
CENTRALIZERS OF ELEMENTARY ABELIAN p - SUBGROUPS

AND MOD - p - COHOMOLOGY OF PROFINITE GROUPS

by

Hans–Werner Henn

1. Introduction

1.1 Let G be a profinite group and p be a fixed prime. In this paper we will be concerned
with H∗

c (G;Fp), the continuous cohomology of G with coefficients in the trivial module Fp.
We will abbreviate H∗

c (G;Fp) by H∗(G;Fp), or simply by H∗G if p is understood from the
context. We recall that if G is the (inverse) limit of finite groups Gi then H∗G = colim H∗Gi.

Throughout this paper we will assume that H∗G is finitely generated as Fp - algebra. By work
of Lazard [La] it is known that this holds for many interesting groups, for example for profinite
p - analytic groups like GL(n,Zp), the general linear groups over the p - adic integers. In case
H∗G is finitely generated as Fp - algebra Quillen has shown [Q1] that there are only finitely
many conjugacy classes of elementary abelian p - subgroups of G (i.e. groups isomorphic to
(Z/p)n for some natural number n). In other words, the following category A(G) is equivalent
to a finite category: objects of A(G) are all elementary abelian p - subgroups of G, and if
E1 and E2 are elementary abelian p - subgroups of G, then the set of morphisms from E1 to
E2 in A(G) consists precisely of those homomorphisms α : E1 −→ E2 of abelian groups for
which there exists an element g ∈ G with α(e) = geg−1 ∀e ∈ E1. The category A(G) plays
an important role both in Quillen’s results and in the work presented here.

This category entered into Quillen’s work as follows. The assignment E 7→ H∗E extends
to a functor from the opposite category A(G)op to graded Fp - algebras and the restriction
homomorphisms H∗G −→ H∗E (for E running through the elementary abelian p - subgroups
of G) induce a canonical map of algebras q : H∗G −→ limA(G)op H∗E.

THEOREM 1.2 [Q1]. Let G be a profinite group and assume H∗G is a finitely generated Fp

- algebra. Then the canonical map q : H∗G −→ limA(G)op H∗E is an F - isomorphism, in
other words q has the following properties.

• If x ∈ Ker q, then x is nilpotent.

• If y ∈ limA(G)op H∗E then there exists an integer n with ypn ∈ Im q.

1.3 In our main result we use the full subcategory A∗(G) of A(G) whose objects are all
elementary abelian p - subgroups except the trivial subgroup. The centralizer CG(E) of
an elementary abelian p - subgroup E is a closed subgroup and hence inherits a natural
profinite structure from G. The assignment E 7→ H∗CG(E) extends to a functor from A∗(G)
to graded Fp - algebras and the restriction homomorphisms H∗G −→ H∗CG(E) (for E
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running through the non-trivial elementary abelian p - subgroups of G) induce a canonical
map ρ : H∗G −→ limA∗(G) H∗CG(E). Our main result reads as follows.

THEOREM 1.4. Let G be a profinite group and assume H∗G is a finitely generated Fp

- algebra. Then the canonical map ρ : H∗G −→ limA∗(G) H∗CG(E) has finite kernel and
cokernel.

1.5. Remarks/Questions:

a) The map ρ of Theorem 1.4 is an actual isomorphism if G is a finite group or a compact Lie
group (in the latter case H∗G has to be interpreted as the mod p cohomology of the classifying
space BG) provided G contains any elements of order p. This was first proved by Jackowski
and McClure [JM] and then reproved and extended to certain classes of unstable algebras
over the Steenrod algebra by Dwyer and Wilkerson [DW]. One’s first reaction might be that
because the continuous cohomology of a profinite group is the colimit of the cohomology of
finite groups, the profinite case should be a direct consequence of the finite case by passing to
appropriate (co-)limits. However, one gets confronted with a subtle problem of interchanging
limits and colimits, and this has the effect that ρ need not be an isomorphism for a profinite
group.

In fact, our proof requires a different approach: in [He] we investigated an appropriately
defined map ρ for any unstable algebra K over the Steenrod algebra which is finitely generated
as Fp - algebra and showed that this map has always finite kernel and cokernel (see Theorem
2.5 below). In section 2 we explain this algebraic result and show how Theorem 1.4 can be
deduced from it. We emphasize that we do not know any proof of Theorem 1.4 which does
not use the Steenrod algebra, in particular Lannes’ T - functor in a crucial way.

b) Obviously Theorem 1.4 gives more precise information than Theorem 1.2, but on the other
hand its applicability is more limited. For example, the major reason for working with A∗(G)
instead of A(G) was to avoid the appearance of H∗G in the limit. However, if G contains
central elements of order p, then H∗G does appear in the limit anyway, and Theorem 1.4 is
not very useful. In other cases the functor E 7→ H∗CG(E) may be too complicated to be
evaluated. However, in these cases Theorem 1.4 may still be of some theoretical interest (see
2.10 and 2.11 below for examples).

c) Theorem 1.4 says in particular that there is a least integer d such that ρ is an isomorphism
in cohomological degrees > d. It would be interesting to have effective upper bounds for d in
group theoretical terms. For profinite p - analytic groups the work of Lazard [La] suggests
the dimension of such a group as a candidate for an upper bound for the number d. In fact,
if such a group does not contain any elements of order p, as well as in the examples discussed
in section 4 and 5 below, this gives actually a correct upper bound.

1.6 If G does not contain elements of order p then the target of ρ is the trivial algebra and
Theorem 1.4 says that H∗G is a finite algebra. Of course, this could have also been directly
deduced from Theorem 1.2.
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However, Theorem 1.4 may already be quite interesting in case the p - rank of G is equal to
one. We recall that the p - rank rp(G) of G is defined as the supremum of all natural numbers
n such that G contains an elementary abelian p - subgroup E of rank n, i.e. E ∼= (Z/p)n. In
case rp(G) = 1 the inverse limit simplifies substantially because A∗(G) is equivalent to the
following discrete category: objects are in one to one correspondence with conjugacy classes
of subgroups E ∼= Z/p; the only morphisms of this category are automorphisms and the
automorphism group of an object E identifies with NG(E)/CG(E) with NG(E) denoting the
normalizer of E in G. In particular we get the following corollary.

COROLLARY 1.7. Let G be a profinite group and assume H∗G is a finitely generated Fp -
algebra and rp(G) = 1. Then the restriction maps induce a map

ρ : H∗G −→
∏

(E)

(H∗CG(E))NG(E)

with finite kernel and cokernel. (Here the product is taken over conjugacy classes of elemen-
tary abelian p - subgroups of rank 1.)

Note that the group NG(E)/CG(E) is of order prime to p if E is of rank 1. Therefore the
invariants (H∗CG(E))NG(E) are isomorphic to H∗NG(E) and Corollary 1.7 can be considered
as a “profinite analogue” of a result of Ken Brown on the Farell cohomology of discrete groups
of p - rank 1 [B]. In this case the number d introduced in 1.5c) above corresponds to the virtual
cohomological dimension of G.

1.8. As mentioned above section 2 will be concerned with the proof of Theorem 1.4 and related
results. In sections 3 and 4 we will study certain subgroups of the group of units in p - adic
division algebras and in section 5 we will touch upon the general linear group over the p -
adic integers.

To get more explicit, we fix a prime p and a natural number n. Consider Dn, the division
algebra with invariant 1

n over the field of p - adic numbers Qp and On, the maximal compact
subring of Dn. On is a local ring and reducing modulo its maximal ideal gives a homomor-
phism from On to the finite field Fq with q = pn. Let O×n denote the units of On, and
Sn denote the kernel of the map O×n −→ F×q . In stable homotopy theory these groups are
known as Morava stabilizer groups and their cohomology is known to play a central role in
the chromatic theory of stable homotopy (see [M], [Ra 2,3], [D], [HG] for example).

It is well known that rp(Sn) = rp(O×n ) ≤ 1 and equality holds iff n ≡ 0mod(p − 1). Our
results give new insight if n ≡ 0mod(p− 1). Using standard facts about division algebras we
determine the categories A∗(O×n ) and A∗(Sn) for n ≡ 0mod(p−1) and describe the structure
of the centralizers of the elementary abelian p - subgroups (Theorem 3.2.2). Furthermore for
n = p−1 the centralizers turn out to be abelian and we can compute the target of ρ explicitly,
hence H∗Sn up to finite ambiguity. In particular we obtain in 3.3 the following result in which
E(−) denotes an exterior algebra over Fp on the specified elements. The elements yi are of
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degree 2 and the elements xi and ai,j are of degree 1. For more details about the definition
of these elements the reader is referred to section 3.3 and 3.4.

THEOREM 1.9. Let p be an odd prime, n = p − 1 and s = pn−1
(p−1)2 . Then there is a

homomorphism

ρ : H∗Sn −→
s∏

i=1

Fp[yi]⊗ E(xi)⊗ E(ai,1, · · · , ai,n)

with finite kernel and cokernel.

