesting atp = 2 we have indicated the necessary changes to prove Theorem
2 for p = 2 in an appendix.

*) added in proof: Recently N. Minami (On the Hurewicz Image of the
cokernelJ spectrum, preprint 1995) has independently given a proof of Theorem
2, which is also based on[12], [16] but slightly more direct than the one given
here.

1 The map e

To determine the possible spherical classes inA2n−1(l ) we use the factorization
T : A2n−1(BP) → A2n−1(l ) where BP is the Brown-Peterson spectrum atp,
BP is the cofibre ofS0 → BP and T : BP → l the usual Todd map. The
commutative diagram (n > 1)
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BP2n−1(S0) → πS
2n−1(BP)

∼=→ πS
2n−2(S0) → BP2n−2(S0)

↓ ↓ ‖ ↓

l2n−1(S0) → πS
2n−1(l )

∼=→ πS
2n−2(S0) → l2n−2(S0)

(4)

shows that hA : πS
2n−1(l ) → A2n−1(l ) factors through

T : A2n−1(BP) −→ A2n−1(l )

Since A2n−1(BP) = 0 if n 6≡ 0 mod (p − 1) we may assumen ≡ 0 mod
(p− 1). Also ∆ : l2n−q(BP) → A2n−1(BP) is onto, hence every stably spherical
x ∈ A2n−1(l ) is in im(∆ : l2n−q(l ) → A2n−1(l )) by naturality. Since in general

Aqm−1(BP) is much larger thanAqm−1(l ), we get, without further investigations,
only the weak restrictions thatx ∈ im∆ and n ≡ 0 (p− 1) above.

Let H s(BP∗) := Exts,∗BP∗BP(BP∗,BP∗) denote the E2−term of the Adams-
Novikov spectral sequence, based onBP-theory. We shall construct a map

e : H 2(BP∗) → A∗(BP)

such that any stably spherical class inAqm−1(BP) lies in im(e). Now by the main

result of [12] H 2(BP∗) is explicitly known and much smaller thanA∗(BP).
This will give the restrictions for elements inA∗(l ) to be stably spherical which
we shall need, namely we shall computeT(im(e)). Whether a class inT(im(e))
is stably spherical will then shown to be equivalent to the Kervaire invariant one
problem.

In [12] the elements inH 2(BP∗) are described by primitives inBP∗/(p∞, v∞1 )
via the universal Greek letter mapη: There are short exact sequences of
BP∗−comodules

0→ BP∗ −→ p−1BP∗ −→ BP∗/p∞ → 0 (5)

0→ BP∗/p∞ → v−1
1 BP∗/p∞ → BP∗/(p∞, v∞1 ) → 0 (6)

inducing long exact Ext-sequences. The two boundary maps associated to (5)
and (6) define the mapη :

η : Ext0,∗BP∗BP(BP∗,BP∗/(p∞, v∞1 ))
∂̇→ Ext1,∗BP∗BP(BP∗,BP∗/p∞)

∂̈→ Ext2,∗BP∗BP(BP∗,BP∗) (7)

It is shown in[12] 7.1, 7.2, 4.8, 4.2 that (forp /= 2) η is an isomorphism. The
short exact sequences (5) (6) belong to the defining sequences of the chromatic
spectral sequence[14] and it is known that all sequences of this type may be
realized geometrically. It is now clear how to proceed: We lift to filtration zero
and map then tol using T. To do so, we need only the geometric realizations
of (5) (6) which are well known. The sequence (5) is induced by maps between
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Moore spectra. For the convenience of the reader we recall a realization of (6)
(For a similar discussion see[5]). Denote byS0/pi , S0/p∞ the Moore spectra
for the groupsZ/pi and Z/p∞ and by Ad the cofibre spectrum of the stable
Adams operationψk − 1 on p-local periodic complex K-theory, i.e.Ad fits into
the cofibre sequence of spectra

→ Ad
D−→ G

ψk−1−→ G
∆−→ ΣAd →

(We may equally well use the spectrum K(p) instead of G in this sequence, on
the other wedge summands of K(p) the operationψk − 1 is an equivalence). The

spectrumAd is defined by the cofibre sequence

→ S0 i−→ Ad
pr−→Ad→

Lemma 4 The cofibre sequence

S0/p∞ → Ad ∧ S0/p∞ →Ad ∧So/p∞ (8)

is a geometric realization of (6) i.e. if we apply BP∗ to this sequence we obtain (6)

Proof. In the following commutative diagram

BP ∧ S0/p∞ 1∧i∧1−→ BP ∧ Ad ∧ S0/p∞

↓ ↓ g1

v−1
1 BP ∧ S0/p∞

g2−→ v−1
1 BP ∧ Ad ∧ S0/p∞

we show that g1, g2 are equivalences. Then we get, with g:=g−1
1 ◦g2,

BP∗/p∞ −→ v−1
1 BP∗/p∞ −→ BP∗/(p∞, v∞1 )

‖ ∼=↓ g∗ ∼=↓g∗

BP∗(S0/p∞) −→ BP∗(Ad ∧ S0/p∞) −→ BP∗(Ad ∧S0/p∞)

(9)

proving the lemma.
a) For g1, the map g1∗ : Adn(BP; Z/p∞) → Adn(v−1

1 BP; Z/p∞) is the direct
limit of maps Adn(BP; Z/pi ) → Adn(v−1

1 BP; Z/pi ). But Adn(v−1
1 BP; Z/pi ) ∼=

Adn(BP; Z/pi )
[
v−1

1

]
and vpi

1∗ = Bi , where Bi is an Adams periodicity
operator as for example constructed in[3]. To see this we use thatBi induces

multiplication byvpi

1 in Adn(BP; Z/pi )
D⊂ Gn(BP; Z/pi ) and v1∗ = p · t1 + v1

(see Sect. 2 below for G∗(BP; Z/pi )). Hence vpi

1∗ = vpi

1 on G∗(BP; Z/pi ). Since

v1 operates as an isomorphism, the same is true forvpi

1∗ and g1∗ is bijective as
the direct limit of isomorphisms.

b) For g2, we first need that the Adams periodicity operatorBi : Σqpi
S0/pi +1

→ S0/pi +1 induces multiplication byvpi

1 (up to a unit) onBP∗(S0; Z/pi +1).
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This is well known and follows from the fact thatBi (1) ∈ BPqpi (S0; Z/pi +1)
must be coaction primitive. The group of primitives is cyclic and generated by

vpi

1 (e.g. see[14]). Then v−1
1 BP∗(S0; Z/pi +1) = BP∗(S0; Z/pi +1)

[
B−1

i

]
. Now

(S0/pi +1)
[
B−1

i

] ' Ad ∧ S0/pi +1 by the Mahowald-Miller theorem (e.g. see
[3]) and g2∗ is the direct limit of isomorphisms.

Remark.Observe that the isomorphism g∗ : v−1
1 BP∗/p∞ ∼= Ad∗(BP; Z/p∞) in

(9) is the canonical extension of theAd-theory Hurewicz maphAd : πS
∗ (BP; Z/p∞)

= BP∗/p∞ → Ad∗(BP; Z/p∞) to v−1
1 BP∗/p∞. Since D:Ad∗(BP; Z/p∞) →

G∗(BP; Z/p∞) is injective we may use the well known formulas for

hG : BP∗
ηR−→ BP∗BP

T∧1−→ G∗BP

to compute g∗ . If we denote the image ofx ∈ BP∗ in G∗(BP) by x then

g∗

(
x

pi vj
1

)
=

x

pi v
j
1

.

