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Abstract. The category of graded, bicommutative Hopf algebras over the

prime �eld with p elements is an abelian category which is equivalent, by work

of Schoeller, to a category of graded modules, known as Dieudonn�e modules.

Graded ring objects in Hopf algebras are called Hopf rings, and they arise

in the study of unstable cohomology operations for extraordinary cohomology

theories. The central point of this paper is that Hopf rings can be studied by

looking at the associated ring object in Dieudonn�e modules. They can also be

computed there, and because of the relationship between Brown-Gitler spectra

and Dieudonn�e modules, calculating the Hopf ring for a homology theory E

�

comes down to computing E

�
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{ which Ravenel has done for E = BP .

From this one recovers the work of Hopkins, Hunton, and Turner on the Hopf

rings of Landweber exact cohomology theories.

The are two major algebraic di�culties encountered in this approach. The

�rst is to decide what a ring object is in the category of Dieudonn�e modules, as

there is no obvious symmetric monoidal pairing associated to a tensor product

of modules. The second is to show that Hopf rings pass to rings in Dieudonn�e

modules. This involves studying universal examples, and here we pick up an

idea suggested by Bous�eld: torsion-free Hopf algebras over the p-adic integers

with some additional structure, such as a self-Hopf-algebra map that reduces

to the Verschiebung, can be easily classi�ed.

An abelian category A with a set of small projective generators is equivalent

to a category M of modules over some ring R. In addition, if A and M are

symmetric monoidal categories and the equivalence of categories A !M respects

the monoidal structure, one can study the ring objects in A by studying the ring

objects inM. The purpose of this paper is to develop this observation in the case

where A is the category HA

+

of graded, bicommutative Hopf algebras over the

prime �eld F

p

. The graded ring objects in HA

+

are called Hopf rings and they

arise naturally when studying unstable cohomology operations for some cohomology

theory E

�

(see [2, 11, 21]).

To state some results, �x a prime p > 2. (A slight rewording gives the results

at p = 2). We will restrict attention to the sort of Hopf algebra that arises in

algebraic topology; namely, to Hopf algebras that are skew-commutative and so
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that the degree 0 part H

0

of H is the group algebra of an abelian group. We

will call the category of such Hopf algebras HA

�

. If X is a pointed space, then

H

�

(


2

X ; F

p

) = H

�




2

X 2 HA

�

. Schoeller [23] has essentially proved that there is

an equivalence of categories

D

�

: HA

�

! D�

where D

�

is the category of graded Dieudonn�e modules. An object M 2 D

�

is a

non-negatively graded abelian group M so that M

2n+1

is an F

p

vector space and

there are homomorphisms

F :M

2n

!M

2pn

and V :M

2n

!M

2n=p

so that FV = V F = p and V = 1 if n = 0. If p does not divide n, we set V = 0.

It follows that if 2n = 2p

k

s, (p; s) = 1, then p

k+1

M

2n

= 0. If H 2 HA

�

, then the

action of F and V on D

�

H reect the Frobenius and Verschiebung, respectively, of

H .

The category HA

�

is a symmetric monoidal category. As with the tensor

product of abelian groups, the symmetric monoidal pairing arises by considering

bilinear maps. An example of a bilinear map in HA

�

is supplied by considering a

ring spectrum E. The functorX 7! E

n

X is representable in the homotopy category

of spaces; indeed, if E(n) = 


1

�

n

E, then for all CW complexes X one has

[X;E(n)]

�

=

E

n

X:

The cup-product pairing E

n

X �E

m

X ! E

n+m

X is induced by a map of spaces

E(n) ^ E(m)! E(n+m)

and the resulting map of coalgebras

H

�

E(n)
H

�

E(m)! H

�

E(n+m)

is a bilinear map of Hopf algebras. One can axiomatize this situation (see x5 or

[21]) and, following Hunton and Turner [13], we prove in x7 that given H and K

in HA

�

, there is a universal bilinear map

H 
K ! H �K:

The pairing � : HA

�

�HA

�

! HA

�

is symmetric monoidal; the unit is the group

ring F

p

[Z].

Next one would like to calculate D

�

(H �K). If � : H

1


H

2

! K is a bilinear

pairing of Hopf algebras, one obtains a bilinear pairing of Dieudonn�e modules

D

�

� : D

�

H

1

�D

�

H

2

! D

�

K

in the sense that D

�

� is a bilinear map of graded abelian groups, and

V D�

�

(x; y) = D�

�

(V x; V y)

and

D�

�

(Fx; y) = F (D�

�

(x; V y)) D�

�

(x; Fy) = F (D�

�

(V x; y)):

If M;N 2 D there is a universal such bilinear pairing

M �N !M �

D

N

which is easy to write down (see Equation 7.6). Then �

D

is a symmetric monoidal

pairing and one of the main results is D

�

(H �K)

�

=

D

�

H �

D

D

�

K. See Theorem

7.7. This leads to e�ective computations.
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We then employ this to study Hopf rings. If E is a ring spectrum, then H

�

E =

fH

�

E(n)g is a Z-graded ring object in HA

�

and hence D

�

H

�

E is a Z-graded ring

object in D

�

. This last means that given

x 2 D

m

H

�

E(j) y 2 D

n

H

�

E(k)

there is a product x � y 2 D

m+n

H

�

E(j + k) so that

V (x � y) = V x � V y; (Fx) � y = F (x � V y); x � Fy = F ((V x) � y):

Such an object will be called a Dieudonn�e ring. If the ring spectrum is homotopy

commutative, then this product satis�es the following skew commutativity formula:

x � y = (�1)

nm+jk

y � x:

Since

D

0

H

�

E(k) = �

0

E(k) = E

�k

;

D

�

H

�

E is actually an E

�

algebra; so D

�

H

�

E is an E

�

-Dieudonn�e algebra.

To compute this object, we use the fact the functor on spectra

X 7! D

n

H

�




1

X

which assigns to a space X the degree n part of of D

�

H

�




1

X is actually part

of a homology theory if n 6� �1 mod (2p). In fact, by [9], if B(n) is the nth

Brown-Gitler spectrum, there is a natural surjection

B(n)

n

X ! D

n

H

�




1

X

which is an isomorphism if n 6� �1 mod (2p). Thus, for a ring spectrum E one

obtains a surjection

E

k

B(n)! D

n

H

�

E(n� k)

and if B = fB(n)g

n�0

is the graded Brown-Gitler spectrum, one gets a degree-

shearing surjection

E

�

B ! D

�

H

�

E

of bigraded groups. In fact this can be made into a morphism of E

�

Dieudonn�e

algebras (see x10). In many cases, the kernel of this map can be analyzed. Fur-

thermore, the Snaith splitting of 


2

S

3

and the analysis of the summands done by a

variety of authors ([3, 5, 12, 16]) shows that there is a �ltration on E

�
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so that

the associated graded object is E

�

B. Since Ravenel [19] has e�ectively calculated

BP

�
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, one can deduce a great deal about D

�

H

�

E for Landweber exact theories.

In particular one can recover the Hopkins-Hunton-Turner results [11, 13] which,

in this form, have a pleasing statement { one that, in fact, succinctly encodes the

Ravenel-Wilson relation of complex oriented theories. (See Theorem 10.3.)

This paper is divided into three sections. The �rst two are devoted to the

algebra of Hopf algebras, their associated Dieudonn�e modules, and the appropriate

bilinear pairings. We spend most of our energy discussing graded commutative

(as opposed to skew commutative) Hopf algebras, moving on to skew commutative

Hopf algebras and the topological applications cited above only in the third section.

Because of the splitting principle for skew-commutative Hopf algebras (see [18] and

Proposition 9.1) the passage from commutative to skew-commutative is easy. As

above, we denote graded bicommutative Hopf algebras by HA

+

.
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In order to come to grips with some of the algebra involved we spend a great

deal of time working with universal examples. The projective generators of HA

+

include the Hopf algebras

H(n) = F

p

[x

0

; x

1

; : : : ; x

k

]

where n = 2p

k

s, (p; s) = 1, deg(x

i

) = 2p

i

s, all with Witt vector diagonal. This is

the reduction module p of a Hopf algebra over the p-adic integers Z

p

CW

s

(k) = Z

p

[x

0

; x

1

; : : : ; x

k

]

with the unique diagonal so that the Witt polynomials

w

i

= x

p

i

0

+ px

p

i�1

1

+ � � �+ p

i

x

i

are primitive. (The CW stands for co-Witt.) The Z

p

-Hopf algebra CW

s

(k) comes

equipped with a lift of the Verschiebung; that is, there is a degree lowering Hopf

algebra map

 : CW

s

(k) �! CW

s

(k)

which reduces to the Verschiebung � : H(n)! H(n). Picking up a thread suggested

by Bous�eld [1], it turns out that torsion-free, graded, connected Hopf algebras over

Z

p

with a lift of the Verschiebung are completely classi�ed by their indecompos-

ables. Furthermore, if H is such a Hopf algebra, then D

�

(F

p




Z

p

H) can be simply

computed in terms of QH . (See Theorem 4.8.) This and other related topics occupy

the �rst four sections. This is the �rst part of the paper.

The second part of the paper is devoted to bilinear pairings, developing the

formulas cited above, and proving the isomorphism

D

�

H �

D

D

�

K

�

=

D

�

(H � K):

There is a table of contents at the end of this introduction and a glossary of symbols

before the references.

This project has it roots in a conversation with Bill Dwyer, who noted that the

work of Moore and Smith [18] shows that the functor

Z 7! H

�


Z

has excellent exactness properties when Z is a loop space. Furthermore, Dwyer

suggested, this fact could be used to study Hopf rings. I knew these exactness

properties as the statement that, on spectra, X 7! D

�

H

�




1

X was part of a ho-

mology theory.

Much of what is done here can be greatly generalized. The restriction to the

prime �eld is dictated by homotopy theory, not by algebra, and all of the algebraic

results pass to any perfect �eld of characteristic p. The internal grading on the

Hopf algebras can probably also be dropped, although some care must be taken

to deal with those Hopf algebras that are neither group rings nor connected in the

sense of [6].
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Part I: Classifying Hopf Algebras

1. The Dwork Lemma and algebras with a lift of the Frobenius

This preliminary section introduces the basic tool we will use for constructing

morphims of Hopf algebras. Fix a prime p.

Let x

0

; x

1

; : : : be a sequence of indeterminants and let Z

p

[x

0

; x

1

; x

2

; : : : ] be the

free graded commutative algebra over the p-adic integers Z

p

in the indeterminants

x

i

. Let

w

n

= w

n

(x) = w

n

(x

0

; : : : ; x

n

) = x

p

n

0

+ px

p

n�1

1

+ � � �+ p

n

x

n

be the nth Witt polynomial. Here and below, x = (x

0

; x

1

; : : : ).

The following is known as the Dwork Lemma.

Lemma 1.1. Let A be a commutative torsion-free Z

p

algebra. Suppose A has a

ring endomorphism

' : A! A

so that '(x) � x

p

mod p. Then, given a sequence of elements g

n

2 A, n � 0, so

that

g

n

� 'g

n�1

mod p

n

;

there are unique elements q

n

, n � 0, so that

w

n

(q) = w

n

(q

0

; q

1

; : : : ; q

n

) = g

n

:

Proof. Note that w

n

(x

0

; : : : ; x

n

) = w

n�1

(x

p

0

; : : : ; x

p

n�1

) + p

n

x

n

. Thus q

n

is

determined by the formula

p

n

q

n

= g

n

� w

n�1

(q

p

0

; : : : ; q

q

n�1

)(1.1)
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provided the right hand side of this equation is divisible by p

n

. But

w

n�1

(q

p

0

; : : : ; q

p

n�1

) � 'w

n�1

(q

0

; : : : ; q

n�1

) mod p

n

= 'g

n�1

� g

n

mod p

n

:

Remark 1.2. There is an obvious graded analog of this result. One requires

that the indeterminants x

i

have degree p

i

m for some positive integer m. Then the

Witt polynomial w

i

also has degree p

i

m, as do the solutions q

i

.

Algebras A over Z

p

equipped with algebra endomorphisms ' : A ! A so that

'(x) � x

p

mod p will be said to have a lift of Frobenius. If A = Z

p

[T] is the free

commutative graded algebra on a graded set of generators T, then one can de�ne

' : A! A by setting '(t) = t

p

for t 2 T.

For the next result, let y = (y

0

; y

1

; : : : ) be another set of indeterminants.

Corollary 1.3. There exist unique polynomials

a

i

(x; y) 2 Z

p

[x

0

; x

1

; : : : ; y

0

; y

1

; : : : ]

so that

w

n

(a

0

; a

1

; : : : ) = w

n

(x) + w

n

(y):

This is immediate from the Dwork Lemma. Note that induction and the equa-

tion 1.1 imply that a

n

is a polynomial in x

0

; : : : ; x

n

; y

0

; : : : ; y

n

.

We use this result to de�ne a diagonal

� : Z

p

[x

0

; x

1

; : : : ]! Z

p

[x

0

; x

1

; : : : ]
Z

p

[x

0

; x

1

; : : : ](1.2)

by

�(x

i

) = a

i

(x
 1; 1
 x):

Here x
 1 = (x

0


 1; x

1


 1; : : : ) and similarly for 1
 x.

Lemma 1.4. With this diagonal Z

p

[x

0

; x

1

; : : : ] becomes a bicommutative Hopf

algebra over Z

p

. The Witt polynomials w

n

(x) are primitive.

Proof. That � is coassociative and cocommutative follows from the unique-

ness clause of Lemma 1.1. For example, � is cocommutative because a

i

(x; y) =

a

i

(y; x), which in turn follows from the uniqueness of the a

i

and the equation

w

n

(a

0

(x; y); a

1

(x; y); : : : ) = w

n

(x) + w

n

(y) = w

n

(y) + w

n

(x)

= w

n

(a

0

(y; x); a

1

(y; x); : : : ):

The Witt polynomials are primitive by construction. Put another way,

�w

n

(x

0

; x

1

; : : : ) = w

n

(�x

0

;�x

1

; : : : )

= w

n

(a

0

(x
 1; 1
 x); a

1

(x
 1; 1
 x); : : : )

= w

n

(x
 1) + w

n

(1
 x)

= w

n

(x)
 1 + 1
 w

n

(x):
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Remark 1.5. 1. Corollary 1.3 and Lemma 1.4 can, together, be rephrased as

follows: there is a unique Hopf algebra structure on Z

p

[x

0

; x

1

; : : : ] so that the Witt

polynomials w

n

(x) are primitive.

2. Since a

n

(x; y) is a polynomial in x

0

; : : : ; x

n

; y

0

; : : : ; y

n

, the diagonal on the

Hopf algebra Z

p

[x

0

; x

1

; : : : ] restricts to a diagonal on Z

p

[x

0

; : : : ; x

n

] making the

latter a sub-Hopf algebra of Z

p

[x

0

; x

1

; : : : ].

3. Witt vectors can be de�ned as follows. If A is the category of Z

p

algebras

and k 2 A, then the Witt vectors on k is the set

W (k) = Hom

A

(Z

p

[x

0

; x

1

; : : : ]; k)

with group structure induced from the Hopf algebra structure on Z

p

[x

0

; x

1

; : : : ].

The group W (k) acquires a commutative ring structure represented by a map

Z

p

[x

0

; x

1

; : : : ]! Z

p

[x

0

; x

1

; : : : ]
Z

p

[x

0

; x

1

; : : : ]

sending w

n

(x) to w

n

(x
1)w

n

(1
x), which exists by the Lemma 1.1. The inclusion

Z

p

[x

0

; x

1

; : : : ; x

n

] ! Z

p

[x

0

; x

1

; : : : ] de�nes a quotient map to the Witt vectors of

length n,

W (k)!W

n

(k) = Hom

A

(Z

p

[x

0

; x

1

; : : : ; x

n

]; k):

Evidently, W (k) = limW

n

(k) and W

1

(k)

�

=

k. If k is a perfect �eld, W (k) is the

unique complete discrete valuation ring so that W (k)=pW (k)

�

=

k; in particular, if

k = F

p

, W (F

p

)

�

=

Z

p

. See [6], p. 58.

4. The Hopf algebra structure of Lemma 1.4 passes to a Hopf algebra structure

in the graded case, if we use the grading conventions of Remark 1.2

It is convenient to have a name for these Hopf algebras.

Definition 1.6. For 0 � k � 1, let CW (k) be the Hopf algebra with under-

lying algebra

Z

p

[x

0

; : : : ; x

k

]

and coalgebra structure de�ned by Corollary 1.3. If we are working in a graded

situation, write CW

m

(k) for the graded analog of this Hopf algebra with the degree

of x

i

equal to p

i

m.

The Dwork Lemma 1.1 has a uniqueness clause in it, but we are often interested

in a weaker version of uniqueness; in particular we will be interested in knowing

when two algebra maps are equal when reduced modulo p. This is Lemma 1.7

below.

First, some notation. Suppose A is a torsion free algebra equipped with an

algebra map ' : A! A so that '(x) � x

p

mod p. Suppose one has two sequences

of elements in A, g

n

and h

n

so that 'g

n�1

� g

n

mod p

n

and 'h

n�1

� h

n

mod p

n

.

Then there are unique elements q

n

and r

n

in A so that

w

n

(q

0

; : : : ; q

n

) = g

n

w

n

(r

0

; : : : ; r

n

) = h

n

:

Lemma 1.7. If, for all n, g

n

� h

n

mod p

n+1

then q

n

� r

n

mod p. In other

words, the two induced maps of algebras

Z

p

[x

0

; x

1

; : : : ]! A

agree modulo p.
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Proof. Note that if x � y mod p

n

, then x

p

k

� y

p

k

mod p

n+k

. Then from

formula 1.1 we have p

n

q

n

� p

n

r

n

mod p

n+1

and the result follows.

Proposition 1.8. 1. The Hopf algebra CW (1) has a lift of the Frobenius '

which is a Hopf algebra map and so that 'w

n

= w

n+1

.

2. Let [p] : CW (1) ! CW (1) be p-times the identity map in the abelian

group of Hopf algebra maps of CW (1) to itself. Then

[p](x

i

) � x

p

i�1

mod p:

Proof. 1) Certainly Lemma 1.1 supplies an algebra map ' : CW (1) !

