CLASSICAL AND MOTIVIC ADAMS CHARTS

DANIEL C. ISAKSEN

ABSTRACT. This document contains large-format Adams charts that compute 2-complete stable homotopy groups, both in the classical context and in the motivic context over C. The charts are essentially complete through the 59-stem and contain partial results to the 70-stem. In the classical context, we believe that these are the most accurate charts of their kind.

We also include Adams charts for the motivic homotopy groups of the cofiber of τ .

This document contains large-format Adams charts that compute 2-complete stable homotopy groups, both in the classical context and in the motivic context over C. The charts are essentially complete through the 59-stem and contain partial results to the 70-stem. In the classical context, we believe that these are the most accurate charts of their kind.

We also include Adams charts for the motivic homotopy groups of the cofiber of τ .

The charts are intended to be viewed electronically. The author can supply versions that are suitable for

Justifications for these calculations appear in [1].

1. The classical Adams spectral sequence

This chart shows the classical Adams spectral sequence. The E_2 -page is complete through the 70-stem, as are the Adams d_2 differentials. The Adams d_3 , d_4 , and d_5 differentials are complete through the 65-stem, with a few indicated exceptions.

- (1) Black dots indicate copies of \mathbb{F}_2 .
- (2) Vertical lines indicate h_0 multiplications.
- (3) Lines of slope 1 indicate h_1 multiplications. (4) Lines of slope 1/3 indicate h_2 multiplications.
- (5) Light blue lines of slope -2 indicate Adams d_2 differentials.
- (6) Red lines of slope -3 indicate Adams d_3 differentials.
- (7) Green lines of slope -4 indicate Adams d_4 differentials.
- (8) Blue lines of slope -5 indicate Adams d_5 differentials.
- (9) Dashed lines indicate plausible Adams d_3 , d_4 , and d_5 differentials, but we have not independently verified their existence.

2. The E_{∞} -page of the classical Adams spectral sequence

This chart indicates the E_{∞} -page of the classical Adams spectral sequence. The chart is essentially complete through the 59-stem. Because of unknown differentials, the actual E_{∞} -page beyond the 59-stem is a subquotient of what is shown.

- See Section 1 for instructions on interpreting the chart. In addition:
- (1) Olive lines indicate hidden 2 extensions.
- (2) Purple lines indicate hidden η extensions.
- (3) Brown lines indicate hidden ν extensions.
- (4) Dashed olive, purple, and brown lines indicate possible hidden extensions. (5) For clarity, some of the unknown Adams d_3 , d_4 , and d_5 differentials are also shown on this chart.

3. The cohomology of the motivic Steenrod algebra

This chart shows the cohomology of the motivic Steenrod algebra over \mathbb{C} . The chart is complete through the 70-stem.

- (1) Black dots indicate copies of M_2 .
- (2) Red dots indicate copies of \mathbb{M}_2/τ .
- (3) Blue dots indicate copies of \mathbb{M}_2/τ^2 .
- (4) Green dots indicate copies of \mathbb{M}_2/τ^3 .
- (5) Vertical lines indicate h_0 multiplications. These lines might be black, red, blue, or green, depending on the τ torsion of the target.
- (6) Lines of slope 1 indicate h_1 multiplications. These lines might be black, red, blue, or green, depending
- on the τ torsion of the target. (7) Lines of slope 1/3 indicate h_2 multiplications. These lines might be black, red, blue, or green,
- depending on the τ torsion of the target. (8) Red arrows indicate infinite towers of h_1 multiplications, all of which are annihilated by τ .
- (9) Magenta lines indicate that an extension hits τ times a generator. For example, $h_0 \cdot h_0 h_2 = \tau h_1^3$ in
- (10) Orange lines indicate that an extension hits τ^2 times a generator. For example, $h_0 \cdot h_0^3 x = \tau^2 h_0 e_0 g$
- (11) Dotted lines indicate that the extension is hidden in the May spectral sequence.
- (12) Squares indicate that there is a τ extension that is hidden in the May spectral sequence. For example, $\tau \cdot Pc_0d_0 = h_0^5r$ in the 30-stem.

