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THE SPECIAL FIBER OF THE MOTIVIC DEFORMATION OF THE

STABLE HOMOTOPY CATEGORY IS ALGEBRAIC

BOGDAN GHEORGHE, GUOZHEN WANG, AND ZHOULI XU

Abstract. For each prime p, we define a t-structure on the category S0,0/τ -Mod
b
♣ of

harmonic C-motivic left module spectra over S0,0/τ , whose MGL-homology has bounded

Chow degree, such that its heart is equivalent to the abelian category of p-completed

BP∗BP-comodules that are concentrated in even degrees. We prove that S0,0/τ -Mod
b
♣

is equivalent to Db(BP∗BP-Comod) as stable∞-categories equipped with t-structures.

As an application, for each prime p, we prove that the motivic Adams spectral se-

quence for S0,0/τ , which converges to the motivic homotopy groups of S0,0/τ , is iso-

morphic to the algebraic Novikov spectral sequence, which converges to the classical

Adams-Novikov E2-page for the sphere spectrum S0. This isomorphism of spectral

sequences allows Isaksen and the second and third authors to compute the stable ho-

motopy groups of spheres at least to the 90-stem, with ongoing computations into even

higher dimensions.
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1. Introduction

Motivic homotopy theory, introduced by Voevodsky and Morel [43,44,46,59–61,63], is

a successful application of abstract homotopy theory to solve problems in number theory

and algebraic geometry (see [48, 57, 62] for example).

Over SpecC, one may view the p-completed stable motivic homotopy category as a

deformation of the p-completed classical stable homotopy category. The parameter of

the deformation is given by an element τ in π0,−1 of the p-completed motivic sphere

spectrum, which can be intuitively viewed as the standard coordinate t 7→ e2πit on Gm.

Formally speaking, following Hu-Kriz-Ormsby [23], the element τ is the inverse limit of

the Bockstein pre-images of the Morel classes [45] of roots of unity. Dugger-Isaksen [11]

have identified the generic fiber “τ = 1” with the classical stable homotopy category, and

the first main result of this paper identifies the special fiber “τ = 0” with the derived

category of BP∗BP-comodules, which is entirely algebraic in nature. Moreover, under

this identification, the motivic Adams-Novikov spectral sequence corresponds to the τ -

Bockstein spectral sequence. This deformation induces a deformation of motivic Adams

spectral sequences. The second main result of this paper identifies the motivic Adams

spectral sequence at the special fiber “τ = 0” with the algebraic Novikov spectral se-

quence, which is again entirely algebraic. This deformation makes it possible for Isaksen,

the second and third authors [27] to compute classical stable homotopy groups of spheres

at least to the 90-stem, with ongoing computations into even higher dimensions.

1.1. Main results. In this paper, we prove two results in the stable motivic homotopy

theory over SpecC, with connections to chromatic homotopy theory and applications to

classical homotopy theory.

The first result identifies the special fiber “τ = 0” of the motivic deformation with the

derived category of BP∗BP-comodules. We prove an ∞-category version of a conjecture

due to the first author and Isaksen in 2016 [16]. Note that the derived category in the

following Theorem 1.1 is understood as a stable ∞-category in the sense of Lurie in

Higher Algebra [34, Section 1.3.2].

Theorem 1.1 (Theorem 1.11). There is an equivalence of stable ∞-categories equipped

with t-structures at each prime p

Db(BP∗BP-Comod) ≃ S0,0/τ -Modb
♣,

between the bounded derived category of p-completed BP∗BP-comodules that are concen-

trated in even degrees, and the category of harmonic motivic left module spectra over

S0,0/τ , whose MGL-homology has bounded Chow degree, with morphisms the S0,0/τ -linear

maps.
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Here S0,0/τ is a motivic E∞-ring spectrum, which is also known as the cofiber of τ . The

motivic spectrum MGL is the algebraic cobordism spectrum introduced by Voevodsky

[63] and studied by Levine-Morel [33], Panin-Pimenov-Röndigs [49] and many others. A

motivic left module spectrum over S0,0/τ is harmonic, if it is cellular and the map to

its MGL-completion induces an isomorphism on π∗,∗. See Definition 1.5 for a precise

definition. The Chow degree is twice the topological degree minus the motivic weight.

The derived category of p-completed BP∗BP-comodules that are concentrated in even

degrees is also known as the derived category of quasi-coherent sheaves on the moduli

stack of formal groups over Zp. This connection is foundational to chromatic homotopy

theory, and is due to Quillen [52] and Goerss-Hopkins [17, 19]. Our theorem further

connects these categories to motivic homotopy theory.

By an Ind-object argument, we have an unbounded version of Theorem 1.1 that con-

nects to Hovey’s [20] derived category Stable(BP∗BP).

Corollary 1.2. There is an equivalence of stable ∞-categories at each prime p

Stable(BP∗BP) ≃ S0,0/τ -Modcell

between Hovey’s unbounded derived category of BP∗BP-comodules defined in [20] and the

category of cellular motivic left module spectra over S0,0/τ .

After the announcement of Theorem 1.1, alternative proofs of certain versions of Corol-

lary 1.2 have appeared in work of Pstra̧gowski [51] and Krause [29].

The second result identifies the motivic Adams spectral sequence at the special fiber

“τ = 0” with the algebraic Novikov spectral sequence. It can be used to systematically

compute a huge number of classical Adams differentials that are hard to obtain by other

methods.

It is known to Isaksen [26, Proposition 6.2.5] and the first author [15, Corollary 3.14]

that there is an isomorphism between the motivic homotopy groups of S0,0/τ and the

classical Adams-Novikov E2-page. Our second result shows that there is an isomorphism

of spectral sequences that converge to them.

Theorem 1.3 (Theorem 1.14). For each prime p, there is an isomorphism of spectral se-

quences between the motivic Adams spectral sequence for S0,0/τ and the algebraic Novikov

spectral sequence for the classical sphere spectrum S0.

Based on Theorem 1.3, Isaksen, the second and third authors [27] have computed

classical stable stems at least to the 90-stem, with ongoing computations into even higher

dimensions. Computations of many historically difficult differentials in the range up to

the 45-stem are included in the appendix.
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We’d like to comment that, in contrast to the original motivations of motivic homo-

topy theory, Isaksen and his collaborators [24–26, 28] have recently begun to reverse the

information flow and applied stable motivic homotopy theory to obtain computational

results in the classical stable homotopy theory. Our Theorems 1.1 and 1.3 have the same

spirit and further deepen the connections to chromatic homotopy theory. Using motivic

homotopy theory, we build up a new connection between the classical Adams spectral

sequence and the Adams-Novikov spectral sequence, that allows us to compute stable

stems in a much larger range than was previously possible.

1.2. The stable ∞-category of motivic spectra over S0,0/τ . We work with the

stable∞-category of motivic spectra over SpecC localized at a fixed prime p [61–63]. To

be precise, we use the category of S-modules constructed by Hu [22], which is a symmetric

monoidal ∞-category in the sense of Lurie [34, Section 2.1.2]. We denote it by

C-mot-Spectra.

Voevodsky [59–62] constructed the mod p motivic Eilenberg-Mac Lane spectrum HFmot
p

that represents the mod p motivic cohomology. Its value at a point is

HFmot
p ∗,∗

= Fp[τ ],

where τ is in bidegree (0,−1).

Let Sp,q be the HFmot
p -completed motivic sphere spectrum in bidegree (p, q). The class

τ can be lifted to a map between HFmot
p -completed motivic sphere spectra

τ : S0,−1 −→ S0,0

that induces a nonzero map on mod p motivic homology. The reader should be warned

that τ does not further lift to a map between uncompleted motivic sphere spectra. See

Dugger-Isaksen and Hu-Kriz-Ormsby [11, 23] for more details. We denote the cofiber of

τ by S0,0/τ .

S0,−1
τ

GG A S0,0
GG A S0,0/τ GG A S1,−1

The HFmot
p -completed motivic sphere spectrum is an E∞-ring object in the symmetric

monoidal ∞-category C-mot-Spectra. We denote by

S0,0-Mod

the stable ∞-category of motivic module spectra over S0,0.

Convention 1.4. All smash products in S0,0-Mod are understood taken over the HFmot
p -

completed sphere spectrum S0,0.



6 BOGDAN GHEORGHE, GUOZHEN WANG, AND ZHOULI XU

We have suspension functors Σp,q(−) = Sp,q ∧ − in the category S0,0-Mod for any

p, q ∈ Z. In particular, the suspension functor Σ1,0 gives the triangulation translation

functor.

Following Dugger-Isaksen [12, Definition 2.10], we define the category

S0,0-Modcell

of cellular S0,0 module spectra as the smallest stable subcategory of S0,0-Mod containing

all sphere spectra Sp,q for all p, q ∈ Z that is closed under arbitrary colimits. Recall

from Lurie [34, Definition 1.1.3.2] that a stable subcategory of a stable ∞-category is a

full subcategory containing a zero object and stable under the formation of fibers and

cofibers. The reader should be warned that not all motivic spectra in S0,0-Mod are weak

equivalent to a cellular object.

Given an E∞-ring object R ∈ S0,0-Mod, denote by

R-Mod

the stable ∞-category of left modules over R in S0,0-Mod, and by

R-Modcell

the smallest full subcategory containing R that is closed under arbitrary colimits and

suspension by Σp,q for all p, q ∈ Z.

It is a theorem of the first author [15] that S0,0/τ is an E∞-ring object in S0,0-Mod.

We therefore have defined stable ∞-categories

S0,0/τ -Mod and S0,0/τ -Modcell.

We can view the ring map

S0,0 −→ S0,0/τ

to exhibit S0,0/τ as the special fiber of the deformation parametrized by τ . The generic

fiber of this deformation is τ−1S0,0.

Let MGL be the motivic algebraic cobordism spectrum introduced by Voevodsky [63]

and studied by Levine-Morel [33], Panin-Pimenov-Röndigs [49] and many others. Let

MUmot

be the HFmot
p -completion of MGL, which is an E∞-ring object in S0,0-Modcell (See [22,

Theorem 14.2] for example). Its motivic homotopy groups are computed by Hu-Kriz-

Ormsby and Dugger-Isaksen [11, 23].

π∗,∗MUmot = Zp[τ ][x1, x2, · · · ],

where xi is in bidegree (2i, i). Since π∗,∗MGL is much more complicated, we will mostly

work with MUmot instead of MGL in our paper.
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It is understood that the MUmot-homology of X , where X ∈ S0,0/τ -Modcell, is com-

puted as

MUmot
∗,∗ X = π∗,∗(MUmot ∧X),

where the smash product is understood taken over the HFmot
p -completed sphere spectrum

S0,0. Note that the MUmot-homology of X is MGL∗,∗X when taking X as its underlying

motivic spectrum in C-mot-Spectra.

The spectrum MUmot/τ := S0,0/τ ∧MUmot is an E∞-ring object in S0,0-Modcell. Its

motivic homotopy groups are

π∗,∗(MUmot/τ) = Zp[x1, x2, · · · ] = MUmot
∗,∗ /τ.

Forgetting the motivic weight, the bigraded ring MUmot
∗,∗ /τ can be identified as the

single graded ring MU∗ completed at the prime p.

Definition 1.5. Let X be a motivic spectrum in S0,0/τ -Mod. We say that X is har-

monic, if X is cellular and the map

X −→ X∧
MGL

induces an isomorphism on π∗,∗. We denote by

S0,0/τ -Mod♣

the full stable ∞-subcategory of harmonic S0,0/τ -module spectra.

Here the MGL-nilpotent completion X∧
MGL is understood taken in C-mot-Spectra.

For a precise definition, see [11,23]. One could also define the MUmot-completion X∧
MUmot

in S0,0-Mod. It is clear that for X in S0,0/τ -Modcell, the two completions X∧
MGL and

X∧
MUmot are equivalent.

It is clear that the spectrum MUmot/τ is harmonic. See Section 4.1 for more examples.

To describe t-structures on certain stable ∞-categories of motivic spectra, such as

MUmot/τ -Modcell and S0,0/τ -Mod♣, we recall the definition of the Chow degree. Recall

that by Lurie’s definition [34, Definition 1.2.1.4], a t-structure on a stable ∞-category is

a t-structure on its homotopy category, which is a triangulated category.

Definition 1.6. Let G∗,∗ be a bigraded abelian group that are the homotopy groups of

any motivic spectrum. The Chow degree of an element

g ∈ Gs,w

is defined as s− 2w.

We say that G∗,∗ is concentrated in Chow degrees I, where I is a set of integers, if all

nonzero elements in G∗,∗ are concentrated in Chow degrees belonging to I.
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For example, the homotopy groups of MUmot/τ are concentrated in Chow degree 0,

while the homotopy groups of MUmot are concentrated in non-negative even Chow de-

grees.

Definition 1.7.

(1) We define

MUmot/τ -Modb
cell

as the stable full subcategory of MUmot/τ -Modcell spanned by objects whose homo-

topy groups are concentrated in bounded Chow degrees.

(2) We define

MUmot/τ -Mod
b,≥0
cell ,

MUmot/τ -Mod
b,≤0
cell ,

MUmot/τ -Mod♥
cell

as the full subcategories of MUmot/τ -Modb
cell spanned by objects whose homotopy

groups are concentrated in nonnegative, nonpositive and zero Chow degrees respec-

tively.

(3) We define

S0,0/τ -Modb
♣

as the stable full subcategory of S0,0/τ -Mod♣ spanned by objects whose MUmot-

homology groups are concentrated in bounded Chow degrees.

(4) We define

S0,0/τ -Mod
b,≥0
♣ ,

S0,0/τ -Mod
b,≤0
♣ ,

S0,0/τ -Mod♥
♣

as the full subcategories of S0,0/τ -Modb
♣ spanned by objects whose MUmot-homology

groups are concentrated in nonnegative, nonpositive and zero Chow degrees respec-

tively.

Definition 1.8. We define

MU∗-Mod,

MU∗MU-Comod

as the abelian categories of modules over the p-completed ring MU∗ and comodules over

the p-completed Hopf algebroid MU∗MU, that are concentrated in even degrees. We

define

Db(MU∗-Mod),
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Db(MU∗MU-Comod)

to be their bounded derived categories.

Note that the abelian category of modules over p-completed MU∗ is not equivalent to

the abelian category of modules over p-completed BP∗. However, the abelian category of

comodules over p-completed MU∗MU is equivalent to the abelian category of comodules

over p-completed BP∗BP. We will work with MU and MUmot since they are E∞-ring

objects in the corresponding categories while BP is not, due to a recent result of Lawson

[32]. More details about these facts are discussed in Section 6.

Theorem 1.9.

(1) The full subcategories MUmot/τ -Mod
b,≥0
cell and MUmot/τ -Mod

b,≤0
cell define a t-structure

on MUmot/τ -Modb
cell.

(2) The functor

π∗,∗ : MUmot/τ -Mod♥
cell −→ MU∗-Mod

is an equivalence.

(3) There exists an equivalence of stable ∞-categories

MUmot/τ -Modb
cell −→ D

b(MU∗-Mod),

that preserves the equipped t-structures and extends the functor π∗,∗ on the heart.

Remark 1.10. Note that the functor π∗,∗ naturally lands in the category of modules over

the bigraded ring MUmot
∗,∗ /τ . Since all elements of this bigraded ring are concentrated in

Chow degree 0, it can be identified as the single graded ring MU∗ by forgetting the

motivic weight. A similar comment applies to the following theorem as well.

Theorem 1.11.

(1) The full subcategories S0,0/τ -Mod
b,≥0
♣ and S0,0/τ -Mod

b,≤0
♣ define a t-structure on

S0,0/τ -Modb
♣.

(2) The functor

MUmot
∗,∗ : S0,0/τ -Mod♥

♣ −→ MU∗MU-Comod

is an equivalence.

(3) There exists an equivalence of stable ∞-categories

S0,0/τ -Modb
♣ −→ D

b(MU∗MU-Comod),

that preserves the equipped t-structures and extends the functor MUmot
∗,∗ on the heart.
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Remark 1.12. We’d like to comment that, from a motivic deformation perspective, our

Theorem 1.11 gives a new connection between the moduli stack of formal groups and the

classical stable homotopy theory.

From the deformation

S0,0/τ
special fiber
←−−−−−− S0,0 generic fiber

−−−−−−−→ τ−1S0,0

parametrized by τ , we have two adjunctions of stable ∞-categories:

(S0,0-Mod)τ=0
GD GG⊥
GG A S0,0-Mod GG A⊥

GD GG (S0,0-Mod)τ=1

By Dugger-Isaksen [11], on the generic fiber, the full subcategory of cellular objects in

(S0,0-Mod)τ=1 := τ−1S0,0-Mod

is equivalent to the classical stable homotopy category.

Our main theorem shows that, on the special fiber, the full subcategory of cellular

objects in the category

(S0,0-Mod)τ=0 := S0,0/τ -Mod

is equivalent to the derived category of comodules over the p-completed Hopf algebroid

MU∗MU. By Quillen’s theorem [52], the latter can be identified with the derived category

of quasi-coherent sheaves on the moduli stack of formal groups over Zp.

Remark 1.13. We’d also like to comment that, in our proof of Theorem 1.11, we

set up a strongly convergent motivic Adams-Novikov spectral sequence in the category

S0,0/τ -Modb
cell,

Ext∗,∗,∗
MUmot

∗,∗ MUmot/τ
(MUmot

∗,∗ X,MUmot
∗,∗ Y ) =⇒ [Σ∗,∗X, Y ∧

MUmot ]S0,0/τ
.

This is stated as Theorem 5.5 in Section 5. Classically, the Adams-Novikov spectral

sequence is set up such that the first variable is the sphere spectrum. It seems to be a

folklore theorem without published reference that there exists an Adams-Novikov spectral

sequence when the first variable X is arbitrary. Our construction can be modified to the

classical situation and would provide such a reference. See Section 5 for more discussion.

1.3. The motivic Adams spectral sequence and the algebraic Novikov spec-

tral sequence. The following Theorem 1.14 establishes an isomorphism between the

algebraic Novikov spectral sequence and the motivic Adams spectral sequence for S0,0/τ .

Theorem 1.14. At each prime p, there is an isomorphism of tri-graded spectral se-

quences: the motivic Adams spectral sequence for S0,0/τ , which converges to the motivic

homotopy groups of S0,0/τ , and the re-graded algebraic Novikov spectral sequence, which

converges to the Adams-Novikov E2-page for sphere.
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Moreover, this isomorphism between the abutments preserves the composition products

and higher compositions in the respective categories.

The indexes are indicated in the following diagram:

Exts,2wBP∗BP/I(Fp, I
a−s/Ia−s+1)

Algebraic Novikov SS

��

∼= // Exta,2w−s+a,w
Amot

∗,∗
(Fp[τ ],Fp)

Motivic Adams SS

��

Exts,2wBP∗BP(BP∗,BP∗)
∼= // π2w−s,w(S

0,0/τ).

Here I = (p, v1, v2, . . . ) is the augmentation ideal of BP∗ and Amot
∗,∗ is the motivic mod

p dual Steenrod algebra.

The isomorphism between the abutments is known to Isaksen [26, Proposition 6.2.5]

and the first author [15, Corollary 3.14]. Our Theorem 1.14 also implies that the isomor-

phism preserves the filtrations on the E∞-pages.

There has been huge interest in obtaining information on the stable homotopy groups

of spheres by comparing the Adams spectral sequence with the Adams-Novikov spectral

sequence. See [40, 41, 47, 53] for example. An important connection and technique of

studying both spectral sequences is the following Miller square [40].

Exts,tP∗
(Fp, I

a−s/Ia−s+1)

Cartan-Eilenberg SS
♦♦
♦♦
♦♦
♦♦
♦♦
♦

♦♦
♦♦
♦♦
♦♦
♦♦
♦

s{ ♦♦♦
♦♦
♦♦
♦♦
♦♦

♦♦
♦♦
♦♦
♦♦
♦♦
♦

Algebraic Novikov SS
PP

PP
PP

PP
PP

PP

PP
PP

PP
PP

PP
PP

$,P
PP

PP
PP

PP
PP

P

PP
PP

PP
PP

PP
PP

Exta,tA∗
(Fp,Fp)

Adams SS
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

#+❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖

Exts,tBP∗BP(BP∗,BP∗)

Adams-Novikov SS
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

rz ♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

π∗S
0

By a change-of-ring isomorphism, the E2-page of the Cartan-Eilenberg spectral sequence,

which computes the Adams E2-page, is isomorphic to the algebraic Novikov spectral

sequence, which computes the Adams-Novikov E2-page. Note that for p odd, the Cartan-

Eilenberg spectral sequence collapses for degree reasons.