CW (1) so that 'w

n

= w

n+1

. This can be seen to be a coalgebra map by applying

the uniqueness clause of Lemma 1.1 to the two possible maps

CW (1)! CW (1)
 CW (1):

To see that ' is a lift of the Frobenius, note that 'x

n

= q

n

where

w

n

(q

0

; : : : ; q

n

) = w

n+1

(x

0

; : : : ; x

n

)

� w

n

(x

p

0

; : : : ; x

p

n

) mod p

n+1

:

So Lemma 1.7 implies q

n

� x

p

n

mod p and '(x) � x

p

mod p.

2) Virtually the same argument applies, using that

pw

n

(x

0

; : : : ; x

n

) � w

n

(0; x

p

0

; : : : ; x

p

n�1

)

mod p

n+1

.

The following property of the Hopf algebra CW (1) will be extremely useful.

Let HF be the category of pairs (H;') where H is a torsion free bicommutative

Hopf algebra over Z

p

and ' : H ! H is a morphism of Hopf algebras which is a

lift of the Frobenius. Morphisms in HF must commute with lifts of the Frobenius.

Proposition 1.8 produces a pair (CW (1); ') in HF . Hopf algebras withs such lifts

of the Frobenius are fairly rare; for example the primitively generated Hopf algebra

Z

p

[x] cannot support a lift of the Frobenius as there is no primitive which reduces

to x

p

modulo p.

For any Hopf algebra H , let PH denote the primitives.

Proposition 1.9. Let H 2 HF be a Hopf algebra equipped with a lift of the

Frobenius. Then there is a natural isomorphism

� : Hom

HF

(CW (1); H)

�

=

PH

given by f 7! f(x

0

).

Proof. Let ' and '

H

denote the lifts of the Frobenius in CW (1) and H

respectively. First note if y = f(x

0

) 2 PH , then

fw

n

= '

n

H

(y):

Thus � is an injection by the uniqueness clause of Lemma 1.1.

Next, if y 2 PH is primitive, then so is g

n

= '

n

H

y, n � 0. Since g

n

= '

H

g

n�1

,

Lemma 1.1 supplies f : CW (1)! H so that

fw

n

= g

n

:

In particular we have fx

0

= y. So we need only show f is a morphism in HF ; that

is f' = '

H

f and that f is a morphism of Hopf algebras. For the �rst, we have

(f')w

n

= f(w

n+1

) = g

n+1

= ('

H

f)w

n
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so the uniqueness clause of Lemma 1.1 applies. For the second, again apply this

uniqueness clause to the two possible compositions

CW (1)! H 
H:

There is a graded version of this result, which yields that there is a natural

isomorphism

� : Hom

HF

�

(CW

m

(1); H)

�

=

(PH)

m

:

Here HF

�

are graded torsion free Hopf algebras with a Hopf algebra lift of the

Frobenius and (PH)

m

is the degree m part of the primitives.

2. Hopf algebras with a lift of the Verschiebung.

While our primary interest is in abelian Hopf algebras over �elds, the natural

generators of that category are the reductions, modulo p, of the Hopf algebras

CW

n

(k) of the previous section. These are not only Hopf algebras over Z

p

, but

they support a curious bit of extra structure, which we now explore. We will work

in the graded case, as it is considerably simpler.

Let A be a torsion-free bicommutative Hopf algebra over Z

p

. Then A will be

said to have a lift of the Verschiebung if there is a Hopf algebra endomorphism

 : A! A so that for all x 2 A there is a congruence

 (x) � �(x) mod p

where � : F

p


A! F

p


A is the Verschiebung.

This is a very restrictive condition on a Hopf algebra. For example, the divided

power algebra on a primitive generator cannot be equipped with a lift of the Ver-

schiebung. For if x is the primitive generator, we would have  (x) = py for some

y; hence,

 (

p

(x)) =  (

x

p

p!

) =

p

p

p!

y

p

� 0 mod p:

But

 (

p

(x)) � �(

p

(x)) = x modp:

This kind of simple example can be expanded into the following observation.

A graded Hopf algebra A over a commutative ring k will be called connected if

A

0

�

=

k. If such a Hopf algebra over Z

p

has a lift of the Verschiebung  : A ! A,

then  necessarily divided degree by p and is the identity on degree 0.

Proposition 2.1. Let A be a graded, connected torsion-free Hopf algebra over

Z

p

equipped with a lift of the Verschiebung. If A is �nitely generated as an algebra,

then A is a polynomial algebra.

This will be proved in the next section, as it takes us a bit a�eld.

The next result supplies our main examples. Let CW

n

(k) be the Hopf algebras

of De�nition 1.6.

Proposition 2.2. The graded Witt Hopf algebras CW

n

(k) = Z

p

[x

0

; : : : ; x

k

],

0 � k �1 have a unique lift of the Verschiebung  : CW

n

(k)! CW

n

(k) so that

 (x

i

) =

�

x

i�1

i � 1;

0 i = 0:
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Proof. The Dwork Lemma 1.1 supplies a map of algebras

 : Z

p

[x

0

; x

1

; : : : ] �! Z

p

[x

0

; x

1

; : : : ]

so that  (w

i

) = pw

i�1

, where w

�1

= 0. Since the polynomials pw

i�1

are primitive

this yields a morphism of Hopf algebras

 : CW

n

(1) �! CW

n

(1)

and a simple induction argument shows  (x

i

) = x

i�1

. Since F

p


 CW (1) is a

polynomial algebra the equation

(�(x

i

))

p

= [p](x

i

) = (x

i�1

)

p

from Proposition 1.8 shows that  is indeed a lift of the Verschiebung. The case of

CW (k) with k �nite follows by restriction.

We de�ne the categories of coalgebras and Hopf algebras we are interested in.

Definition 2.3. The category HV is the category of pairs (A; ) where

1. A is a graded connected, torsion-free Hopf algebra over Z

p

, and

2.  : A! A is a lift of the Verschiebung.

We will call this category the category of Hopf algebras with a lift of the Ver-

schiebung.

There is an associated notion of a coalgebra with a lift of the Verschiebung,

which we will use in Lemma 2.5 and in section 9.

Definition 2.4. The category CV of coalgebras with a lift of the Verschiebung

consists of pairs (C; ) where

1. C is a graded, connected, torsion-free, cocommutative coalgebra over Z

p

;

2.  : C ! C is a lift of the Verschiebung.

We will call this category the category of coalgebras with a lift of the Verschiebung.

The categoryHV is additive and has all limits and colimits, but it is not abelian.

For example, the cokernel in HV of the map

[p] : Z

p

[x] �! Z

p

[x]

of primitively generated Hopf algebras with trivial lift of the Verschiebung is simply

Z

p

.

We now insert a technical lemma that says that the category HV has a set of

generators.

Lemma 2.5. Let H 2 HV. Then H is the union of its sub-objects H

�

� H in

HV which are �nitely generated as algebras over Z

p

.

Proof. It is enough to show that if x 2 H is a homogeneous element, then

there is anH

�

containing x. Let C � H be a �nitely generated sub-coalgebra with a

lift of the Verschiebung containing x. Such a C is easily constructed by a downwards

degree argument. Let S(C) be the symmetric algebra on the coaugmentation ideal

of C endowed with induced structure as an object in HV . Then let H

�

be the

image of the evident map

S(C) �! H:
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If (H; ) 2 HV , let IH denote the augmentation ideal. Then the indecompos-

ables QH = IH=IH

2

form a torsion-free Z

p

module by Proposition 2.1 and Lemma

2.5. It is, in fact, a Z

p

[V ] module with

V (x+ IH

2

) =  (x) + IH

2

:

The action of V is nilpotent on QH for degree reasons. This leads to the following

de�nition.

Definition 2.6. LetM

V

denote the category of positively graded Z

p

[V ] mod-

ules M so that

1. M is torsion-free as a Z

p

module and

2. the action of V divided degree by p; that is

V :M

pn

!M

n

:

Implicit in the second statement of this de�nition is that V = 0 on M

n

if p

does not divide n.

The main result of this section is the following:

Theorem 2.7. The functor

Q : HV �!M

V

is an equivalence of categories.

This will be proved by a sequence of lemmas. To begin we have the following

result.

Lemma 2.8. For all H and K in HV, the natural map

Hom

HV

(H;K)! Hom

M

V

(QH;QK)

is an injection.

Proof. Let HQ

p

be the category of graded, connected Hopf algebras over Q

p

.

Consider the diagram, where each of the maps is the obvious one:

Hom

HV

(H;K)

//

��

Hom

M

V

(QH;QK)

��
Hom

HQ

p

(Q

p


H;Q

p


K)

//
Hom

M

V

(Q(Q

p


H); Q(Q

p


K))):

Then the left vertical map is an injection because the Hopf algebras are torsion free,

and the right vertical map is an injection because of Proposition 2.1 and Lemma 2.5.

The bottom map is an isomorphism, [17]. Thus the top map is an injection.

Theorem 2.7 would assert, among other things, that the natural map of the

previous result is an isomorphism.

We now supply an algebraic result. Let Z

p

[n] be the the graded Z

p

module free

on one generator in degree n.

Proposition 2.9. 1.) If M 2 M

V

then there is a natural ismorphism for all

n � 1

Hom

M

V

(M;QCW

n

(1))

�

=

Hom

Z

p

(M;Z

p

[n]) = (M

n

)

�

:

2.) Suppose n is relatively prime to p and k � 0. Then there is a natural

isomorphism

Hom

M

V

(QCW

n

(k);M)

�

=

Hom

Z

p

(Z

p

[p

k

n];M)

�

=

M

p

k

n

:
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Proof. If y

i

2 QCW

n

(1) is the residue class of x

i

, then Lemma 2.2 implies

that V y

i

= y

i�1

. If g :M ! Z

p

[n] is a Z

p

module homomorphism, de�ne f :M !

CW

n

(1) by

f(x) =

X

i

gV

i

(x)y

i

:

For degree reasons, gV

i

(x) 6= 0 for at most one i. Conversely, given a morphism

h :M ! QCW

n

(1) inM

V

, one can write

h(x) =

X

i

g

i

(x)y

i

where g

i

: M

p

i

n

! Z

p

and de�ne a module homomorphism M ! Z

p

by g

0

. The

functions g ! f and h! g

0

are inverse to each other. Part 2 is a simple calculation

with Proposition 2.2.

The key to Theorem 2.7 is the following result.

Proposition 2.10. If H 2 HV, then the natural map

Hom

HV

(H;CW

n

(1))! Hom

M

V

(QH;QCW

n

(1))

�

=

(QH)

�

m

is an isomorphism.

Proof. By Lemma 2.8 we know that this map is an injection. To complete

the argument we must prove surjectivity.

First note that we may assume that H is �nitely generated as a Z

p

module in

each degree. For, by Lemma 2.5 we may write a general H as colimit:

colim

�

H

�

�

=

H

where H

�

runs over the �nitely generated sub-objects in HV of H . If the result

holds for H

�

, then

Hom

HV

(H;CW

n

(1))

�

=

lim

�

Hom

HV

(H

�

; CW

n

(1))

�

=

lim

�

Hom

HV

(QH

�

; QCW

n

(1))

�

=

Hom

HV

(QH;QCW

n

(1)):

So assume H is �nitely generated in each degree as a Z

p

module. Let g 2

Hom

M

V

(QH;QCW (1)). As Proposition 2.9 we may write

g(x) =

X

i

g

i

(x)y

i

where g

i

: (QH)

p

i

n

! Z

p

. The isomorphism

Hom

M

V

(QH;QCW (1))

�

=

(QH)

�

n

sends g to g

0

. The Z

p

dual of H , which we write H

�

is a Hopf algebra with a lift of

the Frobenius given by ' =  

�

. Since g

0

2 (QH)

�

�

=

P (H)

�

, Lemma 1.9 supplies

a morphism of Hopf algebras equipped with a lift of the Frobenius

f : CW

n

(1) �! H

�

with f(x

0

) = g

0

. Since f commutes with the lifts of the Frobenius, Lemma 1.8 and

the fact g

i

= g

i�1

 

�

imply that f(w

i

) = g

i

2 (QH)

�

�

=

P (H

�

). Dualizing f , we

obtain a morphism of Hopf algebras

� : H �! CW

n

(1)

�

:
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If we de�ne a lift of the Verschiebung on CW

n

(1)

�

by '

�

, then � is a morphism in

HV . We conclude the argument by identifying CW

n

(1)

�

. As a matter of notation

if a 2 H and x 2 CW

n

(1) let us write

h�(a); xi

for the value of �(a) 2 CW

n

(1)

�

evaluated at x. The above considerations imply

that

h�(a); w

i

i = h

i

(a):

If we take H to be CW

n

(1) and g to be the indentity map, we obtain a

morphism of Hopf algebras with a lift of Verschiebung

�

0

: (CW

n

(1);  ) �! (CW

n

(1)

�

; '

�

)

with the property that

h�

0

(x

i

); w

i

i = h

i

(x

i

) = 1:

According to [22], this implies that �

0

is an isomorphism. To �nish we must show

that is an equality

Q(�

�1

0

�) = g

i

: QH ! QCW

n

(1):

This is equivalent to asserting that for all a 2 QH ,

g

i

(a)Q(�

0

)(y

i

) = Q�(a)

in (PCW (1))

�

. Recall that y

i

is the residue class of x

i

in QCW

n

(1). Since w

i

generates PCW (1) in this degree we may write a = x+ IH

2

and calculate

hQ�(a); w

i

i = hQ�(x); w

i

i

= g

i

(x) = g

i

(a)

= g

i

(a)hQ�(x

i

); w

i

i

= hg

i

(a)Q�(y

i

); w

i

i:

The following is the main techinical result behind the proof of Theorem 2.7.

Theorem 2.11. The indecomposables functor Q : HV ! M

V

has a right ad-

joint S

�

. Furthermore the natural map M ! QS

�

(M) inM

V

is an isomorphism.

Note that Theorem 2.7 follows immediately. The one natural map M !

QS

�

(M) is an isomorphism by this result; the other natural map S

�

(QH)! H is

an isomorphism because of Proposition 2.1 and Lemma 2.5, and the composite

QH

�

=

�!QS

�

(QH)! QH

forces QS

�

(QH)! QH to be an isomorphism.

Proof. We begin by constructing S

�

(M) for M �nitely generated in each

degree. De�ne functors

�

0

;�

1

:M

V

�!M

V

as follows.

�

0

(M)

n

=M

n

�M

n=p

�M

n=p

2
� � � �

where is is understood that M

k

= 0 if k is a fraction. De�ne V on �

0

(M) by

V (x

0

; x

1

; x

2

; � � � ) = (x

1

; x

2

; � � � ):



14 PAUL G. GOERSS

There is a natural injection � :M ! �

0

(M) given by

�(x) = (x; V x; V

2

x; � � � ):

De�ne �

1

(M) by the formula

�

1

(M)

n

=M

n=p

�M

n=p

2
� � � �

and V again de�ned by projection. There is a natural map

d : �

0

(M)! �

1

(M)

given by

d(x

0

; x

1

; x

2

; � � � ) = (x

1

� V x

0

; x

2

� V x

1

; � � � ):

This map is surjective and the sequence

0!M

�

�!�

0

(M)

d

�!�

1

(M)! 0

is short exact in M

V

. In fact, in each degree it is split short exact. Furthermore,

choosing a set of generators (over Z

p

) for M

n

for each n de�nes an isomorphism

�

0

(M)

�

=

�

�

QCW

k

�

(1):

The number of times each positive integer appears as a k

�

is �nite. There is a

similar isomorphism for �

1

(M):

�

1

(M)

�

=

�

�

QCW

k

�

(1):

De�ne

S

�

(�

0

(M)) = 


�

CW

k

�

(1):

Note that in any given degree this tensor product is the tensor product of �nitely

many groups. Similary de�ne S

�

(�

1

(M)) and note that Proposition 2.10 implies

that there is a map in HV

f : S

�

(�

0

(M)) �! S

�

(�

1

(M))

with Qf = d. De�ne S

�

(M) by the pull-back diagram in HV

S

�

(M)

//

��

S

�

(�

0

(M))

f

��
Z

p

//
S

�

(�

1

(M)):

Note that S

�

(M) is the usual Hopf algebra kernel of f .

We must now examine this construction. The �rst thing to do is to show

QS

�

(M)! QS

�

(�

0

(M)) is an injection. In fact there is a diagram

0

//
PS

�

(M)

//

��

PS

�

(�

0

(M))

��
QS

�

(M)

//
QS

�

(�

0

(M))

where the vertical maps are the canonical maps from the primitives to indecom-

posables. Since these are Hopf algebras in HV , Lemma 2.1 implies that these maps

are injections with torsion cokernel. Hence QS

�

(M)! QS

�

(�

0

(M)) is one-to-one.
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Next let H be any object in HV . Then there is a diagram with columns exact

0

��

0

��
Hom

HV

(H;S

�

(M))

//

��

Hom

M

V

(QH;QS

�

(M))

��
Hom

HV

(H;S

�

(�

0

(M)))

�

= //

��

Hom

M

V

(QH;QS

�

(�

0

(M)))

��
Hom

HV

(H;S

�

(�

1

(M)))

�

= //
Hom

M

V

(QH;QS

�

(�

1

(M)))

Note that, for example

Hom

M

V

(QH;QS

�

(�

0

(M)))

�

=

Hom

M

V

(QH;�

0

(M))

and the horizontal maps labelled as isomorphims are so by Lemma 2.10. This

diagram implies that

Hom

HV

(H;S

�

(M))

�

=

Hom

M

V

(QH;QS

�

(M)):

Furthermore, if we set H = CW

n

(k) for various n and k, Lemma 2.9 implies that

M

�

=

QS

�

(M). These two equations together yield the desired adjunction formula

Hom

HV

(H;S

�

(M))

�

=

Hom

M

V

(QH;M):

To complete the proof, we must extend S

�

toM which are not �nitely generated in

each degree. To do this write such a general M as a �ltered colimit of sub-objects

M

i

which are �nitely generated in each degree then de�ne

S

�

(M) = colimS

�

(M

i

):

Note that this colimit can be calculated in graded Z

p

modules. If H 2 HV is �nitely

generated as an algebra

Hom

HV

(H;S

�

(M))

�

=

colimHom

HV

(H;S

�

(M

i

))

�

=

colimHom

M

V

(QH;M

i

)

�

=

Hom

M

V

(QH;M);

as needed. In particular, setting H = CW

n

(k) for various n and k, Lemma 2.9

implies that M

�

=

QS

�

(M). Finally, if H is general, Lemma 2.5 implies that H is

the �ltered colimit of its �nitely generated sub-objects which are �nitely generated

as algebras. Then, using an argument similar to that given at the beginning of

Proposition 2.10, it follows that

Hom

HV

(H;S

�

(M))

�

=

Hom

M

V

(QH;M):

Example 2.12. (The Husemoller Splitting [14]). Consider the Hopf algebra

H

�

BU

�

=

Z

p

[a

1

; a

2

; a

3

; : : : ]



16 PAUL G. GOERSS

with the degree of a

i

equal to 2i and

�a

k

=

X

i+j=k

a

i


 a

j

:

This represents the functor on graded Z

p

algebras

�(A) = (1 + tA[[t]])

0

where A[[t]] is the graded power series on A with deg(t) = �2. �(A) becomes a

group under power series multiplication. If f(t) = �a

i

t

i

2 �(A), then, modulo p,

f(t)

p

� �a

p

i

t

pi

from which it follows that on H

�

(BU; F

p

), [p]a

i

= (a

i=p

)

p

or

�a

i

= a

i=p

where a

i=p

= 0 if i=p is a fraction. Now de�ne  : H

�

BU ! H

�

BU to be the

unique Hopf algebra map inducing

 

�

: �(A)! �(A)

where  

�

f(t) = f(t

p

) = �a

i

t

pi

. Then  (a

i

) = a

i=p

and  is a lift of the Frobenius.

