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ABSTRACT

We give a definition of a norm functor from H-Mackey functors to G-Mackey functors for G
a finite group and H a subgroup of G. We check that this agrees with the construction of
Mazur in the case G cyclic of prime power order and also with the topological definintion of
norm, which has an algebraic presentation due to Ullman. We then use this norm functor
to give a characterization of Tambara functors as monoids of an appropriate flavor.

The second chapter is part of a joint project with Andrew Baker. We consider what
happens when we take the sphere spectrum, and kill elements of homotopy in an F fashion.
This process starts with the element 2 and is repeated in order to kill all higher homotopy
groups. We provide methods for identifying spherical classes and for understanding the
Dyer-Lashof action at each step of the construction. We outline how this construction might
be used to compute the André-Quillen homology of Eilenberg-MacLane spectra considered

as algebras over the sphere spectrum.
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CHAPTER 1
INTRODUCTION

1.1 Tambara functors and algebraic norms of Mackey functors

Equivariant topology considers spaces with actions of a group G. (Throughout this paper,
we restrict attention to the case G finite.) In order to comprehensively account for the action
of the group, one must be careful when defining invariants. The most basic example is that
the notion of a weak homotopy equivalence of G-spaces requires not just an equivariant
map that is a weak homotopy equivalence of underlying spaces, but must also induce weak
homotopy equivalences on all fixed-point spaces over all subgroups of G.

In a similar vein, the correct generalization of an abelian group is often not just a G-
module, but rather a G-Mackey functor. This consists of a network of modules M(G/H)
indexed on the subgroups of G. These modules are related to each other by structure
maps satisfying certain compatibility conditions, including restriction maps of the form
M(G/K) — M(G/H) for inclusions H < K and transfer maps in the other direction.
In particular, given some G-spectrum E the natural structure on myE is a Mackey functor.

For G finite, the notion of G-Tambara functor was introduced in [21] to axiomatize the
structure gained from the multiplicative transfers arising in representation theory and in the
cohomology of finite groups (for instance see Chapter 5 of [10]). Such multiplicative transfers
were introduced to stable homotopy theory in [12].

Tambara functors became of interest to stable homotopy theorists when Brun [7] demon-
strated that 7y R is a Tambara functor for any Ey ring G-spectrum R. In the other direction,
Ullman [23] has recently proved that any Tambara functor can be realized by a ring structure
on the corresponding Eilenberg-MacLane spectrum. Furthermore, the category of Tambara
functors is shown to be equivalent to the homotopy category of commutative ring Filenberg-

MacLane G-spectra.



We now consider the previous attempts to build multiplicative norm functors
N Macky — Mack
g Macky ackg

in a way consistent with the notion of Tambara functor. In particular, this consistency
means that when restricted to Tambara functors, this functor is essentially the free functor
Tambg — Tambg. In the case of G cyclic of prime power, there is an algebraic construction
due to Mazur [18].

For arbitrary finite groups G, there is also a topological construction using the Hill-
Hopkins-Ravenel norm [13] in a good model of the stable equivariant category. Ullman [22]
gives an algebraic description for this functor, but it would be preferable to have a definition
not going through topology.

We provide a new definition of Ng for all finite groups G as a left Kan extension, and
in particular check that this agrees with both definitions as above. This definition is purely
algebraic, and is categorically universal in a way that contrasts with any description built
purely from generators and relations.

We use this functor to give an extrinsic characterization of Tambara functors as com-
mutative monoids in an appropriate sense. We give an explicit account of the coherence

conditions necessary for this structure.

1.2 Eilenberg-MacLane spectra as relative E, cell complexes

André-Quillen cohomology is a natural invariant theory on the category of commutative
rings. It is a relative theory in the sense that groups AQ*(B/A) are defined for a pair
of commutative rings A, B with a given map A — B. In the world of stable homotopy
theory, Basterra [6] defined the corresponding theory TAQ™ of topological André-Quillen

cohomology. This construction is analogous to the construction in ordinary algebra, and



relies on a stable category with symmetric monoidal smash product.

The theory TAQ™ is the natural obstruction theory for commutative S-algebras (which
are exactly the commutative monoids over the smash product) in the sense that there is
a decomposition similar to the traditional Postnikov tower, with the invariants lying in
appropriate topological André-Quillen cohomology groups.

As of yet, there are very few explicit calculations of TAQ™ in the literature. An example
of what is known is Richter’s calculation [19] of TAQ,(HA/HF), where A is a smooth
commutative algebra over a field F. Here HA and HF are Eilenberg-MacLane spectra.
While a field is a reasonable base to use in the algebraic context, in stable topological
algebra the universal base is instead the sphere spectrum S. In particular, the invariants
in the aforementioned Postnikov tower lie in TAQ*(R;/S) for appropriate commutative S-
algebras R;. In this case, little is known calculationally.

The basic building block to consider is when R is an Eilenberg-MacLane spectrum. We
consider the case of R = HIFy, for which a sketch of a calculation exists in the literature [16].
We proceed by methods analogous to the computation of ordinary cohomology of a space
with the structure of a cell complex. More specifically, we form a relative cell complex in
the category of commutative S-algebras. This consists of taking the sphere spectrum S, and
killing off elements in homotopy through attaching Ey cells. Attaching such cells creates
new elements in homotopy, which are then killed by the next stage of attached cells.

In order to understand this decomposition, we need algebraic control over the set of cells
and the attaching maps for each stage of our construction. In order to do this, we apply
a theorem of Steinberger [8] to observe that at each stage we have a spectrum that splits
as a wedge of Eilenberg-MacLane spectra. We strengthen this observation to give algebraic
control over this splitting. We verify that there is a correspondence between the set of cells
and the proposed basis for TAQ*(HF5/S).

We develop an explicit understanding of the action of the Dyer-Lashof algebra on the



homology of each stage of our construction. We also produce formulae to replace polynomial
generators with spherical classes. These spherical classes then produce the Fy attaching
maps to obtain the next stage of the construction. We give a similar description of how to

obtain spherical classes in the first stage of a complex intended to compute TAQ*(H Z(2) /S).



CHAPTER 2
TAMBARA FUNCTORS AND ALGEBRAIC NORMS OF
MACKEY FUNCTORS

2.1 Introduction

In this chapter we give a new algebraically-motivated construction for the norm functor
NgM : Macky — Mackg, for H some subgroup of a finite group G. We then give com-
parisons with previously-existing constructions and use this structure to give an alternate
characterization of Tambara functors.

In Section 2.2, we give some background on Mackey and Tambara functors, and establish
our notational conventions.

In Section 2.3, we give our definition for the norm NgM , and prove the following:

Theorem 2.1.1. The norm functor Ng: Macky — Mackg agrees with the free functor
Tambgy — Tambg when the input is an H-Tambara functor. Furthermore, Ng 1S strong

symmetric monoidal with respect to to the box product of Mackey functors.

This result allows us to construct a commutative diagram of the following form, where the

horizontal maps are forgetful functors and the squares commute up to natural isomorphism:

Mack g Green g Tamb g
G G G
Ng Ng Ng

Mackgq Greeng Tambg

We then check that our construction agrees with Ullman’s algebraic presentation. We also
construct a natural unit map M — i HNIC{’VM for any H-Mackey functor M equipped with

a map A — M. Here A is the Burnside Mackey functor, which is the initial object in the
5



category of Green functors.

In Section 2.4, we construct part of what we call a G-symmetric monoidal structure on the
category Macky. We define M ®T for any finite G-set T together with natural isomorphisms
corresponding to G-isomorphisms 7' = T”. In the case of T = T’ = G/H, this gives an action
of the Weyl group Wz H through isomorphisms of G-Mackey functors.

In Section 2.5 we consider the underlying K-Mackey functor of the norm of an H-Mackey
functor, where H, K < G. We obtain a decomposition analogous to the usual double coset
formula. In particular, if H = K is the maximal subgroup for G a cyclic group of prime power
order, we have an isomorphism between i HNEM and the |G/H|-fold box product MHIG/H|
for any H-Mackey functor M. This is used in Section 2.6 to construct an isomorphism
between our norm functor and the construction of Mazur.

In Section 2.7, we define G-commutative monoids and coherent GG-commutative monoids.
We then prove that the categories of G-Tambara functors and coherent G-commutative
monoids are equivalent. In the latter case the structure is defined extrinsically in terms of
our norm functor, and in the former case the structure is defined through internal norm

maps M (G/H) — M(G/K) for any chain of subgroup inclusions H < K < G.

2.2 Background and conventions on Tambara functors and

Mackey functors

Let G be a finite group. In order to set our notation, we briefly describe the definition of
Tambara functor as given in [21] or [20].

Let A denote the Burnside category of spans of finite G-sets. This category has finite
G-sets for objects. Any map of G-sets f: X — Y induces a map Ry € Aq(Y, X) and a map
Tt € Ag(X,Y). The morphisms in Ag(X,Y) are expressible as spans (up to isomorphisms
of spans) of the following form:

x L aty
6



The above span should be interpreted as the composite Ty Ry in Ag. Composition is then

defined via pullback, meaning concretely that if we have the following pullback square, then

Y
E
A

Similarly, let Ug denote the category of polynomial bispans. (The general picture here is

p
XxY —

<7D>X

>

g

outlined in [11]). The objects are the same, but f: X — Y induces a map Ny € Ug(X,Y),
in addition to the maps Ry, T. The morphisms in Uq (X, Y) are expressible as bispans (up

to isomorphisms of bispans) of the following form:
x Ll at. gy

Again, the above bispan can be written as the composite T} NgR fFinUg.
In order to compose such bispans, we use pullback as in the span case to define com-
positions of the form RyNg and RyT},. For maps h: X — Y, g: Y — Z, we define the

composition NyT}, by using the following diagram, referred to as the corresponding exponen-

2

Y x [I, X
7 g

tial diagram:
Y

X

A

T, X
R | )

In the category U, the composite NyT}, is given by TthNﬁRe.
Here IIg4, referred to as the dependent product, is part of the local cartesian structure

on G-Set, although we only use it in the full subcategory G-Set!” of finite G-sets. It is the



right adjoint to the pullback functor ¢g*: G-Set/Z — G-Set/Y . The counit of this adjunction

yields the map e above. On the set level we have
MgX = {(2,8): 2€ Z,s: g {2} = X, hos =idy1p,,}.

The G action is given by the left action on elements of Z and by conjugation of the maps
s. The map IIgh: IIgX — Z is the evident projection (z,s) — z, and the evaluation map
e: Y xz g X — X is given by e(y, (2,5)) = s(y).

The bottom row of the exponential diagram is called the distributor associated to g and
h, referring to the fact that it tells us how to interpret the composition of a multiplication
(the norm Ny) with an addition (the transfer T}).

Product-preserving functors M : A5 — Set define G-semi-Mackey functors, and product-
preserving functors R: Ug — Set define G-semi-Tambara functors. Note that the products
in A and Uy are given by disjoint union of G-sets.

If M is a semi-Mackey functor, then M (X) naturally inherits the structure of a commu-
tative monoid, and the category of Mackey functors Mack is the full subcategory of those
M such that M(X) is an abelian group for all X.

This definition is equivalent to viewing Mackey functors as product-preserving functors
AE — Set, where A is the category with the same objects as Ag and with AE(X YY)
the Grothendieck completion of An(X,Y), where the sum of two spans X «— A — Y and
X « B — Y is the disjoint union X «— AIIB — Y.

Similarly, if R is a semi-Tambara functor, then R(X) inherits the structure of a com-
mutative semiring, and the category of Tambara functors Tamb; is the full subcategory of
those R such that R(X) is a commutative ring for all X. Equivalently, Tambara functors
are product-preserving functors L{af — Set analogous to the above. Here U&C (X,Y) is the
Grothendieck completion of U (X,Y), where the sum of two bispans X <~ A - B - Y
and X «C —> D —>Yisgivenby X —« AuiC - BuuD —Y.

8



In the Mackey functor case, we could equivalently use additive product-preserving func-
tors Ag — Ab, but this is not possible in the Tambara functor case since composition does
not preserve the additive structure on morphisms, i.e. the composition of polynomials is not

linear.

2.2.1 Alternate characterizations of Mackey and Tambara functors

Since Mackey and Tambara functors are product-preserving, and the products in the cate-
gories Aq, U are given by disjoint unions of G-sets, the combinatorial data of such functors
can be reduced by breaking arbitrary finite G-sets into orbits.

A Mackey functor M is determined by an abelian group M (G/H) for each subgroup
H < G. The maps in Ag can be written in terms of three kinds of maps. Given H < K < G,

the quotient map ¢(H, K): G/H — G/K induces a transfer map
trff = M(Ty( )): M(G/H) — M(G/K)
and a restriction map
resg = M(Rq(H,K))1 M(G/K) — M(G/H).

These maps must be compatible with the composition in A, which yields the traditional
double coset formula. Next, any conjugacy relation between subgroups H and H’ induces
an isomorphism M(G/H) =~ M(G/H'). In particular, maps induced by the isomorphisms
G/H — G/H yield an action of the Weyl group W H on M(G/H). These isomorphisms
must be compatible under composition and also appropriately compatible with the transfer
and restriction maps.

A Tambara functor can be reduced similarly to the data of a commutative ring R(G/H)



for each subgroup H. There are now norm maps
K
normp = M(Ny i) M(G/H) — M(G/K),

compatible with multiplication but not addition. The restrictions and conjugation isomor-
phism are compatible with both multiplication and addition, and the transfers are purely
additive. The compatibility between norms and the restrictions gives a multiplicative semi-
Mackey functor structure on M in addition to the additive Mackey structure given by trans-
fers and restrictions. The exponential diagram must now encode the necessary compatibility

between norms and transfers, as well as norms and addition and transfers and multiplication.

2.3 Multiplicative norms of Mackey functors

Now set H < GG. We use the following adjunctions, where ¢: G-Set — H-Set is the forgetful

functor:

G-Set[G x g X, Y] =~ H-Set[ X, Y]

H-Set[iX,Y] = G-Set[ X, Mapy (G,Y)].

Here we note that the equivariance condition for maps in Mapy (G, Y") relies on the left
action of H on G and Y, and the G-action on such a function is given by precomposition
with the right action of G on G, i.e. given an H-map f, then gf sends an element ¢’ to
f(d'9).

We note that G x 7 (—) preserves pullbacks and distributors (i.e., it preserves the local
cartesian structure), so it induces maps G x g (—): Ay — Ag and G x g (—): Uy — Uq.
The functor Mapg (G, —) preserves pullbacks (but not the local cartesian structure), so it

induces a map Ay — Ag.

10



The forgetful functor i¢g: Tambgy — Tamby is induced by precomposition with the
functor G x g (—): Uy — Ug. This might be counterintuitive but reflects the fact that
given a G-Tambara functor R, and an H-orbit H /K, the natural choice for i R(H/K) is
the ring R(G/K) =~ R(G x g (H/K)).

We give a categorical description of the left adjoint to ip.

Definition 2.3.1. The functor Ng: Tamby — Tambg is given by the left Kan extension
along the functor G x g (=). This can be computed by the following coend, where R is a

giwen H-Tambara functor:

NER(Y) := LanGE(_)E(Y) = JXEUH Ua (G x X, Y) x R(X).

