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PERMUTATIVE G-CATEGORIES IN EQUIVARIANT INFINITE

LOOP SPACE THEORY

B.J. GUILLOU AND J.P. MAY

Abstract. We explain what genuine permutative G-categories are and, more
generally, what E∞ G-categories are. We give examples showing how they
arise, and we show that they serve as input for an equivariant infinite loop
space machine. As a first application, we prove the equivariant Barratt-Priddy-
Quillen theorem as a statement about genuine G-spectra and use it to give a
new, categorical, proof of the tom Dieck splitting theorem for suspension G-
spectra. Other examples are geared towards equivariant algebraic K-theory.
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Introduction

Let G be a finite group. We shall develop equivariant infinite loop space theory
in a series of papers. In this one, we explain what genuine permutative G-categories
are and what E∞ G-categories are, and we explain how to construct a genuine G-
spectrum KGA from a genuine permutative G-category A or, more generally, from
an E∞ G-category. We use this theory to prove the equivariant Barratt-Priddy-
Quillen theorem and to reprove the tom Dieck splitting theorem for suspension G-
spectra, starting from categorical data. We also explain how to construct a natural
comparison map KGA ∧KGB −→ KG(A ×B), that being a small step towards a
multiplicative extension of the additive recognition principle for G-spectra.

This material allows us to complete the proofs from equivariant infinite loop
space theory promised in [11], where we described the category of G-spectra as
an easily understood category of spectral presheaves. We use the second author’s
approach [20] to infinite loop space theory in this paper, but we could instead use
Segal’s [34]. In one sequel [2], we will give a multiplicative extension of the theory
here that will show how to pass from multicategorical input to genuine G-spectra
output. That is needed, for example, in applications to equivariant algebraic K-
theory. Elsewhere we plan to study equivariant infinite loop space theory model
theoretically and to give a highly structured comparison of the May and Segal
approaches to infinite loop space theory, equivariantly and non-equivariantly.

After recalling preliminaries about equivariant universal bundles and equivariant
E∞ operads in §1, we give operadic definitions of naive and genuine permutative
G-categories in §2. The latter are defined in terms of a particular E∞ operad
OG of G-categories. We define an E∞ G-category to be an algebra over any E∞

operad PG of G-categories. Of course, this is analogous to the distinction between
topological monoids, which are algebras over a particular A∞-operad, and A∞

spaces, which are algebras over any A∞ operad.
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In the brief and parenthetical §2.5, we point out how these ideas and our prequel
with Merling [12] specialize to give a starting point for equivariant algebraic K-
theory [7, 10, 15, 31]. We give an alternative and equivalent starting point in the
case of G-rings R in §8.2.

We give a precise description of the G-fixed E∞ categories of free OG-categories
in §3. This is a categorical precursor of the equivariant Barratt-Priddy-Quillen
(BPQ) theorem, which we prove in §5.1, and the tom Dieck splitting theorem for
suspension G-spectra, which we reprove in §5.2. The proofs are based on use of
an equivariant infinite loop space machine that is reviewed in §4. We show how
to construct the map KGA ∧ KGB −→ KG(A ×B) and prove some naturality
properties of the BPQ theorem and the tom Dieck splitting in §6. These results
complete the proofs promised in [11], as we clarify in §6.3.

Changing focus, in §7 and §8 we give three interrelated examples of E∞ G-
operads, denoted PG, QG, and RG, and give examples of their algebras. This
approach to examples is more intuitive than the approach based on genuine permu-
tativeG-categories, and it has some technical advantages. It is new and illuminating
even nonequivariantly. It gives a more intuitive categorical hold on the BPQ the-
orem than does the treatment starting from genuine permutative G-categories, as
we explain in §9.3. It also gives a new starting point for multiplicative infinite loop
space theory, both equivariantly and nonequivariantly, but that is work in progress.

We emphasize that this paper is full of open ends. Given that much of equivariant
infinite loop space theory has been at least partially understood for three decades,
it is surprising how very underdeveloped the subject remains.

Notational preliminaries. A dichotomy between Hom objects with G-actions,
denoted using a subscript G, and Hom objects of equivariant morphisms, often
denoted using a G in front, is omnipresent. We start with an underlying category
V . A G-object X in V can be defined to be a group homomorphism G −→ AutX .
We have the category VG of G-objects in V and all morphisms in V between them,
with G acting by conjugation. We also have the category GV of G-objects in
V and G-maps in V . Since objects are fixed by G, GV is in fact the G-fixed
category (VG)

G, although we shall not use that notation. However, we shall use
the notations GV (X,Y ) and VG(X,Y )G interchangeably for the hom object in V

of G-morphisms in V between G-objects X and Y .
Our most frequently used choices of V are Cat and U , the category of (small)

topological categories and the category of unbased (compactly generated) spaces.
We let T denote the category of based spaces. We assume once and for all that
the base points ∗ of all given based G-spaces X (or spaces X when G = e) are
nondegenerate. This means that ∗ −→ X is a cofibration (satisfies the G-HEP).
Then ∗ −→ XH is a cofibration for all H ⊂ G.

For brevity of notation, we shall often but not always write |−| for the composite
classifying space functor B = |N − | from topological categories through simplicial
spaces to spaces. It works equally well to construct G-spaces from topological G-
categories (on which G acts continuously). We assume that the reader is familiar
with operads (as originally defined in [20]) and especially with the fact that operads
can be defined in any symmmetic monoidal category V . Brief modernized expo-
sitions are given in [25, 26]. Since it is product-preserving, the functor | − | takes
operads in Cat or in GCat to operads in U or in GU , and it takes algebras over
an operad C in Cat or in GCat to algebras over the operad |C | in U or in GU .
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To avoid proliferation of letters, we shall write PG for the monad on based G-
categories constructed from an operad PG of G-categories. We shall write PG for
the monad on based G-spaces constructed from the operad |PG| of G-spaces. More
generally, for an operad CG of unbased G-spaces, we write CG for the associated
monad on based G-spaces.

Acknowledgements. The first author thanks Nat Stapleton for very helpful dis-
cussions leading to the rediscovery of the operad OG, which was in fact first defined,
but not used, by Shimakawa [35, Remark, p. 255]. The second author thanks Mona
Merling for many conversations and questions that helped clarify ideas.

1. Preliminaries on universal equivariant bundles and operads

We describe an elementary categorical functor CatG(G̃,−) and use it to define
a certain operad OG of G-categories. The OG-algebras will be the genuine permu-
tative G-categories. With Merling, we have explored this functor in detail in the
context of equivariant bundle theory [12], and we refer the reader there for proofs.

We shall say nothing about equivariant bundle theory here, except to note the
following parallel. In [20], an operad C of spaces was defined to be an E∞ operad if
C (j) is a free contractible Σj-space. Effectively, C (j) is then a universal principal
Σj-bundle. Equivariantly, we have an analogous picture: E∞ operads CG of G-
spaces are defined so that the CG(j) are universal principal (G,Σj)-bundles. That
dictates the appropriate homotopical properties of the CG(j), and it is only those
homotopical properties and not their bundle theoretic consequences that concern us
in the theory of operads. The bundle theory implicitly tells us which homotopical
properties are relevant to equivariant infinite loop space theory.

1.1. Chaotic topological categories. For (small) categories A and B, we let
Cat(A ,B) denote the category whose objects are the functors A −→ B and whose
morphisms are the natural transformations between them. When B is a right Π-
category, its Π-action induces a right Π-action on Cat(A ,B), which we take for
granted and do not indicate notationally. When a group G acts from the left on A

and B, we let CatG(A ,B) denote Cat(A ,B) with its left G-action by conjugation
on objects and morphisms. Then GCat(A ,B) is alternative notation for theG-fixed
category CatG(A ,B)G of G-functors and G-natural transformations. We have the
standard (G-equivariant) adjunction

(1.1) CatG(A ×B,C ) ∼= CatG(A ,CatG(B,C )).

Definition 1.2. For a space X , the chaotic (topological) category X̃ has object
space X , morphism space X × X , and structure maps I, S, T , and C given by
I(x) = (x, x), S(y, x) = x, T (y, x) = y, and C((z, y), (y, x)) = (z, x). For any point
∗ ∈ X , the map η : X −→ X ×X specified by η(x) = (∗, x) is a continuous natural

isomorphism from the identity functor to the trivial functor X̃ −→ ∗, hence X̃
is equivalent to ∗. When X = G is a topological group, G̃ is isomorphic to the
translation category of G, but the isomorphism encodes information about the
group action and should not be viewed as an identification; see [12, 1.7]. We say

that a topological category with object space X is chaotic if it is isomorphic to X̃.

Definition 1.3. For a topological group Π, let Π denote Π regarded as a category
with a single object and observe that Π is isomorphic to the orbit category Π̃/Π,

where Π acts from the right on Π̃ via right multiplication on objects and diagonal
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right multiplication on morphisms. The resulting functor p : Π̃ −→ Π is given by
the trivial map Π −→ ∗ of object spaces and the map p : Π×Π −→ Π×Π/Π ∼= Π

on morphism spaces specified by p(τ, σ) = τσ−1.

Theorem 1.4. [12, 2.7] For a G-space X and a topological group Π, regarded as

a G-trivial G-space, the functor p : Π̃ −→ Π induces an isomorphism of topological
G-categories

ξ : CatG(X̃, Π̃)/Π −→ CatG(X̃,Π).

Therefore, passing to G-fixed point categories,

(CatG(X̃, Π̃)/Π)
G ∼= CatG(X̃,Π)G ∼= Cat(X̃/G,Π).

The last isomorphism is clear since G acts trivially on Π. Situations where G
is allowed to act non-trivially on Π are of considerable interest, as we shall see in
§2.5, but otherwise they will only appear peripherally in this paper. The paper [12]
works throughout in that more general context. The previous result will not be
used directly, but it is the key underpinning for the results of the next section.

1.2. The functor CatG(G̃,−). The functor CatG(G̃,−) from G-categories to G-
categories is a right adjoint (1.1), hence it preserves limits and in particular prod-

ucts. The projection G̃ −→ ∗ to the trivial G-category, induces a natural map

(1.5) ι : A = CatG(∗,A ) −→ CatG(G̃,A ).

The map ι is not an equivalence of G-categories in general [12, 4.19], but the functor

CatG(G̃,−) is idempotent in the sense that the following result holds.

Lemma 1.6. For any G-category A ,

ι : CatG(G̃,A ) −→ CatG(G̃,CatG(G̃,A ))

is an equivalence of G-categories.

Proof. This follows from the adjunction (1.1) using that the diagonal G̃ −→ G̃× G̃
is a G-equivalence with inverse given by either projection and that the specialization
of ι here is induced by the first projection. �

Assumption 1.7. We assume for now that Π is either a compact Lie group or a
discrete group and that G is a discrete group. Later both Π and G will be finite.

Lemma 1.8. [12, 3.7] Let Λ be a subgroup of Π × G. The Λ-fixed category

CatG(G̃, Π̃)Λ is empty if Λ∩Π 6= e. If Λ∩Π = e, let H = q(Λ), where q : Π×G −→ G
is the projection, and define α : H −→ Π by letting α(h) be the unique element of Π
such that (α(h), h) ∈ Λ. Then α is a homomorphism, Λ = Λα ≡ {(α(h), h)|h ∈ H},
and CatG(G̃, Π̃)

Λ is nonempty and chaotic.

Definition 1.9. Let R(H,Π) be the category with objects the homomorphisms
α : H −→ Π and morphisms σ : α −→ β the conjugacy relations β = σασ−1,
where σ ∈ Π. Let R−(H,Π) be the category with objects the anti-homomorphisms
α : H −→ Π and morphisms σ : α −→ β the conjugacy relations β = σασ−1.

These categories are isomorphic [12, 4.13], but R−(H,Π) appears naturally.

Theorem 1.10. [12, 4.14, 4.18] The G-fixed category CatG(G̃,Π)G is isomorphic

to R−(G,Π) and therefore to R(G,Π). For H ⊂ G, CatG(G̃,Π)H is equivalent

to CatH(H̃,Π)H and therefore to R(H,Π). In turn, R(H,Π) is equivalent to the
coproduct of the categories Aut(α), where the coproduct runs over [α] ∈ H1(H ; Π).
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Lemma 1.11. [12, §§4.3, 4.4] The set H1(H ; Π) is the set of Π-conjugacy classes
of homomorphisms α : H −→ Π, and it is in bijective correspondence with the set
of Π-conjugacy classes of subgroups Λ of Π×G such that Λ∩Π = e and q(Λ) = H.
The group Aut(α) is the centralizer Πα of α in Π, namely

Πα = {σ ∈ Π|α(h) = σα(h)σ−1 for h ∈ H},

and it is equal to the intersection Π ∩NΠ×GΛα.

Definition 1.12. Define E(G,Π) = |CatG(G̃, Π̃)| and B(G,Π) = |CatG(G̃,Π)|.
Let p : E(G,Π) −→ B(G,Π) be induced by the passage to orbits functor Π̃ −→ Π.

Theorem 1.13. [12, 3.11] The map p : E(G,Π) −→ B(G,Π) is a universal prin-
cipal (G,Π)-bundle.

Theorem 1.14. [12, 4.23, 4.24] For a subgroup H of G,

B(G,Π)H ≃
∐

B(Πα),

where the union runs over [α] ∈ H1(H ; Π).

1.3. Equivariant E∞ operads. Since operads make sense in any symmetric mon-
oidal category, we have operads of categories, spaces, G-categories, and G-spaces.
Operads in GU were first used in [17, VII]. Although we are only interested in finite
groups G in this paper, the following definition makes sense for any topological
group G and is of interest in at least the generality of compact Lie groups.

Definition 1.15. An E∞ operad CG of G-spaces is an operad in the cartesian
monoidal category GU such that CG(0) is a contractible G-space and the (Σj×G)-
space CG(j) is a universal principal (G,Σj)-bundle for each j ≥ 1. Equivalently, for
a subgroup Λ of Σj×G, the Λ-fixed point space CG(j)

Λ is contractible if Λ∩Σj = {e}
and is empty otherwise. We say that CG is reduced if CG(0) is a point. An E∞

operad PG of (topological) G-categories is an operad in the cartesian monoidal
category GCat such that |PG| is an E∞ operad of G-spaces. We say that PG

is reduced if PG(0) is the trivial category. In practice, the PG(j) are groupoids,
hence are contractible as categories.

As is usual in equivariant bundle theory, we think of G as acting from the left
and Σj as acting from the right on the spaces CG(j) and categories PG(j). These
actions must commute and so define an action of Σj ×G.

Remark 1.16. We will encounter one naturally occuring operad that is not re-
duced. When an operad C acts on a space X via maps θi and we choose points
ci ∈ C (i), we have a map θ0 : C (0) −→ X and the relation

θ2(c2; θ0(c0), θ1(c1, x)) = θ1(γ(c2; c0, c1), x)

for x ∈ X . When the C (i) are connected, this says that θ0(c0) is a unit element for
the product determined by c2. Reduced operads give a single unit element. The
original definition [20, 1.1] required operads to be reduced.

Lemma 1.17. If CG is an E∞ operad of G-spaces, then C = (CG)
G is an E∞

operad of spaces. If Y is a CG-space, then Y
G is a C -space. Similarly, if PG is an

E∞ operad of G-categories, then P = (PG)
G is an E∞ operad of categories. If A

is a PG-category, then A G is a P-category.
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Proof. (CG)
G is an operad since the fixed point functor commutes with products,

and it is an E∞ operad since the space CG(j)
G is contractible and Σj-free. The

categorical analogue works the same way. �

2. Categorical philosophy: what is a permutative G-category?

2.1. Naive permutative G-categories. We have a notion of a monoidal category
A internal to a cartesian monoidal category V . It is a category internal to V

together with a coherently associative and unital product functor A ×A −→ A .
It is strict monoidal if the product is strictly associative and unital. It is symmetric
monoidal if it has an equivariant symmetry isomorphism γ : A × A −→ A × A

satisfying the usual coherence properties.
A permutative category is a symmetric strict monoidal category.1 Taking V to

be U , these are the topological permutative categories. Taking V to be GU , these
are the naive topological permutative G-categories.

Nonequivariantly, there is a standard E∞ operad of spaces that is obtained
by applying the classifying space functor to an E∞ operad O of categories. The
following definition goes back to Barratt and Eccles, thought of simplicially [3], and
to [21], thought of categorically.

