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I Introduction 

In this paper we work primarily in the equivariant stable category of  [16], but we 
try to provide numerous reference points and nonequivariant versions of  results 
for readers unfamiliar with that world. 

We discuss the Tare spectrum tG(X). Here X is a G-spectrum and to(X) is a 
new G-spectrum, covariantly functorial in X. Throughout this paper we assume 
that G is a finite group (though the functor to(X) is defined whenever G is 
compact Lie). 

Our introduction is in three parts; first we review a bit of  equivariant stable 
homotopy theory from [16], then we briefly discuss the Tate spectrum of  [11], and 
then we state our results. The rest of  the paper is organized as follows. In Section 
2 we prove some lemmas required for our Theorem 1.1 (and the theorem itself 
when G is cyclic), and in Section 3 we prove our main theorem, Theorem 1.1, 
for arbitrary finite G. Section 4 applies Theorem 1.1 to prove the remainder of  
our results about the Tate theory of  complex oriented vn-periodic spectra. 

1.I G-spectra 

Recall that a G-spectrum X is a set of  spaces indexed over G-invariant finite 
dimensional subspaces of  some complete G-universe U. (U is an infinite dimen- 
sional G invariant inner product space containing a countably infinite direct sum 
of regular representations of G as a subspace.) The usual structure maps 

x(v)  ,s2Wx(v G w) 
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are required to be G-maps. Here V and W are disjoint finite dimensional G- 
subspaces of U. 

There are two functors we will use to move between the equivariant and 
nonequivariant worlds. First we have 

i, : {spectra} --~ {G-spectra}, 

which comes from the inclusion 

i : uG  ,--.~U 

of a (nonequivariant) universe into U. This functor is defined by taking i ,X  to 
be the spectrum derived by turning the prespectrum 

V ~ ~ S w± A X ( W )  

into a spectrum. Here W = V n U a and W 3- is the orthogonal complement of  
W i n V .  

On the space level, we may take any space X and regard it as a G - s p a c e  
with the trivial G-action. The stable analogue is the functor that takes an or- 
dinary spectrum and gives the G-spectrum i , (X) .  (Of course G doesn't really 
act trivially on i ,X  since it acts non-trivially on the space associated to V in 
the prespectrum defined above whenever V is a non-trivial representation of G.) 
The same construction gives a functor from the category of naive G-spectra 
(G-spectra indexed over a universe on which G acts trivially) to the category 
of G-spectra. One can think of i, as the composition of the inclusion functor 
from non-equivariant spectra to naive G-spectra with the construction described 
above which constructs a G-spectrum from a naive G spectrum. The functor i, 
thought of as starting in naive G-spectra is left adjoint to the appropriate forgetful 
functor, and the inclusion of non-equivariant spectra into the category of naive 
G-spectra is left adjoint to taking G-fixed points. 

The other functor 

j* : {G-spectra} --~ {spectra} 

comes from forgetting the G-structure. We look at U as an {e}-universe via 
the inclusion j : {e} ~ G, and look at each G-space in a G-spectrum as an 
{e}-space. 

One would like to have the following equality 

j*  i , X  = X.  

Unfortunately, this doesn't actually make any sense, since the two spectra are 
indexed over different universes. The usual way to get around this is to let f 
denote the linear isometric embedding 

U ° ~ j * U  
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(here j * U  is U with the G-action forgotten) and then it follows from chasing 
the definitions that 

j* i .X = f . X .  

Now from [16, II.1.5] it follows that f .  gives an isomorphism of the homotopy 
categories of spectra over the universes U a and j * U .  

All the ideas presented above about G-spectra are taken from [16], where of 
course much more information and detail are present. 

1.2 The Tate spectrum 

The Tate spectrum is the main subject of [11]. We recall some important relevant 
properties here. Let X be a G-spectrum. Then we have another G-spectrum 
F(EG+,X), the spectrum of "maps" from EG÷ to X. Here G acts by conjugation 
on the maps. Recall the cofiber sequence of G-spaces (G acts trivially on S °) 
from [6] 

EG+ ~ S ° --* EG. 

