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1. Introduction. In homology theory an important role is played by pairs

of functors consisting of

(i) a functor Horn in two variables, contravariant in the first variable and co-

variant in the second (for instance the functor which assigns to every two

abelian groups A and B the group Horn (A, B) of homomorphisms/: A—>B).

(ii) a functor ® (tensor product) in two variables, covariant in both (for

instance the functor which assigns to every two abelian groups A and B their

tensor product A®B).

These functors are not independent; there exists a natural equivalence

of the form

a: Horn (®,) -> Horn ( , Horn ( , ))

Such pairs of functors will be the subject of this paper.

In the above formulation three functors Horn and only one tensor prod-

uct are used. It appears however that there exists a kind of duality between

the tensor product and the last functor Horn, while both functors Horn out-

side the parentheses play a secondary role.

Let 3H be the category of sets. For each category y let H: y, <l|—>3TC be

the functor which assigns to every two objects A and B in <y the set H(A, B)

of the maps/: A—>B in Of.

Let 9C and Z be categories and let 5: 9C—->Z and T: Z—>9C be covariant

functors. Then S is called a left adjoint of T and T a right adjoint of 5 if there

exists a natural equivalence

a: H(S(X), Z) -^ H(X, T(Z)).

An important property of adjoint functors is that each determines the other

up to a unique natural equivalence.

Examples of adjoint functors are:

(i) Let (2 be the category of topological spaces; then the functor XI: (3—>Ct

which assigns to every space its cartesian product with the unit interval I is a

left adjoint of the functor Q: Ct—>ft which assigns to every space the space of

all its paths.

(ii) Let S be the category of c.s.s. complexes; then the simplicial singular

functor S: &—>S is a right adjoint of the realization functor i?:S—>ft which

assigns to every c.s.s. complex K a CW-complex of which the w-cells are in

one-to-one correspondence with the nondegenerate w-simplices of K.
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The notion of adjointness may be generalized to functors in two (or more)

variables; a covariant functor S: 9C, *y—»Z is called a left adjoint of a functor

T: y, Z—>9C, contravariant in y and covariant in Z, and T is called a right

adjoint of S if there exists a natural equivalence

a:H(S(X,y),Z)^H(X,T(%Z)).

Adjoint functors in two (or more) variables also determine each other up to

a unique natural equivalence. The situation is similar when both functors H

are replaced by other functors.

An example of adjoint functors in two variables are the functors ® and

Horn mentioned above; CS> is a left adjoint of Horn.

The general theory of adjoint functors constitutes Chapter I.

In Chapter II we deal with direct and inverse limits. It is shown that a

direct limit functor (if such exists) is a left adjoint of a certain functor which

always can be defined, while an inverse limit functor is a right adjoint of a

similar functor.

In Chapter III several existence theorems are given. In [2] a procedure

was described by which from a given functor new functors, called lifted, can

be derived. Let the functor S: 9C, 'y—>Z be a left adjoint of the functor

T: y, Z—>9C, then sufficient conditions will be given in order that a lifted

functor of S has a right adjoint or that a lifted functor of T has a left adjoint.

Thus sometimes starting from a given pair of adjoint functors, new such pairs

may be constructed; for instance starting from the adjoint functors <S> and

Horn on abelian groups, pairs of adjoint functors involving groups with oper-

ators, chain complexes, etc. may be obtained.

A category Z is always accompanied by the functor H: Z, Z—>9TC and its

lifted functors. A necessary and sufficient condition in order that all these

functors have a left adjoint is that a notion of direct limit can be defined in Z.

Several known functors involving c.s.s. complexes can be obtained either by

lifting of a suitable functor H or from a left adjoint of such a lifted functor.

These applications will be dealt with a sequel entitled Functors involving c.s.s.

complexes [5].

I am deeply grateful to S. Eilenberg for his helpful criticism during the

preparation of this paper.

Chapter I. General theory

2. Notation and terminology. For the definition of the notions category,

functor, natural transformation, etc. see [2].

A functor F defined on the categories *yi, • • ■ , %, will often be denoted

by F(yu ■ ■ ■ , yn)- Similarly if Pand G are functors defined on the categories

Ihi • • • i 'Jim then a natural transformation a: F—>G is sometimes denoted

byoCyi, • • • , <y„).
Only categories will be considered which satisfy the following condition

Condition 2.1. For every two objects A and B in a category "y the maps
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/: A-+B in <y form a set, denoted by H(A, B).

Clearly the category 9TI of sets satisfies condition 2.1.

Let a: A'^>A and b: B—>B' be maps in a category "y and let

H(a, b): H(A, B) -► H(A', B')

denote the set mapping defined by

H(a,b)f = bofoa f E H(A, B).

Then it is easily verified that

Proposition 2.2. The function H: % <y—>3Il is a functor, contravariant in

the first variable and covariant in the second.

Hence every category "y is accompanied by a functor

H: % y -»arc.

A category V will be called proper if its objects form a set. Clearly in view

of condition 2.1 the maps of a proper category form also a set.

The dual of a category "y is the category <y* which has the same objects

and maps as *y; however

(a) an object A Ey is denoted by A* if it is considered as an object of *y*,

(b) a map/: A—>BE1i is denoted by/*: 5*—>.4* if it is considered as a

map of <y*, and

(c) the composition of two maps /*: B*—>A* and g*: C*—>B* in *y* is

defined by /* o g* = (g o /) *.

Clearly <y** = <y and H(A, B) =H(B*, A*) for every two objects A and B

in <y.

The dual of a functor FCyi, • • • , ■y,) is the functor F*(y*, ■ ■ ■ , <y*)

defined by

F*(Y*U- ■ ■, Y*) = F(Yh ■ ■ -, Fn)*,

f (yi, • • •, y») = f (yi» ■ • •»y»)

for every object YiE^i and every map yiEy,-

3. Adjoint functors in one variable.

Definition (3.1). Let 9C and Z be categories, let S: 9C->Z and T: Z-*9C

be covariant functors and let

a:H(S(X), Z)-* ff(9C, T(Z))

be a natural equivalence. Then 5 is called the left adjoint of T under a and T

the right adjoint of S under a (Notation a: S~\ T).

An important property of two adjoint functors is that each of them deter-

mines the other up to a unique natural equivalence. This is expressed by the

following uniqueness theorems.
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Theorem 3.2. Let S, S': 9C—>Z and T, T': Z—>X be covariant functors and

let a: S—I T and a': S'-\ T'. Let a: S'—>S be a natural transformation. Then

there exists a unique natural transformation r: 7—*T' such that commutatively

holds in the diagram

H(S(X), Z)-> H(°C, T(Z))

(3.2a) H(<t(X),Z) H(X,t(Z))

H(S'(X), Z) —-> H(X, T'(Z))

If a is a natural equivalence, then so is r.

Theorem 3.2*. Let S, S': 9C—>Z and T, T': Z—»9C be covariant functors and

let a: S~\T and a': S'-\T'. Let r: T—*T' be a natural transformation. Then

there exists a unique natural transformation <r: S'—+S such that commutativity

holds in the diagram (3.2a). If r is a natural equivalence, then so is a.

Proof of Theorem 3.2. Suppose r: T—+T' is a natural transformation such

that commutativity holds in 3.2a. Then for every object X£9C and ZEZ

and for every map fEH(X, TZ)

rZof = H(X, rZ)f = a'(H(aX, Z)oTxf) = a'(cTlfo <rX).

In particular if X=TZ and f=irz, then

(3.3) tZ = a'(orliTzOo-TZ).

Consequently if a natural transformation t: T—>T' exists such that com-

mutativity holds in 3.2a, then it must satisfy (3.3). Hence it is unique.

It follows from the naturality of a' that for every map g: Z—>Z'EZ com-

mutativity holds in the diagrams

K*,(fl,'"°^  T'Z

^\^ T'g
a'(goa~HTzOarTZ)      N.

T'Z'

TZ

^^\oV-»trz, o o-TZ' o S'Tg)

Tg ^^\^
"     a'(a-HTZ-o<rTZ')^^^t

TZ' —-► T'Z'

and in view of the naturality of a and a commutativity also holds in the dia-

gram
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aTZ               a~1irz
S'TZ-> STZ-> Z

S'Tg STg g

aTZ'              a~1irz-
S'TZ'-> STZ'-> Z'

Consequently

tZ' o Tg = a'(a-HTZ' o aTZ') o Tg

= a'(a-HTz' O aTZ' O S'Tg)

= a'(go or1irz o aTZ)

= T'gOa'(a-HTzOaTZ) = T'gorZ',

i.e. the function r defined by (3.3) is a natural transformation.

Now let cr be a natural equivalence and let r' be the natural transforma-

tion induced by cr-1. Then tt' and t't are natural transformations induced by

ao~~l and <r-1cr, and the uniqueness of tt' and t't together with the fact that

aa~1 and <r_1<7 are identities yields that tt' and t't are also identities, i.e. r

is a natural equivalence with inverse r'. This completes the proof of Theorem

3.2.

The proof of Theorem 3.2* is similar. Theorem 3.2* could also have been

obtained from Theorem 3.2 using the duality Theorem 3.4 below, which es-

sentially asserts that a functor S is a left adjoint of a functor T if and only

if the functor S*, the dual of S, is a right adjoint of the functor T*, the dual

of T.
Let S: 9C—>Z and T: Z->9C be covariant functors and let S*: 9C*^Z* and

F*: Z*->9C* be their duals. Then by definition II(SX, Z) =H(Z*, S*X*) and
H(X, TZ) =H(T*Z*, X*) ior every object XG9C and ZEZ.

