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O Introduction

Let G be the Adams summand pflocal complex periodic K-theory, its (-1)-
connected cover, i.6,(S% = Z ) [vi], [v1] =q = 2p — 2 andp a prime. Define
the spectrum by the cofibre sequence

|2, st (1)

S0 LN

Sincel.(S°) is torsion free every element in the stable homotopy groups of
spherestS(S%) @), n > 1, has a liftx € ©5,;(1) underd : | — S In this paper
we solve forp > 3 the problem of which elements (1) can be detected by
the e-invariant of Adams and Toda. It is an application of the hard computations
in [12] and the main result gf13] .

Instead of thee-invariant itself we shall use its refinement given by connected
Im(J)-theory A.. Im(J)-theory A, is a generalized homology theory defined by
the cofibre sequence of spectra

A2 &oya A A 2

whereQ is thel -operation withv;-Q = 9X —1, ¥ is the stable Adams operation
andk generatesZ/p?)* (k = 3 for p = 2). Alternatively if we choose in addition
k to be a prime power, then Quillenalgebraic K-theory K, localized atp,
may serve as a model féx. TheIm(J)-theory Hurewicz map

ha 1 15 (X)) — An(X)

contains all the information which theiinvariant can give. In generalizing the
2-primary case, an elemefit € 75(S%p, is called a Kervaire invariant one
element if it is detected by the secondary cohomology operation representing the
classb € Ext?) (Fp, Fp) for p # 2 (andh? € Ext’; (F, F2) for p = 2) in the
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E,-term of the classical Adams spectral sequencepFo such an element has
well known geometric and homotopy theoretic interpretations and applications;
for p # 2 some interpretations are discussedif] . Our main result may then

be stated as follows.

Theorem 1 There is a non trivial stably spherical element ig,A4(1) if and only
if there is an element of Kervaire invariant onezs, ,(S% ).

The negative solution of the Kervaire invariant one problemgor 3 by
Ravenel[13] implies then that infy : w?nfl(l) — Agn_a(l)) is Z/p for
n =p(p —1) and zero otherwise. The situation B2, the classifying space of
the symmetric group, is similar: As an application of Theorem 1 we show

Theorem 2 The element of order p insA_»(BX}) is stably spherical if and only
if there is an element of Kervaire invariant onezs, ,(S% ).

Forp = 2 this is a well known result of Mahowald but apparently no complete
proof for one of the implications has appeared up to now. *)

In [4] the Im(J)-theory Chern character is defined. It is a set of natural
transformations

Ch(?_l D An(X) — Hpsa—qi(X; Z /1)) (3)

and we may ask which elementsof 7$(S%),, are detected by the functional
operation associated to it (i.e. for whi¢hthe natural transformationh{;Pl is
non trivial on the cofibre of modulo indeterminacy). An attractive reformulation
of Theorem 2 is then

Theorem 3 An element fe 75 (S%) is detected by the functional £operation
if and only if f has Kervaire invariant one.

Proofs and statements differ slightly for odd primes ané 2. We have
chosen to give the detailed formulation fprodd, in particular, in Theorems
1,2,3 abovep is odd. But since the Kervaire invariant one problem is most
interesting afp = 2 we have indicated the necessary changes to prove Theorem
2 for p = 2 in an appendix.

*) added in proof: Recently N. Minami (On the Hurewicz Image of the
cokerneld spectrum, preprint 1995) has independently given a proof of Theorem
2, which is also based di2], [16] but slightly more direct than the one given
here.

1 The map e

To determine the possible spherical classesfin_1(1) we use the factorization
T : Apm_1(BP) — Ay _1(I) whereBP is the Brown-Peterson spectrum @t
BP is the cofibre ofS® — BP andT : BP — | the usual Todd map. The
commutative diagramn(> 1)
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BPx-1(S") — 75, 1(BP) = 75,_5(S%) — BPm_2(S°)
l | | ! @)
lan-1(S) — 75 4() D 75 H(SY) = lana(SY)
shows thatha : 75, ;(1) — Axn—1() factors through

T @ An-1(BP) — Aon—1(l)

Since Agn_1(BP) = 0if n 2 0 mod p — 1) we may assumen = 0 mod
(p—1). Also A :ln_q(BP) — Ax_1(BP) is onto, hence every stably spherical
X € Aon_1(l) is in im(A : lon—q(I) — Aon—1(1)) by naturality. Since in general
Agm—1(BP) is much larger thamAqm—1(1), we get, without further investigations,
only the weak restrictions thate imA and n =0 (p — 1) above.

Let HS(BP,) := Exté’PtBP(BP*,BP*) denote the E-term of the Adams-
Novikov spectral sequence, based BR-theory. We shall construct a map

e: H?BP,) — A.(BP)

such that any stably spherical classAgm—1(BP) lies in im(e). Now by the main
result of[12] H?(BP,) is explicitly known and much smaller tham\, (BP).
This will give the restrictions for elements iA.(]) to be stably spherical which
we shall need, namely we shall computgim(e)). Whether a class inT (im(e))
is stably spherical will then shown to be equivalent to the Kervaire invariant one
problem.

In [12] the elements iitl 2(BP,) are described by primitives iBP,. /(p>, v5°)
via the universal Greek letter map: There are short exact sequences of
BP,—comodules

0— BP, — p~'BP, — BP,/p>® — 0 (5)

0 — BP,/p™ — v, 'BP./p> — BP,/(p*,v°) — 0 (6)

inducing long exact Ext-sequences. The two boundary maps associated to (5)
and (6) define the map:

. b .
1 EXGp gp(BP., BP./(p™, %)) = Exigi gp(BPs, BP. /p™)
2, ExtZ3 gp(BP., BP,) @)

