$\operatorname{Im}(J)$-theory and the Kervaire invariant

Karlheinz Knapp

Fachbereich Mathematik, Bergische Universität G.H.S. Wuppertal, Gauß-Str. 20, D-42097 Wuppertal, Germany
(e-mail: Karlheinz.Knapp@math.uni-wuppertal.de)

Received 23 August 1993

0 Introduction

Let G be the Adams summand of p-local complex periodic K-theory, l its (-1)connected cover, i.e. $l_{*}\left(S^{0}\right)=\mathbf{Z}_{(p)}\left[v_{1}\right],\left|v_{1}\right|=q:=2 p-2$ and p a prime. Define the spectrum \bar{l} by the cofibre sequence

$$
\begin{equation*}
\longrightarrow S^{0} \longrightarrow l \xrightarrow{p r} \bar{l} \xrightarrow{\partial} S^{1} \tag{1}
\end{equation*}
$$

Since $l_{*}\left(S^{0}\right)$ is torsion free every element x in the stable homotopy groups of spheres $\pi_{n}^{S}\left(S^{0}\right)_{(p)}, n \geq 1$, has a lift $x \in \pi_{n+1}^{S}(l)$ under $\partial: l \rightarrow S^{1}$. In this paper we solve for $p>3$ the problem of which elements in $\pi_{*}^{S}(l)$ can be detected by the e-invariant of Adams and Toda. It is an application of the hard computations in [12] and the main result of [13].

Instead of the e-invariant itself we shall use its refinement given by connected $\operatorname{Im}(J)$-theory $A_{*} . \operatorname{Im}(J)$-theory A_{*} is a generalized homology theory defined by the cofibre sequence of spectra

$$
\begin{equation*}
\longrightarrow A \xrightarrow{D} l \xrightarrow{Q} \Sigma^{q} l \xrightarrow{\Delta} \Sigma A \tag{2}
\end{equation*}
$$

where Q is the l-operation with $v_{1} \cdot Q=\psi^{k}-1, \psi^{k}$ is the stable Adams operation and k generates $\left(\mathbf{Z} / p^{2}\right)^{*}(k=3$ for $p=2)$. Alternatively if we choose in addition k to be a prime power, then Quillen's algebraic K-theory KF_{k}, localized at p, may serve as a model for A. The $\operatorname{Im}(J)$-theory Hurewicz map

$$
h_{A}: \pi_{n}^{S}(X)_{(p)} \rightarrow A_{n}(X)
$$

contains all the information which the e-invariant can give. In generalizing the 2-primary case, an element $f \in \pi_{n}^{S}\left(S^{0}\right)_{(p)}$ is called a Kervaire invariant one element if it is detected by the secondary cohomology operation representing the class $b_{i} \in E x t_{\&}^{2, *}\left(\mathbf{F}_{p}, \mathbf{F}_{p}\right)$ for $p \neq 2$ (and $h_{i}^{2} \in \operatorname{Ext}_{,}^{2, *}\left(\mathbf{F}_{2}, \mathbf{F}_{2}\right)$ for $\left.p=2\right)$ in the
E_{2}-term of the classical Adams spectral sequence. For $p=2$ such an element has well known geometric and homotopy theoretic interpretations and applications; for $p \neq 2$ some interpretations are discussed in [15]. Our main result may then be stated as follows.

Theorem 1 There is a non trivial stably spherical element in $A_{2 n-1}(l)$ if and only if there is an element of Kervaire invariant one in $\pi_{2 n-2}^{S}\left(S^{0}\right)_{(p)}$.

The negative solution of the Kervaire invariant one problem for $p>3$ by Ravenel [13] implies then that $\operatorname{im}\left(h_{A}: \pi_{2 n-1}^{S}(\bar{l}) \longrightarrow A_{2 n-1}(\bar{l})\right)$ is \mathbf{Z} / p for $n=p(p-1)$ and zero otherwise. The situation for $B \Sigma_{p}$, the classifying space of the symmetric group, is similar: As an application of Theorem 1 we show

Theorem 2 The element of order p in $A_{2 n-2}\left(B \Sigma_{p}\right)$ is stably spherical if and only if there is an element of Kervaire invariant one in $\pi_{2 n-2}^{S}\left(S^{0}\right)_{(p)}$.

For $p=2$ this is a well known result of Mahowald but apparently no complete proof for one of the implications has appeared up to now. *)

In [4] the $\operatorname{Im}(J)$-theory Chern character is defined. It is a set of natural transformations

$$
\begin{equation*}
c h_{q i-1}^{A}: A_{n}(X) \longrightarrow H_{n+1-q i}(X ; \mathbf{Z} / i)_{(p)} \tag{3}
\end{equation*}
$$

and we may ask which elements f of $\pi_{*}^{S}\left(S^{0}\right)_{(p)}$ are detected by the functional operation associated to it (i.e. for which f the natural transformation $c h_{q i-1}^{A}$ is non trivial on the cofibre of f modulo indeterminacy). An attractive reformulation of Theorem 2 is then

Theorem 3 An element $f \in \pi_{n}^{S}\left(S^{0}\right)_{(p)}$ is detected by the functional ch ${ }^{A}$-operation if and only iff has Kervaire invariant one.

Proofs and statements differ slightly for odd primes and $p=2$. We have chosen to give the detailed formulation for p odd, in particular, in Theorems $1,2,3$ above p is odd. But since the Kervaire invariant one problem is most interesting at $p=2$ we have indicated the necessary changes to prove Theorem 2 for $p=2$ in an appendix.
*) added in proof: Recently N. Minami (On the Hurewicz Image of the cokernel J spectrum, preprint 1995) has independently given a proof of Theorem 2, which is also based on [12], [16] but slightly more direct than the one given here.

1 The map e

To determine the possible spherical classes in $A_{2 n-1}(l)$ we use the factorization $T: A_{2 n-1}(B P) \rightarrow A_{2 n-1}(l)$ where $B P$ is the Brown-Peterson spectrum at p, $B P$ is the cofibre of $S^{0} \rightarrow B P$ and $T: B P \rightarrow l$ the usual Todd map. The commutative diagram ($n>1$)

$$
\left.\begin{array}{cccc}
B P_{2 n-1}\left(S^{0}\right) \rightarrow & \pi_{2 n-1}^{S}(B P) & \stackrel{\cong}{\rightrightarrows} & \pi_{2 n-2}^{S}\left(S^{0}\right) \rightarrow
\end{array}\right) B P_{2 n-2}\left(S^{0}\right)
$$

shows that $h_{A}: \pi_{2 n-1}^{S}(l) \rightarrow A_{2 n-1}(l)$ factors through

$$
T: A_{2 n-1}(B P) \longrightarrow A_{2 n-1}(l)
$$

Since $A_{2 n-1}(B P)=0$ if $n \not \equiv 0 \bmod (p-1)$ we may assume $n \equiv 0 \bmod$ $(p-1)$. Also $\Delta: l_{2 n-q}(B P) \rightarrow A_{2 n-1}(B P)$ is onto, hence every stably spherical $x \in A_{2 n-1}(l)$ is in $\operatorname{im}\left(\Delta: l_{2 n-q}(l) \rightarrow A_{2 n-1}(l)\right)$ by naturality. Since in general $A_{q m-1}(B P)$ is much larger than $A_{q m-1}(l)$, we get, without further investigations, only the weak restrictions that $x \in \operatorname{im} \Delta$ and $n \equiv 0(p-1)$ above.

Let $H^{s}\left(B P_{*}\right):=E x t_{B P_{*} B P}^{s, *}\left(B P_{*}, B P_{*}\right)$ denote the E_{2}-term of the AdamsNovikov spectral sequence, based on $B P$-theory. We shall construct a map

$$
e: H^{2}\left(B P_{*}\right) \rightarrow A_{*}(B P)
$$

such that any stably spherical class in $A_{q m-1}(B P)$ lies in im (e). Now by the main result of [12] $H^{2}\left(B P_{*}\right)$ is explicitly known and much smaller than $A_{*}(B P)$. This will give the restrictions for elements in $A_{*}(l)$ to be stably spherical which we shall need, namely we shall compute $T(\operatorname{im}(e))$. Whether a class in $T(\operatorname{im}(e))$ is stably spherical will then shown to be equivalent to the Kervaire invariant one problem.

In [12] the elements in $H^{2}\left(B P_{*}\right)$ are described by primitives in $B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)$ via the universal Greek letter map η : There are short exact sequences of $B P_{*}$-comodules

$$
\begin{gather*}
0 \rightarrow B P_{*} \longrightarrow p^{-1} B P_{*} \longrightarrow B P_{*} / p^{\infty} \rightarrow 0 \tag{5}\\
0 \rightarrow B P_{*} / p^{\infty} \rightarrow v_{1}^{-1} B P_{*} / p^{\infty} \rightarrow B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right) \rightarrow 0 \tag{6}
\end{gather*}
$$

inducing long exact Ext-sequences. The two boundary maps associated to (5) and (6) define the map η :

$$
\begin{align*}
\eta: & E x t_{B P_{*} B P}^{0, *}\left(B P_{*}, B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)\right) \xrightarrow{\dot{\partial}} E x t_{B P_{*} B P}^{1, *}\left(B P_{*}, B P_{*} / p^{\infty}\right) \\
& \xrightarrow{\ddot{\rightarrow}} E x t_{B P_{*} B P}^{2, *}\left(B P_{*}, B P_{*}\right) \tag{7}
\end{align*}
$$

It is shown in [12] 7.1, 7.2, 4.8, 4.2 that (for $p \neq 2$) η is an isomorphism. The short exact sequences (5) (6) belong to the defining sequences of the chromatic spectral sequence [14] and it is known that all sequences of this type may be realized geometrically. It is now clear how to proceed: We lift to filtration zero and map then to l using T. To do so, we need only the geometric realizations of (5) (6) which are well known. The sequence (5) is induced by maps between

Moore spectra. For the convenience of the reader we recall a realization of (6) (For a similar discussion see [5]). Denote by $S^{0} / p^{i}, S^{0} / p^{\infty}$ the Moore spectra for the groups \mathbf{Z} / p^{i} and \mathbf{Z} / p^{∞} and by $A d$ the cofibre spectrum of the stable Adams operation $\psi^{k}-1$ on p-local periodic complex K-theory, i.e. $A d$ fits into the cofibre sequence of spectra

$$
\rightarrow A d \xrightarrow{D} G \xrightarrow{\psi^{k}-1} G \xrightarrow{\Delta} \Sigma A d \rightarrow
$$

(We may equally well use the spectrum $\mathrm{K}_{(p)}$ instead of G in this sequence, on the other wedge summands of $\mathrm{K}_{(p)}$ the operation $\psi^{k}-1$ is an equivalence). The spectrum $A d$ is defined by the cofibre sequence

$$
\rightarrow S^{0} \xrightarrow{i} A d \xrightarrow{p r} A d \rightarrow
$$

Lemma 4 The cofibre sequence

$$
\begin{equation*}
S^{0} / p^{\infty} \rightarrow A d \wedge S^{0} / p^{\infty} \rightarrow A d \wedge S^{o} / p^{\infty} \tag{8}
\end{equation*}
$$

is a geometric realization of (6) i.e. if we apply $B P_{*}$ to this sequence we obtain (6)
Proof. In the following commutative diagram

$$
\begin{array}{ccc}
B P \wedge S^{0} / p^{\infty} & \xrightarrow{1 \wedge i \wedge 1} \quad B P \wedge A d \wedge S^{0} / p^{\infty} \\
\downarrow & & \downarrow g_{1} \\
v_{1}^{-1} B P \wedge S^{0} / p^{\infty} & \xrightarrow{g_{2}} & v_{1}^{-1} B P \wedge A d \wedge S^{0} / p^{\infty}
\end{array}
$$

we show that g_{1}, g_{2} are equivalences. Then we get, with $g:=g_{1}^{-1} \circ g_{2}$,

$$
\left.\begin{array}{cccc}
B P_{*} / p^{\infty} & \longrightarrow & v_{1}^{-1} B P_{*} / p^{\infty} & \longrightarrow
\end{array}\right) B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right) ~ 子 \begin{array}{cc}
\cong \\
\cong & \cong g_{*} \tag{9}\\
B P_{*}\left(S^{0} / p^{\infty}\right) \longrightarrow B P_{*}\left(A d \wedge S^{0} / p^{\infty}\right) & \longrightarrow B P_{*}\left(A d \wedge S^{0} / p^{\infty}\right)
\end{array}
$$

proving the lemma.
a) For g_{1}, the map $\mathrm{g}_{1 *}: A d_{n}\left(B P ; \mathbf{Z} / p^{\infty}\right) \rightarrow A d_{n}\left(v_{1}^{-1} B P ; \mathbf{Z} / p^{\infty}\right)$ is the direct limit of maps $A d_{n}\left(B P ; \mathbf{Z} / p^{i}\right) \rightarrow A d_{n}\left(v_{1}^{-1} B P ; \mathbf{Z} / p^{i}\right)$. But $A d_{n}\left(v_{1}^{-1} B P ; \mathbf{Z} / p^{i}\right) \cong$ $A d_{n}\left(B P ; \mathbf{Z} / p^{i}\right)\left[v_{1}^{-1}\right]$ and $v_{1 *}^{p^{i}}=B_{i}$, where B_{i} is an Adams periodicity operator as for example constructed in [3]. To see this we use that B_{i} induces multiplication by $v_{1}^{p^{i}}$ in $A d_{n}\left(B P ; \mathbf{Z} / p^{i}\right) \stackrel{D}{\subset} G_{n}\left(B P ; \mathbf{Z} / p^{i}\right)$ and $v_{1 *}=p \cdot t_{1}+v_{1}$ (see Sect. 2 below for $\mathrm{G}_{*}\left(B P ; \mathbf{Z} / p^{i}\right)$). Hence $v_{1 *}^{p^{i}}=v_{1}^{p^{i}}$ on $\mathrm{G}_{*}\left(B P ; \mathbf{Z} / p^{i}\right)$. Since v_{1} operates as an isomorphism, the same is true for $v_{1 *}^{p^{i}}$ and $\mathrm{g}_{1 *}$ is bijective as the direct limit of isomorphisms.
b) For g_{2}, we first need that the Adams periodicity operator $B_{i}: \Sigma^{q p^{i}} S^{0} / p^{i+1}$ $\rightarrow S^{0} / p^{i+1}$ induces multiplication by $v_{1}^{p^{i}}$ (up to a unit) on $B P_{*}\left(S^{0} ; \mathbf{Z} / p^{i+1}\right)$.

