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ABSTRACT

We give a definition of a norm functor from H-Mackey functors to G-Mackey functors for G

a finite group and H a subgroup of G. We check that this agrees with the construction of

Mazur in the case G cyclic of prime power order and also with the topological definintion of

norm, which has an algebraic presentation due to Ullman. We then use this norm functor

to give a characterization of Tambara functors as monoids of an appropriate flavor.

The second chapter is part of a joint project with Andrew Baker. We consider what

happens when we take the sphere spectrum, and kill elements of homotopy in an E8 fashion.

This process starts with the element 2 and is repeated in order to kill all higher homotopy

groups. We provide methods for identifying spherical classes and for understanding the

Dyer-Lashof action at each step of the construction. We outline how this construction might

be used to compute the André-Quillen homology of Eilenberg-MacLane spectra considered

as algebras over the sphere spectrum.

iv



CHAPTER 1

INTRODUCTION

1.1 Tambara functors and algebraic norms of Mackey functors

Equivariant topology considers spaces with actions of a group G. (Throughout this paper,

we restrict attention to the case G finite.) In order to comprehensively account for the action

of the group, one must be careful when defining invariants. The most basic example is that

the notion of a weak homotopy equivalence of G-spaces requires not just an equivariant

map that is a weak homotopy equivalence of underlying spaces, but must also induce weak

homotopy equivalences on all fixed-point spaces over all subgroups of G.

In a similar vein, the correct generalization of an abelian group is often not just a G-

module, but rather a G-Mackey functor. This consists of a network of modules MpG{Hq

indexed on the subgroups of G. These modules are related to each other by structure

maps satisfying certain compatibility conditions, including restriction maps of the form

MpG{Kq Ñ MpG{Hq for inclusions H ď K and transfer maps in the other direction.

In particular, given some G-spectrum E the natural structure on π0E is a Mackey functor.

For G finite, the notion of G-Tambara functor was introduced in [21] to axiomatize the

structure gained from the multiplicative transfers arising in representation theory and in the

cohomology of finite groups (for instance see Chapter 5 of [10]). Such multiplicative transfers

were introduced to stable homotopy theory in [12].

Tambara functors became of interest to stable homotopy theorists when Brun [7] demon-

strated that π0R is a Tambara functor for any E8 ring G-spectrum R. In the other direction,

Ullman [23] has recently proved that any Tambara functor can be realized by a ring structure

on the corresponding Eilenberg-MacLane spectrum. Furthermore, the category of Tambara

functors is shown to be equivalent to the homotopy category of commutative ring Eilenberg-

MacLane G-spectra.

1



We now consider the previous attempts to build multiplicative norm functors

NG
H : MackH Ñ MackG

in a way consistent with the notion of Tambara functor. In particular, this consistency

means that when restricted to Tambara functors, this functor is essentially the free functor

TambH Ñ TambG. In the case of G cyclic of prime power, there is an algebraic construction

due to Mazur [18].

For arbitrary finite groups G, there is also a topological construction using the Hill-

Hopkins-Ravenel norm [13] in a good model of the stable equivariant category. Ullman [22]

gives an algebraic description for this functor, but it would be preferable to have a definition

not going through topology.

We provide a new definition of NG
H for all finite groups G as a left Kan extension, and

in particular check that this agrees with both definitions as above. This definition is purely

algebraic, and is categorically universal in a way that contrasts with any description built

purely from generators and relations.

We use this functor to give an extrinsic characterization of Tambara functors as com-

mutative monoids in an appropriate sense. We give an explicit account of the coherence

conditions necessary for this structure.

1.2 Eilenberg-MacLane spectra as relative E8 cell complexes

André-Quillen cohomology is a natural invariant theory on the category of commutative

rings. It is a relative theory in the sense that groups AQ˚pB{Aq are defined for a pair

of commutative rings A,B with a given map A Ñ B. In the world of stable homotopy

theory, Basterra [6] defined the corresponding theory TAQ˚ of topological André-Quillen

cohomology. This construction is analogous to the construction in ordinary algebra, and
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relies on a stable category with symmetric monoidal smash product.

The theory TAQ˚ is the natural obstruction theory for commutative S-algebras (which

are exactly the commutative monoids over the smash product) in the sense that there is

a decomposition similar to the traditional Postnikov tower, with the invariants lying in

appropriate topological André-Quillen cohomology groups.

As of yet, there are very few explicit calculations of TAQ˚ in the literature. An example

of what is known is Richter’s calculation [19] of TAQ˚pHA{HFq, where A is a smooth

commutative algebra over a field F. Here HA and HF are Eilenberg-MacLane spectra.

While a field is a reasonable base to use in the algebraic context, in stable topological

algebra the universal base is instead the sphere spectrum S. In particular, the invariants

in the aforementioned Postnikov tower lie in TAQ˚pRi{Sq for appropriate commutative S-

algebras Ri. In this case, little is known calculationally.

The basic building block to consider is when R is an Eilenberg-MacLane spectrum. We

consider the case of R “ HF2, for which a sketch of a calculation exists in the literature [16].

We proceed by methods analogous to the computation of ordinary cohomology of a space

with the structure of a cell complex. More specifically, we form a relative cell complex in

the category of commutative S-algebras. This consists of taking the sphere spectrum S, and

killing off elements in homotopy through attaching E8 cells. Attaching such cells creates

new elements in homotopy, which are then killed by the next stage of attached cells.

In order to understand this decomposition, we need algebraic control over the set of cells

and the attaching maps for each stage of our construction. In order to do this, we apply

a theorem of Steinberger [8] to observe that at each stage we have a spectrum that splits

as a wedge of Eilenberg-MacLane spectra. We strengthen this observation to give algebraic

control over this splitting. We verify that there is a correspondence between the set of cells

and the proposed basis for TAQ˚pHF2{Sq.

We develop an explicit understanding of the action of the Dyer-Lashof algebra on the
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homology of each stage of our construction. We also produce formulae to replace polynomial

generators with spherical classes. These spherical classes then produce the E8 attaching

maps to obtain the next stage of the construction. We give a similar description of how to

obtain spherical classes in the first stage of a complex intended to compute TAQ˚pHZp2q{Sq.
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CHAPTER 2

TAMBARA FUNCTORS AND ALGEBRAIC NORMS OF

MACKEY FUNCTORS

2.1 Introduction

In this chapter we give a new algebraically-motivated construction for the norm functor

NG
HM : MackH Ñ MackG, for H some subgroup of a finite group G. We then give com-

parisons with previously-existing constructions and use this structure to give an alternate

characterization of Tambara functors.

In Section 2.2, we give some background on Mackey and Tambara functors, and establish

our notational conventions.

In Section 2.3, we give our definition for the norm NG
HM , and prove the following:

Theorem 2.1.1. The norm functor NG
H : MackH Ñ MackG agrees with the free functor

TambH Ñ TambG when the input is an H-Tambara functor. Furthermore, NG
H is strong

symmetric monoidal with respect to to the box product of Mackey functors.

This result allows us to construct a commutative diagram of the following form, where the

horizontal maps are forgetful functors and the squares commute up to natural isomorphism:

MackH GreenH TambH

MackG GreenG TambG

NG
H NG

H NG
H

.

We then check that our construction agrees with Ullman’s algebraic presentation. We also

construct a natural unit map M Ñ iHN
G
HM for any H-Mackey functor M equipped with

a map A Ñ M . Here A is the Burnside Mackey functor, which is the initial object in the
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category of Green functors.

In Section 2.4, we construct part of what we call a G-symmetric monoidal structure on the

category MackG. We define MbT for any finite G-set T together with natural isomorphisms

corresponding to G-isomorphisms T – T 1. In the case of T “ T 1 “ G{H, this gives an action

of the Weyl group WGH through isomorphisms of G-Mackey functors.

In Section 2.5 we consider the underlying K-Mackey functor of the norm of an H-Mackey

functor, where H,K ď G. We obtain a decomposition analogous to the usual double coset

formula. In particular, if H “ K is the maximal subgroup for G a cyclic group of prime power

order, we have an isomorphism between iHN
G
HM and the |G{H|-fold box product Mb|G{H|

for any H-Mackey functor M . This is used in Section 2.6 to construct an isomorphism

between our norm functor and the construction of Mazur.

In Section 2.7, we define G-commutative monoids and coherent G-commutative monoids.

We then prove that the categories of G-Tambara functors and coherent G-commutative

monoids are equivalent. In the latter case the structure is defined extrinsically in terms of

our norm functor, and in the former case the structure is defined through internal norm

maps MpG{Hq ÑMpG{Kq for any chain of subgroup inclusions H ď K ď G.

2.2 Background and conventions on Tambara functors and

Mackey functors

Let G be a finite group. In order to set our notation, we briefly describe the definition of

Tambara functor as given in [21] or [20].

Let AG denote the Burnside category of spans of finite G-sets. This category has finite

G-sets for objects. Any map of G-sets f : X Ñ Y induces a map Rf P AGpY,Xq and a map

Tf P AGpX, Y q. The morphisms in AGpX, Y q are expressible as spans (up to isomorphisms

of spans) of the following form:

X
f
ÐÝÝ A

g
ÝÝÑ Y .
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The above span should be interpreted as the composite TgRf in AG. Composition is then

defined via pullback, meaning concretely that if we have the following pullback square, then

RfTg “ TρRπ:

X ˆ
A
Y Y

X A

ρ

π f

g
.

Similarly, let UG denote the category of polynomial bispans. (The general picture here is

outlined in [11]). The objects are the same, but f : X Ñ Y induces a map Nf P UGpX, Y q,

in addition to the maps Rf , Tf . The morphisms in UGpX, Y q are expressible as bispans (up

to isomorphisms of bispans) of the following form:

X
f
ÐÝÝ A

g
ÝÝÑ B

h
ÝÝÑ Y .

Again, the above bispan can be written as the composite ThNgRf in UG.

In order to compose such bispans, we use pullback as in the span case to define com-

positions of the form RfNg and RfTh. For maps h : X Ñ Y, g : Y Ñ Z, we define the

composition NgTh by using the following diagram, referred to as the corresponding exponen-

tial diagram:

Y

X Y ˆ
Z

ΠgX ΠgX Z

gh

e π Πgh
.

In the category UG, the composite NgTh is given by TΠghNπRe.

Here Πg, referred to as the dependent product, is part of the local cartesian structure

on G-Set, although we only use it in the full subcategory G-SetF of finite G-sets. It is the

7



right adjoint to the pullback functor g˚ : G-Set{Z Ñ G-Set{Y . The counit of this adjunction

yields the map e above. On the set level we have

ΠgX “ tpz, sq : z P Z, s : g´1
tzu Ñ X, h ˝ s “ idg´1tzuu .

The G action is given by the left action on elements of Z and by conjugation of the maps

s. The map Πgh : ΠgX Ñ Z is the evident projection pz, sq ÞÑ z, and the evaluation map

e : Y ˆZ ΠgX Ñ X is given by epy, pz, sqq “ spyq.

The bottom row of the exponential diagram is called the distributor associated to g and

h, referring to the fact that it tells us how to interpret the composition of a multiplication

(the norm Ng) with an addition (the transfer Th).

Product-preserving functors M : AG Ñ Set define G-semi-Mackey functors, and product-

preserving functors R : UG Ñ Set define G-semi-Tambara functors. Note that the products

in AG and UG are given by disjoint union of G-sets.

If M is a semi-Mackey functor, then MpXq naturally inherits the structure of a commu-

tative monoid, and the category of Mackey functors MackG is the full subcategory of those

M such that MpXq is an abelian group for all X.

This definition is equivalent to viewing Mackey functors as product-preserving functors

A`G Ñ Set, where AG is the category with the same objects as AG and with A`GpX, Y q

the Grothendieck completion of AGpX, Y q, where the sum of two spans X Ð A Ñ Y and

X Ð B Ñ Y is the disjoint union X Ð A >B Ñ Y .

Similarly, if R is a semi-Tambara functor, then RpXq inherits the structure of a com-

mutative semiring, and the category of Tambara functors TambG is the full subcategory of

those R such that RpXq is a commutative ring for all X. Equivalently, Tambara functors

are product-preserving functors U`G Ñ Set analogous to the above. Here U`G pX, Y q is the

Grothendieck completion of UGpX, Y q, where the sum of two bispans X Ð A Ñ B Ñ Y

and X Ð C Ñ D Ñ Y is given by X Ð A > C Ñ B >D Ñ Y .
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In the Mackey functor case, we could equivalently use additive product-preserving func-

tors AG Ñ Ab, but this is not possible in the Tambara functor case since composition does

not preserve the additive structure on morphisms, i.e. the composition of polynomials is not

linear.

2.2.1 Alternate characterizations of Mackey and Tambara functors

Since Mackey and Tambara functors are product-preserving, and the products in the cate-

gories AG,UG are given by disjoint unions of G-sets, the combinatorial data of such functors

can be reduced by breaking arbitrary finite G-sets into orbits.

A Mackey functor M is determined by an abelian group MpG{Hq for each subgroup

H ď G. The maps in AG can be written in terms of three kinds of maps. Given H ď K ď G,

the quotient map qpH,Kq : G{H Ñ G{K induces a transfer map

trKH “MpTqpH,Kqq : MpG{Hq ÑMpG{Kq

and a restriction map

resKH “MpRqpH,Kqq : MpG{Kq ÑMpG{Hq .

These maps must be compatible with the composition in AG, which yields the traditional

double coset formula. Next, any conjugacy relation between subgroups H and H 1 induces

an isomorphism MpG{Hq – MpG{H 1q. In particular, maps induced by the isomorphisms

G{H Ñ G{H yield an action of the Weyl group WGH on MpG{Hq. These isomorphisms

must be compatible under composition and also appropriately compatible with the transfer

and restriction maps.

A Tambara functor can be reduced similarly to the data of a commutative ring RpG{Hq

9



for each subgroup H. There are now norm maps

normK
H “MpNqpH,Kqq : MpG{Hq ÑMpG{Kq ,

compatible with multiplication but not addition. The restrictions and conjugation isomor-

phism are compatible with both multiplication and addition, and the transfers are purely

additive. The compatibility between norms and the restrictions gives a multiplicative semi-

Mackey functor structure on M in addition to the additive Mackey structure given by trans-

fers and restrictions. The exponential diagram must now encode the necessary compatibility

between norms and transfers, as well as norms and addition and transfers and multiplication.

2.3 Multiplicative norms of Mackey functors

Now set H ď G. We use the following adjunctions, where i : G-Set Ñ H-Set is the forgetful

functor:

G-SetrGˆH X, Y s – H-SetrX, iY s

H-SetriX, Y s – G-SetrX,MapHpG, Y qs .

Here we note that the equivariance condition for maps in MapHpG, Y q relies on the left

action of H on G and Y , and the G-action on such a function is given by precomposition

with the right action of G on G, i.e. given an H-map f , then gf sends an element g1 to

fpg1gq.

We note that G ˆH p´q preserves pullbacks and distributors (i.e., it preserves the local

cartesian structure), so it induces maps G ˆH p´q : AH Ñ AG and G ˆH p´q : UH Ñ UG.

The functor MapHpG,´q preserves pullbacks (but not the local cartesian structure), so it

induces a map AH Ñ AG.
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The forgetful functor iH : TambG Ñ TambH is induced by precomposition with the

functor G ˆH p´q : UH Ñ UG. This might be counterintuitive but reflects the fact that

given a G-Tambara functor R, and an H-orbit H{K, the natural choice for iHRpH{Kq is

the ring RpG{Kq – RpGˆH pH{Kqq.

We give a categorical description of the left adjoint to iH .

Definition 2.3.1. The functor NG
H : TambH Ñ TambG is given by the left Kan extension

along the functor G ˆH p´q. This can be computed by the following coend, where R is a

given H-Tambara functor:

NG
HRpY q :“ LanGˆ

H
p´qRpY q “

ż XPUH
UGpGˆ

H
X, Y q ˆRpXq .

The coend formula and the fact that NG
H is the left adjoint to iH follow from 4.25 and 4.39

of [14], respectively. It is formal that any such left Kan extension of a product-preserving

functor results in a product-preserving functor (Proposition 2.5 of [15]), so this gives us a

new G-Tambara functor. It is also true that it preserves the property of having additive

inverses, but we defer this proof. We could have instead used the categories U`H , U`G as

domains.

Informally, NG
HR builds in any additional norms, transfers, and Weyl actions that arise

from passage to the larger group as freely as possible. In particular, one can see from the

coend that NG
HRpG{eq is isomorphic to the indexed tensor product

Â

G{H
RpH{eq. As a set this

is the tensor product of |G{H| copies of RpH{eq, with G acting by simultaneously permuting

coordinates and acting on each coordinate in an appropriate fashion. (This is an example of

the construction of indexed monoidal products introduced in Section A.3 of [13].)

We now define an analogous functor on the Mackey functor level.

Definition 2.3.2. The functor NG
H : MackH Ñ MackG is given by left Kan extension along

MapHpG,´q : AH Ñ AG. Concretely, we again have a coend formula, where M is a given
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H-Mackey functor:

NG
HMpY q :“ LanMapHpG,´q

MpY q “

ż XPAH
AGpMapHpG,Xq, Y q ˆMpXq .

Some comments about this construction are in order. It is not immediately clear that

this functor is analogous to the Tambara-level functor NG
H . The two Kan extensions are

along different functors with different domain and target categories. The point is that the

use of the indexed product functor MapHpG,´q on the Mackey functor level is somehow

building in some of the extra structure present in the more complicated Tambara diagram

categories UG and UH .