It is shown in[12] 7.1, 7.2, 4.8, 4.2 that (fop # 2) n is an isomorphism. The
short exact sequences (5) (6) belong to the defining sequences of the chromatic
spectral sequencl4] and it is known that all sequences of this type may be
realized geometrically. It is now clear how to proceed: We lift to filtration zero
and map then td usingT. To do so, we need only the geometric realizations

of (5) (6) which are well known. The sequence (5) is induced by maps between
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Moore spectra. For the convenience of the reader we recall a realization of (6)
(For a similar discussion s€&]). Denote byS®/p', S°/p> the Moore spectra

for the groupsZ/p' and Z/p> and byAd the cofibre spectrum of the stable
Adams operation)® — 1 on p-local periodic complex K-theory, i.Ad fits into

the cofibre sequence of spectra

k
~Ad 2o A yad—

(We may equally well use the spectrumpKinstead of G in this sequence, on
the other wedge summands of,Kthe operation/* — 1 is an equivalence). The

spectrumAd is defined by the cofibre sequence
— s Ad PSAd—
Lemma 4 The cofibre sequence
S%/p>= — Ad A S°/p> —Ad AS°/p>® (8)
is a geometric realization of (6) i.e. if we apply BB this sequence we obtain (6)
Proof. In the following commutative diagram
BPASY/p> MAL Bp A AdASY/p®

l L g1
v BP ASO/p> Ly 'BP A Ad A S?/p>

we show that g g, are equivalences. Then we get, with ng-—lggL

BP./p* — v 'BP./p® — BP./(p™,v5)
| | g. |9, 9)

BP.(S°/p>®) — BP.(Ad A S°/p>) — BP.(Ad AS®/p>)

proving the lemma.

a) For g, the map g. : Ady(BP;Z/p™) — Ady(v; 'BP;Z/p™) is the direct
limit of maps Ady\(BP; Z/p') — Ady(v; 'BP; Z/p'). But Ad,(v; 'BP; Z/p') =
Ad\(BP;Z/p') [v; '] and vi’* = B, , where B; is an Adams periodicity
operator as for example constructed[8). To see this we use th&; induces
multiplication byv! in Ad,(BP;Z/p') c Gn(BP;Z/p') and vi, = p-ty+uv1
(see Sect. 2 below for @BP; Z/p')). Hence v?, = o° on G,(BP;Z/p'). Since
vy operates as an isomorphism, the same is truevﬁl';r and g. is bijective as

the direct limit of isomorphisms. ‘ .
b) For @, we first need that the Adams periodicity operaBpr X9 S°/pi*t

— S%/p'*! induces multiplication byvf (up to a unit) onBP,(S% Z/p'*Y).
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This is well known and follows from the fact th& (1) € BPyy (s%z/p™h
must be coaction primitive. The group of primitives is cyclic and generated by

o (e.g. see[14]). Then v;ls_P*(SO;Z/pi*l) = BP,(S%Z/p'*") [B;!]. Now
(S%/p'*h) [B71] ~ AdAS°/p'*t by the Mahowald-Miller theorem (e.g. see
[3]) and g. is the direct limit of isomorphisms.

Remark.Observe that the isomorphism g v;lBP*/pOO >~ Ad.(BP;Z/p*°) in
(9) is the canonical extension of tAel-theory Hurewicz mapag : 75(BP; Z /p™)
= BP./p> — Ad.(BP;Z/p>) to v;'BP,/p>. Since D:Ad.(BP;Z/p>) —
G.(BP;Z/p) is injective we may use the well known formulas for

hs : BP, - BP,BP 2% G,BP

to compute g . If we denote the image ok € BP, in G.(BP) by X then

X |\ _ X
G\ i | " mi
p vy p' vy

Example.lf we abbreviateT (t;) by t; then
vi=p-ti+v;  and vp= vp-td —of -ty modp

in G.(BP) = G, [ty, t2,..] (see Sect. 2).
Denote the set of coaction primitives B, (X) by P,BP.(X). We now define
a map
e: P,BP,/(p>°,v5°) — An_1(BP)

by the following commutative diagram. Assumds even.

PaBP./(p>, v1°)
n
0 - BP/P® — u;BP/p® = BP/(P® ) — 0
I gx 1= 1=
0 — 75(BP;Z/p>®) — Ad(BP;Z/p>) — Ad, (BP;Z/p>*) — 0
[ i1
TSBP;Z/p®) ™ ABP;Z/p=) L A 1(BP)

Pri l pr l

ABP;Z/p®) & A, 4(BP)
(10)
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(pr : BP —BP is the canonical map; the Bockstein map and: Ay(X) —
Ad, (X) is the map from connectivien(J)-theory to non-connectivien(J)-theory
Ad, with

An(X) = im(Ad (X") — Ady(X™H),
i is induced by inclusion of skeleta).
Definition 5 e:=Sopr,oi tog, ored!

In order to havee defined we must show

Lemma 6 (1)x € P,BP,/(p™,v1) == g. ored1(x) € im(i)
(2) B o ha(m3(BP;Z/p>)) =0

Proof. (2) is clear since3 o hy = hy o 3 andr,,(BP) is O for n even.
Proof of (1): We have
PnBP./(p™, v1) = ker((n — 7r) : BP../(p™, v1) — BP.BP ®gp, BP../(p™, v1))
An elementx in vl_lBPn/pOO maps undered into P,BP../(p*°, v1) if and only
if (n. — 7r)(X) is in iIM(BP,BP ®gp, BP,/p® — BP,BP ®gp, vy 'BP./p™).
Under the isomorphism. this translates into

{x € Ath(BP; Z/p*) | red o g *(x) is primitive} =

x| (L — mR)(X) = haa(2) in Ady(BP A BP;Z/p™)

for somez € 7 (BP A BP; Z/p™)}
Now G : Ad,(X;Z/p>°) — Gn(X;Z/p>) is injective forX = BP or X =BP A
BP andr (Dx) = DxA1L, nr(Dx) = 1ADx in Gn(BPABP; Z /p) by the Kiinneth-
theorem for complex K-theory. To have (—nr)(Dx) € imhy  impliesD(x) €
Gn(BPM:Z/p>®) since ha(rS(BP ABP;Z/p>)) is contained inG,((BP A
BP)™;Z/p>). This impliesx € im(i : Ay(BP;Z/p>®) — Ad\(BP;Z/p™)).
Herei is injective since A,(BP; Z/p™) = Ad,(BP™; Z /p>=) O.