Thus, from Proposition 2.2 one has

QH

�

BU

�

=

M

p-n

QCW

2n

(1)

inM

V

, hence one has the Husemoller splitting

H

�

BU

�

=

O

p-n

CW

2n

(1):

To be fair, these arguments are not so di�erent that than the original ones.

3. The Implications of a lift of the Frobenius

The main purpose of this section is to prove Lemma 2.1: that a Hopf algebra

with a lift of Verschiebung which is also �nitely generated as an algebra is a poly-

nomial algebra. This requires as examination of the dual Hopf algebra, and here I

am very indebted to ideas of Bous�eld [1].

To keep the record straight note that some �niteness hypothesis is necessary;

for example, if H is the primitively generated symmetric algebra over Z

p

on Q

p

with trivial lift of the Verschiebung, then H is not a polynomial algebra.

The following is the algebra input. It is a consequence of Nakayama's Lemma.

Lemma 3.1. Let f : M ! N be a homomorphism of �nitely generated Z

p

modules. Then f is an isomorphism if and only if

F

p


 f : F

p


M ! F

p


N

is an isomorphism.

This result has the following immediate corollary.

Proposition 3.2. Let A is a graded, connected torsion-free Z

p

algebra, and

suppose A is �nitely generated as an algebra. Then A is a polynomial algebra if and

only of F

p


A is a polynomial algebra.
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If H is a �nitely generated torsion-free Hopf algebra overZ

p

, then we may apply

Borel's structure theorem to F

p


H and conclude that there is an isomorphism of

algebras

F

p


H

�

=

O

i

F

p

[a

i

]=(a

p

n

i

)

where n

i

is an integer 1 � n

i

� 1. Thus F

p


 H is a polynomial algebra if

and only if the Frobenius is injective. Equivalently, one need only show that the

Verschiebung on the dual Hopf algebra (F

p


H)

�

is surjective. This will be proved

below; see Corollary 3.9.

Because we are considering the dual F

p

Hopf algebra (F

p


 H)

�

we begin by

considering the dual Z

p

Hopf algebra H

�

= Hom

Z

p

(H;Z

p

). Since H has a lift of

the Verschiebung  : H ! H , the dual H

�

has a lift of the Frobenius � =  

�

. We

now give a short investigation into the category of such objects.

Let AF be the category of torsion-free graded connected Z

p

algebra equipped

with a lift of the Frobenius. LetM be the category of torsion-free, positively graded

Z

p

modules.

Lemma 3.3. The augmentation ideal functor I : AF ! M has a left adjoint

S

'

. Furthermore, for all �nitely M 2 M, S

'

(M) is isomorphic to a polynomial

algebra.

Proof. First suppose M is �nitely generated. Choose a homogeneous set of

generators fy

i

g for M . If A 2 AF and f : M ! IA is given, the Dwork Lemma

1.1 supplies a unique map

g

i

: Z

p

[x

0

; x

1

; x

2

; : : : ]! A(3.1)

so that w

n

7! '

n

fy

i

. Thus one obtains a unique map in AF

g : S

'

(M) =

O

i

Z

p

[x

0

; x

1

; x

2

; : : : ]! A

so that the evident composite

M ! IS

'

(M)! IA

is f . The clause stipulating that S

'

(M) is a polynomial algebra follows from

Equation 3.1.

To �nish the argument, note that the construction of S

'

(M) is natural in M ,

at least where so far de�ned; that is, for �nitely generated M . For general M ,

write M = colim

�

M

�

where M

�

� M runs over the diagram of �nitely generated

sub-modules ofM . De�ne S

'

(M) = colim

�

S

'

(M

�

); since the diagram is �ltered the

colimit in AF is isomorphic to the colimit as graded modules. One easily checks

S

'

(M) has the requisite universal property.

Now let HF be the category of Hopf algebra with a lift of the Frobenius and CA

the category of graded, connected, torsion free coalgebras overZ

p

. Let J : CA !M

be the \coaugmentation coideal functor"; that is, JC = coker(Z

p

! C).

Proposition 3.4. The forgetful functor HF ! CA has a left adjoint F . Fur-

thermore, for if C 2 CA if �nitely generated as a Z

p

module in each degree, then

F (C) is a polynomial algebra; indeed, as algebras

F (C)

�

=

S

'

(JC):



18 PAUL G. GOERSS

Proof. De�ne F (C) to be the algebra S

'

(JC) with the diagonal induced by

completing the following diagram using the universal property of S

'

:

C

� //

��

C 
 C

��
S

'

(JC)

//❴❴❴
S

'

(JC)
 S

'

(JC):

Then one easily checks F (C) 2 HF ful�lls the conclusions of the result.

If A is any torsion-free Z

p

algebra equipped with a lift ' of the Frobenius de�ne

a function � : A! A by the formula

'(x) = x

p

+ p�(x)

Compare [1] for the following result.

Lemma 3.5. 1) For all x and y in A,

�(xy) = �(x)y

p

+ x

p

�(y) + p�(x)�(y)

2) For all x and y in A,

�(x+ y) = �(x) + �(y)�

p�1

X

i=1

1

p

�

p

i

�

x

p�i

y

i

:

Proof. These are both consequences of the fact that ' is an algebra map.

Note that these formulas imply that if A is equipped with an augmentation

A! Z

p

, then the augmentation ideal is closed under �.

The operation � may clarify the structure of free objects in AF . Compare [1]

Lemma 3.6. Suppose M is a free Z

p

module in each degree. Let fy

i

g � M be

a set of generators for M . Then there is an isomorphism of Z

p

algebras

S

'

(M)

�

=

Z

p

[�

n

y

i

j n � 0]:

Proof. By the construction of Lemma 3.3, it is su�cient to consider the case

where M has one generator in degree m. Then

S

'

(M)

�

=

Z

p

[x

0

; x

1

; x

2

; : : : ] = CW

m

(1)

in AF , where 'w

n

= w

n+1

. Thus one need only show

�x

n

� x

n+1

modulo p and indecomposables. The formula

w

n+1

= 'w

n

= w

p

n

+ p�w

n

and the formulas of Lemma 3.5 imply

�(p

n

x

n

) � p

n

x

n+1

modulo p

n+1

and decomposables. Since p

n

= '(p

n

) = p

pn

+ p�(p

n

), Lemma 3.5.1

implies

p

n

�x

n

� p

n

x

n+1

modulo p

n+1

and decomposables, as required.
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Next let H 2 HF be a Hopf algebra with a lift of the Frobenius and let

� : F

p


H ! F

p


H be the Verschiebung. If x 2 H , let fxg denote the class of x

in F

p


H

�

=

H=pH .

Lemma 3.7. For all x 2 H, there is a congruence

�f�(x)g � fxg

modulo the decomposables in F

p


H.

Proof. First suppose H is a polynomial algebra. Then F

p


H is a polynomial

algebra. We will use the formula (�y)

p

= [p](y), where [p] is p times the identity

map in the abelian group of Hopf algebra endomorphisms of F

p


 H . Thus it is

su�cient to show

[p]f�(x)g � fxg

p

modulo decomposables. Since [p] is a morphism of Hopf algebras and commutes

with the lift of the Frobenius, one has [p]�(x) = �([p]x). Now [p]x = px+ z where

z 2 IH

2

. Hence

�[p]x = �(px) + �(z)�

p

X

i=1

1

p

�

p

i

�

(px)

p�i

z

i

:

The last term is zero modulo p. Lemma 3.5.1 implies that �(IH)

2

� IH

2

. Hence

�[p]x � �(px) modulo p and indecomposables. But

�(px) = �(p)x

p

+ p

p

�(x) + p�(p)�(x)

=

p� p

p

p

x

p

+ p

p

�(x) + (p� p

p

)�(x)

� x

p

mod p:

For the general case of H , �x x 2 H and let C � H be a coalgebra so that

x 2 C and so that C is �nitely generated over Z

p

. Consider the induced map

F (C) ! H given by Corollary 3.4. Then F (C) is a polynomial algebra, and this

result follows from the naturality of � and �.

This has the following immediate consequence:

Proposition 3.8. Let H be a graded, connected torsion-free Hopf algebra over

Z

p

equipped with a lift of the Frobenius. The the Verschiebung

� : F

p


H �! F

p


H

is surjective.

Proof. The previous result shows that � is surjective on indecomposables.

This implies � is surjective.

For completeness we now add:

Corollary 3.9. Let H 2 HV be a graded, connected, torsion-free Hopf algebra

over Z

p

equipped with a lift of the Frobenius. If H is �nitely generated as an algebra,

then H is a polynomial algebra.

Proof. Combining Lemma 3.2 with the remarks following that result, we need

only show that the Verschiebung is surjective on (F

p


H)

�

. This follows from the

previous result, and the fact that H

�

has a lift of the Frobenius.
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4. Dieudonn�e theory.

Positively graded bicommutative Hopf algebras over a perfect �eld form an

abelian category with a set of projective generators. As such this category is equiv-

alent to a category of modules over some ring. Dieudonn�e theory says which mod-

ules over which ring. In this section we use the results of the previous sections to

elucidate the case k = F

p

. Here the main classi�cation result is due to Schoeller

[23]; the main advance is that we gave a formula of Theorem 4.8 for computations.

Let HA be the category of graded, connected, bicommutative Hopf algebras

over F

p

. We describe a good set of generators for this category. In this context, a

set of objects fA

�

g is a set of generators if every object is a quotient of a coproduct

of the A

�

.

Let n > 0 be a positive integer, n = p

k

m where (p;m) = 1. Consider the

torsion free Hopf algebra CW

m

(k) = Z

p

[x

0

; x

1

; : : : ; x

k

] of De�nition 1.6. It has the

Witt vector diagonal. De�ne

H(n) = F

p


 CW

m

(k)

�

=

F

p

[x

0

; x

1

; : : : ; x

k

]:

There are many proofs of the following result. A very conceptual argument, due to

Fabien Morel, can be found in [9].

Lemma 4.1. The Hopf algebras H(n) are projective in HA and form a set of

generators. Furthermore is � : H(n)! H(n) is the Verschiebung, then

�(x

i

) = x

i�1

:

Here and elsewhere in this document, one takes x

�1

to be zero.

Of all the morphisms in HA between the various H(n) we emphasize two. The

�rst is in the inclusion

v : H(n) = F

p

[x

0

; : : : ; x

k

]! F

p

[x

0

; : : : ; x

k+1

] = H(pn):

For the second, we note that Proposition 1.8.2 implies that there is a unique map

of Hopf algebras f : H(pn)! H(n) so that the following diagram commutes

H(pn)

[p] $$■
■■

■■
■■

■■

f //
H(n)

v

��
H(pn):

Note that, by construction, vf = [p] and that Proposition 1.8.2 also implies that

fv = [p].

Definition 4.2. IfH 2 HA, the Dieudonn�e moduleD

�

H is the graded abelian

group fD

n

Hg

n�1

with

D

n

H = Hom

HA

(H(n); H)

and homomorphisms

F = f

�

: D

n

H ! D

pn

H

and

V = v

�

: D

pn

H ! D

n

H:
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It follows from the remarks on v and f above that FV = V F = p. Also

Proposition 1.8.2 implies that the order of the identity in Hom

HA

(H(n); H(n)) is

p

s+1

if n = p

s

k with (p; k) = 1; hence, we also have p

s+1

D

n

H = 0. This suggests

the following de�nition.

Definition 4.3. Let D be the category of graded modules M equipped with

operators F and V so that FV = V F = p and p

s+1

M

p

s

k

= 0 if (k; p) = 1. This is

the category of Dieudonn�e modules.

Thus we have a functor D

�

: HA ! D.

Some familiar functors on Hopf algebras can be recovered from the Dieudonn�e

module. Let � be the \doubling" functor on graded modules; that is, �(M)

pn

=M

n

and �(M)

k

= 0 of p does not divide k. Then, for example, if M is a Dieudonn�e

module, V de�nes a homomorphism of graded modules V :M ! �(M).

Lemma 4.4. 1) Let H 2 HA, then there is an exact sequence of graded abelian

groups

0! PH ! D

�

H

V

�!�D

�

H:

2) There is also an exact sequence

�D

�

H

F

�!D

�

H ! QH ! 0:

Proof. For 1), notice there is a short exact sequence of Hopf algebras

F

p

! H(n)

v

�!H(pn)! F

p

[x

k+1

]! F

p

where v de�nes V .

Part 2) is proved in a similar manner, after the introduction of some auxiliary

technology. See [10], for example.

Proposition 4.5. Let f : H ! K be a morphism in HA. If the induced

homomorphism D

�

f : D

�

H ! D

�

K is an isomorphism, then f is an isomorphism.

Proof. From Lemma 4.4, we have that both Qf : QH ! QK and Pf : PH !

PK are isomorphisms. Hence f is an isomorphism.

A crucial calculational result is the following.

Proposition 4.6. The homomorphism

D

�

: Hom

HA

(H(n); H(m))! Hom

D

(D

�

H(n); D

�

H(m))

is an isomorphism.

This is a consequence of a more general calculation, which we give below in

Theorem 4.8. See Corollary 4.11. An immediate consequence of Lemma 4.1 and

Proposition 4.6 is the following result, which is Schoeller's Theorem [23]. The proof

follows from standard techniques in abelian category theory. See, for example, the

proof of Mitchell's Theorem in [7].

Theorem 4.7. The functor D

�

: HA ! D has a right adjoint U and the pair

(D

�

; U) form an equivalence of categories.

As mentioned, Proposition 4.6 follows from a much more general calculation.

To set the stage, let R be the graded ring

R = Z

p

[V; F ]=(V F � p)
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where the degree of V is �1 and the degree of F is +1. Then an object M 2 D

�

may be regarded as a graded R module, provided one adopts the convention that

for a 2 R and x 2M ,

deg(ax) = p

deg(a)

x:(4.1)

With this convention, D

�

is exactly the category of positively graded R modules,

provided we agree that ax = 0 if deg(ax) is a fraction. Similarly, we have a category

of positively graded Z

p

[V ] modulesM , with deg(V ) = �1 and the same convention

on degrees. Let us call this category D

V

. The category M

V

of De�nition 2.6 is

the full subcategory of D

V

with torsion free objects. There is a forgetful functor

D ! D

V

and it has a left adjoint given by

M 7! R


Z

p

[V ]

M:

Now let H 2 HV be a Hopf algebra with a lift of the Verschiebung. We wish to

give a formula to calculateD

�

(F

p


H). SinceH is determined by QH 2 M

V

� D

V

,

we'd like this formula to be functorial in QH .

We can de�ne a natural homorphism � : QH ! D

�

(F

p


H) as follows. Write

n = p

k

m with (p;m) = 1. Then Theorem 2.7 and Proposition 2.9.2 supply an

isomorphism

(QH)

n

! Hom

HV

(CW

m

(k); H)

and the morphism V : (QH)

pn

! (QH)

n

is induced by the inclusion CW

m

(k) �

CW

m

(k + 1). In degree n de�ne � to be the composition

(QH)

n

�

=

Hom

HV

(CW

m

(k); H)! Hom

HA

(H(n); F

p


H) = D

n

(F

p


H):

Then � is a morphism in D

V

and, hence, it extends to a natural map of Dieudonn�e

modules

"

H

: R


Z

p

[V ]

QH ! D

�

(F

p


H):

The following is the main result of this section.

Theorem 4.8. The map "

H

is a natural isomorphism of Dieudonn�e modules

for all H 2 HV.

This will be proved below after some preliminary calculations.

Lemma 4.9. Let M 2 D

V

be torsion-free and R = Z

p

[V; F ]=(V F � p) the

Dieudonn�e ring. Then for all s > 0

Tor

s

Z

p

[V ]

(R;M) = 0:

Proof. Because Tor commutes with �ltered colimits, we may assume M is

�nitely generated. Then, if M(n) � M is the sub-module of elements in degree n

or less, one has exact sequences

0!M(n� 1)!M(n)!M(n)=M(n� 1)! 0

inM

V

andM(n)=M(n� 1) is isomorphic to a direct sum of modules, which Z

p

[n],

meaning a single copy of Z

p

in degree n. If Tor

s

Z

p

[V ]

(R;Z

p

[n]) = 0 for all n, then

a simple induction argument �nishes the proof.

De�ne a complex of right Z

p

[V ] modules

0!

M

s�0

y

s


Z

p

[V ]

@

�!

M

s�0

x

s


Z

p

[V ]

"

�!R! 0
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with "(x

s


 1) = F

s

and @(y

s


 1) = x

s


 p � x

s+1


 V . This is a projective

resolution of R as a right Z

p

[V ] module. Tensoring with Z

p

[n] yields a complex

0!