We remark that previously the mod - p - cohomology of Sn was computed by Ravenel [Ra
1] in the following cases: H1Sn and H2Sn for all n and p, all of H∗Sn if either n ≤ 2 and
p arbitrary or if n = 3 and p ≥ 5. So the only overlap between Ravenel’s computation and
Theorem 1.9 occurs for p = 3 and n = 2 [Ra 1, Theorem 3.3]. In section 4 we use Theorem
1.9 together with some more detailed group theoretical analysis of S2 to give an independent
computation of H∗Sn if p = 3 and n = 2. In this case we find that ρ is injective and we use this
to describe H∗S2 as an explicit subalgebra of

∏2
i=1 F3[yi]⊗E(xi)⊗E(ai,1, ai,2) (Theorem 4.2).

The multiplicative structure of the result derived here differs from that of Ravenel although
additively the two results agree. Ravenel has informed me that he now believes that there is
a mistake in his calculation. Finally we remark that Gorbounov, Siegel and Symonds [GSS]
have independently and with very different methods confirmed the calculation in Theorem
4.2.

The calculations of H∗S2 for primes p > 3 have been used by Shimomura and Yabe [SY] to
determine the stable homotopy groups of L2S

0
p , the second stage in the chromatic tower of the

p - local sphere. The computation of H∗S2 at the prime 3 will be relevant for understanding
L2S

0
p if p = 3 and for this reason we have decided to give a rather detailed presentation in

section 4. In fact, Shimomura [S] has already used the corrected computation of H∗S2 to
compute the homotopy groups of the L2 - localization of the Toda - Smith complex V (1)
at the prime 3 up to a certain ambiguity; this ambiguity will be settled in joint work with
Mahowald [HM] using the approach towards H∗S2 via centralizers of elementary abelian p -
subgroups that we introduce in this paper.

1.10. Our second application concerns the mod - p - cohomology of the general linear groups
GL(n,Zp). The following result should be compared with Ash’s computations [A] of the
Farrell cohomology of GL(n,Z). As above the element y has degree 2 while all other elements
are of degree 1.

THEOREM 1.10. Let p be an odd prime and n = p− 1. Then there is a homomorphism

ρ : H∗GL(n,Zp) −→ (Fp[y]⊗ E(x)⊗ E(a1, · · · , an))Z/n

with finite kernel and cokernel. (Here (−)Z/n denotes the invariants with respect to the
following action of Z/n by algebra homomorphisms. After choosing a suitable isomorphism
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τ : Z/n −→ F×p this action is given by gy = τ(g)y, gx = τ(g)x and gaj = τ(g)jaj for
j = 1, . . . , n if g ∈ Z/n.)

This result looks very similar to 1.9. In fact, the similarity becomes even stronger if one
compares (for n = p − 1) the groups O×n and GL(n,Zp). In this case the targets of the two
maps ρ agree (cf. Theorem 3.2.2 and Theorem 5.2).

As in the case of Sn we give the complete computation for p = 3 and n = 2 (Proposition 5.5).
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month visit to Aarhus in the fall of 1990. This work was then pushed further during a three
months visit at the Mittag Leffler institute in the fall of 1993. I would like to thank the staff
at both institutions for providing such pleasant and stimulating working conditions. It is a
pleasure to express special thanks to Bob Oliver on both occassions.

2. The proof of Theorem 1.4 and related results

As already indicated in the introduction, Theorem 1.4 is deduced from a general result about
certain unstable algebras over the Steenrod algebra A [He]. We will begin by recalling some
facts about Lannes’ T functor which are necessary to explain the main algebraic result of
[He] and to deduce Theorem 1.4 from it.

2.1. Let U resp. K denote the category of unstable modules resp. unstable algebras over the
mod p Steenrod algebra A (see [L1]). The cohomology of a space is an unstable algebra, in
particular the cohomology of any finite group and then also the cohomology of any profinite
group is such an algebra. The Steenrod algebra is actually a Hopf algebra and its diagonal
gives rise to a tensor product on the categories U resp. K.

Now let V be an elementary abelian p - group with mod p cohomology H∗V . Lannes [L1]
has introduced the functor TV : U −→ U . It is left adjoint to tensoring with H∗V , i.e
HomU (TV M,N) ∼= HomU (M, H∗V ⊗ N) for all unstable modules M and N . TV has a
number of remarkable properties. In particular, TV lifts to a functor from K to itself and
the adjunction relation continues to hold in K: HomK(TV K,L) ∼= HomK(K, H∗V ⊗L) for all
unstable algebras K and L.

2.2. Now let G be a finite group. The following computation of TV H∗G in [L2] (for a more
accessible reference see also [L1,3.4]) is quite crucial for the proof of Theorem 1.4.

Denote by Rep(V, G) the set of G - conjugacy classes of homomorphisms from V to G. For
each conjugacy class choose a representative ϕ and denote the centralizer of Im ϕ in G by
CG(ϕ). The homomorphism cϕ : V × CG(ϕ) → G, (v, g) 7→ vϕ(g) induces a map of unstable
algebras c ∗ϕ : H∗G −→ H∗V ⊗ H∗CG(ϕ) which is adjoint to a map of unstable algebras
ad(c ∗ϕ ) : TV H∗G −→ H∗CG(ϕ).
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THEOREM 2.2 [L2]. The homomorphism of unstable algebras

TV H∗G −→
∏

ϕ∈Rep(V,G)

H∗CG(ϕ)

whose components are the maps ad(c ∗ϕ ) is an isomorphism for each finite group G.

Note that the theorem shows in particular that the natural map from Rep(V,G) to
HomK(H∗G,H∗V ), which sends ϕ to its induced map ϕ∗, is a bijection.

We also see that the terms in the inverse limit occuring in Theorem 1.4 appear in the com-
putation of TV H∗G. Dwyer and Wilkerson [DW] noticed that this allows a purely algebraic
approach to the map ρ of Theorem 1.4 which makes sense for a much larger class of unstable
algebras. In order to explain this we need some more preparations (see [DW] and [HLS, I.4
and I.5]).

2.3. To an unstable algebra K we associate a category R(K) as follows. Its objects are the
morphisms of unstable algebras ϕ : K → H∗V , V an elementary abelian p - group, for which
H∗V becomes a finitely generated K - module via ϕ; sometimes it will be convenient to
denote such an object by the pair (V, ϕ). Then the set of morphisms from (V1, ϕ1) to (V2, ϕ2)
are all homomorphisms V1

α−→ V2 of abelian groups such that ϕ1 = α∗ϕ2. If K is noetherian
the opposite of this category was first investigated by Rector [Rc]. The full subcategory of
R(K) having as objects all (V, ϕ) with V non-trivial will be denoted by R∗(K)

If K = H∗BG then R(K) is equivalent to Quillen’s category A(G) and R∗(K) is equivalent
to A∗(G). In fact, in this case the computation of HomK(H∗G,H∗V ) (see 2.2 above) can be
used to identify the objects of R(K) with the monomorphic representations of elementary
abelian p - groups in G and an equivalence between R(K) and a skeleton of A(G) is induced
by associating to a homomorphism ϕ : V −→ G the unique object in the skeleton of A(G)
which is isomorphic to the image of ϕ (see [HLS, I.5.3]).

2.4. Now consider the unstable algebra TV K. For a morphisn ϕ : K −→ H∗V we obtain
a connected component TV (K; ϕ) of TV K: it is defined as TV (K; ϕ) := Fp(ϕ) ⊗T 0

V
K TV K

where Fp(ϕ) denotes Fp considered as a module over T 0
V K via the adjoint of ϕ.

More generally, we can consider the category K −U whose objects are unstable A - modules
M with A - linear K - module structure maps K ⊗M −→ M , and whose morphisms are all
A - linear maps which are also K - linear. The full subcategory of K −U consisting of those
objects which are finitely generated as K - modules is denoted by Kfg − U .

If M is in K − U then TV M is in TV K − U and one can define components TV (M ; ϕ) :=
Fp(ϕ) ⊗T 0

V
K TV M which are modules over the corresponding components TV (K;ϕ). From

the adjoint of the identity of TV K we obtain canonical algebra morphisms ρK,(V,ϕ) from
K to TV (K;ϕ), hence TV (M ; ϕ) can be considered as a K - module and the assignment
(V, ϕ) 7→ TV (M ; ϕ) gives rise to a functor from R(K) to K − U . Furthermore the adjoint
of the identity of TV M gives rise to maps ρM,(V,ϕ) from M to TV (M ; ϕ) which are all K -
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linear, and we obtain a natural transformation between the constant functor from R(K) to
K − U with value M and the functor (V, ϕ) 7→ TV (M ;ϕ).

If G is a finite group and K = M = H∗G then Theorem 2.2 implies that the functor
(V, ϕ) 7→ TV (M ;ϕ) corresponds via the equivalence between R(K) and A(G) to the functor
E 7→ H∗CG(E) that appears in Theorem 1.4. Furthermore, the maps ρM,(V,ϕ) correspond to
the restriction maps H∗G −→ H∗CG(ϕ).

