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Since 1y(,,4) has order g, every element in [M(q, 4), L(z)] must have order dividing
g. This proves 2.4 if ¢ = odd.

To prove 2.4 if ¢ = 27 it suffices to show 3 a premap pf: Li(x) — Y, where
Y is a product of Eilenberg-Mac Lane spaces and pf induces an isomorphism (mod
odd torsion) on the homotopy groups. To get pf apply the universal coefficient
theorem for ordinary homology to the composition of homorphisms

Hy (L), Q) ®z Zoy < Q(LYm) @z Z 1) o Lh (%) ® Zip.

Since 2.4 is true for ¢ = odd or ¢ = 27, itis true for all ¢.
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KERVAIRE’S INVARIANT FOR FRAMED
MANIFOLDS*

JOHN JONES AND ELMER REES

1. Pontryagin (see [19]) set up a correspondence between homotopy classes of
maps S*™* — S* and bordism classes of framed k-dimensional manifolds M* em-
bedded in R#+%. When k& = 2 and n = 2 he constructed a map q: H|(M?) — Z/2
(all our homology groups will have Z /2 coefficients) which is quadratic with re-
spect to the intersection pairing. Such a quadratic form has an Arf invariant; see
[1], [4] or [21]. Arf(g) depends only on the framed bordism class of M and defines an
isomorphism 7, 55" — Z /2. This procedure can be used in practice to show that
certain maps are essential—for example this is done in [13].

In [10], M. Kervaire defined an Arf invariant for (2/ — 2)-connected, (4/ — 2)-
dimensional closed manifolds which are almost parallelizable and smooth in the
complement of a point. The manifolds S' x §1, $% x §% and S7 x S7 may be
framed in different ways to have Kervaire invariant one or zero. The Kervaire
invariant of any framed (4/ — 2)-manifold M was defined by first performing
surgery to make M (2! — 2)-connected. In [10], Kervaire showed that his invariant
vanished for closed, smooth 10-dimensional manifolds and constructed a manifold
which was smooth in the complement of a point and had Kervaire invariant one.
This gave his famous example of a nonsmoothable manifold.

W. Browder [3] extended the definition of the Kervaire invariant and also ex-
tended Kervaire’s result by showing that a framed, smooth M*~% has Kervaire
invariant zero if / is not a power of 2. His definition has since been extended and
simplified by E. H. Brown [5]. Browder gave necessary and sufficient conditions in
terms of the Adams spectral sequence for the existence of a framed M -2
with Kervaire invariant one. These conditions have been verified for n = 4 [17] and
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n =5 (see [15] for an account of other attempts). An explicit M3® was constructed
in [7] and directly shown to have a framing of Kervaire invariant one; a sketch of
its properties is given in §4 of these notes.

2. It is clearly desirable to be able to define the Kervaire invariant of a framed
manifold directly, without having to do surgery first. It is also desirable to under-
stand exactly how the invariant depends on the framing. The Browder-Brown ap-
proach enables one to define the quadratic form directly on the middle homology
of a framed M? and to study the precise relationship between quadratic forms and
framings.

First, consider quadratic forms g defined on a mod 2 vector space V relative to
a nonsingular pairing { , ,ie., g(x + ») = g(x) + q(») + {x, »>. Note that the
existence of such a form implies (x, x> = 0 for all xe V. If ¢1 and g, are two such
forms then their difference ¢; — g, is linear and so by the nonsingularity of the
pairing there is an element v such that g,(x) — go(x) = {x, v». This shows that if
there is one quadratic form on V then there is a 1-1 correspondence between the set
of quadratic forms and V itself. It is easy to show that Arf(q)) + Arf(g;) = qi(v) =
g2(v).

Browder and Brown defined the Kervaire invariant of a framed manifold M2
RZ+N as follows. It is the Arf invariant of a quadratic form defined on H*(M) =
Hy(M). Let v be the normal bundle of M, T(») its Thom complex, and let ¢ be the
given framing. Then the Pontryagin-Thom construction gives a map SN — T(y)
and ¢ gives a homeomorphism 7(y) — 2®(M .) where M denotes M together with
a disjoint base point. Given a € H¥M) = [M,, K}], where K, denotes an Eilen-
berg-Mac Lane space K(Z/2, k), we may form the composite SZEN — SNAL,
— %@ 3VK,, which is an element of the group Toern(ZVK ). A calculation shows
that this group is Z/ 2. So, from our framed manifold (M2* t), we have constructed
a function ¢,: H¥M) — Z/2. One may check that g, is quadratic with respect
to the intersection pairing, and that its Arf invariant depends only on the framed
bordism class of (M, f). We will denote this invariant by K(M, t); it equals Ker-
vaire’s invariant when that is defined. The following theorem, due to E. H. Brown
[5], shows the relationship between this quadratic form and those considered by
Pontryagin and Kervaire.