The first map sends the base point to the base point and everything else to the 
other point;/~G is defined to be the cofiber. We are now ready to define 

to(X) de=f F(EG÷,X) A EG.  (1.1) 

This spectrum comes with a map from X: 

X --, F(EG+,X) ---+ F(EG+,X)A EG 

which is a map of ring spectra when X is a ring spectrum [11, Proposition 3.5]. 
Note that if F, F r are finite CW-spectra, a n d f  : F ~ F r then 

F(Y  ,X  A F )  ----- F(Y ,X)  A F 

and 
F(Y ,  lx A f )  ----- F(Y ,  Ix)  Af .  

It follows then from (1.1) that 

tc(X A F) ~ to(X) A F and to( lx  A f )  ~ tc ( lx)  A f .  (1.2) 

We will also use the spectrum 

f~(X)  ~_ X A EG+. (1.3) 

We will make frequent use of [ 11, Proposition 2.6], which states that 

t6(X) ~- F (EG,  Sf6(X)) .  

Corollary 2.4 below [11, 
spectrum 

(1.4) 

16.1] gives a description of the nonequivariant 

t c ( i .X)  ~ 



394 J.P.C. Greenlees, H. Sadofsky 

when G is a finite cyclic group. This description connects the Tate spectrum with 
Mahowald's inverse system 

• . .  - ~  (BZ/(p))-r  ~ (BZ/~,))-r+I ~ ' "  

in the case G = Z/(p); in that case, Corollary 2.4 can be rephrased to say 

tz/o,)(i.X) z/(~) = li.___m (XX A (BZ/(p))_r).  (1.5) 
r 

We use lim to denote the homotopy inverse limit. (For a definition of (BZ/(p))_r 

see [24].) 

1.3 Results 

In this paper we are concerned with to(E) when E is a periodic homology theory 
and G is finite. Essentially, we only know how to deal with E = i .K where K 
is a nonequivariant periodic homology theory, but [11, Corollary 1.5] enables us 
to extend our results. We may say that E is an equivariant form of K if E is a 
split G-spectrum with underlying spectrum j * E  = K ; b y  [11, Corollary 1.5] our 
results apply equally well to any equivariant form of K, and from the equivariant 
point of view, i .K  is often a rather artificial equivariant form of K. For example, 
if K is ordinary K-theory, the best equivariant form is the classical equivariant 
K-theory formed from equivariant bundles, and this is quite different from i .K.  
Nevertheless, for clarity we work with the particular equivariant form i .K for 
the remainder of the paper. 

Our main theorem is the following. 

Theorem 1.1 Suppose k = i .K (n) where K (n) is the n th Morava K-theory spec- 
trum. Then 

ta(k ) ~- *. 

Jack Morava points out the following consequence about the transfer. Recall 
from [11, §5] that t6(k) is the cofiber of the obvious composite 

k A EG+ ~ k --~ F (EG+, k). 

Assume k = i ,K  with K a naive G-spectrum on which G acts trivially. Then 
taking fixed points, the cofiber of the composite 

K Ac EG+ ,(i .K A EG+) 6 ~ i ,K  c --+ F(EG+, i .K)  c ~- F(BG+, K)  

is to( i ,K)  c,  where ~ (which is a homotopy equivalence) is the adjoint of the 
equivariant transfer i .K  A6 EG÷ ---+ i .K A EG÷ (see also [1]). If K = K(n), 
Theorem 1.1 gives the following. 
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Corollary 1.2 The composite of the adjoint of the transfer with the inclusion into 
the homotopy fixed points gives an equivalence 

K(n) A BG+ ~ F(BG+, K(n)). 

In other words, the transfer gives a duality map making BG+ self-dual with respect 
to K(n). 

The next results describe what effect Tate homology has on certain types of 
periodic complex oriented spectra. 

Let 
M =M(p  6 ,v i ' , . . .  ,@_-I) 

be a finite spectrum with 

i t I n  - -  1 B P . ( M )  = B P . / ( p i ° ,  v !  , . . .  ,Vn_l) .  

Such spectra are guaranteed to exist for sufficiently large multi-indices I = 
(i0,. •. ,  in-l)  by the periodicity theorem of [13]. 

Definition 1.3 We call E vn-periodic if E is complex oriented and vn is a unit on 
E AM(p/° , t~-l • . . ~ U n - - l ) "  

One such example is the Johnson-Wilson theory E(n). Recall that E(n) is a 
complex oriented theory with 

E(n).  = Z~,)[vl, • • •, vn-l ,  vn, v~] .  