We also need

Lemma 7 Letn be even. Then
(1) e is injective. (2P is bijective. (3) the diagram

(S (P, 05) 2 mSap) D aN(s?)
1 02
=7 0,
Tor2(BP; Z/p™) ,
| hep AN
! ha 71'r?+1(BP)
An+2(BP; Z/p>) | ha
B8
\

Pns2(BP. /(p™, v5°)) = An:1(BP)
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commutes i.e. on stably spherical elements ip.BS°) /(p>, v{°) the invariant e
is essentially the Hurewicz map hrS, ,(BP) — An.1(BP) (here we have written
S%/(p>, v$°) for Ad AS?/p> e.c.).

Proof. (1) Choosex; € vy *BP,/p> with red(x;) = x. Then e(x) =0 implies
g«(Xa) € ker(B) =im(r : An(BP; Q) — Ay(BP; Q/Z)). The commutative square

ha
—

7S(BP; Z/p>) A\(BP; Z/p™)

Tr Tr

ha

™BP;Q) —  A(BP;Q)

then shows thax; is in ker(ed).
(2) Since 7, (v71S%/p™®) = Adh41(S% Z/p™®) = Ad(S?) s zero,d; is onto
(n even!), and sincers,,(S°/p>) — 73,,(Ad/p>) is onto,d; is injective.
(3) By comparing the two cofibre sequen@y/p> — v;1S%/p> — S°/(p,
v$°) andS® — BP —BP we obtain (suppressing the equivalengeg in (10))
the following commutative diagram. It is a well known fact that red=! o
hep 0 07 = pritoj o ;7 mod Me(rS,,(Ad/p™)) + | (BPha(S°/p™)) in
BPns2(Ad A SP/p>).

wS(Ad/p=)  —  nS(Ad /p¥) B 7S3(S%/p>)

| hep | hep

red

BP.(S°/p=) 1% BP.(AdAS%/p=) ¢ BP.(Ad AS?/p™)

! 1 pr.
BP, (S°/p>) % BP, (Ad A S°/p™)
1 02 N had 1%

75(S°/p™) Ad(BP;Z/p®) > A.BP;Z/p=®) 2 A.BP)

Givenx € ,,(S%/p>°) choose elements, Xz, X3 With d1(x1) = X, red(x) =
hgp(X1), 02(x3) = X. Under the maps

BPp+2 (S°/p™) feg Adh+2(BP; Z/p™) 5 An2(BP; Z/p™) LA An+1(BP)
X3 is mapped tq3 o ha(X3). On the other hand, up to the identification
BP A S°/(p™, v5°) ~ BPA Ad AS®/p™

the definition ofe reads as
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e(her(x1)) = G oi "o pr.(x)

But pr.(X) = j.«(xs) mod pr, o j.(BP2(S°/p>)) and under the map o i~
the indeterminacy is mapped to zero. Heegasp(d; *(X)) = ha(d; *(3(x))). O

RemarksSlightly simpler is the use of the two cofibre sequences
S -BP —-BP and BP—BPQ—BPQ/Z

for the lift from Adams-Novikov filtration 2 to filtration 0. The Hattori-Stong
theorem then shows thad ?(BP,) is a subgroup ofA,(BP). But in order to

use the definition of the elements given[i?] we had to use (5) and (6). The
approach via the Hattori-Stong theorem works for every torsion free space or
spectrum (instead dBP). In our case we get the purely K-theoretic description
of Extgp 5p(BP., BP.(BP)) (= H%(BP.)) as ker¢ : Apn_1(BP) — Aon_1(BP
ABP)) whereV is induced fromi : S° — BP.

2 A.(BP)

Forn even we havé\,(BP) = BP,(S%). Whereas fon oddBP,(S°) = 75(BP) is

zero,Amg—1(BP) is non trivial and growing very rapidly witim. So Amg—1(BP)

may serve as a universal example fam stably spherical classes &.(X). The
order and the number of cyclic summandsfaf,—1(BP) is known[9], but here
we need only a certain subset of classes relateg.t®ecall

BP.BP =~ BP, [tl,tz, ] and G,BP ¥ G, ®gp, BP.BP = G, [tl,tz, ]

wheret; = T(t) andT : BP — G is the Todd map.
We have

An(BP; Q/2) = Adyn(BP; Q/Z) C Adyn(BP: Q/Z) C Gqn(BP: Q/2)
and denotéhg (vi) € G.(BP) again byv; where
hg : 72(BP) — G, (BP)

is the G-theory Hurewicz map. From;= v, +p - t; it follows that vﬁi acts on
classes of order at mogf** in G,(BP;Q/Z) as multiplication by} , hence
v, iS an isomorphism. I'G..(BP; Q/Z) we therefore have classes

m
U2

pi- v
which are in ker¢* — 1) since multiplication withy; commutes with/k — 1. So
pivzvi defines a class iAd.(BP; Q/Z). To describe classes if.(BP; Q/Z) we

neeld to work out the skeletal filtration of such elements:
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Proposition 8 For 0 < a < m the class
vy
patl oy °
in G,.(BP; Q/Z) is in ker(@* — 1) and has skeletal filtration at mosf(imp + a),

v

that is peet 2. defines an element ingfnp+a)(BP; Q/Z).
W

Proof. Chooses with s- p? — (m — a) > 0, then
Urzn _ v;n ] Uipa—(m—a) _ v? ] Uipa—(m—a)

a —

T ar M- i SP T asl SPR
pat vy pa+t vy Py

. . 2 . a .
(since vip =v;® on classes of order at mogt*! ). Usinguvi= vy +p - t; we
may writez as a sum of terms
s-p?—(m—a)) M
( j ) vz
pa+1—j . UT*aﬂ'

It therefore suffices to showb(=a —j)

m

v

SR, ) <a-(m-p+b)
p U1

where SF abbreviates skeletal filtration. Write,.= p - A+ v, - B where A =
to—p°~ - ™ andSF(A) =q - (p+ 1), SF(B) < q - p.

p—1 ) o
ot [ (3o -

i=2

- (p ; 1) t-of e.g. se¢ld])

We get
m m . . . i
G = (R BTaf /phaf )
j=
b m . . m—i m_j b+1 m—b
= (P -A BT ()