Note that while MapHpG,´q is a right adjoint when considered as a functor H-Set Ñ

G-Set, it is not a right adjoint when considered as a map AH Ñ AG. In particular,

MapHpG,´q : AH Ñ AG does not preserve products, so it does not induce a functor

MackG Ñ MackH via pullback. Thus, while NG
H is a left adjoint as a map between the

functor categories SetAH Ñ SetAG , it is not a left adjoint as a functor MackH Ñ MackG.

The existence of some compatible functor NG
H on the Mackey functor level is an ap-

propriately natural extension of the observation that the underlying Mackey functor of

NG
HR P TambG depends only on the underlying Mackey functor structure of R P TambH .

Here compatibility means the following result.

Theorem 2.3.3. There is a natural isomorphism UGN
G
H – NG

HUH , where

UG : TambG Ñ MackG and

UH : TambH Ñ MackH

are the forgetful functors.

A direct construction of NG
H in the case G cyclic of prime power order, as well as the

isomorphism UGN
G
H – NG

HUH is given by Mazur [18]. On the Mackey functor level, NG
HM
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is intended to be the universal home for norms MpG{Hq ÑMpG{Gq.

To define the isomorphism of Theorem 2.3.3, we construct a map directly on coend

representatives. We use the following result to reduce arbitrary bispans in UGpG ˆH X, Y q

to ones of a specific form.

Lemma 2.3.4. Take an arbitrary element in UGpGˆH X, Y q, which is represented by some

bispan of finite G-sets:

ThNgRf “ Gˆ
H
X

f
ÐÝÝ A

g
ÝÝÑ B

h
ÝÝÑ Y .

Then there exists an H-set D satisfying GˆHD – A such that the above bispan is equivalent

in UG to a bispan of the following form:

ThNεNGˆ
H
g1RGˆ

H
f 1 “ Gˆ

H
X

Gˆ
H
f 1

ÐÝÝÝÝÝ Gˆ
H
D

εpGˆ
H
g1q

ÝÝÝÝÝÝÑ B
h
ÝÝÑ Y .

Here f 1 : D Ñ X, g1 : D Ñ iB are maps of H-sets and ε : GˆH iB Ñ B is the counit of the

adjunction GˆH p´q % i.

Proof. The G-set A must be a disjoint union of orbits G{Ki, and the existence of a G-map

f : AÑ GˆH X says that the i-th component of f is a map G{Ki Ñ G{Li where the target

is of form G{Li – G ˆH pH{Liq for some Li ď H. Thus Ki is itself conjugate to some

K 1i ď Li ď H, and the map G{Ki Ñ G{Li factors as a map G{Ki – G{K 1i Ñ G{Li, where

the second map is the quotient map. The desired H-set D is the disjoint union of the H{K 1i,

and then f factors as A – GˆH D Ñ GˆH X, where the latter map is of the desired form

GˆH f 1.

Next, we examine the composite map GˆH D – AÑ B, which has adjoint g1 : D Ñ iB.

We get a factorization of the form G ˆH D Ñ G ˆH iB Ñ B using the counit of the

adjunction. Here the first map is GˆH g1, as desired.

The vertical arrows in the claimed isomorphism of bispans are the identity map ofGˆHX,
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the constructed isomorphism A – GˆH D, and the identity maps of B and Y .

With this lemma in hand, we return to the proof of Theorem 2.3.3. Examining our coend

for LanGˆ
H
p´qRpY q, we see that for any x P RpXq, the pair

pThNgRf , xq “
`

Gˆ
H
X

f
ÐÝÝ A

g
ÝÝÑ B

h
ÝÝÑ Y, x

˘

“
`

Gˆ
H
X

Gˆ
H
f 1

ÐÝÝÝÝÝ Gˆ
H
D

Gˆ
H
g1

ÝÝÝÝÑ Gˆ
H
iB

ε
ÝÑ B

h
ÝÝÑ Y, x

˘

is identified with the pair

pThNε, Ng1Rf 1xq “
`

Gˆ
H
iB “ Gˆ

H
iB

ε
ÝÑ B

h
ÝÝÑ Y, Ng1Rf 1x

˘

.

Similarly, in the coend for LanMapHpG,´q
RpY q, if we are given an arbitrary pair

pThRk, xq “
`

MapHpG,Xq
k
ÐÝÝ B

h
ÝÝÑ Y, x

˘

,

we can apply the adjunction i % MapHpG,´q to identify it with the pair

pThRη, xq “
`

MapHpG, iBq
η
ÐÝÝ B

h
ÝÝÑ Y, R

k̂
x
˘

,

where η is the unit of the adjunction and k̂ : iB Ñ X is the adjoint to k.

We have now shown that every element in the domain has a representative of the form

pThNε, bq “
`

Gˆ
H
iB “ Gˆ

H
iB

ε
ÝÑ B

h
ÝÝÑ Y, b

˘

,
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and every element in the target has a representative of the form

pThRη, bq “
`

MapHpG, iBq
η
ÐÝÝ B

h
ÝÝÑ Y, b

˘

.

Such elements in the two coends are said to be in standard form. Our isomorphism takes

the former element to the latter, and we must check that this is well-defined.

First, we must check that this does not depend on our factorization into standard form,

which is not unique. We simultaneously check that the equivalence class of the target does

not depend on the choice of isomorphism class of bispans. Given two isomorphic bispans

and two corresponding standard form expressions, it is easy to construct a diagram of the

following form, which shows that the two images in the target are equivalent:

Gˆ
H
X Gˆ

H
D Gˆ

H
iB B Y

Gˆ
H
X Gˆ

H
D1 Gˆ

H
iB1 B1 Y

Gˆ
H
f 1 Gˆ

H
g1

–

Gˆ
H
f2 Gˆ

H
g2

εB

– Gˆ
H
iβ

εB1

h

– β

h1

.

We must still check that our isomorphism is compatible with the coend identifications.

Compatibility with identifications induced by restriction and norm maps is essentially au-

tomatic from our construction. Compatibility with identifications induced by transfer maps

requires the following lemma, whose proof is deferred until the end of the section.

Lemma 2.3.5. For maps f : X Ñ iB, we have a natural isomorphim

α : ΠεpGˆH Xq – η˚MapHpG,Xq

15



in G-SetF {B, where η is the unit for the i % MapHp´q adjunction and ε is the counit for

the G ˆH p´q % i adjunction. Furthermore, we have a natural isomorphism β making the

diagram

pGˆ
H
iBq ˆ

B
ΠεpGˆ

H
Xq ΠεpGˆ

H
Xq

Gˆ
H
X Gˆ

H
ipη˚MapHpG,Xqq η˚MapHpG,Xq B

– β – α

ε
Gˆ
H
π̂

ρ

.

commute. Here π̂ is the adjoint to the projection π : η˚MapHpG,Xq Ñ MapHpG,Xq and

the bispan on the top is the distributor for the composition GˆH X
GˆHf
ÝÝÝÝÝÑ GˆH iB

ε
ÝÑ B.

We now show that the images of the elements pThNεTGˆHf , xq and pThRη, Tfxq are the

same under our proposed map. We check this using the result and notation of Lemma 2.3.5

to rewrite the composite ThNε in such a way as to yield an element in standard form:

pThNεTGˆHf , xq “ pThTρNεRGˆH π̂, xq

“ pThTρNε, Rπ̂xq .

Now our proposed isomorphism sends pThTρNε, Rπ̂xq to the standard form element

pThTρRη, Rπ̂xq, which we must manipulate further:

pThTρRη, Rπ̂xq “ pThTρRηRMapHpG,π̂q
, xq

“ pThRηTMapHpG,fq
, xq

“ pThRη, Tfxq .

16



The second relation we used above is the fact that the following square is a pullback:

η˚MapHpG,Xq B

MapHpG,Xq MapHpG, iBq

ρ

π η

MapHpG, fq .

The element pThRη, Tfxq is exactly the image of the standard form element pThNε, Tfxq, as

desired.

This shows that we have defined an isomorphism of sets. For it to be an isomorphism of

Mackey functors, we must check that our map preserves the structure induced by postcom-

position of restrictions and transfers. Compatibility with transfers is essentially automatic,

and allows us to reduce the task of checking compatibility with restrictions to the case where

h is the identity map. In this case the compatibility is easy and reduces to the naturality of

η and ε.

The proof of Theorem 2.3.3 is now complete.

Proof of Lemma 2.3.5: Lacking a more categorical proof, we describe the sets ΠεpGˆHXq

and η˚MapHpG,Xq directly.

We choose a complete set t1, . . . , tn of left coset representatives of H, where n “ |G{H|.

Thus for any H-set C any element of GˆH C has a unique representative pair pti, cq. This

choice also gives t´1
1 , . . . , t´1

n as a complete set of right coset representatives.

An element of ΠεpG ˆH Xq consists of a point b and a map s : ε´1tbu Ñ G ˆH X such

that pGˆH fqs is the identity on ε´1tbu. We see that ε´1tbu consists precisely of the pairs

pti, t
´1
i bq. Thus, a suitable map s consists of compatible choices for spti, t

´1
i bq “ pti, xiq for

1 ď i ď n, where compatibility requires fpxiq “ t´1
i b.

An element of η˚MapHpG,Xq is given by a pair b, ψ, where ψ is an H-map GÑ X. The

identity ψpht´1
i q “ hψpt´1

i q tells us that ψ is uniquely determined by the choice of elements

17



xi “ ψpt´1
i q. Being in the pullback implies φb “ f ˝ ψ, where φb is the map G Ñ iB given

by φbpgq “ gb. Thus our compatibility condition on the xi is again t´1
i b “ fpxiq.

A set isomorphism is now given by noting that the data in both cases is a choice of

xi for 1 ď i ď n satisfying t´1
i b “ fpxiq. We must now check that the G-actions on

the two sets agree. First, we see that gpb, ψq “ pgb, gψq, where gψpg1q “ ψpg1gq. We

define functions hipgq and σgpiq via the equation t´1
i g “ hipgqt

´1
σgpiq

. This lets us evaluate

ψpt´1
i qg “ hipgqxσgpiq.

Next, we have gpb, sq “ pgb, gsg´1q. We evaluate directly:

gsg´1
pti, t

´1
i gbq “ gspg´1ti, t

´1
i gbq

“ gsptσgpiqhipgq
´1, t´1

i gbq

“ gsptσgpiq, t
´1
σgpiq

bq

“ gptσgpiq, xσgpiqq

“ pti, hipgqxσgpiqq .

Therefore our isomorphism α is equivariant.

Our isomorphism β takes elements of the form ptm, t
´1
m bq, pb, sq (which is the general form

for an element mapping to pb, sq) to ptm, pt
´1
m b, t´1

m ψs)), where αpb, sq “ pb, ψsq as above.

This makes the diagram commute, as G ˆH π̂ takes ptm, pt
´1
m b, t´1

m ψsqq to ptm, t
´1
m ψspeqq,

which is evidently ptm, xmq.

2.3.1 Additive inverses

In light of Theorem 2.3.3, to check that the constructions NG
H preserve the existence of

additive inverses (i.e. that we can work in the categories of Mackey and Tambara functors

instead of semi-Mackey and semi-Tambara functors), it suffices to check in the case of the

coend LanMapHpG,´q
p´q.
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Proposition 2.3.6. The coend LanMapHpG,´q
p´q takes Mackey functors to Mackey func-

tors. That is, if MpXq is an abelian group for all finite H-sets X then LanMapHpG,´q
MpY q

is an abelian group for all finite G-sets Y .

Proof. It suffices to check that inverses exist in the case Y “ G{K, and we assume inductively

that this is true for Y “ G{L for all L ň K. We note that transfers are additive, so any

element transferred from a smaller subgroup inductively has inverses. Conceptually, we

know that Npbq`Np´bq should be equal to zero modulo transfers for any element b, so even

though an exact formula for an inverse might be messy, we can use our inductive hypothesis

to verify the existence of an inverse.

Our simplifications leave us needing to demonstrate that inverses exist for elements with

representatives of the form

`

Rη, y PMpiG{Kq
˘

“
`

MapHpG, ipG{Kqq Ð G{K “ G{K, y
˘

.

We then decompose iG{K into H{pH XKq >X for some H-set X, and use this to write y as

a pair pb, xq. This decomposition is necessary since our intended inverse is built around the

element p´b, xq instead of the element ´y “ p´b,´xq, just as the inverse of a tensor a1b a2

is given by p´a1q b a2 instead of p´a1q b p´a2q.

In the case b “ 0 it is easy to see that pRη, p0, xqq represents zero. We perform the

following coend operation. Here χ is the map iG{K > H{pH X Kq Ñ iG{K given by the

identity on the first component and the inclusion on the second:

0 “ pRη, p0, xqq “ pRη, pb, xq ` p´b, 0qq “ pRηTMapHpG,χq
, pb, x,´bqq .

We now consider the following pullback:
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Z MapHpG, iG{K >H{pH XKqq

G{K MapHpG, iG{Kq

r

MapHpG,χq

η
.

Every element of Z has a subgroup of (a conjugate of) K for its stabilizer. Inductively, we

can ignore all nontrivial transfers in our answer, so we need only identify the orbits of Z of

the form G{K.

We claim that there are exactly two of these orbits, and moreover that the restriction of

the map r to these orbits is adjoint to the map r̂ : iG{K > iG{K Ñ iG{K >H{pH XKq that

takes iG{K identically to itself on the first coordinate, and breaks the second coordinate

into the map

iG{K – X >H{pH XKq ãÑ iG{K >H{pH XKq .

Given these claims, we see that zero is equal to the sum of pRη, pb, xqq and pRη, p´b, xqq,

modulo transfers, completing the argument. This follows since the above sum has the fol-

lowing representative, where ∇ is the fold map G{K >G{K
∇
ÝÑ G{K:

`

MapHpG, ipG{K >G{Kqq
η
ÐÝ G{K >G{K

∇
ÝÑ G{K, pb, x,´b, xq

˘

“
`

T∇Rη, pb, x,´b, xq
˘

“
`

T∇Rη, Rr̂pb, x,´bq
˘

“
`

T∇RηRMapHpG,r̂q
, pb, x,´bq

˘

.

To check the claims, we again fix some set ti of left coset representatives. An element of

the pullback consists of an element gK P G{K, and an H-map β : GÑ iG{K >H{pH XKq

such that χβpg1q “ g1gK. We choose the orbit representative with g “ e, and note that β

is determined by βpt´1
i q. If βpt´1

i q P iG{K, then it is forced to be t´1
i K. Otherwise, it is
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some hipH XKq such that hiK “ t´1
i K, or equivalently tihi P K. Note that different such

choices of elements hi yield the same element of H{pH XKq.

Thus, β is completely determined by choosing the set of those i such that βpt´1
i q lies in

H{H XK instead of iG{K. We note that this set consists only of those i such that for some

hi we have tihi P K . Thus, the set of all possible β corresponds to the subsets of the set I

of those i such that a suitable hi exists. The map βS corresponding to a given subset S Ă I

is then given by requiring βSpt
´1
i q to lie in H{H XK if i P S, and lie in iG{K otherwise.

The only choices of S such that the isotropy subgroup of βS is all of K are the cases

S “ ∅ or S “ I. To see that kβS “ βS in these cases, we note that kβSpt
´1
i q is given by

writing t´1
i k “ ht´1

j for some h P H and some j, and then we have

kβSpt
´1
i q “ βSpt

´1
i kq “ βSpht

´1
j q “ hβSpt

´1
j q .

From the relation k´1ti “ tjh
´1, we see that i P I if and only if j P I. In the case S “ ∅, we

see that kβS “ βS since the image in both cases lies entirely within iG{K. In the case S “ I,

we see that kβS “ βS , since we have checked in this case that kβSpt
´1
i q lies in H{H XK for

all i P I.

For all other subsets S, choose some i P S and some j P I ´S. We choose suitable hi, hj ,

and then have for some k P K that tihih
´1
j t´1

j “ k. Now we have

kβSpt
´1
i q “ βSpt

´1
i kq “ βSpt

´1
i tihih

´1
j t´1

j q “ hih
´1
j βSpt

´1
j q .

We now see that βSpt
´1
i q lies within H{pH X Kq, since i P S. However, kβSpt

´1
i q lies in

iG{K, as j R S. Thus, k does not fix β.

The statement about restrictions follows immediately.
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2.3.2 Comparison with Ullman’s model

Here we write out Definition 5.18 of [22].

For any map f : V Ñ W of finite H-sets, define a G-set DHpW, f, V q and maps e and p

so that the bispan

Gˆ
H
W

e
ÐÝ DHpW, f, V q ˆG{H

π1
ÝÝÑ DHpW, f, V q

p
ÝÑ V

is the distributor for the composition G ˆH W Ñ V ˆ G{H Ñ V . Restricting e to the set

DHpW, f, V q ˆ teHu yields an H-map eH : DHpW, f, V q Ñ ipGˆH W q.

