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Kervaire and Milnor's germinal paper [15], in which they used the 

newly-discovered techniques of surgery to begin the classification of 

smooth closed manifolds homotopy equivalent to a sphere (homotopy- 

spheres), was intended to be the first of two papers in which this 

classification would be essentially completed (in dimensions > 5). Un- 

fortunately, the second part never appeared. As a result, in order to 

extract this classification from the published literature it is neces- 

sary to submerge oneself in more far-ranging and complicated works 

(e.g. [7], [16], [30]), which cannot help but obscure the beautiful 

ideas contained in the more direct earlier work of Kervaire and Milnor. 

This is especially true for the student who is encountering the subject 

for the first time. 

In Fall, 1969, I gave several lectures to a graduate seminar at 

Brandeis University, in which I covered the material which I believe 

would have appeared in Groups of Homotopy Spheres, If. Two students, 

Allan Gottlieb and Clint McCrory, prepared mimeographed notes from 

these lectures, with some extra background material, which have been 

available from Brandeis University. The present article is almost 

identical with these notes. I hope it will serve to fill a pedagogical 

gap in the literature. 

The reader is assumed to be familiar with [15], [20]. In these 

papers, Kervaire-Milnor define the group en of h-cobordism classes of 

homotopy n-spheres and the subgroup bP n+l defined by homotopy spheres 

which bound parallelizable manifolds. The goal is to compute bP n+l 

and en/bpn+ i 

Section 1 reviews some well known results on vector bundles over 

spheres and the homotopy of the classical groups, as well as some 

theorems of Whitney on embeddings and immersions. Since a homotopy n- 

sphere ~n is h-cobordant to S n (the n-sphere with its standard 

differential structure) iff ~n bounds a contractible manifold, in 

order to calculate bP n+l we are interested in finding and realizing 

"obstructions" to surgering parallelizable manifolds into contractible 
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ones. Section 2 contains some general theorems for framed surgery and 

describes which "obstructions" exist for each n. In [15] it is shown 

that bP n+l is zero for n+l odd. Sections 3 and 4 perform the corres- 

ponding calculations for n +l = 4k and n +l = 4k +2 respectively. 

In section 5, by use of the Thom-Pontryagin construction, the calcula- 

tion of en/bp n+l is reduced to a question of framed cobordism which 

is answered by using results from sections 3 and 4. Many results of 

these notes are summarized in a long exact sequence 

• .. + pn+l ~ en + A n + pn ~ en-I + ... 

which is discussed in the appendix. 

Throughout these notes all manifolds are assumed to be smooth, 

oriented, and of dimension greater than 4. In addition all manifolds 

with boundary are assumed to have dimension greater than 5 (so that 

the boundary manifold will have dimension greater than 4). 

§l. Preliminaries 

A) Oriented vector bundles over spheres. 

In [28] Steenrod gives the following method for viewing oriented 

k-plane bundles over S n as elements of ~n_l(SOk). Let ~ be such 

a bundle. By section 12.9 of [28] the group of ~ may be reduced from 

GL(k,~) to Ok. Since ~ is oriented O k may be further reduced to 

SO k. Cover S n by two overlapping "hemispheres". Since the bundle is 

trivial over each hemisphere, it is determined by the transition func- 

tion at each point of the equator. This function, ~: S n-I + SOk, is 

well defined up to homotopy class by the equivalence class of ~ and 

is the obstruction to framing ~. In addition the map [~]-~-~ [~] sets 

up a one-to-one correspondence between (oriented isomorphism) equiva- 

lence classes of oriented k-plane bundles and elements of ~n_l(SOk). 

For detai]s the reader should see section 18 [28]. By abuse of notation 

we refer to [~] ~ ~n_l(SOk). 

Lemma i.i. Let [~] E Wn_l(SO k) be an oriented k-plane bundle /S k. 

Then [~ @ E] : i,[~] ~ ~n_l(SOk+ l) where we view SO k ~ SOk+ I as 

acting trivially on the last component of ~k+l (i.e. the matrix M 

goes to 

M 

0 "'" 0 
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Proof. Cover S n by two hemispheres ss above. At a point x on the 

equation, the transition function for ~ ~e I is T xid: Bk+l°+ ~k+l 

where T is the transition function for ~ at x o. But this charac- 

terizes the element i. as well. 

Corollar~ 1.2. Oriented stable bundles over S n are in l-1 correspon- 

dence with elements of ~n_l(SO). 

B) Homotopy of the Classical Groups. D, 
Let (0,...,0,1) = e k E S k C ~k+l. Then the projection S0k+ I [~ 

n 

S k given by a~--~c(ek) gives a fibre bundle SO k ~-~S0k+ I ~ S k. If 

M is a manifold, let T(M) denote ti~e tangent bundle of M. 

By weaving together the resulting exact sequences one obtains: 

~k+l(Sk+l) ~k-l(S0k-1) 

(ik) , (pk). "-~ d 
... ) ~k(SOk) .~ ~k(SOk+ l) ~ ~k(S k) --~ ~k_l(SOk) 

i(li+ I ), . .~ 

Zk (SOk+2) ~k-i (sk-i) 

: 

Dia~ra m 1 

where dk: ~k(S k) ~ ~k_l(S0k) is the induced boundary map. By direct 

computation one checks that under d k the generator is taken to 

T(S k) E Zk_l(SO k) and that, under IPk_l),: ~n_i/SOk) ÷ ~n_l(Sk-l), a 

k-plane bundle ~k over S n is taken to o(~k), the obstruction to 

finding a section (c.f. [28] §34.4). When n = k, 0(~ k) = x(~k), the 

Euler class [28]. Since ×(T(sk)) = x(S k) generator where x(S k) = 

{02 kk odd even is the Euler number, we have that the dashed maps are 

multiplication by 2 or 0 as indicated. This allows us to calculate the 

order of T(S k) ~ ~k_l(SOk). When k is even (pk), takes T(S k) to 
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twice the generator and thus ~(S k) has infinite order. Whe~ k is 

odd, twice the generator of ~k Sk is in im Pk* so that T(S k) has 

order at most 2. Since S k is parallelizable iff k = l, 3 or 7 [3] 

we have 

k even 

Lemma 1.3. order T(sk) = Ii k 1,3,7 I 

L 2 otherwise 

From the bundle exact sequence, we know that (ik).: ~jSO k~ ~jSOk+ 1 

is mono (resp. epi) unless j = k -i (resp. j = k). Thus 

ker(~k_l(SO k) ÷ ~k_l(SO)) = ker((ik)l: ~k_l(SOk ) + ~k_l(SOk+l)) = 

im(dk: ~k Sk ÷ ~k_lSOk). Applying Lemma 1.3 we obtain the first part of 

li k even 
Theorem 1.4. (1 ker(~k_l(SOk) ÷ ~k_l(SO)) ~ k = 1,3,7 

2 otherwise 

(2 c°ker(~k(S0k) + ~k (SO)) ~ IZ2 k = 1,3,7 

L0 otherwise 

(3 Let VN,N_ k be the Steifel manifold of N -k frames 

in N space. We have a bundle SO k ~ SO N ~ VN,N_ k. If N is large 
P, 

and k = 3,7, ~k(SON) --> ~k VN,N-k) is onto. 

i k 
Proof. To prove (2) we need only investigate ~kSOk ~ ~kSOk+l 

~7-f'--- _._k+l) ~ ~kSOk+2 as the last group is also ~kSO. (ik+l),k is always 

epi. If k is even we see, from Diagram l, that dk: ~k S ÷ ~k_l(S0k) 

is mono and thus that ik. is epi. If k is odd but unequal to i, 

3, or 7 the relevant part of Diagram 1 is 

Z 

ik. 
~kSO k ~ ~kSOk+l ~ 2Z 

I 

l(ik+l), 

~kSOk+2 

and a trivial diagram chase shows that (ik+iZk) , 

3 or 7 we have 

is epi. If k = l, 
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WkSOk ~kSOk+l 

( i k ~ l ) *  

~kSOk+2 

which concludes the proof. 

(3) The bundle structure is given in [28] §7. 

sequences: 

This gives the 

P~ 
~k(SON) ) ~k(VN,N_k ) --~ ~k_l(SOk) --~ Wk_l(SO N) 

and the result now follows from (1). 

We conclude this section by giving some results of Bott and 

Kervaire. 

Theorem 1.5. 

(i w.(U) 

(2 w.0 

are 

is periodic with period 2, Wo U = 0, and Wl U = Z 

is periodic with period 8 and the actual homotopy groups 

! 

i rood 8 0 I 2 3 4 5 6 7 ] 

0 0 0 
,.] 