THEOREM. If the Poincaré dual of a € H¥(M) is represented by an embedded St =
M2 then q(a) = e(a) + h(a) where

o)} = {0 if the normal bundle of S* = M? is trivial,
1 otherwise;
0 if ela) =1,
h(a) = {the Hopf invariant of the framed embedding
St M2 < RN if ¢(a) = 0.

The quadratic form clearly depends at most on the framing restricted to the
k-skeleton of M it is important to understand precisely what it depends on. Brow-
der, in [3], completely analysed this. Browder’s work depends on the notion of a
Wu-orientation. Note that a framing corresponds to a lift in the diagram
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The different choices of framing correspond to maps from M to the fibre, O, of this
principal bundle. One wants structures, analogous to framings, which give quad-
ratic forms. Since quadratic forms on H*(M)are in 1-1 correspondence with H*(M),
one would like the structures to be in 1-1 correspondence with H#*(M). There-
fore one needs a principal fibration over BO with fibre K,. Such fibrations cor-
respond to H*t1(BO). The element chosen to classify this fibration is the Wu-class
¥ € HFTY(BO). The total space of this fibration is denoted by BO{v,.;) and a
lifting to BO{v,+1» of the classifying map for the normal bundle of A is ca-lled a
Wu-orientation of M. One good reason for the choice of v, is that it is the
only (k + 1)-dimensional characteristic class that is zero on all 2k—manif01ds.
Hence every 2k-manifold admits a Wu-orientation. A framing gives a Wu-orienta-
tion as is easily seen from the commutative diagram

EQ — BO{v11

N/

BO

Let 7 be the bundle over BO{v,.;> obtained by pulling back the upiversal
bundle over BO. A Wu-orientation gives a bundle map w:y — 7. Given ae
HHM) = [M,, K,] we may form the composite SN - T(v) —, My A T(v)
= 7w Ke A T(F) where we have taken v and 7 to be N—dimcnsional,_ and 4
is induced by the diagonal. Hence the Wu-orientation w gives a function Q,:
HYM) = 7w n(Ky A T()). If the Wu-orientation arises from a framing then Q,
factors through the map i: 7o n(Kp A SV) = w3 n(K, A T(F)) induced by the
inclusion of a fibre of 7. E. H. Brown [5] shows that the homomorphism i is
injective (because v,;1(F) = 0) and that one may choose an epimorphism e
Toeen(Ke A T(7)) — Z [ 4 so that the composite ¢ o i is injective. It is easily shown
that the function ¢, = ¢ o Q,, is quadratic in the sense that g,(x + ») = q,(x) +
g.(¥) + j(x-y) where j: Z|2 — Z/4 is the usual inclusion. The choice of & ensures
that if the Wu-orientation came from a framing then this quadratic form takes
values in Z/2 = Z/4 and equals the one previously defined. .

The Z/4 here is needed only to study quadratic phenomena on 2k-man1f01.ds
whose kth Wu-class is nonzero. For in this case there is a class x € H*(M) with
x-x = 1, and as we have already observed the existence of a Z/2-valued quadratic
form associated to the intersection pairing implies that x-x = 0 for all x e H*(M).
Since our main interest is in framed manifolds we will assume our quadratic forms
are Z/2-valued. .

Suppose now that we have two Wu-orientations, differing by v € H M), giving
quadratic forms ¢; and gz. Then it can be shown that the quadratic forms also
differ by v, that is ¢;(x) + g2(x) = x-v. This shows that the relationship between
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Wq-orientations and quadratic forms is indeed the simplest possible. So the quad-

ratic form for a framed manifold only depends on the Wu-orientation arising from

the framing. We now analyse how a change of framing affects the Wu-orientation

and this then explains the way the quadratic form depends on the framing. ’
Consider the commutative diagram of principal fibrations

0-=>2-K,
EQO—BO(v 11

BO = BO

The fibration BO{v41> — BO is induced by vy so x; is the map v, obtained
by applying the loop functor to vy4;: BO — Kjy,. Therefore if two framings of M
differ by the map g: M — O then the induced Wu-orientations differ by g*x,. This
leads to the change of framing formula:

THEOREM. Let t) and ty be two framings of M2 differing by g: M — O. Then
G (%) + q,(x) = x-g*x, and K(M, t;) + KM, 1;) = 4:(8%x:) = q,(g*x,).