The orientation factors through BP, and each vi is the image of vi E BP.. This 
example is v,-periodic since vn is actually a unit on the spectrum E(n), but it is 
clear that the condition in Definition 1.3 is less restrictive. 

Definition 1.3 is independent of the choice of multi-index I and of the spec- 
trum M Q) i° , i , - i  

• . . ~ V n - l ) "  

By integral Morava K-theory, we mean a spectrum K such that K is complex 
oriented, has no torsion in its homotopy groups, and reduces to K(n) modulo 
p. The examples we have in mind are E(n) / (V l , . . .  ,Vn-1) with coefficients 
Z(p) [vn, v~- 1 ] or the p-completion of that spectrum (with coefficients Zp [v,, v~ 1 ]). 

Corollary 1.4 I f  E = i.K, where K is a p-local integral Morava K-theory, then 
t6(E) is rational. 

We use the notation Xl~ for the completion of X with respect to the ideal 
( p , . . . ,  vg_ 1) = Ik C BP.. More precisely, the construction is 

Xl~ lim(X AM(P/°,. ik_~ = "',  Vk-l)), 
I 

where the inverse limit is taken over maps 

M (pJ0,.. ;n-i ' i~-~ ., d;_l)  -~ M(p ' ° , . . . ,  v~_ 0 
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commuting with inclusion of the bottom cell. Such maps are easily constructed by 
courtesy of the nilpotence theorem of [9] (see for example [19, Proposition 3.7] 
for existence of these maps and some uniqueness properties). 

In the case X = E(n)  this completion agrees with the Artinian completion of 
[3], and for various MU-modules this completion can be constructed using Baas- 
Sullivan manifolds with singularities [2] or using the recent work of Elmendorf, 
Kriz, Mandell and May on Eo~ modules. It is a straightforward corollary of 
the nilpotence theorem that the construction given here coincides with Bousfield 
localization with respect to any of the M(p i°, ik--I • "-, vk- l) (a proof of this appears 
in [14]), hence the construction is well defined regardless of any choices. 

We note the following generalization of Corollary 1.4. 

Proposition 1.5 Let E = i . K  where K is complex oriented and vn acts as a unit 

on K and some power  o f  the ideal 

(Vi+I~...,Vn--I) 

acts trivially. Then vi acts as a unit on t~(E)~.  

I f  some power  o f  

( V o ,  . . . , V i - - l ,  V i + l ,  . . . , V n - - 1 )  

acts trivially, then vi is a unit on tG(E). 

We compare Bousfield classes (see [5] for notation). The hypotheses of Propo- 
sition 1.5 imply that Q*E) < (E(n)) ,  and the conclusion implies (tG(E) H) < 

(E(n - 1)) for all H < G. 
We note the following corollaries of Proposition 1.5. 

Corollary 1.6 I f  E = i .K,  where K is complex oriented and such that v~ acts as 

a unit on K,  then v~ - i  acts as a unit on ( t 6 ( E ) ) ~ _ .  

In particular Corollary 1.6 holds when E = i .E (n ) .  

Corollary 1.7 I f  E = i .K ,  where K is a vn-periodic spectrum, then to (E)  is 

vn -  1 -periodic. 

It is worth explicitly noting that the preceding results are all false for G = S I. 
For E complex oriented, Theorem 16.1 of [11] implies 

ts~(E) s ~  - lim V S2kE" 

r k > - - r  

By, for example, perusal of the Atiyah-Hirzebruch spectral sequence for E. (CP ~ )  
and related spectra, one can check that the maps 

V ~2kE---~ V ~2kE 
k > - - r  k > - r + l  

in the inverse system to compute ts~ (E) s~ can be taken to be the projection maps. 
It follows that for any integer a 
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k = a - I  

ts'(E)S'~li~__ M V Z2kE -~ ( V S 2 k E )  V(li,.__ m V S2kE) 
r k ~ - r  k ~ a  r k=--r  

k>_a k < a  

Our work can be encapsulated by the slogan "Tate homology reduces chro- 
matic periodicity." It was motivated by the observation of [11] that tc(KU~) is 
rational when G is finite, and by work centered on the Mahowald invariant (also 
called the root invariant, see [8, 7, 21, 20, 24]) where the corresponding slogan, 
a conjecture due to Mahowald and Ravenel [18], is "the Mahowald invariant 
converts v~_l-periodic homotopy to vn-periodic homotopy." 