Now we are ready to formulate the general algebraic theorem from which Theorem 1.4 is
deduced.

THEOREM 2.5 [He, Cor. 3.10]. Let K be a noetherian unstable algebra and let M be an
object in Kfg − U . Then the maps ρM,(V,ϕ) induce a map

ρ : M −→ limR∗(K) TV (M ; ϕ)

which has finite kernel and cokernel.

In fact, it is shown in [He] that this map is localization away from finite objects in Kfg −U .

Theorem 2.5 together with Theorem 2.2 yield Theorem 1.4 in the case of a finite group (in
which case ρ is even an isomorphism by [JM] and [DW]). To prove Theorem 1.4 for profinite
groups G for which H∗G is a finitely generated Fp - algebra, it suffices to extend Theorem
2.2 to this setting. We recall that a profinite group G is given as the (inverse) limit limi Gi of
finite groups Gi along a directed partially ordered set (I,≤) which we think of as a category
(denoted I for simplicity) in the usual way. Then H∗G can be identified with colimi H∗Gi.
Here is the extension of Theorem 2.2.

THEOREM 2.6. Assume G is a profinite group such that H∗G is a finitely generated Fp -
algebra. Then the homomorphism of unstable algebras

TV H∗G −→
∏

ϕ∈Rep(V,G)

H∗CG(ϕ)

whose components are the maps ad(c∗ϕ) is an isomorphism.

In this result the set Rep(V, G) of representations is defined as before, i.e. the topology on
G does not play any role. However, the centralizer of an elementary abelian p - subgroup of
a profinite group inherits a natural structure of a profinite group and this structure is used
in 2.6.

Proof of 2.6: We deduce Theorem 2.6 from Theorem 2.2. For this we note that TV commutes
with arbitrary colimits, i.e. we get

TV H∗G = colim
i

TV H∗Gi
∼= colim

i

∏

ϕ∈Rep(V,Gi)

H∗CGi(ϕ) .
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Let us look more carefully at the maps in the inverse system. For a morphism λ : i → j

in I we use the same letter for the associated maps from Gj to Gi and from CGj
(ϕ) to

CGi
(λϕ) (with ϕ ∈ Rep(V,Gj)). If we identify TV H∗Gi as in 2.2 then the map TV λ∗ :

TV H∗Gi −→ TV H∗Gj is given as follows: the ϕ - th component of it (ϕ ∈ Rep(V, Gj)) sends
the family {xϕ′} ∈

∏
ϕ′∈Rep(V,Gi)

H∗CGi
(ϕ′) to the element λ∗(xλϕ) ∈ H∗CGj

(ϕ). Here λ∗

is the induced map from H∗CGi(λϕ) to H∗CGj (ϕ). In fact, in the same way we get maps
TV π∗i from

∏
ϕ′∈Rep(V,Gi)

H∗CGi
(ϕ′) to

∏
ϕ∈Rep(V,G) H∗CG(ϕ) if πi denotes the canonical

map from G to Gi. These maps fit together and thus give a map

colim
i

∏

ϕ′∈Rep(V,Gi)

H∗CGi
(ϕ′) −→

∏

ϕ∈Rep(V,G)

H∗CG(ϕ)

which we denote TV π∗ by abuse of notation and which we claim to be an isomorphism. In
order to show this we need the following lemmas.

LEMMA 2.7. Let G = lim Gi be any profinite group.

a) Then the maps πi : G −→ Gi induce a bijection Rep(V, G) −→ limi Rep(V, Gi) of profinite
sets for each elementary abelian p - group V .

b) For any homomorphism ϕ from an elementary abelian p - group V into G the maps
πi : G −→ Gi induce an isomorphism CG(ϕ) −→ limi CGi(πiϕ) of profinite groups.

LEMMA 2.8. Let G be any profinite group for which H∗G is a finitely generated Fp - algebra.
Then the set Rep(V, G) is finite for each elementary abelian p - group V .

We postpone the proofs of 2.7 and 2.8 and continue with the proof of 2.6.

First we show that TV π∗ is onto. So let x = {xϕ} ∈
∏

ϕ∈Rep(V,G) H∗CG(ϕ) be given. For
each ϕ ∈ Rep(V,G) we find by 2.7.b) an object i = i(ϕ) of I and an element yi ∈ H∗CGi(πiϕ)
such that xϕ = (πi)∗yi. By 2.8 there are only finitely many ϕ and therefore we can assume
that i is independent of ϕ. Furthermore, by 2.7.a) and 2.8 we can choose i such that in
addition the natural map Rep(V, G) → Rep(V, Gi) is injective. For such an i and any ϕ′ ∈
Rep(V,Gi) let zϕ′ ∈ H∗CGi(ϕ

′) be equal to yi(ϕ) if ϕ′ = πiϕ for some (necessarily unique)
ϕ, and choose arbitrarily elements zϕ′ if there is no ϕ such that ϕ′ = πiϕ. Then the family
z = {zϕ′} ∈

∏
ϕ′∈Rep(V,Gi)

H∗CGi(ϕ
′) satisfies TV π∗i (z) = x, and hence TV π∗ is onto.

To see that TV π∗ is mono we show that for any element z = {zϕ′} ∈
∏

ϕ′∈Rep(V,Gi)
H∗CGi(ϕ

′)
with TV π∗(z) = 0 there is µ : i −→ j in I such that TV µ∗(z) = 0. Now TV π∗(z) = 0 implies by
2.7.b) that for each ϕ′ there is λϕ′ : i −→ j(ϕ′) such that for each lift ϕ of ϕ′ to Rep(V,Gj(ϕ′))
which further lifts to Rep(V, G) we get (λϕ′)∗(zϕ′) = 0 in H∗CGj(ϕ′)(ϕ). As there are only
finitely many ϕ′ we can choose a common λ : i −→ j such that λ∗(zϕ′) = 0 in H∗CGj (ϕ) for
each ϕ′ and each lift ϕ of ϕ′ to Rep(V, Gj) which further lifts to Rep(V, G). Furthermore by
2.7.a) we can find λ′ : j −→ j′ such that each element ϕ ∈ Rep(V, Gj) which does not lift
to Rep(V, G) does not lift to Rep(V, Gj′) either. If µ = λ′λ : i −→ j′ then it is clear that
TV µ∗(z) = 0.
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Proof of 2.7: The proof is an exercise in elementary point set topology. We sketch part (a)
and leave part (b) to the reader.

Let us first show surjectivity. So assume we have a compatible family of elements ϕi ∈
Rep(V,Gi). For a subset J of I let RepJ be the set of families of homomorphisms {φi} ∈∏

i∈I Hom(V, Gi) such that the conjugacy class of φi is equal to ϕi whenever i ∈ J and such
that the φi are compatible as long as i ∈ J . We have to show that RepI is non-empty.
Because any two elements of I have an upper bound it is clear that RepJ is non-empty
whenever J is finite. Furthermore RepJ is easily seen to be closed for any J . Now we use
that the intersection of closed sets in a compact space is non-empty if every finite intersection
is non-empty and we are done.

Next assume that we have two elements ϕ and ϕ′ in Rep(V,G) represented by homomorphisms
φ and φ′ such that πiφ and πiφ

′ are conjugate for each i, i.e. there is an element gi ∈ Gi

with πiφ(v) = giπiφ
′(v)g−1

i for all v ∈ V . For injectivity in (a) it is enough to show that the
family gi can be chosen to be compatible. Again this is easy for any finite subset of I, and
the general case follows again from the fact that an intersection of closed sets in a compact
space is non-empty if every finite intersection is non-empty.

Proof of 2.8: For any profinite G we have by 2.2 and 2.7.a)

Rep(V, G) ∼= limi Rep(V, Gi) ∼= limi HomK(H∗Gi,H
∗V ) .

Furthermore we can identify limi HomK(H∗Gi,H
∗V ) with HomK(H∗G, H∗V ). Finally, if

H∗G is a finitely generated Fp - algebra, then the set HomK(H∗G,H∗V ) is clearly finite and
hence we are done.

2.9. We would like to point out that Theorem 2.2 can be used to derive numerous qualitative
results on cohomology of finite groups such as detection results, information on nilpotent
elements in H∗G or characterizations of the “support of elements” in H∗G (cf. [HLS, I.5],
[CH]). Because of Theorem 2.6 all these results have anologues for continuous cohomology of
profinite groups G as long as H∗G is a finitely generated Fp - algebra. We list here only the
following result which is a special case of the profinite analogue of Theorem 2 of [CH].

PROPOSITION 2.10. Let G be profinite with p - rank one and assume H∗G is finitely
generated as Fp - algebra. Then the map

ρ : H∗G −→
∏

(E)

(H∗CG(E))NG(E)

(cf. Corollary 1.7) is a monomorphism if and only if H∗G is free over a polynomial subalgebra
of H∗G with one generator.

