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1. Introduction. In homology theory an important role is played by pairs
of functors consisting of

(i) @ functor Hom in two variables, contravariant in the first variable and co-
variant in the second (for instance the functor which assigns to every two
abelian groups 4 and B the group Hom (4, B) of homomorphisms f: 4 —B).

(ii) @ functor ® (tensor product) in two variables, covariant in both (for
instance the functor which assigns to every two abelian groups 4 and B their
tensor product 4 ® B).

These functors are not independent; there exists a natural equivalence
of the form

a: Hom (®,) — Hom (, Hom (, ))

Such pairs of functors will be the subject of this paper.

In the above formulation three functors Hom and only one tensor prod-
uct are used. It appears however that there exists a kind of duality between
the tensor product and the last functor Hom, while both functors Hom out-
side the parentheses play a secondary role.

Let 9N be the category of sets. For each category Y let H: Y, Y—9IN be
the functor which assigns to every two objects 4 and B in Y the set H(A4, B)
of the maps f: A—B in Y.

Let &« and Z be categories and let S: X—Z and T: Z—X be covariant
functors. Then S is called a left adjoint of T and T a right adjoint of S if there
exists a natural equivalence

a: H(S(X), Z) — H(X, T(Z)).

An important property of adjoint functors is that each determines the other
up to a unique natural equivalence.

Examples of adjoint functors are:

(i) Let @ be the category of topological spaces; then the functor X7: a—@
which assigns to every space its cartesian product with the unit interval I is a
left adjoint of the functor : @— @ which assigns to every space the space of
all its paths.

(ii) Let 8 be the category of c.s.s. complexes; then the simplicial singular
functor S: @—$ is a right adjoint of the realization functor R:8— @ which
assigns to every c.s.s. complex K a CW-complex of which the #n-cells are in
one-to-one correspondence with the nondegenerate n-simplices of K.
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The notion of adjointness may be generalized to functors in two (or more)
variables; a covariant functor S: &, Y—Z is called a left adjoint of a functor
T: 9, Z—X, contravariant in Y and covariant in Z, and T is called a right
adjoint of S if there exists a natural equivalence

a: H(S(X, Y), Z2) — H(X, T(Y, Z)).

Adjoint functors in two (or more) variables also determine each other up to
a unique natural equivalence. The situation is similar when both functors H
are replaced by other functors.

An example of adjoint functors in two variables are the functors ® and
Hom mentioned above; ® is a left adjoint of Hom.

The general theory of adjoint functors constitutes Chapter 1.

In Chapter II we deal with direct and inverse limits. It is shown that a
direct limit functor (if such exists) is a left adjoint of a certain functor which
always can be defined, while an inverse limit functor is a right adjoint of a
similar functor.

In Chapter III several existence theorems are given. In [2] a procedure
was described by which from a given functor new functors, called lifted, can
be derived. Let the functor S: X, Y—Z be a left adjoint of the functor
T: Y, Z—X, then sufficient conditions will be given in order that a lifted
functor of S has a right adjoint or that a lifted functor of T has a left adjoint.
Thus sometimes starting from a given pair of adjoint functors, new such pairs
may be constructed; for instance starting from the adjoint functors ® and
Hom on abelian groups, pairs of adjoint functors involving groups with oper-
ators, chain complexes, etc. may be obtained.

A category Z is always accompanied by the functor H: Z, Z—M and its
lifted functors. A necessary and sufficient condition in order that all these
functors have a left adjoint is that a notion of direct limit can be defined in Z.
Several known functors involving c.s.s. complexes can be obtained either by
lifting of a suitable functor H or from a left adjoint of such a lifted functor.
These applications will be dealt with a sequel entitled Functors involving c.s.s.
complexes [5].

I am deeply grateful to S. Eilenberg for his helpful criticism during the
preparation of this paper.

CHAPTER I. GENERAL THEORY

2. Notation and terminology. For the definition of the notions category,
functor, natural transformation, etc. see [2].

A functor F defined on the categories Yy, - - -, Y, will often be denoted
by F(Y1, -+, Ya). Similarly if F and G are functors defined on the categories
Y1, * * *, Ya, then a natural transformation a: F—G is sometimes denoted
by a(‘}]l, ] (yn>'

Only categories will be considered which satisfy the following condition
ConpiTION 2.1. For every two objects 4 and B in a category Y the maps
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f: A—B in Y form a set, denoted by H(4, B).
Clearly the category 9 of sets satisfies condition 2.1.
Let a: A’>A4 and b: B—B’ be maps in a category Y and let

H(a, b): H(A, B) - H(A’, B)
denote the set mapping defined by
H(a,b)f =bofoa f&€ H(4, B).
Then it is easily verified that

PROPOSITION 2.2. The function H: Y, Y—IM s a functor, contravariant in
the first variable and covariant in the second.

Hence every category Y is accompanied by a functor
H:y, Yy — .

A category U will be called proper if its objects form a set. Clearly in view
of condition 2.1 the maps of a proper category form also a set.

The dual of a category Y is the category Y* which has the same objects
and maps as Y; however

(a) an object 4 €Y is denoted by A4 * if it is considered as an object of Y*,

(b) a map f: A—>BEY is denoted by f*: B¥*—A* if it is considered as a
map of Y*, and

(c) the composition of two maps f*: B¥*—A* and g*: C*—>B* in Y* is
defined by f*o g*=(go f)*.

Clearly Y**=y and H(4, B) =H(B*, A*) for every two objects 4 and B
in Y.

The dual of a functor F(Yy, - - -, Y,) is the functor F*(yf, - - -, Yr)
defined by
F (Y5, V) = F(Yy, -+, Vo),
* % * *
F(yy---,9) =FQy -+, )

for every object V& %Y; and every map y:& Y.

3. Adjoint functors in one variable.

DerFINITION (3.1). Let & and Z be categories, let S: X—Z and T: Z—X
be covariant functors and let

a: H(S(X), z) — H(X, T(Z))

be a natural equivalence. Then S is called the left adjoint of T under a and T
the right adjoint of S under a (Notation a: SHT).

An important property of two adjoint functors is that each of them deter-
mines the other up to a unique natural equivalence. This is expressed by the
following uniqueness theorems.
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THEOREM 3.2. Let S, S': X—>Z and T, T': Z—X be covariant functors and
let a: ST and o/:S"T’. Let 0: S'—S be a natural transformation. Then
there exists a unique natural transformation v: T—T"' such that commutatively
holds in the diagram

H(S(X), Z) ———— H(%, T(Z))
(3.2a) j H(s(), 2) j H(x, 7(2))
H(S'(%), 2) —— H (%, T'(2))

If o is a natural equivalence, then so is 7.

THEOREM 3.2*. Let S, S': X—>Z and T, T': Z—X be covariant functors and
let 0: ST and o: S’HT". Let 7: T>T’ be a natural transformation. Then
there exists a unique natural transformation o: S’—>S such that commutativity
holds in the diagram (3.2a). If T is a natural equivalence, then so is o.

Proof of Theorem 3.2. Suppose 7: T—T" is a natural transformation such
that commutativity holds in 3.2a. Then for every object X€ % and Z€EZ
and for every map fEH(X, TZ)

tZof = HX, r2)f = o/'(H(cX, Z)a"Yf) = o' (a"f 0 ¢ X).
In particular if X=TZ and f=1rz, then
3.3) 172 = o'(a"Yrz00TZ).

Consequently if a natural transformation 7: T—7"” exists such that com-
mutativity holds in 3.2a, then it must satisfy (3.3). Hence it is unique.

It follows from the naturality of &’ that for every map g: Z—Z' &€ Z com-
mutativity holds in the diagrams

o'(aYirz00TZ)

TZ T'Z
T'g
a'(goa~lirzo00TZ)
Tz

TZ

o (aYirzr00TZ 0 5'Ty)
Tg

77 o (aYipg 06TZ") o

and in view of the naturality of @ and ¢ commutativity also holds in the dia-
gram
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TZ —17
stz -2, stz 218
l
1 S'Tg STg l g
stz 2T st T
Consequently
12'0Tg = o'(aYirz00TZ )0 Ty

o (a7 Yirzr 0 0TZ 0 S'Ty)
d(goalirz00TZ)
T'god (aVirz00TZ) = T'go 12,

It

i.e. the function 7 defined by (3.3) is a natural transformation.

Now let ¢ be a natural equivalence and let 7’ be the natural transforma-
tion induced by ¢~!. Then 77’ and 7’7 are natural transformations induced by
oo~! and ¢~ 1o, and the uniqueness of 77" and 7’7 together with the fact that
go~! and o~ 1¢ are identities yields that 77’ and 7't are also identities, i.e. T
is a natural equivalence with inverse 7’. This completes the proof of Theorem
3.2.

The proof of Theorem 3.2* is similar. Theorem 3.2* could also have been
obtained from Theorem 3.2 using the duality Theorem 3.4 below, which es-
sentially asserts that a functor S is a left adjoint of a functor T if and only
if the functor S*, the dual of S, is a right adjoint of the functor T*, the dual
of T.

Let S: X—Z and T: Z—X be covariant functors and let S*: X*—Z* and
T*: Z*—X* be their duals. Then by definition I1(SX, Z) =H(Z*, S*X*) and
H(X, TZ)=H(T*Z*, X*) for every object X&EX and ZE Z.