The Mahowald invariant associates a coset in 7r.(X) to each element of 

7r. (lim (SX A (B Z/(p))-r))  = 7r.(tz/o)(i.X) z/~p)) ( 1.6) 
+.____ 

r 

(see equation (1.5)). When X is finite, the spectrum in equation (1.6) is just the 
p-completion of X, by Lin's theorem [t7, 12]. 

Although Mahowald and Ravenel's conjecture was only meant to apply to 
finite spectra, when X is a v, periodic spectrum (in the sense of Definition 1.3) 
tz/~p)(i.X) z/<p) is vn_~-periodic by Corollary 1.7, so this gives examples consis- 
tent with Mahowald and Ravenel's conjecture. 

It is beyond the scope of this paper, but work of Hopkins and Ravenel, to- 
gether with Theorem 1.1, can be used to show that if X is E(n) local, then 
tu(i .X) c is E(n - 1) local. When G = Z/(p) (in which case Theorem 1.1 was 
already known), this can be thought of as supplying more examples consistent 
with Mahowald and Ravenel's conjecture. 

We thank Jack Morava for initiating these questions, and for introducing 
the second author to Tate spectra. The first author gratefully acknowledges the 
support of the Nuffield Foundation, and both authors thank the Mathematisches 
Forschungsinstitut Oberwolfach where this work began. 

2 Inverse limits of Thom spectra 

Suppose ( is a vector bundle over X. From the embedding of vector bundles 

E , E '  

s~ i ~(s+l)~ 

X -- ,> X 

we get a map of Thom spectra X (sO --~ X (s~+O. 
We remind the reader that the Thom spectrum X (~O can be defined (as a 

spectrum, not a space) even when s is negative. The construction is due to 
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Boardman [4] and is also discussed in [16, IX] and [25]. Briefly, if X is compact, 
find an n large enough so that s~@[n] is a vector bundle ([n] is the n-dimensional 
trivial bundle). Then 

X(S~) = ~-nx(s~[n])"  

For more general spaces X, we can take the direct limit of the Thom spectra of 
the compact subcomplexes. 

It is clear from the above discussion that the map 

X(SO __, X(s~+~) 

is defined when s is negative as well as positive, so we get an inverse system 

. . . . _ ,  X(S~) ~ X(s~+~) _., . . .  

for s C Z. We need the following nonequivariant result (K = K(n)  is the moti- 
vating example in Lcmmas 2.1 and 2.2). 

Lemma 2.1 Let ~ be a positive dimensional vector bundle over BG, K a complex 
oriented theory with K , (BG)  finitely generated over K,.  Then 

lim (K A BG (-s~)) = *. 
$ 

Proof  The finite generation implies that all the classes in K, (BG)  are supported 
on some finite skeleton, say BG (r) . 

It is then clear that the map BG (r) _~ BG is surjective on K,, and hence by 
the Thorn isomorphism the map 

K A (BG(r)) (-s~) i ~K A B G  (-s~) (2.7) 

is surjective on homotopy for all s. 
Let A be the dimension of (. If  we choose j so that r - (s +j)A < - s A  (i.e. 

r < j A) then the composite 

K A (BG(r))(-(s+J)~) i ,K A BG (-(s+j)() e ~K A BG (-'~) 

is null since the top cell of the (BG(r)) (-(s+j)~) is iri a lower dimension than the 
bottom cell of BG (-sO. 

But the map i is onto in homotopy by (2.7), so the map e is 0 on homotopy 
groups. Since e is just a composite of maps in the inverse system under investi- 
gation, it follows that the homotopy of the inverse limit is 0. [] 

We use this to deduce the following result in the category of G-spectra. 