1
o

b ) S )
- J;O (ij)Ab—J . Bm—b+] 'UJ:L /pj+1
Now SF(AP—i . B™=b* .4} /pi*1) < q.(m-p+b) and the result follows

Remark.All elements inAqm_1(S°) are stably spherical hence the subgroup
i( Agm-1(S?) in Aqm—1(BP) is zero. Since alséym_2(S°) = 0 we have
Aqm—l(BP) = Aqm—l(BP) (11)

We shall also label elements #ym—1(BP) by their names iM\gm—1(BP), i.e.
suppress the mapr : BP —BP in our notation.
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3 ExtZ5 gp (BP., BP,)

In [12] the elements oExté;D”*BP(BP*, BP.) ¥ P,BP,/(p*>,v{®) are defined in
vngP*/(p"O,v’i’O) as follows: Define elements, in vngP* by

Xo = v2

_ -1
X1 —X(‘;*UE'UZ - U3

2 2 2 _ 2

X2 = xP PRl e (12)
and forn > 3

- C
Xn = Xy — 20 v

whereby, 1= p"+p"'—p—1,¢, := p"—p"~'+1. Letay := 1 anday, := p"+p" -1
for n > 1. Then forn > 0,s > 1 ands # 0 modp, j > 1,i > 0 with
j <prifs=1andp |j < a,if s> 1 the elementss/ (p“l.vll) c

vy 'BP,/(p™, v{°) are inP,BP, /(p>°,v{°) and definesyy j i+1 via the mapn
in (7).

To compute the image iy /j i+1 in Agm—1(BP) (¥ Aqm-1(BP))  we need
a v, '—free form of x$/(p'* - v)). For our purpose the following weak form
will be sufficient

Proposition 9 The image ofisy /j i+1 in Agm(BP; Q/Z) may be written as

sp’
Y2 42 .z with p-z=0

pi+1_ Ulj

Proof. Step 1: We first treat the elements of orgeCalculating mog and using
(a +b)P = aP + bP the defining equations (12) reduce to
X = (2.0 05 —2- v‘l)h“_l bt -2 vfn_%s : vg”‘%g
n_ . n-—2 n n—2 n—2

_ph—14 n—2n2, +1 n_o, n—1
PP (P*+p ),Urza p ,Ug (13)

p" _pn—l pn—l p"
—v; -, cvg tUy) mod p

If s=1 thenj < p" and (13) gives

n—1

n n__ +
o _ o
pn p" pn—2
p-vy p-v p-v
Then
_pn _pnipn—l_'_pn—z
e( X ): Y2 b2
p" —p" —pN—2+42
p-v; p-v p-v;

in A.(BP; Q/Z) . Multiplication byz?fn_j gives the conclusion for albsy ;. Let
nows > 1, thenj < a, =p"+p"~! -1 and (13) givespfiJl as a sum of terms
of the following type
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S n n—1 n—1\ St
= P’ PP p
Zy.s,....ss = const (1)2 ) . (”1 - Uy -y
n_n—2 .n_n—1,.n-2 n—2 2 1 n_opn—1 -2 S
L (pP+p+ )vg PR . aa)
i i Sh—i S X
plb i pIC . b, c i
...... (vl n—t U2 n—i ’Uln ’[)2n / p ) vl

Every termzg, s, ... s, IS definedin v, > 'BP, /(p*, v{°) but does actually belong
to BP./(p™,v5°). If 5 > 1, this term contams»lpn and so reduces to zero in
BP./(p*°,v$°). If 51 = 1 there is an indeXy, # 1 with 5, > 1 (sinces > 1).
The negative power of, in (vf oy P ' -vgnfl)&is cancelled by the positive
power ofv; in the factor with exponers;,, so the term lies irBP,. /(p°°, v{°).
In addition we have at mogt - v’l‘*l in the denominator. If, > 1 the power of

v1 contained in the factor with exponegj cancelsvi’nf1 in the denominator. So
we are left with the cases =1,5=s—1ands; =0.If 5 =1,5=5—-1 we
get
O U
Z5-11,00,...0 = const- 2 ;o

p-v;
with j < p"~! — 1 and it follows (by (8)) thate(zs_1100...0) = v5-2 with
p-2=0.Letnows; =0.Ifs > 1,5 > 1withi,k > 2 thenz, o, ... contains

vfb”*”'pkb"*k butj < p'-bs_i +p*-by_x. The same conclusion follows if or
kis 2 . Hencesy =s — s, with 5, < 1 andip > 2 and we get

vspn v(s—l)pn 3P

2. or 2 K 273

pvjl pvy
with k < p"~1+pn—2—1. Again by (8) the conclusion follows.

Step 2: Consldexﬂ /(p'+l v}) with j = 0 modp', j <an_j,1 > 0and iterate

on X, = (X 1721; v). Takejo :=p"~" +p"~ =1 —p' if n > 2i orjo=p'
if n=2i thenj <jo and We have

s p's

X Xy
i jo T i io
pl+1 . U]_ p|+l . U]_

in BP,/(p™,v5°) as long ad,_r+1 > jo. This is the case for <i. The next
case is

xP's

= (2

i+1, JO
Py .
p|+1

|51 | |'n—i. I'Cﬂ—i (Sp' |) i+1 -0
e () ok

Only fori = 1 we get the extra term

C—i _,,P(sp—1)
_ZS'UZ “Xnli-1

p-u
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which is handled as in step 1. Proceed now by inductiok dh< k < n — 2).
Assume

k—1 3
p‘T s p‘s

Xn7k+1 - ank +7

pi+1 . ,Ullo pi+1 . ’UJf

wheree(z) = v? -2 with p- 2 = 0. Then
pKs

spf .
,k p bk Gk i+1 o
io (Xn—k—l — 20" v, ) /P g

i+1,
pi*luf

k+lg

p R .
g ¥ 22 <SFK) oy X i
=1

i+1,,,)0

If vp(I) < k —i, the power ofp in the binomial coefficient(s{f) is at least
i +1, so these summands give no contribution. ILetp*—ii. If | > 1, we have
I -p"" - bh_k > jo, so the power of; is already to large. We are left with the
term with| = p*~'. Sincer, ((pip_ki)> =i the denominator reduces o v} and
we obtain - s

a-y Y
p-oy
with a € Z andjy < pki*t+pk —pl (g < prithephl  pioLif
n=2i). As in step 1 it follows that the image of

k44+ls

p
Xn—k+1

D vjl?k—i+1+pk—i_pi

in A.(BP) may be written a®Z- 2 with p - 2 = 0. This completes the induction
step fork < n — 2. The case&k = n — 2 andk = n — 1 have to be dealt with
separately but follow exactly the same pattern. We end with

s p"s
X _

10 e g T
F)I*'l . 1}1 F)I*'l . ?)1

where the image of z il.(BP) may be written a®?- B with p- B = 0.