This is well known and follows from the fact that $B_{i}(1) \in B P_{q p^{i}}\left(S^{0} ; \mathbf{Z} / p^{i+1}\right)$ must be coaction primitive. The group of primitives is cyclic and generated by $v_{1}^{p^{i}}$ (e.g. see [14]). Then $v_{1}^{-1} B P_{*}\left(S^{0} ; \mathbf{Z} / p^{i+1}\right)=B P_{*}\left(S^{0} ; \mathbf{Z} / p^{i+1}\right)\left[B_{i}^{-1}\right]$. Now $\left(S^{0} / p^{i+1}\right)\left[B_{i}^{-1}\right] \simeq A d \wedge S^{0} / p^{i+1}$ by the Mahowald-Miller theorem (e.g. see [3]) and $\mathrm{g}_{2 *}$ is the direct limit of isomorphisms.

Remark. Observe that the isomorphism $\mathrm{g}_{*}: v_{1}^{-1} B P_{*} / p^{\infty} \cong A d_{*}\left(B P ; \mathbf{Z} / p^{\infty}\right)$ in (9) is the canonical extension of the $A d$-theory Hurewicz map $h_{A d}: \pi_{*}^{S}\left(B P ; \mathbf{Z} / p^{\infty}\right)$ $=B P_{*} / p^{\infty} \rightarrow A d_{*}\left(B P ; \mathbf{Z} / p^{\infty}\right)$ to $v_{1}^{-1} B P_{*} / p^{\infty}$. Since D: $A d_{*}\left(B P ; \mathbf{Z} / p^{\infty}\right) \rightarrow$ $G_{*}\left(B P ; \mathbf{Z} / p^{\infty}\right)$ is injective we may use the well known formulas for

$$
h_{G}: B P_{*} \xrightarrow{\eta_{R}} B P_{*} B P \xrightarrow{T \wedge 1} G_{*} B P
$$

to compute g_{*}. If we denote the image of $x \in B P_{*}$ in $G_{*}(B P)$ by x then

$$
g_{*}\binom{x}{p^{i} v_{1}^{j}}=\frac{x}{p^{i} v_{1}^{j}} .
$$

Example. If we abbreviate $T\left(t_{i}\right)$ by t_{i} then

$$
v_{1}=p \cdot t_{1}+v_{1} \quad \text { and } \quad v_{2}=v_{1} \cdot t_{1}^{p}-v_{1}^{p} \cdot t_{1} \bmod p
$$

in $G_{*}(B P)=G_{*}\left[t_{1}, t_{2}, \ldots\right]$ (see Sect. 2).
Denote the set of coaction primitives in $B P_{n}(X)$ by $P_{n} B P_{*}(X)$. We now define a map

$$
e: P_{n} B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right) \longrightarrow A_{n-1}(B P)
$$

by the following commutative diagram. Assume n is even.

$$
\begin{align*}
& P_{n} B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right) \\
& \cap \\
& 0 \rightarrow B P_{n} / p^{\infty} \quad \rightarrow \quad v_{1}^{-1} B P_{n} / p^{\infty} \xrightarrow{\text { red }} B P_{n} /\left(p^{\infty}, v_{1}^{\infty}\right) \quad \rightarrow 0 \\
& \| \quad g_{*} \downarrow \cong \quad \downarrow \cong \\
& 0 \rightarrow \pi_{n}^{S}\left(B P ; \mathbf{Z} / p^{\infty}\right) \rightarrow A d_{n}\left(B P ; \mathbf{Z} / p^{\infty}\right) \rightarrow A d_{n}\left(B P ; \mathbf{Z} / p^{\infty}\right) \rightarrow 0 \\
& \| \quad i \uparrow \\
& \pi_{n}^{S}\left(B P ; \mathbf{Z} / p^{\infty}\right) \xrightarrow{h_{A d}} A_{n}\left(B P ; \mathbf{Z} / p^{\infty}\right) \xrightarrow{\beta} \quad A_{n-1}(B P) \\
& p r_{*} \downarrow \quad p r_{*} \downarrow \\
& A_{n}\left(B P ; \mathbf{Z} / p^{\infty}\right) \xrightarrow{\beta} \quad A_{n-1}(B P) \tag{10}
\end{align*}
$$

($p r: B P \rightarrow B P$ is the canonical map, β the Bockstein map and $i: A_{n}(X) \rightarrow$ $A d_{n}(X)$ is the map from connective $\operatorname{Im}(J)$-theory to non-connective $\operatorname{Im}(J)$-theory $A d$, with

$$
A_{n}(X):=\operatorname{im}\left(A d_{n}\left(X^{n}\right) \rightarrow A d_{n}\left(X^{n+1}\right)\right)
$$

i is induced by inclusion of skeleta).
Definition $5 \quad e:=\beta \circ p r_{*} \circ i^{-1} \circ g_{*} \circ \mathrm{red}^{-1}$
In order to have e defined we must show
Lemma 6 (1) $x \in P_{n} B P_{*} /\left(p^{\infty}, v_{1}\right) \Longrightarrow g_{*} \circ \operatorname{red}^{-1}(x) \in \operatorname{im}(i)$ (2) $\beta \circ h_{A}\left(\pi_{n}^{S}\left(B P ; \mathbf{Z} / p^{\infty}\right)\right)=0$

Proof. (2) is clear since $\beta \circ h_{A}=h_{A} \circ \beta$ and $\pi_{n+1}^{S}(B P)$ is 0 for n even.
Proof of (1): We have
$P_{n} B P_{*} /\left(p^{\infty}, v_{1}\right)=\operatorname{ker}\left\langle\left(\eta_{L}-\eta_{R}\right): B P_{*} /\left(p^{\infty}, v_{1}\right) \rightarrow B P_{*} B P \otimes_{B P_{*}} B P_{*} /\left(p^{\infty}, v_{1}\right)\right\rangle$
An element x in $v_{1}^{-1} B P_{n} / p^{\infty}$ maps under red into $P_{n} B P_{*} /\left(p^{\infty}, v_{1}\right)$ if and only if $\left(\eta_{L}-\eta_{R}\right)(x)$ is in $\operatorname{im}\left(B P_{*} B P \otimes_{B P_{*}} B P_{*} / p^{\infty} \longrightarrow B P_{*} B P \otimes_{B P_{*}} v_{1}^{-1} B P_{*} / p^{\infty}\right)$. Under the isomorphism g_{*} this translates into

$$
\begin{aligned}
& \left\{x \in A d_{n}\left(B P ; \mathbf{Z} / p^{\infty}\right) \mid \text { red } \circ g_{*}^{-1}(x) \text { is primitive }\right\}= \\
& \quad\left\{x \mid\left(\eta_{L}-\eta_{R}\right)(x)=h_{a d}(z) \text { in } A d_{n}\left(B P \wedge B P ; \mathbf{Z} / p^{\infty}\right)\right. \\
& \text { for some } \left.z \in \pi_{n}^{S}\left(B P \wedge B P ; \mathbf{Z} / p^{\infty}\right)\right\}
\end{aligned}
$$

Now $G: A d_{n}\left(X ; \mathbf{Z} / p^{\infty}\right) \rightarrow G_{n}\left(X ; \mathbf{Z} / p^{\infty}\right)$ is injective for $X=B P$ or $X=B P \wedge$ $B P$ and $\eta_{L}(D x)=D x \wedge 1, \eta_{R}(D x)=1 \wedge D x$ in $G_{n}\left(B P \wedge B P ; \mathbf{Z} / p^{\infty}\right)$ by the Künneththeorem for complex K-theory. To have $\left(\eta_{L}-\eta_{R}\right)(D x) \in \operatorname{im} h_{A} \quad$ implies $D(x) \in$ $G_{n}\left(B P^{(n)} ; \mathbf{Z} / p^{\infty}\right) \quad$ since $\quad h_{A}\left(\pi_{n}^{S}\left(B P \wedge B P ; \mathbf{Z} / p^{\infty}\right)\right)$ is contained in $G_{n}((B P \wedge$ $\left.B P)^{(n)} ; \mathbf{Z} / p^{\infty}\right)$. This implies $x \in \operatorname{im}\left(i: A_{n}\left(B P ; \mathbf{Z} / p^{\infty}\right) \rightarrow A d_{n}\left(B P ; \mathbf{Z} / p^{\infty}\right)\right)$. Here i is injective since $A_{n}\left(B P ; \mathbf{Z} / p^{\infty}\right)=A d_{n}\left(B P^{(n)} ; \mathbf{Z} / p^{\infty}\right)$

We also need
Lemma 7 Let n be even. Then
(1) e is injective. (2) ∂_{1} is bijective. (3) the diagram

$$
\begin{array}{cccc}
\pi_{n+2}^{S}\left(S^{0} /\left(p^{\infty}, v_{1}^{\infty}\right)\right) & \stackrel{\partial_{1}}{\longrightarrow} & \pi_{n+1}^{S}\left(S^{0} / p^{\infty}\right) & \stackrel{\beta}{\cong} \\
& \uparrow \partial_{2} & \pi_{n}^{S}\left(S^{0}\right) \\
\downarrow h_{B P} & & & \\
& \pi_{n+2}^{S}\left(B P ; \mathbf{Z} / p^{\infty}\right) & & \\
& \downarrow h_{A} & \beta & \\
& A_{n+2}\left(B P ; \mathbf{Z} / p^{\infty}\right) \\
P_{n+2}\left(B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)\right) & & & \pi_{n+1}^{S}(B P) \\
& & & \\
& & & \\
& & & \\
& & & h_{n+1}(B P)
\end{array}
$$

commutes i.e. on stably spherical elements in $B P_{n+2}\left(S^{0}\right) /\left(p^{\infty}, v_{1}^{\infty}\right)$ the invariant e is essentially the Hurewicz map $h_{A}: \pi_{n+1}^{S}(B P) \rightarrow A_{n+1}(B P)$ (here we have written $S^{0} /\left(p^{\infty}, v_{1}^{\infty}\right)$ for $\operatorname{Ad} \wedge S^{0} / p^{\infty}$ e.c. $)$.