THEOREM 3.4. Let a: S(X) = T(Z) and define for cvery object X*E X* and
Z¥*&Z* a map

ot (Z*, X*): H(T*Z*, X*) — H(Z*, S*X*)
by
(3.4a) (2%, X*) = o (X, Z).
Then the function
af : H(T*(Z*), x*) — H(Z*, S*(x*))
is @ natural equivalence, 1.e. of : T*—S*. Also o' =av.

Proof. let x*: X*>X'*cx* and z*: Z/*>Z*CZ* be maps. Then it
follows from the naturality of a that for every map f*CH(T*Z*, X*)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1958] ADJOINT FUNCTORS 299

oA(Z'*, XV H(T*2*, s*)f* = of (Z'*, X'*)(x* 0 f* 0 T*z*)
= (&X', Z")(Tz0fox))* = (a~\(X', Z')H(x, T2)f)*
= (H(S%, 2)a~ (X, 2)f)* = (z0a~ (X, Z)f o Sx)*
= S*x* 0 of(Z*, X*)f* 0 2% = H(z*, S*x*)ad(Z*, X*)f*

i.e. af is a natural transformation. The fact that a and hence a~! is a natural
equivalence now implies that of is so. That off =a follows immediately from
3.4a.

4. Adjoint functors in several variables. A covariant functor S: X, Y—Z
may be regarded as a collection consisting of

(i) a covariant functor S( ,Y): X—Z for every object YEY and

(ii) @ natural transformation S( ,y): S(,¥)—S(,Y’) for every map y:Y—
vey.

Now suppose that for every object YEY a covariant functor Ty: Z—X
and a natural equivalence

ay. H(S(m) Y)) Z) - H(xa TY(Z))

are given, i.e. ay: S(,Y)— Ty. Then it follows from Theorem 3.2 that for
every map y:Y—Y' &Y there exists a unique natural transformation
Ty: Ty—Ty such that commutativity holds in the diagram

ay

H(S(x, Y), Z)

— H(X, Ty(2))

:
[ H(S(X, 3), 2) | H(, 72)

H(S(X, ¥'), Z) ——— H(X, Ty(Z))

Let y': V"> Y”&Y. Then the uniqueness of the natural transformations
Ty, Ty and Ty, implies that T, T, = T,. Similarly if : ¥—Y is the identity,
then T;: Ty—Ty is the identity natural transformation. Consequently the

function T defined by
(Y, Z) = TyZ,

T(y, 2) = Tyzo T ,Z

for every object Y& and ZEZ and every map y: Y—>Y' €Y and z: Z—2Z'
€ Z, is a functor T: Y, Z—X, contravariant in Y and covariant in Z.
Clearly the function « defined by

a(X, Y, Z) = ay(X, Z2).
for every object X&€X, YEY and ZE Z, is a natural equivalence
a: H(S(X, V), Z) — H(X, T(Y, Z))

Thus we have
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THEOREM 4.1. Let S: X, Y—Z be a covariant functor and let for every object
Y& be given a covariant functor Ty: Z—X and a natural equivalence

ay: H(S(X, Y), Z) — H(X, Ty(Z)),

t.e. ay: S(,Y)ATy. Then there exists a unique functor
T:Y,Z—> X

contravariant in Y and covariant in Z and a unique natural equivalence

a: H(S(X, ), 2) = H(X, T(Y, Z))
such that for every object XE X, YEY and ZEZ

T(Y,Z2) = TyZ, oX,Y,2)=ay(X, 2),

ie. a:SHT.

REMARK 4.2. It is clear that in the above starting from a functor S: X,
Y—Z, contravariant in Y, a functor T: Y, Z—X, covariant in Y, would have
been obtained. As however a functor contravariant in Y becomes covariant
when regarded as a functor in Y*, the dual of Y, we may restrict ourselves to
functors S: X, Y—2Z which are covariant in both variables.

In view of Theoem 4.1 and Remark 4.2 we now define adjoint functions
in two variables as follows.

DEFINITION 4.3. Let S: X, Y—Z be a covariant functor, let T: Y, Z—X
be a functor contravariant in Y and covariant in Z and let

a: H(S(x, Y), Z) = H(X, T(Y, Z))

be a natural equivalence. Then S is called the left adjoint of T under o and
T the right adjoint of S under o (Notation a: SH7T).

As in the case of functors in one variable, adjoint functors in two variables
determine each other up to a unique natural equivalence. This is expressed
by the following uniqueness theorems which by the above argument follow
directly from the Theorems 3.2 and 3.2*.

THEOREM 4.4. Let S, S': X, Y—Z be covariant functors, let T, T': Y, Z—X
be functors contravariant in  and covariant in Zandleto: ST ando’: S'AT".
Let 0: S'—S be a natural transformation. Then there exists a unique natural
transformation 7: T—T' such that commutativity holds in the diagram

H(S(X, ), Z) ———— H(, T(Y, Z))
(4.42) J H(o(x, ), 2) 1 (%, (Y, 2))
H(S'(X, ), Z) ———— H(X, T'(Y, Z))

If o is a natural equivalence, then so is 7.
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THEOREM 4.4*. Let S, S': X, Y—Z be covariant functors, let T, T': o, Z—X
be functors contravariant in Y and covariant in Zand let o: ST and o’: S’ T".
Let 7: T>T' be a natural transformation. Then there exists a unique natural
transformation o: S'—S such that commutativity holds in the diagram (4.4a).
If 7 is a natural equivalence, then so is o.

The duality Theorem 3.4 may be generalized as follows. Let S: &, Y—Z
be a covariant functor and denote by Sf: Yy, X*—Z* the functor contra-
variant in Y and covariant in X* defined by

S’( v, X*) = S(X’ Y)*)
SHy, «*) = S(x, y)*

for every object YEY and X*EX* and every map y&EY and x*€xX*.
Similarly let T: Y, Z—X be a functor contravariant in Y and covariant in
Z and denote by T#: z* 9Y—x* the covariant functor such that TH#=T,
Then clearly for every object XEX, YEY and ZEZ

H(S(X, Y), Z) = H(Z*, SKY, X¥));

H(X, T(Y, Z)) = H(T¥(Z*, Y), X*).

THEOREM 4.5. Let a: S(X, ) 1 T(Y, Z) and define for every object X* & X*,
YEeY and Z*€Z* a map

ol(Z*, ¥, X*): H(THZ*, Y), X*) — H(Z*, SV, X*))

by
oA(Z*, ¥V, X*) = o~ (X, Y, 2).

Then the function
of: H(THZ*, ), X*) — H(Z*, SH(Y, X¥))
is a natural equivalence, i.e. of : TH(Z*, ) - SHY, X*). Also ottt =a.

The proof of Theorem 4.5 is obvious.

It follows from the duality Theorem 4.5 that for every Theorem A involv-
ing a natural equivalence a: S(X, Y)—7T(Y, Z) a dual Theorem 4* may be
obtained by applying Theorem A to the natural equivalence of: T#(Z*, )
—15#(Y, X*) and then writing the result in terms of the categories X, Y and
Z, the functors S and T and the natural equivalence «, i.e. “reversing all
arrows” in the categories X* and Z*. It is easily seen that in this sense the
Theorems 4.4 and 4.4* are the dual of each other.

We now consider functors in more than two variables.

Let
S:%,Q, - ,Cn®y,-,B8,—>Z
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be a functor covariant in &, @, + *+ -, @, and contravariant in ®y, - - -, B,
and let

T:Ql,--~,Ct,,,,(B;,---,(B,,,Z-—>£x:
be a functor contravariant in @y, + - -, @, and covariant in ®y, + -+, ®,, Z.

Then ([2, Theorem 13.2]) S and T may be considered as functors in two vari-
ables as follows. Let Y be the cartesian product category (see [2])

v=(1re) (1)

Then S may be considered as a covariant functor
S X, Y —>Z
and T as a functor
T:Y,Z— X

contravariant in Y and covariant in Z. The case of functors in more than
two variables thus may be brought back to that of functors in two variables
only.

5. The relative case. We shall now consider the case in which the functors
H are replaced by other functors.

DEFINITION 5.1. Let F: £—91 be a covariant functor and let Q: &, X— &£
be a functor contravariant in the first variable and covariant in the second.
The functor Q is called a kom-functor rel. F if there exists a natural equiva-
lence

v: H(X, %) — FQ(X, X).

EXAMPLES 5.2.

(a) The functor H: X, X—9M is a hom-functor relative to the identity
functor E: IMN—IM.

(b) Let G be the category of abelian groups and homomorphisms. Let
Hom: G, g—¢G be the functor which assigns to every two abelian groups B
and C the group Hom (B, C) of the homomorphisms of B into C (see [3]).
Let F: g—9 be the functor which assigns to every group its underlying set.
Then Hom: G, §—G is a hom-functor rel. F.

(c) Let @ be the category of topological spaces and continuous maps and
let Map: @, @— @ be the functor which assigns to every two spaces X and ¥V
the function space Map (X, Y)=YX with the compact-open topology (see
[2]). Let F: @—91 be the functor which assigns to every space its underlying
set. Then Map: @, @— @ is a hom-functor rel. F.

DEFINITION 5.3. Let S: X—Z, T: Z—X and F: £ be covariant func-
tors and let Q: X, X—& and R: Z, Z— £ be hom-functors rel. F. Let

B: R(S(%), Z) — Q(X, T(Z))
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be a natural equivalence. Then S is called the left adjoint of T rel. F under 8
and T the right adjoint of S rel. F under 8 (Notation 8: ST rel. F).
It will now be shown that adjointness rel. F implies adjointness.