Theorem 3.4. Let a: 5(9C)H T(Z) and define for every object X*£9C* and

Z*EZ* a map

a*(Z*, X*): H(T*Z*, X*) -» H(Z*, S*X*)

by

(3.4a) a*(Z*, X*) = a~](X, Z).

Then the function

a": H(T*(Z*), X*) -> H(Z*, S*(X*))

is a natural equivalence, i.e. a1: T*~\S*. Also a#f=a.

Proof. Let x*\ X*-*X'*e9C* and z*: Z'*^>Z*EZ* be maps. Then it

follows from the naturality of a that for every map f*EH(T*Z*, X*)
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a*(Z'*, X'*)H(T*z*, x*)f* = a*(Z'*, X'*)(x* of* o T*z*)

= (orKX'.Z'XPzo/os))* = (a-l(X\ Z')H(x, Tz)f)*

= (H(Sx, z)cr\X, Z)f)*     = (zo or\X, Z)foSx)*

= S*x* o at(Z*, X*)f* o z* = H(z*, S*x*)oi(Z*, X*)f*

i.e. a* is a natural transformation. The fact that a and hence or1 is a natural

equivalence now implies that oft is so. That a** =a follows immediately from

3.4a.

4. Adjoint functors in several variables. A covariant functor S: X, "y^Z

may be regarded as a collection consisting of

(i) a covariant functor S( ,Y): 9C—>Z for every object FG*y and

(ii) a natural transformation S( ,y): S( ,Y)—*S( ,Y') for every map y.Y—*

Y'E%
Now suppose that for every object YEy a covariant functor Ty: Z—*X

and a natural equivalence

ay. H(S(X, F), Z) -» H(X, TY(Z))

are given, i.e. ay: S( ,Y)~\Ty. Then it follows from Theorem 3.2 that for

every map y: Y—>Y'Ey there exists a unique natural transformation

Ty: Ty—>Ty such that commutativity holds in the diagram

H(S(X, Y), Z)-~^H(X, TY(Z))

H(S(X,y),Z) j fl(9C, T,(Z))

H(S(X, Y'), Z)-^-->H(X, TY,(Z))

Let y': Y'—>Y"Ey- Then the uniqueness of the natural transformations

Tu, Ty' and TV'y implies that TyTy- = TV'V. Similarly if i: Y—*Yis the identity,

then Til Ty-^Ty is the identity natural transformation. Consequently the

function T defined by
T(Y,Z) = TyZ,

T(y, z) = TYz o TyZ

for every object FG'y and ZEZ and every map y: F—>F'Gcy and z: Z—*Z'

EZ, is a functor T: % Z—>9C, contravariant in 'y and covariant in Z.

Clearly the function a defined by

a(X, F, Z) = ay(X, Z).

for every object XEX, YEy and ZEZ, is a natural equivalence

a: H(S(X, y), Z) -> H(X, T(y, Z))

Thus we have
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Theorem 4.1. Let S:  9C, *y—>Z be a covariant functor and let for every object

YEy be given a covariant functor TY: Z—>9C and a natural equivalence

ay. H(S(X, Y), Z) -> H(X, TY(Z)),

i.e. ay: S( ,Y)-\ Ty. Then there exists a unique functor

T:y, Z-> 9C

contravariant in y and covariant in Z and a unique natural equivalence

a: H(S(X, y), Z) -> H(X, T(y, Z))

such that for every object X£9C, YEy and Z£Z

T(Y,Z) = TYZ,        a(X, Y, Z) - aY(X, Z),

i.e. a: S~\ T.

Remark 4.2. It is clear that in the above starting from a functor S: 9C,

cy—>Z, contravariant in % a functor T: y, Z—>9C, covariant in % would have

been obtained. As however a functor contravariant in 'y becomes covariant

when regarded as a functor in "y*, the dual of % we may restrict ourselves to

functors S: X, y—»Z which are covariant in both variables.

In view of Theoem 4.1 and Remark 4.2 we now define adjoint functions

in two variables as follows.

Definition 4.3. Let 5: 9C, "y—>Z be a covariant functor, let T: y, Z-»9C

be a functor contravariant in "y and covariant in Z and let

a: H(S(X, <y), Z) ^ H(X, T(y, Z))

be a natural equivalence. Then 5 is called the left adjoint of T under a and

T the right adjoint of S under a (Notation a: SH T).

As in the case of functors in one variable, adjoint functors in two variables

determine each other up to a unique natural equivalence. This is expressed

by the following uniqueness theorems which by the above argument follow

directly from the Theorems 3.2 and 3.2*.

Theorem 4.4. Let S, S': 9C, <y-*Z be covariant functors, let T, T': y, Z—>9C

be functors contravariant in y and covariant in Z and let a: S~\ T and a': S'-\ T'.

Let a: S'—>S be a natural transformation. Then there exists a unique natural

transformation r: T—*T' such that commutativity holds in the diagram

H(S(x, y), z) ——^ H(x, T(y, z))

(4.4a) H(a(X,y),Z) H(X,T(y,Z))

H(S'(x,y), z) —-—> n(x, T'(y, z))

If a is a natural equivalence, then so is t.
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Theorem 4.4*. Let S, S'\ X, <y-»Z be covariant functors, let T, T': Of, Z->9C

be functors contravariant in y and covariant in Z and let a: S—I P and a': S'-\ T'.

Let t. T—>T' be a natural transformation. Then there exists a unique natural

transformation <r: S'—>S such that commutativity holds in the diagram (4.4a).

If t is a natural equivalence, then so is o~.

The duality Theorem 3.4 may be generalized as follows. Let S: X, "y—>Z

be a covariant functor and denote by S*: "y, X*—>Z* the functor contra-

variant in "y and covariant in X* defined by

St(Y,X*) = S(X, F)*,

S*(y, x*) = S(x, y)*

for every object FE'y and X*£9C* and every map yEy and x*EX*.

Similarly let T: y, Z—>9C be a functor contravariant in "y and covariant in

Z and denote by T*: Z*, y-+X* the covariant functor such that T» = T.

Then clearly for every object XEX, YEy and ZEZ

H(S(X, Y),Z) = H(Z*,Sf(Y,X*));

H(X, T(Y, Z)) = H(T*(Z*, Y), X*).

Theorem 4.5. Let a: S(X, y)~\T(y, Z) and define for every object X* EX*,

YEy and Z*EZ* a map

oft(Z*, Y, X*): H(Tt(Z*, Y), X*) -> H(Z*, S#(F, X*))

by

a*(Z*, F, X*) = a~l(X, Y, Z).

Then the function

a*: H(T*(Z*, y), X*) -> H(Z*, s*(y, X*))

is a natural equivalence, i.e. a': P#(Z*, y)~iSf(y, X*). Also a**=a.

The proof of Theorem 4.5 is obvious.

It follows from the duality Theorem 4.5 that for every Theorem A involv-

ing a natural equivalence a: S(X, y)~\ T(y, Z) a dual Theorem A* may be

obtained by applying Theorem A to the natural equivalence oft: P'(Z*, "y)

HS*Cy, 9C*) and then writing the result in terms of the categories X, y and

Z, the functors S and T and the natural equivalence a, i.e. "reversing all

arrows" in the categories X* and Z*. It is easily seen that in this sense the

Theorems 4.4 and 4.4* are the dual of each other.

We now consider functors in more than two variables.

Let

S: X, (ii, • • • , am, (Bi, • • • , (B„-> z
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be a functor covariant in X, &i, • • • , am and contravariant in (Bi, • • • , (B„

and let

T: tti, • • • , am, (Bi, • • ■ , (B„, Z -> 9C

be a functor contravariant in ax, • • • , Qm and covariant in (Bi, • • • , (B„, Z.

Then ([2, Theorem 13.2]) 5 and T may be considered as functors in two vari-

ables as follows. Let 'y be the cartesian product category (see [2])

^ = (11 a.) x(n<B*)-

Then 5 may be considered as a covariant functor

S': X, "y->Z

and T as a functor

7": % Z-> 9C

contravariant in 'y and covariant in Z. The case of functors in more than

two variables thus may be brought back to that of functors in two variables

only.
5. The relative case. We shall now consider the case in which the functors

H are replaced by other functors.

Definition 5.1. Let F: £—>3R be a covariant functor and let Q: X, 9C—>•£

be a functor contravariant in the first variable and covariant in the second.

The functor Q is called a hom-functor rel. F if there exists a natural equiva-

lence

7: H(X, X) -» FQ(X, X).

Examples 5.2.

(a) The functor H: X, 9C—>9TC is a hom-functor relative to the identity

functor E: 3TC—>9TL

(b) Let 9 be the category of abelian groups and homomorphisms. Let

Horn: g, 9—>9 be the functor which assigns to every two abelian groups B

and C the group Horn (B, C) oi the homomorphisms of B into C (see [3]).

Let F: g—>9TC be the functor which assigns to every group its underlying set.

Then Horn: 9, 9—>9 >s a hom-functor rel. F.

(c) Let a be the category of topological spaces and continuous maps and

let Map: a, ft—>Ct be the functor which assigns to every two spaces X and F

the function space Map (X, F) = Yx with the compact-open topology (see

[2]). Let F: (&—>9Tl be the functor which assigns to every space its underlying

set. Then Map: &, ft—»ft is a hom-functor rel. F.

