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MACKEY FUNCTORS AND BISETS

I. HAMBLETON, L. R. TAYLOR, AND E. B. WILLIAMS

Abstract. For any finite groupG, we define a bivariant functor from the Dress category
of finite G-sets to the conjugation biset category, whose objects are subgroups of G, and
whose morphisms are generated by certain bifree bisets. Any additive functor from the
conjugation biset category to abelian groups yields a Mackey functor by composition.
We characterize the Mackey functors which arise in this way.

1. Introduction

Let G be a finite group. A Mackey functor in the sense of Dress [8, p. 301] is a bivariant
functor

M : D(G)→ Ab

from the category of finite left G-sets and G-maps to abelian groups, satisfying a pull-back
axiom (M1) and an additivity axiom (M2). These axioms express the classical Mackey
properties from representation theory, as formulated by Green [9]. In this paper, unless
otherwise mentioned, by a Mackey functor we mean a Mackey functor in the sense of
Dress.

Many of the Mackey functors encountered in applications of the theory factor through
the G-Burnside category A(G), whose objects are the subgroups H ⊂ G and whose
morphisms are generated by H2 -H1 bisets with certain properties (compare [10, 1.A.4]).
Let A•(G) denote the additive completion of this category, defined in Section 3.

In Section 6 we define a subcategory B•(G) ⊂ A•(G), where the morphisms are re-
stricted to be conjugation bisets, and construct a bivariant functor j : D(G) → B•(G)
(see Definition 7.2). A Mackey functor M is said to be conjugation invariant provided
that the centralizer CG(H) acts trivially on M(G/H) for all H ⊂ G, via the G-maps
ϕ : G/H → G/H given by eH 7→ zH , for some z ∈ CG(H) (see Definition 3.1).

The main result (see Theorem 8.1) is a recognition principle for such Mackey functors.

Theorem A. Let G be a finite group. A Mackey functorM : D(G)→ Ab factors through
j : D(G)→ B•(G) if and only ifM is conjugation invariant.

The applications surveyed in [10] and [12], mostly depend on the following immediate
consequence of our main result.

Corollary B. For any additive functor F : A•(G)→ Ab, the composition F ◦ j : D(G)→
Ab is a Mackey functor.
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This result applies to classical Mackey functors such as the Swan ring and the Dress
ring, and to algebraic K-theory and L-theory functors encountered in geometric topology
and surgery theory.

Remark 1.1. The topic of Mackey functors has been extensively explored over the last
30 years, and there is a large literature (see, for example, the survey by Webb [19]). Here
are some remarks about a selection of this earlier work.

(a). The idea of reformulating the classical Mackey bivariant functor properties as a
single functor out of an intermediate category has been carried out by several authors
(see Lindner [15, Theorem 2], Gaunce Lewis [13], tom Dieck [7, Chap. IV.8], Thévenaz-
Webb [17]).

(b). The use of bisets as morphisms in a category has also appeared in various settings
in the literature (see, for example, Lewis-May-McClure [14], Adams-Gunawardena-Miller
[1, §9, p. 454], Hambleton-Taylor-Williams [10, 1.A.4], and Bouc [2], [3, §2], [4]).

(c). In [8, pp. 292, 302] Dress restricts attention to a variant of classical Mackey functors,
now usually called global Mackey functors [18, p. 267], defined on the category gr of finite
groups and monomorphisms, and in particular the maps induced by conjugations depend
only on the underlying group homomorphisms. In [8, p. 298-299], Dress describes the
passage from global Mackey functors to his functors. The output of this process is a
conjugation-invariant Mackey functor.

(d). In [18, p. 271], Webb sketches a proof of a result analogous to Theorem A, that a
global Mackey functor is equivalent to an additive functor out of a category ΩZ whose
objects are finite groups, and whose morphisms are bifree bisets. The restriction of ΩZ

to the subgroups of a fixed group G is just the category A•(G), defined in our MSRI
preprint (1990) [11, Ex. 5.5].

(e). There is a sub-category of gr defined by restricting to the subgroups of a fixed group
G, and to the monomorphisms generated by inclusions and conjugations. A Mackey
functor out of this sub-category is equivalent to an additive functor out of B•(G). This is
exactly the statement of Theorem A expressed in classical terms. In other words, Theorem
A provides a direct method to check the Mackey properties, starting from minimal input
data.

(f). The proof of Theorem A follows Webb’s proof [18, p. 271] in outline, but we supply
all the technical details necessary, for example, to check that we have actually constructed
a functor F : B•(G)→ Ab, factoring a given conjugation invariant Mackey functor.

2. Mackey functors

We will first recall the basic definitions Dress used in his formulation of induction theory
[8]. Let G be a finite group, and let D(G) denote the category whose objects are finite,
left G-sets and whose morphisms are G-maps. A Mackey functor is a bivariant functor
M = (M∗,M

∗) : D(G) → Ab, where Ab denotes the category of abelian groups and
groups homomorphisms, such thatM∗(S) =M

∗(S) for each object S ∈ D(G), and the
following two properties hold:
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(M1) For any pullback diagram of finite G-sets

S
Ψ //

Φ
��

S1

ϕ

��
S2

ψ // T

the induced maps give an commutative diagram

M(S)
ΨM //M(S1)

M(S2)
ψM //

ΦM

OO

M(T )

ϕM

OO

Here we denote the covariant maps by ψM and the contravariant maps by ϕM.

(M2) The embeddings of S1 and S2 into the disjoint union S1

⊔

S2 define an isomorphism
M∗(S1

⊔

S2)→M
∗(S1)⊕M

∗(S2). LetM(∅) = 0.

The property (M1) is the usual double coset formula, and (M2) gives additivity. We re-
mark that for any bivariant functor satisfying (M1), the compositionM∗(S1)⊕M∗(S2)→
M∗(S1

⊔

S2) =M
∗(S1

⊔

S2)→M
∗(S1)⊕M

∗(M2) =M∗(S1)⊕M∗(S2) is just the iden-
tity matrix. It follows that any sub-bivariant functor of a Mackey functor is Mackey.

Remark 2.1. We could replace the target category Ab of abelian groups throughout by
the category R-Mod of R-modules, for any commutative ring R with unit.

3. The G-Burnside category A(G)

We will be interested in Mackey functors which factor through the G-Burnside cat-
egory A(G), whose objects are subgroups H ⊂ G, and where HomA(G)(H1, H2) is the
Grothendieck construction applied to the isomorphism classes of finite bifree H2 -H1 bisets
(meaning both left and right actions are free). In contrast, the morphisms in the G-
Burnside category of [1, §9, p. 454], and our category RG-Morita [10, 1.A.4] just have a
one-sided isotropy assumption.

To make our recognition principle more precise, we will define a subcategory B(G) ⊂
A(G) by restricting its morphisms to conjugation bisets (see Definition 6.1).

