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Abstract 

Greenlees, J.P.C.. Some remarks on projective Mackey functors, Journal of Pure and Applied 

Algebra 81 (1992) 17-38. 

We consider certain problems in the algebra of Mackey functors for a finite group raised by 

equivariant topology. Our main theorems are: A Mackey functor has projective dimension 0. 1 

or 3~ (Theorem 2.1). The G-theory of Mackey functors is calculable in terms of the G-theories 

of the Weyl groups (Theorem 3.1). For Mackey functors with the group order invertihle the 

K-theory is the sum of the K-theories of the Weyl groups (Theorem 6.1); a similar result holds 

unstably (Theorem 6.4). For a group of prime order the projective class group of Mackey 

functors is the sum of the class group of the group ring and that of the Burnside ring (Theorem 

7.1). 

Introduction 

The algebra of Mackey functors for a finite group G was distilled by Dress for 

his work on induction theorems [7], and good algebraic use has been made of 

them since. In the study of equivariant cohomology theories, Mackey functors 

play the same role that abelian groups play in nonequivariant cohomology, which 

is of course fundamental. This topological application suggests certain natural 

algebraic questions and we consider some of them here. Firstly there is the 

homological algebra of Mackey functors, of direct relevance to the cohomology of 

Moore spectra, and secondly the projective class group, which is the natural home 

of the finiteness obstruction of Wall [17] in the stable equivariant context. 

The rest of the paper is layed out as follows. 

Section 1: Recollection of the definition of Mackey functors, the central 
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example of the Burnside Mackey functor and introduction of the class of free 

functors, of which projective functors are the direct summands. 

Section 2: The analogue of Rim’s theorem stating that Mackey functors have 

projective dimension 0, 1 or x. 

Section 3: How to calculate the Grothendieck group G,, of all finitely generated 

Mackey functors. 

Section 4: The endomorphism rings of the free Mackey functors: identification 

in favourable cases. 

Section 5: The projective class group of all Mackey functors and the class group 

of Mackey functors with restricted isotropy type. 

Section 6: Mackey functors with the group order invertible. 

Section 7: Calculation of G,, and K,, for the category of Mackey functors for 

groups of prime order: the latter is the sum of the class groups of the group ring 

and the Burnside ring. 

Section 8: Some examples to illustrate the delicacy of the calculation in 

general, certain rank functions and their connection with Dress’s theory of defect 

sets. 

Appendix A: The immediate topological applications. 

Appendix B: There is no stable G Moore spectrum for .Z if G # 1. 

The present account is an expansion of part of an earlier preprint [8] in which 

the topological aspect was more prominent. The obstruction theory of [8] is 

superseded by that of Costenoble and Waner [3] and we intend to return to the 

remaining topological questions elsewhere. 

We are grateful to the referee for suggesting we investigate the behaviour of 

Mackey functors in which the group order is invertible; this led to various 

clarifications, and also to Section 6. 

1. Free and projective Mackey functors 

We first recall basic facts from the theory of Mackey functors from the work of 

Dress [7] (see also [lo]). For this we let Ab denote the category of abelian groups, 

and we let G-set denote the category of finite left G-sets and G-maps between 

them. 

Definition 1.1. A Mackey functor consists of a covariant and a contravariant 

functor L : G-set + Ab which agree on objects (we shall therefore write L(U) for 

the value of either functor on a G-set U and N * and (Y’ for the co- and 

contravariant values on a G-map a : U-+ V) which satisfy the following two 

conditions: 

(1) the functors convert disjoint unions into direct sums and direct products 

and 

(2) (the Mackey axiom) for any pullback diagram 
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T-U 6 

of G-sets we have y”6:, = a,P*. 

We denote the category of Mackey functors and natural transformations by 

YJ,;, and we may refer to the covariant structure maps as induction or transfer 

and to the contravariant ones as restriction. Since Ab is an abelian category, so is 

YJ,. Later on we shall also want to refer to the category of Mackey functors with 

values in the category of k-modules for some ring k; by analogy with the notation 

for the group ring we let k!rJl,; denote this category. 

Remark. There are other ways of packaging Definition 1.1. Lewis bases his study 

[lo] on the Burnside category %I of Lindner [13] whose objects are finite G-sets, 

but which has morphisms corresponding to both inductions and restrictions. The 

morphisms from a G-set A to a G-set B in 3 are formal differences of diagrams 

A L Th’ B in G-set, with composition via pullback. A Mackey functor is 

then a contravariant additive functor M : S+ Ab, the image of the above 

morphism corresponds to a,:b* in the present account. Various theorems about 

Mackey functors thus become represented as properties of the Burnside category: 

for example it is self-dual. The approach has many formal advantages, but we 

have chosen to stay closer to the language of the classical examples. 

One may then show [12, V.9.91 that the Burnside category is equivalent to the 

full subcategory of the equivariant stable homotopy category generated by the 

G-sets: this observation shows the way to a definition of Mackey functors when G 

is a compact Lie group. 

We turn to the most important example of a Mackey functor. 

Definition 1.2. The Burnside functor is defined by letting A(U) be the Grothen- 

dieck group of finite G-sets over U. For a G-map a : lJ+ V the map (Y, is defined 

by composition with (Y and the map a * is defined by pullback along (Y. The 

Mackey axiom is an easily verified fact about pullbacks of composites. 

Remarks. (1) A(U) has a ring structure induced by fibre product over U, and 

CI* : A(V)-A(U) . IS a map of rings. One then verifies that cy * : A(U) + A(V) is a 

map of A(V) modules. 

(2) By considering the fibre over 1H we see that A(G/H) is naturally iso- 

morphic to the Burnside ring of left H-sets [6]. The maps a * and (Y * correspond 

to the induction and restriction maps. 
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Next we recall that if L is a Mackey functor and U is a G-set we may form 

the associated Mackey functor L,, with coefficients in Ii defined by L,(S) = 

L(U x S). 