Example.If we abbreviateT(ti ) by ti then

v1= p · t1 + v1 and v2= v1 · tp
1 − vp

1 · t1 mod p

in G∗(BP) = G∗ [t1, t2,...] (see Sect. 2).
Denote the set of coaction primitives inBPn(X) by PnBP∗(X). We now define

a map
e : PnBP∗/(p∞, v∞1 ) −→ An−1(BP)

by the following commutative diagram. Assumen is even.

PnBP∗/(p∞, v∞1 )
∩

0 → BPn/p∞ → v−1
1 BPn/p∞ red→ BPn/(p∞, v∞1 ) → 0

‖ g∗ ↓∼= ↓∼=

0 → πS
n (BP; Z/p∞) → Adn(BP; Z/p∞) → Adn (BP; Z/p∞) → 0

‖ i ↑

πS
n (BP; Z/p∞)

hAd→ An(BP; Z/p∞)
β→ An−1(BP)

pr∗ ↓ pr∗ ↓

An(BP; Z/p∞)
β→ An−1(BP)

(10)
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(pr : BP →BP is the canonical map,β the Bockstein map andi : An(X) →
Adn(X) is the map from connectiveIm(J )-theory to non-connectiveIm(J )-theory
Ad, with

An(X) := im(Adn(Xn) → Adn(Xn+1)),

i is induced by inclusion of skeleta).

Definition 5 e := β ◦ pr∗ ◦ i−1 ◦ g∗ ◦ red−1

In order to havee defined we must show

Lemma 6 (1) x ∈ PnBP∗/(p∞, v1) =⇒ g∗ ◦ red−1(x) ∈ im(i )
(2) β ◦ hA(πS

n (BP; Z/p∞)) = 0

Proof. (2) is clear sinceβ ◦ hA = hA ◦ β andπS
n+1(BP) is 0 for n even.

Proof of (1): We have

PnBP∗/(p∞, v1) = ker〈(ηL − ηR) : BP∗/(p∞, v1) → BP∗BP⊗BP∗ BP∗/(p∞, v1)〉
An elementx in v−1

1 BPn/p∞ maps underred into PnBP∗/(p∞, v1) if and only
if (ηL − ηR)(x) is in im(BP∗BP⊗BP∗ BP∗/p∞ −→ BP∗BP⊗BP∗ v

−1
1 BP∗/p∞).

Under the isomorphismg∗ this translates into{
x ∈ Adn(BP; Z/p∞) | red ◦ g−1

∗ (x) is primitive
}

=

{x | (ηL − ηR)(x) = had(z) in Adn(BP ∧ BP; Z/p∞)

for somez ∈ πS
n (BP ∧ BP; Z/p∞)

}
Now G : Adn(X; Z/p∞) → Gn(X; Z/p∞) is injective forX = BP or X = BP ∧
BP andηL(Dx) = Dx∧1,ηR(Dx) = 1∧Dx in Gn(BP∧BP; Z/p∞) by the Künneth-
theorem for complex K-theory. To have (ηL− ηR)(Dx) ∈ im hA implies D(x) ∈
Gn(BP(n); Z/p∞) since hA(πS

n (BP∧BP; Z/p∞)) is contained inGn((BP∧
BP)(n); Z/p∞). This implies x ∈ im(i : An(BP; Z/p∞) → Adn(BP; Z/p∞)).
Here i is injective since An(BP; Z/p∞) = Adn(BP(n); Z/p∞) � .

We also need

Lemma 7 Let n be even. Then
(1) e is injective. (2)∂1 is bijective. (3) the diagram

πS
n+2(S0/(p∞, v∞1 ))

∂1−→ πS
n+1(S0/p∞)

β−→∼= πS
n (S0)

↑ ∂2 ∼=↑ ∂2

πS
n+2(BP; Z/p∞)

↓ hBP

β

↘
↓ hA πS

n+1(BP)

An+2(BP; Z/p∞) ↓ hA
β

↘
Pn+2(BP∗/(p∞, v∞1 ))

e−→ An+1(BP)
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commutes i.e. on stably spherical elements in BPn+2(S0)/(p∞, v∞1 ) the invariant e

is essentially the Hurewicz map hA : πS
n+1(BP) → An+1(BP) (here we have written

S0/(p∞, v∞1 ) for Ad ∧S0/p∞ e.c.).

Proof. (1) Choosex1 ∈ v−1
1 BPn/p∞ with red(x1) = x. Then e(x) = 0 implies

g∗(x1) ∈ ker(β) = im(r : An(BP; Q) → An(BP; Q/Z)). The commutative square

πS
n (BP; Z/p∞)

hA−→ An(BP; Z/p∞)

↑ r ↑ r

πS
n (BP; Q)

hA−→ An(BP; Q)

then shows thatx1 is in ker(red).
(2) Since πS

n+1(v−1
1 S0/p∞) = Adn+1(S0; Z/p∞) ∼= Adn(S0) is zero,∂1 is onto

(n even!), and sinceπS
n+2(S0/p∞) → πS

n+2(Ad/p∞) is onto,∂1 is injective.
(3) By comparing the two cofibre sequencesS0/p∞ → v−1

1 S0/p∞ → S0/(p∞,
v∞1 ) andS0 → BP −→BP we obtain (suppressing the equivalencesg, ḡ in (10))
the following commutative diagram. It is a well known fact that red−1 ◦
hBP ◦ ∂−1

1 = pr−1
∗ ◦ j ◦ ∂−1

2 mod hBP(πS
n+2(Ad/p∞)) + j (BPn+2(S0/p∞)) in

BPn+2(Ad ∧ S0/p∞).

πS
∗ (Ad/p∞) → πS

∗ (Ad /p∞)
∂1→ πS

∗ (S0/p∞)

↓ hBP ↓ hBP

BP∗(S0/p∞)
j∗→ BP∗(Ad ∧ S0/p∞)

red→ BP∗(Ad ∧S0/p∞)

↓ ↓ pr∗

BP∗ (S0/p∞)
j∗→ BP∗ (Ad ∧ S0/p∞)

↓ ∂2 ↘ hAd ↓∼=

πS
∗ (S0/p∞) Ad∗(BP; Z/p∞)

i⊃ A∗(BP; Z/p∞)
β→ A∗(BP)

Givenx ∈ πS
n+1(S0/p∞) choose elementsx1, x2, x3 with ∂1(x1) = x, red(x2) =

hBP(x1), ∂2(x3) = x. Under the maps

BPn+2 (S0/p∞)
hAd→ Adn+2(BP; Z/p∞)

i⊃ An+2(BP; Z/p∞)
β→ An+1(BP)

x3 is mapped toβ ◦ hA(x3). On the other hand, up to the identification

BP ∧ S0/(p∞, v∞1 ) ' BP∧ Ad ∧S0/p∞

the definition ofe reads as
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e(hBP(x1)) = β ◦ i−1 ◦ pr∗(x2)