Definition 5.3. Let S: 9C—>Z, T: Z—>9C and F: £—>31Z be covariant func-

tors and let Q: X, 9C—>£ and R: Z, Z—>£ be horn-functors rel. F. Let

ft:R(S(X),Z)^Q(X,T(Z))
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be a natural equivalence. Then S is called the left adjoint of T rel. F under 8

and T the right adjoint of S rel. F under 8 (Notation 8: S-\ T rel. F).

It will now be shown that adjointness rel. F implies adjointness.

Theorem 5.4. Let 8: S-\T rel. F. Then there exists a natural equivalence

a: H(S(X), Z) -* H(X, T(Z)),

i.e. a: S-\T.

Proof. As Q and R are hom-functors rel. F there exist natural equivalences

y:H(X,X)^FQ(X, X),

5:H(Z, Z) ->P2c(Z, Z).

Define for every object X£9C and ZEZ

a(X, Z) = 7_1(X TZ) o F8(X, Z) o 8(SX, Z).

Then clearly a is a natural equivalence because y(X, T(Z)), F8(X, Z) and

S(S(X), Z) are so.

We now state the corresponding results for functors in two variables.

Definition 5.5. Let S: X, 'y—>Z and F: £—»3TC be covariant functors, let

T: y, Z—>9C be a functor contravariant in 'y and covariant in Z and let

Q: X, 9C—>£ and R: Z, Z—>£ be hom-functors rel. F. Let

8-. R(S(x, y), z) -> Q(x, T(y, z))

be a natural equivalence. Then S is called the left adjoint of 9TC rel. F under 8

and T the right adjoint of S rel. F under 8 (Notation 8: S~\ T rel. F).

Theorem 5.6. If 8: S(X, y)-\T(y, Z) rel. F then there exists a natural

equivalence

a: H(S(X, y), Z) -> H(X, T(y, Z)),

i.e.a:S(X, y)~\T(y, Z).

Example 5.7. Let the functors Horn: g, g—>g and F: g—>9Tl be as in

Example (5.2b) and let <8>: g, g—»g be the covariant functor which assigns

to every two abelian groups A and B their tensor product A ®B (see [3]).

As is well known (see [2]) there exists for every three abelian groups A, B

and C an isomorphism 8'- Horn (A ®B, C) «Hom (A, Horn (B, C)) which is

natural, i.e. there exists a natural equivalence

|8: Hom(g ® g, g) -> Hom(g, Hom(g, g)).

Hence the tensor product ® is a left adjoint of the functor Horn (rel. F).

Example 5.8. Let the functors Map: ft, a—>a and F: a—>3K be as in

Example 5.2c and let X denote the cartesian product. Let Q,tc be the full sub-

category of CI generated by the locally compact spaces. As is well known for
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every three spaces X, Z£a and YE&u a homeomorphism ft: ZXXY«(ZY)X

can be defined as follows. Let fEZXXY, i.e./: XX Y—>Z is a continuous map.

The map ftf: X—>ZY then maps a point x£X into the point (ftf)xEZY, i.e.

the map (ftf)x: Y-^Z, given by ((ftf)x)y=ft(x, y) for every point y£ Y. This
homeomorphism is natural, i.e. there exists a natural equivalence

ft: Map (tt X «fc, ft) -> Map (a, Map (au, a)).

Hence 2/*e cartesian product X is a left adjoint of the functor Map (rel. F).

Example 5.9. Let I denote the unit interval. Then it follows from Exam-

ple 5.8 that the functor XI: a—>a is a left adjoint of the functor Map (I, ):

a—>a, i.e. "taking the cartesian product with the unit interval" is a left adjoint

of "taking the space of all paths" (rel. F).

As is "well known" the homotopy relation for continuous maps may be

defined using either the functor XI or the functor Map (I, ) as follows. Let

P be a space consisting of one point p and let p0: P—>J (resp. pi\ P—*I) be the

map given by p0p = 0 (resp. pip= 1). For every space X let maps <px: X—>XX.P

and ypx: Map (P, X)—>X be defined by <pxx = (x, p) and &xf=fp for every

point xEX and map/: P—>X. Then two maps/0,/i: X—»F£.4 are homotopic

(i) if there exists a map g: XXI—*YE a such that

ft = go(XX Pt)o<bx e = 0, 1

or equivalently

(ii)  if there exists a map h: X—*Map (I, Y)E a such that

fi = ipro Map (p„ F) o A € = 0, 1.

The equivalence of these two definitions is an immediate consequence of

the adjointness of the functors XI and Map (I,   ).

Example 5.10. Let a0 be the category of topological spaces with a base

point, i.e. an object of a0 is a pair (X, x) where X£a and xEX is a point,

while a map/: (X, x)—*(Y, y) of a0 is a map/: X—>YE& such that/x = y.

Let S: do—»ao be the covariant functor which assigns to every object (X, x)

E ao its suspension (X', x') defined as follows. Let Sl be a 1-sphere and let

sES1 be a point. Then X' is obtained from XXS1 by shrinking to a point of

the subspace (xXS^VJ(XXs) and x' is the image of (x, s) under the identi-

fication map XX-S1—>X'. Let Map0: ao, a0—>a0 be the functor which assigns

to every two objects (X, x) and (F, y) of a0 the pair Map0 ((X, x), (Y, y))

= (Z, z), where Z is the function space (F, y)'Xl) (with the compact-open

topology) and where the map z: (X, x)—*(Y, y) is given by zg=y ior every

point gEX. Let the functor F: a0—>3TC assign to every object (X, x)E&o

the underlying set of the space X, then clearly Map0: a0, a0—>a0 is a hom-

functor rel. F. Let fl=Mapo ((S1, s), ), the loop functor. Then analogous to

Example 5.8 for every two objects (X, x), (Y, y)£a0 a homeomorphism

fto: Map0 (S(X, x), (Y, y)) «Map0 ((X, x), fl(F, y)) can be given which is
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natural, i.e. there exist a natural equivalence

8o- Map0 (S(a0), a0) -* Map0 (a0, fi(a0)).

Hence the suspension functor S is a left adjoint of the loop functor fi (rel. F).

Example 5.11. This example is due to P. J. Hilton. Let ao be the category

of topological spaces with a base point (see Example 5.10). Let X2: a0—>a0

be the covariant functor such that for every object (F, y0) E &o,

X2(Y,y0) = (YX Y,yoXyo)

and let V2: a0—>a0 be the covariant functor such that for every object

(X, x0)ea0
V2(X, xo) = (X V X, xo X xo)

where XVX = XXx0UxoXXCXXX. Let the functor Map0: a0, a0—>a0 be

as in Example 5.11. Then for every two objects (X, x0), (Y, yo)E ao a homeo-

morphism 8: Map0 (V2(X, x0), (Y, y0))->Mapo ((X, x0), X2(F, y0)) may be

defined by (8f)x = (f(xXx0) Xf(x0Xx)) lor every map /: V2(X, x0)—>(F, y0)

and point xEX. Clearly is natural, i.e. there exists a natural equivalence

8: Map0 (V2(a0), a0) -> Mapo (a0, x2(a0)).

Hence the functor V2 is a left adjoint of the functor X2 (rel. F).

6. Two natural transformations. Let S: X—>Z and T: Z—>9C be covariant

functors and let a: S~\ T. Then we may define a natural transformation

k: E(X) -> PS(9C)

where E: X—>X denotes the identity functor, by assigning to every object

XEX the map kX: X-^TSX given by

(6.1) kX = aisx-

It must of course be verified that the function k so defined is natural. It

follows from the naturality of a that for every map x: X—>X'EX commuta-

tivity holds in the diagram

H(SX, SX)-> H(X, TSX)

H(SX, Sx) H(X, TSx)

H(SX, SX')-—> H(X, TSX')

T T
H(Sx, SX') H(x, TSX')

H(SX\ SX')-"—> H(X', TSX')

Consequently
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TSx okX = H(X, TSx)aiSx = aH(SX, Sx)isx

= a(Sx o isx) = a(isX> o Sx)

= aH(Sx, SX')isx, = H(x, TSX')aisx. = kX' o x,

i.e. k is natural.

The natural transformation k will be referred to as the natural transforma-

tion induced by a.

The following lemma expresses the natural equivalence a in terms of the

natural transformation k. It follows that k completely determines a.

Lemma 6.2. Let a: 5(9C)H T(Z) and let k: E(X)-*TS(X) be the natural

transformation induced by a. Then for every object X E X and ZEZ and for every

map f: SX—>ZE% commutativity holds in the diagram

kX
X-> TSX

\«/" Tf

TZ

i.e.

(6.2a) af = Tfo kX fE H(SX, Z).

Proof. It follows from the naturality of ex. that commutativity holds in the

diagram

H(SX, SX)-> H(X, TSX)

\h(SXJ) \H(X,Tf)

H(SX, Z)-> H(X, TZ)

Consequently

af = aH(SX,f)isx = H (X, Tf)aisx = Tfo kX.

This completes the proof.