Proof. (1) Choose $x_{1} \in v_{1}^{-1} B P_{n} / p^{\infty}$ with $\operatorname{red}\left(x_{1}\right)=x$. Then $e(x)=0$ implies $g_{*}\left(x_{1}\right) \in \operatorname{ker}(\beta)=\operatorname{im}\left(r: A_{n}(B P ; \mathbf{Q}) \rightarrow A_{n}(B P ; \mathbf{Q} / \mathbf{Z})\right)$. The commutative square

$$
\begin{array}{ccc}
\pi_{n}^{S}\left(B P ; \mathbf{Z} / p^{\infty}\right) & \xrightarrow{h_{A}} & A_{n}\left(B P ; \mathbf{Z} / p^{\infty}\right) \\
\uparrow r & & \uparrow r \\
\pi_{n}^{S}(B P ; \mathbf{Q}) & \xrightarrow{h_{A}} & A_{n}(B P ; \mathbf{Q})
\end{array}
$$

then shows that x_{1} is in $\operatorname{ker}($ red $)$.
(2) Since $\pi_{n+1}^{S}\left(v_{1}^{-1} S^{0} / p^{\infty}\right)=A d_{n+1}\left(S^{0} ; \mathbf{Z} / p^{\infty}\right) \cong A d_{n}\left(S^{0}\right) \quad$ is zero, ∂_{1} is onto (n even!), and since $\pi_{n+2}^{S}\left(S^{0} / p^{\infty}\right) \rightarrow \pi_{n+2}^{S}\left(A d / p^{\infty}\right)$ is onto, ∂_{1} is injective.
(3) By comparing the two cofibre sequences $S^{0} / p^{\infty} \rightarrow v_{1}^{-1} S^{0} / p^{\infty} \rightarrow S^{0} /\left(p^{\infty}\right.$, v_{1}^{∞}) and $S^{0} \rightarrow B P \longrightarrow B P$ we obtain (suppressing the equivalences g, \bar{g} in (10)) the following commutative diagram. It is a well known fact that $\mathrm{red}^{-1} \circ$ $h_{B P} \circ \partial_{1}^{-1}=p r_{*}^{-1} \circ j \circ \partial_{2}^{-1} \bmod h_{B P}\left(\pi_{n+2}^{S}\left(A d / p^{\infty}\right)\right)+j\left(B P_{n+2}\left(S^{0} / p^{\infty}\right)\right)$ in $B P_{n+2}\left(A d \wedge S^{0} / p^{\infty}\right)$.

$$
\begin{array}{ccc}
\pi_{*}^{S}\left(A d / p^{\infty}\right) & \rightarrow & \pi_{*}^{S}\left(A d / p^{\infty}\right) \\
& \xrightarrow{\partial_{1}} \pi_{*}^{S}\left(S^{0} / p^{\infty}\right) \\
\downarrow h_{B P} & \downarrow h_{B P} &
\end{array}
$$

$$
B P_{*}\left(S^{0} / p^{\infty}\right) \xrightarrow{j_{*}} B P_{*}\left(A d \wedge S^{0} / p^{\infty}\right) \xrightarrow{\text { red }} B P_{*}\left(A d \wedge S^{0} / p^{\infty}\right)
$$

$\downarrow \quad \downarrow p r_{*}$
$B P_{*}\left(S^{0} / p^{\infty}\right) \xrightarrow{j_{*}} B P_{*}\left(A d \wedge S^{0} / p^{\infty}\right)$

$$
\begin{array}{ccccc}
\downarrow \partial_{2} & \searrow & h_{A d} \quad \downarrow \cong \\
\pi_{*}^{S}\left(S^{0} / p^{\infty}\right) & A d_{*}\left(B P ; \mathbf{Z} / p^{\infty}\right) & \stackrel{i}{\supset} & A_{*}\left(B P ; \mathbf{Z} / p^{\infty}\right) & \xrightarrow{\beta}
\end{array} A_{*}(B P)
$$

Given $x \in \pi_{n+1}^{S}\left(S^{0} / p^{\infty}\right)$ choose elements x_{1}, x_{2}, x_{3} with $\partial_{1}\left(x_{1}\right)=x, \operatorname{red}\left(x_{2}\right)=$ $h_{B P}\left(x_{1}\right), \partial_{2}\left(x_{3}\right)=x$. Under the maps

$$
B P_{n+2}\left(S^{0} / p^{\infty}\right) \xrightarrow{h_{A d}} A d_{n+2}\left(B P ; \mathbf{Z} / p^{\infty}\right) \stackrel{i}{\supset} A_{n+2}\left(B P ; \mathbf{Z} / p^{\infty}\right) \xrightarrow{\beta} A_{n+1}(B P)
$$

x_{3} is mapped to $\beta \circ h_{A}\left(x_{3}\right)$. On the other hand, up to the identification

$$
B P \wedge S^{0} /\left(p^{\infty}, v_{1}^{\infty}\right) \simeq B P \wedge A d \wedge S^{0} / p^{\infty}
$$

the definition of e reads as

$$
e\left(h_{B P}\left(x_{1}\right)\right)=\beta \circ i^{-1} \circ p r_{*}\left(x_{2}\right)
$$

But $p r_{*}\left(x_{2}\right) \equiv j_{*}\left(x_{3}\right) \bmod p r_{*} \circ j_{*}\left(B P_{n+2}\left(S^{0} / p^{\infty}\right)\right)$ and under the map $\beta \circ i^{-1}$ the indeterminacy is mapped to zero. Hence $e\left(h_{B P}\left(\partial_{1}^{-1}(x)\right)=h_{A}\left(\partial_{2}^{-1}(\beta(x))\right)\right.$.

Remarks. Slightly simpler is the use of the two cofibre sequences

$$
S^{0} \rightarrow B P \rightarrow B P \quad \text { and } \quad B P \rightarrow B P \mathbf{Q} \rightarrow B P \mathbf{Q} / \mathbf{Z}
$$

for the lift from Adams-Novikov filtration 2 to filtration 0. The Hattori-Stong theorem then shows that $H^{2}\left(B P_{*}\right)$ is a subgroup of $A_{*}(B P)$. But in order to use the definition of the elements given in [12] we had to use (5) and (6). The approach via the Hattori-Stong theorem works for every torsion free space or spectrum (instead of $B P$). In our case we get the purely K-theoretic description of $E x t_{B P_{*} B P}^{1,2 n}\left(B P_{*}, B P_{*}(B P)\right) \quad\left(=H^{2}\left(B P_{*}\right)\right)$ as $\operatorname{ker}\left(\Psi: A_{2 n-1}(B P) \rightarrow A_{2 n-1}(B P\right.$ $\wedge B P)$) where Ψ is induced from $i: S^{0} \rightarrow B P$.

$2 \mathbf{A}_{*}(\mathbf{B P})$

For n even we have $A_{n}(B P) \cong B P_{n}\left(S^{0}\right)$. Whereas for n odd $B P_{n}\left(S^{0}\right)=\pi_{n}^{S}(B P)$ is zero, $A_{m q-1}(B P)$ is non trivial and growing very rapidly with m. So $A_{m q-1}(B P)$ may serve as a universal example for non stably spherical classes in $A_{*}(X)$. The order and the number of cyclic summands of $A_{m q-1}(B P)$ is known [9], but here we need only a certain subset of classes related to v_{2}. Recall

$$
B P_{*} B P \cong B P_{*}\left[t_{1}, t_{2}, \ldots\right] \quad \text { and } \quad G_{*} B P \cong G_{*} \otimes_{B P_{*}} B P_{*} B P \cong G_{*}\left[t_{1}, t_{2}, \ldots\right]
$$

where $t_{i}=T\left(t_{i}\right)$ and $T: B P \rightarrow G$ is the Todd map.
We have

$$
A_{q n}(B P ; \mathbf{Q} / \mathbf{Z})=A d_{q n}\left(B P^{(q n)} ; \mathbf{Q} / \mathbf{Z}\right) \subset A d_{q n}(B P ; \mathbf{Q} / \mathbf{Z}) \stackrel{D}{\subset} G_{q n}(B P ; \mathbf{Q} / \mathbf{Z})
$$

and denote $h_{G}\left(v_{i}\right) \in G_{*}(B P)$ again by v_{i} where

$$
h_{G}: \pi_{*}^{S}(B P) \rightarrow G_{*}(B P)
$$

is the G-theory Hurewicz map. From $v_{1}=v_{1}+p \cdot t_{1}$ it follows that $v_{1 *}^{p^{a}}$ acts on classes of order at most p^{a+1} in $G_{*}(B P ; \mathbf{Q} / \mathbf{Z})$ as multiplication by $v_{1}^{p^{a}}$, hence $v_{1 *}$ is an isomorphism. In $G_{*}(B P ; \mathbf{Q} / \mathbf{Z})$ we therefore have classes

$$
\frac{v_{2}^{m}}{p^{i} \cdot v_{1}^{j}}
$$

which are in $\operatorname{ker}\left(\psi^{k}-1\right)$ since multiplication with v_{i} commutes with $\psi^{k}-1$. So $\frac{v_{2}^{m}}{p^{i} \cdot v_{1}^{j}}$ defines a class in $A d_{*}(B P ; \mathbf{Q} / \mathbf{Z})$. To describe classes in $A_{*}(B P ; \mathbf{Q} / \mathbf{Z})$ we need to work out the skeletal filtration of such elements:

Proposition 8 For $0 \leq a \leq m$ the class

$$
\frac{v_{2}^{m}}{p^{a+1} \cdot v_{1}^{m-a}}
$$

in $G_{*}(B P ; \mathbf{Q} / \mathbf{Z})$ is in $\operatorname{ker}\left(\psi^{k}-1\right)$ and has skeletal filtration at most $q(m p+a)$, that is $\frac{v_{2}^{m}}{p^{a+1} \cdot v_{1}^{m-a}}$ defines an element in $A_{q(m p+a)}(B P ; \mathbf{Q} / \mathbf{Z})$.
Proof. Choose s with $s \cdot p^{a}-(m-a)>0$, then

$$
z=\frac{v_{2}^{m}}{p^{a+1} \cdot v_{1}^{m-a}}=\frac{v_{2}^{m} \cdot v_{1}^{s \cdot p^{a}-(m-a)}}{p^{a+1} \cdot v_{1}^{s \cdot p^{a}}}=\frac{v_{2}^{m} \cdot v_{1}^{s \cdot p^{a}-(m-a)}}{p^{a+1} \cdot v_{1}^{s \cdot p^{a}}}
$$

(since $v_{1}^{s \cdot p^{a}}=v_{1}^{s \cdot p^{a}}$ on classes of order at most p^{a+1}). Using $v_{1}=v_{1}+p \cdot t_{1}$ we may write z as a sum of terms

$$
\frac{\binom{s \cdot p^{a}-(m-a)}{j} v_{2}^{m} \cdot t_{1}^{j}}{p^{a+1-j} \cdot v_{1}^{m-a+j}}
$$

It therefore suffices to show $(b:=a-j)$

$$
S F\left(\frac{v_{2}^{m}}{p^{b+1} \cdot v_{1}^{m-b}}\right) \leq q \cdot(m \cdot p+b)
$$

where $S F$ abbreviates skeletal filtration. Write $v_{2}=p \cdot A+v_{1} \cdot B$ where $A=$ $t_{2}-p^{p-1} \cdot t_{1}^{p+1}$ and $S F(A)=q \cdot(p+1), S F(B) \leq q \cdot p$.

$$
\begin{aligned}
& \left(v_{2}=p \cdot t_{2}-p^{p} \cdot t_{1}^{p+1}+v_{1} \cdot\left[1-\binom{p+1}{1} p^{p-1}\right] \cdot t_{1}^{p}-\sum_{i=2}^{p-1}\binom{p+1}{i} t_{1}^{p-i-1} p^{p-i} v_{1}^{i}\right. \\
& -\binom{p+1}{p} t_{1} \cdot v_{1}^{p} \quad \text { e.g. see [14]) }
\end{aligned}
$$

We get

$$
\begin{aligned}
\frac{\left(p A+v_{1} B\right)^{m}}{p^{p+1} \cdot v_{1}^{m-b}} & =\sum_{j=0}^{m}\binom{m}{j} p^{j} \cdot A^{j} \cdot B^{m-j} \cdot v_{1}^{m-j} /\left(p^{b+1} \cdot v_{1}^{m-b}\right) \\
& \equiv \sum_{j=0}^{b}\binom{m}{j} p^{j} \cdot A^{j} \cdot B^{m-j} \cdot v_{1}^{m-j} /\left(p^{b+1} \cdot v_{1}^{m-b}\right) \\
& =\sum_{j=0}^{b}\binom{m}{b-j} A^{b-j} \cdot B^{m-b+j} \cdot v_{1}^{j} / p^{j+1}
\end{aligned}
$$

Now $\operatorname{SF}\left(A^{b-j} \cdot B^{m-b+j} \cdot v_{1}^{j} / p^{j+1}\right) \leq q \cdot(m \cdot p+b)$ and the result follows.
Remark. All elements in $A_{q m-1}\left(S^{0}\right)$ are stably spherical hence the subgroup $i_{*}\left(A_{q m-1}\left(S^{0}\right)\right)$ in $A_{q m-1}(B P)$ is zero. Since also $A_{q m-2}\left(S^{0}\right)=0$ we have

$$
\begin{equation*}
A_{q m-1}(B P) \cong A_{q m-1}(B P) \tag{11}
\end{equation*}
$$

We shall also label elements in $A_{q m-1}(B P)$ by their names in $A_{q m-1}(B P)$, i.e. suppress the map $p r: B P \rightarrow B P$ in our notation.
$3 \boldsymbol{E x t}_{\boldsymbol{B P} \boldsymbol{P}_{*} \boldsymbol{B P}}^{2, *}\left(\boldsymbol{B P} \boldsymbol{P}_{*}, \boldsymbol{B P}{ }_{*}\right)$
In [12] the elements of $E x t_{B P_{*} B P}^{2, n}\left(B P_{*}, B P_{*}\right) \cong P_{n} B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)$ are defined in $v_{2}^{-1} B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)$ as follows: Define elements x_{n} in $v_{2}^{-1} B P_{*}$ by

$$
\begin{array}{ll}
x_{0} & =v_{2} \\
x_{1} & =x_{0}^{p}-v_{1}^{p} \cdot v_{2}^{-1} \cdot v_{3} \\
x_{2} & =x_{1}^{p}-v_{1}^{p^{2}-1} \cdot v_{2}^{p^{2}-p+1}-v_{1}^{p^{2}+p-1} \cdot v_{2}^{p^{2}-2 p} \cdot v_{3} \tag{12}
\end{array}
$$

and for $n \geq 3$
$x_{n} \quad=x_{n-1}^{p}-2 \cdot v_{1}^{b_{n}} \cdot v_{2}^{c_{n}}$
where $b_{n}:=p^{n}+p^{n-1}-p-1, c_{n}:=p^{n}-p^{n-1}+1$. Let $a_{0}:=1$ and $a_{n}:=p^{n}+p^{n-1}-1$ for $n \geq 1$. Then for $n \geq 0, s \geq 1$ and $s \not \equiv 0 \bmod p, j \geq 1, i \geq 0$ with $j \leq p^{n}$ if $s=1$ and $p^{i} \mid j \leq a_{n-i}$ if $s>1$, the elements $x_{n}^{s} /\left(p^{i+1} \cdot v_{1}^{j}\right) \in$ $v_{2}^{-1} B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)$ are in $P_{*} B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)$ and define $\beta_{s p^{n} / j, i+1}$ via the map η in (7).