But pr∗(x2) ≡ j∗(x3) mod pr∗ ◦ j∗(BPn+2(S0/p∞)) and under the mapβ ◦ i−1

the indeterminacy is mapped to zero. Hencee(hBP(∂−1
1 (x)) = hA(∂−1

2 (β(x))). �

Remarks.Slightly simpler is the use of the two cofibre sequences

S0 → BP →BP and BP→BPQ→BP Q/Z

for the lift from Adams-Novikov filtration 2 to filtration 0. The Hattori-Stong
theorem then shows thatH 2(BP∗) is a subgroup ofA∗(BP). But in order to
use the definition of the elements given in[12] we had to use (5) and (6). The
approach via the Hattori-Stong theorem works for every torsion free space or
spectrum (instead ofBP). In our case we get the purely K-theoretic description
of Ext1,2n

BP∗BP(BP∗,BP∗(BP)) (= H 2(BP∗)) as ker(Ψ : A2n−1(BP) → A2n−1(BP
∧BP)) whereΨ is induced fromi : S0 → BP.

2 A∗(BP)

For n even we haveAn(BP) ∼= BPn(S0). Whereas forn oddBPn(S0) = πS
n (BP) is

zero,Amq−1(BP) is non trivial and growing very rapidly withm. So Amq−1(BP)
may serve as a universal example fornon stably spherical classes inA∗(X). The
order and the number of cyclic summands ofAmq−1(BP) is known[9], but here
we need only a certain subset of classes related tov2. Recall

BP∗BP ∼= BP∗ [t1, t2, ...] and G∗BP ∼= G∗ ⊗BP∗ BP∗BP ∼= G∗ [t1, t2, ...]

whereti = T(ti ) andT : BP → G is the Todd map.
We have

Aqn(BP; Q/Z) = Adqn(BP(qn); Q/Z) ⊂ Adqn(BP; Q/Z)
D⊂ Gqn(BP; Q/Z)

and denotehG(vi ) ∈ G∗(BP) again byvi where

hG : πS
∗ (BP) → G∗(BP)

is the G-theory Hurewicz map. Fromv1= v1 + p · t1 it follows that vpa

1∗ acts on
classes of order at mostpa+1 in G∗(BP; Q/Z) as multiplication byvpa

1 , hence
v1∗ is an isomorphism. InG∗(BP; Q/Z) we therefore have classes

v
m
2

pi · vj
1

which are in ker(ψk − 1) since multiplication withvi commutes withψk − 1. So
v

m
2

pi ·vj
1

defines a class inAd∗(BP; Q/Z). To describe classes inA∗(BP; Q/Z) we

need to work out the skeletal filtration of such elements:
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Proposition 8 For 0≤ a ≤ m the class

v
m
2

pa+1· vm−a
1

in G∗(BP; Q/Z) is in ker(ψk − 1) and has skeletal filtration at most q(mp + a),

that is v
m
2

pa+1·vm−a
1

defines an element in Aq(mp+a)(BP; Q/Z).

Proof. Chooses with s · pa − (m− a) > 0, then

z =
v

m
2

pa+1· vm−a
1

=
v

m
2 · vs·pa−(m−a)

1

pa+1· vs·pa

1

=
v

m
2 · vs·pa−(m−a)

1

pa+1 · vs·pa

1

(since v
s·pa

1 = vs·pa

1 on classes of order at mostpa+1 ). Using v1= v1 + p · t1 we
may writez as a sum of terms(s·pa−(m−a)

j

)
v

m
2 ·t j

1

pa+1−j · vm−a+j
1

It therefore suffices to show (b := a − j )

SF(
v

m
2

pb+1 · vm−b
1

) ≤ q · (m · p + b)

where SF abbreviates skeletal filtration. Writev2= p · A + v1 · B where A =
t2 − pp−1 · tp+1

1 andSF(A) = q · (p + 1), SF(B) ≤ q · p.

(v2= p · t2 − pp · tp+1
1 + v1 ·

[
1−

(
p + 1

1

)
pp−1

]
· tp

1 −
p−1∑
i =2

(
p + 1

i

)
tp−i−1
1 pp−i vi

1

−
(

p + 1
p

)
t1 · vp

1 e.g. see[14])

We get
(pA+v1B)m

pb+1·vm−b
1

=
m∑

j =0

(m
j

)
pj · Aj · Bm−j · vm−j

1 /(pb+1 · vm−b
1 )

≡
b∑

j =0

(m
j

)
pj · Aj · Bm−j · vm−j

1 /(pb+1 · vm−b
1 )

=
b∑

j =0

( m
b−j

)
Ab−j · Bm−b+j · vj

1 /pj +1

Now SF(Ab−j · Bm−b+j · vj
1 /pj +1) ≤ q · (m · p + b) and the result follows.�

Remark.All elements in Aqm−1(S0) are stably spherical hence the subgroup
i∗( Aqm−1(S0)) in Aqm−1(BP) is zero. Since alsoAqm−2(S0) = 0 we have

Aqm−1(BP) ∼= Aqm−1(BP) (11)

We shall also label elements inAqm−1(BP) by their names inAqm−1(BP), i.e.

suppress the mappr : BP →BP in our notation.
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3 Ext2,∗
BP∗BP(BP∗,BP∗)

In [12] the elements ofExt2,nBP∗BP(BP∗,BP∗) ∼= PnBP∗/(p∞, v∞1 ) are defined in
v−1

2 BP∗/(p∞, v∞1 ) as follows: Define elementsxn in v−1
2 BP∗ by

x0 = v2

x1 = xp
0 − vp

1 · v−1
2 · v3

x2 = xp
1 − vp2−1

1 · vp2−p+1
2 − vp2+p−1

1 · vp2−2p
2 · v3

and forn ≥ 3
xn = xp

n−1 − 2 · vbn
1 · vcn

2

(12)

wherebn := pn+pn−1−p−1, cn := pn−pn−1+1. Leta0 := 1 andan := pn+pn−1−1
for n ≥ 1. Then for n ≥ 0, s ≥ 1 and s 6≡ 0 mod p, j ≥ 1, i ≥ 0 with

j ≤ pn if s = 1 and pi | j ≤ an−i if s > 1, the elementsxs
n/
(

pi +1 · vj
1

)
∈

v−1
2 BP∗/(p∞, v∞1 ) are inP∗BP∗/(p∞, v∞1 ) and defineβspn/j ,i +1 via the mapη

in (7).
To compute the image ofβspn/j ,i +1 in Aqm−1(BP) (∼= Aqm−1(BP)) we need

a v−1
2 −free form of xs

n/(pi +1 · vj
1). For our purpose the following weak form

will be sufficient

Proposition 9 The image ofβspn/j ,i +1 in Aqm(BP; Q/Z) may be written as

v
spn

2

pi +1· v1
j + v1

2 ·z with p· z = 0

Proof.Step 1: We first treat the elements of orderp. Calculating modp and using
(a + b)p ≡ ap + bp the defining equations (12) reduce to

xn ≡ (−2 · vbn
1 · vcn

2 − 2 · vpbn−1

1 · vpcn−1

2 − ......− 2 · vpn−3b3
1 · vpn−3c3

2

−vpn−pn−2

1 · vpn−pn−1+pn−2

2 − vpn−2(p2+p+1)
1 · vpn−2pn−1

2 · vpn−2

3

−vpn

1 · v−pn−1

2 · vpn−1

3 + vpn

2 ) mod p

(13)