(3 

(4 

wi 0 ~2 ~2 0 ~2 

For all j, wj(U/SO) ~ ~j_2(SO) 

For all j, w2j(Uj) ~ Zjl. 

Proof. (1) is proved in complete detail in [21] where a proof of (2) 

is also indicated. Both (2) and (3) can be found in [4] and (4) occurs 

in [5]. 

C) Some theorems of Whitney 

Definition. An embedding M C N of manifolds is proper if ~N N M = ~M 

and M is transverse to ~N. 

Theorem 1.6. Let L ~ and M m be compact proper submanifolds of N n, 

+m = n~ such that L and M intersect transversely and the inter- 

section number of L and M is zero. (The intersection number is an 
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integer if L, M and N are oriented, and changing orientations changes 

its sign. If L, M or N is nonorientable, the intersection number is 

in Z2.) If ~,m > 2 and N is simply connected, then there is an 

ambient isotopy h t of N such that hi(L) ~ M = 0. 

Proof. Whitney's intersection removal technique is in [31]. See also 

Milnor [20]. 

The same technique yields 

Theorem 1.7. Let f: M m ÷N 2m be an immersion, M closed, with self- 

intersection number zero. (If m is even and M and N are oriented, 

the self intersection number is an integer. If M is odd, of if M or 

N is nonorientable, it is in Z2.) If m > 2 and N is simply con- 

nected, then f is regularly homotopic to an embedding. 

As a corollary of this theorem (and the approximation of continuous 

maps by immersions, and the fact that the self intersection number of an 

immersion can be changed arbitrarily without changing its homotopy type) 

we have: 

Theorem 1.8. If N 2k is simply connected, k > 2, then any ~ E ~k(N) 

can be represented by an embedded sphere. 

Theorem 1.9. Let f: (Mm,~M) ÷ (N2m-l,~N) be a continuous map such 

that fl~M is an embedding. Then f is homotopic to an immersion keep- 

ing fl~M fixed. 

Proof. See [32]. 

Definition. Let M and N be closed manifolds. Immersions fi: M ÷ N, 

i = 0,i, are concordant if there is an immersion f: M × I ÷ N x I such 

that F-I(N x {i}) : M x {i} and FIM x {i} : Fi, i = 0,i. 

Corollary I.i0. Let M m and N 2m be closed manifolds. Two embeddings 

fi: M + N, i = O,1, are homotopic if and only if they are concordant as 

immersions. 

Proof. If F: M x I ÷ N x I is a concordance, then ~oF: M x I ÷ N is a 

homotopy, where ~: N x I ÷ N is projection onto N. If h: M x I ÷ N 

is a homotopy from fo to fl' let H: M x I + N × I be given by H(x,t) : 

(h(t),t). Applying Theorem 1.9 to H, we obtain a concordance from f0 

to fl" 
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§2. Some theorems on framed surgery 

Let M be an oriented smooth manifold. Suppose that surgery is 

performed via the embedding f: S k × D n-k ~ M n to obtain a manifold 

M' = (M - f(S k xDn-k)) U D k+l xS n-k-l° (We will always assume 

f(S k x D n-k) C Int M.) The "trace" W of the surgery is obtained by 

attaching the "handle" D k+l x D n-k to M x I by identifying 

(~D k+l) x D n-k with f(S k x D n-k) x {1}. Thus ~W = M' - M. Let cN(x) 

denote the trivial N-plane bundle over X. (We will write cN when 

the base space is clear from the context.) 

Definition. A framed manifold (M,F) is a smooth manifold M together 

with a framing F of T(M) 0 ~N(M) for some N > O. A framed surgery 

of (M,F) is a surgery of M (as above) together with a framing G of 

• (W) 0 ck(w) (k > N-l), where W is the trace of the surgery, satis- 

fying GIM F 0 ~k-N+l tk-N-i = , where is the standard framing of 
k-N+l 

c (Here M is identified with M × 0 C W, and T(W)IM is identi- 

fied with TiM) 0 e I by using the inward normal vector field on MC~W.) 

Restricting G to ~W -M = M' we obtain a framed manifold (M',F'), 

the result of the framed surgery on IM,F). (T(W)IM' = TIM') $ e I via 

outward normal field on M'.) 

Remarks. 

l) There is a corresponding definition of framed cobordism. Two 

closed framed manifolds (M,F) and (M',F') are framed cobordant if 

there is a compact framed manifold (W,G) such that ~W = M M' 

GiM = F~ and GIM' = F'. (More precisely, this means there exist inte- 

gers i,j,k > 0 such that G ~ tilM = F ~ t j and G ~ tiIM ' = F' t k . 
M 

Again we identify T(W)IM with T(M) ~ e l, and ~(W)IM' with 

T{M') 0 e 1.) It is easy to check that framed cobordism is an equiva- 

lence relation. Clearly if (M',F') is obtained from (M,F) by a 

finite sequence of framed surgeries, then (M',F') is framed cobordant 

to (M,F). Conversely (M',F') is framed cobordant to (M,F) implies 

that (M',F') can be obtained from (M,F) by a finite sequence of 

framed surgeries (compare Milnor [2]). 

If (M1,F l) and (M2,F 2) are framed manifolds, (M1,F1) # (M2,F 2) 

denotes their framed connected sum. (See [lO].) The set of framed 

cobordism classes of framed closed manifolds forms an abelian group 

under #. 

2) If F is homotopic to F', then clearly (M,F) is framed 

cobordant to (M,F'). By an easy obstruction argument, homotopy classes 

of framings of T(M) 0 N for any fixed N are in one-to-one corre- 
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spondence with homotopy classes of framings of T(M) ~ e I . Thus our 

definition of framed cobordism gives the same equivalence classes as 

the definition in Kervaire-Milnor [15]. 

3 The following conditions are equivalent: 

i M is s-parallelizable ("framable")--i.e. the bundle 

T(M) ~ e N is trivial for some N. (M is p_arallelizable 

if T(M) is trivial: "s-parallelizable" means "stably 
• t, parallellzable .) 

ii T(M) ~ E 1 is trivial. (This is the definition Kervaire- 

Milnor [15] gives for s-parallelizable.) 

lii M is a ~-manifold (i.e. there is an N such that M 

embeds in R N with trivial normal bundle). (See [15] 

and [ 20 ] . ) 

(i) ~ (iii can be strengthened as follows: Let i: M n + R n+k 

be an embedding, k large. Then 

SO 

T(M • ~(i) : ~(Rn+k)IM : c n+k 

e N • T(M ~ v(i) : e N+n+k 

(~ : normal bundle) 

4) A manifold with boundary is s-parallelizable and only if it 

is parallelizable. (See [15].) 

Lemma. Suppose N is large. Then if F is a framing of e N @ T(M), 

there exists a framing F' of ~(i) such that F @ F' ~ t N+n+k, and 

any two such F' are homotopic. Conversely, if F' is a framing of 

~(i), there exists a framing F of e N ~ T(M) such that F ~ F' = 

t N+n+k, and any two such F are homotopic. 

Proof. We will show that if ~k and ~k are vector bundles over the 

manifold M n with k > n+l, such that ~k ~ Z ~ ek+~, and F is a 

framing of ~k, then there exists a framing F' of ~, unique up to 

homotopy, such that F ~ F' = t k+~. F defines a map 0: M ~ Vk+£, k. 

Since Vk+~, £ is k-i connected, n < k implies that ~ is null 

hometopy (by obstruction theory). Thus by the homotopy lifting property 

of Vk+ Z ÷ Vk+k,i, ~ extends to a map M ÷ Vk+k,k+ Z. Thus F' exists. 

Suppose F" is another framing of H i such that F @ F" ~ t k+i. Then 

F' and F" differ by a map e: M + SOz, and if i: SOi+ SOk+£, 

i o e : 0. But i.: ~iSO k ~ ~iSOk+ Z for i < k-l, so since n < k-l, 

i.[e] : 0 + [~] = 0 (by obstruction theory). Thus F" : F. 

Definition. Suppose that (M1,F1) , (M2,F 2) are normally framed manifolds 
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(i.e. F i is a framing of an embedding fi: Mi C R N N large) 

(MI,F I) and (M2,F 2) are normally framed cobordant if there is a 

manifold W with ~W = M I U M 2 and an embedding g: W ~ R N x I such 

that int W ~ ~(R n x I) = ~ and glMi = fi' with a framing G of v(g) 

such that GIM i = F i. 