Because of the Grothendieck construction, A(G) and B(G) are both Ab–categories: the
morphism sets are abelian groups and the compositions are bilinear [16, I.8, p. 28]. Let
u : A(G) → A•(G) and u : B(G) → B•(G) denote the associated universal free additive
categories, and the universal inclusions (see [16, VII.2, problem 6, p. 194]).

It turns out that the Mackey functors which factor through B•(G) have an additional
property, called conjugation invariance, which can be expressed in terms of their restric-
tion to the orbit category Or(G). Recall that the objects of Or(G) are the subgroups
H ⊂ G, and the morphisms HomOr(G)(H1, H2) are the G-maps ϕ : G/H1 → G/H2. Any
such G-map is uniquely determined by eH1 7→ gH2, where g

−1H1g ⊆ H2. IfH1 = H2 = H ,
then any element z ∈ CG(H) in the centralizer of H gives a G-map ϕz : G/H → G/H .
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Definition 3.1. A functor F : Or(G)→ Ab is called conjugation invariant if the induced
maps F (ϕz) = id: F (H)→ F (H), whenever ϕz : G/H → G/H is given by eH 7→ zH , for
some z ∈ CG(H). A Mackey functor is said to be conjugation invariant if its restriction
to Or(G) satisfies this condition.

We now relate this condition to the conjugation homomorphisms which will be used in
the definition ofB•(G). If ϕ ∈ HomOr(G)(H1, H2) is represented by g ∈ G, we let cg : H1 →
H2 denote the associated conjugation homomorphism given by cg(h1) = g−1h1g ∈ H2, for
all h1 ∈ H1. Since the G-map ϕ only depends on the coset gH2, we may vary g ∼ gh2,
for any h2 ∈ H2. The associated conjugation homomorphism cgh2 = ch2 ◦ cg is thus
well-defined (as a homomorphism) up to conjugation by elements of H2. Let

cϕ := [cg] ∈ Hom(H1, H2)/(conjugation in H2)

denote the equivalence class of the associated conjugation homomorphism to a G-map
ϕ(eH1) = gH2. Two different morphisms ϕ1, ϕ2 ∈ HomOr(G)(H1, H2) yield the same

equivalence class cϕ1 = cϕ2 if and only if g1h2g
−1
2 centralizes H1, for some h2 ∈ H2.

Lemma 3.2. A functor F : Or(G)→ Ab is conjugation invariant if and only if cϕ1 = cϕ2

implies F (ϕ1) = F (ϕ2) for all morphisms ϕ1, ϕ2 ∈ HomOr(G)(H1, H2).

Proof. Suppose that ϕ1, ϕ2 ∈ HomOr(G)(H1, H2) are given by ϕi(eH1) = giH2, for i = 1, 2.

If there exists an element h2 ∈ H2 such that z := g1h2g
−1
2 ∈ CG(H1), then we see that

ϕ1 = ϕ2 ◦ ϕz. Therefore, if F is conjugation invariant and cϕ1 = cϕ2 we conclude that
F (ϕ1) = F (ϕ2). Conversely, for any subgroup H ⊂ G, and any z ∈ CG(H), the G-maps
ϕz, id : G/H → G/H have the property cϕz

= cid. Therefore the given condition implies
that F (ϕz) = F (id) = id, and hence F is conjugation invariant. �

The morphisms in A(G) are defined by the Grothendieck construction with addition
operation the disjoint union of bisets. By convention, the empty biset ∅ represents the
zero element. Composition comes from the balanced product:

H3XH2 ◦ H2YH1 = (H3XH2)×H2 (H2YH1).

The reader should check that this is well–defined on isomorphism classes of bisets and
“bilinear” in that

(H3XH2

⊔

H3YH2) ◦ H2ZH1
∼= (H3XH2 ◦ H2ZH1)

⊔

(H3YH2 ◦ H2ZH1)

with a similar formula for disjoint union on the right. The morphisms in A•(G) are
matrices of morphisms in A(G).

Definition 3.3. We define a contravariant involution τ : A(G)→ A(G), by the identity
on objects, and on morphisms it is the map induced on the Grothendieck construction by
the function which takes the finite bifree H2 -H1 biset H2XH1 to the finite bifree H1 -H2

biset H1XH2 which is X as a set and h1 · x · h2 is defined to be h−1
2 xh−1

1 .

The reader needs to check that isomorphic bisets are isomorphic after reversing the
order, and should also check that the transpose conjugate of a disjoint union is isomorphic
to the disjoint union of the conjugate transposes of the pieces. This means that τ is a
functor which induces a homomorphism of Hom–sets. It is clearly an involution, not
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just up to natural equivalence. Since τ is a homomorphism on Hom-sets, it induces an
additive contravariant involution τ • : A•(G)→ A•(G), called conjugate transpose, which
commutes with the functor u : A(G) → A•(G). By definition, τ • acts on a matrix of
morphisms by applying τ to each entry, and then transposing the matrix.

4. Indecomposable H2 -H1 bisets

We will need some more detailed information about the bifree bisets used to define
morphisms in A(G). Much of this material can be found in Bouc [2], but we include the
details here to fix our notation and to emphasize the role of the base-points.

An H2 -H1 biset is just a left (H2×H
op
1 )-set and so any finite H2 -H1-biset is a disjoint

union of transitive (H2 × Hop
1 )-sets. Since there are three groups acting (H1, H2 and

H2 ×H
op
1 ), the following definition should avoid confusion.

Definition 4.1. An H2 -H1 biset X is indecomposable if X is a transitive (H2×H
op
1 )-set.

Since every H2 -H1 biset is a disjoint union of indecomposable H2 -H1 bisets, it follows
that X1

⊔

Y is isomorphic to X1

⊔

Y if and only if X1 is isomorphic to X2. One result of
this remark is that the Grothendieck group of finite bifree H2 -H1 bisets is the free abelian
group on the indecomposable bifree ones.

An indecomposable H2 -H1 biset X is isomorphic (via choice of base point) to a coset
space (H2 × Hop

1 )/S, for some subgroup S ⊂ H2 × Hop
1 . These models will be used

extensively below, so we make some remarks and introduce some notation.

(i) To see (H2×H
op
1 )/S as an H2 -H1 biset, define the H2 action to be left multipli-

cation in the first coordinate, but define (h2, h1)S · g1 = (h2, g
−1
1 h1)S.

(ii) We introduce the following notation for points in (H2 ×H
op
1 )/S: if h2 ∈ H2 and

h1 ∈ H1, write {h2, h1} = (h2, h
−1
1 )S. In this notation, the H2 -H1 action is the

evident one: g2{h2, h1}g1 = {g2h2, h1g1}.

(iii) The left isotropy group of (e, e) is just (H2 × {e}) ∩ S, and the right isotropy
group of (e, e) is just ({e} × Hop

1 ) ∩ S, so the actions are free if and only if
(H2 × {e}) ∩ S = {e× e} and ({e} ×Hop

1 ) ∩ S = {e× e}.

