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BP Operations and Morava's Extraordinary K-Theories 

David Copeland Johnson and W. Stephen Wilson* 

Introduction 

In a series of papers [17-19] Morava uses an infinite sequence of extraordinary 
K-theories to give an elegant structure theorem for the complex cobordism of a 
finite complex. Much of Morava's theory is embedded in a rather sophisticated 
algebraic setting. In our attempt to understand his work, we have found more 
conventional algebraic topological proofs of many of his results. Also, our ap- 
proach has yielded new contributions to the general Morava program. We hope 
this paper will help make Morava's work more accessible and ease the transition 
between standard algebraic topology and Morava's exposition. 

Morava is forced by his algebraic setting to work throughout with complex 
cobordism, MU*().  We can work directly with Brown-Peterson homology where 
many of the phenomena we are studying are more transparent. BP denotes 
the Brown-Peterson spectrum at a fixed prime p [-1, 7, 21]. This spectrum 
gives a multiplicative homology theory, BP,( ) ,  with coefficient ring BP, = 
�9 (p~ Iv 1 . . . .  , v . . . . .  7. (Zcp) is the ring of integers localized at the prime p. The di- 
mension of the polynomial generator v, is 2(p"-  1).) The operation ring for BP, 
BP*(BP), operates on BP,=BP,(S~ One of the first benefits of our approach 
was an easy direct proof of the invariant prime ideal theorem. 

(1.10) Corollary (Landweber [16], Morava [17, 18]). I f  I is a prime ideal of BP, 
which is invariant under the action of BP*(BP), then I is one of the following ideals: 
(o), (p), (p,  v l ) ,  . . . ,  (p, v l ,  . . . ,  v , ) , . . . ,  (p  . . . .  , v , ,  . . . .  ). 

Using the Baas-Sullivan theory of manifolds with singularities, we can construct 
homology theories P(n), ( ) with coefficient modules P(n), =-BP,/(p, v 1 .... , v,_ 1)~- 
lFp[v., v,+ 1 . . . .  ] for which we can compute and use the operations. These homol- 
ogy theories are interlocked in the following exact triangle where f ,  acts as 
multiplication by v,. 

~P(n)*(X) I"-~P(n)*(X) g" ~P(n+ 

P(0) , ( )  is thus Brown-Peterson homology and P(1) , ( )  is Brown-Peterson 
homology with mod p coefficients. The above exact triangle can be used to study 
those classes of P(n),(X) which are annihilated by multiples of v,. These classes 
constitute the T, torsion part of P(n),(X) where T, is the multiplicative set 
{1, v,, v, a, .,.}. If we localize with respect to T., we obtain a periodic homology 

* Partially supported by the N.S.F. 
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theory B(n),( )=  T,-1P(n),() .  B(n), = lFp[v21, v,, v,+ 1 . . . .  ]. We prove: 

(3.1) Theorem. I f  X is a finite complex, then B(n),(X) is a free B(n), module. 

N.B. Morava's Theorem (5.1)of [17] can be roughly translated as saying that 
B(n),(X) is projective over B(n),. 

Morava studies extraordinary K-theories K(n),( ) with K(n), ~- IFp[v21, v,]. 
(Thus K(n),( ) is periodic with period 2(p"-  1). Every non-zero element of K(n), 
is invertible.) Let k(n),( ) be the connective homology theory associated to 
K(n) , ( ) .  (k(n), = lFp [v,].) Actually, we construct k(n),( ) using the Baas-Sullivan 
technique and then we define K(n),( )=T, -~k(n) , ( ) .  From this construction, 
there are natural Thorn homomorphisms: P(n),( )--,k(n),( ) - - ,H,(  ; lFp). By 
applying the functor T,- 1 - to the first morphism, we have a natural homomorphism 
B(n),( )--* K(n),( ). A second part of our Theorem (3.1) says that this induces a 
natural isomorphism: 

B (n), (X) OB(,), K (n), ~-- K (n), (X). 

In w 4, we develop a spectral sequence of the general Atiyah-Hirzebruch-Dold 
type relating k(n),(X) to P(n),(X). 

(4,8) Theorem. There is a natural spectral sequence for finite complexes 

E2,. , (X)  = k(n),(X)@ IFp [v,+ 1, v,+ 2, . .-]  ~ P(n),(X). 

The spectral sequence collapses if and only if P(n),(X)-*k(n),(X) is epic. Its dif- 
ferentials are T~ torsion valued. 

As corollary to this theorem, we prove (4.16) that k ( n ) , ( X ) ~ H , ( X ;  IFp) 
epic implies that k(n + 1 ) , ( X ) ~  H , ( X ;  IFp) is also epic (i.e. if the Atiyah-Hirze- 
bruch spectral sequence for k(n), (X) collapses then so does the one for k(n + 1), (X)). 
H*(k(n); IFp)~-A/AQ,, where A is the rood p Steenrod algebra. (This implies that 
if all the higher order cohomology operations arising from (Q,)2 = 0 vanish, then 
so do all those arising from (Q,+02-~O. We shall defer our discussion of this 
and related matters to a future note written jointly with F.P. Peterson.) 

Theorems (3.1) and (4.8) depend on our knowledge of P(n) operations. Recall 
that BP*(BP) is isomorphic to BP*QR,  where R is a connected coalgebra free 
over Z(p). The basis elements of R, r~, are indexed over exponent sequences 
E=(e 1, e 2 . . . .  ). 

(2.12) Lemma (Morava). P(n)*(P(n))~-P(n)*~R| ..., 0.,-1] as left P(n)* 
modules. 

Nearly all of the results in the paper depend on the technical ability to handle 
operations modulo the ideal (p, v t . . . .  , Vn_l). Our computations in w i are motivated 
by and improve on earlier work by Stong, Smith and Hansen [25, 23, 11]. The 
following innocuous looking lemma is the distilled version of our main technical 
result. 

(1.9) Lemma. Let n>0.  I f  O4:yeBP,\(p,  v 1 .. . .  , v,_l), then there is an exponent 
sequence F =(p" e,+ l, p" e,+ 2 . . . .  ) such that rF(y)=u(v f f  modulo (p, v 1, ..., v,_ O. 
Here u is a unit of Z(p) and t = en+ 1 + e~+ 2 + ' " .  (The exponent sequence F depends 
on y in an easily computed fashion.) 
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We should point out that the real richness of Morava's approach comes from 
his computation of the K(n) operations in important cases. This computation 
seems to require his algebraic setting and is something which we have yet to 
handle from our point of view. 

The organization of the paper is as follows: 
w 1. BP Operations Modulo (p, vl, ..., v,_ 0. 

w 2. P(n) and its Operations. 

w 3. The Relationship between B(n),(X) and K(n),(X). 
w 4. The Relationship between P(n),(X) and k(n),(X). 
w 5. An Expository Summary. 
Appendix: A Proof of (2.4). 

1. BP Operations Modulo (p, v 1, . . . ,  v._1) 

Let BP be the Brown-Peterson spectrum for the fixed prime p. It is a ring 
spectrum which represents the homology theory BP,( ) constructed in [1, 7, 21]. 
H*(BP; IFp)-~A/(Qo ) where A is the mod p Steenrod algebra and (Qo) is the two- 
sided ideal generated by the Bockstein. H,(BP; 7@))_~ Z~p)Imp, ..., m s, ...] where 
the generator m s has degree 2(p s -  1). The Hurewicz homomorphism h: BP,= 
~,(BP)-~H,(BP, Zcp)) is a monomorphism. We identify BP, with the subring 
h(BP,) of H,(BP, TZ~p)). B P , ' ~ 7 Z ( p ) [ v  1 . . . . .  vs, ...] where the generators v s are 
defined inductively by (1.1). 

s--1 

(1.1) h(vs)=pm s -  ~ mjh(vs_j) pJ [12]. 
j = l  

(1.2) pSmseh(BP,), but pS-lmsq~h(BP,). 