The set of normally framed cobordism classes of closed normally 

n under connected sum. By the lemma framed manifolds forms a group ~f 

n is canonically isomorphic to the group of and remark 2) above, ~f 

(tangentially) framed cobordims classes of (tangentially) framed mani- 

n is isomorphic to the n-stem ~ (S), folds• Pontryagin proved that ~f n 

the correspondence being the Thom-Pontryagin construction. For a proof, 

see [22]. In these notes, a "framed manifold" will usually mean a 

manifold with a framing of its stable tangent bundle. Normal framings 

are used only when the Thom-Pontryagin construction is needed. 

Theorem 2.1. Let M be a compact framed manifold of dimension n > 4 

such that ~M is a homology sphere. By a finite sequence of framed 

surgeries M can be made [~] connected. 

Proof. This is 5.5 and 6.6 of Kervaire-Milnor [15]. 

This theorem says that for a compact framed manifold, surgery can be 

done to kill all homotopy groups "below the middle dimension." There- 

fore, by Poincar@ duality, we have: 

Corollary 2.2. Suppose that M n is compact, framed, n odd > 5, and 

~M is a homotopy sphere (resp. ~M = 0). By a finite sequence of 

framed surgeries M can be made contractible (resp. a homotopy sphere). 

Thus bP n = 0 for n odd. 

Surgery can be completed in the middle dimension of an even dimen- 

sional framed manifold if the middle homology group can be represented 

in a special way: 

Theorem 2.3 Let M 2k k > 3, be a compact framed (k-l)-connected 

manifold, ~M a homotopy sphere (resp. ~M = ~). Suppose there is a 

basis ~l,...,~r, BI,.•.,B r of Hk(M) such that 

(i) ai'aj = O, Bi'Bj = ~ij for all i,j ("." is intersection 

number. Such a basis is called (weakly) symplectic). 

(2) The ~i can be represented by disjoint embedded spheres with 

trivial normal bundles. (Note that the ~i are spherical by the 

Hurewicz theorem.) 
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Then M can be made contractible (resp. a homotopy sphere) by a finite 

sequence of unframed surgeries. The surgeries can be framed unless 

k = 3 or 7. 

Proof. All but the last statement is included in the proof of Theorem 4 

of Milnor [20]. As shown in §6 of Kervaire-Milnor [15] (see also the 

proof of 4.2b below), the obstruction to framing a surgery performed via 

an embedding f: S k ×D k ~ M 2k lies in ~k(SO2k+N) = ~k(SO), and this 

obstruction can be altered by any element in the image of the map 

i,: ~k(SOk) ~ ~k(SO). But i, is surjective for k ~ 1,3,7 (1.4), so 

any surgery can be framed. 

When can the hypotheses of this theorem be satisfied? If k is 

even (i.e. n ~ 0(4)), we will see that Hk(M) has a symplectic basis 

if and only if the signature (index) of M is zero. However, (2) always 

holds for k even, assuming (i) (see §3). If k is odd, k ~ 3,7, 

Hk(M) has a symplectic basis, and the normal bundles of embedded spheres 

representing this basis are trivial if and only if the Kervaire (Arf) 

invariant of M is zero (§4). If k = 3 or 7, (i) and (2) both hold, 

but there is an obstruction to framing the surgery. In §4 this obstruc- 

tion and the Kervaire invariant are shown to be manifestations of a 

single invariant which can be defined for all odd k. 

Corollary 2.4. bP 6 = bP 14 = 0. 

§3. Computation of bP 4k 

In this section we compute bP 4k by defining a surjective map 

from Z to bP 4k, and determining its kernel. 

Let Z E bP 4k say Z = ~M 4k with M parallelizable. If Z also 

bounds a contractible manifold, Z = 0 in bP 4k, thus ~ = 0 if we can 

kill the homotopy of M by framed surgery. Theorem 2.1 allows us to 

assume that M is (2k-1)-connected, which places us in the situation 

described by Theorem 2.3, the hypotheses of which are satisfied iff the 

signature of M is zero. 

Definition. Let M 4k ~e a compact oriented manifold with H2kM free 

(e.g. M (2k-1)-connected). The signatur e (index) of M c(M) is the 

situature of the quadratic (i.e. symmetric bilinear) form < , >: 

H2kM ~ H2kM ÷ Z given by the intersection pairing <~,B > = ~'B. 

Remark. a(M #M') : a(M) + o(M') where # is connected sum. 

Proof. < , > is dual to cup product, i.e. 
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H2kM ~H2kM < T >) 

~PD ~ PD 1~ commutes 
H2k(M, M) ~H2k(M,~M) ~ ) H4k(M,~M) 

and (c.f. Milnor [19]) the signature of the cup product is additive 

with respect to connected sums. 

Theorem 3.1. Let (M4k,F) be a compact framed (2k-1)-connected mani- 

fold with ~M a homotopy sphere (resp. ~M = 0). Then (M,F) can be 

framed surgered into a contractible manifold (resp. a homotopy sphere) 

iff ~(M) = 0. 

Corollary 3.2. The Hirzebruch index theorem {below) implies that, if 

M 4k is framed and ~M = 0, then a(M) = 0 and hence M is framed 

null cobordant. 

Proof. (3) If a closed manifold N 4k bounds a compact manifold, then 

a(N) = 0 (c.f. [17]). By the above remark, c is thus an invariant 

of oriented cobordism. Therefore, if ~M = 0 and M can be surgered 

into a homotopy sphere Z, c(M) = a(Z) = 0. 

Now suppose that N 4k is compact and ~N = Z = ~D with D con- 

tractible. We claim that c(N) = a(N U D). Let V = N U D and let 
Z 

i: N + V be the inclusion. Then we have the commuting diagram 

H2kv ~H2kv ~ ,~ H4k(v) ~ Z 

~li*~ i* ~li* 

H2k(N,~N) ~ H2k(N,~N) ~ ~ H4k(N,SN) ~ Z 

As < , > is dual to ~, the claim follows. If 8M : ~ and M can be 

surgered to D, let W be the union of the traces of the surgeries. 

Then ~W ~ M U (D U Z x I). Thus, by our claim, c(M) = c(~W) = 0. 

(~) We will verify (I) and (2) of Theorem 2.3. Since ~(M) = 0, ~ a 

symplectic basis, ~l,...,~r, B1,...,8 r for H2k(M) (c.f. [26]). By 

the Hurewicz theorem, each ~i is spherical and can be represented by 

an embedding fi: S2k ÷ M4k (Theorem 1.8). Since ai-~j = 0, the 

fi(S 2k) can be isotoped so as to be disjoint {Theorem 1.6). Let v(f l) 

be the normal bundle. [v(fl)] E W2k_l(SO2k) , and we have the commutative 

diagram (c.f. §lB) 
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~2k(S 2k) d2k~ ~2k_l(S02k ) 

~P2k-i 

~2k_l(S 2k-l) 

i2k_l)* 
W2k_l(SO2k+l) : W2k_l(SO) 

Now T(S 2k) @ v(f i) : f *(T(M) so since T(M) and ~(S 2k) are 
i 

stably trivial, so is v(fi) , i.e. i.[v(fi)] : 0 E ~2k_l(SO). Thus 

[v(fi)] ~ Im a. But P2k_l[v(fi)] = X(v(fi)).gen = (~i.~i)gen = 0, and 

Im d2k ~ Ker P2k-I = 0, since P2k_id2k is multiplication by 2, so 

[v(fi)] = 0, i.e. v(fi ) is trivial. 

Theorem 3.3. Let M 4k be a framed (2k-l) connected manifold whose 

boundary is empty or a homotopy sphere. Then c(M) is a multiple of 8. 

Proof. Pick a E H2kM and let a' E H2k(M,SM) be its Poincarg dual. 

The mod 2 computation a' U a' = sq2ka ' = V 2k kJ a' = 0 (V 2k., the 

2kthwu class, is zero since ~(M) is stably trivial) shows that 

~ a (and hence its dual < ,> ) is always even i.e. < , > is an 

even quadratic form (c.f. [20] for a more geometric proof). Since the 

signature of an even unimodular integral quadratic form is a multiple 

of 8 (c.f. [26]), we need only show the: 

Assertion. < , > is unimodular. 

Proof. We have the commuting diagram 

H2k(M,~M) i ~) H2k(M) PD 
H2k(M,~M) ~ H2k(M) 

\ / 

f 
Hom(H2kM,Z) <~,'> 

Where we have abused notation by not distinguishing between elements in 

isomorphic absolute and relative groups (UM is the fundamental class 

of M). < , > is unimodular iff the map 

H2kM . ~ Hom(H2kM,Z) 
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is an isomorphism. But the above diagram factors this map into the 

composition of three isomorphisms. 

Theorem 3.4. Let k > 1 and t E Z. Then ~ a framed 4k manifold 

(M,F) with ~M a homotopy sphere o(M) = St. 