4 A, (1) and the image of T on im(e)

Note first, thatAqm_l(I_) ¥ Agm—1(I) by the same reason as fBP. In [8] it is
proved that the totah-theory Chern character

ch® 1 Ag(l) — W) = Ha (15 Zp)) © @D Hisa—apil: Z/pi) o)
i>1

is injective. Sincev; = p - my in homology, it is immediately clear that every
element of ordep? in Ay(l) is annihilated byv®. Here we shall prove a weaker
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form of this conclusion (with a proof which easily generalizepte 2) and use
this to compute

T: Aqm—l(BP) — Aqm—l(')
onimf(e).

Proposition 10 Assume x= 931 . % in A,(I) with p? - & = 0 and X = A(X),
X € 1.(1), then x=0.

Proof. Recall from[1] thath : I.(I) — H.( Al;Zy,) is injective, the torsion
of H.(I Al;Z¢y) is is of orderp and annihilated by, and the description of
[.()/tor: We have

v u
H.(I Al Z tor ¥ Z ,
( ®)/ ® [p p]

with u:=1Av1 = vy, v :=v1 A1 and a homogeneous polynomial

uni oyl
f(u7v):Zai ’ pnfi pi

is inim(h) modtor if and only if for all integeram, s prime top the integrality
condition

fmP=1.t, 8P~ t) € Z(y [t]

is satisfied. In the following we abbrevialg?‘l_by m and writeg; := (k' —1)/p .
Write h(X) =: f(u,v) = w1 + Y g - u"" =2 /p" 1 in Hp_1q(l A 15 Z()
with p - w; = 0. Sincep? - X € ker(4) we getp? - f(u,v) € im(Q A 1,), i.e.

n—1 ap?
§(u,v) = un—i—1y,iet
§(u, v) iZ:(; pP"Cis1

is in Hng(I Al; Z(p)) With (Q A 1).(g(u, v)) = p3f (u,v) (since Q A1).(v}*1/p'*h)
=Gi+1- v}/p'). Thereforeq - p?/ci € Z, for all i and

n—1

ou.0) = )~ 3

i=0

& p? u
Cisp P21

is a well defined element iklhg(l Al;Z(p)) satisfying Q A 1).g = u?f.

We now show thay satisfies the integrality condition for beingim(h). We
may writem = k¢ +p°e , § = k9 +p>h with « larger than any denominator in
Assume als@ < d. Theng(mt, st) € Z) [t]  if  g(k°t, k%) € Z( [t]. Now
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g(kct, kdt) — r:jol o a.c'I+1 [kc(n—i—l)kd(i +1) kc(a+n)} .tam
_ ni:l a  Ke(—i—Dedi+n)_ lkc(a+n) ta+n
o pn—1 Ki+l_1
— nil a  k@-o0+_ Lgc@+n) . ta+n
i:0 pn 1 k|+1 1
n—1ld—c— . .
- Zg Z_: paq_l ki (i+1) . kc(a+n)ta+n
d—c-1

S f (L, kit) - kire@mpart
j=1

which is inZ, [t] sincef (t, kjt) is. Therefore there exists an element Inq(1)
with h(z) = g(u,v) + w, and p - wp, = 0. Multiply by v, thenh(v12) = u -
g(u,v) sinceu - w, =0 andQ(v12) = v; - Q(2) = v3*1 - X since

h(o1-Q(2)) =u - (Q A 1).g(u,v) = u*™f (u, v) = h(27"X)

andh is injective. ThereforeA(v2*1%) = 0 andx = 0. O
Consider now

a—

—p 1
z(a) = p ( Uz_p“) = €(fpa-1/pa-1) € Agpe—1(BP)

p-vy
and define

t(@) :=T(z(a)) € Agpa-1(l)

again suppressingr : BP —BP, pr : | — | in the notation. We then know
p-t(@ =0. We need ch?(t(a)) # 0 onA.(I) and ch?(t(a)) = 0 onA.(l).
If t1 € Ig(l) is defined agy = (n.(v1) — 7r(v1))/p then it can be shown that
A(pafltfa_l) =1t(a) in Aga—1(l). From this and Example 3 if#] we easily get
chA(t(a)). To avoid the calculation foﬂ(pa‘ltfa’l) =t(a) we use (3.5) if4] :
Now v, = v3t] — vfty modp, so

1 _ p a _qya—1 ja—1
o (tf—vf 1t1> ) (tf B )
p . afa—l p p
in Agpa(BP; Q/Z). Hence (by (3.5) if4])
_pa—l (71)‘ (F}a)m];-)a*l‘

Chqj l(z(a)) - Chq] _pa 1) - p

a—1 pa—1 a-1_q

in qua qi(BP;Z/j) since ch; PP D) = cngﬂ_l)(vgp—l’*’
t1 /p) is integral. So

_ [0 ifj#p
chy1(2(a)) = { p* - 1in Ho(BP; Z/p?) if j = p? )
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and the value forchg}fl(t(a)) follows by naturality. In particulart(a) #0,
chi_1(t(@)) # 0 onA.(l) butch?(t(a)) = 0 onA.(l). Now we are ready to prove

Theorem 11 If z € Ayy_1(l) is stably spherical, then g (p — 1)p?, a > 1, and
z is a multiple of (a).

This follows from

Theorem 12 The image of T on(Exté’;‘*Bp(BP*, BP.)) C Ax—_1(BP) is gener-
ated by the elementga), a > 1.