Now let S: X->Z and T: Z^X be covariant functors and let k': E(X)

—>TS(X) be a natural transformation. Then k' induces a natural transforma-

tion

ft:H(S(X),Z)-^H(X, T(Z))

as follows. For every object X£ X and Z£Z the map ft: H(SX, Z)->II(X, TZ)

is defined by

(6.3) ftf = Tfo k'X f E H(SX, Z).
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It is readily verified that the function 8 so defined is natural. If 8 is an

equivalence for all objects XEX and Z£z, then clearly 8: S~\T and (in

view of Lemma 6.2) k' is the natural transformation induced by 8. Hence we

have:

Theorem 6.4. Let S: 9C—>Z and T: Z—>9C be covariant functors and let

k': E(X)—>TS(X) be a natural transformation. Then there exists a natural

equivalence fi: S~\T which induces k' (and hence is unique) if and only if for

every object XEX and ZEZ the function 8: H(SX, Z)^>H(X, TZ) defined by

(6.3) is an equivalence.

We shall now dualize the above results.

Leta:S(9C)HP(Z) and let

k*:E(Z*)^S*T*(Z*)

be the natural transformation induced by the natural equivalence oft:

T*(Z*)-\S*(X*). Denote by

n: ST(Z) ^ E(Z)

the natural transformation obtained from ift by "reversing all arrows" in the

categories X* and Z*, i.e. for every object ZEZ the map pZ: STZ—>Z is

given by

(6.1*) pZ = a~HTz.

The natural transformation p. will be referred to as the natural transforma-

tion induced by cr1.

Lemma 6.2*. Let a: S(9C)-i P(Z) and let p.: ST(Z)->E(Z) be the natural

transformation induced by or1. Then for every object XEX and ZEZ and for

every map g: X—>PZ£Z commutativity holds in the diagram

HZ
STZ-► Z

Sg   /<*~lg

SX

i.e.

(6. 2a*) or^g = uZoSg gEH(X, TZ).

Let S: X—>Z and T: Z—>9C be covariant functors. Then a natural trans-

formation p.': SP(Z)—>E(Z) induces a natural transformation

y:H(X, T(Z))-+H(S(X),Z)

by
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(6.3*) yg = u'ZoSg gEH(X,TZ)

and we have:

Theorem 6.4*. Let S: X—>Z and T: Z—*X be covariant functors and let

p.': ST(Z)—^E(Z) be a natural transformation. Then there exists a natural

equivalence y~x: S~\ T such that y induces p.' (and hence y is unique) if and

only if for every object XEX and ZE'L the function y: H(X, TZ)->H(SX, Z)

defined by 6.3* is an equivalence.

Example 6.5. Let ao, the category of topological spaces with a base

point, the suspension functor S: a0—>a0, the loop functor ft: a0—>a0, the

hom-functor Map0: a0, a0—>a0 and the natural equivalence

00: Map0 (5(a0), Go) ~* Map0 (a0, O(a0))

be as in Example 5.10. Using the natural transformation

k: £(a0) -> as(a0)

induced by fto we now define the suspension homomorphism of the homotopy

groups (see [4]) and dually using the natural transformation

p: sn(a0) ^> E(a0)

induced by fto1 the suspension homomorphism of the cohomology groups (see

[6]) will be obtained.

Let (Y, y)E&o and let 5" be an w-sphere and s"ES" a point. Clearly

S(Sn, sn) ~ (Sn+1, 5n+1). As the elements of the nth homotopy group ir„(F, y)

of (Y, y) are the homotopy classes of maps (Sn, sn)—>(Y, y), i.e. the com-

ponents of Map0 ((Sn, sn), (Y, y)), it can easily be verified that the homeo-

morphism

fto: Mapo ((5»+S s»+l), (Y, y)) « Map0 ((£», s«), Q(Y, y))

induces an isomorphism

r3:7rn+1(F, y) «xnfi(F,y).

The composite homomorphism

*»(F, y) -^ 7rn05(F, y) -> 7r„+i5(F, y)

now is the suspension homomorphism 7r„(F, y) —*irn+\S( Y, y).

Let tt be an abelian group. Then an object (K, k) E a0 is called of type

(tt, n) if Tn(K, k)~ir and 7r,(X, k) =0 ior i^n. Clearly if (K, k) is of type

(tt, n), then Q(X, k) is of type (r, n — l). Now let (K, k) be of type (t, n) and

let (X, x)£a0. If X is "reasonably smooth" then the elements of the wth

cohomology group Hn(X, x; it) of (X, x) with coefficients in ir are in one-to-

one correspondence with the homotopy classes of maps (X, x)—*(K, k), i.e.
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with the components of Map0 ((X, x), (K, k)). It may then be verified that

the homeomorphism

8b-1: Map0((X, *), Q(K, k)) -* Map0 (S(X, x), (K, k))

induces an isomorphism

5: fl—i(X, *; x) » Hn(S(X, x); t)

and that the composite homomorphism

Hn(X, x; tt) —-> H"(SU(X, x) ; t)-> H^^X, x); w)

is the suspension homomorphism H"(X, x; ir)—*H"~1(U(X, x); t).

Chapter II. Direct and inverse limits

7. Direct limits. Let Z be a category and let V be a proper category (i.e.

the objects of V form a set). Let K: V—*Z be a covariant functor. Then K

may be considered as a F diagram over Z, i.e. a system of objects and maps of

Z indexed by the objects and maps of TJ. We shall now define what we mean

by a direct limit of such a system.

Let Zv denote the category of V diagrams over Z, i.e. the category of which

the objects are the covariant functors V—>Z and of which the maps are the

natural transformations between them (see [2, §8]). The category Zv satisfies

condition 2.1 because "U is proper. Let

Ev: Z->Zv

be the embedding functor which assigns to every object ZEZ the constant

functor EvZ: V—>Z which maps every object of V into Z and every map into

iz, and which assigns to every map z: Z->Z'£Z the natural transformation

Evz: EVZ^EVZ' given by (Eyz)V = z for every object F£U. We then define

Definition 7.1. Let AE"Z be an object and let k: K^>EVAEZV be a

map. Then A is called the direct limit of K under the map k if for every object

BEZ and every map k': K^EyBEZv there exists a unique map/: A—>BEZ

such that commutativity holds in the diagram

k
X-*ErA

N^ Erf

EVB

i.e. Evfok = k' (Notation ^=lim*X)(2).

Example 7.2. Let V be the category of which the objects are the elements

(2) A similar definition of direct limit has, for the case of groups, been given in mimeo-

graphed notes of lectures of R. H. Fox (Princeton, 1955).
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of some set V and which has no maps other than identity maps. Let a be

the category of topological spaces. A functor K: "0—>a (which is both co-

variant and contravariant) is then merely a collection }X„} of topological

spaces indexed by the set F. Let X = \Ja<EV Xa be their union (the points of X

are the pairs (a, x) where aE V and xEX). For each aE V let ka- Xa—»X

denote the embedding map given by kax = (a, x) for xEXa. Then X is the

direct limit of K under the map k: K—*EVX defined by ka = ka ior all aEV.

Example 7.3. Let 9 be the category of abelian groups and let V be as in

Example 7.2. A functor K: T)—>9 then is a collection {Ga} of abelian groups

indexed by the set F. Let G= ^aer Ga be their direct sum (see [3]). For each

aE V let ka: Ga—>G be the injection. Then G is the direct limit of K under the

map k: K^EyG defined by ka = ka ior all aE V.

Example 7.4. Let D be a directed set, i.e. a quasi-ordered set such that for

each pair of elements di, d2ED there exists a d3ED such that di<d3 and

d2<d3. A directed set D may be regarded as a category SD (see [2]) of which

the objects are the elements of D and which has one map (d2, di): di—>J2 for

each pair (d2, di) such that di<d2. Enlarge D to a category £>x by adding one

object «> and for every element dED, one map (°°, d):d—*x>. Then the

following definition of direct limit is implicitly contained in [2].

Let K: 2D—»Z be a covariant functor and let the functor Kx: T>x—»Z be

an extension of K. Then the object Km*> EZ is called the direct limit of K

under Kx if for every extension K'„: 3D—>Z of K there exists a unique natural

transformation a: Kx—^K'a such that each ad with d^ » is the identity. It

is easily verified that this definition is equivalent with Definition 7.1 for

U = 2D.

In general not every object of Zv will have a direct limit (under some

map). In order that every object of Zv has a direct limit under some map it

is necessary and sufficient that the functor Ey: Z—>Zf has a left adjoint. A

more precise formulation of both halves of this statement is given in the

following two theorems.

Theorem 7.5. Let L: Zp—»Z be a covariant functor, let a: L(ZV)-\EV(Z)

and let k: E(Zv)-^EyL(Zv) be the natural transformation induced by a. Then

LK = lim,K K

for every object KEZv-

Theorem 7.6. Let for every object KEZV be given an object LKEZ and a

map kK: K-^>EvLKEZv such that LK = \imKK K. Then

(i) the function L (defined only for objects of Zv) may be extended uniquely

to a functor L: Zy—>Z such that the function k becomes a natural transformation

k:E(Zv)-*EvL(Zv),
(ii) there exists a natural equivalence a: L(Zv)~iEv(Z) such that k is the

natural transformation induced by a. In view of Lemma 6.2 a is unique.
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Definition 7.7. A category Z is called V-direct if every object of Zv has

a direct limit under some map.

Theorem 7.8. A category Z is V-direct if and only if the functor Er: Z—>Zy

has a left adjoint.