THEOREM 5.4. Let 3: ST rel. F. Then there exists a natural equivalence
a: H(S(X), Z) — H(X, T(Z)),
te.a: SHT.
Proof. As Q and R are hom-functors rel. F there exist natural equivalences
v: H(X, X) = FQ(X, X),
§: H(z, ) — FR(Z, 7).
Define for every object XEX and ZEZ
a(X, Z) = v"\(X, TZ) o FB(X, Z) 0 8(SX, Z).
Then clearly a is a natural equivalence because y(X, T(Z)), FB(X, Z) and
8(S(x), Z) are so.
We now state the corresponding results for functors in two variables.
DEFINITION 5.5. Let S: &€, Y—Z and F: £—9IN be covariant functors, let

T:9Y, Z—>X be a functor contravariant in Y and covariant in Z and let
Q: X, X—& and R: Z, Z—£ be hom-functors rel. F. Let

B: R(S(X, ), Z) — Q(X, T(Y, Z))

be a natural equivalence. Then S is called the left adjoint of M rel. F under 8
and T the right adjoint of S rel. F under 3 (Notation 8: ST rel. F).

THEOREM 5.6. If B: S(X, YY) T(Y, Z) rel. F then there exists a natural

equivalence
a: H(S(X, ), Z2) — H(X, T(Y, 2)),
te. a: S(X, Y)AT(Y, Z).

ExampLE 5.7. Let the functors Hom: G, §—G and F: g—9I be as in
Example (5.2b) and let ®: G, §—G be the covariant functor which assigns
to every two abelian groups 4 and B their tensor product 4 ® B (see [3]).
As is well known (see [2]) there exists for every three abelian groups 4, B
and C an isomorphism 8: Hom (4 ® B, C) ~Hom (4, Hom (B, C)) which is
natural, i.e. there exists a natural equivalence

B8: Hom(§ ® G, §) — Hom(G, Hom(g, §)).

Hence the tensor product ® is a left adjoint of the functor Hom (rel. F).
ExAMPLE 5.8. Let the functors Map: @, @—@ and F: @—9IN be as in

Example 5.2c and let X denote the cartesian product. Let @;, be the full sub-

category of @ generated by the locally compact spaces. As is well known for
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every three spaces X, Z& @ and Y& @;. a homeomorphism 3: ZXXY =~ (Z¥)X
can be defined as follows. Let f&ZXXY ie. f: X X Y—Z is a continuous map.
The map Bf: X—Z¥ then maps a point x&X into the point (Bf)xEZY, i.e.
the map (Bf)x: Y—Z, given by ((Bf)x)y=8(x, y) for every point y& V. This
homeomorphism is natural, i.e. there exists a natural equivalence

B: Map (@ X Gi, @) — Map (@, Map (Gy, @)).

Hence the cartesian product X is a left adjoint of the functor Map (rel. F).

ExaMPLE 5.9. Let I denote the unit interval. Then it follows from Exam-
ple 5.8 that the functor XI: @—@ is a left adjoint of the functor Map (I, ):
G—Q, i.e. “taking the cartesian product with the unit interval” is a left adjoint
of “taking the space of all paths” (rel. F).

As is “well known” the homotopy relation for continuous maps may be
defined using either the functor X7 or the functor Map (I, ) as follows. Let
P be a space consisting of one point p and let po: P—1I (resp. p;: P—I) be the
map given by pop =0 (resp. p1p =1). For every space X let maps¢x: X=X X P
and ¥x: Map (P, X)—X be defined by ¢xx=(x, p) and yxf=fp for every
point x&X and map f: P—X. Then two maps f, fi: X— V&4 are homotopic

(i) if there exists a map g: X XI— Y E @ such that

fe=1g0(X X p)o¢x e=0,1

or equivalently
(ii) if there exists a map h: X—Map (I, Y)E @ such that

fe=¥yoMap (p, V) 0k e=0,1.

The equivalence of these two definitions is an immediate consequence of
the adjointness of the functors X I and Map (I, ).

ExampLE 5.10. Let @, be the category of topological spaces with a base
point, i.e. an object of @, is a pair (X, x) where X& @ and x&E X is a point,
while a map f: (X, x)—=(Y, ») of @ is a map f: X—>YE @ such that fx=y.
Let S: @o— @ be the covariant functor which assigns to every object (X, x)
€ Qo its suspension (X', x’) defined as follows. Let S! be a 1-sphere and let
s&S! be a point. Then X’ is obtained from X X S! by shrinking to a point of
the subspace (x X S)\U(X Xs) and x’ is the image of (x, s) under the identi-
fication map X XS'—X’. Let Map,: Qo, Qo— @ be the functor which assigns
to every two objects (X, x) and (Y, y) of @, the pair Map, (X, x), (Y, »))
=(Z, 2), where Z is the function space (V, y)X® (with the compact-open
topology) and where the map z: (X, x)—(V, y) is given by zg=y for every
point g&X. Let the functor F: @,—IM assign to every object (X, x)E Qo
the underlying set of the space X, then clearly Map,: @9, @o— @ is a hom-
functor rel. F. Let @=Map, ((S',s), ), the loop functor. Then analogous to
Example 5.8 for every two objects (X, x), (¥, y)& @ a homeomorphism
Bo: Map, (S(X, x), (¥, ¥)) =Map, ((X, x), Q(Y, y)) can be given which is
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natural, i.e. there exist a natural equivalence
[302 Mapo (S(QO)’ G’O) - Mapo (ao} Q(G‘O))'

Hence the suspension functor S is a left adjoint of the loop functor Q (rel. F).

ExaMPLE 5.11. This example is due to P. J. Hilton. Let @y be the category
of topological spaces with a base point (see Example 5.10). Let X2: Go— @9
be the covariant functor such that for every object (¥, ¥0) € Qo,

X2(Y) }’0) = (Y X Y7 Yo X yo)

and let \/%: @Qy— @y be the covariant functor such that for every object
(Xv xO) E GO
V2(X, o) = (X V X, %0 X %0)

where XV X =X Xxo\Jxo X XCX XX. Let the functor Mapy: @9, @y— Qo be
as in Example 5.11. Then for every two objects (X, xo), (¥, ¥¢) € @ a homeo-
morphism 8: Map, (V*(X, x0), (¥, y0))—>Mapo ((X, x0), X*(Y, y0)) may be
defined by (Bf)x = (f(xXxo) Xf(xoXx)) for every map f: V4 X, xo)—(Y, vo)
and point x& X. Clearly is natural, i.e. there exists a natural equivalence

B: Mapo (V2(@0), @o) — Map, (@, X2%(Q0)).

Hence the functor \/? is a left adjoint of the functor X? (rel. F).
6. Two natural transformations. Let S: X—Z and T': Z—X be covariant
functors and let a: S T. Then we may define a natural transformation

k: E(X) — TS(X)

where E: X—X denotes the identity functor, by assigning to every object
XEX the map kX: X—>TSX given by

(6.1) kX = aigx.

It must of course be verified that the function k so defined is natural. It
follows from the naturality of « that for every map x: X—X’'€ X commuta-
tivity holds in the diagram

H(SX, SX) ® L H(X, TSX)

H(SX, Sx) H(X, TS%)
H(SX, SX') —— H(X, TSX')

1 1
H(Sx, SX') H(x, TSX')

H(SX',SX') —— s H(X", TSX')
Consequently
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TSxo«X = H(X, TSx)aisx = aH(SX, Sx)isx
= a(Sx o isx) = a(isx' o Sx)
aH(Sx, SX')isx' = H(x, TSX’)ai,sx' =«X'o0 X,

i.e. k is natural.
The natural transformation k will be referred to as the natural transforma-

tion induced by o.
The following lemma expresses the natural equivalence « in terms of the
natural transformation «. It follows that k completely determines a.

LEMMA 6.2. Let a: S(X)—T(Z) and let k: E(X)—TS(X) be the natural
transformation induced by . Then for every object X EX and Z & Z and for every
map f: SX—>ZEZ commutativity holds in the diagram

kX

X—— TSX

of Ty
TZ
i.e.
(6.2a) of = TfokX fE H(SX, Z).

Proof. It follows from the naturality of « that commutativity holds in the
diagram

H(SX,SX) ——— H(X, TSX)
| m6sx, lH(X, )
H(SX, 2) 2 L H(X, TZ)

Consequently
aof = aH(SX, fisx = H(X, Tf)aisx = TfokX.

This completes the proof.

Now let S: x—Z and T: Z—X be covariant functors and let «’: E(X)
—T'S(X) be a natural transformation. Then «’ induces a natural transforma-
tion

B: H(S(x), ) — H(X, T(Z))

as follows. For every object X& X and ZE Z the mapB: H(SX,Z2)—H(X, TZ)
is defined by

(6.3) Bf = Tfox'X {1 € H(SX, Z).
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It is readily verified that the function B8 so defined is natural. If 8 is an
equivalence for all objects X&EX and Z&EZ, then clearly 8: SHT and (in
view of Lemma 6.2) «’ is the natural transformation induced by 3. Hence we
have:

THEOREM 6.4. Let S: X—Z and T: Z—X be covariant functors and let
k': E(X)—>TS(X) be a natural transformation. Then there exists a natural
equivalence 3: ST which induces k' (and hence is unique) if and only if for
every object X E X and ZE Z the function B: H(SX, Z)—>H(X, TZ) defined by
(6.3) is an equivalence.