4. The E_2 -page of the motivic Adams spectral sequence

This chart indicates the Adams d_2 differentials on the E_2 -page of the motivic Adams spectral sequence. The chart is complete through the 70-stem. See Section 3 for instructions on interpreting the chart. In

- (1) Blue lines of slope -2 indicate Adams d_2 differentials.
- (2) Magenta lines of slope -2 indicate that an Adams d_2 differential hits τ times a generator. For example, $d_2(h_0c_2) = \tau h_1^2e_1$ in the 40-stem.
- (3) Orange lines of slope -2 indicate that an Adams d_2 differential hits τ^2 times a generator. For example, $d_2(h_0 y) = \tau^2 h_0 e_0 g$ in the 37-stem.

5. The E_3 -page of the motivic Adams spectral sequence

This chart indicates the Adams d_3 differentials on the E_3 -page of the motivic Adams spectral sequence. The chart is complete through the 65-stem, with indicated exceptions. Beyond the 65-stem, there are several unknown differentials.

- See Section 3 for instructions on interpreting the chart. In addition:
- (1) Blue lines of slope -3 indicate Adams d_3 differentials. (2) Magenta lines of slope -3 indicate that an Adams d_3 differential hits τ times a generator. For example, $d_3(r) = \tau h_1 d_0^2$ in the 29-stem.
- (3) Orange lines of slope -3 indicate that an Adams d_3 differential hits τ^k times a generator for $k \geq 2$. For example, $d_3(Q_2) = \tau^2 gt$ in the 56-stem, and $d_3(\tau W_1) = \tau^4 e_0^4$ in the 68-stem.
- (4) Dashed lines indicate plausible Adams d_3 differentials, but we have not independently verified their

6. The E_4 -page of the motivic Adams spectral sequence

This chart indicates the Adams d_4 and d_5 differentials on the E_4 -page of the motivic Adams spectral sequence. The chart is complete through the 65-stem, with a few indicated exceptions. Beyond the 65-stem, there are several unknown differentials.

- Because of unknown d_3 differentials, the actual E_4 -page beyond the 65-stem is a subquotient of what is
- See Section 3 for instructions on interpreting the chart. In addition:
- (1) Purple dots indicate copies of \mathbb{M}_2/τ^4 .
- (2) Blue lines of slope -4 and -5 indicate Adams d_4 and d_5 differentials. (3) Magenta lines of slope -5 indicate that an Adams d_5 differential hits τ times a generator. For
- example, $d_5(\tau Ph_5e_0) = \tau d_0z$ in the 55-stem. (4) Orange lines of slope -4 and -5 indicate that an Adams d_4 or d_5 differential hits τ^k times a generator
- for $k \geq 2$. (5) Dashed lines indicate plausible Adams d_3 , d_4 , and d_5 differentials, but we have not independently
- verified their existence. (6) For clarity, the unknown Adams d_3 differentials are also shown on this chart.

7. The E_{∞} -page of the motivic Adams spectral sequence

This chart indicates the E_{∞} -page of the motivic Adams spectral sequence. The chart is complete through the 59-stem. Because of unknown differentials, the actual E_{∞} -page beyond the 59-stem is a subquotient of what is shown.