If s = 1 thenj ≤ pn and (13) gives

xn

p · vpn

1

=
vpn

2

p · vpn

1

+
vpn−pn−1+pn−2

2

p · vpn−2

1

Then

e

(
xn

p · vpn

1

)
=

v̄pn

2

p · v̄pn

1

+ v1
2 · v̄

pn−pn−1+pn−2

2

p · v̄pn−2+2
1

in A∗(BP; Q/Z) . Multiplication by v̄pn−j
1 gives the conclusion for allβspn/j . Let

now s > 1, thenj ≤ an = pn + pn−1 − 1 and (13) gives xs
n

p·vj
1

as a sum of terms

of the following type
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zs0,s1,....,sn = const·
(
vpn

2

)s0 ·
(
vpn

1 · v−pn−1

2 · vpn−1

3

)s1 ·(
vpn−pn−2

1 vpn−pn−1+pn−2

2 + vpn−2(p2+p+1)
1 vpn−2pn−1

2 vpn−2

3

)s2 ·
· · · · · ·

(
v

pi bn−i

1 · vpi cn−i

2

)sn−i · · · ·
(
vbn

1 · vcn
2

)sn

/ p · vj
1

(14)

Every termzs0,s1,....,sn is defined in v−1
2 BP∗/(p∞, v∞1 ) but does actually belong

to BP∗/(p∞, v∞1 ). If s1 > 1, this term containsv2pn

1 and so reduces to zero in
BP∗/(p∞, v∞1 ). If s1 = 1 there is an indexi0 /= 1 with sio ≥ 1 (sinces > 1).

The negative power ofv2 in
(
vpn

1 · v−pn−1

2 · vpn−1

3

)s1

is cancelled by the positive

power ofv2 in the factor with exponentsi0, so the term lies inBP∗/(p∞, v∞1 ).
In addition we have at mostp · vn−1

1 in the denominator. Ifi0 > 1 the power of

v1 contained in the factor with exponentsi0 cancelsvpn−1

1 in the denominator. So
we are left with the casess1 = 1, s0 = s− 1 ands1 = 0. If s1 = 1, s0 = s− 1 we
get

zs−1,1,0,0,...,0 = const· v
pn(s−1)−pn−1

2 · vpn−1

3

p · vj
1

with j ≤ pn−1 − 1 and it follows (by (8)) that e(zs−1,1,0,0,...,0) = v̄2
1 · z̀ with

p · z̀ = 0. Let nows1 = 0. If si ≥ 1, sk ≥ 1 with i , k > 2 thenzs0,0,s2,..... contains

v
pi bn−i +pk bn−k

1 but j ≤ pi · bn−i + pk · bn−k . The same conclusion follows ifi or
k is 2 . Hences0 = s− si0 with si0 ≤ 1 andi0 ≥ 2 and we get

vspn

2

pvj
1

or
v(s−1)pn

2 va
2v

b
3

pvk
1

with k ≤ pn−1 + pn−2 − 1. Again by (8) the conclusion follows.
Step 2: Considerxs

n/(pi +1 ·vj
1) with j ≡ 0 modpi , j ≤ an−i , i > 0 and iterate

on xk = (xp
k−1 − 2 · vbk

1 · vck
2 ). Take j0 := pn−i + pn−i−1 − pi if n > 2i or j0 = pi

if n = 2i then j ≤ j0 and we have

xs
n

pi +1 · vj0
1

≡ xpr s
n−r

pi +1 · vj0
1

in BP∗/(p∞, v∞1 ) as long asbn−r +1 ≥ j0. This is the case forr ≤ i . The next
case is

xpi s
n−i

pi +1·vj0
1

=
(

xp
n−i−1 − 2 · vbn−i

1 · vcn−i

2

)spi

/ pi +1 · vj0
1

=
xpi +1s

n−i−1

pi +1·vj0
1

+
∑
l =1

(−2)l ·
(

spi

l

)
· vl ·bn−i

1 · vl ·cn−i

2 · xp(spi−l )
n−i−1 /pi +1 · vj0

1

Only for i = 1 we get the extra term

−2s · vcn−i

2 · xp(spi−1)
n−i−1

p · v1
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which is handled as in step 1. Proceed now by induction onk (i < k < n − 2).
Assume

xpk−1s
n−k+1

pi +1 · vj0
1

=
xpk s

n−k

pi +1 · vj0
1

+ z

wheree(z) = v̄2
1 · ẑ with p · ẑ = 0. Then

xpk s
n−k

pi +1·vj0
1

=
(

xp
n−k−1 − 2 · vbn−k

1 · vcn−k

2

)spk

/ pi +1 · vj0
1

=
xpk+1s

n−k−1

pi +1·vj0
1

+
∑
l =1

(−2)l ·
(

spk

l

)
· vl ·bn−k

1 · vl ·cn−k

2 · xp(spk−l )
n−k−1 /pi +1 · vj0

1

If νp(l ) < k − i , the power ofp in the binomial coefficient
(spk

l

)
is at least

i + 1, so these summands give no contribution. Letl = pk−i l̂ . If l̂ > 1, we have
l̂ · pn−i · bn−k ≥ j0, so the power ofv1 is already to large. We are left with the

term with l = pk−i . Sinceνp

(( spk

pk−i

))
= i the denominator reduces top · vj0

1 and

we obtain
a · vpk−i cn−k

2 · xpk−i +1(spi−1)
n−k−1

p · vj1
1

with a ∈ Z(p) and j1 ≤ pk−i +1 + pk−i − pi (j1 ≤ pk−i +1 + pk−i − pi−1 if
n = 2i ). As in step 1 it follows that the image of

xpk−i +1ś
n−k+1

p · vpk−i +1+pk−i−pi

1

in A∗(BP) may be written as ¯v2
1 · z̀ with p · z̀ = 0. This completes the induction

step fork < n − 2. The casesk = n − 2 andk = n − 1 have to be dealt with
separately but follow exactly the same pattern. We end with

xs
n

pi +1 · vj
1

=
vpns

2

pi +1 · vj
1

+ z

where the image of z inA∗(BP) may be written as ¯v2
1 · B with p · B = 0.

4 A∗(l̄ ) and the image of T on im(e)

Note first, thatAqm−1(l̄ ) ∼= Aqm−1(l ) by the same reason as forBP. In [8] it is
proved that the totalA-theory Chern character

chA : An(l ) −→ WA
n (l ) := Hn(l ; Z(p))⊕

⊕
i≥1

Hn+1−qpi(l ; Z/pi )(p)

is injective. Since ¯v1 = p · m1 in homology, it is immediately clear that every
element of orderpa in An(l ) is annihilated by ¯va

1 . Here we shall prove a weaker
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form of this conclusion (with a proof which easily generalizes top = 2) and use
this to compute

T : Aqm−1(BP) −→ Aqm−1(l )

on im(e).