Remark 7.9. The first half of Theorem 7.8 follows directly from Theorem

7.5. In order to obtain the second half of Theorem 7.8 from Theorem 7.6 a

kind of axiom of choice would be needed; given for every object of Zv the

existence of a direct limit under some map, a choice must be made simul-

taneously for all objects of Zv (which need not even form a set) of such an

object and map. In practice however the statement "every object of Zv has

a direct limit under some map" means that it is possible to give a construction

which assigns simultaneously to all objects KEZv an object LKEZ and a

map kK: K—*EvLK such that LK = \imKK K. It is in this sense that the notion

D-direct will be used. The second half of Theorem 7.8 then is an immediate

consequence of Theorem 7.6.

If a category Z is "U-direct, then we denote by lim^: Zk—>Z an arbitrary

but fixed left adjoint of the functor Ev: Z—>Zk, by ctv an arbitrary but fixed

natural equivalence ay: limK HEk and by Xk the natural transformation in-

duced by cty.

Proof of Theorem 7.5. Let BEZ and KEZv be objects. The natural

equivalence a yields an equivalence

a: H(LK, B) -» H(K, EVB).

In view of Lemma 6.2 this one-to-one correspondence is given by

af = Evfo kK, f E H(LK, B),

i.e. for every map k': K—>EVB there is a unique map /: LK—*B such that

k' = EvfoKK.

Proof of Theorem 7.6. Let k: K—>K'EZV he a map. Then according to

Definition 7.1 there exists a unique map Uk: LK—^LK'EZ such that com-

mutativity holds in the diagram

kK
K-> EVLK

k EvUk

kK'
K'-> EVLK'

Hence if there exists a functor L: Zv—>Z with the required property, then it

must be defined by Lk= Uk for every map kEZv- It is now easily verified

that the function L so defined is a covariant functor L: Zv—»Z.

For every object P£Z and KEZv define a function
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a:H(LK, B) -> H(K, EVB)

by

af = Evfo kK fE H(LK, B).

As LK = lim»x K merely means that a is an equivalence, it follows from

Theorem 6.4 that a is a natural equivalence a: L(Zv)~\Ev(Z) such that k is

the natural transformation induced by a.

8. Inverse limits. The definition of inverse limits and their properties

may be obtained from those of direct limits by duality.

Let X be a category, let V be a proper category and let K: U^9C be a

contravariant functor. Denote by A'*: 1)—>9C* the induced covariant functor.

Then K*EXV*. An object A EX then will be called an inverse limit of K if

the object A*EX* is a direct limit of K*.

We shall now give the exact definition dual to (7.1).

Let Xv = (Xv*)*, i.e. Xv is the category of the contravariant functors

V—>X and the natural transformations between them. Let Ev: X*—*Xv* be as

in §7 and let EV = EV*, i.e.

Ev: 9C-> Xv

is the embedding functor which assigns to every object XE;9C the constant

functor U—>9C which maps all of V into X and ix.

Definition 8.1. Let AEX be an object and let k: EVA^KEXV he a

map. Then A is called the inverse limit of K under the map k if for every object

P£ Stand every map k': EVB-^KEXV there exists a unique map/: B—>AEX

such that commutativity holds in the diagram

k
EVA--K

Evf     /k'

EVB'

i.e. k o Evf=k' (Notation A =lim* K).

Example 8.2. Let the categories a and V and the functor A': U—>a be

as in Example 7.2. Let F= \\aev X„ be the cartesian product of the spaces

X„. For every a£ V let ka: Y—>Xa be the projection onto Xa. Then F is the

inverse limit of K under the map k: Ev Y-+K defined by ka = ka for all aE V.

Example 8.3. Let the categories g and V and the functor K: U—>g be

as in Example 7.3. Let 77= Y[«<rv Ca be the direct product (see [3]) of the

groups G„. For each aEV let ka:II—>Ga be the projection. Then II is the

inverse limit of K under the map k: EVH—>K defined by ka = ka for all aE V.

Examtlk 8.4. Let the categories :D and £>„ be as in Example 7.4. Then the

following definition of inverse limit is implicitly contained in [2]:
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Let K: 3D—>9C be a contravariant functor and let the functor X„: 3D«,—*9C

be an extension of K. Then the object Kx °o EX is called the inverse limit of

K under K„ if for every extension K'„: S)K—>X of K there exists a unique

natural transformation a: X'«,—►X*, such that ad with rf^» is the identity.

It is easily verified that this definition is equivalent with Definition 8.1 for

13 = 3D.

We now dualize Definition 7.7 and Theorem 7.8.

Definition 8.5. A category X is called V-inverse if every object of Xv has

an inverse limit under some map.

Theorem 8.6. A category X is V-inverse if and only if the functor Ev:

£C—>9CK has a right adjoint.

If the category X is U-inverse, then we denote by limy: Xv—>9C an arbi-

trary but fixed right adjoint of the functor Ev: 9C—>9C7, by av an arbitrary

but fixed natural equivalence av:Ev-\\imv and by XF the natural trans-

formation induced by (av)~l.

9. Direct and inverse categories.

Definition 9.1. A category Z is said to have direct limits if it is U-direct

for every proper category V, i.e. if for every proper category V each object

of Zv has a direct limit (under some map).

Examples 9.2. Examples of categories which have direct limits are

(a) the category 911 of sets,

(b) the category g of abelian groups and

(c) the category a of topological spaces.

A necessary and sufficient condition in order that a category have direct

limits is the existence of a left adjoint of a certain functor. The exact formula-

tion of both halves of this statement will be given in the Theorems 9.4 and

9.5 below which are analogous to the Theorems 7.5 and 7.6.

Let Z be a category. Define a category Zd, the category of all diagrams over

Z, (a generalization of the category 3Mr of [2]) as follows. An object of Zd is

a pair (V, K) where V is a proper category and K: V—>Z is a covariant func-

tor. Given two objects (V, K) and ("0', K') of Zd, a map

(F,k):(V,K)^(V',K')

oi Zd is a pair (F, k) where F is a covariant functor

F:V —*V'

and k is a natural transformation

k: K-^K'F

from K to the composite functor K'F: 1)—>Z, i.e. for every map v. Fi—>F2G°U

commutativity holds in the diagram
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kVi
KVi-> K'FVi

Kv K'Fv

kVi
KVi-► K'FVi

Now let

(F',k'):(V, K')-+(V",K")

be another map in Z,i- Then for every map v: Vi—>V2EV commutativity also

holds in the diagram

kVi                 k'FVi
KVi-> K'FVi-> K"F'FVi

Kv K'Fv K"F'Fv

kV2                 k'FVi
KV2-> K'FV2-> K"F'FV2

and composition in Za is defined by

(F', k')o(F, k) = (F'F, k'Fok).

It follows immediately from the above diagram that the collection Z* so

defined is a category. That Zd satisfies condition 2.1 follows from the fact

that only proper categories 1) are used.

The effect of fixing the proper caregory V in the object (V, K) is to restrict

Z<j to the subcategory Zk.

Let 0 be an arbitrary but fixed category which contains only one object

and its identity map. Let

Ed, o: Zo —> Zd

be the inclusion functor. Then we define an embedding functor

Ed: Z —► Zd

as the composite functor Ed = Ed,oEo. Thus EdA = (0, E0A) lor every object

AEZ.
For every proper category V denote by

Ov:V->e

the only such functor (which is both covariant and contravariant).

The following lemma relates the definition of direct limits with the em-

bedding functor Ed: Z—>Z,*.

Lemma 9.3. Let A EZ be an object and let k: K—>EvAEZv be a map. Then

A = limA K if and only if for every object P£Z and every map (Oy, k'): (V, K)
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—>EdB E Zd there exists a unique map f: A -+B E Z such that commutativity holds

in the diagram

(Ov, k)
(V, K)-——->EdA

(9.3a) \\(G\,£')     Erf

^EdB

Proof. It is easily verified that Erf= (O0, E0f) and (E0f)Ov = EYf. In view
of the definition of composition in Zd commutativity in (9.3a) is equivalent

with the condition

Ov = OvOo,

k' = (Eof)OvO k = Evfok.

The first half of this condition is an identity while the second part expresses

exactly the condition of Definition 7.1. This proves the lemma.

Theorem 9.4. Let L: Z,;—>Z be a covariant functor, let a: L(Zd)~\Ed(Z)

and let k: E(Zd)—>EdL(Zd) be the natural transformation induced by a. Then for

every object (V, K)EZd,

L(V, K) lim, K

where k is given by (Ov, k) =k(V, K).

Theorem 9.5. Let for every object (V, K)EZd be given an object L(V, K)EZ

and a map k(V, K): (V, K)-+EdL(V, K)EZd such that L(V, K)=\imkK

where k is defined by (Ov, k) =k(V, K), then

(i) the function L (defined only for objects of Zd) may be extended uniquely

to a functor L: Z,*—>Z such that the function k becomes a natural transformation

K:E(Zd)->EdL(Zd),

(ii) there exists a natural equivalence a: L(Zd)-\Ed(Z) such that n is the

natural transformation induced by a. In view of Lemma 6.2 a is unique.

The proofs of these theorems are similar to those of Theorems 7.5 and

7.6; Lemma 9.3 is used instead of Definition 7.1.

The following theorem is analogous to Theorem 7.8. A remark similar to

Remark 7.9 applies.

Theorem 9.6. A category Z has direct limits if and only if the functor

Ed: Z—>Z^ has a left adjoint.

If a category Z has direct limits, then we shall denote by limd: Zd—>Z an

arbitrary but fixed left adjoint of the functor Ed: Z—>Zd, by ad an arbitrary
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but fixed natural equivalence ad: lim<;-IE,j and by A<j the natural transforma-

tion induced by ad.