- See Section 3 for instructions on interpreting the chart. In addition:
- (1) Purple dots indicate copies of \mathbb{M}_2/τ^4 .
- (2) For clarity, some of the unknown Adams d_3 , d_4 , and d_5 differentials are also shown on this chart.
- 8. The E_2 -page of the motivic Adams spectral sequence for the cofiber of au

This chart indicates the E_2 -page of the motivic Adams spectral sequence for the cofiber of τ . The chart is

- complete through the 70-stem, with indicated exceptions. (1) Black dots indicate copies of \mathbb{M}_2/τ that are in the image of the inclusion $E_2(S^{0,0}) \to E_2(C\tau)$ of the
- bottom cell. (2) Red dots indicate copies of \mathbb{M}_2/τ that are detected by the projection $E_2(C\tau) \to E_2(S^{0,0})$ to the top
- (3) Black lines indicate extensions by h_0 , h_1 , and h_2 that are in the image of the inclusion of the bottom
- (4) Red lines indicate extensions by h_0 , h_1 , and h_2 that are detected by projection to the top cell.
- (5) Blue lines indicate extensions by h_0 , h_1 , and h_2 that are hidden in the sense that they are not
- detected by the top cell or the bottom cell.
- (6) Arrows of slope 1 indicate infinite towers of h_1 extensions. (7) Dashed blue lines indicate unknown hidden extensions.
- (8) Light blue lines indicate Adams differentials.
- (9) Dashed light blue lines indicate unknown Adams differentials. These unknown differentials are also

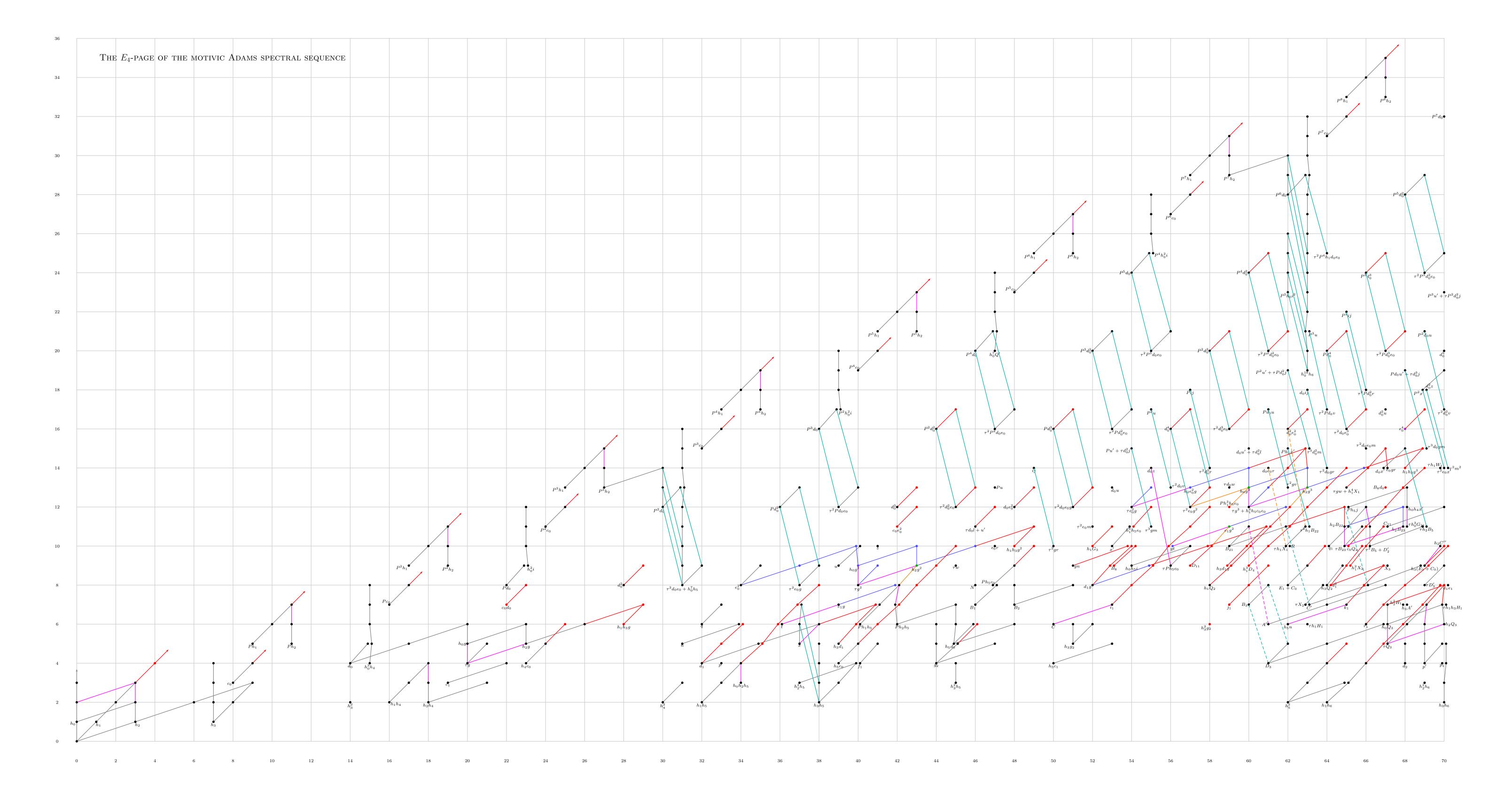
9. The E_3 -page of the motivic Adams spectral sequence for the cofiber of au