(iv) Equivalently, the S-action is bifree if the compositions ι1 : S ⊂ H2 × H
op
1 → H2

and S ⊂ H2×H
op
1 → Hop

1 are injective. We will work instead with the composite

ι2 : S → H2 ×H
op
1 → Hop

1
≈
−→ H1, where the last homomorphism takes h1 to h−1

1 .

(v) Let L ⊂ H2 denote the image of the isotropy subgroup S under the injection ι1,
and let K ⊂ H1 denote the image of S under the injection ι2. Define

γ : L
ι−1
1−−−→ S

ι2−−→ K

and notice that this is an isomorphism.

(vi) Conversely, given subgroups L ⊂ H2, K ⊂ H1, and an isomorphism γ : L
≈
−→ K,

let H2
[L, γ,K]H1

denote the indecomposable bifree biset (H2 × Hop
1 )/S, where

S ⊂ H2 ×H
op
1 is the graph of

γ̄ : L
γ
−→ K ⊂ H1

ι
−→ Hop

1 ,
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and ι : H1
≈
−→ Hop

1 is the usual isomorphism which takes h to h−1.

Given an indecomposable H2 -H1 biset X , a choice of base-point x ∈ X yields an
isotropy subgroup Sx ⊂ H2 ×H

op
1 and a preferred biset isomorphism

(4.2) Ψx : (H2 ×H
op
1 )/Sx

∼=
−→ X

defined by Ψx

(

{h2, h1}
)

= h2xh1.

Definition 4.3 (The standard representation). Let X be an indecomposable bifree H2 -
H1 biset, and x ∈ X a base-point. The standard representation for X at x is the data

(4.4) Ψx : H2
[Lx, γX,x

, Kx]H1

∼=
−→ X

given by the preferred biset isomorphism Ψx

(

{h2, h1}
)

= h2xh1, where Lx ⊂ H2 is the
image of the isotropy subgroup Sx under ι1, Kx ⊂ H1 is the image of ι2, and

γ
X,x

: Lx
ι−1
1−−−→ Sx

ι2−−→ Kx

is an isomorphism. We noted above that Lx, Kx and γ
X,x

determine Sx as a (graph)
subgroup of H2 ×H

op
1 . �

Remark 4.5. Any model coset space
H2
[L, γ,K]

H1
is the standard representation for

some indecomposable bifree biset. We let X = (H2 × H
op
1 )/S, and choose x ∈ X as the

coset of the identity, then Lx = L, Kx = K and γ
X,x

= γ. �

Remark 4.6. Here is a second description of the standard representation (compare [6,
5.1]). We present it so as to identify the component of any point x in an H2 -H1 bifree
biset X , indecomposable or not. Let Lx = {h2 ∈ H2 | h2x ∈ xH1 }. Check Lx is a
subgroup of H2. Since the H1 action is free, there exists a unique h1 ∈ H1 such that
h2x = xh1. Define a function f : Lx → H1 by f(h2) = h1. Let Kx denote the image of f
and let γ

X,x
: Lx → Kx denote the restriction of f . Check that f is a homomorphism and

hence γ
X,x

is an isomorphism. Finally check that Ψx : H2
[Lx, γX,x

, Kx]H1
→ X defined by

Formula 4.4 above is an injection of H2 -H1 bisets which is then automatically onto the
component of X containing x. �

Hereafter we will call H2
[Lx, γX,x

, Kx]H1
the standard representation of X at x even if

X is not indecomposable. It follows that
⊔

x∈H2\X/H1

H2
[Lx, γX,x

, Kx]H1

⊔
Ψx

−−−−−−→ X

is a bijection of H2 -H1 bisets, where we take one x in each indecomposable component of
X . Here are two useful properties of the standard representation for the reader to verify.

We note the effect of the involution τ : A(G)→ A(G) on the standard representations.

Lemma 4.7. If [Lx, γX,x
, Kx] is the standard representation for X at x, then [Kx, γ

−1
X,x
, Lx]

is the standard representation for τ(X) at x.
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Next we consider a change of base-point. If y is another point in the same indecompos-
able component as x, then y = h2xh1 for some choice of h2 ∈ H2 and h1 ∈ H1. For g ∈ G
and any subgroup K ⊂ G, let Kg = g−1Kg. If γ : L → K is a homomorphism between

subgroups of G and if g1, g2 ∈ G, define g2γ
g1(h) = g−1

1 γ(g−1
2 hg2)g1 : L

g−1
2 → Kg1 .

Lemma 4.8. With notation as above, the standard representation for X at y = h2xh1 ∈ X

is
[

L
h−1
2
x ,

h2
γh1

X,x
, Kh1

x

]

. In other words, Ly = L
h−1
2
x , Ky = Kh1

x and γ
X,y

=
h2
γh1

X,x
.

It will be useful later to be able to identify X/H1 and H2\X .

Lemma 4.9. If X is an indecomposable, bifree H2 -H1 biset, then the bijection of bisets

Ψx : H2
[Lx, γX,x

, Kx]H1
→ X induces

(i) a bijection of left H2-sets H2/Lx → X/H1

(ii) a bijection of right H1-sets Kx\H1 → H2\X.

Proof. The proof is immediate. �

5. Composition of bisets

Fix indecomposable, bifree bisets
H2
(X1)H1

and
H3
(X2)H2

and let us analyze X3 =
X2 ×H2 X1. In general X3 will not be indecomposable, and the Mackey double coset
formula enters the picture. We begin by analyzing the standard representation at a point.

Lemma 5.1. The standard representation for X3 = X2 ×H2
X1 at [x2, x1] is given by

• L[x2,x1] = γ−1
X2,x2

(

Kx2 ∩ Lx1
)

,

• K[x2,x1] = γ
X3,[x2,x1]

(L[x2,x1]) = γ
X1,x1

(

Kx2 ∩ Lx1
)

• γ
X3,[x2,x1]

= γ
X1,x1

◦ γ
X2,x2

.

Proof. Since the projection X2×X1 → X2×H2X1 is onto, every point in X2×H2X1 is the
image of a point in X2×X1. Given x1 ∈ X1 and x2 ∈ X2 write [x2, x1] ∈ X3 = X2×H2X1

for the image of x2 × x1. In this notation, the H3 -H1 structure is the evident one:
h3[x2, x1]h1 = [h3x2, x1h1].

The point [x2, x1] ∈ X3 is a set of points {x2h × h
−1x1} ⊂ X2 × X1 for all h ∈ H2.