A very complete proof can be found in [7] (see also [23]). The mani- 

folds are constructed by plumbing disc bundles over spheres. 

We now describe the map mentioned in the first paragraph of §3. 

Definition. bk: Z ~ bP 4k is defined as follows. Let bk(t) = [~M 4k] 

where M 4k is a framed manifold with signature 8t having boundary a 

homotopy sphere. 

In the Appendix we will see that b k can be thought of as a 

"boundary" map. 

Lemma 3.5. (1) b k is well defined, i.e. if M 1 and M 2 are as above, 

~M I is cobordant to ~M 2. 

(2) b k is surjective. 

Proof. For (1), it suffices to show that the connected sum ~M # ~M', a 

homotopy sphere, is cobordant to zero. From the boundary connected sum 

W = M #-M' (c.f. [1]). ~W = ~M # ~M'. But o(W) = 0 so, by Theorem 

3.1, W can be (interior) surgered into a contractible manifold. (1) 

follows from (2) is immediate from Theorem 3.4. 

Corollary 3.6. bp 4k ~ Z/ker b k. 

We now try to determine ker b k. 

Suppose t E ker b k. Then we have a framed manifold (M,F) with 

signature 8t whose boundary, Z, is a homotopy sphere that bounds a 

contractible manifold D. Attaching D to M by identifying ~M 

with ~D gives an almost framed closed manifold N of dimension 4k 

with c(N) = 8t. (An almost framed manifold is a pair (N,G) where G 

frames T(N)IN_{x} for some x E N.) Conversely, given an almost 

framed closed manifold N 4k with o(N) = 8t, let D C N be any embedded 

disc. Then N - int D is framed and has signature 8t and boundary 

S 4k-l. This gives: 
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Theorem 3.7. t E ker b k if ~ an almost frsmed closed 4k-manifold 

with signature 8t. 

This theorem leads us to investigate the signature of almost framed 

closed manifolds. Our tool is of course the: 

Hirzebruch signature (n@e index) theorem. For any closed manifold M 4k, 

o(M) is the Kroneker index <Lk(PI(M),...,Pk(M)),UM > where L k is a 

rational function and the Pi's are the Pontrjagin classes (see [19] or 

[12]). The only fact that we will use about L k is that 

Lk(Xl,...,x k) = SkX k + terms not involving x k where 

22k(2 k-1 _ I)B k 

s k : 
(2k)! 

(B k is the k th Bernoulli number.) 

Let (M4k,F) be an almost framed closed manifold. Since Pi(M) = 0 

i < k, c(M) = SkPk(M). We will see that the obstruction to extending 

the almost framing to a stable framing of M (i.e. a framing of 

T(M) ~ e N) actually determines a(M) and is thereby useful in calcu- 

lating ker b k and consequently bP 4k. 

The obstruction OIM,F) ~ W4k_l(SO) ~ Z (Theorem 1.5 (2)) can be 

defined as follows. Let x ~ M be the point where F is not defined. 

Next choose x E U ~ D 4k and let F' be the usual framing of D 4k 

(which orients D 4k consistently with M). OCM,F) ~ W4k_l(SO) is the 

obstruction to forcing agreement of the stable framings F and F' on 

U - {x} ~ S 4k-I 

Let T: M ÷ BSO be the classifying map of the stable tangent 

bundle of M. Since M - {x} is stably parallelizable, TIM - {x} is 

null-homotopy and thus factors (up to homotopy) as 

M ~ BSO 

s2k 

where ¢ collapses to a point the complement of an open disk containing 

x. Hence ~ ~, a stable oriented vector bundle /S 4k ~ ¢*~ is the stable 

tangent bundle of M. As usual (c.f. §lA) we view [~] E ~4k_l(S0). 

one checks that [~] = ± O(M,F). 

The above factorization of ~ shows that the Pontryagin classes 

of almost framed 4k-manifolds can be determined by examining the k th 

Pontryagin class of stable vector bundles /S 4k. 
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Theorem 3.8. (c.f. [18]). If ~ is a stable vector bundle over S 4k, 

then pk(~) = ± ak(2k -l)I[~] where ak = II k even 
{2 k odd 

Proof. One task is to make sense of the above equation as a priori the 

two sides lie in different groups. We will see that each group is iso- 

morphic to Z and hence, up to sign, they are canonically isomorphic 

to each other. 

By definition pk(~) = ± C2k(~ C) 
complexification of ~) and, just as 

~4k_I(UN)E (N large). In fact ~C is 

the inclusion. 

(the 2k th Chern class of the 

[~] ~ ~4k_I(SON) ' [~C] 

ik(~) where i: SO N ÷ U N is 

C m Let Wm, ~ be the space of complex orthonormal ~ frames in 

(cf. [28]). 

C2k((~N) C) E H4k(s3k,~4k_l(WN,N_2k+l)) ~ ~4k_I(WN,N_2k+I), is the 

obstruction to extending an N-2k+l dimensional complex framing of 

~C from the 4k-I skeleton to S 4k itself. Equivalently it is the 

obstruction to extending an N-2k+l dimensional framing of ~C from 

the southern hemisphere to S 4k. Since ~C is the obstruction to 

extending to complete framing from the southern hemisphere to S 4k, we 

see that C2k(~C) = p.(~C) where p: U n + Un/U2k_l is the usual pro- 

jection. We have the exact sequence: 

P* 
~4k_I(UN) ' > ~4k_I(WN,N_2k+I) ) ~4k_2(U2k_l) ) ~4k_2(UN) 

By (1.5) (~j(Wm, ~) is calculated in [3]) the above sequence becomes 

P~ 
Z > Z ) Z(2k_l) ! > 0 

Hence p, is multiplication by (2k-l)J. Since we have 

Z Z Z 

~4k_I(SON ) > ~4k_l(UN) ) ~4R_I(WN,N_2k+I ) 

~-~-~>~C ~±C2k(~C) = ±pk(K) 

it remains to show that i, is multiplication by ±a. 

we may work with the stable map i,: ~4k(SO) ÷ ~4k(U). 

exact sequence 

As N is large 

But we have the 
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~4k(U/SO) ) ~4k_l(SO) , > ~4k_l(U) 

?Ii 
Z Z 

' '~ ~4k_I(U/SO) 

and in §IB we have also shown that ~4k(U/SO) ~ ~4k_2(SO) { 0 and 

0 k even 
that ~4k-i {U/S) = ~4k-3 (SO) = 0 k odd The result follows. 

Let M be an almost framed closed manifold. We have: 

Corollary 3.9. Pk(M) : ± ak(2k-l)!O(M,F). 

Corollary 3.10. O(M,F) is independent of F. 

± ak22k-l(22k-i _I)BkO(M,F) 
Corollary 3.11. o(M) = k 

Corollary 3.12. M is s-parallelizable if o(M) : 0. 

In order to completely determine bP 4k some basic properties of 

the J-homomorphism are needed (c.f. [13]). 

Definition. Given n and ~ we define J : Jn,R: ~m(SO~ ) + ~m+~ (S~) 

as follows: Let [~] E Vm(SO~). J(a): S m+~ ~ S ~ is constructed in 

two stages. We view S m+~ as (S m xD Z) U (D m+l × S ~-l) and first 

define J(~) on S m x D ~ as the composition S m x D ~ ~ D R ~ S ~ where 

$(x,y) = ~(x)(y) and c collapses 8D ~ to a point. The second 

stage, extending J(~), is trivial as c o @(8(S m x DR)) is just one 

point. J([~]) is defined as [J(~)]. One then verifies the 

Lemma 3.13. View S m as S m x {0} C S m x D i C S m+~ with F 0 the stan- 

dard normal framing S m C S m + D ~. Given [a] E ~m(SOR), let F~ be 

the framing obtained by "twisting F 0 via a" (i.e. at x E S m, 

F (x) = ~(x)(F0(x)) ). The Thom-Pontryagin construction applied to 

(S m C S£,F ) gives ± J([~]). 

Since 

~m(SO~) J ~ ~m+R (SR) 

~m(SO~+l) J sR+l 
> ~m+R+l ( ) 

commutes (~ is the suspension homomorphism), we obtain the stable J 
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homomorphism J: Wm(SO} ÷Wm(S), where Wm(S) =l~m{Wm+~(S~) ~Wm+~+l(S~+l}} 

is the m-stem. The relevance of the J homomorphism to our work to 

the following: 

Theorem 3.14. Given a E ~m_l(SO), 3 an almost framed closed manifold 

(M m,F) with O(M,F) = ~ iff J(a) = 0. 