To explore this square, Miller [40] smashes together the Adams resolution and the

Adam-Novikov resolution, and gets a comparison theorem on the d2-differentials in the
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algebraic Novikov spectral sequence and the Adams spectral sequence. The following

theorem is due to Miller [40, Theorem 4.2] and Novikov [47]. See also Andrews-Miller [1]

for a discussion.

Theorem 1.15. Let p be an odd prime. Suppose that in the Cartan-Eilenberg spec-

tral sequence, an element z in Exts,tP∗
(Fp, I

a−s/Ia−s+1) converges to an element z′ in

Exta,tA∗
(Fp,Fp). Then we have

−dASS
2 z′ is detected by dalgNSS

2 z,

in the Cartan-Eilenberg spectral sequence, where dASS
2 is a d2-differential in the Adams

spectral sequence, and dalgNSS
2 is a d2-differential in the algebraic Novikov spectral se-

quence.

Based on Miller square and Theorem 1.15, Miller [40] proves the Telescope Conjecture

at chromatic height 1 at odd primes.

To understand the connection between higher differentials in the Adams and algebraic

Novikov spectral sequences, it would be desirable to establish new connections between

them.

For example, suppose in general that we have two spectral sequences

E2 ⇒ E∞, E ′
2 ⇒ E ′

∞

that are not necessarily connected by a homomorphism of spectral sequences. To compare

them, it would be useful to have a third spectral sequence

E ′′
2 ⇒ E ′′

∞

making a zig-zag diagram of spectral sequences.

E2

��

E ′′
2

oo //

��

E ′
2

��
E∞ E ′′

∞
oo // E ′

∞

This is the one of the major techniques used by the second and third authors in [64] to

explore Mahowald square [36] and compute differentials in the Adams spectral sequences.

Following this philosophy, for Miller square [40], a basic question would be: Which

spectral sequence can we put in between these two spectral sequences and have a zig-zag
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diagram?

Exts,tP∗
(Fp, I

a−s/Ia−s+1)

Algebraic Novikov SS

��

?oo //

��

Exta,tA∗
(Fp,Fp)

Adams SS

��

Exts,tBP∗BP(BP∗,BP∗) ?oo // π∗S
0

Our Theorem 1.14 shows that we can achieve a zig-zag diagram in the motivic world.

In fact, consider the HFmot
p -completed motivic sphere spectrum S0,0. Inverting τ , we

get the classical p-completed sphere S0 by Dugger-Isaksen [11]. On the other hand,

moding out by τ , we get S0,0/τ . Then the naturality of the Adams spectral sequences

gives us a zig-zag diagram.

Exts,tAmot
∗,∗

(Fp[τ ],Fp)

Motivic Adams SS

��

Exts,tAmot
∗,∗

(Fp[τ ],Fp[τ ])oo //

Motivic Adams SS

��

Exta,tA∗
(Fp,Fp)

Adams SS

��

π∗,∗S
0,0/τ π∗,∗S

0,0oo Re // π∗S
0

By Theorem 1.14, the left side spectral sequence, which is the motivic Adams spectral

sequence for S0,0/τ , is isomorphic to the algebraic Novikov spectral sequence.

More generally, we have the following motivic square.

Ext∗,∗,∗Amot
∗,∗

(Fp[τ ],Fp)[τ ]

Algebraic τ -Bockstein SS
♥♥
♥♥
♥♥
♥♥
♥♥
♥

♥♥
♥♥
♥♥
♥♥
♥♥
♥

s{ ♥♥♥
♥♥
♥♥
♥♥
♥♥
♥

♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

Motivic Adams SS
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆

"*◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆

Ext∗,∗,∗Amot
∗,∗

(Fp[τ ],Fp[τ ])

Motivic Adams SS
PP

PP
PP

PP
PP

P

PP
PP

PP
PP

PP
P

$,P
PP

PP
PP

PP
PP

P

PP
PP

PP
PP

PP
PP

π∗,∗S
0,0/τ [τ ]

τ -Bockstein SS
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

t| ♣♣♣
♣♣
♣♣
♣♣
♣♣

♣♣
♣♣
♣♣
♣♣
♣♣
♣

π∗,∗S
0,0

Let’s compare the motivic square with Miller square.

For the lower right side, it is proved by Isaksen [26] that the motivic Adams-Novikov

spectral sequence for S0,0 is isomorphic to the τ -Bockstein spectral sequence, and that
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it is rigid, in the sense that it contains the same information as the classical Adams-

Novikov spectral sequence. Each nontrivial differential in the classical Adams-Novikov

spectral sequence corresponds to a family of nontrivial differentials in the motivic Adams-

Novikov spectral sequence, that are connected to each other by multiplication by τ . We

can recover all nonzero differentials in the motivic Adams-Novikov spectral sequence by

knowing all nonzero differentials in the classical Adams-Novikov spectral sequence, and

vice versa.

For the upper left side, the relation of the two spectral sequences in the motivic square

and Miller square is the same as the relation on the lower right side. The algebraic τ -

Bockstein spectral sequence can be thought as a motivic version of the Cartan-Eilenberg

spectral sequence, and contains the same information, in the same sense as the lower

right side situation.

For the upper right side, our Theorem 1.14 says that the two spectral sequences are

isomorphic.

Therefore, for three out of the four sides, the motivic square contains exactly the same

information as the ones in Miller square.

For the remaining lower left side, Dugger-Isaksen [11] shows that the τ -inverted mo-

tivic Adams spectral sequence is isomorphic to the τ -inverted classical Adams spectral

sequence. This means that the difference between the motivic square and Miller square

lies in the τ -torsion information. Therefore, when comparing the higher differentials in

the classical and motivic Adams spectral sequences, the τ -torsion information is necessary

to make the zig-zag strategy work.

Now, to compute a nontrivial classical Adams differential, for any r, start with an

algebraic Novikov dr-differential. Theorem 1.14 gives us a motivic Adams dr-differential

for S0,0/τ . Pulling back to the bottom cell of S0,0/τ of the source element gives us

a motivic Adams dr′-differential for the motivic sphere with r′ ≤ r. Using the Betti

realization functor, we then obtain a classical Adams dr′-differential!

In practice, Isaksen, the second and the third authors [27] extend the computation of

classical and motivic stable stems into a large range using the following steps.

(1) Use a computer to carry out the entirely algebraic computation of the cohomology

of the C-motivic Steenrod algebra. These groups serve as the input to the C-motivic

Adams spectral sequence.

(2) Use a computer to carry out the entirely algebraic computation of the algebraic

Novikov spectral sequence that converges to the cohomology of the Hopf algebroid

(BP∗,BP∗BP). This includes all differentials, and the multiplicative structure of the

cohomology of (BP∗,BP∗BP).
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(3) Use Theorem 1.14 to identify the algebraic Novikov spectral sequence with the motivic

Adams spectral sequence that computes the homotopy groups of S0,0/τ . This includes

an identification of the cohomology of (BP∗,BP∗BP) with the homotopy groups of

S0,0/τ .

(4) Use the inclusion of the bottom cell and the projection to the top cell to pull back

and push forward Adams differentials for S0,0/τ to Adams differentials for the motivic

sphere.

(5) Apply a variety of ad hoc arguments to deduce additional Adams differentials for the

motivic sphere. The most important method involves shuffling Toda brackets.

(6) Use a long exact sequence in homotopy groups to deduce hidden τ -extensions in the

motivic Adams spectral sequence for the sphere.

(7) Invert τ to obtain the classical Adams spectral sequence and the classical stable

homotopy groups.

We’d like to highlight a few consequences of our stem-wise computations.

Example 1.16. Consider the following four differentials in the classical Adams spectral

sequence for the 2-completed sphere.

(1) There is a d3 differential in the 15-stem

d3(h0h4) = h0d0.

This is proved by May and Mahowald-Tangora in [37, 38] by comparing with Toda’s

unstable computations [58].

(2) There is a d4 differential in the 38-stem

d4(h3h5) = h0x.

This is proved in Mahowald-Tangora [37] by an ad-hoc method using a certain finite

CW spectrum.

(3) There is a d3 differential in the 38-stem

d3(e1) = h1t.

This is proved by Bruner in [7] by power operations in the Adams spectral sequence.

(4) There is a d3 differential in the 61-stem

d3(D3) = B3.

This is proved by the second and third authors [64] using the RP∞-technique. The

proof of this differential in [64] is a significant part of the proof that the 61-sphere

has a unique smooth structure.
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It turns out that all these four differentials can be proved by our method. They all

correspond to nontrivial differentials in the algebraic Novikov spectral sequence with the

same length, and therefore are all consequences of purely algebraic computations and our

Theorem 1.14.

Remark 1.17. For some of the differentials computed by Isaksen, the second and the

third authors [27] using Theorem 1.14, our method gives the only proof. For example,

we prove an Adams d3-differential in the 68-stem

d3(d2) = h2
0Q3,

which shows the non-existence of the homotopy class κ2 in π68. As another example, we

prove an Adams d5-differential in the 92-stem

d5(g3) = h6d
2
0,

which shows the non-existence of the homotopy class κ3 in π92. Since both the elements d2
and g3 lie in a nonzero Sq0-family in the 4-line of the classical Adams E2-page, the two new

nontrivial differentials serves as new evidence of Minami’s new Doomsday Conjecture.

Remark 1.18. Theorem 1.14 can also be used to compute nontrivial extensions and

Toda brackets. For example, there is an η-extension from h3d1 to N in the 46-stem.

This is proved by the second and third authors [65, Proposition 1.3(2)] using the RP∞-

technique. As another example, there is a Toda bracket

〈θ4, 2, σ
2〉

in the 45-stem. It is computed by Isaksen in [26, Lemma 4.2.91] by ad hoc methods.

This Toda bracket computation is crucial in the third author’s proof [66] that

2θ5 = 0

in the 62-stem. Both the nontrivial η-extension and the Toda bracket computations

are present in the motivic homotopy groups of S0,0/τ . By Theorem 1.14, they can be

computed by the product and Massey product structure on the classical Adams-Novikov

E2-page. In particular, the corresponding 3-fold Massey product can be verified in the

algebraic Novikov spectral sequence using May’s convergence theorem [39]. Therefore,

both the nontrivial η-extension and the Toda bracket computations are consequences of

purely algebraic computations and our Theorem 1.14.
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1.4. Organization. This paper is organized in two parts.

In Part 1, we prove the equivalence of stable∞-categories in Theorem 1.9 and Theorem

1.11. Our proofs use a theorem of Lurie in Higher Algebra [34] on the relation between

a stable ∞-category with a t-structure and the derived category of its heart. We recall

Lurie’s theorem in Section 2, and prove Theorem 1.9 and Theorem 1.11 in Section 3

and 4. We also prove Corollary 1.2 in the end of Section 4. We introduce the absolute

Adams-Novikov spectral sequence in the category S0,0/τ -Modb
♣ in Section 5, which is

necessary for our proof of Theorem 1.11.

In Part 2, we prove the isomorphism of spectral sequences in Theorem 1.14. In Section

9, we recall the construction of the algebraic Novikov spectral sequence and discuss the

regrading. In Section 10, we check that, through the equivalence of stable∞-categories in

Theorem 1.11, the algebraic Novikov tower in the derived category of BP∗BP-comodules

corresponds to the motivic Adams tower of S0,0/τ in the category of S0,0/τ -modules. In

Section 10, we re-compute certain low filtration and historically more difficult differentials

in the range up to the 45-stem at the prime 2, as an illustration of the power of the

isomorphism of spectral sequences in Theorem 1.14.
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Matthew, Peter May, Doug Ravenel, Nicolas Ricka, Jonathan Rubin, XiaoLin Danny Shi,

Donald Stanley, Weiping Zhang and Yifei Zhu for conversations regarding this subject.

The second author was partially supported by the Danish National Research Foundation

through the Centre for Symmetry and Deformation (DNRF92). The third author was

partially supported by the National Science Foundation under Grant No. DMS-1810638.



18 BOGDAN GHEORGHE, GUOZHEN WANG, AND ZHOULI XU

Part 1. Equivalence of stable ∞-categories

The question of when the homotopy category of module spectra over a certain ring

spectrum is equivalent to the derived category of an abelian category as a triangulated

category has been studied in many context by many people. For example, Schwede and

Shipley [55] studied the case for the Eilenberg-Mac Lane spectrum HR, where R is a

commutative ring, Patchkoria [50] studied the case for the complex periodic K-theory

localized at an odd prime, Greenlees [18] studied the case for the rational S1-equivarant

sphere spectrum, and Deligne and Goncharov [10] studied the case for the rational motivic

Eilenberg-Mac Lane spectrum HQmot. The answers are positive in these cases. On the

other hand, Schwede [54] showed that the classical stable homotopy category is not a

derived category.

The goal of Part 1 is to prove that the homotopy category of harmonic S0,0/τ -spectra

whose MUmot-homology are concentrated in bounded Chow degrees is equivalent to the

bounded derived category of MU∗MU-comodules that are concentrated in even degrees.

In fact, we prove Theorem 1.11 that There exists an equivalence of stable ∞-categories

that preserves the equipped t-structures

S0,0/τ -Modb
♣ −→ D

b(MU∗MU-Comod).

We apply a theorem of Lurie in Higher Algebra [34, Proposition 1.3.3.7] on the relation

between a stable∞-category with a t-structure and the derived category of its heart. As

a warm-up, we prove Theorem 1.9 that there exists an equivalence of stable∞-categories

that preserves the equipped t-structures

MUmot/τ -Modb
cell −→ D

b(MU∗-Mod).

The structure of Part 1 is organized as follows. In Section 2, We recall the definition

of t-structures on stable ∞-categories and Lurie’s theorem. We modify Lurie’s theorem

to our situation that are used to prove Theorem 1.9 and Theorem 1.11. Using Dugger-

Isaksen’s [12] universal coefficient spectral sequence in the category MUmot/τ -Modb
cell,

we prove Theorem 1.9 in Section 3. Based on an absolute version of the Adams-Novikov

spectral sequence in the category S0,0/τ -Modb
♣, we prove Theorem 1.11 in Section 4. We

also prove Corollary 1.2 in the end of Section 4. We set up the absolute Adams-Novikov

tower and its associated spectral sequence that is necessary in the proof of Theorem 1.11

in Section 5. We present a brief account of the well known Morita equivalence of the two

abelian categories of MU∗MU-comodules and BP∗BP-comodules in Section 6.
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2. Lurie’s Theorem on t-structures

In [34, Proposition 1.3.3.7], Lurie proves a theorem on the relation between a stable

∞-category with a t-structure and the derived category of its heart. In this section, we

state a corrollary of Lurie’s theorem as Proposition 2.1, and its dual version Proposition

2.2. Both propositions are used in Section 3 and 4. We will first state Proposition 2.1

and 2.2, and then recall relevant definitions and Lurie’s theorem. We use Lurie’s theorem

to prove Proposition 2.1 in the end of this section.

Let C be a stable ∞-category. Denote by Σ its translation automorphism, by hC its

homotopy category, and by [−,−]C the abelian group of homotopy classes of maps in C.

When it is clear from the context, we will also denote it by [−,−].

Proposition 2.1. Let C be a stable ∞-category. Suppose that

(1) there exists a bounded t-structure on C,

(2) the abelian category A = hC♥ has enough projective objects,

(3) for any pair of objects X, Y ∈ A, if X is projective, then the abelian groups [Σ−iX, Y ]C
vanish for i > 0.

Then there exists an equivalence of stable ∞-categories

F : Db(A) −→ C

extending the inclusion f : N(A) ≃ C♥ ⊆ C, and which preserves t-structures. Here

N(A) is the nerve of the abelian category A and Db(A) is the stable full subcategory of

D−(A) spanned by objects with bounded homology.

Note that the right hand side of the equivalence C is also bounded with respect to

its t-structure. Considering the opposite category, we have the following dual version of

Proposition 2.1.

Proposition 2.2. Let C be a stable ∞-category. Suppose that

(1) there exists a bounded t-structure on C,

(2) the abelian category A = hC♥ has enough injective objects,

(3) for any pair of objects X, Y ∈ A, if Y is injective, then the abelian groups [Σ−iX, Y ]C
vanish for i > 0.

Then there exists an equivalence of stable ∞-categories

G : Db(A) −→ C

extending the inclusion g : N(A) ≃ C♥ ⊆ C, and which preserves t-structures. Here

N(A) is the nerve of the abelian category A and Db(A) is the stable subcategory of

D+(A) spanned by objects with bounded homology.
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We recall from [34, Definition 1.2.1.4] that a t-structure on a stable ∞-category C is

defined as a t-structure on its homotopy category hC, which is a triangulated category.

More precisely, we have the following definition.

Definition 2.3. A t-structure on a stable∞-category C is a pair of two full subcategories

C≥0, C≤0 that are stable under isomorphisms, satisfying the following three properties

(1) for X ∈ C≥0 and Y ∈ Σ−1C≤0, we have [X, Y ]C = 0,

(2) there are inclusions ΣC≥0 ⊆ C≥0, Σ−1C≤0 ⊆ C≤0,

(3) for any X ∈ C, there exists a fiber sequence

X≥0 GG A X GG A X≤−1,

with X≥0 ∈ C≥0 and X≤−1 ∈ Σ−1C≤0.

Note that as in [34], we use homological indexing convention.

Definition 2.4. Let C and C′ be stable ∞-categories equipped with t-structures. We

say that an exact functor f : C → C′ is right t-exact, if it carries C≥0 to C′≥0. An exact

functor f : C → C′ is left t-exact, if it carries C≤0 to C′≤0. A functor is t-exact if it is both

left and right t-exact.

Definition 2.5. Denote by C≥n and C≤n the∞-categories ΣnC≥0 and ΣnC≤0 respectively.

For every integer n, the subcategories C≥n and C≤n sit in adjunctions

C≥n
GG A⊥
GD GG

τ≥n

C and C
τ≤n

GG A⊥
GD GG C≤n,

where τ≥n and τ≤n are called the nth-truncation functors.

Sometimes the truncation functors are post-composed with the inclusion functors, so

they land in C.

Definition 2.6. Denote by C+ and C− the stable full subcategories spanned by left-

bounded and right-bounded objects in C

C+ := hocolim
(
C≤0 G֒G A C≤1 G֒G A · · ·

)
,

C− := hocolim
(
C≥0 G֒G A C≥−1 G֒G A · · ·

)
,

and by Cb := C+ ∩ C− be the stable subcategory of bounded objects. We say that the

t-structure is left-bounded, right-bounded, or bounded, if the inclusions of C+, C− or Cb

respectively, in C, is an equivalence.

The intersection C♥ = C≥0 ∩ C≤0 is called the heart of the t-structure.
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The ∞-category C♥ is always equivalent to (the nerve of) its homotopy category hC♥,

which is an abelian category. Following [34], we abuse the notation by identifying C♥

with the abelian category hC♥.

Definition 2.7. Let C be a stable ∞-category equipped with a t-structure. We define

the left completion Ĉ of C to be a homotopy limit of the tower

· · · // C≤2

τ≤1 // C≤1

τ≤0 // C≤0

τ≤0 // · · ·

We say that C is left-complete if the functor C GG A Ĉ is an equivalence. The left

completion Ĉ is again a stable ∞-category and inherits a t-structure from C.

Two important examples of stable ∞-categories with t-structures are the ∞-category

of spectra (as discussed in Section 1.4 of [34]) and the derived ∞-category of an abelian

category (as discussed in Section 1.3 of [34]).

Example 2.8. Denote by Spectra the ∞-category of spectra and the two full subcate-

gories

Spectra≥0 = {X ∈ Spectra | πnX = 0 for n < 0},

Spectra≤0 = {X ∈ Spectra | πnX = 0 for n > 0}.

define a t-structure. Left and right bounded objects correspond to connective and co-

connective spectra respectively, and its heart can be identified with the abelian category

of abelian groups. Moreover, as proved in [34, Proposition 1.4.3.6], it is left-complete.

Example 2.9. Suppose that A is an abelian category with enough projective objects.