If h3(x2 × x1)h1 = x2h × h−1x1 ∈ X2 × X1 for some h ∈ H2 then h3x2 = x2h and
h−1x1 = x1h1. Now if h3x2 = x2h then h = γ

X2,x2
(h3) and h3 ∈ Lx2 . If h−1x1 = x1h1

then h1 = γ
X1,x1

(h−1) and h−1 ∈ Lx1 . Since Lx1 is a group, h ∈ Lx1 . Since h = γ
X2,x2

(h3),

h ∈ Kx2. Therefore, h3 ∈ γ
−1
X2,x2

(

Kx2 ∩ Lx1
)

. Let L[x2,x1] = γ−1
X2,x2

(

Kx2 ∩ Lx1
)

and define

γ
X3,[x2,x1]

= γ
X1,x1

◦ γ
X2,x2

. What we have seen so far is that if h3 [x2, x1] h1 = [x2, x1] in

X3, then h3 ∈ L[x2,x1] and h1 = γ
X3,[x2,x1]

(h3).

If h3 ∈ L[x2,x1], then h3(x2 × x1)γX3,[x2,x1]
(h3) = x2γX2,x2

(h3) × γ
X2,x2

(h3)
−1x1 and it

further follows that for any h2 ∈ H2, h3(x2h2 × h−1
2 x1)γX3,[x2,x1]

(h3) = x2γX2,x2
(h3)h2 ×

h−1
2 γ

X2,x2
(h3)

−1x1 = x2
(

γ
X2,x2

(h3)h2
)

×
(

γ
X2,x2

(h3)h2
)−1

x1. In other words, if L[x2,x1] and

γ
X3,[x2,x1]

are defined as above, then for any h3 ∈ L[x2,x1], h3 [x2, x1] γX3,[x2,x1]
(h3) = [x2, x1].

If we let K[x2,x1] = γ
X3,[x2,x1]

(L[x2,x1]), then the proof is complete. �
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Lemma 5.2. The double coset space Kx2\H2/Lx1 parametrizes the indecomposable com-

ponents of X2 ×H2
X1, where x1 ∈ X1 and x2 ∈ X2 are base points.

Proof. To simplify the notation let X2 = H2
[L3, γ2, K2]H1

, and X1 = H2
[L2, γ1, K1]H1

. The
set of indecomposable components is given by

H3\(X2 ×H2 X1)/H1 = (H3\X2)×H2 (X1/H1).

By Lemma 4.9, (H3\X2) ×H2 (X1/H1) = (K2\H2)×H2 (H2/L2) = K2\H2/L2. If {h2} ∈
K2\H2/L2 is a set of double coset representatives with h2 ∈ H2, then [x2h2, x1] gives a
set of points, one in each indecomposable component. �

Next we give an explicit formula for X3 = X2 ×H2
X1 as a disjoint union of indecom-

posable bisets (compare [2, 3.2]). We define a map

Φh2 : H3
[Lx3 , γX3,x3

, Kx3]H1
→ H3

[Lx2 , γX2,x2
, Kx2]H2

×
H2 H2

[Lx1 , γX1,x1
, Kx1]H1

by the formula Φh2({h3, h1}) = [{h3, h2}, {e, h1}], using the notation of Definition 4.3.

Theorem 5.3 (Mackey double coset formula). The H3-H1 biset X3 = X2×H2
X1 is given

by the disjoint union of the left-hand vertical maps in the diagram

[

γ−1
X2,x2

(

Kx2 ∩ L
h−1
2
x1

)

, γ
X1,x1
◦ ch2 ◦ γX2,x2

, γ
X1,x1

(

Kh2
x2
∩ Lx1

)

]

Φh2

��

H3
[Lx3 , γX3,x3

, Kx3]H1

Ψx3

��

H3
[Lx2 , γX2,x2

, Kx2]H2
×
H2 H2

[Lx1 , γX1,x1
, Kx1]H1

Ψx2×Ψx1

≈
// X2 ×H2

X1

over the base-points x3 = [x2h2, x1], for h2 ∈ Kx2\H2/Lx1.

Proof. We first derive the explicit formula displayed in the top left corner of the diagram.
Let [Lx2 , γX2,x2

, Kx2] be the standard representation for X2 at x2, and let [Lx1 , γX1,x1
, Kx1]

be the standard representation for X1 at x1. Then the standard representation for X2

at x2h2 is given by Lemma 4.8: [Lx2 , γX2,x2h2
, Kx2] = [Lx2 , γ

h2
X2,x2

, Kh2
x2
]. It further follows

that the standard representation for X3 = X2 ×H2
X1 at x3 = [x2h2, x1] is given by

[Lx3 , γX3,x3
, Kx3] = [L[x2h2,x1], γX3,[x2h2,x1]

, K[x2h2,x1]] .

By Lemmas 4.8, 5.1 and 5.2

• L[x2h2,x1] = γ−1
X2,x2h2

(

Kx2h2 ∩ Lx1
)

= (γh2
X2,x2

)−1
(

Kh2
x2
∩ Lx1

)

= γ−1
X2,x2

(

Kx2 ∩ L
h−1
2
x1

)

• K[x2h2,x1] = γ
X1,x1

(

Kx2h2 ∩ Lx1
)

= γ
X1,x1

(

Kh2
x2
∩ Lx1

)

• γ
X3,[x2h2,x1]

= γ
X1,x1
◦ γ

X2,x2h2
= γ

X1,x1
◦ γh2

X2,x2
= γ

X1,x1
◦ ch2 ◦ γX2,x2
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For h2 ∈ H2 the function defined by Φh2({h3, h1}) = [{h3, h2}, {e, h1}] makes the fol-
lowing diagram commute

H3
[L[x2h2,x1], γX3,[x2h2,x1]

, K[x2h2,x1]]H1

Ψ[x2h2,x1] ,,YYYYYYYYYYYYYYYYYYYYYYYYYYYY

Φh2 //
H3
[Lx2 , γX2,x2

, Kx2]H2
×
H2 H2

[Lx1 , γX1,x1
, Kx1]H1

Ψx2×Ψx1

��

H3

(

X2 ×H2
X1

)

H1

Since the Ψ maps are injective, it suffices to prove that the formula given for Φh2 makes
the diagram commute. Over and then down takes {h3, h1} to [{h3, h2}, {e, h1}] and then
to [h3x2h2, x1h1] whereas Ψ[x2h2,x1]({h3, h1}) = h3[x2h2, x1]h1 = [h3x2h2, x1h1].

The conclusion now follows immediately from the commutativity of the displayed dia-
gram, since the disjoint union of the right-hand vertical maps Ψx3 is a bijection, and the
map Ψx2 ×Ψx1 is a bijection (see Definition 4.3). �

Remark 5.4. The map γ
X3,[x2h2,x1]

can be displayed as the composition on the top row
of the diagram

L[x2h2,x1]

��

γ
X2,x2 // Kx2 ∩ L

h−1
2
x1

ch2 //

��

Kh2
x2
∩ Lx1

��

γ
X1,x1 //

$$H
HH

HH
HH

HH
H

K[x2h2,x1]

��
Lx2

γ
X2,x2 // Kx2

ch2 // Kh2
x2

Lx1
γ
X1,x1 // Kx1

where cg(h) = g−1hg is conjugation.