Proof. ~ We may assume that F is a framing of M m - int D m with 

D m a closed disc. Now imbed M m in ~N(N large) so that D m is the 

northern hemisphere of the standard m-sphere in ~N. Let F 0 be the 

usual (outward) normal framing of D m C ~N. Let F = F 0 m-i twisted 

• IS m-I 
via ~. Hence the Thom-Pontryagin construction applled to (S ,F ) 

gives ±J(a). Since ~ = O(M,F),F = F sm_l. Thus (sm-I,F) = 

3(M m - int D m, F) so (sm-I,F) is framed null cobordant. Therefore, 

the Thom-Pontraygin construction y~elds q E Wm_l(S). 

S m-1 C D m. Let F 0 be the standard framing of D m C S N 

(N large). Since J(~) = O, a framed manifold (Nm,F) such that 

(sm-I,F D m. Then (Mm,F) is an almost 3(Nm,F) = ). Let M n C N sm_l 

framed closed manifold and O(Mm,F) = a. 

If we let Jk be the order of the image of the stable J homo- 

morphism Z ~ ~4k_l(SO) ~ ~4k_l(S) we get the following: 

Corollary 3.15. The possible values for O(M,F) are precisely the 

multiples of Jk" 

Corollary 3.16. The possible values for q(M) are precisely the 

ak22k-l(22k-i _ l)BkJ k 
multiples of 

k 

In order to (finally) get exact information about bP 4k we need a 

hard 

Theorem of Adams 3.17. [i] [33] Let J: Zm(SO) + Zm(S). 

i) If m ~ 3(4 ), J is injective. 

2) Jk = denominator (Bk/4k). 

Although our primary interest in in 2), l) also has important con- 

sequences. 
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Corollary 3.18. If M is an almost framed closed manifold and dimM 

0(4) then the almost framing of M extends to a complete framing. 

Since homotopy 4k spheres have signature 0, we get: 

Corollary 3.19. Any homotopy sphere is s-parallelizable. 

We have already seen that bP 4k is a finite factor group of Z. 

Let t k be the order of that group, we have (using 3.7 and 3.16) that 

ak22k-l(22k-i _l)BkJ k 
8t k = 

k 

Thus t k = ak22k-2(22k-1 -l)(Bk/4k)Jk and, applying 3.17, this gives 

the final 

Corollary 3.20. bP 4k = Ztk where t k = ak22k-2(22k-1 -1) numerator • 

(Bk/4k). 

§4. Computation of bP n for n = 2mod4. 

We proceed as in §3, computing bP n by studying the kernel of a 

surjective map Z 2 + bP n. 

Suppose that Z E bP n, i.e. Z = ~M 2k, where k is odd, and M 

is a parallelizable manifold. By Theorem 2.1, M can be made (k-l)- 

connected by a finite sequence of framed surgeries. We wish to discuss 

the "obstruction" to a compact, framed (k-1)-connected manifold 

(M2k,F), k odd, satisfying the hypotheses of Theorem 2.3. 

First notice that the intersection pairing HkM ~HkM ~ Z is skew- 

symmetric (since k is odd) and unimodular (by the proof of Theorem 

3.3). Therefore [26] there is a symplectic basis for Hk(M) , i.e. 

there is a basis ~l,...,~r,Bl,...,Br for Hk(M) with intersection 

matrix 

If i] 
As in §3, each ~i is spherical by the Hurewicz theorem, and so if 

k > 2, the ~i are represented by disjoint embedded spheres (by 1.7 

and 1.8). Furthermore any two embeddings f: S k + M 2k representing 

an element ~ E Hk(M 2k) are concordant as immersions by 1.10. Now 
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{4 
f r(M) ~ T(S k) @ v(f) 

SO 

cN(s k) @ f*T(M) ~ cN(s k) @ T(S k) @ v(f) 

N = f* c (S k) @ f*T(M) ( N @ T(M)), so the framing F of sN @ T(M) pulls 
* cN back to give a framing f F of @ f*T(M). If F 0 is the usual 

framing of e N-1 @ T(Dk+l), FoISk gives a framing of 

eN-I @ ~(Dk+l)isk = N T(sk): 

(*) N * IN c @ f ~(M) ~ @ ~(S k) @ u(f) 

f F f o I S  k 

Thus since f*F gives a trivialization of c N @ T(S k) @ v(f), the 

framing F01sk assigns to each point in S k an element of V2k+N,k+N. 

Thus we get an element 

~(f) E ~k(V2k+n,k+n) ~ Z 2 (k odd) 

depending on M, F, and f. We will show that ~(f) does not in fact 

depend on the choice of the embedding f representing ~. Suppose 

f0,fl: S k + M are embeddings representing ~. Let H: S k x I ÷ M x I 

be an immersion concordance between them (1.10). Then we have the 

following bundles and framings over the space S k x I 

(**) c N-I @ H*T(M × I) ~ c N-I @ T(S k x I) @ v(H) • " 
4 J ~ J 

H G GoIS k x I 

where G is the framing of eN-I @ T(M x I) corresponding to F under 

the identification T(M x I) = c I @ T(M), and G O corresponds to F 0 

under T(S k x I) = c I + T(sk). Thus G01sk x I determines a map 

f: S k x I ÷ V2k+N,k+N , which is a homotopy from ~(f0 ) to ¢(fl ) since 

(**) restricted to S k x {i} yields (*), i = 0,1. Therefore we obtain 

a well-defined element ¢(~) E Wk(V2k+N,k+N) ~ Z 2. 

Remark i. In fact it is true that if the embeddings F0,Fl: S k ÷ M 2k 

are homotopic, then they are regularly homotopic. This is an easy 

corollary of Smale-Hirsch immersion theory [27] Ill]. (In fact for 

M = R 2k, @ is identical with Smale's obstruction to homotoping an 

immersion of S k to the standard embedding.) Thus if f0,f I are 
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embeddings representing ~ ~ Hk(M2k), v(f 0) ~ ~(fl ), and so (*) de- 

fines ~(~) indepdnently of the choice of embedding. 

Remark 2. There is an alternate way to define ~, using Smale-Hirsch 

theory. Given ~ E Hk(M2k), M s-parallelizable, there is a certain 

regular homotopy class of immersions f: S k xD k ~ M such that F oi 

represents ~, where i: S k + S k xD k by i(x) = (x,0) (see [24]). 

~(~) is defined to be the self-intersection number of the immersion 

f o i. For a presentation of this definition, see [24] and [30]. 

Theorem 4.2. (a) For k ~ 3,7, ~(~) = 0 if and only if ~ is 

trivial. (b) For k = 3 or 7 (i.e. dim M = 6 or 14), ~(f) is 

trivial, and ~(~) = 0 if and only if the surgery on M via 

f: S k xD k ~ M 2k can be framed. 

Proof of (a), 

SO k ÷ SO2k+N ÷ V2k+N,k+n: 

i, p, 

• -. ~ ~kSO k > ~k(SO2k+N ) ~ ~k(V2k+N,k+N ) 

Vk_l(SO k) • ~ ~k_l(SO2k+N ) 

Consider the long exact homotopy sequence of the bundle 

It is clear from the definitions that ~,~(~) = [~(f)] E ~k_l(SOk). 

For k ~ 3,7, i. is surjective (1.4), so p. is 0, so 2. is in- 

jective. Thus ~(~) = 0 ~=~ [~(f)] = ~,~(~) = 0. 

Remark. Thus for k ~ 3,7, ~(m) can be defined directly as the ob- 

struction to trivializing ~(f), i.e. ~(~) = [~(f)] ~ Ker i~ ~ Z2, 

and the two definitions correspond via the isomorphism 

2.: ~k(V2k+N,k+N) ~ Ker i~. 

Proof of (b). ~(f) is trivial because ker i~ = 0 for k = 3 or 7 

(1.4). As stated in the proof of Theorem 2.3, the obstruction to fram- 

ing the surgery lies in Coker i,. For k = 3 or 7, Im i. is a sub- 

group of ~k(S02k+N) = ~k(SO) of index 2 (1.4), i.e. Coker i. ~ Z 2. 

Furthermore, since Ker i~ = O, p. is surjective, i.e. p.: Coker i~ 

~k(V2k+N,k+N). To see that p,(@) = ~(~), recall the definition of 0: 

A trivialization of ~(f) gives an embedding S k ×D k c M, and we would 

like to frame the trace W = M x I ~_~ D k+l xD k of the surgery of M 

via this embedding: S k x D k 
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~.._1_~0 x D k 

Dk+l 

D / ~ ~ ~ ) k  f x  ~ ~  ."~ D k+l x 0 
x 

We have a framing of the stable tangent bundle of M x I which restricts 

to the given framing F of ~(M) @ c N e T(M x I) I M x {1}. We also have 

a canonical framing F 0 x F~ of ~(D k+l x Dk). Thus comparing F 0 xF~ 

with F on S k x O, we get a map g: S k + S02k+N. Changing the framing 

of v(f) by an element of ~k(SOk) changes the homotopy class of g 

by an element in the image of i,: ~k(SOk) + ~k(SO2k+N). This defines 

0 ~ Coker i,. Now p.(O) is the homotopy class of S k ~ V2k+N,2k+ N 

V2k+N,k+N. p forgets the last k vectors, so p o g compares F 0 

with F on S k × 0 and thus [p o g] = ~(~) ~ ~k(V2k+N,k+N) = Z 2. This 

completes the proof of 4.2. 