Then for any H-Mackey functor M define a G-Mackey functor NG,HM by letting

NG,HMpXq be the quotient of the free abelian group of pairs pj : V Ñ X, u P MpiHV qq

modulo the relations

1. pj : V Ñ X, uq “ pj1 : V 1 Ñ X, u1q when there is a commutative diagram

V X

V 1

j

–f
j1

and RiHfu “ u1,

2. pj1 > j2 : V1 > V2 Ñ X, pu1, u2qq “ pj1 : V1 Ñ X, u1q ` pj2 : V2 Ñ X, u2q, and

3. pj : V Ñ X,Tf pwqq “ pj ˝ p : DHpW, f, V q Ñ X,ReH pwqq for any finite H-set W and

any H-map f : W Ñ iHV .

A Mackey functor structure on NG,HM is now given. The transfer Tf pj : V Ñ X, uq corre-

sponding to a map f : X Ñ Y is given by the postcomposition pf ˝j : V Ñ Y, uq. The restric-

tion associated to a map f : Y Ñ X is defined by Rf pj : V Ñ X, uq “ pk : P Ñ Y,RiHqpuqq,
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where the following diagram is a pullback:

V X

P Y

j

q f

k .

In [22], Ullman proves that this yields a presentation of π0pN
G
HHMq, where HM is an appro-

priate model for the Eilenberg-Maclane spectrum corresponding to the Mackey functor M

and NG
H is the Hill-Hopkins-Ravenel norm [13]. We check that this topologically-motivated

norm agrees with our construction.

Proposition 2.3.7. There is an isomorphism of G-Mackey functors NG,HM – NG
HM .

Proof. Our identification takes the generator pj : V Ñ X, uq in NH,GMpXq to the coend rep-

resentative pTjRη, uq in NG
HMpXq. Note that all elements in the target have a representative

in this standard form.

To check that this yields a well-defined isomorphism, we need to see how the relations in

NG,HM correspond to relations in NG
HM . Relation (1) corresponds to the identifications in

the coend coming from identifying spans in AG. Relation (2) corresponds to how addition

is defined in NG
HM . Relation p3q corresponds to coend identifications coming from transfer

maps as an application of Lemma 2.3.5.

The transfer and restriction maps are clearly compatible with these identifications.

2.3.3 Multiplicative norms of Green functors

We now consider Green functors, which have two equivalent formulations. Note that we use

the term “Green functor” where others might use the term “commutative Green functor”.

The traditional definition uses the symmetric monoidal structure on the category of

Mackey functors given by the box product.
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For our purposes, we note that the box product can be explicitly constructed as a left

Kan extension. The functor
ś

: G-SetF ˆG-SetF Ñ G-SetF , which takes two G sets X, Y

to their product XˆY , preserves pullbacks, and thus induces a functor
ś

: AGˆAG Ñ AG.

Given any Mackey functors P ,Q, the box product P bQ is formed as the left Kan extension

of P ˆQ along the functor
ś

. This is given explicitly by the coend formula

pP b QqpY q “

ż pU,V qPAGˆAG
AGpU ˆ V, Y q ˆ P pUq ˆQpV q .

The box product has a unit A, whose value on orbits is given by the Burnside ring AH .

Since A is the initial object in the category of Tambara functors, it is preserved by the left

adjoint NG
H .

A Green functor is then a commutative monoid under the box product. Given a Green

functor R, the abelian group RpXq inherits the structure of a commutative ring, with the

unit element being the image of the element 1 P ApXq under the unit map ApXq Ñ RpXq.

There is a natural map RpXqbRpXq Ñ pRbRqpXq, which upon postcomposition with the

monoid multiplication RbRÑ R yields the ring multiplication of RpXq. This natural map

sends xb y to the representative pX ˆX
∆
ÐÝÝ X “ X, x, yq in the coend for R b R.

The structure of the box product tells us that the multiplication, transfers and restriction

must be compatible via a Frobenius reciprocity relation. Given a quotient map f : G{K Ñ

G{H, the formula a¨Tf pbq “ Tf pRf paq¨bqmust be satisfied for any a P RpG{Hq, b P RpG{Kq.

We can also describe a Green functor via a diagram category, similar to our definition of

Mackey and Tambara functors. Let GG be the subcategory of UG consisting of those bispans

such that the middle map Ng is restricted to only allow G-maps g that are injective on orbits

(alternatively formulated as g being a map that “preserves isotropy” in [20]). Note that g

being injective on orbits does not mean that g is actually injective. One example is the fold

map G{H >G{H Ñ G{H. (For this to actually be a subcategory, one must check that this

property is closed under composition, which is Proposition 12.4 of [20].)
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A semi-Green functor is then a product-preserving functor GG Ñ Set (which naturally

takes on values in commutative semirings), and a Green functor is one taking values in

commutative rings. The equivalence of the two descriptions of Green functors is Proposition

12.11 of [20].

Since the Green functors are the commutative monoids under the box product, the exis-

tence of a norm functor NG
H from H-Green functors to G-Green functors requires only the

following:

Proposition 2.3.8. The functor NG
H : MackH Ñ MackG is strong symmetric monoidal with

respect to the box product.

Proof. We first note that we have isomorphisms

MapHpG,Aq ˆMapHpG,Bq – MapHpG,AˆBq

for all pairs of finite H-sets A,B. This induces a natural isomorphism

ź

˝pMapHpG,´q ˆMapHpG,´qq – MapHpG,´q ˝
ź

of functors AH ˆAH Ñ AG. This yields a natural isomorphism between the corresponding

left Kan extensions

NG
HP b NG

HQ – NG
HpP b Qq .

Note that the Burnside functor A is the initial object in the category of Green functors

and the category of Tambara functors. The unit map 1 : AÑ NG
HA is then an isomorphism

by Yoneda’s Lemma.
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We must check the compatibility diagram

NG
HM NG

HpA b Mq

A b NG
HM NG

HA b NG
HM

–

–

–

1b id ,

which commutes since given any x P NG
HMpXq, its image in NG

HMNG
HA b NG

HMpXq is

1X b x.

There are also corresponding associativity and symmetry diagrams, but they are trivial

to verify.

An application of Proposition 2.3.8 and Theorem 2.3.3 shows us that our Tambara functor

level norm NG
H and our Green functor level norm NG

H are compatible. This compatibility

takes the form of a natural isomorphism UGN
G
H – NG

HUH , where

UG : TambG Ñ GreenG and

UH : TambH Ñ GreenH

are the forgetful functors.

2.3.4 A unit map for unital Mackey functors

For our characterization of Tambara functors in Section 2.7, we need to examine the unit

map RÑ iHN
G
HR given by the unit of the NG

H % iH adjunction in the category of Tambara

functors. We check that this map can be extended to the category Mack1
G of unital G-Mackey

functors, which are Mackey functors M equipped with a map A Ñ M . In particular, all
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G-Green functors are unital G-Mackey functors.

As an aside, we note that we can define a subcategory A1
G Ă UG consisting of those

bispans where the middle map Ng is required to be injective. We observe that injective

maps are in particular injective on orbits, so we have the following inclusions of categories

AG Ă A1
G Ă GG Ă UG ,

corresponding to the chain of forgetful functors

TambG Ñ GreenG Ñ Mack1
G Ñ MackG .

Here the inclusion AG Ă A1
G takes a span X Ð A Ñ Y to the bispan X Ð A “ A Ñ Y .

To see that A1
G is a subcategory as claimed, we observe that pullbacks of inclusions are

inclusions, as well as the following easy result.

Lemma 2.3.9. The distributor for a composition of the form X Ñ Y ãÑ Z is given by

X “ X ãÑ X > pZ ´ Y q Ñ Z .

This allows us to redefine unital semi-Mackey functors as product-preserving functors

A1
G Ñ Set, and unital Mackey functors as those such functors taking on values in abelian

groups. This definition is equivalent to the notion of a Mackey functor M equipped with a

map AÑM by defining the norm map induced by an inclusion X Ñ X > Y to be given by

sending any x PMpXq to

px, 1Y q PMpXq ˆMpY q –MpX > Y q ,

where 1Y is the image of 1Y P ApY q under the unit map 1: AÑM .
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Proposition 2.3.10. There is a natural transformation η̃ : Id Ñ iHN
G
H of endofunctors of

Mack1
G. When restricted to Tambara functors, η̃ extends the unit map in the sense that the

diagram

UHR

UH iHN
G
HR iHN

G
HUHR

UHη
η̃

–

α

commutes for any Tambara functor R, where α is the composite of the natural isomorphism

UH iH – iHUG with the natural isomorphism of Theorem 2.3.3. Here UH and UG are the

corresponding forgetful functors.

Proof. To determine what the map η̃ should be, we first examine what the image is when R

is Tambara. An element x P RpXq is sent to the following coend representative under the

unit η of the iH % LaniH p´q adjunction:

ηpxq “
`

Gˆ
H
X “ Gˆ

H
X “ Gˆ

H
X “ Gˆ

H
X, x

˘

.

We factorize the identity map of GˆH X as the composition

GˆH X
Gˆ
H
η̂

ÝÝÝÑ Gˆ
H
ipGˆ

H
Xq

ε
ÝÑ Gˆ

H
X ,

using the triangle identity for the G ˆH p´q % i adjunction. Here we write η̂ for the unit

map of the GˆH p´q % i adjunction, since we are already using η to denote the unit maps

of the i % MapHpG,´q and iH % LaniH p´q adjunctions.

Examining the isomorphism of Theorem 2.3.3 then shows us that

αpηpxqq “ pRη, Nη̂xq “ pMapHpG, ipGˆ
H
Xqq

η
ÐÝ Gˆ

H
X “ Gˆ

H
X,Nη̂xq .
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in the Mackey-level coend for NG
HUHR.

For any unital Mackey functor M , this formula gives well-defined elements of iHN
G
HM ,

since the map η̂ : X Ñ ipG ˆH Xq is an inclusion. Thus, we define η̃ to send an element

x PMpXq to the element pRη, Nη̂xq of iHN
G
HMpXq.

We must now check that η̃ preserves the structure maps of a unital Mackey functor. The

unit map is just the composition AÑM Ñ iHN
G
HM .

Given a map f : Y Ñ X, we check that the restriction Rfx in the domain maps to the

restriction of the image of x in the target. We observe that the following square is a pullback:

Y ipGˆ
H
Y q

X ipGˆ
H
Xq

η̂

f ipGˆ
H
fq

η̂
.

This allows us the following manipulations, which give us compatibility with restrictions:

pRGˆHfRη, Nη̂xq

“ pRηRMapHpG,ipGˆHfqq
, Nη̂xq

“ pRη, RipGˆHfqNη̂xq

“ pRη, Nη̂Rfxq .

Next, we take a transfer map f : X Ñ Y , and see by Lemma 2.3.9 that

X
j
ÝÑ X >

`

ipGˆ
H
Y q ´ Y

˘ f0
ÝÑ ipGˆ

H
Y q – Y >

`

ipGˆ
H
Y q ´ Y

˘

.

is a distributor corresponding to the composition Nη̂Tf . Here j is the obvious inclusion and

f0 is given by f on X and the identity on ipGˆH Y q.
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Let φ : ipG ˆH Xq – X > pipG ˆH Xq ´ Xq Ñ X > pipG ˆH Y q ´ Y q be given by the

identity on the first component and the map pg, xq ÞÑ pg, fpxqq on the second component.

Then

X ipGˆ
H
Xq

X X >
`

ipGˆ
H
Y q ´ Y

˘

η̂

ψ

j

is clearly a pullback square.

We claim that

Gˆ
H
X MapH

`

G,X >
`

ipGˆ
H
Y q ´ Y

˘˘

Gˆ
H
Y MapHpG, ipGˆ

H
Y qq

ψ̂

Gˆ
H
f MapHpG, f0q

η
(2.3.1)

is also a pullback square, where ψ̂ is the adjoint to ψ.

Assuming this claim, we check compatibility with transfers:

pRη, Nη̂Tfxq

“ pRη, Tf0Njxq

“ pRηTMapHpG,f0q
, Njxq

“ pTGˆHfRψ̂, Njxq

“ pTGˆHfRηRMapHG,ψ
, Njxq

“ pTGˆHfRη, RψNjxq

“ pTGˆHfRη, Nη̂xq .
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We now check that the diagram (2.3.1) is a pullback square, completing the proof.

An element of the pullback is given by a triple pg, y, βq, where β : GÑ X>pipGˆHY q´Y q

is an H-map. The compatibility conditions require fpβpg1qq “ g1gx P X if g1g P H and

βpg1q “ pg1g, yq P ipG ˆH Y q ´ Y if g1g R H. This data can then be reduced to g and the

value x “ βpg´1q, and this data determines an element of G ˆH X, as desired. It does not

matter which element of the left coset gH is chosen. The projection to GˆH Y takes pg, xq

to pg, fpxqq and the projection to MapHpG,X > pipGˆ
H
Y q ´ Y qq takes pg, xq to the function

g1 ÞÑ ψpg1g, xq “

$

’

&

’

%

g1gx P X if g1g P H

pg1g, fpxqq P ipGˆ
H
Y q ´ Y if g1g R H .

2.4 Weyl actions and a G-symmetric monoidal structure on

MackG

The notion of “G-symmetric monoidal category” has been outlined in the literature [18, 22]

to the extent required for the definition of a G-commutative monoid, which generalizes the

notion of a commutative monoid in a symmetric monoidal category. The essential point

is to define MbT for any finite G-set T and G-Mackey functor M , as well as structural

isomorphisms MbT ÑMbT 1 for any G-isomorphism T – T 1. In particular, the Weyl group

WGH “ NGH{H acts on MbG{H .

For any G-sets T, S, there is a G-action by conjugation on the set MappT, Sq of all maps

T Ñ S. For any G-set T , we see that the functor MappT,´q : G-Set Ñ G-Set preserves

pullbacks, so it induces a functor AG Ñ AG.

Definition 2.4.1. The functor p´qbT : MackG Ñ MackG is given by left Kan extension

along MappT,´q : AG Ñ AG. Concretely, for any G-Mackey functor M we have a coend
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formula for MbT :

MbT
pY q :“ LanMappT,´qMpY q “

ż XPAG
AGpMappT,Xq, Y q ˆMpXq .

The set-level natural isomorphisms

MappT1 > T2, Sq – MappT1, Sq ˆMappT2, Sq

MappT, S1 ˆ S2q – MappT, S1q ˆMappT, S2q

MappT2,MappT1, Sqq – MappT1 ˆ T2, Sq

immediately induce corresponding natural isomorphisms of Mackey functors:

MbpT1>T2q –MbT1 b MbT2

pM1 b M2q
bT

–MbT
1 b MbT

2

pMbT1qbT2 –MbpT1ˆT2q .

Since MappT,´q does not preserve products in AG, the left Kan extension does not yield a

left adjoint.

We now concretely relate this structure to our norm construction.

Proposition 2.4.2. There is a natural isomorphism β : NG
H iHM – MbG{H of G-Mackey

functors.

Now we note that the construction of MbT is a priori only a semi-Mackey functor.

However, Propositions 2.4.2 and 2.3.6 imply that this construction preserves additive inverses

and thus takes on values in Mackey functors.

Definition 5.2 of Ullman [22] gives an explicit algebraic presentation of MbT . Again, as in

Proposition 2.3.7 we see that this presentation agrees with our construction. The topological
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analogue of Proposition 2.4.2 is obvious since both sides are defined via the same indexed

smash product in a nice category of G-spectra.

If T is a trivial G-set with n elements, then MbT is isomorphic to the n-fold box product

Mbn and the corresponding structural isomorphisms are the action of the symmetric group

Σn given by permutation of factors.

More generally, if we have a decomposition T –
š

iG{Hi, then we get a corresponding

decomposition of MbT :

MbT
–
ò

i

NG
Hi
piHiMq .

Any map of finite G-sets f : T Ñ T 1 induces a natural transformation

f˚ : MappT 1,´q Ñ MappT,´q

of endofunctors of G-Set. However, these maps do not induce natural tranformations

MappT 1,´q Ñ MappT 1,´q of endofunctors of AG except in the case of isomorphisms, in

which case the naturality squares in G-Set are pullbacks. This case induces natural isomor-

phisms MbT –MbT 1 for any isomorphism T – T 1.

Proof of Proposition 2.4.2: We first let ζ denote the natural isomorphism

ζ : G{H ˆ p´q – GˆH ip´q .

Fix a G-set Y and start with an arbitrary element of NG
H iHMpY q. This element has a

standard form representative

pThRη, bq “ pMapHpG, iBq
η
ÐÝ B

h
ÝÑ Y, b PMpGˆ

H
iBqq ,

which we send to the element in the coend for MbT with the following representative, where
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η1 is the unit of the adjunction G{H ˆ p´q % MappG{H,´q:

βpThRη, bq :“ pThR
1
η, Rζbq “ pMappG{H,G{H ˆBq

η1
ÐÝ B

h
ÝÑ Y,Rζb PMpG{H ˆBqq.

We first observe that this target element is in a similar universal form for elements of the

target coend, so that β is an isomorphism provided that it is well-defined.

As in the proof of Theorem 2.3.3, the only real work remaining is to ensure that β respects

the coend identifications coming from transfer maps. We fix an H-map f : X Ñ iB and some

x PMpGˆHXq, and show that the images under β of elements of the form pThRη, TGˆHfxq

and pThRηTMapHpG,fq
, xq are identified in the target.

We recall that we denote the unit of the GˆH p´q % i adjunction by η̂, and also introduce

the notation f̂ : GˆH X Ñ G{H ˆB for the composite ζ´1 ˝ pGˆH fq.