To compute the image of $\beta_{s p^{n} / j, i+1}$ in $A_{q m-1}(B P)\left(\cong A_{q m-1}(B P)\right) \quad$ we need a v_{2}^{-1}-free form of $x_{n}^{s} /\left(p^{i+1} \cdot v_{1}^{j}\right)$. For our purpose the following weak form will be sufficient

Proposition 9 The image of $\beta_{s p^{n} / j, i+1}$ in $A_{q m}(B P ; \mathbf{Q} / \mathbf{Z})$ may be written as

$$
\frac{v_{2}^{s p^{n}}}{p^{i+1} \cdot v_{1}^{j}}+v_{1}^{2} \cdot z \text { with } p \cdot z=0
$$

Proof. Step 1: We first treat the elements of order p. Calculating $\bmod p$ and using $(a+b)^{p} \equiv a^{p}+b^{p}$ the defining equations (12) reduce to

$$
\begin{align*}
& x_{n} \equiv\left(-2 \cdot v_{1}^{b_{n}} \cdot v_{2}^{c_{n}}-2 \cdot v^{p b_{n-1}} \cdot v_{2}^{p c_{n-1}}-\ldots \ldots-2 \cdot v_{1}^{p^{n-3} b_{3}} \cdot v_{2}^{p^{n-3} c_{3}}\right. \\
& -v_{1}^{p^{n}-p^{n-2}} \cdot v_{2}^{p^{n}-p^{n-1}+p^{n-2}}-v_{1}^{p^{n-2}\left(p^{2}+p+1\right)} \cdot v_{2}^{p^{n}-2 p^{n-1}} \cdot v_{3}^{p^{n-2}} \tag{13}\\
& \left.-v_{1}^{p^{n}} \cdot v_{2}^{-p^{n-1}} \cdot v_{3}^{p^{n-1}}+v_{2}^{p^{n}}\right) \quad \bmod p
\end{align*}
$$

If $s=1$ then $j \leq p^{n}$ and (13) gives

$$
\frac{x_{n}}{p \cdot v_{1}^{p^{n}}}=\frac{v_{2}^{p^{n}}}{p \cdot v_{1}^{p^{n}}}+\frac{v_{2}^{p^{n}-p^{n-1}+p^{n-2}}}{p \cdot v_{1}^{p^{n-2}}}
$$

Then

$$
e\binom{x_{n}}{p \cdot v_{1}^{p^{n}}}=\frac{\bar{v}_{2}^{p^{n}}}{p \cdot \bar{v}_{1}^{p^{n}}+v_{1}^{2}} \cdot \frac{\bar{v}_{2}^{p^{n}-p^{n-1}+p^{n-2}}}{p \cdot \bar{v}_{1}^{p^{n-2}+2}}
$$

in $A_{*}(B P ; \mathbf{Q} / \mathbf{Z})$. Multiplication by $\bar{v}_{1}^{p^{n}-j}$ gives the conclusion for all $\beta_{s p^{n} / j}$. Let now $s>1$, then $j \leq a_{n}=p^{n}+p^{n-1}-1$ and (13) gives $\frac{x_{n}^{s}}{p \cdot v_{1}^{j}}$ as a sum of terms of the following type

$$
\begin{align*}
z_{s_{0}, s_{1}, \ldots, s_{n}}= & \text { const } \cdot\left(v_{2}^{p^{n}}\right)^{s_{0}} \cdot\left(v_{1}^{p^{n}} \cdot v_{2}^{-p^{n-1}} \cdot v_{3}^{p^{n-1}}\right)^{s_{1}} . \\
& \left(v_{1}^{p^{n}-p^{n-2}} v_{2}^{\left.p^{n}-p^{n-1}+p^{n-2}+v_{1}^{p^{n-2}\left(p^{2}+p+1\right)} v_{2}^{p^{n}-2 p^{n-1}} v_{3}^{p^{n-2}}\right)^{s_{2}} .} \begin{array}{rl}
& \cdots \cdots\left(v_{1}^{p^{i} b_{n-i}} \cdot v_{2}^{p^{i} c_{n-i}}\right)^{s_{n-i}} \cdots\left(v_{1}^{b_{n}} \cdot v_{2}^{c_{n}}\right)^{s_{n}} / p \cdot v_{1}^{j}
\end{array} .\right. \tag{14}
\end{align*}
$$

Every term $z_{s_{0}, s_{1}, \ldots, s_{n}}$ is defined in $v_{2}^{-1} B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)$ but does actually belong to $B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)$. If $s_{1}>1$, this term contains $v_{1}^{2 p^{n}}$ and so reduces to zero in $B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)$. If $s_{1}=1$ there is an index $i_{0} \neq 1$ with $s_{i_{o}} \geq 1$ (since $s>1$). The negative power of v_{2} in $\left(v_{1}^{p^{n}} \cdot v_{2}^{-p^{n-1}} \cdot v_{3}^{p^{n-1}}\right)^{s_{1}}$ is cancelled by the positive power of v_{2} in the factor with exponent $s_{i_{0}}$, so the term lies in $B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)$. In addition we have at most $p \cdot v_{1}^{n-1}$ in the denominator. If $i_{0}>1$ the power of v_{1} contained in the factor with exponent $s_{i_{0}}$ cancels $v_{1}^{p^{n-1}}$ in the denominator. So we are left with the cases $s_{1}=1, s_{0}=s-1$ and $s_{1}=0$. If $s_{1}=1, s_{0}=s-1$ we get

$$
z_{s-1,1,0,0, \ldots, 0}=\text { const } \cdot \frac{v_{2}^{p^{n}(s-1)-p^{n-1}} \cdot v_{3}^{p^{n-1}}}{p \cdot v_{1}^{j}}
$$

with $j \leq p^{n-1}-1$ and it follows (by (8)) that $e\left(z_{s-1,1,0,0, \ldots, 0}\right)=\bar{v}_{1}^{2} \cdot \grave{z} \quad$ with $p \cdot \grave{z}=0$. Let now $s_{1}=0$. If $s_{i} \geq 1, s_{k} \geq 1$ with $i, k>2$ then $z_{s_{0}, 0, s_{2}, \ldots . .}$ contains $v_{1}^{p^{i} b_{n-i}+p^{k} b_{n-k}}$ but $j \leq p^{i} \cdot b_{n-i}+p^{k} \cdot b_{n-k}$. The same conclusion follows if i or k is 2 . Hence $s_{0}=s-s_{i_{0}}$ with $s_{i_{0}} \leq 1$ and $i_{0} \geq 2$ and we get

$$
\frac{v_{2}^{s n^{n}}}{p v_{1}^{j}} \quad \text { or } \quad \frac{v_{2}^{(s-1) p^{n}} v_{2}^{a} v_{3}^{b}}{p v_{1}^{k}}
$$

with $k \leq p^{n-1}+p^{n-2}-1$. Again by (8) the conclusion follows.
Step 2: Consider $x_{n}^{s} /\left(p^{i+1} \cdot v_{1}^{j}\right)$ with $j \equiv 0 \bmod p^{i}, j \leq a_{n-i}, i>0$ and iterate on $x_{k}=\left(x_{k-1}^{p}-2 \cdot v_{1}^{b_{k}} \cdot v_{2}^{c_{k}}\right)$. Take $j_{0}:=p^{n-i}+p^{n-i-1}-p^{i}$ if $n>2 i$ or $j_{0}=p^{i}$ if $n=2 i$ then $j \leq j_{0}$ and we have

$$
\frac{x_{n}^{s}}{p^{i+1} \cdot v_{1}^{j_{0}}} \equiv \frac{x_{n-r}^{p^{r} s}}{p^{i+1} \cdot v_{1}^{j_{0}}}
$$

in $B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)$ as long as $b_{n-r+1} \geq j_{0}$. This is the case for $r \leq i$. The next case is

$$
\begin{aligned}
\frac{x_{n-i}^{p^{i} s}}{p^{i+1} \cdot v_{1}^{j_{0}}} & =\left(x_{n-i-1}^{p}-2 \cdot v_{1}^{b_{n-i}} \cdot v_{2}^{c_{n-i}}\right)^{s p^{i}} / p^{i+1} \cdot v_{1}^{j_{0}} \\
& =\frac{x_{n-i-1}^{p^{i+1}}}{p^{i+1} \cdot v_{1}^{j_{0}}}+\sum_{l=1}(-2)^{l} \cdot\binom{s p^{i}}{l} \cdot v_{1}^{l \cdot b_{n-i}} \cdot v_{2}^{l \cdot c_{n-i}} \cdot x_{n-i-1}^{p\left(s p^{i}-l\right)} / p^{i+1} \cdot v_{1}^{j_{0}}
\end{aligned}
$$

Only for $i=1$ we get the extra term

$$
\frac{-2 s \cdot v_{2}^{c_{n-i}} \cdot x_{n-i-1}^{p\left(s p^{i}-1\right)}}{p \cdot v_{1}}
$$

which is handled as in step 1. Proceed now by induction on $k(i<k<n-2)$. Assume

$$
\frac{x_{n-k+1}^{p^{k-1} s}}{p^{i+1} \cdot v_{1}^{j_{0}}}=\frac{x_{n-k}^{p^{k} s}}{p^{i+1} \cdot v_{1}^{j_{0}}}+z
$$

where $e(z)=\bar{v}_{1}^{2} \cdot \hat{z}$ with $p \cdot \hat{z}=0$. Then

$$
\begin{aligned}
\frac{x_{n-k}^{p_{s}^{k}}}{p^{i+1} \cdot v_{1}^{j_{0}}} & =\left(x_{n-k-1}^{p}-2 \cdot v_{1}^{b_{n-k}} \cdot v_{2}^{c_{n-k}}\right)^{s p^{k}} / p^{i+1} \cdot v_{1}^{j_{0}} \\
& =\frac{x_{n-k-1}^{k^{k+1}}}{p^{i+1} \cdot v_{1}^{j_{0}}}+\sum_{l=1}(-2)^{l} \cdot\binom{s p^{k}}{l} \cdot v_{1}^{l \cdot b_{n-k}} \cdot v_{2}^{l \cdot c_{n-k}} \cdot x_{n-k-1}^{p\left(s p^{k}-l\right)} / p^{i+1} \cdot v_{1}^{j_{0}}
\end{aligned}
$$

If $\nu_{p}(l)<k-i$, the power of p in the binomial coefficient $\binom{s p^{k}}{l}$ is at least $i+1$, so these summands give no contribution. Let $l=p^{k-i} \hat{l}$. If $\hat{l}>1$, we have $\hat{l} \cdot p^{n-i} \cdot b_{n-k} \geq j_{0}$, so the power of v_{1} is already to large. We are left with the term with $l=p^{k-i}$. Since $\nu_{p}\left(\binom{s p^{k}}{p^{k-i}}\right)=i$ the denominator reduces to $p \cdot v_{1}^{j_{0}}$ and we obtain

$$
\frac{a \cdot v_{2}^{p^{k-i}} \frac{c_{n-k}}{} \cdot x_{n-k-1}^{p^{k-i+1}\left(s p^{i}-1\right)}}{p \cdot v_{1}^{j_{1}}}
$$

with $a \in \mathbf{Z}_{(p)} \quad$ and $j_{1} \leq p^{k-i+1}+p^{k-i}-p^{i} \quad\left(j_{1} \leq p^{k-i+1}+p^{k-i}-p^{i-1}\right.$ if $n=2 i$). As in step 1 it follows that the image of

$$
\frac{x_{n-k+1}^{p^{k-i+1}}}{p \cdot v_{1}^{p^{k-i+1}+p^{k-i}-p^{i}}}
$$

in $A_{*}(B P)$ may be written as $\bar{v}_{1}^{2} \cdot \grave{z}$ with $p \cdot \grave{z}=0$. This completes the induction step for $k<n-2$. The cases $k=n-2$ and $k=n-1$ have to be dealt with separately but follow exactly the same pattern. We end with

$$
\frac{x_{n}^{s}}{p^{i+1} \cdot v_{1}^{j}}=\frac{v_{2}^{p^{n} s}}{p^{i+1} \cdot v_{1}^{j}}+z
$$

where the image of z in $A_{*}(B P)$ may be written as $\bar{v}_{1}^{2} \cdot B$ with $p \cdot B=0$.