M

s�0

y

s


Z

p

[n]

@

�!

M

s�0

x

s


Z

p

[n]

"

�!R


Z

p

[V ]

Z

p

[n]! 0:

One calculates that @(y

s


 1) = x

s


 p. Hence @ is an injection and the result

follows.

We also need a calculation.

Lemma 4.10. Let F

p

[x] be the primitively generated Hopf algebra on an element

of degree n and f : H(n)! F

p

[x] the unique map of Hopf algebras so that f(x

k

) = x

and f(x

i

) = 0 for i < s. Then D

�

F

p

[x] is the free module over F

p

[F ] on f .

Proof. Since the Verschiebung is zero on F

p

[x], Lemma 4.1 and the de�nition

of V on D

�

(F

p

[x]) show that V = 0 on D

�

(F

p

[x]). The result now follows from

Lemma 4.4.1.

We now give the proof of Theorem 4.8.

Proof. Since both the source and target of "

H

commute with �ltered colimits

we may assume that H is �nitely generated and hence a polynomial algebra. (See

Proposition 2.1). Since QH has a �nite �ltration

0 =M

s

� � � � �M

1

�M

0

= QH

so that M

k

=M

k+1

is a direct sum modules of the form Z

p

[n], Theorem 2.7 implies

that H has a �nite �ltration

Z

p

= H

s

� � � � � H

1

� H

0

= H

so that QH

k

=M

k

and Z

p




H

k+1

H

k

is a primitively generated polynomial algebra

with indecomposables isomorphic to M

k

=M

k+1

. Both the source and target of

"

H

are exact on this �ltration (here we use Lemma 4.9) and we are reduced to

the case where H is a primitively generated polynomial algebra. Since both the

source and target of "

H

commute with coproducts we may assume H = Z

p

[x] with

deg(x) = n. Then it is a matter of direct calculation. The module QH

�

=

Z

p

[n]

�

=

Hom

HV

(CW

m

(k); H) and we can choose as generator of the latter group the map

CW

m

(k) = Z

p

[x

0

; x

1

; : : : ; x

k

]! Z

p

[x] = H

sending x

k

to x and x

i

to 0 if i < k. Let f 2 D

n

(F

p


H) be the reduction. Now

R 


Z

p

[V ]

QH is the free module over F

p

[F ]

�

=

R 


Z

p

[V ]

Z

p

on f . Hence the result

follows from Lemma 4.10

Now write n = p

k

m with (m; p) = 1 and let �

n

2 D

n

H(n) be the identity.

Corollary 4.11. Let H(n) = F

p

[x

0

; x

1

; : : : ; x

k

] be one of the projective gen-

erators of HA. Then for all Dieudonn�e modules M , then the natural map

Hom

D

�

(D

�

H(n);M)!M

n

given by sending f to f(�

n

) is an isomorphism. Furthermore

D

�

H(n)

�

=

R 


Z

p

[V ]

K(n)

where K(n) is the Z

p

[V ] module with K(n)

m

= 0 unless m = p

i

k, 0 � i � s,

K(n)

p

i

s

�

=

Z=p

i+1

Z and V is onto.
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Proof. This follows from Theorem 4.8 and Proposition 2.9.

Example 4.12. Let's calculate the Dieudonn�e module ofH

�

BU = H

�

(BU; F

p

).

We could use Example 2.12 and Theorem 4.8, but here's another way more suited

to a later application. Consider the coalgebra H

�

(CP

1

;Z

p

). This is dual to

the algebra H

�

(CP

1

;Z

p

)

�

=

Z

p

[x], which has a lift of the Frobenius given by

x 7! x

p

. Thus H

�

(CP

1

;Z

p

) has a lift of the Verschiebung  ; indeed, if we de�ne

�

i

2 H

2i

(C P

1

;Z

p

) to be dual to x

i

, then  (�

i

) = �

p=i

where �

p=i

= 0 if p=i is a

fraction. Now

H

�

(BU;Z

p

) = S

�

(H

�

(CP

1

;Z

p

)) = Z

p

[b

1

; b

2

; � � � ]

where we write b

i

for the image of �

i

. Theorem 4.8 now implies that

D

�

H

�

BU

�

=

R


Z

p

[V ]

~

H

�

(CP

1

;Z

p

)

with V (�

i

) = �

p=i

. In particular, if we also write b

i

for the image of �

i

in D

2i

H

�

BU ,

then

D

2i

H

�

BU

�

=

Z=p

�(i)

Z

generated by b

i

where �(i) = k if i = p

k

j with (j; p) = 1. Furthermore, V b

i

= b

i=p

,

and this forces F (b

i

) = pb

pi

.

Part II: Bilinear Maps, Pairings, and Ring Objects

5. Bilinear maps and the tensor product of Hopf algebras

First we establish a categorical framework for tensor products, then specialize

to our main interest|the category of Hopf algebras over over a �eld. Much of the

ideas about tensor products in the category of coalgebras can be found in [13].

Let C be a category and A � C a sub-category of abelian objects in C. Thus,

for all A 2 A,

F

A

= Hom

C

(�; A) : C

op

! Ab

is a functor to abelian groups. Morphisms f : A ! B in A induce natural trans-

formations F

A

! F

B

of group-valued functors.

We will assume, for simplicity, that

5.1.1)both C and A have all limits and colimits;

5.1.2)the forgetful functor A ! C has a left adjoint S(�).

Definition 5.2. Let A, B, and C be objects in A. A morphism ' : A�B ! C

in C is a bilinear map if for all X 2 C, the induced map

F

A

(X)� F

B

(X)! F

C

(X)

is a natural bilinear map of abelian groups.
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This is equivalent to demanding that the following diagrams commute:

A�B �B

1�m

B //

(1�T�1)(�

A

�1)

��

A�B

'

��
A�B �A�B

'�' ''PP
PP

PP
PP

PP
P

C

C � C

m

C

99tttttttttt

A�A�B

m

A

�1 //

(1�T�1)(1��

B

)

��

A�B

'

��
A�B �A�B

'�' ''PP
PP

PP
PP

PP
P

C

C � C

m

C

99tttttttttt

Here m

A

: A�A! A is the multiplication, �

A

is the diagonal, and T is the twist

map interchanging factors.

We now de�ne tenor products. The symbol \
" will be reserved for the tensor

product of modules over rings and, hence, for the product of coalgebras.

Definition 5.3. A tensor product of A, B 2 A is an initial bilinear map

" : A�B ! A � B in A. Speci�cally, if ' : A�B ! C is any bilinear map there

is a unique morphism  : A � B ! C in A making the diagram

A�B

'

##❋
❋❋

❋❋
❋❋

❋❋

" //
A � B

 

{{✇ ✇
✇ ✇
✇ ✇
✇ ✇
✇

C

commute in C.

Remark 5.4. If tensor products exist they are unique up to isomorphism in

A. Also, there is then a natural transformation of group-valued functors

(F

A


 F

B

)(X) = F

A

(X)
 F

B

(X)! F

A�B

(X):

This need not be an isomorphism: consider the case where C is the category of sets,

A the category of abelian groups and A = B = Z.

The assumptions made above make it easy to show tensor products exist. See

[13].

Proposition 5.5. Under the assumptions of (5.1) any two objects A, B 2 A

have a tensor product A � B in A.

Proof. This is an adaptation of the case where A is the category of R-modules

for some ring R. De�ne A � B to be the colimit of the diagram in A

S(A�A�B)

f

A

�

g

A

S(A�B)

f

B

�

g

B

S(A�B �B)



26 PAUL G. GOERSS

where f

A

is adjoint to

A�A�B

m

A

�1

! A�B ! S(A�B)

and g

A

is adjoint to

A�A�B ! A�B �A�B ! S(A�B)� S(A�B)

m

!S(A�B)

where the �rst map is (1� T � 1)(1��

B

). The morphism f

B

and g

B

are de�ned

similarly. Let " : A�B ! A � B be de�ned by the composite

A�B ! S(A�B)! A � B;

it is bilinear by construction. Also if ' : A � B ! C is any bilinear map, the

induced morphism

S(A�B)! C

factors uniquely through A � B.

We now begin to specialize to the case where A is a category of bicommutative

Hopf algebras over a commutative ring k and C is a category of coalgebras. In this

case a bilinear map is a morphism of coalgebras

' : H

1


H

2

! K

where H

1

, H

2

, and K are Hopf algebras. It is convenient to write x�y for '(x
y).

Lemma 5.6. For Hopf algebras the following formulas hold.

1. For all x y 2 H

1

and z 2 H

2

xy � z =

X

i

(x � z

i

)(y � z

0

i

)

where �z = �z

i


 z

0

i

. A similar formula holds for x 2 H

1

, y, z 2 H

2

.

2. If 1 2 H

1

is the unit of H

1

regarded as an algebra, and x 2 H

2

, then

1 � x = "(x)1, where " : H

2

! k is the augmentation.

Proof. Part 1.) merely rewrites in formulas what it means to be bilinear. For

2.), it is su�cient to show k� H

2

�

=

k. More generally, given A and C as in 5.1, let

� 2 A be the terminal object. Then for all A 2 A, � � A

�

=

�. To see this notice

that if � �A! C is a bilinear map, the induced bilinear map

F

�

(X)� F

A

(X)! F

C

(X)

is the trivial map, since it factors through F

�

(X) 
 F

A

(X) and F

�

(X) = 0. Now

consider the pair

("; 1

A

) 2 F

�

(A)� F

A

(A)

where " : A! � is the unique map. This maps to 0 in F

C

(A) so there is a diagram

A

//

�

=

��

�

�

��
� �A

//
C

where � is the unit map in C from � to C. This implies that the unique map

� �A! � is the initial bilinear map, as required.
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For the next few results we will stipulate only that C is a category of cocom-

mutative coalgebras over a ring k and that A is a category of bicommutative Hopf

algebras over k. We will abbreviate this by saying A is a category of Hopf algebras

and C is a category of coalgebras.

Lemma 5.7. Let A be a category of Hopf algebras and C a category of coalge-

bras. Then for any diagram in A, the natural map

colim

�

(A

�

� B)! (colim

�

A

�

) � B

is an isomorphism.

Proof. This result is true in much more general contexts; however, it does

require that the abelian category A satisfy certain axioms which can be uncovered

by examining the argument.

First consider pushouts. Let A

1

f

1

 A

12

f

2

!A

2

be a diagram of Hopf algebras.

Then the push-out in A is A

1




A

12

A

2

; that is, the algebra A

1


 A

2

modulo the

ideal generated by elements of the form

f

1

(a)x
 y � x
 f

2

(a)y:(5.1)

Suppose one has a diagram

A

12


B

f

2


1 //

f

1


1

��

A

2


B

'

2

��
A

1


B

'

1

//
C

where '

1

and '

2

are bilinear. De�ne a bilinear map

' : (A

1




A

12

A

2

)
B ! C

by

'(x
 y 
 b) =

X

i

'

1

(x 
 b

i

)'

2

(y 
 c

i

)(5.2)

where �

B

b = �b

i


 c

i

. The associativity of the diagonal, the formula 5.2, and

Lemma 5.6.1 imply ' is well-de�ned. Now take

C = A

1

� B 


A

12

�B

A

2

� B

and '

1

and '

2

the evident bilinear maps. Then there is a resulting bilinear map

' : (A

1




A

12

A

2

)
B ! A

1

� B 


A

12

�B

A

2

� B:

We leave it as an exercise to show ' has the requisite universal property to prove

the result in this case.

Since the result is true for push-outs, it is true for �nite coproducts and co-

equalizers. I claim it is true for all coproducts. In fact, I claim it is true for �ltered

colimits, so the claim about coproducts follows from the fact that any coproduct

is the �ltered colimit of its �nite sub-coproducts. To see that it is true for �ltered

colimits, one uses the construction given in the proof of Proposition 5.5 and the fact

that, in this case, the left adjoint S commutes with �ltered colimits in the sense

that for any diagram of coalgebras, the natural map in C

colim

�

C

S(C

�

)! S(colim

�

C

C

�

)

�

=

colim

�

A

S(C

�

)

is an isomorphism; that is, the forgetful functor from A to C makes �ltered colimits.
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Finally the result is true for all colimits because there is, for any diagram A

�

in A, a coequalizer diagram

a

�!�

A

�

�

a

�

A

�

! colim

�

A

�

:

Hence the general result follows from the result on coproducts and coequalizers.

We next calculate the tensor product of free objects.

Corollary 5.8. Let A be a category of Hopf algebras and K 2 A. Then the

functor A 7! A given by H 7! H � K has a right adjoint.

Proof. This is a consequence of the special adjoint functor theorem [15] and

the fact that � � K commutes with all colimits.

It is appropriate to call this functor hom(K; �) so that one has a formula

Hom

A

(H

1

� K;H

2

)

�

=

Hom

A

(H

1

; hom(K;H

2

)):(5.3)

It would interesting to have a concrete description of this homomorphism object

and its Dieudonn�e module.

6. Bilinear pairings for Hopf Algebras with a lift of the Verschiebung.

We now examine the case where A = HV , the category of connected, torsion-

free Hopf algebras over Z

p

equipped with a lift of the Verschiebung, and C = CV ,

the category of connected, torsion free coalgebras over Z

p

, also equipped with a lift

of the Verschiebung. These objects were discussed in some detail in section 2. The

forgetful functor HV ! CV has left adjoint S

�

: if C 2 CV , S

�

C is the symmetric

algebra on

JC = kerf" : C ! Z

p

g

with diagonal induced from C and lift of the Verschiebung given by extending the

left on C. Thus HV has the pairing �.

The indecomposables functor Q de�nes a functor from HV to the categoryM

V

of graded Z

p

[V ] modules M which are torsion-free as Z

p

modules. If x 2M

k

, then

V x 2M

k=p

, wwhere we mean V x = 0 if p does not divide k. In Theorem 2.11 it was

noted that this indecomosables functor has a right adjoint S

�

(�) and in Theorem

2.7 we showed that these two functors give an equivalence of categories.

Now let H

1

, H

2

, and K be in HV and

' : H

1


H

2

! K

be a bilinear map in CV . Then, because ' is a morphism in CV , ' commutes with

the lifts of the Verschiebung by de�nition. Lemma 5.6.1 now implies that ' induces

a pairing

Q' : QH

1


QH

2

! QK(6.1)

where, writing x � y for Q'(x
 y), one must have

V (x � y) = V x � V y:

Thus we should give QH

1


 QH

2

the structure of an object in M

V

by de�ning

V (x 
 y) = V x
 V y.

Now let H

1

= S

�

(M) and H

2

= S

�

(N) be two objects in HV .
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Proposition 6.1. There is a natural isomorphism in HV

S

�

(M) � S

�

(N)

�

=

S

�

(M 
N):

Proof. We de�ne a bilinear pairing S

�

(M)
S

�

(N)! S

�

(M 
N), and then

we will show it has the correct universal property.

First note that if C is a coalgebra with a lift of the Verschiebung, one can regard

the coaugmentation ideal JC as an object in M

V

and the functor J : CV ! M

V

has as right adjoint S

�

(�), where we forget the algebra structure. To see this, let

S

�

: CV ! HV be left adjoint to the forgetful functor. Then

Hom

CV

(C; S

�

(M))

�

=

Hom

HV

(S

�

(C); S

�

(M))

�

=

Hom

MV

(QS

�

(C);M)

�

=

Hom

M

V

(JC;M):

With this in hand, let

� : S

�

(M)
 S

�

(N)! K = S

�

(QK)

be any bilinear map in CV . The adjoint

J(S

�

(M)
 S

�

(N))! QK

factors, by Lemma 5.6, as

J(S

�

(M)
 S

�

(N))! J(S

�

(M))
 J(S

�

(N))!M 
N

Q�

�!QK

where Q� is an in equation 6.1. This supplies a factoring of �

S

�

(M)
 S

�

(N)

�

�!S

�

(M 
N)

S

�

Q�

�! S

�

(QK)

�

=

K:

If we can show the �rst map is bilinear, we'll be done. To do this, we give another

construction of �.

Note there is an obvious bilinear pairing

Hom

M

V

(JC;M)�Hom

M

V

(JC;N)! Hom

M

V

(JC;M 
N)

sending a pair (f; g) to the composition

JC

J�

! J(C 
 C)! JC 
 JC

f
g

! M 
N(6.2)

Thus we get a bilinear pairing

Hom

CV

(C; S

�

(M))�Hom

CV

(C; S

�

(N))! Hom

CV

(C; S

�

(M 
N))(6.3)

and, hence, a bilinear pairing

�

0

: S

�

(M)
 S

�

(N)! S

�

(M 
N):

Note that �

0

is obtained by applying 6.3 to the two projections S

�

(M)
 S

�

(N)!

S

�

(M) and S

�

(M) 
 S

�

(N) ! S

�

(N). Hence the morphism of coalgebras �

0

is

adjoint to the morphism inM

V

J(S

�

(M)
 S

�

(N))! JS

�

(M)
 JS

�

(N)!M 
N

where the last map is projection onto the indecomposables. Since � and �

0

are

adjoint to the same map, and since �

0

is bilinear, � must be bilinear.
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The universal bilinear map

� : S

�

(M)
 S

�

(N)! S

�

(M 
N)

induces a map, via equation 6.1

Q� : QS

�

(M)
QS

�

(N)! QS

�

(M 
N)

which �ts into the following diagram:

QS

�

(M)
QS

�

(N)

//

��

QS

�

(M 
N)

��
M 
N

=

//
M 
N:

The vertical maps are induced by the isomorphism of functors QS

�

! 1.

Thus we have proved

Corollary 6.2. If H

1

and H

2

are two Hopf algebras in HV, the universal

bilinear map

H

1


H

2

! H

1

� H

2

induces an isomorphism inM

V

QH

1


QH

2

! Q(H

1

� H

2

):

In the next result we are concerned with free Hopf algebras. If C 2 CV is a

torsion-free coalgebra with a lift of the Verschiebung, let S

�

(C) be the free Hopf

algebra in HV on C. It is the symmetric algebra on the coaugmentation ideal of

C, equipped with the coproduct and the lift of the Verschiebung induced from C.