Definition 2.1. We define an E∞ operad O of categories. Let O(j) = Σ̃j . Since Σj
acts freely and Σ̃j is chaotic, the classifying space |O(j)| is Σj-free and contractible,
as required of an E∞ operad. The structure maps

γ : Σ̃k × Σ̃j1 × · · · × Σ̃jk −→ Σ̃j ,

where j = j1+ · · ·+ jk, are dictated on objects by the definition of an operad. If we
view the object sets of the O(j) as discrete categories (identity morphisms only),
then they form the associativity operad M .

We can define M -algebras and O-algebras in Cat or in GCat. In the latter
case, we regard M and O as operads with trivial G-action. The following result
characterizes naive permutative G-categories operadically. The proof is easy [21].

Proposition 2.2. The category of strict monoidal G-categories and strict monoidal
G-functors is isomorphic to the category of M -algebras in GCat. The category of
naive permutative G-categories and strict symmetric monoidal G-functors is iso-
morphic to the category of O-algebras in GCat.

The term “naive” is appropriate since naive permutative G-categories give rise
to naive G-spectra on application of an infinite loop space machine. Genuine per-
mutative G-categories need more structure, especially precursors of transfer maps,
to give rise to genuine G-spectra. Nonequivariantly, there is no distinction.

2.2. Genuine permutative G-categories.

Definition 2.3. Let OG = CatG(G̃,O) be the (reduced) operad of G-categories

whose jth G-category is OG(j) = CatG(G̃,O(j)), where O(j) = Σ̃j is viewed as a
G-category with trivial G-action and is given its usual right Σj-action. The unit in

OG(1) is the unique functor from G̃ to the trivial categoryO(1) = OG(1). The struc-

ture maps γ of OG are induced from those of O, using that the functor Cat(G̃,−)
preserves products. By Theorem 1.13, OG is an E∞ operad of G-categories. The

1In interesting examples, the product cannot be strictly commutative.
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natural map ι : A −→ CatG(G̃,A ) of (1.5) induces an inclusion ι : O −→ OG of
operads of G-categories, where G acts trivially on O.

Definition 2.4. A genuine permutative G-category is an OG-algebra in GCat.

We generally call these OG-categories. We have an immediate source of examples.
Let ι∗ be the functor from genuine permutative G-categories to naive permutative
G-categories that is obtained by restricting actions by OG to its suboperad O.

Proposition 2.5. The action of O on a naive permutative G-category B induces
an action of OG on CatG(G̃,B), hence CatG(G̃,−) restricts to a functor, denoted
G , from naive permutative G-categories to genuine permutative G-categories. The
natural map ι of (1.5) restricts to a natural map B −→ ι∗G B of naive permutative
G-categories, and ι is an equivalence when B = ι∗G A for an O-category A .

Proof. Since the functor CatG(G̃,−) preserves products and ι is induced by the

projection G̃ −→ ẽ = ∗, the first two statements are clear by inspection. The last
statement holds by Lemma 1.6. �

One might hope that (G , ι∗) is an adjoint pair, but the left adjoint to ι∗ can be
described as a coend OG ⊗O B. That maps naturally to G , but the map is not an
isomorphism.

The OG-categories of interest in this paper are of the form GA for a naive per-
mutative G-category A . In fact, we do not know how to construct other examples.

Remark 2.6. As noted before, the map ι : A −→ ι∗G A is not a G-equivalence
in general [12, 4.19], although it is so when A = ι∗G B. We shall relate ι∗ to the
forgetful functor i∗ from genuine G-spectra to naive G-spectra in §4.4 below.

2.3. E∞ G-categories. We can generalize the notion of a genuine permutative
G-category by allowing the use of E∞ operads other than OG. In fact, thinking
as algebraic topologists rather than category theorists, there is no need to give the
particular E∞ operad OG a privileged role.

Definition 2.7. An E∞ G-category A is a G-category together with an action of
some E∞ operad PG of G-categories. The classifying space BA = |A | is then a
|PG|-space and thus an E∞ G-space.

We may think of E∞ G-categories as generalized kinds of genuine permutative
G-categories. The point of the generalization is that we have interesting examples of
E∞ operads of G-categories with easily recognizable algebras. We shall later define
E∞ operads PG, QG, and RG that are interrelated in a way that illuminates the
study of multiplicative structures.

Observe that OG-algebras, like nonequivariant permutative categories, have a
canonical product, whereasE∞ G-categories over other operads do not. The general
philosophy of operad theory is that algebras over an operad C in any suitable
category V have j-fold operations parametrized by the objects C (j). Homotopical
properties of C relate these operations. In general, in an E∞ space, there is no
preferred choice of a product on its underlying H-space, and none is relevant to the
applications; E∞ categories work similarly.

Up to homotopy, any two choices of E∞ operads give rise to equivalent cate-
gories of E∞ G-spaces. To see that, we apply the trick from [20] of using products
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of operads to transport operadic algebras from one E∞-operad to another. The
product of operads C and D in any cartesian monoidal category V is given by

(C ×D)(j) = C (j)×D(j),

with the evident permutations and structure maps. With the choices of V of interest
to us, the product of E∞ operads is an E∞ operad. The projections

C ←− C ×D −→ D

allow us to construct (C ×D)-algebras in V from either C -algebras or D-algebras
in V , by pullback of action maps along the projections.

More generally, for any map µ : C −→ D of operads in V , the pullback functor
µ∗ from D-algebras to C -algebras has a left adjoint pushforward functor µ! from
C -algebras to D-algebras. One can work out a homotopical comparison model
categorically2. Pragmatically, use of the two-sided bar construction as in [20, 27]
gives all that is needed. One redefines µ!X = B(D,C, X), where C and D are the
monads whose algebras are the C -algebras and D-algebras.3 In spaces, or equally
well G-spaces, µ∗ and µ! give inverse equivalences of homotopy categories between
C -algebras and D-algebras when C and D are E∞-operads.

Starting with operads in Cat or in GCat we can first apply the classifying space
functor and then apply this trick. The conclusion is that all E∞ categories and E∞

G-categories give equivalent inputs for infinite loop space machines. In particular,
for example, letting OG, PG, and OG ×PG denote the monads in the category of
G-spaces whose algebras are |PG|-algebras, |OG|-algebras, and |OG×PG|-algebras,
we see that after passage to classifying spaces, every PG-algebra Y determines an
OG-algebra X = B(OG,OG ×PG, Y ) such that X and Y are weakly equivalent as
(OG ×PG)-algebras (and conversely). This says that for purposes of equivariant
infinite loop space theory, PG and OG can be used interchangeably, regardless of
how their algebras compare categorically.

2.4. What are genuine symmetric monoidal G-categories? This philosophy
allows us to do the mathematics that we care about without worrying about the
categorical underpinnings. Arguing with product operads as above, if A is an E∞

G-category, then A G is an E∞ category and is therefore weakly equivalent (in
the homotopical sense) to an O-algebra and thus to a permutative category. That
allows us to work with the nonequivariant fixed point categories that we are after
just as if they were permutative categories.

However, thinking as category theorists, there is a very significant practical gap
in this philosophy. In principle, the definition of a genuine permutative G-category
as an OG-algebra requires the use of all of the OG(j). In contrast, Proposition 2.2
tells us that we can recognize O-algebras as naive permutative G-categories, which
are defined much more simply using only details about that part of the structure
given by use of the O(j) for j ≤ 3. We do not have a comparably simple algebraic
way of recognizing OG-algebras when we see them.

As we have said, nonequivariant permutative categories are the same thing as
symmetric strict monoidal categories. Symmetric monoidal categories are what we
most usually encounter “in nature”, and we then either notice naturally occurring
equivalent permutative categories or rigidify to construct equivalent permutative

2See [1]; we plan to give a model theoretical development elsewhere.
3Of course, this is an abuse of notation, since µ! here is really a derived functor.
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categories. This works in precisely the same way for naive symmetric monoidal and
naive permutative G-categories.

However, we do not currently have a fully satisfactory definition of genuine sym-
metric monoidal G-categories. There is a known but not explicit solution to this
problem in general categorical terms. It runs as follows. There is a well understood
2-monad in the 2-category Cat whose algebras are the permutative categories [14].
We can construct analogous 2-monads in GCat whose algebras are the naive and
genuine permutative G-categories. There is a well-defined notion of a pseudo-
algebra over such a monad T , and there is a coherence theorem saying that any
pseudo-algebra over T is pseudo-equivalent to a strict algebra [16, 4.4]. In principle,
this solves the problem: a pseudo-algebra over the 2-monad in GCat that defines
genuine permutative G-categories gives a reasonable notion of a genuine symmetric
monoidal G-category. Another solution might be in terms of a tree operad express-
ing free symmetric monoidal G-categories. We want something more concrete, but
we have not pursued the question.

2.5. Equivariant algebraic K-theory. The most interesting non-equivariant per-
mutative categories are given by categories A =

∐
Πn, where {Πn|n ≥ 0} is a

sequence of groups (regarded as categories with a single object) and where the
permutative structure is given by an associative and unital system of pairings
Πm ×Πn −→ Πm+n. Then the pairings give the classifying space BA =

∐
BΠn a

structure of topological monoid, and one definition of the algebraic K-groups of A

is the homotopy groups of the space ΩB(BA ).
Equivariantly, it is sensible to replace the spaces BΠn by the classifying G-

spaces B(G,Πn) and proceed by analogy. This definition of equivariant algebraic
K-groups was introduced and studied calculationally in [10]. It is the equivariant
analogue of Quillen’s original definition in terms of the plus construction. With
essentially the same level of generality, the analogue of Quillen’s definition in terms
of the Q-construction has been studied by Dress and Kuku [7, 15]. Shimada [36]
has given an equivariant version of Quillen’s “plus = Q” theorem in this context.

Regarding A as a G-trivial naive permutative G-category, we have that the clas-
sifying G-space of the genuine permutative G-category G A is the disjoint union
of classifying spaces B(G,Πn). Just as nonequivariantly, the functor ΩB can be
replaced by the zeroth space functor Ω∞

G EG of an infinite loop G-space machine EG.
The underlying equivariant homotopy type is unchanged. Therefore, we may rede-
fine the algebraic K-groups to be the homotopy groups of the genuine G-spectrum
KGA ≡ EGBG A . Essentially the same definition is implicit in Shimakawa [35],
who focused on an equivariant version of Segal’s infinite loop space machine.

Applying the functor G to naive permutative G-categories A with non-trivial G-
actions gives more general input for equivariant algebraic K-theory than has been
studied in the literature. This allows for G-actions on the groups Πn, and we then
replace B(G,Πn) by classifying G-spaces B(G, (Πn)G) for the (G, (Πn)G)-bundles
associated to the split extensions Πn ⋊ G. Such classifying spaces are studied in
[12]. Alternative but equivalent constructions of the associated G-spectra KGA

are given §4.5 and §8.2 below. The resulting generalization of equivariant algebraic
K-theory will be studied in [31].
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3. The free |OG|-space generated by a G-space X

The goal of this section is to obtain a decomposition of the fixed point categories
of free permutative G-categories. This decomposition will be the crux of the proof
of the tom Dieck splitting theorem given in section 5.2.

3.1. The monads OG and OG associated to OG. Recall that OG is reduced.
In fact, both OG(0) and OG(1) are trivial categories. As discussed for spaces in
[27, §4], there are two monads on G-categories whose algebras are the genuine
permutative G-categories. The unit object of an OG-category can be preassigned,
resulting in a monad OG on based G-categories, or it can be viewed as part of the
OG-algebra structure, resulting in a monad OG+ on unbased G-categories. Just as
in [27], these monads are related by

OG(A+) ∼= OG+A ,

where A+ = A ∐ ∗ is obtained from an unbased G-category A by adjoining a
disjoint copy of the trivial G-category ∗. Explicitly,

(3.1) OG(A+) =
∐

j≥0

OG(j)×Σj
A
j .

The term with j = 0 is ∗ and accounts for the copy of ∗ on the left. The
unit η : A −→ OG(A+) identifies A with the term with j = 1. The product
µ : OGOGA+ −→ OGA+ is induced by the operad structure maps γ. We are only
concerned with based G-categories that can be written in the form A+.

Since we are concerned with the precise point-set relationship between an infinite
loop space machine defined on G-categories and suspension G-spectra, it is useful
to think of (unbased) G-spaces X as categories. Thus we also let X denote the
topological G-category with object and morphism G-space X and with S, T , I,
and C all given by the identity map X −→ X ; this makes sense for C since we can
identify X ×X X with X . We can also identify the classifying G-space |X | with X .

By specialization of (3.1), we have an identification of (topological) G-categories

(3.2) OG(X+) =
∐

j≥0

OG(j)×Σj
Xj .

The following illuminating result gives another description of OG(X+).

Proposition 3.3. For G-spaces X, there is a natural isomorphism of genuine
permutative G-categories

OG(X+) =
∐

j

CatG(G̃, Σ̃j)×Σj
Xj −→

∐

j

CatG(G̃, Σ̃j ×Σj
Xj) = GO(X+).

Proof. For each j and for (Σj × G)-spaces Y , such as Y = Xj, we construct a
natural isomorphism of (Σj ×G)-categories

CatG(G̃, Σ̃j)× Y −→ CatG(G̃, Σ̃j × Y ).

Here Y is viewed as the constant (Σj ×G)-category at Y . The target is

CatG(G̃, Σ̃j)× CatG(G̃, Y ).

Since there is a map between any two objects of G̃ but the only maps in Y are
identity maps iy : y −→ y for y ∈ Y , the only functors G̃ −→ Y are the constant
functors cy at y ∈ Y and the only natural transformations between them are the
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identity transformations idy : cy −→ cy. Sending y to cy on objects and iy to idy
on morphisms specifies an identification of (Σj ×G)-categories Y −→ CatG(G̃, Y ).

The product of the identity functor on CatG(G̃, Σ̃j) and this identification gives
the desired natural equivalence. With Y = Xj, passage to orbits over Σj gives the
jth component of the claimed isomorphism of G-categories. It is an isomorphism
of G -categories since on both sides the action maps are induced by the structure
maps of the operad O. �

Recall that we write OG for the monad on based G-spaces associated to the
operad |OG|. Thus OG(X+) is the free |OG|-space generated by the G-space X .

Proposition 3.4. For G-spaces X, there is a natural isomorphism

OG(X+) =
∐

j≥0

|OG(j)| ×Σj
Xj ∼= |OGX+|.

Proof. For a (Σj ×G)-space Y viewed as a G-category, NY can be identified with
the constant simplicial spaces Y∗ with Yq = Y . The nerve functor N does not
commute with passage to orbits in general, but arguing as in [12, §2.3] we see that

N(OG(j)×Σj
Y ) ∼= (NOG(j))×Σj

Y∗ = N(OG(j)×Σj
NY )

Therefore the classifying space functor commutes with coproducts, products, and
the passage to orbits that we see here. �

3.2. The identification of (OGX+)
G. From here on, with a brief exception in

§4.4, we assume that G is finite. The functor | − | commutes with passage to
G-fixed points, and we shall prove the following identification. Let O denote the
monad on nonequivariant based categories associated to the operad O that defines
permutative categories.

Theorem 3.5. For G-spaces X, there is a natural equivalence of O-categories

OG(X+)
G ≃

∏

(H)

O(W̃H ×WH XH)+,

where (H) runs over the conjugacy classes of subgroups of G and WH = NH/H.

We are regarding O as a suboperad of (OG)
G, and the identification of categories

will make clear that the identification preserves the action by O. Of course,

(3.6) OG(X+)
G =

∐

j≥0

(OG(j)×Σj
Xj)G

and

(3.7) O(W̃H ×WH XH)+ =
∐

k≥0

Σ̃k ×Σk
(W̃H ×WH XH)k.

We shall prove Theorem 3.5 by identifying both (3.6) and (3.7) with a small
(but not skeletal) model FG(X)G for the category of finite G-sets over X and
their isomorphisms over X . We give the relevant definitions and describe these
identifications here, and we fill in the easy proofs in §3.3 and §3.4.

A homomorphism α : G −→ Σj is equivalent to the left action of G on the set
j = {1, · · · , j} specified by g ·i = α(g)(i) for i ∈ j. Similarly, an anti-homomorphism
α : G −→ Σj is equivalent to the right action of G on j specified by i · g = α(g)(i)
or, equivalently, the left action specified by g · i = α(g−1)(i); of course, if we set
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α−1(g) = α(g)−1, then α−1 is a homomorphism. We focus on homomorphisms and
left actions, and we denote such G-spaces by (j, α). When we say that A is a finite
G-set, we agree to mean that A = (j, α) for a given homomorphism α : G −→ Σj .
That convention has the effect of fixing a small groupoid GF equivalent to the
groupoid of all finite G-sets and isomorphisms of finite G-sets. By a j-pointed
G-set, we mean a G-set with j elements.