We shall now state the corresponding (dual) result of Theorem 9.6 for

inverse limits.

Definition 9.1 *. A category X is said to have inverse limits if it is "O-inverse

for every proper category *U.

Examples 9.2*. Examples of categories which have inverse limits are

(a) the category 911 of sets,

(b) the category g of abelian groups and

(c) the category a of topological spaces.

Let X{=(Xd*)*. Consider the functor Ed: 9C*->9Cd* and let Ei = Ed*, i.e.

£*: 9C-> Xi

is the dual embedding functor.

Theorem 9.6*. A category X has inverse limits if and only if the functor

E{: 9C—>9C* has a right adjoint.

Chapter III. Existence theorems

10. Subdivision of a category. With a proper category "0 we may associate

a linear graph V with oriented 1-simplices, of which the vertices are in one-to-

one correspondence with the objects of V and of which the 1-simplices are

in one-to-one correspondence with the maps of V which are not an identity;

each 1-simplex is oriented from "the vertex of the domain" to "the vertex of

the range" of the corresponding map of *U. The subdivision of V is a linear

graph FA defines as follows. The vertices of FA are the vertices of F and the

centers of the 1-simplices of V. The 1-simplices of FA are the halves of the 1-

simplices of V, each hall being oriented from the center of the original 1-sim-

plex. The subdivision of the category *U then is a category for which FA is

the associated linear graph.

We shall now give an exact definition.

Definition 10.1. Let "Ubea proper category. By the subdivision of 13 we

mean a category *UA defined as follows. The objects of *UA are in one-to-one

correspondence with the maps of V; the object corresponding to a map vE°0

will be denoted by vA. Furthermore "UA contains for every map v: V\—>ViE°0

(i) the identity map i: vA—>vA;

(ii) a map v': vA—*ivA;

(iii) a map i»v: vA—h'k,a,

only subject to the condition that for every object F£1)

iv' = iv' — i- ivA —* ivA-

The category VA contains no other maps than these. Composition in "UA need

not be defined as no two nonidentity maps can be composed. Clearly VA is

also proper.
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As the orientation of the 1-simplices of the linear graph FA is independent

of the orientation of the 1-simplices of F it follows that the categories 13 and

13* have isomorphic subdivisions. This isomorphism is given by the corre-

spondence

7)A j=i jj*A

v' <=± V*"

VX <=> V*'

for every map i>£13. The categories 13A and 13*A will be identified under this

isomorphism.

Example 10.2. Let g be the category of abelian groups and let the functor

Horn: g, g—>g be as in Example 5.2b. Let 13 be a category consisting of two

objects Fi and F2 and three maps ivx, iv2 and v: Fi—»F2. Let A, B: 13—>g be

two covariant functors. Consider the set H(A, B) where A and B are con-

sidered as objects of the category g^. An element sEH(A, B) is a pair of maps

sF,£Hom (A Vit BV{) (i=l, 2) such that commutativity holds in the dia-

gram

Av
AVi-> AVi

sVi sVi

Bv
BVi-> BV2

For every two elements s, tEH(A, B) their sum is defined by

(s + l)Vi = sVi + tVi i-1,2.

This addition converts the set H(A, B) into an abelian group G.

In this definition of the object GEQ use was made of the fact that the

functor Horn has its values in the category of abelian groups. Hence in its

present form this definition cannot be applied to functors which have their

values in another category. In order to overcome this difficulty we shall now

show how the object GE£ may be obtained using only the following two prop-

erties of the functor Horn

(i) the functor Horn is contravariant in the first variable and covariant

in the second and

(ii) the functor Horn has its values in a category which is 13A-inverse.

Clearly such a definition can be applied to other categories as well.

Consider the diagrams

v'                    v'
(10.2a) iv^ <-vA-► *V2A

and
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Horn (A Vi, Bv)                               Horn (Av, B Vt)
(10.2b)   Horn (A Vit IS Vs)-> Horn (AV,,B V2) <-Horn (A Vi, B Vt)

and let C: VA—>g be the contravariant functor which assigns to every object

or map of 10.2a the group or homomorphism of 10.2b straight underneath.

Now sEG if and only if

Bv o sVi = sVi o Av

or equivalently if and only if

Horn (AVi, Bv)sVi = Horn (Av, BV2)sV2.

It is readily verified that this exactly means that G is an inverse limit of the

object CEQW, where *W = VA. Hence G may be defined in terms of the functors

A, B and Horn and inverse limits only.

11. Lifted functors. Following [2] we shall now describe a procedure of

obtaining new functors from a given one.

Let F: 3C—>£ be a covariant functor and let V be a proper category. Then

the functor F induces a covariant functor

Fv'. Xv —> £y

called lifted. The definition of this lifted functor may be described by the

following pair of diagrams

(11.1a) Fi->Vi

F(Av)
F(AVi)-—->F(AVi)

(11.1b) F(aV1) F(aVi)

F(A'v)
F(A'Vi)->F(A'V2)

where v. Vi—^VtE'U and a: A —>A'EXv are maps. The meaning of these

diagrams is that for every object AEXv the object Pk^4 E£v is the covariant

functor Pk^4 : V—>£ which assigns (for every map v: Vi—>V2EV) to the ob-

jects and maps of (11.1a) the corresponding objects and maps in the first row

of (11.1b) and that for every map a: A—>A'EKv the map FvaE£v is the

natural transformation which assigns to the objects of (11.1a) the correspond-

ing "vertical maps" of (11.1b).

Replacing V by its dual we obtain a lifted functor

Fv: 9iv -» £v.

Similarly for a contravariant functor F: X—>£ the contravariant lifted

functors
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Fr: Xy -> £v,

Fv: 3Cr->£7

may be obtained.

By the argument used in §4 this may be generalized to functors involving

additional variables. The lifted functors then involve the same extra variables

with the same variance. For instance a functor T: y, Z—>9C contravariant in

■y and covariant in Z induces a lifted functor

TY:yY, Z^>XV

contravariant in yv and covariant in Z, which is defined by the diagrams

(11.2a) Vi->Vi

T(Lv, Z)
T(LVh Z) < T(LVi, Z)

(11.2b) \t(IVi,z) \T(lVi,z)

T(L'v, Z')
T(L'Vh Z') ^--- T(L'V2, Z')

where v: Fi—>F2£13, I: L'^LE^v and z: Z—>Z'EZ are maps.

Notational convention 11.3. A lifted functor will always have the same addi-

tional index in the same position as its range category. This will also apply to

the lifted functors defined below.

In the lifted functors defined above only one variable was lifted. These

functors will be referred to as lifted in one variable.

For a functor in two variables we shall now define functors which are

lifted in two variables simultaneously. Use will be made of the notion of sub-

division of a category.

Let S: X, y—>Z be a covariant functor, let 13 be a proper category and

let W = 13A. Then a (covariant) lifted functor

sw: xv,yv-+zw

is defined by the diagrams

v'                    v>
(11. 4a) iv,A <-z>A-> iv2A

S(Mv, LFi)                               S(MVi, Lv)
S(MVh LVi) <—^- S(MVi, LVi)-> S(MV2, LV2)

(11.4b)   I S(mVu IVi) S(mV2, IVi) S(mV2, IV2)

S(M'v, L'Vi)                           S(M'V2, L'v)
S(M'VU L'V!) ^- S(M'V2, L'Vi) —-^S(M'V2, L'V2)
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where v: Fi—>F2E13, m: M-^M'EXV and I: L^L'Eyv are maps.

Replacing 13 by its dual we obtain (because W = 13A = T3*A) another co-

variant lifted functor

Sw: Xv,yv^Zw.

Similarly a functor T: y, Z—>9C, contravariant in *y and covariant in Z

induces lifted functors

Tw:yr, Z„-» Xw,

Tw:yr, ZY —> Xw

both contravariant in the first variable and covariant in the second.

Example 11.5. Let g be the category of abelian groups, let the functor

Horn: g, g—>g be as in Example 5.2b and let the proper category 13, the co-

variant functors A, B: 13—->g and the contravariant functor C: 13—>g be as

in Example 10.2. Let *W = 13A.Then it is readily verified that C = Uomw (A,B).

12. Existence theorems. Sufficient conditions will be given in order that

a functor lifted in one variable has a left or right adjoint. The theorems stated

are special cases of the corresponding theorems for the relative case which

will be obtained in §13.

Let a: S(X)-\T(Z). Then for every proper category 13 the lifted functor

TY: Zk—>9Ck has a left adjoint and the lifted functor Sy: 9Ck—>Zk has a right

adjoint, in fact we have:

Theorem 12.1. Let a: S(X)-\T(Z) and let 13 be a proper category. Then

there exists a natural equivalence

a': H(Sy(°Cy), Zy) -> H(Xv, Ty(Zv))

i.e.

a':Sv(Xv) H Tv(Zy).

Let X be a It-direct category and let 13 be a proper category. Let 3: (Xu)v

—*(Xv)u he the isomorphism which assigns to every object KE(Xu)v the

object 3KE(Xv)u given by ((SK) U) V= (KV) U lor every object [/Gil and

FG13. Let Eu: 9C—>9Cr/ be the embedding functor used in the definition of

direct limit. Compose the functor $ with the lifted functor (Ev)v- Then it is

readily verified that the composite functor d(Ev)v: Xv—*(Xv)u is also such

an embedding functor. Hence application of the Theorems 7.8 and 12.1

yields

Corollary 12.2. Let X be a category and let 11 and 13 be proper categories.