Given C

1

and C

2

in CV let C

1

^ C

2

be the algebraic smash product of C

1

and

C

2

. This is de�ned as follows. First C

1

_ C

2

is de�ned by the push-out diagram

Z

p

�Z

p

//

��

C

1

� C

2

��
Z

p

//
C

1

_ C

2

where Z

p

�Z

p

! Z

p

is addition. Then C

1

^C

2

is de�ned by the push-out diagram

C

1

_ C

2

//

"

��

C

1


 C

2

��
Z

p

//
C

1

^ C

2

If S

�

(C

1

)
 S

�

(C

2

)! K is a bilinear map in HV , then the composite

C

1


 C

2

! S

�

(C

1

)
 S

�

(C

2

)! K

factors, in CV , through C

1

^ C

2

, by Lemma 5.6. Thus one gets a map in HV

S

�

(C

1

^ C

2

)! K:

Corollary 6.3. The induced map in HV

S

�

(C

1

^ C

2

)! S

�

(C

1

)� S

�

(C

2

)

is an isomporphism.
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Proof. There is a natural isomorphismQS

�

(C)

�

=

JC, where JC is the coaug-

mentation ideal of C. The result now follows from Corollary 6.2 and Theorem

2.7.

7. Universal bilinear maps for Hopf algebras over F

p

.

Let HA be the category of graded, connected Hopf algebras over F

p

. The

purpose of this section is to calculate the Dieudonn�e module of the target of the

universal bilinear map H 
K ! H � K as a functor of D

�

H and D

�

K in HA. In

summary, there will be an induced pairing D

�

H
D

�

K ! D

�

(H �K) which, while

not an isomorphism, can be modi�ed in a simple way to produce an isomorphism.

The exact result is below in Theorem 7.7.

The �rst observation is this. Let H and K be objects in HV , the category of

graded connected torsion-free Hopf algebras over the Z

p

equipped with a lift of the

Verschiebung. Let H
K ! H � K be the universal bilinear map in that category.

Lemma 7.1. Suppose H and K in HV are �nitely generated as Z

p

modules in

each degree. Then the induced map

(F

p


H) � (F

p


K)! F

p


 (H � K)

is an isomorphism.

Proof. By construction (F

p


H) � (F

p


K) is a quotient of of the symmetric

algebra S

�

((F

p


H)
 (F

p


K)). See Proposition 5.5. This fact and Lemma 5.6.1)

imply that if fx

i

g is a homogeneous basis of Q(F

p


H)

�

=

F

p


QH and fy

j

g is a

homogeneous basis of Q(F

p


K), then fx

i

� y

j

g spans Q((F

p


H) � (F

p


K)).

But Corollary 6.1 implies that the elements x

i

� y

j

are linearly independent in

Q(F

p


 (H � K)). Hence

Q((F

p


H) � (F

p


K))! Q(F

p


 (H � K))

is an isomorphism. Since H � K is a polynomial algebra by Proposition 2.1, the

result follows.

Remark 7.2. The �nite type hypothesis can be removed by a �ltered colimit

argument, or by an application of Theorem 7.7 below.

In the following result, we are primarily concerned with generators H(n) of

HA. Recall from Equation 4.1 that

H(n)

�

=

F

p


 CW

m

(k)

�

=

F

p

[x

0

; : : : ; x

k

]

where n = p

k

m with (p;m) = 1. For simplicity write

G(n) = QCW

m

(k):

Corollary 7.3. Suppose H and K in HV are �nitely generated as Z

p

modules

in each degree. Then there is an isomorphism

R


Z

p

[V ]

(QH 
QK)! D

�

((F

p


H) � (F

p


K)):

In particular if H(n) 2 HA are the projective generators,

R


Z

p

[V ]

(G(n) 
G(m))! D

�

(H(n) � H(m))

is an isomorphism.
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Proof. The �rst isomorphism follows from Theorem 4.8 and Corollary 6.2.

The second isomorphism follows from the �rst.

We now can de�ne the pairing D

�

H
D

�

K ! D

�

(H�K), using the method of

universal examples. By Proposition 2.9.2, if M 2 M

V

, then Hom

M

V

(G(n);M)

�

=

M

n

. Let �

n

2 G(n)

n

correspond to the identity. By abuse of notation, also write

�

n

for the reduction of this class in

D

�

H(n)

�

=

R


Z

p

[V ]

G(n):

Then Corollary 4.11 says the function

Hom

D

(D

�

H(n);M)!M

n

given f 7! f(�

n

) is an isomorphism. In particular, if H 2 HA, the natural isomor-

phism

Hom

HA

(H(n); H)

�

=

D

n

H

is de�ned by f 7! D

�

f(�

n

).

Now let �

n


 �

m

2 D

�

(H(n) � H(m))

�

=

R


F

p

[V ]

(G(n)
G(m)) be the evident

class. If H

1


H

2

! K is a bilinear pairing of objects in HA, we get a pairing

� : D

n

H

1

�D

m

H

2

! D

n+m

K(7.1)

as follows. If x 2 D

n

H

1

and y 2 D

m

H

2

we get a diagram

H(n)
H(m)

//

f

x


f

y

��

H(n) � H(m)

g

��
H

1


H

2

//
K

(7.2)

where D

�

f

x

(�

n

) = x and D

�

f

y

(�

m

) = y, and g is the unique Hopf algebra map

�lling the diagram. Then

x � y = D

�

g(�

n


 �

m

):(7.3)

Notice that element �

n

� �

m

2 D

n+m

[H(n) � H(m)] is represented by the map g in

the above commutative diagram.

Lemma 7.4. This pairing is bilinear and induces a pairing of graded modules

� : D

�

H

1


D

�

H

2

! D

�

K:

Proof. It is su�cient to examine the universal example

(H(n)
H(n))
H(m)! (H(n)
H(n)) � H(m):(7.4)

If �

1

n

+ i

2

n

2 D

n

(H(n)
H(m))

�

=

D

n

H(n)�D

n

H(n), we need

(�

1

n

+ �

2

n

) � �

m

= �

1

n

� �

m

+ �

2

n

� �

m

:(7.5)

But the bilinear map of 7.4 is the reduction modulo p of a bilinear map of objects

in HV . Indeed, write n = p

j

s and m = p

k

t where (p; s) = 1 = (p; t). Then the

pairing of 7:4 is the reduction of pairing

(CW

s

(j)
 CW

s

(j))
 CW

t

(k)! (CW

s

(j)
 CW

s

(j)) � CW

t

(k)

which induces a pairing on indecomposables (which is an isomorphism)

� : (G(n)�G(n))
G(m)! Q[(CW

s

(j)
 CW

s

(j)) � CW

t

(k)]:

Here the formula 7.6 is obvious.
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Because the isomorphism

QCW

s

(j)
QCW

t

(k)! Q(CW

s

(j) � CW

t

(k))

is an isomorphism inM

V

, similar methods imply

Lemma 7.5. If H

1


 H

2

! K is a bilinear pairing of Hopf algebras over F

p

,

then the pairing

� : D

�

H

1


D

�

H

2

! D

�

K

has the property that

V (x � y) = V x � V y:

The operator F behaves di�erently. In fact, if F is supposed to reect the

Frobenius (�)

p

and V the Verschiebung �, then one calculates

x

p

� y = (x � �y)

p

using Lemma 5.6.1. Then one might expect

Lemma 7.6. The pairing � : D

�

H

1


D

�

H

2

! D

�

K has the property that

Fx � y = F (x � V y) and x � Fy = F (V x � y):

Proof. Again, one need only calculate

F�

n

� �

m

= F (�

n

� V �

m

)

in D

�

(H(n) � H(m)). To do this, write m = p

k

t and n = p

j

s, where (s; p) = 1 =

(t; p). Let CW

s

(1) = Z

p

[x

0

; x

1

; : : : ] and CW

t

(1) = Z

p

[y

0

; y

1

; : : : ] be the Hopf

algebras of De�nition 1.6. Then

CW

s

(j) = Z

p

[x

0

; x

1

; : : : ; x

j

] � CW

s

(1)

and, similarly, CW

t

(k) � CW

t

(1). Now

QCW

s

(1)

i

�

=

�

Z

p

i = p

r

s

0 otherwise

and x

r

(we confuse x

r

with its image in the indecomposables) generates the module

of indecomposables QCW

s

(1)

p

r

s

. Also V x

r

= x

r�1

, by Lemma 4.9. Finally

QCW

s

(j) � CW

s

(1) is a split injection of Z

p

modules and �

n

= x

j

.

Notice that H(n) � H(m)! (F

p


CW

s

(1)) � (F

p


CW

t

(1)) is an injection

since

QCW

s

(j)
QCW

t

(k)! QCW

s

(1)
QCW

t

(1)

is a split injection and both source and target are polynomial algebras. Thus

D

�

H(n) �H(m)! D

�

[(F

p


 CW

s

(1)) � (F

p


 CW

t

(1))]

is an injection. Now one calculates

F�

n

� �

m

= Fx

k

� y

j

= FV x

k+1

� y

j

= px

k+1

� y

j

= FV (x

k+1

� y

j

)

= F (x

k

� V y

j

)

= F (�

n

� V �

m

):



34 PAUL G. GOERSS

These results prompt the following de�nitions. A function f : M

1

�M

2

! N

of graded abelian groups will be called a graded pairing if

deg(f(x; y)) = deg(x) + deg(y):

A graded pairing f : M

1

�M

2

! N of Dieudonn�e modules will be called bilinear

in D if it is bilinear as a pairing of graded abelian groups and

V f(x; y) = f(V x; V y)

Ff(x; V y) = f(Fx; y) f(x; Fy) = Ff(V x; y):

Then the content of Lemmas 7.4{7.6 is that a bilinear map of Hopf algebras over

F

p

induces a bilinear pairing in D

D

�

H

1

�D

�

H

2

! D

�

K:

A universal bilinear pairing in D, written � : M

1

�M

2

! M

1

�

D

M

2

is an initial

bilinear pairing in D out of M

1

�M

2

, in the obvious sense. If it exists, it is unique.

We will show it exists and give a concrete description.

Indeed, for the purposes of the next few paragraphs, de�ne a Dieudonn�e module

M �

D

N as follows. For the graded tensor product M 
N , then this is a Z

p

[V ]

module with

V (x
 y) = V x
 V y:

Our grading conventions are the exponential conventions given in Equation 4.1. Let

R = Z

p

[F; V ] and

M �

D

N = R


Z

p

[V ]

(M 
N)=K(7.6)

where K is the sub-Dieudonn�e module generated by the relations

F 
 x
 V y = 1
 Fx
 y

F 
 V x
 y = 1
 x
 Fy:

If M

1

�M

2

! N is any bilinear pairing in D, there is a morphism of Dieudonn�e

modules M

1

�

D

M

2

! N . Also the function

� :M

1

�M

2

!M

1

�

D

M

2

given by (x; y) 7! x
 y is a bilinear pairing in D. One now easily checks that � has

the requisite universal property, so D has universal bilinear maps.

The following is the main result of this section.

Theorem 7.7. Let H and K be Hopf algebras over F

p

. Then the induced map

of Dieudonn�e modules

D

�

H �

D

D

�

K ! D

�

(H � K)

is an isomorphism.

Proof. We reduce to a special case. Let S

�

: CA ! HA be left adjoint to

the forgetful functor. Then the Hopf algebras S

�

(F

p


 C) with C 2 CV �nitely

generated in each degree generate HA. This follows from the fact that the Hopf

algebrasH(n) = F

p


CW

m

(k) generate HA, so the Hopf algebras F

p


H , H 2 HV

with H �nitely generated in each degree generateHA and HV is, in turn, generated

by Hopf algebras of the form S

�

(C) with C 2 CV , �nitely generated in each degree.

See Lemma 2.5.
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Thus we may write equations

colim

�

S

�

(F

p


 C

�

)

�

=

H and colim

�

S

�

(F

p


 C

�

)

�

=

K

for suitable diagrams, where C

�

and C

�

are objects in CV . Since both the source

and target of the natural map

D

�

H �

D

D

�

K ! D

�

(H � K)

commute with colimits (see Lemma 5.7), we may assume that H = S

�

(F

p


 C

1

)

and K = S

�

(F

p


C

2

), with C

1

and C

2

in CV , and �nitely generated in each degree.

To prove the result in this case, Lemma 7.1 implies there is a natural isomor-

phism

F

p


 [S

�

(C

1

)� S

�

(C

2

)]! S

�

(F

p


 C

1

)� S

�

(F

p


 C

2

):

Then Corollary 6.3 and Theorem 4.8 complete the calculation:

D

�

(S

�

(F

p


 C

1

)� S

�

(F

p


 C

2

))

�

=

D

�

(F

p


 [S

�

(C

1

)� S

�

(C

2

)])

�

=

D

�

(F

p


 S

�

(C

1

^ C

2

))

�

=

R


Z

p

[V ]

(JC

1


 JC

2

)

�

=

[R


Z

p

[V ]

(JC

1

)]�

D

[R


Z

p

[V ]

(JC

2

)]:

The pairings � on HA and �

D

on D are symmetric and the isomorphism of

Theorem 7.7 reects the symmetry. Note that if t : H

1


 H

2

! H

2


 H

1

is the

switch map, the composite

H

1


H

2

t

�!H

2


H

1

! H

2

� H

1

is bilinear and induces an isomorphism

t : H

2

� H

1

�

=

�!H

2

� H

1

:

The following can be proved by reducing to the case of universal examples, as

in Lemma 7.4.

Lemma 7.8. Let H

1

and H

2

be Hopf algebras in HA. Then the following dia-

gram commutes:

D

�

H

1

�

D

D

�

H

2

" //

t

��

D

�

(H

1

� H

2

)

D

�

(t)

��
D

�

H

2

�

D

D

�

H

1

" //
D

�

(H

2

� H

1

):

A similar statement holds for HV .

Example 7.9. Suppose M , N are Dieudonn�e modules and V is surjective on

M and N . Then one can de�ne the structure of a Dieudonn�e module on M 
 N

as follows. First V (x
 y) = V x
 V y. Second, if x 2M , write x = V z. Then one

de�nes

F (x
 y) = z 
 Fy:

If V z = V z

0

, then z

0

= z + w where pw = 0. Write y = V y

0

. Then

z

0


 Fy = z 
 Fy + w 
 FV y

0

= z 
 Fy
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so F is well-de�ned. One easily checks V F = FV = p. Now consider the inclusion

j :M 
N !M �

D

N:

To start, this is only a morphism of Z

p

[V ] modules. However,

j(F (x 
 y)) = 1
 z 
 Fy = F 
 x
 y(7.7)

= Fj(x
 y)

so this is a morphism of Dieudonn�e modules. I claim it is an isomorphism. To see

this we use the universal property of M �

D

N . Suppose f : M � N ! K is a

bilinear pairing in D. Then we need only show there is a unique map of Dieudonn�e

modules

g :M 
N ! K

making the obvious diagram commute. It is required, then, that g(x
y) = f(x; y).

It follows that g commutes with V . That g commutes with F follows exactly as in

Equation 7.7

8. Symmetric monoidal structures.

The categories of bicommutative Hopf algebras considered in the previous two

sections are nearly symmetric monoidal categories; what is missing is a unit object

e so that e � H

�

=

H � e

�

=

H . In order to supply this object we must extend the

category somewhat.

Let H be a non-negatively graded Hopf algebra over a commutative ring k.

Then H

0

� H|the elements of degree 0|form a Hopf algebra over k. With an eye

to topological applications we insist that H

0

be a group ring. Put another way, let

X(H) = Hom

CA

k

(k;H)

where CA

k

is the category of non-negatively graded coalgebras over k. Then X(H)

is an abelian group and evaluation at 1 2 k, de�nes an injection X(H) ! H and

hence an injection of Hopf algebras

k[X(H)]! H

where k[X(H)] is the group algebra. We will insist that k[X(H)] ! H

0

be an

isomorphism, and say H is group-like in degree 0.

More generally, if C 2 CA

k

, we can de�ne

X(C) = Hom

CA

k

(k; C)

and get an injection k[X(C)]! C

0

, where k[X(C)], the free k module on X(C), is

now only a coalgebra. If this is an isomorphism, we will say C is set-like in degree

0.

Finally, if H is a non-negatively graded Hopf algebra over k, let H

c

= k


H

0

H

be the connected component of the identity. Then there is a natural isomorphism

H ! H

c




k

H

0

:(8.1)

Such a splitting fails for coalgebras. The map H ! H

c

is an isomorphism if and

only if H is connected.

We begin with a category of torsion-free Hopf algebras over Z

p

.
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Definition 8.1. Let HV

+

be the category of torsion-free bicommutative Hopf

algebras

i) group-like in degree 0;

ii) are equipped with a Hopf algebra map  lifting the Verschiebung; and

iii)  = 1 in degree 0.

The last hypothesis is innocuous as for all H 2 HV

+

, the Verschiebung � :

F

p


H ! F

p


H is the identity in degree zero. The underlying coalgebra category

will be called CV

+

; it consists of torsion-free coalgebras C over Z

p

equipped with

a coalgebra map  : C ! C lifting the Verschiebung. Again we ask that  = 1 in

degree 0.

Lemma 8.2. The forgetful functor HV

+

! CV

+

has a left adjoint F .

Proof. Let C 2 CV

+

and S

�

C be the symmetric algebra on C endowed with

the obvious diagonal. This is not yet a Hopf algebra. In fact, let X = X(C). Then

there is an isomorphism

S

�

(C)

0

�

=

Z

p

[NX ]

where NX is the free abelian monoid on X . Set

FC = Z

p

[ZX ]


Z

p

NX

S

�

(C):

Note that FC is an appropriate group completion of S

�

C.

To classify HV

+

as a category of modules, we extend the category M

V

of

section 2 as follows: de�ne a new categoryM

+

V

to be the category of graded abelian

groups M equipped with a shift map V : M

pn

! M

n

so that M

n

is a torsion free

Z

p

module if n � 1 and V = 1 :M

0

!M

0

. IfM 2 M

+

V

then the elementsM

c

�M

of positive degree form a sub-object and the natural isomorphism M

�

=

M

c

�M

0

de�nes an equivalence of categories

M

+

V

�

=

M

V

�Ab:

Here Ab is the category of abelian groups. This will reect the isomorphism of

Equation 8.1

We next de�ne a functor Q

+

: HV

+

!M

+

V

by the equation

Q

+

(H) = QH

c

�X(H):

In degree n, this functor is representable. If n > 0, let n = p

k

s with (n; s) = 1 and

CW

s

(k) the Witt vector Hopf algebra of De�nition 1.6. Then we have, by Theorem

2.7 and Proposition 2.9, that

[Q

+

(H)]

n

�

=

QH

c

�

=

Hom

HV

(CW

s

(k); H

c

)

�

=

Hom

HV

+(CW

s

(k); H):

If n = 0, then

[Q

+

(H)]

0

= X(H)

�

=

Hom

HV

+
(Z

p

[Z]; H):

The splitting of Equation 8.1 and Theorem 2.7 immediately imply

Proposition 8.3. The functor Q

+

de�nes an equivalence of categories Q

+

:

HV

+

!M

+

V

.