We now define the G-set Z and maps π1, π2 such that the left square in the following

commutative diagram is a pullback. Here π̂2 : iZ Ñ X is the adjoint to π2:

MappG{H,G{H ˆ Zq

Z MapHpG,Xq MapHpG, ipGˆ
H
Xqq MappG{H,Gˆ

H
Xq

B MapHpG, iBq MapHpG, ipGˆ
H
iBqq MappG{H,G{H ˆBq

MappG{H, pGˆ
H
π̂2q ˝ ζq

π2

π1

η1

MappG, η̂q –

MappG{H, f̂q

η
MappG, η̂q

–

.

The naturality squares for η1 are pullbacks, and the functor MapHpG,´q preserves pullbacks.

Thus, the bottom rectangle is also a pullback. We also observe that the lower composite is

the unit map η1 : B Ñ MappG{H,G{H ˆBq.
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We now perform the following coend manipulations using the above diagram:

βpThRη, TGˆHfxq “ pThRη1 , RζTGˆHfxq

“ pThRη1 , Tζ´1TGˆHfxq

“ pThRη1 , Tf̂xq

“ pThRη1TMappG{H,f̂q
, xq

“ pThTπ1Rη1RMappG{H,pGˆH π̂2q˝ζq
, xq

“ pThπ1Rη1 , RζRGˆH π̂2 , xq

To evaluate β on the coend representative pThRηTMapHpG,fq
, xq, we must first convert this

representative to one in standard form:

pThRηTMapHpG,fq
, xq “ pThTπ1Rπ2 , xq

“ pThπ1RηRMapHpG,π̂2q
, xq

“ pThπ1Rη, RGˆH π̂2xq

The map β takes this element to the representative pThπ1Rη1 , RζRGˆH π̂2 , xq, as desired.

2.4.1 Conjugation functors and an alternate form of the Weyl action

As a result of Proposition 2.4.2, for any isomorphism γ : G{H Ñ G{H 1, we get a natural

isomorphism of the form

wγ : NG
H iHM – NG

H 1iH 1M .

In particular, for H “ H 1 we get an action of the Weyl group WGH on NG
H iHM through

isomorphisms of Mackey functors. This Weyl action is analogous to the corresponding action

on the indexed sum GˆH piHMq and the indexed product MapHpG, iHMq of any G-set M .
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A similar Weyl action on NG
H iHR for R a commutative orthogonal ring G-spectrum follows

from Corollary 2.14 of [13].

To specify these conjugation isomorphisms wγ concretely, we start by choosing some

G-isomorphism γ : G{H 1 Ñ G{H. This sends any coset gH 1 to the coset gγH, for some con-

jugacy relation γHγ´1 “ H 1. Such a map exists for any element γ in the normal transporter

NGpH
1, Hq, although the map depends only on the double coset in H 1zNGpH

1, Hq{H.

We now introduce the notation γH “ γHγ´1, Hγ “ γ´1Hγ for conjugate subgroups to

a subgroup H ď G and an element γ P G.

Definition 2.4.3. Given any G-set B let γ̂ : G ˆγH B Ñ G ˆH B denote the isomorphism

given elementwise by taking pg, bq to pgγ, γ´1bq.

This is a “twisted” version of the map G{γHˆB Ñ G{HˆB. Given a G-Mackey functor

M , we then get a restriction map Rγ̂ : MpGˆH Bq ÑMpGˆγH Bq. This can also be viewed

as a map iHMpiHBq Ñ iγHMpiγHBq. Note that in the case B “ G{G, this map induces the

standard conjugation map cγ : MpG{Hq Ñ MpG{γHq, which yields the usual Weyl action

when γ P NGpHq.

We now introduce a general construction to further decompose the isomorphism γ̂.

Definition 2.4.4. For any γ P G, there is a equivalence of categories γ¨p´q : H-Set Ñ γH-Set

given on objects by taking an H-set X to the set γ ¨X of formal symbols γ ¨ x, with the γH-

action given by γhγ´1pγ ¨xq “ γ ¨hx. On morphisms γ ¨ f takes γ ¨x to γ ¨ fpxq. There exist

natural isomorphisms as follows.

• In the case H “ G, there is a natural isomorphism X – γ ¨ X given by sending x to

γ ¨ γ´1x.

• Given H ď K ď G, there is a natural isomorphism γ ¨ pK ˆH Xq – γK ˆγH γ ¨X

given by taking γ ¨ pk, xq to pγkγ´1, γ ¨ xq.
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• Given H ď K ď G, there are natural isomorphisms of functors of the following form,

where iH : K-Set Ñ H-Set is the forgetful functor:

γ ¨ iHp´q – iγHpγ ¨ p´qq

γ ¨MapHpK,´q – MapγHp
γK, γ ¨ p´qq .

We observe that the map γ̂ : G ˆγH B Ñ G ˆH B of Definition 2.4.3 is given by the

composition

G ˆ
γH

iγHB – G ˆ
γH

iγHpg ¨Bq – G ˆ
γH

γ ¨ piHBq – g ¨ pGˆ
H
iHBq – Gˆ

H
iHB .

We now consider the context of Mackey functors.

Proposition 2.4.5. There is an equivalence of categories cγ : MackH Ñ MackγH given by

setting cγMpXq “ Mpγ´1 ¨ Xq for any finite γH-set X. There then exist natural isomor-

phisms of the following form.

• In the case H “ G, there is a natural isomorphism cγ – Id.

• Given H ď K ď G, there is a natural isomorphism cγiHp´q – iγHcγp´q of functors

MackK Ñ MackγH .

• Given H ď K ď G, there is a natural isomorphism cγN
K
H p´q – N

γK
γH cγp´q of functors

MackH Ñ MackγK .

Proof. Since the functor γ´1 ¨p´q preserves pushouts and disjoint unions, it induces a functor

AγH Ñ AH . Precomposition along this functor gives a well-defined functor at the Mackey

level, and the first two isomorphisms follow from the first two isomorphisms of Definition

2.4.4.
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To define the third isomorphism, we fix a finite γH-set Y and an H-Mackey functor M

and write an element of cγN
K
HMpY q – NK

HMpγ
´1 ¨ Y q in standard form as

`

ThRη, x PMpiHBq
˘

,

where B is some finite K-set and h : B Ñ γ´1 ¨ Y is some K-map.

The image of this element N
γK
γH cγMpXq under our proposed isomorphism is then the

element
´

Tγ¨hRη, x PMpγ
´1
¨ iγHpγ ¨Bqq –MpiHBq

¯

.

We must demonstrate that this respects coend identifications induced by transfer maps. This

boils down to the following isomorphism for any H-map of the form Y Ñ iHB:

γ ¨

˜

MapHpK,Y q ˆ
MapHpK,iHBq

B

¸

– MapγHp
γK, γ ¨ Y q ˆ

MapγHp
γK,iγHpγ¨Bqq

γ ¨B .

This isomorphism follows from composing the isomorphisms of Definition 2.4.4 with the fact

that γ ¨ p´q preserves pullbacks:

Checking that our proposed isomorphism is a map of Mackey functors is straightforward.

Chasing definitions now gives us a concrete characterization of the maps wγ .

Corollary 2.4.6. The map wγ : NG
H iHM – NG

γH iγHM has the following decomposition:

NG
H iHM – cγN

G
H iHM – NG

γHcγiHM – NG
γH iγHcγM – NG

γH iγHM .

An element in NG
H iHMpY q with standard form representative

pThRη, bq “
`

MapHpG, iHBq
η
ÐÝÝ B

h
ÝÝÑ Y, b P iHMpiHBq

˘
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is taken by wγ to the element of NG
γH iγHMpY q with standard form representative

pThRη, Rγ̂bq “
`

MapγHpG, iγHBq
η
ÐÝÝ B

h
ÝÝÑ Y, Rγ̂b P iγHMpiγHBq

˘

.

Here γ̂ is the isomorphism of Definition 2.4.3.

2.5 A double coset formula for norms of Mackey functors

As motivation, we examine the structural isomorphisms pMbT qbT
1
–MbpTˆT 1q in the case

of T “ G{H, T 1 “ G{K for H,K ď G. In light of Proposition 2.4.2 these can be rewritten

to be of the form

NG
K iKN

G
H iHM –

ò

γ
NG
KγXHpiKγXHMq .

Here Kγ “ γ´1Kγ, and γ ranges over a set of double coset representatives for KzG{H.

This reflects the decomposition of G{K ˆG{H into orbits.

These isomorphisms reflect a more general decomposition.

Theorem 2.5.1. Let H,K ď G and M be an H-Mackey functor. Then there is a natural

isomorphism

iKN
G
HM –

ò

γ
NK
KXγHpiKXγHpcγMqq .

Here γ ranges over a complete set of double coset representatives for KzG{H and cγ are the

conjugation functors of Proposition 2.4.5.

Combining this theorem with the structural isomorphisms of Proposition 2.4.5 allows us

to construct the following decompositions that do not involve the functors cγ :

iKN
G
H iHM –

ò

γ
NK
KXγHpiKXγHMq for M P MackG , and

NG
K iKN

G
HM –

ò

γ
NG
KγXHpiKγXHMq for M P MackH .
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We remark that the unit map of Proposition 2.3.10 can be redescribed as the map

M b Abn´1
Ñ

ò

γ
NH
HXγHpiHXγHpcγMqq

given by the identity on the first coordinate (corresponding to the double coset HeH) and

the unit on the rest, where n “ |HzG{H|.

Proof of Theorem 2.5.1: Fix H,K ď G. We set γ1, . . . , γn to be a complete set of double

coset representatives for KzG{H, where n “ |KzG{H|. We first describe an analogous

natural isomorphism on the level of finite H-sets, for B any finite K-set:

θ̂ :
n
ž

j“1

γ´1
j ¨

ˆ

γjH ˆ
KX

γjH
B

˙

– iH

ˆ

Gˆ
K
B

˙

.

In the j-th component, the map θ̂ takes a pair γ´1
j ¨ pγjhγ

´1
j , xq to the pair phγ´1

j , xq. For

any element g P G, we first write g “ hγ´1
j k for some j, and then the inverse map θ̂´1

takes a pair of the form pg, xq “ phγ´1
j k, xq to the element γ´1

j ¨ pγjhγ
´1
j , kxq in the j-th

component.

We now fix a K-set Y and take an arbirary element in the coend for iKpN
G
HMq. This

element has a standard form representative

pTGˆKhRη, bq “

ˆ

MapHpG, iHpGˆ
K
Bqq

η
ÐÝ Gˆ

K
B

GˆKh
ÝÝÝÝÑ Gˆ

K
Y, b PMpiHpGˆ

K
Bqq

˙

,

which is taken by our proposed map θ to the following element in the composite coend for

b
j
NK
KX

γjH
piKXγjHpcγjMqq:

θpTGˆKhRη, bq :“ pThRΠjηj , Rθ̂bq

“

¨

˝

n
ź

j“1

MapKXγjHpK, iKXγjHBq
η1ˆ¨¨¨ˆηn
ÐÝÝÝÝÝÝÝ B

h
ÝÑ Y,R

θ̂
b

˛

‚ .
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We observe that this element is in a similarly universal form for elements in the target, so

that θ is an isomorphism provided that it is well-defined. We implicitly using the canonical

isomorphism to view R
θ̂
b as an element of the correct product of modules:

R
θ̂
b PM

¨

˝

n
ž

j“1

γ´1
j ¨

ˆ

γjH ˆ
KX

γjH
B

˙

˛

‚–

n
ź

j“1

iKXγjHpcγjM pBqq .

As in the proof of Theorem 2.3.3, the only real work remaining is to check that θ respects

the coend identifications induced by transfer maps. We fix a K-map f : X Ñ iHG ˆK B,

and define KXγjH-sets Xj and maps fj : Xj Ñ iKXγjHB such that a commutative diagram

exists of the form

X iHpGˆ
K
Bq

š

j γ
´1
j ¨

ˆ

γjH ˆ
KX

γjH
Xj

˙

š

j γ
´1
j ¨

ˆ

γjH ˆ
KX

γjH
B

˙

f

– θ̂
–

š

j γ
´1
j ¨

ˆ

γjH ˆ
KX

γjH
fj

˙

.

We define a K-set X̂ and maps π, ψ by the following pullback square:

X̂
ś

j MapKXγjHpK,Xjq

B
ś

j MapKXγjHpK,Bq

ψ

ś

j MapKXγjHpK, fjqπ

η1 ˆ ¨ ¨ ¨ ˆ ηn .

Now let ψj : X̂ Ñ Xj denote the adjoint to the j-th component of ψ. Define a map

ψ̂ : G ˆ
K
X̂ Ñ MapHpG,Xq as the adjoint to the map ψ̄ : iHpG ˆK X̂q Ñ X defined by
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the composition

iH

ˆ

Gˆ
K
X̂

˙

–

n
ž

j“1

γ´1
j ¨

ˆ

γjH ˆ
KX

γjH
X̂

˙

ψj
ÝÝÑ

n
ž

j“1

γ´1
j ¨

ˆ

γjH ˆ
KX

γjH
Xj

˙

– X .

We claim that

Gˆ
K
X̂ MapHpG,Xq

Gˆ
K
B MapHpG,Gˆ

K
Bq

ψ̂

MapHpG, fqGˆ
K
π

η
(2.5.1)

is a pullback diagram.

Assuming this claim, we show that θpTGˆKhRη, Tfxq and θpTGˆKhRηTMapHpG,fq
, xq are

identified in the target. We start with the computation

θpTGˆKhRηTMapHpG,fq
, xq “ θpTGˆKhTGˆKπRψ̂, xq

“ θpTGˆKphπqRηRMapHpG,ψ̄q
, xq

“ θpTGˆKphπqRη, Rψ̄xq

“ pThπRΠjηj , Rθ̂Rψ̄xq .

To compute the other image, we let xj P iKXγjHpcγjM
`

Xj
˘

q denote the j-th component

of the following decomposition:

x PMpXq –
n
ź

j“1

iKXγjHpcγjM
`

Xj
˘

q .

We have that R
θ̂
Tf is given by Tfjxj in the j-th component, and that R

θ̂
Rψ̄x is given by
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Rψjxj in the j-th component. We evaluate

θpTGˆKhRη, Tfxq “ pThRΠjηj , Rθ̂Tfxq

“ pThRΠjηj , pTfjxjq
n
j“1q

“ pThRΠjηjTΠjMap
KX

γjH
pK,fjq

, pxjq
n
j“1q

“ pThTπRψ, pxjq
n
j“1q

“ pThπRΠjηj , pRψjxjq
n
j“1q

“ pThπRΠjηj , Rθ̂Rψ̄xq .

We now check that (2.5.1) is a pullback square, which completes the proof.

An element of X̂ is a pn` 1q-tuple pb, β1, . . . , βnq, where b P B and βj is a K Xγj H-map

K Ñ Xj satisfying the compatibility condition fpβjpkqq “ kb for all j and all k P K.

An element in the pullback of MapHpG, fq and η consists of a triple pg, b, βq, where

g P G, b P B, and β : G Ñ X is an H-map. Here the compatibility condition is that for all

g1 P G we have fpβpg1qq “ pg1g, bq P GˆK B. We use the decomposition

iH

ˆ

Gˆ
K
B

˙

–

n
ž

j“1

γ´1
j ¨

ˆ

γjH ˆ
KX

γjH
B

˙

to further describe fpβpg1qq. If we choose h P H, k P K and j such that g1g “ hγ´1
j k, then

we see that pg1g, bq is taken to γ´1
j ¨ pγjhγ

´1
j , kbq on the j-th component. This implies that

βpg1q lies in the j-th component of the isomorphism

X –
ž

j

γ´1
j ¨

ˆ

γjH ˆ
KX

γjH
Xj

˙

.
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Considering the case g1 “ γ´1
j kg´1, we define a map βj : K Ñ Xj by the formula

βpγ´1
j kg´1

q “ γ´1
j ¨ pe, βjpkqq P γ

´1
j ¨

ˆ

γjH ˆ
KX

γjH
Xj

˙

.

This then forces βphγ´1
j kg´1q “ γ´1

j ¨ ph, βjpkqq, and this is well-defined exactly when all

of the maps βj are K XγjH-equivariant. This shows us that the data pg, b, β1, . . . , βnq of an

element of G ˆK X̂ consists of the same data as an element of the pullback. These iden-

tifications are compatible with the identifications coming from different choices of element

from the left coset gK. It is easy to check that this identification respects the group action

and that the two projection maps are GˆK π and ψ̂.

2.6 Comparisons with Mazur’s model

Because NG
KN

K
H is naturally isomorphic to NG

H for any subgroup chain H ď K ď G, we

can check that our model for the norm functor NG
H is isomorphic to the model constructed

by Mazur for groups of cyclic prime power order in [18] by restricting our attention to the

case NG
H where H is maximal in G. In this case, Mazur’s construction is given by starting

with Mb|G{H| and adding in norm elements in an appropriately free manner to the module

NG
HMpG{Gq. In particular, this yields a natural isomorphism iHN

G
HM – pMqb|G{H|. In

our case such an isomorphism is a special case of Theorem 2.5.1.

Corollary 2.6.1. Let G be a finite abelian group. Let H,K ď G and M be an H-Mackey

functor. Then there is a natural isomorphism

iKN
G
HM –

ò

|G{HK|

NK
KXHpiKXHMq .

In the case K ď H this isomorphism takes the form iKN
G
HM – piKMq

b|G{H|.