Let ~2: Hk(M;Z2) + Z2 be the map 

Hk(M;Z 2 ~ > Hk(M;Z ) ~Z2 ~ eid> Z2 . 

We will show that %2 is a "honsingular quadratic function." 

Definition. Let V be a finite dimensional vector space over Z2, 

< , > a symmetric bilinear form on V. A quadratic function with asso- 

ciated pairing < , > is a function 4: V + Z 2 such that 

4(~+6) : 4(~) + 4(~) + <~,6> . 

4 is called nonsin~ular if < , > is nonsingular. Let ~l,...,ar, 

B1,...,B r be a symplectic basis for (V,< , >). Define the Arf invar- 

iant of (4,< ,'>) by 

A(~,<, >) : ~ @(~i)@(B i) 
i 

Remark. It's not hard to show that A is independent of the choice of 

symplectic basis. 
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Proposition 4.3. A and rank V are complete invariants of the iso- 

morphism class of (V,< , >,~). (Isomorphism class means the obvious 

thing.) 

Proof. See [2]. 

Proposition 4.4. Let M,@ be as above. Then for ~,B E Hk(M) 

represented by embedding spheres, 

¢(~ +B) = ¢(~) + ¢(B) + (~'B) 2, 

where (~.B) 2 is the intersection number of a and B reduced mod 2. 

Proof. Let f,g: S k + M be embeddings representing a,B respectively. 

Joining f(S k) and g(S k) by a tube gives an immersion f #g repre- 

senting ~ + B. Observe that the definition of ¢ makes sense for an 

immersion (it is an invariant of regular homotopy) and it is not hard 

to see that 

(*) ¢(f #g) ~ ~(f) + ¢(g) 

The self-insersection number of the immersion f #g is just (a.B) 2. 

Thus if (a'B) 2 = O, f #g is an embedding (after isotopy) representing 

a +B, so the proposition is true by (*). If (a.B) 2 = l, let h: S k ÷ M 

be a small null-homotopic immersion with self-intersection number 

I(h) = i. Then by 1.7 f #g #h is regularly homotopic to an embedding 

representing ~ + B, so 

¢(a + B) : ¢(f #g #h) = ¢(f) + ¢(g) + ¢(h) : ¢(a) + ¢(B) + ¢(h) 

Thus we must show that ¢(h = i : (a'B) 2. 

For a given manifold M, h is obtained by composing a fixed 

immersion ho: S k + R 2k having self-intersection number l, with a 

coordinate embedding R 2k ÷ M. (For a definition of ho, see [6].) 

Since ¢(h) = @(ho) , it is enough to check that ¢(h) = i for some 

particular choice of M. Let M = S k xS k. Hk(Sk xS k) ~ Z @ Z, with 

generators a,B represented by the embeddings a,b: S k + S k xS k given 

by a(x) = (X,Xo) , b(x) = (Xo,X). Clearly (a,b) 2 = 1. Let 

d: S k ÷ S k xS k be the diagonal map d(x) = (x,x). d is an embedding 

representing ~ + B. Therefore ¢(d) = ¢(a) + ¢(b) + ¢(h) for any 

framing F of N @ T(S k xSk). Let F be the framing of 

e' @ T(S k xS k) which is the restriction of the standard framing of 
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R 2k+l to the standard embedding S k ×S k C R 2k+l. Then it is clear 

that ~(a) = ~(b) = O, so ~(h) = ~(d). (Or one can produce a framing 

F such that ~(a) = ~(b) = 0 by the proof of Proposition 4.11 below.) 

For k ~ 3,7, ~(d) = [~(d)] = [T(sk)] ~ 1. It remains to show that 

~{d) = 1 for k = 3 or 7. 

It should be possible to give a direct proof that ~(d) = i. In 

lieu of such, here is an alternative proof of Proposition 4.4 for 

k = 3 or 7. It is sufficient to show that if h: S k + R 2k is an 

immersion with self-intersection number l, then ~(h) = i. But it is 

easily seen that for any immersion f: S ~ ÷ R 2~, ~(f) is precisely 

Smale's obstruction to regularly homotoping f to the standard embed- 

ding of S ~ in S 2~ [27]. {It follows that ~(f) equals the self- 

intersection number of f --this is immediate when ~ is odd, because 

~(f) and the self-intersection number are in Z 2. (See [27].) There- 

fore ~(h) = i. 

Corollary 4.5. ~2: Hk(M;Z2) ÷ Z2 is a nonsingular quadratic function 

with associated pairing <~,B> = (~.8) 2. 

Definition. Let {M2k,F), i odd be a compact framed (k-1)-connected 

manifold such that Hk(M;Z) is free abelian. The Kervaire (Arf) 

invariant c(M,F) is defined as 

A(~2, (,)2 ) E Z 2. 

Remark. By a previous remark, for k ~ 3,7, c(M,F) does not depend 

on F, so for k ~ 3,7 we let c(M) = c(M,F). 

Theorem 4.6. Let (M2k,F), k odd, be a compact framed (k-1)- 

connected manifold with 8M a homotopy sphere (resp. empty). (M,F) 

can be made contractible (resp. a homotopy sphere) by a finite sequence 

of framed surgeries if and only if c(M,F) = O. 

Proof. 

Hk(M;Z). 

(~) Let ~l,...,~r,B1,...,Br be a symplectic basis for 

Suppose c(M,F) = O, i.e. ~ ~(~i)~(Bi) = 0 E Z 2. 
i 

' ' ' for Claim. We can find a new symplectic basis ~,...,~r,B1,...,Br 

Hk(M;Z) such that ~(~) = 0 for all i. Assuming this, Theorem 4.2 

(a) implies that the ~ are represented by embedded spheres with 

trivial normal bundles. By Theorem 2.3, the homotopy groups of M can 

be killed by surgery. By 4.2 (b) the surgery can be framed even when 

k = 3 or 7. 
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Proof of Claim. If 

~! : {~i 

i Bi 

¢(ai)¢(Bi) : O, take 

if ¢(~i ) : 0 

if ¢(~i ) £ 0 (and hence ¢(B i) : O) 

Since 

of i. 

B i if ¢(~i ) : 0 

B~ : a i if ¢(~i ) ~ 0 

X ¢(~i)¢(~i ) : O, ¢(~i)¢(Bi) ~ 0 for an even number of values 

Suppose ¢(~i)¢(Bi) ~ 0 and ~(~2)¢(B2) ~ O. Let 

~ : B 2- B 1 B~ : ~l 

It is easy to check that replacing ~I,~2,BI,B2 by ~,a~,B~,B~ gives 

a new symplectic basis with ¢(~) = ¢(~) = O. Thus for each pair of 

values of i such that ~(~i)¢(Bi) = O, we can replace the four basic 

elements involved with new ones such that ¢(~i ) = O. 

(3). By an argument completely analogous to the one given in 

the proof of 3.1, it suffices to show that if (M,F) is as in the 

theorem and there is a framed manifold (V,G) with ~V = M and 

GI~V : F, then c(M,F) : O. Let i.: Hk(M) ~ Hk(V) be induced by 

inclusion. 

Assertion (1). i.(~) = 0 ~ ¢(~) = O. Represent ~ by an embedding 

f: S k ÷ M. Since V is framed, we can perform surgery to make V 

(k-1)-connected {without touching M = V) by Theorem 3.1. Now i,(~) = 

0 ~ i o f is a null-homologous singular sphere in V, and therefore 

i o f is null-homotopic, since HkV ~ ~k V by the Hurewicz theorem. 

Therefore i o F extends to a continuous map g: D k+l ÷ V. By 1.9 g 

is homotopic rel S k to an immersion. Consider the following commu- 

tative diagram of bundle isomorphisms and framings {where i o f = f 

for simplicity): 

~N-I 
E 

N 
E 

G  ols k 

* cN f ~(~l ~ ) @ T(S k) @ v(f) 
d 

f F foIS k 
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This diagram shows that the map S k + V2k+N,k+N representing ¢(~) 

lifts to a map D k+l ~ V2k+N,k+N , i.e. ¢(~) = 0, which proves asser- 

tion (1). 