In H,(BP; Ztp)), pth(vs), but p2,t/h(vs). 
Let E=(et, ..., e,)=(el, ..., e,, O, 0 . . . .  ) be an exponent sequence of non- 

negative integers with all but finitely many are zero. We define 

IEI = ~, 2(p i -  1) el. 
/=1 

Thus if we define vE=v~ 1 ..... v e", IEI is the degree of v ~. 0=(0,0  . . . .  ) and v ~  
We add exponent sequences termwise and if m is a positive integer mE represents 
the m-fold sum of E's. A s represents the exponent sequence E=(el, e2,...) with 
e i = 0, i~e s, and e s = 1. There is a connected free 2g(p) coalgebra of BP operations, 
RcBP*(BP). A 7~p) basis of R is given by operations r E of degree Igl. ro is the 
identity operation. 

(1.3) The coproduct of R is given by 

~(r~) = Y' rF| G 1-21, 29-1. 
F+G=E 
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(1.4) The action of R on the generators of H , ( B P ;  7Z(p)) is 

(ms- i if E=p~-iAi_ i [21, 29]. r~ (ms) 
(0 if E=l=pS Ai 

(1.5) The Hurewicz homomorphism h: BP~---~H,(BP; Z(p)) has the form: 

h(y)= ~ t~rE(y) for some elements t~eH,(BP;Z(p))  [1]. 
lel=s 

BP operations commute with the Hurewicz homomorphism; so (1.1), (1.3) and 
(1.4) allow one to effectively compute rF(VE). R is not a subalgebra of BP*(BP); 
but we do have BP*(BP)~-BP* Q R [21, 29]. (Note that as an element of BP * ~  - 
BP_,, v E has degree -[El .  ) 

(1.6) Lemma. (a) I f  [El>IN[, then rr(v~)=0. 

(b) I f  If[ =]E[, then rv(vE)-0 modulo (p). 

Proof  In (a), rv(v ~) has negative degree and thus is zero. Now suppose If[ = 
IEI =m. If the composition 

S m VE ~ BP rp ~ SmBP 

were essential modulo p, then H*(r e o rE; lFp)$0. But H~ IFv)-0 for dimen- 
sional reasons. As H*(BP;  lFp) is a cyclic A-module, this implies that 
H*(v~; ~)-0.  [] 

The following lemma is a strong version of propositions due to Stong, Smith, 
and Hansen [25, 23, 11]. It does not hold in the n = 0  case [-24]. 

(1.7) Lemma. Let I ,=(p ,  vl, ..., v,_a), n>0.  

(a) I f  [El >2(pS-p"), then re(vs)-O modulo I~. 
(b) I f [E[=2(p2 -p~) ,  then 

v. modulo I n E = f  As - ,  
rE(vs)- 0 modulo I ,  E~=p"As_ .. 

Proof  If Ivs[>[El>lpnAs_,[, then O<[rE(v~)[<[v,[ and re(vs)s(v 1 . . . .  , v ,_ l )c_I  . 
for dimensional reasons. If [vs[ < [El, then rE(v,)~(p)~_I . by (1.6). Thus (a) is estab- 
lished. 

If [El = 2 ( f - p " ) ,  r~(vs) -av ,  modulo (va, ..., v,_l) for some aeZ(p), again for 
dimensional reasons. By (1.2) and (1.1), 

h(v 1, ..., v ,_O~-(pm 1 . . . . .  pro,_1) 

and 
h(v,)=-pm, modulo (pPm 1 . . . . .  pPm,_O~_(p2). 

So 
r~(v s) ~ I, .e~ h(rE(v ~) ) (~ (P2)'e~ P rE(ms) (s (P2)'e* E = pn As_ ~ 

(since [E[ = 2(pS _ p.)). When E = p" A . . . .  p r~(ms) = pm, implying r E(vs)- v, modulo 
I, as required. [] 
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We need a shift-like operator to act on exponent sequences. If E = (el, e2, . . . ) ,  
we define a E = ( p e z , p e  3 . . . .  ) and a " E = a ( a " - l E ) = ( p " e , + l , P " e , + 2  . . . .  ) , n>0 .  
We interpret Lemma (1.7) as saying: if IF] __> ]a"As[, then rv(v zs)-- V, or 0 modulo I, 
as to whether F = a " A s  or not. Observe that if [F]> IE[, E = E I + E  2, F = F  1 +F2, 
and if E # F, then I F~l > [E~I with F~ # E~ holds for i equal to at least one of the num- 
bers 1 and 2. This observation and (1.3) then imply the following corollary to (1.7). 

(1.8) Corollary. Let  n>0.  Let  E and F be two exponent sequences such that 

(a) E=(0,  ..., 0, e,, e,+ l, . . . )and t = e , + e , + l + . . . .  

(b) IFI>I~"EI. 

Then 
rF(VE)-- 0" modulo I,  if F = a " E  

modulo I~ if F + an E . [] 

(1.9) Lemma. (a) Let  n>0.  I f  O # ye  BP~ and if yr vo, . . . ,  V,_l), then there is an 
exponent sequence E and a unit ueZ~v ) such that r~.E(y)=uvt, modulo I,  where 
t(2p n - 2 )  = s-[anE[.  

(b) I f  O# y~BP~, then there is an exponent sequence E with IEI =s  such that 
0 # r~(y) = u pt for some t > 0 and some unit u ~ Zcp ). 

Proof  Suppose y = ~ a v V V r  Vo, . . . ,vn_O,  av~Z~v), then there is an ex- 
ponent sequence E, IEl=s and E - ( 0 ,  . . . ,0,  en, en+l . . . .  ), such that aE is a unit 
of ~p). Of such sequences, we pick one with ]anEI maximal. By (1.8), r~~ = - 
aEr,.E(v~)--aEv*, modulo 1,. More generally: if 0 # y = ~  avv v, h(y)#O implies 
that there is an exponent sequence E, ]El=s, such that r~(y)~:O (1.5). But by 
(1.6) 0 # rE(y)~BP o c~ (p) ~-- Z~p) c~ (p). (b) then follows. [] 

Since (1.7), I n has been the BP. ideal, (p, v 1 . . . .  , vn_ 0. We define Io=(0) and 
loo =(p, vl . . . .  , vn_l, v . . . . .  ). Thus we have an ascending tower of BP. ideals: 

0 = I  o ~_I~ ~ I  2 ~ . . .  ~_I,~_I,+ 1 ~_ ... ~_Ioo. 

Obviously, each of these is prime. By (1.6)and the now familiar dimensional 
considerations, BP operations preserve each of these ideals. 

(1.10) Corollary. (Invariant Prime Ideal Theorem of Landweber [16] and Morava 
[17, 18].) I f  I ~_ BP. is a prime ideal which is invariant under the action of  BP* (BP), 
then 1= 1, for some n, n = O, 1, 2 , . . . ,  or ~ .  

Proof  Io~_I. Suppose 1,_ 1 _ I ,  n >  1. If I = I , _  a, good! If O # y ~ I \ I , _ i ,  then 
by (1.9) there is a BP operation r v such that rv(y)=-uvt,_l for some t > 0  and some 
unit u6Z~p). (v o = p). Since I is invariant, d,_ 1 ~I. Since I is prime, v,_ i ~1 and 
thus I,___ I. [] 

Observe that multiplication by v~, induces a homomorphism of BP*(BP) 
modules 

BP* --~ B P * / I . -  ~ ~ BP*/ I . .  