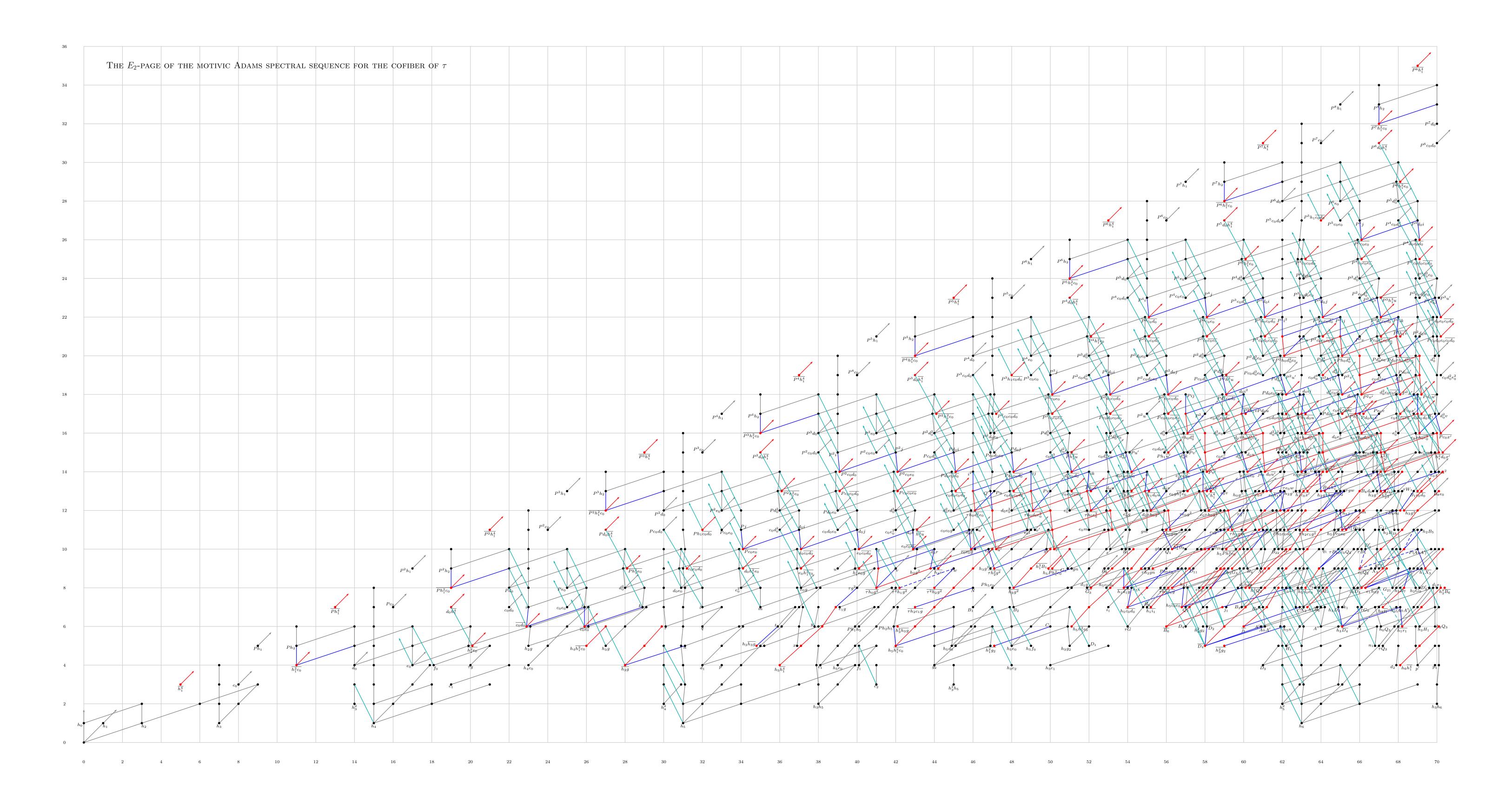
This chart indicates the E_3 -page of the motivic Adams spectral sequence for the cofiber of τ . The E_3 -page is complete through the 70-stem, but the Adams d_3 differentials are complete only through the 64-stem. Beyond the 64-stem, there are a number of unknown differentials. See Section 8 for instructions on interpreting the chart.