Proposition 10 Assume x= v̄a+1
1 · x̂ in A∗(l ) with pa · x̂ = 0 and x̂ = ∆(x̃),

x̃ ∈ l∗(l ), then x= 0.

Proof. Recall from[1] that h : l∗(l ) −→ H∗(l ∧ l ; Z(p)) is injective, the torsion
of H∗(l ∧ l ; Z(p)) is is of orderp and annihilated by ¯v1∗ and the description of
l∗(l )/tor : We have

H∗(l ∧ l ; Z(p))/tor ∼= Z(p)

[
v

p
,

u
p

]
with u := 1∧ v1 = v̄1, v := v1 ∧ 1 and a homogeneous polynomial

f (u, v) =
∑

i

ai · un−i

pn−i

vi

pi

is in im(h) mod tor if and only if for all integersm, s prime top the integrality
condition

f (mp−1 · t , sp−1 · t) ∈ Z(p) [t ]

is satisfied. In the following we abbreviatemp−1 by ṁ and writeci := (k̇i−1)/p .
Write h(x̃) =: f (u, v) = w1 +

∑
i =0 ai · un−i−1vi /pn−1 in H(n−1)q(l ∧ l ; Z(p))

with p · w1 = 0. Sincepa · x̃ ∈ ker(∆) we getpa · f (u, v) ∈ im(Q ∧ 1∗), i.e.

ĝ(u, v) :=
n−1∑
i =0

ai pa

pnci +1
un−i−1vi +1

is in Hnq(l ∧ l ; Z(p)) with (Q∧1)∗(ĝ(u, v)) = paf (u, v) (since (Q∧1)∗(vi +1
1 /pi +1)

= ci +1 · vi
1/pi ). Thereforeai · pa/ci ∈ Z(p) for all i and

g(u, v) :=
ua

pa
ĝ(u, v)−

n−1∑
i =0

ai pa

ci +1

ua+n

pa+n

is a well defined element inHnq(l ∧ l ; Z(p)) satisfying (Q ∧ 1)∗g = uaf .
We now show thatg satisfies the integrality condition for being inim(h). We

may writeṁ = k̇c +pαe , ṡ = k̇d +pαh with α larger than any denominator ing.
Assume alsoc < d. Theng(ṁt, ṡ t) ∈ Z(p) [t ] if g(k̇ct , k̇dt) ∈ Z(p) [t ]. Now
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g(k̇ct , k̇dt) =
n−1∑
i =0

ai
pnci +1

[
k̇c(n−i−1)k̇d(i +1)− k̇c(a+n)

] · ta+n

=
n−1∑
i =0

ai
pn−1

k̇c(−i−1)+d(i +1)−1
k̇i +1−1

k̇c(a+n) · ta+n

=
n−1∑
i =0

ai
pn−1

k̇(d−c)(i +1)−1
k̇i +1−1

k̇c(a+n) · ta+n

=
n−1∑
i =0

d−c−1∑
j =1

ai
pn−1 k̇j (i +1) · k̇c(a+n)ta+n

=
d−c−1∑

j =1
f (t , k̇j t) · k̇j +c(a+n)ta+1

which is in Z(p) [t ] sincef (t , k̇j t) is. Therefore there exists an elementz ∈ lnq(l )
with h(z) = g(u, v) + w2 and p · w2 = 0. Multiply by v̄1, then h(v̄1z) = u ·
g(u, v) sinceu · w2 = 0 andQ(v̄1z) = v̄1 ·Q(z) = v̄a+1

1 · x̃ since

h(v̄1 ·Q(z)) = u · (Q ∧ 1)∗g(u, v) = ua+1f (u, v) = h(v̄a+1
1 x̃)

andh is injective. Therefore∆(v̄a+1
1 x̃) = 0 andx = 0. �

Consider now

z(a) := β

(
v̄pa−1

2

p · v̄pa−1

1

)
= e(βpa−1/pa−1) ∈ Aqpa−1(BP)

and define
t(a) := T(z(a)) ∈ Aqpa−1(l )

again suppressingpr : BP →BP, pr : l → l̄ in the notation. We then know
p · t(a) = 0. We need chA(t(a)) /= 0 on A∗(l ) and chA(t(a)) = 0 on A∗(l̄ ).
If t1 ∈ lq(l ) is defined ast1 = (ηL(v1) − ηR(v1))/p then it can be shown that

∆(pa−1tpa−1
1 ) = t(a) in Aqpa−1(l ). From this and Example 3 in[4] we easily get

chA(t(a)). To avoid the calculation for∆(pa−1tpa−1
1 ) = t(a) we use (3.5) in[4] :

Now v̄2 ≡ v1tp
1 − vp

1 t1 mod p, so

v̄pa−1

2

p · v̄pa−1

1

=

(
tp
1 − vp−1

1 t1
)pa−1

p
=

(
tpa

1 − v(p−1)pa−1

1 tpa−1

1

)
p

in Aqpa (BP; Q/Z). Hence (by (3.5) in[4])

chA
qj−1(z(a)) = chl

qj (
v̄pa−1

2

p · v̄pa−1

1

) =
(−1)j

(pa

j

)
mpa−j

1

p

in Hqpa−qj (BP; Z/j ) since chl
qj (v

(p−1)pa−1

1 tpa−1

1 /p) = v1p chl
q(j−1)(v

(p−1)pa−1−1
1

tpa−1

1 /p) is integral. So

chA
qj−1(z(a)) =

{
0 if j /= pa

pa · 1 in H0(BP; Z/pa) if j = pa (15)
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and the value forchA
qj−1(t(a)) follows by naturality. In particulart(a) /= 0 ,

chA
qj−1(t(a)) /= 0 onA∗(l ) but chA(t(a)) = 0 onA∗(l̄ ). Now we are ready to prove

Theorem 11 If z ∈ A2n−1(l ) is stably spherical, then n= (p− 1)pa, a ≥ 1, and
z is a multiple of t(a).

This follows from

Theorem 12 The image of T on e(Exts,∗BP∗BP(BP∗,BP∗)) ⊂ A2n−1(BP) is gener-
ated by the elements t(a), a ≥ 1.

Proof. By definition T(e(βpa−1/pa−1)) = t(a) and we have to show that all the

otherβ‘ s go to zero. We use Propositions (9), (10) andAqm−1(BP) = Aqm−1(BP),
Aqm−1(l ) = A2n−1(l ). If j ≥ 2 then T ◦ e(βpa−1/pa−1−j ) = v̄j

1 · t(a) = 0 by
Proposition (10). Ifj = 1 we write

e(βpa−1/pa−1−1) = v̄2 · (v̄pa−1−1
2 /pv̄pa−1−1

1 +w) = v̄2∗(z)

where we view ¯v2 as a self map ofBP. ThenT ◦ e(βpa−1/pa−1−1) = v̄2∗T(β(z))
but v̄2∗ = 0 in A∗(l ) (this follows from the facts thatT◦v2 : Σ|v2|BP → BP → l
is zero andT is multiplicative). Next fors < 1 or i > 1 if s = 1 we have

T ◦ e(βspa/j ,i +1) = T ◦ β
(

v̄spa

2

pi +1v̄j
1

)
+ v̄2

1T(z1)

with p · z1 = 0 by Proposition (9). But inAqm(BP; Q/Z) we have ¯vspa

2 /pi +1v̄j
1 =

v̄i +2
1 · z2 with z2 = v̄spa

2 /pi +1v̄j +i +2
1 since j + 2i + 2 ≤ spa as an easy estimation

shows (Proposition (8)). HenceT(β(z2 · v̄i +2
1 )) = 0 by Proposition (10) since

pi +1 · T(β(z2)) = 0 . �
The Thom reduction

α : Ext2,∗BP∗BP(BP∗,BP∗) −→ Ext2,∗A∗ (Fp,Fp)

from the E2-term of the Adams-Novikov spectral sequence to the E2-term of the
classical Adams spectral sequence is known by[12]. We haveα(βpa/pa ) = −ba

whereba is analogous to the class carrying a Kervaire invariant one element at
p = 2 (if it exists). Note that in the dimension ofβpa/pa all other elements in

Ext2,∗BP∗BP(BP∗,BP∗) map to zero underα, so that ker(α) = ker(T ◦e) in this case.