$4 A_{*}(\bar{l})$ and the image of T on $\operatorname{im}(e)$

Note first, that $A_{q m-1}(\bar{l}) \cong A_{q m-1}(l)$ by the same reason as for $B P$. In [8] it is proved that the total A-theory Chern character

$$
c h^{A}: A_{n}(l) \longrightarrow W_{n}^{A}(l):=H_{n}\left(l ; \mathbf{Z}_{(p)}\right) \oplus \bigoplus_{i \geq 1} H_{n+1-q p i}(l ; \mathbf{Z} / p i)_{(p)}
$$

is injective. Since $\bar{v}_{1}=p \cdot m_{1}$ in homology, it is immediately clear that every element of order p^{a} in $A_{n}(l)$ is annihilated by \bar{v}_{1}^{a}. Here we shall prove a weaker
form of this conclusion (with a proof which easily generalizes to $p=2$) and use this to compute

$$
T: A_{q m-1}(B P) \longrightarrow A_{q m-1}(l)
$$

on $\operatorname{im}(e)$.
Proposition 10 Assume $x=\bar{v}_{1}^{a+1} \cdot \hat{x}$ in $A_{*}(l)$ with $p^{a} \cdot \hat{x}=0$ and $\hat{x}=\Delta(\tilde{x})$, $\tilde{x} \in l_{*}(l)$, then $x=0$.

Proof. Recall from [1] that $h: l_{*}(l) \longrightarrow H_{*}\left(l \wedge l ; \mathbf{Z}_{(p)}\right)$ is injective, the torsion of $H_{*}\left(l \wedge l ; \mathbf{Z}_{(p)}\right)$ is is of order p and annihilated by $\bar{v}_{1 *}$ and the description of $l_{*}(l) /$ tor: We have

$$
H_{*}\left(l \wedge l ; \mathbf{Z}_{(p)}\right) / t o r \cong \mathbf{Z}_{(p)}\left[\frac{v}{p}, \frac{u}{p}\right]
$$

with $u:=1 \wedge v_{1}=\bar{v}_{1}, v:=v_{1} \wedge 1$ and a homogeneous polynomial

$$
f(u, v)=\sum_{i} a_{i} \cdot \frac{u^{n-i} v^{i}}{p^{n-i} p^{i}}
$$

is in $\operatorname{im}(h) \bmod$ tor if and only if for all integers m, s prime to p the integrality condition

$$
f\left(m^{p-1} \cdot t, s^{p-1} \cdot t\right) \in \mathbf{Z}_{(p)}[t]
$$

is satisfied. In the following we abbreviate m^{p-1} by \dot{m} and write $c_{i}:=\left(\dot{k}^{i}-1\right) / p$. Write $h(\tilde{x})=: f(u, v)=w_{1}+\sum_{i=0} a_{i} \cdot u^{n-i-1} v^{i} / p^{n-1} \quad$ in $H_{(n-1) q}\left(l \wedge l ; \mathbf{Z}_{(p)}\right)$ with $p \cdot w_{1}=0$. Since $p^{a} \cdot \tilde{x} \in \operatorname{ker}(\Delta)$ we get $p^{a} \cdot f(u, v) \in \operatorname{im}\left(Q \wedge 1_{*}\right)$, i.e.

$$
\hat{g}(u, v):=\sum_{i=0}^{n-1} \frac{a_{i} p^{a}}{p^{n} c_{i+1}} u^{n-i-1} v^{i+1}
$$

is in $H_{n q}\left(l \wedge l ; \mathbf{Z}_{(p)}\right)$ with $(Q \wedge 1)_{*}(\hat{g}(u, v))=p^{a} f(u, v)\left(\right.$ since $(Q \wedge 1)_{*}\left(v_{1}^{i+1} / p^{i+1}\right)$ $\left.=c_{i+1} \cdot v_{1}^{i} / p^{i}\right)$. Therefore $a_{i} \cdot p^{a} / c_{i} \in \mathbf{Z}_{(p)}$ for all i and

$$
g(u, v):=\frac{u^{a}}{p^{a}} \hat{g}(u, v)-\sum_{i=0}^{n-1} \frac{a_{i} p^{a} u^{a+n}}{c_{i+1} p^{a+n}}
$$

is a well defined element in $H_{n q}\left(l \wedge l ; \mathbf{Z}_{(p)}\right)$ satisfying $(Q \wedge 1)_{*} g=u^{a} f$.
We now show that g satisfies the integrality condition for being in $\operatorname{im}(h)$. We may write $\dot{m}=\dot{k}^{c}+p^{\alpha} e, \dot{s}=\dot{k}^{d}+p^{\alpha} h$ with α larger than any denominator in g. Assume also $c<d$. Then $g(\dot{m} t, \dot{s} t) \in \mathbf{Z}_{(p)}[t] \quad$ if $\quad g\left(\dot{k}^{c} t, \dot{k}^{d} t\right) \in \mathbf{Z}_{(p)}[t]$. Now

$$
\begin{aligned}
& g\left(\dot{k}^{c} t, \dot{k}^{d} t\right)=\sum_{i=0}^{n-1} \frac{a_{i}}{p^{c} c_{i+1}}\left[\dot{k}^{c(n-i-1)} \dot{k}^{d(i+1)}-\dot{k}^{c(a+n)}\right] \cdot t^{a+n} \\
& =\sum_{i=0}^{n-1} p^{a_{i}-1} \frac{k^{(c-i-1)+d(i+1)}-1}{k^{\prime+1}-1} \dot{k}^{c(a+n)} \cdot t^{a+n} \\
& =\sum_{i=0}^{n-1} a_{i} p_{i} \dot{k}^{k^{(d-c)(i+1)}} \dot{k}_{k^{\prime}+1}-1 \dot{k}^{c(a+n)} \cdot t^{a+n} \\
& =\sum_{i=0}^{n-1} \sum_{j=1}^{d-c-1} p^{a_{i}-1} \dot{k}^{j(i+1)} \cdot \dot{k}^{c(a+n)} t^{a+n} \\
& =\sum_{j=1}^{d-c-1} f\left(t, \dot{k}^{j} t\right) \cdot \dot{k}^{j+c(a+n)} t^{a+1}
\end{aligned}
$$

which is in $\mathbf{Z}_{(p)}[t]$ since $f\left(t, k^{j} t\right)$ is. Therefore there exists an element $z \in l_{n q}(l)$ with $h(z)=g(u, v)+w_{2}$ and $p \cdot w_{2}=0$. Multiply by \bar{v}_{1}, then $h\left(\bar{v}_{1} z\right)=u$. $g(u, v)$ since $u \cdot w_{2}=0$ and $Q\left(\bar{v}_{1} z\right)=\bar{v}_{1} \cdot Q(z)=\bar{v}_{1}^{a+1} \cdot \tilde{x}$ since

$$
h\left(\bar{v}_{1} \cdot Q(z)\right)=u \cdot(Q \wedge 1)_{*} g(u, v)=u^{a+1} f(u, v)=h\left(\bar{v}_{1}^{a+1} \tilde{x}\right)
$$

and h is injective. Therefore $\Delta\left(\bar{v}_{1}^{a+1} \tilde{x}\right)=0$ and $x=0$.
Consider now

$$
z(a):=\beta\left(\frac{\bar{v}_{2}^{p^{a-1}}}{p \cdot v_{1}^{p^{a-1}}}\right)=e\left(\beta_{p^{a-1} / p^{a-1}}\right) \in A_{q p^{a}-1}(B P)
$$

and define

$$
t(a):=T(z(a)) \in A_{q p^{a}-1}(l)
$$

again suppressing $p r: B P \rightarrow B P, p r: l \rightarrow \bar{l}$ in the notation. We then know $p \cdot t(a)=0$. We need $\quad c h^{A}(t(a)) \neq 0$ on $A_{*}(l)$ and $\quad c h^{A}(t(a))=0$ on $A_{*}(\bar{l})$. If $t_{1} \in l_{q}(l)$ is defined as $t_{1}=\left(\eta_{L}\left(v_{1}\right)-\eta_{R}\left(v_{1}\right)\right) / p$ then it can be shown that $\Delta\left(p^{a-1} t_{1}^{p^{a}-1}\right)=t(a)$ in $A_{q p^{a}-1}(l)$. From this and Example 3 in [4] we easily get $c h^{A}(t(a))$. To avoid the calculation for $\Delta\left(p^{a-1} t_{1}^{p^{a}-1}\right)=t(a)$ we use (3.5) in [4] : Now $\bar{v}_{2} \equiv v_{1} t_{1}^{p}-v_{1}^{p} t_{1} \bmod p$, so

$$
\frac{\bar{v}_{2}^{p^{a-1}}}{p \cdot \bar{v}_{1}^{p^{a-1}}}=\frac{\left(t_{1}^{p}-v_{1}^{p-1} t_{1}\right)^{p^{a-1}}}{p}=\frac{\left(t_{1}^{p^{a}}-v_{1}^{(p-1) p^{a-1}} t_{1}^{p^{a-1}}\right)}{p}
$$

in $A_{q p^{a}}(B P ; \mathbf{Q} / \mathbf{Z})$. Hence (by (3.5) in [4])

$$
c h_{q j-1}^{A}(z(a))=\operatorname{ch}_{q j}^{l}\left(\frac{\bar{v}_{2}^{p^{a-1}}}{\left.p \cdot \bar{v}_{1}^{p^{a-1}}\right)}\right)=\frac{(-1)^{j}\binom{p^{a}}{j} m_{1}^{p^{a}-j}}{p}
$$

in $H_{q p^{a}-q j}(B P ; \mathbf{Z} / j)$ since $c h_{q j}^{l}\left(v_{1}^{(p-1) p^{a-1}} t_{1}^{p^{a-1}} / p\right)=v_{1} p \operatorname{ch}_{q(j-1)}^{l}\left(v_{1}^{(p-1) p^{a-1}-1}\right.$ $\left.t_{1}^{p^{a-1}} / p\right)$ is integral. So

$$
c h_{q j-1}^{A}(z(a))= \begin{cases}0 & \text { if } j \neq p^{a} \tag{15}\\ p^{a} \cdot 1 \text { in } H_{0}\left(B P ; \mathbf{Z} / p^{a}\right) \text { if } j=p^{a}\end{cases}
$$

and the value for $c h_{q j-1}^{A}(t(a))$ follows by naturality. In particular $t(a) \neq 0$, $c h_{q j-1}^{A}(t(a)) \neq 0$ on $A_{*}(l)$ but $c h^{A}(t(a))=0$ on $A_{*}(\bar{l})$. Now we are ready to prove

Theorem 11 If $z \in A_{2 n-1}(l)$ is stably spherical, then $n=(p-1) p^{a}, a \geq 1$, and z is a multiple of $t(a)$.

This follows from
Theorem 12 The image of T on $e\left(E x t_{B P_{*} B P}^{s, *}\left(B P_{*}, B P_{*}\right)\right) \subset A_{2 n-1}(B P)$ is generated by the elements $t(a), a \geq 1$.