If X is "Mi-direct, then so is Xv.

Theorem 12.1 may be generalized to functors in two variables as follows.

Theorem 12.3. Let a: S(X, y)~\T(y, Z) and let V be a proper category.

Then there exists a natural equivalence
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a': H(Sr(Xr, y), Zv) -* H(Xr, Tv(y, Zr))

i.e. a': SV(XV, y)~^Tv(y, Zv).

Let a:S(X, y)~\T(y, Z). Then in general the functor Tr: yv, Z->9CV,

lifted in the variable *y has no left adjoint. This is however the case if the

category Z is 1)A-direct. In fact we have

Theorem 12.4. Let a: S(X, y) -\ T(y, Z), let 13 be a proper category and let

W = 13A. If the category Z is "W'-direct, then there exists a natural equivalence

ao: H(\imw SW(XV, yv), Z) -> H(XV, Tv(yv, Z))

i.e. a0:limwSw(Xv, yv)-\Tv(yv, Z).

And by duality

Theorem 12.4*. Let a: S(X, y)\-T(y, Z), let 13 be a proper category and

let W = 13A. If the category X is ^-inverse, then there exists a natural equivalence

a°: H(SY(X, yv), Zv) -> H(X, lim"' Tw(yv, Zv))

i.e. a0: SV(X, ^Hlim^ Tw(yv, Zr).

The Theorems 12.1, 12.3 and 12.4 follow immediately from the analogous

theorems for the relative case (13.4, 13.5 and 13.8) by putting

£ = 3TC,

F = E: 3TC —> 3H, the identity functor,

Q = H: X, 9C->3TC,

R = H: Z, Z->3TL

13. The relative case. We shall now extend the existence theorems of §12

to the relative case.

Definition 13.1. Let W be a proper category. A covariant functor

F: £—>3l will be called ^-inverse if

(i)   £ is W-inverse;

(ii)   31 is W-inverse;

(iii)  F commutes with inverse limits, i.e. there exists a natural equivalence

X: F lim"' (£w) -+ lim^ Fw(£w)

such that commutativity holds in the diagram

pwxw
FWEW lim"' (£w)-> Fw(£w)

i /

EWF lim w(£w)        /
/\WFW

Ewx    /

Ew liir^ Fw(£w)
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Examples 13.2. Examples of functors which are "W-inverse for every

proper category 'W are

(a) the identity functor E: 3TC->3Tl,

(b) the functor F: g—»3TC (see Example 5.2b) which assigns to every

abelian group its underlying set, and

(c) the functor F: 6L—>9TC (see Example 5.2c) which assigns to every

topological space its underlying set.

Lemma 13.3. Let Q: X, X—>£ be a hom-functor rel. F, let V be a proper

category and let W = 13A. If the functor F: £—»9TC is °W-inverse, then there exists

a natural equivalence

y': H(XV, Xv) -» F lim* Qw(Xr, Xv)

i.e. limwQw: Xv, Xy—>£ is also a hom-functor rel. F.

Theorem 13.4. Let 8: S(X) H P(Z) rel. F, let V be a proper category and let

W = 13A. If the functor F: £—>9TC is VP-inverse, then there exists a natural equiva-

1/671CC

8': lim* Rw(Sv(Xv), Zv) -»lim* QW(XY, TV(ZV))

i.e., in view of Lemma 13.3, 8': Sv(Xv) H Pk(Zk) rel. F.

Theorem 13.5. Let 8: S(X, y)~\T(y, Z) rel. F, let V be a proper category

and let V? = 13A. If the functor F: £—»9TC is VP-inverse, then there exists a natural

equivalence

8': lim* P*(Sk(9Ck, y), Zk) -> lim* QW(XV, Tv(y, Zv))

i.e., in view of Lemma 13.3, 8''■ SV(XV, y) H Tv(y, Zk) rel. F.

Definition 13.6. A covariant functor F: £—»3t will be called true if

"Fl is an equivalence" implies "/ is an equivalence."

Examples 13.7. Examples of a true functor are:

(a) the identity functor E: 3TC^3TC;

(b) the functor F: g—>37l (see Example 5.2b) which assigns to every

abelian group its underlying set.

The functor F: a—>3TC (see Example 5.2c) which assigns to every topo-

logical space its underlying set is not true.

Theorem 13.8. Let 8: S(X, y)-\T(y, Z) rel. F, let V be a proper category

and let W = 13A. If the functor F: £—>3H is true and W-intverse and the category

Z is *W-direct, then there exists a natural equivalence

8o: R(hmw Sw(Xv, yr), Z) -> lim* QW(XV, Tv(yv, Z)),

i.e. 80: limw SW(XV, yv)^Tv(yv, Z) rel. F.

Theorem 13.8*. Let /3: S(X, y)-\T(y, Z) rel. F, let V be a proper category

and let V? = 13A. If the functor F: £—>3TC is true and ^-inverse and the category
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X is ^-inverse, then there exists a natural equivalence

ft0: lim"' Rw(Sv, (X, yr), Zv) -> Q(X, lim^ 7^(<yy, Zv))

i.e. ft0: SV(X, yv)-\Yimw Tw(yv, Zv) rel. F.

Example 13.9. Let the functors Horn: g, g->g, ®: g, g->g and F: g-^Edc

and the natural equivalence

ft: Horn (g ® g, g) -» Horn (g, Horn (g, g))

be as in Example 5.7. Let F be a multiplicative system with unit element.

Each element vEV gives rise to a transformation v: F—>F defined by v(x)

= vx. Let 13 denote the proper category which has one object F and has the

transformations v as maps. Then gv(resp. g7) is the category of abelian groups

with F as left (resp. right) operators. Let W = 13A, then the category g is

both W-direct and "W-inverse and the functor F is W-inverse. The functor F

is also true. Hence we may apply Theorems 13.5, 13.8 and 13.8*.

It is readily verified with comparison with the usual definitions (see [l])

that

(i) the functor ®v: £v, g—>£v assigns to every group with operators

AEQr and every group -BE9 their tensor product A ®B with operators in-

duced by those of A,

(ii) the functor <8>y: g, 9v—»gr assigns to every group AE$ and every

group with operators BEQv their tensor product A®B with operators in-

duced by those of B,

(iii) the functor \imw ®w:^v, %v~*9 assigns to every right-F-group

^4G9V and every left-F-group BEQv their tensor product A ®vB over F,

(iv) the functor Homy: g, gy—>gy assigns to every group A £g and group

with operators -BEgy the group Horn (A, B) with operators induced by those

of B,
(v) the functor Horn7: Qv, S->SV assigns to every group with operators

AE£v and every group BE£ the group Horn (A, B) with operators induced

by those of A,

(vi) the functor limTr Horn"7: gy, gy—»g assigns to every two groups with

operators A, BEQv the group Homy (A, B) of equivariant homomorphisms

A^>B, and

(vii) the functor lim17 Horn"': Qv, gr—>g assigns to every two groups with

operators A, BEQV the group Homy (A, B) of equivariant homomorphisms

A^B.
Application of Theorems 13.5, 13.8 and 13.8* thus yields that there exist

natural equivalences

ft': Horn y(£y 9 S, 9v) -» Horn v(%v, Horn (g, gy)),

fto: Horn (<3V ®v £v, 9) -» Homy (£v, Horn (gy, g)),

ft0: Homy (g <8> £v, $v) -* Horn (g, Homy (£v, $v)),
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i.e.

8'- Qv 8 g H Horn (g, Qr) rel. P.,

0o: gv ®f gv H Horn (gK, g) rel. P.,

i8°: g 8 gr H Homy (gF, gK) rel. P.

Proof of Lemma 13.3. We first consider the case where £=3TC, F

= E: 3TC-»9TC, the identity functor and Q = H: X, 9C->311. Let X, X'GSCk be

objects. An element f EH(K, K') is a function which assigns to every object

VEV a mapfVEH(KV, K'V) such that for every map v. Fi->F2G13 com-

mutativity holds in the diagram

Kv
KVi-> KV2

fVi fV2

K'v
K'V i->K'V2

or equivalently

H(Kv, K'V2)fV2 = H(KVU K'v)fVi.

Hence/ assigns to every map v: Vi—>F2G 13 an element

(y"f)vA = H(Kv, K'V2)fV2 E H(KVh K'V2)

such that

H(Kv, K'Vt)(y"f)iy, = H(KVU K'v)(y"f)iyl = (y"f)v*

i.e./determines an element 7"/Glim* HW(K, K'). Straightforward computa-

tion now yields that the function

y": H(XV, Xv) -» lim* Hw(Xr, Xv)

so defined in a natural equivalence.

Because Q is a hom-functor rel. F there exists a natural equivalence.

7: H(X, X) ->FQ(X, X).

This induces a natural equivalence

7*: Hw(Xr, Xv) -> FwQw(Xv, Xv)

of the lifted functors, given by yw(K, K')vA =y(KVu K'V2) for every object

K, K'EXv and every map v: Vi—»F2G13. Composition of the natural equiva-

lence x (P is W-inverse) with the lifted functor QW(XV, Xv) yields a natural

equivalence

XQW: F lim* QW(XV, Xv) -> lim* FWQW(XV, Xv).

The composite natural equivalence
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y> = (xQw)-1 o lim17 yw o y": H(XV, Xv) -» F lim17 QW(XV, Xv)

then clearly is the desired one.