Lemma  2.2 Let V be some fni te ,  positive dimensional representation o f  G. Let 
K be a complex oriented theory such that K , ( B H )  isfinitely generated over K,  
f o r  all H <_ G. Then the spectrum 

F(S  °~v, i ,K  A EG+) 

is equivariantly contractible. 
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Proof For any spectrum K, 

F ( S ~ V , i . K  A EG÷) ~- l imF(S w , i , K  A EG+) 

r 

~- l imi ,K A EG+ A s - rV .  

r 

If H < G then V is of course also a representation of H,  and EG is an EH. 
So 

( i .K A EG÷ A S -rV)H ~ K A BH (-r~). (2.8) 

Here ( is the bundle over BH induced by the H-representation V, and BH (-r() 

is the obvious Thom spectrum. The equivalence (2.8) is by [ 16, Corollary II.7.2], 
combined with the identification 

(EG+ A S - r v ) / H  = BH (-r~) 

from [22]. Equation (2.8) is also discussed in [22]; in Theorem B the square 

( i .K A EG+ A s-rV)  H 

1 
( i .K A EG+ A S(-r+l)v) H 

K A BH (-r~) 

l 
K A BH ([-r+ll~) 

is shown to commute (the left hand vertical map is induced by the map S o --* S v, 
and the right hand map is induced by the evident map of Thorn spectra). 

From this we see that 

F(S ~ v ,  i ,K  A EG+) t4 ~-- l imK A BH (-r~), 
+_____ 

r 

and the right hand side is contractible by Lemma 2.1. Since this is true for all 
H < G, we can apply the G-Whitehead theorem to F ( s ° ° V , i . K  A EG+). [] 

Ravenel [23] proves that K(n)*(BG) is finitely generated over the graded field 
K(n)*. By duality it follows that K(n) , (BG) is finitely generated over K(n). .  
Hence K = K(n) satisfies the hypotheses of Lemmas 2.1 and 2.2 for all finite 
groups G. We do not know any significantly different examples. 

Corollary 2.3 t c ( i .K  (n)) ~- * when G is a cyclic group. 

Proof Take V to be the cyclic representation of G on C, ~ to be the corresponding 
complex line bundle over BG. 

Then EG+ is S(ooV)+, and [~G = S ~ v .  So by equations (1.3) and (1.4): 

t~(i ,K(n)) "~ F(S °~v , i .K(n)  A SEG+) , 

and the right hand side is equivariantly contractible by Lemma 2.2. [] 
We note that the proof of Lemma 2.2 is the same as that used in [1 l] to 

arrive at the following result. 



400 J.P.C. Greenlees, H. Sadofsky 

Corollary 2.4 ([11, Theorem 16.1]) l f  H < G is cyclic and K is a non-equivariant 
spectrum then 

tG(i.K) n "" lim (ETK A BH(-r~)). 
+-_- - -  

r 

(Here ~ is the complex line bundle over BH induced by a faithful action of H on 
C.) 

Proof. Let V a faithful representation of H on C. Then 

ta( i .K)  n ~_ tH(i.K) n 

~_ F(S ~ v  ( i . S K )  A EH+) ~ 

~_ l im[( i .SK)  AEH+ A s - r V ]  H. 
4 - - - - -  

r 

The second equivalence is from equation (1.4). [] 

3 Proof of Theorem 1.1 

Proposition 3.1 I f  K is a complex oriented theory with K.(BG+) finitely gener- 
ated over K.  for all G, then to(i .K) ~-- * for all G. 

We delay the proof until after the statement of Proposition 3.2. 

Proposition 3.2 I f  W is a non-zero, finite dimensional G-representation with 
W ° = O, and k is a G-spectrum such that for every H ~ G ,  tH(k) ~-- *, then 

F(S ~ w  , SfG(k )) ~-- to(k). 

Proof of  Proposition 3.1. Now by Lemma 2.2 if we take a non-zero finite di- 
mensional G-representation W, such that W G = {0} (for example the reduced 
regular representation) then 

F(S~W, fG( i .K) )  = F(S °°w , i .K A EG+) ~-- *. 

So Proposition 3.1 now follows from Proposition 3.2. [] 
Proof of  Proposition 3.2. By our hypotheses, when H <G 

tn(k)  n ~_ F([~G, Efo(k))  n ~ • 

(the first equality is by [11, Proposition 2.6], i.e. equation (1.4)). Also, 
F(SO°W,fG(k))n ~_ • because if W n = 0 we can apply Proposition 3.2 in- 
ductively, and if W n ~tO then S °°w is contractible. 

