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The Kervaire invariant

I A framing of a manifold M is an isomorphism F of the stable
normal bundle of M with a trivial bundle.

I Suppose the dimension of M is 2n. We can use a framing F
to construct a quadratic function

q = qF : Hn(M,Z/2)→ Z/2

q(x + y) = q(x) + q(y) + 〈x , y〉.

Here 〈x , y〉 is the mod 2 intersection number of x and y .

I Since q is quadratic |q−1(0)| 6= |q−1(1)|.
I q has a Z/2 invariant, its Arf invariant,

A(q) = 1⇐⇒ |q−1(0)| < |q−1(1)|.

I The Kervaire invariant K (M,F ) is the Arf invariant of qF .

I In dimensions 4k + 2 the Kervaire invariant should be thought
of as the analogue of the signature in dimensions 4k .



The Kervaire invariant problem

I Problem: In what dimensions is there a framed manifold with
Kervaire invariant one ?

I Answer: In dimensions 2, 6, 14, 30, 62 and possibly 126.

I The solution of the Kervaire invariant problem has a
significant impact in both differential topology and homotopy
theory.

I I will begin with the differential topology.



The Kervaire sphere

I fd(z1, . . . , zd+1) = z21 + · · ·+ z2d + z3d+1

I The Kervaire sphere is the link of the singular point of f2n+1

K 4n+1 = f −1
2n+1(0) ∩ S4n+3 ⊂ C2n+2.

I Kervaire constructed K 4n+1 by what is known as plumbing.

I We know that K 4n+1 is homeomorphic to S4n+1.

I Problem: When is K 4n+1 diffeomorphic to S4n+1 ?

I Answer: When 4n + 1 is 1, 5, 13, 29, 61 and possibly 125.



The Kervaire invariant and the Kervaire sphere

I K 4n+1 is the boundary of a framed 4n + 2 manifold P4n+2
0 .

I If K 4n+1 is diffeomorphic to S4n+1 we can glue a disc onto
the boundary of P4n+2

0 to get a smooth manifold P4n+2.

I P4n+2 can be framed and there is a framing F such that
K (P4n+2,F ) = 1.

I Kervaire then does some homotopy theory to prove that

K (M10,F ) = 0, for all (M10,F ).

I It follows that K 9 cannot be diffeomorphic to S9.

I This argument, plus the solution of the Kervaire invariant
problem, leads to the list of at most six special cases where
the Kervaire sphere is diffeomorphic to the standard sphere.



Kervaire and Milnor

I A homotopy n-sphere is a closed manifold that is homotopy
equivalent to Sn.

I How many homotopy spheres are there?

I Milnor 1956: On manifolds homeomorphic to the 7 sphere.
(Annals of Math)

I Kervaire 1960: A manifold which does not admit any smooth
structure. (Comment Math Helv)

I Kervaire and Milnor 1963 : Groups of homotopy spheres I.
(Annals of Math)

I Kervaire and Milnor caculate the number of homotopy
n-spheres in terms of the homotopy groups of spheres, modulo
the Kervaire invariant problem.



Framed manifolds and homotopy theory

I Given a map f : Sn+k → Sn and a point P ∈ Sn such that f
is transverse to P can form

Mk = f −1(P) ⊂ Sn+k .

Then M has a natural framing F and so we get (Mk ,F ) a
framed submanifold of Sn+k .

I This construction sets up an isomorphism of Ωfr
k,n, the framed

cobordism classes of k dimensional closed framed
submanifolds of Sn+k , with the group πn+k(Sn).

I This is the Pontryagin – Thom construction.

I Both groups are independent of n if k < n − 1 and in this
range we write

Ωfr
k
∼= πsk .



Groups of homotopy spheres

I The set of homotopy n-spheres forms a group Θn under
connected sum.

I A homotopy sphere Σn can be framed.

I Choose a framing to get an element

[Σn,F ] ∈ Ωfr
n = πsn.

I Suppose F1 and F2 are framings of Σn then

[Σn,F1]− [Σn,F2] = [Sn,Φ]

for some framing Φ of Sn.

I Set Jn ⊆ πsn to be the subgroup consisting of those elements
[Sn,Φ] where Φ is a framing of Sn – this is the image of J.

I Then define P(Σn) = [Σn,F ] ∈ πsn/Jn.

I This gives a well defined homomorphism

P = Pn : Θn → πsn/Jn.



Kervaire and Milnor

I Use the notation bPn+1 = kerPn, Cn = πsn/Jn.

I P4n : Θ4n → C4n is an isomorphism

I There is an exact sequence

0→ bP4n+4 → Θ4n+3 → C4n+3 → 0

and bP4n+4 is a cyclic group whose order is explicitly
computed (in terms of Bernoulli numbers) by Kervaire and
Milnor.

I There is an exact sequence

0→ Θ4n+2 → C4n+2 → Z/2→ Θ4n+1 → C4n+1 → 0

where the homomorphism Ωfr
4n+2 → C4n+2 → Z/2 is the

Kervaire invariant.



Browder’s theorem

I The Kervaire invariant of framed manifolds is zero except in
dimensions of the form 2n = 2j+1 − 2.

I In dimension 2j+1 − 2 there is a framed manifold of Kervaire
invariant one if and only if h2j in the E2 term of the classical
mod 2 Adams spectral sequence is an infinite cycle.