Definition 3.8. Let X be a G-space and j ≥ 0.

(i) Let FG(j) be the G-groupoid whose objects are the j-pointed G-sets A and
whose morphisms σ : A −→ B are the bijections, withG acting by conjugation.
Then FG(j)

G is the category with the same objects and with morphisms the
isomorphisms of G-sets σ : A −→ B.

(ii) Let FG(j,X) be the G-groupoid whose objects are the maps (not G-maps)
p : A −→ X and whose morphisms f : p −→ q, q : B −→ X , are the bijections
f : A −→ B such that q ◦ f = p; G acts by conjugation on all maps p, q,
and f . We view FG(j,X)G as the category of j-pointed G-sets over X and
isomorphisms of j-pointed G-sets over X .

(iii) Let FG =
∐
j≥0 FG(j) and FG(X) =

∐
j≥0 FG(j,X).

(iv) Let FO
G (j) be the full G-subcategory of G-fixed objects of OG(j)/Σj and let

FO
G (j,X) be the full G-subcategory of G-fixed objects of OG(j)×Σj

Xj. Then

F
O

G (j)G = (OG(j)/Σj)
G and F

O

G (j,X)G = (OG(j)×Σj
Xj)G.

In §3.3, we prove that the right side of (3.6) can be identified with FG(X)G.

Theorem 3.9. There is a natural isomorphism of permutative categories

(OG(X+))
G =

∐

j≥0

F
O

G (j,X)G ∼=
∐

j≥0

FG(j,X)G = FG(X)G.

In §3.4, we prove that the right side of (3.7) can also be identified with FG(X)G.
At least implicitly, this identification of categories (not G-categories) has been
known since the 1970’s; see for example Nishida [32, App. A].

Theorem 3.10. There is a natural equivalence of categories
∏

(H)

∐

k≥0

Σ̃k ×Σk
(W̃H ×WH XH)k −→

∐

j≥0

FG(j,X)G = FG(X)G.

These two results prove Theorem 3.5.

Remark 3.11. With our specification of finite G-sets as A = (j, α), the disjoint
union of A and B = (k, β) is obtained via the obvious identification of j

∐
k with

j+ k. The disjoint union of finite G-sets over a G-space X gives FG(X) a structure
of naive permutative G-category. By Theorem 3.9, its fixed point category FG(X)G

is an O-category equivalent to (OG(X+))
G. One might think that FG(X) is a gen-

uine permutative G-category equivalent to the free OG-category OG(X+). However,
its H-fixed subcategory for H 6= G is not equivalent to FH(X)H , and there does
not seem to be an action of OG (or any other E∞ G-operad) on FG(X).

To compare with our paper [11], we offer some alternative notations.

Definition 3.12. For an unbased G-space X , let EG(X) = E O
G (X) = OG(X+).

It is a genuine permutative G-category, and its H-fixed subcategory EG(X)H is
equivalent to EH(X)H and therefore to FH(X)H .
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Remark 3.13. In [11], we gave a considerably more intuitive definition of a G-
category EG(X). It will reappear in §9 and will be given the alternative notation
E P
G (X). It is acted on by an E∞ operad PG of G-categories, and, again, its fixed

point category EG(X)H is equivalent to EH(X)H and therefore to FH(X)H .

3.3. The proof of Theorem 3.9. We first use Theorem 1.10 to identify (3.6) when
X is a point. Since we are comparing several equivalent categories, we describe
the relevant categories implicit in our operad OG in their simplest forms up to
isomorphism, although that is perhaps redundant; [12, §§2.1, 2.2, 4.1, 4.2] gives
details. The formula for the G-action in (ii) ensures that (gα)(e) = e.

Proposition 3.14. (i) The objects of the (Σj ×G)-category OG(j) are the func-
tions φ : G −→ Σj. There is a unique morphism ι : φ −→ ψ for each pair
of objects (ψ, φ); that is, OG(j) is chaotic. The (left) action of G on OG(j)
is given by (gφ)(h) = φ(g−1h) on objects and the corresponding diagonal ac-
tion on morphisms. The (right) action of Σj is given by (φσ)(h) = φ(h)σ on
objects and the corresponding diagonal action on morphisms.

(ii) The objects of the G-category OG(j)/Σj are the functions α : G −→ Σj such
that α(e) = e. The morphisms σ : α −→ β are the elements σ ∈ Σj, thought
of as the functions G −→ Σj specified by σ(h) = β(h)σα(h)−1. The composite
of σ with τ : β −→ γ is τσ : α −→ γ. The action of G is given on objects by

(gα)(h) = α(g−1h)α(g−1)−1

and is given on morphisms by g(σ : α −→ β) = σ : gα −→ gβ.
(iii) For Λ ⊂ Σj ×G, OG(j)

Λ is empty if Λ∩Σj 6= e. It is a nonempty and hence
chaotic subcategory of OG(j) if Λ ∩ Σj = e.

(iv) The category (OG(j)/Σj))
G is isomorphic to R−(G,Σj); its objects are the

anti-homomorphisms α : G −→ Σj and its morphisms σ : α −→ β are the
conjugacy relations β = σασ−1, σ ∈ Σj. For H ⊂ G, restriction of functions
gives an equivalence of categories (OG(j)/Σj))

H −→ (OH(j)/Σj))
H .

Now return to a general G-space X . To prove Theorem 3.9, it suffices to prove
that (OG(j)×Σj

Xj)G is isomorphic to FG(j,X)G for all j. Passage to orbits here

means that for φ ∈ OG(j), y ∈ Xj , and σ ∈ Σj (thought of as acting on the left on
j and therefore on j-tuples of elements of X), (φσ, y) = (φ, σy) in OG(j) ×Σj

Xj.

Observe that an object (φ, z1, · · · , zj) ∈ OG(j)×Σj
Xj has a unique representative

in the same orbit under Σj of the form (α, x1, · · · , xj) where α(e) = e. It is obtained
by replacing φ by φτ , where τ = φ(e)−1, and replacing zi by xi = zτ(i).

Lemma 3.15. An object (α, y) ∈ OG(j) ×Σj
Xj, where α(e) = e and y ∈ Xj, is

G-fixed if and only if α : G −→ Σj is an anti-homomorphism and α(g−1)y = gy for
all g ∈ G.

Proof. Assume that (α, y) = (gα, gy) for all g ∈ G. Then each gα must be in the
same Σj-orbit as α, where α is regarded as an object of OG(j) and not OG(j)/Σj ,
so that (gα)(h) = α(g−1h). Then (gα)(h) = α(h)σ for all h ∈ G and some σ ∈ Π.
Taking h = e shows that σ = α(g−1). The resulting formula α(g−1h) = α(h)α(g−1)
implies that α is an anti-homomorphism. Now

(α, y) = (gα, gy) = (αα(g−1), gy) = (α, α(g)gy),

which means that α(g)gy = y and thus gy = α(g−1)y. �
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Use α−1 to define a left action of G on j and define p : j −→ X by p(i) = xi.
Then the lemma shows that the G-fixed elements (α, y) are in bijective correspon-
dence with the maps of G-sets p : A −→ X , where A is a j-pointed G-set. Using
Proposition 3.14(iv), we see similarly that maps f : A −→ B of j-pointed G-sets
over X correspond bijectively to morphisms in (OG(j)×Σj

Xj)G. These bijections

specify the required isomorphism between FG(j,X)G and (OG(j)×Σj
Xj)G.

3.4. The proof of Theorem 3.10. This decomposition is best proven by a simple
thought exercise. Every finite G-set A decomposes non-uniquely as a disjoint union
of orbits G/H , and orbits G/H and G/J are isomorphic if and only if H and J are
conjugate. Choose one H in each conjugacy class. Then A decomposes uniquely
as the disjoint union of the G-sets AH , where AH is the set of elements of A with
isotropy group conjugate to H . This decomposes the category GF ≡ (FG)

G as
the product over H of the categories GF (H) of finite G-sets all of whose isotropy
groups are conjugate to H .

In turn, GF (H) decomposes uniquely as the coproduct over k ≥ 0 of the cate-
goriesGF (H, k) whose objects are isomorphic to the disjoint union, denoted kG/H ,
of k copies of G/H . Up to isomorphism, kG/H is the only object of GF (H, k). The
automorphism group of the G-set G/H is WH , hence the automorphism group of
kG/H is the wreath product Σk

∫
WH . Viewed as a category with a single object,

we may identify this group with the category Σ̃k ×Σk
(WH)k. This proves the

following result.

Proposition 3.16. The category GF is equivalent to the category
∏

(H)

∐

k≥0

Σ̃k ×Σk
(WH)k.

The displayed category is a skeleton of GF . As written, its objects are sets
of numbers {kH}, one for each (H), but they are thought of as the finite G-sets∐
H kHG/H . Its morphism groups specify the automorphisms of these objects. On

objects, the equivalence sends a finite G-set A to the unique finite G-set of the form∐
(H) kG/H in the same isomorphism class as A. Via chosen isomorphisms, this

specifies the inverse equivalence to the inclusion of the chosen skeleton in GF .
We parametrize this equivalence to obtain a description of the category GF (X)

of finite G-sets over X . Given any H and k, a k-tuple of elements {x1, · · · , xk}
of XH determines the G-map p : kG/H −→ X that sends eH in the ith copy of
G/H to xi, and it is clear that every finite G-set A over X is isomorphic to one
of this form. Similarly, for a finite G-set q : B −→ X over X and an isomorphism
f : A −→ B, f is an isomorphism overX from q to p = q◦f , and every isomorphism
over X can be constructed in this fashion. Since we may as well choose A and B
to be in our chosen skeleton of GF , this argument proves Theorem 3.10.

4. The equivariant recognition principle

The equivariant recognition principle shows how to recognize (genuine)G-spectra
in terms of category or space level information. It comes in various versions. Here
we use two modernized variants of the machine from [20]. As in [11], we let S ,
Sp, and Z denote the categories of orthogonal spectra [19], Lewis-May spectra
[17], and EKMM S-modules [9]. Similarly, we let GS , GSp and GZ denote the
corresponding categories of genuine G-spectra from [18], [17], and again [18]. Each
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has its advantages. We start with a machine that lands in GS . That is the choice
preferred in [11]. Its sphere G-spectrum SG is cofibrant, and so are the suspension
G-spectra ΣGX of cofibrant based G-spaces X . A key advantage of this machine
is that it gives the quickest route to the modicum of information about pairings
that we require. A key disadvantage is that the machine we construct does not
naturally land in fibrant G-spectra. We then give a variant machine that lands in
GSp or GZ , where every object is fibrant, and give a comparison that illuminates
homotopical properties of the first machine via its comparison with the second.

4.1. The equivariant infinite loop space machine: GS version. In brief, we
have a functor EG = ES

G that assigns an orthogonal G-spectrum EGY to a G-space
Y with an action by some chosenE∞ operad CG ofG-spaces. We quickly summarize
what we need, much of which is contained in the paper [5] of Costenoble andWaner.4

We must start with a family of operads KV , one for each finite dimensional real
inner product space, as well as the given operad CG.

Scholium 4.1. Wemust use the Steiner operads KV and not the little discs operads
DV , which was the choice in [5]. As explained in [27, §3], for inclusions V ⊂ W
of inner product spaces, there is no map of operads DV −→ DW compatible with
suspension, and the Steiner operads remedy the defect. We describe the equivariant
Steiner operads in the appendix, §10, since they do not appear in the literature.
We let KU denote the colimit of the operads KV where V runs over the finite
dimensional subspaces of a complete G-universe U . It is an E∞ operad of G-spaces.

We have two minor variants of our machine, both of which make use of the
product of operads trick recalled in §2.3; compare [27, §9]. We can first use that
trick to convert CG-spaces to KU -spaces and then use only Steiner operads, or we
can build the machine using the product operads CG ×KV , without first changing
the input. There are only minor reasons for preferring one approach over the other,
and we prefer the latter approach here. We therefore define CV = CG ×KV . Via
its projection to CG, CG-spaces can be viewed as CV -spaces for all V . Via its
projection to KV , CV also acts on V -fold loop spaces.

Write CV for the monad on based G-spaces associated to the operad CV . The
categories of CV -spaces andCV -algebras are isomorphic. The unit η : Id −→ ΩV ΣV

of the monad ΩVΣV and the action of CV on the G-spaces ΩV ΣVX induce a
composite natural map

αV : CVX
CV η //CV ΩV ΣVX //ΩVΣVX,

and αV : CV −→ ΩVΣV is a map of monads whose adjoint defines a right action of
CV on the functor ΣV . The following result is due to Rourke and Sanderson [33,
Corollary 1]. It generalizes earlier partial results of Hauschild [13] and Caruso and
Waner [5, 1.18].

Definition 4.2. A Hopf G-space Y is grouplike if each fixed point Hopf space Y H

is grouplike, that is, each π0(Y
H) is a group. A map α : X −→ Y of Hopf G-spaces

is a group completion if Y is grouplike and αH : XH −→ Y H is a nonequivariant
group completion for eachH ⊂ G. That is, π0(Y H) is the Grothendieck group of the
commutative monoid π0(X

H) and H∗(Y ; k) is the localization H∗(X ; k)[π0(X)−1]

4As noted before, we plan to give a model theoretic elaboration elsewhere.
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for any field of coefficients k. In particular, a group completion α is a weak G-
equivalence if X is grouplike, as holds trivially if all XH are path connected.

Theorem 4.3. If V G 6= 0, so that V contains a copy of the trivial representation
R, then αV : CVX −→ ΩV ΣVX is a group completion.

The two-sided monadic bar construction is described in [20, 27], and we have the
following equivariant special case, as in [18, §8].

Definition 4.4. Let Y be a CG-space. We define an orthogonal G-spectrum EGY ,
which we denote by ES

G Y when necessary for clarity. Let

EGY (V ) = B(ΣV ,CV , Y ).

Using the evident action of isometries on KV and ΣV , this defines a G-functor
from the G-category IG of finite dimensional real inner product spaces and linear
isometric isomorphisms to the G-category TG of based G-spaces and continuous
maps. For V ⊂W , the structure G-map

σ : ΣW−V
EGY (V ) −→ EGY (W )

is the composite

ΣW−VB(ΣV ,CV , Y ) ∼= B(ΣW ,CV , Y ) −→ B(ΣW ,CW , Y ).

obtained by commuting ΣW−V with geometric realization and using the stabiliza-
tion map of monads CV −→ CW , which is a spacewise closed inclusion.

We have the diagram of CV -spaces and CV -maps

Y B(CV ,CV , Y )
εoo B(α,id,id) //B(ΩV ΣV ,CV , Y )

ζ //ΩVB(ΣV ,CV , Y ).

The map ε is a homotopy equivalence for formal reasons explained in [20, 9.8], and
it has a natural homotopy inverse ν, although ν is not a CV -map. When V G 6= 0,
B(α, id, id) is a group completion since α is so, as follows from the nonequivariant
version explained in [21, 2.3]. The map ζ is defined and shown to be a weak
equivalence by Costenoble and Waner in [5, 5.5], following [20, §12]. Define

η : Y −→ ΩV EGY (V )

to be the composite ζ◦B(α, id, id)◦ν. Then η is a natural group completion of Hopf
G-spaces when V G 6= 0. It is therefore a weak equivalence when Y is grouplike.
Moreover, the following diagram commutes for V ⊂W , where σ̃ is adjoint to σ.