So it suffices by the G-Whitehead theorem [16, Theorem 1.5.10] to produce 
a map 

F(S°°W,fG(k)) ~ F(EG,fG(k))  

that is an isomorphism on G-fixed points. Our proof is a variation of the proof 
of part (b) of [6, Theorem A]. 
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We smash S °~w with the cofibration 

EG+ ~ S O ~ [~G. (3.9) 

The G-spectrum S ~ w  A EG+ is equivariantly contractible by the G-Whitehead 
theorem. This is because if 

{ e } ~ H  < G 

then (EG+) H = . ,  hence 

(S °°w A EG+) tt = *. 

On the other hand, S ~ w  is nonequivariantly contractible, so (s°~W){ e} _~ . ,  
therefore 

(S °°w AEG+){ e} ,,~ , .  

It follows then from smashing with (3.9) that 

S °°w --+ S ~ w  A E G  (3.10) 

is a G-equivalence. 
As spaces, (s°~W) ° = S °, so 

(s~W /sO) G ~_ ,,  

therefore ( s¢~W/s  °) can be built from G-cells of the form (G/H)+ A E n where 
H <G. Now we have the following isomorphisms. The first is by [16, Proposition ¢ 
11.4.3], and the last is the inductive hypothesis. 

F ( G / H ÷  A S  ~ A P . G , f a ( k ) )  a F (S  n A [~G, fa(k) )  H 

S - " - I t n ( k  ) n ~ , .  

It follows by taking the limit over skeleta of S ~ w / S  o that 

F ( ( S ~ w  / s  °) A E ,G, fo(k ) )  c "~ *. 

Therefore we get a map 

F ( S ° ° W , f a ( k ) )  "~ F(S  ~ w  AF, G , f c ( k ) )  

F ( S  ° A E G , f a ( k ) )  

~_ F ( E G , f a ( k ) )  

(3.11) 

the first equivalence following from (3.10). 
If we apply G-fixed points to this composite, we get an equivalence by (3.11). 

[] 

Theorem 1.1 follows from Proposition 3.1. 
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4 Tate spectra of vn-periodic spectra 

Proof of  Corollary 1.4. Let E = i ,K be a spectrum as in the hypothesis. 
We have a cofibration sequence 

P 
K " ~K ~ K(n). 

Since tc preserves cofibrations, as is obvious from the definition, we get (see 
equation (1.2)) 

P 
tG(i.K) , ta(i .K) ~ *, 

so the .p map on tG(i.K) is an equivalence. Now by [11, Proposition 1.1] it 
follows that the -p map on ta(E) is also an equivalence. Hence tG(E) is rational. 

[] 

Note that this proof clearly works for the appropriate integral theories as well 
as the p-local ones, for example with complex K-theory, KU, in place of the 
Adams summand of the p-local theory. 

The proof also applies to KO. We use the notation M(2) for the Z/(2) Moore 
spectrum with bottom cell in dimension 0 and COD for the mapping cone of 
r~ : S 1 --~ S °. Recall that 

KU = KO A C 01) 

SO 

KU A M(2) = KO A C(r/) A M(2). 

So we have the cofibration 

S K O  A M(2) ~KO A M (2) --~ KU A M (2). 

Now tc( i ,[KU A M(2)]) _~ * since K U  A M(2) = K(I) ,  so 

t c ( i , [SKO A M(2)]) ~tc(i, [KO A M(2)]) 

is an equivalence. But ~ is nilpotent, so tc(i ,[KO A M(2)]) _~ , .  Then the proof 
of Corollary 1.4 shows t6(i ,KO) is rational. 

Now we wish to prove Proposition 1.5. We first require the following. 

Proposition 4.1 Suppose k is a split G-spectrum whose underlying spectrum is 
a p-local Vn-periodic spectrum with Vn a unit and vi nilpotentfor 0 < i < n - 1 
(vo =p).  Then t6(k) ~- *. 

Proof As usual there is no loss of generality in assuming our spectrum is i ,K with 
underlying spectrum K. We have already proven this proposition for K = K(n). 
Let B(n)  be the spectrum derived from BP that satisfies 

B(n),  = Z/(p)[vn, v21, Vn+l, Vn+2, . . .1 

Remark 6.19 of [26] implies that B(n) , (BG) is free over B(n),  on the same 
number of generators as is required to generate K(n) , (BG) over K(n) , .  By [23] 
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this is a finite number whenever G is finite. So by Proposition 3.1, the proposition 
follows for K = B(n).  