An easy calculation shows that v, is decomposable unless k + 1 is a power of 2.
The functor 2 annihilates decomposables and so x, = 0 unless k£ + 1 is a power of
2. Hence one has

CoroLLARY. The quadratic form of a framed manifold M2 is independent of the
Sraming unless k + 1 is a power of 2.

. Browder’s theorem that the Kervaire invariant of a framed M4—2 vanishes unless
! is a power of 2 then follows easily from the following consequence of the Kahn-
Priddy theorem due to Nigel Ray [20].

THEOREM. If o is an element of the 2-primary component of =, y(S¥) for N >
n + 1, then there is a manifold M» with framings t, and t, such that [M, t;] = 0,
and [M, t;] = a €, n(SV).

The Kervaire invariant of a framed boundary is zero so Browder’s theorem fol-
lows since we have shown that if / is not a power of 2 then the quadratic form and
so certainly the Kervaire invariant of a framed M*%~2is independent of the framing.

Conversely one can use this kind of approach to give sufficient conditions for the
existence of framed manifolds M*~2 with Kervaire invariant one when /is a power
of 2. Perhaps the simplest is the following result of [7].

THEOREM. There is a framed manifold M2, k = 2i — 1, with Kervaire invariant
one if and only if there is an element 0 € 73,(SO) detected by Sq**l, i.e., the class
Sq**tlx, is nonzero in the cofibre of §.

_This theorem is also true with SO replaced by RP=. It can be used to yield
another proof of Browder’s result that there isa framed manifold in dimension
2¢+1 — 2 with Kervaire invariant one if and only if the element 4% in the E,-term of
the mod 2 Adams spectral sequence survives to ... The details are worked out in [7].
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3. Tt is of interest to find criteria under which a manifold will have a framing with
Kervaire invariant one. For brevity we will call a manifold “Arf-changeable” if it
has framings with different Kervaire invariants. By Ray’s result, if there is a framed
M#-2 with Kervaire invariant one, then there is an Arf-changeable manifold in the
same dimension. Of course the change of framing formula gives a necessary and
sufficient condition for a manifold to be Arf-changeable. There is also the following
simple criterion for a manifold to be Arf-changeable. Unfortunately we have only
been able to use it constructively in simple cases.

THEOREM [7]. Let M2k be a framed manifold and g1, g0 M — O be two maps such
that g¥x,-g¥x, = 1. Then M is Arf-changeable.

PrOOF. Define a; = g¥x,, i = 1,2, 3, where g3(x) = g1(x) g2(x). Thenas = a; +
s and if ¢ is a quadratic form coming from some framing then g(as) = gla;) +
g(es) + 1. Therefore it follows by the change of framing formula that one of g3,
g, or g3 changes the Kervaire invariant.

COROLLARY. If N¥ and N are framed manifolds with k = 1,3 or 7, then Ny x N,
is Arf-changeable.

ProoF. There are maps f;: N; = SO with f%x; # 0. The maps g; = fi°7 and
8> = fyoma, Where ;1 Ny x Ny — N, is the projection, have the required property.

We will now use a theorem due to Stong [22] to show that highly connected mani-
folds are not Arf-changeable.

THEOREM. If M2k, k = 27 — 1,is a framed manifold and s-connected where os+ 1)
= r + 1, then M is not Arf-changeable.

So for example 8-connected M30’s and 9-connected M%?’s are not Arf-changeable.

PRrOOF. Stong’s theorem says that the map g.: BO(s + 1) — BO satisfies
g¥w, = 0if ¢(s + 1) > r. Here BO{s + 1) is the (s + 1)th connected cover of
BO. The theorem follows immediately.