Y

ηV

yyttt
tt
tt
tt
t

ηW

%%❑❑
❑❑

❑❑
❑❑

❑❑

ΩV EGY (V )
ΩV σ̃

// ΩWEGY (W )

Therefore ΩV σ̃ is a weak equivalence if V G 6= 0. If we replace EY by a fibrant
approximation REY , there results a group completion η : Y −→ (REY )0. It is
harmless to pretend that the map η above with V = 0 is itself a group completion,
but we shall use the category Sp to give a more structured way to think about this.
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4.2. The equivariant infinite loop space machine: GSp version. Since we
are especially interested in suspension G-spectra, it is natural to want an infinite
loop space machine that lands in the category GSp of G-spectra. While GSp is
not symmetric monoidal under its smash product, it has the compensating and
incompatible virtue that the suspension G-functor Σ∞

G from the category GT of
basedG-spaces to GSp is a left adjoint with a right adjoint infinite loop 0th G-space
functor Ω∞

G . We summarize the construction of an equivariant infinite loop space

machine EG = E
Sp
G that lands in GSp. Formally, the equivariant theory works in

the same way as the nonequivariant theory, and we follow the summary in [27, §9].
Again let CG be an E∞ operad of G-spaces and now write CU = CG ×KU . Let

QG denote the functor Ω∞
G Σ∞

G . For based G-spaces X , we have a natural group
completion α : CUX −→ KUX −→ QGX . The map α is a map of monads, and its
adjoint gives a right action of the monad CU on the functor Σ∞

G . For a CG-space
Y , the G-spectrum EGY is the bar construction

EGY = B(Σ∞
G ,CU , Y ).

For every Y , EGY is connective in the sense that the negative homotopy groups of
its fixed point spectra (EGY )H are zero.

Here we have the diagram of CU -spaces and CU -maps

Y B(CU ,CU , Y )
εoo B(α,id,id) //B(QG,CU , Y )

ζ //Ω∞
GB(Σ∞

G ,CU , Y ).

The map ε is a homotopy equivalence [20, 9.8] with a natural homotopy inverse
ν, which is not a CU -map. Again, B(α, id, id) is a group completion since α is
so, and ζ is a weak equivalence [5, §5]. Defining η : Y −→ Ω∞

G EGY to be the
composite ζ ◦ B(α, id, id) ◦ ν, it follows that η is a natural group completion and
thus a weak equivalence when Y is grouplike. Here, of course, there is no need for
fibrant approximation.

We compare the S and Sp machines ES
G and E

Sp
G by transporting both of

them to the category GZ of SG-modules, following [18]. As discussed in [18, IV§4]
with slightly different notations, there is a (noncommutative) diagram of Quillen
equivalences

GP
L //

P

��

GSp
ℓ

oo

F

��
GS

U

OO

N // GZ .
N

#

oo

V

OO

Here GP is the category of coordinate-free G-prespectra. The left adjoint N is
strong symmetric monoidal, and the unit map η : X −→ N#NX is a weak equiv-
alence for all cofibrant orthogonal G-spectra X . It is a fibrant approximation in
the positive stable model structure on GS , but we prefer to think in terms of the
stable model structure on GS (see [18, III§§4,5]).

We can compare machines using the diagram. In fact, by a direct inspection
of definitions, we see the following result, which is essentially a reinterpretation
of the original construction of [20] that becomes visible as soon as one introduces
orthogonal spectra.
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Lemma 4.5. The functor ESp
G from CG-spaces to the category GSp of Lewis-May

G-spectra is naturally isomorphic to the composite functor L ◦ U ◦ ES
G .

As explained in [18, IV§5], there is a monad L on GSp and a category GSp[L]
of L-algebras. The left adjoint F in the diagram is the composite of left adjoints

L : GSp −→ GSp[L] and J : GSp[L] −→ GZ .

The functor L ◦U : GS −→ GSp lands naturally in GSp[L], so that we can define

M = J ◦ L ◦ U : GS −→ GZ .

By [18, IV.5.2 and IV.5.4], M is lax symmetric monoidal and there is a natural
lax symmetric monoidal map α : NX −→ MX that is a weak equivalence when X
is cofibrant. Effectively, we have two infinite loop space machines landing in GZ ,

namely N ◦ ES
G and J ◦ ESp

G . In view of the lemma, the latter is isomorphic to

M ◦ ES
G , hence

α : N ◦ ES

G −→M ◦ ES

G
∼= J ◦ ESp

G

compares the two machines, showing that they are equivalent for all practical pur-
poses. Homotopically, these categorical distinctions are irrelevant, and we can use
whichever machine we prefer, deducing properties of one from the other.

4.3. Some properties of equivariant infinite loop space machines. Many
properties of the infinite loop space machine EG follow directly from the group
completion property, independent of how the machine is constructed, but it is

notationally convenient to work with the machine E
Sp
G , for which η is a natural

group completion without any bother with fibrant approximation. The results
apply equally well to ES

G . It is plausible to hope that the group completion property
actually characterizes the machine up to homotopy, as in [30], but that is not needed
here and will be discussed elsewhere.5 We illustrate with the following two results.
The first says that, up to weak equivalence, the functor EG commutes with products.
The second says similarly that it commutes with passage to fixed points.

Theorem 4.6. Let X and Y be CG-spaces. Then the map

EG(X × Y ) −→ EGX × EGY

induced by the projections is a weak equivalence of G-spectra.

Proof. We are using that the product of CG-spaces is a CG-space, the proof of
which uses that the category of operads is cartesian monoidal. Working in GSp,
the functor Ω∞

G commutes with products and passage to fixed points and we have
the commutative diagram

(X × Y )H ∼= XH × Y H

ηH

tt❥❥❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥

ηH×ηH

**❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

(Ω∞
G EG(X × Y ))H // (Ω∞

G EGX)H × (Ω∞
G EGY )H .

Since the product of group completions is a group completion, the diagonal arrows
are both group completions. Therefore the horizontal arrow is a weak equivalence.
Since our spectra are connective, the conclusion follows. �

5The proof given by May and Thomason in [30] does not generalize to the equivariant context.
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Theorem 4.7. For CG-spaces Y , there is a natural weak equivalence of spectra

E(Y G) −→ (EGY )G.

Proof. For based G-spaces X , we have natural inclusions CUG(XG) −→ (CUX)G

and Σ∞(XG) −→ (Σ∞
GX)G. For G-spectra E, we have a natural isomorphism

Ω∞(EG) ∼= (Ω∞
G E)G. There results a natural map of spectra

E(Y G) = B(Σ∞,CUG , Y G) //(B(Σ∞
G ,CU , Y ))G = (EGY )G

and a natural map of spaces under Y G

Y G

zzttt
tt
tt
tt
t

%%❑❑
❑❑

❑❑
❑❑

❑❑

Ω∞E(Y G) // (Ω∞
G EGY )G.

Since the diagonal arrows are both group completions, the horizontal arrow must be
a weak equivalence. Since our spectra are connective, the map E(Y G) −→ (EGY )G

of spectra must also be a weak equivalence. �

4.4. The recognition principle for naive G-spectra. We elaborate on Theo-
rem 4.7. The functor E = Ee in that result is the nonequivariant infinite loop space
machine, which is defined using the nonequivariant Steiner operad K = KR∞ . In
Theorem 4.7, we thought of R∞ as UG. There is also a recognition principle for
naive G-spectra, which are just spectra with G-actions. Again we can use either
the category S of orthogonal spectra or the category Sp of Lewis-May spectra,
comparing the two by mapping to the category Z of EKMM S-modules, but let-
ting G act on objects in all three. Naive G-spectra represent Z-graded cohomology
theories, whereas genuine G-spectra represent RO(G)-graded cohomology theories.
The machine E is obtained by regarding C = (CG)

G as an operad of G-spaces with
trivial G-action. We continue to write E for this construction since it is exactly
the same construction as the nonequivariant one, but applied to G-spaces with an
action by the E∞ operad C of G-spaces.

It is worth emphasizing that when working with naiveG-spectra, there is no need
to restrict to finite groups. We can just as well work with general discrete groups G.
The machine E enjoys the same properties as the machine EG, including the group
completion property. Working with Lewis-May spectra, the adjunction (Σ∞,Ω∞)
relating spaces and spectra applies just as well to give an adjunction relating G-
spaces and naive G-spectra. For based G-spaces X , the map α : CX −→ Ω∞Σ∞X
is a group completion of Hopf G-spaces by the nonequivariant special case since
(CX)H = C(XH) and (Ω∞Σ∞X)H = Ω∞Σ∞(XH).

In the language of [17], genuine G-spectra are indexed on a complete G-universe
U , namely the sum of countably many copies of all irreducible representations of G;
a canonical choice is the sum of countably many copies of the regular representation.
Naive G-spectra are indexed on the trivial G-universe UG ∼= R∞. The inclusion of
universes ι : UG −→ U induces a forgetful functor ι∗ : GS −→ S from genuine G-
spectra to naive G-spectra. It represents the forgetful functor from RO(G)-graded
cohomology theories to Z-graded cohomology theories.

As we observe in §10, the inclusion of universes ι : UG −→ U induces an inclusion
of operads of G-spaces ι : KUG −→ KU and therefore an inclusion of operads

CUG = C ×KUG −→ CG ×KU = CU .
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The following consistency statement is important since, by definition, the H-fixed
point spectrum EH of a genuine G-spectrum E is (ι∗E)H , and the homotopy groups
of E are πH∗ (E) ≡ π∗(EH).

Theorem 4.8. Let Y be a CG-space. Then there is a natural weak equivalence of
naive G-spectra µ : Eι∗Y −→ ι∗EGY .

Proof. Again, we work with E
Sp
G , but the result applies equally well to ES . It is easy

to check from the definitions that, for G-spaces X , we have a natural commutative
diagram of G-spaces

CX
α //

��

Ω∞Σ∞X

��
CGX α

// Ω∞
G Σ∞

GX.

Passing to adjoints, we obtain a natural composite map

Σ∞
G CX −→ Σ∞

G CGX −→ Σ∞
GX

of genuine G-spectra. It specifies a right action of the monad C on the functor
Σ∞
G that is compatible with the right action of CG on Σ∞

G . Clearly Ω∞ι∗ = Ω∞
G ,

since both are evaluation at V = 0, hence their left adjoints Σ∞
G and ι∗Σ

∞ are
isomorphic. The unit of the adjunction (ι∗, ι

∗) gives a natural map of naive G-
spectra Σ∞X −→ ι∗Σ∞

GX , and there results a natural map

µ : Eι∗Y = B(Σ∞,C, Y ) −→ B(ι∗Σ∞
G ,CG, Y ) ∼= ι∗EGY

of naive G-spectra. The following diagram commutes by a check of definitions.

Y

=

��

B(C,C, Y )
εoo B(α,id,id) //

��

B(Q,C, Y )
ζ //

��

Ω∞B(Σ∞,C, Y )

Ω∞µ

��
Y B(CG,CG, Y )

εoo B(α,id,id) // B(QG,CG, Y )
ζ // Ω∞B(Σ∞

G ,CG, Y ).

Replacing the maps ε with their homotopy inverses ν, the horizontal composites
are group completions. Therefore Ω∞µ is a weak equivalence, hence so is µ. �

4.5. The recognition principle for permutative G-categories. We may start
with any E∞ operad PG of G-categories and apply the classifying space functor to
obtain an E∞ operad |PG| of G-spaces. If PG acts on a category A , then |PG|
acts on |A | = BA . We can replace |PG| by its product with the Steiner operads

KV or with the Steiner operad KU and apply the functor ES
G or ESp

G to obtain a
(genuine) associated G-spectrum, which we denote ambiguously by EG(BA ).

Definition 4.9. Define the (genuine) algebraic K-theory G-spectrum of a PG-
category A by KG(A ) = EG(BA ).

We might also start with an operad P of categories such that |P| is an E∞

operad of spaces and regard these as G-objects with trivial action. Following up
the previous section, we then have the following related but less interesting notion.

Definition 4.10. Define the (naive) algebraic K-theory G-spectrum of a P-
category A by K(A ) = E(BA ).
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Until §7, we restrict attention to the cases PG = OG and P = O, recalling
that the OG-categories are the genuine permutative G-categories, the O-categories
are the naive permutative G-categories, and the inclusion ι : O −→ OG induces
a forgetful functor ι∗ from genuine to naive permutative G-categories. Since the
classifying space functor commmutes with products, passage to fixed points, and
the functors ι∗, Theorems 4.6, 4.7, and 4.8 have the following immediate corollaries.
The second was promised in [11, Thm 2.8].

Theorem 4.11. Let A and B be OG-categories. Then the map

KG(A ×B) −→ KGA ×KGB

induced by the projections is a weak equivalence of G-spectra.

Theorem 4.12. For OG-categories A , there is a natural weak equivalence of spec-
tra

K(A G) −→ (KGA )G.

Theorem 4.13. For OG-categories A , there is a natural weak equivalence of naive
G-spectra µ : Kι∗A −→ ι∗KGA .

The algebraic K-groups of A are defined to be the groups

(4.14) KH
∗ A = πH∗ (Kι∗A ) ∼= πH∗ (KGA ).

We are particularly interested in examples of the form A = G B, where B is a
naive permutative G-category. As noted in Proposition 2.5, we then have a natural
map ι : B −→ ι∗G B of naive permutative G categories. We can pass to classifying
spaces and apply the functor E to obtain a natural map

(4.15) KB
Kι //Kι∗G B

µ

≃
//ι∗KGG B.

This map is a weak equivalence when ιH : BH −→ (ι∗G B)H is an equivalence of
categories for all H ⊂ G. The following example where this holds is important in
equivariant algebraic K-theory.

Example 4.16. Let K be a Galois extension of k with Galois group G and let G
act entrywise on GL(n,K) for n ≥ 0. The disjoint union of the GL(n,K) is a naive
permutative G-category that we denote by GL(KG). Its product is given by the
block sum of matrices. Write GL(R) for the nonequivariant permutative general
linear category of a ring R. As observed in [12, 4.20], Hilbert’s Theorem 90 implies
that

ιH : GL(KH) ∼= GL(KG)
H −→ (ι∗G (GL(KG))

H

is an equivalence of categories for all H ⊂ G. This identifies the equivariant alge-
braic K-groups of the Galois extension with the nonequivariant algebraic K-groups
of its fixed fields.

5. The Barratt-Priddy-Quillen and tom Dieck splitting theorems

5.1. The equivariant Barratt-Priddy-Quillen theorem. The equivariant BPQ
theorem shows how to model suspension G-spectra in terms of free E∞ G-categories
and G-spaces. It is built tautologically into the equivariant infinite loop space ma-
chine in the same way as it is nonequivariantly [21, 2.3(vii)] or [27, §10]. We work

with the machine EG = E
Sp
G in this section in order to focus on actual suspension
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G-spectra and not just fibrant replacements, but it is a simple matter to retool so
as to work with ES

G instead; see §6.2.

Theorem 5.1 (Equivariant Barratt-Priddy-Quillen theorem). For an E∞ operad
CG of G-spaces and based G-spaces Y , there is a natural weak equivalence

Σ∞
G Y −→ EGCGY.

Proof. The nonequivariant Barratt-Quillen theorem is the case G = e. For formal
reasons explained in [20, 9.9] we have a natural homotopy equivalence of G-spectra

EGCGY = B(Σ∞
G ,CG,CGY )

ε //Σ∞
G Y.

Its homotopy inverse is the map η : Σ∞
G Y −→ EGY adjoint to the composite map

Y //CGY //B(QG,CG,CGY ) //ζ //Ω∞
G B(Σ∞

G ,CG,CGY ) = Ω∞
G EGCGY

of G-spaces, where the first two maps are natural inclusions. �

In fact, with the model theoretic modernization of the original version of the
theory that is given nonequivariantly in [1]6, one can redefine the restriction of EG
to cofibrant CG-spaces Y to be

EGY = Σ∞
G ⊗CG

Y,

where ⊗CG
is the evident coequalizer. With that reinterpretation, EGCGY is ac-

tually isomorphic to Σ∞
G Y when Y is a G-CW complex.

The nonequivariant statement is often restricted to the case Y = S0. Then CS0

is the disjoint union of operadic models for the classifying spaces BΣj . Similarly,
CGS

0 is the disjoint union of operadic models for the classifyingG-spaces B(G,Σj).
Taking Y = X+ for an unbased G-space X and using (3.2), we can rewrite

the BPQ theorem using the infinite loop space machine defined on permutative
G-categories.

Theorem 5.2. For unbased G-spaces X, there is a natural weak equivalence

Σ∞
GX+ −→ KGOG(X+).

5.2. The tom Dieck splitting theorem. TheG-fixed point spectra of suspension
G-spectra have a well-known splitting. It is due to tom Dieck [6] on the level of
homotopy groups and was lifted to the spectrum level in [17, §V.11]. The tom
Dieck splitting actually works for all compact Lie groups G, but we have nothing
helpful to add in that generality. Our group G is always finite. In that case, we
have already given the ingredients for a new categorical proof, as we now explain.