Corollary 13 t(a) ∈ Aqpa−1(l̄ ) is stably spherical if and only if ba−1 ∈ Ext2,∗A∗ (Fp,
Fp) is permanent (i.e. there exists an element of mod p Kervaire invariant one in
dimension q· pa − 2).

Proof. Note first, that the well known geometric boundary lemma ([14] 2.3.4)
implies that the following diagram commutes
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F 0πS
n+2(S0/(p∞, v∞1 ))

∂1→ F 1πS
n+1(S0/p∞)

β→ F 2πS
n (S0)

↓
↓ ↓

Pn+2BP∗/(p∞, v∞1 )
‖

Ext0,n+2
BP∗BP(BP∗,BP∗/(p∞, v∞1 ))

∂̇→Ext1,n+2
BP∗BP(BP∗,BP∗/p∞)

∂̈→Ext2,n+2
BP∗BP(BP∗,BP∗)

Here the unnamed arrows associate to an element in Adams filtrationF i its E2-
representing set. Hence we may treatη = ∂̈ ◦ ∂̇ as an identification and use the
Ext2,∗BP∗BP(BP∗,BP∗)-names for corresponding elements inPn+2BP∗/(p∞, v∞1 ).

”⇒” If t(a) is stably spherical thene(βpa−1/pa−1 + z) is stably spherical with
e(z) ∈ ker(T) (use the diagram in Lemma (7)). Thenα(βpa−1/pa−1 +z) = −ba−1 is
permanent. Conversely, ifba−1 is permanent, thenβpa−1/pa−1 +w with w ∈ ker(α)
is permanent, henceT ◦ e(βpa−1/pa−1 +w) = t(a) is stably spherical.�

The odd primary Kervaire invariant one problem was solved forp > 3 by
Ravenel[13]: For p > 3 and a ≥ 1 ba is not permanent (b0 is permanent
representingβ1 ; for p = 3 β3/3 is not permanent butβ9/9 ± β7 is). Hence

Corollary 14 For p > 3 and m odd the only stably spherical elements in Am(l )
are the multiples of t(1).

Remarks.
1. A purely K-theoretic proof of Theorem (12) is, in principle, possible. Since

Ext2,∗BP∗BP(BP∗,BP∗) ⊂ Aqm−1(BP) is ker(Ψ : Aqm−1(BP) → Aqm−1(BP ∧BP))

(whereΨ is induced fromS0 → BP), one has to computeim(T)|ker(Ψ ). But to
compute ker(Ψ ) seems to be not much easier than the work done in[12] .
2. A purely K-theoretic proof of Theorem (11) is simpler: SincechA : A∗(l ) →
WA(l ) is injective [8], one only has to work out kerchA on A∗(l̄ ). The disad-
vantage of proving only this is, that then the relation to the Kervaire invariant
one elements is harder to derive.

5 Stably spherical classes inA2n (BΣp)
and the functional A-theory Chern character

Although there is no lift of the transfer map
∼
tr : BΣp → S0 to a mapBΣp →

Σ−1 l (since
∼
tr (1) ∈ l 0(BΣp) is non zero) there is a strong relationship between

stably spherical classes inA∗(l ) andA∗(BΣp). Recall (e.g.[4])

Aqm−2(BΣp) ∼= Z/pνp(m)

and denote a non zero element of orderp in Aqpa−2(BΣp) ∼= Z/pa by x(a).
We shall show that the only possible stably spherical elements inA2n(BΣp) are
the multiples ofx(a).
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The cofibre sequencesS0 → l →l and BΣp ∧ A
∼
tr−→ A

chA

−→ WA (see[4])
induce the following basic commutative diagram of exact sequences

↑ chA ↑ chA

Aqm−1(l )
pr∗→∼= Aqm−1(l̄ ) → Aqm−2(S0) → Aqm−2(l )

↑∼tr ↑∼tr ↑ 0 ↑

Aqm−1(l ∧ BΣp) → Aqm−1(l̄ ∧ BΣp)
∂→ Aqm−2(BΣp) → Aqm−2(l ∧ BΣp)

↑ ↑ d ↑∼= ↑

WA
qm(l )

pr∗→∼= WA
qm(l̄ )

0→ WA
qm−1(S0) → WA

qm−1(l )

(16)
We first show

Proposition 15 Suppose x∈ Aqm−2(BΣp) is stably spherical. Then x= ∂(x1) for

some stably spherical element x1 ∈ Aqm−1(l̄ ∧ BΣp) and
∼
tr (x1) ∈ Aqm−1(l̄ ) is

non zero and stably spherical.

Proof. Since πS
qm−2(BΣp) −→ lqm−2(BΣp) is zero , anyf ∈ πS

qm−2(BΣp)
with hA(f ) = x has a lift f̄ ∈ πS

qm−1(l̄ ∧BΣp) with hA(f̄ ) = x1, ∂(x1) = x. Assume
∼
tr (x1) = 0, thenx1 = d(x2) but pr∗ : WA

qm(l ) → WA
qm(l̄ ) is bijective for m /= 0,

therefore this would implyx = 0. Hence
∼
tr (x1) 6= 0.�

Combining this with Theorem (11) and Corollary (13) gives

Theorem 16 The image of hA : πS
2n(BΣp) → A2n(BΣp) is zero for n/= (p − 1) ·

pa − 1 and contained in the subgroup of order p in Aqpa−2(BΣp) ∼= Z/pa.

Corollary 17 a) If x(a) ∈ Aqpa−2(BΣp) is stably spherical, then there exists a (p-
primary) Kervaire invariant one class (i.e. ba−1 in Ext2,∗A∗ (Fp,Fp) is a permanent
cycle).
b) If p > 3 then hA : πS

2n(BΣp) → A2n(BΣp) is zero except for n= (p−1)·p−1.
For n = (p−1)·p−1 hA is bijective and any generator ofπS

2n(BΣp) = Z/p maps

to a non zero multiple ofβ1 under the transfer map
∼
tr : πS

2n(BΣp) → πS
2n(S0).

We now turn to the converse of (17)a.

Theorem 18 If the element ba−1 in the classical Adams spectral sequence is
permanent, then x(a) ∈ Aqpa−2(BΣp) is stably spherical .