We shall now dualize the above results.
Let a: S(X) 4 T(Z) and let

kF: E(Z*) — S*T*(z¥)
be the natural transformation induced by the natural equivalence of:
T*(z*)— S*(x*). Denote by
w: ST(Z) — E(Z)
the natural transformation obtained from ¥ by “reversing all arrows” in the

categories X* and Z*, i.e. for every object Z&EZ the map uZ: STZ—Z is
given by

(6.1*) wZ = o Yrg.

The natural transformation u will be referred to as the natural transforma-
tion induced by oL

LEMMA 6.2*. Let a: S(X)—T(Z) and let u: ST(Z)—E(Z) be the natural
transformation induced by a—'. Then for every object X & X and ZE Z and for
every map g: X —>TZEZ commutativity holds in the diagram

nZ
STZ ——— 72

Sg a”lg
SX
i.e.
(6.2a%) alg=uZoSg g€ HX, T2).

Let S: X—Z and T: Z—X be covariant functors. Then a natural trans-
formation u’: ST(Z)—E(Z) induces a natural transformation

v: H(X, T(Z)) — H(S(X), Z)
by
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(6.3%) vg =wZo0Sg g€ H(X, T2)
and we have:

THEOREM 6.4*. Let S: X—Z and T: Z—X be covariant functors and let
u: ST(Z)—>E(Z) be a natural transformation. Then there exists a natural
equivalence y=': ST such that v induces u’' (and hence vy is unique) if and
only if for every object X € X and ZE& Z the function v: H(X, TZ)—H(SX, Z)
defined by 6.3* is an equivalence.

ExAMPLE 6.5. Let @, the category of topological spaces with a base
point, the suspension functor S: @y— Q,, the loop functor ©: @y— @, the
hom-functor Map,: @, @y— @ and the natural equivalence

Bo: Mapo (S(@0), Go) — Map, (@0, 2(Q0))
be as in Example 5.10. Using the natural transformation
K: E(Go) - QS(ao)

induced by B¢ we now define the suspension homomorphism of the homotopy
groups (see [4]) and dually using the natural transformation

e SQ(ao) - E(Go)

induced by S5 the suspension homomorphism of the cohomology groups (see
[6]) will be obtained.

Let (¥, y)& Qo and let S* be an n-sphere and s"&.S™ a point. Clearly
S(S», s*) = (S, s»*1), As the elements of the nth homotopy group 7.(Y, y)
of (Y, v) are the homotopy classes of maps (S*, s")—(Y, ), i.e. the com-
ponents of Map, ((S*, s*), (Y, ¥)), it can easily be verified that the homeo-
morphism

Bo: MaPO ((S”+1’ sﬂ+l): (Yy y)) = Mapo ((S”) sn)’ Q( Y) )’))
induces an isomorphism
0: mara(Y, ) = (Y, ).

The composite homomorphism

—1

¢
7a(¥, ) —— mQS(Y, y) — m0i1S(Y, 9)

now is the suspension homomorphism m,(Y, ¥)—>m.1S(Y, ¥).

Let m be an abelian group. Then an object (K, k)& Q¢ is called of type
(w, n) if m.(K, k) =7 and m,(K, k) =0 for i n. Clearly if (K, k) is of type
(mw, n), then Q(K, &) is of type (1, n—1). Now let (K, k) be of type (, n) and
let (X, x)&E Q. If X is “reasonably smooth” then the elements of the nth
cohomology group H*(X, x; 7) of (X, x) with coefficients in 7 are in one-to-
one correspondence with the homotopy classes of maps (X, x)—(X, k), i.e.
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with the components of Map, ((X, x), (K, k)). It may then be verified that
the homeomorphism

60—1: MaPO((X, x)’ Q(K’ k)) - MaPO (S(X1 x)’ (K’ k))
induces an isomorphism
o: H (X, x; m) = H*S(X, x); )

and that the composite homomorphism
* 51

HA(X, &; 7) —— HY(SQX, 2);7) — HY(2(X, ); 7)
is the suspension homomorphism H"(X, x; m)—=H" (X, x); m).

CHAPTER II. DIRECT AND INVERSE LIMITS

7. Direct limits. Let Z be a category and let U be a proper category (i.e.
the objects of U form a set). Let K: U—Z be a covariant functor. Then K
may be considered as a V diagram over Z, i.e. a system of objects and maps of
Z indexed by the objects and maps of V. We shall now define what we mean
by a direct limit of such a system.

Let Zy denote the category of V diagrams over Z, i.e. the category of which
the objects are the covariant functors U—Z and of which the maps are the
natural transformations between them (see [2, §8]). The category Zy satisfies
condition 2.1 because U is proper. Let

EV: Z — Zy

be the embedding functor which assigns to every object Z&EZ the constant
Sfunctor EyZ: U—Z which maps every object of U into Z and every map into
iz, and which assigns to every map z: Z—Z’' € Z the natural transformation
Eyz: EyZ—EyZ' given by (Eyz) V =z for every object VEU. We then define

DeEeFINITION 7.1. Let AEZ be an object and let k: K—EyAEZy be a
map. Then 4 is called the direct limit of K under the map k if for every object
BE&Z and every map k’': K—EyBE& Zy there exists a unique map f: A—>BEZ
such that commutativity holds in the diagram

K

EvA
1% Evf

EyB

i.e. Eyfo k=F (Notation 4 =lim; K)(?).
ExAMPLE 7.2. Let U be the category of which the objects are the elements

(?) A similar definition of direct limit has, for the case of groups, been given in mimeo-
graphed notes of lectures of R. H. Fox (Princeton, 1955).
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of some set V and which has no maps other than identity maps. Let @ be
the category of topological spaces. A functor K: U—@ (which is both co-
variant and contravariant) is then merely a collection {X.} of topological
spaces indexed by the set V. Let X =U.ev X, be their union (the points of X
are the pairs (o, x) where «a €V and xEX). For each aEV let ky: Xo—X
denote the embedding map given by kux=(a, x) for x&X,. Then X is the
direct limit of K under the map k: K—EyX defined by ka=k, for all aE V.

ExAMPLE 7.3. Let G be the category of abelian groups and let U be as in
Example 7.2. A functor K: U—G then is a collection {G.} of abelian groups
indexed by the set V. Let G= D_qcv Ga be their direct sum (see [3]). For each
a& Vlet ky: G.—G be the injection. Then G is the direct limit of K under the
map k: K—EyG defined by ka=k, for allaE V.

ExaMpLE 7.4. Let D be a directed set, i.e. a quasi-ordered set such that for
each pair of elements dy, d:ED there exists a d3&D such that d;<d; and
d»<ds. A directed set D may be regarded as a category © (see [2]) of which
the objects are the elements of D and which has one map (d., d,): di—d; for
each pair (d, d1) such that d, <d,. Enlarge D to a category D, by adding one
object » and for every element d&D, one map («, d): d—=. Then the
following definition of direct limit is implicitly contained in [2].

Let K: D—Z be a covariant functor and let the functor K,: D,—Z be
an extension of K. Then the object K, €Z is called the direct limit of K
under K if for every extension K., : D—Z of K there exists a unique natural
transformation o: K,— K" such that each gd with d « is the identity. It
is easily verified that this definition is equivalent with Definition 7.1 for
V=09.

In general not every object of Zy will have a direct limit (under some
map). In order that every object of Zy has a direct limit under some map it
is necessary and sufficient that the functor Ey: Z—Zy has a left adjoint. A
more precise formulation of both halves of this statement is given in the
following two theorems.

THEOREM 7.5. Let L: Zy—Z be a covariant functor, let o: L(Zy)— Ev(Z)
and let k: E(Zy)—EvL(Zy) be the natural transformation induced by . Then

LK = lim;g K
for every object K& Zy.

THEOREM 7.6. Let for every object K& Zy be given an object LKE Z and a
map kK : K—EyLK & Zy such that LK =lim. K. Then

(i) the function L (defined only for objects of Zv) may be extended uniguely
to a functor L: Zy—Z such that the function k becomes a natural transformation
K: E(Zv)—%EvL(Zv),

(i) there exists a natural equivalence a: L(Zy) 7 Ev(Z) such that k is the
natural transformation induced by a. In view of Lemma 6.2 o is unique.
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DEFINITION 7.7. A category Z is called U-direct if every object of Zy has
a direct limit under some map.

THEOREM 7.8. A category Z is V-direct if and only if the functor Ey: Z—Zy
has a left adjoint.

REMARK 7.9. The first half of Theorem 7.8 follows directly from Theorem
7.5. In order to obtain the second half of Theorem 7.8 from Theorem 7.6 a
kind of axiom of choice would be needed; given for every object of Zy the
existence of a direct limit under some map, a choice must be made simul-
taneously for all objects of Zy (which need not even form a set) of such an
object and map. In practice however the statement “every object of Zy has
a direct limit under some map” means that it is possible to give a construction
which assigns simultaneously to all objects K& Zy an object LKEZ and a
map kK: K—EyLK such that LK =lim,x K. It isin this sense that the notion
U-direct will be used. The second half of Theorem 7.8 then is an immediate
consequence of Theorem 7.6.

If a category Z is V-direct, then we denote by limy: Zy—Z an arbitrary
but fixed left adjoint of the functor Ey: Z—Zy, by ay an arbitrary but fixed
natural equivalence ay: limy— Ey and by Ay the natural transformation in-
duced by ay.