Now we turn to bilinear maps. Propositions 5.5 and Lemma 8.2 imply that

the category HV

+

has universal bilinear maps H 
K ! H � K. Here is the �rst

result on these.
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Lemma 8.4. 1.) Let A and B be abelian groups. Then in HV

+

Z

p

[A] � Z

p

[B]

�

=

Z

p

[A


Z

B]:

2.) Let H 2 HV

+

be connected and A an abelian group. Then Z

p

[A] � H is

connected and

Q(Z

p

[A] � H)

�

=

[A


Z

QH ]=T

where T � A


Z

QH is the torsion subgroup.

3.) For all H 2 HV

+

there is a natural isomorphism

Z

p

[Z] � H

�

=

H:

Proof. Part 1.) is immediate from the universal property and the requirement

that objects on HV

+

are group-like in degree 0.

We next prove 3.) Let � 2 Z� Z

p

[Z] be the generator. Write Zmultiplicatively.

If f : Z

p

[Z]
 H ! K is any bilinear map, let h : H ! K be the map h(x) =

f(� 
 x) = � � x. This is a Hopf algebra map since � is group-like. See Lemma 5.6

Also f is determined by h and bilinearity. The claim is that there is a bilinear map

g making the following diagram commute

Z

p

[Z]
H

g //

f

��

H

h

zz✉ ✉
✉ ✉
✉ ✉
✉ ✉
✉ ✉

K:

If so, the result will follow. If x 2 H write the n-fold diagonal of x

�

n

x = �x

i1


 � � � 
 x

in

:

Then g is de�ned by bilinearity and

g(�

n

� x) =

8

<

:

�x

i1

x

i2

� � �x

in

n > 0

�"(x) n = 0

��(x

i1

) � � ��(x

in

) n < 0

Here � : H ! H is the canonical anti-automorphism arising from the fact, that as

a group object, H must support inverses. One easily checks g is bilinear.

For part 2.), we �rst prove Z

p

[A] � H is connected. Given any bilinear map

Z

p

[A]
H ! K we get a diagram of bilinear maps

Z

p

[A]
H

' //

��

K

��
Z

p

[A]
Z

p

//
K

0

;

hence, a diagram of Hopf algebras

Z

p

[A] � H

' //

"

��

K

��
Z

p

//
K

0

since Z

p

[A] � Z

p

! Z

p

is an isomorphism. Hence ' factors through K

c

. Now let

' be universal bilinear map Z

p

[A]
H ! Z

p

[A]�H ; then ' = 1, and Z

p

[A] � H

is connected.
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To prove the assertion on indecomposables, note that part 3.) implies the result

for A = Z. For general A, take a free resolution

F

1

! F

0

! A! 0:

Then since Q(Z

p

[�]�H) commutes with all colimits, one gets a short exact sequence

inM

V

F

1




Z

QH ! F

0




Z

QH ! Q(Z

p

[A] � H)! 0:

Since all objects inM

V

are torsion free, the result follows.

This last result suggests how to de�ne and analyze universal bilinear maps in

M

+

V

. A bilinear pairing inM

V

f :M

1

�M

2

! N

is a bilinear map of graded abelian groups (that is, deg f(x; y) = deg(x) + deg(y))

so that

V f(x; y) = f(V x; V y):

There is a universal bilinear map M �N !M �

M

N . Write M

�

=

M

0

�M

c

where

M

0

and M

c

are the elements of degree 0 and positive degree respectively. Then

M �

M

N is nearly M 
N modulo torsion in positive degrees:

M �

M

N

�

=

M

0


N

0

�M

0


N

c

=T

1

�M

c


N

0

=T

2

�M

c




Z

p

N

c

;

where T

1

and T

2

are the torsion sub-modules. Lemma 8.4 and Corollary 6.2 now

imply

Proposition 8.5. Let H 
K ! H � K be the universal bilinear pairing in

HV

+

and Q

+

: HV

+

!M

+

V

the equivalence of categories. Then there is a bilinear

pairing inM

+

V

Q

+

H �Q

+

K ! Q

+

(H � K)

and the induced map inM

V

Q

+

H �MQ

+

K ! Q

+

(H � K)

is an isomorphism.

For the following result, we will say that a functor F : (C;
; e)! (C

0

;


0

; e

0

) is

an equivalance of categories with symmetric monoidal structure if F is an equiva-

lence of categories F (e)

�

=

e

0

and there are natural isomorphisms

F (X)


0

F (Y )

�

=

F (X 
 Y ):

Corollary 8.6. 1.) The category of Hopf algebras HV

+

with pairing � is a

symmetric monoidal category with unit e = Z

p

[Z].

2.) The categoryM

+

V

with pairing �

M

is a symmetric monoidal category with unit

e = Z, concentrated in degree 0.

3.) Q

+

: HV

+

! M

+

V

is an equivalence of categories with symmetric monoidal

structure.

Similar results hold over F

p

. Let HA

+

be the category of bicommutative Hopf

algebras over F

p

group-like in degree 0, and let CA

+

p

be the category of cocommu-

tative coalgebras over F

p

which are set-like in degree 0. Then:

Lemma 8.7. The forgetful functor HA

+

! CA

+

has a left adjoint.

The corresponding category of Dieudonn�e modules is easily de�ned.
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Definition 8.8. An object M 2 D

+

is a non-negatively graded abelian group

equipped with operators V :M

pn

!M

n

, F :M

n

!M

pn

so that

1. V F = FV = p;

2. M

c

2 D; and

3. V = 1 :M

0

!M

0

.

Notice, as in Equation 4.1, M 2 D

+

may be regarded as a Z

p

[V; F ]=(V F � p)

module.

De�ne H(n) 2 HA

+

by H(0) = F

p

[Z] and H(n) = F

p

[x

0

; x

1

; : : : ; x

s

] =

CW

m

(k) for n = p

k

m with (m; p) = 1. Then one has a functor D

�

: HA

+

! D

+

given by

D

n

H = Hom

HA

+
(H(n); H)

with V and F given as in De�nition 4.2 (for n > 0) or De�ntion 8.8 for n = 0.

Proposition 8.9. The functor D

�

: HA

+

! D

+

is an equivalence of cate-

gories.

Lemma 8.7 and Proposition 5.5 imply HA

+

has universal bilinear pairings

H 
K ! H � K. Just as in Lemma 8.4 one has:

Lemma 8.10. 1.) Let A and B be abelian group. Then in HA

+

F

p

[A] � F

p

[B]

�

=

F

p

[A


Z

B]:

2.) Let H 2 HA

+

be connected and A an abelian group. Then F

p

[A] � H is

connected and

D

�

(Z

p

[A] � H)

�

=

A
D

�

H:

3.) For all H 2 HA

+

, there is a natural isomorphism F

p

[Z] � H

�

=

H.

To characterize bilinear pairings via Dieudonn�e modules, we introduce the no-

tion of a D

+

bilinear map. It is a mild generalization of the notion introduced in

section 7. A pairing f : M �N ! K of objects in D

+

is a bilinear pairing in D

+

if it is a bilinear pairing of graded abelian groups and

f(V x; V y) = V f(x; y)

f(Fx; y) = Ff(x; V y) and f(x; Fy) = Ff(V x; y):

There is a universal bilinear pairing

M �N !M �

D

N:

In fact, we can write

M �

D

+ N

�

=

R

0




Z[V ]

(M 
N)=K

where R

0

= Z[V; F ]=(VF � p) and K is the submodule generated by

F 
 (x
 V y)� 1
 (Fx 
 y) and F 
 (V x
 y)� 1
 (x
 Fy):

This mimics the construction M �

D

N of the previous section. In fact if we write

M

�

=

M

0

�M

c

and N

�

=

N

0

�N

c

where the 0 and c indicate elements of degree 0

and positive degree respectively, we have

Lemma 8.11. There is a natural isomorphism in D

+

M �

D

+
N

�

=

M

0




Z

N

0

�M

0




Z

N

c

�M

c




Z

N

0

�M

c

�

D

N

c

:
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Proof. One has

M �

D

+
N

�

=

M

0

�

D

+
N

0

�M

0

�

D

+
N

c

�M

c

�

D

+
N

0

�M

c

�

D

+
N

c

:

Now M

c

�

D

+
N

c

�

=

M

c

�

D

N

c

, so one must identify the other three summands. I

claimM

0




Z

N

c

!M

0

�

D

+
N

c

is an isomorphism. To see this note that M

0




Z

N

c

has a structure of a Dieudonn�e module with V (x 
 y) = V x 
 V y = x 
 V y and

F (x
 y) = x
Fy. The bilinear pairingM

0

�N

c

!M

0




Z

N

c

is a bilinear pairing

in D

+

and any bilinear pairing in D

+

factors through this one. Hence M

0




Z

N

c

has the required universal property. The other summands are handled the same

way.

Now let H

1


H

2

! K be a bilinear pairing in HA

+

. The one gets an induced

pairing

� : D

�

H

1

�D

�

H

2

! D

�

K:

Indeed, there are universal maps

H(n+m)! H(n) � H(m)

given by Equation 7.2 for n > 0 and m > 0, and by Lemma 8.10.3 for n = 0 or

m = 0. If f : H(n)! H

1

and g : H(m)! H

2

represent x 2 D

n

H

1

and y 2 D

m

H

2

respectively, then �(x; y) is represented by

H(n+m)! H(n) � H(m)

f � g

! H

1

� H

2

! K:

Lemma 8.12. This pairing is a bilinear pairing in D

+

.

Proof. If n > 0 and m > 0, this follows from Lemmas 7.4{7.6. If n = 0

(or m = 0), one only has to check the universal examples. Thus, for example, the

pairing is bilinear because one has a diagram

F

p

[Z] � H(n)

�� 1 //

�

=

��

(F

p

[Z]
 F

p

[Z]) � H(n)

�

=

��
H(n)

� //
H(n)
H(n)

using Lemma 8.10.3 (or, rather, the proof of that statement|see Lemma 8.4.3) and

the fact that � commutes with coproducts.

That �(V x; V y) = V �(x; y) follows from the diagram

F

p

[Z] � H(n)

1� v //

�

=

��

F

p

[Z] � H(pn)

�

=

��
H(n)

v //
H(pn)

(8.2)

where v induces V (see De�nition 4.2). This implies �(Fx; y) = F�(x; V y) because

Fx = px and

�(px; y) = p�(x; y) = FV �(x; y) = F�(x; V y):

Finally �(x; Fy) = F�(V x; y) = F�(x; y) by using a diagram similar to of Equation

8.2, using f : H(pn)! H(n) (which de�nes F ) in place of the morphism v.

That completed, note that Lemmas 8.10, 8.11, and Theorem 7.7 will now imply

the following result. The proof is the same as for Proposition 8.5.
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Proposition 8.13. Let H 
K ! H � L be the universal bilinear pairing in

HA

+

. Then the induced bilinear pairing in D

+

D

�

H �D

�

K ! D

�

(H � K)

induces an isomorphism

D

�

H �

D

+
D

�

K ! D

�

(H � K):

We now can write down the analog of Corollary 8.6.

Corollary 8.14. The categories HA

+

and D

+

are symmetric monoidal cat-

egories and the equivalence of categories

D

�

: HA

+

! D

+

is an equivalence of categories with symmetric monoidal sturcture.

Part III: Hopf rings associated to homology theories

9. Skew commutatative Hopf algebras

If X is a double loop space, the homology Hopf algebra H

�

X = H

�

(X; F

p

) is

not commutative, but skew commutative, meaning that if x 2 H

m

X and y 2 H

n

X ,

then

xy = (�1)

mn

yx:(9.1)

Similary, the homology coalgebra of a space Y is skew cocommuative. This turns

out to be only a mild variation on the commutative case considered up to now, and

this section adapts Dieudonn�e theory and the theory of bilinear pairings to this

new situation.

To make the de�nitions precise, we work with non-negatively graded vector

spaces over the �eld F

p

, p > 2. The case p = 2 is the commutative case. Then the

signed twist map of the tensor product of two such objects

t : V 
W �! W 
 V

is given on homogeneous elements by t(x 
 y) = (�1)

mn

y 
 x, with x 2 V

m

and

y 2 W

n

. A skew commutative coalgebra over F

p

is a coassociative coalgebra C,

set-like in degree zero, so that the following diagram commutes

C

� //

� ##❋
❋❋

❋❋
❋❋

❋❋
C 
 C

t

��
C 
 C:

The category of such will be written CA

�

. Similary, a skew commutative Hopf

algebra H is a Hopf algebra in the category of skew commutative coalgebras so that

the multiplication satis�es the formula of Equation 9.1 The category of such Hopf

algebras will be written HA

�

.

The reason this adaptation is simple is the following result, known as the split-

ting principle. See [18].
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Proposition 9.1. Let H be a skew commutative Hopf algebra. Then there is

a natural isomorphism in HA

�

H

�

=

H

ev


H

odd

where H

ev

is concentrated in even degrees and H

odd

is an exterior algebra on prim-

itive generators in odd degrees.

Notice that a skew commutative Hopf algebra concentrated in even degrees

is, in fact, commutative. In e�ect, Proposition 9.1 implies that there is a natural

equivence of categories

HA

�

' HA

+

� V

�

(9.2)

where V

�

is the category of non-negatively graded F

p

vector spaces and HA

+

is the

category of commutative Hopf algebras which are group-like in degree zero.

The splitting principle immediately translates into a Dieudonn�e theory for this

situation.

Definition 9.2. The category D

�

of skew commutative Dieudonn�e modules

has, as objects, non-negatively graded abelian groups M equipped with homomor-

phisms

F :M

2n

!M

2pn

and V :M

2pn

!M

2n

so that

1. FV = V F = p;

2. V = 1 :M

0

!M

0

;

3. if n = p

k

m > 0 and (m; p) = 1, then p

k+1

M

2n

= 0; and

4. pM

2n+1

= 0 for all n � 0.

Note that the category of skew commutative Dieudonn�e modules can be re-

garded as a category of modules over the ring R

0

= Z[V; F ]=(VF � p), subject

to the exponential grading conventions of Equation 4.1 and the requirement that

V x = Fx = 0 if x is of odd degree.

Proposition 9.1, the assumption that our Hopf algebras are group-like in degree

zero, and Schoeller's Theorem 4.7 now immediately imply:

Proposition 9.3. There is an equivalence of categories

D

�

: HA

�

�! D

�

:

The functor H 7! D

n

H is representable, just as in the commutative case.

Indeed, if n = 2p

k

m, with (p;m) = 1, then

D

n

H

�

=

Hom

HA

�

(H(n); H)

�

=

Hom

HA

(H(n); H

ev

)

where H(n) = F

p


 CW

2m

(k) is the Witt vector Hopf algebra of De�nition 4.2. A

similar remark holds in degree zero with H(0) = F

p

[Z]. If n = 2m + 1, then let

�(F

p

[n]) be the exterior algebra on a single primitive generator of degree n. Then

D

n

H

�

=

Hom

HA

�

(�(F

p

[n]); H)

�

=

Hom

F

p

(F

p

[n]); PH)

�

=

(PH)

n

:

Here PH are the primitives. If we write H

�

(2n) = H(2n) and H

�

(2m + 1) =

�(F

p

[2m+ 1]), then these formulas combine to read

D

n

H

�

=

Hom

HA

�

(H

�

(n); H):(9.3)
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We now come to bilinear pairings. The forgetful functor from HA

�

! CA

�

has a left adjoint; it is the free skew-commutative algebra functor suitably group-

completed in degree zero. Compare Lemma 8.2. As a result, Proposition 5.5 implies

thatHA

�

has bilinear pairings. We'd like to compute these via Dieudonn�e modules.

The following is the crucial result. Let S

�

(�) denote the free skew commutative

algebra functor. If W is a vector spaces, the S

�

(W ) can be made into a primitively

generated skew commutative Hopf algebra.

Proposition 9.4. Let �(V ) be the primitively generated exterior algebra on a

vector space V concentrated in odd degrees. If H 2 HA

�

is connected, then there

is a natural ismorphism of Hopf algebras

�(V ) � H

�

=

S

�

(V 
QH):

Proof. Because (�) � H commutes with colimits, by Lemma 5.7, we may

assume that V = F

p

[n] for some odd integer n. Let x 2 F

p

[n] a generator. If

� : �(F

p

[n])
H ! K

is any bilinear map, then the formulas of Lemma 5.6 imply that for all y and z in

the augmentation ideal of H ,

�(x
 yz) = x � yz = 0:

Furthermore, for any y, the element x � y 2 K is primitive. In fact, there is a

factoring of �

�(F

p

[n])
H

q //

�

((PP
PP

PP
PP

PP
PP

P
F

p

[n]
QH

��
PK

where q is the composite

�(F

p

[n])
H ! I�(F

p

[n])
 IH ! Q�(F

p

[n])
QH

�

=

F

p

[n]
QH:

The vertical map extends to a Hopf algebra map S

�

(F

p

[n] 
 QH) ! K and one

checks that

�(F

p

[n])
H

q

�! F

p

[n]
QH ! S

�

(F

p

[n]
QH)

is bilinear. The result follows from the uniqueness of the universal bilinear maps.

Exterior algebras and group rings behave in the expected way. The proofs are

the same as those of Lemma 8.4.

Lemma 9.5. Let �(V ) a primitively generated exterior algebra on a vector space

concentrated in odd degrees.

1. There is a natural isomorphism F

p

[Z] � �(V )

�

=

�(V );

2. For all abelian groups A, F

p

[A] � �(V )

�

=

�(A
 V ).

Proposition 9.4 and Lemma 9.5 also allow one to come to term with H � �(V ).