Theorem 5.3. For a based G-space Y ,

(Σ∞
G Y )G ≃

∨

(H)

Σ∞(EWH+ ∧WH Y H).

The wedge runs over the conjugacy classes of subgroups H of G, andWH = NH/H.

Theorem 5.3 and the evident natural identifications

(5.4) EWH+ ∧WH XH
+
∼= (EWH ×WH XH)+

imply the following version for unbased G-spaces X .

6It will be elaborated equivariantly elsewhere.
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Theorem 5.5. For an unbased G-space X,

(Σ∞
GX+)

G ≃
∨

(H)

Σ∞(EWH ×WH XH)+.

Conversely, we can easily deduce Theorem 5.3 from Theorem 5.5. Viewing S0

as {1}+ with trivial G action, our standing assumption that basepoints are non-
degenerate gives a based G-cofibration S0 −→ Y+ that sends 1 to the basepoint
of Y , and Y = Y+/S

0. The functors appearing in Theorem 5.5 preserve cofiber
sequences, and the identifications (5.4) imply identifications

(5.6) (EWH ×WH Y H)+/(EWH ×WH {1})+ ∼= EWH+ ∧WH Y H .

Therefore Theorem 5.5 implies Theorem 5.3.
We explain these splittings in terms of the equivariant BPQ theorem. We begin

in the based setting. The nonequivariant case G = e of the BPQ theorem relates to
the equivariant case through Theorem 4.7. Explicitly, Theorems 4.7 and 5.1 give a
pair of weak equivalences

(5.7) (Σ∞
G Y )G −→ (EGCGY )G ←− E((CGY )G).

Since the functor Σ∞ commutes with wedges, the nonequivariant BPQ theorem
gives a weak equivalence

(5.8)
∨

(H)

Σ∞(EWH+ ∧WH Y H) −→ EC(
∨

(H)

(EWH+ ∧WH Y H).

If we could prove that there is a natural weak equivalence of C -spaces

(CGY )G ≃ C(
∨

(H)

(EWH+ ∧WH Y H),

that would imply a natural weak equivalence

(5.9) E((CGY )G) ≃ EC(
∨

(H)

(EWH+ ∧WH Y H).

and complete the proof of Theorem 5.3. However, the combinatorial study of the
behavior of C on wedges is complicated by the obvious fact that wedges do not
commute with products.

We use the following consequence of Theorem 3.5 and the relationship between
wedges and products of spectra to get around this. Recall that OG is the monad
on based G-spaces obtained from the operad |OG| of G-spaces.

Theorem 5.10. For unbased G-spaces X, there is a natural equivalence of |O|-
spaces

(OGX+)
G ≃

∏

(H)

O(EWH ×WH XH)+,

where (H) runs over the conjugacy classes of subgroups of G and WH = NH/H.

Proof. Remembering that |G̃| = EG, we see that the classifying space of the cat-

egory W̃H ×WH XH can be identified with EWH ×WH XH . The commutation
relations between | − | and the constituent functors used to construct the monads
OG on G-spaces and OG on G-categories make the identification clear. �
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Remark 5.11. Of course, we can and must replace OG and O by their products
with the equivariant and nonequivariant Steiner operad to fit into the infinite loop
space machine. There is no harm in doing so since if we denote the product operads
by CG and C , as before, the projections CG −→ OG and C −→ O induce weak
equivalences of monads that fit into a commutative diagram

(CGX+)
G ≃ //

≃

��

∏
(H) C(EWH ×WH XH)+

≃

��
(OGX+)

G ≃ // ∏
(H) O(EWH ×WH XH)+.

The functor Σ∞
G commutes with wedges, and the natural map of G-spectra

E ∨ F −→ E × F

is a weak equivalence. Theorems 4.6 and 5.1 have the following implication. We
state it equivariantly, but we shall apply its nonequivariant special case.

Proposition 5.12. For based G-spaces X and Y , the natural map

EGCG(X ∨ Y ) −→ EG(CGX ×CGY )

is a weak equivalence of spectra.

Proof. The following diagram commutes by the universal property of products.

Σ∞
G (X ∨ Y )

∼=

��

// EGCG(X ∨ Y )

��
Σ∞
GX ∨ Σ∞

G Y

��

EG(CGX ×CGY )

��
Σ∞
GX × Σ∞

G Y
// EGCGX × EGCGY.

All arrows except the upper right vertical one are weak equivalences, hence that
arrow is also a weak equivalence. �

For any E∞ operad C , we therefore have a weak equivalence

(5.13) EC(
∨

(H)

(EWH+ ∧WH Y H) −→ E
∏

(H)

C(EWH+ ∧WH Y H).

Together with (5.13), Theorem 5.10 and Remark 5.11 give a weak equivalence
(5.9) in the case Y = X+. Together with (5.7) and (5.8), this completes the proof
of Theorem 5.5, and Theorem 5.3 follows.

6. Pairings and the G-category EG

In [11], we showed how to model the category of orthogonal G-spectra as a
category of enriched presheaves of nonequivariant orthogonal spectra. The proofs
in [11] proceeded by reduction to certain claims in equivariant infinite loop space
theory. We prove those claims in this section. For that purpose, we use orthogonal
G-spectra and the machine EG = ES

G . With this machine, we can use an elementary
treatment of pairings to construct a version of the G-category EG that we promised
in [11]. We use that treatment to complete the proofs of the results claimed in [11].



26 B.J. GUILLOU AND J.P. MAY

6.1. Pairings of G-operads and pairings of G-spectra. We recall the following
definition from [23, 1.4]. It applies equally well equivariantly. We write it element-
wise, but written diagrammatically it applies to operads in any symmetric monoidal
category. Write j = {1, · · · , j} and let

⊗ : Σj × Σk −→ Σjk

be the homomorphism obtained by identifying j× k with jk by ordering the set of
jk elements (q, r), 1 ≤ q ≤ j and 1 ≤ r ≤ k, lexicographically. For nonnegative
integers hq and ir, let

δ : (
∐

(q,r)

(hq × ir) −→ (
∐

q

hq)× (
∐

r

ir)

be the distributivity isomorphism viewed as a permutation (via block and lexico-
graphic identifications of the source and target sets with the appropriate set n).

Definition 6.1. Let C , D , and E be operads in a symmetric monoidal category
V (with product denoted ⊠). A pairing of operads

⊗ : (C ,D) −→ E

consists of maps

⊗ : C (j)⊠ D(k) −→ E (jk)

in V for j ≥ 0 and k ≥ 0 such that the diagrammatic versions of the following
properties hold. Let c ∈ C (j) and d ∈ D(k).

(i) If µ ∈ Σj and ν ∈ Σk, then

cµ⊗ dν = (c⊗ d)(µ⊗ ν)

(ii) With j = k = 1, id⊗ id = id.
(iii) If cq ∈ C (hq) for 1 ≤ q ≤ j and dr ∈ D(ir) for 1 ≤ r ≤ k, then

γ(c⊗ d;×(q,r)cq ⊗ dr)δ = (γ(c;×qcq)⊗ γ(d;×rdr).

A permutative operad D is an operad equipped with a unital and associative pairing
(D ,D) −→ D which is commutative in the sense that c ⊗ d = (d ⊗ c)τ(j, k),
where τ(j, k) is the permutation of the set jk that maps it from its lexicographic
identification with j× k to its lexicographic identification with k× j.

Restricting to spaces or G-spaces, with ⊠ = ∧, and passing to monads on based
spaces or based G-spaces, we have the following observation.

Lemma 6.2. A pairing ⊗ : (CG,DG) −→ EG of operads of G-spaces induces a
natural map

⊗ : CGX ∧DGY −→ EG(X ∧ Y )

such that the following diagrams commute.

X ∧ Y
η∧η //

η
&&◆◆

◆◆
◆◆

◆◆
◆◆

◆
CGX ∧DGY

⊗

��
EG(X ∧ Y )
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CGCGX ∧DGDGY
µ∧µ //

⊗

��

CGX ∧DGY

⊗

��
EG(CGX ∧DGY )

EG⊗

// EGEG(X ∧ Y )
µ

// EG(X ∧ Y )

Proof. If x = (x1, · · · , xj) ∈ Xj and y = (y1, · · · , yk) ∈ Y k, then

(c, x)⊗ (d, y) = (c⊗ d, z),

where z ∈ (X ∧ Y )jk is the jk-tuple (xa ∧ yb), ordered lexicographically. The
commutativity of the diagrams is checked by chases from the definition. �

There is a general notion of a pairing of a CG-space X and a DG-space Y to an
EG-space Z, obtained by specialization of [23, 1.1], but we shall not need that for the
applications here. Suffice it to say that the pairing CGX ∧DGY −→ EG(X ∧ Y )
is an example, the only one relevant to us in this paper. We have two obvious
examples of pairings of operads, and these can be combined to give a hybrid. The
first is from [22, p. 248] and starts with a pairing of operads in Cat.

Example 6.3. The unique functors ⊗ : Σ̃j × Σ̃k −→ Σ̃jk given on objects by
⊗ : Σj × Σk −→ Σjk specify a pairing (O,O) −→ O such that O is a permutative

operad in Cat. Since the functor CatG(G̃,−) preserves products, there results a
pairing (OG,OG) −→ OG that makes OG a permutative operad in GCat. Applying
the classifying space functor, there result pairings

⊗ : (|O|, |O|) −→ |O| and ⊗ : (|OG|, |OG|) −→ |OG|

that make |O| and |OG| permutative operads of spaces and of G-spaces.

Details of the second example are given in §10.2.

Example 6.4. For finite dimensional real inner product spaces V andW , there is a
unital, associative, and commutative system of pairings ⊗ : (KV ,KW ) −→ KV⊕W

of Steiner operads of G-spaces.

To combine these, we use a general observation and an evident specialization.

Lemma 6.5. If ⊗ : (C ,D) −→ E and ⊗ : (C ′,D ′) −→ E ′ are pairings of operads,
then the maps

C (j)× C ′(j)×D(k)×D ′(k)

id×t×id

��
C (j)×D(j) × C ′(k)×D ′(k)

⊗×⊗

��
E (jk)× E ′(jk)

specify a pairing of operads (C × C ′,D ×D ′) −→ E × E ′.

Lemma 6.6. Let CG be a permutative operad of G-spaces and let CV = CG×KV .
Then there is a unital, associative, and commutative system of pairings of operads

⊗ : (CV ,CW ) −→ CV⊕W .
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Passing to monads, we obtain a system of pairings

(6.7) ⊗ : CVX ∧CWY −→ CV⊕W (X ∧ Y ).

We can compose with CV⊕W f for any map f : X ∧ Y −→ Z of based G-spaces.
We use orthogonal G-spectra and the machine EG = ES

G to put things together
and obtain the following result. If CG acts on X and Y , then, using the diagonal
on the spaces CG(j), it acts on X × Y . However, this action does not descend to
an action of CG on X ∧ Y . The notion of a pairing (X,Y ) −→ Z of CG-spaces can
be used to generalize the following result, but we only need the version we state.

Proposition 6.8. Let CG be a permutative operad of G-spaces, such as |OG|, and
let X and Y be based G-spaces. There is a natural associative system of pairings

EGCG(X)(V ) ∧ EGCG(Y )(W ) −→ EGCG(X ∧ Y )(V ⊕W )

Proof. The bar construction B(ΣV ,CV ,CGX) is the geometric realization of a sim-
plicial G-space with q-simplices ΣVCq

VCGX . Using the pairing (6.7) inductively,
along with the projection CV −→ CG, we obtain G-maps

ΣVCq
VCGX ∧ ΣWC

q
WCGX −→ ΣV⊕WC

q
V⊕WCG(X ∧ Y ).

These commute with faces and degeneracies, and since geometric realization com-
mutes with products they induce the claimed maps

B(ΣV ,CV ,CGX) ∧B(ΣW ,CW ,CGX) −→ B(ΣV⊕W ,CV⊕W ,CG(X ∧ Y )). �

The pairings of the proposition give a map

EGCG(X) ⊼ EGCG(Y ) −→ EGCG(X ∧ Y ) ◦ ⊕

of functors IG×IG −→ TG, where ⊼ denotes the external smash product. Taking
CG = |OG|, we obtain the following result directly from the definition of the smash
product of orthogonal G-spectra [18, §§I.2, II.3].

Theorem 6.9. For based G-spaces X and Y , there is a natural pairing of orthog-
onal G-spectra

∧ : EGOG(X) ∧ EGOG(Y ) −→ EGOG(X ∧ Y ).

Recall that, for an unbased G-space X , OG(X+) = |OG(X+)| ≡ BOG(X+),
where X is viewed as a topological category. Writing KG(A ) = EG(BA ) as before,
we have the following equivalent reformulation for unbased G-spaces.

Theorem 6.10. For unbased G-spaces X and Y , there is a natural pairing of
orthogonal G-spectra

∧ : KGOG(X+) ∧KGOG(Y+) −→ KGOG((X × Y )+).

Said another way, we start with the pairing of genuine permutative G-categories

(6.11) OG(X+)×OG(Y+) −→ OG((X × Y )+)
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that is given explicitly as the composite

∐
j(OG(j)×Σj

Xj)×
∐
k(OG(k)×Σk

Y k)

��∐
j,k OG(jk)×Σjk

(X × Y )jk

��∐
ℓ OG(ℓ)×Σℓ

(X × Y )ℓ

determined by the pairing (OG,OG) −→ OG. Observe that the terms with j = 0
or k = 0 all map to the term with ℓ = 0, which is a point, so that the induced map
of classifying spaces factors through the smash product. We apply the infinite loop
space machine KG = EGB to this pairing, and we regard the processing of pairings
described in this section as part of the machine.

6.2. The BPQ theorem for the machine EG = ES
G . The suspension orthogonal

G-spectrum Σ∞
G Y has V th space ΣV Y . It is cofibrant in the stable model structure

if Y is a cofibrant based G-space, such as a based G-CW complex. The following
variant of Theorem 5.1 holds, and we shall use it to complete the proofs promised
in [11, §2.5 and §2.7].

Theorem 6.12 (Equivariant Barratt–Priddy–Quillen theorem). For an E∞ operad
CG of G-spaces, there is a weak equivalence of orthogonal G-spectra

α : Σ∞
G Y −→ EGCGY

which is natural on G-maps Y −→ Y ′ of based G-spaces.

Proof. Recall that CV = KV × CG. There is an evident orthogonal G-spectrum
DGY with V th space

(DGY )(V ) = B(ΣV ,CV ,CV Y ).

The projections CV Y −→ CGY induce a weak equivalence DGY −→ EGCGY .
The functor Σ∞

G Y is left adjoint to the zeroth space functor. Since K0(j) is empty
for j > 1 and a point for j = 0 or j = 1 (see §10), C0(j) is empty for j > 1 and
is CG(j) for j = 0 or j = 1. Using the unit id ∈ C (1), we obtain a canonical map
Y −→ (DGY )(0), hence a canonical composite map

Σ∞
G Y −→ DGY −→ EGCGY.

The first arrow is a homotopy equivalence. It has an explicit homotopy inverse
whose map of V th spaces

ε : B(ΣV ,CV ,CV Y ) −→ ΣV Y

is obtained by passage to geometric realization from the evident map of simplicial
spaces B∗(Σ

V ,CV ,CV Y ) −→ (ΣV Y )∗, where (ΣV Y )∗ is the constant simplicial
space at ΣV Y . �

Taking CG = OG, the following result gives consistency with our pairings from
the previous section.



30 B.J. GUILLOU AND J.P. MAY

Theorem 6.13. The following diagram of G-spectra commutes for based G-spaces
X and Y .

Σ∞
GX ∧Σ∞

G Y

∧ ∼=

��

α∧α // EGOG(X) ∧ EGOG(Y )

∧

��
Σ∞
G (X ∧ Y )

α
// EGOG(X ∧ Y )

Proof. A check of definitions shows that the following diagrams commute, where
the left vertical arrow is the evident homeomorphism.

ΣVX ∧ ΣWY //

��

B(ΣV ,CV ,CGX) ∧B(ΣW ,CW ,CGX)

��
ΣV⊕W (X ∧ Y ) // B(ΣV⊕W ,CV⊕W ,CG(X ∧ Y ))

This gives the relevant diagram on the external level, and passing to the internal
smash product gives the conclusion. �

6.3. The G-bicategory EG = E O
G . We specialize to finite G-sets A and B instead

of general G-spaces X and Y . Returning to the level of categories, recall from
Definition 3.12 that we write

EG(A) = E
S
G (A) = OG(A+).