Definition 1.3. A free Mackey functor is any one isomorphic to a sum of functors 

A, for suitable finite G-sets U. We see that if such a functor is finitely generated it 

is isomorphic to a single factor A,, for some U since A.s @Ar z Asc7.. 

There is some topological justification for this terminology, but for the present 

purposes an algebraic one is more appropriate: the following proposition is well 

known. 

Proposition 1.4. For any Mackey functor L and G-set U the map 

!l13,1i,(A,j, L)+ L(U) 

obtained by evaluation at the diagonal A, : U + U x U is an isomorphism. It is 

natural in L and if f : A,+ A,, corresponds to the G-set ((.y, /3) : Z+ U X T over 

U x T in A,,(T), then the induced map f * is the composite of (Y” : L(U)+ L(Z) 

and /3, : L(Z)+ L(T). 

Proof. The fundamental observation is that the G-set {(Y, p} is P+cx*(A,). This is 

easily verified from the definitions. 

Accordingly if the evaluation of C$ : A, + L at A, is zero, 4 is zero on all 

G-sets {CX, p}. Since ALj( T) is generated by differences of such G-sets over 

U x T it follows that the evaluation map is injective. 

To see that every element of L(U) is the image of A,, under a suitable map 

4 : A,,, --$ L we need to know that for any x E L(U) the assignment c$(A,) = x 

does extend to a natural transformation of Mackey functors. Indeed by definition 

of AL,(T) an element is uniquely expressible as a difference of disjoint G-sets 

each uniquely expressible in the form {(Y, p}. By the fundamental observation 

above we are forced to take 4( { LY, p}) = /~.(Y*(x). and we must check this 

commutes with restriction and induction maps. Since induced maps y : T+ T’ 
take G-sets to G-sets and A,(T) has a basis of G-sets, it suffices to check that 

4r,:({c~, p})= ~,(P.LY*(x)) and similarly for y+. We leave this to the 

reader. 0 

Corollary 1.5. It follows that there are enough projectives, and that any projective 

is a summand of a free one. 0 

Corollary 1.6. If we have an isomorphism A, =A, of Mackey functors, then we 

have an isomorphism X g Y of G-sets. 
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Proof. Perhaps the easiest way to see this is to argue by induction on the order of 

H that X and Y have the same multiple of G/H using the Mackey functors 

R(ZN,(H)IH) of [9]. 0 

2. Projective dimension of Mackey functors 

In this section we shall prove the analogue for Mackey functors of Rim’s 

theorem on ZG-modules [15]. 

Theorem 2.1. If K is a Mackey functor of finite projective dimension, then K has 
projective dimension 0 or 1. 

Proof. Suppose that L is a Mackey functor for which Ext”(K, L) # 0. For some 

free functor F we have an exact sequence O-+ L’-+ F+ L-0. We shall see that 

F is of injective dimension 1 and hence if n ~2, Ext”(K, L) g Ext”+‘(K, L’). It 

follows that if K has projective dimension ~2 it has infinite projective dimension. 

Lemma 2.2. (i) The Mackey functors A, @Cl and A, @Q/Z are injective. 
(ii) The Mackey functor A, is of injective dimension 1. 

(iii) An arbitrary free Mackey functor is of injective dimension 1. 

Proof. We first note that it is sufficient to prove (i). Indeed (ii) follows from (i) 

since Hom(., An,) is not exact. For (iii) it is enough to show Ext”(K, F) = 0 for 

II 2 2 when F is free. When K is finitely generated this follows from (ii), and the 

general case follows by passing to direct limits. 

We turn now to (i) and check that if we apply \JJ,;(., A, @ B) to the exact 

sequence A, + A, + A, we obtain an exact sequence if B is an injective 

Z-module. Of course by Proposition 1.4 this gives the sequence 

A(U x T)@B+tA(Vx T)@B-A(Wx T)@B. (1) 

On the other hand, by definition of exactness we know that the sequence 

A(U x T)+A(V x T)-A(W x T) (2) 

is exact. We shall give a formal duality argument to show that the sequence (1) is 

obtained from the sequence (2) by applying Hom,(., B) and is therefore exact as 

required since B is injective. 

Consider the map eU : A, x u + A characterised by e,(A, x U) = A,. We obtain a 

pairing (., .) : Au(*) x Au(*)-+A(*) as the composite of the map A,(*) x 

A,(*)-+Auxu(*) induced by Cartesian product, with the map (e,),. The follow- 

ing lemma completes the proof, since we may compose the pairing with the 

various mark homomorphisms into Z. 
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Lemma 2.3. (i) Suppose f : A, -+A, is a map. For uny x EA(U), y EA(V) we 

have 

(f”X, Y> = (x, f,Y) . 

(ii) The pairing (., .) cs nondegenerate in the sense that (x, .) = 0 only if x = 0. 

Proof. (i) Using bilinearity of the pairing we may assume f corresponds to a G-set 

{(u, p} over U x V, and hence, since fat = a,P”, andf:” = pzlc~*, we may assume 

by symmetry in the definitions that f is induced by a map of G-sets f : V+ U. 
Using bilinearity again, it is enough to verify the statement when x : X+ U, and 

y : Y- V are G-sets. We check that for a G-set {y, S} : Z- iJ x U over U x U, 
(e,),({r,6}) is the G-set (tE2 / y(t)= s(t)} and so we have (x, y) = {([,T)E 

X x Y 1 x( 5) = y(q)}. Now a short calculation verifies the result in this case. 