In fact, if t : H

1


H

2

! H

2


H

1

is the signed switch map, then t is an isomorphism

of Hopf algebras and the composition

H

1


H

2

t

�!H

2


H

1

! H

2

� H

1
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is bilinear and induces an ismorphism

t : H

1

� H

2

�

=

�!H

2

� H

1

:

We now notice that the bilinear pairings de�ned on the various categories of

Dieudonn�e modules of the previous sections extends to D

�

as well. Regarding an

object in D

�

as a R

0

= Z[V; F ]=(VF � p) module, we de�ne, for M;N 2 D

�

M �

D

�

M = R

0




Z[V ]

(M 
N)=K

where K is the submodule generated by

F 
 (x
 V y)� 1
 (Fx 
 y) and F 
 (V x
 y)� 1
 (x
 Fy):

This mimics the construction M �

D

N of the two previous sections. The tech-

niques of section 7 now imply that for all H

1

; H

2

2 HA

�

there is a natural map of

Dieudonn�e modules

" : D

�

H

1

�

D

�

D

�

H

2

! D

�

(H

1

� H

2

):

The expected result is the following:

Theorem 9.6. This natural map

" : D

�

H

1

�

D

�

D

�

H

2

! D

�

(H

1

� H

2

):

is an isomorphism in D

�

.

Proof. As in the proof of Proposition 8.13, one splits up the bilinear pairing

in D

�

and reduces the result to previous calculations.

If M 2 D

�

, then there is a natural splitting in D

�

M

�

=

M

ev

�M

odd

where M

ev

and M

odd

are the elements of even and o� degrees respectively. This

reects the splitting principle of Proposition 9.1. From this it follows that

M �

D

�

N

�

=

M

ev

�

D

+

N

ev

�M

odd


N

ev

=FN

ev

�M

ev

=FM

ev


N

odd

�M

odd


N

odd

:

The result now follows from the splitting principle Proposition 9.1, the analagous

result forHA

+

Proposition 8.13, Proposition 9.4, Lemma 9.5, and Lemma 4.4 which

says that for H 2 HA, there is a natural isomorphism

QH

�

=

D

�

H=FD

�

H:

It is worth pointing out that the natural isomorphism of the previous result

reects the skew symmetric nature of the category HA

�

. In the following let t

stand for any of the signed switch maps; that is if the degree of x is m and the

degree of y in n, then

t(x
 y) = (�1)

nm

(y 
 x):

Also let t also be the induced isomorphism of Hopf algebras

t : H

1

� H

2

! H

2

� H

1

:

For the following, compare Lemma 7.8.
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Lemma 9.7. Let H

1

and H

2

be Hopf algebras in HA

�

. Then the following

diagram commutes:

D

�

H

1

�

D

�

D

�

H

2

" //

t

��

D

�

(H

1

� H

2

)

D

�

(t)

��
D

�

H

2

�

D

�

D

�

H

1

" //
D

�

(H

2

� H

1

):

Proof. It is only necessary to check this for the universal examplesH

1

= H(n)

and H

2

= H(m) of Equation 9.3 (Compare the proof of Lemma 7.4.) If n and m

are even this follows from Lemma 7.8. If either n or m is odd, the result follows

from Proposition 9.4 and Lemma 9.5.

10. The Hopf ring of complex oriented cohomology theories.

Let E

�

be a multiplicative cohomology theory represented by a ring spectrum

E. De�ne spaces E(n) by the formula

E(n) = 


1

�

n

E:

The spaces E(n) are generalized Eilenberg-Mac Lane spaces in the sense that if X

is a CW complex, then there is a natural isomorphism

E

n

X

�

=

[X;E(n)]:

The cup product pairings

E(m) ^ E(n)! E(m+ n)

induce bilinear maps

H

�

E(m)
H

�

E(n)! H

�

E(m+ n)

and, hence, D

�

H

�

E = fD

�

H

�

E(n)g

n2Z

is a graded ring object in the category D

�

of skew-commutative Dieudonn�e modules. This means that the ring multiplication

satis�es the formulas of Lemmas 7.4{7.6. Such an object will be called a Dieudonn�e

ring. Since

D

0

H

�

E(n)

�

=

�

0

E(n)

�

=

�

0

�

n

E

�

=

�

�n

E

�

=

E

n

;

D

�

H

�

E is an E

�

algebra and the operators V and F act on E

�

as the identity and

multiplication by p. We will call such an object an E

�

Dieudonn�e algebra.

We will be particularly interested in homotopy commutative ring spectra E.

This implies that that for all integers n and m there is a homotopy commutative

diagram

E(m) ^ E(n)

//

T

��

E(m+ n)

�

m;n

��
E(n) ^ E(m)

//
E(m+ n)

where the horizontal maps are the cup product maps, T is topological switch map,

and �

m;n

is

�

m;n

= 


1

[(�1)

nm

id] 2 [E(n+m); E(n+m)]:

This observation and Lemma 9.7 immediately imply the following result.



HOPF RINGS, DIEUDONN

�

E MODULES, AND E

�




2

S

3

47

Lemma 10.1. Let E be a homotopy commutative ring spectrum. Suppose x 2

D

i

H

�

E(m) and y 2 D

j

H

�

E(n). Then

x � y = (�1)

ij+mn

y � x 2 D

i+j

H

�

E(m+ n):

Now suppose E is complex oriented; thus, there is a chosen element

x 2 E

2

CP

1

= [CP

1

; E(2)]

so that the composite

S

2

= CP

1

,! CP

1

x

!E(2)

represents the multiplicative identity in �

0

E = �

2

E(2). The map x induces a

morphism of coalgebras

H

�

CP

1

! H

�

E(2);

hence, by adjointness, a morphism of Hopf algebras

H

�

BU

�

=

S(H

�

CP

1

)! H

�

E(2):

Since H

�

BU is the reduction modulo p of a torsion-free Hopf algebra over Z

p

with

a lift of the Verschiebung we have, as in Example 4.12,

D

�

H

�

BU

�

=

R


Z

p

[V ]

QH

�

(BU ;Z

p

):

In fact, if �

i

2 H

2i

(CP

1

;Z

p

) is the standard generator, we obtain an induced

element b

i

2 D

2i

H

�

BU under the composition

e

H

�

(CP

1

;Z

p

)!

e

H

�

(BU;Z

p

)! R


Z

p

[V ]

QH

�

(BU;Z

p

)

�

=

D

�

H

�

BU ;

Furthermore, V b

pi

= b

i

. Note that in H

�

(CP

1

� CP

1

;Z

p

)

�

�

�

i

=

X

j+k=i

�

j

� �

k

(10.1)

We will also use later that if m : CP

1

� CP

1

! CP

1

is the multiplication, then

m

�

(�

j

� �

k

) =

�

j + k

j

�

�

j+k

:(10.2)

The complex orientation induces a map

D

�

x

�

: D

�

H

�

BU ! D

�

H

�

E(2):

De�ne b

E

i

2 D

2i

H

�

E(2) by

b

E

i

= (D

�

x

�

)(b

i

):

If there is no ambiguity, we may abuse notation and write b

i

for b

E

i

.

Now de�ne an E

�

Dieudonn�e algebra with underlying E

�

algebra

R

0

(E) = E

�

[b

1

; b

2

; : : : ]

with E

�

in Dieudonn�e-degree 0 and b

i

in bidegree (2i; 2) where 2i is the Dieudonn�e

degree. We require V b

pi

= b

i

and V = 1 on E

�

, and that V be multiplicative. This

and the formulas of Lemma 5.6 determine the action of F . The existence of the

elements b

E

i

determine a morphism of E

�

Dieudonn�e algebras

R

0

(E)! D

�

H

�

E:

This brings us to the Ravenel-Wilson relation. Let

x+

F

y 2 E

�

[[x; y]]



48 PAUL G. GOERSS

be the formal group law for E

�

and let

b(t) =

1

X

i=1

b

E

i

t

i

be the evident power series over the ring D

�

H

�

E. Since D

�

H

�

E is an E

�

algebra

we can form the power series in two variables

b(s) +

F

b(t) 2 (D

�

H

�

E)[[s; t]]

and, in this context, the Ravenel-Wilson relation becomes:

Proposition 10.2. Over D

�

H

�

E there is a formula

b(s) +

F

b(t) = b(s+ t):

Proof. The argument here is not so di�erent than the one in [21]; the idea of

using the total unstable operation as an organizing principle is due to Neil Strick-

land.

For any CW complex X , there is a total unstable operation

� = �

X

: E

�

X ! Hom

CA

(H

�

X;H

�

E)

sending f 2 E

n

X = [X;E(n)] to

f

�

: H

�

X ! H

�

E(n)

this is continuous E

�

algebra homomorphism and natural in X . If

m : CP

1

� CP

1

! CP

1

is the H-space multiplication we then get a commutative diagram

E

�

[[x]]

�

=

E

�

(CP

1

)

� //

E

�

m

��

Hom

CA

(H

�

CP

1

; H

�

E)

Hom(m

�

;1)

��
E

�

[[x; y]]

�

=

E

�

(CP

1

� CP

1

)

� //
Hom

CA

(H

�

(CP

1

� CP

1

); H

�

E)

so

(Hom(m

�

; 1) � �)(x) = (� �E

�

m)(x):(10.3)

Since � is an E

�

algebra homomorphism

(� �E

�

m)(x) = �(x +

F

y) = �(x) +

F

�(y)(10.4)

where �(x) is the coalgebra map

H

�

(CP

1

� CP

1

)

�

1

!H

�

CP

1

x

�

!H

�

E(2)

and �(y) uses �

2

instead of �

1

. On the other hand,

(Hom(m

�

; 1) � �)(x)

is the composite

H

�

(CP

1

� CP

1

)

m

�

!H

�

CP

1

x

�

!H

�

E(2):(10.5)

Given any map of coalgebras

f : H

�

(C P

1

� CP

1

)! H

�

E(n)

it extends to a map of Hopf algebras

f

\

: S(H

�

(CP

1

� CP

1

))! H

�

E(n)
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and the isomorphisms

Hom

CA

(H

�

(CP

1

� CP

1

);H

�

E)(10.6)

�

=

Hom

HA

(S(H

�

(C P

1

� CP

1

)); H

�

E)

�

=

Hom

D

+
(D

�

SH

�

(CP

1

� CP

1

); D

�

H

�

E)

are isomorphisms of E

�

algebras.

Since S(H

�

(C P

1

�CP

1

)) is the mod p reduction of S(H

�

(C P

1

�CP

1

);Z

p

),

which has a lift of the Frobenius, we can calculate, by Theorem 4.8

D

�

S(H

�

(C P

1

� CP

1

))

�

=

R


Z

p

[V ]

QS(H

�

(C P

1

� CP

1

;Z

p

))

�

=

R


Z

p

[V ]

e

H

�

(CP

1

� CP

1

;Z

p

):

Let b

i;j

2 D

2(i+j)

S(H

�

(CP

1

� CP

1

)) be the image of �

i

� �

j

.

Then naturality and 10.2 implies that

D

�

S(m

�

) : D

�

S(H

�

(CP

1

� CP

1

))! D

�

S(H

�

CP

1

)

sends b

i;j

to

�

i+j

j

�

b

i+j

. Similarly if �

1

is projection on the �rst factor

D

�

S(�

1

)

�

: D

�

S(H

�

(CP

1

� CP

1

))! D

�

S(H

�

CP

1

)

is given by sending b

i;j

to b

i

if j = 0 and 0 otherwise. There is an analogous formula

involving �

2

. Now let f : H

�

(CP

1

� CP

1

) ! H

�

E(2) be either of the maps of

(10.3) and

D

�

f

\

: D

�

S(H

�

(C P

1

� CP

1

))! D

�

H

�

E(2)

the induced map. Then D

�

f

\

extends to a map of E

�

Dieudonn�e algebras

E

�

[b

i;j

]! D

�

H

�

E

which we will also call D

�

f

\

. Let b

E

i;j

= D

�

f

\

(b

i;j

) and consider the power series

over D

�

H

�

E:

b(s; t) = �b

E

i;j

s

i

t

j

:

Note i � 1 or j � 1. Using the expression for f given in (10.5) we have

b(s; t) =

X

b

E

i;j

s

i

t

j

=

X

D

�

f

\

(b

i;j

)s

i

t

j

=

X

D

�

x

�

�D

�

S(m

�

)(b

i;j

)s

i

t

j

=

X

D

�

x

�

�

i+ j

j

�

b

i+j

s

i

t

j

=

X

�

i+ j

j

�

b

E

i+j

s

i

t

j

= b(s+ t):

This rewrites b(s; t) in one way. Next, using the expression for f given in (10.4)

and that the isomorphisms of (10.6) are E

�

algebra maps we have

b(s; t) = D

�

�(x)

\

b(s; t) +

F

D

�

�(y)

\

b(s; t):

However, since �(x) involves projection on the �rst factor

D

�

�(x)

\

b(s; t) =

X

D

�

�(x)

\

(b

i;j

)s

i

t

j

=

X

D

�

x

�

�D

�

S(�

1

)

�

(b

i;j

)s

i

t

j

=

X

D

�

x

�

(b

i

)s

i

= b(s):
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Similarly D

�

�(y)

\

b(s; t) = b(t), so b(s; t) = b(s)+

F

b(t). Combining the two expres-

sions for b(s; t) yields the result.

Now let I � E

�

[b

1

; b

2

; : : : ] = R

0

(E) be the ideal of relations forced by requiring

that b(s+ t) = b(s) +

F

b(t). Then we get an induced map

R

E

= R

0

(E)=I ! D

�

H

�

E(10.7)

of E

�

Dieudonn�e algebras. Under favorable circumstances this is almost an iso-

morphism, but not quite. To see what's missing, note that R(E) is concentrated

in bidegrees (s; t) with both s and t even. To account for odd degree groups we

proceed as follows.

If S

1

= �S

0

is the stable 1-sphere, let e 2 D

1

H

�




1

S

1

�

=

[PH

�




1

S

1

]

1

be the

image of the generator of �

1

S

1

under the Hurewicz map. For any spectrum X ,

there is a bilinear pairing

D

�

H

�




1

S

1


D

�

H

�




1

�

�1

X ! H

�




1

(S

1

^ �

�1

X) = H

�




1

X

and we can de�ne a degree raising map

D

�

H

�




1

�

�1

X ! D

n+1

H

�




1

X(10.8)

by

x 7! e � x:(10.9)

Note that since V e

1

= 0 we have, by Lemma 9.5 and Theorem 9.6

V (e � x) = 0 = e � Fx:(10.10)

Hence there is a factorization (by Lemma 4.4)

D

�




1

�

�1

X

e //

��

D

�

H

�




1

X

QH

�




1

�

�1

X

� //
PH

�




1

X

OO(10.11)

The map labeled � is the homology suspension induced by the evaluation

� : �


1

�

�1

X ! 


1

X:

To see this note that there is a commutative diagram

S

1

^ 


1

�

�1

X

� //

��




1

X

=

��



1

S

1

^ 


1

�

�1

X

//



1

X:

So, at p > 2, there is a diagram of bilinear pairings of Hopf algebras

�(e)
H

�




1

�

�1

X

//

��

H

�




1

X

��
H

�




1

S

1


H

�




1

�

�1

X

//
H

�




1

X



HOPF RINGS, DIEUDONN

�

E MODULES, AND E

�




2

S

3

51

which induces a diagram (using Proposition 9.4)

S(�QH

�




1

X)

�

=

�(e)�H

�




1

�

�1

X

//

��

H

�




1

X

��
H

�




1

S

1

�H

�




1

�

�1

X

//
H

�




1

X

and the top map in this diagram is induced by the homology suspension. The

argument at p = 2 is similar.

If E is a ring spectrum and X = �

n+1

E, then 


1

�

n+1

E = E(n+ 1) and the

natural map 


1

S

1

^ 


1

E(n)! 


1

E(n+ 1) �ts into a diagram




1

S

1

^ E(n)

//




1

�^1

��

E(n+ 1)

=

��
E(1) ^ E(n)

� //
E(n+ 1)

where � : S

1

! �E is the suspension of the unit and the bottom map is the cup

product pairing. Let e

E

2 D

1

H

�

E(1) be the image of e under D

�

H

�




1

�. If E is

complex oriented, then there is a diagram

S

1

^ S

1

//

��




1

S

1

^ 


1

S

1

//
E(1) ^ E(1)

��
S

2

//
CP

1

x //
E(2)

where x is the complex orientation. By de�nition of x the bottom composite must

be the unit in �

2

E(2)

�

=

�

0

E. It follows that

e

2

E

= b

E

1

2 D

2

H

�

E(2)

and, hence, we can extend 10.7 to a map of E

�

Dieudonn�e algebras

� : R

E

[e]=(e

2

� b

1

)! D

�

H

�

E:(10.12)

The equation e

2

= b

1

also appears in [2] and [21].

The main theorems on Hopf rings [11, 13, 21] can now be rephrased as follows:

Theorem 10.3. Suppose E

�

is a Landweber exact homology theory with coef-

�cient ring E

�

concentrated in even degrees. Then

� : R

E

[e]=(e

2

� b

1

)! D

�

H

�

E

is an isomorphism.

There is another proof of this fact in the next section.

It might be worth pointing out that the ring R

E

has an interpretation in the

language of formal groups. If � is an E

�

Dieudonn�e algebra, the formal group law

over E

�

passes to a formal group law over � via the ring homomorphism E

�

! �.

This might be called the E

�

formal group law over �. Then the set of E

�

Dieudonn�e

algebra homomorphisms

R

E

�! �

is in one-to-one correspondence with homomorphisms of the additive formal group

law over � to the E

�

formal group law. Compare Paul Turner's interpretation of

QBP

�

BP [25].



52 PAUL G. GOERSS

Example 10.4. Suppose E = K is complex oriented K-theory; hence K

�

=

Z[�; �

�1

] where � 2 K

�2

. The formal group law for K is

x+

F

y = x+ y + �xy;

so the equation b(s+ t) = b(s) +

F

b(t) implies

�b

i

b

j

=

�

i+ j

j

�

b

i+j

in D

�

H

�

K.