Assertion (2). There is a symplectic basis ~l,...,~r,B1,...,Br for 

Hk(M;Z) such that ~i E Ker i. for all i. Together with (i), this 

implies that c(M,F) = ~ ¢(~i)¢(Bi) = 0, as desired. 
i 

........ ) Hk+I(V,M) 

l~ ~v 
• .. > Hi(v) 

(Z coefficients) For (2), consider the commutative diagram 

i. j. 
~ .~ Hk(M) ~ Hk(V) ~ Hk(V,M) ~''" 

"r~ ~m T N~v /I~m 

* j. Hk+l(v i ~ Hk(M) 6, Hk+l(v,M ) > ) > ... 

Now (u ~ UM)-(v N UM ) = (u tJ v) ~ ~M (intersection is dual to cup 

product), so it will suffice to find a symplectic basis ul,...,Ur, 

Vl,...,v r for Hk(M;Z) such that u i E Ker 6k' i = 1,...,r. 

Lemma 4.7. Ker 6 k is its own annihilator with respect to the cup pro- 

duct pairing, i.e. u U v = 0 for all v E Ker 6k ~=~u ~ Ker S k. 

Proof. ~2k(i*~ U B) = ~ U ~k B for every ~ E Hk(v), B ~ Hk(M) [29]. 

= H2k+l Now ~2k: H2k(M) ~ (V,M) (both groups are Z, and ~2k is sur- 

jective by the diagram), so u E Ker ~k = Im i ~ u kJ v ~ 0 for all 

v ~ Ker ~k" Conversely, if u E Hk(M) and u tJ v = 0 for all 

v E Ker ~k = Im i , then ~ U ~k u = ~2k(i ~ LJ u) = 62k(0) = 0 for all 

E Hk(M). Since the cup product pairing is nonsingular, ~k u = 0. 

Remark. The proof of this lemma used only that V and M 2k = ~V are 

oriented manifolds and Hk(M) is free. 

Corollary 4.8. Ker ~k is a direct summand of half rank of Hk(M). 

Proof. Consider the following diagram with exact rows CA -- Hom(A,Z)): 

0 % Ker 6 k f % Hk(M) > R 0 
I i 

0 ) R ~(Hk(M)) ~ (Ker ~) ~ 0 

(R = Coker f) 
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The middle arrow is an isomorphism since U is a nonsingular pairing 

(by Poincar4 duality). The left dotted arrow exists because Ker 6k 

annihilates itself under U. It is an isomorphism because Ker 6 k 

equals its annihilator. A diagram chase then proves that the second 

dotted arrow is well-defined and injective. Therefore R is free, 
, 

and so Ker 6k ~ R ~ R. (Thus the right dotted arrow is an isomorphism 

and both sequences split.) 

To complete the proof of assertion (2), let Ul,...,r r be any 

basis of Ker ~k' and let Vl,...,v r be a "dual basis" of R 

(Ker 6k)* i.e u i [9 vj ~ij Ker 6 k annihilates itself under U , • = , 

so u i U uj = 0. However, v i LJ v i may be nonzero. Let v:l : 

V i (V i U vi)u i • Then it's easy to check that Ul, ,Ur,V~,. r' 
- "'" "'' r 

is a symplectic basis for HkM. 

This completes the proof of Theorem 4.6. 

Now we apply Theorem 4.6 to the computation of bP n for n = 2k, 

k odd, ~ 3 or 7. (Recall that bP 6 = bP 14 = 0 (Corollary 2.4).) 

We wish to define a map 

bk: Z 2 ÷ bp 2k 

by bk(t) = ~M, where M is any compact framed (k-1)-connected 2k- 

manifold with 8M a homotopy sphere and c(M) = t. To show that b k 

is well-defined, we must prove: 

Theorem 4.9. (a) c(M I) : c(M 2) ~ ~M 1 is h-corbordant to 8M 2. 

(b) For each odd k ~ 3 or 7 and each t 6 Z 2 there is a framed 

manifold M 2k such that ~M is a homotopy sphere and c(M) = 5. 

Thus b k is surjective. 

Proof. Ca) Let F 1 and F 2 be framings for M 1 and M2, and let 

(N,G) = (M1,F l) # (M2,F 2) be the framed boundary connected sum (cf. §6). 

~N = ~M I # -3M2, and c(N) = c(M l) + c(M 2) = O. Therefore, by Theorem 

4.6, N can be made contractible by framed surgeries. Thus 

~M I # - ~M 2 bounds a contractible manifold, i.e. ~M 1 is h-cobordant 

to ~M 2 . 

(b} If t = O, take M 2k = D 2k. If t = i, M 2k is constructed 

by plumbing two copies of the tangent disc bundle of S k (see [7] or 

[23]). 

This theorem shows that bP 2k : 0 if b k = 0 and bP 2k = Z 2 if 
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b k ~ 0, so we would like to determine when b k = 0. This happens if 

and only if there exists a compact framed (k-1)-connected 2k-manifold 

M with boundary the standard sphere S 2k-1 such that c(M) = I. 

Attaching a disc to the boundary of such an M we obtain an almost 

framed closed 2k-manifold N with c(N) = i. By Corollary 3.18, N 

is framed. Thus b k = 0 ~=~ there is a closed framed (k-1)-connected 

2k-manifold N with c(N) = i. By the proof of Theorem 4.6, c is 

well-defined on framed cobordism classes. The framed cobordism group 

~fn is isomorphic to the n-stem ~n(S) = ~n+k(S k) for k large (§2) 

Thus for each odd k, the Kervaire invariant gives a map 

Ck: ~2k(S) ÷ Z 2 

and for k ~ 3,7, b k = 0 <==> c k ~ 0. According to Browder [6], c k = 0 

if k ~ 2 ~ -i. (Kervaire [14] originally showed c 6 = 0 and c 9 = 0; 

then Brown and Peterson [8] showed c4~+l = 0.) Mahowald and Tangora 

have shown that Cl5 ~ 0, and Barratt, Mahowald and Jones have shown 

c31 ~ 0 (see [6], [33], [34]). Therefore we have 

bP 2k = I Z2 k ~ 2 ~ -1 
Theorem 4.10. For k odd 

L 0 k = 3,7~15, or 31 

The following proposition, which extends our discussion of the 

existence of closed framed 2k-manifolds with nonzero Kervaire invar- 

iant to the case k = 3 or 7, will be needed in §5: 

Proposition 4.11. For k = 3 or 7 there is a framing F of S k xS k 

such that c(S k xSk,F) = i. 

Proof. Hk(S k xS k) ~ Z ~ Z, with generators ~,B represented by the 

embedded spheres S k x., . xS k respectively. Let G be any framing 

of ~(S k xS k) ~ c I, c(S k x sk,G) : ~(~)~(~). Claim (i): G can be 

altered so as to realize any values of ~(~) and ¢(B). This implies 

the proposition. Let f: S k ÷ SO2k+l. Claim 2: chainging G on 

S k x. by f alters ~(~) by the map S +~S02k+i ÷ V2k+i,k+l. 

Assuming this, we prove (I) as follows: For k = 3 or 7, ~k(SO N) ÷ 

~k(VN,N_k) is surjective (1.4). Now S k x S k = (S kvS k) U D 2k. Thus 

we can change G on S kvS k to obtain a framing F on S kvS k such 

that ~(~) = ~(B) = 0. The obstruction to extending F over the 

2k-cell is an element of ~2k_l(SON) = 0 for k = 3 or 7 (1.5). 

Proof of (2). This follows from the definition of ~. Suppose 

g: S k + V2k+l,k÷l represents ~(~). It is clear that changing G by 
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f changes g to the map g(x) = f(x) g(x), where SO2k+l acts on 

V2k+l,k+l by rotation. But we can assume that g(x) is the standard 

(k+l)-frame for x in the northern hemisphere, and that f(x) is the 

identity element of SO2k+l for x in the southern hemisphere, so 

[g] = [g] + [hi, where h(x) is the standard (k+l)-frame in R 2k+l 

rotated by f(x), i.e. h(x) = zf(x), ~: SO2k÷l ÷ V2k+l,k+l. Thus 

[~] = [g] = ~.[f], which proves (2). 