Lemma (1.9)shows that these are the only such BP*(BP) homomorphisms in the 
following sense. 
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(1.11) Corollary (Landweber [16]). 

]Up [/)n] --+ HomBp,(m,)(BP*, BP*/In) ~- Ext~ we)(BP*, BP*/In) 

is an isomorphism. [] 

Suppose n > 0  and s > 0  are integers. We may write s = a 2 ( p n - 1 ) + b  where 
a > 0 and 0 < b < 2(p n -  1). Let M(n, s) be the free Z(p) submodule of BP~ witl~" basis 
the elements v ~ with I EI=  s and E of form E = (0, ..., 0, en, en+ 1 . . . .  ). Any b-dimen- 
sional BP operation 0: BP--+ SbBp induces a Z(p)-homomorphism 

0#: M(n, s)--~ 7I(p) 

given by the following composition: 

O# : M(n, s)~BP~ o , Bp~_ b__~ (BP,/(v, . . . . .  "Un-l' /)n+l, ""))s-b 

(Z(p) [v.])~_ b ~ 7z~p). 

Note that M(1, s)= BP~. The n = 1 case of the following lemma is essentially one of 
Stong's approaches to the Stong Hattori Theorem [8]. 

(1.12) Lemma. Any Z(p) homomorphism h: M ( n , s ) ~ Z ( p )  can be realized by a 
b-dimensional BP operation 0 in that h =-0~. Furthermore, 0 has the form 

O = Z a~ vb,~ rp,e 
E 

where the sum is finite, a E e 7low and b E . 2 (pn _ l) + b = pn I E[. 

Proof of (1.12). Order the dimension s exponent sequences of form E =  
(0,.. . ,0, en, en+l,...): El, E z , . . . , E  u such that [a"Ell<[a"Ez[<...<[anEu[. By 
(1.8), r~.~(veJ)=O modulo I n if i> j  and rr modulo I n. So a basis for 
Homz,,,(M(n, s), Z(p))| is given by elements of form vb,~rv.E@l. (1.12)then 
follows from Nakayama's lemma. [] 

2. P(n) and its Operations 

We have seen that the only prime ideals of BP. which are invariant under the 
action of BP*(BP) are: Io=(0), I i=(p  ) . . . . .  I ,=(p, vl , . . . ,v ._a)  . . . . .  and I ~ =  
(p, vl, ..., v . . . . .  ). A natural extension of the classical idea of working with homology 
with modulo (p) coefficients would be to consider Brown-Peterson homology 
with I, coefficients. One can use the Sullivan-Baas technique of defining bordism 
theories with singularities [4, 5, 26] to construct homology theories P(n).() ,  
n=O, 1, 2 . . . . .  (and ~ )  which are represented bythe CWspectra P(n), n=0,  1, 2, ... 
and which have the following properties. 

(2.1) P(O)=BP, 7z,(P(n))=P(n),~-BP,/I,~-]Fp[v,,v,+x, ...], 0 < n <  ~ .  P ( ~ ) =  
HFp 
(2.2) P(n) is a left module spectrum over the ring spectrum BP. (There are 
pairings m,: BP/x P(n) -~ P(n) such that m, o (mo ̂  1) = m n o (1 ^ ran), etc.) 
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(2.3) P(n + 1) is related to P(n) by a stable cofibration. 

S2(P"-I)P(n) - - f "  ,P(n) g" ) P ( n + l )  h. ,S2p._Xp(n). 

The maps indicated are morphisms of BP module spectrums. The cofibration 
induces an exact triangle of (BP,-module) homology theories. 

~ P ( n ) , ( X )  f" ~,P(n),(X) ~" , P(n+ 1),(X)-- 

hrl 

f ,  acts as multiplication by v,. When X is a sphere, g, is onto, 

(2.4) For O<i<n,  viy=O for any element y~P(n),(X).  (This follows from a 
geometric result of Morava's [20]. A proof is sketched in the Appendix.) 

(2.5) Remarks. (a) It follows from (2.4), that P(n),(X)  is a module over 

lFpEv,, v,+ a . . . .  ] ~- P(n),.  

(b) By [6] or by similar techniques to those in [28], one can compute that 
H*(P(n); lFp) ~- A/A(Q,,  Q,+I, ...), 

(c) Suppose for the fixed prime p, stable complexes V(i), i = -  1, 0 . . . . .  n - 1  
exist such that BP,(V(i))~BP,/Ii+ 1. (The existence of such complexes has been 
studied by Smith [22, 23] and Toda [27].) Then P(n) is equivalent to BP/x V(n - 1). 
This assertion is proved inductively beginning with BP ^ V ( - 1 ) =  BP /~ S o ~-BP 
and using the fact that V(i) is constructed as the cofibre of a stable map 

S 2'-2 V ( i -  1) ~ V ( i -  1) 

which realizes multiplication by vi in B P , ( V ( i -  1)). 

(d) When the fixed prime p is 2, P(1)*() has no commutative admissible 
multiplication in the sense of Araki-Toda [2]. (See Corollary 4.2 of [15]). Thus 
in general, we cannot expect the P(n)'s to be nice ring spectra. 

Let T, = {1, vo, v 2 . . . .  } be the multiplicative set of non-negative powers of v., 
n > 0. As in [14], we may localize with respect to T,. We form the periodic homol- 
ogy theory e(n) ,  (X)= T~ -1 P(n), (X). Note that B(n), ~- lFp[v,, v21, v.+ l , v ,+ 2 . . . .  ]. 
T O = {1, p, p2 . . . .  } and B(0),(X)= To 1P(O) , (X)=BP, (X) |  (For mnemonic 
purposes, note that "B" is the union o f"P"  and an inverted "P".) 

Before proceeding to compute P(n) operations, let us use the Sullivan-Baas 
technique further. We kill the generators v,+l, v.+ 2 ... of P(n), (thus we are 
killing the generators, p, vl, ..., v,_ 1, v,+ 1, v.+ 2 . . . .  of BP,) to construct'the homol- 
ogy theory k(n),( ) represented by the BP-module spectrum k(n). k(n), ~-lFp [vJ. 

(2.6) Remarks. (a) The Sullivan-Baas method of constructing k(n) gives a BP- 
module morphism of spectra 2,: P(n) ~ k(n) such that the induced homomorphism 
2,: P(n), ~ k(n), sends the vi, i4~ n, to 0 and 20(v,)= v,. 

(b) Let ~b,: S2p"-2k(n)---~k(n) represent multiplication by v, and let 7,: 
k(n) - ,  HJFp be the resulting map to ~b,'s cofibre (which is computed to be an H)Fp) 
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we define # . =  y. o ~..: P(n)---)HIFp. We now have a commutative diagram of BP 
module spectra and BP-module spectra morphisms (2.7). 

S2p.-2p(n) y. ,P(n) g" ,P(n+l)  h. ,SZp._lp(n) 

(2.7) 

(c) The bot tom row is a cofibration sequence and induces an exact triangle of 
(BP-module) homology theories. The spectral sequence arising from this exact 
triangle (couple) may be identified with the usual Atiyah-Hirzebruch-Dold one. 

~k(n)*(X) 4'" >k(n)*(X) '" 

We may localize k(n),(X) with respect to the multiplicative set T. also. We 
gain a periodic homology theory K(n),( )=  T. -1 k(n),( ) with K(n), ~-lFp [v., vyl]. 
The dual cohomology K(n)*() is one of Morava's extraordinary K-theories. 
2.: P(n)--~k(n) induces a morphism of BP-module homology theories T.-12.: 
B(n),( ) ~  K(n),(). We shall refer to T.-12. as 2. in the sequel. 