Proof: Assume that H∗G is free over a polynomial subalgebra on one generator. Then the
same is true for any non-trivial ideal in H∗G, in particular for the kernel of the map ρ.
However, by Corollary 1.7 this ideal is finite, hence it must be trivial.
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Conversely, assume that ρ is a monomorphism. Take any element x in H∗G which restricts
to a non-nilpotent element on all non-trivial elementary abelian p subgroups of rank 1. Such
an x exists by Theorem 1.2. We can consider the cohomology of H∗CG(E) as a module over
the polynomial subalgebra of H∗G generated by x (again via a restriction homomorphism).
Now the proof of Theorem 1.1 in [BC] (see also Remark 2.3 in the same paper) shows that
H∗CG(E) is free over this polynomial subalgebra. By assumption H∗G is a submodule of
the free module

∏
(E) H∗CG(E) and hence it is also free.

2.11. Finally we want to point out that Theorem 1.4 can also be used to get information on
cohomology with non-trivial coefficients. For example, assume M is a finite continuous G -
module with a composition series for which all successive subquotients are trivial modules.
(Such composition series exist always if G is a pro - p - group.) Furthermore assume that the p

- rank of G is one and ρ : H∗G −→ ∏
(E)(H

∗CG(E))NG(E) is an isomorphism in degrees > d.
Then playing with the long exact sequences in cohomology associated to short exact sequences
of coefficient modules shows that the map ρ : H∗(G;M) −→ ∏

(E)(H
∗(CG(E); M))NG(E) is

an isomorphism in all degrees > d + 1.

3. The case of the stabilizer groups

3.1. In this section we will apply our general results to certain subgroups of p - adic division
algebras which play an important role in stable homotopy theory. We begin by recalling the
definition and basic properties of these groups. The reader is referred to [Rn, Chap. 3,7] and
[Ha, 20.2.16, 23.1.4] for background information on division algebras.

3.1.1. Let p be a prime. For each integer n let Wn be the ring of Witt vectors of the finite
field Fq with q = pn elements and let σ : Wn → Wn, w 7→ wσ be the lift of the Frobenius
automorphism x 7→ xp on Fq. Adjoin an element S to Wn subject to the relations Sn = p,
Sw = wσS for each w ∈Wn. The resulting non-commutative ring will be denoted by On. It
is the maximal order in the central division algebra Dn over the field Qp of rational numbers
with invariant 1/n and is a free module over Wn of rank n with generators the elements
Si, 0 ≤ i < n. An important property of Dn that we will use below is that the degree (over
Qp) of each commutative subfield of Dn divides n, and each extension of Qp whose degree
divides n can be embedded as commutative subfield of Dn.

We recall that On can be identified with the endomorphism ring of a certain formal group law
over Fq of height n [Ha, Theorem 20.2.13]. Its group of units O×n is often called the n - th (full)
Morava stabilizer group. The element S generates a two sided maximal ideal m in On with
quotient On/m = Fq. The kernel of the resulting epimorphism of groups O×n −→ (Fq)× will
be denoted by Sn and is also called the (strict) Morava stabilizer group; it can be identified
with the group of strict automorphisms of the same height n formal group law over Fq.

3.1.2. The groups O×n and Sn have natural profinite structures which can be described as
follows. The valuation v on Qp (normalized such that v(p) = 1) extends uniquely to a
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valuation on Dn such that v(S) = 1
n and On = {x ∈ Dn|v(x) ≥ 0}. The two sided maximal

ideal m is given by m = {x ∈ Dn|v(x) > 0}. The valuation gives subgroups

FiSn := {x ∈ Sn|v(1− x) ≥ i} = {x ∈ Sn|x ≡ 1mod Sni}

for positive multiples i of 1
n with

Sn = F 1
n
Sn ⊃ F 2

n
Sn . . . .

The intersection of all these subgroups is empty and Sn is complete with respect to this
filtration, i.e. we have Sn = limi Sn/FiSn. Furthermore, we have canonical isomorphisms

FiSn/Fi+ 1
n
Sn

∼= Fq

induced by
x = 1 + aSi 7→ ā .

Here a is an element in On, i.e. x ∈ FiSn and ā is the residue class of a in On/m = Fq

In particular, all the quotients Sn/FiSn are finite p - groups and hence Sn is a profinite p -
group which is the p - Sylow subgroup of the profinite group O×n .

3.1.3. The associated graded object grSn with griSn = FiSn/Fi+ 1
n
Sn becomes a graded Lie

algebra with Lie bracket [ā, b̄] induced by the commutator xyx−1y−1 in Sn. Furthermore,
if we define a function ϕ from the positive real numbers to itself by ϕ(i) := min{i + 1, pi}
then the p - th power map on Sn induces maps P : griSn −→ grϕ(i)Sn which define on grSn

the structure of a mixed Lie algebra in the sense of Lazard [La, Chap. II.1]. If we identify
the filtration quotients with Fq as in 3.1.2 above then the Lie bracket and the map P are
explicitly given as follows.

LEMMA 3.1.4.

a) Let ā ∈ griSn, b̄ ∈ grjSn. Then

[ā, b̄] = āb̄pni − b̄āpnj ∈ gri+jSn .

b) Let ā ∈ griSn. Then

P ā =





ā1+pni+...+p(p−1)ni

if i < (p− 1)−1

ā + ā1+pni+...+p(p−1)ni

if i = (p− 1)−1

ā if i > (p− 1)−1 .

Proof: a) Write i = k
n , j = l

n and choose representatives x = 1 + aSk ∈ FiSn, y = 1 + bSl ∈
FjSn. Then x−1 = 1− aSk mod Sk+1, y−1 = 1− bSl mod Sl+1 and the formula

xyx−1y−1 = 1 + ((x− 1)(y − 1)− (y − 1)(x− 1))x−1y−1
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shows
xyx−1y−1 = 1 + (aSkbSl − bSlaSk)mod Sk+l+1 .

Because On/m ∼= Wn/(p) we can choose a and b from Wn. Then Sw = wσS and wσ ≡
wp mod(p) give the stated formula.

b) Again we write i = k
n and choose a representative x = 1 + aSk with a ∈ Wn. Consider

the expression xp =
∑

r

(
p
r

)
(aSk)r. Because

(
p
r

)
is divisible by p for 0 < r < p and because

Sn = p we get
xp ≡ 1 + aSn+k + . . . + (aSk)p mod S2k+n .

Furthermore

(aSk)p = aaσk

. . . aσ(p−1)k

Spk ≡ aapk

. . . ap(p−1)k

Spk ≡ a1+pk+...+p(p−1)k

Spk mod Spk+1 .

Now we only have to determine whether pk is smaller resp. equal resp. larger than n + k.
i.e. whether pi is smaller resp. equal resp. larger than 1 + i. These cases are equivalent to
i < (p− 1)−1 resp. i = (p− 1)−1 resp. i > (p− 1)−1 and hence we are done.

Remark: One can use 3.1.4 to compute H1(FiSn) resp. H1(FiSn) (coefficients are, as al-
ways, in Fp). For example, by using [Lazard, III.2.1, in particular III.2.1.8] we can derive
the following. If i > (p − 1)−1 then the quotient map FiSn −→ FiSn/Fi+1Sn induces an
isomorphism on H1. Furthermore, if i ≥ 1 then FiSn/Fi+1Sn is elementary abelian of rank
n2 and, if p is odd and i ≥ 1, then H∗FiSn is an exterior algebra on H1FiSn (see [Lazard,
V.2.2.7]). Ravenel claims in [Ra 2, Theorem 6.3.7] that H∗FiSn is exterior on n2 generators in
dimension 1 as soon as i > p

2(p−1) . (Note that Ravenel’s i corresponds to i
n in our notation!)

However, if p = 5, n = 4 and i = 3
4 it is not hard to show (using 3.1.4) that the abelianization

of FiSn/Fi+1Sn is FiSn/Fi+ n−1
n

Sn which is elementary abelian of rank 12. Hence H1FiSn

and H1FiSn are also of dimension 12 only.

3.2 The algebras H∗(O×n ) and H∗Sn are known to be finitely generated Fp - algebras (e.g
because they have a finite index normal subgroup, say F1Sn, whose cohomology algebra is
even finite), hence Theorem 1.4 and its consequences can be applied to both groups. In order
to do this we need to determine the categories A∗(G), G = O×n or G = Sn. The first step to
determine these categories is given by the following well known theorem. For the convenience
of the reader we repeat its short proof.

THEOREM 3.2.1. The groups O×n resp. Sn have elements of order p iff n ≡ 0 mod(p − 1)
in which case both groups have p - rank 1.

Proof: If A is any finite abelian subgroup of D×n then A generates a commutative subfield K

of Dn and A is a finite subgroup of its roots of unity. However, for any commutative field the
roots of unity form a cyclic subgroup and hence the p - rank is at most 1. Furthermore, the
p - rank of the units D×n is 1 if and only if Dn contains the cyclotomic field Qp(ζp) of degree
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p − 1 over Qp which happens if and only if n is a multiple of p − 1. Finally any element of
finite order in D×n must have valuation 0, i.e. is contained in O×n ; furthermore, if the order of
the element is a power of p it must be in the p - Sylow subgroup Sn.