The coend formula and the fact that Ng is the left adjoint to 7 g follow from 4.25 and 4.39
of [14], respectively. It is formal that any such left Kan extension of a product-preserving
functor results in a product-preserving functor (Proposition 2.5 of [15]), so this gives us a
new G-Tambara functor. It is also true that it preserves the property of having additive
inverses, but we defer this proof. We could have instead used the categories U3, L[ér as
domains.

Informally, Ngﬁ builds in any additional norms, transfers, and Weyl actions that arise
from passage to the larger group as freely as possible. In particular, one can see from the
coend that NEE(G/G) is isomorphic to the indexed tensor product ) R(H/e). As a set this
is the tensor product of |G/H| copies of R(H /e), with G acting by g!nijlltaneously permuting
coordinates and acting on each coordinate in an appropriate fashion. (This is an example of

the construction of indexed monoidal products introduced in Section A.3 of [13].)

We now define an analogous functor on the Mackey functor level.

Definition 2.3.2. The functor Ng: Macky — Mackq is given by left Kan extension along
Mapy (G, —): Ag — Aq. Concretely, we again have a coend formula, where M is a given

11



H-Mackey functor:

Y

G XeAy
NM(Y) i= Lanygay, i 20) = | Ag(Mapy(G,X), Y) x M(X),

Some comments about this construction are in order. It is not immediately clear that
this functor is analogous to the Tambara-level functor Ng. The two Kan extensions are
along different functors with different domain and target categories. The point is that the
use of the indexed product functor Mapg (G, —) on the Mackey functor level is somehow
building in some of the extra structure present in the more complicated Tambara diagram
categories U and Up.

Note that while Mapg (G, —) is a right adjoint when considered as a functor H-Set —
G-Set, it is not a right adjoint when considered as a map Ay — Ag. In particular,
Mapgy(G,—): Ay — Ag does not preserve products, so it does not induce a functor
Mackg — Macky via pullback. Thus, while Ng is a left adjoint as a map between the
functor categories SetAH — SetAG, it is not a left adjoint as a functor Macky — Mackg.

The existence of some compatible functor Ng on the Mackey functor level is an ap-
propriately natural extension of the observation that the underlying Mackey functor of
Ngﬁ e Tamb depends only on the underlying Mackey functor structure of R € Tamby.

Here compatibility means the following result.

Theorem 2.3.3. There is a natural isomorphism UgNg ~ NgUH, where

Ug: Tambg — Mackg and

UH: TambH — MackH

are the forgetful functors.

A direct construction of Ng in the case G cyclic of prime power order, as well as the

isomorphism UgNg ~ NEU g is given by Mazur [18]. On the Mackey functor level, NEM
12



is intended to be the universal home for norms M(G/H) — M(G/G).
To define the isomorphism of Theorem 2.3.3, we construct a map directly on coend
representatives. We use the following result to reduce arbitrary bispans in U (G x g X,Y)

to ones of a specific form.

Lemma 2.3.4. Take an arbitrary element in Uq(G x g X,Y'), which is represented by some

bispan of finite G-sets:
TyNRy=Gx X <L aLsp iy,
H
Then there exists an H-set D satisfying G x g D = A such that the above bispan is equivalent

in Ug to a bispan of the following form:

Gx f' £(Gxg')
GxD il
H

By,

ThNENGxg’RGXf’ =GxX
H H H

Here f': D — X,q¢': D — iB are maps of H-sets and ¢: G x iy iB — B is the counit of the

adjunction G x g (—) - 1.

Proof. The G-set A must be a disjoint union of orbits G/Kj;, and the existence of a G-map
f: A— G x g X says that the i-th component of f is a map G/K; — G/L; where the target
is of form G/L; = G xg (H/L;) for some L; < H. Thus Kj; is itself conjugate to some
K! < L; < H, and the map G/K; — G/L; factors as a map G/K; =~ G/K] — G/L;, where
the second map is the quotient map. The desired H-set D is the disjoint union of the H/K Z’ ,
and then f factors as A ~ G xg D — G x g X, where the latter map is of the desired form
Gxgf.

Next, we examine the composite map G x g D =~ A — B, which has adjoint ¢': D — iB.
We get a factorization of the form G xg D — G xpg tB — B using the counit of the
adjunction. Here the first map is G x 7 ¢, as desired.

The vertical arrows in the claimed isomorphism of bispans are the identity map of Gx g X,
13



the constructed isomorphism A =~ G x g D, and the identity maps of B and Y.
O

With this lemma in hand, we return to the proof of Theorem 2.3.3. Examining our coend

for Lang, (_)R(Y), we see that for any x € R(X), the pair
H

(ThNng,x)z(G;}X(iALBLxx)
Gxf' Gxg' L
= (GxX GxD—2—GxiB-5 BY, )
H H H

is identified with the pair
. . h
(T Ne, Ny Rp) = (G x iB=0G x iB—>B—>Y, NyRpz).
Similarly, in the coend for LanMapH(Gﬁ) R(Y), if we are given an arbitrary pair
k h
(Ty Ry, x) = (Mapy (G, X) «— B —Y, z),
we can apply the adjunction i 4 Mapy (G, —) to identify it with the pair

(T, Ry, z) = (Mapg(G,iB) <~ B LV, R;z)

where 7 is the unit of the adjunction and k:iB — X is the adjoint to k.

We have now shown that every element in the domain has a representative of the form

. . h
T,N.,b) = (GxiB=G xiB- B-5Y,b),
(hs ) ( 7 7 )

14



and every element in the target has a representative of the form
(TR, b) = (Mapg(G,iB) <= B L5 v, b) .

Such elements in the two coends are said to be in standard form. Our isomorphism takes
the former element to the latter, and we must check that this is well-defined.

First, we must check that this does not depend on our factorization into standard form,
which is not unique. We simultaneously check that the equivalence class of the target does
not depend on the choice of isomorphism class of bispans. Given two isomorphic bispans
and two corresponding standard form expressions, it is easy to construct a diagram of the

following form, which shows that the two images in the target are equivalent:

G x f! G xq e L
Gx X H GxD H G x iB B Y
H H H
~ ~ |G xifp ~ |
GxX G x D' G x iB’ = B’ p Y
H fo// H Gxg// H h
H H

We must still check that our isomorphism is compatible with the coend identifications.
Compatibility with identifications induced by restriction and norm maps is essentially au-
tomatic from our construction. Compatibility with identifications induced by transfer maps

requires the following lemma, whose proof is deferred until the end of the section.

Lemma 2.3.5. For maps f: X — iB, we have a natural isomorphim

a: 1I:(G xg X) =~ n*Mapg (G, X)

15



mn G—SetF/B, where n is the unit for the i 4 Mapy(—) adjunction and € is the counit for

the G x g (=) - i adjunction. Furthermore, we have a natural isomorphism 3 making the

diagram
(G xiB) x II:(G x X) I (G x X)
H B H H
~|f ~ o
Gx X G x i(n*Mapgy (G, X)) n*Mapg (G, X) B
H GxT7 P
H

commute. Here 7t is the adjoint to the projection m: n*Mapy (G, X) — Mapy (G, X) and

the bispan on the top is the distributor for the composition G x g X <l G xpgiB 5 B.

We now show that the images of the elements (T}, N:Tgx , r, ) and (T}, Ry, Tyz) are the
same under our proposed map. We check this using the result and notation of Lemma 2.3.5

to rewrite the composite T}, V¢ in such a way as to yield an element in standard form:

(TyNeTgs o) = (ThTpNeRgx 2, )

Now our proposed isomorphism sends (75,7,N:, R;x) to the standard form element

(T TyRyy, Rix), which we must manipulate further:

(T Tp Ry, Rix) = (T Tp Ry Bytap (G 7))

= (ThByTtapy (G,f): @)
= (ThRﬂa Tf.CE) .

16



The second relation we used above is the fact that the following square is a pullback:

n*Mapy (G, X) B
Wl Jn
Mapp (G, X) Mapp (G,iB)
Mapg (G, f)

The element (T}, Ry, Tyx) is exactly the image of the standard form element (7}, Ne, Tyz), as
desired.

This shows that we have defined an isomorphism of sets. For it to be an isomorphism of
Mackey functors, we must check that our map preserves the structure induced by postcom-
position of restrictions and transfers. Compatibility with transfers is essentially automatic,
and allows us to reduce the task of checking compatibility with restrictions to the case where
h is the identity map. In this case the compatibility is easy and reduces to the naturality of
7 and €.

The proof of Theorem 2.3.3 is now complete. O]

Proof of Lemma 2.3.5: Lacking a more categorical proof, we describe the sets 1. (G x g X)
and n*Mapy (G, X) directly.

We choose a complete set t1,...,t, of left coset representatives of H, where n = |G/H|.
Thus for any H-set C' any element of G' x g C' has a unique representative pair (¢;,¢). This
choice also gives tl_l, oty Lasa complete set of right coset representatives.

An element of TI.(G x ;7 X) consists of a point b and a map s: e 1{b} — G x 7 X such
that (G x g f)s is the identity on e~1{b}. We see that e~1{b} consists precisely of the pairs
(t;, tz-_lb). Thus, a suitable map s consists of compatible choices for s(¢;, ti_lb) = (t;,x;) for
1 < i < n, where compatibility requires f(x;) = ti_lb.

An element of n*Mapg (G, X) is given by a pair b, 1), where ¢ is an H-map G — X. The

identity ?/)(hti_l) = hw(ti_l) tells us that ¢ is uniquely determined by the choice of elements
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x; = 1[)(152_1) Being in the pullback implies ¢p, = f o1, where ¢y is the map G — B given
by ¢p(g) = gb. Thus our compatibility condition on the z; is again t;lb = f(x;).

A set isomorphism is now given by noting that the data in both cases is a choice of
x; for 1 < i < n satisfying tz._lb = f(z;). We must now check that the G-actions on
the two sets agree. First, we see that g(b,¢)) = (gb,gv), where gib(g1) = ¥(g919). We

define functions h;(g) and o4(i) via the equation ti_lg = hi(g)tgl(i). This lets us evaluate
9

U(t; g = hi(9)zs, (i)-

Next, we have ¢(b, s) = (gb, gsg~1). We evaluate directly:

gsg”H(ti t; 1 gb) = gs(g i, 17 gb)
= gs(ty,i)hilg) " t; " gb)
= 95(tgy (i), t;gl(i)b)
= 9oy (3) Tog(i))

= (i, hi(9)zo, )

Therefore our isomorphism « is equivariant.

Our isomorphism [ takes elements of the form (¢, t,}lb), (b, s) (which is the general form
for an element mapping to (b, s)) to (tm, (ttb,t-1)s)), where a(b,s) = (b,1)s) as above.
This makes the diagram commute, as G x g 7 takes (tm, (t:1b, 6 1s)) to (tm, tYs(e)),

which is evidently (¢, Tm)- O

2.8.1 Additive inverses

In light of Theorem 2.3.3, to check that the constructions Ng preserve the existence of
additive inverses (i.e. that we can work in the categories of Mackey and Tambara functors
instead of semi-Mackey and semi-Tambara functors), it suffices to check in the case of the
coend Lanypoy, - (,—)(—)-
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Proposition 2.3.6. The coend LanMapH(G )(—) takes Mackey functors to Mackey func-

,—

tors. That is, if M(X) is an abelian group for all finite H-sets X then Lanyrap, (G )M(Y)

1s an abelian group for all finite G-sets Y .
Proof. 1t suffices to check that inverses exist in the case Y = G/K, and we assume inductively
that this is true for Y = G/L for all L < K. We note that transfers are additive, so any
element transferred from a smaller subgroup inductively has inverses. Conceptually, we
know that N(b) + N(—b) should be equal to zero modulo transfers for any element b, so even
though an exact formula for an inverse might be messy, we can use our inductive hypothesis
to verify the existence of an inverse.

Our simplifications leave us needing to demonstrate that inverses exist for elements with

representatives of the form
(By.y € MGG/K)) = (Mapy(G,i(G/K)) «— G/K = G/K.y).

We then decompose iG/K into H/(H n K)11.X for some H-set X, and use this to write y as
a pair (b, z). This decomposition is necessary since our intended inverse is built around the
element (—b, z) instead of the element —y = (—b, —x), just as the inverse of a tensor a1 ® as
is given by (—a1) ® ag instead of (—aq) ® (—a9).

In the case b = 0 it is easy to see that (R, (0,z)) represents zero. We perform the
following coend operation. Here x is the map iG/K 1 H/(H n K) — iG/K given by the

identity on the first component and the inclusion on the second:

0= (R, (0,2)) = (Ry, (b,2) + (=,0)) = (RyTatap,, (G) (02, —0))

We now consider the following pullback:
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Z Mapy (G,iG/K1H/(H n K))
JMapH(GUX)
G/K Mapy (G,iG/K)

Every element of Z has a subgroup of (a conjugate of) K for its stabilizer. Inductively, we
can ignore all nontrivial transfers in our answer, so we need only identify the orbits of Z of
the form G/K.

We claim that there are exactly two of these orbits, and moreover that the restriction of
the map r to these orbits is adjoint to the map 7: iG/K11iG/K — iG/K1H/(H n K) that
takes 1G/K identically to itself on the first coordinate, and breaks the second coordinate

into the map

iG/K ~X1UH/)(HAK)—iG/KUH/(HAK).

Given these claims, we see that zero is equal to the sum of (Ry), (b, z)) and (Ry, (=b, x)),
modulo transfers, completing the argument. This follows since the above sum has the fol-

lowing representative, where V is the fold map G/K 11 G/K -, G/K:

(Mapy (G, i(G/K 1G/K)) <L G/K1G/K > G/K, (b,z, ~b, x))
= (TVRm (b, z, =, x))
= (Iy Ry, Ry (b, x,—b))
= (Tv Ry Bytap,, (G.5): (b2, b)) -
To check the claims, we again fix some set t; of left coset representatives. An element of
the pullback consists of an element gK € G/K, and an H-map 3: G — iG/K11H/(H n K)

such that x8(¢’) = ¢'gK. We choose the orbit representative with g = e, and note that 3

is determined by B(ti_l). If ﬁ(ti_l) € iG/K, then it is forced to be tz._lK. Otherwise, it is
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some h;(H n K) such that h; K = ti_lK , or equivalently ¢;h; € K. Note that different such
choices of elements h; yield the same element of H/(H n K).

Thus, 5 is completely determined by choosing the set of those ¢ such that g (ti_l) lies in
H/H n K instead of iG/K. We note that this set consists only of those ¢ such that for some
h; we have t;h; € K . Thus, the set of all possible g corresponds to the subsets of the set [
of those 7 such that a suitable h; exists. The map g corresponding to a given subset S < [
is then given by requiring Bg(ti*l) to liein H/H n K if i € S, and lie in iG/K otherwise.

The only choices of S such that the isotropy subgroup of Sg is all of K are the cases
S =@ or S =1. Toseethat kBg = Bg in these cases, we note that kﬁg(ti_l) is given by

writing tz._lk = ht;l for some h € H and some j, and then we have
kBs(t; 1) = Bs(t; k) = Bs(ht; ) = hBs(t; )
S I3 S 7 S i S ] N

From the relation k~1¢; = tjh_l, we see that ¢ € [ if and only if j € I. In the case S = &, we
see that kg = B¢ since the image in both cases lies entirely within iG/K. In the case S = I,
we see that kg = [g, since we have checked in this case that kBS(ti_l) lies in H/H n K for
allie I.