There exists an associated derived ∞-category D−(A), whose objects can be identified

with (right-bounded) chain complexes with values in A. This∞-category D−(A) is stable

and its homotopy category hD−(A) can be identified as the usual derived category as

triangulated categories.

It admits a natural t-structure defined by

• D−(A)≥0 is the full subcategory spanned by the complexes whose homology vanishes

in negative degrees,

• D−(A)≤0 is the full subcategory spanned by the complexes whose homology vanishes

in in positive degrees.

As proved in [34, Propsition 1.3.3.16], this t-structure is left complete and right bounded.

Moreover, as proved in [34, Propsition 1.3.3.12], the derived ∞-category D−(A) has a

universal property in the sense that if C is any stable ∞-category equipped with a left

complete t-structure, then any right exact functor A → C♥ extends (in an essentially

unique way) to a right t-exact functor D−(A)→ C.
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We have the following recognition criterion due to Lurie [34, Proposition 1.3.3.7].

Proposition 2.10. Let C be a stable∞-category equipped with a left complete t-structure,

whose heart A = hC♥ has enough projective objects. Then there exists an essential unique

t-exact functor

F : D−(A) −→ C

extending the inclusion f : N(A) ≃ C♥ ⊆ C.

Moreover, the following two conditions are equivalent:

• The functor F is fully faithful.

• For any pair of objects X, Y ∈ A, if X is projective, then the abelian groups [Σ−iX, Y ]C
vanish for i > 0.

If the conditions are satisfied, then the essential image of F is the full subcategory C− =⋃
n C≥n of right bounded objects in C.

Remark 2.11. It is clear that if we restrict the functor F on the bounded stable sub-

category Db(A), then it gives an equivalence of stable ∞-categories

F : Db(A) −→ Cb

that preserves t-structures.

Remark 2.12. Lurie’s theorem is exactly the reason we are working with stable ∞-

categories instead of triangulated categories. Given a triangulated category equipped

with a t-structure, there in general does not exist a functor from the derived category

of the heart to the original triangulated category extending the identity functor on the

heart (see [14] for more details for example). However, if the triangulated category comes

from the homotopy category of a stable ∞-category, then such a functor always exists.

Moreover, Lurie’s theorem gives us a recognition criterion in terms of homological algebra

to see when such a functor is also an equivalence and preserves t-structures.

Now we use Lurie’s theorem to prove Proposition 2.1.

Proof. As explained in Remark 1.2.1.18 in [34], for any stable ∞-category C with a t-

structure, the functor C → Ĉ induces an equivalence

C+ → (Ĉ)
+
.

For the stable ∞-category C with a bounded t-structure in the statement of Proposition

2.1, we consider its left-completion Ĉ so we could apply Proposition 2.10. Therefore,

the equivalence in the statement of Proposition 2.1 comes from the following zigzag of

equivalences:

C ←− C+ −→ (Ĉ)
+
←− (Ĉ)

b
←− Db(A),
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where the first equivalence comes from the fact that the t-structure on C is bounded, the

third equivalence comes from the fact that the t-structure on Ĉ is right bounded since C

is, and the last equivalence comes from Lurie’s theorem and Remark 2.11. �

3. An algebraic model for cellular MUmot/τ-modules

In this section, we use Proposition 2.1 to prove Theorem 1.9. Namely, there exists a

t-exact equivalence of stable ∞-categories

MUmot/τ -Modb
cell −→ D

b(MU∗-Mod),

whose restriction on the heart is given by

π∗,∗ : MUmot/τ -Mod♥
cell −→ MU∗-Mod.

In Section 3.1, we first recall the universal coefficient spectral sequence in the cate-

gory MUmot/τ -Modcell, which is constructed by Dugger-Isaksen [12]. This is stated as

Theorem 3.2. Using this spectral sequence, we prove the equivalence on the heart as

Proposition 3.5 in Section 3.2. Then, using this spectral sequence again, we show in

Section 3.3 that the full subcategories

MUmot/τ -Mod
b,≥0
cell , MUmot/τ -Mod

b,≤0
cell

define a t-structure. This concludes the equivalence of stable∞-categories as Proposition

3.6 and Theorem 3.7.

We will use in Section 5 the above equivalence of stable ∞-categories to construct

enough motivic spectra to build MUmot/τ -based Adams resolutions in the category S0,0/τ -Modcell.

3.1. The category MUmot/τ-Modcell and the universal coefficient spectral se-

quence. We begin with two adjunctions. The first adjunction

(3.1) S0,0-Modcell

S0,0/τ∧−

GGG A⊥
D GGGGG

U
S0,0/τ -Modcell,

between cellular S0,0-modules and cellular S0,0/τ -modules is induced by the E∞-ring map

S0,0
GG A S0,0/τ.

Since MUmot/τ is a cellular E∞-S0,0/τ -algebra, the above adjunction (3.1) extends to

(3.2) S0,0-Modcell

S0,0/τ∧−
GGG A⊥
D GGGGG

U
S0,0/τ -Modcell

MUmot∧−
GGG A⊥
D GGGGG

U
MUmot/τ -Modcell.
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Definition 3.1. Define

MUmot
∗,∗ /τ -Mod0

as the full subcategory of MUmot
∗,∗ /τ -Mod spanned by all modules M∗,∗ that are concen-

trated in Chow degree 0, i.e., Ms,w = 0 whenever s 6= 2w.

We thus have a commutative diagram

MUmot/τ -Modcell MUmot
∗,∗ /τ -Mod

MUmot/τ -Mod♥
cell MUmot

∗,∗ /τ -Mod0.

π∗,∗

π∗,∗

As explained in Remark 1.10, forgetting the motivic weight we have an equivalence

MUmot
∗,∗ -Mod0 ∼= MU∗-Mod.

To show that the restriction of π∗,∗ to the heart induces an equivalence

π∗,∗ : h
(
MUmot/τ -Mod♥

cell

) ∼=
GGG A MU∗-Mod,

we recall the universal coefficient spectral sequence constructed by Dugger-Isaksen in

[12]. This spectral sequence is our main tool to compute homotopy classes of maps in

the stable ∞-category MUmot/τ -Modcell.

Theorem 3.2 (Universal Coefficient spectral sequence). For any X, Y ∈ MUmot/τ -Modcell,

there is a conditionally convergent spectral sequence

Es,t,w
2 = Exts,t,w

MUmot
∗,∗ /τ

(π∗,∗X, π∗,∗Y ) =⇒
[
Σt−s,wX, Y

]
MUmot/τ

.

Moreover, if both π∗,∗X and π∗,∗Y are concentrated in bounded Chow degrees, then the

spectral sequence convergences strongly and collapses at a finite page.

Proof. We refer to [12, Proposition 7.7] for the precise construction of the spectral se-

quence and the proof of conditional convergence. For the second statement of the theo-

rem, we recall a few facts from the proof of [12, Proposition 7.7].

The E1-page arises from a free resolution over MUmot
∗,∗ /τ :

0 GD GG π∗,∗X GDD GG π∗,∗F0 GD GG π∗,∗F1 GD GG · · · ,

and is given by

Es,t,w
1 := HomMUmot

∗,∗ /τ (π∗,∗(Σ
t,wFs), π∗,∗Y ).

The E2-page is the cohomology of this chain complex, giving the claimed Ext groups.
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Suppose that π∗,∗X and π∗,∗Y are concentrated in Chow degrees [a, b] and [c, d] respec-

tively, where a ≤ b and c ≤ d. Since MUmot
∗,∗ /τ is concentrated in Chow degree 0, we

can choose all π∗,∗(Fs) such that they are concentrated in Chow degrees [a, b]. Therefore

π∗,∗(Σ
t,wFs) is concentrated in Chow degrees

[a + (t− 2w), b+ (t− 2w)]

for all s ≥ 0.

In order for the group Es,t,w
1 to be nonzero, we must have

c ≤ b+ (t− 2w), d ≥ a+ (t− 2w).

For a fixed weight w, this gives that

t ∈ [c− b+ 2w, d− a+ 2w].

Since later pages Es,t,w
r are iterated subquotients of Es,t,w

1 , their t-degrees are all concen-

trated in [c− b+ 2w, d− a+ 2w].

Recall that the dr-differential has the form

Es,t,w
r

dr
GG A Es+r,t+r−1,w

r .

In particular, it changes the t-degrees by r−1. Since the t-degrees of all possible nonzero

elements in the E1-page satisfy t ∈ [c− b+ 2w, d− a+ 2w], we must have dr = 0 when

r − 1 > (d− a+ 2w)− (c− b+ 2w) = (b− a) + (d− c)

for degree reasons. In other words, the spectral sequence collapses at the E(b−a)+(d−c)+2

page.

Therefore, under the condition that both π∗,∗X and π∗,∗Y are concentrated in bounded

Chow degrees, this spectral sequence convergences strongly and collapses at a finite page.

�

Recall from Definition 1.7 that

MUmot/τ -Mod
b,≥0
cell ,

MUmot/τ -Mod
b,≤0
cell ,

MUmot/τ -Mod♥
cell

are the full subcategories of MUmot/τ -Modb
cell that are spanned by objects whose homo-

topy groups are concentrated in nonnegative, nonpositive and zero Chow degrees respec-

tively.



26 BOGDAN GHEORGHE, GUOZHEN WANG, AND ZHOULI XU

Corollary 3.3. Given X ∈ MUmot/τ -Mod
b,≥0
cell and Y ∈ MUmot/τ -Mod

b,≤0
cell . The abelian

group of homotopy classes of bidegree (0, 0) can be computed algebraically by the isomor-

phism

[X, Y ]MUmot/τ −→ HomMUmot∗,∗/τ (π∗,∗X, π∗,∗Y )

that is induced by applying π∗,∗.

Proof. Consider the the E2-page of the universal coefficient spectral sequence, the tri-

degrees that converge to the bidegree (0, 0) are of the form (t, t, 0) for t ≥ 0, i.e., the

parts Es,t,w
2 = Et,t,0

2 .

By the proof of Theorem 3.2, the t-degrees of all possible nonzero elements in the

E1-page and therefore E2-page satisfy t ≤ d− a+2w = d− a. Since π∗,∗X and π∗,∗Y are

concentrated in nonnegative and nonpositive bounded Chow degrees, we have d = a = 0.

Therefore, we have t ≤ 0.

Combining both facts, we have established that the only possible nonzero elements in

the E2-page that converge to the bidegree (0, 0) are in

E0,0,0
2 = HomMUmot∗,∗/τ (π∗,∗X, π∗,∗Y ).

To show that all elements in E0,0,0
2 survive in the spectral sequence, firstly note that they

are not targets of any nonzero differentials since they are in s-degree 0. Secondly, all dr-

differentials for r ≥ 2 increase the t-degree. Since the t-degrees of all nonzero elements are

non-positive, the elements in E0,0,0
2 do not support nonzero differentials. This completes

the proof. �

3.2. The equivalence on the heart. Now we are ready to show that the functor π∗,∗

induces an equivalence on the heart. The following is a special case of Corollary 3.3.

Corollary 3.4. The functor

π∗,∗ : MUmot/τ -Mod♥
cell GGG A MUmot

∗,∗ /τ -Mod0

is fully faithful. Here the right hand side is understood as a discrete ∞-category.

Proof. For two objects X, Y ∈ MUmot/τ -Mod♥
cell, by Corollary 3.3, the edge homomor-

phism

[X, Y ]MUmot/τ

π∗,∗

GGG A HomMUmot
∗ /τ (π∗,∗X, π∗,∗Y )

is an isomorphism. This shows that π∗,∗ is fully faithful. �

Since we are dealing with cellular objects, the only objects that have zero homotopy

groups are contractible. To show the equivalence on the heart, we only need to show the

essential surjectivity of π∗,∗.
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Proposition 3.5. The functor

π∗,∗ : MUmot/τ -Mod♥
cell GGG A MUmot

∗,∗ /τ -Mod0

is an equivalence of ∞-categories.

Proof. We need to show that for any module M ∈ MUmot
∗,∗ /τ -Mod0, it can be realized as

the homotopy groups of an object in MUmot/τ -Mod♥
cell.

Suppose that M is a free MUmot
∗,∗ /τ -module that is concentrated in Chow degree 0.

M ∼=
⊕

i∈I

Σ2ki,kiMUmot
∗,∗ /τ

Here Σ2ki,kiMUmot
∗,∗ /τ is a free bigraded rank 1 module over MUmot

∗,∗ /τ with a shift of

bidegree (2ki, ki). We can realize M as the homotopy groups of the wedge
∨

i∈I

Σ2ki,kiMUmot/τ

with the same index set, which is cellular.

For an arbitrary M ∈ MUmot
∗,∗ /τ -Mod0, we can pick a free resolution

(3.3) 0 GD GG M GD GG F0

f1
GD GG F1

f2
GD GG F2 GD GG · · ·

in MUmot
∗,∗ /τ -Mod0.

Each Fi can be realized by

Zi ∈ MUmot/τ -Mod♥
cell

and by Corollary 3.4, each map fi can be realized by a map gi ∈ MUmot/τ -Mod♥
cell as in

Z0

g1
GD GG Z1

g2
GD GG Z2 GD GG · · · .

We claim that we can construct a tower

X1 GG A X2 GG A · · · ,

with the property that the homotopy groups of Xi are concentrated in Chow degrees 0

and i. The Chow degree 0 part is isomorphic to M = Cokerf1, and the Chow degree

i part is isomorphic to Σi,0Kerfi. Note that since each fi is a map in MUmot
∗,∗ /τ -Mod0,

both bigraded modules Cokerf1 and Kerfi are concentrated in Chow degree 0. In other

words, they are given by

+∞⊕

l=−∞

π2l+k,l(Xi) =





M = Cokerf1 if k = 0

Σi,0Kerfi if k = i

0 otherwise.

We prove this claim inductively.
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In fact, we can choose X1 to be the cofiber of

g1 : Z1 −→ Z0.

This gives us a long exact sequence on homotopy groups

· · · // π∗+1,∗X1
// π∗,∗Z1

f1 // π∗,∗Z0
// π∗,∗X1

// · · · .

Since both π∗,∗Z0 and π∗,∗Z1 are concentrated in Chow degree 0, we must have that

π∗,∗X1 is concentrated in Chow degree 0 and 1. We can compute directly from the

long exact sequence that the Chow degree 0 and 1 parts of π∗,∗X1 are isomorphic to

M = Cokerf1 and Σ1,0Kerf1 respectively.

Suppose now that we have constructed the tower up to Xi. We have a homomorphism

π∗,∗Zi+1
∼= Fi+1 G GAA Imfi+1

∼= Kerfi G֒G A π∗,∗(Σ
−i,0Xi)

in MUmot
∗,∗ /τ -Mod0. Here the first map is induced by fi+1 and the second map corresponds

to the Chow degree i part of π∗,∗Xi.

By Corollary 3.3, this homomorphism can be realized as a map

Zi+1 GG A Σ−i,0Xi.

Define Xi+1 as the Σi,0-suspension of its cofiber, so we have a cofiber sequence

Σi,0Zi+1 GG A Xi GG A Xi+1.

By the associated long exact sequence in homotopy groups, we have that π∗,∗Xi+1 is

concentrated in Chow degrees 0 and i+ 1. The Chow degree 0 part is isomorphic to M ,

and the Chow degree i+ 1 part is isomorphic to Σi+1,0Kerfi+1 as required.

Having the tower

X1 GG A X2 GG A · · · ,

we define X as its homotopy colimit

X := hocolim (X1 GG A X2 GG A · · · ) .

The homotopy groups of X are computed by the colimit

π∗,∗X ∼= colim (π∗,∗X1 GG A π∗,∗X2 GG A · · · ) = M

and are in particular concentrated in Chow degree 0.

Therefore we have proved that any module M ∈ MUmot
∗,∗ /τ -Mod0 can be realized as a

spectrum X ∈ MUmot/τ -Mod♥
cell. �
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3.3. The t-structure, and the equivalence of the categories. We prove that the

full subcategories previously defined satisfy the required axioms for the t-structure.

Proposition 3.6. The pair of full subcategories

MUmot/τ -Mod
b,≥0
cell , MUmot/τ -Mod

b,≤0
cell

defines a bounded t-structure on

MUmot/τ -Modb
cell.

Proof. There are three axioms to check for the t-structure.

The second axiom

Σ1,0(MUmot/τ -Mod
b,≥0
cell ) ⊆ MUmot/τ -Mod

b,≥0
cell ,

Σ−1,0(MUmot/τ -Mod
b,≤0
cell ) ⊆ MUmot/τ -Mod

b,≤0
cell

follows directly from the definition of the Chow degree.

For the first axiom, we need to show that

[X, Y ]MUmot/τ = 0

for any objects

X ∈ MUmot/τ -Mod
b,≥0
cell , Y ∈ Σ−1,0MUmot/τ -Mod

b,≤0
cell .

By Corollary 3.3, we have that

[X, Y ]MUmot/τ
∼= HomMUmot

∗,∗ /τ (π∗,∗X, π∗,∗Y )

Since π∗,∗X is concentrated in non-negative Chow degrees and π∗,∗Y is concentrated in

negative Chow degrees, the right hand side is zero.

For the third axiom, we need to show that for any

X ∈ MUmot/τ -Modb
cell,

there exists a fiber sequence

X≥0 GG A X GG A X≤−1

such that

X≥0 ∈ MUmot/τ -Mod
b,≥0
cell , X≤−1 ∈ Σ−1,0(MUmot/τ -Mod

b,≤0
cell ).

Suppose that π∗,∗(X) is concentrated in Chow degrees [n,m], where m ≥ n.

If n ≥ 0, we can take the fiber sequence

X GG A X GG A ∗.
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If n < 0, then π∗,∗(Σ
−n,0X) is concentrated in Chow degrees [0, m− n]. Consider the

Chow degree 0 part of π∗,∗(Σ
−n,0X), namely

⊕

k

π2k,k(Σ
−n,0X).

By Proposition 3.5 there is a spectrum

Xn ∈ MUmot/τ -Mod♥
cell

realizing this bigraded MUmot
∗,∗ /τ -module

π∗,∗Xn
∼=

⊕

k

π2k,k(Σ
−n,0X).

Consider the projection map

π∗,∗(Σ
−n,0X) G GAA

⊕

k

π2k,k(Σ
−n,0X) ∼= π∗,∗Xn.

Note that

Σ−n,0X ∈ MUmot/τ -Mod
b,≥0
cell .

Therefore, by Corollary 3.3, the projection map can be realized by a map

Σ−n,0X GG A Xn.

Denote by X[n+1,m] the Σn,0-suspension of its fiber. This gives a fiber sequence

X[n+1,m] GG A X GG A Σn,0Xn.

From the long exact sequence in homotopy groups, we have that π∗,∗X[n+1,m] is con-

centrated in Chow degrees [n + 1, m], and that the map X[n+1,m] GG A X induces an

isomorphism of homotopy groups in Chow degrees [n+ 1, m].

Iterating this process, we can construct a finite sequence of maps in MUmot/τ -Modb
cell

X[0,m] GG A X[−1,m] GG A · · · GG A X[n+1,m] GG A X,

where X[0,m] ∈ MUmot/τ -Mod
b,≥0
cell .

Now define X≥0 := X[0,m], and X≤−1 to be the cofiber of the above composition of

maps. This gives the desired cofiber sequence

X≥0 GG A X GG A X≤−1,

with

X≤−1 ∈ Σ−1,0(MUmot/τ -Mod
b,≤0
cell ),

since the map X≥0 GG A X induces an isomorphism of homotopy groups in Chow degrees

[0, m] by construction. �
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Having this t-structure on MUmot/τ -Modb
cell, the main result of this sections follows

from Proposition 2.1.

Theorem 3.7. There is a t-exact equivalence of stable ∞-categories

Db(MU∗-Mod)
∼=

GGG A MUmot/τ -Modb
cell.

Proof. It is clear that the t-structure is bounded. By Proposition 3.5, and the equivalence

MUmot
∗,∗ -Mod0 ∼= MU∗-Mod,

the heart can be identified as modules over MU∗. Therefore, it has enough projective

objects.

It remains to show that for any two objects

X, Y ∈ MUmot/τ -Mod♥
cell

with π∗,∗X projective over MUmot
∗,∗ /τ , we have that

[Σ−i,0X, Y ]MUmot/τ = 0

for i > 0.