Proof. By definition T (e(8pe-1/p2-1)) = t(a) and we have to show that all the
other3'® go to zero. We use Propositions (9), (10) akgh-1(BP) = Aqm-1(BP),
Agm-1(1) = Agn—a(l). If j > 2 thenT o e(Bpa-—1/pa-1-j) = o) - t@) = 0 by
Proposition (10). Iff =1 we write

— a—1__ a—1__ _
(Bp-ijpri-1) =02- (@ /P T w) = 02.(2)

where we viewv, as a self map oBP. ThenT o e(Bpa-1/pa-1_1) = v2.T(3(2))
butv,, =0inA,(l) (this follows from the facts thafl ov, : X1"2IBP — BP — |
is zero andT is multiplicative). Next fors <1 ori > 1 if s=1 we have

o7 >
Toe(Bspji+) =Top p‘flﬁfl v T(z1)

with p - z; = 0 by Proposition (9). But itAqm(BP; Q/Z) we havevgpa/p"'lijl =
01%2. 7, with 2, = 057 /p'*Lii*'*2 sincej +2i +2 < sp? as an easy estimation
shows (Proposition (8)). Henc&(3(z - v}*?)) = 0 by Proposition (10) since
p*-T(B(z)=0.0

The Thom reduction

o EXG5 gp(BP., BP,) — Ext?) (Fp, Fp)

from the B-term of the Adams-Novikov spectral sequence to thedfm of the
classical Adams spectral sequence is knowr] 1. We havea(Gpa /pa) = —ba
whereb, is analogous to the class carrying a Kervaire invariant one element at
p = 2 (if it exists). Note that in the dimension ¢k, . all other elements in

Exté’;‘*BP(BP*, BP,) map to zero undet, so that kerg) = ker(T o€) in this case.

Corollary 13 t(a) € qua_l(l_) is stably spherical ifand only ifh ; € Extz,;{t (Fp,
Fp) is permanent (i.e. there exists an element of mod p Kervaire invariant one in
dimension ¢ p? — 2).

Proof. Note first, that the well known geometric boundary lemredf 2.3.4)
implies that the following diagram commutes
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oo ,,00 0 o] B
FOrSo(S0/(p,v5%)) = FimRa(8%p®) = F2my(S9)

!

Pns2BP, /(p>°, v5°)
[
EX 2 (BP.., BP, /(p™°, 15°)) > Extai i, (BP,,, BP, /p>)- > Exten % (BP, , BP,)

Here the unnamed arrows associate to an element in Adams filtiatign E,-
representing set. Hence we may treat d o 0 as an identification and use the
Extégi sp(BP., BP.)-names for corresponding elementsHn.,BP../(p>°, v$°).
"="1If t(a) is stably spherical thea(5y-1 /5.1 +2) is stably spherical with
e(z) € ker(T) (use the diagram in Lemma (7)). TheiBpa-1 /pa-1+2) = —b,_1 is
permanent. Conversely, lif; is permanent, theflya—1 pa—1+w with w € ker()
is permanent, hence o e(Bpa-1/pa-1 +w) =t(a) is stably spherical]
The odd primary Kervaire invariant one problem was solvedpfas 3 by
Ravenel[13]: Forp > 3 anda > 1 b, is not permanenthb; is permanent
representingd; ; for p=3 (33,3 is not permanent buty,9 + 37 is). Hence

Corollary 14 For p > 3 and m odd the only stably spherical elements j(IA
are the multiples of(tL).

Remarks.
1. A purely K-theoretic proof of Theorem (12) is, in principle, possible. Since

EXGp gp(BP., BP.) C Aqn_1(BP) is ker@ : Aqm_1(BP) — Aqm_1(BP ABP))

(where¥ is induced fromS® — BP), one has to computen(T)jkerw)- But to
compute kenf) seems to be not much easier than the work dord 2h.

2. A purely K-theoretic proof of Theorem (11) is simpler: Sird# : A.(I) —
WA(I) is injective [8], one only has to work out kesh® on A,(l). The disad-
vantage of proving only this is, that then the relation to the Kervaire invariant
one elements is harder to derive.

5 Stably spherical classes i, (B X))
and the functional A-theory Chern character

Although there is no lift of the transfer metf): BX, — S%to a mapBX, —

X1 (sincetNr (1) € 1°(BX}) is non zero) there is a strong relationship between
stably spherical classes iA. (1) andA,(BX,). Recall (e.g.[4])

Aqm-2(BXp) = Z/p*e™

and denote a non zero element of orgdn  Age_»(BXp) ¥ Z/p? by x(a).
We shall show that the only possible stably spherical elementsifB.X,) are
the multiples ofx(a).
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i~ A
The cofibre sequences? — | —| and BX, AA - A 25 WA (see[4])
induce the following basic commutative diagram of exact sequences

1 ch? T ch?
Aqul(l) % Aqul(l_) - Aqm72(50) - Aqm72(|)

1r 1r 70 1
Agn-1( ABZp) — Agmoa(l ABS,) 2 Agn 2(Bp) — Agmoa(l AB)
! 1d T !

* n 0
WhO T WRD 2 W (S) = W)

(16)
We first show

Proposition 15 Suppose x Agm—2(B X)) is stably spherical. Then % 9(x;) for

some stably spherical element & Aqm_l(l_/\ BXp) and tr x) € Aqm_l(l_) is
non zero and stably spherical.

Proof. Since w5, »(BXp) — lgm2(BXp) is zero , anyf € mg ,(BXp)

with ha(f) = x has a liftf € 75, _,(I AB ) with ha(f) = x1, 9(x1) = x. Assume

tr (x1) = 0, thenx; = d(x) but pr, : W) — Wqu(I_) is bijective form # 0,
therefore this would imply = 0. Hencetr (x) 0.0
Combining this with Theorem (11) and Corollary (13) gives

Theorem 16 The image of h: 75,(BXp) — Acn(BXp) is zero for n# (p — 1) -
p® — 1 and contained in the subgroup of order p igA »(BX,) = Z/p?.