Again writing KGA = EGBA , Theorem 6.13 specializes as follows.

Theorem 6.14. The following diagram of G-spectra commutes for finite G-sets A
and B.

Σ∞
GA+ ∧ Σ∞

GB+

∧ ∼=

��

α∧α // KGEG(A) ∧KGEG(B)

∧

��
Σ∞
G (A×B)+ α

// KGEG(A×B).

For a G-map f : A −→ B, we write

f! : EG(A) −→ EG(B)

for the induced map of OG-categories. The naturality statement of Theorem 6.12
specializes to give that the following diagram commutes.

(6.15) Σ∞
GA+

α //

Σ∞
G f+

��

KGEG(A)

KGf!

��
Σ∞
G B+ α

// KGEG(B).

We do not have a right adjoint f∗ to the “base change” functors f! for general
maps of G-spaces f . However, we do have a version of such a functor for an
inclusion of finite G-sets, and then our covariant naturality specializes to a kind of
contravariant naturality.

Proposition 6.16. Let i : A −→ B be an inclusion of finite G-sets and define a
G-map t : B+ −→ A+ by ti(a) = a for a ∈ A and t(b) = ∗ for b /∈ im(i). Then t
induces a map

i∗ : EG(B) −→ EG(A)
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of OG-categories such that the following diagram of G-spectra commutes.

Σ∞
GB+

α //

Σ∞
G t

��

KGEG(B)

KGi
∗

��
Σ∞
G A+ α

// KGEG(A)

Proof. Identifying A with i(A) and letting C = B − i(A), we may identify B with
the disjoint union A ∐ C and therefore B+ with A+ ∨ C+. Then t restricts to the
identity map on A+ and to the trivial map to the basepoint on C+. Since OG(A+)
is functorial on all maps of based G-spaces, not just those of the form f+, the map
t induces the required map t! = i∗. �

We now perform a bait and switch. In [11, §2], we described in intuitive terms a
G-bicategory EG enriched in permutative categories with G-fixed category GE such
that the category of enriched presheaves K(GE )op −→ S is Quillen equivalent to
GS . We give definitions here that allow us to prove the results of [11], but the
definitions that we start with are less intuitive variants of those of [11, §2]. We shall
give alternative definitions that closely follow those of [11] in §9.3, but they depend
on use of an E∞ operad PG for which we do not have the elementary theory
of pairings of §6.1. We shall indicate an alternative approach to multiplicative
structures that should be applicable, but the details are not yet in place. We here
prove everything that is needed to make the arguments of [11] rigorous, but from
our alternative categorical starting point.

The objects of EG = E O
G are the finite G-sets A, and they can be thought of as the

based OG-categories OG(A+) = EG(A). The OG-category EG(A,B) of morphisms
A −→ B is OG((B×A)+) = EG(B×A). The unit η : ∗+ −→ EG(B,B) is the map of
based OG-categories that sends the object of ∗ to the object (β, (1, 1), · · · , (j, j)) of
OG(j)× (B×B)j where B is a j-pointed G-set thought of as j with left action of G
specified by β−1 for an anti-homomorphism β : G −→ Σj (see Lemma 3.15). Com-
position is given by the following composite, where the first map is a specialization
of (6.11).

EG(C ×B)× EG(B ×A)

��
EG(C ×B ×B ×A)

(id×∆×id)∗

��
EG(C ×B ×A)

(id×ε×id)!

��
EG(C ×A).

The associativity of composition is an easy diagram chase, starting from the asso-
ciativity of the pairing of (6.11), as is the verification that composition with the
prescribed units gives identity functors. Implicitly, we have given a model for the
G-bicategory of spans described in [11, 2.5]. Applying the functor KG, we obtain
the following version of [11, 2.7].
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Theorem 6.17. The composition pairing and unit functors of EG induce pairings

KGEG(B,C) ∧KGEG(A,B) −→ KGEG(A,C)

of (orthogonal) G-spectra and unit maps of G-spectra

SG −→ KGEG(B,B)

that give us a (skeletally) small SG-category KGEG.

Using Theorem 4.12, there results an equivalence of S -categories

K(GE ) −→ (KGEG)
G,

as promised in [11, 2.8]. The main theorem, [11, 2.9], of [11] asserts that KGEG

is equivalent to a certain full SG-category BG of GS . In [11, §2.6], its proof is
reduced to the verification that a certain diagram commutes. In [11, §2.7], the
commutativity of that diagram is reduced to verifying the naturality properties
of the BPQ equivalence α that we have recorded in Theorem 6.14, (6.15), and
Proposition 6.16 above. Therefore we have completed the proofs required to validate
the results of [11].

7. The E∞ operads PG, QG, and RG

The operad OG has a privileged conceptual role, but there are other categor-
ical E∞ G-operads with different good properties. We define three interrelated
examples. The objects of the chaotic category OG(j) are functions G −→ Σj . We
give analogous chaotic G-categories in which the objects are suitable functions be-
tween well chosen infinite G-sets, with G again acting by conjugation. Their main
advantage over OG is that it is easier to recognize G-categories on which they act.

7.1. The definitions of PG and QG. We start with what we would like to take
as a particularly natural choice for the jth category of an E∞ G-operad. It is
described in more detail in [12, §6.1].

Definition 7.1. Let U be a countable ambient G-set that contains countably many
copies of each orbit G/H . Let U j be the product of j copies of U with diagonal
action by G, and let jU be the disjoint union of j copies of the G-set U . Here U0 is
a one-point set, sometimes denoted 1, and 0U is the empty set, sometimes denoted
∅ and sometimes denoted 0.

Let j = {1, · · · , j} with its natural left action by Σj , written σ : j −→ j.

Definition 7.2. For j ≥ 0, let ẼG(j) be the chaotic Σj×G-category whose objects
are the pairs (A,α), where A is a j-element subset of U and α : j −→ A is a bijection.
The group G acts on objects by g(A,α) = (gA, gα), where (gα)(i) = g · α(i). The

group Σj acts on objects by (A,α)σ = (A,α◦σ) for σ ∈ Σj . Since ẼG(j) is chaotic,
this determines the actions on morphisms.

Proposition 7.3. [12, 6.3] For each j, the classifying space |ẼG(j)| is a universal
principal (G,Σj)-bundle.

Therefore ẼG(j) satisfies the properties required of the jth category of an E∞ G-
operad. However, these categories as j varies do not form an operad. The problem
is a familiar one in topology: these categories are analogous to configuration spaces.
In topology, in order to give configuration spaces the structure of an operad, one
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must fatten them up; examples are the little cubes operads and the little disks
operads. Similarly, we must fatten up the above categories to provide enough room
for the operad structure. We will say more about the analogy in Remark 9.7.

Definition 7.4. We define a reduced operad PG ofG-categories. Let PG(j) be the
chaotic G-category whose set of objects is the set of injective functions jU −→ U .
Let G act by conjugation and let Σj have the right action induced by its left action
on jU . Let id ∈PG(1) be the identity function U −→ U . Define

γ : PG(k)×PG(j1)× · · · ×PG(jk) −→PG(j),

where j = j1 + · · ·+ jk, to be the composite

PG(k)×PG(j1)× · · · ×PG(jk) −→PG(k)×PG(
jU,kU) −→PG(j)

obtained by first taking coproducts of maps and then composing, where P(jU,kU)
is the set of injections jU −→kU . The operad axioms [20, 1.1] are easily verified.

As recalled briefly in §10, there is an E∞ operad of G-spaces, denoted LG, whose
jth-space is the space of linear isometries U j −→ U , where U here is a complete
G-universe. Remembering that taking sets to the free R-modules they generate
gives a coproduct-preserving functor from sets to R-modules, we see that PG is a
categorical analogue of LG.

There is a parallel definition that uses products instead of coproducts.

Definition 7.5. We define an unreduced operad Q̄G of G-categories. Let Q̄G(j)
be the chaotic G-category whose set of objects is the set of injective functions
U j −→ U . Let G act by conjugation and let Σj have the right action induced by
its left action on U j . Let id ∈ Q̄G(1) be the identity function. Define

γ : Q̄G(k)× Q̄G(j1)× · · · × Q̄G(jk) −→ Q̄G(j),

where j = j1 + · · ·+ jk, to be the composite

Q̄G(k)× Q̄G(j1)× · · · × Q̄G(jk) −→ Q̄G(k)× Q̄G(U
j , Uk) −→ Q̄G(j)

obtained by first taking products of maps and then composing, where Q̄G(U
j , Uk)

is the set of injections U j −→ Uk. Again, the operad axioms are easily verified.

Observe that the objects of Q̄(0) are the injections from the point U0 into U
and can be identified with the set U , whereas PG(0) is the trivial category given
by the injection of the empty set 0U into U . As in Remark 1.16, the objects of the
zeroth category give unit objects for operad actions, and it is convenient to restrict
attention to a reduced variant of Q̄.

Definition 7.6. Choose a G-fixed point 1 ∈ U (or, equivalently, adjoin a G-fixed
basepoint 1 to U) and also write 1 for the single point in U0. Give U j, j ≥ 0, the
basepoint whose coordinates are all 1. The reduced variant of Q̄ is the operad Q of
G-categories that is obtained by restricting the objects of the Q̄(j) to consist only
of the basepoint preserving injections U j −→ U for all j ≥ 0.

Remark 7.7. If Q̄ acts on a category A , then Q acts on A by restriction of
the action. However, Q can act even though Q̄ does not. This happens when the
structure of A encodes a particular unit object and the operad action conditions
fail for other choices of objects in A .

Proposition 7.8. The classifying spaces |PG(j)|, |Q̄G(j)|, and |QG(j)| are uni-
versal principal (G,Σj)-bundles, hence PG, Q̄G, and QG are E∞ operads.
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Proof. Since the objects of our categories are given by injective functions, Σj acts
freely on the objects of PG(j) and QG(j). Since our categories are chaotic, it
suffices to show that if Λ∩Σj = {e}, where Λ ⊂ Σj×G, then the object sets PG(j)

Λ

and QG(j)
Λ are nonempty. This means that there are Λ-equivariant injections

jU −→ U and U j −→ U , and in fact there are Λ-equivariant bijections. We have
Λ = {(ρ(h), h)|h ∈ H} for a subgroup H of G and a homomorphism ρ : H −→ Σj ,
and we may regard U as an H-set via the canonical isomorphism H ∼= Λ. Since
countably many copies of every orbit of H embed in U , jU , and U j for j ≥ 1, these
sets are all isomorphic as H-sets and therefore as Λ-sets. �

7.2. The definition of RG and its action on PG. This section is parenthetical,
aimed towards work in progress on a new version of multiplicative infinite loop space
theory. The notion of an action of a “multiplicative” operad G on an “additive”
operad C was defined in [22, VI.1.6], and (C ,G ) was then said to be an “operad
pair”. This notion was redefined and discussed in [27, 28]. Expressed in terms of
diagrams rather than elements, it makes sense for operads in any cartesian monoidal
category, such as the categories of G-categories and of G-spaces. As is emphasized
in the cited papers, although this notion is the essential starting point for the theory
of E∞ ring spaces, the only interesting nonequivariant example we know is (C ,L ),
where C is the Steiner operad. As pointed out in the Appendix, this example works
equally well equivariantly. The pair of operads (PG,QG) very nearly gives another
example, but we must shrink QG and drop its unit object to obtain this.

Definition 7.9. Define RG ⊂ QG to be the suboperad such that RG(j) is the
full subcategory of QG(j) whose objects are the based bijections U j −→ U . In
particular, R(0) is the empty category, so that the operad RG does not encode
unit object information. By the proof of Proposition 7.8, for j ≥ 1 RG(j) is again a
universal principal (G,Σj)-bundle. We view RG as a restricted E∞ operad, namely
one without unit objects.

Proposition 7.10. The restricted operad RG acts on the operad PG.

Proof. We must specify action maps

λ : RG(k)×PG(j1)× · · · ×PG(jk) −→PG(j),

where j = j1 · · · jk and k ≥ 1. To define them, consider the set of sequences
I = {i1, · · · , ik}, ordered lexicographically, where 1 ≤ ir ≤ jr and 1 ≤ r ≤ k. For
an injection φr :

jrU −→ U , let φir : U −→ U denote the restriction of φr to the ithr
copy of U in jrU . Then let

φI = φi1 × · · · × φik : U
k −→ Uk.

For a bijection ψ : Uk −→ U , define

λ(ψ;φ1, · · · , φk) :
jU −→ U

to be the injection which restricts on the Ith copy of U to the composite

U
ψ−1

//Uk
φI //Uk

ψ //U.
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It is tedious but straightforward to verify that all conditions specified in [22, VI.1.6],
[28, 4.2] that make sense are satisfied7. �

Remark 7.11. When all ji = 1, so that there is only one sequence I, we can define
λ more generally, with Q(k) replacing R(k), by letting

λ(ψ;φ1, · · · , φk) : U −→ U

be the identity on the complement of the image of the injection ψ : Uk −→ U and

ψ(U)
ψ−1

//Uk
φI //Uk

ψ //ψ(U)

on the image of ψ. Clearly we can replace P(1) by Q(1) here.

This allows us to give the following speculative analogue of Definition 2.7. The
notion of a (C ,G )-space was defined in [22, VI.1.10], and an E∞ ring space is
defined to be a (C ,G )-space, where C and G are E∞ operads of spaces. Briefly,
a (C ,G )-space X is a C -space and a G -space with respective base points 0 and 1
such that 0 is a zero element for the G -action and the action CX −→ X is a map of
G -spaces with zero, where C denotes the monad associated to the operad C . Here
the action of G on C induces an action of G on the free C -spaces CX , so that C
restricts to a monad in the category of G -spaces. These notions are redefined in
the more recent papers [27, 28]. The definitions are formal and apply equally well
to spaces, G-spaces, categories, and G-categories.

Definition 7.12. An E∞ ring G-category A is a G-category together with an
action by the E∞ operad pair (PG,RG) such that the multiplicative action extends
from the restricted E∞ operad RG to an action of the E∞ operad QG.

The notion of a bipermutative category, or strict symmetric bimonoidal cate-
gory, was specified in [22, VI.3.3]. With the standard skeletal model, the direct
sum and tensor product on the category of finite dimensional free modules over a
commutative ring R gives a typical example. Without any categorical justification,
we allow ourselves to think of E∞ ring G-categories as an E∞ version of genuine
operadic bipermutative G-categories even though the latter are as yet undefined.

Our notion of an E∞ G-category A implies that BA is an E∞ G-space. We
would like to say that our notion of an E∞ ring G-category A implies that BA

is an E∞ ring G-space, but that is not quite true. However, we believe there is
a way to prove the following conjecture that avoids any of the categorical work of
[8, 24, 28]. However, that proof is work in progress.

Conjecture 7.13. There is an infinite loop space machine that carries E∞ ring
G-categories to E∞ ring G-spectra.

8. Examples of E∞ and E∞ ring G-categories

We have several interesting examples. We emphasize that these particular con-
structions are new even when G = e. In that case, we may take U to be the set of
positive integers, with 1 as basepoint.

We have the notion of a genuine permutative G-category, which comes with a
preferred product, and the notion of a PG-category, which does not. It seems

7In fact, with the details of [28, 4.2], the only condition that does not make sense would require
λ(1) = id ∈ PG(1), where {1} = R(0), and that condition lacks force since it does not interact
with the remaining conditions.
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plausible that the latter notion is more general, but to verify that we would have to
show how to regard a permutative category as a PG-algebra. One natural way to
do so would be to construct a map of operads PG −→ OG, but we do not know how
to do that. Of course, the equivalence of PG-categories and OG-categories shows
that genuine permutative categories give a plethora of examples of PG-algebras
up to homotopy. However, the most important examples can easily be displayed
directly, without recourse to the theory of permutative categories.

8.1. The G-category EG = E P
G of finite sets. Recall Remark 3.13. Intuitively,

we would like to have a genuine permutative G-category whose product is given
by disjoint unions of finite sets, with G relating finite sets (not G-sets) by trans-
lations. Even nonequivariantly, this is imprecise due to both size issues and the
fact that categorical coproducts are not strictly asssociative. We make it precise
by taking coproducts of finite subsets of our ambient G-set U , but we must do so
without assuming that our given finite subsets are disjoint. We achieve this by
using injections jU −→ U to separate them. We do not have canonical choices for
the injections, hence we have assembled them into our categorical E∞ operad PG.
Recall Definition 7.2 and Proposition 7.3.