(2.8) Lemma. Suppose j > n. The cofibration of (2.3) induces short exact sequences 
(a) and (b) 

(a) 0--, P(j)*(S 2 " - '  P(n)) h*. , P(j)*(P(n+ 1)) g* , P(j)*(P(n))--~O, 

(b) 0--~ k(j)*(S 2p"-1P(n)) h*. , k(j)*(n(n+ 1)) g* , k(j)*(n(n))--~O. 

Proof Let v,: Szp"-2-~ BP represent the homotopy class of the same name. 
Then f ,  is given by the composition 

SZp._2AP(n) v.^l >BPAP(n) m. ,P(n). 

By (1.10), BP*(v.): BP*(BP)~ BP*(S 2p"-2) has image contained in the invariant 
prime ideal 1.+ 1. If W=S 2v"-2 or BP, we may identify 

P(j)*(WA P(n))~BP*(W)~,e,P(j)*(P(n)). 

With this identification, image P(j)*(f,)__ image P(j)* (v, A 1)___ I,+ 1 Q,e* P(1)* (P(n)). 
By (2.4) this last module is zero when j > n. Similarly, k(j)* ( f , ) -0  for j > n. [] 

(2.9) Corollary. Given a P(n -  l) operation 0,_1: P(n-1)--~ SaP(n - 1), there is a 
(non-unique) operation 0,: P(n)-~SmP(n) such that g,_loO,_l=O, og,_l. In 
particular, if we are given a BP operation O: BP ~ S"BP, there are P(n) operations 
0,: P(n)---~S"P(n), n=O, 1, 2 ....  such that 0o=0  and g,-1 ~ 0,-1 =O,~ [] 

Recall from w 1 that we have an identification BP* ~ R  ~ BP*(BP) which we 
now label ~b o. Note that the objects here are locally finitely generated free topo- 
logized (1.f.g.f.t) Z(p) modules [29]. When its range object (e.g. BP*(BP)) is Haus- 
dorff a continuous homomorphism (e.g. ~bo) is determined by its restriction to a 
dense submodule of its domain (e.g. BP* | Thus ~o is determined by the rule: 
fbo(VA| Of course the analogous observations hold for 1.f.g.f.t lFp 
modules. 
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By (2.9), the basis elements r, of R give rise to (non-unique) operations fiB),: 
P (n) ~ S iBI P (n). Fix the choice of these such that g,_ 1 o (r,),_ 1 = fiB), ~ g, - 1, (rB)o = rB. 
Since the maps gi are morphisms of BP module spectra, we may (and shall) choose 
(vArB), to be va(r,),. Let C=(c  o . . . . .  e._2) be an exponent sequence consisting of 

c n -  2 zeros and ones. QC will denote the lFp basis element Q~o ~ ... Q,_ 2 of the lFp exterior 
algebra E,_ 1 = E [Qo, ..., Q,-2-1. The degree of Qi is 2 p i_  1. If we have constructed 
an element (QC),_ 1 corresponding to QC in P ( n - 1 ) * ( P ( n - 1 ) ) ,  then we use (2.9) 
to construct (QC), in P(n)*(P(n)) such that (QC) ,og ,_ l=g,_ lo(QC),_ , .  This 
accounts for half of the basis elements in E,=E(Qo,  ..., Q, -2 ,  Q,-O. We define 
(QC Q,_ 1). - (QC), o g,_ 1 o h,_ 1 ~ P(n)* (P(n)) and let it correspond to QC Q,_ 1. Now 
we can define r P(n)* | R | E,  -~ P(n)*(P(n)) by (2.10) which gives its values on a 
IFp basis of the dense submodule P(n)* | 1 7 4  of the domain. (P(n)*(P(n)) is 
Hausdorff in the skeletal filtration.) 

(2.10) q~ (vA (~ rB Q QC) =_ va(r,)n o (Qc).. 

(2.10) defines q~. to be a left P(n)* module homomorphism. Beginning with ~o, we 
assume inductively that ~b._ 1 is an isomorphism of left P ( n - 1 ) *  modules. Since 
the short exact sequence 

0 --~ P(n - 1)* v._, , P(n - 1)* --~ P(n)* --~ 0 

remains exact when decorated with - Q  R |  we see that the isomorphism 
4)._ 1 induces an isomorphism (b': P ( n ) * Q R |  1--~P(n)*(P(n-1)) (proof by 
the five lemma). Right multiplication by Q._ 1 induces a short exact sequence of lFp 
modules 

O___~E,_ 1 Q,-1 ~E __~E,_I___~O" 

This induces the left (short exact) column of commutative diagram (2.11). 

0 0 

P ( n ) * Q R |  1 

(2.11) P(n)* Q R |  

P ( n ) * Q R |  1 

'~" > P(n)*(P(n-  1)) 

r , P(n)*(P(n)) 

J g*-i  

'~" > P(n)*(P(n-1))  

0 0 

The exactness of the right column of (2.11) follows from (2.8). Since q~' is an iso- 
morphism, q5 is also. Our induction is completed and we have following computa- 
tion of Morava [19]. 
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(2.12) Lemma (Morava). 

4,: IFp[v,, v,+ 1 ....  ] ~R |  ..., Q,-1] --~ P(n)*(P(n)) 

is an isomorphism of left P(n)* modules. [] 

(2.13) Remark. The pairing (2.2), m~: BP ^ P(n) ~ P(n) gives us a homomorphism 
m*: P(n)*(P(n)) ~ P(n)* (BP ̂  P(n)) ~ BP*(BP) 6Be, P(n)* (P(n)) making P(n)* (P(n)) 
into a BP*(BP) comodule. Unfortunately our naive analysis does not show that q~n 
is a morphism of BP*(BP) comodules. 

(2.14) Remark. If n < 2 p - 2 -  q, then P(n)iq(P(n)) = ~n((P(n)* Q R)iq). I n  this case, 
the choices of the elements (rB) ~ are unique. ~,(P(n)*QR) inherits its BP*(BP) 
comodule structure from BP*(BP) via the projection 

BP* ~ R --~ P(n)* ~ R. 

(2.15) Remark. When n=  oo, P(oo)=HIFp and we recover the modp  Steenrod 
algebra. 

3. The Relationship Between B(n),(X) and K(n),(X) 
Recall that B(n),( ) and K(n),( ) are periodic homology theories with coefficient 

modules B(n),~-IFp[v~, v~ 1, v,+t , vn+ 2 . . . .  ] and K(n),'~IFp[v~, v;,-1] (n > 0). Both 
B(n),(X) and K(n),(X ) are modules over lFp Iv,, v,+ 1 . . . .  ], hence over B(n), also. 
By the construction of these homology theories, there is a natural homomorphism 
of B(n), modules, ),,(X): B(n) , (X)~ K(n),(X). Morava [19] proves that B(n),(X) 
is a projective B(n), module (X a finite complex). This leads one to suspect that 
B(n),(X)| determines a homology theory which is isomorphic to 
K(n),(X). This suspicion is confirmed in the following strengthened form of 
Morava's result. 

(3.1) Theorem. Let X be a finite complex. 
(a) B(n),(X) is a free B(n), module. 
(b) 2~(X) induces a natural isomorphism 

2,(X): B(n),(X)| K(n), - ,  K(n),(X). 