I Browder 1969: The Kervaire invariant of framed manifolds
and its generalizations (Annals of Math)



Browder’s proof

I Browder uses the notion of a Wu orientation and the
corresponding notion of Wu cobordism.

I There is a Kervaire invariant defined for Wu oriented (not
necessarily oriented) manifolds.

I In the relevant dimensions Wu cobordism is a computable
modification of unoriented cobordism.

I Can compute the image of framed cobordism in Wu
cobordism in the relevant dimensions.

I There are other proofs, one due to Rees – Jones, and another
due to Lannes.

I We now turn to the homotopy theory.



Mahowald

Are the homotopy groups of spheres the universal widget generated
by the EHP sequence and the solution of the vector fields on
spheres problem?



The EHP sequence

This is the exact sequence

· · · → πj(S
n)→ πj+1(Sn+1)→ πj+1(S2n+1)→ πj−1(Sn)→ . . .

where the homomorphisms are:

I E : πj(S
n)→ πj+1(Sn+1) is the suspension homomorphism,

I H : πj+1(Sn+1)→ πj+1(S2n+1) is the Hopf invariant,

I P : πj+1(S2n+1)→ πj−1(Sn) is the ‘Whitehead product ’;

I Also we should localize at 2.



Calculating with the EHP sequence

I This was used extensively in the late 50’s and early 60’s to
calculate the groups πj(S

n) most prominently by Toda
(Composition methods in the homotopy groups of spheres:
Annals of Math Studies 1962) and also by Barratt and others.

I The stem of πjS
n is j − n = k.

I The idea is to calculate inductively on the stem.

I When we come to calculate the k-stem

πk+1(S1), πk+2(S2), πj+3(S3), ... , π2k+2(Sk+1)

we have already calculated the source and target of P.

I The key then is to be able to calculate P.



Back to Mahowald
I Question: Does the EHP sequence uniquely determine the

homotopy groups of spheres ?
I Answer: Clearly no !
I Better Question: Are there some initial conditions we can add

so that the EHP sequence plus these initial conditions does
determine the homotopy groups of spheres ?

I For example, try the (silly !) assumption that P(ιn) = 0 for all
n. Here ιn ∈ πn(Sn) is the homotopy class of the identity map
of Sn.

I According to Mahowald you should then get the so-called Λ
algebra – this is the E1 term of the Adams spectral sequence.

I If we assume that P(ιn) = 0 if and only if n = 2j − 1 then
Mahowald predicts we will get the E2 term of Adams spectral
sequence.

I Here you start to see the key phenomenon: the interplay
between calculations with the EHP sequence and the Adams
spectral sequence.



Sphere of origin and Hopf invariant

I If α ∈ πk+n(Sn) the the sphere of origin of α is the minimum
integer m ≥ 0 such that

α ∈ im(En−m : πk+m(Sm)→ πk+n(Sn)).

I The Hopf invariant of α is the set

H(α) = {H(β) : En−m = α}

where m is the sphere of origin of α.



The solution of the vector fields on spheres problem

I We now ask how the elements ιn ∈ πn(Sn) feed into the EHP
sequence.

I Not difficult to see that the key is to understand

P(ι2i−1) = wi ∈ π2i+1−3(S2i−1)

I w1, w2, w3 are all zero and this generates the three Hopf
maps which will be denoted by β1, β2, and β3.

I β1, β2, and β3 are the first three generators of the image of J

I On the other hand w4 is non-zero so this generates an
element β4 which is the Hopf invariant of w4.

I This element β4 gives us the next generator of the image of J.

I More generally if we define βn for n ≥ 4 by

βn = H(wn)

then the family of elements βi give us generators of the image
of J.



The image of J in the EHP sequence

I In this paper in Annals of Math 1982, Mahowald computes
how the image of J, the family of elements βj , behave in the
EHP sequence.

I He gets complete answers modulo one problem.

I Let s(j) be the stem of βj then the problem is the
computation of

P(βj) ∈ π2n−1+s(j)(S
n), n + s(j) = 2j+1 − 2

I Let us look at the EHP sequence in this particular dimension

π2n+1+s(j)(S
n+1)→ π2n+1+s(j)(S

2n+1)→ π2n−1+s(j)(S
n)

Then suppose P(βj) = 0 we get an interesting element θj in
the n + s(j) = 2j+1 − 2 stem.

I This element θj should be detected by h2j in the Adams
spectral sequence.



θj and wj+1

I Notice that wj+1 = P(ι2j+1−1) ∈ π2j+2−3(S2j+1 − 1)

I Therefore wj+1 and θj are in the same stem.

I The sphere of origin of wj+1 is 2j+1 − s(j + 1) and its Hopf
invariant is βj+1

I The sphere of origin of θj is 2j+1 − s(j) and its Hopf invariant
is βj

I The simplest possible explanation of these facts is this:

wj+1 = 2θj ∈ π2j+2−3(S2j+1−1).

I It takes a considerable amount of work to replace the
occurrences of the phrase should be “should be”by the word
theorem. See papers of Mahowald, Barratt – Jones –
Mahowald and Crabb – Knapp.



I have tried to give a connected narrative, rather than a careful
history, highlighting the impact of the Kervaire invariant in

differential topology and homotopy theory.

Thank you for you attention