Thus multiplication by �

�1

induces isomorphisms

�

�n

: D

�

H

�

K(0) ! D

�

H

�

K(2n)

�

�n

: D

�

H

�

K(1) ! D

�

H

�

K(2n+ 1)

and, with � the p-adic valuation,

D

i

H

�

K(0) = D

i

H

�

(Z�BU)

�

=

�

Z=(p

�(j)

+ 1); i = 2j > 0

0; i = 2j + 1

The generator of D

2j

H

�

K(0) is �b

i

.

D

i

H

�

K(1) = D

i

H

�

U =

�

0 i = 2j

Z=p i = 2j + 1:

The generator of D

2j+1

H

�

K(1) is e if j = 0 and �eb

j

if j > 0.

Example 10.5. Because of the connection between the element e 2 D

1

H

�

E(1)

and the homology suspension given in Equation 10.11, one can use Theorem 10.3

to give a description of H

�

E for certain E. Indeed, there is an isomorphism

H

�

E

�

=

D

�

H

�

E[

1

e

]

where D

�

H

�

E[1=e] in degree k is the colimit of

� � � ! D

n+k

H

�

E(n)

e

!D

n+1+k

H

�

E(n+ 1)

e

!� � �

Note that E

n

= D

0

H

�

E(�n) maps to H

n

E; this is the image of the Hurewicz

homomorphism E

�

! H

�

E. If we let a

i

2 H

2i

E be the image of b

i+1

(note the

shift in indices), then we get a surjective map

E

�

[a

0

; a

1

; : : : ]=(p; a

0

� 1)! H

�

E

and the kernel is determined by the relation

a(s+ t) = a(s) +

F

a(t)

where a =

P

1

i=0

a

i

t

i+1

. In short, a is a strict isomorphism between F modulo p

and the additive formal group law; that is, a is an exponential for F after reducing

mod p. Compare Corollary 4.1.9 of [20]
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11. The role of E

�




2

S

3

.

If X is a spectrum, then H

�




1

X is a graded bicommutative Hopf algebra and

one can study the functor

X 7! D

n

H

�




1

X; n � 0:

The following was proved in [9].

Proposition 11.1. There is a spectrum B(n) and a natural surjection

B(n)

n

X ! D

n

H

�




1

X

which is an isomorphism if n 6� �1 mod 2p.

As the notation suggests, the spectra B(n) are the Brown-Gitler spectra. This

is to say, if p = 2,

H

�

B(n)

�

=

A=Af�(Sq

i

) : 2i > ng(11.1)

or if p > 2,

H

�

B(n)

�

=

A=Af�(�

�

P

i

) : 2pi+ 2� > ng;(11.2)

and, furthermore, if B(n) ! HZ=pZ classi�es the generator of H

0

B(n), then the

induced map

B(n)

n

Z ! H

n

Z(11.3)

is surjective for all CW complexes Z.

The group homomorphisms

V : D

2pn

H

�




1

X ! D

2n

H

�




1

X and F : D

2n

H

�




1

X ! D

2pn

H

�




1

X

are induced, respectively, by maps

� : B(2pn)! �

2n(p�1)

B(n)(11.4)

and

 : �

2n(p�1)

B(n)! B(2pn):(11.5)

The map � is very familiar, as it is the one that �ts into the \Mahowald exact

sequence"|the co�bration sequence

B(2pn� 1) �! B(2pn)

�

�!�

2n(p�1)

B(n);

explored, at p = 2, in [16] and [3], and at odd primes in [5]. The map  is less

familiar|it is, for example, zero in cohomology.

At p = 2, the maps

V : D

4n+2

H

�




1

X ! D

2n+1

H

�




1

X

and

F : D

2n+1

H

�




1

X ! D

4n+2

H

�




1

X

are induced by

� : B(4n+ 2)! �

2n+1

B(2n+ 1)

and

 : �

2n+1

B(2n+ 1)! B(4n+ 2)

respectively, but the maps are not uniquely determined.
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If X and Y are spectra, there is a natural bilinear pairing in HA

H

�




1

X 
H

�




1

Y ! H

�




1

(X ^ Y )

induced by the map




1

X ^ 


1

Y ! 


1

(X ^ Y )

adjoint to the evaluation �

1

(


1

X ^ 


1

Y )! X ^ Y . Thus, we get a pairing

D

n

H

�




1

X 
D

m

H

�




1

Y ! D

n+m

H

�




1

(X ^ Y ):

This yields pairings

� : B(n) ^ B(m)! B(n+m)(11.6)

which are uniquely determined if n+m 6� �1 mod 2p and, in particular if n and

m are both even. These pairings are also familiar, at least in cohomology, as

�

�

: H

�

B(n+m)! H

�

B(n)
H

�

B(m)

sends the generator to the tensor product of the two generators.

The ambiguity in the de�nition of � when n+m � �1 mod 2p can be removed

by noting that there there are canonical maps B(n) ! B(n + 1) which is a weak

equivalence if n is even. Thus if n is odd we could require � : B(n) ^ B(m) !

B(n+m) to be the composite

B(n) ^ B(m)

'

�!B(n� 1) ^ B(m)! B(n+m� 1)

'

�!B(n+m):

This said, the object B = fB(n)g

n�0

becomes a graded, commutative ring spec-

trum.

Now let E be a ring spectrum representing a cohomology theory E

�

with prod-

ucts. Then

E

k

B(n)

�

=

B(n)

k

E

�

=

B(n)

n

�

n�k

E

so there is a surjective homomorphism

E

k

B(n)! D

n

H

�




1

E(n� k):

This induces a surjection

h : E

�

B ! D

�

H

�

E(11.7)

which skews degrees. Note that when k = 0, we get an isomorphism

E

k

�

=

E

k

B(0)

�

=

D

0

H

�

E(�k) = E

�k

:

This is the standard isomorphism E

�

�

=

E

��

and makes the homomorphism h is

a morphism of E

�

�

=

E

��

modules. It is for this reason that we will speak of E

�

Dieudonn�e algebras in the sequel, rather than E

�

Dieudonn�e algebras.

The properties of the map h of Equation 11.7 are recorded in the following

sequence of results.

Proposition 11.2. At primes p > 2, the bigraded E

�

module E

�

B is an E

�

Dieudonn�e algebra. At the prime 2, E

�

B has homomorphisms

V : E

�

B(4n)! E

�

B(2n) and F : E

�

B(2n)! E

�

B(4n)

satisfying the formulas of Lemmas 7.4 { 7.6
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Proposition 11.3. At odd primes, the map

h : E

�

B ! D

�

H

�

E

is a surjective homomorphism of E

�

Dieudonn�e algebras. At the prime 2, the map

h respects the homomorphisms V and F .

Remark 11.4. 1) At p = 2, D

�

H

�




1

E(�) has operators

V : D

4n+2

H

�




1

E(�)! D

2n+1

H

�




1

E(�)

and

F : D

2n+1

H

�




1

E(�)! D

4n+2

H

�




1

E(�)

which are not unambiguously de�ned in E

�

B.

2) The failure of the B(2n+1)

2n+1

X ! D

2n+1

H

�




1

X to be an isomorphism

can be measured by the operator e introduced in Equation 10.8. Since B(2n+1) =

B(2n), we have a diagram

B(2n)

2n

�

�1

X

�

= //

�

=

��

D

2n

H

�




1

�

�1

X

e

��
B(2n+ 1)

2n+1

X

//
D

2n+1

H

�




1

X

and we see that these kernel of B(2n + 1)

2n+1

X ! D

2n+1

H

�




1

X is isomorphic

to the kernel of

e : D

2n

H

�




1

�

�1

X ! D

2n+1

H

�

X:

We now begin our analysis of speci�c ring spectra. The following result will

allow a careful examination of the kernel of E

�

B ! D

�

H

�

E in some cases, for

example any Landweber exact theory with coe�cients in even degrees.

For the following compare [21] and [2].

Lemma 11.5. Suppose E is a ring spectrum with E

�

torsion free and concen-

trated in even degrees. Suppose further that E

�

B(n) is concentrated in even degrees.

Then for all k,

1) H

�

E(2k) is concentrated in even degrees.

2) On H

�

E(2k), the Frobenius is injective and the Verschiebung surjective.

3) There is an isomorphism of primitively generated Hopf algebras

H

�

E(2k + 1)

�

=

�(�QH

�

E(2k)):

Proof. These will be proved together. The surjection

0 = E

2n�2k�1

B(2n)! D

2n

H

�

E(2k + 1)

shows D

�

H

�

E(2k + 1) is concentrated in odd degrees, and, hence, H

�

E(2k + 1) is

an exterior algebra. Let E

0

(2n) � E(2n) be the component of the basepoint. Then

the Rothenberg-Steenrod spectral sequence,

�(QH

�

E(2k � 1))

�

=

Tor

H

�

E(2k�1)

�

(F

p

; F

p

)) H

�

E

0

(2n)

is a spectral sequence of Hopf algebras and, hence, must collapse. Since the Ver-

schiebung is surjective at E

2

on this spectral sequence, it is on H

�

E

0

(2n) and hence

on H

�

E(2n).
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Similarly, consider

Tor

H

�

E(2k)

s

(F

p

; F

p

)

t

) H

s+t

E(2k + 1):(11.8)

We work at p > 2. The argument for p = 2 is similar. Let QH

�

E(2k) denote

the indecomposables and Q

+

and Q

�

the even and odd degree sub-vector spaces of

QH

�

E(2k). Let L

1

QH

�

E(2k) be the �rst derived functor of Q applied to H

�

E(2k).

Then L

1

QH

�

E(2k) = L

1

Q is concentrated in degrees congruent to zero modulo 2p.

Then

Tor

H

�

E(2k)

�

(F

p

; F

p

)

�

=

�(Q

+

)
 �(Q

�

)
 �(L

1

Q)

where

QH

�

E(2k)

�

=

Tor

H

�

E(2k)

1

(F

p

; F

p

)

and

L

1

Q � Tor

H

�

E(2k)

2

(F

p

; F

p

)

are the primitives. If Q

�

6= 0 or (L

1

Q) 6= 0, the lowest degree non-zero class in Q

�

�

L

1

Q would produce a non-zero even degree class in H

�

E(2k + 1), a contradiction,

so Q

�

= 0 = L

1

Q and

QH

�

E(2k) = Q

+

:

The spectral sequence of Equation 11.8 now collapses, proving part 3. Since the

module of indecomposablesQH

�

E(2k) is in even degrees part 1 follows. Half of part

2 has already been proved, and since L

1

QH

�

E(2k) = 0, the Frobenius is injective

on H

�

E(2k). See [10]. In fact, the kernel of F in Lemma 4.4 is exactly L

1

Q.

Now let D

E

� D

�

H

�

E be the Dieudonn�e ring

D

E

= fD

2m

H

�

E(2n)g:

If E

�

is concentrated in even degrees. Let e 2 D

1

H

�

E(1) be the suspension element

of Equation 10.8

Proposition 11.6. Suppose E is a ring spectrum with E

�

torsion free and

concentrated in even degrees. Suppose E

�

B(n) is concentrated is even degrees for

all n. Then the natural map of E

�

Dieudonn�e algebras

D

E

[e]=(e

2

� b

1

)! D

�

H

�

E

is an isomorphism.

Proof. Since D

2m+1

H

�

E(2n) = 0 (by Lemma 11.5.1), the induced map

(D

E

[e]=(e

2

� b

1

))

�;2n

! D

�

H

�

E(2n)

is an isomorphism. The result will follow once we show

eD

�

H

�

E(2n) = f e � x : x 2 D

�

H

�

E(2n) g ! D

�

H

�

E(2n+ 1)

is an isomorphism. Since e(Fx) = F (V e � x) = 0, and D

�

H=FD

�

H

�

=

QH

eD

�

H

�

E(2n) = �QH

�

E(2n)

and the result follows from Lemma 11.5.



HOPF RINGS, DIEUDONN

�

E MODULES, AND E

�




2

S

3

57

If E

�

B(n) is concentrated in even degrees for all n, then we may de�ne

E

�

B(ev) = fE

�

B(2n)g = fE

2m

B(2n)g

and the homomorphism of E

�

Dieudonn�e algebras

E

�

B ! D

�

H

�

E

restricts to an isomorphism of E

�

Dieudonn�e algebras

E

�

B(ev)! D

E

:

Calculating the source of this map is where E

�




2

S

3

+

comes in.

Write 


2

S

3

+

for the suspension spectrum of the space 


2

S

3

with a disjoint

basepoint. The May-Milgram �ltration fF

k




2

S

3

g of 


2

S

3

suspends to a �ltration

fF

k

= F

k




2

S

3

+

g of 


2

S

3

+

. The Snaith splitting implies this stable �ltration is

trivial: 


2

S

3

+

' _

k

F

k

=F

k�1

. At a prime p, the �ltration quotients are Brown-

Gitler spectra. Speci�cally, at p = 2,

F

k

=F

k�1

' �

k

B(k)

and if p > 2,

F

k

=F

k�1

'

8

<

:

�

2n(p�1)

B(2n); if k = pn;

�

2n(p�1)+1

B(2n+ 1); if k = pn+ 1;

� if k 6� 0; 1 mod p:

(11.9)

This previous paragraph summarizes work of [3, 5, 12, 16, 24]. In short, the

associated graded spectrum of 


2

S

3

+

is a regraded version of the graded spectrum

B = fB(n)g.

It is convenient, for our purposes, to eliminate the odd Brown-Gitler spectra.

If we write 


2

S

3

h3i for the universal cover of 


2

S

3

and F

k




2

S

3

h3i for the universal

cover of F

k




2

S

3

, then fF

k




2

S

3

h3ig is a �ltration of 


2

S

3

h3i and we get a �ltration

fF

0

k

= F

k




2

S

3

h3i

+

g of the suspension spectrum. Let B

0

be the associated graded

spectrum. Then Equation 11.9 and a homology calculation shows that at any prime

B

0

' f�

2k(p�1)

B(2k)g:

In short, B

0

is a regraded version of B(ev). In particular, there is a degree shearing

isomorphism of E

�

modules

E

�

B(ev)

�

=

E

�

B

0

:

We next observe that the loop space multiplication on 


2

S

3

h3i gives 


2

S

3

h3i

+

the

structure of a ring spectrum and, since the May-Milgram �ltration is multiplicative,

gives B

0

the structure of a graded ring spectrum. I don't know whether B(ev) '

B

0

as graded ring spectra; this would settle Ravenel's Conjecture 3.4 ([19]), for

example. However, the standard calculations ([4]) show that

H

�

B(ev)

�

=

H

�

B

0

(11.10)

as F

p

algebras. We can use this fact and Ravenel's Adams spectral sequence calcu-

lations ([19]) to calculate

D

BP

� D

�

H

�

BP:

Let R

E

be the ring of Equation 10.7
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Theorem 11.7. The graded BP

�

modules BP

�

B(n) are concentrated in even

degrees and the natural maps

BP

�

B(ev)! D

BP

 R

BP

are isomorphisms of BP

�

Dieudonn�e algebras.

Proof. Let I = (p; v

1

; v

2

; : : : ) � BP

�

be maximal ideal. If M is an BP

�

module we can �lter M by powers of I and form the associated graded object

E

0

M . Then

E

0

BP

�

�

=

Ext

��

A

(F

p

; H

�

BP ) = Ext

�

E

(F

p

; F

p

);

where A is the dual Steenrod algebra and E = F

p




�BP

A. If X is a spectrum,

then the Adams spectral sequence

Ext

�;�

E

(F

p

; H

�

X)) BP

�

X

is a spectral sequence of E

0

BP

�

modules. The calculations of Theorem 3.3 of

[19] combined with Theorem 3.14 of [21] (which is algebraic and precedes their

computation of H

�

BP) now imply

E

0

BP

�

B

0

= E

�;�

1

= Ext

�;�

E

(F

p

; H

�

B

0

)

�

=

E

0

R

BP

;

all asE

0

BP

�

algebras. As a result we have a commutative square of E

0

BP

�

algebras

E

0

BP

�

B(ev)

�

= //
E

0

D

�

H

�

BP

E

0

BP

�

B

0

�

= //

�

=

OO

E

0

R

BP

:

OO

This �nishes the proof.

Landweber exactness now implies the following result, which �nishes the proof

of Theorem 10.3

Corollary 11.8. Let E

�

be any Landweber exact theory with coe�cients con-

centrated in even degrees. Then E

�

B(n) is in even degrees and the natural maps

E

�

B(ev)! D

E

 R

E

are isomorphisms of E

�

Dieudonn�e algebras.

Proof. Note that Landweber exactness implies that E

�

is torsion free. Since

B is p-local,

MU

�

B(ev)

�

=

M

(p;n)6=1

(�

2n

BP )

�

B(ev)

and the result follows from Theorem 11.7. For general E we have a commutative

diagram

E

�




MU

�

MU

�

B(ev)

�

= //

�

=

��

E

�




MU

�

R

MU

�

=

R

E

��
E

�

B(ev)

�

= //
D

E

:
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Glossary

Categories of Hopf Algebras

HA: graded, connected bicommutative Hopf algebras over F

p

: section 4

HA

+

: graded, bicommutative Hopf algebras over F

p

that are group-like in

degree 0: section 8.

HA

�

: graded, skew-commutative Hopf algebra over F

p

that are group-like in

degree 0; for example, the homology of a double loop space: section 9.

HV : graded, connected, torsion-free Hopf algebra over Z

p

equipped with a lift

of the Verschiebung: section 2.

HV

+

: graded, torsion-free Hopf algebra over Z

p

equipped with a lift of the

Verschiebungand group-like in degree 0: section 8.

HF : graded, connected Hopf algebras equipped with a lift of the Frobenius:

sections 1 and 3.

Categories of Modules

D: Dieudonn�e modules for HA: section 4.

D

+

: Dieudonn�e modules for HA

+

: section 8.

D

p

m: Dieudonn�e modules for HA

�

: section 9.

M

V

: Torsion-free graded Z

p

modules with an endomorphism V ; for example,

QH , H 2 HV : section 2.

M

+

V

: the analog of M

V

for HV

+

.

D

V

: similar toM

V

, dropping the torsion-free hypothesis: section 4.

Certain Hopf Algebras

CW (k) and CW

n

(k): the torsion free Hopf algebras with Witt-vector diagonal:

De�nition 1.6.

H(n): the projective generators of HA: Lemma 4.1.

H

�

BU : Examples 2.12 and 4.12
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