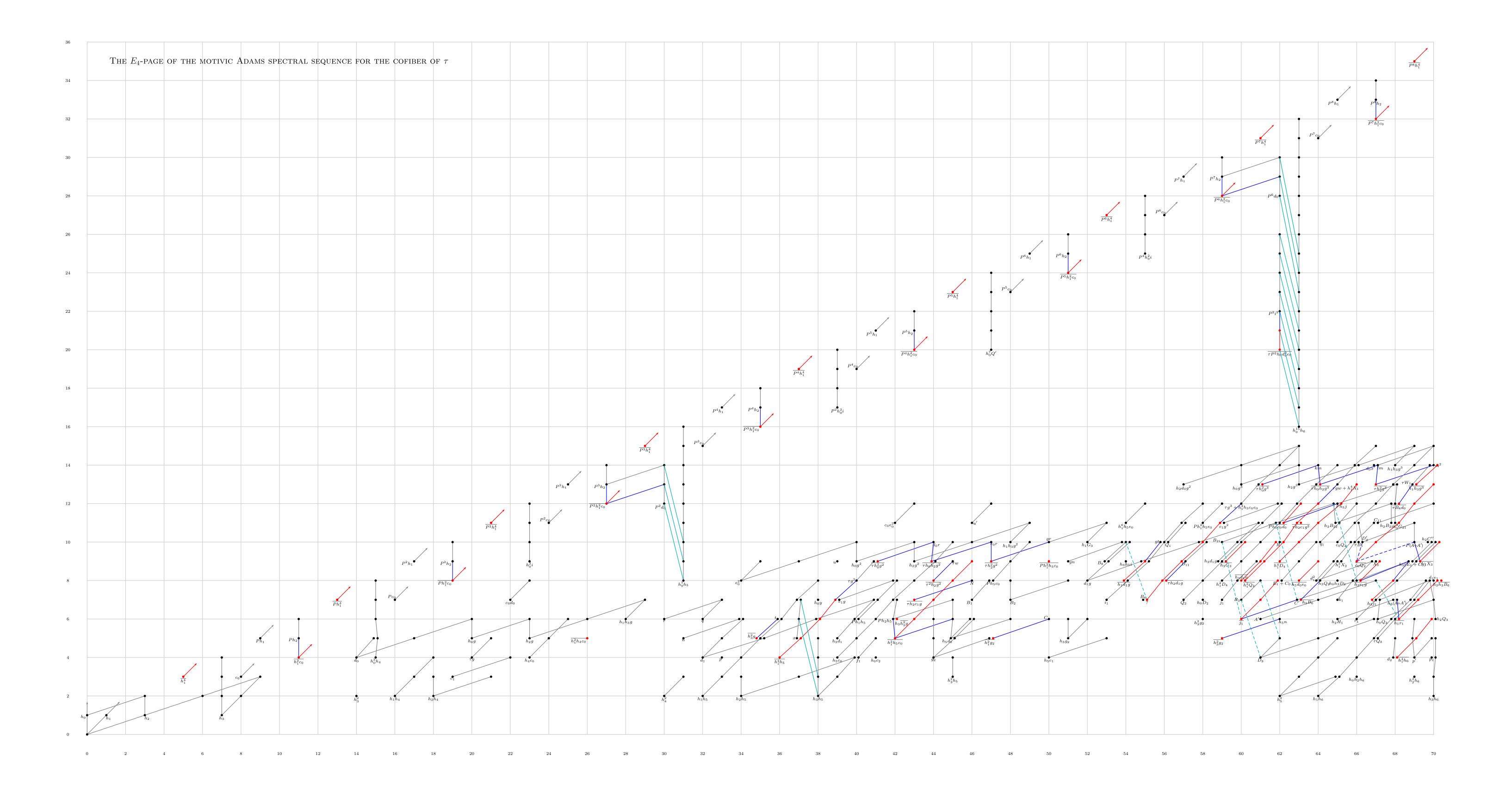
10. The E_4 -page of the motivic Adams spectral sequence for the cofiber of au