For all other subsets .S, choose some i € S and some j € I — 5. We choose suitable h;, h;,

and then have for some k € K that tihihgltjl = k. Now we have
kB(tyh) = Bt k) = Bty Mihh 1Y) = hin g (t5h).

We now see that Bg(ti_l) lies within H/(H n K), since ¢ € S. However, k‘ﬁs(ti_l) lies in
iG/K, as j ¢ S. Thus, k does not fix f3.

The statement about restrictions follows immediately. O
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2.8.2  Comparison with Ullman’s model

Here we write out Definition 5.18 of [22].
For any map f: V — W of finite H-sets, define a G-set Dy (W, f, V) and maps e and p

so that the bispan
G X W <= Dy (W, [,V) x G/H =5 Dy (W, [,V) &V

is the distributor for the composition G xg W — V x G/H — V. Restricting e to the set
Dy (W, f,V) x {eH} yields an H-map eg: Dy (W, f,V) — i(G x g W).

Then for any H-Mackey functor M define a G-Mackey functor NGH M by letting
NG’HM(X) be the quotient of the free abelian group of pairs (j: V — X,u € M(igV))

modulo the relations

L (j: V- X,u)=(j: V' - X,u) when there is a commutative diagram

and R;, fu = o,

2. (jilljo: ViuVa — X, (ug,u2)) = (j1: Vi — X,u1) + (j2: Vo — X, ug), and

3. (j: V= X, Tr(w)) = (jop: Dg(W, f,V) = X, Rey (w)) for any finite H-set W and
any H-map f: W —igV.

A Mackey functor structure on N GH © is now given. The transfer T (7: V — X, u) corre-
sponding to a map f: X — Y is given by the postcomposition (foj: V — Y u). The restric-

tion associated to a map f: Y — X is defined by R¢(j: V — X,u) = (k: P =Y, R;,4(u)),
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where the following diagram is a pullback:

v x
i s
P Y

k

In [22], Ullman proves that this yields a presentation of EO(NEHM ), where HM is an appro-
priate model for the Eilenberg-Maclane spectrum corresponding to the Mackey functor M
and Ng is the Hill-Hopkins-Ravenel norm [13]. We check that this topologically-motivated

norm agrees with our construction.
Proposition 2.3.7. There is an isomorphism of G-Mackey functors NGHpf ~ NgM.

Proof. Our identification takes the generator (j: V — X, u) in NG M (X) to the coend rep-
resentative (1 Ry, u) in NEM (X). Note that all elements in the target have a representative
in this standard form.

To check that this yields a well-defined isomorphism, we need to see how the relations in
NGH M correspond to relations in NgM . Relation (1) corresponds to the identifications in
the coend coming from identifying spans in A¢. Relation (2) corresponds to how addition
is defined in NgM . Relation (3) corresponds to coend identifications coming from transfer
maps as an application of Lemma 2.3.5.

The transfer and restriction maps are clearly compatible with these identifications. [

2.3.83  Multiplicative norms of Green functors

We now consider Green functors, which have two equivalent formulations. Note that we use
the term “Green functor” where others might use the term “commutative Green functor”.
The traditional definition uses the symmetric monoidal structure on the category of

Mackey functors given by the box product.
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For our purposes, we note that the box product can be explicitly constructed as a left
Kan extension. The functor [ [: G-Set?" x G-Set!” — G-Set!’, which takes two G sets X,Y
to their product X x Y, preserves pullbacks, and thus induces a functor [ [: AgxAg — Aq-
Given any Mackey functors P, (), the box product P[X]Q is formed as the left Kan extension
of P x @ along the functor | [. This is given explicitly by the coend formula

(EHQ)Y) =

(UV)eAgxAa
f Ag(U xV,Y) x P(U) x Q(V).

The box product has a unit A, whose value on orbits is given by the Burnside ring Ag.
Since A is the initial object in the category of Tambara functors, it is preserved by the left
adjoint Ng.

A Green functor is then a commutative monoid under the box product. Given a Green
functor R, the abelian group R(X) inherits the structure of a commutative ring, with the
unit element being the image of the element 1 € A(X) under the unit map A(X) — R(X).
There is a natural map R(X)® R(X) — (RX R)(X), which upon postcomposition with the
monoid multiplication RX] R — R yields the ring multiplication of R(X). This natural map
sends = ® y to the representative (X x X A X = X, z,y) in the coend for R[X R.

The structure of the box product tells us that the multiplication, transfers and restriction
must be compatible via a Frobenius reciprocity relation. Given a quotient map f: G/K —
G/H, the formula a-Ty(b) = Tr(Ry(a)-b) must be satisfied for any a € R(G/H),b e R(G/K).

We can also describe a Green functor via a diagram category, similar to our definition of
Mackey and Tambara functors. Let G be the subcategory of Uy consisting of those bispans
such that the middle map Ny is restricted to only allow G-maps g that are injective on orbits
(alternatively formulated as g being a map that “preserves isotropy” in [20]). Note that g
being injective on orbits does not mean that g is actually injective. One example is the fold
map G/H1IG/H — G/H. (For this to actually be a subcategory, one must check that this

property is closed under composition, which is Proposition 12.4 of [20].)

24



A semi-Green functor is then a product-preserving functor G — Set (which naturally
takes on values in commutative semirings), and a Green functor is one taking values in
commutative rings. The equivalence of the two descriptions of Green functors is Proposition
12.11 of [20].

Since the Green functors are the commutative monoids under the box product, the exis-
tence of a norm functor Ng from H-Green functors to GG-Green functors requires only the

following:

Proposition 2.3.8. The functor Ng: Macky — Mackgq s strong symmetric monoidal with

respect to the box product.

Proof. We first note that we have isomorphisms
Mapg (G, A) x Mapy (G, B) =~ Mapy (G, A x B)
for all pairs of finite H-sets A, B. This induces a natural isomorphism

1_[ O(MapH(G, _) x MapH(G7 _)) = MapH<G7 _) © 1_[

of functors Ap x Ay — Ag. This yields a natural isomorphism between the corresponding
left Kan extensions

NYPRNGQ = NG (PRQ).

Note that the Burnside functor A is the initial object in the category of Green functors
and the category of Tambara functors. The unit map 1: A — Ngé is then an isomorphism

by Yoneda’s Lemma.
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We must check the compatibility diagram

G
NéM

NG (AR M)

~ ~

AR NGM

G G
NGARNGM

X 1

which commutes since given any x € NgM(X), its image in NI({;MNI%A NgM(X) is
1y ®x.

There are also corresponding associativity and symmetry diagrams, but they are trivial
to verify.

[]

An application of Proposition 2.3.8 and Theorem 2.3.3 shows us that our Tambara functor
level norm Ng and our Green functor level norm Ng are compatible. This compatibility

takes the form of a natural isomorphism UGng ~ gU 7, where

Ug: Tambg — Greeng and

Ug: Tamby — Greengy

are the forgetful functors.

2.3.4 A unit map for unital Mackey functors

For our characterization of Tambara functors in Section 2.7, we need to examine the unit
map R — 1 HNgE given by the unit of the Ng — 1f adjunction in the category of Tambara
functors. We check that this map can be extended to the category Mack%; of unital G-Mackey

functors, which are Mackey functors M equipped with a map A — M. In particular, all
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G-Green functors are unital G-Mackey functors.
As an aside, we note that we can define a subcategory Aé < Uq consisting of those
bispans where the middle map Ny is required to be injective. We observe that injective

maps are in particular injective on orbits, so we have the following inclusions of categories
Ag c AL < Gg < Ug
corresponding to the chain of forgetful functors
Tambg — Greeng — Mack%; — Mackg .

Here the inclusion Ag < Ab takes a span X <« A — Y to the bispan X «—« A=A - Y.
To see that Aé is a subcategory as claimed, we observe that pullbacks of inclusions are

inclusions, as well as the following easy result.

Lemma 2.3.9. The distributor for a composition of the form X — Y — Z is given by
X=X->XuZzZ-Y)-7.

This allows us to redefine unital semi-Mackey functors as product-preserving functors
Ab — Set, and unital Mackey functors as those such functors taking on values in abelian
groups. This definition is equivalent to the notion of a Mackey functor M equipped with a
map A — M by defining the norm map induced by an inclusion X — X 11Y to be given by

sending any z € M (X) to
(5, 1y) € M(X) x M(Y) = M(X 1Y),

where 1y is the image of 1y € A(Y) under the unit map 1: A — M.
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Proposition 2.3.10. There is a natural transformation n: Id — iHNg of endofunctors of

Macké. When restricted to Tambara functors, 11 extends the unit map in the sense that the

diagram
UnR
1
Unn \
UnigNGR — — igNGURR

commutes for any Tambara functor R, where a is the composite of the natural isomorphism
Ugig = igUq with the natural isomorphism of Theorem 2.3.3. Here Ug and Ug are the

corresponding forgetful functors.

Proof. To determine what the map 7 should be, we first examine what the image is when R
is Tambara. An element x € R(X) is sent to the following coend representative under the

unit 7 of the i — Lan;, (—) adjunction:

We factorize the identity map of G x i X as the composition

Gx17
GxgX 5 Gxi(GxX)SGxX,
H H H
using the triangle identity for the G x g (=) — @ adjunction. Here we write 7 for the unit
map of the G x g (—) - ¢ adjunction, since we are already using 7 to denote the unit maps
of the i 4 Mapg (G, —) and iy ~ Lan;, (—) adjunctions.

Examining the isomorphism of Theorem 2.3.3 then shows us that

a(n(z)) = (Ry, Nyz) = (Mapg (G, i(G ;}X)) La XX =GxX, Nyz).
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in the Mackey-level coend for NgU k.

For any unital Mackey functor M, this formula gives well-defined elements of ¢ HNEM ,
since the map 7: X — (G xg X) is an inclusion. Thus, we define 7 to send an element
z e M(X) to the element (Ry, Njz) of ig NGM(X).

We must now check that 77 preserves the structure maps of a unital Mackey functor. The
unit map is just the composition A — M — iHNgM.

Given a map f:Y — X, we check that the restriction Rz in the domain maps to the

restriction of the image of x in the target. We observe that the following square is a pullback:

T (G %
Y @(GHY)
f z’(GEf)
X g i(G;}X)

This allows us the following manipulations, which give us compatibility with restrictions:

(RGfoRna Nﬁx)
= (ByBatapy (GG 1) Mi)
= (R, Ry(Gx y 1) Nj®)
= (anNﬁRf“J)'

Next, we take a transfer map f: X — Y, and see by Lemma 2.3.9 that

J - Jo_ . N (O XY —
X—>XLI(@(GI>}Y)—Y) —>Z(G;<IY) :YLI(@(GHY) Y).

is a distributor corresponding to the composition NjTy. Here j is the obvious inclusion and
fo is given by f on X and the identity on i(G xg Y').
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Let ¢: i(Gxg X) =2 X1U(i(GxgX)—X) > X1(i(G xg Y)—Y) be given by the
identity on the first component and the map (g,z) — (g, f(x)) on the second component.

Then

is clearly a pullback square.

We claim that

Gx X ¢ , Mapy (G, X1 (i(GxY)—-Y))

H H
Gx [ Mapg(G, fo)
GxY M G,i(GxY
x ' by (G.i(G x V)

(2.3.1)

is also a pullback square, where 1& is the adjoint to .

Assuming this claim, we check compatibility with transfers:

(Ry, NyTyx)
= (Ry, T, Njx)
= (B Map (G fo)> N5%)
= (TGXHfRJ}, N;x)
= (Tax g f B Btap G s NjT)
= (TGfoRna R¢ij)
= (TGfoRna Nﬁx) )
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We now check that the diagram (2.3.1) is a pullback square, completing the proof.

An element of the pullback is given by a triple (g, y, ), where 5: G — X11(i(GxgY)-Y)
is an H-map. The compatibility conditions require f(5(¢’)) = ¢'gz € X if ¢’g € H and
B(g) = (dg,y) € i(GxygY)—-Y if ¢g ¢ H. This data can then be reduced to g and the
value x = (8 (g_l), and this data determines an element of G x g X, as desired. It does not
matter which element of the left coset gH is chosen. The projection to G x g7 Y takes (g, z)

to (g, f(x)) and the projection to Mapg (G, X 11 (Z(G;} Y)—Y)) takes (g, z) to the function

dgre X if /ge H

g/ '_)w(g/g7x) = / . . /
(gg,f(x))el(G;;Y)—Y if g’g¢ H.

2.4 Weyl actions and a G-symmetric monoidal structure on

Mackg

The notion of “G-symmetric monoidal category” has been outlined in the literature [18, 22]
to the extent required for the definition of a G-commutative monoid, which generalizes the
notion of a commutative monoid in a symmetric monoidal category. The essential point
is to define M®T for any finite G-set T and G-Mackey functor M, as well as structural
isomorphisms M T _, M T for any G-isomorphism 7' = T”. In particular, the Weyl group
WoH = NeH/H acts on M®G/H

For any G-sets T, S, there is a G-action by conjugation on the set Map(7T, S) of all maps
T — S. For any G-set T, we see that the functor Map(7T, —): G-Set — G-Set preserves

pullbacks, so it induces a functor Ag — Ag-.

Definition 2.4.1. The functor (—)®T: Macky — Mackg is given by left Kan extension

along Map(T, —): Ag — Aq. Concretely, for any G-Mackey functor M we have a coend
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formula for M®T:

The set-level natural isomorphisms

Map(T1 11T, S) = Map(11, S) x Map(73, 5)
Map(T, Sy x S2) = Map(T, S1) x Map(T, S)

Map (T3, Map(T1, §)) = Map(T x T3, 5)
immediately induce corresponding natural isomorphisms of Mackey functors:

MRMUT2) ~ 3 y®T1 5 7 @72

(M 5 Mo)®T = M?T M?T

(M®T1>®T2 ~ ®T1xTy)

Since Map(7T', —) does not preserve products in A, the left Kan extension does not yield a
left adjoint.

We now concretely relate this structure to our norm construction.

Proposition 2.4.2. There is a natural isomorphism [3: NgiHM ~ M®G/H of G-Mackey

functors.

Now we note that the construction of M®T is a priori only a semi-Mackey functor.
However, Propositions 2.4.2 and 2.3.6 imply that this construction preserves additive inverses
and thus takes on values in Mackey functors.

Definition 5.2 of Ullman [22] gives an explicit algebraic presentation of M’ ®T, Again, as in

Proposition 2.3.7 we see that this presentation agrees with our construction. The topological
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analogue of Proposition 2.4.2 is obvious since both sides are defined via the same indexed
smash product in a nice category of G-spectra.

If T is a trivial G-set with n elements, then M®T is isomorphic to the n-fold box product
MP" and the corresponding structural isomorphisms are the action of the symmetric group
Yn given by permutation of factors.

More generally, if we have a decomposition T' = [ [; G/H;, then we get a corresponding

decomposition of M®T:

MO =~ [XING (i, M).
1

Any map of finite G-sets f: T — T” induces a natural transformation
f*: Map(T,v _> - Map(Tv _>

of endofunctors of G-Set. However, these maps do not induce natural tranformations
Map(T’,—) — Map(T”,—) of endofunctors of A except in the case of isomorphisms, in
which case the naturality squares in G-Set are pullbacks. This case induces natural isomor-
phisms M T ~ ) T for any isomorphism T =~ T".

Proof of Proposition 2.4.2: We first let ¢ denote the natural isomorphism
(:G/H x (=) =G xgi(—).