Proof. By definition $T\left(e\left(\beta_{p^{a-1} / p^{a-1}}\right)\right)=t(a)$ and we have to show that all the other $\beta^{s s}$ go to zero. We use Propositions (9), (10) and $A_{q m-1}(B P)=A_{q m-1}(B P)$, $A_{q m-1}(l)=A_{2 n-1}(l)$. If $j \geq 2$ then $T \circ e\left(\beta_{p^{a-1} / p^{a-1}-j}\right)=\bar{v}_{1}^{j} \cdot t(a)=0$ by Proposition (10). If $j=1$ we write

$$
e\left(\beta_{p^{a-1} / p^{a-1}-1}\right)=\bar{v}_{2} \cdot\left(\bar{v}_{2}^{p^{a-1}-1} / p \bar{v}_{1}^{p^{a-1}-1}+w\right)=\bar{v}_{2 *}(z)
$$

where we view \bar{v}_{2} as a self map of $B P$. Then $T \circ e\left(\beta_{p^{a-1} / p^{a-1}-1}\right)=\bar{v}_{2 *} T(\beta(z))$ but $\bar{v}_{2 *}=0$ in $A_{*}(l)$ (this follows from the facts that $T \circ v_{2}: \Sigma^{\left|v_{2}\right|} B P \rightarrow B P \rightarrow l$ is zero and T is multiplicative). Next for $s<1$ or $i>1$ if $s=1$ we have

$$
T \circ e\left(\beta_{s p^{a} / j, i+1}\right)=T \circ \beta\binom{\bar{v}_{2}^{s p^{a}}}{p^{i+1} \bar{v}_{1}^{j}}+\bar{v}_{1}^{2} T\left(z_{1}\right)
$$

with $p \cdot z_{1}=0$ by Proposition (9). But in $A_{q m}(B P ; \mathbf{Q} / \mathbf{Z})$ we have $\bar{v}_{2}^{s p^{a}} / p^{i+1} \bar{v}_{1}^{j}=$ $\bar{v}_{1}^{i+2} \cdot z_{2}$ with $z_{2}=\bar{v}_{2}^{s p^{a}} / p^{i+1} \bar{v}_{1}^{j+i+2}$ since $j+2 i+2 \leq s p^{a}$ as an easy estimation shows (Proposition (8)). Hence $T\left(\beta\left(z_{2} \cdot \bar{v}_{1}^{i+2}\right)\right)=0$ by Proposition (10) since $p^{i+1} \cdot T\left(\beta\left(z_{2}\right)\right)=0$.

The Thom reduction

$$
\alpha: E x t_{B P_{*} B P}^{2, *}\left(B P_{*}, B P_{*}\right) \longrightarrow \operatorname{Ext}_{\iota_{*}}^{2, *}\left(\mathbf{F}_{p}, \mathbf{F}_{p}\right)
$$

from the E_{2}-term of the Adams-Novikov spectral sequence to the E_{2}-term of the classical Adams spectral sequence is known by [12]. We have $\alpha\left(\beta_{p^{a} / p^{a}}\right)=-b_{a}$ where b_{a} is analogous to the class carrying a Kervaire invariant one element at $p=2$ (if it exists). Note that in the dimension of $\beta_{p^{a} / p^{a}}$ all other elements in $E x t_{B P_{*} B P}^{2, *}\left(B P_{*}, B P_{*}\right)$ map to zero under α, so that $\operatorname{ker}(\alpha)=\operatorname{ker}(T \circ e)$ in this case.

Corollary $13 t(a) \in A_{q p^{a}-1}(\bar{l})$ is stably spherical if and only if $b_{a-1} \in \operatorname{Ext}_{\bullet_{*}}^{2, *}\left(\mathbf{F}_{p}\right.$, \mathbf{F}_{p}) is permanent (i.e. there exists an element of mod p Kervaire invariant one in dimension $q \cdot p^{a}-2$).

Proof. Note first, that the well known geometric boundary lemma ([14] 2.3.4) implies that the following diagram commutes

$$
\begin{array}{ccc}
F^{0} \pi_{n+2}^{S}\left(S^{0} /\left(p^{\infty}, v_{1}^{\infty}\right)\right) & \stackrel{\partial_{1}}{\rightarrow} & F^{1} \pi_{n+1}^{S}\left(S^{0} / p^{\infty}\right)
\end{array} \stackrel{\beta}{\rightarrow} \quad F^{2} \pi_{n}^{S}\left(S^{0}\right)
$$

Here the unnamed arrows associate to an element in Adams filtration F^{i} its $\mathrm{E}_{2}-$ representing set. Hence we may treat $\eta=\ddot{\partial} \circ \dot{\partial}$ as an identification and use the $E x t_{B P_{* B}}^{2, *}\left(B P_{*}, B P_{*}\right)$-names for corresponding elements in $P_{n+2} B P_{*} /\left(p^{\infty}, v_{1}^{\infty}\right)$.
$" \Rightarrow$ " If $t(a)$ is stably spherical then $e\left(\beta_{p^{a-1} / p^{a-1}}+z\right)$ is stably spherical with $e(z) \in \operatorname{ker}(T)$ (use the diagram in Lemma (7)). Then $\alpha\left(\beta_{p^{a-1} / p^{a-1}}+z\right)=-b_{a-1}$ is permanent. Conversely, if b_{a-1} is permanent, then $\beta_{p^{a-1} / p^{a-1}}+w$ with $w \in \operatorname{ker}(\alpha)$ is permanent, hence $T \circ e\left(\beta_{p^{a-1} / p^{a-1}}+w\right)=t(a)$ is stably spherical.

The odd primary Kervaire invariant one problem was solved for $p>3$ by Ravenel [13]: For $p>3$ and $a \geq 1 \quad b_{a}$ is not permanent (b_{0} is permanent representing β_{1}; for $p=3 \quad \beta_{3 / 3}$ is not permanent but $\beta_{9 / 9} \pm \beta_{7}$ is). Hence

Corollary 14 For $p>3$ and m odd the only stably spherical elements in $A_{m}(l)$ are the multiples of $t(1)$.

Remarks.

1. A purely K-theoretic proof of Theorem (12) is, in principle, possible. Since

$$
E x t_{B P_{*} B P}^{2, *}\left(B P_{*}, B P_{*}\right) \subset A_{q m-1}(B P) \text { is } \operatorname{ker}\left(\Psi: A_{q m-1}(B P) \rightarrow A_{q m-1}(B P \wedge B P)\right)
$$

(where Ψ is induced from $S^{0} \rightarrow B P$), one has to compute $\operatorname{im}(T)_{\mid \operatorname{ker}(\Psi)}$. But to compute $\operatorname{ker}(\Psi)$ seems to be not much easier than the work done in [12].
2. A purely K-theoretic proof of Theorem (11) is simpler: Since $c h^{A}: A_{*}(l) \rightarrow$ $W^{A}(l)$ is injective [8], one only has to work out ker $c h^{A}$ on $A_{*}(\bar{l})$. The disadvantage of proving only this is, that then the relation to the Kervaire invariant one elements is harder to derive.

5 Stably spherical classes in $A_{2 n}\left(B \Sigma_{p}\right)$ and the functional \boldsymbol{A}-theory Chern character

Although there is no lift of the transfer map $\tilde{\operatorname{tr}}: B \Sigma_{p} \rightarrow S^{0}$ to a map $B \Sigma_{p} \rightarrow$ $\Sigma^{-1} l$ (since $\tilde{\operatorname{tr}}(1) \in l^{0}\left(B \Sigma_{p}\right)$ is non zero) there is a strong relationship between stably spherical classes in $A_{*}(l)$ and $A_{*}\left(B \Sigma_{p}\right)$. Recall (e.g. [4])

$$
A_{q m-2}\left(B \Sigma_{p}\right) \cong \mathbf{Z} / p^{\nu_{p}(m)}
$$

and denote a non zero element of order p in $\quad A_{q p^{a}-2}\left(B \Sigma_{p}\right) \cong \mathbf{Z} / p^{a}$ by $x(a)$. We shall show that the only possible stably spherical elements in $A_{2 n}\left(B \Sigma_{p}\right)$ are the multiples of $x(a)$.

The cofibre sequences $S^{0} \rightarrow l \rightarrow l$ and $B \Sigma_{p} \wedge A \xrightarrow{\tilde{t r}} A \xrightarrow{c h^{A}} W^{A}$ (see [4]) induce the following basic commutative diagram of exact sequences

$$
\begin{align*}
& \uparrow c h^{A} \quad \uparrow c h^{A} \\
& A_{q m-1}(l) \underset{\cong}{\stackrel{p r_{*}}{\cong}} A_{q m-1}(\bar{l}) \quad \rightarrow \quad A_{q m-2}\left(S^{0}\right) \quad \rightarrow \quad A_{q m-2}(l) \\
& \uparrow \tilde{t r} \quad \uparrow \tilde{t r} \quad \uparrow 0 \quad \uparrow \\
& A_{q m-1}\left(l \wedge B \Sigma_{p}\right) \rightarrow A_{q m-1}\left(\bar{l} \wedge B \Sigma_{p}\right) \xrightarrow{\partial} A_{q m-2}\left(B \Sigma_{p}\right) \rightarrow A_{q m-2}\left(l \wedge B \Sigma_{p}\right) \\
& \uparrow \quad \uparrow d \cong \uparrow \\
& W_{q m}^{A}(l) \xrightarrow{\stackrel{p r_{*}}{\cong}} W_{q m}^{A}(\bar{l}) \quad \xrightarrow{0} W_{q m-1}^{A}\left(S^{0}\right) \quad \rightarrow \quad W_{q m-1}^{A}(l) \tag{16}
\end{align*}
$$

We first show
Proposition 15 Suppose $x \in A_{q m-2}\left(B \Sigma_{p}\right)$ is stably spherical. Then $x=\partial\left(x_{1}\right)$ for some stably spherical element $x_{1} \in A_{q m-1}\left(\bar{l} \wedge B \Sigma_{p}\right)$ and $\tilde{\operatorname{tr}}\left(x_{1}\right) \in A_{q m-1}(\bar{l})$ is non zero and stably spherical.

Proof. Since $\quad \pi_{q m-2}^{S}\left(B \Sigma_{p}\right) \longrightarrow l_{q m-2}\left(B \Sigma_{p}\right) \quad$ is zero, any $f \in \pi_{q m-2}^{S}\left(B \Sigma_{p}\right)$ with $h_{A}(f)=x$ has a lift $\bar{f} \in \pi_{q m-1}^{S}\left(\bar{l} \wedge B \Sigma_{p}\right)$ with $h_{A}(\bar{f})=x_{1}, \partial\left(x_{1}\right)=x$. Assume $\tilde{\operatorname{tr}}\left(x_{1}\right)=0$, then $x_{1}=d\left(x_{2}\right)$ but $p r_{*}: W_{q m}^{A}(l) \rightarrow W_{q m}^{A}(\bar{l})$ is bijective for $m \neq 0$, therefore this would imply $x=0$. Hence $\tilde{\operatorname{tr}}\left(x_{1}\right) \neq 0$.

Combining this with Theorem (11) and Corollary (13) gives
Theorem 16 The image of $h_{A}: \pi_{2 n}^{S}\left(B \Sigma_{p}\right) \rightarrow A_{2 n}\left(B \Sigma_{p}\right)$ is zero for $n \neq(p-1)$. $p^{a}-1$ and contained in the subgroup of order p in $A_{q p^{a}-2}\left(B \Sigma_{p}\right) \cong \mathbf{Z} / p^{a}$.

Corollary 17 a) If $x(a) \in A_{\text {qp } p^{a}}\left(B \Sigma_{p}\right)$ is stably spherical, then there exists a (p primary) Kervaire invariant one class (i.e. b_{a-1} in $E x t_{b_{*}}^{2, *}\left(\mathbf{F}_{p}, \mathbf{F}_{p}\right)$ is a permanent cycle).
b) If $p>3$ then $h_{A}: \pi_{2 n}^{S}\left(B \Sigma_{p}\right) \rightarrow A_{2 n}\left(B \Sigma_{p}\right)$ is zero except for $n=(p-1) \cdot p-1$. For $n=(p-1) \cdot p-1 h_{A}$ is bijective and any generator of $\pi_{2 n}^{S}\left(B \Sigma_{p}\right)=\mathbf{Z} / p$ maps to a non zero multiple of β_{1} under the transfer map $\tilde{\operatorname{tr}}: \pi_{2 n}^{S}\left(B \Sigma_{p}\right) \rightarrow \pi_{2 n}^{S}\left(S^{0}\right)$.

We now turn to the converse of (17)a.
Theorem 18 If the element b_{a-1} in the classical Adams spectral sequence is permanent, then $x(a) \in A_{q p^{a}-2}\left(B \Sigma_{p}\right)$ is stably spherical .