6. Conjugation bisets and B(G)

We will now define a subcategory B(G) ⊂ A(G), with the same objects (the subgroups
of G), but with morphisms restricted to bifree conjugation bisets. As before, we per-
form the Grothendieck construction on the isomorphism classes of these bisets to get an
Ab-category. The universal construction u : B(G) → B•(G) then produces an additive
subcategory (with involution) of A•(G).

Definition 6.1 (Conjugation bisets). An indecomposable conjugation biset is an inde-
composable bifree biset H2

XH1
so that the isomorphism in the standard representation of

X at x ∈ X , γ
X,x

= cg, for some g ∈ G such that g−1Lxg = Kx. A conjugation biset is a
bifree biset, each of whose indecomposable subsets satisfies this condition.

Remark 6.2. The choice of g such that γ
X,x

= cg is not unique, but the conjugation
biset only depends on γ

X,x
as a homomorphism. This is the basic reason that functors

out of B(G) are conjugation invariant. By definition, cg(h2) = g−1h2g ∈ Kx, for all
h2 ∈ Lx ⊂ H2, where g

−1Lxg = Kx ⊂ H1. We have cg = cg1 : Lx → Kx if and only if
g1g

−1 ∈ CG(Lx), where CG(Lx) denotes the centralizer of Lx in G.

The formula for the change of base-point in Lemma 4.8 shows that the definition of
conjugation biset does not depend on the choice of point x used to compute γ

X,x
: the

element giving the conjugation may change, but not the fact that it is given by some
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conjugation. In particular, any biset which is isomorphic to a conjugation biset is itself a
conjugation biset.

By Theorem 5.3, the composition of two conjugation bisets is again a conjugation biset.
In addition, by Lemma 4.7, the involution τ restricts to give an involution τ : B(G) →
B(G).

§6A. Induction and restriction. There are two extreme cases of indecomposable bifree
bisets H2

XH1
.

(i) We say H2
XH1

is a restriction if the H1 action is transitive.

(ii) We say H2
XH1

is an induction if the H2 action is transitive.

We say that
H2
X
H1

is an isomorphism if it is both a restriction and an induction.

Proposition 6.3. Let H2
XH1

be an indecomposable, bifree biset. Pick a point x ∈ X and

let [Lx, γX,x
, Kx] be the standard representation.

(i) H2
XH1

is a restriction if and only if Kx = H1.

(ii) H2
XH1

is an induction if and only if Lx = H2.

Proof. Immediate from Lemma 4.9. �

Proposition 6.4. If H2
XH1

is an isomorphism, τ(H2
XH1

) is the inverse isomorphism.

Conversely, if H2
XH1

has an inverse then it is an isomorphism. This justifies the termi-

nology.

Proof. Let
H1
Y
H2

be the inverse for
H2
X
H1
. Then

H2
X
H1
×

H1 H1
Y
H2

is isomorphic to

H2
H2H2

. Since (H2
H2H2

)/H2 is a point, so is
(

H2
XH1
×

H1 H1
Y H2

)

/H2 = (X1/H1)×(Y/H2).
It follows that Y is a restriction. The other equation for the inverse shows that Y is also
an induction.

If H2
XH1

is both an induction and a restriction, it follows that the standard represen-
tation is H2, H1 and some isomorphism γ

X,x
. By Lemma 4.7 the standard representation

for τ(X) is [H1, γ
−1
X,x
, H2]. By Theorem 5.3, τ(X) is the inverse for X . �

It further follows from Theorem 5.3 that the composition of two restrictions is a re-
striction and the composition of two inductions is an induction. More explicitly, we have
the following.

Proposition 6.5. Let [Lx1 , γX1,x1
, Kx1] be the standard representation for the biset H2

X1H1

at x1 and let [Lx2 , γX2,x2
, Kx2] be the standard representation for the biset H3

X2H2
at x2.

(i) If X1 and X2 are both restrictions then so is X2 ×H2
X1.

(ii) If X1 and X2 are both inductions then so is X2 ×H2
X1.

(iii) If X1 is an induction and if X2 is a restriction then [Lx2 , γX1,x1
◦ γ

X2,x2
, Kx1] is

the standard representation for the composition using the point [x2, x1]

Proof. This follows from Lemma 5.1 and some standard set theory. �

Definition 6.6. We define three subcategories of A(G), denoted ResA(G), IndA(G) and
IsoA(G). The objects of any of these categories are all the objects of A(G). The mor-
phisms in ResA(G) are the set of all restrictions, the morphisms in IndA(G) are the set
of all inductions and the morphisms in IsoA(G) are the isomorphisms. �
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Remark 6.7. Because HomA(G)(H1, H2) is the free abelian group on the indecomposable
bifree H2 -H1 bisets, HomRes(G)(H1, H2) ⊂ HomA(G)(H1, H2), and indeed it is a summand.
There is a similar statement for each of Ind(G) and Iso(G). Moreover, Iso(G) = Res(G)∩
Ind(G).

Let H2
XH1

be an indecomposable bifree biset. After choosing a point x ∈ X , we can
display X as a composition.

Definition 6.8. Let [Lx, γX,x
, Kx] be the standard representation for X at x. We may

regard H2 is an H2 -Lx biset, and H1 as a Kx -H1 biset, via group multiplication in G.

(i) We define Indx = H2
(H2)Lx

, note that it is an induction and call it the standard

induction for X at x.
(ii) We define Resx = Kx

(H1)H1
, note that it is a restriction and call it the standard

restriction for X at x.
(iii) There are two evident isomorphisms. Make Kx into a left Lx set using γ

X,x
, and

into a right Kx set via group multiplication. This makes Kx into an Lx -Kx biset.
Similarly make Lx into an Lx -Kx biset using γ−1

X,x
. Let Lx

(Kx)Kx
be denoted Rx

and let
Lx
(Lx)Kx

be denoted Lx.

Note that Lx and Rx are isomorphic as bisets via the bijection γ
X,x

: Lx → Kx. The
following composition formula was also observed in [2, Lemme 3] and [5, 7.4].

Proposition 6.9. As H2 -H1 bisets, an indecomposable bifree biset X is isomorphic to

the composition Indx ◦Lx ◦ Resx.

(i) The standard restriction Resx is always a conjugation restriction.

(ii) The standard induction Indx is always a conjugation induction.

(iii) The indecomposable bifree biset X is a conjugation biset if and only if Lx is a

conjugation isomorphism.

(iv) Moreover, X is a restriction if and only if Indx is the identity; X is an induction

if and only if Resx is the identity.