An interesting class of stably parallelizable manifolds are the hypersurfaces, that
is compact codimension one submanifolds of Euclidean space. If they are Arf-
changeable then one can prove stronger connectivity results. Suppose Mzt o Skt
is a hypersurface. Let 4, B be the closures of the components of the complement of
M in S2¢1, The Mayer-Vietoris sequences for cohomology and real K-theory show
that i% + i%: H¥A4) @ HHB) - HHM) and i} + i}: KOY(A) @ KO~Y(B) —
KO-Y(M) are isomorphisms, where i,: M — A and iz: M — B are the inclusions
of the boundaries. So given g: M — O write g = g + g, where g) = is°8a and
g = ipogy where go: A - O, gg: B — O. Therefore g*x, = i%a, + ifap, where
a4 = g%x; and ap = ghx,. The natural framing of M2 coming from its embedding
in S2¢H1 extends over both 4 and B. Let g be the quadratic form coming from this
framing; then it follows that ¢ vanishes on both i{H*(4) and itH*(B). Therefore

q(g*x,) = qlifas + ihap) = ifap - ifaa = g1X: - 8F Xk

It follows that if a hypersurface is Arf-changeable then one may always use the
above theorem from [7] to prove it.
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ProPOSITION. If M30 is a T-connected hypersurface then it is not Arf-changeable.

Proor. Let gy, g2: M — 0 be maps; then from Stong [22] we know that if g; =
g7xy5 then a; = (Sq7 + Sq*Sq28q!)5; for some §3; € H3(M)and further Sq25; s 0.
The result is proved by showing ((Sq7 + Sq*Sq2Sq!)3;)- ((Sq” + Sq‘*Sq‘ZSql)Iﬁ;) =0
using the parallelizability of M and the Adem relations.

4. In [7] the ideas we are describing are used successfully to show that a certain
e_xplicitly constructed M 30 is Arf-changeable. We now describe this manifold. Con-
sider X the orientable surface of genus 5; it has a smooth free action of the dihedral
group Dy (the symmetries of a square). The quotient space of this action is the non-
qrientable surface Y; of Euler characteristic — 1, the connected sum of the projec-
tive plane and the torus. The action is best described by giving a homomorphism
¢: mY, = Dy The group =Y, has generators A;, A,, B and one relation:
A14;A7 A5 = B2, The group D, permutes the four vertices of the square and in this
way can be regarded as a subgroup of §;. The homomophism ¢ is then given by
#(4y) = (14)(23), ¢(A42) = (13)(24) and ¢(B) = (13). In the following one may
assume that X; is the D, covering of Y; associated with ¢; the fact that X; has genus
5 is not necessary. ’

We now define M3 to be Xj x p, (S7)* where D, acts as a permutation group on
(S7)*. It is readily checked that M3 is stably parallelizable. Moreover one can con-
struct a map g: M3° — SO as follows:

1Xwt e
M3 L5 X %, (SO@®))AES ED, x 5, (SO®)) 2 S0O(32).

Thc first map is induced by a map w: 87 - SO(8) such that w*x, is nontrivial
@: X5 — EDy is the equivariant map that covers ¢ and D is a finite version of th:;
Dyer-Lashof map for SO and is described explicitly in [14]. Using the results of
[12], it is straightforward to calculate @ = g*xj5 once one knows enough about
H*(M). It turns out that if ¢ is any quadratic form coming from a framing then
g(a) # 0. The change of framing formula shows that this M is Arf-changeable
x.’\lhthough the method outlined here only proves that this M3 is Arf-changeable it‘
isin t"act possible with a little care to identify a framing on M which has Kerva;re
mvariant one.

In the calculation of g(x) one can use the following lemma which may be of
independent interest.

Lemma [7). If g comes from a frami M-z 1g) = a-Sq2 G
ae HY2(M). % Jraming on then q(Sq'a) = a-Sq%a for any

‘PBOOF. Ope considers the map Sqk: 7§, o(Ky—2) = 7§, »(K5—_) and checks that
this is an epimorphism. Moreover an element § that maps nontrivially is such that
0*(c2i—2 - SqPez2) # 0.

The first-named author has recently proved several further results of this kind.

COROLLARY. If M¥~2 is stably parallelizable and a € H¥~%(M) is such that Sqla =
0 then a - Sq?a = 0.

_ T_his gorollary for / odd can be deduced from Theorem 1.2 of [16] and for / = 3
1s given in [18]. It is of interest to note that this corollary is false in general for mani-
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folds all of whose Stiefel-Whitney classes vanish; the manifolds CP* for n + 1
a power of 2 are examples. It is also false for manifolds M 4 a5 the example SU(3)
shows. It might be interesting to construct examples in other dimensions.
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