Proof. By Corollary (13) we know $t(a) \in A_{q p^{a}-2}(l)$ is stably spherical if b_{a-1} is permanent. Consider the commutative diagram ($n:=q \cdot p^{a}-1$)

$A_{n-1}\left(B \Sigma_{p}\right)$					
	$\partial \nearrow$		$\nwarrow h_{A}$		
$A_{n}\left(B \Sigma_{p} \wedge l\right)$	$\stackrel{h_{A}}{\stackrel{1}{4}}$	$\pi_{n}^{S}\left(B \Sigma_{p} \wedge l\right)$	$\xrightarrow{\partial}$	$\pi_{n-1}^{S}\left(B \Sigma_{p}\right) \xrightarrow{0}$	$l_{n-1}\left(B \Sigma_{p}\right)$
$\downarrow \tilde{t r}$		$\downarrow \tilde{t r}$		$\downarrow \tilde{t r}$	
$A_{n}(l)$	$\stackrel{h_{A}}{ }$	$\pi_{n}^{S}(l)$	$\xrightarrow[\cong]{\partial}$	$\pi_{n-1}^{S}\left(S^{0}\right)$	

Choose $f \in \pi_{n}^{S}(l)$ with $h_{A}(f)=t(a)$. Since $\tilde{t r}$ is onto by the Kahn-Priddy-theorem we have a lift of $\partial(f)$ to an element $\bar{f} \in \pi_{n-1}^{S}\left(B \Sigma_{p}\right)$ and since $l_{n-1}\left(B \Sigma_{p}\right)=0$ a lift of \bar{f} to an element $\hat{f} \in \pi_{n}^{S}\left(B \Sigma_{p} \wedge l\right)$. Clearly $\tilde{t r}(\hat{f})=f$. Then $h_{A}(\hat{f})=: x_{1} \neq 0$ since $\tilde{\operatorname{tr}}\left(x_{1}\right)=t(a)=h_{A}(f)$. Assume now $\partial\left(x_{1}\right)=0$ in $A_{n-1}\left(B \Sigma_{p}\right)$. Then there exists $x_{2} \in A_{n}\left(B \Sigma_{p} \wedge l\right)$ with $p r_{*}\left(x_{2}\right)=x_{1}$ in (16). By commutativity in (16) we have $\tilde{t r}\left(x_{2}\right)=t(a)$ in $A_{n}(l) \cong A_{n}(l)$ which would imply $c h^{A}(t(a))=0$ on $A_{n}(l)$ contradicting (15). Hence $\partial\left(x_{1}\right) \neq 0$ and there is a non zero stably spherical class in $A_{n-1}\left(B \Sigma_{p}\right)$. Then $x(a)$ must be in $\operatorname{im}\left(h_{A}\right)$.

Remark. With different methods the images of $h_{A}: \pi_{2 n}^{S}\left(B \Sigma_{p}\right) \rightarrow A_{2 n}\left(B \Sigma_{p}\right)$ and $h_{A}: \pi_{2 n}^{S}(B \mathbf{Z} / p) \rightarrow A_{2 n}(B \mathbf{Z} / p)$ (for $p \neq 2$ up to the elements of order p corresponding to $x(a)$ in dimensions $\left.n=s \cdot p^{a}-1,0 \leq s \leq p-1\right)$ are determined in [6] .

For $f \in \operatorname{ker}\left(h_{A}: \pi_{n}^{S}(X) \rightarrow A_{n}(X)\right)$ the functional A-theory Chern character $c h_{f}^{A}$ is defined in the usual way: Let

$$
S^{n} \xrightarrow{f} X \xrightarrow{j} C_{f} \xrightarrow{p} S^{n+1}
$$

be the cofibre sequence associated to f and consider the commutative diagram

$$
\begin{array}{rllll}
0 & \rightarrow \quad A_{n+1}(X) & \rightarrow & A_{n+1}\left(C_{f}\right) & \xrightarrow{p_{*}} A_{n+1}\left(S^{n+1}\right) \xrightarrow{f_{*}} 0 \\
\downarrow c h_{q r-1}^{A} & \downarrow c h_{q r-1}^{A} & \\
0 & \rightarrow H_{n+2-q r}(X ; \mathbf{Z} / r) \xrightarrow{j_{*}} H_{n+2-q r}\left(C_{f} ; \mathbf{Z} / r\right) & \rightarrow & 0
\end{array}
$$

If $\hat{1} \in A_{n+1}\left(C_{f}\right)$ is an element with $p_{*}(\hat{1})=1 \in A_{n+1}\left(S^{n+1}\right)$, then $c h_{q r-1}^{A}(\hat{1})=j_{*}(z)$ and z is well defined in $H_{n+2-q r}(X ; \mathbf{Z} / r) / c h_{q r-1}^{A}\left(A_{n+1}(X)\right)$. For $X=S^{0}$ we can completely describe the values which this invariant may take:

Theorem 19 An element $f \in \pi_{n}^{S}\left(S^{0}\right)_{(p)}$ is detected by the functional A-theory Chern character if and only iff has Kervaire invariant one (i.e. f is represented in the classical Adams spectral sequence by b_{i}).

Proof. n must be of the form $n=q \cdot r-2$ with $\nu_{p}(r)>0$. Let $\tilde{t r}: B \Sigma_{p} \rightarrow S^{0}$ be the reduced transfer map and $\hat{f} \in \pi_{n}^{S}\left(B \Sigma_{p}\right)$ be an element with $\tilde{\operatorname{tr}}(\hat{f})=f$ (which can be found by the Kahn-Priddy theorem). Denote the cofibre of \hat{f} by $C_{\hat{f}}$ and by $t: C_{\hat{f}} \rightarrow C_{f}$ the fill in map between cofibres. Consider the commutative diagram

$$
\begin{aligned}
& \begin{array}{rll}
A_{n+1}\left(S^{0}\right) & \rightarrow & \swarrow \begin{array}{cc}
A_{n+1}\left(C_{f}\right) & \rightarrow A_{n+1}^{A}\left(S^{n+1}\right) \\
\\
& \cong
\end{array} \xrightarrow{f_{*}}
\end{array} \\
& \begin{array}{cccc}
& H_{0}\left(S^{0} ; \mathbf{Z} / r\right) & \stackrel{\sim}{\sim} & H_{0}\left(C_{f} ; \mathbf{Z} / r\right) \\
\uparrow \tilde{t r} & \uparrow \tilde{t r} & & \uparrow \\
& H_{0}\left(B \Sigma_{p} ; \mathbf{Z} / r\right) & \rightarrow & H_{0}\left(C_{\hat{f}} ; \mathbf{Z} / r\right)
\end{array} \\
& A_{n+1}\left(B \Sigma_{p}\right) \quad \rightarrow \quad A_{n+1}\left(C_{\hat{f}}\right) \quad \rightarrow A_{n+1}\left(S^{n+1}\right) \xrightarrow{\hat{f}_{*}}
\end{aligned}
$$

 $c h_{q r-1}^{A}(\hat{1})$ factors through $H_{0}\left(C_{\hat{f}} ; \mathbf{Z} / r\right)$ and $\tilde{t r}: H_{0}\left(B \Sigma_{p} ; \mathbf{Z} / r\right) \rightarrow H_{0}\left(S^{0} ; \mathbf{Z} / r\right)$ and must be zero. Hence if f is detected by $c h_{f}^{A}, \hat{f}_{*}(1)=h_{A}(\hat{f})$ must be non zero and the result follows from Corollary (17).

Conversely if $f \in \pi_{n}^{S}\left(S^{0}\right)$ is represented by $b_{i-1}\left(n=q \cdot p^{i}-1\right)$, then $\hat{f}_{*}(1)=h_{A}(\hat{f}) \neq 0$ (see proof of Theorem (18)). Hence $d_{*}(\hat{1}) \neq 0$ in $A_{n+1}\left(\Sigma C_{t}\right)$ where ΣC_{t} is the cofibre of t and $d: C_{f} \rightarrow \Sigma C_{t}$ the canonical map. But C_{t} is equivalent to $C_{\tilde{t r}}$ and on $A_{n}\left(C_{\tilde{t r}}\right)$ the A-theory Chern character $c h_{n+1}^{A}$ is an isomorphism (essentially by the identification of $C_{\text {tr }} \wedge A$ with W^{A}, see [4], remark following (2.9)). Since

$$
d_{*}: H_{0}\left(C_{f} ; \mathbf{Z} / p^{i}\right) \rightarrow H_{-1}\left(C_{\tilde{r}} ; \mathbf{Z} / p^{i}\right) \cong H_{-1}\left(S^{-1} ; \mathbf{Z} / p^{i}\right)
$$

is an isomorphism too, $c h_{n+1}^{A}(\hat{1})$ must be non zero (the indeterminacy is zero).
Remark. For $p \neq 2$ the functional integral Chern character $c h_{f}^{l} \bmod p$ may be interpreted as the mod p Hopf invariant.

6 Appendix: The 2-primary case

At $p=2$ there are several versions of $\operatorname{Im}(J)$-theory: We define complex $\operatorname{Im}(J)$-theory by the cofibre sequences

$$
\begin{align*}
& \rightarrow A d \mathbf{C} \xrightarrow{D} K_{(2)} \xrightarrow{\psi^{3}-1} K_{(2)} \xrightarrow{\Delta} \Sigma A d \mathbf{C} \rightarrow \tag{17}\\
& \rightarrow A \mathbf{C} \xrightarrow{D} b u_{(2)} \xrightarrow{Q} \Sigma^{2} b u_{(2)} \xrightarrow{\Delta} \Sigma A \mathbf{C} \rightarrow \tag{18}
\end{align*}
$$

where $v_{1} \cdot Q=\psi^{3}-1$. Then $A \mathbf{C}$ is the (-1)-connected cover of $A d \mathbf{C}$. This is as for odd primes, the main difference is that not all elements in $A \mathbf{C}_{n}\left(S^{0}\right)$ are stably spherical; for $n \equiv 3,5 \bmod 8 \operatorname{coker}\left(h_{A \mathbf{C}}\right)$ has order 2.

Real versions are defined by

$$
\begin{align*}
\rightarrow & A d \mathbf{R} \xrightarrow{D} K O_{(2)} \xrightarrow{\psi^{3}-1} K O_{(2)} \xrightarrow{\Delta} \Sigma A d \mathbf{R} \rightarrow \tag{19}\\
& \rightarrow A \xrightarrow{D} b o_{(2)} \xrightarrow{Q} \Sigma^{4} b s p_{(2)} \xrightarrow{\Delta} \Sigma A \rightarrow \tag{20}
\end{align*}
$$

(for $b s p$ and Q in (20) see [11]). The spectrum A is the proper choice at $p=2$, but differs from the (-1)-connected cover of $A d \mathbf{R}$ in π_{0} and π_{1}. We have a complexification map $c: A d \mathbf{R} \rightarrow A d \mathbf{C}$ induced by the usual complexification.

The groups $H^{2}\left(B P_{*}\right)=E x t_{B P_{*} B P}^{2, *}\left(B P_{*}, B P_{*}\right)$ for $p=2$ have been determined by Mitchell and Shimomura [16]. The map η appearing in (7) is neither injective nor surjective but its kernel and cokernel are computed in [16]. Lemma (4) is true with $A d \mathbf{R}$ instead of $A d \mathbf{C}$, therefore the definition of the map e has to be changed slightly. We define e similarly as for $p \neq 2$ but build in complexification. With the maps from the following diagram

$$
\begin{align*}
& \begin{array}{c}
P_{n} B P_{*} /\left(2^{\infty}, v_{1}^{\infty}\right) \\
\cap
\end{array} \\
& 0 \rightarrow B P_{n} / 2^{\infty} \quad \rightarrow \quad v_{1}^{-1} B P_{n} / 2^{\infty} \quad \xrightarrow{\text { red }} B P_{n} /\left(2^{\infty}, v_{1}^{\infty}\right) \quad \rightarrow 0 \\
& \| \quad g_{*} \downarrow \cong \quad \downarrow \cong \\
& 0 \rightarrow \pi_{n}^{S}\left(B P ; \mathbf{Z} / 2^{\infty}\right) \rightarrow A d \mathbf{R}_{n}\left(B P ; \mathbf{Z} / 2^{\infty}\right) \rightarrow \operatorname{Ad} \mathbf{R}_{n}\left(B P ; \mathbf{Z} / 2^{\infty}\right) \rightarrow 0 \\
& c \downarrow \\
& \| \quad \operatorname{Ad} \mathbf{C}_{n}\left(B P ; \mathbf{Z} / 2^{\infty}\right) \\
& i \uparrow \\
& \pi_{n}^{S}\left(B P ; \mathbf{Z} / 2^{\infty}\right) \xrightarrow{h_{A d}} A \mathbf{C}_{n}\left(B P ; \mathbf{Z} / 2^{\infty}\right) \xrightarrow{\beta} \quad A \mathbf{C}_{n-1}(B P) \\
& p r_{*} \downarrow \quad p r_{*} \downarrow \\
& A \mathbf{C}_{n}\left(B P ; \mathbf{Z} / 2^{\infty}\right) \xrightarrow{\beta} \quad A \mathbf{C}_{n-1}(B P) \tag{21}
\end{align*}
$$