Proof. The standard representation for Indx is H2
[Lx, id, Lx]Lx

, so it is clearly a conjugation

biset. The case Resx is similar. The standard representation for Rx is
Lx
[Lx, γX,x

, Kx]Kx
,

and so Rx is a conjugation biset if and only if X is.
The function

Indx×Lx
Lx ×Kx

Resx → X

which sends the image of h2× ℓ× h1 to h2ℓxh1 can be checked to be a bijection of bisets.
The remarks about X being a restriction or an induction are immediate. �

Remark 6.10. Of course the choice of x ∈ X is not unique, so let y = h2xh1. Let
Resy, Indy and Ry be the corresponding bisets. Define an Ly-Lx biset Vyx to be Lx with
right multiplication by Lx as the right action and use ch2 : Ly → Lx to define the left
action. Note that Vyx is an isomorphism and a conjugation biset. By Lemma 4.8, we have
Indx ∼= Indy×Ly

Vyx.
Similarly, we define a Ky-Kx biset Wyx to be Kx with right multiplication by Kx

and left multiplication defined by ch1 : Ky → Kx. We have Resx ∼= W−1
yx ×Ky

Resy and

Lx
∼= V −1

yx ×Ly
Ly ×Ky

Wyx.
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Definition 6.11. We define three subcategories of B•(G), denoted IndB(G) ⊂ IndA(G),
ResB(G) ⊂ ResA(G) and IsoB(G) ⊂ IsoA(G). These are the subcategories with the same
objects as the bigger categories, but whose morphisms are all the morphisms which are
conjugation bisets. �

7. Bifunctors into B•(G)

In this section we will define the bivariant functor j : D(G) → B•(G) used in the
statement of Theorem A. Let D∗(G) denote the category whose objects are pairs (X,b),
consisting of a finite G-space X and an ordered collection b = (b1, · · · , bn) of base-points,
one for each G-orbit of X . The morphisms are the G-maps (not necessarily base-point
preserving). There is a functor

µ : D∗(G)→ D(G)

defined by forgetting the base-points. Since every object of D(G) is isomorphic to the
image µ(X,b) of an object of D∗(G), and µ induces a bijection on morphism sets, it
follows that µ gives an equivalence between the categories D∗(G) and D(G), with inverse
functor µ′ [16, IV.4, Theorem 1, p. 91]. Moreover, the inverse functor µ′ can be chosen so
that we have the additivity formula

µ′(X ⊔ Y ) = µ′(X) ⊔ µ′(Y )

for any finite G-sets X and Y . This will be needed later to verify axiom (M2) for additive
functors out of B•(G).

We will now define the remaining functors in the following diagram:

(7.1)

Or(G)
i• //

i•
//

o

��

B(G)

u

��
D(G)

µ′ // D∗(G)
j• //

j•
// B•(G)

The functor o : Or(G) → D∗(G) sends H to the 1-tuple (G/H, eH) and a G-set map
G/H → G/K to the same G-set map. In fact Or(G) as defined is isomorphic to a full
subcategory of D∗(G).

The functor i• is the identity on objects and sends a G-map f : G/H → G/K to the
conjugation biset KKg−1Hg where f(eH) = gK. This is well-defined, since a different
choice gk, for k ∈ K, of representative yields an isomorphic biset.

Note that 1G/H : G/H → G/H goes to HHH which is the identity. Check that if
f1 : G/H1 → G/H2 and f2 : G/H2 → G/H3 are G-maps and if f1(eH1) = g1H2 and
f2(eH2) = g2H3 then f2 ◦ f1(eH1) = (g1g2)H3 and

H3

(

H3

)

g−1
2 H2g2

×H2 H2

(

H2

)

g−1
1 H1g1

is isomorphic to H3

(

H3

)

(g1g2)−1H1(g1g2) by the map (h3, h2) 7→ h3g
−1
2 h2g2.

The functor i• is also the identity on objects, but sends a G-map f : G/H → G/K
to the conjugation biset g−1HgKK where f(eH) = gK. Rather than check identity and
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composition, just note that g−1HgKK is isomorphic to τ
(

KKg−1Hg

)

by the function which
sends k to k−1, so i• = τ ◦ i• and hence i• is a contravariant functor.

We define the functor j• on objects by additivity: every object of D∗(G) has the form

(X,b) =
k
⊔

i=1

(Xi, bi),

where (Xi, bi) = G/Hi is an object of Or(G), and we send such an object to the ordered
n-tuple (i•(H1), . . . , i•(Hk)). A morphism ϕ : (X,b) → (Y, c) in D∗(G) is a collection
(ϕi), 1 6 i 6 k, of G-maps of the form ϕi : G/Hi → G/Kf(i), where f : b → c is a
function. Every morphism in B•(G) is represented a finite matrix of bifree conjugation
bisets, where ∅ = 0. We define j•(ϕ) = α to be the morphism in B•(G) represented by
the matrix α = (αij), where αij = i•(ϕi), if j = f(i), and αij = 0 otherwise.

The functor j• is defined in a similar way. Notice that j• factors through the subcategory
IndB(G), and j

• factors through the subcategory ResB(G).

Definition 7.2. We define the bivariant functor

j : D(G)→ B•(G)

as the composition j = (j•, j•) ◦ µ
′. �

8. The proof of Theorem A

We now state our main result, which is a more detailed version of Theorem A.

Theorem 8.1. If F : B•(G) → Ab is an additive functor, then F ◦ j : D(G) → Ab is

a conjugation invariant Mackey functor. Conversely, any conjugation invariant Mackey

functor factors uniquely through an additive functor out of B•(G).

Proof. Suppose that F : B•(G)→ Ab is an additive functor, and letM = F ◦ j : D(G)→
Ab denote its composition with the bivariant functor j. ThenM is conjugation-invariant.
The Mackey property (M2) is just additivity, so it remains to consider (M1). Let

(8.2)

S
Ψ //

Φ
��

S2

ϕ

��
S1

ψ // T

be a pull-back diagram of finite G-sets. We first remark that a G-map u : S → S ′ between
finite G-sets is determined by its restriction to the disjoint G-orbits in S. In fact, each
orbit in S is mapped by u into exactly one G-orbit of S ′. In particular, if u : S → S ′ is
an isomorphism of finite G-sets, then by Proposition 6.4 the induced maps uM and uM

are both isomorphisms with (uM)−1 = uM.
This remark implies that property (M1) depends only on the isomorphism class of

diagram (8.2). More precisely, let c : S1
≈
−→ S ′

1 and d : S2
≈
−→ S ′

2 be G-isomorphisms, and
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consider the commutative diagram of G-sets and G-maps:

S ′ l

&&

n

""

v
''

5

@

J

S
Ψ //

Φ
��

u
ff

S2
d //

ϕ

��

S ′
2

j
xxqqqqqqqqqqqqqq

S1
ψ //

c
��

T

S ′
1

i

88qqqqqqqqqqqqqq

where S ′ is the pullback of i and j, with ψ = i ◦ c and ϕ = j ◦ d. There is an induced
isomorphism u : S → S ′ with inverse v, such that l ◦ u = d ◦ Ψ, and c ◦ Φ = n ◦ u. If we
have the property (M1) for the pullback (S ′, l, n), then the property (M1) holds for the
pullback (S,Ψ,Φ). This is an easy diagram chase starting with the left-hand side of the
required formula

(8.3) ϕM ◦ ψM = ΨM ◦ Φ
M

and substituting in the expressions above for ψ and ϕ.
By the additivity property (M2), this formula follows from the basic cases where S1,

S2, and T are transitive G-sets. Let S1 = G/H1, S2 = G/H2 and T = G/K, and choose
elements g1, g2 ∈ G such that g−1

i Higi ⊆ K, for i = 1, 2. SinceM is conjugation invariant,
we may assume that ψ(eH1) = g1K and ϕ(eH2) = g2K (varying the choice of g1, g2 will
not affect the maps induced byM).