(ii) Using bilinearity and the description of (x, y) above we reduce to the case 

when U is a transitive G-set G/H, and find that in this case if x,y E A(H) then 

(x, y) = indz(xy) in A(G). The result is now covered by Lemma 1 of [6]. 

000 

3. G, of the category of Mackey functors 

In this section we consider the Grothendieck group G,,(!ui,) formed by taking 

one generator [L] for each finitely generated Mackey functor and one relation 

[L] = [L’] + [L”] f or each short exact sequence O+ L’+ L+ L”-0. It is also 

useful to consider Mackey functors whose values are modules over a ring k. Our 

interest really lies with K,, which we treat in Section 5: in general this behaves 

quite differently from G,,, but we show in Section 6 that for the category of 

Mackey functors with IG] invertible K-theory and G-theory coincide. 

Theorem 3.1. If G is cyclic of prime power order or if 1 GI is invertible in k, we 
have an isomorphism 

G;(k!l,)i,;) = 2 G,(kW,;(H)) , 

where the sum extends over conjugacy classes of subgroups of G. In general we 
obtain a succession of exact sequences for calculating G,(kYJ,,) in terms of 
G,(kW,;(H)) for the various subgroups H. 

This refines the immediate consequence of (9, Theorem 121 or [18, (3.5)] that 

G,,(%l,) is generated by the functors RV= H”V or H,,V for the various simple 

W,(H)-modules V and subgroups H of G. We warn however that neither H” nor 

H,, are exact functors. 



Projective Mackey functors 23 

Proof. For the present we allow G to be any finite group; the need for restrictions 

will steadily emerge. We consider the set All of all subgroups of G, and more 

generally subsets Ce closed under conjugacy and passage to larger subgroups, and 

refer to them as cofamilies. Next we let Y.R,/% denote the full subcategory of Yl?,; 

consisting of functors M supported on % (i.e. if Kg% then M(GIK) = 0). 

Evidently we may choose a filtration 

0 = %,, C %, c . . . c Y,, = All 

of the lattice All by cofamilies %! so that (e,,, is obtained from %, by adding a 

single conjugacy class (H,). 

Accordingly we study a single link % c L2l = ‘G U (H) in the chain. Theorem 3.1 

is a corollary of the more general result (Theorem 3.5) applying to such a link. In 

particular, if we let N = N,(H) be the normalizer of H and W= W,;(H) = N/H 

the Weyl group, we have the sequence 

kY.Q,l% --L kY.R,;EJ -2 kW,;(H)-mod (3) 

of categories and functors, where i is the inclusion and e(M) = M(G/H). 

Lemma 3.2. The map e of (3) is a quotient map of categories and i is the inclusion 

of the torsion subcategory. The same holds on the full subcategories of finitely 

generated objects. 

Proof. It is clear that !J,/Ce is the subcategory of objects taken to zero by e. It is 

also clear that e is exact. 

Now it is well known that any W-module V generates a W-Mackey functor H,,V 

defined by H,,V( W/K) = H,,(K; V). In particular H,,V(W/l) = V, and in fact the 

functor H,, is left adjoint to e : 9X,+ ZW-mod with the unit being the identity 

[18]. We shall explain in Propositions 3.6 and 3.7 and Corollary 3.8 how the 

methods of [9] allow us to use this to construct a left adjoint to e at the level of 

G-Mackey functors which has the identity as unit. We may now apply an easy 

formal lemma to complete the proof. 

Lemma 3.3. If T : d+ B is an exact map of abelian categories with a left adjoint 

H so that the unit is a natural isomorphism, then T is a localisation of categories, 

and gives rise to a long exact sequence of K-theory. q 0 

Corollary 3.4. With 52 = % U (H), (3) d m uces a long exact sequence in G-theory, 

which ends 

. . .-+ G,(kW,(H))+ G,,(kYX,/%) 

-+ G,,(kY.R,ES) -+ G,,(kW,(H))+ 0 . 0 
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So far the discussion has been reasonably general, but in order to obtain a 

splitting of the exact sequence of Corollary 3.4 we seem to need a hypothesis. 

Theorem 3.5. If H is not the intersection of two elements of % or if (W,;(H)1 is 

invertible in k, then the exact sequence of Corollary 3.4 splits to give 

G,(k%XJ9) = G,(kW,(H))@ G,(k!N,;/%‘) 

Proof. If the group order is invertible in k then the functor H is exact, and hence 

provides a splitting of e. 

If H is not the intersection of two elements of % the map i is split by the map 

s : \33~,/9--+W,;l% defined by s(M)(G/H) = 0 and s(M)(G/K) = M(G/K) if K is 

not conjugate to H. The point is that s(M) need not satisfy the Mackey axiom if 

H is the intersection of two elements of %. 0 

Example. If G z C,, X C,, for some prime p then Theorem 3.5 shows that if N.Yis 

the cofamily of nontrivial subgroups then 

but we see no reason why the sequence 

. . .+ G,,(!)31,IA’Y) -+ G,,(YJi,;)-t G,,(ZG)*O 

should split. 

We now summarise the results of [9] that we need, together with their reverses: 

the verification is straightforward. 