Remark: Lemma 3.1.4.b) implies directly that an element of order p can exist in Sn only if
1

p−1 is of the form k
n , i.e. if n = k(p − 1). In fact, in this case any non-trivial element x of

order p is necessarily contained in F 1
p−1

Sn and x = 1 + aSk satisfies ā + ā1+pk+...+p(p−1)k

= 0

with ā 6= 0. One can show that for any ā 6= 0 satisfying ā+ ā1+pk+...+p(p−1)k

= 0 one can find
a ∈ On such that 1 + aSk is of order p.

The following more precise result gives the complete description of the categories A∗(G) and
of the centralizers of each object.

THEOREM 3.2.2. Let n = k(p− 1).

a) Any two subgroups of O×n which are isomorphic to Z/p are conjugate in O×n and each
abstract automorphism of such a subgroup E is induced by conjugation by an element in O×n ,
i.e. AutA∗(O×n )(E) ∼= Aut(E) ∼= Z/(p − 1). Furthermore the centralizer CO×n (E) is given
as the group of units in the maximal order in the central division algebra over Qp(ζp) of
dimension k2 and invariant 1

k .

b) There are exactly pn−1
(p−1)(pk−1)

conjugacy classes of subgroups isomorphic to Z/p in Sn and
for each such subgroup E the group AutA∗(Sn)(E) is trivial. Furthermore the centralizer
CSn(E) is normal in CO×n (E) with cyclic quotient of order pk − 1.

Proof: a) First note that the group of field automorphisms of Qp(ζp) maps via restriction
isomorphically to the group of all abstract automorphisms of the multiplicative subgroup of
order p generated by ζp. Furthermore, by the Skolem - Noether Theorem any two embeddings
ϕ,ϕ′ of Qp(ζp) in Dn are conjugate, i.e. there exists u ∈ D×n such that ϕ(x) = uϕ′(x)u−1 for
each x ∈ Qp(ζp). These two facts imply immediately that the assertion on conjugacy classes
and automorphisms in part a) hold if O×n is replaced by D×n . To show them for O×n it suffices
therefore to show that in the Skolem - Noether Theorem one can take u of valuation 0. To
see this it is enough to note that the valuation on Dn and its restriction to the centralizer
CDn

(ϕ(Qp(ζp))) takes the same values. Now CDn
(ϕ(Qp(ζp))) is again a division algebra which

is a central division algebra over Qp(ζp) of dimension k2 and of invariant 1
k (s. [Ha, 20.2.16,

23.1.4]). Then the required property of the value groups follows easily from Theorem 14.3 in
[Rn].

If E ∼= Z/p ⊂ O×n then E generates a subfield which we can identify with Qp(ζp). Furthermore
CO×n (E) is just the intersection O×n ∩ CDn

(E) ∼= O×n ∩ CDn
(Qp(ζp)) which is precisely the

group of units in the maximal order of CDn
(Qp(ζp)). Thus the proof of a) is complete.

b) First we observe that for any E ∼= Z/p in Sn the group AutA∗(Sn)(E) is isomorphic to
NSn(E)/CSn(E), so it is a subquotient of a profinite p - group and hence a p - group. However,
the abstract isomorphism group is of order p − 1, i.e. of order prime to p, so we see that
AutA∗(Sn)(E) is trivial.
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The remaining parts of b) are now deduced from a). We know from (a) that F×q acts transi-
tively on the set of Sn - conjugacy classes of subgroups E ∼= Z/p. So in order to determine
the number of Sn - conjugacy classes it suffices to show that the order of the isotropy group
of this action is (p− 1)(pk − 1). Now the isotropy subgroup of E is equal to the image of the
normalizer NO×n (E) under the quotient map O×n −→ F×q . The image of the centralizer is of
order pk − 1 because CDn

(E) is of dimension k2 over Qp(ζp) and hence the residue field of
the maximal order of CDn

(E) has order pk. Again by a) the quotient NO×n (E)/CO×n (E) has
order p− 1. We claim that the image of the CO×n (E) in F×q continues to have index p− 1 in
the image of NO×n (E) and therefore the isotropy group has order as claimed.

Assume the image of CO×n (E) in F×q had index less than p−1 in the image of NO×n (E). By a)
again there would be a nontrivial automorphism α of E induced by conjugation by an element
y ∈ NO×n (E), and y = zx with z ∈ CO×n (E) and x ∈ Sn. However, then we would even have
x ∈ Sn ∩ NO×n (E) = NSn(E) = CSn(E), hence y ∈ CO×n (E) and this is in contradiction to
the non-triviality of α.

Finally, CSn(E) is normal in CO×n (E) with cyclic quotient of order pk−1 because CSn(E) is
the kernel of the surjective map from the units in COn

(E) to the units in the residue field of
COn(E) which is of order pk.

Remark: We remark that in case p = 2 Theorem 3.2.2 becomes trivial because there is a unique
central element of order 2, namely the element −1 ∈ On. However, in this case Proposition
2.10 implies that H∗Sn is finitely generated and free over a polynomial subalgebra on one
generator.

If p is odd, the number of conjugacy classes grows quickly with p and n, e.g. if p = 3 and
n = 2 we get 2 classes, and if p = 5 and n = 4 we get 39 classes. We will see in the remark
after the proof of 4.3 below that for p > 3 and n = p − 1 the map ρ of 2.10 is not mono in
dimension 2 and hence H∗Sn cannot be free over a polynomial subalgebra on one generator
as it was claimed in [Ra 2, 6.2.10b)].

3.3. We will now consider our main theorem for Sn in case n = p− 1 and we will assume that
p is odd, the case p = 2 being trivial.

Let E be a cyclic subgroup of order p in Sn. By 3.2.2 we know that CO×n (E) is given as the
group of units in the maximal order of Qp(ζp), which is equal to Zp[ζp]; in particular CO×n (E)
is abelian. In fact, the units Zp[ζp]× are well known to be (non-canonically) isomorphic to
Z/p× (Zp)n × Z/n and hence 3.2.2 yields CSn(E) ∼= Z/p× (Zp)n (see also the remark after
3.4 below). So the cohomology of CSn(E) is isomorphic to H∗(Z/p) ⊗ H∗(Zp)⊗n and can
be written as Fp[y]⊗ E(x)⊗ E(a1, · · · , an) where y has degree 2 and x and the elements aj

have degree 1. The following result (Theorem 1.9 of the introduction) is now an immediate
consequence of Corollary 1.7 and of Theorem 3.3.2.

THEOREM 3.3. Let p be an odd prime and n = p − 1. Then Sn has pn−1
(p−1)2 conjugacy

classes of subgroups which are isomorphic to Z/p and whose centralizers are all isomorphic
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to Z/p×(Zp)n. Choose representatives Ei, i = 1, . . . , pn−1
(p−1)2 from each conjugacy class. Then

the map

ρ : H∗Sn −→
∏

i

H∗CSn(Ei) ∼=
∏

i

Fp[yi]⊗ E(xi)⊗ E(ai,1, · · · , ai,n)

induced by the restriction maps has finite kernel and cokernel.

3.4. Now assume again that n = k(p − 1) with k arbitrary. The conjugation action of O×n
on Sn induces an action of (Fq)× on H∗Sn which is important in applications in homotopy
theory. The group (Fq)× acts also on

∏
(E) H∗CSn

(E) in such a way that the map ρ is (Fq)×

- linear. This action can be described as follows: Let E1 be a fixed cyclic subgroup of Sn of
order p. The action of NO×n (E1) on H∗CSn(E1) induces an action of the image of NO×n (E1)
in (Fq)×. We denote this image by N̄ . The product

∏
(E) H∗CSn(E) can be identified with

the representation of (Fq)× which is induced from that of N̄ on H∗CSn
(E1). With this F×q -

action on its target the map ρ is linear.

The following result explicitly describes the action of N̄ on CSn(E1) in case n = p − 1, and
hence gives an explicit description of the action of F×q on

∏
(E) H∗CSn(E) in this case. Note

that in case n = (p− 1) we have isomorphisms N̄ ∼= Z/n2 and CSn(E1) ∼= Z/p× (Zp)n.

PROPOSITION 3.4. Let n = p− 1. The action of N̄ ∼= Z/n2 on CSn(E1) factors through an
action of the quotient Z/n. As a Z/n - module CSn(E1) ∼= Z/p × (Zp)n splits as the direct
sum of the module Z/p (with the natural action of Z/n ∼= Aut(Z/p)) and the n different
one-dimensional representation of Z/n over the ring Zp.

Proof: The first statement follows because the image C̄ of CO×n (E1) (which is isomorphic to
Z/n) acts clearly trivially and hence the action factors through N̄/C̄ ∼= Z/n. This action
agrees by the Skolem - Noether Theorem with the action of the Galois group of the cyclotomic
extension which is well understood in number theory (see [W. p.301]).