(c) There is an unnatural isomorphism 

B(n), (X) ~- K(n),(X) | IFp Ivy+ 1, v,+ 2 . . . .  ] .  

The proof of (3.1) will be given in Lemma (3.5) and Corollary (3.9). 

(3.2) Remark. In Section 4 we construct a natural isomorphism 

B(n),(X)~-K(n),(X)| v,+2, ...] for n < 2 ( p -  1). 

(3.3) Lemma. Let f :  sr" ~ X be a map of a sphere into a complex. The induced 
homomorphism B(n),(f): B(n),(S '~) --* B(n),(X) is either monic or is trivial. 

Proof. Let p: BP,(X)---~P(n),(X) be the natural reduction homomorphism 
(induced by g,_ 1 . . . . .  go: BP = P(O) ~ P(n)). Let z o ~BPm(S m) be a generator and let 
z,=p(to)~V(n)m(Sm). Let xj=P(j),(zj)eP(j)m(X), j = 0 ,  n. Suppose there is an 
element 0 # y E lFp Iv,, vn + 1 . . . .  ] _-__ BP,/I, such that y .  x n = 0. We may consider y as 
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an element of BP, such that y(sI,=(p, vl, ..., v,_l). By (1.9), there is a BP operation 
0 such that O(y)= yr, modulo 1,, t>0 .  By (2.9), there is a P(n) operation 0, such 
that 0, o p = p o 0 holds. We compute: 

0 = O,(yo x,) = O.(p(y o Xo) ) = p O(y o Xo) = p O(BP,(f)(y o Zo) ) 

= p BP, (f)(O(y)Zo) = P(n),(f)(vt, t,) = v t. o x,. 

Thus when we localize, x, passes to B(n),(f)O,)=O. We conclude that either 
x,  = P(n),(f)O,) has no annihilators or B(n),( f)  =_ O. [] 

(3.4) Remark. If X is a finite complex, then K(n),(X) is a finitely generated free 
lFp[v.,v21]=K(n), module. This follows from the fact that every non-zero 
element is invertible (K(n), is a "graded field"). 

(3.5) Lemma. I f  X is a finite complex, then the following assertions hold. 
(a) 2,(X): BP(n),(X)-~ K(n),(X) is onto. 
(b) 2,(X) induces a natural isomorphism 

,~.(X): B(n),(X)| --~ K(n),(X). 

(c) Let {bi} be a finite set of elements of B(n),(X) such that {2.(X)(bi) } forms a 
K(n), basis for K(n),(X). Then B(n),(X) is a free B(n), module with basis {bi}. 

Proof Note that (a) follows from (b). Both (b) and (c) hold if X is a sphere or if 
H,(X:IFp) is trivial. We now prove (b) and (c) by induction on the IFp dimension 
of H , (X:  lFp). If X is a finite complex with the lFp dimension of H , ( X  :lFp) equal to 
q > 0, then we may use the Hurewicz theorem (Serre class version) to construct a 
cofibration 

S m g ~X g ~ y  h ~S,~+1 

with H , ( f ;  lFp) monic. Thus (b) and (c) hold for the complex Y. By (3.3), we need 
only consider two cases. 

Case 1. B(n),(f)=O. The cofibration induces the top short exact sequence 
of commutative diagram (3.6) 

0 , B(n),(X) ~* , B ( n ) , ( Y ) - ~  B(n),(S re+l) > 0 

(3.6) T--, B(n) , (X) |  ~ B(n) , (Y)NK(n) ,  ---, B(n),(Sm+l)| --*0 

0 ,K(n) , (X)  g~ ,K(n) , (Y)  h, ,K(n),(Sm+l)- ,0 

2w=2 . (W  ) and .~w=~,(W). The tensor product in the middle sequence (which is 
induced by the top sequence)is over B(n),. T= Tor~]!,)*(B(n),(S m+ 1), K(n),) which 
is zero since B(n),(S m+ 1) is B(n), projective. 2 s o h,  = he o 2 r is epic; so the bottom 
sequence is short exact as shown. By our induction, 2 r is an isomorphism (and ~-s 
is also); so 2x is an isomorphism by the five lemma. It is immediate that B(n),(X) 
is B(n), projective, but we must show it is free. Let {hi} be a (finite) set of elements 
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of B(n),(X) such that {2x(bi) } is a basis for K(n),(X). Let aeB(n),(Y) be an element 
so that h,(a)40 i.e. h e 2r(a ) generates K(n),(S"+I). Then {2rg,(bl), 2r(a)} forms a 
K(n), basis for K(n),(Y). By induction, {g,(bi), a} forms a B(n), free basis for 
B(n),(Y). Let F(A) denote the free B(n), module on the graded set A. Then we have 
the commutative diagram (3.7) where the unlabeled morphism are the obvious ones. 

0 ~ F({b,}) ----*F({g,(b,)})@r({a}) , F({h ( a ) } ) -  ,0  

0 , B(n),(X) g*- -~  B(n),(Y) h, , B(n),(S,,+I)_____~ 0 

(3.7) 

By the five lemma, the left vertical morphism is an isomorphism thus confirming 
the lemma for Case 1. 

Case 2. B(n),(f) is Monic. Our cofibration gives us short exact sequence (3.8). 

(3.8) O-~ B(n),(S") r, , B(n),(X) g* , B(n),(Y)---~O. 

Both B(n),(S') and B(n),(Y) are B(n), free; thus B(n),(X)_~B(n),(Sm)| 
is also. Identification of a basis is routine. Proof of (b) in this second case is by a 
five lemma argument using a diagram similar to (3.6) induced by the short exact 
sequence (3.8) [] 

(,3.9) Corollary. Let X be a finite complex. Then there is an (unnatural) isomorphism 

A: B(n),(X)---~ K(n),(X)|  lFp [v,+j, vn, z, ...3. 

Proof Let {bi} be a B(n), free basis for B(n),(X) such that {2x(bi) } is a K(n), 
free basis for K(n),(X) (as in (3.5)). A typical lFp basis element of B(n),(X) is 
vn~vEbi where m~g  and vEelFv [v,+l, V,+ z, ...]. We define A(v~vEbi)= 
vm,~x(bi)@v E. [] 

4. The Relationship Between P(n),(X) and k(n),(X) 
An ideal approach to the results of the last section would be to have a spectral 

sequence of the form (4.1) 

(4.1) E 2, , ( X ) =  k(n),(X)| lFp Iv,+ 1, vn+ 2 . . . .  ] ~ P(n),(X) 

which would collapse when localized with respect to the multiplicative set Tn= 
{1, v,,v 2 .... }c lFp [vJ .  In this section we shall develop a spectral sequence of 
form (4.1); unfortunately, we cannot prove it is a spectral sequence of lFp[v,_] 
modules. Although we cannot localize the spectral sequence with respect to T~, 
we can prove that its differentials are killed by high multiples of v,. This property 
leads to some insight into the relationship between the connective theories 
P(n),( ) and k(n),( ). 

For the fixed prime p and for the fixed positive integer n, let d o be the collection 
of all exponent sequences E of form E=(0,  . . . ,0,  e ,+t ,e ,+ 2 . . . .  ). Note that an 
IF, basis for lFpEv,+ 1, v~+ 2, ...] is given by {rE: Eeg}.  Given E, recall that we 
defined o-"E to be the exponent sequence o-"E =(p"e.+l ,  p"e,+ 2 . . . .  ). We assume 
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that  for every exponent sequence F (e.g. F = a " E ) ,  a P(n) operation (rv),: P(n)-4  
SIFIp(n) with (rF) . o p = p  o r r has been chosen and fixed, (P=g , -1  ~ . . . .  go: BP--* 
P(n). See (2.9).) Given E ~ g ,  let q = l E l = 2 ( p " - l ) b + a  where 0 < a < 2 ( p " - l ) .  
Let c = b - ( e , + l + e n + 2 + . . .  ) and note that  l a " E l = c 2 ( p " - l ) + a .  Define 
s ~ k ( n )  a (P(n)) to be the composit ion (4.2). 