Proposition 3.6. If L : H-+ G is the inclusion of a subgroup, we have functors 

I. b : ‘a,; + !N,, defined by (b,M)(T)= M(G xNT) for an H-set T and 

L” : YJUZ f, + ‘331,; defined by (L*P)(S) = P(S) f or a G-set S. These are each both Left 

and right adjoint to one another. Thus 

The unit of the first and the counit of the second are induced by the inclusion of 

H-sets j : T+ G x~, T using appropriate variance. The counit of the first and the 

unit of the second are induced by the action map a : G X~ S+ S of G-sets. The fact 

that these units and counits are maps of Mackey functors come from the Mackey 

axiom applied to the pullback diagram 
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G x,,S- G x,,S’ 

I I 
S-S' 

of G-sets and the pullback diagram 

T-T’ 

I 1 

G x, T-G x, T’ 

of H-sets. The triangular identities follow from diagrams of G-sets and H-sets 
which commute because the neutral element of G acts as the identity. 0 

Proposition 3.7. If F : G+ J is a surjective map with kernel K, there are functors 
E” : !N,+\35~, defined by (&*M)(U) = M(U) for J-sets U and E, : i?~,31,-d~, 

defined by (e,Q)(S) = Q(S”) for G-sets S. In this case however the functors are 
only left and right adjoint to each other on suitably restricted subcategories. Thus 

and 
"9X,(e,Q, M) =Vt,(Q, F*M) 

\33i,(e*M, Q) = KY&(M, E,Q) , 

where KY.U, is the full subcategory of !N, in which the covariant maps 7~, are zero 
whenever v : GIH * GIH’ is the projection associated to a pair of subgroups with 
KC H’ but KgH and where KY.V, is the full subcategory of 92,; in which all 
contravariant maps rr* as above are zero. In this case the unit of the first and the 
counit of the second are the identity, and the counit of the first and the unit of the 
second are induced by the map SK* S of G-sets. We note that since K is normal 
(GIH)K+ GIH is either the identity (if K c H) or the inclusion of the empty set (if 
KgH). The counit and unit induced by these maps are maps of Mackey functors 
by choice of the restricted subcategories, and the triangular identities are 
obvious. 0 

Using the composites of the above adjunctions we obtain units and counits for 

adjunctions H,, 1 e and e 1 H” where we have allowed context to supply omitted 

E’S and L’S. Now the unit of the first adjunction and the counit of the second are 

the identity map; on the other hand the counit of the first and the unit of the 

second are not morphisms unless we restrict to suitable subcategories. However, 

one may verify that these subcategories may be taken to be considerably larger 

than the construction as a composite might suggest. This is essential to our 

applications, and also to the use of R = H” in [9, Theorem 121. 
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Corollary 3.8. We have adjunctions 

‘H’9.V,(H,,V, M) s ZW,(H)-mod(L’, eM) 

and 

hW,(H)-mod(eM, V) 2 ,,&.(M, H"V) , 

where lH’\J31 (; denotes the full subcategory of Mackey functors for which all proper 
restrictions from GIH are zero and ,H, 9331, denotes the subcategory for which all 
proper inductions to Gl H are zero. 0 

The relevance of this is ensured by the fact that since (H) is minimal in 9 we 

have !Ul,l9 L lH’!)3iC; fl ,,,,9Z,. 

4. The endomorphism rings of indecomposable free functors 

The study of projective Mackey functors which are summands of a multiple of 

A, is equivalent to that of projective modules over the endomorphism ring %x of 

A,. We therefore devote a short section to consideration of this ring. The first 

observation is that by Proposition 1.4 we have the additive isomorphism 

Lzx = Ax(X) = A(X x X) 

We shall make the ring structure explicit from this point of view, but we begin 

with the warning that it does not coincide with the ring structure via fibre product 

alluded to above. For example with X = G we find gG z ZG whilst the fibre 

product ring structure is a product of ]Cl copies of 27. 

The following basic lemma is easily verified. 

Lemma 4.1. If x={cu,/~}:S-+XXX and y={y,6}: T-+XxX are G-sets, 

then the product xy in gx is the G-set 

We now turn to the particular case that X = GIL is a transitive G-set. We begin 

by recalling that the maps GI(H f’ OK) + GIH x G/K given by l(H II ‘K)++ 
(lH, OK) combine to give an isomorphism CO,, GI(H f7 “K) z G/H X G/K, 

where 0 is a transversal of the double coset space H/G/K in G. In particular, for 

any y E G and H C L n ‘L we have a G-set 

x(H, y): G/H+ GIL C-I ‘L-+ GIL X GIL 
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defined by 1H H (1 L, yL). As y runs through a transversal of L\GIL in G and 

H runs through the (L n ‘L)-conjugacy classes of subgroups of L f7 ‘L the 

elements x(H, y) give a Z-basis of ‘ZGIL. The relation between the x’s for various 

choices of representatives is as follows. 

Lemma 4.2. (a) Zf H is conjugate to H’ in L n ‘L, then x(H, y) = x(H’, y). 

(b) For 1 E L we have (i) x(/H, ly) = x(H, y) and (ii) x(ff, yl) = x(H, Y). q 

We now consider the product x(H, y)x(K, S), using Lemma 4.1. Indeed, it 

is easy to see that G/H XCy,,) G/K contains the element (lH, f3K) precisely 

if yL = 8L, and that the corresponding term in the product is precisely 

x(H n OK, $8). Thus we find 

x(H, y)x(K, 8) = c x(Hr?K,t%). (4) 
{BE@ 1 BL=yL) 

Now if L = N is a normal subgroup all isotropy groups in G/N x G/N are N 

and x(H, y) depends only on 7 = yN and on the N-conjugacy class of H c N. We 

thus write x(H)7 for x(H, y) and the product formula becomes 

x(H)7 x(K)6 = 2 x(H f-- ‘K)q. (5) 
(rrte 1 i=T) 

This can be interpreted as a definition of the semidirect product in the following 

summary. 

Corollary 4.3. If N is a normal subgroup of G, then 

%I.Y = A(N) =Z[G/N] . q 

Remark 4.4. We may use the rings EGiL to give another long exact sequence of 

G-theory. Indeed the evaluation map !U31,+ 8,-,,-mod is a quotient map with 

torsion class consisting of Mackey functors vanishing at G/L. To show this we 

may use the following construction on an 8,,,_-module V. We note that 

for any free EXCGIL -module F there is a sum MF of Mackey functors A,,,, with 

MF(GIL) s F, and furthermore 

gc;,,_-mod(F,, F,,> = %(MF,, MF,,) 

Thus if F, -+ F,,p V- 0 is exact we may define a Mackey functor 

MV := cok(MF, 3 MF,,). It is then easy to check that 

%‘,,,-mod(V, N(G/L)) = W,(MV, N) . 