Remark: By Proposition 3.4 it is clear that for a suitable choice of an isomorphism τ : Z/n −→
F×p and of elements y, x and aj the action of Z/n on H∗(Z/p × (Zp)n) ∼= Fp[y] ⊗ E(x) ⊗
E(a1, · · · , an) is described by the formula given in Theorem 1.10 of the introduction. In the
next section we will have to be even more specific with the choice of these generators so we
take the time now to explain this.

The valuation on Dn restricts to one on CDn
(E) and as in 3.1.2 we get a filtration on the

group CSn(E). If we identify CDn
(E) with Qp(ζp) then the maximal ideal in the maximal

order of CDn
(E) is generated by the element ζp − 1 of valuation 1

p−1 . Using the p - th power
map on the associated graded of this filtration one sees that a minimal set of topological
generators for CSn(E) is given by the element ζp of order p and any choice of elements ηj ,
j = 2, . . . , n + 1 with the property that ηj ≡ 1 + (ζp − 1)j mod(ζp − 1)j+1. Furthermore the
filtration is Z/n - invariant and because n is prime to p the elements ηj can be chosen to
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generate the different one dimensional representations of Z/n over Zp. With such a choice
mod p reduction gives a set of generators ζp, η2, . . . , ηn+1 of H1(Zp[ζp]×). If we take for x,
a2, . . . , an, an+1 =: a1 the dual basis in H1 and for y the Bockstein of x then the formula
given in 1.10 holds.

4. The case p = 3 and n = 2

4.1. In this section we will consider the case p = 3 and n = 2 in fair detail. This is the first
non-trivial case where our main theorem can be applied to get information on H∗Sn. By
Theorem 3.3. we find two conjugacy classes of Z/3’s in S2 whose centralizers are isomorphic
to Z/3 × (Z3)2. We will compute H∗S2, in particular we will show that the map ρ of 2.10
is a monomorphism and we will describe H∗S2 as a subalgebra of

∏2
i=1 F3[yi] ⊗ E(xi) ⊗

E(ai,1, ai,2).

First we recall a product decomposition of the group Sn. The algebra On has Zp as its center,
hence Z×p ∼= Z/(p−1)×Zp is central in O×n , i.e. Zp is central in Sn. Furthermore the reduced
norm which is a homomorphism from D×n to Q×p induces a homomorphism from Sn back to Zp

which is left inverse to the inclusion of the central Zp as long as n 6≡ 0mod p. In other words
the group Sn splits as a product Zp × S1

n of the central Zp with the kernel of the reduced
norm. Following Ravenel [Ra 2] we will call this kernel S1

n. Similarly the centralizers CSn(E),
E ∼= Z/p, split as CSn(E) ∼= CS1

n
(E) × Zp, and CS1

n
(E) ∼= Z/3 × Z3 if n = p − 1 = 2. The

action of the group Z/2 of Proposition 3.4 respects this splitting. In fact, Z/2 acts trivially
on the central Z3 and by −1 on CS1

n
(E).

We need to specify the elements yi, xi, ai,1 and ai,2. For this we pick a representative E1

of one of the two conjugacy classes and choose elements y1, x1, a1,1, a1,2 of H∗CS2(E1) as
in the remark after 3.4. If ω generates F×9 then ω2 generates the group N̄ of 3.4 and acts
on H∗CS2(E1) by ω2(y1) = −y1, ω2(x1) = −x1, ω2(a1,1) = −a1,1 and ω2(a1,2) = a1,2.
Furthermore, ρ will be linear with respect to the action of F×9 if we choose the classes y2,
x2, a2,1 and a2,2 such that ω(y1) = y2, ω(x1) = x2, ω(a1,1) = a2,1 and ω(a1,2) = a2,2. In
H∗CS1

2
(Ei) the class ai,2 is missing but otherwise the same formula holds. In the discussion

below we will change notation and write ai instead of ai,1 and ai
′ instead of ai,2.

With these preparations we can finally formulate the main result of this section.

THEOREM 4.2. a) Let p = 3 and n = 2. Then the map ρ of 2.10 is a monomorphism and
identifies H∗S2 with the subalgebra of

∏2
i=1 F3[yi]⊗E(xi)⊗E(ai, ai

′) generated by the classes
x1, x2, y1, y2, a1

′ + a2
′, x1a1 − x2a2, y1a1 and y2a2.

b) In particular H∗S2 is a finitely generated free module over F3[y1 + y2]⊗E(a1
′ + a2

′) with
8 generators which we can choose as follows: 1, x1, x2, y1, x1a1 − x2a2, y1a1, y2a2 and
y1x1a1.

Before we begin with the proof we compare this calculation with the one of Ravenel in [Ra 1,
Theorem 3.3]. After extension of scalars to F9 the two results have to agree. However, they do
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not. For example, according to Ravenel H∗S2 would be multiplicatively generated by classes
in degree 1 and 2 while in our computation the classes y1a1 and y2a2 are indecomposable
classes of degree 3. Furthermore, it is easy to see, that if one extends scalars to F9 in
Ravenel’s calculation, then the resulting algebra cannot be embedded into

∏2
i=1 F9[yi] ⊗

E(xi)⊗ E(ai, ai
′).

The two computations both give the same Poincaré series, however. Furthermore both compu-
tations give free modules over a polynomial generator of degree 2 which means that Ravenel’s
computation is not compatible with 2.10.

Because of the decomposition Sn
∼= Zp×S1

n it suffices to prove the following analogous result
for the group S1

n.

PROPOSITION 4.3. Assume p = 3 and n = 2.

a) The map ρ of 2.10 is a monomorphism and identifies H∗S1
2 with the subalgebra of∏2

i=1 F3[yi] ⊗ E(xi) ⊗ E(ai) generated by the classes x1, x2, y1, y2, x1a1 − x2a2, y1a1 and
y2a2.

b) In particular H∗S1
2 is a finitely generated free module over F3[y1 + y2] with 8 generators

which we can choose as follows: 1, x1, x2, y1, x1a1 − x2a2, y1a1, y2a2 and y1x1a1.

The crucial step in the proof of 4.3 is given by the following proposition.

PROPOSITION 4.4. Assume p = 3 and n = 2. There is a homomorphism S1
2 −→ Z/3

whose kernel K is torsion free and such that S1
2 is isomorphic to the semidirect product

K × Z/3. Furthermore H∗K is a Poincaré duality algebra of dimension 3 and as a Z/3
module H1K ∼= (F3)2 is isomorphic to the augmentation ideal I(Z/3) in the group algebra
F3[Z/3].

Proof of 4.4: We will make use of the filtration on S1
n which is induced from the filtration on

Sn that we discussed in 3.1. The central Zp in Sn is topologically generated by 1+ p ∈ F1Sn.
Furthermore an inspection of the formula for the reduced norm (cf. [M]) shows that it sends
FiSn onto p[i]Zp where [i] denotes the smallest integer which is bigger or equal to i, and that
it induces the trace map Tr : griSn

∼= Fq −→ Fp
∼= p[i]Zp/p[i]+1Zp if i is an integer. In

particular we obtain

griS
1
n
∼=

{
Fq if i /∈ N
KerTr : Fq −→ Fp if i ∈ N .

Furthermore the Lie bracket as well as the map P are given on grS1
n by the formula of Lemma

3.1.4.

So far p and n were general. Now assume p = 3 and n = 2. As we have noted in the remark
after the proof of 3.2.1, all non-trivial elements of order 3 in S2 have the form 1 + aS with
ā 6= 0 and ā + ā1+3+9 = 0, i.e ā4 = −1. (Recall that ā ∈ F9 denotes the residue class of
a ∈ O2.) In particular there is no ā ∈ F3 with this property. Therefore, if we identify F9
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with (Z/3)2, and if we divide out by F3, we get a homomorphism S1
2 −→ gr 1

2
S1

2 −→ Z/3
whose kernel K is torsionfree. Furthermore, as S1

2 contains elements of order 3 the group S1
2

is isomorphic to the semidirect product K × Z/3.

The group S2 is an analytic pro 3 - group of dimension 4 and hence S1
2 and K are analytic

pro 3 - groups of dimension 3, so by [La, V.2.5.8] H∗K is a Poincaré duality algebra of
dimension 3. To finish it suffices to show that H1K ∼= (Z/3)2 and that there are elements z1

and z2 in K which project to a basis z̄1 and z̄2 of H1K and such that, if x ∈ S1
2 is a suitable

non-trivial element of order 3, then xz1x
−1 = z1z2 modΦ(K) and xz2x

−1 = z2 modΦ(K)
where Φ denotes the Frattini subgroup.

Now it follows from Lemma 3.1.4 (by using [La, III.2.1.8]) that all elements in F2S2 ∩K are
third powers and hence H1K ∼= H1K̃ where K̃ denotes the group K/F2S2∩K. The filtration
of S2 induces one on K̃ and we obtain

griK̃ ∼=





F3 if i = 1
2

KerTr : F9 −→ F3 if i = 1
F9 if i = 3

2
0 otherwise .