(4.2) s~: P(n) (~)"-~S~2(P"-t)+"P(n) ---'~ , S "P(n )  - x "  ,Sak(n)  

F = a " E .  

Now display the finite set {E: E e l ,  IE)=q} as an ordered set {E~ . . . . .  E~}, (v=lFp 
dimension of (lFp [V,+x, v,+ 2 . . . .  ]q)). The ordering here is irrelevant, but for sake 
of definiteness let us suppose it is the reverse-lexiographic ordering. When E =  
E , ~ { E :  E e g ,  tEl =q}, let us denote s E by s,. 

(4.3) Lemma.  For each integer q, there is a cofibration of  spectra (4.4) satisfying 
conditions (a) through (e). 

(4.4) D(q) i ( q ) ~ D ( q - 1 )  J~q)-*E(q) k~q),D(q).  

(a) The degrees of  i(q), j(q), and k(q) are O, O, and - 1, respectively. 

(b) Let  v be the lFp dimension of  (IFp[v,+ 1, v,+ 2 . . . .  ])q, then 

E(q) = S q k(n) x . . .  x Sq(n), 
v many factors. 

(c) D (q) = P(n), q < 0. D(2 t(p - 1) + u) = D(2 t(p - 1))for 0_-< u < 2 p - 2. D(2 t ( p -  1)) 
is 2 t ( p -  1) + 2p - 3 connected for  t >_ O. 

(d) (4.4) induces the short exact  sequence (4.5). 

(4.5) 0 --~ rc,(D(q)) icq), , n , (D(q  - 1)) J~q~*~ 7z,(e(q)) --* O. 

( e ) L e t i ( -  1, q - 1)= i(0) . . . . .  i(q - 1): D(q - 1) --~ D ( q -  2) --~ ... ~ D( - 1) = P(n). 

D ( q -  1) - J~q )  , E(q)=Sq k(n) x ... x S~ k(n) 

D ( -  1) - P(n) r ....... ) , S a k(n) x ... x S" k(n) 

(s 1, .. . ,  s v, b, and a as in the preceding discussion). 

Proof. For  q < 0, we define D(q) = P(n) and E(q)-= , .  We assume the construction 
is complete through the ( q -  1)-st stage. If q ~ 0  modulo  2(p-1) ,  we define D(q)= 
D ( q -  1) and E (q ) -* .  I f q ~ 0  modulo 2 ( p -  1), we note that  D ( q -  1) is q - 1  con- 
nected. By (2.6 c), we have an isomorphism: 

v~: k(n)a(D(q - 1)) ~ k(n) q- 2 (p.- 1)(D (q _ 1)) --~ --- --~ k(n)a(D(q - 1)). 

We define E ( q ) = S q k ( n ) x  . . .  • v times, as in (b). By the above mentioned 
isomorphism, the composit ion (s 1 . . . .  , s , ) o i ( - 1 ,  q - 1 )  in (4.6) lifts uniquely to 

Then diagram (4.6) commutes, 
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j(q): D ( q - 1 ) ~ E ( q ) .  This map induces the cofibration (4.4) satisfying (a). It 
remains to confirm (c) and (d). 

By induction (d and e), we may identify rc,(D(q-1)) with the intersection of 
the kernels of the homomorphisms 

sp: ~,(P(n))-*~,(k(n)), FeN, [F[<q.  

By Corollary (i. 12), the functions: 

{SF: gq(P(n)) --> nq_,(k(n)) ~- lFp: F eg,  IF[ <-_ q, IF[ =- q - a modulo 2(p n -  1)} 

form a basis of Hom(zcq(n(n)): lFp). Let 

{yEez~q(n(n)): E~g,  ]E[ N q, [E l -  q modulo 2(p n -  1)} 

be a dual basis. Then {y~: E sg ,  I EI = q} forms a basis ofzco(D(q- 1))_~ ~q(n(n)) and 
this basis is dual to the subspace of Hom(z~q(P(n)):IF;) with basis {s 1 . . . .  ,s~}. 
Examination of diagram (4.6) shows that {j(q),(y~): E~g,  [E[ =q} gives a basis of 
~q(E(q)): thus j(q),: ~zq(D(q-1))--~ ~q(E(q)) is an isomorphism (proving assertion 
(c)). Note that n , ( D ( q -  1)) is preserved under multiplication by v n since s~(y. v~)= 
s~(y) v~. Thus {J(q),(S v*,): E E ~, [E[= q} is onto in all dimensions. The establishes 
assertion (d). [] 

(4.7) Remark. This lemma describes a Postnikov decomposition of P(n) with 
Postnikov factors products of suspensions of k(n)'s (instead of the usual Eilenberg- 
MacLane spectra) and Postnikov fibres the D(q)'s. 

(4.8) Theorem. There is a natural spectral sequence {E~_q,q(X),dr(X)} for any 
finite complex X. It has the following properties. 

(a) E2_q,q(X)=ns(E(q)/~ X) ~- k(n)s_q(X)| v,+ 2 .. . .  ])q 

(b) E L q,q (X) ~- F~_ q + 1 n(n)~(X)/F~-q P (n)~(X) where 

Fs_ q n(n)~(X) = Image {n~(D(q)/x X) -~ z~(n(n) /x X)}. 

(c) The spectral sequence collapses if and only if 

2~(X): P(n),(X)--~ k(n),(X) 
is epic. 

(d) The differentials in the spectral sequence are T~={1, v,,v 2 . . . .  } torsion 
valued in the following sense. E ,,q(X) is a subquotient of 

E~,,~(X) =~ k(n), (X)|  (IV~ [v~+ ~, v~+ ~ . . . .  ])~ 

z~ E~_q_,,~+~_ I (X ) represents d~(y) for which has a left lFp[vJ multiplication. I f  2 
y E E'~_ q, q(X), then vt~ z = 0 for t satisfying t(2 pn - 2) > q + r. 

(4.9) Remark. k(n), (X) is said to be T~ torsion free if no member of T~ = { 1, v~, v~ 2 . . . .  } 
annihilates a nonzero element of k(n), (X). From (2.6 c), we have the exact sequence. 

�9 . . - - ,  k ( n ) ~ _ ~ _ l ~ ( X )  ~~ , k ( n ) , ( X )  ~ , H ~ ( X ; ~ )  "~ , k ( n ) ~ _ c ~ o _ ~ ( X ) .  

Thus k(n),(X) is T~ torsion flee if and only if ~, is epic. In this case, (4.8d) tells us 
that the spectral sequence collapses. 
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Comments on the Proof of (4.8). This theorem is a direct analog of Theorem (4.4) 
of [-13] as Lemma (4.3) was to Proposition (4.1) of [13]. The proofs of (a), (b), 
and (d) are exactly as the proofs of the corresponding parts of [13, 4.4]. The proof 
of (c) will follow the pattern of that of [13, 4.4 (iii)] once we have demonstrated the 
following lemma (which is the obvious analog of a trick of Atiyah's [3]). 

(4.10) Lemma. Given a finite complex X, there is a finite complex A and a stable 
map f :  A --* X such that k(n), (A) is T, torsion free and P(n), (f): P(n), (A) --~ P(n), (X) 
is epic. 