We apply the Universal Coefficient spectral sequence in Theorem 3.2,

Exts,t,w
MUmot

∗,∗ /τ
(π∗,∗X, π∗,∗Y ) =⇒ [Σt−s,wX, Y ]MUmot/τ .

Since π∗,∗X is projective over MUmot
∗,∗ /τ , the E2-page of the spectral sequence is con-

centrated on the line s = 0, and therefore collapses at the E2-page.

Moreover, since both π∗,∗X and π∗,∗Y are concentrated in Chow degree 0, the E2-page

is also concentrated in Chow degree 0, namely t− 2w = 0 in this case.

We are interested in the case t − s = −i < 0 and w = 0. By the above analysis, the

corresponding tri-degrees in the E2-page are all 0 in our case. Therefore, we must have

that

[Σ−i,0X, Y ]MUmot/τ = 0.

This completes the proof. �

4. An algebraic model for cellular S0,0/τ-modules

After the warmup in Section 3, we use Proposition 2.2 to prove Theorem 1.11. Namely,

There exists a t-exact equivalence of stable ∞-categories

S0,0/τ -Modb
♣ −→ D

b(MU∗MU-Comod),

whose restriction on the heart is given by

MUmot
∗,∗ : S0,0/τ -Mod♥

♣ −→ MU∗MU-Comod.
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The structure of this section is similar to that of Section 3.

In Section 4.1, we discuss the category of harmonic S0,0/τ -modules. We will also recall

certain facts on the category of MU∗MU-comodules, such as the Landweber’s Filtration

Theorem. Instead of using the universal coefficient spectral sequence in the category

MUmot/τ -Modcell, we will use the absolute Adams-Novikov spectral sequence in the

category of harmonic S0,0/τ -modules. This spectral sequence is constructed in Section 5.

Using this spectral sequence, we prove the equivalence on the heart as Proposition 4.11

in Section 4.2. Then again using this spectral sequence, we show in Section 4.3 that the

full subcategories

S0,0/τ -Mod
b,≥0
♣ , S0,0/τ -Mod

b,≤0
♣

define a t-structure and conclude the equivalence of stable ∞-categories as Proposition

4.12 and Theorem 4.13.

4.1. The categories S0,0/τ-Mod♣ and MU∗MU-Comod. We first recall from Defi-

nition 1.5 that a S0,0/τ -module spectrum Y is harmonic if it is cellular and the natural

map

Y GG A Y ∧
MUmot

is an isomorphism on π∗,∗. It is clear that in the category S0,0/τ -Modcell, being harmonic

is closed under taking suspensions, finite products and fibers. The category of harmonic

S0,0/τ -module spectra is denoted by S0,0/τ -Mod♣.

We have the following examples and non-examples of harmonic S0,0/τ -module spectra.

Example 4.1.

(1) Any finite cellular object in S0,0/τ -Mod is harmonic.

(2) Any finite cellular object in MUmot/τ -Mod is harmonic.

(3) The η-inverted cofiber of τ is cellular but not harmonic.

Here η is the Hopf map in π1,1S
0,0. Post-composing with the unit map S0,0 → S0,0/τ ,

we also denote its Hurewicz image in π1,1S
0,0/τ by η. It is non-nilpotent in the ring

π∗,∗S
0,0/τ . The η-inverted cofiber of τ

η−1S0,0/τ := hocolim
(
S0,0/τ → Σ−1,−1S0,0/τ → Σ−2,−2S0,0/τ → · · ·

)

is a cellular object in S0,0/τ -Mod. Since η maps to zero in π1,1MUmot, the completion

(η−1S0,0/τ )∧
MUmot is contractible. Therefore, the spectrum η−1S0,0/τ is not harmonic.

We need the following Lemma 4.2 in the proof of Proposition 4.11, whose proof we

postpone until the end of Section 5.
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Lemma 4.2. Suppose that {Yα} is a filtered system in S0,0/τ -Mod♥
cell such that each Yα

is harmonic. Then the homotopy colimit of {Yα} in S0,0/τ -Mod♥
cell is also harmonic.

We also recall that for a S0,0/τ -module X , its MUmot-homology is defined as

MUmot
∗,∗ X := π∗,∗(MUmot ∧X) ∼= π∗,∗(MUmot/τ ∧S0,0/τ X).

Following computations of MUmot
∗,∗ MUmot from Hu-Kriz-Ormsby and Dugger-Isaksen

[11, 23], we have the MUmot-homology of MUmot/τ

π∗,∗(MUmot/τ ∧S0,0/τ MUmot/τ) ∼= MUmot
∗,∗ /τ [b1, b2, . . .]

∼= MUmot
∗,∗ MUmot

/τ

where |bi| = (2i, i), and is in Chow degree 0.

Definition 4.3. Denote by

MUmot
∗,∗ MUmot/τ -Comod

the abelian category of left comodules over the Hopf algebroid MUmot
∗,∗ MUmot/τ , and by

MUmot
∗,∗ MUmot/τ -Comod0

its full subcategory spanned by all comodules M whose underlying MUmot
∗,∗ /τ -modules are

concentrated in Chow degree 0.

We thus have a commutative diagram

S0,0/τ -Mod♣ MUmot
∗,∗ MUmot/τ -Comod

S0,0/τ -Mod♥
♣ MUmot

∗,∗ MUmot/τ -Comod0.

MUmot
∗,∗

MUmot
∗,∗

Forgetting the motivic weight, we have the equivalence

MUmot
∗,∗ MUmot/τ -Comod0 ∼= MU∗MU-Comod.

Recall that we have the adjunction between modules and comodules

(4.1) U : MUmot
∗,∗ MUmot/τ -Comod GGG A⊥

D GGGGG MUmot
∗,∗ /τ -Mod : MUmot

∗,∗ MUmot/τ ⊗MUmot
∗,∗ /τ −.

Note that the forgetful functor is a left adjoint, while the tensor-up functor is a right

adjoint. We refer to [20, Section 1.1] for more details.
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Using the ring map S0,0/τ GG A MUmot/τ , we can form the commutative diagram

MUmot/τ -Modcell MUmot
∗,∗ /τ -Mod

S0,0/τ -Modcell MUmot
∗,∗ MUmot/τ -Comod.

MUmot/τ ∧Cτ − U

π∗,∗

MUmot
∗,∗

For the category of comodules over MU∗MU, we recall the Landweber’s Filtration

Theorem. Recall from [30], [31] that there are elements vn ∈ MU∗ with v0 = p, giving

the invariant prime ideals In = (v0, . . . , vn)✂MU∗. Moreover, these elements satisfy the

formula

ηR(vn) ≡ vn mod In−1,

and so MU∗/In is canonically a comodule over MU∗MU. This gives a short exact sequence

of comodules

0 GG A MU∗/In
·vn

GG A MU∗/In GG A MU∗/In+1 GG A 0,

for every n ≥ 0. Landweber’s Filtration Theorem ([30], [31]) states that any comodule M

over MU∗MU whose underlying MU∗-module is finitely presented, can be reconstructed

by finitely many extensions of suspensions of MU∗/In’s.

Theorem 4.4 (Landweber’s Filtration Theorem). Suppose that S is a subset of

MU∗MU-Comod such that

(1) it contains MU∗ and MU∗/In’s for all n ≥ 0,

(2) and it is closed under suspensions and extensions.

Then S contains all comodules over MU∗MU whose underlying MU∗-modules are finitely

presented.

There are two more facts that we will use on the category MU∗MU-Comod. The first

one is the following lemma. For a proof, see Miller-Ravenel [42, Lemma 2.11] and Hovey

[20] for example.

Lemma 4.5. Any comodules over MU∗MU is a filtered colimit of finitely presented co-

modules.

The second one is a standard fact.

Lemma 4.6. The category MU∗MU-Comod has enough injective objects.
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In Section 3, an important tool for the category MUmot/τ -Modb
cell is the universal co-

efficient spectral sequence. For the category S0,0/τ -Modb
♣, we will construct the absolute

Adams-Novikov spectral sequence, namely, for any two objects X and Y in this category,

there is a strongly convergent spectral sequence that collapses at a finite page.

Exts,t,w
MUmot

∗,∗ MUmot/τ
(MUmot

∗,∗ X,MUmot
∗,∗ Y ) =⇒ [Σt−s,wX, Y ]S0,0/τ ,

with differentials

dr : E
s,t,w
r GG A Es+r,t+r−1,w

r .

The existence of this absolute Adams-Novikov spectral sequence in the category S0,0/τ -Modb
♣

is proved as Theorem 5.6 in Section 5.

Using the absolute Adams-Novikov spectral sequence, we will prove the following Corol-

lary 4.7 and 4.8 in Section 5.3.

Corollary 4.7. Given X ∈ S0,0/τ -Mod
b,≥0
♣ and Y ∈ S0,0/τ -Mod

b,≤0
♣ , the abelian group

of homotopy classes of degree (0, 0) maps can be computed algebraically by the isomor-

phism

[X, Y ]S0,0/τ −→ HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ X,MUmot
∗,∗ Y )

that is induced by applying MUmot
∗,∗ .

Corollary 4.8. Given X, Y ∈ S0,0/τ -Mod♥
♣, for any bidegree (t, w), there is an isomor-

phism

[Σt,wX, Y ]S0,0/τ
∼= Ext2w−t,2w,w

MUmot
∗,∗ MUmot/τ

(MUmot
∗,∗ X,MUmot

∗,∗ Y ).

4.2. The equivalence on the heart. Now we are ready to show that the functor MUmot
∗,∗

induces an equivalence on the heart. The following is a special case of Corollary 4.7.

Corollary 4.9. The functor

MUmot
∗,∗ : S0,0/τ -Mod♥

♣

∼=
GGG A MUmot

∗,∗ MUmot/τ -Comod0

is fully faithful. Here the right hand side is understood as a discrete ∞-category.

Proof. For objects X, Y ∈ S0,0/τ -Mod♥
♣, by Corollary 4.7, the edge homomorphism

[X, Y ]S0,0/τ

MUmot
∗,∗

GGG A HomMUmot
∗,∗ MUmot/τ

(
MUmot

∗,∗ X,MUmot
∗,∗ Y

)

is an isomorphism. This shows that MUmot
∗,∗ is fully faithful. �

Since we are dealing with cellular objects, the only objects that have zero homotopy

groups are contractible. To show the equivalence on the heart, we only need to show the

essential surjectivity of MUmot
∗,∗ .
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Unlike the case for modules over MUmot
∗,∗ /τ , we do not have free resolutions for co-

modules over MUmot
∗,∗ MUmot/τ . We will instead use Landweber’s Filtration Theorem to

realize all comodules that are finitely presented, and then extend the result using filtered

colimits.

We start with the following 2-out-of-3 Lemma.

Lemma 4.10. Consider any short exact sequence in MUmot
∗,∗ MUmot/τ -Comod0

(4.2) 0 GG A M ′
f ′

GG A M
f ′′

GG A M ′′
GG A 0.

If any two of the three comodules M ′, M, M ′′ are realizable in S0,0/τ -Mod♥
♣, then so is

the third.

Proof. There are three cases that we need to prove.

(1) Suppose that both comodules M ′ and M are realizable by

M ′ ∼= MUmot
∗,∗ X

′, M ∼= MUmot
∗,∗ X.

By Corollary 4.9, the algebraic map f ′ is also realizable as the MUmot
∗,∗ -homology of a

map

X ′ F ′

// X.

Since S0,0/τ -Modb
♣ is closed under taking cofibers, we can realize the comodule M ′′

by the MUmot
∗,∗ -homology of the cofiber of F ′. In fact, the associated long exact

sequence on the MUmot
∗,∗ -homology tells us

M ′′ ∼= MUmot
∗,∗ X ′′,

where X ′′ is the the cofiber of F ′.

(2) Suppose that both comodulesM andM ′′ are realizable. Then we realize the algebraic

map and take the fiber instead. The same argument shows that it realizes M ′.

(3) Suppose that both comodules M ′ and M ′′ are realizable by

M ′ ∼= MUmot
∗,∗ X ′, M ′′ ∼= MUmot

∗,∗ X ′′.

In this case, the short exact sequence (4.2) corresponds to an element in

Ext1,0,0
MUmot

∗,∗ MUmot/τ
(M ′′,M ′).

By Corollary 4.8, this algebraic element can be realized by a map

F : Σ−1,0X ′′
GG A X ′.

Define X to be the cofiber of the map F . Then X realizes M . In fact, F is detected

on the 1-line of the Adams-Novikov spectral sequence. By the construction of the
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absolute Adams-Novikov spectral sequence, it is characterized by the short exact

sequence on the MUmot-homology groups that corresponds to the extension (4.2).

This completes the proof. �

Now we prove the equivalence on the heart.

Proposition 4.11. The functor

MUmot
∗,∗ : S0,0/τ -Mod♥

♣

∼=
GGG A MUmot

∗,∗ MUmot/τ -Comod0

is an equivalence of categories.

Proof. We only need to show that the functor MUmot
∗,∗ is essentially surjective. In other

words, for any comodule M ∈ MUmot
∗,∗ MUmot/τ -Comod0, we show that it can be realized

as a harmonic S0,0/τ -module X , whose MUmot
∗,∗ -homology is M . This follows from Lemma

4.10, 4.5, 4.2 and Landweber’s Filtration Theorem via the equivalence

MUmot
∗,∗ MUmot/τ -Comod0 ∼= MU∗MU-Comod.

In fact, first note that MU∗ corresponds MUmot
∗,∗ /τ , and is therefore realized by S0,0/τ .

By Lemma 4.10, we can inductively realized comodules MU∗/In for all n ≥ 0. Then by

Landweber’s Filtration Theorem and Lemma 4.10, we can realized all finitely presented

comodules.

For any comodule M ∈ MUmot
∗,∗ MUmot/τ -Comod0, or equivalently a comodule over

MU∗MU, we can write it as a filtered colimit of finitely presented ones Mα,

M ∼= colimMα.

By the above discussion, we can realize each Mα by Xα ∈ S0,0/τ -Mod♥
♣. Moreover, by

Corollary 4.9, we can realize the whole filtered system {Mα} by a filtered system {Xα}.

Taking the homotopy colimit, we define

X := hocolimXα.

By Lemma 4.2, X is harmonic. Since MUmot
∗,∗ commutes with filtered colimits, we have

that the comodule M is realized by X . This completes the proof. �

4.3. The t-structure and the equivalence of the categories. We prove that two

full subcategories satisfy the required axioms for the t-structure.

Proposition 4.12. The pair of full subcategories

S0,0/τ -Mod
b,≥0
♣ , S0,0/τ -Mod

b,≤0
♣

defines a bounded t-structure on S0,0/τ -Modb
♣.
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Proof. The proof is analogous to the proof of 3.6 .There are three axioms to check for

the t-structure.

The second axiom

Σ1,0(S0,0/τ -Mod
b,≥0
cell ) ⊆ S0,0/τ -Mod

b,≥0
cell ,

Σ−1,0(S0,0/τ -Mod
b,≤0
cell ) ⊆ S0,0/τ -Mod

b,≤0
cell

follows directly from the definition of the Chow degree.

For the first axiom, we need to show that

[X, Y ]S0,0/τ = 0

for any objects

X ∈ S0,0/τ -Mod
b,≥0
♣ , Y ∈ Σ−1,0S0,0/τ -Mod

b,≤0
♣ .

By Corollary 4.7, we have that

[X, Y ]S0,0/τ −→ HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ X,MUmot
∗,∗ Y ).

Since MUmot
∗,∗ X is concentrated in non-negative Chow degrees and MUmot

∗,∗ Y is concen-

trated in negative Chow degrees, the right hand side is zero.

For the third axiom, we need to show that for any

X ∈ S0,0/τ -Modb
♣,

there exists a fiber sequence

X≥0 GG A X GG A X≤−1

such that

X≥0 ∈ S0,0/τ -Mod
b,≥0
♣ , X≤−1 ∈ Σ−1,0(S0,0/τ -Mod

b,≤0
♣ ).

Suppose that MUmot
∗,∗ X is concentrated in Chow degrees [n,m], where m ≥ n.

If n ≥ 0, we can take the fiber sequence

X GG A X GG A ∗.

If n < 0, then MUmot
∗,∗ (Σ−n,0X) is concentrated in Chow degrees [0, m − n]. Consider

the Chow degree 0 part of MUmot
∗,∗ (Σ

−n,0X), namely the MUmot
∗,∗ MUmot/τ -comodule

⊕

k

MUmot
2k,k(Σ

−n,0X).

By Proposition 4.11 there is a spectrum

Xn ∈ MUmot/τ -Mod♥
♣
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realizing this bigraded MUmot
∗,∗ /τ -module

MUmot
∗,∗ Xn

∼=
⊕

k

MUmot
2k,k(Σ

−n,0X).

Consider the projection map

MUmot
∗,∗ (Σ−n,0X) G GAA

⊕

k

MUmot
2k,k(Σ

−n,0X) ∼= MUmot
∗,∗ Xn.

Note that

Σ−n,0X ∈ S0,0/τ -Mod
b,≥0
♣ .

Therefore, by Corollary 4.8, the projection map can be realized by a map

Σ−n,0X GG A Xn.

Denote by X[n+1,m] the Σn,0-suspension of its fiber. This gives a fiber sequence

X[n+1,m] GG A X GG A Σn,0Xn.

From the long exact sequence in MUmot-homology groups, we have that MUmot
∗,∗ X[n+1,m]

is concentrated in Chow degrees [n + 1, m], and that the map X[n+1,m] GG A X induces

an isomorphism of MUmot-homology groups in Chow degrees [n+ 1, m].

Iterating this process, we can construct a finite sequence of maps in S0,0/τ -Modb
♣

X[0,m] GG A X[−1,m] GG A · · · GG A X[n+1,m] GG A X,

where X[0,m] ∈ S0,0/τ -Mod
b,≥0
♣ .

Now define X≥0 := X[0,m], and X≤−1 to be the cofiber of the above composition of

maps. This gives the desired cofiber sequence

X≥0 GG A X GG A X≤−1,

with

X≤−1 ∈ Σ−1,0(S0,0/τ -Mod
b,≤0
♣ ),

since the map X≥0 GG A X induces an isomorphism of MUmot-homology groups in Chow

degrees [0, m] by construction.

�

Having this t-structure on S0,0/τ -Modb
♣, the main result of this sections follows from

Proposition 2.2.

Theorem 4.13. There is a t-exact equivalence of stable ∞-categories

Db(MU∗MU-Comod)
∼=

GGG A S0,0/τ -Modb
♣.
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Proof. The proof is analogous to the proof of Theorem 3.7. It is clear that the t-structure

is bounded. By Proposition 4.11, and the equivalence

MUmot
∗,∗ MUmot/τ -Comod0 ∼= MU∗MU-Comod,

the heart can be identified as comodules over MU∗MU. By Lemma 4.6, it has enough

injective objects.

It remains to show that for objects

X, Y ∈ S0,0/τ -Mod♥
♣

with MUmot
∗,∗ Y injective over MUmot

∗,∗ MUmot/τ , we have that

[Σ−i,0X, Y ]S0,0/τ = 0

for any i > 0.

We apply the absolute Adams-Novikov spectral sequence

Exts,t,w
MUmot

∗,∗ MUmot/τ

(
MUmot

∗,∗ X,MUmot
∗,∗ Y

)
=⇒

[
Σt−s,wX, Y

]
S0,0/τ

in the category S0,0/τ -Modb
♣, as in Corollary 5.6.

Since MUmot
∗,∗ Y is an injective MUmot

∗,∗ MUmot/τ -comodule, the E2-page of the spectral

sequence is concentrated on the line s = 0, and therefore collapses at the E2-page.

Moreover, since both MUmot
∗,∗ X and MUmot

∗,∗ Y are concentrated in Chow degree 0, the

E2-page is also concentrated in Chow degree 0, namely t− 2w = 0 in this case.

We are interested in the case t − s = −i < 0 and w = 0. By the above analysis, the

corresponding tri-degrees in the E2-page are all 0 in our case. Therefore, we must have

that

[Σ−i,0X, Y ]S0,0/τ = 0.

This completes the proof. �

Remark 4.14. We comment on the bi-grading in the equivalence of stable∞-categories

in Theorem 4.13 through some examples.

(1) It is clear that S0,0/τ corresponds to MU∗ in the derived category of MU∗MU-

comodules.