We now recall Mazur’s Definition 2.2.2. We fix H to be the maximal subgroup of G and
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M to be an H-Mackey functor. For any K ď H, we set NG
HMpG{Kq to be Mb|G{H|pH{Kq.

The Weyl action is given symbolically in the form

cγpme bmγ b ¨ ¨ ¨ bmγp´1q “ pcγpmγp´1 bme b ¨ ¨ ¨ bmγp´2q .

Then the top-level module NG
HMpG{Gq is given by the explicit presentation

NG
HMpG{Gq :“

´

ZtMpH{Hqu ‘Mb|G{H|
pH{Hq{WGpHq

¯

{TR .

The additive generators of ZtMpH{Hqu are denoted Npxq, as these elements are designed

to encode the norm map MpG{Hq Ñ MpG{Gq. The submodule Mb|G{H|pH{Hq{WGpHq
is

referred to as ImptrGHq, as this is the image of the transfer map NG
HMpG{Hq Ñ NG

HMpG{Gq,

which is the composite

Mb|G{H|
pH{Hq ÑMb|G{H|

pH{Hq{WGpHq
ãÑ NG

HMpG{Gq .

The submodule TR is generated by elements of the following two forms:

Npa` bq ´Npaq ´Npbq ´ trGHpgpa, bqq

NptrHKq ´ trGHptr
H
KpF pxqqq .

The polynomials g, F are universally defined from the compatibility conditions defining a

G-Tambara functor in the sense explained in Remark 2.2.2 of [18]. Restriction maps are

defined on the elements of ImptrGHq and on elements of the form Npaq by the usual double

coset formulae.

Proposition 2.6.2. There is an isomorphism of Mackey functors between our construction

LanMapHpG,´q
M and Mazur’s definition of NG

HM .

Proof. The two constructions have underlying H-Mackey functors isomorphic to Mb|G{H|.
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This is built into Mazur’s construction directly, and in our construction the isomorphism

follows from Corollary 2.6.1. One can check directly via the description of the isomorphism

of Theorem 2.5.1 that the Weyl actions agree on MpG{Kq for any K ď H.

What remains is to construct an isomorphism of modules for the two definitions of

NG
HpG{Gq, which must be compatible with restrictions and transfers.

The elements Npaq are sent to the coend representatives pRId˚ , a P MpipG{Gqqq. It is

straightforward to then check that is compatible with the restriction to NG
HMpG{Hq. Note

that the unit map of the terminal object can be given by the trival map Id˚ : ˚ Ñ ˚.

The elements of Mb|G{H|pH{Hq can be written via the isomorphism of Theorem 2.5.1 as

coend representatives of the form pTtRη, x P iHMpipGˆH Bqqq, where we use the notation

t : GˆH B Ñ G{H for the map induced by the trivial H-map B Ñ ˚. The transfer of such

an element is then given by the coend representative pTtrivRη, xq, where triv : GˆH B Ñ ˚

is the trivial G-map. It is straightforward to see that this then maps the image of the

transferNG
HMpG{Hq Ñ NG

HMpG{Gq isomorphically onto the submodule ImptrGHq of Mazur’s

construction in a way compatible with the restriction map to NG
HMpG{Hq.

The only remaining task is to demonstrate that the generators in TR correspond precisely

to the coend identifications coming from transfer maps. This is a reflection of the fact that

both constructions build in the corresponding compatibility conditions in a universal manner.

For the relations of the form Npa` bq ´Npaq ´Npbq ´ trGHpgpa, bqq for a, b PMpH{Hq,

we compute the element Npa` bq in our coend, where ∇ : ˚ >˚ Ñ ˚ is the fold map:

Npa` bq “ pRId˚ , T∇pa, bqq “ pRId˚TMapHpG,∇q, pa, bqq

“ pTtriv, pa, bqq

“ pTtrivRηRMapHpG,ε̂q
, pa, bqq

“ pTtrivRη, Rε̂pa, bqq .
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Here ε̂ : iHMapHpG, ˚ > ˚q Ñ ˚ > ˚ is the counit map. This yields the correct universal

formula by inspection of the following bispan, which by Lemma 2.3.5 is the corresponding

distributor:

G{H >G{H Gˆ
H

MapH pG, ˚ > ˚q MapH pG, ˚ > ˚q ˚

Gˆ
H
ε̂

ε triv

.

Note that MapHpG, ˚ > ˚q has exactly two orbits of isotropy G corresponding to the terms

Npaq and Npbq. This follows from setting K “ G in the proof of Proposition 2.3.6.

For the relations of the form NptrHKq´ trGHptr
H
KpF pxqqq, we let q denote the quotient map

H{K Ñ H{H and x PMpH{Kq. We now compute an expression for NpTqpxqq in our coend:

NptrHKq “ pRId˚ , Tqxq “ pRId˚TMapHpG,qq
, xq

“ pTtriv, xq

“ pTtrivRηRMapHpG,ε̂q
, xq

“ pTtrivRη, Rε̂xq .

Again ε̂ : iHMapHpG,H{Kq Ñ H{K is the counit map. This yields the correct universal

formula by inspection of the following bispan, which by Lemma 2.3.5 is the corresponding

distributor:

G{K Gˆ
H

MapH pG,H{Kq MapH pG,H{Kq ˚

Gˆ
H
ε̂

ε triv

.
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2.7 A characterization of Tambara functors

As motivation, we first give an unbiased characterization of commutative monoids in a

symmetric monoidal category C. For any object C P C and any finite set X we have the

object CbX given by the monoidal product of n copies of C, where n is the cardinality

of X. Given any isomorphism γ : X – X 1, we get a corresponding structural isomorphism

CbX – CbX
1
. When X “ X 1, this is the corresponding permutation of factors. When

X “ ∅, Cb∅ “ IC , the unit of the symmetric monoidal structure.

A commutative monoid is then an object C with an assignment of maps µf : CbX Ñ CbY

for all set maps f : X Ñ Y that agrees with the structural isomorphism when f is an

isomorphism. This assignment must be functorial in the sense that µfg “ µfµg.

The maps are required to be compatible with the symmetric monoidal structures of

pC,b, ICq and pFinSet, >,∅q in the sense that given fi : Xi Ñ Yi for i “ 1, 2, then we have

the following commutative diagram:

CbpX1>X2q CbpY1>Y2q

CbX1 b CbX2 CbY1 b CbY2

µf1>f2

– –

µf1 b µf2 .

Using this compatibility we can recover the biased definition, under which the data of a

commutative monoid is determined by the multiplication map µ∇ : Cb2 Ñ Cb1 and the unit

map µ∅ : Cb∅ Ñ Cb1, and must satisfy the usual unit, associativity, and commutativity

axioms.

We have an equivariant generalization of the structure of a symmetric monoidal category

on the category of G-Mackey functors due to the discussion and results in Section 2.4. This

entails a description of MbT for any Mackey functor M and any finite G-set T , as well

as structural isomorphisms MbT – MbT 1 corresponding to any isomorphism of finite G-
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sets T – T 1. This leads to the following generalization of the above definition of monoid.

Compare with Section 2.1 of [18].

Definition 2.7.1. A G-commutative monoid is an object M along with action maps

µf : MbT
ÑMbS

for every G-map f : T Ñ S satisfying the following identities:

• The actions are functorial in the sense that µfg “ µfµg.

• When f is an isomorphism, the action maps µf agree with the structural isomorphisms

of Corollary 2.4.6.

• For fi : Ti Ñ Si for i “ 1, 2 we have the following commutative diagram:

MbpT1>T2q MbpS1>S2q

MbT1 b MbT2 MbS1 b MbS2

µf1>f2

– –

µf1 b µf2 .

• Define a map µGH : NG
H iHM ÑM by the composition

NG
H iHM –MbG{H µtriv

ÝÝÝÑMbG{G
–M .

Then the diagram

M NG
H iHM

M

η̃

µGH

must commute for any H ď G, where η̃ is the map of Proposition 2.3.10.
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We will henceforth refer to the last condition as the triangular axiom.

Conceptually, if we have a Tambara functor R, then R inherits the structure of a G-

commutative monoid. When f is the quotient map G{H Ñ G{G, the action map µf is

induced by the counit ε : NG
H iHR Ñ R. As NG

H iHR is the universal home for norm maps

RpG{Hq Ñ RpG{Gq (in a way that we make explicit in the proof of Theorem 2.7.4), we can

similarly recover the norm map RpG{Hq Ñ RpG{Gq from the data of the action map.

Note that in this context, the triangular axiom is the corresponding triangle identity for

the NK
H % iH adjunction.

To encode the information of norm maps RpG{Hq Ñ RpG{Kq for arbitrary K, we instead

use the counit ε : NK
H iHR Ñ iKR, which is part of the data of viewing iKR as a K-

commutative monoid. This map induces the action map RbG{H Ñ RbG{K after applying

the functor NG
K . Our goal to characterize Tambara functors as Mackey functors M with

extra structure now leads to the following definition. Recall our notation γH “ γHγ´1 and

Hγ “ γ´1Hγ for conjugate subgroups.

Definition 2.7.2. A coherent G-commutative monoid is a Mackey functor M along with

compatible H-commutative monoid structures (given by actions which we denote µHf q on

iHM for each subgroup H ď G.

There are two compatibility conditions that must be satisfied. First, the diagram

piKMq
bpKˆHT q piKMq

bpKˆHSq

NK
H piHMq

bT NK
H piHMq

bS

µK
pKˆHfq

– –

NK
H µ

H
f

must commute for any H ď K ď G and f : T Ñ S any map of finite H-sets.
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Second, we require compatibility with conjugations in the sense that the diagram

cγppiHMq
bT q cγppiHMq

bSq

piγHMq
bγ¨T piγHMq

bγ¨S

cγpµ
H
f q

– –

µ
γH
γ¨f .

must commute for any H-map f : T Ñ S and any γ P G. Here the vertical isomorphisms

are derived from chaining together the structural isomorphisms of Proposition 2.4.5.

The data of a coherent G-commutative monoid can be reduced as follows by breaking up

H-sets into their orbits and applying the commutativity diagrams of Definition 2.7.1.

Lemma 2.7.3. A coherent G-commutative monoid is a G-Green functor M along with

maps of K-Green functors µKH : NK
H iHM Ñ iKM for each chain of subgroups H ď K ď G

satisfying the following compatibility conditions.

• If L ď H ď K is a chain of subgroups, then µKL is given by the following composition:

NK
L iLM – NK

HN
H
L iLM

NK
H µ

H
L

ÝÝÝÝÝÑ NK
H iHM

µKH
ÝÝÑ iKM .

• Given any H ď K, we have the following commutative square, where the vertical iso-

morphisms are derived from chaining together the structural isomorphisms of Proposi-

tion 2.4.5 :

cγN
K
H iHM cγiKM

N
γK
γH iγHM iγKM

cγpµ
K
H q

– –

µ
γK
γH .
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In particular, when γ “ k P K, this means that µKH “ µKkH
˝ wk in the notation of

Corollary 2.4.6.

• Given any H ď K the following diagram commutes, where η̃ is the map of Proposition

2.3.10:

iKM NK
H iHM

iKM

η̃

µKH

.

The following result tells us we have the correct notion of monoid, giving an extrinsic

characterization of when a Mackey functor has internal norms. The crux of the matter

is that the internal structure of our norm functors NK
H universally encode the necessary

compatibility conditions between norms and restrictions, and between norms and transfers.

Theorem 2.7.4. For any finite group G, the G-Tambara functors are precisely the coher-

ent G-commutative monoids. In other words, there is an equivalence of categories between

TambG and the category of coherent G-commutative monoids.

Here we define a map of coherent G-commutative monoids to be a map of G-Green

functors compatible with the action maps.

Proof. For one direction, if R is a Tambara functor, then the action maps

µKH : NK
H iHM Ñ iKM

for subgroups H ď K are given by the counit of the NK
H % iK adjunction. It is then

straightforward to see that the resulting action maps are appropriately compatible.

For the other direction, we assume we have action maps µKH , and use them to define

internal norm maps. We define a set map N : MpG{Hq Ñ NK
H iHMpK{Kq by taking an
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element x PMpG{Hq to the coend representative

Npxq “
`

Rη, x P iHMpiHpK{Kqq –MpG{Hq
˘

P NK
H iHMpK{Kq .

This map realizes our notion of NK
H iHM as the universal home for suitable norm maps

MpG{Hq ÑMpG{Kq.

We can now define the map normK
H : MpG{Hq ÑMpG{Kq as the composition

MpG{Hq
N
ÝÑ NK

H iHMpK{Kq
µKH
ÝÝÑ iKMpK{Kq –MpG{Kq .

We must now check that if the µKH are the structure maps of a coherent G-commutative

monoid, then the above maps normK
H satisfy the compatibility conditions necessary to view

M as a Tambara functor.

We immediately see that our internal norm maps are multiplicative and unital, by the fact

that the maps µKH were maps of K-Green functors. The identity normK
HnormH

L “ normK
L

for chains of subgroups L ď H ď K also follows immediately from unpacking the identity

µKL “ µKH ˝N
K
H µ

H
L .

For the condition cg ˝normK
H “ norm

gK
gH ˝cg, we note the following commutative diagram:

MpG{Hq NK
H iKMpK{Kq MpG{Kq

cgMpG{
gHq cgpN

K
H iKMqp

gK{gKq cgMpG{
gKq

MpG{gHq N
gK
gH igKMp

gK{gKq MpG{gKq

N

–

µKH
– –

cgN

–

cgpµ
K
H q

– –

N µ
gK
gH .

The left and right vertical composites give the conjugation isomorphisms cg inherent in the
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Mackey structure of M , as desired.

In order to check the remaining compatibility conditions, we need the following result.

Lemma 2.7.5. Let K ď G, and H,L ď K. Fix elements k P K and y PMpG{pH XLkqq –

iHMpH{pHXL
kqq. Let jk : H{pHXLkq Ñ iHpK{Lq be the H-equivariant inclusion defined

by hpH X Lkq ÞÑ hk´1L. Then the image under µKH : NK
H iHM Ñ iKM of the element with

coend representative
`

Rη, Njky P iHMpiHpK{Lqq
˘

is the element normL
kHXL

pckyq PMpG{Lq.

This lemma, whose proof is deferred to the end of the section, conceptually says that the

elements of the coend NK
H iHM are universal formulae that can be used to determine their

image in iKM under the action µKH .

We first prove the compatibility formula for commuting restrictions past norms. Let our

norm be normK
H and our restriction be induced by the quotient map f : G{LÑ G{K, which

is induced by the K-quotient map f̄ : K{LÑ K{K.

We fix an element x PMpG{Hq – iHMpiHpK{Kqq, and seek to compute the composition

RfnormK
H pxq “ resKL normK

H pxq. We get the following expansion using our definition of

normK
H and the fact that µ is a map of Mackey functors:

resKL normK
H pxq “ Rf̄µ

K
H

`

Rη, x
˘

P iKMpK{Lq –MpG{Lq

“ µKH

´

Rf̄Rη, x
¯

“ µKH

´

RηRMapHpK,iH f̄q
, x
¯

“ µKH

´

Rη, RiH f̄
x
¯

.

We now need a better description of RiH f̄
x P iHMpiHpK{Lqq. Let n “ |LzK{H|, and set

k1, . . . , kn to be a complete set of double coset representatives for LzK{H. Now iHpK{Lq
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breaks into the union of the sets H{pH X Lkiq for 1 ď i ď n.

Using this decomposition we can write RiH f̄
x as the ordered n-tuple py1, . . . , ynq, where

yi “ resH
HXLki

x P iHMpH{pH X L
kiqq –MpG{pH X Lkiqq.

We now write xi “ p1, . . . , 1, yi, 1, . . . , 1q and note that RiH f̄
x is the product of the xi’s.

Furthermore, we get that xi “ Njki
yi, so we can apply Lemma 2.7.5 to get the following

computation:

resKL normK
H pxq “ µKH

´

Rη, RiH f̄
x
¯

“

n
ź

i“1

µKH
`

Rη, xi
˘

“

n
ź

i“1

µKH

´

Rη, Njki
yi

¯

“

n
ź

i“1

normL
kiHXL

pckiyiq

“

n
ź

i“1

normL
kiHXL

pckipresH
HXLki

xqq .

This yields the standard double coset formula, as desired.

In order to check compatibility with transfers, we fix H ď L ď K, and decompose

MapLpK,L{Hq into orbits of the form K{Lj . We construct a diagram

K ˆ
L

MapLpK,L{Hq MapLpK,L{Hq

K{H
ž

iPI

K{LX Lki
jpiq

ž

j

K{Lj K{K

K ˆ
H
ε̂

–

ε

–

g “
š

iPI
gi

f “
š

iPI
fi triv

,

where the top composite is the distributor for the composition K{H Ñ K{L Ñ K{K by

Lemma 2.3.5.
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Here ε̂ : iLMapLpK,L{Hq Ñ L{H is the counit of the iL % MapLpK,´q adjunction. The

indexing set I is given by the union
š

j LjzK{L. For each element i P I we have an index

jpiq and a corresponding double coset representative ki P LjpiqzK{L.

The map fi is observed to be given by some subconjugacy LXLki
jpiq

ď k1iH. The map gi

is observed to be given by the subconjugacy LX Lki
jpiq

ď Lki
jpiq

.