Fix a G-set Y and start with an arbitrary element of Ngi gM(Y). This element has a

standard form representative

(T, Ry, b) = Mapg (G, iB) <~ B Y,be M(G x iB)),
H

which we send to the element in the coend for M®T with the following representative, where
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n' is the unit of the adjunction G/H x (—) -+ Map(G/H, —):
"Lk
B(T}, Ry, b) := (TR}, Reb) = (Map(G/H,G/H x B) <= B =Y, Rcbe M(G/H x B)).

We first observe that this target element is in a similar universal form for elements of the
target coend, so that f is an isomorphism provided that it is well-defined.

As in the proof of Theorem 2.3.3, the only real work remaining is to ensure that g respects
the coend identifications coming from transfer maps. We fix an H-map f: X — iB and some
z € M(G x g X), and show that the images under 3 of elements of the form (T}, Ry, Tz, f7)
and (T, RyTytap (G, f)- ) are identified in the target.

We recall that we denote the unit of the G x g (—) < ¢ adjunction by 7, and also introduce
the notation f: G x gy X — G/H x B for the composite ("1 o (G x g f).

We now define the G-set Z and maps 71, m9 such that the left square in the following

commutative diagram is a pullback. Here 7o: iZ — X is the adjoint to ma:

Map(G/H.GIH x 2) ) (GIH.(C X #2) 0 )

Map(G/H,GE_X)

Map(G, 1) H =
" k kMap@/H? f)
Map(G/H,G/H x B)

~

Map(G,7) H B

The naturality squares for 7’ are pullbacks, and the functor Map 7 (G, —) preserves pullbacks.
Thus, the bottom rectangle is also a pullback. We also observe that the lower composite is

the unit map n': B — Map(G/H,G/H x B).
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We now perform the following coend manipulations using the above diagram:

B(ThRy, Taxyrv) = (Th Ry, ReTgx )
= (Ty Ry, T Ty %)
= (Ty Ry, Tj2)
= DBy Dypapcy .y @)

= (T Ty Ry B\tap(G/H, (G x gra)oC)» )

= (Thﬂ'anlv RCRGXHﬁ'wa)

To evaluate § on the coend representative (ThRnTMapH(G, ) x), we must first convert this

representative to one in standard form:

(ThRnTMapH(G,f)v ) = (ThTﬂlRWZ? z)
= (ThﬂanRMapH(G,ﬁ'g)ax>

= (Thr, Ry RGx g

The map (3 takes this element to the representative (T}, Ry, ReRGix ey x), as desired. [

2.4.1 Conjugation functors and an alternate form of the Weyl action

As a result of Proposition 2.4.2, for any isomorphism v: G/H — G/H', we get a natural
isomorphism of the form

wy: NGigM = NSig M.

In particular, for H = H’ we get an action of the Weyl group W H on Ngi g M through
isomorphisms of Mackey functors. This Weyl action is analogous to the corresponding action

on the indexed sum G x g (ig M) and the indexed product Mapy (G, ig M) of any G-set M.
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A similar Weyl action on Ngi g R for R a commutative orthogonal ring G-spectrum follows
from Corollary 2.14 of [13].

To specify these conjugation isomorphisms w~ concretely, we start by choosing some
G-isomorphism v: G/H' — G/H. This sends any coset gH’ to the coset gyH, for some con-

1'— H’. Such a map exists for any element + in the normal transporter

jugacy relation yH~y™
Nq(H', H), although the map depends only on the double coset in H\Ng(H', H)/H.
We now introduce the notation YH = yH~y~1, HY = v~ H~ for conjugate subgroups to

a subgroup H < G and an element v € G.

Definition 2.4.3. Given any G-set B let v: G xyg B — G x g B denote the isomorphism

given elementwise by taking (g,b) to (gy,7~'b).

This is a “twisted” version of the map G/"H x B — G/H x B. Given a G-Mackey functor
M, we then get a restriction map Rs: M(G x g B) — M (G x~g B). This can also be viewed
asamap igM(igB) — ingM(ivg B). Note that in the case B = G/G, this map induces the
standard conjugation map cy: M(G/H) — M(G/7H), which yields the usual Weyl action
when v € Ng(H).

We now introduce a general construction to further decompose the isomorphism 4.

Definition 2.4.4. For any~y € G, there is a equivalence of categories y-(—): H-Set — TH-Set
given on objects by taking an H-set X to the set v - X of formal symbols v - x, with the "H -
action given by Yhy Y (y-x) = v-hx. On morphisms - f takes ~v-x to - f(x). There exist

natural isomorphisms as follows.

e In the case H = G, there is a natural isomorphism X = ~ - X given by sending x to
vyl
o Given H < K < G, there is a natural isomorphism v - (K xg X) = 'K x4 v- X

1

given by taking v - (k,x) to (vky™", v - x).
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o Given H < K < G, there are natural isomorphisms of functors of the following form,

where i K-Set — H-Set is the forgetful functor:

vig(=) =iy (v (=)

v - Mapy (K, —) = Mapyg ('K, v - (—)) .

We observe that the map 4: G xvg B — G x g B of Definition 2.4.3 is given by the

composition
G x Z'A/HBQG X in(g-B)gG X ’y-(iHB)%g~(GXiHB)§GXiHB.
YH "H YH H H

We now consider the context of Mackey functors.

Proposition 2.4.5. There is an equivalence of categories cy: Macky — Mackyy given by
setting cyM(X) = M(y=1 - X) for any finite YH-set X. There then exist natural isomor-

phisms of the following form.
e In the case H = G, there is a natural isomorphism c~ = Id.

o Given H < K < G, there is a natural isomorphism cyif (=) = ingey(—) of functors

MackK — MackyH.

o Given H < K < G, there is a natural isomorphism C7N§(—) ~ NJ}_I(CV(—) of functors

MackH — MaCka.

Proof. Since the functor ’y_l -(—) preserves pushouts and disjoint unions, it induces a functor
Ay — Apr. Precomposition along this functor gives a well-defined functor at the Mackey
level, and the first two isomorphisms follow from the first two isomorphisms of Definition

244.
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To define the third isomorphism, we fix a finite 7H-set Y and an H-Mackey functor M

and write an element of CVNII{(M(Y) ~ N;I(M(y_l -Y’) in standard form as
(ThRn7 T € M(ZHB>) )

where B is some finite K-set and h: B — v~ .Y is some K-map.
The image of this element NJ{_I( cyM(X) under our proposed isomorphism is then the

element

(TR v e MGy i (v B)) = M(iyB))

We must demonstrate that this respects coend identifications induced by transfer maps. This

boils down to the following isomorphism for any H-map of the form Y — 1y B:

v+ | Mapp(K,Y) X B | = Mapyy('K,7-Y) X v-B.
Mapy (K,igB) Mapyg (VK ivg (7-B))

This isomorphism follows from composing the isomorphisms of Definition 2.4.4 with the fact
that ~ - (—) preserves pullbacks:
Checking that our proposed isomorphism is a map of Mackey functors is straightforward.

m
Chasing definitions now gives us a concrete characterization of the maps w.

Corollary 2.4.6. The map w-: NgiHM = N%ivHM has the following decomposition.:
NSigM = e, NSigM =~ NSGreyigM = NGpingey M = NSring M
An element in NgiHM(Y) with standard form representative

(T Ry,0) = (Mapg(G.ig B) <= B " Y, b e igM(iy B))
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is taken by w~ to the element of N%MHM(Y) with standard form representative
(T, Ry, Rsb) = (Mapyg (G, ing B) <~ B =Y, Ryb € ingg M (iny B)) .
Here 7 is the isomorphism of Definition 2.4.5.

2.5 A double coset formula for norms of Mackey functors

As motivation, we examine the structural isomorphisms (M ®T)®T/ ~ MOT*T") iy the case
of T =G/H, T = G/K for H /K < G. In light of Proposition 2.4.2 these can be rewritten

to be of the form

NGigNGigM =~ [XINS,  gligrnmM).
v

Here K7 = v~1K~, and v ranges over a set of double coset representatives for K \G/H.
This reflects the decomposition of G/K x G/H into orbits.

These isomorphisms reflect a more general decomposition.

Theorem 2.5.1. Let H K < G and M be an H-Mackey functor. Then there is a natural

isomorphism

ik NGM = [XINE ik ropr(ey M) .
v

Here v ranges over a complete set of double coset representatives for K\G/H and c are the

congugation functors of Proposition 2.4.5.

Combining this theorem with the structural isomorphisms of Proposition 2.4.5 allows us

to construct the following decompositions that do not involve the functors c:

iKNgiHM ~ N[[((QVH(iKmWHM) for M € Mack¢ , and
Y
NGig NGM = [XI NGy (igcr M) for M e Mackp .
Y
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We remark that the unit map of Proposition 2.3.10 can be redescribed as the map

MR A S XINE oy i e (e M)
>

given by the identity on the first coordinate (corresponding to the double coset HeH) and
the unit on the rest, where n = |H\G/H|.

Proof of Theorem 2.5.1: Fix H, K < G. We set 71, ...,7, to be a complete set of double
coset representatives for K\G/H, where n = |K\G/H|. We first describe an analogous
natural isomorphism on the level of finite H-sets, for B any finite K-set:

A~ n 1

0: j]:[lyj : (VJHKGXWH B) ~ i <GI>;B> .
In the j-th component, the map 6 takes a pair 7]._1 : ('yjh'yj_l, x) to the pair (h”yj_l, x). For
any element g € GG, we first write g = le_lk for some 7, and then the inverse map 61
takes a pair of the form (g,x) = (hfy;lk‘, x) to the element fy;l : (fyjhfy;l, kx) in the j-th
component.

We now fix a K-set Y and take an arbirary element in the coend for ¢ K(NgM ). This

element has a standard form representative

GXKh

B ———

(Tax on By b) = (MapH(G, iH(G;;_ B)) <L G G X Y,be M(ig(G x B)))

X
K
which is taken by our proposed map 6 to the following element in the composite coend for
NngjH(iKm”fH(Cva))‘

n
771><"'><T] h
H ap g (K i e i B) <——" B =Y, Rgb
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We observe that this element is in a similarly universal form for elements in the target, so
that # is an isomorphism provided that it is well-defined. We implicitly using the canonical

isomorphism to view Réb as an element of the correct product of modules:

n n
mpet (1o (v 8) )= TTinoumlen (8.
1 KAYH ]
J J
As in the proof of Theorem 2.3.3, the only real work remaining is to check that 6 respects
the coend identifications induced by transfer maps. We fix a K-map f: X — igG xg B,
and define K N7 H-sets X j and maps f;: X; — iz ;B such that a commutative diagram

exists of the form

X f i (G

| 3t

-1 .
]_[j’Vj '(%H X Xj>

KAiH

lIe

]_[ﬂj—l-(%H X fj)

KAViH

We define a K-set X and maps 7, by the following pullback square:

: (0
X I Mapg g (K, X;)
T l]_[j Map e v (K, f5)
B [, Map - v (K, B)
m x - X1n J s

Now let ;: X - X; denote the adjoint to the j-th component of . Define a map
Y: G x X — Mapy(G,X) as the adjoint to the map ¢: ig(G x5 X) — X defined by
K
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the composition

n
iH<GI>;)A(>;H7j_1-<VJH X X)&»HWJ._L(WH X Xj>;X.

j=1 Kn"iH j=1 Kn"iH
We claim that

Gx X 4 Mapy (G, X)

K
Gxm Map gy (G, f)
K

G x B Mapg (G, G x B)

K n K

(2.5.1)

is a pullback diagram.
Assuming this claim, we show that (T . By, Tra) and 0(Tx  n By Tigap (G, p)- ©) are

identified in the target. We start with the computation

O(Tas e finTiap g (G,5)0 ©) = TG e Tax e Ry @)
= (TG x g (hm) B Bvtap (G5 ©)
= 0(TGx e (h) By R j)
= (The Brr,; Ry R ).

To compute the other image, we let z; € iy vy (CVJ‘M (X J)) denote the j-th component

of the following decomposition:

ve M(X) = | [igglenM (X))
j=1

We have that RéTf is given by Tfjxj in the j-th component, and that RéR&x is given by
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ij:vj in the j-th component. We evaluate

H(TGXKhanfo) = (ThRH RéTfJZ)

iy
= (Th Ry, (Tr;25)5-1)

= (ThBuyn; TipMap, oy, (5,55)0 (%) 5=1)
= (ThTx Ry, (z)7-1)

= (T Ry (Ry,25)7-1)

= (TjeRi0 RyRja)

We now check that (2.5.1) is a pullback square, which completes the proof.

An element of X is a (n+ 1)-tuple (b, B1, ..., Bn), where be B and §; is a K 07 H-map
K — X satisfying the compatibility condition f(3;(k)) = kb for all j and all k € K.

An element in the pullback of Mapy (G, f) and n consists of a triple (g,b, ), where
ge G,be B, and f: G — X is an H-map. Here the compatibility condition is that for all
g € G we have f(B(¢’)) = (¢'g,b) € G x g B. We use the decomposition

n
. N -1 i
ZH<G><B)_ v -(JH X B)
K FH1 J KAVH
to further describe f(5(g’)). If we choose h € H,k € K and j such that ¢'g = hvj_lk, then

we see that (¢/g,b) is taken to 'yj_l : (’yjh’yj_l, kb) on the j-th component. This implies that

B(g") lies in the j-th component of the isomorphism

Kn"iH

X =~ ij : <79H X XJ) :
J
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Considering the case ¢’ = vj_lk‘g_ , we define a map f;j: K — X; by the formula

ok =gt eyt (5 ).

This then forces ﬁ(h*y;lk:g_l) = 7;1 - (h, Bj(k)), and this is well-defined exactly when all
of the maps ; are K N7 H-equivariant. This shows us that the data (g,b, 31,..., ) of an
element of G x g X consists of the same data as an element of the pullback. These iden-
tifications are compatible with the identifications coming from different choices of element
from the left coset gK. It is easy to check that this identification respects the group action

and that the two projection maps are G x g m and 1& [

2.6 Comparisons with Mazur’s model

Because NgN J{I( is naturally isomorphic to Ng for any subgroup chain H < K < G, we
can check that our model for the norm functor Ng is isomorphic to the model constructed
by Mazur for groups of cyclic prime power order in [18] by restricting our attention to the
case Ng where H is maximal in G. In this case, Mazur’s construction is given by starting
with M MIG/H| and adding in norm elements in an appropriately free manner to the module
NgM(G/G). In particular, this yields a natural isomorphism iHNgM ~ (M)BIG/H] 1y

our case such an isomorphism is a special case of Theorem 2.5.1.

Corollary 2.6.1. Let G be a finite abelian group. Let H, K < G and M be an H-Mackey

functor. Then there is a natural isomorphism

ik NGM =~ NE yligngM).
|G/HK|

In the case K < H this isomorphism takes the form iKNgM ~ (z'KM)|G/H|.

We now recall Mazur’s Definition 2.2.2. We fix H to be the maximal subgroup of G and
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M to be an H-Mackey functor. For any K < H, we set NgM(G/K) to be MMIG/HI(H/K).