Proof of Theorem 13.4. It is readily verified that the natural equivalence

ft:R(S(X), Z)->G(9C, T(Z))

induces a natural equivalence

ftw: Rw(Sv(Xv), ZV) -> QW(XV, TV(ZV))

given by ftw(K, L)vA =ft(KVu LV2) ior every object KEXV, and LEZV and

every map v: Fi—»F2E:13. Composition of ftw with the functor lim'7: £w—»£

then yields the desired natural equivalence

ft' = lim17 ftw: lim17 ^(^(ECy), Zy) -^ lim17 ^(Ky, Ty(Zy)).

The proof of Theorem 13.5 is similar.

For the proof of Theorem 13.8 we need the following lemma.

Lemma 13.10. Let R: Z, Z—>£ be a hom-functor rel. F. and let V? be a

proper category. If the category Z is V?-direct and the functor F: £—>3TC is true

and V?-inverse, then there exists a natural equivalence

<pR: R(\imw (ZW), Z) -► lim17 RW(ZW, Z).

Proof of Theorem 13.8. It is readily verified that the natural equivalence

ft: R(S(x, y), z) -* Q(x, T(y, z))

induces a natural equivalence

ftw: Rw(Sw(Xv, yv), z) -» QW(XV, TY(yv, z))

given by ftw(K, L, Z)vA=ft(KV2, LVU Z) for every object KEXV, LEyv
and ZEZ and every map v: Vi—>F2E13. Then composition of the functor

lim17: £17—>£ with ftw and of the functor 5iy(9C7, yv) with <pR (see Lemma

13.10) yields natural equivalences

lim'7/^': lim17 RW(SW(XV, yv), Z) -> lim17 QW(XV, Tv(yv, Z)),

4>RSW: R(hmw SW(XV, yv), Z) -* lim17 RW(S*(XV, yv), Z))

and the theorem follows by putting

fto = lim17 ftw o 4>RSW.

Proof of Lemma 13.10. We first consider the case where £ = 3TC, F

= £: 3TC—>3TC, the identity functor and R=H: Z, Z—»£. Composition of the

natural transformation

\w- E(ZW) -* Ew Hm^ (Zw)

with the functor Hw: Zw, Z-^>£w yields a natural transformation
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Ew\w: HW(EW limiK (Zw), Z) -* HW(ZW, Z).

Denote by

d>H: H(\imw (Zw), Z) -^ lim* HW(ZW, Z)

the unique natural transformation such that commutativity holds in the dia-

gram

EwH(\imw (Zw), Z)-> HW(EW hmw (Zw), Z)

(13.11) IE?fa v   „ IHW\W
XWHW

P* lim* HW(ZW, Z)-> HW(ZW, Z)

where i is the identity. It then may be verified by straightforward computa-

tion that <j>H is a natural equivalence.

Replacing everywhere H by R we obtain a unique natural transformation

4>B: R(limw (Zw), Z) -* lim* RW(ZW, Z)

such that commutativity holds in the diagram obtained from (13.11) by

replacing H by R. Because R is a hom-functor rel. F there exists a natural

equivalence

8: H(Z, Z) ->FR(Z, Z).

This induces a natural equivalence

5*: HW(ZW, Z) -> FWRW(ZW, Z)

given by 8W(K, Z)vA = 8(KvA, Z) for every object XGZ^, ZGZ and z>AGW.

Now consider Figure I, in which i denotes the identity. It follows from

the definitions of (J>h and 4>r that commutativity holds in the lower and upper

rectangles, from the definition of 5* that commutativity holds in the big

rectangle and in (B). Because P is W-inverse commutativity also holds in (A)

and consequently

\WHW o EW4>H = A*ff* o (P* lim* 8*)"1 o EWXRW o EwF<pR o Ewo \\mw.

Hence in view of the uniqueness of <j>h

4>h = (lim* S*)-1 o XRW oFd>Ro8 lim^.

As 5, % and <j>n are natural equivalences it follows that F<pR is so. Because P

is true this implies that <pR is also a natural equivalence. This completes the

proof.

14. The functor H. Let Z be a category. It will be shown that a sufficient

condition in order that the functor H: Z, Z—>3TC has a left adjoint is that the

category Z has direct limits. It then follows from Theorem 12.3 that, for every

proper category 13, the lifted functor Hv: Zv, Z—>9TCy also has a left adjoint.
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\ i i y
1               EwFd>R /
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Ew<f>H                                            XWHW
EwH(\imw (ZW), Z)->   Ew lim17 HW(ZW, Z)-> HW(ZW, Z)

t

HW(EW limw (Zw), Z) -1

Figure I

The converse also holds, i.e. if for every property category 13 the lifted functor

Hv: Zv, Z-^'SK has a left adjoint, then Z has direct limits. Several known

functors involving c.s.s. complexes may be obtained from Hv(Zv, Z) for

suitable categories 13 and Z or from a left adjoint of such a functor. These

applications will be dealt with in [5].

Let 13 be a proper category. With each object CE9TC7 we associate a

proper category e, defined as follows. The objects of 6 are the pairs (V, c)

where FE13 is an object and cECV. The maps of Q are the triples (v, cu c2)

where v: Vi—>F2£13 is a map, CiECVi, C2ECV2 and (Cti)ci = c2; the domain

of (v, Ci, c2) is (Fi, ci) and the range is (F2, c2). If (v', c2, c3): (F2, c2)—>(F3, c3)

is another map, then composition is defined by

(v', c2, c3) o (v, Ci, Ci)  =  (»' O V, Ci, Ci).

A map a: C—>Z?E3TC7 induces a covariant functor a0: C—>3D defined by

a°(V, c) = (F, (aV)c),

a°(v, a, ci) = (v, (aFi)ci, (aV2)c2)

for every object (F, c) and map (v, cu c2): (Fi, Ci)—>(F2, c2) in &.

For every object CE3TC7 define a covariant functor C°: Q^>V by restric-

tion to the first coordinate, i.e.
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C(F, c) = F,        C«(v, ci, c2) = v

for every object (V, c) and map (v, c\, c2) in 6. Clearly for each map a: C—*D

G3ftF

P°a° = C°.

Now define a covariant functor

®d:'Mv, Zv-^Zd

as follows; for each object CG9TCF and KEZv

c ®dK = (e, KC°)

where KC°: C—>Z denotes the composite functor; for every map a: C—>P>G3TCF

and k:K-^K'EZv

a ®d k = (a0, kC°)

where kC°: KCa-J>K'D°a° is the natural transformation from the composite

functor KC°: C-*Z to the composite functor K'D°a0 = K'C°: C->Z.

Theorem 14.1. A category Z has direct limits if and only if for every proper

category 13 there exists a natural equivalence

8: H(\imd (3Hy ®d Zv), Z) -+ H(MV, Hr(Zv, Z))

i.e.

8: limd (3EF ®dZv) H Hv(Zv. Z).

Combination of Theorem 14.1 with Theorem 12.4 yields

Corollary 14.2. Let Z have direct limits, let V be a proper category and let

"W = 13A. Then there exists a natural equivalence

a: limd (3TCy ®d Zv) -* hmw S^(3HF, Zk)

where S(3U, Z) =limi (<3K°®dZo) is a left adjoint of the functor H: Z, Z—>3H.

For the proof of Theorem 14.1 we need the following lemma.

Lemma 14.3. Let Z be a category and let V be a proper category. Then there

exists a natural equivalence

y: H(<3nv ®d Zv, Ed(Z)) -> H(VKV, IIV(ZV, Z)).

Proof of Theorem 14.1. Let Z have direct limits. Composition of the

natural equivalence ad: lim,*—I Ed with the functor ®d yields a natural equiv-

alence

ad ®d: H(\imd (3HF ®d Zr), Z) -* H(3KV ®d Zv, Ed(Z)).

Clearly the composite natural equivalence
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0 = 7 o ad®d: H(\imd (3TC7 ®d Zv), Z) -» #(9TC7, #7(Zy, Z))

then is the desired one.

Now suppose that for every proper category 13 a natural equivalence

ft: H(\imi (Mv ®d Zv), Z) -» £r(JH 7, HV(ZV, Z))

is given. Let PE9TC he a set consisting of one element p. Let X£Zy and ZEZ

be objects. An element fEH(EvP, Hr(K, Z)) then is a function which as-

signs to every object VE 13 a map/F: P^>H(KV, Z) subject to certain natu-

rality conditions. Denote by 8fEH(K, EVZ) the map defined by (8/) F= (fV)p

for every object VEV. It then is readily verified that the function

5: H(EVP, HV(ZV, Z)) -> #(Zy, EVZ)

so defined is a natural equivalence. Now composition of the natural equiva-

lence ft with 5 yields a natural equivalence

S o ft(EvP): H(\imd (ErP ®d Zv), Z) -» H(ZV, EVZ).

Hence Z is 13-direct. This completes the proof.

Proof of Lemma 14.3. Let CE3TC7, XEZy and ZEZ be objects. For every

map

(Oc,f): C ®d K = (S, KC°) -> £dZ = (0, E0Z)

in Zd define a map y(0c, /): C^IP(K, Z) in 3TC7 by

(y(Oc,f)V)c=f(V,c)

for every object (V, c)E&- It then may be verified by straightforward compu-

tation that the function y(Oc,f) so defined is an equivalence in 9TC7 and that

the function

y: H(<MY ®d Zv, Ed(Z)) -> #(3TC7, HY(ZV, Z))

so defined is a natural equivalence.
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