Proof of Theorem 7.5. Let B&EZ and K& Zy be objects. The natural
equivalence « yields an equivalence

a: H(LK, B) — H(K, EyB).

In view of Lemma 6.2 this one-to-one correspondence is given by

of = Eyfo«K, fe€ H(LK, B),

i.e. for every map %k’: K—EyB there is a unique map f: LK—B such that
k' =Eyf oK.

Proof of Theorem 7.6. Let k: K—K'&Zy be a map. Then according to
Definition 7.1 there exists a unique map Uk: LK—LK’&EZ such that com-
mutativity holds in the diagram

kK
K —— EyLK

lk JEka
!

K —— 5 By LK’

Hence if there exists a functor L: Zy—Z with the required property, then it
must be defined by Lk= Uk for every map k€ Zy. It is now easily verified
that the function L so defined is a covariant functor L: Zy—Z.

For every object BEZ and K & Zy define a function

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



312 D. M. KAN [March

a: H(LK, B) — H(K, EyB)
by
of = EyfoxK f € H(LK, B).

As LK =lim,x K merely means that « is an equivalence, it follows from
Theorem 6.4 that a is a natural equivalence a: L(Zy)— Ey(Z) such that « is
the natural transformation induced by «.

8. Inverse limits. The definition of inverse limits and their properties
may be obtained from those of direct limits by duality.

Let X be a category, let U be a proper category and let K: U—X be a
contravariant functor. Denote by Kf: U—%* the induced covariant functor.
Then K#& Xy*. An object A EX then will be called an inverse limit of K if
the object A *&E X* is a direct limit of K7.

We shall now give the exact definition dual to (7.1).

Let V= (%y*)*, i.e. LV is the category of the contravariant functors
V—X and the natural transformations between them. Let Ey: X*—%y* be as
in §7 and let EV = Ey*, i.e.

EV:ax— ¥

is the embedding functor which assigns to every object X € X the constant
functor V—% which maps all of U into X and .

DEeFINITION 8.1. LLet AE X be an object and let k: EYA—K& XV be a
map. Then 4 is called the tnverse limit of K under the map k if for every object
B& X and every map k': EYB—K & XV there exists a unique map f: B—AECX
such that commutativity holds in the diagram

Ev4 K

E'f E

EYB

i.c. ko EVf=F" (Notation 4 =lim* K).

ExaMrLE 8.2. Let the categories @ and U and the functor K: U—@ be
as in Example 7.2. Let V= ]]aer X« be the cartesian product of the spaces
X.. For every a €V let k,: Y —X, be the projection onto X,. Then V is the
inverse limit of K under the map k: £V Y—K defined by ka =k, for allaE V.

ExamrLe 8.3. Let the categories G and U and the functor K: U—G be
as in Example 7.3. Let IT= [Jacv Ga be the direct product (sec [3]) of the
groups G,. For each aEV let k,: II—G, be the projection. Then I7 is the
inverse limit of K under the map k: EVII—K defined by ka =k, for alla& V.

Exavrre 8.4. Let the categories D and 9, be as in Example 7.4. Then the
following definition of inverse limit is implicitly contained in [2]:
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Let K: D—X be a contravariant functor and let the functor K. : D,—X
be an extension of K. Then the object K, ® &X is called the inverse limit of
K under K, if for every extension K’ : D,—X of K there exists a unique
natural transformation o: K, —K,, such that ¢d with d> « is the identity.
It is easily verified that this definition is equivalent with Definition 8.1 for
V=29D.

We now dualize Definition 7.7 and Theorem 7.8.

DEFINITION 8.5. A category X is called U-inverse if every object of XV has
an inverse limit under some map.

THEOREM 8.6. A category X is V-inverse if and only if the functor EV:
X— XY has a right adjoint.

If the category X is U-inverse, then we denote by limY: X¥—X an arbi-
trary but fixed right adjoint of the functor EV: X—XY, by ¥ an arbitrary
but fixed natural equivalence a¥: EV—lim¥ and by AY the natural trans-
formation induced by (a¥)~1.

9. Direct and inverse categories.

DEFINITION 9.1. A category Z is said to have direct limits if it is U-direct
for every proper category U, i.e. if for every proper category U each object
of Zy has a direct limit (under some map).

ExampLEs 9.2. Examples of categories which have direct limits are

(a) the category 9N of sets,

(b) the category G of abelian groups and

(c) the category @ of topological spaces.

A necessary and sufficient condition in order that a category have direct
limits is the existence of a left adjoint of a certain functor. The exact formula-
tion of both halves of this statement will be given in the Theorems 9.4 and
9.5 below which are analogous to the Theorems 7.5 and 7.6.

Let Z be a category. Define a category Za, the category of all diagrams over
Z, (a generalization of the category Dir of [2]) as follows. An object of Zg4 is
a pair (U, K) where U is a proper category and K: U—Z is a covariant func-
tor. Given two objects (U, K) and (V’, K’) of Z4, a map

(F, k): (U, K) > (V, K')
of Z; is a pair (F, k) where F is a covariant functor
F:0—-
and k is a natural transformation
k: K — K'F
from K to the composite functor K'F: V—Z, i.e. for every map v: V1> V,C&0

commutativity holds in the diagram
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kV,

KV, — K'FV,
J Kv J K'Fv
kV 2
KV2 d KIFV2

Now let
(F', k): (U, K') — (0", K"")

be another map in Z,. Then for every map v: Vi—V.&E U commutativity also
holds in the diagram

kV, kK'FV,
KV, > K'FV, K"F'FV,
J Ky l K'Fy l K"F'Fv
kV2 ! 2
KV2 - K/FVz — K”F’FVz

and composition in Z, is defined by
(F', kK)o (F, k) = (F'F,FFok).

It follows immediately from the above diagram that the collection Z; so
defined is a category. That Z, satisfies condition 2.1 follows from the fact
that only proper categories U are used.

The effect of fixing the proper caregory U in the object (U, K) is to restrict
Za4 to the subcategory Zy.

Let © be an arbitrary but fixed category which contains only one object
and its identity map. Let

Ea,0: Zo— Za
be the inclusion functor. Then we define an embedding functor
Eq: Z— Zy

as the composite functor E;=E; (E¢. Thus E;4 =(0, E¢A) for every object
A€z
For every proper category U denote by

Oy:V—0

the only such functor (which is both covariant and contravariant).
The following lemma relates the definition of direct limits with the em-
bedding functor E4: Z—Z,.

LEMMA 9.3. Let AE Z be an object and let k: K—EvA & Zy be a map. Then
A =lim; K if and only if for every object BE Z and every map (Oy, k'): (U, K)
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—E4BE& Zg there exists a unique map f: A—BE Z such that commutativity holds
in the diagram

@, 59— 8 o4

(9.3a) (Ov, k) | Esf

E4B

Proof. It is easily verified that E;f= (0o, Eof) and (Eof)Oyv = Eyf. In view
of the definition of composition in Z; commutativity in (9.3a) is equivalent
with the condition

Ov = OvO,,
K= (Eof)OVO k= Eva k.

The first half of this condition is an identity while the second part expresses
exactly the condition of Definition 7.1. This proves the lemma.

THEOREM 9.4. Let L: Zy—Z be a covariant functor, let o: L(Zy) — E4(Z)
and let k: E(Zs)—EJL(Zs) be the natural iransformation induced by a. Then for
every object (U, K) EZ4,

L(V, K) lim, K
where k is given by (Oy, k) =«k(V, K).

THEOREM 9.5. Let for every object (U, K) € Z, be given an object L(V, K)EZ
and a map k(V, K): (U, K)—=EL(V, K)EZy such that L(V, K)=lim; K
where k is defined by (Oy, k) =x(V, K), then

(1) the function L (defined only for objects of Zi) may be extended uniquely
to a functor L: Z,—Z such that the function k becomes a natural transformation
k: E(Zg)—E4L(Za),

(i1) there exists a natural equivalence a: L(Zs) = Ey(Z) such that k is the
natural transformation induced by . In view of Lemma 6.2 a is unique.

The proofs of these theorems are similar to those of Theorems 7.5 and
7.6; Lemma 9.3 is used instead of Definition 7.1.

The following theorem is analogous to Theorem 7.8. A remark similar to
Remark 7.9 applies.

THEOREM 9.6. A category Z has divect limits if and only if the functor
Eq4: Z—Zy has a left adjoint.

If a category Z has direct limits, then we shall denote by limy: Z;—Z an
arbitrary but fixed left adjoint of the functor Eq: Z—Z4, by oy an arbitrary
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but fixed natural equivalence ay: limg— E; and by A4 the natural transforma-
tion induced by ay.

We shall now state the corresponding (dual) result of Theorem 9.6 for
inverse limits.

DEFINITION 9.1%*. A category X is said to have inverse limits if it is V-inverse
for every proper category .

ExaMpLEs 9.2*. Examples of categories which have inverse limits are

(a) the category 9N of sets,

(b) the category G of abelian groups and

(c) the category @ of topological spaces.

Let a*=(%s*)*. Consider the functor Eg: X*¥*—X* and let Ei=Eg*, i.e.

Ei: X — ¢
is the dual embedding functor.

THEOREM 9.6*%. A category X has inverse limits if and only if the functor
E: x— X' has a right adjoint.