The Weyl action is given symbolically in the form
Cy(Mme @My ® - ® mvpfl) = (cypmqu ®Ome® - ® mvpfg) .
Then the top-level module NgM (G/Q) is given by the explicit presentation
NGM(G/G) = (2{M(H/H)} & MPC T (H/H) /vy ) 1

The additive generators of Z{M (H/H)} are denoted N(x), as these elements are designed
to encode the norm map M (G/H) — M(G/G). The submodule M'G/H‘(H/HVW(;(H) is
referred to as Im(trg), as this is the image of the transfer map NgM(G/H) - NgM(G/G),

which is the composite
MBI /1) — MPECSTHNH ) ) — NEM(G/G).

The submodule TR is generated by elements of the following two forms:

N(a+b) — N(a) — N(b) — 1% (g(a, b))

N(trfh) — 0 (el (F(2))) .

The polynomials g, F' are universally defined from the compatibility conditions defining a
G-Tambara functor in the sense explained in Remark 2.2.2 of [18]. Restriction maps are
defined on the elements of Im(trg) and on elements of the form N(a) by the usual double

coset, formulae.

Proposition 2.6.2. There is an isomorphism of Mackey functors between our construction

LanMapH(a_)M and Mazur’s definition of NgM.

Proof. The two constructions have underlying H-Mackey functors isomorphic to M XG/H],
45



This is built into Mazur’s construction directly, and in our construction the isomorphism
follows from Corollary 2.6.1. One can check directly via the description of the isomorphism
of Theorem 2.5.1 that the Weyl actions agree on M (G/K) for any K < H.

What remains is to construct an isomorphism of modules for the two definitions of
Ng(G /@), which must be compatible with restrictions and transfers.

The elements N(a) are sent to the coend representatives (Ryq,,a € M(i(G/G))). It is
straightforward to then check that is compatible with the restriction to NgM (G/H). Note
that the unit map of the terminal object can be given by the trival map Id,: * — =.

The elements of MEIG/HI(H /[ can be written via the isomorphism of Theorem 2.5.1 as
coend representatives of the form (T3 Ry, € ig M (i(G x g B))), where we use the notation
t: G xg B — G/H for the map induced by the trivial H-map B — *. The transfer of such
an element is then given by the coend representative (Ti,iy Ry, x), where triv: G x g B — «
is the trivial G-map. It is straightforward to see that this then maps the image of the
transfer NEM(G/H) — NgM(G/G) isomorphically onto the submodule Im(trg) of Mazur’s
construction in a way compatible with the restriction map to NgM (G/H).

The only remaining task is to demonstrate that the generators in TR correspond precisely
to the coend identifications coming from transfer maps. This is a reflection of the fact that
both constructions build in the corresponding compatibility conditions in a universal manner.

For the relations of the form N(a + b) — N(a) — N(b) — tr%(g(a, b)) for a,be M(H/H),

we compute the element N(a + b) in our coend, where V: = I1x — = is the fold map:

N(a+0b) = (Rq,.Tv(a,b)) = (Riq, Tnapy, (G,v), (a,))
= (Thiv, (a,))
= (ThwivRnRyap, (G,e)- (@)
= (Thiv Ry, Re(a,b)) -
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Here ¢: igMapy (G, * 11 %) — * 11 * is the counit map. This yields the correct universal
formula by inspection of the following bispan, which by Lemma 2.3.5 is the corresponding

distributor:

G;}é
G/HHG/H<—G;<IMapH(G,*LI*)

€ triv

Mapg (G, =11 %)

Note that Mapg (G, =11 %) has exactly two orbits of isotropy G corresponding to the terms
N(a) and N(b). This follows from setting K = G in the proof of Proposition 2.3.6.
For the relations of the form N (tr%) - tr%(tr%(F (x))), we let ¢ denote the quotient map

H/K — H/H and x € M(H/K). We now compute an expression for N(7y(z)) in our coend:

N(erfl) = (Rua, Tgr) = (R1a, Tatapyy (6.0 @)
= (Ttriva x)
= (TtrianRMapH(G,é)’ )

= (TtrivRTh Réx> .

Again é: igMapy (G, H/K) — H/K is the counit map. This yields the correct universal
formula by inspection of the following bispan, which by Lemma 2.3.5 is the corresponding

distributor:

G xé
X |
G/« G x Mapy (G, H/K) —— Mapyy (G, H/K) ==
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2.7 A characterization of Tambara functors

As motivation, we first give an unbiased characterization of commutative monoids in a
symmetric monoidal category C. For any object C' € C and any finite set X we have the
object C®X given by the monoidal product of n copies of C', where n is the cardinality
of X. Given any isomorphism v: X =~ X’ we get a corresponding structural isomorphism
C®X ~ ¢®X' When X = X' , this is the corresponding permutation of factors. When
X =g, C®7 = Ic, the unit of the symmetric monoidal structure.

A commutative monoid is then an object C' with an assignment of maps 1 : C®X _, c®Y
for all set maps f: X — Y that agrees with the structural isomorphism when f is an
isomorphism. This assignment must be functorial in the sense that pr, = prug.

The maps are required to be compatible with the symmetric monoidal structures of
(C,®, Ir) and (FinSet, 11, @) in the sense that given f;: X; — Y; for i = 1,2, then we have

the following commutative diagram:

Hfitifo

C®(X111X>) C®(Y111Y?2)
C®X1 g 0®X2 C®1 g O®Y2
Ffy @Ky

Using this compatibility we can recover the biased definition, under which the data of a
commutative monoid is determined by the multiplication map py : C®2 _, 0®! and the unit
map pg: C®? — C®! and must satisfy the usual unit, associativity, and commutativity
axioms.

We have an equivariant generalization of the structure of a symmetric monoidal category
on the category of G-Mackey functors due to the discussion and results in Section 2.4. This
entails a description of M®T for any Mackey functor M and any finite G-set T, as well

as structural isomorphisms M’ T ~ ®T corresponding to any isomorphism of finite G-
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sets T =~ T’. This leads to the following generalization of the above definition of monoid.

Compare with Section 2.1 of [18].

Definition 2.7.1. A G-commutative monoid is an object M along with action maps
pp: MET — M®S

for every G-map f: T — S satisfying the following identities:
e The actions are functorial in the sense that jirg = prfig.

e When [ is an isomorphism, the action maps juy agree with the structural isomorphisms

of Corollary 2.4.6.

o For fi: T; — S; fori=1,2 we have the following commutative diagram:

w
M@TTy) T2 e sy

o

M®51 [z M52

y

M®T1 M®T2

g B g,

e Define a map ,u%: NgiHM — M by the composition

NGigM ~ MG/ Huv, y@G/G ~ \f.

Then the diagram
1 .
M —— NSigM

N

M

must commute for any H < G, where 1 1s the map of Proposition 2.3.10.
49



We will henceforth refer to the last condition as the triangular axiom.

Conceptually, if we have a Tambara functor R, then R inherits the structure of a G-
commutative monoid. When f is the quotient map G/H — G/G, the action map pu fis
induced by the counit e: Ngi gR — R. As Ngi g R is the universal home for norm maps
R(G/H) — R(G/G) (in a way that we make explicit in the proof of Theorem 2.7.4), we can
similarly recover the norm map R(G/H) — R(G/G) from the data of the action map.

Note that in this context, the triangular axiom is the corresponding triangle identity for
the NJ{I( — 1z adjunction.

To encode the information of norm maps R(G/H) — R(G/K) for arbitrary K, we instead
use the counit e: Ngz’HE — i R, which is part of the data of viewing ix R as a K-
commutative monoid. This map induces the action map E®G/ H_, E®G/ K after applying
the functor Ng. Our goal to characterize Tambara functors as Mackey functors M with
extra structure now leads to the following definition. Recall our notation YH = vH~y~1 and

HY = ~~L1H~ for conjugate subgroups.

Definition 2.7.2. A coherent G-commutative monoid is a Mackey functor M along with
compatible H-commutative monoid structures (given by actions which we denote ,u?) on
1M for each subgroup H < G.

There are two compatibility conditions that must be satisfied. First, the diagram

K

biic.

(e MDD Gy

NE(igM)®T T NE (i 0)®5
Npr

must commute for any H < K < G and f: T — S any map of finite H-sets.
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Second, we require compatibility with conjugations in the sense that the diagram

ey (pdf)
e (i M)®T) — L o (157 A0)®)
(ingr M)V T (ingg M)®TS
Hoy. g

must commute for any H-map f: T — S and any v € G. Here the vertical isomorphisms

are derived from chaining together the structural isomorphisms of Proposition 2.4.5.

The data of a coherent G-commutative monoid can be reduced as follows by breaking up

H-sets into their orbits and applying the commutativity diagrams of Definition 2.7.1.

Lemma 2.7.3. A coherent G-commutative monoid is a G-Green functor M along with
maps of K-Green functors ,ugz NI[{(Z'HM — i M for each chain of subgroups H < K < G

satisfying the following compatibility conditions.
o If L < H < K is a chain of subgroups, then ,uf 15 given by the following composition:

K K nH Ninl K P

o Given any H < K, we have the following commutative square, where the vertical iso-

morphisms are derived from chaining together the structural isomorphisms of Proposi-

tion 2.4.5 :
K
ey (1)
ey NEip 1 e M
NyvgivHM v M
Hyg

o1



In particular, when v = k € K, this means that H‘g = ,ué{q owy in the notation of

Corollary 2.4.6.

e Given any H < K the following diagram commutes, where 1 is the map of Proposition
2.3.10:
NEigM

\

The following result tells us we have the correct notion of monoid, giving an extrinsic

igM

characterization of when a Mackey functor has internal norms. The crux of the matter
is that the internal structure of our norm functors N II{( universally encode the necessary

compatibility conditions between norms and restrictions, and between norms and transfers.

Theorem 2.7.4. For any finite group G, the G-Tambara functors are precisely the coher-
ent G-commutative monoids. In other words, there is an equivalence of categories between

Tambg and the category of coherent G-commutative monoids.

Here we define a map of coherent G-commutative monoids to be a map of G-Green

functors compatible with the action maps.

Proof. For one direction, if R is a Tambara functor, then the action maps
pip: NfpigM — i M

for subgroups H < K are given by the counit of the N I[:I( — i) adjunction. It is then
straightforward to see that the resulting action maps are appropriately compatible.
For the other direction, we assume we have action maps ,ug, and use them to define
internal norm maps. We define a set map N: M(G/H) — NgiHM(K/K) by taking an
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element « € M(G/H) to the coend representative
N(z) = (Rp.v e igM(ig(K/K)) =~ M(G/H)) e Ny igM(K/K).

This map realizes our notion of N II_[( tgM as the universal home for suitable norm maps
M(G/H) — M(G/K).
We can now define the map normgz M(G/H) - M(G/K) as the composition

MG/H) Yo N iy M (KK) M e MUK JK) = M(GK)

We must now check that if the ug are the structure maps of a coherent G-commutative

monoid, then the above maps normg satisfy the compatibility conditions necessary to view

M as a Tambara functor.

We immediately see that our internal norm maps are multiplicative and unital, by the fact

that the maps ,ug were maps of K-Green functors. The identity normgnormf = normf:{

for chains of subgroups L < H < K also follows immediately from unpacking the identity

ni, = gy o Ni -

For the condition ¢g4 onormg = norng ocg, we note the following commutative diagram:

M(G/H) NEigM(K/K) M(G/K)
Hr
K‘
cgM(G/H) N cg(NgigM) (9K JIK) o) cgM (G /K)
M(G/H) NyBige M(IK /9K M(G/IK)
Mo

The left and right vertical composites give the conjugation isomorphisms cq4 inherent in the
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Mackey structure of M, as desired.

In order to check the remaining compatibility conditions, we need the following result.

Lemma 2.7.5. Let K < G, and H,L < K. Fiz elements k€ K and y € M(G/(H n L¥)) ~
igM(H/(H ~LF)). Let ji.: H/(H A L¥) — ig(K/L) be the H-equivariant inclusion defined
by h(H ~ L*) — hk=1L. Then the image under ug: NgiHM — i M of the element with

coend representative

is the element norkaHmL(cky) e M(G/L).

This lemma, whose proof is deferred to the end of the section, conceptually says that the
elements of the coend N J{I{ 1M are universal formulae that can be used to determine their
image in 7 M under the action ,ug.

We first prove the compatibility formula for commuting restrictions past norms. Let our
norm be normg and our restriction be induced by the quotient map f: G/L — G/K, which
is induced by the K-quotient map f: K/L — K/K.

We fix an element € M(G/H) = igM (i (K/K)), and seek to compute the composition

anormg(x) = resf normg(x). We get the following expansion using our definition of

normg and the fact that p is a map of Mackey functors:

vesg normyy(v) = Rpugy (Ry.x) € igM(K/L) = M(G/L)
= ug (R]an,x>
g (R”RMapH(Kvin)’@
— gy (Ry Ry )

We now need a better description of R, sr € igM(ig(K/L)). Let n = |L\K/H|, and set

k1,...,kn to be a complete set of double coset representatives for L\K/H. Now i (K/L)
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breaks into the union of the sets H/(H n LFi) for 1 <i < n.
Using this decomposition we can write RiH 7T as the ordered n-tuple (y1,...,yn), where

yi = xestl o cigM(H/(H o IN) = M(G/(H n L))
We now write z; = (1,...,1,9;,1,...,1) and note that Rinx is the product of the xz;’s.
Furthermore, we get that x; = Nj, y;, so we can apply Lemma 2.7.5 to get the following

computation:

resé(normg(a:) = ug (Rn, RZ-HJFJU)

n
L H
= 1_[ normkiHmL(cki (resHmLkix)) .

This yields the standard double coset formula, as desired.
In order to check compatibility with transfers, we fix H < L < K, and decompose

Mapy, (K, L/H) into orbits of the form K/L;. We construct a diagram

K x Mapy,(K, L/H) ——— Mapy, (K, L/H)
L
K xé
/ ~ =
ki ‘
K/H T L}K/L N Ly HK/LJ — K/K
el e 9= -ngi ’
€

where the top composite is the distributor for the composition K/H — K/L — K/K by

Lemma 2.3.5.
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Here é: iy Mapy (K, L/H) — L/H is the counit of the i;, 4 Mapy, (K, —) adjunction. The
indexing set [ is given by the union [ [; L;\K/L. For each element ¢ € I we have an index
j(i) and a corresponding double coset representative k; € Lj(i)\K /L.

The map f; is observed to be given by some subconjugacy L n Lféi) < MH. The map g;

is observed to be given by the subconjugacy L n sz ) S Lféz‘)'

1
We now fix some element z € M (G/H) = igM(ig(K/K)). Here we use h: L/H — L/L

to denote the quotient map. Note that Mapy (K, i (K/K)) ~ K/K:

norm?¥ transferk () = p (Ry, Tyz) € ig M(K/K) = M(G/K)
= 11 (RyTtap, (K1) @)
= 1§ (Tiyiy, @)
= Tivitg (Ry Batap, (i.6) ©)

= Taiviip (R, Rex).
We see that R:x can be viewed as
Rypg,,x € M(igMapp (K, L/H)) = i M(K x Mapy (K, L/H)).

As before we can decompose this into components as (y1, . ..yn), where

k’,H

= Re(x)=1es ™ | (cpix

Yi f,( ) Lmsz( k! )
and n = |1].