For i = 1 and i = 2 there are G-isomorphisms θi : G/Hi → G/H ′
i, given by eHi 7→ giH

′
i

where H ′
i = g−1

i Higi, with the property that the pullback G/H ′
1 ⊂ G/K ⊃ G/H ′

2 is
isomorphic to S = G/H1×G/K G/H2. It follows (by the remarks above) that it is enough
to check formula (8.3) in the special case where H1 and H2 are actually subgroups of K.
Hence, we may assume that g1 = g2 = e.

We will regard H2
KH1

as an H2-H1 biset via the natural actions H2 ⊂ K and H1 ⊂ K.
The pullback G-set

S =
{

(xH1, yH2) | xK = yK
}

,

has the G-action defined by g · (xH1, yH2) = (gxH1, gyH2), for all g ∈ G. It follows that
in each G-orbit there is always a representative of the form (xH1, eH2) with x ∈ K and
(h2xh1H1, eH2) = (xH1, eH2) for all h2 ∈ H2 and all h1 ∈ H1. In other words, the set of
G-orbits in S is in bijection with the quotient H2\K/H1 of the biset

H2
K
H1
.

The isotropy subgroup

G(xH1,eH2) =
{

g ∈ G | gxH1 = xH1, gH2 = eH2

}

= H2 ∩H
x−1

1

where Hx−1

1 = xH1x
−1 and x ∈ K as above. Therefore, we have a bijection of G-sets

S =
⊔

x∈H2\K/H1

G/H2 ∩H
x−1

1 .
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In terms of biset morphisms, the composition

(8.4) ΨM ◦Φ
M =

∑

F
(

H2
H2H2∩Hx−1

1

)

◦ F
(

H2∩Hx−1

1
(H2 ∩H

x−1

1 )
H1∩Hx

2

)

◦ F
(

H1∩Hx
2
H1H1

)

where the middle biset is just the conjugation G-isomorphism cx−1 : H1∩H
x
2 → H2∩H

x−1

1 .
On the other hand, the composition

ϕM ◦ ψM = F (
H2
K
H1
) .

To establish formula (8.3), we consider the H2 -H1 biset bijection

H2
K
H1

=
⊔

x∈H2\K/H1

H2 xH1

from the double coset decompostion. The standard representation of the component
X = H2 xH1 expressed in the standard form is

H2 xH1 = H2
[Lx, γX,x

, Kx]H1
= [H2 ∩H

x−1

1 , cx, H1 ∩H
x
2 ] .

This follows from Remark 4.6: Lx =
{

h2 ∈ H2 | h2x = xh1, h1 ∈ H1

}

= H2 ∩ H
x−1

1 ,

Kx =
{

h1 ∈ H1 | xh1 = h2x, h2 ∈ H2

}

= H1 ∩H
x
2 and γ

X,x
= cx.

Now by Proposition 6.9 we see that the composition

ϕM ◦ ψM = F (
H2
K
H1
) =

∑

F (Indx) ◦ F (Lx) ◦ F (Resx) .

But, by inspection, the right-hand side of this formula is just the expression for ΨM ◦Φ
M

in formula (8.4). This proves the property (M1).

Conversely, suppose that M : D(G) → Ab is a conjugation-invariant Mackey functor.
We define the functor F on objects by setting F (H) = M(G/H), and extending addi-
tively. Since the bivariant functor j : D(G)→ B•(G) is surjective on objects, this formula
defines F uniquely on objects.

The morphisms in B•(G) are finite matrices of bifree conjugation H2 -H1 bisets. Any
such biset is a disjoint union of indecomposable conjugation bisets X , uniquely up to
ordering, and after picking a base point x ∈ X we have the standard representation
X ∼= H2

[Lx, γX,x
, Kx]H1

and the factorization

H2
XH1

∼= H2
[Lx, γX,x

, Kx]H1

∼= Indx ◦Lx ◦ Resx

of Proposition 6.9. By Definition 6.8, it follows that the morphisms inB•(G) are generated
by compositions of the following three types of bifree conjugation bisets:

(i) Indx = H2
(H2)Lx

, (ii) Resx = Kx
(H1)H1

, and (iii) Lx = Lx
(Lx)Kx

.

Recall from Remark 4.6 that

Lx = {h2 ∈ H2 | h2x = xh1, h1 ∈ H1} ⊂ H2

and
Kx = {h1 ∈ H1 | xh1 = h2x, h2 ∈ H2} ⊂ H1 .

Since X is a conjugation biset, the map γ
X,x

: Lx → Kx is given by cgx, where g
−1
x Lxgx =

Kx, so we have
γ

X,x
(h2) = cgx(h2) = g−1

x h2gx = h1 .
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The element gx need not be unique (see Remark 6.2). The isomorphism γ−1
X,x

gives Lx the
right Kx-action on Lx used to define the third biset.

We will define F on the basic morphisms of these three types, by associating to each
of these bisets a G-map, and then applying the Mackey functorM:

• to Indx associate the G-map IndH2
Lx

: G/Lx → G/H2, with IndH2
Lx
(eLx) = eH2;

• to Resx associate the G-map ResH1
Kx

: G/Kx → G/H1, with ResH1
Kx

(eKx) = eH1;

• to Lx associate the maps ofG-sets LLx

Kx
(gx) : G/Kx → G/Lx, with L

Lx

Kx
(gx)(eKx) =

g−1
x Lx for the various choices of gx.

Now define

(i) F (Indx) =M∗(Ind
H2
Lx
) (ii) F (Resx) =M

∗(ResH1
Kx

) (iii) F (Lx) =M∗(L
Lx

Kx
(gx))

Item (iii) is well-defined by Lemma 3.2, since M is conjugation invariant. We will
write L

Lx

Kx
for any of the L

Lx

Kx
(gx).

For any morphism X in B(G) we define F (X) by choosing a base point x ∈ X , writing
X = Indx ◦Lx ◦ Resx, and defining F (X) = F (Indx) ◦ F (Lx) ◦ F (Resx). The formulas in
Remark 6.10 show that the definition of F (X) is independent of the choice of base point.