We now fix some element x PMpG{Hq – iHMpiHpK{Kqq. Here we use h : L{H Ñ L{L

to denote the quotient map. Note that MapLpK, iLpK{Kqq – K{K:

normK
L transferLHpxq “ µKL pRη, Thxq P iKMpK{Kq –MpG{Kq

“ µKL pRηTMapLpK,hq
, xq

“ µKL pTtriv, xq

“ Ttrivµ
K
L pRηRMapLpK,ε̂q

, xq

“ Ttrivµ
K
L pRη, Rε̂xq .

We see that Rε̂x can be viewed as

Rš

fi,j
x PMpiLMapLpK,L{Hqq – iKMpK ˆL MapLpK,L{Hqq .

As before we can decompose this into components as py1, . . . ynq, where

yi “ Rfipxq “ res
k1iH

LXL
ki
j

pck1i
xq

and n “ |I|.

We again write xi “ p1, . . . , 1, yi, 1, . . . , 1q and get xi “ NiLpιjqNjki,j
yi. Here ιj is the

inclusion of the j-th summand K{Lj into the coproduct
š

K{Lj . We now compute via
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Lemma 2.7.5, noting again that µ is a map of unital Mackey functors:

µKL pRη, Rε̂xq “
ź

i

µKL
`

Rη, xi
˘

“
ź

i

µKL

´

Rη, NiLpιjqNjki,j
yi

¯

“
ź

i

µKL Nιj

´

Rη, Njki,j
yi

¯

“
ź

i

Nιjµ
K
L

´

Rη, Njki,j
yi

¯

“
ź

i

Nιjnorm
Lj
kiLXLj

pcki,jyiq .

We need the following easy lemma for the identification

´

Rη, NiLpιjqNjki,j
yi

¯

“ Nιj

´

Rη, Njki,j
yi

¯

.

Lemma 2.7.6. Let L ď K and let M be a unital L-Mackey functor. The norm maps Nι cor-

responding to inclusion maps of K-sets take on the following form for coend representatives

without transfers:

NιpRη, xq “ pRη, NiLpιqxq .

Now if we piece things together we get that normK
L transferLHpxq “ TtrivNgRf pxq, as

desired.

Checking the compability conditions for normK
H px1` x2q is virtually the same argument

as above, using an orbit decomposition of the following bispan, which is the corresponding

distributor by Lemma 2.3.5:

K
H >

K
H K ˆ

H
MapH

´

K, KH >
K
H

¯

MapH

´

K, KH >
K
H

¯

K
K

ε triv

.
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We have finished showing that we have well-defined constructions taking Tambara func-

tors to commutative G-commutative monoids and vice-versa.

For functoriality, we now note that a map of G-Green functors f : M1 Ñ M2 between

G-Tambara functors is a map of G-Tambara functors precisely when the following diagram

commutes for all subgroup chains H ď K ď G:

NK
H iHM1 iKM1

NK
H iHM2 iKM2

ε

NK
H iHf

ε

iKf

.

If f is a map of G-Tambara functors then the above diagram commutes by naturality of

ε, and if the above diagram commutes, we have that fpnormK
H pxqq “ normK

H pfpxqq for all

x P M1pG{Hq. We also need to note that our two constructions are inverse to each other.

Assume that M is a Tambara functor and the action map is given by the counit ε of the

NK
H % iK adjunction. For this we use the formula

µKH pThRη, x P iHMpiHBqq “ ThNεx P iKMpK ˆ
H
Bq ,

which is derived from the isomorphism of Theorem 2.3.3 and the properties of ε.

When h is identity map and B the trivial K-set K{K, we get that the image is normK
Hx.

This tells us that if we start with a G-Tambara functor, we recover the same norm maps

going through both constructions.

Lemma 2.7.5 can be used similarly to show that the action map µKH is determined by the

collection of maps normL
H 1 over all subgroup chains H 1 ď L ď K. This tells us that if we

start with a coherent G-commutative monoid and apply both constructions we get the same

action maps.
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Thus, our two functors form an equivalence of categories.

Proof of Lemma 2.7.5: Here we have the following computation:

µKH pRη, Njkyq “ µK
HXLk

pRη, Nĵk
yq

“ µKkHXLpRη, Nĵe
ckyq

“ µKL pRη, Nη̂normL
kHXL

pckyqq

“ normL
kHXL

pckyq .

For the first equality, we are using ĵk : H X Lk{H X Lk Ñ iHXLkpK{Lq to denote the

following composition:

H X Lk

H X Lk
η̂
ÝÑ iHXLk

ˆ

H

H X Lk

˙

i
HXLk

pjkq
ÝÝÝÝÝÝÝÑ iHXLkpK{Lq .

Since µK
HXLk

“ µKH ˝ NK
H pµ

H
HXLk

q, we see that the first equality follows from the iden-

tity µH
HXLk

pRη, Nĵk
yq “ Njky. This can be observed from the triangular axiom and the

decomposition ĵk “ η̂ ˝ iHXLkpjkq.

The second equality uses ĵe : kH X L{ kH X L Ñ ikHXLpK{Lq to similarly denote the

map ikHXLpη̂q. The second equality follows from the compatibility of our action maps

with conjugations, and the equation N
ĵe
pckyq “ N

ĵe
R
k̂
y “ R

k̂
N
ĵk
y “ wkpNĵk

yq, which is

demonstrated by the following pullback square:

K ˆ
HXLk

˜

H X Lk

H X Lk

¸

K ˆ
HXLk

ˆ

K

L

˙

K ˆ
kHXL

˜

kH X L
kH X L

¸

K ˆ
kHXL

ˆ

K

L

˙

K ˆ
HXLk

ĵk

k̂ –

K ˆ
kHXL

ĵe

k̂ –

.
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The third equality follows from the factorization µKkHXL
“ µKL ˝ NK

L pµ
L
kHXL

q, where the

triangular axiom gives µLkHXL
pRη, Nĵe

ckyq “ Nη̂normL
kHXL

pckyq. Here we use the fact that

µLkHXL
is a map of unital functors. We also need to apply Lemma 2.7.6, again noting

jê “ ikHXLpη̂q.

The fourth equality is another application of the triangular axiom.
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CHAPTER 3

EILENBERG-MACLANE SPECTRA AS RELATIVE E8 CELL

COMPLEXES

3.1 Introduction

In this chapter, which is part of a joint project with Andrew Baker, we consider what happens

when we take the sphere spectrum, and kill elements of homotopy in an E8 fashion. This

process starts by killing the element 2 P π0S and is repeated in order to kill the higher

homotopy groups. In the colimit, this provides a model of the Eilenberg-MacLane spectrum

HF2 as a relative cellular complex in the E8 sense over the sphere spectrum S.

In Section 3.2, we provide an inductive description of this construction as well as a

description of the cells in the complex as admissible Steenrod monomials whose last term

is 4 or greater. The key step in this construction is establishing algebraic control over

the (additive) splitting of each stage into wedges of Eilenberg-MacLane spectra, which is

guaranteed due to work of Steinberger [8].

In Section 3.3, we outline how this description is relevant to yielding a calculation of

topological André-Quillen homology of HF2. Modulo some assumptions, the description

agrees with the calculations present in folklore and sketched in the literature.

In Section 3.4 and 3.5, we establish algebraic control over the homology of our construc-

tion. This involves providing explicit formulae for spherical classes and computing the action

of the Dyer-Lashof algebra at each stage.

In Section 3.6, we construct primitive elements in the homology of the analogous first

stage of a cellular complex for the Eilenberg-MacLane spectrum HZp2q. It is hoped that

similar methods lead to a corresponding computation of TAQ˚pHZ{Sq with F2 coefficients.
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3.2 A description of the cell structure

We henceforth only consider homology with F2 coefficients, and work in the category of

spectra localized at 2.

We let S{{2 denote the commutative S-algebra constructed by killing 2 P π0pSq in the

E8 sense. This means taking the map of commutative S-algebras P2: PS0 Ñ S defined on

the free commutative S-algebra PS0, and then forming the following pushout of commutative

S-algebras, where S̃ is an appropriate cofibrant replacement for S:

S{{2 :“ S̃ ^PS0 PD1 .

Here S{{2 is the first stage of our cellular complex.

We recall some facts about H˚pS{{2q from [3]. There is an element x1 P H1pS{{2q

such that H˚pS{{2q is a polynomial algebra on generators QIx1, where QI is an admissible

Dyer-Lashof monomial of excess greater than 1.

The work of Steinberger [8] tells us that S{{2 splits as a wedge of Eilenberg-Maclane

spectra. We now define elements Xi P H˚pS{{2q that correspond to the polynomial gener-

ators ζi P A˚ “ H˚pHF2q. We inductively define X1 “ x1 and Xi`1 “ Q2iXi. The ideal

generated by the Xi is invariant under the coaction of the dual Steenrod algebra, as shown

by Proposition 9.2 of [3].

This allows us to view H˚pS{{2q as a polynomial algebra over the ring A˚ on elements of

the form QIx1, where QI is admissible, excess greater than 1, and also has its last index at

least 3. This expression algebraicizes the splitting of S{{2 into Eilenberg-Maclane spectra.

Furthermore, as explained in Section 9 of [3], this is the universal example of such a splitting.

We wish to to attach E8 cells to annihilate every summand except for the one in degree

zero. We note that if we kill a homology element z by such an E8 cone, then we must also

kill every possible element of the form QIz. Thus, we focus on the “bottom cells”, namely
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those summands corresponding to the Qrx1 elements in homology for r ě 3. The Qrx1

are not spherical, so we replace them with polynomial generators ur`1 that are spherical

by adding decomposable terms and also elements Xi. Such a decomposition must exist due

to the aforementioned splitting, and using the dual Steenrod coaction we compute explicit

formulae for the ur`1 in Section 3.4. For instance, u4 “ Q3x1 ` x
4
1 is spherical.

To construct the E8 cone, we combine our maps ur`1 : Sr`1 Ñ S{{2 to give us a map

P
`
Ž

r S
r`1

˘

Ñ S{{2, allowing us to define the spectrum Y2 as the following pushout of

commutative S-algebras: (We set Y1 as notation for S{{2.)

Y2 :“ Y1 ^Pp
Ž

r S
r`1q P

˜

ł

r

Dr`2

¸

.

The mod 2 homology of P
`
Ž

r S
r`1

˘

is a polynomial algebra generated by elements

of the form QIsr`1, where sr`1 corresponds to the generator in homology of Sr`1 and I

is a Dyer-Lashof monomial of excess greater than r ` 1. Thus the image in homology of

Pp_rSr`1q Ñ Y1 is the subalgebra generated by the generators of form QIur`1.

The image in homology of the map H˚pY1q Ñ H˚pY2q is then a copy of A˚, but the

target has additional homology due to the Adem relations. For instance, since Q7Q3 “ 0,

we see that Q7u4 “ 0, which indicates the existence of a new degree 12 generator in H˚pY2q.

We have that Y2 splits as a wedge of HF2’s, so its homology contains a copy of F2rXis, the

homology of the degree zero HF2 summand. We have made progress in getting closer to

HF2, since the next summand in Y1 is in degree four (corresponding to u4), but here the

next summand is degree 12.

We now repeat our construction. We produce an analogous spectrum Yj`1 from Yj by

coning off the relevant elements uR in the E8 sense. Here the uR represent a (minimal) set

of spherical generators for H˚pYjq{J as an algebra over the Dyer-Lashof algebra, where J is

the ideal generated by the image of the Xi.

More explicitly, we form the following pushout of commutative S-algebras: (We hence-
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forth write |R| for the degree r1 ` . . .` rj of uR.)

Yj`1 “ Yj ^Pp_RS|R|q
Pp_RD|R|`1

q .

The following result gives us a homological description of the j-th stage of our construction,

in terms of the set of cells to be attached to construct the pj ` 1q-th stage.

Theorem 3.2.1. If we construct Yj as above, then H˚Yj is a polynomial algebra over A˚ with

generators of the form QIuR. The uR P H|R|Yj are spherical classes indexed by a length-j

sequence R “ pr1, . . . , rjq satisfying rk ě 2rk`1 for k ă j and rj ě 4. Here I ranges over

all indices pi1, . . . , ilq of admissible Dyer-Lashof monomials satisfying both expIq ą |R| and

il ă 2r1 ´ 1.

Note that the indices R are given precisely by the indices for admissible Steenrod mono-

mials with last term at least 4. We see that the colimit of the Yj is a model for HF2, as

desired.

Proof. We inductively derive the description of H˚Yj`1 from the description of H˚Yj .

We start by noting that we have a Künneth spectral sequence of the following form:

E2
˚,˚ “ Tor

H˚Pp_RS|R|q
˚ pH˚Yj ,F2q ñ H˚Yj`1 .

The spectral sequence is set up and referred to as the bar construction spectral sequence in

[9], and is proven to be multiplicative in [5].

The algebra H˚Pp_RS|R|q is a polynomial algebra generated by elements of the form

QIsR. Here sR is the generator in homology of the corresponding sphere S|R| and QI ranges

across all admissible Dyer-Lashof monomials of excess greater than |R|. In our construction

of Yj`1, the element sR is mapped to the spherical class uR, and therefore QIsR is mapped

to QIuR.
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Now there are two cases. If the last element of I satisfies il ă 2r1 ´ 1, then QIuR is

one of our given polynomial generators for H˚Yi as an algebra over A˚. In the case where

il ě 2r1´ 1, we see that there is some expression for QIuR in terms of our given generating

set. We define polynomials FI,R as follows to encode this action:

QIuR “ FI,RpQ
JuT , Xiq .

Here the QJuT range over indexing sets J “ pj1, . . . , jmq, T “ pt1, . . . , tjq. These must

satisfy the same admissibility constraints jk ď 2jk`1 and tk ě 2tk`1 that constrain the

indices I, R, but must additionally satisfy jm ă 2t1 ´ 1.

In subsequent sections we develop techniques to explicitly compute the polynomials FI,R.

Our description of the Dyer-Lashof action on H˚Yj allows us to compute the E2
˚,˚ term

of our spectral sequence by means of a Koszul resolution of F2 over F2rQ
IsRs. We see that

E2
˚,˚ is an exterior algebra over A˚ with generators lying in Tor1,˚, which can be represented

by the following elements in the bar construction:

rQIsR ` FI,RpQ
JsT , Xiqs P E

2
1,|I|`|R| .

Here I, R run over all pairs of admissible indexing sequences such that I is nonempty

and the last term of I exceeds 2r1 ´ 1. Here we must symbolically replace uR by sR to

get the relevant polynomial FI,R P F2rQ
IsR, Xis – F2rQ

IsRs bA˚. To follow the standard

notation for the bar construction the Xi should also be separated from the QIsR and pulled

outside of the brackets. As an example, we can interpret rQ9s4 ` Q7s6 ` X4
1Q

5s4s as

rQ9s4 `Q
7s6s `X

4
1 rQ

5s4s. (This ends up being an expansion of Fp9q,p4q.)

Since this is a homology spectral sequence of algebras generated by elements on the

E2
1,˚-line, the spectral sequence collapses.

We must resolve any multiplicative extensions and in particular check that no element
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is nilpotent. This is a straightforward argument using the compatibility of the Dyer-Lashof

actions with the spectral sequence. A classical account of such compatibility is given in [17];

in our case we shall appeal to the technology of [9]. Compare with the proof of Theorem 2.7

of [2]. Explicitly, we start with an arbitrary generator QIsR and compute:

rQIsR ` FI,RpQ
JsT , Xiqs

2

“ Q|I|`|R|`1
rQIsR ` FI,RpQ

JsT , Xiqs

“ rQ|I|`|R|`1QIsR `Q
|I|`|R|`1FI,RpQ

JsT , Xiqs

“ rQp|I|`|R|`1,IqsR ` Fp|I|`|R|`1,i1,...,ilq,R
pQJsT , Xiqs .

The second equality follows from our definition of the FI,R. We note that since the Dyer-

Lashof monomial in this case has excess exactly 1, the only relevant Dyer-Lashof actions

on the Xi P E2
0,˚ are Q2iXi “ Xi`1 and Q2i´1Xi “ X2

i . We note that our condition

expIq ą |R| compels p|I| ` |R| ` 1, i1, . . . , ilq to also be an admissible sequence with excess

greater than |R|.

This argument tells us that our polynomial generators are given by representatives

rQIsR ` FI,RpQ
JsT , Xiqs

such that the sequences I have excess at least |R|`2. For any choice of r and R “ pr1, . . . , rjq

with r ě 2r1 ´ 1, we define a sequence R1 “ pr ` 1, r1, . . . rjq, and use the symbol yR1 to

denote an element represented by rQrsR`Fprq,RpQ
JsT , Xiqs. We can then describe H˚Yj`1

as a polynomial algebra over A˚ with generators QIyR1 with the specified conditions on I

and R1.

The final step is to replace the yR with spherical classes uR. We observe that Yj`1

also splits into Eilenberg-MacLane spectra due to Steinberger’s result [8], and thus yR is

spherical modulo decomposables and the images of the Xi. We therefore replace each yR
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with a corresponding spherical uR, and replace any QIyR with the corresponding QIuR.

3.3 Using the cell structure to compute TAQ˚pHF2{S,HF2q

Here we use the notion of Topological André-Quillen homology developed by Basterra in [6].

This generalizes a theory defined on the ordinary category of commutative rings. In our case

the coefficient module is always HF2, and this means that the corresponding homology and

cohomology theories are F2-linear duals to one another.