Furthermore the Lie bracket gr 1
2
K̃ × gr1K̃ −→ gr 3

2
K̃ and the map P : gr 1

2
K̃ −→ gr 3

2
K̃ are

given by [ā, b̄] = āb̄3 − b̄ā and P ā = ā + ā1+3+9. With this it is easy to check that gr 3
2
K̃ is

generated by commutators and third powers and H1K ∼= K̃/gr 3
2
K̃ ∼= (Z/3)2.

The action of an element x ∈ Z/3 on H1K can now be read off from the commutator
formula in 3.1.4. Let z1 ∈ K and z2 ∈ K be elements in the appropriate filtration which
project nontrivially to gr 1

2
K resp. gr1K. The element x is represented by an element

x̄ ∈ gr 1
2
S2 with x̄4 = −1. Then xz2x

−1z2
−1 ∈ K ∩ F 3

2
S2 and hence gives zero in H1K.

Furthermore [x̄, z̄1] = x̄z̄3
1 − z̄1x̄

3. This is non-trivial and can be made equal to z̄2 if x is
chosen appropriately. In other words xz1x

−1 = z1z2 mod Φ(K) and we are done.

Proof of 4.3: We consider the spectral sequence of the group extension 1 → K → S1
2 →

Z/3 → 1 with E2 - term E∗,q
2

∼= H∗(Z/3; HqK). This is a spectral sequence of modules over
H∗Z/3 and the lines q = 0 and q = 3 are free H∗Z/3 - modules on one generator on the
vertical edge. Furthermore H2K ∼= H1K as Z/3 - module by Poincaré duality. The exact
sequence 0 → I(Z/3) → F3[Z/3] → F3 → 0 shows that for 0 ≤ q ≤ 3 the graded vector space
H∗(Z/3; HqK) is additively independent of q, and in fact this is true even as modules over the
polynomial subalgebra of H∗Z/3 generated by the periodicity generator in degree 2. Therefore
the spectral sequence collapses because by 1.9 we have H∗S1

2
∼= ∏2

i=1 F3[yi]⊗ E(xi)⊗ E(ai)
in large degrees, and a non-trivial differential would give too small a result.

In particular we see that H∗S1
2 is a free module of rank 8 over the polynomial subalgebra of

H∗Z/3 generated in degree 2. The module generators have degree 0, 1, 1, 2, 2, 3, 3, 4. By 2.10
we conclude that ρ is a monomorphism, and we compute the Poincaré series of the cokernel
of ρ to be 1 + 2t + t2. It remains to identify the image of ρ.
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Let us first consider H1; it is two dimensional and can be identified with the dual of gr 1
2
S1

2 .
For each Z/3 ⊂ S2 the basis element η3 in H1CS2(Z/3) (which was defined in the remark
after 3.4) maps trivially to gr 1

2
S2. Therefore the image of ρ in dimension 1 is contained in

the linear span of the elements xi and by a dimension argument is equal to this span.

The Bocksteins of x1 and x2 give the elements y1 and y2. However, H2S1
2 has dimension

3, so we need one more element. To identify it we consider the action of F×9 on H∗S2 and∏2
i=1 F3[yi] ⊗ E(xi) ⊗ E(ai) (as described in 4.1) and use the linearity of ρ. The subspace

generated by y1 and y2 is invariant under this action and because the order of F×9 is prime
to the characteristic we can assume that this last element is an eigenvector for the action of
the generator ω ∈ F×9 . Now there are only two eigenspaces of ω, with eigenvalue 1 resp. −1
and eigenvectors x1a1 + x2a2 resp. x1a1 − x2a2. By Lemma 4.5 below it is an eigenvector
with eigenvalue −1.

Finally ρ is onto in degrees 3, so we have determined the image of ρ and the missing parts of
the proposition follow easily.

Remark: We have remarked after 3.2.2 that the map ρ is not a monomorphism if n = p − 1
and p > 3. In fact, in this case we have again a decomposition Sn

∼= Zp × S1
n and H1S1

n
∼=

gr 1
n
S1

n
∼= (Z/p)n. As above one sees that for any E ∼= Z/p ⊂ S1

n the image of the restriction
map H1S1

n −→ H1CS1
n
(E) ∼= Fp[y] ⊗ E(x) ⊗ E(a1, . . . ap−1) is spanned by the class x. In

particular the product of any two one dimensional classes restricts trivially to all centralizers.
According to [Ra 2, Theorem 6.3.14] there are non-trivial products of one dimensional classes
as soon as p > 3 and hence ρ is not injective in degree 2.

LEMMA 4.5. Let p = 3 and n = 2. The action of F×9 on H2S1
2
∼= (Z/3)3 decomposes into

a direct sum of the subspace generated by y1 and y2 with ωy1 = y2, ωy2 = −y1 and a one
dimensional subspace on which ω acts by multiplication with −1.

Proof: The element ω ∈ F×9 can be lifted to a primitive 8-th root of unity in W2 ⊂ O2

which we will still call ω. The group extension that we used in 4.4 to investigate H∗S1
2 is

not invariant under the conjugation action x 7→ ωxω−1 and hence not suited for the problem
that we are considering here. Therefore we consider the subgroup F1S

1
2 := S1

2 ∩ F1S2 which
is invariant under the action of ω and normal in S1

2 with quotient gr 1
2
S1

2
∼= F9

∼= (Z/3)2. It
follows easily from [Lazard, V.2.2.7] that H∗F1S

1
2 is an exterior algebra on 3 classes in degree

1. We will prove the lemma by inspecting the spectral sequence

Ep,q
2

∼= Hp((Z/3)2,HqF1S
1
2) =⇒ Hp+qS1

2

and for this we need to understand the action of (Z/3)2 on H∗F1S
1
2 and the action of F×9 on

(Z/3)2 and on H∗F1S
1
2

The element ω2 is a primitive fourth root of unity for which we will write i. Together with the
unit element it forms a basis of F9 as an F3 vector space. Therefore the elements a = 1 + S

and b = 1 + iS project to a basis {ā, b̄} of gr 1
2
S1

n, while the elements c = 1 + iS2 = 1 + 3i,
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d = 1 + S3 and e = 1 + iS3 project to a basis {c̄, d̄, ē} in H1F1S
1
2 . Furthermore the relation

Sω = ω3S in O2 implies that the conjugation action of ω on gr 1
2
S1

2 resp. on H1F1S
1
2 is given

by the following formula:
ω∗ā = −b̄ , ω∗b̄ = ā

ω∗c̄ = c̄ , ω∗d̄ = −ē , ω∗ē = d̄ .

The action of ā and b̄ on H1F1S
1
2 can be read off from the commutator formula of 3.1.4 and

we obtain:
ā∗(d̄) = d̄, ā∗(ē) = ē , ā∗(c̄) = c̄ + ē

b̄∗(d̄) = d̄, b̄∗(ē) = ē , b̄∗(c̄) = c̄− d̄ .

With this information at hand we can look at the spectral sequence. The important groups for
us are E1,1

2 and E3,0
2 as modules over F×9 . A straightforward computation gives E1,1

2
∼= (Z/3)3

and E3,0
2

∼= (Z/3)4. Furthermore with respect to the ω-action E1,1
2 decomposes as a sum of

a two-dimensional eigenspace with eigenvalue −1 and a one-dimensional eigenspace with
eigenvalue 1 while E3,0

2 decomposes into a direct sum of two two-dimensional eigenspaces
with respective eigenvalues 1 and −1.

From the proof of 4.3 we know already that the classes x1 and x2 are represented on E1,0
2

and consequently the classes y1 and y2 are represented on E2,0
2 . Because we know already

that H2S1
n is of dimension 3 it follows that the kernel of the differential d2 : E1,1

2 −→ E3,0
2 is

at most one-dimensional, and because we also know that the classes x1y1 and x2y2 in E3,0
2

survive to E∞ the kernel is precisely one dimensional and gives the missing class in H2S1
2 .

We have to show that this kernel is contained in the −1 eigenspace of ω.

In fact, E3,0
3 , the quotient of E3,0

2 by the image of d2 is generated by x1y1 and x2y2 and is
a direct sum of two one-dimensional eigenspaces with eigenvalues 1 resp. −1. The decom-
position of E3,0

2 implies that the image of d2 is also a direct sum of two one-dimensional
eigenspaces with eigenvalues 1 resp. −1, and hence the decomposition of E1,1

2 gives that ω

acts by multiplication by −1 on the kernel of d2.

5. The case GL(n,Zp)

5.1. We start with a few general remarks on the continuous cohomology of the groups
GL(n,Zp). Mod pr - reduction defines maps from GL(n,Zp) to GL(n,Z/pr) with kernel
Γ(pr). The groups Γ(pr) form a decreasing sequence of closed subgroups with GL(n,Zp) ∼=
limGL(n,Zp)/Γ(pr). Furthermore, the quotients Γ(pr)/Γ(pr+1) are elementary abelian p -
groups (of rank n2) and hence Γ(p) ∼= limΓ(p)/Γ(pr) is a profinite p - group.