Now let K be any spectrum satisfying our hypotheses. For each j < n, there 

is some ij SO that vj' is null on K.  For sufficiently large ij, the spectra 

M(piO, . t,_t 
• . ~ V n _  1)  

discussed in the introduction (as well as the spectra M(pi° , . . . ,  Vj ~ ) fo r j  < n -- 1) 
can be taken to be ring spectra by [10]. 

By the assumption that ij is large enough so that vj 1 is null on K,  K A M is 
finite wedge of copies of  K. So if t c ( i ,K  A M )  ----- *, then ta ( i ,K)  ~- *. 

K AM is also a module spectrum over BP A M ,  and hence over v~IBP A M .  
So ta ( i ,K  A M )  is a module spectrum over t c ( i , v ~ l B P  A M).  

We need to know a little about v,T1Bp A M.  We write B P / ( p i o , . . . ,  Vn-I )z,_, 
for the iterated cofiber by vi-maps induced by the BP-module structure. This 
spectrum is usually constructed from BP (or directly from MU) by appealing to 
Baas-Sullivan theory [2]. Such spectra are discussed in [2], and also in papers 
such as [ 15]. (The recent work of Elmendorf, Kriz, Mandell and May on E ~  
module spectra also gives a construction of  the BP/(pio," .. ,Vn_l).)i,_, 

Now with M as above, 

BP A M  BP/ (p  i°, i,_~ _-- . . . ~ V n - - l ) "  

This can easily be checked by induction. Both spectra are iterated cofibers. As- 
suming 

. .  " BP A M ( p  i°, . ,vj ) - 

the maps whose cofibers form the next stage are both induced by the same 

homotopy class in the ring spectrum BP A M ( p i ° , . . . ,  vj'). 
Now if ij > 1 there is a cofibration of  BP-module  spectra 

in - ~ v j  S2p, -2BP/ (p io , . .  ., v j , -1 , . .  . ,  v " - I  ) , BP/(piO, . . . ,  vn_1 

---+ BP / (p  i°, .. ., vj, . . . , v,,_l).'"-~ 

So by induction on io + .." + i , - b  BP A M has a finite filtration (of length 
i0 + . . .  + i ._  1) such that the cofibers are suspensions of  B P / ( p , . . . ,  v ,_  l). 

It follows that Vn1BP A M  has a finite filtration where the cofibers are copies 
of  B(n),  so t~ ( i , v~ lBP A M)  ~- *. Hence t~( i .K A M )  ~_ , .  [] 

Remark 1 It seems quite likely that under the hypotheses of  Proposition 4.1 
K,(BG) is always finitely generated over K,  when G is finite, but the proof in 
[23] does not generalize immediately to this situation. 
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P r o o f  o f  Proposi t ion 1.5. We again use spectra 

M(pJ°, ~ ' , . . . ,  ~'_-l, ~ '  ) 

as in the proof  of  Proposition 4.1, with BP-homology  isomorphic to 

g':i, 
As before, we use the fact that such spectra exist for a cofinal indexing set and 
can be taken to be ring spectra by [10]. 

Then 
E A M ( p J ° , . . . , ~  ' )  

is a spectrum satisfying the hypotheses of  Proposition 4.1, so 

t c ( E  A M ( p / ° , . . . ,  ~/")) = tc ,(E) A M (pJ°, . . . , ~ ' )  "~ *. 

It follows that vi is an equivalence on 

t c ( E  A U(pJ° ,  . . . , v~'_:l)) = t 6 ( E )  A / ( f r o , . . . ,  ~'21)- 

But 
, g - 0 )  tc(E)~,  = l i m ( t 6 ( E )  A M ( p J ° , . . .  " - '  

SO V i is an equivalence on t a ( E ) ~ .  

P r o o f  o f  Corollary 1.7: By Proposition 1.5 vn-1 acts as a unit on 

tG(E A M ( p i ° , .  i,_2 . . ,  v,_2)), 

which, by equation (1.2), is equivalent to t o ( E )  A M(pio,"  . . ,  Vni"-2-2)" 

[] 

[] 
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