We again write x; = (1,...,1,y;,1,...,1) and get z; = NiL(Lj)Njk~ y;. Here ¢ is the

1/1]

inclusion of the j-th summand K/L; into the coproduct [[ K/L;. We now compute via
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Lemma 2.7.5, noting again that p is a map of unital Mackey functors:

K K
pr, (Ry, Rex) = HML (R, ;)
)
K
- H KL <R777 NiL(Lj)NjkiJ,yi)
1
= H :U’i(NLj <R777 Njkijyi)
i k2
= H ij,ui{ <R777 N]kz]y2>
i 2
= H N, norm. (cr. .y;)
1

We need the following easy lemma for the identification

<R777NZL(LJ)N]]%7]3/Z> = ij (Rna Njkl’]yl) .

Lemma 2.7.6. Let L < K and let M be a unital L-Mackey functor. The norm maps N, cor-
responding to inclusion maps of K-sets take on the following form for coend representatives

without transfers:

NL<R’I77 1}) = (Rﬂ7 NZL(L)x) :

Now if we piece things together we get that normf—f transfer%(x) = T NgRy(z), as
desired.

Checking the compability conditions for normg (x1 + x9) is virtually the same argument
as above, using an orbit decomposition of the following bispan, which is the corresponding

distributor by Lemma 2.3.5:

€

el
=
el

K x Mapg <K,%H%> Mapg (K,%H%) friv
H

=
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We have finished showing that we have well-defined constructions taking Tambara func-
tors to commutative G-commutative monoids and vice-versa.

For functoriality, we now note that a map of G-Green functors f: M; — My between
G-Tambara functors is a map of G-Tambara functors precisely when the following diagram

commutes for all subgroup chains H < K < G:

NEigM, i My
N ][{(ZH f i f
NEigM, i Moy

If fis a map of G-Tambara functors then the above diagram commutes by naturality of
e, and if the above diagram commutes, we have that f (normg(m‘)) = normg (f(x)) for all
x € M{(G/H). We also need to note that our two constructions are inverse to each other.
Assume that M is a Tambara functor and the action map is given by the counit € of the

N g — i adjunction. For this we use the formula
pp(Ty Ry, w € igM(ig B)) = TyNexw € ig M(K x B),
H

which is derived from the isomorphism of Theorem 2.3.3 and the properties of ¢.

When h is identity map and B the trivial K-set K /K, we get that the image is normgas.
This tells us that if we start with a G-Tambara functor, we recover the same norm maps
going through both constructions.

Lemma 2.7.5 can be used similarly to show that the action map ug is determined by the
collection of maps normqu, over all subgroup chains H' < L < K. This tells us that if we
start with a coherent G-commutative monoid and apply both constructions we get the same

action maps.

o8



Thus, our two functors form an equivalence of categories. O]

Proof of Lemma 2.7.5: Here we have the following computation:

K K
i (B Njy) = i (B N3 )
_ K .
- ,ukaL(Rn, Njecky)
= 1t (Ry, Nynormfy, . (cxy))

= norkaHmL(cky) .

For the first equality, we are using jp: H n LF/H ~ LF — i~k (K/L) to denote the

following composition:

k. i ;

_—
Hnrk ~HOM g Ak
Since ,ugm k= ,ug o N I[{{ (,ugm Lk)’ we see that the first equality follows from the iden-

tity ”gmLk(R’?’Njky) = Nj,y. This can be observed from the triangular axiom and the

decomposition jj;, = 7j o i~k (k)

The second equality uses je: *"H n L/ *H ~n L — ikgy ~ 7 (K/L) to similarly denote the
map kg7 (7). The second equality follows from the compatibility of our action maps
with conjugations, and the equation Nje(cky) = ijeR};y = R%Nj.ky = wk(Njky), which is

demonstrated by the following pullback square:

HnLk
/}|; El=
" AL " (K)
X R
KET AL kH ~ L K x Je EHAL L
EHAL



The third equality follows from the factorization Higr g = BT © N7 (,uka L)’ where the
. . . L L
triangular axiom gives i, . (Ry, Njecky) = Nynormy,, . (cky). Here we use the fact that

,ukLHﬁ I is a map of unital functors. We also need to apply Lemma 2.7.6, again noting

Je = kg~ (1)

The fourth equality is another application of the triangular axiom. O]
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CHAPTER 3
EILENBERG-MACLANE SPECTRA AS RELATIVE E, CELL
COMPLEXES

3.1 Introduction

In this chapter, which is part of a joint project with Andrew Baker, we consider what happens
when we take the sphere spectrum, and kill elements of homotopy in an Ey fashion. This
process starts by Kkilling the element 2 € 7S and is repeated in order to kill the higher
homotopy groups. In the colimit, this provides a model of the Eilenberg-MacLane spectrum
HTF9 as a relative cellular complex in the Fy sense over the sphere spectrum S.

In Section 3.2, we provide an inductive description of this construction as well as a
description of the cells in the complex as admissible Steenrod monomials whose last term
is 4 or greater. The key step in this construction is establishing algebraic control over
the (additive) splitting of each stage into wedges of Eilenberg-MacLane spectra, which is
guaranteed due to work of Steinberger [8].

In Section 3.3, we outline how this description is relevant to yielding a calculation of
topological André-Quillen homology of HF. Modulo some assumptions, the description
agrees with the calculations present in folklore and sketched in the literature.

In Section 3.4 and 3.5, we establish algebraic control over the homology of our construc-
tion. This involves providing explicit formulae for spherical classes and computing the action
of the Dyer-Lashof algebra at each stage.

In Section 3.6, we construct primitive elements in the homology of the analogous first
stage of a cellular complex for the Eilenberg-MacLane spectrum H Z(z). It is hoped that

similar methods lead to a corresponding computation of TAQ,(HZ/S) with Fy coefficients.
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3.2 A description of the cell structure

We henceforth only consider homology with F9 coefficients, and work in the category of
spectra localized at 2.

We let S//2 denote the commutative S-algebra constructed by killing 2 € 7y(.S) in the
Eo sense. This means taking the map of commutative S-algebras P2: PS? — § defined on
the free commutative S-algebra PSY, and then forming the following pushout of commutative

S-algebras, where S is an appropriate cofibrant replacement for S-:

S//2:= 8 Apgo PDL.

Here S//2 is the first stage of our cellular complex.

We recall some facts about H.(S//2) from [3]. There is an element x1 € H{(S//2)
such that H.(S//2) is a polynomial algebra on generators Qlxq, where Q! is an admissible
Dyer-Lashof monomial of excess greater than 1.

The work of Steinberger [8] tells us that S//2 splits as a wedge of Eilenberg-Maclane
spectra. We now define elements X; € H.(S//2) that correspond to the polynomial gener-
ators (; € Ax = H.(HF3). We inductively define X; = 21 and X;,1 = QQiXZ-. The ideal
generated by the X; is invariant under the coaction of the dual Steenrod algebra, as shown
by Proposition 9.2 of [3].

This allows us to view H(S//2) as a polynomial algebra over the ring A, on elements of
the form Qfz1, where Q! is admissible, excess greater than 1, and also has its last index at
least 3. This expression algebraicizes the splitting of S//2 into Eilenberg-Maclane spectra.
Furthermore, as explained in Section 9 of [3], this is the universal example of such a splitting.

We wish to to attach Eq cells to annihilate every summand except for the one in degree
zero. We note that if we kill a homology element z by such an E cone, then we must also

kill every possible element of the form Q!z. Thus, we focus on the “bottom cells”, namely
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those summands corresponding to the "z elements in homology for » = 3. The Q"x
are not spherical, so we replace them with polynomial generators w,,1 that are spherical
by adding decomposable terms and also elements X;. Such a decomposition must exist due
to the aforementioned splitting, and using the dual Steenrod coaction we compute explicit
formulae for the u,,1 in Section 3.4. For instance, uy = Q3z + xil is spherical.

To construct the Fs cone, we combine our maps y41: Sr+l S//2 to give us a map
P (\/7, STH) — §//2, allowing us to define the spectrum Y5 as the following pushout of

commutative S-algebras: (We set Y] as notation for S//2.)

YQ = Yl /\]P)(\/r Sr+1) P (\/ DT+2> .

The mod 2 homology of P (\/T STH) is a polynomial algebra generated by elements
of the form QI Sp+1, where s,41 corresponds to the generator in homology of Sr+land T
is a Dyer-Lashof monomial of excess greater than r + 1. Thus the image in homology of
P(vrsﬂ'l) — Y] is the subalgebra generated by the generators of form Qf Upi]-

The image in homology of the map H.(Y]) — H.(Y3) is then a copy of A, but the
target has additional homology due to the Adem relations. For instance, since Q7Q3 =0,
we see that Q7uy = 0, which indicates the existence of a new degree 12 generator in H «(Y2).
We have that Y5 splits as a wedge of HF5’s, so its homology contains a copy of Fa[X;], the
homology of the degree zero HF9 summand. We have made progress in getting closer to
HFF9, since the next summand in Y] is in degree four (corresponding to wuy4), but here the
next summand is degree 12.

We now repeat our construction. We produce an analogous spectrum Yj,q from Y; by
coning off the relevant elements up in the Ey sense. Here the up represent a (minimal) set
of spherical generators for H.(Y})/J as an algebra over the Dyer-Lashof algebra, where J is
the ideal generated by the image of the Xj.

More explicitly, we form the following pushout of commutative S-algebras: (We hence-
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forth write | R| for the degree r1 + ...+ r; of up.)

R|+1
Yip1 =Y AP(v pSIR ]P)(VRDl | )

The following result gives us a homological description of the j-th stage of our construction,

in terms of the set of cells to be attached to construct the (5 + 1)-th stage.

Theorem 3.2.1. If we construct Y; as above, then H.Y} is a polynomial algebra over A, with
generators of the form QIuR. The ur € H|R|Y} are spherical classes indexed by a length-j
sequence R = (r1,...,7;) satisfying vy, = 2141 for k < j and rj = 4. Here I ranges over
all indices (i1,...,1;) of admissible Dyer-Lashof monomials satisfying both ex(I) > |R| and

1 <2rp—1.

Note that the indices R are given precisely by the indices for admissible Steenrod mono-
mials with last term at least 4. We see that the colimit of the Y is a model for HF9, as

desired.

Proof. We inductively derive the description of H,Y; 1 from the description of H.Yj.

We start by noting that we have a Kiinneth spectral sequence of the following form:
H.P(vzSIEl
EZ, = Tor,* (Vg >(H*Yj,1F2) = H.Yji1.

The spectral sequence is set up and referred to as the bar construction spectral sequence in
[9], and is proven to be multiplicative in [5].

The algebra H.P(v S is a polynomial algebra generated by elements of the form
QLs Rr- Here sp is the generator in homology of the corresponding sphere S 1Bl and Q! ranges
across all admissible Dyer-Lashof monomials of excess greater than |R|. In our construction
of Y; 11, the element sp is mapped to the spherical class upg, and therefore QI sp is mapped
to Qlu R-
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Now there are two cases. If the last element of I satisfies 7; < 2ry — 1, then QI uR is
one of our given polynomial generators for H.Y; as an algebra over A.. In the case where
17 = 2r1 — 1, we see that there is some expression for Qlu R in terms of our given generating

set. We define polynomials F7 g as follows to encode this action:

Qlup = Fr p(Q"ur, X;).

Here the QJuT range over indexing sets J = (jq1,...,Jjm), T = (t1,... ,tj). These must
satisfy the same admissibility constraints j; < 2j..,1 and t > 2t;.,1 that constrain the
indices I, R, but must additionally satisfy j,,, < 2t1 — 1.
In subsequent sections we develop techniques to explicitly compute the polynomials F7 pg.
Our description of the Dyer-Lashof action on H.Y; allows us to compute the Ezj* term
of our spectral sequence by means of a Koszul resolution of Fo over g [QI sgr]. We see that
Eg’* is an exterior algebra over A with generators lying in Tory ,, which can be represented

by the following elements in the bar construction:

[Q"sk + Fr r(Q7sr, Xi)] € B} 11, gy -

Here I, R run over all pairs of admissible indexing sequences such that I is nonempty
and the last term of I exceeds 2r; — 1. Here we must symbolically replace up by si to
get the relevant polynomial Fr g € Fo [QTsp, X;] =~ Fo[QTsp] ® A.. To follow the standard
notation for the bar construction the X; should also be separated from the QLs R and pulled
outside of the brackets. As an example, we can interpret [Q%s4 + Q7sg + X%Q554] as
[Q%54 + Q7sg] + Xil [@°s4]. (This ends up being an expansion of F(9)’(4).)

Since this is a homology spectral sequence of algebras generated by elements on the
E%*—line, the spectral sequence collapses.

We must resolve any multiplicative extensions and in particular check that no element
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is nilpotent. This is a straightforward argument using the compatibility of the Dyer-Lashof
actions with the spectral sequence. A classical account of such compatibility is given in [17];
in our case we shall appeal to the technology of [9]. Compare with the proof of Theorem 2.7

of [2]. Explicitly, we start with an arbitrary generator Qs Rr and compute:

[Q'sp + F1 r(Q7 s, X))
= QUIHIEHL Qs + Fr r(Q”s7, X;)]
= [QUIHIEFIQ s + QUIHEL By p(Q7 57, X))
I|+|R|+1,1 J .
= [Q(‘ ‘+| |+ )SR + F(|I|+|R‘+1,i1,...,il),R(Q STaXZ)] .

The second equality follows from our definition of the F7 g. We note that since the Dyer-
Lashof monomial in this case has excess exactly 1, the only relevant Dyer-Lashof actions
on the X; € Egv* are QQiXi = X;4+1 and QQi_lXi = XZ-Z. We note that our condition
ex(I) > |R| compels (|I| + |R| + 1,i1,...,7;) to also be an admissible sequence with excess
greater than |R|.

This argument tells us that our polynomial generators are given by representatives

[Q"sp + Fr.r(Q”sp, X;)]

such that the sequences I have excess at least | R|+2. For any choice of r and R = (ry,...,7})
with r > 2r1 — 1, we define a sequence R = (r + 1,71, .. .Tj), and use the symbol yp/ to
denote an element represented by [Q"sp + F(r)’R(QJST, X;)]. We can then describe H.Yj 11
as a polynomial algebra over A, with generators Q! yr with the specified conditions on I
and R'.

The final step is to replace the yp with spherical classes ug. We observe that Y;q
also splits into Eilenberg-MacLane spectra due to Steinberger’s result [8], and thus yp is

spherical modulo decomposables and the images of the X;. We therefore replace each yp
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with a corresponding spherical up, and replace any Q! yg with the corresponding Qlu r. O

3.3 Using the cell structure to compute TAQ,(HFy/S, HF,)

Here we use the notion of Topological André-Quillen homology developed by Basterra in [6].
This generalizes a theory defined on the ordinary category of commutative rings. In our case
the coefficient module is always HIF9, and this means that the corresponding homology and
cohomology theories are Fo-linear duals to one another.

By a cell complex, we assume that we start with some algebra Y (which in our case is
the sphere S), and that we inductively obtain a complex Y1 from Y} by attaching cells in
the E sense.

To clarify what this means, we think of a single cell as PS™, where P is the free functor
from S-modules to commutative S-algebras. The adjunction gives a map of algebras PS™ —
Y for each element of 7,Y;. To attach multiple cells at once, set W to be a wedge of spheres,

and form the following pushout in the category of commutative S-algebras:

PW — PCW
Yj Yj1

We require the cofibrancy conditions ensuring Y1 = Y; Apy PCW. Here the cone CW is
contractible which implies that PCW =~ §.
We consider what this does in TAQ-homology, where we suppress the coefficient module

HT from the notation. The long exact sequence in TAQ, for the two maps Yy — Y; — Y; ¢
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is then of the following form:

— TAQ, 4(Y)/Yp) > -

Here we have that the term TAQ, (Y} 11/Y}) is isomorphic to TAQ,(S/PW) by Proposition
4.6 of [6]. (This is the analogue to flat base change in this setting.)