(2) Consider Σ2,1S0,0/τ . Since its MUmot-homology is concentrated in Chow degree 0, it

lives in the heart. Therefore, by the t-exactness, it corresponds to a cochain complex

that is concentrated in cohomological degree 0. A direct computation show that it cor-

responds to Σ2MU∗. We also denote this object in the categoryDb(MU∗MU-Comod)

by Σ2,1MU∗.
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(3) Consider Σ1,0S0,0/τ . Its MUmot-homology is concentrated in Chow degree −1. By

the t-exactness, it corresponds to the cochain complex that is concentrated in coho-

mological degree −1, with the comodule MU∗ in that cohomological degree. We also

denote this object by Σ1,0MU∗.

(4) In general, denote by Σm,nMU∗ the object in the category Db(MU∗MU-Comod) that

Σm,nS0,0/τ corresponds to. Then Σm,nMU∗ is a cochain complex that is concentrated

in cohomological degree 2n −m, with the comodule Σ2nMU∗ in that cohomological

degree.

Now we prove Corollary 1.2.

Proof of Corollary 1.2. Let S0,0/τ -Modfin be the category of finite cellular motivic left

module spectra over S0,0/τ , andDb(BP∗BP-Comod)fin be the full subcategory ofD
b(BP∗BP-Comod)

consisting of objects generated by BP∗ and its shifts (by both internal and homological

degrees) under finite colimits.

Since S0,0/τ is harmonic, and corresponds to BP∗ under the equivalence in Theorem

1.1, we have an equivalence of stable ∞-categories equipped with t-structures at each

prime p

Db(BP∗BP-Comod)fin ≃ S0,0/τ -Modfin.

By Theorem 5.3.5.11 of Lurie’s Higher Topos Theory [35], if C is a full subcategory of

an ∞-category D, whose elements are compact, and generate D under filtered colimits,

then D is equivalent to the ∞-category Ind(C) of Ind-objects of C.

It follows that

S0,0/τ -Modcell ≃ Ind(S0,0/τ -Modfin).

On the other hand, BP∗ generates D
b(BP∗BP-Comod)fin under finite colimits. More-

over, it is proved by Hovey in [20, Section 6] that objects in the category

Db(BP∗BP-Comod)fin are compact, and generate Stable(BP∗BP) under filtered colim-

its. It then follows from Theorem 5.3.5.11 of [35] that

Stable(BP∗BP) ≃ Ind(Db(BP∗BP-Comod)fin).

Therefore, we have an equivalence of stable ∞-categories at each prime p

Stable(BP∗BP) ≃ S0,0/τ -Modcell.

�
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5. The absolute Adams-Novikov spectral sequence

In Section 3, we use the universal coefficient spectral sequence

Es,t,w
2 = Exts,t,w

MUmot
∗,∗ /τ

(π∗,∗X, π∗,∗Y ) =⇒
[
Σt−s,wX, Y

]
MUmot/τ

of Theorem 3.2 to compute homotopy classes of maps in MUmot/τ -Modb
cell. This is a

very convenient tool since both the t-structure on MUmot/τ -Modb
cell and the E2-page

of universal coefficient spectral sequence are defined in terms of homotopy groups. The

bounds in the t-structure corresponds to vanishing areas in the spectral sequence.

For the category S0,0/τ -Modb
♣, the t-structure is defined in terms of MUmot-homology.

We therefore need a version of the motivic Adams-Novikov spectral sequence that com-

putes S0,0/τ -linear maps.

Recall from Dugger-Isaksen [11, Section 8] or Hu-Kriz-Ormsby [23] the usual MUmot-

based motivic Adams-Novikov spectral sequence

Ext∗,∗,∗
MUmot

∗,∗ MUmot(MUmot
∗,∗ S0,0,MUmot

∗,∗ Y ) =⇒ π∗,∗Y
∧
MUmot .

This spectral sequence is not what we need. We need a spectral sequence of the form

ExtMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ X,MUmot
∗,∗ Y ) =⇒ [X, Y ∧

MUmot]S0,0/τ
,

for the following two reasons.

Firstly, we need a spectral sequence computing homotopy classes of maps in the cate-

gory S0,0/τ -Modb
♣, instead of homotopy classes of maps between the underlying motivic

spectra.

Secondly, we need the first variable X to be a general spectrum than just the unit ob-

ject S0,0/τ . Classically, it seems to be a folklore theorem without published reference that

there exists an Adams-Novikov spectral sequence when the first variable X is arbitrary.

When the first variableX is the sphere spectrum, we can use the standard cosimplicial co-

bar Adams-Novikov resolution for the second variable Y to set up this spectral sequence.

This is done in [53, Chapter 2] classically and in [11, Section 8] and [23] motivically. Such

a resolution induces a resolution of MUmot
∗,∗ Y by relative injective comodules. It computes

the E2-page as an Ext-group only when the first variable MUmot
∗,∗ X is a projective module

over MUmot
∗,∗ /τ [53, Corollary A1.2.12]. Since our first variable X is arbitrary, the E2-page

in general does not have a description as an Ext-group.

Instead of using the canonical Adams-Novikov tower that produces a resolution of

MUmot
∗,∗ Y by relative injectives, we construct an absolute Adams-Novikov tower that

produces a resolution of MUmot
∗,∗ Y by absolute injectives. The first step is Lemma 5.1

and Lemma 5.2, where we produce enough S0,0/τ -modules whose MUmot-homology are
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injective comodules. The second step is Lemma 5.3, where we show that we can al-

gebraically resolve comodules in MUmot
∗,∗ MUmot/τ -Comod by these injective comodules.

The third step is Proposition 5.4, where we topologically realize the algebraic construction

to produce an absolute Adams-Novikov tower in the category S0,0/τ -Modb
cell. Finally, in

Theorem 5.5, we construct the absolute Adams-Novikov spectral sequence and analyze

its convergence.

5.1. The absolute Adams-Novikov tower. Recall that in the abelian category

MUmot
∗,∗ MUmot/τ -Comod, monomorphisms, epimorphisms and exactness are defined on

the underlying abelian groups.

The following Lemma 5.1 is a consequence of Proposition 3.5 and the homology version

of Dugger-Isaksen’s the universal coefficient spectral sequence [12, Proposition 7.7].

Lemma 5.1. For any injective module N ∈ MUmot
∗,∗ /τ -Mod0, there exists I ∈ MUmot/τ -Mod♥

cell

such that

π∗,∗I ∼= N,

and that

MUmot
∗,∗ I ∼= MUmot

∗,∗ MUmot/τ ⊗MUmot
∗,∗ /τ N,

which is an injective MUmot
∗,∗ MUmot/τ -comodule.

Proof. By Proposition 3.5, for N ∈ MUmot
∗,∗ /τ -Mod0, there exists an essentially unique

cellular MUmot/τ -module I with the property that π∗,∗I ∼= N .

For the second condition, we have the equivalences

MUmot/τ ∧Cτ I ≃ MUmot/τ ∧Cτ

(
MUmot/τ ∧MUmot/τ I

)

≃
(
MUmot/τ ∧Cτ MUmot/τ

)
∧MUmot/τ I.

Since MUmot/τ is cellular, the homotopy groups of the last term can be computed by the

homology version of Dugger-Isaksen’s universal coefficient spectral sequence [12, Propo-

sition 7.7]

Tor
MUmot

∗,∗ /τ
s,t,w

(
MUmot

∗,∗ MUmot/τ, π∗,∗I
)
=⇒ πt+s,w

(
MUmot/τ ∧Cτ MUmot/τ ∧MUmot/τ I

)

in the category MUmot/τ -Modcell.

Note that MUmot
∗,∗ MUmot/τ is free and π∗,∗I is injective over MUmot

∗,∗ /τ , the spectral

sequence is therefore concentrated on the line s = 0 and collapses at the E2-page. This
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gives the following isomorphisms of comodules

MUmot
∗,∗ I ∼= π∗,∗(MUmot/τ ∧Cτ I)

∼= π∗,∗(MUmot/τ ∧Cτ MUmot/τ ∧MUmot/τ I)

∼= Tor
MUmot

∗,∗ /τ

0,∗,∗

(
MUmot

∗,∗ MUmot/τ, π∗,∗I
)

∼= MUmot
∗,∗ MUmot/τ ⊗MUmot

∗,∗ /τ π∗,∗I

∼= MUmot
∗,∗ MUmot/τ ⊗MUmot

∗,∗ /τ N.

It is known that the comodules induced from injective modules are injective as co-

modules (see [53, Lemma A1.2.2] for example), this shows that MUmot
∗,∗ I is an injective

MUmot
∗,∗ MUmot/τ -comodule. �

Lemma 5.1 is our source of motivic S0,0/τ -modules whose MUmot/τ -homology is injec-

tive as a comodule.

Lemma 5.2. Suppose that I satisfies the conclusions of Lemma 5.1. Then for any

X ∈ S0,0/τ -Modb
cell, the abelian group of homotopy classes of degree (0, 0) maps can be

computed algebraically by the following isomorphism

[X, I]S0,0/τ
∼= HomMUmot

∗,∗ MUmot/τ (MUmot
∗,∗ X,MUmot

∗,∗ I).

Proof. The lemma follows from the following isomorphisms

[X, I]S0,0/τ
∼= [MUmot/τ ∧Cτ X, I]MUmot/τ

∼= HomMUmot
∗,∗ /τ (MUmot

∗,∗ X, π∗,∗I)

∼= HomMUmot
∗,∗ /τ (MUmot

∗,∗ X,N)

∼= HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ X,MUmot
∗,∗ MUmot/τ ⊗MUmot

∗,∗ /τ N)

∼= HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ X,MUmot
∗,∗ I).

In fact, the first isomorphism follows from the adjunction (3.2) between S0,0/τ -modules

and MUmot/τ -modules. The third and last isomorphisms follow from Lemma 5.1. The

fourth isomorphism follows from a change-of-ring isomorphism. It remains to show the

second isomorphism.

Since both I and MUmot/τ ∧Cτ X belong to MUmot/τ -Modcell, the set of homotopy

classes of maps

[MUmot/τ ∧Cτ X, I]MUmot/τ

can be computed by the universal coefficient spectral sequence of Theorem 3.2

Exts,t,w
MUmot

∗,∗ /τ
(MUmot

∗,∗ X, π∗,∗I) =⇒ [Σt−s,wMUmot/τ ∧Cτ X, I]MUmot/τ .
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Since π∗,∗I ∼= N is an injective MUmot
∗,∗ /τ -module, the spectral sequence is concentrated

on the line s = 0 and collapses at the E2-page. This gives the second isomorphism. �

Lemma 5.3. For any M ∈ MUmot
∗,∗ MUmot/τ -Comod that is concentrated in Chow degree

k, there exists a monomorphism

M � � // MUmot
∗,∗ MUmot/τ ⊗MUmot

∗,∗ /τ N,

where N is injective in MUmot
∗,∗ /τ -Mod and is concentrated in Chow degree k.

Proof. This proof is the standard way of showing that an abelian category has enough

injectives, by inducing them from Z-modules (or Zp in our case). We start with the

monomorphism of bigraded Zp-modules

(5.1) M G֒G A

∏

x∈M\0

Σ|x|Qp/Zp,

where Σ|x| denotes a shift by the bidegree of x. The target is an injective Zp-module that

is concentrated in Chow degree k. Adjoint the above map through the two adjunctions

MUmot
∗,∗ MUmot/τ -Comod

res.
GGG A⊥
D GGGGG

ext.
MUmot

∗,∗ /τ -Mod
res.

GGG A⊥
D GGGGG

coext.
Zp-Mod,

we have a monomorphism

(5.2) M G֒G A MUmot
∗,∗ MUmot/τ ⊗MUmot

∗,∗ /τ HomZp
(MUmot

∗,∗ /τ,
∏

x∈M\0

Σ|x|Qp/Zp)

of comodules. The target is injective since right adjoints preserve injectives. The map

(5.2) is a monomorphism, since post-composing it with the two counit maps recovers the

monomorphism (5.1). �

Proposition 5.4. Any Y ∈ S0,0/τ -Modb
cell admits an absolute Adams-Novikov tower

Y Y0

��

Y1

��

oo Y2

��

oo · · ·oo

I0 I1 I2

in the category S0,0/τ -Modb
cell, such that

(1) each map Ys GG A Ys−1 induces a zero homomorphism in MUmot-homology,

(2) each cofiber Is is a finite product of suspensions of objects that satisfy the conclusions

of Lemma 5.1.

Moreover, any map f : X GG A Y in S0,0/τ -Modb
cell can be lifted to a map of absolute

Adams-Novikov towers.
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Proof. Suppose that MUmot
∗,∗ Y is concentrated in Chow degrees [a, b], namely

MUmot
∗,∗ Y ∼=

b⊕

k=a

+∞⊕

l=−∞

MUmot
2l+k,lY.

By Lemma 5.3, for every k ∈ [a, b], there exists a monomorphism

+∞⊕

l=−∞

MUmot
2l+k,l(Y ) ∼=

+∞⊕

l=−∞

MUmot
2l,l (Σ

−k,0Y ) G֒G A MUmot
∗,∗ MUmot/τ ⊗MUmot

∗,∗ /τ N0,k

where N0,k is injective module that is concentrated in Chow degree 0. By Lemma 5.1,

there exists a spectrum I0,k ∈ MUmot/τ -Mod♥
cell such that

π∗,∗I0,k ∼= N0,k,

and that

MUmot
∗,∗ I0,k ∼= MUmot

∗,∗ MUmot/τ ⊗MUmot
∗,∗ /τ N0,k.

By Lemma 5.2, we have that

[Σ−k,0Y, I0,k]S0,0/τ
∼= HomMUmot

∗,∗ MUmot/τ (MUmot
∗,∗ (Σ−k,0Y ),MUmot

∗,∗ MUmot/τ ⊗MUmot
∗,∗ /τ N0,k)

∼= HomMUmot
∗,∗ MUmot/τ (

+∞⊕

l=−∞

MUmot
2l,l (Σ

−k,0Y ),MUmot
∗,∗ MUmot/τ ⊗MUmot

∗,∗ /τ N0,k).

The second isomorphism follows from the fact that N0,k is concentrated in Chow degree

0. Therefore, the algebraic map of comodules

MUmot
∗,∗ (Σ

−k,0Y ) // //
⊕+∞

l=−∞MUmot
2l,l (Σ

−k,0Y ) �
� // MUmot

∗,∗ MUmot/τ ⊗MUmot
∗,∗ /τ N0,k,

where the first map is the project map to the Chow degree 0 part, can be realized as a

S0,0/τ -linear map

Σ−k,0Y −→ I0,k.

Combine these maps for all k ∈ [a, b], we obtain a map

Y −→
b∏

k=a

Σk,0I0,k.

Note that this map induces a monomorphism in MUmot-homology.

Denote the finite product by

I0 :=

b∏

k=a

Σk,0I0,k,
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and the fiber of the map Y → I0 by Y1, as in

Y

��

Y1
oo

I0.

By the associated long exact sequence in MUmot-homology, the map Y1 GG A Y induces

the zero map in MUmot-homology, and MUmot
∗,∗ Y1 is concentrated in Chow degrees [a −

1, b− 1]. So in particular we have

Y1 ∈ S0,0/τ -Modb
cell.

We can repeat the procedure, producing an absolute Adams-Novikov tower

Y

��

Y1

��

oo Y2

��

oo · · ·oo

I0 I1 I2

satisfying the desired properties.

We now prove the second claim of the theorem. For any S0,0/τ -linear map f0 : X0 → Y0,

we may assume that MUmot
∗,∗ X0 and MUmot

∗,∗ Y0 are both concentrated in Chow degrees [a, b].

Denote the first step of their tower by

X0

��

f0 // Y0

��
I0 J0,

where I0 and J0 are the finite products of suspensions of objects that satisfy the conclu-

sions of Lemma 5.1. Applying MUmot
∗,∗ , we have the following diagram of MUmot

∗,∗ MUmot/τ -

comodules

MUmot
∗,∗ X0
� _

��

f0∗,∗ // MUmot
∗,∗ Y0
� _

��

MUmot
∗,∗ I0

φ
//❴❴❴ MUmot

∗,∗ J0.

Here the existence of the homomorphism φ is due to the universal property of injective

objects in the category MUmot
∗,∗ MUmot/τ -Comod.

Note that

MUmot
∗,∗ I0 = MUmot

∗,∗ (

b∏

k=a

Σk,0I0,k) =

b∏

k=a

MUmot
∗,∗ (Σk,0I0,k),
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MUmot
∗,∗ J0 = MUmot

∗,∗ (
b∏

k=a

Σk,0J0,k) =
b∏

k=a

MUmot
∗,∗ (Σk,0J0,k).

The Chow degree k parts of MUmot
∗,∗ I0 and MUmot

∗,∗ J0 are given by

MUmot
∗,∗ (Σ

k,0I0,k), MUmot
∗,∗ (Σ

k,0J0,k).

Therefore, the homomorphism φ is given by the product of homomorphisms

φk : MUmot
∗,∗ (Σk,0I0,k) −→ MUmot

∗,∗ (Σk,0J0,k)

for each k ∈ [a, b].

Since J0,k satisfies the conclusions of Lemma 5.1, we have that

[Σk,0I0,k,Σ
k,0J0,k]S0,0/τ

∼= [I0,k, J0,k]S0,0/τ

∼= HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ I0,k,MUmot
∗,∗ J0,k)

∼= HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ (Σ
k,0I0,k),MUmot

∗,∗ (Σk,0J0,k)),

where the second isomorphism is given by Lemma 5.2. Therefore the homomorphism φk

can be realized by a S0,0/τ -linear map

g0,k : Σ
k,0I0,k −→ Σk,0J0,k.

Taking the product of g0,k for all k ∈ [a, b], we define a map g0 : I0 → J0. Then g0 realizes

φ, and we have the diagram

X0

��

f0 // Y0

��
I0

g0 // J0.
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To see that the square commutes up to homotopy, note that

[X, J0]S0,0/τ
∼= [X,

b∏

k=a

Σk,0J0,k]S0,0/τ

∼=

b∏

k=a

[X,Σk,0J0,k]S0,0/τ

∼=

b∏

k=a

[Σ−k,0X, J0,k]S0,0/τ

∼=

b∏

k=a

HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ (Σ
−k,0X),MUmot

∗,∗ J0,k)

∼=

b∏

k=a

HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ X,MUmot
∗,∗ (Σk,0J0,k))

∼= HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ X,MUmot
∗,∗ (

b∏

k=a

Σk,0J0,k))

∼= HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ X,MUmot
∗,∗ J0),

where the fourth isomorphism is given by Lemma 5.2.

Therefore, the commutativity of this square follows from the commutativity of the

corresponding square in MUmot-homology.

The commutative diagram in S0,0/τ -Modb
cell induces a map f1 : X1 → Y1 between the

fibers, so the following diagram commutes up to homotopy

X X1 X2 · · ·

I0 I1

Y Y1 Y2 · · ·

J0 J1.

f0

g0

f1

Iterating this process produces the desired map of absolute Adams-Novikov towers. �
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5.2. The spectral sequence. Every absolute Adams-Novikov tower gives rise to a

S0,0/τ -linear Adams-Novikov spectral sequence. In the following Theorem 5.5, we iden-

tify the E2-page of the spectral sequence and its abutment. We also show that it does

not depend on the absolute Adams-Novikov tower, and converges strongly for objects

with bounded Chow degree.

Theorem 5.5. For X, Y ∈ S0,0/τ -Modb
cell, there is an absolute Adams-Novikov spectral

sequence

Es,t,w
2
∼= Exts,t,w

MUmot
∗,∗ MUmot/τ

(
MUmot

∗,∗ X,MUmot
∗,∗ Y

)
=⇒

[
Σt−s,wX, Y ∧

MUmot

]
S0,0/τ

,

with differentials

dr : E
s,t,w
r GG A Es+r,t+r−1,w

r ,

that does not depend on the absolute Adams-Novikov tower. Here Y ∧
MUmot is the MUmot-

completion of Y . Moreover, this spectral sequence converges strongly and collapses at a

finite page.

Proof. There are 4 parts in this proof. In part (1), we show the existence of the spectral

sequence from the absolute Adams-Novikov tower constructed in Proposition 5.4. In

part (2), we show that this spectral sequence converges strongly and collapses at a finite

page. In part (3), We show that the E2-page of this spectral sequence does not depend

on the absolute Adams-Novikov tower. In part (4), We show that the spectral sequence

converges strongly and collapses at a finite page.