Corollary 17 a) Ifx(a) € Aqn—2(B X)) is stably spherical, then there exists a (p-
primary) Kervaire invariant one class (i.eqb; in Ext'z’é**(Fm Fp) is a permanent
cycle).

b) If p > 3then Iy : wzsn(BEp) — Pon(BX)) is zero except forF (p—1)-p—1.
Forn = (p—1)-p—1 ha is bijective and any generator @ﬁn(BZp) =Z/p maps
to a non zero multiple of; under the transfer map : 75, (BXp) — m5,(SP).

We now turn to the converse of (17)a.

Theorem 18 If the element b ; in the classical Adams spectral sequence is
permanent, then(g) € Aqp—2(B2)) is stably spherical .

Proof. By Corollary (13) we knowt(a) € Aqp—_2(1) is stably spherical iba_1 is
permanent. Consider the commutative diagram=q - p? — 1)
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An_1(BX)p)
o/ N\ ha
ABIAT) ™ mSBZAL) -5 1S, (BE) 2 1h_1(BX)
1t 1tr Itr

Al) ) D)
Choosd € 75(1) with ha(f) = t(a). S_incetNr is onto by the Kahn-Priddy-theorem
we have a lift ofd(f) to an element < w,?fl(BEp) and since,_1(BX,) =0 a
lift of f to an elemenf € 7S(BX,A 1). Clearlytr (f) =f. Thenha(f) =% #0
sincetr (1) = t(a) = ha(f). Assume nowd(x) = 0 in A,_1(BX}). Then there
existsx, € An(BX, Al) with pr.(x2) =X, in (16). By commutativity in (16) we
havetr (x2) = t(a) in Aq(l) = An(1) which would imply ch?(t(a)) = 0 onAy(l)
contradicting (15). Henc@(x;) # 0 and there is a non zero stably spherical class
in An_1(BX}). Thenx(a) must be inim(ha).

Remark.With different methods the images of : 75 (BXp) — Axn(BXp)
andhy : 75,(BZ/p) — Axn(BZ/p) (for p # 2 up to the elements of order
corresponding ta(a) in dimensionsy =s-p?—1, 0 < s < p—1) are determined
in [6] .

Forf € ker(a : 75(X) — An(X)) the functionalA—theory Chern character
ch? is defined in the usual way: Let

s" Lox L Bsm
be the cofibre sequence associatedl t;d consider the commutative diagram
0~  Aw) = An@) % AwE™) 5o
gy Lehg g
0 — Huz q(GZ/1) 25 Huo qr(CiZ/r) — 0
If 1€ Ana(Cr) is an element withp, (1) = 1€ Ana(S™), thenchy (1) =j.(2)

andz is well defined inHn.z_qr(X; Z/r)/chf; 1 (Ansa(X)). For X = S° we can
completely describe the values which this invariant may take:

Theorem 19 An element fe 735(S%, is detected by the functional A-theory
Chern character if and only if f has Kervaire invariant one (i.e. f is represented
in the classical Adams spectral sequence Jy b
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Proof. n must be of the forrm = q-r — 2 with ,(r) > 0. Lettr: BX, — SO be

the reduced transfer map ahd: w,?(BEp) be an element withr (f) =f (which
can be found by the Kahn-Priddy theorem). Denote the cofibfebyfC; and by
t : C; — C; the fill in map between cofibres. Consider the commutative diagram

Ans(S0) - Awa(Cr)  — Apn(S™h
N /S ché\r_1
N Ho(SO;E/r) — Ho(Ct;Z/r)
tr tr 1 Tt I
Ho(BZp;Z/r) — Ho(Cf;Z/r)
% ey .
Ans1(B ) - Ana(C))  — Apa(S™H) B

Supposé, = 0, then there existge An(C;) with t.(1) = 1 in Ap+1(Cr) and
chfy (1) factors througtHo(C;; Z/r) andtr: Ho(B Xp; Z/r) — Ho(S% Z/r) and
must be zero. Hence ffis detected byeh?, f.(1) =ha(f) must be non zero and
the result follows from Corollary (17).

Conversely iff € 75(S% is represented by, 1 (n = q - p' — 1), then
f.(1) = ha(f) # 0 (see proof of Theorem (18)). Hende(1) Z 0 in Aua(2Cr)
where X'C; is the cofibre oft andd : C — XC; the canonical map. But
C; is equivalent toCtNr and onAH(CtNr) the A-theory Chern charactah?,, is an

isomorphism (essentially by the identification(btf AAwith WA, see[4], remark
following (2.9)). Since

d. : Ho(Cr;Z/p') — H-1(C-; Z/p') * H_y(S%Z/p")
is an isomorphism too:hﬁl(i) must be non zero (the indeterminacy is zero).
Remark.For p # 2 the functional integral Chern charactehl mod p may be
interpreted as the mog Hopf invariant.
6 Appendix: The 2-primary case

At p = 2 there are several versions bh(J)—theory: We define complex
Im(J)—theory by the cofibre sequences

— AdC -2 K U5 K -2 SADC — (17)
— AC -2 bup) - 22buy) -2 $AC — (18)

wherev; - Q = ¢° — 1. ThenAC is the (-1)-connected cover &dC. This is as
for odd primes, the main difference is that not all elementa@q(S°) are stably
spherical; form = 3,5 mod 8 coker(hac) has order 2.

Real versions are defined by
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3_
— AdR -2 KOpp) = KOpp) -2+ $AdR — (19)
— A L bO(z) i) E4bSR2) A) Y A— (20)

(for bspandQ in (20) see[11]). The spectrunA is the proper choice gt = 2,
but differs from the (-1)-connected cover #&fdR in mo and 7;. We have a
complexification mage : AR —AdC induced by the usual complexification.

The groupsH?(BP,) = Exté’F,th(BP*7 BP,) for p = 2 have been determined
by Mitchell and Shimomur§l6]. The mapn appearing in (7) is neither injective
nor surjective but its kernel and cokernel are computefilB). Lemma (4) is
true with AdR instead ofAdC, therefore the definition of the maphas to be
changed slightly. We definesimilarly as forp # 2 but build in complexification.
With the maps from the following diagram

PnBP../(2°°,v5°)

:
0 BP/2° — o BR/2® = BP/2%0vX) — 0

| g 1= |
0 — 7$(BP;Z/2°) — AdRy(BP;Z/2*) — AdR, (BP;Z/2*) — 0
cl
[ AdC,(BP; Z/2%)
T
rS(BP;Z/2°) ™ AC,(BP;Z/2°) £ AC,_i(BP)
pre | pr. |

AC,(BP;Z/2°) 2 AC,_1(BP)
(21)
we set

1

e=proofoi~ OCog*oredf1

and prove Lemma (6) in the same way.