The functor F is defined on all the morphisms in B•(G) by the additive (matrix) ex-
tension of these formulas. Any relation in the Grothendieck group HomB(G)(H1, H2) leads
to a isomorphism X ∼= Y of finite bifree H2 -H1 bisets. Since both sides are canonically
(up to ordering) expressed as a disjoint union of (H2 × H

op
1 )-orbits, it is clear that F is

well-defined.
Finally, we must check that F is a functor. Since F (HHH) = id, it remains to

check that compositions are preserved. Suppose that X1 ∈ HomB(G)(H1, H2) and X2 ∈
HomB(G)(H2, H3). By additivity, we may assume that X1 and X2 are indecomposable.
We must check that

F (X2 ◦X1) = F (X2) ◦ F (X1) .

Consider the left-hand side of the formula, where F (X2◦X1) = F (X2×H2X1) by definition.
Pick a base point x1 ∈ X1, and x2 ∈ X2. By Lemma 5.2, the components of X3 =
X2 ×H2 X1 are indexed by elements h2 ∈ H2 representing the double cosets Kx2\H2/Lx1 .
Each such component contributes a summand F

(

[Lx3 , γX3,x3
, Kx3 ]

)

, where x3 = [x2h2, x1].
By Theorem 5.3, the standard representation at this base point is

(8.5) .
[

Lx3 , γX3,x3
, Kx3

]

=
[

γ−1
X2,x2

(

Kx2 ∩ L
h−1
2
x1

)

, γ
X1,x1
◦ ch2 ◦ γX2,x2

, γ
X1,x1

(

Kh2
x2
∩ Lx1

)

]

The right-hand side of the formula is

F (X2) ◦ F (X1) = F (Indx2) ◦ F (Lx2) ◦ F (Resx2) ◦ F (Indx1) ◦ F (Lx1) ◦ F (Resx1) .

By the Mackey double coset formula forM, property (M1),

F (Resx2) ◦ F (Indx1) =
∑

h2∈Kx2\H2/Lx1

F (Kx2) ◦ F (Kx2 ∩ L
h−1
2
x1

) ◦ F (Lx1)

where

• Kx2 is a (Kx2) -
(

Kx2 ∩ L
h−1
2
x1

)

biset via the two inclusions, and is a standard
induction,



MACKEY FUNCTORS AND BISETS 17

• Kx2 ∩ L
h−1
2
x1 is a

(

Kx2 ∩ L
h−1
2
x1

)

-
(

Lx1 ∩K
h2
x2

)

biset via the evident inclusion on the

left and conjugation by h−1
2 on the right, and is a standard conjugation,

• Lx1 is an
(

Lx1 ∩K
h2
x2

)

- (Lx1) biset via the two inclusions and is a standard restric-
tion.

Hence F (X2) ◦ F (X1) =
∑

h2∈Kx2\H2/Lx1
A[h2] ◦B[h2] ◦ C[h2]. where

A[h2] = M∗

(

IndH3
Lx2

)

◦M∗

(

L
Lx2
Kx2

)

◦M∗

(

Ind
Kx2

Kx2∩L
h
−1
2

x1

)

B[h2] = M∗

(

L
Kx2∩L

h
−1
2

x1

Lx1∩K
h2
x2

)

C[h2] = M∗

(

Res
Lx1

Lx1∩K
h2
x2

)

◦M∗

(

L
Lx1
Kx1

)

◦M∗
(

ResH1
Kx1

)

To further analyze A[h2] consider the commutative diagram

H3 ⊃ Lx2
γ−1
X2,x2←−−−− Kx2

∪ ∪

γ−1
X2,x2

(

Kx2 ∩ L
h−1
2
x1 )

γ−1
X2,x2←−−−− Kx2 ∩ L

h−1
2
x1

which implies

A[h2] =M∗

(

IndH3

γ−1
X2,x2

(Kx2∩L
h
−1
2

x1
)

)

◦M∗

(

L
γ−1
X2,x2

(Kx2∩L
h
−1
2

x1
)

Kx2∩L
h
−1
2

x1

)

.

To analyze C[h2] first note that M∗

(

L
Lx1
Kx1

)

= M∗
(

L
Kx1
Lx1

)

. Then consider the com-

mutative diagram

Lx1
γ
X1,x1−−−−→ Kx1 ⊂ H1

∪ ∪

Lx1 ∩K
h2
x2

γ
X1,x1−−−−→ γ

X1,x1
(Lx1 ∩K

h2
x2 )

which implies

C[h2] = M∗

(

Res
Lx1

Lx1∩K
h2
x2

)

◦M∗
(

L
Kx1
Lx1

)

◦M∗
(

ResH1
Kx1

)

= M∗

(

L
γ
X1,x1

(Lx1∩K
h2
x2

)

Lx1∩K
h2
x2

)

◦M∗

(

ResH1

γ
X1,x1

(Lx1∩K
h2
x2

)

)

To analyze the conjugations, note that after substituting the new expressions for A[h2]
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and C[h2] we have three conjugations now occurring together in A[h2] ◦B[h2] ◦ C[h2]:

M∗

(

L
γ−1
X2,x2

(Kx2∩L
h
−1
2

x1
)

Kx2∩L
h
−1
2

x1

)

◦M∗

(

L
Kx2∩L

h
−1
2

x1

Lx1∩K
h2
x2

)

◦M∗

(

L
γ
X1,x1

(Lx1∩K
h2
x2

)

Lx1∩K
h2
x2

)

=

M∗

(

L
γ−1
X2,x2

(Kx2∩L
h
−1
2

x1
)

Kx2∩L
h
−1
2

x1

)

◦M∗

(

L
Kx2∩L

h
−1
2

x1

Lx1∩K
h2
x2

)

◦M∗

(

L
Lx1∩K

h2
x2

γ
X1,x1

(Lx1∩K
h2
x2

)

)

=

M∗

(

L
γ−1
X2,x2

(Kx2∩L
h
−1
2

x1
)

γ
X1,x1

(Lx1∩K
h2
x2

)

)

Hence

A[h2] ◦B[h2] ◦ C[h2] =

M∗

(

IndH3

γ−1
X2,x2

(Kx2∩L
h
−1
2

x1
)

)

◦M∗

(

L
γ−1
X2,x2

(Kx2∩L
h
−1
2

x1
)

γ
X1,x1

(Lx1∩K
h2
x2

)

)

◦M∗

(

ResH1

γ
X1,x1

(Lx1∩K
h2
x2

)

)

It now follows from (8.5) that

A[h2] ◦B[h2] ◦ C[h2] = F (Indx3) ◦ F (Lx3) ◦ F (Resx3)

for each component x3 = [x2h2, x1]. Therefore F (X2 ◦X1) = F (X2) ◦ F (X1). �
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