By a cell complex, we assume that we start with some algebra Y0 (which in our case is

the sphere S), and that we inductively obtain a complex Yj`1 from Yj by attaching cells in

the E8 sense.

To clarify what this means, we think of a single cell as PSn, where P is the free functor

from S-modules to commutative S-algebras. The adjunction gives a map of algebras PSn Ñ

Yj for each element of πnYj . To attach multiple cells at once, set W to be a wedge of spheres,

and form the following pushout in the category of commutative S-algebras:

PW PCW

Yj Yj`1
.

We require the cofibrancy conditions ensuring Yj`1 – Yj ^PW PCW . Here the cone CW is

contractible which implies that PCW – S.

We consider what this does in TAQ-homology, where we suppress the coefficient module

HF2 from the notation. The long exact sequence in TAQ˚ for the two maps Y0 Ñ Yj Ñ Yj`1
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is then of the following form:

¨ ¨ ¨ Ñ TAQ˚pYj{Y0q Ñ TAQ˚pYj`1{Y0q Ñ TAQ˚pYj`1{Yjq

Ñ TAQ˚´1pYj{Y0q Ñ ¨ ¨ ¨ .

Here we have that the term TAQ˚pYj`1{Yjq is isomorphic to TAQ˚pS{PW q by Proposition

4.6 of [6]. (This is the analogue to flat base change in this setting.)

Proposition 1.8 of [4] computes TAQ˚pS{PW q to be a single generator in degree n ` 1

for each sphere Sn in the wedge W . This calculation is analogous to the ordinary homology

of cells in the traditional context.

We then see that we can inductively compute TAQ˚pYj{Y0q as long as we have a de-

scription of the cells at each stage, as well as an understanding of the boundary map. This

is algebraically identical to the computation of cellular homology given the degrees of the

attaching maps of a CW complex. In particular, we have the following.

Lemma 3.3.1. If Y is the colimit of Yj as above, and each boundary map in the above long

exact sequence is trivial, then the set of generators of TAQ˚pY {Y0q is given by the set of cells

in the construction, with a shift of degree by 1.

Conjecture 3.3.2. For our construction the boundary map is trivial.

Combining the description of cells to follow in Theorem 3.2.1 with the above conjecture

tells us that TAQ˚pHF2{Sq has generators corresponding to (shifted) admissible Steenrod

monomials with last term at least 4. This recovers the calculation sketched in [16].

Checking the conjecture requires showing that the induced map

TAQ˚pPSn{Sq Ñ TAQ˚pYj{Sq

is trivial for every cell. This can be reduced to showing that the corresponding element in
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H˚pYjq is in the kernel of the TAQ˚-Hurewicz map. For j “ 1 this follows from the fact that

nontrivial Dyer-Lashof operations always take values in this kernel. (This is Theorem 4.4 of

[1].) Similarly, all decomposable elements lie in this kernel.

3.4 Primitives in H˚pS{{2q

The first step in establishing explicit algebraic control over the constructions in the pre-

vious section is to understand how to replace generators of the form QIx1 P H˚pS{{2q

with generators of the form QIur`1, where the ur`1 are spherical. Since S{{2 is a wedge

of Eilenberg-Maclane spectra, the spherical elements coincide with the primitive elements

under the coaction of the dual Steenrod algebra.

We use the previously defined elements Xi P H2i´1pS{{2q, as well as the usual polynomial

generators ξi P H˚HF2 for the Milnor basis of the dual Steenrod algebra. We also use the

conjugates ζi “ χpξiq.

These computations rely on the power series expression for the coaction as explained in

[3]. To develop this notationally, we start by defining the power series Xptq P H˚pS{{2qrrtss

and ξptq, ζptq P H˚pHF2 ^ S{{2qrrtss – A˚ bH˚pS{{2qrrtss:

Xptq “
ÿ

i

Xit
2i
“ t`X1t

2
`X2t

4
`X3t

8
` . . .

ζptq “
ÿ

i

pζi b 1qt2
i
“ t` pζ1 b 1qt2 ` pζ2 b 1qt4 ` . . .

ξptq “
ÿ

i

pξi b 1qt2
i
“ t` pξ1 b 1qt2 ` pξ2 b 1qt4 ` . . . .

We also establish the following notational convention for a power series with coefficients

encoding the Dyer-Lashof action on any element y:

Qyptq “
ÿ

i

pQiyqti “ y2t|y| `Q|y|`1yt|y|`1
`Q|y|`2yt|y|`2

` . . . .
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This notation allows us to concisely formulate the interaction of (left) coaction of the dual

Steenrod algebra with the Dyer-Lashof action: (This is Theorem 4.1 of [3]).

ψpQyptqq “
“

pχb 1qQppχb 1qψyq
‰

pξptqq .

Thus, for our given element x1 P H˚S{{2, the coaction ψpx1q “ 1 b x1 ` ξ1 b 1 determines

the coaction on an arbitrary Qrx1:

ψpQx1ptqq “ p1bQx1qpξptqq ` pχpQζ1q b 1qpξptqq .

We recall the Dyer-Lashof action on ζ1: (see III.2 of [8])

1

ξptq
“

1

t
` ξ1 b 1`Qζ1ptq b 1 .

This allows us to rewrite our coaction formula: (Recall that ξptq is the composition inverse

to ζptq.)

χpQζ1 b 1qptq “
1

t
`

1

ζptq
` ξ1 b 1

ψpQx1ptqq “ p1bQx1qpξptqq ` rχpQζ1 b 1qs pξptqq

“ p1bQx1qpξptqq `
1

ξptq
`

1

t
` ξ1 b 1 .

We can now define a series uptq by the following formula:

uptq “ Qx1pXptqq `
1

Xptq
`

1

t
`X1 .
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We note that every coefficient is of the form

Qrx1 `

˜

r´1
ÿ

k“1

fk,rpXiqQ
kx1

¸

` grpXiq ,

where fk,r and gr are degrees r´k and r`1, respectively. This shows us that this coefficient

differs from Qrx1 only by decomposables and the elements Xi.

We now check directly that the first nonzero term of uptq is u4t
3 with u4 “ Q3x1 `X

4
1 .

This follows from a computation of the lowest terms of the following power series:

Qx1pXptqq “ pQ
1x1qt` pQ

2x1 `X1Q
1x1qt

2
` pQ3x1qt

3
` . . .

“ X2
1 t` pX

3
1 `X2qt

2
` pQ3x1qt

3
` . . .

1

Xptq
“

1

t
`X1 `X

2
1 t` pX

3
1 `X2qt

2
`X4

1 t
3
` . . . .

If we want to express the elements Qrx1 in terms of the elements ur`1, (instead of our

more usual goal of expressing the latter in terms of the former) we can use the following

formula, where Xptq denotes the composition inverse to Xptq:

Qx1ptq “ u
`

Xptq
˘

`
1

t
`

1

Xptq
`X1 .

Through power series inversion, this is equivalent to our formula defining uptq.

Proposition 3.4.1. Each coefficent of uptq is primitive.

Proof. We must apply the coaction on the Xi, which can be written in the form ψpXptqq “

ζp1bXptqq. (This is verified in Proposition 9.2 of [3], although the reader should be warned

that our Xi is written Xi´1 there.) Note that since ψ is a multiplicative homomorphism,

we have the relation ψpF ˝Gptqq “ ψF pψGptqq for any power series F,G.
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We have

ψpuptqq “ pψQx1qpψXptqq `
1

ψXptq
`

1

t
` ψpX1q

“

ˆ

Qx1pξpψXptqqq `
1

ξpψXptqq
`

1

ψXptq
` ξ1 b 1

˙

`
1

ψXptq
`

1

t
` 1bX1 ` ξ1 b 1

“ p1bQx1qpξpζp1bXptqqqq `
1

ξpζp1bXptqqq
`

1

t
` 1bX1

“ p1bQx1qp1bXptqq `
1

1bXptq
`

1

t
` 1bX1

“ p1b uqptq .

Note that so far we have only replaced the elements Qrx1 with primitives. If we wish to

replace arbitrary QIx1 with primitives, we can iteratively apply the following observation of

Andrew Baker. Such replacement allows one to completely algebraicize the splitting of S{{2

into Eilenberg-MacLane spectra.

Lemma 3.4.2. If z is primitive, then so too are the coefficients of QzpXptqq.

Proof. We evaluate

ψpQzpXptqqq “ pQp1b zqqpξpψXptqqq

“ p1bQzqpξpζp1bXptqqqq

“ 1bQzpXptqq .

Here the resulting primitives are of the form Qrz `
řr´1
k“|z|

fk,rpXiqQ
kz. In particular,

we note that there are no terms without some some factor of the form Qkz.
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3.5 Computation of the polynomials FI,R

Explicit algebraic control of H˚Yj requires computing the polynomials FI,R. We note that

in the induction we replaced generators yR with spherical generators uR, and must be able

to account for this replacement in order to be able to compute the Dyer-Lashof action on

the H˚Yj .

For an example, we see that in the case j “ 1 we have the following spherical classes:

u4 “ Q3x1 `X
4
1

u5 “ Q4x1 `X1u4 `X
2
1X2

u6 “ Q5x1 `X
2
1u4 `X

2
2

u7 “ Q6x1 `X1u6 `X2u4 `X3 .

These formulae and the Adem relations allow us to compute the following Dyer-Lashof

actions:

Q7u4 “ 0

Q8u4 “ Q8Q3x1 `Q
8
pX4

1 q “ Q7Q4x1 ` pQ
2X1q

4

“ Q7
pu5 `X1u4 `X

2
1X2q `X

4
2

“ Q7u5 `X
2
1Q

6u5 `X2Q
5u4 ` pQ

3x1qu
2
4 `X

4
1Q

5Q2x1

“ Q7u5 `X
2
1Q

6u5 `X2Q
5u4 `X

4
1u

2
4 ` u

3
4

Q9u4 “ Q9Q3x1 “ Q7Q5x1 “ Q7
pu6 `X

2
1u4 `X

2
2 q

“ Q7u6 `X
4
1Q

5u4
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Q10u4 “ Q10Q3x1 “ Q8Q5x1 `Q
7Q6x1

“ Q8
pu6 `X

2
1u4 `X

2
2 q `Q

7
pu7 `X1u6 `X2u4 `X3q

“ Q8u6 ` u
2
7 `X

4
1Q

6u4 `X
2
1u

2
6

Q11u4 “ Q11Q3x1 “ 0 .

Such expansions yield a method for computing FI,R for all R of length 1. In order to

compute the FI,R for j ą 1, we need to do two things. First, we must compute the Dyer-

Lashof action on H˚Yj , and for that we should compute the action on the Xi. We have

already noted that for all j we have Q2iXi “ Xi`1 and Q2i´1Xi “ X2
i . For the rest of the

action, we break into the case j “ 1 and the case j ą 1.

For j “ 1, the action of higher Dyer-Lashof terms is directly computable as follows:

Lemma 3.5.1. In H˚pS{{2q, we have the following Dyer-Lashof action on X2:

QrX2 “

$

’

’

’

’

&

’

’

’

’

%

Qk`2Qkx1 if r “ 2k

pQ2kx1q
2 if r “ 4k ´ 1

0 otherwise .

For i ą 2, we have the following formulae instead:

QrXi “

$

’

’

’

’

&

’

’

’

’

%

Q2i´2pk`2qQ2i´3pk`2q ¨ ¨ ¨Q2pk`2qQk`2Qkx1 if r “ 2i´1k

pQ2i´3pk`2qQ2i´4pk`2q ¨ ¨ ¨Q2pk`2qQk`2Qkx1q
2 if r “ 2i´1k ´ 1

0 otherwise .

Proof. The formulae follow by inductively applying the Adem relations.

For j ą 1, we claim that the Dyer-Lashof action on the Xi is analogous to Steinberger’s

description of Qkζi in III.2.2 of [8]. For this description, we use Xi to denote the coefficients

of t2
i

in the series Xptq defined as the composition inverse to Xptq, analogous to how the
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ξi are defined in terms of the ζi. To express our answer, we use the notation Nk to denote

the k-th Newton polynomial. We then form an expression NkpXq by substituting Xi for

the p2i ´ 1q-th elementary symmetric polynomial, and 0 for all other elementary symmetric

polynomials. The Newton recurrence relation tells us that Nk`1pXq is the coefficient for tk

in the series 1{Xptq.

Proposition 3.5.2. We have the following Dyer-Lashof action for j ě 2:

QrXi “

$

’

&

’

%

Qr´2i`1X1 “ Nr´2i`1pXq if r ě 2i ´ 1 and r “ 0,´1 pmod 2iq

0 otherwise .

We specifically note that when k “ 2i ´ 1 we have NkpXq “ Xi.

Proof. An examination of the definition of Yj for j ą 2 makes it clear that we can restrict

to j “ 2 without loss of generality.

We first consider the case i “ 1.

We recall that in the previous section we have the following equation:

Qx1ptq “ u
`

Xptq
˘

`
1

t
`

1

Xptq
`X1 .

In order to pass to Y2, we killed every coefficient of uptq, so the coefficient of tr in 1{Xptq is

precisely QrX1 in the target. We have already observed that this is Nk`1pXq.

To evaluate QrXi for i ą 1, we use the previous lemma to convert

QrXi “ QrQ2i´1
¨ ¨ ¨Q4Q2X1

into an admissible format. We must then apply Dyer-Lashof monomials to terms of the form
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Nk`1pXq. The proposition follows by iteratively applying the following identities:

pNspXqq
2
“ N2spXq

Qs`1NspXq “

$

’

&

’

%

N2s`1pXq if s odd

0 if s even .

The first identity follows from examination of the series 1{Xptq, and by the Cartan

formula implies the even case of the second. For the odd case, we write out our polynomial

in Xi’s and observe that for degree considerations the Cartan formula reduces to terms of

the form Q2iXi and Q2i´1Xi only. The former is always Xi`1 and the latter is always X2
i .

At this point we could give a direct combinatorial proof (the formula Q2iXi “ Xi`1`X1X
2
i

can be proved as in Lemma 4.4 of [3]), but it suffices to note that the algebra is identical to

the case of the dual Steenrod algebra, where the following more general identity is known:

QrNkpξq “

ˆ

r ´ 1

k ´ 1

˙

Nr`kpξq .

We note that Proposition 3.5.2 now formally implies that the following analogous formula

holds in the case j ě 2:

QrNkpXq “

ˆ

r ´ 1

k ´ 1

˙

Nr`kpXq .

To complete our understanding of the Dyer-Lashof action, we must examine the action on

generators of form yR. If i ď 2r, then Qiypr`1,Rq lies in our set of polynomial generators, so

we need only work in the case i ą 2r. In this case the action resembles the Adem relations.

Proposition 3.5.3. Assume i ą 2r, and let pr ` 1, Rq be a length j sequence admissible in
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the sense of Steenrod monomials. Then

Qiypr`1,Rq “
ÿ

k

ˆ

k ´ r ´ 1

2k ´ i

˙

Qi`r´kypk`1,Rq .

Here the k are those satisfying i` r ´ k ď 2k.

Proof. The Adem relations give us the following relation in H˚PS|R|:

QiQrsR “
ÿ

k

ˆ

k ´ r ´ 1

2k ´ i

˙

Qi`r´kQksR .

The two sides must map to the same element of H˚Yj´1, so this yields the following

relations:

Fpi,rq,RpQ
JuT , Xiq “

ÿ

k

ˆ

k ´ r ´ 1

2k ´ i

˙

Fpi`r´k,kq,RpQ
JuT , Xiq .

We apply the compatibility of the Dyer-Lashof operations with our Künneth spectral

sequence converging to H˚Yj from the proof of Theorem 3.2.1:

QirQrsR ` Fprq,RpQ
JsT , Xiqs

“ rQiQrsR `Q
iFprq,RpQ

JsT , Xiqs

“ rQiQrsR ` Fpi,rq,RpQ
JsT , Xiqs

“
ÿ

k

ˆ

k ´ r ´ 1

2k ´ i

˙

rQi`r´kQksR ` Fpi`r´k,kq,RpQ
JsT , Xiqs

“
ÿ

k

ˆ

k ´ r ´ 1

2k ´ i

˙

Qi`r´krQksR ` Fpkq,RpQ
JsT , Xiqs .

We claim that we are done by how we defined the representatives for ypr`1,Rq and

ypk`1,Rq. In the case where there is a k such that i ` r ´ k “ k ` |R| ` 1, we have al-

ready seen in the proof of Theorem 3.2.1 how the element

Qk`|R|`1
rQksR ` Fpkq,RpQ

JsT , Xiqs
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represents the corresponding square element y2
pk`1,Rq

. In the case i ` r ´ k “ k ` |R|, we

see that the element

Qk`|R|rQksR ` Fpkq,RpQ
JsT , Xiqs

vanishes for dimensional reasons since the dimension of the bracketed representative is k `

|R| ` 1.

The last thing we need for explicit algbebraic control is to establish an analogue of the

previous section for determining how to replace the elements yR with primitive elements

uR. The formula for this is more straightforward in some sense than the formula for j “ 1,

because the j “ 1 case is the only one where the Steenrod action takes the Xi’s to expressions

using the other generators.

Proposition 3.5.4. Let R be a sequence of length j ´ 1 and let the power series ypt,Rq be

given by the following formula:

ypt,Rq “
8
ÿ

k`1“2|R|

ypk`1,Rqt
k .