we set

$$
e:=p r_{*} \circ \beta \circ i^{-1} \circ c \circ g_{*} \circ r e d^{-1}
$$

and prove Lemma (6) in the same way.
We now turn to Lemma (7):
The map $\partial_{1}: \pi_{n+2}^{S}\left(S^{0} /\left(2^{\infty}, v_{1}^{\infty}\right)\right) \longrightarrow \pi_{n+1}^{S}\left(S^{0} / 2^{\infty}\right)$ in Lemma (7) is not onto for all n, but $\operatorname{ker}\left(\partial_{1}\right)$ and $\operatorname{coker}\left(\partial_{1}\right)$ are determined by the Hurewicz map $h_{A d \mathbf{R}}: \pi_{m}^{S}\left(S^{0}\right) \rightarrow \operatorname{Ad} \mathbf{R}_{m}\left(S^{0}\right)$. Since $h_{A d \mathbf{R}}$ is onto for m odd, $m>1$, we find that ∂_{1} is always injective but has a cokernel of order 2 in dimensions congruent 0 and $2 \bmod 8$. We assume now that n is of the form $n=2 \cdot 2^{a}-2, a \geq 2$, then ∂_{1} is bijective. Complexification c in (21) is injective. This may be seen
as follows. It is enough to show this with $\mathbf{Z} / 2^{i}$ coefficients, for all i. If x is in $\operatorname{ker}(c)$ then $B_{i}^{m}(x) \in \operatorname{ker}(c)$, where B_{i} is an Adams periodicity operator for the Moore spectrum $M\left(\mathbf{Z} / 2^{i}\right)$, (e.g. see [3]). But $B_{i}^{m}(x)$ for m large enough comes from stable homotopy (see again [3]) and $\pi_{2 r}^{S}\left(B P ; \mathbf{Z} / 2^{i}\right) \rightarrow A d \mathbf{C}_{2 r}\left(B P ; \mathbf{Z} / 2^{i}\right)$ is injective by the Hattori-Stong theorem. Hence $c \circ B_{i}^{m}(x)=0$ implies $B_{i}^{m}(x)=0$ and this gives $x=0$. Since under the dimension assumptions made, $A \mathbf{C}_{n-1}(B P) \rightarrow A \mathbf{C}_{n-1}(B P)$ is a monomorphism, we see that e is injective as for odd primes. Then Lemma (7) reformulated with $A \mathbf{C}_{*}$ is proved as for $p \neq 2$.

In Sect. 2 we have

$$
\eta_{R}\left(v_{2}\right)=v_{2}+2 t_{2}-5 v_{1} t_{1}^{2}-4 t_{1}^{3}-3 v_{1}^{2} t_{1}
$$

hence $A=t_{2}-2 t_{1}^{3}, B=-5 t_{1}^{2}-3 v_{1} t_{1}$ and Proposition (8) is true for $p=2$ without any change. Note however that $p r_{*}: A \mathbf{C}_{2 m-1}(B P) \rightarrow A \mathbf{C}_{2 m-1}(B P)$ is still always onto but has a kernel of order 2 if $m \equiv 2,3 \bmod 4$.

The computations in Sect. 3 have to be redone completely, but no new idea is necessary. The definition of the elements $\beta_{2^{n} s / j, i}$ is in $[16,14]$. The computations are even simpler than for $p \neq 2$ since $x_{i}=x_{i-1}^{2}$ for $i \geq 3$ but there are more subcases to check. The simplest way to proceed then seems to be as follows. We may put in the definition of x_{0}, x_{1}, x_{2} and then expand by the binomial formula. For the factor y_{i}^{-m} in $\beta_{2^{n} s / j, i+2}$ we use $\left(1-4 v_{2} / v_{1}^{3}\right)^{-j / 2}$. This gives $\beta_{2^{n} s / j, i+1}$ and $\beta_{2^{n} / j, i+2}$ as a polynomial in $v_{1}, v_{2}, v_{3}, v_{1}^{-1}, v_{2}^{-1}$. Then one checks that every term containing a negative power of v_{2} is zero if reduced $\bmod 2^{\infty}$ and v_{1}^{∞}. To the terms left we may apply Propositions (10) and (8) directly, i.e. if $\beta_{2^{n} s / j, k}$ contains a summand $v_{3}^{c} \cdot v_{2}^{m} / 2^{a} \cdot v_{1}^{b}$ with $2 a+b \leq m, a \leq m$, then

$$
e\binom{v_{2}^{m}}{2^{a} \cdot v_{1}^{b}}=\binom{\bar{v}_{2}^{m}}{2^{a} \cdot \bar{v}_{1}^{b}}
$$

is divisible by \bar{v}_{1}^{a+1} in $A \mathbf{C}_{*}(B P)$ and maps to zero in $A \mathbf{C}_{*}(l)$ by Proposition (10). The case of $\beta_{2^{n} / 2^{n}-1}$ is handled as for $p \neq 2$, also some terms $v_{3}^{c} \cdot v_{2}^{m} / 2^{a} \cdot v_{1}^{b}$ with $2 a+b>m \geq a+b$ and $c \geq 1$. As for $p \neq 2$ the only $\beta_{2^{n} s / j, k}$ with non trivial image in $A \mathbf{C}_{*}(l)$ is $\beta_{2^{n}} / 2^{n}$.

The proof of Proposition (10) has to be modified slightly, due to the fact that $\left(\mathbf{Z} / 2^{i}\right)^{*}$ is not cyclic. The use of the Adams operation ψ^{-1} gives the remaining cases to be checked. Theorem (11) is not true for $p=2$ as stated (since η in (7) and ∂_{1} in Lemma (7) are not onto) but if $n=2 \cdot 2^{a}-1, a \geq 2$, any stably spherical element in $A \mathbf{C}_{n}(l)$ must be in $\operatorname{im}(e)$, hence

Theorem 20 If $z \in A \mathbf{C}_{2 n-1}(l)$ is stably spherical and $n=2^{a}, a \geq 2$, then z is a multiple of $t(a)$.

For the Thom reduction

$$
\alpha: \operatorname{Ext}_{B P_{*} B P}^{2, *}\left(B P_{*}, B P_{*}\right) \longrightarrow \operatorname{Ext}_{\cdot t_{*}}^{2, *}\left(\mathbf{F}_{2}, \mathbf{F}_{2}\right)
$$

we refer to [14] 5.4.6. In the Kervaire invariant one dimensions the kernel of α is the same as $\operatorname{ker}(T \circ e)$ and the proof of Corollary (13) carries over without change:

Theorem 21 The class $t(a) \in A \mathbf{C}_{2^{a+1}-1}(l)$ is stably spherical if and only if $h_{a}^{2} \in E x t^{2,2^{a+1}}\left(\mathbf{F}_{2}, \mathbf{F}_{2}\right)$ is permanent.

To carry over the results of Sect. 5 one needs the basic diagram (16) with A replaced by $A \mathbf{C}$. The 2-primary version of the complex $\operatorname{Im}(J)$-theory Chern character $c h^{A \mathbf{C}}$ is quite analogous to the odd primary case. Let R be the cofibre of the reduced transfer map

$$
B \Sigma_{2} \xrightarrow{\tilde{t r}} S^{0} \longrightarrow R
$$

then bo $\wedge R$ splits as $\bigvee_{i \geq 0} \Sigma^{4 i} H \mathbf{Z}_{(2)}$ by [11] and from bo $\wedge \Sigma^{-2} P_{2} \mathbf{C} \simeq b u$ one gets $b u \wedge R \simeq \bigvee_{i \geq 0}{ }^{\Sigma^{2 i}} H \mathbf{Z}_{(2)}$. The rest of the argument is the same as in [4] and

$$
\begin{equation*}
A \mathbf{C} \wedge B \Sigma_{2} \xrightarrow{\tilde{t r}} A \mathbf{C} \xrightarrow{c h^{A \mathbf{C}}} W^{A \mathbf{C}} \tag{22}
\end{equation*}
$$

with $W_{n}^{A \mathbf{C}}(X):=H_{n}\left(X ; \mathbf{Z}_{(2)}\right) \oplus \bigoplus_{i>0} H_{n+1-4 i}(X ; \mathbf{Z} / 4 i)_{(2)}$ is a cofibre sequence.
For $n=2^{a+1}-2$ we have then

1. $p r_{*}: A \mathbf{C}_{n+1}(l) \rightarrow A \mathbf{C}_{n+1}(l)$ is injective
2. $\quad c h^{A \mathbf{C}}(t(a)) \neq 0$ on $A \mathbf{C}_{n+1}(l)$ and $c h^{A \mathbf{C}_{(}}(t(a))=0$ on $A \mathbf{C}_{n+1}(\bar{l})$
3. $p r_{*}: W_{n+2}^{A \mathbf{C}}(l) \longrightarrow W_{n+2}^{A \mathbf{C}}(\bar{l})$ is onto.

These facts imply as for p odd
Theorem 22 For $n=2^{a+1}-2$, $a \geq 2$, the image of $h_{A C}: \pi_{n}^{S}\left(B \Sigma_{2}\right) \rightarrow A \mathbf{C}_{n}\left(B \Sigma_{2}\right)$ is contained in the subgroup of order 2 and $A \mathbf{C}_{n}\left(B \Sigma_{2}\right)$ contains a non trivial
 there exists an element of Kervaire invariant one in dimension n.

We have for $n=2^{a+1}-2, a \geq 2$,

$$
\begin{aligned}
& A \mathbf{C}_{n}\left(B \Sigma_{2}\right)=\mathbf{Z} / 2^{a+1} \quad(\text { for example by (22)) and } \\
& A_{n}\left(B \Sigma_{2}\right)=\mathbf{Z} / 2^{a-1} \quad(\text { e.g. see }[2,10])
\end{aligned}
$$

Comparing the exact sequences giving $A \mathbf{C}_{n}\left(B \Sigma_{2}\right)$ and $A_{n}\left(B \Sigma_{2}\right)$ shows that the canonical map $A_{n}\left(B \Sigma_{2}\right) \rightarrow A \mathbf{C}_{n}\left(B \Sigma_{2}\right)$ is injective (for n as above), hence Theorem (22) may also be formulated with A-theory. In this formulation the result is due to M. Mahowald [10] (see also [2] and [7]). In [10] it is also shown that $A_{*}\left(B \Sigma_{2}\right)$ detects the transfer lifts of the Mahowald family η_{j}.

The reformulation of Theorem (19) is left to the reader.

References

1. J.F. Adams: Stable homotopy and generalized cohomology, University Press Chicago (1974)
2. M.G. Barratt, J.D.S. Jones, M. Mahowald: The Kervaire invariant and the Hopf invariant, in Springer Lecture Notes 1286 (1985)
3. M.C. Crabb, K. Knapp: Adams periodicity in stable homotopy. Topology 24 (1985), 475-486
4. M.C. Crabb, S. Jäschke, K. Knapp: The $\operatorname{Im}(J)$-theory Chern character, preprint (1992)
5. A.S. Hilditch: On calculating the complex double transfer in homotopy, Dissertation, Manchester (1985)
6. S. Jäschke: Stabil sphärische Elemente in der Bild-J-Theory des klassifizierenden Raumes der zyklischen Gruppe mit p Elementen, Dissertation, Wuppertal (1992)
7. J. Klippenstein, V. Snaith: A conjecture of Barratt-Jones-Mahowald concerning framed manifolds having Kervaire invariant one, Topology 27 (1988) 387-392
8. K. Knapp: Connective K-theory of the Im(J)-spectrum, Proc. London Math. Soc. (3) 71 (1995) 175-196
9. K. Knapp: Some applications of K-theory to framed bordism, Habilitationsschrift, Bonn (1979)
10. M. Mahowald: The image of J in the EHP-sequence, Ann. of Math. 116 (1982) 65-112
11. M. Mahowald, R.J. Milgram: Operations which detect Sq^{4} in connective K-theory and their applications, Quart. J. Math. Oxford 27 (1976) 415-432
12. H.R. Miller, D.C. Ravenel, W.S. Wilson: Periodic phenomena in the Adams- Novikov spectral sequence, Ann. of Math. 106 (1977) 469-516
13. D.C. Ravenel: The nonexistence of odd primary Arf invariant elements in stable homotopy, Math. Proc. Cambridge Phil. Soc 83 (1978) 429-443
14. D.C. Ravenel: Complex Cobordism and Stable Homotopy of Spheres, Academic Press (1986)
15. P. Selick: A reformulation of the Arf invariant one problem and applications to atomic spaces, Pacific J. of Math. 108 (1983) 431-450
16. K. Shimomura: Novikov‘s Ext ${ }^{2}$ at the prime 2, Hiroshima Math. J. 11 (1981) 499-513