CHAPTER III. EXISTENCE THEOREMS

10. Subdivision of a category. With a proper category U we may associate
a linear graph V with oriented 1-simplices, of which the vertices are in one-to-
one correspondence with the objects of U and of which the 1-simplices are
in one-to-one correspondence with the maps of U which are not an identity;
each 1-simplex is oriented from “the vertex of the domain” to “the vertex of
the range” of the corresponding map of V. The subdivision of V is a linear
graph V" defines as follows. The vertices of V" are the vertices of V and the
centers of the 1-simplices of V. The 1-simplices of V" are the halves of the 1-
simplices of V, each half being oriented from the center of the original 1-sim-
plex. The subdivision of the category U then is a category for which V" is
the associated linear graph.

We shall now give an exact definition.

DEeFINITION 10.1. Let O be a proper category. By the subdivision of U we
mean a category V" defined as follows. The objects of V" are in one-to-one
correspondence with the maps of U; the object corresponding to a map v& 0V
will be denoted by »*. Furthermore V" contains for every map v: V1— V€D

(i) the identity map i: 9" —v";

(i) a map v': v -y,

(ili) a map v‘: 9>y, ",
only subject to the condition that for every object V&V

w = W = i ipA >y,

The category U” contains no other maps than these. Composition in V" need
not be defined as no two nonidentity maps can be composed. Clearly V” is
also proper.
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As the orientation of the 1-simplices of the linear graph V* is independent
of the orientation of the 1-simplices of V it follows that the categories U and
V* have isomorphic subdivisions. This isomorphism is given by the corre-
spondence

oA 2 p¥*A
=X
=i

for every map v& V. The categories V" and V*” will be identified under this
isomorphism.

ExaMPLE 10.2. Let G be the category of abelian groups and let the functor
Hom: G, G—G be as in Example 5.2b. Let U be a category consisting of two
objects Vy and V; and three maps v, tv, and v: V1>V, Let 4, B: V—G be
two covariant functors. Consider the set H(4, B) where 4 and B are con-
sidered as objects of the category Gv. An element s€ H(A4, B) is a pair of maps
sVi€Hom (AV;, BV,) (=1, 2) such that commutativity holds in the dia-
gram

Av
AV1 —’AVz

j SVl l SVz

By
BV, — BV,
For every two elements s, t&H(A, B) their sum is defined by
s+ OV,=sV;+ 1V, 1 =1, 2.

This addition converts the set H(A4, B) into an abelian group G.

In this definition of the object GEG use was made of the fact that the
functor Hom has its values in the category of abelian groups. Hence in its
present form this definition cannot be applied to functors which have their
values in another category. In order to overcome this difficulty we shall now
show how the object GEG may be obtained using only the following two prop-
erties of the functor Hom

(i) the functor Hom is contravariant in the first variable and covariant
in the second and

(ii) the functor Hom has its values in a category which is U”\-inverse.

Clearly such a definition can be applied to other categories as well.

Consider the diagrams

(10.2a) A vA >y, A

and
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Hom (4 V4, By) Hom (A4v, BVa)
(10.2b) Hom (4 V3, 8V) ——————— Hom (4 V), BV,) «—————— Hom (4 1, B1%)

and let C: U"—g be the contravariant functor which assigns to every object
or map of 10.2a the group or homomorphism of 10.2b straight underneath.
Now s&G if and only if

BvosV, = sVs0 Av

or equivalently if and only if
Hom (A Vl, Bv)sV1

Hom (Av, BVj)sVo,.

It is readily verified that this exactly means that G is an inverse limit of the
object CEGY, where W = U”. Hence G may be defined in terms of the functors
A, B and Hom and inverse limits only.

11. Lifted functors. Following [2] we shall now describe a procedure of
obtaining new functors from a given one.

Let F: X—& be a covariant functor and let U be a proper category. Then
the functor F induces a covariant functor

Fy: Xy — Ly

called lifted. The definition of this lifted functor may be described by the
following pair of diagrams

v

(11.1a) Vi -V,
F(Av)
(11.1b) l F(aV,) l F(aVy)
F(A"v)
F(A'Vy) — F(A'V,)

where v: V1> V,€0 and a: A—A’'E Xy are maps. The meaning of these
diagrams is that for every object 4 & Xy the object FyA & Ly is the covariant
functor FyA: U—& which assigns (for every map v: V1= V,&ED) to the ob-
jects and maps of (11.1a) the corresponding objects and maps in the first row
of (11.1b) and that for every map a: 4 >4’ E Xy the map Fya& Ly is the
natural transformation which assigns to the objects of (11.1a) the correspond-
ing “vertical maps” of (11.1b).
Replacing U by its dual we obtain a lifted functor

FV: XV — £V,

Similarly for a contravariant functor F: X—£ the contravariant lifted
functors
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Fy: XV — Ly,
FV: Xy —> £V
may be obtained.
By the argument used in §4 this may be generalized to functors involving
additional variables. The lifted functors then involve the same extra variables

with the same variance. For instance a functor T': Yy, Z—X contravariant in
Y and covariant in Z induces a lifted functor

TV: Yy, Z— X

contravariant in Yy and covariant in Z, which is defined by the diagrams

(11.2a) Vi 7,
T(Lv, Z)
T(LVl, Z) — T(LV:, Z)
(11.2b) l T(V,, 2) l T(V,, 2)
T(L'v, Z")

T(L'Vy, 2') e— "2 T(L'Vy, Z')

where v: V1—»V,E, I: L'>LEYy and 2: Z—Z'&Z are maps.

Notational convention 11.3. A lifted functor will always have the same addi-
tional index in the same position as its range category. This will also apply to
the lifted functors defined below.

In the lifted functors defined above only one variable was lifted. These
functors will be referred to as lifted in one variable.

For a functor in two variables we shall now define functors which are
lifted in two variables simultaneously. Use will be made of the notion of sub-
division of a category.

Let S: &, Y—Z be a covariant functor, let U be a proper category and
let W =0". Then a (covariant) lifted functor

Sw: LY, Yy — Zw

is defined by the diagrams

(11.4a) iy, A oA HryP
S(Mv, LV,) S(MV,, Lv)
S(MVl, LVl) — S(MVz, LVl) e d S(MV2, LV2)
[
(11.4b) l SmVy, IVy) J S(mVs, V1) 1 S(mVo, IV,)
S(M', L'Vy) S(M'Vsy, L'v)

S(M'Vy, L'Vy) ¢———————=S(M'Vy, L'V,) —————> S(M'V,, L'V>)
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where v: V1> 1V,€0, m: M—>M'&XY and I: L>L'EYy are maps.
Replacing U by its dual we obtain (because W = V" =0V*") another co-
variant lifted functor

Sw: Xy, Y — Zw.

Similarly a functor T': %Y, Z—X, contravariant in Y and covariant in Z
induces lifted functors

TV : Yy, Z, — XV,
TW:(yV’ ZV—> ErW

both contravariant in the first variable and covariant in the second.

ExampLE 11.5. Let G be the category of abelian groups, let the functor
Hom: G, G—G be as in Example 5.2b and let the proper category U, the co-
variant functors 4, B: U—¢G and the contravariant functor C: U—G be as
in Example 10.2. Let W = 0. Then it is readily verified that C=Hom" (4, B).

12. Existence theorems. Sufficient conditions will be given in order that
a functor lifted in one variable has a left or right adjoint. The theorems stated
are special cases of the corresponding theorems for the relative case which
will be obtained in §13.

Let a: S(X)— T(Z). Then for every proper category U the lifted functor
Ty: Zv— Xy has a left adjoint and the lifted functor Sy: Xy—Zy has a right
adjoint, in fact we have:

THEOREM 12.1. Let a: S(X)—T(Z) and let VU be a proper category. Then
there exists a natural equivalence

o' H(Sv(Xy), Zv) — H(Xv, Tv(Zv))
i.e.
o' Sy(Xy) 4 Tv(zZv).

Let & be a U-direct category and let U be a proper category. Let 9: (Xv)y
—(%Xy)y be the isomorphism which assigns to every object K& (Xy)v the
object JK & (Xy)y given by ((9K)U)V=(KV)U for every object U&U and
VED. Let Ey: X—Xy be the embedding functor used in the definition of
direct limit. Compose the functor ¢ with the lifted functor (Ey)y. Then it is
readily verified that the composite functor 9(Ey)y: Xyr—(Xy)v is also such
an embedding functor. Hence application of the Theorems 7.8 and 12.1
yields

COROLLARY 12.2. Let X be a category and let U and C be proper categories.
If X is U-direct, then so 1s Xy.

Theorem 12.1 may be generalized to functors in two variables as follows.

Tueorem 12.3. Let «: S(X, YY) T(Y, Z) and let U be a proper category.
Then there exists a natural equivalence
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a': H(Sv(Xv, ), Zv) — H(Xy, Tv (Y, Zv))
t.e. ' Sy(Xy, Y) ATV (Y, Zv).