Then the coefficients of the series upt,Rq “ ypXptq,Rq are primitives in H˚Yj.

Proof. We begin by defining an analogous power series spt,Rq P H˚PS|R|rrtss – F2rQ
IsRsrrtss:

spt,Rq “
8
ÿ

k“|R|

QksRt
k .

Lemma 3.4.2 guarantees that the cofficients of spXptq,Rq are primitives in theA˚-comodule

algebra F2rQ
IsR, Xis.

We recall that in the proof of Theorem 3.2.1 we examined the Künneth spectral sequence

converging to H˚Yj . We use the notation zpXptq,Rq to denote the power series whose coeffi-
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cients are elements in F2rQ
IsR, Xis whose images in the subquotient E2

1,˚ are representatives

for the coefficients of ypXptq,Rq. The homological dimension in the spectral sequence accounts

for the shift from the k in the definition of spt,Rq to the k ` 1 in the definition of ypXptq,Rq.

We see directly by the definition of the ypk`1,Rq that the coefficients of zpXptq,Rq share

leading terms with the coefficients of rspXptq,Rqs in the sense that in suitable degrees the

difference is a polynomial in the Xi and the rFI,RpQ
JsT , Xiqs, and is therefore in the subring

generated by the Xi and those rQIsRs with il ă 2r1 ´ 1.

This forces the coaction on the coefficients of zpXptq,Rq and of rspXptq,Rqs to be the same

modulo elements in the A˚-subalgebra T generated by the Xi and those rQIsRs with il ă

2r1 ´ 1 in A˚ b F2rQ
IsR, Xis. In particular, we have that ψzpXptq,Rq ´ 1b zpXptq,Rq lies in

A˚ b T . But this means that it is zero in A˚ bE2
1,˚, since by inspection the representatives

for additive generators of E2
1,˚ each have a distinct unique indecomposable leading term lying

outside of T .

As an example computation, we consider Fp16q,p8,4q. We first use the Adem relation

Q16Q7 “ Q15Q8 to establish Q16yp8,4q “ Q15yp9,4q by Proposition 3.5.3. Next, we see that

our primitive replacement yields up8,4q “ yp8,4q and up9,4q “ yp9,4q`X1yp8,4q by Proposition

3.5.4. We now evaluate:

Q16up8,4q “ Q16yp8,4q

“ Q15yp9,4q

“ Q15
pup9,4q `X1up8,4qq

“ Q15up9,4q `X
2
1Q

14up8,4q `X2Q
13up8,4q `X

4
1u

2
p8,4q .
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3.6 Primitives in S{{η, u

Here we use S{{η, u to denote the commutative S-algebra constructed by first coning off

η P π1pSq in the E8 sense, and then coning off the resulting class u P π2pS{{ηq in the E8

sense.

We have generators x2, x3 such that the homology ring H˚pS{{η, uq is a polynomial

algebra with generators QIx2 and QIx3 for I admissible Dyer-Lashof monomials of excess

greater than 2 or greater than 3, respectively. In this section we consider replacing Qrx2

and Qrx3 with primitive elements in the cases r ą 2 and r ą 4, respectively. Conceptually,

this corresponds to the first step in constructing an E8 cell complex for HZ.

We have the following (left) coaction on the generators x2, x3:

ψpx2q “ 1b x2 ` ζ
2
1 b 1

ψpx3q “ 1b x3 ` ζ1 b x2 ` ζ2 b 1 .

This is enough information to get a 2-local Steinberger-type splitting into HZp2q’s and

HZ{2s’s. To apply III.4.2 of [8] we observe that the above coaction implies Sq3
˚x3 “ 1, so

in cohomology Sq3p1q is the nonzero dual to x3. We see that the only HZp2q term occurs in

degree zero by considering rationalization.

Our intuition is that x2 corresponds to ζ2
1 and x3 corresponds to ζ2 in the homology of

the the degree zero summand H˚HZp2q – F2rζ
2
1 , ζ2, . . .s. This leads us to define X2

1 “ x2

and X2 “ x3. Note that any expression involving an odd power of X1 does not lie in the

homology of S{{η, u, but rather lies in the formal algebraic extension F2r
?
x2, Q

Ix2, Q
Ix3s –

H˚pS{{η, uqr
?
x2s. Here we can give the coaction on

?
x2 “ X1 by the usual formula

ψpX1q “ 1bX1` ζ1b 1, so that our extension has the structure of a comodule algebra over

the dual Steenrod algebra.

To find elements corresponding to the higher ζi, we use the coaction as our guide. We
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desire the following formula:

ψpX3q “ 1bX3 ` ζ1 bX
2
2 ` ζ2 bX

4
1 .

This is satisfied by X3 “ Q4x3`x2Q
3x2. The extra term is necessary because an error term

arises in ψpQ4x3q due to the fact that Q3X2
1 ‰ 0, recalling that x2 is not actually a square.

We can now define Xi`1 “ Q2i`1Xi for i ě 3, and the same proof as in the case S{{2

now runs into no difficulties in verifying our coaction formula

ψpXptqq “ ζp1bXptqq ,

since the exponent of X1 is at least 4.

The Nishida relations tell us that β˚Q
2k “ Q2k´1, which tells us to group generators

of length 1 in pairs of the form tQ2kx2, Q
2k´1x2u and tQ2kx3, Q

2k´1x3u. In our algebrai-

cized splitting into Eilenberg-Maclane spectra, the bottom terms Q2k´1xi correspond to

actual HF2 summands and we must first cone off those generators before spherical classes

corresponding to the Q2kxi can exist.

To figure out the formulae for primitives, we first compute the coaction on the Qrx2:

ψpQx2ptqq “ p1bQx2qpξptqq ` pχQζ
2
1 b 1qpξptqq

“ p1bQx2qpξptqq `
1

ξptq2
`

1

t2
` ξ2

1 b 1 .

Again, we derive formulae for the primitives by considering an analogous series with Xi

replacing the ξi whenever possible.

Proposition 3.6.1. Define a series by the following:

Aptq “ Qx2pXptqq `
1

Xptq2
`

1

t2
`X2

1 .
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Then each coefficient of Aptq is a primitive in the comodule H˚pS{{η, uqr
?
x2s.

Proof. This is analogous to Proposition 3.4.1:

ψpAptqq “

ˆ

p1bQx2qξpψXptqq `
1

ξpψXptqq2
`

1

ψXptq2
` ξ2

1 b 1

˙

`
1

ψXptq2
`

1

t2
` 1bX2

1 ` ξ
2
1 b 1

“ p1bQx2qp1bXptqq `
1

1bXptq2
`

1

t2
` 1bX2

1

“ 1b Aptq .

We only care about actual elements with no radicals, so we must examine which primitives

only contain even powers of X1. We have the following statement about when elements are

well-defined.

Lemma 3.6.2. The odd coefficients of Aptq are well-defined in that their terms only contain

even powers of X1. The even coefficients become well-defined in this sense if we replace all

expressions Q2k´1x2 by zero for k ą 1.

The replacement in the second statement tells us what happens to Q2k´1x2 after we do

our first round of E8 coning. Only the elements corresponding to odd operations can yield

actual primitives since the others are not in the image of the Hurewicz map, as witnessed

the nontrivial action β˚Q
2kxi “ Q2k´1xi. After those are killed, we are able to cone off the

remaining length 1 generators.

Proof. The second statement is obvious, since once the odd Dyer-Lashof elements are re-

moved all terms are squares. For the first statement, we must check that for each r, k the

coefficient of t2k`1 in the series Xptqr must have an odd power of X1. If r is even this
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is obvious. For odd numbers we can decompose Xptqr`2 as Xptq2Xptqr and proceed by

induction, with the case r “ 1 obvious.

For our second class of polynomial generators, we must compute the coaction on elements

of the form Qrx3. Here the new ingredient is to identify Qζ2ptq. For this we use the

computation of Steinberger [8]:

Qrζi “

$

’

&

’

%

Qr´2i`1ζ1 if r ě 2i ´ 1 and r “ 0,´1 pmod 2iq

0 otherwise .

The nonzero terms of Qrζ2 are equal to Qr`2ζ1 for r “ 3, 4 pmod 4q and r ě 3. To isolate

terms we apply the identity

Q2k`1ζ1 “ Q2kζ2
1 “ pQ

kζ1q
2 .

We have the following series expansions:

1

t2ξptq
“

1

t3
`
ξ1
t2
`
ξ2
1

t
` ζ2 ` ξ

4
1t` . . .`Q

r`2ζ1t
r
` . . .

1

tξptq2
“

1

t3
`
ζ2
1

t
` ζ4

1 t` ζ
2
2 t

3
` . . .`Q2r`3ζ1t

2r`1
` . . .

t

ξptq4
“

1

t3
` ζ4

1 t` ζ
8
1 t

5
` ζ4

2 t
9
` . . .`Q4r`3ζ1t

4r`1
` . . . .

The second two of these tell us that the odd-dimensional terms of Qζ2ptq are given by the

sum

ζ2
1

t
`

1

tξptq2
`

t

ξptq4
.

To get the even-dimensional terms, we use the following manipulations. Here we define

ξptq to be the power series ξ1t` ξ2t
2 ` ξ3t

4 ` . . . , so that t` ξptq “ ξpt2q. We must use the
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formal derivative to get the third expression below:

t` ξptq

ξptq2
“ ζ1 ` ζ2t

2
` ζ2

1ζ2t
4
` ζ3t

6
` . . .`Q2rζ1t

2r
` . . .

ξptq

ξptq
“ ζ1 ` ζ2t` ζ

2
1ζ2t

2
` ζ3t

3
` . . .`Q2rζ1t

r
` . . .

ξptq ` ξ1ξptq

ξptq2
“ ζ2 ` ζ3t

2
` ζ4

1ζ3t
4
` ζ4t

6
` . . .`Q4r`2ζ1t

2r
` . . .

t` ξptq ` ξ1ξptq
2

ξptq4
“ ζ2 ` ζ3t

4
` ζ4

1ζ3t
8
` ζ4t

12
` . . .`Q4r`2ζ1t

4r
` . . . .

We combine even and odd terms to get the following power series expression:

Qζ2ptq “

˜

ζ2
1

t
`

1

tξptq2
`

t

ξptq4

¸

`

ˆ

ζ2 `
t` ξptq ` ξ1ξptq

2

ξptq4

˙

“ ζ2 `
ζ2
1

t
`

ξ1
ξptq2

`
1

ξptq3
`

1

tξptq2

χQζ2pξptqq “ ξ2 `
ξ2
1

ξptq
`
ξ1
t2
`

1

t3
`

1

t2ξptq
.

We now compute the coaction on elements of form Qrx3 as follows:

ψpQx3ptqq “ p1bQx3qpξptqq ` p1bQx2qpξptqqpχQζ1 b 1qpξptqq

` pχQpζ3
1 ` ζ2q b 1qpξptqq

“ p1bQx3qpξptqq ` p1bQx2qpξptqq ¨

ˆ

1

ξptq
`

1

t
` ξ1 b 1

˙

`

ˆ

1

ξptq
`

1

t
` ξ1 b 1

˙3

` ξ2 b 1`
ξ2
1 b 1

ξptq
`
ξ1 b 1

t2
`

1

t3
`

1

t2ξptq
.

We are now ready to provide the relevant primitives corresponding to Qrx3.

Proposition 3.6.3. Define a series by the following:

Bptq “ Qx3pXptqq ` Aptq ¨

ˆ

1

t
`X1 `

1

Xptq

˙

`X2 `
X2

1

Xptq
`
X1

t2
`

1

t3
`

1

t2Xptq
.
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Then each coefficient of Bptq is a primitive element of the comodule H˚pS{{η, uqr
?
x2s.

Proof. We first start to compute the coaction on Bptq, using the fact that Aptq has primitive

coefficients:

ψpBptqq “ ψpQx3pXptqqq ` p1b Aptqq ¨

ˆ

1

t
` 1bX1 ` ξ1 b 1`

1

ζp1bXptqq

˙

` 1bX2 ` ξ1 bX
2
1 ` ζ2 b 1`

ξ2
1 b 1` 1bX2

1

ζp1bXptqq

`
ξ1 b 1` 1bX1

t2
`

1

t3
`

1

t2ζp1bXptqq
.

To expand the first term we need to rely on our coaction formula:

ψpQx3pXptqqq “ p1bQx3pXptqqq

`

ˆ

1bQx2pXptqq `
1

1bXptq2
`

1

ζp1bXptqq2
` ξ2

1 b 1

˙

¨

ˆ

1

1bXptq
`

1

ζp1bXptqq
` ξ1 b 1

˙

` ξ2 b 1`
ξ2
1 b 1

1bXptq

`
ξ1 b 1

ζp1bXptqq2
`

1

ζp1bXptqq3
`

1

p1bXptqqζp1bXptqq2
.

Now the desired statement ψpBptqq ´ 1bBptq “ 0 is straightforward to verify.

Just like the coefficients of Aptq, we need to check which coefficients have only even

powers of X1 in order to get honest elements in homology. Again, this turns out to be the

odd coefficients of our series.

Lemma 3.6.4. The odd coefficients of Bptq are well-defined in the sense that these terms

only contain odd powers of X1.

Proof. In the proof of Lemma 3.6.2 we noted that the coefficients of t2k`1 in Xptqr are

well-defined for positive r, and this works for negative odd k as well by the decomposition
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Xptqr´2 “ Xptq´2Xptqr. The terms involving a Qrx2 are now the only ones remaining with

a risk of having an odd power of X1 in the odd coefficient. The coefficent of Qrx2 is seen

to be Xptqrpt´1 `X1 `Xptq
´1q, which can be rewritten Xptqr ` t´2Xptqrpt`X1t

2q. Here

the term pt ` X1t
2q is equal to Xptq modulo terms not involving X1, so we have reduced

everything to our analysis of Xptqr.

We must similarly replace Q2k`1x3 with something new in order for the even coefficients

to be well-defined, to reflect the fact that after we first cone off odd coefficient primitives, the

Dyer-Lashof action on x3 changes. In the earlier case the modification is simple: Q2k`1x2 “

Q2k`1X2
1 “ 0. In this case there is a nontrivial action, which we must compute.

Notationally, let F 1ptq be the formal derivative of a power series F ptq and F oddptq and

F evenptq be the terms with only odd powers of t and only even powers of t, respectively. We

are working mod 2 so we have F oddptq “ tF 1ptq. We want to see what happens when we

cone off the odd coefficients of Bptq, so we must isolate these coefficients:

B1ptq “ Qx3pXptqq ` A
1
ptq ¨

ˆ

1

t
`X1 `

1

Xptq

˙

` Aptq ¨

ˆ

1

t2
`

1

Xptq2

˙

`
X2

1

Xptq2
`

1

t4
`

1

t2Xptq2

Bodd
ptq “

t

Xptq
Qxodd3 pXptqq `

t

Xptq
Qxodd2 pXptqq ¨

ˆ

1

t
`X1 `

1

Xptq

˙

` Aptq ¨

ˆ

1

t
`

t

Xptq2

˙

`
tX2

1

Xptq2
`

1

t3
`

1

tXptq2
.

Now after coning off the odd coefficients of Bptq, we can use the above to see the resulting

Dyer-Lashof action on x3. This action is encoded by the seriesQxodd3 ptq, but it isQxodd3 pXptqq
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that we need to replace in our definition of Bptq:

Qxodd3 pXptqq “
Xptq

t
Bodd

ptq `Qxodd2 pXptqq ¨

ˆ

1

t
`X1 `

1

Xptq

˙

` Aptq ¨

ˆ

Xptq

t2
`

1

Xptq

˙

`
X2

1

Xptq
`
Xptq

t4
`

1

t2Xptq

Qxodd3 ptq “
t

Xptq
Bodd

pXptqq `Qxodd2 ptq ¨

ˆ

1

t
`X1 `

1

Xptq

˙

` ApXptqq ¨

ˆ

t

Xptq2
`

1

t

˙

`
X2

1

t
`

t

Xptq4
`

1

tXptq2
.

We note that the last three terms
X2

1

t
`

t

Xptq4
`

1

tXptq2
encode the odd Dyer-Lashof

action on X2 “ x3 after we cone off both even and odd coefficients for the Aptq and the Bptq.

This series has coefficients analogous to the expression for Q4k´1ζ2 “ Q4k`1ζ1 in terms of

the ζi’s or ξi’s.

Lemma 3.6.5. If we assume Boddptq “ 0 and examine the series B̂ptq derived from Bptq

by replacing Qxodd3 pXptqq with the corresponding terms above, then the resulting series has

well-defined coefficients in the sense that all powers of X1 are even.

Proof. If we do the given replacement, our series can be reorganized as follows:

B̂ptq “ Qxeven3 pXptqq ` pAptq `Qxodd2 pXptqqq ¨

ˆ

1

t
`X1 `

1

Xptq

˙

` Aptq ¨

ˆ

Xptq

t2
`

1

Xptq

˙

`X2 `
X1

t2
`
Xptq

t4
`

1

t3

“ Qxeven3 pXptqq `

ˆ

Qxeven2 pXptqq `
1

t2
`X2

1 `
1

Xptq2

˙

¨

ˆ

t`X1t
2 `Xptq

t2

˙

`Qxodd2 pXptqq ¨

ˆ

Xptq

t2
`

1

Xptq

˙

`X2 `
t`X1t

2 `Xptq

t4
.

In this form the result is clear.
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