Proof. By Corollary (13) we knowt(a) ∈ Aqpa−2(l ) is stably spherical ifba−1 is
permanent. Consider the commutative diagram (n := q · pa − 1)
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An−1(BΣp)

∂ ↗ ↖ hA

An(BΣp∧ l )
hA←− πS

n (BΣp∧ l )
∂−→ πS

n−1(BΣp)
0→ ln−1(BΣp)

↓∼tr ↓∼tr ↓∼tr

An(l )
hA←− πS

n (l )
∂−→∼= πS

n−1(S0)

Choosef ∈ πS
n (l ) with hA(f ) = t(a). Since

∼
tr is onto by the Kahn-Priddy-theorem

we have a lift of∂(f ) to an element̄f ∈ πS
n−1(BΣp) and sinceln−1(BΣp) = 0 a

lift of f̄ to an element̂f ∈ πS
n (BΣp∧ l ). Clearly

∼
tr (f̂ ) = f . ThenhA(f̂ ) =: x1 /= 0

since
∼
tr (x1) = t(a) = hA(f ). Assume now∂(x1) = 0 in An−1(BΣp). Then there

existsx2 ∈ An(BΣp ∧ l ) with pr∗(x2) = x1 in (16). By commutativity in (16) we

have
∼
tr (x2) = t(a) in An(l ) ∼= An(l ) which would imply chA(t(a)) = 0 on An(l )

contradicting (15). Hence∂(x1) /= 0 and there is a non zero stably spherical class
in An−1(BΣp). Thenx(a) must be inim(hA).

Remark.With different methods the images ofhA : πS
2n(BΣp) → A2n(BΣp)

and hA : πS
2n(BZ/p) → A2n(BZ/p) (for p /= 2 up to the elements of orderp

corresponding tox(a) in dimensionsn = s·pa−1, 0≤ s ≤ p−1) are determined
in [6] .

For f ∈ ker(hA : πS
n (X) → An(X)) the functionalA−theory Chern character

chA
f is defined in the usual way: Let

Sn f−→ X
j−→ Cf

p−→ Sn+1

be the cofibre sequence associated tof and consider the commutative diagram

0 → An+1(X) → An+1(Cf )
p∗→ An+1(Sn+1)

f∗→ 0

↓ chA
qr−1 ↓ chA

qr−1

0 → Hn+2−qr (X; Z/r )
j∗→ Hn+2−qr (Cf ; Z/r ) → 0

If 1̂∈ An+1(Cf ) is an element withp∗(1̂) = 1∈ An+1(Sn+1), thenchA
qr−1(1̂) = j∗(z)

and z is well defined inHn+2−qr (X; Z/r )/chA
qr−1(An+1(X)). For X = S0 we can

completely describe the values which this invariant may take:

Theorem 19 An element f∈ πS
n (S0)(p) is detected by the functional A-theory

Chern character if and only if f has Kervaire invariant one (i.e. f is represented
in the classical Adams spectral sequence by bi ).



Im(J)-theory and the Kervaire invariant 121

Proof. n must be of the formn = q · r − 2 with νp(r ) > 0. Let
∼
tr : BΣp → S0 be

the reduced transfer map andf̂ ∈ πS
n (BΣp) be an element with

∼
tr (f̂ ) = f (which

can be found by the Kahn-Priddy theorem). Denote the cofibre off̂ by Cf̂ and by
t : Cf̂ → Cf the fill in map between cofibres. Consider the commutative diagram

An+1(S0) → An+1(Cf ) → An+1(Sn+1)
f∗→

↘ ↙ chA
qr−1

H0(S0; Z/r )
∼=→ H0(Cf ; Z/r )

↑∼tr ↑∼tr ↑ ↑ t∗ ‖
H0(BΣp; Z/r ) → H0(Cf̂ ; Z/r )

↗ ↖ chA
qr−1

An+1(BΣp) → An+1(Cf̂ ) → An+1(Sn+1)
f̂∗→

Supposêf∗ = 0, then there exists
≈
1∈ An+1(Cf̂ ) with t∗(

≈
1) = 1̂ in An+1(Cf ) and

chA
qr−1(1̂) factors throughH0(Cf̂ ; Z/r ) and

∼
tr : H0(BΣp; Z/r ) → H0(S0; Z/r ) and

must be zero. Hence iff is detected bychA
f , f̂∗(1) = hA(f̂ ) must be non zero and

the result follows from Corollary (17).
Conversely if f ∈ πS

n (S0) is represented bybi−1 (n = q · pi − 1), then
f̂∗(1) = hA(f̂ ) /= 0 (see proof of Theorem (18)). Henced∗(1̂) 6= 0 in An+1(ΣCt )
whereΣCt is the cofibre oft and d : Cf → ΣCt the canonical map. But
Ct is equivalent toC∼

tr
and onAn(C∼

tr
) the A-theory Chern characterchA

n+1 is an

isomorphism (essentially by the identification ofC∼
tr
∧A with WA, see[4], remark

following (2.9)). Since

d∗ : H0(Cf ; Z/pi ) → H−1(C∼
tr

; Z/pi ) ∼= H−1(S−1; Z/pi )

is an isomorphism too,chA
n+1(1̂) must be non zero (the indeterminacy is zero).�

Remark.For p /= 2 the functional integral Chern characterchl
f mod p may be

interpreted as the modp Hopf invariant.

6 Appendix: The 2-primary case

At p = 2 there are several versions ofIm(J )−theory: We define complex
Im(J )−theory by the cofibre sequences

→ AdC D−→ K(2)
ψ3−1−→ K(2)

∆−→ ΣAdC → (17)

→ AC D−→ bu(2)
Q−→ Σ2bu(2)

∆−→ ΣAC → (18)

wherev1 ·Q = ψ3 − 1. ThenAC is the (-1)-connected cover ofAdC. This is as
for odd primes, the main difference is that not all elements inACn(S0) are stably
spherical; forn ≡ 3, 5 mod 8 coker(hAC) has order 2.

Real versions are defined by
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→ AdR D−→ KO(2)
ψ3−1−→ KO(2)

∆−→ ΣAdR → (19)

→ A
D−→ bo(2)

Q−→ Σ4bsp(2)
∆−→ ΣA→ (20)

(for bsp andQ in (20) see[11]). The spectrumA is the proper choice atp = 2,
but differs from the (-1)-connected cover ofAdR in π0 and π1. We have a
complexification mapc : AdR →AdC induced by the usual complexification.