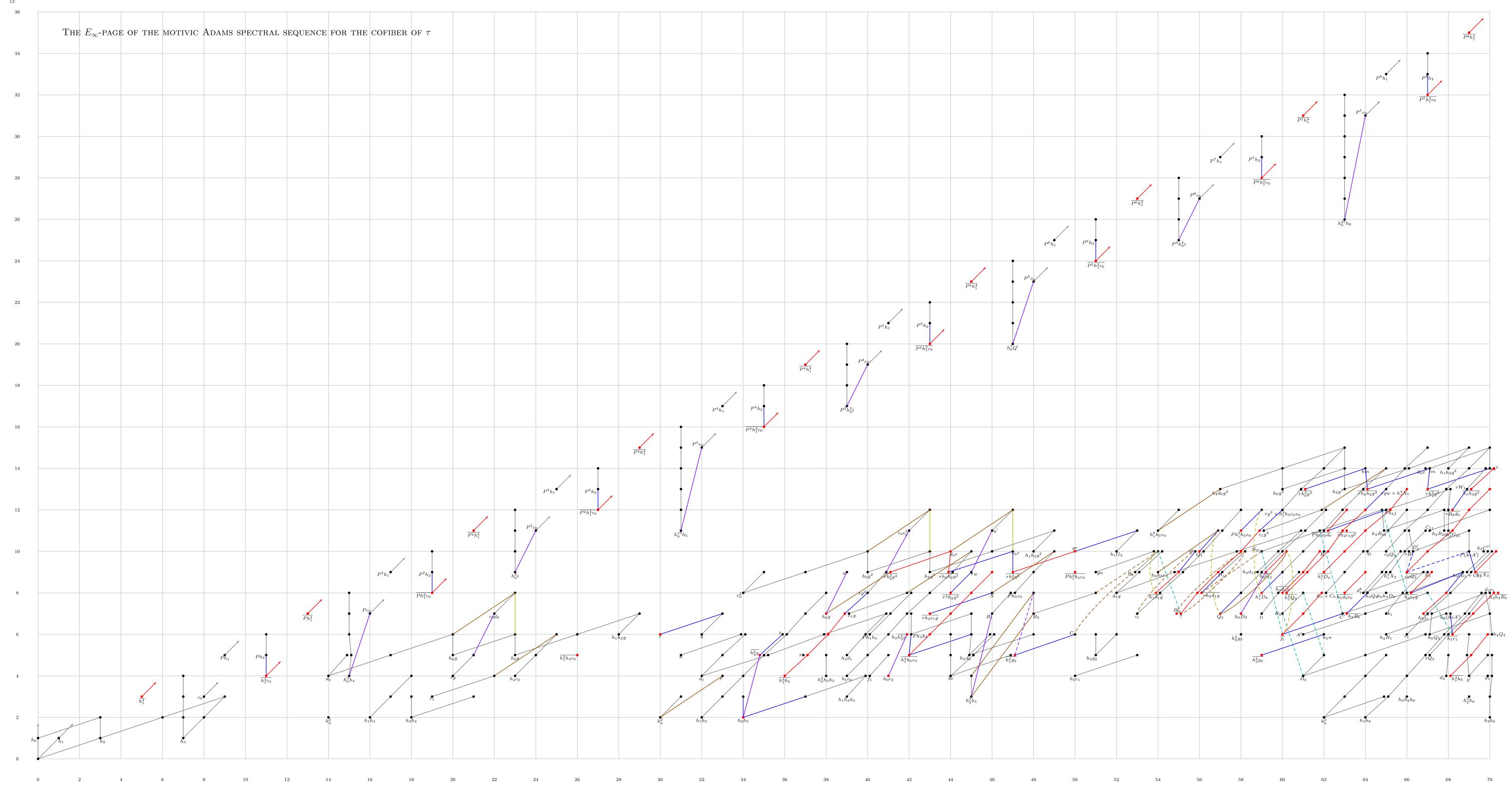
This chart indicates the E_4 -page of the motivic Adams spectral sequence for the cofiber of τ . The E_4 -page is complete through the 64-stem. Beyond the 64-stem, the actual E_4 -page is a subquotient of what is shown. The chart shows both Adams d_4 and d_5 differentials.