Proposition 1.8 of [4] computes TAQ, (S/PW) to be a single generator in degree n + 1
for each sphere S™ in the wedge W. This calculation is analogous to the ordinary homology
of cells in the traditional context.

We then see that we can inductively compute TAQ, (Y;/Yp) as long as we have a de-
scription of the cells at each stage, as well as an understanding of the boundary map. This
is algebraically identical to the computation of cellular homology given the degrees of the

attaching maps of a CW complex. In particular, we have the following.

Lemma 3.3.1. IfY s the colimit of Y; as above, and each boundary map in the above long
exact sequence is trivial, then the set of generators of TAQ, (Y /Yy) is given by the set of cells

in the construction, with a shift of degree by 1.
Conjecture 3.3.2. For our construction the boundary map is trivial.

Combining the description of cells to follow in Theorem 3.2.1 with the above conjecture
tells us that TAQ,(HF9/S) has generators corresponding to (shifted) admissible Steenrod
monomials with last term at least 4. This recovers the calculation sketched in [16].

Checking the conjecture requires showing that the induced map

TAQ,(BS"/S) — TAQ.(Y;/S)

is trivial for every cell. This can be reduced to showing that the corresponding element in
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H.(Y}) is in the kernel of the TAQ,-Hurewicz map. For j = 1 this follows from the fact that
nontrivial Dyer-Lashof operations always take values in this kernel. (This is Theorem 4.4 of

[1].) Similarly, all decomposable elements lie in this kernel.

3.4 Primitives in H.(S//2)

The first step in establishing explicit algebraic control over the constructions in the pre-
vious section is to understand how to replace generators of the form Qlxzy € H.(S//2)
with generators of the form QI upr41, where the w,1 are spherical. Since S//2 is a wedge
of Eilenberg-Maclane spectra, the spherical elements coincide with the primitive elements
under the coaction of the dual Steenrod algebra.

We use the previously defined elements X; € Hyi_{(S//2), as well as the usual polynomial
generators & € H.HFy for the Milnor basis of the dual Steenrod algebra. We also use the
conjugates ¢; = x(&;)-

These computations rely on the power series expression for the coaction as explained in
[3]. To develop this notationally, we start by defining the power series X (t) € H.(S//2)[[t]]
and £(t),((t) € H«(HF9 A S//2)[[t]] = A« ® H«(S//2)[[t]]:

X(t) :ZXitQi —t+ X182+ Xott + Xat8 + ..

?

C() =DG® D2 =t (D2 + (Gl + ...

?

() =YEoN =i+ G2+ (Lot +... .

]

We also establish the following notational convention for a power series with coefficients

encoding the Dyer-Lashof action on any element y:

Qy(t) = Z(Qly)tz = 2l QI ylyl+1  olyl+2,4lyl+2

2
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This notation allows us to concisely formulate the interaction of (left) coaction of the dual

Steenrod algebra with the Dyer-Lashof action: (This is Theorem 4.1 of [3]).

Y(Qy(t)) = [(x®1)Q((x ® Nvy)](£(1)).

Thus, for our given element x; € H.S//2, the coaction ¢(z1) = 1 ® x1 + & ® 1 determines

the coaction on an arbitrary Q" zq:

P(Qr1(t) = (1® Qz1)(E(1)) + (x(QG1) ®1)(£(2)) -

We recall the Dyer-Lashof action on (1: (see II1.2 of [8])

1 1
q - aereanet.

This allows us to rewrite our coaction formula: (Recall that £(t) is the composition inverse

to ¢(t).)

1 1
x(QG ®1)(t) = ;+@+51®1
Y(Qz1(t) = (1®Qx1)(E(1)) + [x(QG @ 1)] (£(2))

1 1
= (1®Qx1)<§(t))+%+;+§1®1.

We can now define a series u(t) by the following formula:
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We note that every coefficient is of the form

r—1
Q"ry + (Z fk,r(Xi)Qkftl) +gr(Xi),
k=1

where f. ;. and g, are degrees r —k and r + 1, respectively. This shows us that this coefficient
differs from Q" x1 only by decomposables and the elements Xj.
We now check directly that the first nonzero term of w(t) is ugt® with uy = Q3zq + Xil.

This follows from a computation of the lowest terms of the following power series:

Qr1(X (1)) = (Qla)t + (Q%x1 + X1Q e )t? + (QPx )t + . ..
= X2+ (X3P + Xo)t? + (Q3x)t3 + ...
1 1 9 3 9 4,3
——=—-4+ X X5t X Xo)t X5t A
50 s X+ it + (X7 + Xo)t™ + X7t° +

If we want to express the elements "z in terms of the elements u,1, (instead of our
more usual goal of expressing the latter in terms of the former) we can use the following
formula, where X (¢) denotes the composition inverse to X (¢):

Qui(t) = u (X(1)) + LIV S X7
t o X(t)

Through power series inversion, this is equivalent to our formula defining ().
Proposition 3.4.1. Fach coefficent of u(t) is primitive.

Proof.  We must apply the coaction on the X;, which can be written in the form ¢ (X (t)) =
C(1®X(t)). (This is verified in Proposition 9.2 of [3], although the reader should be warned
that our X; is written X;_1 there.) Note that since v is a multiplicative homomorphism,

we have the relation ¢ (F o G(t)) = Y F(yG(t)) for any power series F, G.
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We have

V(1) = Q)X (1) + T + 5+ 0(X)

Lo, 1
§X(1)  »X(t)

1
+¥+1®X1+€1®1

- (Qxl(f(wX(t))) " r6® 1)

+

1
WX (1)
= (1® Q1) (E(C(1®X(1)))) +

1 1
fCaexm) Tt TeM

= (1®Qx1)(1®X(t))+m+%+l®Xl

— (1@u)(t).

Note that so far we have only replaced the elements Q"7 with primitives. If we wish to

replace arbitrary QI x1 with primitives, we can iteratively apply the following observation of

Andrew Baker. Such replacement allows one to completely algebraicize the splitting of S//2

into Eilenberg-MacLane spectra.

Lemma 3.4.2. If z is primitive, then so too are the coefficients of Qz(X (t)).

Proof. We evaluate

P(Q2(X (1)) = (R ®2))(E(WX (1))
= (1®Q2)(E(C(1®X(1))))
=1®Qz(X(t)).

Here the resulting primitives are of the form Q"z + 271;|12| fva(Xi)ka. In particular,

we note that there are no terms without some some factor of the form ka
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3.5 Computation of the polynomials F7 r

Explicit algebraic control of H.Y} requires computing the polynomials Fj p. We note that
in the induction we replaced generators yp with spherical generators up, and must be able
to account for this replacement in order to be able to compute the Dyer-Lashof action on
the H.Y;.

For an example, we see that in the case 7 = 1 we have the following spherical classes:

Uy = Q3x1 ~|—XiL

_ 4 2
us = Qw1 + Xjug + X7 X9
ug = Q5x1 + X12u4 + X22

uy = Q6x1 + Xqug + Xoug + X3.

These formulae and the Adem relations allow us to compute the following Dyer-Lashof

actions:

Q7u4 =0

Q%uy = Q°Q%zy + Q¥(XY) = QQ"z1 + (Q°X1)"
— Q" (us + Xquy + X2 X9) + X3
= Q"us + X7Q0us5 + X2Q us + (QPx1)uf + X1Q°Q%xy
— QTus + X2Q0us + XoQ uy + Xiu2 + ul

Q%us = Q°Q321 = QTQ%x1 = Q7 (ug + XPuy + X3)

= Q7u6 + XilQ5U4
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QMuy = Q@321 = Q¥Q7x1 + Q7Q0xy
= Q¥(ug + XPuy + X3) + Q" (ur + Xqug + Xoug + X3)
= Q8u6 + u% + XfQ6U4 + X%u%

11 1113
ug =Q " Q°xr1 =0.

Such expansions yield a method for computing F7 g for all R of length 1. In order to
compute the Fy g for j > 1, we need to do two things. First, we must compute the Dyer-
Lashof action on H.Y;, and for that we should compute the action on the X;. We have
already noted that for all j we have QQiXi = X411 and QQi_lXZ- = XZ-Q. For the rest of the
action, we break into the case 7 = 1 and the case j > 1.

For j = 1, the action of higher Dyer-Lashof terms is directly computable as follows:

Lemma 3.5.1. In H.(S//2), we have the following Dyer-Lashof action on Xa:

QM 2QFxy ifr =2k
Q" Xo =1 (Q%x)?2 ifr=4k—1

0 otherwise .

For i > 2, we have the following formulae instead:

in—2(l<;+2)@2i—3(k+2) o QQ(k+2)Qk+2Qkx1 ifr =21
Q" X, = (QQi*3(k+2)Q2i*4(k+2) o QQ(kz+2)Qk+2Qkx1)2 ifr=2"1p 1

0 otherwise .

Proof. The formulae follow by inductively applying the Adem relations. O]

For j > 1, we claim that the Dyer-Lashof action on the X, is analogous to Steinberger’s
description of ng in I11.2.2 of [8]. For this description, we use X; to denote the coefficients
of 12’ in the series X (t) defined as the composition inverse to X (t), analogous to how the
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&; are defined in terms of the (;. To express our answer, we use the notation N, to denote
the k-th Newton polynomial. We then form an expression Nj(X) by substituting X; for
the (2' — 1)-th elementary symmetric polynomial, and 0 for all other elementary symmetric
polynomials. The Newton recurrence relation tells us that Nj_ 1(X) is the coefficient for tk

in the series 1/X(t).

Proposition 3.5.2. We have the following Dyer-Lashof action for j = 2:

O X; = QX = NT_2i+1<7) ifr=2"—1andr=0,—1 (mod 2)
1

0 otherwise.

We specifically note that when k& = 2/ — 1 we have N(X) = X;.

Proof. An examination of the definition of Y; for j > 2 makes it clear that we can restrict
to j = 2 without loss of generality.
We first consider the case i = 1.

We recall that in the previous section we have the following equation:

Qur(t) = u (X(1)) + % ; ﬁ LX)

In order to pass to Ya, we killed every coefficient of u(t), so the coefficient of " in 1/X () is
precisely Q" X7 in the target. We have already observed that this is Ny 1(X).

To evaluate Q" X; for i > 1, we use the previous lemma to convert
i—1
QX =Q'Q" QX

into an admissible format. We must then apply Dyer-Lashof monomials to terms of the form
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Ni11(X). The proposition follows by iteratively applying the following identities:

(Ns(X))? = Noy(X)

o N X) if s odd

0 if s even.

The first identity follows from examination of the series 1/X(t), and by the Cartan
formula implies the even case of the second. For the odd case, we write out our polynomial
in X;’s and observe that for degree considerations the Cartan formula reduces to terms of
the form QZiXZ' and Q2L1XZ- only. The former is always X;,1 and the latter is always X 22
At this point we could give a direct combinatorial proof (the formula Q2iE =X 1 +X 17?
can be proved as in Lemma 4.4 of [3]), but it suffices to note that the algebra is identical to

the case of the dual Steenrod algebra, where the following more general identity is known:

@M = () )Nl

O

We note that Proposition 3.5.2 now formally implies that the following analogous formula
holds in the case j > 2:

@ M) = () V)

To complete our understanding of the Dyer-Lashof action, we must examine the action on
generators of form yp. If i < 2r, then Qiy(T +1,R) lies in our set of polynomial generators, so

we need only work in the case 7 > 2r. In this case the action resembles the Adem relations.

Proposition 3.5.3. Assume i > 2r, and let (r + 1, R) be a length j sequence admissible in
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the sense of Steenrod monomials. Then

1 k—r— 1+r—
Qy(r+1,R):Zk:< ok _ i )Q+ "Yiks1.R) -

Here the k are those satisfying © +r — k < 2k.

Proof. The Adem relations give us the following relation in H.PS B,

E—r—1\
Wk o i+r—k Ak
@sR—g( _ )@ Q"sr

The two sides must map to the same element of H.Y;_1, so this yields the following

relations:

k—r—1
F(i,r),R(QJUTaXi) ZZ];( %r_i )F(H—r k k), R(QTur, X;) .

We apply the compatibility of the Dyer-Lashof operations with our Kiinneth spectral

sequence converging to H.Y; from the proof of Theorem 3.2.1:

Q'[Q"sk + Fipy g(Q”s7, Xi)]
= [Q'Q"sp + Q'Fiy) r(Q”s1. X7)]
= [Q'Q"sg + Fij ) p(Q7 57, X))
_Z< ) [QU" Qs g + Fliy i), r(Q7 57, X3)]

:Zk:( 2_1{;__2 )Q”’"’“[Q sk + F.r(@Q7 s, X7)].

We claim that we are done by how we defined the representatives for Y(r+1,R) and
Y(k+1,R)- In the case where there is a k such that i +r —k = k + [R| + 1, we have al-

ready seen in the proof of Theorem 3.2.1 how the element

QMHIEFYQF s + Fipy r(Q7 57, X))
7



represents the corresponding square element y(Zk LR In the case i +r — k = k + |R|, we

see that the element

QMIRQF sk + Fpy r(Q7 57, X))

vanishes for dimensional reasons since the dimension of the bracketed representative is k +
|R| + 1.
m

The last thing we need for explicit algbebraic control is to establish an analogue of the
previous section for determining how to replace the elements yp with primitive elements
upr. The formula for this is more straightforward in some sense than the formula for j = 1,
because the j = 1 case is the only one where the Steenrod action takes the X;’s to expressions

using the other generators.

Proposition 3.5.4. Let R be a sequence of length j — 1 and let the power series Y(t,R) be
giwen by the following formula:

Q0

Yer) = D, Yk+LR)
k+1=2|R|

tk

Then the coefficients of the series U,R) = Y(X(t),R) 0T€ primities in H.Yj.
Proof. We begin by defining an analogous power series s(; gy € H.PSIEI[]] = Fo[Q s R][[t]):

Q0

S(t,R): Z QkSRtk.
k=|R|

Lemma 3.4.2 guarantees that the cofficients of S(X(1),R) are primitives in the A.-comodule
algebra Fo [QISR, Xl
We recall that in the proof of Theorem 3.2.1 we examined the Kiinneth spectral sequence

converging to HxY;. We use the notation Z(x(t),R) to denote the power series whose coeffi-
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cients are elements in [y [QI SR, X;] whose images in the subquotient Ei . are representatives
for the coefficients of Y(X(t),R)- The homological dimension in the spectral sequence accounts
for the shift from the k in the definition of S(t,R) to the k + 1 in the definition of Y(X(t),R)-

We see directly by the definition of the Y(k+1,R) that the coefficients of Z(X(1),R) share
leading terms with the coefficients of [s( X(t), R)] in the sense that in suitable degrees the
difference is a polynomial in the X; and the [F}. R(Q s, X;)], and is therefore in the subring
generated by the X; and those [QTsp] with i; < 2r] — 1.