Proof Outline. (a) P(n),(X) is a coherent BP, module and thus is finitely 
generated over BP* and P(n),. This is proved by cellular induction using the 
techniques of [9, Section 1]. 

(b) If DX is the Spanier-Whitehead dual of X, realization of the P(n), generators 
of P(n)*(DX) gives a map g: DX---, VS ~ P(n)= Y such that the wedge sum is finite 

and P(n)*(g) is epic. We may assume g is skeletal. 

(c) v,: k(n)*(P(m))---,k(n)*(P(m)) is monic when m = 0  (P(O)=BP). By an 
induction using two copies of the short exact sequence of (2.8 b) and applying the 
five lemma, we see that it is monic when m= 1, 2 . . . .  , n also. Thus k(n)*(Y) is T, 
torsion free. 

(d) Let yk be the k-skeleton of Y; then k(n)*(Y k) is T, torsion free also. 7,(Y k) is 
seen to be epic by diagram (4.11), since either k(n) i+ 2p,-l(yk) or Hi+I(Y/Yk:IFp) 
is zero for any given i. 

k(n)i(Y) ~ k(n)i(Y k) 

Hi(y; ]Fp) , H!(yk; ]Fp) 

0 k(n)i+Zp,-X (yk). 

-~ H'+ I(Y/Yk;IFp) (4.11) 

(e) Now assume k is sufficiently large so that g(DX)~_ yk-1 ~_ y~,. H,(yk:  7Z(p)) is 
finitely generated and so there is a finite complex F and a stable map h: F ~ yk 
such that H,(h;  2g(p)) is an isomorphism. Thus 

h, | 1 : [ D X,  F] | Z(p) --~ [ D X, ykj | Z(v) 

is an isomorphism. So there is a unit u of 7~(p) such that u .g = h of* ,  for some map 
f ~: D X - ~  F. Let A be the Spanier-Whitehead dual of F and let f :  A--DF 
DDX = X be dual to f e. One checks that f and A satisfy the requirements of the 
lemma. [] 

(4.12) Remark. Recall that sEsk(n)aE(P(n)) where q=lEL=b~(2p ' -2)+a~,  
0_<aE<2p ' -2 .  There is a well defined natural homomorphism given by the 
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composition: 
p(n)-- s~ ~S~k(n) -~S"~K(n) ~ ,SqK(n). 

These induce a natural homomorphism of the Chern-Dold type for any finite 
complex X. 

A~(X) : P(n), (X) ~ K(n), (X) | 1F v [v, +1'  Un + 2 . . . .  ] '  

d(x)(y) = F, v2 ~ s~(y)| ~. 
Eeg  

If k(n),(X) is T, torsion free,Theorem (4.8)shows that A(X) is a monomorphism. 

(4.13) Remark. In general, we do not know tha t / I (X)  is a homomorphism of 
lFp [G] modules since each s E had an (re) ., F=a"E, in its defining composition. 
By (2.14), we know that (rF) . is canonically defined if n < 2 p - 2 .  Thus each s~: 
P(n),(X)-~ k(n), (.X) is a IF v [G] homomorphism (for r~(y. v,)= re(y)v . modulo In). 
So in this case, A(X)'s domain of definition may be extended to be B(n),(X)= 
T,-1P(n),(X). Now we apply the uniqueness theorem for homology theories to 
obtain the following theorem. 

(4.14) Proposition. Let n < 2 p - 2  and let X be a finite complex, then there is a 
natural isomorphism induced by .4(X). 

A(X): B(n),(X)~K(n),(X)| 1, G+2, .-.]. [] 

Diagram (2.7) induces commutative diagram (4.15). 

(4.15) 

P(n),(x) .~ , P(n + 1),(x) 

1 .~n(X) i2~+i(X) 

k(n),(X) ~~ H,(X; G ) '  ~~ k(n + 1),(X) 

(4,16) Theorem. Let X be a finite complex. If  G(X) is epic, then all four other 
homomorphisms in (4.15) are also epic. 

Proof 7,(X) epic ~ k(n),(X) is T, torsion free (4.9) ~ our spectral sequence 
collapses ~ 2,(X) epic (4.8) ~ y,+ 1 (X) o 2, + 1 (X) o g,(X) epic (4.15) ~ 7, + 1 (X) epic 

2,+1(X ) epic. Since #k(X)=~k(X)o2k(X): P(k),(X)--~H,(X:IFp) are epic for 
k = n and n + 1, the spectral sequences 

E2,,, (X) = 14, (X: IFv) | P (k), ~ P (k), (X) 

collapse for k = n and n + 1. g, induces an epimorphism on the E 2 terms and thus 
g,(X) is epic by induction over filtrations. [] 

(4.17) Remark. In the spirit of (4.14), we may prove that if n < 2 p - 2 = q ,  there 
are natural isomorphisms: 

K(n)*(X) ~ -~ Hommn),(B(n),(X), K(n),)~- z." HomK~n),(K(n),(X ), K(n),) 
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2, e is an isomorphism by Theorem (3.1). (2~) -1 o/~ is a natural transformation of 
homology theories which is an isomorphism when X = S o -  provided that/~ can 
be defined. Note that if n < q, we may identify 7hq(k(n )/x P(n)) with ngq(k(n)/x BP). 
The pairing n~q(k(n)/x BP)~ n~q(k(n)) extends to the second factor of/~: 

fi: k(n)* (X)@ P(n), (X)--* n, (k(n)/x P(n))-~ ~, (k(n)). 

/~ is compatible with the appropriate BP, actions. Upon localization, it induces 

/~: K (n)* (X) @ B (n), (X) --~ K (n), 

which induces ~ in turn. 

(4.18) Remark. Observe that there is an invariant of a finite complex X given by 
the least integer n such that k(n),(X)-* H,(X; lFp) is epic. This invariant differs 
radically from the invariant horn dimBe, BP,(X ) studied in [14]. For example: 
if X=I(P(2"), (2. is non-zero in H*(X; IF2) and k(n),(X)-*H,(X; IF2) fails to be 
epic; yet horn dim,e, BP,(X)= 1. On the other hand, we may form a three-cell 
complex Y=S ~ u s e  1 ~ e  s such that horn dim,e, BP,(Y)=2 [10], but k(1),(Y)-* 
H,(Y; 11=2) is epic. (~: S4--~S~ ~ is a coextension of the Hopf invariant one 
element v~n s .) 

5. An Expository Summary 
The classical prototype for Morava's and our efforts is the description of the 

integral homology of a finite simplicial complex by its Betti numbers and by its 
torsion coefficients. If we localize this antecedent, the •(p) module structure of 
H, (X;  ~(p)) is determined by data displayed in (5.1). 

(5.1) 
G(xt; 

~" H,(X" Z(v)) ..... § I1~) 

Here the dashed horizontal map is rational localization into H,(X;  I1)) which 
gives the Betti numbers. The kernel of the localization m a p - t h e  p torsion part 
o f /4 ,  (X; Z(p))- can be computed by knowing H ,  (X; lFp) and the behavior of the 
Bockstein exact triangle which indeed forms the triangular part of (5.1). 

Morava's structure theorem for BP,(X) is schematically described by (5.2). 
Again the dashed horizontal arrow represents localization: the n-th one is T. 
localization where T.= {1, v,, v. 2 . . . .  }. The T, torsion-free part of P(n),(X) passes 
monomorphically to B(n),(X) and so is largely determined by K(n),(X). (K(n),(X) 
can be described by some "extraordinary Betti numbers.") The T. torsion part of 
P(n),(X) is given by P(n + 1),(X) and the behavior of the n-th Bockstein triangle 
(the n-th triangle of (5.2)). For the structure of P(n + 1),(X), one considers its T.+ 1 
torsion-free part and its T.+1 torsion part .... This is a finite process! There is an n 
(e.g. if the cellular dimension of X is less than 2 p " -  1) such that if re>n, then 
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P(m) (X)~-H (X; IFp)| and the m-th exact triangle collapses (its vertical :g - -  ,p 
morphism is epic). 