Remark. We can define c(M,F) for any compact framed 2k-manifold, 

k odd, with ~M empty or a homotopy sphere, as follows. Convert 

(M,F) to a (k-l)-connected framed manifold iN,G) by a finite se- 

quence of framed surgeries, and let c(M,F) = c(N,G). The proof of 

Theorem 4.6 shows that c(M,F) is well-defined, and that it is an 

invariant of framed surgery. For k = 3 or 7, c is not an invariant 

of unframed surgery by Proposition 4.11, since S k × S k is null- 

corbordant. Theorem 4.10 implies that c is not an invariant of un- 

framed surgery for some other values of k. Since c15 ~ 0, there is 

a closed framed 14-connected 30-manifold N with c(N) = i. However, 

since N is framed it has zero Stiefel-Whitney and Pontryagin numbers, 

so N is unframed {oriented) null-corbordant. (In contrast, recall 

that the signature of a 4k-manifold is an invariant of unframed 

surgery.) 

Recall that if k ~ 3, 7 and M 2k is (k-1)-connected, then 

c(M,F) does not depend on F. However, it is not known whether c{M,F) 

depends on F for arbitrary.. M. 

§5. Computation of en/bp n+l. 

The results of this section are all in Kervaire-Milnor [15]. 

Suppose that the homotopy sphere zn is embedded in R n+k (k large) 

with a framing F of its normal bundle {recall that homotopy spheres 

are ~-manifolds by Corollary 3.19). Then the Thom construction 

applied to (Z,F) yields an element T(Z,F) of ~n+k(Sk), which is an 

invariant of the normal cobordism class of (Z,F). T((Z,F) # (Z',F')) = 

T(Z,F) + T(Z',F). 

Lemma 5.1. Let f: zn ÷ SOk, and let a = [f] @ nnSOk. Then if F 

is altered to F' via e, 

T(Z,F') : T(Z,F] + J(e) 

Proof. Recall (Lemma 3.13) that T(Sn,F ) : ± J(~), where F is the 
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standard framing F 0 of S n altered by ~. Thus 

(Z,F') = (Z,F') # (Sn,FO) = (Z,F) # (sn,F) 

and the lemma follows by applying T to both sides. 

Corollary 5.2. T(Z) = {T(Z,F), F a framing of Z n C R n+k} is a 

coset of J(~nSOk) in ~n+kS k. 

Therefore we can define T: e n + Coker Jn' where Jn: Wn SO + ~n S is 

the J-homomorphism. 

Proposition 5.3. bP n+l = Ker T. 

Proof. Z E bpn+l~==~Z bounds a parallelizable manifold. TZ = 0 ~;~ 

there exists a normal framing, F, of Z such that (~,F) bounds a 

normally framed manifold. 

Thus we have an exact sequence 

0 ~ bpn+l > en T> Coker J 
n 

Corollary 5.4. e n is a finite group (n ~ 4). 

Now ~n/bpn+l ~ Im T. Suppose ~ ~ Coker Jn" ~ EIm T if and 

if ~ is represented by ~ E Tn+kSk (k large) such that ~ = only 

T(Z,F) for some (Z,F). By the inverse Thom construction, and 

E Wn+kSk equals T(M,F') for some framed manifold (M,F'). ~ = 

T(Z,F) is and only if (M,F') is framed cobordant to a homotopy 

sphere (Z,F). Define 

0 n odd 

pn : Z n ~ 0(4) 

Z 2 n ~ 2(4) 

(so that bP n+l : Im(b), b: pn+l ~ on as in §3 and §4, and define 

¢: ~f + pn by 
n 

0 n odd 

¢(MngF) = o(M) n ~ 0(4) 

c(M,F) n e 2(4) 
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¢ is well-defined, since o and c are invariants of framed cobord- 

ism, and #(M,F) = 0 ~ (M,F) is framed cobordant to a homotopy sphere 

(Corollary 2.2 and Theorems 3.1 and 4.6). Let ¢' = cT-l: 

S 
n 

~f ¢ pn 
n ' ) 

Clearly ¢'(Im Jn ) = O, so ¢' induces a map 

¢": Coker J + pn 
n 

By the above analysis of Coker J we have: 
n 

Theorem 5.4. The sequence 

~" pn pn+l b ~ en T ~ Coker J 
n 

is exact. 

The new information here is that en/bp n+l ~ Ker @" If n is 

odd, of course ¢" = O, since pn = O. If n = 0(4), we have seen 

that ¢" = 0 (by Corollary 3.12). If n e 2(4), ¢" = 0 for n 

2 i -2, and ~ ~ 0 for n = 6, 14, 30, or 62 (by the discussion pre- 

ceding Theorem 4.10). 

In summary, we have computed bP n+l (except for n +i = 2 i -2, 

i > 6), and we have 8 n ~ Coker Jn except when n = 2 i -2. Then we 

have computed e n up to group extension. 

Remark. Brumfield and Frank have then proved that for n ~ 2 k -1 or 

7-2 

0 ~ bP n+l > e n .> Te n > 0 

splits. (See e.g. [9].) 

Appendix. The Kervaire-Milnor ' ion S exact sequence. 

The results of these notes can be elegantly expressed by means of 

a long exact sequence 
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(i) .... > An+l p) pn+l b) en i A n p.) pn > ... 

~n is the group of homotopy n-spheres [15]. A n is the group of 

"almost framed" cobordism classes of almost framed (i.e. framed exccpt 

at a point) closed n-manifolds. (If M I is framed except at x I and 

M 2 is framed except at x2, an almost framed cobordism between M I 

and M 2 is a corbordism W between M 1 and M 2 and a framing of 

W -a~ a an arc in int W from x I to x 2 which restricts to the 

given framings on the ends of the corbordism.) pn is the group of 

framed cobordism classes of parallelizable n-manifolds with boundary 

a homotopy sphere. (A framed cobordism between M 1 and M 2 is a 

framed manifolds W with boundary M I U N U M2, where N is an 
~M ~M 2 

h-corbordism between 8M I and 8M2, and the framing of W restricts 

to the given framings of M 1 and M2.) 

b is induced by the boundary map, and it is well defined by the 

definition of pn. i is induced by "inclusion", i.e. any homotopy 

sphere is s-parallelizable, and so is almost framed, i is clearly 

well-defined, p is induced by "punching out a disc" containing the 

non-framed point to obtain a parallelizable manifold with boundary S n. 

p is clearly well defined. 

The discussions preceding Theorems 3.5 and 4.10 show that Ker(b) = 

Im(p). It is clear from the definition of A n that Ker(i) = Im(b). 

It is also easy to see that Ker(p) = Im(i). 

Corollary 2.2 implies that pn = 0 for n odd. Theorems 3.1, 

3.2, and 3.3 imply that pn ~ Z for n ~ 0(4). Theorems 4.6 and 4.9 

imply that pn ~ Z2 for n e 2(4). 

Now A n lies in the exact sequence 

(ii) .. ~ Wn(SO) J) Wn(S ) _~t A n O) J~ ... • ~n_l(S) Wn_l (S) 

where J is the stable J-homomorphism, t is the inverse Thom con- 
n struction which takes ~n(S) ~ ~f (the framed cobordism group), fol- 

lowed by the inclusion of ~ in A n . Theorem 3.14 says that Ker(J) = 

Im(0). Ker(0) = Im(t) is clear. Ker(t) = Im(J) is easy to show 

(cf. Lemma 3.13). 

Corollary 3.16 determines Im[A n p.~ pn ~ Z], n e 0(4). (This 

map assigns to an almost framed closed manifold its signature divided 

by 8.) Theorem 4.10 determines Im[A n p~ pn e Z2 ] for almost all 

n e 2(4). (This map assigns to a manifold its Kervaire invariant.) 

The results of §5 can be interpreted as follows. By the exact 

sequence (ii), Coker (J) ~ Im(t) c A n . The discussion following 5.3 
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shows that Im(i) C Im(t), so we have the exact sequence 

pn+l b~ en T) Coker (J) %> pn 

where T(~) = i(E) and ¢: Coker (J) C A n p~ pn. 

Remark. Let 8~ be the group of framed h-corbordism classes of framed 

homotopy n-spheres. Then we have the exact sequences 

n pn n-i (iii) ... > pn+l ~ ~f m ~ 8f > ''' 

(~ + pn is "punching out a disc"; pn + efn-I is "taking the bound- 

ary"), and 

n en 0 
(iv) ''' ~ WnSO ~ 8f ~ Wn_iSO ~ -'- 

n S n (~nSO + ef sends a to with its standard framing changed by ~; 

e~ + e n forgets the framing). 

Combining the long exact sequences (i), (ii), (iii), (iv) (replacing 

~fn by ~nS in (iii)), we obtain the Kervaire-Milnor "braid": 

n VnS f ~ n - /  

_ ~n_l S 

This braid is isomorphic to a braid of the homotopy groups of G, PL, 

and 0 (see e.g. [24]). Levine [16] has a nonstable version of the 

Kervaire-Milnor braid. 
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