However, we note that MV will usually not be supported on the cofamily 

generated by L. 
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5. K, of the category of Mackey functors 

The projective class group K,,(\3J1,) of 91,, is formed as usual by taking one 

generator for each isomorphism class of finitely generated projective Mackey 

functors and imposing the relation [P @ Q] = [P] + [Q]. Equivalently it is the 

Quillen K,, of the category P(W,) of finitely generated projective Mackey 

functors. 

Since there are many different types of free Mackey functor it is natural to 

consider for each G-set X the category P(W,; X) of those functors which are 

direct summands in multiples of A,. It is clear that this only depends on the 

isotropy groups which occur in X and that if X contains all isotropy types, 

P(Y31,;) = P(W,,; X). From the correspondence of projectives to idempotents we 

see from Proposition 1.4 that we can express the K-theory of YJl,, in terms of that 

of the rings studied in Section 4. 

Lemma 5.1. We have a natural isomorphism 

K,,(P@Ji,; X)) = K,,(gx) 0 

Evidently if X = Y + Z is a sum, the ring %‘x is naturally written as a matrix 

i 

!w,(Ay, Ay) !&;(A,, Ay) 6 A(Y x Z) 

!N,(Ay, A,) W,(A,, AZ) A(Z x Y> gz 
and in the best imaginable case the K-theory of gz would simply be the sum of 

the diagonal entries %y and gz. 

The corresponding constructions for Mackey functors are perhaps a little more 

obvious. There is evidently an exact map 

(6) 

and it is natural to ask how close this is to inducing an isomorphism of K-theory. 

We show in Section 6 that it induces an isomorphism of K,, if G is of prime order. 

Remark 5.2. From Corollary 1.6 we see that the natural map A(G)+ K,,(\3,)5,,) is 
injective. In a further effort to split 0 we introduce certain ‘ranks’ QH in Section 

8. 

6. Mackey functors with the group order invertible 

We give two approaches to the easy life away from the group order, one which 

works at the level of K-theory, and one which identifies all projective indecom- 

posables exactly. Strictly speaking the first approach is unnecessary, but it 
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illustrates the use of the Cartan map and shows the form that transfer maps take 

in the theory. 

First, let us study &(!.I{,;) by comparing it to G,,(!lV,;) which we understand 

quite well after Theorem 3.1, using the Cartan map. As before we let k!l.V,; 

denote the category of k-module valued Mackey functors for a ring k; of course 

the inclusion of the category of finitely generated projectives in all finitely 

generated Mackey functors as usual induces a map K,(kYJ,;)-+ G,(k!W,). 

Quillen’s Resolution Theorem gives criteria under which this map is an iso- 

morphism, and it is certainly satisfied if all functors are of finite projective 

dimension. Of course this is never the case integrally, but a transfer argument 

establishes it if the group order is invertible in the subring k of UJ. The analogue 

of this for the group ring kG is well known and can be proved by a simplified 

version of the argument below. 

Theorem 6.1. If k C Q is a ring in which \G\ is invertible, then the natural map 

K,(kW,): G,(k!Ui,) 

is an isomorphism, and hence in particular, by Theorem 3.1: 

&(k’JJL) = g K,,(kW,(W) . 

Proof. As remarked above, it is enough to show that every k-Mackey functor has 

finite projective dimension. Since jGl is invertible in k this follows from the 

construction of a suitable transfer. 

Indeed if L : H* G is the inclusion of a subgroup we have functors 

as in Proposition 3.6. We may consider the composites and obtain endomorphisms 

of YJ,(M, N) and !IX,(P, e) by means of the unit and counit of the adjunctions 

in Proposition 3.6; it is easy to calculate the result. 

Lemma 6.2. (a) L”L, induces multiplication by [G/H] on Y.V,(M, N); thus a 

natural transformation f : M + N is taken to the one whose value at a G-set S is 

the composite of M(S) L N(S) with multiplication by [G/H] in either M(S) or 

N(S). 
(b) L,L” induces the identity map of !)J,(P, Q). 0 

We note that these maps all pass to Ext groups, so that if we know that 

Extt:,;>,(L,M, L*N) = 0 and that [G/H] acts invertibly on Ext:i,;(;(M, N) we may 

conclude that Ext:i,;(;(M. N) = 0. 
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Now we turn to the proof that k-Mackey functors for G are of finite projective 

dimension. We argue by induction on the group order, supposing for all proper 

subgroups K of G that all k-Mackey functors are of finite projective dimension if 

[ K( is invertible in k; this is well known for the trivial subgroup. 

By Theorem 12 of [9] it is enough to show for some n that Extz,,(;(RV, N) = 0 

for every subgroup H and every kW,(H)- module V. Furthermore, by Proposition 

8 of [9] [G/H] acts as IN,(H)/H/ on RV, which is an isomorphism by the 

hypothesis on k. If H is a proper subgroup the result follows by induction. On the 

other hand, if H = G it is easy to describe the functors RV, they are simply 

defined by RV( G/G) = V whilst RV(G/H) = 0 if H # G. Certainly the k-module 

V has a resolution of length 1, and if V is k-free RV is the summand of A@ k 

specified by the idempotent e with 4,,(e) = 0 if H f G, and hence is 

projective. q 

A similar result holds for any regular ring k in which /Cl is invertible. 

We next turn to the projective Mackey functors themselves. 