This forces the coaction on the coefficients of z(x ;) ) and of [s( X(t), R)] to be the same
modulo elements in the A.-subalgebra T generated by the X; and those [Q!sp] with i; <
2r1 —1lin A ® IFQ[Q SR, X;]. In particular, we have that Yz x (1), R —1®zx(),R) lies in
A ®T. But this means that it is zero in A ® El,*v since by inspection the representatives
for additive generators of Ei* each have a distinct unique indecomposable leading term lying

outside of T O

As an example computation, we consider F(16),(8,4)- We first use the Adem relation
Q6Q7 = Q@8 to establish Q16y(8,4) = Q15y(974) by Proposition 3.5.3. Next, we see that
our primitive replacement yields Ues,4) = Y(3.4) and Ue9.4) = Y(9,4) T le(8,4) by Proposition

3.5.4. We now evaluate:

Q"%us 4y = Q%54
— QB
= Q" (g4 +X1U(84))
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3.6 Primitives in S//n,u

Here we use S//n,u to denote the commutative S-algebra constructed by first coning off
n € m1(S) in the Fy sense, and then coning off the resulting class u € mo(S//n) in the Ey
sense.

We have generators x9,x3 such that the homology ring H.(S//n,u) is a polynomial
algebra with generators Qlz9 and Qlx3 for I admissible Dyer-Lashof monomials of excess
greater than 2 or greater than 3, respectively. In this section we consider replacing Q" xo
and QQ"x3 with primitive elements in the cases r > 2 and r > 4, respectively. Conceptually,
this corresponds to the first step in constructing an Ey cell complex for HZ.

We have the following (left) coaction on the generators zo, x3:

d(rg) = 1@a9 + (G ®1

P(r3) =123+ (1 @12+ (L ®1.

This is enough information to get a 2-local Steinberger-type splitting into H Z(Q)’s and
HZ/2%s. To apply 111.4.2 of [8] we observe that the above coaction implies Sg3x3 = 1, so
in cohomology S q3(1) is the nonzero dual to x3. We see that the only H Z(z) term occurs in
degree zero by considering rationalization.

Our intuition is that z9 corresponds to C12 and x3 corresponds to (o in the homology of
the the degree zero summand H*HZ(Q) ~ [y [C12, (2,...]. This leads us to define Xl2 = T9
and X9 = x3. Note that any expression involving an odd power of X does not lie in the
homology of S//n,u, but rather lies in the formal algebraic extension Fo[,/z2, Qlze, Q! x3]| =
H.(S//n,u)[\/r2]. Here we can give the coaction on ,/zg = Xi by the usual formula
¥(X1) = 1® X7 + (1 ®1, so that our extension has the structure of a comodule algebra over
the dual Steenrod algebra.

To find elements corresponding to the higher (;, we use the coaction as our guide. We
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desire the following formula:
Y(X) = 1@ X3+ ® X3 + G OX]

This is satisfied by X3 = Q%3+ 29Q3z9. The extra term is necessary because an error term

arises in w(Q‘Lxg) due to the fact that Q3X 12 # 0, recalling that x9 is not actually a square.
i+1 . .

We can now define X;,1 = Q2z+ X; for i = 3, and the same proof as in the case S//2

now runs into no difficulties in verifying our coaction formula

P(X(t) = C1®X(1)),

since the exponent of X7 is at least 4.

The Nishida relations tell us that 3.Q%* = Q%1 which tells us to group generators
of length 1 in pairs of the form {Q% z9, Q% 1ay} and {Q% x5, Q2*123}. In our algebrai-
cized splitting into Eilenberg-Maclane spectra, the bottom terms Q%_lxi correspond to
actual HF9 summands and we must first cone off those generators before spherical classes
corresponding to the Q%xi can exist.

To figure out the formulae for primitives, we first compute the coaction on the Q" za:

V(Qra(t) = (10 Qu2) (£(1)) + (xQF © 1)(£(1))

— (10 Qua)(£(1)) + +%+g®y

1
§(t)?
Again, we derive formulae for the primitives by considering an analogous series with X;

replacing the & whenever possible.

Proposition 3.6.1. Define a series by the following:

1
+ =+ X2

A(D) = Qra(X (1)) + »

X(1)?
81



Then each coefficient of A(t) is a primitive in the comodule Hy(S//n,u)[\/T2].

Proof. This is analogous to Proposition 3.4.1:

L1
EWX()?  ¥vX(t)

v(a0) - (1©QeE(ux (1) + ;o)

1 2 2
—=+ 5 +1® X ®1
+¢ (t)2+t2+ i +¢
1 1 5
= (1 1® X(t — =+ 5 +1®X
(1®Qr)(1® ())+1 X(t)2+t2+ ® X§

—1®A().

]

We only care about actual elements with no radicals, so we must examine which primitives
only contain even powers of X7. We have the following statement about when elements are

well-defined.

Lemma 3.6.2. The odd coefficients of A(t) are well-defined in that their terms only contain
even powers of X1. The even coefficients become well-defined in this sense if we replace all

erpressions szflxg by zero for k > 1.

The replacement in the second statement tells us what happens to Q%*lxg after we do
our first round of Ey coning. Only the elements corresponding to odd operations can yield
actual primitives since the others are not in the image of the Hurewicz map, as witnessed
the nontrivial action E*Q%xz = Q%*lxi. After those are killed, we are able to cone off the

remaining length 1 generators.

Proof. The second statement is obvious, since once the odd Dyer-Lashof elements are re-

moved all terms are squares. For the first statement, we must check that for each r, k the

$2k+1

coefficient of in the series X (¢)" must have an odd power of Xj. If r is even this
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is obvious. For odd numbers we can decompose X (t)"+2 as X (¢)2X ()" and proceed by

induction, with the case r = 1 obvious.

[]

For our second class of polynomial generators, we must compute the coaction on elements
of the form Q"x3. Here the new ingredient is to identify (QQ(s(t). For this we use the

computation of Steinberger [8]:

o Q2+l ifr>2—landr=0,-1 (mod 2}
-

0 otherwise .

The nonzero terms of Q" (y are equal to Q"F2¢; for r = 3,4 (mod 4) and r > 3. To isolate

terms we apply the identity
Q1 = Q*E = (QFq)”.

We have the following series expansions:

! :l+€—1+£+§2+§%t+...+Q’”+2§1t7‘+...
£2¢(t) 3 2t

1 1 ¢

4 2,3 2r+3 ~ ,2r+1
= =+ GG+ + T
t

1
T F GO+ + Qg 4

The second two of these tell us that the odd-dimensional terms of Q(3(t) are given by the
sum
2
1 t
S

— st —.
tootg()? g
To get the even-dimensional terms, we use the following manipulations. Here we define

£(t) to be the power series &1t + Eot2 + &3t + ..., so that t + £(t) = £(t?). We must use the
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formal derivative to get the third expression below:

t+

e

(t)

g —at Gt + Gt + Gt + .+ QTG +
% =+ GQt+ GO+ G+ .+ QTG +
€0+ aelt) ;(5;5“) o Gt 4 Chegtt Gt L QIR
e g(tg) (:) GEO7 _ ) ety eyt + G2 b+ QMG 4

We combine even and odd terms to get the following power series expression:

2 2
Gal) = (4_1 L1 ;> N (ERasUELLLDY

too)? )t §(t)!
¢ & 1 1

=2t gy +s< ERETI0E
{ 1
XQGEW) — o+ g+ S+ 5 + s =

We now compute the coaction on elements of form Q" x5 as follows:

D(Qrs(1)) = (18 Qus)E) + (1© Qu)(EN) QG B V(ED)
+ (xQ(EF + ) @ DE)
- L Qu)(El) + 18 Q) (i + 1+ ®1)
gol el 1 1

e e e e

11 13 '
+(%+;+§1®) +H®1+

We are now ready to provide the relevant primitives corresponding to Q" z3.

Proposition 3.6.3. Define a series by the following:

2
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Then each coefficient of B(t) is a primitive element of the comodule H.(S//n,u)[/T2].

Proof. We first start to compute the coaction on B(t), using the fact that A(¢) has primitive

coefficients:

B(BO) = bQs(X(O) + 1@ AW) - (§ + 18X+ 01+ o)
) €e1l+1®X?
+1®Xo+ 61 QXT +0®1+ (e X))
§1®1+1®X1+lJr 1
t2 B3 21 X(t)
To expand the first term we need to rely on our coaction formula:
W(Qu3(X(1))) = (1 ® Quz(X(1)))
1 2
+ (1®Qx2(X(t)) + 1@ X(0)? + (0@ X)) + &1 ®1>
_ 1 1 21
(o7 * croxmy +481) *e® 1 1o

§1®1 N 1 N 1
(1R X(1)? 1eX(®t)? (1X(t)C1eX(t)?

_l’_

Now the desired statement 1(B(t)) — 1 ® B(t) = 0 is straightforward to verify.
[

Just like the coefficients of A(t), we need to check which coefficients have only even
powers of X7 in order to get honest elements in homology. Again, this turns out to be the

odd coefficients of our series.

Lemma 3.6.4. The odd coefficients of B(t) are well-defined in the sense that these terms

only contain odd powers of X1.

Proof. In the proof of Lemma 3.6.2 we noted that the coefficients of tZ¥*1 in X(t)" are

well-defined for positive r, and this works for negative odd k as well by the decomposition
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X()"72 = X(t)72X(t)". The terms involving a Q" xy are now the only ones remaining with
a risk of having an odd power of X in the odd coefficient. The coefficent of Q"9 is seen
to be X(t)"(t71 + X1 + X (¢)~1), which can be rewritten X (t)" + t~2X (t)"(t + X1t2). Here
the term (¢ + X1¢2) is equal to X (¢) modulo terms not involving X7, so we have reduced

everything to our analysis of X (¢)". O

We must similarly replace Q2k+1x3 with something new in order for the even coefficients
to be well-defined, to reflect the fact that after we first cone off odd coefficient primitives, the

Dyer-Lashof action on x3 changes. In the earlier case the modification is simple: Q2+l

T =

Q%HX 12 = (0. In this case there is a nontrivial action, which we must compute.
Notationally, let F’(t) be the formal derivative of a power series F(t) and F°%(t) and

FeUn(t) be the terms with only odd powers of ¢ and only even powers of ¢, respectively. We

are working mod 2 so we have F°4(t) — tF'(t). We want to see what happens when we

cone off the odd coefficients of B(t), so we must isolate these coefficients:

B(0) = Qua(X(0) + A (1 + %1+ 55 ) + A0 (5 + 0

t
X 1 1
BOdd<t) _ ﬁ@xé)d%)((t)) + ﬁ@xé’dd()((t)) . (% + X1 + ﬁ)

1 t txX? 1 1
AW (¥+ X(t)Q) " X(t§2 BT ixae

Now after coning off the odd coefficients of B(t), we can use the above to see the resulting

Dyer-Lashof action on x3. This action is encoded by the series ngdd(t), but it is ngdd(X (1))
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that we need to replace in our definition of B(t):

Qu§M(X (1)) = @Bodd(t) + Qus¥(X (1)) - (_ Xy

2
+ A(t) - <X;gt) + Xl(t)) X, X

Qugid(r) — % BYU(X (1)) + Qx§(t) - (1 + X1+ L)
1

2
+A(7(t))-(ﬁ+%)+%+ -

X2 t
We note that the last three terms —- + — + —
t Xt tX(t)?

action on X9 = z3 after we cone off both even and odd coefficients for the A(t) and the B(t).

encode the odd Dyer-Lashof

This series has coefficients analogous to the expression for Q4k_1@ = Q4k+1§'1 in terms of

the (;’s or &;’s.

Lemma 3.6.5. If we assume B(t) = 0 and examine the series B(t) derived from B(t)

by replacing ngdd(X(t)) with the corresponding terms above, then the resulting series has

well-defined coefficients in the sense that all powers of X1 are even.

Proof. 1f we do the given replacement, our series can be reorganized as follows:

B(t) = Qu§™X(t)) + (A(t) + Qu8™(X (1)) - (1 + X1+ L)

t X(t)
CA®)- (%+W) P RGN
2
= ngven(X(i)) + (Qq;gven(X(t)) + tiQ + X12 + X<1t)2) _ <t + Xltt2+ X(t))

e (K04 1) v HEEXO,

In this form the result is clear.

87



1]

[10]
[11]

[12]

[13]

[14]
[15]

[16]

REFERENCES

A. Baker, Calculating with topological André-Quillen theory, I: Homotopical properties
of universal derivations and free commutative S-algebras, arXiv:1208.1868v7 (2012).

, BP: Close encounters of the Fs kind, Journal of Homotopy and Related
Structures (2013), 1-26 (English).

, Power operations and coactions in highly commutative homology theories,
arXiv:1309.2323v3 (2013).

A. Baker, H. Gilmour, and P. Reinhard, Topological André-Quillen homology for cellular
commutative S-algebras, Abh. Math. Semin. Univ. Hambg. 78 (2008), no. 1, 27-50.

A. Baker and A. Lazarev, On the Adams spectral sequence for R-modules, Algebraic &
Geometric Topology 1 (2001), 173-199.

M. Basterra, André-Quillen cohomology of commutative S-algebras, J. Pure Appl. Al-
gebra 144 (1999), no. 2, 111-143.

M. Brun, Witt vectors and equivariant ring spectra applied to cobordism, Proc. Lond.
Math. Soc. 94 (2007), 351-385.

R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger, Hy, 1ing spectra and their
applications, Lect. Notes in Math., vol. 1176, Springer, 1986.

A. D. Elmendorf, I. Kriz, M. Mandell, and J. P. May, Rings, modules, and algebras in
stable homotopy theory, Math. Surveys and Monographs, vol. 47, American Math. Soc.,
1997.

L. Evens, The cohomology of groups, Oxford Mathematical Monographs, 1991.

N. Gambino and J. Kock, Polynomial functors and polynomial monads, Math. Proc.
Cambridge Phils. Soc. 154 (2013), no. 1, 153-192.

J. P. C. Greenlees and J. P. May, Localization and completion theorems for MU -module
spectra, Ann. of Math. (2) 146 (1997), no. 3, 509-544.

M. A. Hill, M. J. Hopkins, and D. C. Ravenel, On the non-existence of elements of
Kervaire invariant one, arXiv:0908.3724 (2009).

G. M. Kelly, Basic concepts of enriched category theory, 2005.

G. M. Kelly and S. Lack, Finite-product-preserving functors, Kan extensions and
strongly-finitary 2-monads, Appl. Categ. Structures 1 (1993), no. 1, 85-94.

A. Lazarev, Cohomology theories for highly structured ring spectra, Lond. Math. Soc.
Lect. Note Ser. 315 (2004), 201-231.

88



[17] H. Ligaard and 1. Madsen, Homology operations in the Eilenberg-Moore spectral se-
quence, Math. Z. 143 (1975), 45-54.

[18] K. Mazur, On the structure of Mackey functors and Tambara functors, Ph.D. thesis,
University of Virginia, May 2013.

[19] B. Richter, An Atiyah-Hirzebruch spectral sequence for topological André-Quillen ho-
mology, J. Pure Appl. Algebra 171 (2002), no. 1, 59-66.

[20] N. Strickland, Tambara functors, arXiv:1205.2516v1 (2012).
[21] D. Tambara, On multiplicative transfer, Comm. Algebra 21 (1993), no. 4, 1393-1420.

[22] J. Ullman, Symmetric powers and norms of Mackey functors, arXiv:1304.5648v2 (2013).

(23] , Tambara functors and commutative ring spectra, arXiv:1304.4912v2 (2013).

89