The groupsH 2(BP∗) = Ext2,∗BP∗BP(BP∗,BP∗) for p = 2 have been determined
by Mitchell and Shimomura[16]. The mapη appearing in (7) is neither injective
nor surjective but its kernel and cokernel are computed in[16]. Lemma (4) is
true with AdR instead ofAdC, therefore the definition of the mape has to be
changed slightly. We definee similarly as forp /= 2 but build in complexification.
With the maps from the following diagram

PnBP∗/(2∞, v∞1 )
∩

0 → BPn/2∞ → v−1
1 BPn/2∞ red→ BPn/(2∞, v∞1 ) → 0

‖ g∗ ↓∼= ↓∼=

0 → πS
n (BP; Z/2∞) → AdRn(BP; Z/2∞) → AdRn (BP; Z/2∞) → 0

c ↓

‖ AdCn(BP; Z/2∞)

i ↑

πS
n (BP; Z/2∞)

hAd→ ACn(BP; Z/2∞)
β→ ACn−1(BP)

pr∗ ↓ pr∗ ↓

ACn(BP; Z/2∞)
β→ ACn−1(BP)

(21)
we set

e := pr∗ ◦ β ◦ i−1 ◦ c ◦ g∗ ◦ red−1

and prove Lemma (6) in the same way.
We now turn to Lemma (7):
The map∂1 : πS

n+2(S0/(2∞, v∞1 )) −→ πS
n+1(S0/2∞) in Lemma (7) is not

onto for all n, but ker(∂1) and coker(∂1) are determined by the Hurewicz map
hAdR : πS

m(S0) → AdRm(S0). Since hAdR is onto for m odd, m > 1, we find
that∂1 is always injective but has a cokernel of order 2 in dimensions congruent
0 and 2 mod 8. We assume now thatn is of the formn = 2 · 2a − 2, a ≥ 2,
then ∂1 is bijective. Complexificationc in (21) is injective. This may be seen
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as follows. It is enough to show this withZ/2i coefficients, for alli . If x is in
ker(c) then Bm

i (x) ∈ ker(c), whereBi is an Adams periodicity operator for the
Moore spectrumM (Z/2i ), (e.g. see[3]). But Bm

i (x) for m large enough comes
from stable homotopy (see again[3]) and πS

2r (BP; Z/2i ) → AdC2r (BP; Z/2i )
is injective by the Hattori-Stong theorem. Hencec ◦ Bm

i (x) = 0 implies
Bm

i (x) = 0 and this givesx = 0. Since under the dimension assumptions made,
ACn−1(BP) → ACn−1(BP) is a monomorphism, we see thate is injective as for
odd primes. Then Lemma (7) reformulated withAC∗ is proved as forp /= 2 .

In Sect. 2 we have

ηR(v2) = v2 + 2t2 − 5v1t2
1 − 4t3

1 − 3v2
1t1

henceA = t2 − 2t3
1 , B = −5t2

1 − 3v1t1 and Proposition (8) is true forp = 2
without any change. Note however thatpr∗ : AC2m−1(BP) → AC2m−1(BP) is
still always onto but has a kernel of order 2 ifm ≡ 2, 3 mod 4.

The computations in Sect. 3 have to be redone completely, but no new idea is
necessary. The definition of the elementsβ2ns/j ,i is in [16, 14] . The computations
are even simpler than forp /= 2 sincexi = x2

i−1 for i ≥3 but there are more sub-
cases to check. The simplest way to proceed then seems to be as follows. We
may put in the definition ofx0, x1, x2 and then expand by the binomial formula.
For the factory−m

i in β2ns/j ,i +2 we use (1−4v2/v
3
1)−j /2. This givesβ2ns/j ,i +1 and

β2ns/j ,i +2 as a polynomial inv1, v2, v3, v
−1
1 , v−1

2 . Then one checks that every
term containing a negative power ofv2 is zero if reduced mod 2∞ andv∞1 . To
the terms left we may apply Propositions (10) and (8) directly, i.e. ifβ2ns/j ,k

contains a summandvc
3 · vm

2 /2a · vb
1 with 2a + b ≤ m , a ≤ m , then

e

(
vm

2

2a · vb
1

)
=

(
v̄m

2

2a · v̄b
1

)
is divisible by v̄a+1

1 in AC∗(BP) and maps to zero inAC∗(l ) by Proposition (10).
The case ofβ2n/2n−1 is handled as forp /= 2, also some termsvc

3 · vm
2 /2a · vb

1
with 2a + b > m ≥ a + b and c ≥ 1. As for p /= 2 the onlyβ2ns/j ,k with non
trivial image inAC∗(l ) is β2n/2n .

The proof of Proposition (10) has to be modified slightly, due to the fact that
(Z/2i )∗ is not cyclic. The use of the Adams operationψ−1 gives the remaining
cases to be checked. Theorem (11) is not true forp = 2 as stated (sinceη in
(7) and∂1 in Lemma (7) are not onto) but ifn = 2 · 2a − 1, a ≥ 2, any stably
spherical element inACn(l ) must be inim(e), hence

Theorem 20 If z ∈ AC2n−1(l ) is stably spherical and n= 2a, a ≥ 2, then z is a
multiple of t(a).

For the Thom reduction

α : Ext2,∗BP∗BP(BP∗,BP∗) −→ Ext2,∗A∗ (F2,F2)

we refer to[14] 5.4.6. In the Kervaire invariant one dimensions the kernel ofα
is the same as ker(T ◦ e) and the proof of Corollary (13) carries over without
change:
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Theorem 21 The class t(a) ∈ AC2a+1−1(l ) is stably spherical if and only if

h2
a ∈ Ext2,2

a+1

A∗ (F2,F2) is permanent.

To carry over the results of Sect. 5 one needs the basic diagram (16) with
A replaced byAC. The 2-primary version of the complexIm(J )-theory Chern
characterchAC is quite analogous to the odd primary case. LetR be the cofibre
of the reduced transfer map

BΣ2

∼
tr−→ S0 −→ R

thenbo∧R splits as
∨

i≥0Σ
4i H Z(2) by [11] and frombo∧Σ−2P2C ' bu one

getsbu ∧ R ' ∨
i≥0Σ

2i H Z(2). The rest of the argument is the same as in[4]
and

AC ∧ BΣ2

∼
tr−→ AC chAC

−→ WAC (22)

with WAC
n (X) := Hn(X; Z(2))⊕

⊕
i>0 Hn+1−4i (X; Z/4i )(2) is a cofibre sequence.

For n = 2a+1− 2 we have then
1. pr∗ : ACn+1(l ) → ACn+1(l ) is injective
2. chAC(t(a)) /= 0 on ACn+1(l ) andchAC(t(a)) = 0 on ACn+1(l̄ )
3. pr∗ : WAC

n+2(l ) −→ WAC
n+2(l̄ ) is onto.

These facts imply as forp odd

Theorem 22 For n = 2a+1−2, a ≥ 2, the image of hAC : πS
n (BΣ2) → ACn(BΣ2)

is contained in the subgroup of order2 and ACn(BΣ2) contains a non trivial

stably spherical element if and only if h2
a ∈ Ext2,2

a+1

A∗ (F2,F2) is permanent, i.e.
there exists an element of Kervaire invariant one in dimension n.

We have forn = 2a+1− 2, a ≥ 2,

ACn(BΣ2) = Z/2a+1 (for example by (22)) and
An(BΣ2) = Z/2a−1 (e.g. see[2, 10] )

Comparing the exact sequences givingACn(BΣ2) and An(BΣ2) shows that the
canonical mapAn(BΣ2) → ACn(BΣ2) is injective (forn as above), hence The-
orem (22) may also be formulated withA-theory. In this formulation the result
is due to M. Mahowald[10] (see also[2] and[7]). In [10] it is also shown that
A∗(BΣ2) detects the transfer lifts of the Mahowald familyηj .

The reformulation of Theorem (19) is left to the reader.
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