Lemma 6.3. Suppose H is a subgroup of G, IW,;(H)l is invertible in k and V is a 
kW,;(H)-module. 

(a) The norm map H,,V+ H”V is an isomorphism of Mackey functors. 
(b) If V is projective as a k-module, then it is projective as a kW,(H)-module. 

Proof. It is easy to verify that the norm map gives a map of W,,(H)-Mackey 

functors, and hence of G-Mackey functors. Part (a) is then immediate by a 

transfer argument in Tate cohomology, and part (b) (which is Maschke’s theorem) 

follows by taking the W,(H)-average of a k splitting. q 

Theorem 6.4. lf 1 GI . IS mvertible in k, all projective Mackey functors can be written 
as a sum of the projective Mackey functors H,,Vz H”V for various subgroups H 
and k-projective kW,(H)-modules V. 

Proof. By [9, Theorem 121 it is enough to show that the Mackey functors 

H,,Vs H”V are projective. We therefore show that any surjective map L + H,,V 
may be split. 

We combine the use of idempotents in the localised Burnside ring with the fact 

that H,, is left adjoint to evaluation on the category of Mackey functors vanishing 

below H. Indeed, since V is projective, the map L(GIH) -S V of W,(H)-modules 

is split, so that if L vanishes below H the splitting gives rise to a map of Mackey 

functors. This is still a splitting since a map of H,,V is determined by its behaviour 

at GIH. 
If L does not vanish below H we consider the idempotent e of A(G)[ 1/ 1 Cl] 

defined by +K(e) = 0 iff K is contained in H. Of course L = eL @(I - e)L, eL is 

zero beneath H and H,,V= eH,,V, the map eL -n H,,V is split by the above 

argument. q 
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7. K, and G, of the category of Mackey functors for G = C, 

We show here that the methods of Sections 3-6 are adequate for groups of 

prime order p. 

Theorem 7.1. (a) The map 0 of Section 5 induces an isomorphism of K, 

(b) We have the isomorphism 

Remarks. (a) Of course by another theorem of Rim, K,,(ZC,) g K,,(Z[<,,]), 

where i, = e27iii” [14, 151, and this group is much studied, but far from under- 

stood. In particular it is nontrivial for the prime 23 and all sufficiently large 

primes. On the other hand it is not too hard to calculate K,,(A(C,,)) z 
Z@Zl((p - 1)/2) if p is odd (and L for p = 2) [5]. 

(b) Both G,, groups on the right-hand side are isomorphic to the corresponding 

K,,-groups, since G,,(LC,,) g G,,(Z[J,,]) [2, (39.26)] and Dedekind domains are 

regular. 

Proof. Part (b) is immediate from Theorem 3.1. For part (a) we use Lemma 5.1 

and then a succession of Mayer-Vietoris sequences to simplify the rings involved. 

The first arises from a pullback square which contains those used by Milnor and 

tom Dieck and Petrie as its diagonal entries. For this purpose we let A = A(C,) 
and C = Z x Z be its integral closure in its total ring of fractions. Under this 

inclusion [C,, / l] t-+ (0, p) so that in particular pC C A. We then have 

where the structure maps from Z to ZCp and A(C,,) correspond to the norm 

element and [ C,,/l] respectively. With the further convention that Z’ also denotes 

the integers and the structure maps Z’+ Z are the identity and the structure maps 

Z-+Z’ are multiplication by p, the reader may verify that we have a pullback 

diagram of rings 

Wpl 0 
0 AipC 

I I 
Z’ z 

i ) nc- 
nip 0 
0 cipc 
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The two rings on the right are understood, and so the Mayer-Vietoris sequence 

reduces us to the study of the lower left-hand ring. To analyse this we use a 

second pullback square 

Again the right-hand rings are understood and so we are reduced to study of the 

lower left-hand ring. We use a third and final pullback diagram 

i 

n’lp 0 I i n’lp n’lp 

nip n'lp - rip up 1 
The two right-hand rings are just ordinary matrix rings and hence understood by 

Morita equivalence isomorphism K,,(M,(R)) s K,,(R). The lower left-hand ring 

has the nilpotent ideal 

by which the quotient is Zip x Z/p, whose K-theory is understood. 

analysis of the Mayer-Vietoris sequences gives an exact sequence 

-+ m:~~,+ 263 h,(m,,i)+o 

which can be split by the use of 0. q 

8. Further examples and connections with defect sets 

The detailed 

We want to explain the relation of the present considerations to Dress’s theory 

of defect sets. Since Aac,H is generated at GIH by AGIH it is natural to consider the 

singular submodule S,(L) of L(G/H) defined by S,,(L) = S$(L) + S;s-‘“(L), 

where 

S;;“(L) = c indy(L(G/J)) , 
J i &I 

S:‘(L) = 2 resz(L(G/K)) . 
K>H 
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We then define the indecomposable quotient by 

Q,(L) = L(GIW /S,,(L) > 

and it measures the number of necessary generators at G/H. The point is that we 

then have 

Qt,(&,tc) = ” if K is not conjugate to H , 

Q&L @ Ml = Q,(L) @ QAW 1 
Q,,(L) = 0 e there is a G-set X with GiHgX 

and an epimorphism A, + M . (7) 

Lemma 8.1. (a) The subgroup S,(A,,,) is an ideal in gCIFI. 
(b) The subgroup S,,(L) is an go,,-submodule of L(G/H). 

(c) The SYc,,-module Q,,(L) is a module over the ring Q(gG,,,) := 

~~;IH~~H(~~;!H)~ q 

The two extreme cases H = G and H = 1 behave in very different ways. 

Proposition 8.2. (a) For all groups Q(;(II(;,~) f 0. 
(b) For all sujjiciently complicated groups Q,(A,,,) = 0. 