We now turn to Lemma (7):

The mapd; @ m5,,(S%/(2,v$°)) — m5,,(S%/2>) in Lemma (7) is not
onto for all n, but kerQ;) and coker(d;) are determined by the Hurewicz map
hadr © T5(S% — AdRm(SP). Sincehagr is onto form odd, m > 1, we find
that 9, is always injective but has a cokernel of order 2 in dimensions congruent
0 and 2 mod 8. We assume now thais of the formn =2.22 — 2, a > 2,
then 9, is bijective. Complexificatiorc in (21) is injective. This may be seen
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as follows. It is enough to show this with/2' coefficients, for alli. If x is in
ker(c) thenB™(x) € ker(c), whereB; is an Adams periodicity operator for the
Moore spectrumM (Z/2'), (e.g. sed3]). But BM(x) for m large enough comes
from stable homotopy (see agdi8]) and =5 (BP;Z/2') — AdCx(BP;Z/2')
is injective by the Hattori-Stong theorem. Henceo BM™(x) = 0 implies
B™(x) = 0 and this givex = 0. Since under the dimension assumptions made,
AC,_1(BP) — AC,_1(BP) is a monomorphism, we see thats injective as for
odd primes. Then Lemma (7) reformulated wAE .. is proved as fop # 2 .

In Sect. 2 we have

77R(’U2) =+ 2t — 5/l)1tf — 4tf — 3v§t1

henceA = t, — 2t3, B = —5t? — 3u;t; and Proposition (8) is true fop = 2
without any change. Note however that, : ACon_1(BP) — ACom_1(BP) is
still always onto but has a kernel of order 2nif= 2,3 mod 4.

The computations in Sect. 3 have to be redone completely, but no new idea is
necessary. The definition of the elemefifs; ; ; is in [16, 14] . The computations
are even simpler than fqr # 2 sincex; = x2 , for i >3 but there are more sub-
cases to check. The simplest way to proceed then seems to be as follows. We
may put in the definition okg, X1, X, and then expand by the binomial formula.
For the factoly, ™ in Bag)j i+2 We Use (- 4vo/v3)1/2. This givessansj i+1 and
Bans/j i+2 @S @ polynomial invy, vz, vs, v;*, v, *. Then one checks that every
term containing a negative power of is zero if reduced mod“2 andv{°. To
the terms left we may apply Propositions (10) and (8) directly, i.e%if; «
contains a summandg - v'/22 - v? with 2a+b < m, a < m, then

2a~v§’ 2""-17&’

is divisible byv3*! in AC..(BP) and maps to zero iAC.(l) by Proposition (10).
The case ofgx» 1 is handled as fop # 2, also some termsg - v5'/2% - vg

with 2a+b > m >a+b andc > 1. As for p # 2 the only Bxs/; ¢ With non
trivial image iNAC.(1) is Ban /.

The proof of Proposition (10) has to be modified slightly, due to the fact that
(z/2")* is not cyclic. The use of the Adams operatipn* gives the remaining
cases to be checked. Theorem (11) is not truepfer 2 as stated (since in
(7) and9, in Lemma (7) are not onto) butif =2-22 — 1 a > 2 any stably
spherical element iCp (1) must be inim(e), hence

Theorem 20 If z € AC2,_1(1) is stably spherical and & 22, a > 2, then z is a
multiple of {(a).

For the Thom reduction
a1 Ex@ gp(BP., BP.) — Ext% (F2, F»)

we refer to[14] 5.4.6. In the Kervaire invariant one dimensions the kernel of
is the same as keéf(o €) and the proof of Corollary (13) carries over without
change:
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Theorem 21 The class ta) € ACx+1_4(l) is stably spherical if and only if
hZ € Ext'zf*w1 (F2, Fp) is permanent.

To carry over the results of Sect.5 one needs the basic diagram (16) with
A replaced byAC. The 2-primary version of the compldr(J)-theory Chern
characterch”“ is quite analogous to the odd primary case. Rete the cofibre
of the reduced transfer map

By, '»s° LR

thenbo AR splits as\/; ., Z*HZ ) by [11] and fromboA X~2P,C ~ bu one

getsbhu AR ~ \/iZO Y2HZ . The rest of the argument is the same ag4p
and

i C
AC ABY, - AC &5 wAC (22)

with Wi'€(X) 1= Hn(X; Z(2)) ® ;- ¢ Hn+1-4i (X; Z/4i)2) is a cofibre sequence.
Forn = 22*1 — 2 we have then

1. pr, : ACnsi(l) — ACpha(l) is injective _

2. ch”“(t(a)) #0 onACn.(l) andch”C(t(a)) =0 onACn.(l)

3. pr.: WES() — WAS() is onto.

These facts imply as fgp odd

Theorem 22 Forn = 22*1 -2 a > 2, the image of jc : 75(BX,) — ACh(BX>)
is contained in the subgroup of ord@rand AC,(BX>) contains a non trivial

stably spherical element if and only if he Ext'z’,im(Fz, F,) is permanent, i.e.
there exists an element of Kervaire invariant one in dimension n

We have forn =231 — 2 a > 2,

ACH(B )
An(BX?)

Comparing the exact sequences givinG,(BX>) and A,(BX>) shows that the
canonical mapAn(BX>) — AC,(BX5) is injective (forn as above), hence The-
orem (22) may also be formulated witktheory. In this formulation the result
is due to M. Mahowald10Q] (see alsd2] and[7]). In [1Q] it is also shown that
A.(B2X5) detects the transfer lifts of the Mahowald family.

The reformulation of Theorem (19) is left to the reader.

Z/22*1 (for example by (22)) and
Z/2271 (e.g. see[2,10])
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