(1) By Proposition 5.4, there exists an absolute Adams-Novikov tower.

Y

��

Y1

��

oo Y2

��

oo · · ·oo

I0 I1 I2.

This gives a sequence of maps in S0,0/τ -Modb
cell:

Y // I0
d1 // Σ1,0I1

d1 // Σ2,0I2 // · · · .

By the construction of the tower, the MUmot-homology of this sequence is an absolute

injective resolution of the comodule MUmot
∗,∗ Y .

MUmot
∗,∗ Y // MUmot

∗,∗ I0
d1 // MUmot

∗,∗ (Σ
1,0I1)

d1 // MUmot
∗,∗ (Σ2,0I2) // · · ·

Applying the functor [X,−]S0,0/τ to the absolute Adams-Novikov tower, we obtain an

exact couple that gives the desired Adams-Novikov spectral sequence. The E1-page
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is given by

Es,t,w
1 := [Σt,wX,Σs,0Is]S0,0/τ ,

and the d1 differentials are given in the cochain complex

[X, I0]S0,0/τ

d1 // [X,Σ1,0I1]S0,0/τ

d1 // [X,Σ2,0I2]S0,0/τ
// · · · .

The cohomology of this cochain complex computes the E2-page, which we now iden-

tify.

Since each Ij is a finite product of suspensions of objects that satisfy the conclusions

of Lemma 5.1, we have

[X,Σj,0Ij ]S0,0/τ
∼= HomMUmot

∗,∗ MUmot/τ (MUmot
∗,∗ X,MUmot

∗,∗ (Σ
j,0Ij)),

by Lemma 5.2 and the proof of Proposition 5.4. Then the cochain complex can be

identified as

HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ X,MUmot
∗,∗ I0)

d1
GGG A HomMUmot

∗,∗ MUmot/τ (MUmot
∗,∗ X,MUmot

∗,∗ (Σ1,0I1))

d1
GGG A HomMUmot

∗,∗ MUmot/τ (MUmot
∗,∗ X,MUmot

∗,∗ (Σ2,0I2)) GGG A · · · .

The d1-differentials agree with the ones obtained by standard methods (see [53, Chap-

ter 2] for example). Therefore the E2-page is given by

Es,t,w
2
∼= Exts,t,w

MUmot
∗,∗ MUmot/τ

(MUmot
∗,∗ X,MUmot

∗,∗ Y ).

(2) We next show that the spectral sequence converges strongly and collapses at a finite

page, under the hypotheses that both MUmot
∗,∗ X and MUmot

∗,∗ Y are concentrated in

bounded Chow degrees. This argument is similar to the one given in the proof of

Theorem 3.2.

Suppose that MUmot
∗,∗ X and MUmot

∗,∗ Y are concentrated in Chow degrees [a, b] and

[c, d] respectively, where a ≤ b and c ≤ d. Then MUmot
∗,∗ (Σt,wX) is concentrated in

Chow degrees

[a+ (t− 2w), b+ (t− 2w)].

From the construction of the absolute Adams-Novikov tower in Proposition 5.4, it

follows that MUmot
∗,∗ (Σ

s,0Is) are concentrated in Chow degrees [c, d] for all s ≥ 0. In

order for the group

Es,t,w
1
∼= [Σt,wX,Σs,0Is]S0,0/τ

∼= HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ (Σt,wX),MUmot
∗,∗ (Σs,0Is)),

to be nonzero, we must have

c ≤ b+ (t− 2w), d ≥ a+ (t− 2w).
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For a fixed weight w, this gives that

t ∈ [c− b+ 2w, d− a+ 2w].

Since later pages Es,t,w
r are iterated subquotients of Es,t,w

1 , their t-degrees are all

concentrated in [c− b+ 2w, d− a+ 2w].

It is standard to check that the dr-differentials has the form

dr : E
s,t,w
r GG A Es+r,t+r−1,w

r .

In particular, it changes the t-degrees by r − 1. Since the t-degrees of all possible

nonzero elements in the E1-page satisfy t ∈ [c − b + 2w, d − a + 2w], we must have

dr = 0 when

r − 1 > (d− a+ 2w)− (c− b+ 2w) = (b− a) + (d− c)

for degree reasons. In other words, the spectral sequence collapses at the E(b−a)+(d−c)+2

page.

Therefore, under the condition that both MUmot
∗,∗ X and MUmot

∗,∗ Y are concentrated

in bounded Chow degrees, this spectral sequence convergences strongly and collapses

at a finite page.

(3) We show that the E2-page of this spectral sequence does not depend on the absolute

Adams-Novikov tower. Consider two absolute injective resolutions of MUmot
∗,∗ Y from

two absolute Adams-Novikov towers {Ys, Is} and {Y
′
s , I

′
s} of Y . By Proposition 5.4,

the identity map id: Y GG A Y produces a map of towers, and in particular compat-

ible maps gs : Is GG A I ′s for all s ≥ 0. These maps induce a lift of the identity map

between the two absolute injective resolutions of MUmot
∗,∗ Y as in the following diagram

0 // MUmot
∗,∗ Y

id

// MUmot
∗,∗ I0

MUmot
∗,∗ (g0)

��

// MUmot
∗,∗ (Σ

1,0I1)

MUmot
∗,∗ (g1)

��

// · · ·

0 // MUmot
∗,∗ Y // MUmot

∗,∗ I ′0 // MUmot
∗,∗ (Σ

1,0I ′1) // · · · .

The maps MUmot
∗,∗ (gs) induce isomorphisms on the E2-pages, and therefore an iso-

morphism of spectral sequences by standard arguments in homological algebra (see

[5, Theorem 5.3] and [53, Section 2.2] for example).

(4) For the convergence problem, let Y/Ys be the cofiber of the map Ys → Y in the

absolute Adams-Novikov tower, and define the homotopy colimit in S0,0/τ -Modb
cell

Ŷ = holim(Y/Ys).
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By [5], the spectral sequence converges conditionally to

[X, Ŷ ]S0,0/τ .

To identify it as [X, Y ∧
MUmot ]S0,0/τ , since X is cellular, we only need to show that Ŷ

has the same homotopy groups as the Y ∧
MUmot.

Take X = S0,0/τ . Since MUmot
∗,∗ S0,0/τ = MUmot

∗,∗ /τ is free over itself, we can use

the canonical MUmot/τ -Adams resolution [53, Definition 2.2.10] for Y in this case.

Now we compare the canonical MUmot/τ -based Adams-Novikov tower of Y with the

absolute Adams-Novikov tower of Y .

As we did in the proof of Proposition 5.4, we have a map of towers from the

canonical MUmot/τ -based one to the absolute one. As we did in part (3), the identity

map on Y induces a homomorphism from the canonical cobar resolution of MUmot
∗,∗ Y

to the absolute injective resolution of MUmot
∗,∗ Y , so in particular a homomorphism of

relative injective resolutions.

This induces a homomorphism from the usual Adams-Novikov spectral sequence to

the absolute Adams-Novikov spectral sequence, with an isomorphism on the E2-page.

It is therefore an isomorphism of spectral sequences and we have a weak equivalence

Ŷ
≃

GG A Y ∧
MUmot .

Since any cellular S0,0/τ -module X can be written in terms of filtered colimits and

cofibers of suspensions of S0,0/τ ’s, there is an isomorphism

[X, Ŷ ]S0,0/τ

∼=
GGG A [X, Y ∧

MUmot]S0,0/τ .

Therefore, the absolute Adams-Novikov spectral sequence computes [X, Y ∧
MUmot ]S0,0/τ .

�

When Y is harmonic, the weak equivalence Y → Y ∧
MUmot gives the following corollary.

Corollary 5.6. For any X, Y ∈ S0,0/τ -Modb
♣, there is an absolute Adams-Novikov

spectral sequence

Es,t,w
2 = Exts,t,w

MUmot
∗,∗ MUmot/τ

(
MUmot

∗,∗ X,MUmot
∗,∗ Y

)
=⇒

[
Σt−s,wX, Y

]
S0,0/τ

,

with differentials

dr : E
s,t,w
r GG A Es+r,t+r−1,w

r ,

that converges strongly and collapses at a finite page.

Remark 5.7. The above arguments can be applied to the case of the classical stable

homotopy category to construct the general Adams-Novikov spectral sequence, which

seems to be a folklore theorem without published references.
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For classical spectra X and Y , there is a conditionally convergent spectral sequence

Exts,tMU∗MU(MU∗X,MU∗Y ) =⇒ [Σt−sX, Y ∧
MU],

where MU∗X does not have to be projective over MU∗. The difference is in the proof of

Lemma 5.1, where we apply the Brown representability theorem instead.

5.3. Proofs of Lemma 4.2, Corollary 4.7 and Corollary 4.8. We give the proofs

of Lemma 4.2, Corollary 4.7 and Corollary 4.8 in this section.

Corollary 4.7 states that if X ∈ S0,0/τ -Mod
b,≥0
♣ and Y ∈ S0,0/τ -Mod

b,≤0
♣ , then the

abelian group of homotopy classes of degree (0, 0) maps can be computed algebraically

by the isomorphism

[X, Y ]S0,0/τ −→ HomMUmot
∗,∗ MUmot/τ (MUmot

∗,∗ X,MUmot
∗,∗ Y )

that is induced by applying MUmot
∗,∗ .

Proof of Corollary 4.7. The proof is similar to the one of Corollary 3.3.

Consider the the E2-page of the absolute Adams-Novikov spectral sequence, the tri-

degrees that converge to the bidegree (0, 0) are of the form (t, t, 0) for t ≥ 0, i.e., the

parts Es,t,w
2 = Et,t,0

2 .

By the proof of Theorem 5.5, the t-degrees of all possible nonzero elements in the

E1-page and therefore E2-page satisfy t ≤ d − a + 2w = d − a. Since MUmot
∗,∗ X and

MUmot
∗,∗ Y are concentrated in nonnegative and nonpositive bounded Chow degrees, we

have d = a = 0. Therefore, we have t ≤ 0.

Combining both facts, we have established that the only possible nonzero elements in

the E2-page that converge to the bidegree (0, 0) are in

E0,0,0
2 = HomMUmot

∗,∗ MUmot/τ (MUmot
∗,∗ X,MUmot

∗,∗ Y ).

To show that all elements in E0,0,0
2 survive in the spectral sequence, firstly note that they

are not targets of any nonzero differentials since they are in s-degree 0. Secondly, all

dr-differentials for r ≥ 2 increase the t-degree. Since the t-degrees of all nonzero elements

are non-positive, the elements in E0,0,0
2 do not support nonzero differentials. There are

no hidden extensions due to degree reasons. This completes the proof. �

Corollary 4.8 states that given X, Y ∈ S0,0/τ -Mod♥
♣, for any bidegree (t, w), there is

an isomorphism

[Σt,wX, Y ]S0,0/τ
∼= Ext2w−t,2w,w

MUmot
∗,∗ MUmot/τ

(MUmot
∗,∗ X,MUmot

∗,∗ Y ).
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Proof of Corollary 4.8. Consider the the E2-page of the absolute Adams-Novikov spectral

sequence. Since both MUmot
∗,∗ X and MUmot

∗,∗ Y are concentrated in Chow degree 0, the E2-

page

Es,t,w
2 = Exts,t,w

MUmot
∗,∗ MUmot/τ

(
MUmot

∗,∗ X,MUmot
∗,∗ Y

)

is concentrated in degrees t = 2w. Since all differentials preserves the motivic weights w,

this spectral sequence collapses at the E2-page. There are no hidden extensions due to

degree reasons. Therefore, we have the isomorphism

[Σt,wX, Y ]S0,0/τ
∼= Ext2w−t,2w,w

MUmot
∗,∗ MUmot/τ

(MUmot
∗,∗ X,MUmot

∗,∗ Y ).

�

We now prove Lemma 4.2, which states that if {Yα} is a filtered system in S0,0/τ -Mod♥

such that each Yα is harmonic, then the homotopy colimit {Yα} in S0,0/τ -Mod♥ is also

harmonic.

Proof of Lemma 4.2. Consider the absolute Adams-Novikov spectral sequence of Theo-

rem 5.5

Exts,t,w
MUmot

∗,∗ MUmot/τ

(
MUmot

∗,∗ S0,0/τ,MUmot
∗,∗ Y

)
=⇒

[
Σt−s,wS0,0/τ, Y ∧

MUmot

]
S0,0/τ

∼= πt−s,wY
∧
MUmot

in the case that X = S0,0/τ and Y = hocolimYα. Since both S0,0/τ and Y are in the

heart, the E2-page is concentrated in degrees t = 2w. Since all differentials preserves the

motivic weights w, this spectral sequence collapses at the E2-page. There are no hidden

extensions due to degree reasons. Therefore, we have the isomorphism

πt,wY
∧
MUmot

∼= [Σt,wS0,0/τ, Y ∧
MUmot ]S0,0/τ

∼= Ext2w−t,2w,w

MUmot
∗,∗ MUmot/τ

(MUmot
∗,∗ S0,0/τ,MUmot

∗,∗ Y ).

Since MUmot
∗,∗ S0,0/τ ∼= MUmot

∗,∗ /τ is free over MUmot
∗,∗ /τ , one can use the canonical cobar

resolution for MUmot
∗,∗ Y . Since it is functorial and commutes with filtered colimits, the

isomorphism

colimMUmot
∗,∗ Yα

∼= MUmot
∗,∗ (Y )

induces an isomorphism

colimExt∗,∗,∗
MUmot

∗,∗ MUmot/τ

(
MUmot

∗,∗ /τ,MUmot
∗,∗ Yα

)
∼= Ext∗,∗,∗

MUmot
∗,∗ MUmot/τ

(
MUmot

∗,∗ /τ,MUmot
∗,∗ Y

)
.
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Therefore, we have the following isomorphisms

πt,wY ∼= πt,w(holim Yα)

∼= colim πt,wYα

∼= colim [Σt,wS0,0/τ, Yα]S0,0/τ

∼= colimExt2w−t,2w,w

MUmot
∗,∗ MUmot/τ

(
MUmot

∗,∗ /τ,MUmot
∗,∗ Yα

)

∼= Ext2w−t,2w,w

MUmot
∗,∗ MUmot/τ

(
MUmot

∗,∗ /τ,MUmot
∗,∗ Y

)

∼= [Σt,wS0,0/τ, Y ∧
MUmot ]S0,0/τ

∼= πt,wY
∧
MUmot,

where the fourth isomorphism is given by Corollary 4.8, since each Yα is harmonic. This

shows that Y is harmonic. �

Remark 5.8. Lemma 4.2 can be generalized to the case when there is a uniform bound

on the Chow degrees of MUmot
∗,∗ Yα for all α.

6. MU∗MU-comodules and BP∗BP-comodules

In Part 1, we work with MUmot, the motivic analogue of p-completed MU instead of

BP. This is convenient since MU is an E∞-ring spectra while a recent of result of Lawson

[32] shows that BP is not. However, in Part 2, we work with BP∗BP-comodules instead

of MU∗MU-comodules since they are more convenient for computational purpose. We

present a brief account of the well known Morita equivalence of the two abelian categories

of MU∗MU-comodules and BP∗BP-comodules in this section.

Let

MU∗BP = π∗(MU ∧ BP),

BP∗MU = π∗(BP ∧MU).

Then MU∗BP is a MU∗MU-BP∗BP-bi-comodule, and BP∗MU is a BP∗BP-MU∗MU-bi-

comodule.

Lemma 6.1.

(1) MU∗BP is a relative injective left MU∗MU-comodule and a relative injective right

BP∗BP-comodule.

(2) BP∗MU is a relative injective right MU∗MU-comodule and a relative injective left

BP∗BP-comodule.

Proof. Note that MU is a wedge of suspensions of BP’s. Therefore, as a left MU∗MU-

comodule, MU∗BP is a direct summand of MU∗MU. As a right BP∗BP-comodule,

MU∗BP is a direct sum of BP∗BP. This proves the lemma. �
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Lemma 6.2.

(1) There is an isomorphism of MU∗MU-MU∗MU-bi-comodules

MU∗BP✷BP∗BPBP∗MU ∼= MU∗MU.

(2) There is an isomorphism of BP∗BP-BP∗BP-bi-comodules

BP∗MU✷MU∗MUMU∗BP ∼= BP∗BP.

Proof. We recall the following dual version of the BP-based Adams-Novikov spectral

sequence.

Let X and Y be spectra with free BP-homology. Then we have a spectral sequence

converging to π∗(X ∧ Y ) with the E2-page

Cotor∗,∗BP∗BP(X∗BP,BP∗Y ).

Since X and Y have free BP-homology, we have that

BP∗(X ∧ Y ) ∼= BP∗X ⊗BP∗
BP∗Y.

By definition (see Appendix 1 of Ravenel’s green book [53]), the primitives of

BP∗X ⊗BP∗
BP∗Y are canonically isomorphic to

X∗BP✷BP∗BPBP∗Y,

whose derived functors are Cotor∗,∗BP∗BP(X∗BP,BP∗Y ).

Since MU has free BP-homology, we take X = Y = MU and consider the BP-based

Adams-Novikov spectral sequence that converges to π∗(MU ∧MU).

By Lemma 6.1, MU∗BP is a relative injective right BP∗BP-comodule, and BP∗MU is a

relative injective left BP∗BP-comodule. Therefore, all the higher derived functors vanish

and the Adams-Novikov spectral sequence collapses at the E2-page. We have that

MU∗BP✷BP∗BPBP∗MU ∼= π∗(MU ∧MU) = MU∗MU.

Similarly, we consider the dual version of MU-based Adams-Novikov spectral sequence.

Then a similar argument with the fact that BP has free MU-homology and Lemma 6.1

shows that

BP∗MU✷MU∗MUMU∗BP ∼= π∗(BP ∧ BP) = BP∗BP.

�

Combining Lemma 6.1, Lemma 6.2 and the fact that both MU∗MU✷MU∗MU− and

BP∗BP✷BP∗BP− are naturally equivalent to the identity functors, we have the following

well known proposition.
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Proposition 6.3. There exist an exact equivalence of categories

MU∗BP✷BP∗BP− : BP∗BP-Comod←→ MU∗MU-Comod : BP∗MU✷MU∗MU − .

7. Further questions

The category of cellular modules over S0,0/τ measures the difference between cellular

modules over the HFmot
p -completed motivic sphere spectrum S0,0 and cellular modules

over the classical p-completed sphere spectrum S0.

Definition 7.1. Let S0,0-Modfin be the category of finite cellular modules over S0,0, and

S0-Modfin be the category of classical finite cellular modules over S0. Let S0,0-Modτ -tor
fin

be the full subcategory of S0,0-Modfin that is generated by S0,0/τ -Modfin under cofibers,

i.e. the smallest full subcategory containing objects of S0,0/τ -Modfin and closed under

taking cofibers.

It is straightforward to prove the following Proposition 7.2 from Dugger-Isaksen [11,

Sections 3.2 and 3.4] and Isaksen [26, Proposition 3.0.2].

Proposition 7.2. The sequence

S0,0-Modτ -tor
fin

// S0,0-Modfin
Re // S0-Modfin

is an exact sequence of stable ∞-categories in the sense of Blumberg-Gepner-Tabuada

[4, Section 5], where Re is the Betti realization functor constructed in Dugger-Isaksen

[13, Theorem 1.4].

In the sense of Proposition 7.2, our theorem 1.1 gives a decomposition of the cellular

stable motivic category into more classical categories.

In particular, we can apply the non-connective algebraic K-theory functor K con-

structed in Blumberg-Gepner-Tabuada [4, Section 9], and get a cofiber sequence of non-

connective algebraic K-theory spectra, since the functor K sends exact sequence of stable

∞-categories into cofiber sequences:

K(S0,0-Modτ -tor
fin ) // K(S0,0-Modfin)

Re // K(S0-Modfin)

Since the Betti realization functor admits a section, the above cofiber sequence actually

splits

K(S0,0-Modfin) ≃ K(S0-Modfin) ∨K(S0,0-Modτ -tor
fin ).

Note that the spectrum K(S0-Modfin) for the p-completed sphere spectrum is described

by Bökstedt-Hsiang-Madsen [6].
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To understand the spectrum K(S0,0-Modτ -tor
fin ), we consider the inclusion functor

(7.1) S0,0/τ -Modfin −→ S0,0-Modτ -tor
fin .

We propose the following question.