Let a: S(x, Y)—T(Y, Z). Then in general the functor T7: Yy, Z—x,
lifted in the variable Y has no left adjoint. This is however the case if the
category Z is U”-direct. In fact we have

THEOREM 12.4. Let a: S(X, Y) = T(Y, Z), let U be a proper category and let
W=V If the category Z is W-direct, then there exists a natural equivalence

ao: H(limpy Sw(XY, Yv), Z) — H(XV, TV (Y, Z))
1.e. O llmw Sw(frv, ‘yv) — TV((yv, Z).
And by duality

THEOREM 12.4*, Let a: S(%, Y) - T(Y, Z), let O be a proper category and
let W =V, If the category X is W-inverse, then there exists a natural equivalence

a®: H(Sv(X, Yv), Zv) — H(X, im” T%(Yy, Zy))

i.e. ao: Sy(X, Yr) A lim7 TW(Yy, Zy).
The Theorems 12.1, 12.3 and 12.4 follow immediately from the analogous
theorems for the relative case (13.4, 13.5 and 13.8) by putting

£ =9n,
F = E: 9 — 9, the identity functor,
Q=H: X, X >IN,
R=H:Z,Z— M.
13. The relative case. We shall now extend the existence theorems of §12
to the relative case.
DeriNiTION 13.1. Let W be a proper category. A covariant functor
F: £—93 will be called W-inverse if
(i) £ is W-inverse;
(ii) 9T is W-inverse;
(iii) F commutes with inverse limits, i.e. there exists a natural equivalence

x: F lim" (£7) — lim" F7(£V)
such that commutativity holds in the diagram

WAW
FYEY lim¥ (&%) ———— F%(gV¥)

i
EYF lim "(gV)
E%x
EY lim¥ F¥(gW)

AWFW
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ExampLEs 13.2. Examples of functors which are W-inverse for every
proper category ‘W are

(a) the identity functor E: 9M—9N,

(b) the functor F:G—9M (see Example 5.2b) which assigns to every
abelian group its underlying set, and

(c) the functor F: G—IM (see Example 5.2c) which assigns to every
topological space its underlying set.

LeEmmA 13.3. Let Q: X, X—& be a hom-functor rel. F, let U be_a proper
category and let W =V, If the functor F: £—9IN is W-inverse, then there exists
a natural equivalence

v': H(Xy, Xy) — F im" Q7 (Xy, Xy)
i.e. ImYQ%: Xy, Xy— L 15 also a hom-functor rel. F.

THEOREM 13.4. Let 3: S(X) A T(Z) rel. F, let U be a proper category and let
W =0, If the functor F: £—9IN is W-inverse, then there exists a natural equiva-
lence
B': im% R¥(Sy(Xy), Zv) — im" Q¥ (Xy, Tv(Zv))
i.e., in view of Lemma 13.3, B: Sy(Xy) = Tv(Zy) rel. F.

THEOREM 13.5. Let 3: .S(X, YY) T(Y, Z) rel. F, let UV be a proper category
and let W = VN, If the functor F: £—N is W-inverse, then there exists a natural
equivalence

B: im% RY(Sy(Xy, V), Zv) — lim™ Q% (Xy, Tv(Y, Zv))
i.e., in view of Lemma 13.3, 8': Sy (Xy, Y) 4 Tv (Y, Zv) rel. F.

DEFINITION 13.6. A covariant functor F: £—9 will be called true if
“Fl is an equivalence” implies ¢/ is an equivalence.”

ExampLEs 13.7. Examples of a true functor are:

(a) the identity functor E: M—9N;

(b) the functor F:G—M (see Example 5.2b) which assigns to every
abelian group its underlying set.

The functor F: @—9I (see Example 5.2¢) which assigns to every topo-
logical space its underlying set is not true.

THEOREM 13.8. Let B: S(X, YY) T(Y, Z) rel. F, let UV be a proper category
and let W =V, If the functor F: £—IN is true and “W-intverse and the category
Z is W-direct, then there exists a natural equivalence

Bo: R(th SW(xV) (yV); Z) — lim¥ QW(SIZV, TV((HV’ Z)))
i.e. Bo: limw Sw(X¥, Yy) = TV (Yy, Z) rel. F.

TarorEM 13.8*. Let B: S(X, Y) T (Y, Z) rel. F, let U be a proper category
and let W = V", If the functor F: £—IN is true and W-inverse and the category
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X is W-inverse, then there exists a natural equivalence
/30: lim% RW(SV7 (x} 'HV), ZV) - Q(x: lim¥ TW((yV, ZV))
i.e. B°: Sy(X, Yy) Aim¥” TV (Yy, Zy) rel. F.

ExampLE 13.9. Let the functors Hom: G, G—G, ®:G, G—G and F: §—I
and the natural equivalence

B: Hom (§ ® G, §) — Hom (G, Hom (G, §))

be as in Example 5.7. Let V be a multiplicative system with unit element.
Each element v& V gives rise to a transformation »: V—V defined by v(x)
=9x. Let U denote the proper category which has one object ¥ and has the
transformations v as maps. Then Gy (resp. G¥) is the category of abelian groups
with V as left (resp. right) operators. Let W =", then the category G is
both W-direct and ‘W-inverse and the functor F is W-inverse. The functor F
is also true. Hence we may apply Theorems 13.5, 13.8 and 13.8*.

It is readily verified with comparison with the usual definitions (see [1])
that

(i) the functor ®v:Gr, G—Gr assigns to every group with operators
AEGy and every group BEG their tensor product 4 ® B with operators in-
duced by those of 4,

(ii) the functor ®v:G, Gr—Gy assigns to every group A &G and every
group with operators BEGy their tensor product 4 ® B with operators in-
duced by those of B,

(1ii) the functor limw Qw:GY, Gyr—G assigns to every right-V-group
A EQY and every left-V-group BEGy their tensor product 4 ®vB over V,

(iv) the functor Homy: G, Gy—Gy assigns to every group 4 €G and group
with operators B&Gy the group Hom (4, B) with operators induced by those
of B,

(v) the functor Hom": Gy, G—GY assigns to every group with operators
AEGy and every group BEG the group Hom (4, B) with operators induced
by those of 4,

(vi) the functor lim" Hom": Gy, Gy—G assigns to every two groups with
operators A, B&EGy the group Homy (4, B) of equivariant homomorphisms
A—B, and

(vii) the functor lim” Hom": G¥, G¥—gG assigns to every two groups with
operators 4, B&EGY the group Homy (4, B) of equivariant homomorphisms
A—B.

Application of Theorems 13.5, 13.8 and 13.8* thus yields that there exist
natural equivalences

B': Homy(Gv ® G, Gv) — Hom v(Gy, Hom (G, Gr)),
Bo: Hom (§V ®v Gv, §) — Homy (G¥, Hom (G, Q)),
8°: Homy (§ ® Gv, Gv) — Hom (G, Homy (Gv, Gv)),
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i.e.
B:Gv ® ¢ - Hom (G, GQv) rel. F.,
Bo: G¥ ®v Gv -1 Hom (Gv, Q) rel. F.,
.30: 9 ® gV — Homy (gv, gv) rel. F.

Proof of Lemma 13.3. We first consider the case where £=9M, F
=E: M—IM, the identity functor and Q=H: X, X—M. Let K, K'E Xy be
objects. An element fEH(K, K') is a function which assigns to every object
VEV amap fVEH(KV, K'V) such that for every map v: V;— V&V com-
mutativity holds in the diagram

Kv
KVl——'—"—’ KVz

JfVl lsz

14

v
K/Vl —> K'Vz

or equivalently
H(Kv, K'Vy)fVs = H(KVy, K'v)fV 1.

Hence f assigns to every map v: V1— V,& U an element
(Y'f)vr = H(Kv, K'Vy)fVs € H(KVy, K'V>)
such that
H(Kv, K'V2)("f)iv, = H(KVs, KD Div, = ("for

i.e. fdetermines an element y"’f&€lim" HY (K, K’). Straightforward computa-
tion now yields that the function

¥ H(Xy, Xy) — lim" HY(Xy, Xv)

so defined in a natural equivalence.
Because Q is a hom-functor rel. F there exists a natural equivalence.

v: H(X, X) — FQ(X, X).
This induces a natural equivalence
v¥: HY (Xy, Xy) — FYQ7 (Xy, Xy)

of the lifted functors, given by v% (K, K)o =y(K V1, K'V;) for every object
K, K'&€ Xy and every map v: V1—V,E V. Composition of the natural equiva-
lence x (F is W-inverse) with the lifted functor Q% (Xy, Xy) yields a natural
equivalence

xQ%: F lim" Q% (Xy, Xy) — lim" FPQ%(Xy, Xv).

The composite natural equivalence
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v = (xQ%) o lim" v¥ o v"': H(Xy, Xv) — F lim¥ Q% (Xy, Xv)

then clearly is the desired one.
Proof of Theorem 13.4. It is readily verified that the natural equivalence

B8: R(S(%), Z) — Q(x, T(Z))
induces a natural equivalence
BY: R7(Sv(Xv), Zv) — Q¥ (Xv, Tv(Zv))

given by B7(K, LYo =B(K Vi, LV3) for every object KE Xy, and LEZy and
every map v: V1—V2E€ V. Composition of 8% with the functor lim%: ¥ — £
then yields the desired natural equivalence

g = lim¥ B7: lim¥ R¥ (Sy(Xv), Zv) — lim” Q¥ (Xy, Tv(Zv)).

The proof of Theorem 13.5 is similar.
For the proof of Theorem 13.8 we need .the following lemma.