Definition 8.1. The G-category ẼG of finite ordered sets is the coproduct over
n ≥ 0 of the G-categories ẼG(n). The G-category EG = E P

G of finite sets is

the coproduct over n ≥ 0 of the orbit categories ẼG(n)/Σn. By Proposition 7.3,
BEG is the coproduct over n ≥ 0 of classifying spaces B(G,Σn). Explicitly, by
[12, 6.5], the objects of EG are the finite subsets (not G-subsets) A of U . Its
morphisms are the bijections α : A −→ B; if A has n points, the morphisms A −→ A
give a copy of the set Σn. The group G acts by translation on objects, so that
gA = {ga|a ∈ A}, and by conjugation on morphisms, so that gα : gA −→ gB is
given by (gα)(g · a) = g · α(a).

Proposition 8.2. The G-categories ẼG and EG are PG-categories, and passage to
orbits over symmetric groups defines a map ẼG −→ EG of PG-categories.

Proof. Define a G-functor

θj : PG(j)× E
j
G −→ EG

as follows. On objects, for φ ∈PG(j) and Ai ∈ Ob EG, 1 ≤ i ≤ j, define

θj(φ;A1, · · · , Aj) = φ(A1 ∐ · · · ∐Aj),

where Ai is viewed as a subset of the ith copy of U in jU . For a morphism

(ι;α1, · · · , αj) : (φ;A1, · · · , Aj) −→ (ψ;B1, · · · , Bj),

where ι : φ −→ ψ is the unique morphism, define θj(ι;α1, · · · , αj) to be the unique
bijection that makes the following diagram commute.

A1 ∐ · · · ∐ Aj

α1∐···∐αj

��

φ // φ(A1 ∐ · · · ∐ Aj)

θj(ι;α1,··· ,αj)

��
B1 ∐ · · · ∐Bj

ψ
// ψ(B1 ∐ · · · ∐Bj)

Then the θj specify an action of PG on EG.
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Since the ẼG(n) are chaotic, to define an action of PG on ẼG we need only
specify the required G-functors

θ̃j : PG(j)× Ẽ
j
G −→ ẼG

on objects. A typical object has the form (φ; (A1, α1), · · · , (Aj , αj)), αi : ni −→ Ai.

We have the canonical isomorphism n1∐· · ·∐n1
∼= n, n = n1+ · · ·nj , and θ̃j sends

our typical object to

(φ(A1 ∐ · · · ,∐Aj), φ ◦ (α1 ∐ · · · ∐ αj).

Again, the θ̃j specify an action. The compatibility with passage to orbits is ver-
ified by use of canonical orbit representatives for objects A that are obtained by
choosing fixed reference maps ηA : n −→ A for each n-point set A ⊂ U ; compare
[12, Proposition 6.3 and Lemma 6.5]. �

Remark 8.3. If we restrict to the full G-subcategory of EG of G-fixed sets A of
cardinality n, we obtain an equivalent analogue of the category FG(n) of Defini-
tion 3.8: these are two small models of the G-category of all G-sets with n elements
and the bijections between them, and they have isomorphic skeleta. Thus the re-
striction of EG to its full G-subcategory of G-fixed sets A is an equivalent analogue
of FG. Remember from Remark 3.11 that no E∞ operad can be expected to act
on FG. The PG-category EG gives a convenient substitute.

8.2. The G-category G LG(R) for a G-ring R. Let R be a G-ring, that is a ring
with an action of G through automorphisms of R. We have analogues of Definitions
7.2 and 8.1 that can be used in equivariant algebraic K-theory. For a set A, let
R[A] denote the free R-module on the basis A. Let G act entrywise on the matrix
group GL(n,R) and diagonally on Rn. Our conventions on semi-direct products
and their universal principal (G,GL(n,R)G)-bundles are in [12], and [12, §6.3] gives
more details on the following definitions.

Definition 8.4. We define the chaotic general linear category G̃ L (n,R). Its ob-
jects are the monomorphisms of (left) R-modules α : Rn −→ R[U ]. The group
G acts on objects by gα = g ◦ α ◦ g−1. The group GL(n,R) acts on objects by

ατ = α ◦ τ : Rn −→ R[U ]. Since G̃ L (n,R) is chaotic, this determines the actions
on morphisms.

Proposition 8.5. [12, 6.18] The actions of G and GL(n,R) on G̃ L (n,R) deter-

mine an action of GL(n,R)⋊G, and the classifying space |G̃ L (n,R)| is a universal
principal (G,GL(n,R)G)-bundle.

Definition 8.6. The general linear G-category G LG(R) of finite dimensional free

R-modules is the coproduct over n ≥ 0 of the orbit categories G̃ L (n,R)/GL(n,R).
By Proposition 8.5, BG LG(R) is the coproduct over n ≥ 0 of classifying spaces
B(G,GL(n,R)G). Explicitly, by [12, 6.20], the objects of G L (R) are the finite
dimensional free R-submodules M of R[U ]. The morphisms α : M −→ N are the
isomorphisms of R-modules. The group G acts by translation on objects, so that
gM = {gm |m ∈M}, and by conjugation on morphisms, so that (gα)(gm) = α(m)
for m ∈M and g ∈ G.

Proposition 8.7. The G-categories G̃ L G(R) and G LG(R) are PG-categories and

passage to orbits over general linear groups defines a map G̃ LG(R) −→ G LG(R)
of PG-categories.
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Proof. Define a functor

θj : PG(j)× G LG(R)
j −→ G LG(R)

as follows. On objects, for φ ∈PG(j) and Mi ∈ ObG L (R), 1 ≤ i ≤ j, define

θj(φ;M1, · · · ,Mj) = R[φ](M1 ⊕ · · · ⊕Mj),

where R[φ] : R[jU ] −→ R[U ] is induced by φ : jU −→ U and Mi is viewed as a
submodule of the ith copy of R[U ] in R[jU ] = ⊕jR[U ]. For a morphism

(ι;α1, · · · , αj) : (φ;M1, · · · ,Mj) −→ (ψ;N1, · · · , Nj),

define θj(ι;α1, · · · , αj) to be the unique isomorphism of R-modules that makes the
following diagram commute.

M1 ⊕ · · · ⊕Mj

α1⊕···⊕αj

��

R[φ] // R[φ](M1 ⊕ · · · ⊕Mj)

θj(ι;α1,··· ,αj)

��
N1 ⊕ · · · ⊕Nj

R[ψ]
// R[ψ](N1 ⊕ · · · ⊕Nj)

Then the θj specify an action of PG on G LG(R). Since the G̃ L (R, n) are chaotic,

to define an action of PG on G̃ L (R), we need only specify the required G-functors

θ̃j : PG(j)× G̃ L G(R)
j −→ G̃ LG(R)

on objects. A typical object has the form (φ;α1, · · · , αj), αi : R
ni −→ R[U ], and,

with n = n1 + · · ·+ nj , θ̃j sends it to

R[φ] ◦ (α1 ⊕ · · · ⊕ αj) : R
n −→ R[U ].

Again, the θ̃j specify an action. The compatibility with passage to orbits is verified
by use of canonical orbit representatives for objects that are obtained by choosing
reference maps ηM : Rn −→M for each M dimensional free R-module M ⊂ R[U ];
compare [12, 6,18, 6.20]. �

On passage to classifying spaces and then to G-spectra via our infinite loop space
machine EG, we obtain a model EGBG LG(R) for the K-theory spectrum KG(R)
of R. The following result compares the two evident models in sight.

Definition 8.8. Define the naive permutative G-category GLG(R) to be the G-
groupoid whose objects are the n ≥ 0 and whose set of morphismsm −→ n is empty
if m 6= n and is the G-group GL(n,R) if m = n, where G acts entrywise. The
product is given by block sum of matrices. Applying the chaotic groupoid functor

to the groups GL(n,R) we obtain another naive permutative G-category G̃LG(R)

and a map G̃LG(R) −→ GLG(R) of naive permutative G-categories. Applying
the functor G from Proposition 2.5, we obtain a map of genuine permutative G-

categories G G̃LG(R) −→ GGLG(R).

It is convenient to write G L O
G (R) for the OG-category GGLG(R) and G L P

G (R)

for the PG-category G LG(R), and similarly for their total space variants G G̃LG(R)

and G̃ LG(R). We have the following comparison theorem.

Theorem 8.9. The G-spectra KGG L O
G (R) and KGG L P

G (R) are weakly equiva-
lent, functorially in G-rings R.
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Proof. We again use the product of operads trick from [20]. Projections and quo-
tient maps give a commutative diagram of (OG ×PG)-categories

G̃ L
O

G(R)

��

G̃ L
O

G(R)× G̃ L
P

G (R)

��

oo // G̃ L
P

G (R)

��
G L O

G (R) G L
O×P

G (R)oo // G L P
G (R).

The middle term at the top denotes the diagonal product, namely
∐

n

G̃ L
O

G(n,R)× G̃ L
P

G (n,R).

The middle term on the bottom is the coproduct over n of the orbits of these
products under the diagonal action of GL(n,R). The product of total spaces of
universal principal (G,GL(R, n)G)-bundles is the total space of another universal
principal (G,GL(R, n)G)-bundle. Therefore, after application of the classifying
space functor, the horizontal projections display two equivalences between universal
principal (G,GL(R, n)G)-bundles. The conclusion follows by hitting the resulting
diagram with the functor KG defined with respect to (OG ×PG)-categories and
using evident equivalences to the functors KG defined with respect to OG and PG-
categories when the input is given by OG or PG-categories. �

8.3. Multiplicative actions on EG and G LG(R). We agree to think of QG-
categories as “multiplicative”, whereas we think of PG-categories as “additive”.

Proposition 8.10. The G-category EG is a QG-category.

Proof. Define a G-functor

ξj : QG(j)× E
j
G −→ EG

as follows. On objects, for φ ∈ QG(j) and Ai ∈ EG, 1 ≤ i ≤ j, define

ξj(φ;A1, · · · , Aj) = φ(A1 × · · · ×Aj).

For a morphism

(ι;α1, · · · , αj) : (φ;A1, · · · , Aj) −→ (ψ;B1, · · · , Bj)

define ξj(ι;α1, · · · , αj) to be the unique bijection that makes the following diagram
commute.

A1 × · · · ×Aj

α1×···×αj

��

φ // φ(A1 × · · · ×Aj)

ξj(ι;α1,··· ,αj)

��
B1 × · · · ×Bj

ψ
// ψ(B1 × · · · ×Bj)

Then the ξj specify an action of QG on EG. �

Proposition 8.11. If R is a commutative G-ring, then G LG(R) is a QG-category.

Proof. Define a functor

ξj : QG(j)× G L (R)jG −→ G LG(R)
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as follows. Identify R[U j] with ⊗jR[U ], where ⊗ = ⊗R. On objects, for φ ∈PG(j)
and R-modules Mi ⊂ R[U ], 1 ≤ i ≤ j, define

ξj(φ;M1, · · · ,Mj) = R[φ](M1 × · · · ×Mj).

For a morphism

(ι;α1, · · · , αj) : (φ;M1, · · · ,Mj) −→ (ψ;N1, · · · , Nj)

define ξj(ι;α1, · · · , αj) to be the unique isomorphism of R-modules that makes the
following diagram commute.

M1 ⊗ · · · ⊗Mj

α1⊗···⊗αj

��

R[φ] // φ(M1 ⊗ · · · ⊗Mj)]

ξj(ι;α1,··· ,αj)

��
N1 ⊗ · · · ⊗Nj

R[ψ] // ψ(N1 ⊗ · · · ⊗Nj).

Then the ξj specify an action of QG on G LG(R). �

Restricting the action from QG to RG, the examples above and easy diagram
chases prove that the operad pair (PG,RG) acts on the categories EG and G LG(R).
This proves the following result.

Theorem 8.12. The categories EG and G LG(R) for a commutative G-ring R are
E∞ ring G-categories in the sense of Definition 7.12.

Observe that since we lack a clear categorical definition of a genuine symmetric
monoidal G-category, we do not know how to give a categorical definition of a
genuine symmetric bimonoidal G-category. Even operadically, where we do have
a definition of a genuine permutative G-category, we do not have a definition of a
genuine bipermutative G-category. The previous examples show that we do have
examples of E∞ ring G-categories. However, we do not know how to construct E∞

ring G-categories from general naive bipermutative G-categories.

9. The PG-category EG(X) and the BPQ-theorem

We now return to the BPQ-theorem, but thinking in terms of PG-categories
rather than OG-categories. This gives a more intuitive approach to the G-category
of finite sets over a G-space X .

9.1. The G-category EG(X) of finite sets over X.

Definition 9.1. Let X be a G-space. We define the G-groupoid EG(X) = E P
G (X)

of finite sets over X . Its objects are the functions p : A −→ X , where A is a
finite subset of our ambient G-set U . For a second function q : B −→ X , a map
f : p −→ q is a bijection α : A −→ B such that q ◦ α = p. Composition is given by
composition of functions over X . The group G acts by translation of G-sets and
conjugation on all maps in sight. Thus, for an object p : A −→ X , gp : gA −→ X
is given by (gp)(ga) = g(p(a)). For a map f : p −→ q, gf : gA −→ gB is given by
(gf)(ga) = g(f(a)).

To topologize EG(X), give U and X disjoint basepoints ∗. View the set Ob of
objects of EG(X) as the set of based functions p : U+ −→ X+ such that p−1(∗) is the

complement of a finite set A ⊂ U . Topologize Ob as a subspace of X
U+

+ . View the
set Mor of morphisms of EG(X) as a subset of the set of functions α : U+ −→ U+
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that send the complement of some finite set A ⊂ U to ∗ and map A bijectively
to some finite set B ⊂ U . Topologize Mor as the subspace of points (p, f, q) in

Ob× U
U+

+ × Ob, where U
U+

+ is discrete. When X is a finite set and thus a discrete
space (since points are closed in spaces in U ), EG(X) is discrete.

Let EG(n,X) denote the full subcategory of EG(X) of maps p : A −→ X such
that A has n elements. Then EG(X) is the coproduct of the groupoids EG(n,X).

Proposition 9.2. The operad PG acts naturally on the categories EG(X).

Proof. For j ≥ 0, we must define functors

θj : PG(j)× EG(X)j −→ EG(X).

To define θj on objects, let φ : jU −→ U be an injective function and pi : Ai −→ X
be a function, 1 ≤ i ≤ j, whereXi is a finite subset of U . We define θj(φ; p1, · · · , pj)
to be the composite

φ(A1 ∐ · · · ∐ Aj)
φ−1

//A1 ∐ · · · ∐ Aj
∐pi // jX

∇ //X,

where ∇ is the fold map, the identity on each of the j copies of X . To define θ on
morphisms, let ψ : : jU −→ U be another injective function, and let ι : φ −→ ψ be
the unique map in PG(j). For functions qi : Bi −→ X and bijections αi : Ai −→ Bi
such that qiαi = pi, define θj(ι;α1, · · · , αj) to be the unique dotted arrow bijection
that makes the following diagram commute.

φ(A1 ∐ · · · ∐ Aj)
φ−1

//

θ(ι;α1,··· ,αj)

��✤
✤

✤

✤

✤

✤

✤
A1 ∐ · · · ∐ Aj

∐pi

&&▲▲
▲▲

▲▲
▲▲

▲▲

∐αi

��

jX
∇ // X.

ψ(B1 ∐ · · · ∐Bj)
ψ−1

// B1 ∐ · · · ∐Bj

∐qi

88rrrrrrrrrrr

Then the maps θj specify an action of PG on the category EG(X). �

We have a multiplicative elaboration, which is similar to [22, VI.1.9]. Regarding
a G-space X as a constant G-category with object and morphism space both X ,
it makes sense to speak of an action of the operad QG on the G-category X . For
example, QG acts on X if X is a commutative topological G-monoid.

Proposition 9.3. If the constant G-category X is a QG-category, then EG(X) is
an E∞ ring G-category.

Proof. By analogy with the previous proof, for j ≥ 0, we have functors

ξ : QG(j)× EG(X)j −→ EG(X
j).

With the notations of the previous proof, on objects (φ; p1, · · · , pj), ξ(φ; p1, · · · , pj)
is defined to be the composite

φ(A1 × · · · ×Aj)
φ−1

//A1 × · · · ×Aj
×pi //Xj.
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On morphisms (ι;α1, · · · , αj), ξ(ι;α1, · · · , αj) is defined to be the unique dotted
arrow making the following diagram commute.