See Section 8 for instructions on interpreting the chart.


11. The E_{∞} -page of the motivic Adams spectral sequence for the cofiber of auThis chart indicates the E_{∞} -page of the motivic Adams spectral sequence for the cofiber of τ . The chart is complete through the 63-stem, but hidden extensions are only shown through the 59-stem. Beyond the


- 63-stem, the actual E_{∞} -page is a subquotient of what is shown. (1) Black dots indicate copies of \mathbb{M}_2/τ that are in the image of the inclusion $\pi_{*,*} \to \pi_{*,*}(C\tau)$ of the
- (2) Red dots indicate copies of \mathbb{M}_2/τ that are detected by the projection $\pi_{*,*}(C\tau) \to \pi_{*-1,*+1}$ to the
- (3) Black lines indicate extensions by h_0 , h_1 , and h_2 that are in the image of the inclusion of the bottom
- (4) Red lines indicate extensions by h_0 , h_1 , and h_2 that are detected by projection to the top cell.
- (5) Blue lines indicate extensions by 2, η , and ν that are not hidden in the E_{∞} -page but are not detected by the top cell or the bottom cell.
- (6) Arrows of slope 1 indicate infinite towers of h_1 extensions. (7) Olive lines indicate 2 extensions that are hidden in the E_{∞} -page.
- (8) Purple lines indicate η extensions that are hidden in the E_{∞} -page.
- (9) Brown lines indicate ν extensions that are hidden in the E_{∞} -page. (10) Dashed lines indicate possible extensions.
- (11) Dashed light blue lines indicate unknown Adams differentials. These unknown differentials are included for clarity.


References


[1] Daniel C. Isaksen, Stable stems (2014), preprint, available at arXiv:1407.8418.

arXiv:1401.4983v3 [math.AT] 16 Dec 2014