Question 7.3. Does this inclusion functor (7.1) induce an equivalence on non-connective

algebraic K-theory spectra?

Let BP∗BP-Comodfin be the subcategory of BP∗BP-Comod whose underlying BP∗-

module is finitely presented. If the answer to Question 7.3 is yes, then by the theorem of

heart due to Barwick [3] and Theorem 1.1, we have the following isomorphism for all i,

Ki(S
0,0-Modfin) ∼= Ki(S

0-Modfin)⊕Ki(BP∗BP-Comodfin).

If we further regard the category BP∗BP-Comodfin as the category Coh(MFG) of

coherent sheaves over the moduli stack MFG of formal groups [17], and the answer to

Question 7.3 is yes, then there is an isomorphism for all i,

Ki(S
0,0) ∼= Ki(S

0)⊕Ki(Coh(MFG)).
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Part 2. Equivalence of spectral sequences

8. Main theorem of Part 2

The goal of Part 2 of this paper is to prove the following Theorem 8.1.

Theorem 8.1. At each prime p, there is an isomorphism of tri-graded spectral sequences

between the motivic Adams spectral sequence for S0,0/τ , which converges to the motivic

homotopy groups of S0,0/τ , and the regraded algebraic Novikov spectral sequence, which

converges to the Adams-Novikov E2-page for the sphere spectrum.

The indexes are indicated in the following diagram:

Exts,2wBP∗BP/I(BP∗/I, I
a−s/Ia−s+1)

Algebraic Novikov SS

��

∼= // Exta,2w−s+a,w
Amot

∗,∗
(Fp[τ ],Fp)

Motivic Adams SS

��

Exts,2wBP∗BP(BP∗,BP∗)
∼= // π2w−s,wS

0,0/τ.

Here I = (p, v1, v2, · · · ) is the augmentation ideal of BP∗ and Amot
∗,∗ is the motivic mod p

dual Steenrod algebra.

The isomorphism between the abutments is known to Isaksen [26, Proposition 6.2.5]

and the first author [15, Corollary 3.14].

Proposition 8.2 (Isaksen, Gheorghe). The motivic Adams-Novikov spectral sequence for

S0,0/τ collapses for filtration reasons, and there is an isomorphism of graded rings

π2w−s,w(S
0,0/τ) ∼= Exts,2wBP∗BP(BP∗,BP∗)

Moreover, this isomorphism preserves higher products (Toda brackets and Massey prod-

ucts respectively).

Moreover, we have that

Proposition 8.3. The isomorphism of spectral sequences in Theorem 8.1 on the abut-

ments preserves composition products and higher products in the respective categories as

in Proposition 8.2.

Proof. Since the multiplicative structure on the abutments comes from composition of

morphisms in both categories S0,0/τ -Modb
♣ and Db(BP∗BP-Comod), it follows from

functorality of the equivalence of categories in Theorem 4.13. �
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A consequence of Proposition 8.3 is that The isomorphism of spectral sequences in

Theorem 8.1 also preserves the filtrations on the E∞-pages. Note that we do not prove

that it also preserves the multiplicative structure on the E2-pages. We shall prove it in

future work.

Part 2 is organized in the following way. In Section 9, we recall the construction of the

algebraic Novikov spectral sequence, discuss the regrading, and its associated tower. In

Section 10, we prove in Theorem 8.1 that the two spectral sequences are isomorphic. We

check that, through the equivalence of stable ∞-categories in Theorem 4.13 of Part 1,

the algebraic Novikov tower in the derived category of BP∗BP-comodules corresponds to

the motivic Adams tower of S0,0/τ in the category of S0,0/τ -modules. In Section 10, we

re-compute certain low filtration and historically more difficult differentials in the range

up to the 45-stem at the prime 2, as an illustration of the power of the isomorphism of

spectral sequences in Theorem 8.1.

9. Re-grading of the algebraic Novikov spectral sequence

The algebraic Novikov spectral sequence is introduced by Novikov [47] and Miller [41].

Ravenel’s green book [53] and Andrews-Miller’s paper [1] are also good references for this

material. It is usually graded in the way that it starts with the E1-page. To compare

it with the motivic Adams spectral spectral, which is studied by Morel, Dugger-Isaksen

and Hu-Kriz-Ormsby [11, 23, 43], we re-grade the algebraic Novikov spectral sequence in

this section.

9.1. The algebraic Novikov spectral sequence. We first recall that the algebraic

Novikov spectral sequence comes from filtering the cobar complex by powers of the aug-

mentation ideal I on BP∗ and BP∗BP.

Definition 9.1. Let M be a module over BP∗. For an element m ∈ M , we say that it

has I-filtration at least n ≥ 0 if m ∈ InM .

Since I is an invariant ideal of BP∗BP, the I-filtration gives a filtration of comodules

on any BP∗BP-comodule. It is clear that the I-filtration on BP∗-modules and BP∗BP-

comodules is a decreasing filtration.

We can form the associated graded E0BP∗ of BP∗ with respect to the I-filtration

E0BP∗ = Fp[v̄0, v̄1, · · · ].

Here v̄0 is represented by p, and v̄i is represented by vi. We also have the associated

graded E0BP∗BP of E0BP∗BP with respect to the I-filtration

E0BP∗BP = E0BP∗[t̄1, t̄2, · · · ].
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Here t̄i is represented by ti.

Theorem 9.2. (Novikov [47], Miller [41]) There exists a tri-graded spectral sequence with

Es,i,t
1 = Exts,tE0BP∗BP(E0BP∗, E0BP∗),

where i is the I-filtration, and

dr : E
s,i,t
r −→ Es+1,i+r,t

r ,

converging to

Exts,tBP∗BP(BP∗,BP∗).

9.2. The cobar construction. To discuss the algebraic Novikov spectral sequence in

details, we first review the cobar complex. For a general reference regarding this material,

see [53] for example.

Recall that (BP∗,BP∗BP) forms a Hopf algebroid with structure maps

∆BP∗BP : BP∗BP −→ BP∗BP⊗BP∗
BP∗BP

ǫ : BP∗BP −→ BP∗

For any left BP∗BP-comodule M and right BP∗BP-comodule N , with structure maps

∆M : M −→ BP∗BP⊗BP∗
M,

∆N : N −→ N ⊗BP∗
BP∗BP,

we have the two-sided cobar construction

C•(N,BP∗BP,M)

which is a cosimplicial Zp-module with

Cn(N,BP∗BP,M) = N ⊗BP∗
BP∗BP

⊗n ⊗BP∗
M.

The coface maps

di : C
n−1(N,BP∗BP,M) −→ Cn(N,BP∗BP,M)

where 0 ≤ i ≤ n, and codegeneracy maps

si : C
n+1(N,BP∗BP,M) −→ Cn(N,BP∗BP,M)

where 0 ≤ i ≤ n, are given by

d0 = ∆N ⊗ id⊗n
BP∗BP ⊗ idM

di = idN ⊗ id⊗i−1
BP∗BP ⊗∆BP∗BP ⊗ id⊗n−i−1

BP∗BP ⊗ idM if 1 ≤ i ≤ n− 1

dn = idN ⊗ id⊗n
BP∗BP ⊗∆M

si = idN ⊗ id⊗i−1
BP∗BP ⊗ ǫ⊗ id⊗n−i

BP∗BP ⊗ idM for all 0 ≤ i ≤ n
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We have the associated cochain complex C∗(N,BP∗BP,M),

N ⊗BP∗
M −→ N ⊗ BP∗BP⊗BP∗

M −→ N ⊗ BP∗BP
⊗2 ⊗BP∗

M −→ · · ·

where the differentials are given by alternating sum of the di’s in the cobar construction.

We also have the normalized cochain complex C
∗
(N,BP∗BP,M),

N ⊗BP∗
M −→ N ⊗ BP∗BP⊗BP∗

M −→ N ⊗ BP∗BP
⊗2
⊗BP∗

M −→ · · ·

where BP∗BP is the kernel of the counit map ǫ : BP∗BP −→ BP∗, and the differentials

are induced by the ones in C∗(N,BP∗BP,M).

Take N = BP∗BP, we consider the two-sided cobar construction

C•(BP∗BP,BP∗BP,M).

There is a coaction of BP∗BP on C•(BP∗BP,BP∗BP,M), where we use the map ∆BP∗BP

on the left of each level,

BP∗BP⊗BP∗
BP∗BP

⊗n⊗BP∗
M

∆BP∗BP⊗···
−−−−−−−→ BP∗BP⊗BP∗

(BP∗BP⊗BP∗
BP∗BP

⊗n⊗BP∗
M)

Since all cosimplicial structure maps preserve the coaction of BP∗BP, the two-sided cobar

construction

C•(BP∗BP,BP∗BP,M)

is actually a cosimplicial left BP∗BP-comodule.

The normalized cochain complex

C
∗
(BP∗BP,BP∗BP,M)

gives a relative injective resolution of M . The primitives on each level gives

C
∗
(BP∗,BP∗BP,M),

whose homology computes

ExtBP∗BP(M) := Ext∗,∗BP∗BP(BP∗,M).

Under the I-filtration, we can view the associated graded of the cobar complex

C
∗
(BP∗,BP∗BP,BP∗)

as the E0-page of the algebraic Novikov spectral sequence. It turns out that it is isomor-

phic to

C
∗
(BP∗/I,BP∗BP/I, E0BP∗)

The coaction of BP∗BP/I on E0BP∗ is given by the following composite

E0BP∗

ηL // E0BP∗BP BP∗BP/I ⊗BP∗/I E0BP∗

∼=

i⊗ηR

oo
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where i : BP∗BP/I −→ E0BP∗BP is the inclusion of the I-filtration 0 part.

Therefore we can identify the E1-page of the algebraic Novikov spectral sequence as

the following

Es,i,t
1 = Exts,tBP∗BP/I(BP∗/I, I

i/I i+1)

9.3. The re-grading. For the statement of the main theorem of Part 2 - Theorem 8.1,

we re-grade the algebraic Novikov spectral sequence.

Definition 9.3. We define the a-filtration of the algebraic Novikov spectral sequence

a = i+ s.

In terms of an element x ∈ C
s
(BP∗,BP∗BP,BP∗), this means that x has a-filtration at

least s+ i if and only if

x ∈ C
s
(BP∗,BP∗BP, I

i).

Remark 9.4. We comment on the tri-degrees in the cobar resolution for BP∗. The

t-degree is the internal degree, which is preserved by differentials. The cohomological

s-degree is the number of bar’s in the cobar resolution. The i-filtration degree is the

number of v’s in the cobar resolution. Finally our new a-filtration degree is the sum of

numbers of bar’s and v’s in the cobar resolution.

After the re-grading, the dr differentials, which used to raise the i-filtration degree by

r, now raise the a-filtration degree by r+1. This is due to the fact that they also raise the

s-degree by 1. We therefore rename the dr’s as dr+1’s. The re-graded algebraic Novikov

spectral sequence therefore starts with the E2-page, instead of the E1-page.

In summary, we have the following re-graded algebraic Novikov spectral sequence.

Corollary 9.5. There exists a tri-graded spectral sequence with

Es,a,t
2 = Exts,tBP∗BP/I(BP∗/I, I

a−s/Ia−s+1),

and

dr : E
s,a,t
r −→ Es+1,a+r,t

r ,

converging to

Exts,tBP∗BP(BP∗,BP∗).
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9.4. Cartan-Eilenberg spectral sequence. The E2-page of the algebraic Novikov

spectral sequence has another interpretation–it is isomorphic to the E2-page of the

Cartan-Eilenberg spectral sequence that converges to the E2-page of the Adams E2-page.

For a general reference regarding this material, see [53] for example.

Recall that the mod p dual Steenrod algebra A∗ is

A∗ =

{
Fp[ζ1, ζ2, · · · ] |ζi| = 2i − 1 for p = 2,

ΛFp
[τ0, τ1, · · · ]⊗ Fp[ξ1, ξ2, · · · ] |ξi| = 2pi − 2, |τi| = 2pi − 1 for p > 2.

For p = 2, we set

ξi = ζ2i

Let ξ̄i be the conjugate of ξi. Let P∗ be the following sub-Hopf algebra of A∗

P∗ = Fp(ξ̄1, ξ̄2, · · · )

and Λ∗ be the quotient

Λ∗ = A∗ ⊗P∗
Fp =

{
ΛFp

[ζ1, ζ2, · · · ] for p = 2,

ΛFp
[τ0, τ1, · · · ] for p > 2.

We have an epimorphism

BP∗BP −→ P∗

that sends ti to ξ̄i. This gives an epimorphism of Hopf algebroids

(BP∗, BP∗BP) −→ (Fp, P∗),

which gives the following isomorphisms

BP∗BP/I ∼= E0BP∗BP⊗E0BP∗
Fp
∼= P∗.

Therefore, the E1-page of the algebraic Novikov spectral sequence is isomorphic to

Es,i,t
1 = Exts,tP∗

(Fp, I
i/I i+1),

by the change-of-ring isomorphism.

The above Ext group can be regarded as the E2-page of the Cartan-Eilenberg spectral

sequence.

Recall that there is an extension of Hopf algebras

P∗
// A∗

// Λ∗,

which produces a Cartan-Eilenberg spectral sequence with

Es,i,t
2 = ExtsP∗

(Fp,Ext
i,t
Λ∗
(Fp,Fp)),
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and

dr : E
s,i,t
r −→ Es+r,i−r+1,t

r ,

converging to

Exts+i,t
A∗

(Fp,Fp).

Since Λ∗ is an exterior algebra, the Ext group

Ext∗,∗Λ∗
(Fp,Fp)

is isomorphic to a polynomial algebra. It can be further identified as the Adams E2-

page for BP, and therefore the Adams E∞-page for BP since it collapses at the Adams

E2-page. This is isomorphic to

E0BP∗ = Fp[v̄0, v̄1, · · · ],

with [τi] (or [ζi] when p = 2) corresponds to v̄i, and the Adams filtration corresponds the

I-filtration. Moreover, the coaction of P∗ on ExtΛ∗
(Fp,Fp) is isomorphic to the coaction

of BP∗BP/I on E0BP∗.

Therefore, we can identify the E2-page of the Cartan-Eilenberg spectral sequence as

the E2-page of the re-graded algebraic Novikov spectral sequence with the re-grading

a = s+ i.

9.5. Miller’s square. In fact, the 4 spectral sequences that we have discussed fit into

the following Miller’s square [40]:

Exts,tP∗
(Fp, I

a−s/Ia−s+1)

Cartan-Eilenberg SS
♦♦
♦♦
♦♦
♦♦
♦♦
♦

♦♦
♦♦
♦♦
♦♦
♦♦
♦

s{ ♦♦♦
♦♦
♦♦
♦♦
♦♦

♦♦
♦♦
♦♦
♦♦
♦♦
♦

algebraic Novikov SS
PP

PP
PP

PP
PP

PP

PP
PP

PP
PP

PP
PP

$,P
PP

PP
PP

PP
PP

P

PP
PP

PP
PP

PP
PP

Exta,tA∗
(Fp,Fp)

Adams SS
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

#+❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖

Exts,tBP∗BP(BP∗,BP∗)

Adams-Novikov SS
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

rz ♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

π∗S
0

Remark 9.6. This square is not “commutative”: the ∗ in π∗S
0 is t− a when converging

from the Adams spectral sequence, and is t−s when converging from the Adams-Novikov

spectral sequence. In general, an element in the stable homotopy groups of sphere does
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not necessarily have the same Adams and Adams-Novikov filtration. As a first example,

the multiplication by p map has Adams filtration 1 and Adams-Novikov filtration 0.

9.6. The algebraic Novikov tower. For later reference, we write down the algebraic

Novikov tower using the newly defined a-filtration explicitly.

Definition 9.7.

• Let C∗
0 = C

∗
(BP∗BP,BP∗BP,BP∗) be the normalized cobar resolution of BP∗ over

BP∗BP, with

Cs
0 = BP∗BP⊗BP∗

BP∗BP
⊗s
⊗BP∗

BP∗,

where BP∗BP is the kernel of the counit map ǫ : BP∗BP −→ BP∗.

• For m ≥ 1, let C∗
m be the sub cochain complex of C∗

0 defined by the a-filtration,

namely, at cohomological degree s, we have

Cs
m = BP∗BP⊗BP∗

BP∗BP
⊗s
⊗BP∗

Im−s

It is understood that Ir = BP∗ for r ≤ 0. Therefore, for s ≥ m, we have Cs
m = Cs

0 .

• For m ≥ 0, let Q∗
m be the quotient cochain complex of the inclusion map

C∗
m+1

im // C∗
m.

More explicitly, it has the form

Qs
m = BP∗BP⊗BP∗

BP∗BP
⊗s
⊗BP∗

Im−s/Im−s+1.

Therefore, we have a tower of cochain complexes, which induces the following tower in

the derived category of BP∗BP-comodules:

C
∗
(BP∗BP,BP∗BP,BP∗) C∗

0

q0

��

C∗
1

q1

��

i0

oo C∗
2

q2

��

i1

oo · · ·
i2

oo

Q∗
0 Q∗

1 Q∗
2

Note that for each cochain complex Q∗
m, we have

Im−s/Im−s+1 = BP∗

when s ≥ m+ 1. In other words, the cochain complex Q∗
m has the same cochain groups

and differetnials as the normalized cobar resolution at degrees least m + 1. Therefore,

for s ≥ m+ 2,

HsQ∗
m = HsC∗

0 = 0.

In particular, the cochain complex Q∗
m has bounded cohomology. This implies that each

cochain complex C∗
m also has bounded cohomology.
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Therefore, although the cochain complexes Q∗
m and C∗

m are unbounded, they live in

the category Db(BP∗BP-Comod).

Applying the functor

R∗,∗HomBP∗BP(BP∗,−),

where R∗,∗HomBP∗BP(−,−) is the derived homomorphisms in the category

Db(BP∗BP-Comod), we get a spectral sequence with the E1-page

R∗,∗HomBP∗BP(BP∗, Q
∗
m),

converging to

R∗,∗HomBP∗BP(BP∗,BP∗) = Ext∗,∗BP∗BP(BP∗,BP∗).

By construction, this is the regraded algebraic Novikov spectral sequence.

10. The equivalence to the motivic Adams spectral sequence

Having the tower in the bounded derived category of BP∗BP-comodules that gives

the regraded algebraic Novikov spectral sequence, we use the equivalence of stable ∞-

categories in Theorem 4.13 and Proposition 6.3 in Part 1

Db(BP∗BP-Comod)
∼= // Db(MU∗MU-Comod)

∼= // S0,0/τ -Modb
♣.

to get a tower in the category S0,0/τ -Modb
♣:

S0,0/τ X0

f0
��

X1

f1
��

g0
oo X2

f2
��

g1
oo · · ·

g2
oo

K0 K1 K2

We show that the above tower in the category S0,0/τ -Modb
♣ is indeed a motivic Adams

tower for S0,0/τ in the sense of Dugger-Isaksen [11].

10.1. Characterization of Adams towers. Recall that we denote by HFmot
p the mo-

tivic mod p Eilenberg-Mac Lane spectrum. It is shown by Hu-Kriz-Ormsby [23] and

Hoyois [21] that HFmot
p is cellular.

Recall the following criterion for a tower in S0,0/τ -Modb
♣ to be an Adams tower.

Definition 10.1. A tower in S0,0/τ -Modb
♣

S0,0/τ X0

f0
��

X1

f1
��

g0
oo X2

f2
��

g1
oo · · ·

g2
oo

K0 K1 K2

is a motivic Adams tower if
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(1) each motivic spectrum Km is S0,0/τ smashed with a wedge of suspensions of HFmot
p .

(2) each map fm : Xm −→ Km induces an epimorphism on the HFmot
p -cohomology. Or

equivalently, each map gm : Xm+1 −→ Xm induces the zero map on the HFmot
p -

cohomology.

Note that by the adjunction between modules over S0,0 and S0,0/τ and that S0,0/τ is

Spanier-Whitehead dual to itself up to a bidegree shift, it is equivalent to check that each

map gm induces the zero map on

[−, S0,0/τ ∧ HFmot
p ]S0,0/τ

in Condition (2).

From the general discussions by Christensen [9], all such towers are equivalent to each

other in the sense that there exist towers maps that induce canonical isomorphisms on

the E2-pages.