Proof. (a) This is Dress’s theorem that the defect set of the Burnside functor is 

trivial [7, Theorem 31. 

(b) It is easy to check that S, (A,,,) = C Hf, (ZG)” is the singular submodule 

S(ZG) studied in [1], where it was shown to be almost always equal to ZG (for 

example if G has p-rank 12 for two distinct primes p). q 

The other systematic result that is not hard to prove is that p-groups behave 

quite well. 

Proposition 8.3. If G is a p-group, then Q,(A,,,,) # 0 for all subgroups H. 

Proof. Since A,;,, generates AG:I,, every element of AGIN can be expressed 

as a sum of transfers and restrictions of it. If Ql,(AGIH) = 0, then A,;;,, is itself a 

sum of proper transfers and restrictions. Combining these two facts we see that 

A (;,[, is a sum of terms ind~res~(A,,,) and resEindg(A,;,,) for various groups 

J C H and K 3 H. Now we have the augmentation 

obtained by counting the number of orbits in a G-set over G/H x G/H. Clearly 
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4&j,) = 1, h owever for a p-group the augmentations of indyresy(x) and 

resiindi(x) are both divisible by p. 0 

The relevance of these results to projectives is in the existence of nontrivial 

stably free projectives. 

Remark 8.4. If Q1l(A(;,N) = 0, then by (7) we have A, =A,,,, @ P for some 

projective P and some G-set X not containing G/H. Accordingly P is stably free, 

but by Corollary 1.6 it is not free. 

The functors Q also go some way towards splitting the map 0 of Section 5. 

Indeed for each subgroup H we have the diagram 

K,,(P(W,; G/H))& I$(>&;) 

Hence 

where Q,, = QE,HH. Considering the case of a group of prime order we see that 

Q(gc j,>=~[S,l and Q(gc ic I= 
information it also loses some.” 

2, so that whilst this argument gives some 

Appendix A. Applications to stable equivariant homotopy theory 

In this section we state the analogues for G-spectra [12] of Wall’s theorems 

characterising the finite dimensionality and finiteness of CW-complexes up to 

homotopy equivalence from cohomological data [17]. It is not necessary to give 

proofs since Wall’s proofs translate directly into the present context. However, we 

shall give definitions so that the reader understands what this context entails. 

We work in a stable homotopy category of G-spectra, such as that of Lewis and 

May; we are interested in when a G-spectrum X is equivalent to a G-CW- 

spectrum K which is either 

(i) finite (i.e. formed from a finite number of G-cells), 

(ii) finite dimensional (i.e. formed using G-cells in a finite range of dimen- 

sions), or 

(iii) (a,bj-dimensional (i.e. constructed using d-cells only for a 5 d 5 b). 
We aim to give cohomological criteria so we briefly recall some facts about 

homology and cohomology. The fact that suspension by a real representation is an 

equivalence of the stable category has two important consequences. Firstly, 
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cohomology can be graded over RO(G), although we shall only refer to integer 

gradings. More important to us is the existence of transfers, so that all cohomolo- 

gy groups are Mackey functor valued. Accordingly, ordinary cohomology [ll] has 

coefficients in a Mackey functor. In the nonequivariant context the importance of 

Z arises since the degree of a map between spheres of the same dimension 

classifies the map. Equivariantly we have Segal’s theorem that nF(S”) = A(G), 

so that the r6le of Z is taken by the Mackey functor A = ad, that we have 

come to know so well. Accordingly any unspecified coefficients are in A. 

Since one can form an Eilenberg-MacLane spectrum HA representing ordinary 

cohomology with A coefficients by attaching cells of dimension 22 to S” so as to 

kill homotopy groups in positive dimensions, we immediately have the Hurewicz 

theorem stating that the Hurewicz map 

n-;(X)- H;(X; A) 

is an isomorphism if X is (n - l)-connected. The importance of the free Mackey 

functors comes about since they are the homology and homotopy functors of a 

wedge of G-cells of dimension n, i.e. of Z”(T+) for discrete G-sets T: 

A, = q;(Z”(T+)) = H;,(Z:“(T+)) 

As usual one has two Eckmann-Hilton dual types of building blocks associated 

with a Mackey functor L: the Eilenberg-MacLane spectra with nonzero 

homotopy groups only in a single dimension and the Moore spectra, bounded 

below and with homology concentrated in a single dimension. 

It is easy to construct an Eilenberg-MacLane spectrum HL for L in dimension 

0: one takes an exact sequence A,, + A,(, + L-0, constructs a l-skeleton as the 

mapping cone of the corresponding map (T,)+ + (T,,), and then kills higher 

homotopy groups. It is also easy to see by the Hurewicz and Whitehead theorems 

that HL is unique up to equivalence. 

Similarly provided L has projective dimension ~1, it is easy to construct a 

Moore spectrum of type ML (i.e. a bounded below spectrum X with H;,(X; A) = 

L) and to show it is unique. There are examples of Mackey functors L of infinite 

dimension for which no Moore spectrum exists (for instance the Mackey functor 

of the trivial G-module Z has no Moore spectrum if G # 1 (see Appendix B)). We 

do not have examples where L is of infinite dimension and a spectrum of type ML 

does exist. 

It is clear by considering the spectral sequence of the skeletal filtration that we 

have for any Mackey functor K the isomorphism 

H;(ML; K) z Ext:;,,<;(L, K) , 

where ML denotes an arbitrary G-spectrum of type ML if such a thing exists. 

We may now state the theorems, which concern a G-spectrum X. 
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Theorem A.l. If a < b then X is equivalent to an (a, b)-dimensional spectrum if 

and only if the following four conditions are satisfied: 

(i) X is bounded below, 

(ii) H,:(X; A) = 0 for n < a, 

(iii) N;,(X; A) = 0 for n > 6, 

(iv) H”+ ‘(X; L) = 0 for all Mackey functors L. 