LEmMMA 13.10. Let R: Z, Z— &£ be a hom-functor rel. F. and let W be a
proper category. If the category Z is W-direct and the functor F: £—IN s true
and “W-inverse, then there exists a natural equivalence

¢r: R(limw (Zw), Z) — lim" RY (Zw, Z).
Proof of Theorem 13.8. It is readily verified that the natural equivalence
B: R(S(X, V), Z) — Q(x, T(Y, Z))
induces a natural equivalence
B7: R¥(Sw(X¥, Yv), Z) = Q7 (XY, TV(Yv, Z))

given by B¥(K, L, Z)v"=B(KV,, LV,, Z) for every object KE XV, LEYy
and Z&Z and every map v: V1—V,&EV. Then composition of the functor
lim%: £¥—¢ with 8% and of the functor Sw (X", Yy) with ¢z (see Lemma
13.10) yields natural equivalences

lim% g%: lim" R¥ (Sw (XY, Yv), Z) — lim% Q% (XY, TV (Yv, Z)),
¢rSw: R(limy Sw(XY, Yv), Z) — lim™ R¥(Sw (XY, Yv), Z))
and the theorem follows by putting
Bo = lim" 8% o ¢rSw.

Proof of Lemma 13.10. We first consider the case where £=91, F
=E: M—9IN, the identity functor and R=H: Z, Z—£. Composition of the
natural transformation

A\w: E(Zw) — Ew limwy (Zw)

with the functor H7: Zw, Z— &7 yields a natural transformation
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H"\w: HY (Ew limw (Zw), Z) — H" (Zw, Z).
Denote by
on: H(limw (Zw), Z) — lim" HY (Zw, Z)

the unigque natural transformation such that commutativity holds in the dia-
gram

E¥H(limy (Zw), Z) —— H"(Ey limy (Zw), Z)
(13.11) | EP ¢y | H" \w

WHW
EY im¥ HY (Zw, Z) —— HY(Zw, Z)
where 7 is the identity. It then may be verified by straightforward computa-

tion that ¢y is a natural equivalence.
Replacing everywhere H by R we obtain a unique natural transformation

¢r: R(limwy (Zw), Z) — lim¥ R¥(Zw, Z)

such that commutativity holds in the diagram obtained from (13.11) by
replacing H by R. Because R is a hom-functor rel. F there exists a natural
equivalence

8: H(Z, Z) — FR(Z, Z).
This induces a natural equivalence
8%: HY(Zw, Z) — FY R (Zw, Z)

given by 8% (K, Z)v" =8(Kv", Z) for every object KE Zy, ZE Z and v EW.

Now consider Figure I, in which ¢ denotes the identity. It follows from
the definitions of ¢x and ¢z that commutativity holds in the lower and upper
rectangles, from the definition of §% that commutativity holds in the big
rectangle and in (B). Because F is ‘W-inverse commutativity also holds in (4)
and consequently

AHY 0 E"¢y = \VHW o (EV lim% %)~ 10 E¥xRY o EWF¢r 0 EV§ limw.
Hence in view of the uniqueness of ¢x
o = (lim¥ 6%)1o xR¥ o0 Fpr 0§ limp.

As 8, x and ¢y are natural equivalences it follows that Fgr is so. Because F
is true this implies that ¢z is also a natural equivalence. This completes the
proof.

14. The functor H. Let Z be a category. It will be shown that a sufficient
condition in order that the functor H: Z, Z—9N has a left adjoint is that the
category Z has direct limits. It then follows from Theorem 12.3 that, for every
proper category U, the lifted functor H": Zy, Z—IM" also has a left adjoint.
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. FYR% Ay
FYRY (Ew limy (Zw), Z) !
. T 1 FWEW¢R . FVA\WRW l
FYEYR(limw (Zw), Z) ———— FWEY lim¥ R¥(Zw, Z) ———— FYR¥(Zw, Z)
[ i
. EVF¢r .
E¥FR(limy (Zw), Z) ———— E¥Flim" R¥(Zw, Z) 4)

A¥FWRW

E¥ xRV
EV5 limy EV lim%" FTRW(ZW, Z) o
(B)
EV lim¥ §¥
E¥¢n wgw.
EVH(limw (Zw), Z) ——————— EV lim¥ HY(Zyw, Z) — HY (Zw, Z)
1
. H"\w
HY (Ew limw (Zw), Z)
FIGURE 1

The converse also holds, i.e. if for every property category U the lifted functor
HV: Zy, Z—M has a left adjoint, then Z has direct limits. Several known
functors involving c.s.s. complexes may be obtained from HY(Zy, Z) for
suitable categories U and Z or from a left adjoint of such a functor. These
applications will be dealt with in [5].

Let U be a proper category. With each object CEWMY we associate a
proper category €, defined as follows. The objects of @ are the pairs (V, ¢)
where V& is an object and ¢&CV. The maps of @ are the triples (v, c1, ¢2)
where v: V1> 1V,E DV is a map, aciECVy, c2ECV, and (Cv)ci=c.; the domain
of (v, c1, ¢2) is (Vi, c1) and the range is (Vy, ¢2). If (v/, ¢2, €3): (V2, ¢2)—(V3, ¢3)
is another map, then composition is defined by

', ¢z, c3) 0 (v, €1, ¢c2) = (¥ 09, c1, c3).
A map a: C—>DEMY induces a covariant functor a’: C—D defined by
a®(V, ¢) = (V, (aV)c),
a’(v, c1, ¢2) = (v, (aVi)c1, (aV2)co)

for every object (V, ¢) and map (v, c1, ¢2): (Vi, c1)—(Ve, ¢2) in €.
For every object CEMY define a covariant functor C%: @—9U by restric-
tion to the first coordinate, i.e.
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C'(V,¢) =V, C%v, ¢y, ¢c2) = v

for every object (V, ¢) and map (v, ¢, ¢2) in €. Clearly for each map a: C—D
cm”

D%° = C°.
Now define a covariant functor
Qa: MV, Zy — Zag
as follows; for each object CEMY and KE Zy
C®:K = (€, KC%

where K(C°: @—Z denotes the composite functor; for every map a: C»>D&am”
and k: K>K'EZy

a ®ak = (a° kCY

where kC°: KC'*—K'D%" is the natural transformation from the composite
functor KC®: @—Z to the composite functor K'D%°=K’'C°’: c—Z.

THEOREM 14.1. A category Z has direct limits if and only if for every proper
category U there exists a natural equivalence

B8: H(limg (MY ®q Zv), Z) — H(OY, H(Zy, Z))
i.e.
B: limg (MY ®q Zv) 4 HY(Zy. Z).
Combination of Theorem 14.1 with Theorem 12.4 yields

COROLLARY 14.2. Let Z have direct limits, let O be a proper category and let
W =V". Then there exists a natural equivalence

o:limg (M @4 Zy) — limwy Sw (MY, Zy)
where S(M, Z) =limy (M°® 4Zo) s a left adjoint of the functor H: Z, Z—IM.
For the proof of Theorem 14.1 we need the following lemma.

LeEMMA 14.3. Let Z be a category and let O be a proper category. Then there
exists a natural equivalence

v: HOW ®4 Zv, E4(Z)) — H(IY, HY(Zv, Z)).

Proof of Theorem 14.1. Let Z have direct limits. Composition of the
natural equivalence ag: limg— E; with the functor ®, yields a natural equiv-
alence

ag Rq: H(llmd (SRV ®a Zv), Z) i H(S)TLV ®d Zv, Ed(Z)).

Clearly the composite natural equivalence
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B =1v0a:®q: H(limy (M ®q Zv), Z) — H(MV, H"(Zv, Z))

then is the desired one.
Now suppose that for every proper category U a natural equivalence

B: H(lim; (MY ®4 Zv), Z) » HOW Y, H (Zv, Z))

is given. Let PE WM be a set consisting of one element p. Let KEZy and ZEZ
be objects. An element f&H(EVP, HV(K, Z)) then is a function which as-
signs to every object V&V a map fV: P—H(KV, Z) subject to certain natu-
rality conditions. Denote by 8f EH(K, EyZ) the map defined by (6f) V= (fV)p
for every object V&. It then is readily verified that the function

8: H(EVP, H"(Zv, Z)) — H(Zv, EvZ)

so defined is a natural equivalence. Now composition of the natural equiva-
lence B with é yields a natural equivalence

doB(EP): H(limg (EVP ®q Zv), Z) — H(Zv, EvZ).

Hence Z is U-direct. This completes the proof.
Proof of Lemma 14.3. Let CEMY, K< Zy and Z& Z be objects. For every

map
(Oc, /): C ®a K = (€, KC°) — EsZ = (0, EoZ)
in Z; define a map y¥(Oc, f): C—HV(K, Z) in MV by
(¥(Oc, NV)e = f(V, ¢)

for every object (V, ¢) €C. It then may be verified by straightforward compu-
tation that the function y(QOe, f) so defined is an equivalence in MY and that
the function

v: HOU ®q Zv, E«(Z)) — HOW, HY(Zv, Z))

so defined is a natural equivalence.

BIBLIOGRAPHY

1. H. Cartan and S. Eilenberg, Homological algebra, Princeton University Press, 1956.

2. S. Eilenberg and S. MacLane, General theory of natural equivalences, Trans. Amer. Math.
Soc. vol. 58 (1945) pp. 231-294.

3. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton University
Press, 1952.

4. I. M. James, On the suspension triad, Ann. of Math. vol. 63 (1956) pp. 191-247.

5. D. M. Kan, Functors involving c.s.s. complexes, Trans. Amer. Math. Soc. vol. 87 (1958)
pp. 330-346.

6. J.-P. Serre, Homologie singuliére des espaces fibrés, Ann. of Math. vol. 54 (1951) pp. 425-
505.

CoLuMBIA UNIVERSITY,
NEw York, N. V.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