Note that Dugger-Isaksen [11] uses the cobar construction to define the motivic Adams

spectral sequence for S0,0/τ , which satisfies the two conditions in Definition 10.1. There-

fore, the motivic Adams spectral sequence for S0,0/τ by Dugger-Isaksen [11] is canonically

isomorphic to the motivic Adams spectral sequence defined by any motivic Adams tower

satisfying the two conditions in Definition 10.1.

In the rest of this section, we check that the two conditions in Definition 10.1 are

satisified by our tower in S0,0/τ -Modb
♣ obtained from the algebraic Novikov tower in the

category Db(BP∗BP-Comod) and Theorem 4.13.

10.2. Proof of the first condition. To check the first condition, we first identify the

BP∗BP-comodule that corresponds to HFmot
p under the equivalences in Proposition 4.11

and Proposition 6.3.

S0,0/τ -Mod♥
♣ ∼=

MUmot
∗,∗ // MU∗MU-Comod ∼=

BP∗MU✷MU∗MU−
// BP∗BP-Comod.

Lemma 10.2. Under the above equivalences in Proposition 4.11 and Proposition 6.3, the

BP∗BP-comodule

BP∗BP/I = BP∗BP⊗BP∗
Fp

corresponds to

HFmot
p /τ = S0,0/τ ∧ HFmot

p .

Proof. Since HFmot
p is an MUmot-module, and both MUmot and HFmot

p are cellular, the

homotopy groups of

MUmot/τ ∧S0,0/τ HF
mot
p /τ
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can be computed by the homology version of Dugger-Isaksen’s universal coefficient spec-

tral sequence [12, Proposition 7.7] in the category MUmot/τ -Modcell.

Tor
MUmot

∗,∗ /τ

s,t,w

(
MUmot

∗,∗ MUmot/τ,Fp

)
=⇒ πt+s,w

(
MUmot/τ ∧Cτ MUmot/τ ∧MUmot/τ HF

mot
p /τ

)
.

Note that MUmot
∗,∗ MUmot/τ is free over MUmot

∗,∗ /τ , this spectral sequence is therefore

concentrated on the line s = 0 and collapses at the E2-page. This gives the following

isomorphisms

MUmot
∗,∗ HFmot

p /τ ∼= π∗,∗(MUmot/τ ∧Cτ HF
mot
p /τ)

∼= π∗,∗(MUmot/τ ∧Cτ MUmot/τ ∧MUmot/τ HF
mot
p /τ)

∼= Tor
MUmot

∗,∗ /τ

0,∗,∗

(
MUmot

∗,∗ MUmot/τ,Fp

)

∼= MUmot
∗,∗ MUmot/τ ⊗MUmot

∗,∗ /τ Fp

∼= MU∗MU⊗MU∗
Fp.

Therefore, under the equivalences in Proposition 4.11 and Proposition 6.3, the S0,0/τ -

module HFmot
p /τ corresponds to

BP∗MU✷MU∗MU(MU∗MU⊗MU∗
Fp) ∼= (BP∗MU✷MU∗MUMU∗MU)⊗MU∗

Fp

∼= BP∗BP⊗MU∗
Fp

∼= BP∗BP⊗BP∗
Fp

∼= BP∗BP/I.

Here the second isomorphism follows from Lemma 6.2. This completes the proof. �

Corollary 10.3. Suppose that N is a BP∗-module that is concentrated in even degrees

and is annihilated by I. Then any comodule of the form

BP∗BP⊗BP∗
N

corresponds to a wedge of suspensions of HFmot
p /τ .

Proof. Since BP∗/I = Fp, any BP∗-module which is annihilated by I is a direct sum of

copies of Fp in different degrees. Therefore, N is isomorphic to a direct sum of copies of

Fp in even degrees.

By Lemma 10.2, the comodule BP∗BP⊗BP∗
Fp corresponds to HFmot

p /τ . Therefore, we

have the comodule BP∗BP⊗BP∗
Σ2nFp corresponds to

HFmot
p /τ ∧ S2n,n

Therefore, the comodule BP∗BP⊗BP∗
N corresponds to a wedge of suspensions of HFmot

p /τ .

�
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Now we prove that our tower satisfies Condition (1) of Definition 10.1.

Proposition 10.4.

(1) All differentials in the cochain complexes Q∗
m are zero, and therefore Q∗

m splits as a

direct sum of cochain complexes that are concentrated in one cohomological degree.

(2) Furthermore, each Qs
m corresponds to a wedge of suspensions of HFmot

p /τ , and hence

so is Q∗
m.

Therefore, each Ki is a wedge of suspensions of HFmot
p /τ .

Proof. In Q∗
m, all differentials Q

s
m −→ Qs+1

m have the form

BP∗BP⊗BP∗
BP∗BP

⊗s
⊗BP∗

Im−s/Im−s+1 // BP∗BP⊗BP∗
BP∗BP

⊗s+1
⊗BP∗

Im−s−1/Im−s.

Since differentials in cobar complex does not decrease the I-filtration, all induced differ-

entials in Q∗
m are zero due to the I-filtration.

It is clear that Im−s/Im−s+1 is annihilated by I, so is

BP∗BP
⊗s
⊗BP∗

Im−s/Im−s+1.

Since they are concentrated in even degrees, by Corollary 10.3, the comodules

Qs
m = BP∗BP⊗BP∗

BP∗BP
⊗s
⊗BP∗

Im−s/Im−s+1

corresponds to a wedge of suspensions of HFmot
p /τ . �

10.3. Proof of the second condition. To prove Condition (2) of Definition 10.1, we

first prove the following Lemma 10.5.

Lemma 10.5. Suppose that X is in the category S0,0/τ -Modb
♣ and that C∗

BP∗BP(X) is the

cochain complex of BP∗BP-comodules representing the image of X under the equivalence

in Theorem 4.13 in Part 1. Let C∗
BP∗

(X) be its underlying cochain complex of BP∗-

modules.

Then the HFmot
p -cohomology of X can be computed as

R∗,∗HomBP∗
(C∗

BP∗
(X),Σ−1,1Fp),

where R∗,∗HomBP∗
(−,−) is the derived homomorphism in the derived category of BP∗-

modules, and Σ−1,1Fp is the cochain complex Σ2Fp that is concentrated in cohomological

degree 3 (see Remark 4.14 for the explanation of the bigrading).

We will see in the proof that, if we compute

[X,HFmot
p /τ ]S0,0/τ ,

instead of the HFmot
p -cohomology of X , the conclusion will not have the bidegree shift.
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Proof. The HFmot
p -cohomology of X is given by

[Σ∗,∗X, HFp]S0,0
∼= π∗,∗HomS0,0(X, HFp)

∼= π∗,∗HomS0,0(S0,0/τ ∧S0,0/τ X, HFp)

∼= π∗,∗HomS0,0/τ (X, HomS0,0(S0,0/τ, HFp))

∼= [Σ∗,∗X, HomS0,0(S0,0/τ, HFp)]S0,0/τ

∼= [Σ∗,∗X, D(S0,0/τ) ∧S0,0 HFp]S0,0/τ

∼= [Σ∗,∗X, Σ−1,1S0,0/τ ∧S0,0 HFp]S0,0/τ

∼= R∗,∗HomBP∗BP(C
∗
BP∗BP(X), Σ−1,1BP∗BP⊗BP∗

Fp)

∼= R∗,∗HomBP∗
(C∗

BP∗
(X), Σ−1,1Fp)

Here the third isomorphism follows from the standard tensor-hom adjuction in a topo-

logical category, the sixth isomorphism follows the fact that the Spanier-Whitehead dual

D(S0,0/τ) of S0,0/τ is Σ−1,1S0,0/τ (see [15, Proposition 4.3] for a proof for example), the

seventh isomorphism follows from Theorem 4.13, and the last isomorphism follows from

the adjunction of the derived functor of BP∗BP⊗BP∗
− and the forgetful functor between

the derived categories of BP∗-modules and BP∗BP-comodules. �

We also need the following Lemma 10.6, whose proof is technical, and is postponed to

the last subsection of this section.

Lemma 10.6. The following homomorphisms

Ext∗,∗BP∗
(Im+1,Fp) −→ Ext∗,∗BP∗

(Im,Fp),

that are induced by the inclusions Im+1 −→ Im are zero for all m ≥ 0.

Now we prove that our tower satisfies Condition (2) of Definition 10.1.

Proposition 10.7. Each map gm : Xm+1 −→ Xm induces the zero map on the HFmot
p -

cohomology.

Proof. Consider the normalized cobar complex

C∗
0 = C

∗
(BP∗BP,BP∗BP,BP∗).

The cochain complex of BP∗-modules

0 −→ BP∗ −→ C∗
0

is a long exact sequence of free BP∗-modules.



THE SPECIAL FIBER OF THE MOTIVIC DEFORMATION IS ALGEBRAIC 73

Therefore, as a cochain complex of BP∗-modules, C∗
0 splits as a direct sum of cochain

complexes

C∗
0 =

⊕

j

D∗
0,j,

where D∗
0,0 is a direct sum of cochain complexes of the form

0 // BP∗
// 0 // 0 // · · ·

shifted by even internal degrees, and for j ≥ 1, D∗
0,j is a direct sum of cochain complexes

of the form

· · · // 0 // BP∗BP
⊗j
⊗BP∗

BP∗
id // BP∗BP

⊗j
⊗BP∗

BP∗
// 0 // · · ·

shifted by even internal degrees. This is due to the facts that as BP∗-modules, BP∗BP

splits as copies of BP∗ shifted by even degrees, and that any bounded below long exact

sequence of projective modules splits in this way.

In particular, each Ds
0,j is a free BP∗-module, and H∗D∗

0,j = 0 for j ≥ 1.

The a-filtration is compatible with the splitting C∗
0 =

⊕

j

D∗
0,j , since it is defined by

the action of powers of the ideal I, which only depends on the underlying BP∗-module

structure.

Recall that for m ≥ 1, each S0,0/τ -module spectrum Xm corresponds to the cochain

complex C∗
m, where

Cs
m = BP∗BP⊗BP∗

BP∗BP
⊗s
⊗BP∗

Im−s

We have the splitting of cochain complexes of BP∗-modules

C∗
m =

⊕

j

D∗
m,j ,

where

Ds
m,j = Ds

0,j ⊗BP∗
Im−s.

For example, the cochain complex D∗
4,2 is a direct sum of cochain complexes of the form

· · · // 0 // BP∗BP
⊗2
⊗BP∗

I3 // BP∗BP
⊗2
⊗BP∗

I2 // 0 // · · ·

shifted by even internal degrees. Therefore, we have the cohomology of these cochain

complexes of BP∗-modules

H∗D∗
m,0
∼=

⊕

∗

Σ2∗Im

concentrated in cohomological degree 0, and for j ≥ 1

H∗D∗
m,j
∼=

⊕

∗

Σ2∗BP∗BP
⊗j
⊗BP∗

Im−2/Im−3
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concentrated in cohomological degree j.

Now we consider the maps

(10.1) R∗,∗HomBP∗
(D∗

m+1,j ,Fp) −→ R∗,∗HomBP∗
(D∗

m,j,Fp)

that are induced by the inclusions

D∗
m+1,j −→ D∗

m,j .

For j ≥ 1, these maps can be identified as

R∗,∗HomBP∗
(H∗D∗

m+1,j,Fp) −→ R∗,∗HomBP∗
(H∗D∗

m,j ,Fp).

This is due to the fact that for objects in the heart of Db(BP∗-Mod), morphisms between

them in the derived category are the same as the ones between their homology. Since

H∗D∗
m+1,j and H∗D∗

m,j are concentrated in the same cohomological degree, and it is clear

that the maps

H∗D∗
m+1,j −→ H∗D∗

m,j

are all zero, we have that the maps (10.1) are all zero for j ≥ 1.

For j = 0, these maps can be rewritten as

Ext∗,∗BP∗
(Im,Fp) −→ Ext∗,∗BP∗

(Im+1,Fp).

By Lemma 10.6, they are all zero. Therefore, the maps

R∗,∗HomBP∗
(C∗

m+1,Fp) −→ R∗,∗HomBP∗
(C∗

m,Fp)

are all zero, since they are zero on each direct summand.

Shifting the bidegrees of Fp to Σ−1,1Fp, we have that the maps

R∗,∗HomBP∗
(C∗

m+1,Σ
−1,1Fp) −→ R∗,∗HomBP∗

(C∗
m,Σ

−1,1Fp)

are all zero. Note that by construction of our tower in the category S0,0/τ -Modb
♣, we

have that

C∗
BP∗

(Xm) = C∗
m

for all m. Therefore, by Lemma 10.5, each map gm : Xm+1 −→ Xm induces the zero map

on the HFmot
p -cohomology. This completes the proof. �

Combining Proposition 10.4 and 10.7, we have shown that our tower satisfies Condi-

tions (1) and (2) of Definition 10.1, and therefore is a motivic Adams tower for S0,0/τ .

This proves that there exists an isomorphism between the regraded algebraic Novikov

spectral sequence and the motivic Adams spectral sequence for S0,0/τ .
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10.4. Proof of Lemma 10.6. We prove Lemma 10.6 in this subsection.

The following Noetherian version of Lemma 10.6 is well known (see [56] for example).

Suppose that

R = Zp[x1, x2, · · · ]

m = (p, x1, x2, · · · )

Rt = Zp[x1, x2, · · · , xt]

mt = (p, x1, x2, · · · , xt)

Then we have

Proposition 10.8. The following maps

TorRt

∗,∗(m
n+1
t ,Fp) −→ TorRt

∗,∗(m
n
t ,Fp)

Ext∗,∗Rt
(mn+1

t ,Fp) −→ Ext∗,∗Rt
(mn

t ,Fp)

that are induced by the inclusion maps mn+1
t −→ mn

t , are both zero for all n ≥ 0 and

t ≥ 1.

Proof. See [56] for a proof of the first statement.

The second statement follows from the first one, since

Ext∗,∗Rt
(M,Fp) = HomRt

(TorRt

∗,∗(M,Fp),Fp)

is true for the polynomial Zp-algebra Rt and any module M over Rt. �

Proof of Lemma 10.6. Note that the statement in Lemma 10.6 also follows from the cor-

responding statement for Tor, since

Ext∗,∗R (M,Fp) = HomR(Tor
R
∗,∗(M,Fp),Fp)

is also true for the polynomial Zp-algebra R and any module M over R.

Therefore, we only need to prove the dual statement that

TorR∗,∗(m
n+1,Fp) −→ TorR∗,∗(m

n,Fp)

is zero.

Take a free resolution F∗ of Fp over R. Since R is free over Rt, we can also regard F∗

as a free resolution of Fp over Rt. Since

R = colim Rt, mn = colim mn
t ,

we have

colim F∗ ⊗Rt
mn

t = F∗ ⊗R mn.
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Therefore, the following diagram commutes.

TorRt

∗,∗(m
n
t ,Fp) H∗(F∗ ⊗Rt

mn
t ) // H∗(F∗ ⊗R mn) TorR∗,∗(m

n,Fp)

TorRt

∗,∗(m
n+1
t ,Fp) H∗(F∗ ⊗Rt

mn+1
t ) //

0

OO

H∗(F∗ ⊗R mn+1)

OO

TorR∗,∗(m
n+1,Fp)

Since direct limits are exact, this completes the proof. �

11. Appendix - computation of some classical Adams differentials

In this appendix, we illustrate the power of the isomorphism of spectral sequences

in Theorem 8.1, by re-computing certain low filtration and historically more difficult

differentials in the range up to the 45-stem at the prime 2. We follow notations in

Isaksen’s Stable Stems [26] and Isaksen, the second and third author’s More Stable Stems

[27].

When computing nontrivial differentials in the classical Adams spectral sequence, it

is usually harder to give proofs for the ones whose sources are in low Adams filtrations.

There are at least two reasons for this. Firstly, there are more potential targets that

it could hit, so it means more possibilities to check and rule out. Secondly, on the

other hand, elements in high Adams filtrations can usually be detected by certain known

spectrum in small chromatic height - for instance, elements above the 1/3-line can be

detected by theK(1)-local sphere and many elements around the 1/5-line can be detected

by the spectrum of topological modular forms. This gives ways to compare with Adams

spectral sequences of other spectra.

Up to the 45-stem, we list the following 10 nontrivial differentials, whose sources are in

low Adams filtrations. Five of them are d2-differentials, four of them are d3-differentials,

and one of them is a d4-differential.

Historically, the first four of them were proved by May in his thesis, by comparing

with Toda’s unstable computation. The next two are obtained by the Hopf invariant one

problem and by comparing with the J-spectrum. Note that the elements ∆h2
2 and h0∆h2

2

were historically called r and s, and there is a nontrivial extension in the May spectral

sequence that gives us a relation s = h0r. The last four, except the one on d3(e1), were

proved by Barratt-Mahowald-Tangora [2] using ad hoc methods. In fact, the differentials

d3(h2h5) = h0p and d2(c2) = h0f1 are both closely related to the nontrivial ν-extension

from h2
4 to the element p, and the differential d4(h3h5) = h0x is closely related to the

nontrivial σ-extension from h2
4 to the element x. For the element e1, Barratt-Mahowald-

Tangora [2] erroneously thought it was a permanent cycle. It was later proved by Bruner

[7] using power operations that it supports a nontrivial differential d3(e1) = h1t.
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Adams differential Stem of the source Filtration of the source

d2(h4) = h0h
2
3 15 1

d3(h0h4) = h0d0 15 2

d2(e0) = h2
1d0 17 4

d2(f0) = h2
0e0 18 4

d2(h5) = h0h
2
4 31 1

d3(h
3
0h5) = h0∆h2

2 31 4

d3(h2h5) = h0p = h1d1 34 2

d4(h3h5) = h0x 38 2

d3(e1) = h1t 38 4

d2(c2) = h0f1 41 3

Now using Theorem 8.1, we compare them with the computations of the motivic Adams

spectral sequence of S0,0/τ . All five d2-differentials are present in the motivic Adams

spectral sequence of S0,0/τ . This gives immediate proofs for all five d2-differentials.

Moreover, the three out of the four d3-differentials except d3(h2h5) are present in the

motivic Adams spectral sequence of S0,0/τ . To be careful, one also need to rule out the

possibility of shorter differentials - d2’s in these cases. This can be done by multiplying

h0 to the proposed d2-differentials and get contradictions.

For the d3-differential d3(h2h5) = h1d1, one can show the following three statements are

equivalent, by considering the long exact sequence of motivic homotopy groups associated

to the cofiber map of τ .

(1) There is a differential d3(h2h5) = τh1d1 in the motivic Adams spectral sequence of

S0,0.

(2) In homotopy groups, {h2h5} maps to {h1d1} under the quotient map from S0,0/τ to

its top cell S1,−1.

(3) There is an η-extension from h2h5 to h2
1d1 in π∗,∗S

0,0/τ , where h2
1d1 is the element in

the motivic Adams E2-page of S
0,0/τ that corresponds to h2

1d1 in that of the top cell

S1,−1.

The statement (3) can be checked in the E∞-page of the motivic Adams spectral

sequence for S0,0/τ , which is isomorphic to the classical Adams-Novikov E2-page. This

gives a proof for the d3-differential in the motivic Adams Adams spectral sequence for

S0,0, and hence the classical d3-differential. Note that the statement (2) is proved by

Isaksen in Table 42 of Stable Stems [26].

At last, the d4-differential d4(h3h5) is also present in the motivic Adams spectral se-

quence for S0,0/τ . To pull it back and get the d4-differential in the motivic sphere, one
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need to rule out the possibilities of nonzero d2’s and d3’s. For degree reasons, there is

no possible d2’s. To rule out the only d3 possibility that d3(h3h5) = x, note that since

h3x = h2
0g2, this would give another d3-differential by multiplying by h3: d3(h

2
3h5) = h2

0g2.

However, there is no such d3 in the motivic Adams spectral sequence for S0,0/τ , which

gives a contradiction.

In sum, we reprove all 10 nontrivial low filtration differentials up to the 45-stem without

much effort. In fact, among all nontrivial differentials up to the 45-stem, there is only

one that cannot be proved by our motivic S0,0/τ -method: d3(∆h2
2) = h1d

2
0. This can

be proved by other methods, such as the ad hoc method by Barratt-Mahowald-Tangora

[2], the power operation method by Bruner [8], the method of detection by tmf , and the

RP∞-technique in [67].

We include the following Isaksen’s charts for the reader’s reference of the differentials

that are discussed in this appendix.
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