In particular, for a prime l 6= p, mod p - reduction induces an isomorphism in continuous co-
homology H∗(GL(n,Z/p);Fl) −→ H∗(GL(n,Zp);Fl) and hence H∗(GL(n,Zp);Fl) is known
by the work of Quillen [Q2]. However, if p = l, then very little seems to be known about
H∗(GL(n,Zp);Fp) = H∗GL(n,Zp) (from now on we will omit the coefficients again in our

20



notation). For example, studying mod p - reduction does not lead very far, because the mod
- p - cohomology of the quotient GL(n,Fp) is not known unless n is very small.

We will use our centralizer approach to compute H∗GL(n,Zp) in large dimensions in case
n = p − 1, p odd. The following result gives the necessary group theoretic information to
apply Theorem 1.4 resp. Corollary 1.7.

THEOREM 5.2. Let p be odd and n = p− 1.

a) The p - rank of GL(n,Zp) is equal to one and, up to conjugacy, there is a unique subgroup
E of GL(n,Zp) which is isomorphic to Z/p.

b) The centralizer CGL(n,Zp)(E) is isomorphic to Zp[ζp]× ∼= Z/p× (Zp)n × Z/(p− 1).

c) AutA∗(GL(n,Zp))(E) ∼= Z/n and the action of Z/n on CGL(n,Zp)(E) corresponds via the
isomorphism of (b) to the Galois action on Zp[ζp]× which was explicitly described in 3.4.

The crucial input for 5.2 is the following p-adic version of the theorem of Diederichsen and
Reiner [CR, Theorem (74.3)]. It can be proved in the same way as the integral version except
that some of the details simplify because class group phenomena dissappear in the p - adic
version.

THEOREM 5.3. Let G = Z/p and M a Zp[G] - module which is finitely generated and free as

Zp - module. Let F = Zp[G] be the free Zp[G]- module on one generator, T ∼= Zp the trivial

one dimensional module, and R = Zp[ζp] the ring of integers in the cyclotomic extension

Qp(ζp) with action of a generator g ∈ G given by gr = ζpr for r ∈ R.

Then

M ∼= F k ⊕ T l ⊕Rm

for a unique triple (k, l, m) of non-negative numbers.

Proof of 5.2: a) The Zp[G] - module R is isomorphic to (Zp)n as Zp - module which shows
that there is an embedding of G into GL(n,Zp). By Theorem 5.2 there is a unique Zp[G] -
module structure on (Zp)n for which the action is faithful which means that all subgroups E

of order p in GL(n,Zp) are conjugate. That the p - rank is not bigger than 1 will follow from
part b) because the p - rank of the centralizer of E is only 1.

b) We have isomorphisms CGL(n,Zp)(E) ∼= AutZp[E](R) and because the Zp[E] module struc-
ture on the ring R is pulled back from the R - module structure we also get AutZp[E](R) ∼=
AutR(R) ∼= R×.

c) The group AutA∗(GL(n,Zp))(E) is a subgroup of the group of all abstract automorphisms of
E and the Galois group of the cyclotomic extension realizes all of them through conjugations
in GL(n,Zp).

Using the notation of 3.3 and 3.4 we write H∗CGL(n,Zp)(E) ∼= Fp[y]⊗ E(x)⊗ E(a1, · · · , an).
The action of the Galois group is determined by 3.4. Combining Theorem 5.2 with Corollary
1.7 leads to the following result (Theorem 1.10 of the introduction).
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THEOREM 5.4. Let p be an odd prime, n = p − 1 and E ∼= Z/p ⊂ GL(n,Zp). Then the
restriction map

ρ : H∗GL(n,Zp) −→ (H∗CGL(n,Zp)(E))Z/n ∼= (Fp[y]⊗ E(x)⊗ E(a1, · · · , an))Z/n

has finite kernel and cokernel.

As in [A] one can analyze all p - rank one cases p − 1 ≤ n ≤ 2p − 3 further and reduce the
computation of H∗GL(n,Zp) in large dimensions to the computation of the cohomology of
GL(n− p + 1,Zp) and of appropriate congruence subgroups thereof. We leave the details to
the interested reader.

5.5. We finish with a brief discussion of the case p = 3 and n = 2. This case is simple enough
that one could do it directly with standard methods. However, we include it here as another
example illustrating our theory and how the map ρ of 1.7 may fail to be an isomorphism in
small dimensions.

The situation is very similar to that of the group S2 for the prime 3 that we discussed in section
4. Using the same notation as in 4.1 we write H∗CGL(2,Z3)(Z/3) ∼= Fp[y] ⊗ E(x) ⊗ E(a, a′)
where y is of degree 2 and all the other classes are of degree 1 and the action of the non-trivial
element g in the Galois group is trivial on a′ and multiplies all other generators by −1. In
particular, the ring of invariants (F3[y]⊗E(x)⊗E(a, a′))Z/2 is equal to the subring generated
by the elements y2, yx, ya, xa and a′. This is a free module of rank 4 over F3[y2]⊗ E(a′) on
generators 1, yx, ya and xa.

PROPOSITION 5.5. The restriction map ρ : H∗GL(2,Z3) −→ (H∗CGL(2,Z3)(Z/3))Z/2 ∼=
(F3[y]⊗E(x)⊗E(a, a′))Z/2 is a monomorphism and identifies H∗GL(2,Z3) with the subalgebra
F3[y2]⊗ E(yx, ya)⊗ E(a′) of the invariants.

Proof: First we note that GL(n,Zp) is isomorphic to Zp ×GL1(n,Zp) where GL1(n,Zp) de-
notes the subgroup of GL(n,Zp) which is the preimage of Z/p−1 ⊂ Z×p under the determinant
map. In fact, Z×p ∼= Zp×Z/p− 1 identifies with the center of GL(n,Zp) and the composition
with the determinant is multiplication by n, hence an isomorphism on the Zp summand of
Z×p if n 6≡ 0mod p. Furthermore, H∗GL1(n,Zp) ∼= (H∗SL(n,Zp))Z/p−1, and hence 5.5 will
follow from the following result for the special linear group.

First note that if one works with SL(2,Z3) instead of GL(2,Z3) then one still has a unique
subgroup Z/3 up to conjugacy with centralizer CSL(2,Z3)

∼= Z/2×Z/3×Z3 and H∗CSL(2,Z3)(E)
∼= F3[y]⊗E(x)⊗E(a). Furthermore, in this case AutA∗(SL(2,Z3))(Z/3) is the trivial group so
that in large degrees H∗SL(2,Z3) ∼= F3[y]⊗ E(x)⊗E(a) by 1.7.

PROPOSITION 5.6. The restriction map ρ : H∗SL(2,Z3) −→ H∗CSL(2,Z3)(Z/3)) ∼= F3[y]⊗
E(x, a) is a monomorphism and identifies H∗SL(2,Z3) with F3[y]⊗ E(x, ya).
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Proof: We consider the mod 3 reduction map SL(2,Z3) −→ SL(2,F3). The kernel K is
a torsion free 3 - dimensional analytic pro 3 - group and hence H∗K is a 3 - dimensional
Poincaré duality algebra by [La,V.2.5.8]. Now consider the graded Lie algebra associated to
the decreasing filtration of SL(2,Z3) by the kernels of mod 3k reduction, k = 1, 2, . . . . It is
easy to see from this Lie algebra, say as in the proof of 4.4, that H1K ∼= (F3)3. Furthermore,
using [La,V.2.2.7] we see that H∗K is exterior on the 3 generators in degree 1.

Now we consider the spectral sequence of the extension

1 −→ K −→ SL(2,Z3) −→ SL(2,F3) −→ 1

with E∗,q
2

∼= H∗(SL(2,F3); HqK). The group SL(2,F3) acts necessarily trivial on H3K

because there are no non-trivial homomomorphisms from SL(2,F3) to GL(1,F3). Next one
can check that the invariants of H1K with respect to the action of the 2 - Sylow subgroup Q8 of
SL2(F3) are trivial. Because Q8 is normal in SL(2,F3) this implies H∗(SL(2,F3); H1K) = 0
and by Poincaré duality we also have H∗(SL(2,F3); H2K) = 0. Finally the restriction map to
the 3 - Sylow subgroup is well known to induce an isomorphism H∗SL(2,F3) ∼= H∗Z/3 and so
our spectral sequencs has just 2 non-trivial rows at E2, which are both isomorphic to H∗Z/3.
As in the proof of 4.3 we see now that the spectral sequence has to collapse; a non-trivial
differential would lead to a result which is too small to be compatible with 1.7. Then the
spectral sequence shows that H∗SL(2,Z3) is free over F3[y] and hence ρ is injective. It is clear
that the elements x and y are in the image of ρ and by a counting dimensions one sees that ρ

is an isomorphism in degrees 3 and bigger, in particular the image of ρ is F3[y]⊗E(x, ya).
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