φ(A1 × · · · ×Aj)
φ−1

//

ϑ(ω;α1,··· ,αj)

��✤
✤

✤

✤

✤

✤

✤
A1 × · · · ×Aj

×pi

&&▼▼
▼▼

▼▼
▼▼

▼▼

×αi

��

Xj.

ψ(B1 × · · · ×Bj)
ψ−1

// B1 × · · · ×Bj

×qi

88rrrrrrrrrrr

Letting ξ denote the action of QG on X , the action ξ of QG on EG(X) is defined
by the composite maps

QG(j)× EG(X)j
∆×id //QG(j)×QG(j)× EG(X)j

id×ϑ //QG(j)×Xj
ξ //X.

Further details are the same as in the proof of [22, VI.1.9] or [27, 4.9]. �

9.2. Free PG-categories and the PG-categories EG(X). The categories EG(X)
are conceptually simple, and they allow us to give a genuinely equivariant variant of
Theorem 3.9. To see that, we give a reinterpretation of EG(X). Regarding X as a

topological G-category as before, we have the topological G-category ẼG(j)×Σj
Xj.

Lemma 9.4. The topological G-categories EG(j,X) and ẼG(j)×Σj
Xj are naturally

isomorphic.

Proof. For an ordered set A = (a1, · · · , aj) of points of U , let a point (A;x1, ·, xj)

of Ob(ẼG(j) ×Σj
Xj) correspond to the function p : A −→ X given by p(ai) = xi.

Similarly, let a point (α : A −→ B;x1, · · · , xj) of Mor(ẼG(j)×Σj
Xj) correspond to

the bijection α : p −→ q over X , where qα(ai) = p(ai) = xi. Since we have passed
to orbits over Σj , our specifications are independent of the ordering of A. These
correspondences identify the two categories. �

Recall that we write PG for the monad on based G-categories associated to the
operad PG, |PG| for the operad of G-spaces obtained by applying the classifying
space functor B to PG, and PG for the monad on based G-spaces associated to
|PG|. Recall too that X+ denotes the union of the G-category X with a disjoint
trivial basepoint category ∗ and that

(9.5) PG(X+) =
∐

j≥0

PG(j)×Σj
Xj.

Theorem 9.6. There is a natural map

ω : PG(X+) −→ EG(X)

of PG-categories, and it induces a weak equivalence

Bω : PG(X+) −→ BEG(X)

of |PG|-spaces on passage to classifying spaces.
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Proof. We have a G-fixed basepoint 1 ∈ U . Define an inclusion i : X+ −→ EG(X) of
based G-categories by identifying ∗ with EG(0, X) and mapping X to EG(1, X) by
sending x to the map 1 −→ x from the 1-point subset 1 of U to X . Since PG(X+)
is the free (based) PG-category generated by X+, i induces the required natural
map ω. Explicitly, it is the composite

PG(X+)
PGi //PG(EG(X))

θ //EG(X).

More explicitly still, it is the coproduct of the maps

ωj = ij ×Σj
id : PG(j)×Σj

Xj −→ ẼG(j)×Σj
Xj,

where ij : PG(j) −→ ẼG(j) is the (Σj×G)-functor that sends an object φ : jU −→ U
to the set φ(a ∐ · · · ∐ a) ⊂ U and sends the morphism ι : φ −→ ψ to the bijection

φ(a ∐ · · · ∐ a)
φ−1

//a ∐ · · · ∐ a
ψ //ψ(a ∐ · · · ∐ a).

Passing to classifying spaces, |ij | is a map between universal principal (G,Σj)-
bundles, both of which are (Σj ×G)-CW complexes. Therefore |ij | is a (Σj ×G)-
equivariant homotopy equivalence. The conclusion follows. �

Remark 9.7. As a digressive observation, we give an analogue of the nonequivari-
ant equivalence PS0 −→ BE of |P|-spaces in a classical topological context. We
have the little n-cubes operads Cn and their associated monads Cn. Let J = (0, 1)
be the interior of I. We have the configuration spaces F (Jn, j) of n-tuples of dis-
tinct points in Jn. Sending little n-cubes c : Jn −→ Jn to their center points
c(1/2, · · · , 1/2) gives a homotopy equivalence f : Cn(j) −→ F (Jn, j). For based
spaces Y , we construct spaces FnY by replacing Cn(j) by F (J

n, j) in the construc-
tion of CnY . The maps f induce a homotopy equivalence

f : CnY −→ FnY.

That much has been known since [20]. A folklore observation is that although the
F (Jn, j) do not form an operad, Cn acts on FnY in such a way that f is a map of
Cn-spaces. Indeed, we can evaluate little n-cubes : Jn −→ Jn on points of Jn to
obtain maps Cn(j) × F (Jn, j) −→ F (Jn, j), and any reader of [20] will see how to
proceed from there.

9.3. The Barratt-Priddy-Quillen theorem revisited. We begin by comparing
Theorem 9.6, which is about G-categories, with Theorems 3.5, 3.9, and 3.10, which
are about G-fixed categories. Clearly EG(X)G is a P-category, where P = (PG)

G.
By Theorem 9.6, it is weakly equivalent (in the homotopical sense) to the P-
category (PGX+)

G. We also have the O-category FG(X)G, which by Theorem 3.9
and Remark 3.11 is equivalent to the O-category (OGX+)

G. Elaborating Re-
mark 8.3, EG(X)G and FG(X)G are two small models for the category of all finite
G-sets and G-isomorphisms overX and are therefore equivalent. To take the operad
actions into account, recall the discussion in §2.3.

Lemma 9.8. The OG-category OGX+ and the PG-category PGX+ are weakly
equivalent as (OG ×PG)-categories. Therefore the O-category (OGX+)

G and the
P-category (PGX+)

G-categories are weakly equivalent

Proof. The projections

OGX+ (OG × PG)(X+)oo //PGX+
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are maps of (OG ×PG)-categories that induce weak equivalences of |OG ×PG|-
spaces on passage to classifying spaces. �

Theorem 9.9. The classifying spaces of the O-category FG(X)G and the P-
category EG(X)G are weakly equivalent as |O ×P|-spaces.

The conclusion is that, on the G-fixed level, the categories EG(X)G and FG(X)G

can be used interchangeably as operadically structured versions of the category of
finite G-sets over X . On the equivariant level, EG(X) but not FG(X) is operad-
ically structured. It is considerably more convenient than the categories OG(X+)
or PG(X+). With the notations KGPG(X+) = EGBPG(X+) = EGPG(X+) and
KGEG(X) = EGBEG(X), we have the following immediate consequence of Theo-
rems 5.2 and 9.6. It is our preferred version of the equivariant BPQ theorem, since
it uses the most intuitive categorical input.

Theorem 9.10 (Equivariant Barratt-Priddy-Quillen theorem). For G-spaces X,
there is a composite natural weak equivalence

α : Σ∞
GX+ −→ KGPGX+ −→ KGEG(X).

We use this version of the BPQ theorem to reconsider base change functors. We
first spell out the naturality statement of Theorem 9.10. For a G-map f : X −→ Y ,
we have the map of PG-categories

f! : EG(X) −→ EG(Y )

given by post-composition of functions p : A −→ X with the map f . The naturality
statement of Theorem 9.10 means that the following diagram commutes.

(9.11) Σ∞
GX+

α //

Σ∞
G f+

��

KGEG(X)

KGf!

��
Σ∞
G Y+ α

// KGEG(Y )

Observe that we do not have a right adjoint f∗ to f! in general. The way to
construct such a functor is to pull back a function q : B −→ Y along f to obtain
a function p : A −→ X . This does not work since A need not be finite when B is,
although it is so when X is finite. When both X and Y are finite, we have the kind
of contravariant naturality that we saw in Proposition 6.16 (albeit with a clash of
notation). The proof is the same as there.

Proposition 9.12. Let i : X −→ Y be an inclusion of finite G-sets and define a
G-map t : Y+ −→ X+ by ti(x) = x for x ∈ X and t(y) = ∗ for y /∈ im(i). Then the
following diagram of G-spectra commutes.

Σ∞
G Y+

α //

Σ∞
G t

��

KGEG(Y )

KGi
∗

��
Σ∞
GX+ α

// KGEG(X)

From here, it should be possible to reprove the results of [11, §2] using a version
E P
G of the G-bicategory E O

G used in §6.3, but processing the relevant pairings using
operadic parametrization via QG and RG. However, the details are not yet in place.
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10. Appendix: the equivariant Steiner operads

In [27, §3], the second author explained the deficiencies of the little cubes and
the little discs operads nonequivariantly and showed how the Steiner operads [37]
enjoyed all of the good properties of both. The same explanations apply equivari-
antly. The definitions given in [27, 37] apply verbatim equivariantly, as we indicate
below. We must define pairings KV ×KW −→ KV⊕W and we must explain why
the infinite Steiner operad KU is an E∞ operad of G-spaces.

10.1. The definition of KV . Let V be a real representation of G with a G-
invariant inner product. Let EV be the space of embeddings V −→ V , with G
acting by conjugation, and let EmbV (j) ⊂ EjV be the G-subspace of j-tuples of
embeddings with disjoint images. Regard such a j-tuple as an embedding jV −→ V ,
where jV denotes the disjoint union of j copies of V (where 0V is empty). The
element id ∈ EmbV (1) is the identity embedding, the group Σj acts on EmbV (j)
by permuting embeddings, and the structure maps

(10.1) γ : EmbV (k)× EmbV (j1)× · · · × EmbV (jk) −→ EmbV (j1 + · · ·+ jk)

are defined by composition and disjoint union in the evident way [27, §3]. This
gives an operad EmbV of G-spaces.

Define RV ⊂ EV = EmbV (1) to be the sub G-space of distance reducing embed-
dings f : V −→ V . This means that |f(v)− f(w)| ≤ |v−w| for all v, w ∈ V . Define
a Steiner path to be a map h : I −→ RV such that h(1) = id and let PV be the
G-space of Steiner paths, with action of G induced by the action on RV . Define
π : PV −→ RV by evaluation at 0, π(h) = h(0). Define KV (j) to be the G-space of
j-tuples (h1, · · · , hj) of Steiner paths such that the π(hr) have disjoint images. The
element id ∈ KV (1) is the constant path at the identity embedding, the group Σj
acts on KV (j) by permutations, and the structure maps γ are defined pointwise in
the same way as those of EmbV . This gives an operad of G-spaces, and application
of π to Steiner paths gives a map of operads π : KV −→ EmbV .

The Steiner operads KV are all reduced, KV (0) = ∗, and K0 is the trivial operad
with K0(1) = id and K0(j) = ∅ for j > 1; its associated monad K0 is the identity
functor on based spaces.

By pullback along π, any space with an action by EmbV inherits an action by KV .
Exactly as in [20, §5], [22, VII§2], or [27, §3], EmbV acts naturally on ΩV Y for a G-
space Y . Evaluation of embeddings at 0 ∈ V givesG-maps ζ : EmbV (j) −→ F (V, j),
where F (V, j) is the configurationG-space of j-tuples of distinct points in V . Steiner
[37] determines the homotopy types of the KV (j) by proving that the composite
maps ζ ◦ π : KV (j) −→ F (V, j) are Σj-equivariant deformation retractions. The
argument is clever and non-trivial, but for us the essential point is that it uses
the metric on V and the contractibility of I in such a way that the construction
is clearly G-equivariant. Therefore F (V, j) is a (Σn × G)-deformation retract of
KV (j).

10.2. The pairing (KV ,KW ) −→ KV⊕W . In [20, 8.3], a pairing

⊗ : CmX ∧ CnY −→ Cm+n(X ∧ Y )

is defined for based spaces X and Y , where Cn denotes the monad on based spaces
induced from the little n-cubes operad Cn. Implicitly, it comes from a pairing of
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operads ⊗ : (Cm,Cn) −→ Cm+n. The Steiner operad analogue appears in [23, p.
337], and we recall it here. We have a pairing of operads of G-spaces

⊗ : (KV ,KW ) −→ KV⊕W

for finite dimensional real inner product spaces V and W . The required maps

⊗ : KV (j)×KW (k) −→ KV⊕W (jk)

are given by (c⊗ d) = e, where, writing c = (g1, · · · , gj) and d = (h1, · · · , hk), e is
the jk-tuple of Steiner paths

(gq, hr) : I −→ RV ×RW ⊂ RV⊕W ,

1 ≤ q ≤ j and 1 ≤ r ≤ k, ordered lexicographically. The formulas required in
Definition 6.1 are easily verified.

This system of pairings is unital, associative, and commutative. The pairing
⊗ : KV (j) ∼= K0(1) ×KV (j) −→ KV (j) is the identity map. The following asso-
ciativity diagram commutes for a triple (V,W,Z) of inner product spaces.

KV (i)⊗KW (j)⊗KZ(k)
⊗×id //

id×⊗

��

KV⊕W (ij)×KZ(k)

⊗

��
KV (i)×KW⊕Z(jk)

⊗
// KV⊕W⊕Z(ijk)

The following commutatitivity diagram commutes for a pair (V,W ).

KV (j)×KW (k)

t

��

⊗ // KV⊕W (jk)

τ(j,k)

��
KW (k)⊗KV (j)

⊗
// KW⊕V (kj)

Here t is the interchange map and τ(j, k) is determined in an evident way by the
interchange map for V and W and the permutation τ(j, k) of jk-letters.

Passing to monads as in Lemma 6.2, we obtain a unital, associative, and com-
mutative system of pairings

⊗ : KVX ∧KWY −→ KV⊕W (X ∧ Y ).

For the unit property, when V = 0 the map ⊗ : X∧KWY −→ K(X∧Y ) is induced
by the maps X × Y j −→ (X × Y )j obtained from the diagonal map on X and
shuffling. We have the following key observation. Its analogue for the little cubes
operads is [20, 8.3].

Lemma 10.2. The following diagram commutes.

KVX ∧KWY
⊗ //

αV ∧αW

��

KV⊕W (X ∧ Y )

αV ⊕W

��
ΩV ΣVX ∧ ΩWΣWY

∧
// ΩV⊕WΣV⊕W (X ∧ Y ),

(where we implicitly identify X∧Y ∧SV ∧SW with X∧SV ∧Y ∧SW via id∧t∧ id).
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10.3. The operad KU and the action of LU on KU . Inclusions V ⊂W func-
torially induce inclusions of operads KV −→ KW . Let U be a complete G-universe,
the sum of countably many copies of each irreducible representation of G, and let
KU be the union over V ⊂ U of the operads KV .

8 This is the infinite Steiner
operad of G-spaces, and it acts on Ω∞

GE for any genuine G-spectrum E. It is an
E∞ operad since Σj-acts freely on KU (j) and KU (j)

Λ is contractible if Λ ⊂ Σj×G
and Λ ∩Π = e. Indeed, Λ is isomorphic to a subgroup H of G, and if we let H act
on U through the isomorphism, then U is a complete H-universe and UH is iso-
morphic to R∞. Therefore KU (j)

Λ is equivalent to the contractible configuration
space F (R∞, j).

The linear isometries operad L is defined in many places (e.g. [27, §2]), and it
too has an evident equivariant version LU , which was first used in [17, VII§1]. The
Σj ×G-space LU (j) is the space of linear isometries U j −→ U , with G acting by
conjugation. Then LU is also an E∞ operads of G-spaces. Again Σj acts freely on
LU (j) and LU (j)

Λ is contractible if Λ ⊂ Σj ×G and Λ ∩ Π = e. If Λ ∼= H and H
acts on U through the isomorphism, then U is a complete H-universe and LU (j)

H

is isomorphic the space of H-linear isometries U j −→ U . The usual argument that
L (j) is contractible (e.g. [22, I.1.2]) adapts readily to prove that this space is
contractible.

The formal structure of (KU ,LU ) works the same way as nonequivariantly. This
is an E∞ operad pair in the sense originally defined in [22, VI.1.2] and reviewed
in [27, §1] and, in more detail, [28, 4.2]. The action of LU on KU is defined
nonequivariantly in [27, §3] and works in exactly the same way equivariantly. From
here, multiplicative infinite loop space theory works equivariantly to construct E∞

ring G-spectra from (CU ,LU )-spaces (alias E∞-ring G-spaces) in exactly the same
way as nonequivariantly [22, 27]. The passage from category level data to E∞-ring
G-spaces in analogy with [24, 28] generalizes to equivariant multicategories, as will
be explained in [2].
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