(5.2) 

BP,(X) 

P(O),(X) 

P(1),(X) 

P(2),(x) 
; 

. . . . .  i . . . . .  

Sn : 7/(p)  [ - U n + l ,  Un+ 2,  "" "] 

P(0), (X) . . . .  + B(0), ( X ) -  K(0), (X) | So 
~-H.(X;Q)| 

P(1), (X) . . . .  -~ B(1), (X)~ K(1), (X) | S 1 

P(n),(x) 

e ( n ) , ( x )  . . . . . . .  

P(n + 1),(X) 

t 

N.B. Unless n < 2 p -  2, the isomorphisms displayed may not be natural. 

Appendix: A Proof of (2.4) 

The purpose of this appendix is to provide a proof of assertion (2.4). We 
assume the definitions and notation of Baas [53. Let Y be a finite complex. Recall 
that P(m),(Y) is constructed as a direct limit of homology modules MU(S,),(Y) 
where Sn= {* =P0,/]1, -.., P~} is a singularity set of closed unitary manifolds such 
that [Pal is not a zero divisor of MU,/([P~] . . . .  , [Pj-I]). Without loss of generality, 
we may assume Y=X +. (Our MU(S,),(X +) is Baas's MU(Sn),(X, d?).) Thus to 
prove (2.4), it suffices to confirm: 

(A.1) For any element [A, ~, f ]  of MU(Sn),(X +) and for any i=l  .... ,n, 
[A, ~, f ] .  [P~] = 0. 

The proof which we sketch is reconstructed from one told us by Morava. 
However, we are certain (A.1) was also known to Sullivan. Any temptation to 
extend this proof to argue that MU(S,) is a nice ring spectrum should be dampened 
by observing that the proof involves an uncanonical choice of the manifold E. 
(Also see (2.5 d).) 

The Proof For notational convenience, let us assume i=  1. We are given the 
following data. For each subset co = {0, 1 . . . . .  n}, we have a unitary manifold with 
boundary A(co) and a continuous map f(~o): A(co)~X. A(~b)=A and f(~b)--f. 
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The boundary of A(co) is decomposed into a union of manifolds OjA(co), where 
c~jA(co)=r ifjeco. Also 0oA(co)= r Forj~{0,  1 . . . . .  n} "-.co, there is an equivalence 
of unitary manifolds ~(co, j): c?jA(co)~ A(co, j )x  Pj. All of these manifolds, maps, 
and homeomorphisms satisfy coherence conditions given in w 2 of [5]. 

To show [ A , e , f ] .  [P1]=0, we must construct an appropriately coherent 
system of manifolds, homeomorphisms, and maps: {B(co), fl(co, j), #(co)} satisfying: 

(1.2) (?oB(co)=B(co, 0)=A(co) xP1; 

(A.3) fi (co, 0, j): ~j A (co) x P1 --~ A (co, j) x P1 x Pi is defined by fi(co, 0, j) (a, y) = (b, y, x) 
for (a, y)~ OjA(co)x P1 and where c~(co, j)(a)= (b, x). (Warning:this must hold even 
when j = 1.) 

(A.4) #(co, 0): A(co) x P1 ---~X is defined by #(co, O)(a, x)=f(co)(a) for (a, x)eA(co) x Pi. 
Let D =P1 x Pl x [0, 1]. We define 3 o D = r 01D = P1 x P1 x {0, 1}, and D(1)-- 

P1 x 0wP~ x 1. We build an important twist into D's P~ structure by defining 
6(1): ~j D --, D(1) x P1 by 6(1)(x, y, 0) = (y, 0, x) and 6(1)(x, y, 1) =(x, 1, y) for x, yeP~. 
Thus {D, 6(1)} defines a P1 manifold of odd dimension. It then gives a trivial class 
in MU({Pi}). ~-MU,/([Pi] ) and it bounds some P1 manifold {E(co), e(co, j)} which 
satisfies: O0 E = E(0) = D; E(0, 1) = D(1); and e(0, 1) = 6(1). We consider {E(co), e(co, j)} 
as an S, manifold by defining OjE(co)= 4) for j 4= 0, 1. 

We form B from the union ofA x P1 x [0, 1] and A(1) x E by the identification: 

0j A x Pi x [0, 1] ~(1)• • A(1) x P1 x P1 x [0, 1] =A(1) x OoE. 

The topological boundary of B is the union of: (?oB=A x Pax 0; a i B = A  x Pi x 
1 u A (1) x 01 E; and 0j B = 0j A x Pi x [0, 1 ] w Oj A (1) x E, j 4 = 0, 1 (with identifications 
as above). 

In the definitions which follow, let # c  {2, ..., n} a n d j s  {2 . . . .  , n} \ # .  

(A.5) We define: 

B(#)-- A(#) x P1 x [0, 1] w A(#, 1) x E with Ol A(#) x Pi x [0, 1] identified with 
A(#, 1) x ~0E; 

B(p, 1)=A(#) x 1 wA(a,  1) xE(1) with 31A(#) x 1 identified with part of 
A(#, 1) x 0oE(1); 

e(#, 0) =A(#) x P~ x 0; and e(#, 1, 0)=A(#,  1) x P~ x 0. 

(A.6) We define: 

fl(#,j): c~/A(#)x P~ x [0, 1] wc~jA(#, 1)xE--~(A(#,j)xP~x [-0, 1] w A(#,j, 1)• xPj 

by fl(g,j)(a, y, t)= (b, y, t, x) for (a, y, t)eA(p) x P1 x [0, 1] and where e(#,j)(a) = (b, x) 
and fl(p,j)(a, e)=(b, e, x) for (a, e)e(?jA(#, 1) x E and where c((#, 1,j)(a)=(b, x); 

fl(g, 1,j) and fl(#, O,j) to be restrictions of fl(#,j); 

fl(#, 1): A(#) x P  i x 1 uA(#,  

by fi(#, 1)(a, x, 1)=(a, 1, x) for 
for (a, e)eA(#, 1) x ~iE; 

1) x ~ E ~ ( A ( # )  x 1 uA(#,  1)x E(1))x P~ 

(a, x, 1)EA(#)x Pi x 1 and fl(#, 1)(a, e)=(a, e(1)(e)) 

fl(#, 0) and fl(#, 1, 0) to be the appropriate identity maps. 
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(A.7) W e  def ine  g: B~*X by g(a, x, t)= f (a) for (a,x, OsAxPlx[O, 1] and  

g(a, e)=f(1)(a) for (a, e ) e A ( 1 ) x  E. T h e  m a p  g induces  the  o the r  m a p s  g(co) by 

D e f i n i t i o n  2.3 (ii) o f  [5].  

Def in i t i ons (A .5 ) ,  (A.6), and  (A.7) o r g a n i z e  a s ingu la r  S ,  m a n i f o l d  in X :  

{B(co), ~(o~,j), g(co)}. Th is  is seen to satisfy c o n d i t i o n s  (A.2), (A.3), and  (A.4) as 
r equ i r ed .  

Acknowledgement. The central idea of applying extraordinary K-theories to the study of B/~, (X) 
is Morava's. Many of the results here are either his or variants of his theorems. We would like to 
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