Remark A.2. If X satisfies (i)-(iv) with a = b, then X is equivalent to a Moore 

spectrum ZOMP with P a projective Mackey functor. This is equivalent to an 

(a, a + l)-dimensional spectrum (since it is a retract of a wedge of spheres), but 

need not be equivalent to an (a, a)-dimensional spectrum. 

The proof of the theorem proceeds by inductive construction of skeleta for X 

and then uses (iv) and the Eilenberg swindle to ensure that the process finishes in 

dimension b. 

We now turn to more delicate questions. 

Theorem A.3. If P is a jmitely generated projective Mackey functor, then 

(a) there is a G-CW-spectrum M of type MP with finite skeleta, 

(b) M may be taken to be of finite dimension iff P is stably free, 

(c) if P is stably free, P may be taken to be of dimension 1; it may be taken to be 

of dimension 0 iff P is free. 

In view of (b) it is perhaps not so surprising that the finiteness obstruction lies 

in the projective class group. Indeed if X satisfies the conditions of Theorem A.1 

we may take an equivalent finite dimensional G-CW-spectrum K and consider the 

homology spectral sequence of the skeletal filtration. This is a chain complex of 

free functors and if its homology groups are finitely generated there is a chain 

equivalent complex P. of finite length whose terms P, are finitely generated 

projective functors. One may define the finiteness obstruction V(X) = 

C, (-l)‘[P,] in K,,(91,,) := K,,(!Ulli,;)IA(G) and one may check that it only 

depends on the homotopy type of X. 

Theorem A.4 If a < b and X satisfies the four conditions of Theorem A. 1 and if in 

addition Hj(X; A) is finitely generated for each i, then X is equivalent to a finite 

(a, b)-dimensional G-CW-spectrum iff the finiteness obstruction o(X) E I?,,(!l)lli,;) is 

equal to zero. 

Remarks A.5. (a) In the nonequivariant case the finiteness obstruction is strictly 

an unstable phenomenon. In the equivariant case the existence of an obstruction 

to finiteness is well known [12, p. 1211, but the cited observation appeals to 

unstable geometric arguments. The present discussion completely reduces the 

problem to a difficult algebraic one. 
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(b) In particular we see from Section 7 that for a group of prime order p, if 

p = 2 or 3 there is no obstruction to finiteness, but for primes p 2 5 the 

obstruction lies in the nonzero group Z/(( p - 1)/2) @ &,,(Z[ <,J]). 

(c) The case a = b is dealt with in Theorem A.3. 

(d) It is easy to see from the proof that for each UE K(91,,) the (b - I)-type 

of X contains a G-spectrum Y with a(Y) = (T. 

Remarks A.6. If we work in the category of spectra localised so as to invert a set 

7~ of primes, then the appropriate home for the finiteness obstruction is 

K,,(Z[a?]?llJL,). F or instance in the category of rational spectra the obstruction 

lies in the quotient of K,,(Q!ll~,) = eIH) K,,(QDW,;(H)) by the subgroup gener- 

ated by free functors, which is eminently approachable. In particular it is easy to 

verify that for groups of prime order the finiteness obstructions for any multiple of 

an idempotent summand of S” or G, is not zero. It is amusing to compare this 

with Remark A.5(b). 

Appendix B. There is no stable G-Moore spectrum for Z if G # 1 

It is enough to deal with the case of a group G = (g) of prime order p, since 

every nontrivial group has a subgroup of prime order. It turns out that L has a 

periodic resolution of period 4 (even if p = 2). Indeed we may write it explicitly 

using Proposition 1.4 to name the maps. We let x denote G as an element of 

A(G), N = 1 + g +. . . + g’-’ and 1’ E A(G) denote the identity map. The resolu- 

tion is then 

Now if a spectrum X of type ML exists we may take the homology spectral 

sequence of the skeletal filtration: it collapses to give a resolution of L by free 

Mackey functors. Furthermore one may easily check that if a spectrum X of type 

ML exists there is an equivalent G-CW-spectrum with any specified resolution of 

L as its homology spectral sequence [3, 5.21. To show there is no spectrum of type 

ML it is therefore enough to show that a particular resolution cannot be realised. 

We note that if MZ is realisable then so is ML when L is any one of the kernels 

occurring in the resolution: we just collapse an appropriate skeleton of the 

realisation. It is convenient to work with L = im( p - x) and to use the appropri- 

ate truncation of the above periodic resolution. We thus take X(“) = S” and attach 

a l-cell by the unstable map 1’ : G, -+ S” taking all of G to the nonbase point. 

Thus X”’ is the cage space consisting of the north and south poles together with p 

lines of longitude joining them. Now it is easy to check that we may take 

X(>) = S” where n is the two-dimensional real representation in which g acts as 

rotation by 27rip. Furthermore we may check that this is the only possible choice 

for X”‘, since the lift of (1 - g) : ZG, + ZG, to a map Z’G, -+ X”’ is unique 
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([CC,, SOlc = Z/2, whilst [XG,, Xc’)]‘; is torsion free). To continue the con- 

struction we must lift N : C’S”+ X’G, to a map C’S”+ X(l), but a short 

calculation shows this is impossible. In fact we have a long exact sequence 

and one may check that [S’, S”]” = Z/2 whilst [S’, X”‘Jc = .Z/2@Z/p. 

Remark. Our argument is sufficiently elementary that the obstruction theory of 

[3] is unnecessary. We also note that Costenoble and Waner [3, 41 are more 

concerned with realising Bredon coefficient systems as Moore l-spectra with 

G-action. In particular they do not give any examples of the present type: it is 

obvious that S” is a Moore l-spectrum for Z. 
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