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THE FORMAL GROUP OF THE JACOBIAN
OF AN ALGEBRAIC CURVE

MARGARET N. FREIJE

In this paper we give an explicit construction of the formal group of
the Jacobian of an algebraic curve using a basis for the holomorphic
differentials on the curve at a rational non-Weierstrass point. We
construct the formal group of the Jacobian of the modular curve Xo(l)
and using a result of T. Honda, we prove that this formal group is p-
integral for all but finitely many p .

Introduction. Formal group laws have proven to be very useful tools
in many areas of mathematics and computer science. In particular, the
formal group of an elliptic curve has been used to great effect in elliptic
curve theory (for details see for example Silverman [13]) and the use
of the formal group of an abelian variety is pervasive in arithmetic and
algebraic geometry (see Shatz [11] or Milne [8]). Despite the fact that
explicit formulae have been useful in the elliptic curve case, explicit
examples of the formal group of other abelian varieties are few.

Recently, Grant [4] and Flynn [3] have independently given explicit
constructions of the formal group of the Jacobian of curves of genus
two. Grant uses classical formulae for genus two theta functions to
give explicit defining equations for the Jacobian and a set of param-
eters for its group law in a specific P 8 embedding. His embedding
requires that the curve have a Weierstrass point defined over the base
field. Πynn's result does not assume the existence of a rational Weier-
strass point and thus he must use a P 1 5 embedding of the Jacobian.
This paper gives an explicit construction of the formal group of the
Jacobian using a basis for the holomorphic differentials on the curve.
The construction generalizes that of the formal group of an elliptic
curve.

In §1, we review some of the basic facts about higher dimensional
formal groups. Hazewinkel [5] is a good reference for the theory of
formal groups in general. Section II details the construction of the
formal group of the Jacobian. Since this construction depends only
on a basis for the holomorphic differentials on the curve at a non-
Weierstrass point, it is especially useful in cases where much is known
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about these differentials. In §111, we give an example of just such a case
and construct the formal group of the Jacobian of the modular curve
XQ(1) , / a prime. Using a result of T. Honda, and the connection
between the differentials on this curve and the Fourier expansions of
cusp forms of weight 2 on ΓQ(/) we prove that this formal group is
/^-integral for all but finitely' many primes p.

The author wishes to thank the referee for many helpful suggestions
on the styles and organization of this paper.

I. Higher dimensional formal groups. Let R be a commutative ring
with identity and let R[[X]], X = (x\, . . . , xn), be the power series
ring in n variables over R. If f(X) and g{X) e R[[X]] and n is
a positive integer, we say f(X) = g(X) (mod degn) if f(X) - g(X)
has no terms of total degree less than n.

DEFINITION 1. A formal group law F(X, Y) of dimension n over
R is an n-tupleof power series (Fχ(X 9 Y), . . . , Fn(X, Y)), Fi(X 9 Y)
eR[[X, Y]]9 satisfying:

(i) F(X,0) = X, F(0,Y) = Y9

(ii) F(X,F(Y,Z)) = F(F(X,Y),Z).
It is an easy exercise to show that one has formal inverses, that is

there is an n-tuple of power series ι(X) = (i\(X)9 . . . , ιn(X))9 ij(X) €
R[[X]], satisfying ι(X) ΞΞ -X (mod deg2) and F(X9 ι(X)) = 0.

If F(X9 Y) = F(Y, X) we say F is a commutative formal group.

DEFINITION 2. (a) If F(X9 Y) is a formal group of dimension n
and G(X , 7 ) is a formal group of dimension m then a: F -* G is a
formal group homomorphism over R if a(X) = (ct\(X), . . . , am(X))
is an m-tuple of power series, α, (Λf) € XR[[X]]9 satisfying

(b) If α: F —• G is a formal group homomorphism over R, then α
is a formal group isomorphism over R if and only if there is a formal
group homomorphism β: G —> F over R such that a(β(Y)) = Y
and β(a(X)) = X.

It can be shown that α: F -+ G is a formal group isomorphism
over R if and only if dim F = dim G and the Jacobian matrix of α,
/(α) = ((dai/dXj)(0)) is invertible over i?.

EXAMPLES. 1. The additive group of dimension n, G f l(X, Y):

Ga(X9 Y) = (xi+yi,...9xn+yn).

2. The multiplicative group of dimension n, Gm(X, Y):
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3. Let a(X) = (ln(l + xx), ln(l + x2), . . . , ln(l + xn)). Then a is
a formal group isomorphism over <Q> between Gm and Gα, i.e.,

α(Gw(X, 7)) = G α (α(I) 5 α(F)) = a(X) + a(Y) and

J(a) = nx n identity matrix.

The isomorphism a is an example of a more general fact. If R is
a Q-algebra and F(ΛΓ, Y) is a commutative formal group over R of
dimension « then there is a formal group isomorphism between F
and the additive group of dimension n . We now show briefly how to
construct this isomorphism.

Let Ω = ΣR[[X]]dx\ be the space of differential 1-forms where d
is the total derivative map from i?[[X]] to Ω. If ω = Σ " = 1 (pi{X) dxi,
ψi{X) G i?[[ΛQ] is in Ω, then you can get a new differential by evalu-
ating ω(a) = YJl^x ψi{a) dxt for any aeRn .

We define ω = έ?=i Pi W <**/ > P/W € i?[[^]], to be translation
invariant if ω(F(X, T)) = χ)?=i P ί ( ^ ( ^ , T))dF{X, T) = ω. Thus
we have ω is invariant if and only if

(1) (9i(F(X, T))9 . . . , pΛ(F(ΛΓ, Γ)))

Evaluating at X = 0 clearly implies

(2) ( Λ ( D , . . . , 9n(T)) = (pi(0),

On the other hand if we use the associative law for F, differentiate
Fi(Y9 F(X9 T)) = Fi((F(Y, X), Γ)) with respect to yy and then set
Y = 0, we have:

(3)

Substituting F ( I , Γ) for T in (2) and using (3) we have (2) is
equivalent to (1).

We have therefore that ω is invariant if and only if

j (dxx

= (α,,...,^)(|f(O,X)) :
\dxn

dx\

dxn

where ω(0) = a\ dx\ Λ V an dxn .
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Thus the space of invariant differentials of F is an R module of
rank n.

There is also a map d from Ω to the space of differential 2-forms
Ω 2 . If R is a Q-algebra, dω = 0 implies ω = df for some / e
R[[X]\ If F is a commutative formal group over R and ω is an
invariant differential of F then dω = 0 (Proposition 1.3, Honda [6])
and thus if R is a Q-algebra ω = df, fe R[[X]].

Let F b e a commutative formal group defined over a Q-algebra
R and let ωi, ... 9 ωn be a basis for the invariant differentials of F
over R. Let -2j(ΛΓ) £ R[[X]] be the unique power series such that

a n d

We then have'the following well-known theorem:

THEOREM 1. Let F be a commutative formal group of dimension n
defined over a Q-algebra R. Let &(X) = (3[(X)9...9 £?n{X)) with
J%(X) defined as above. Then &(X) is a formal group isomorphism
Sf\ F ~> G^ from F to the additive group of dimension n.

Proof, ωi is an invariant differential of F; thus cθi(F(X 9 T)) =
ωάX) over R[[T]]. This implies that Ή(F(X9 T)) = &i(X)'+
c(T) where cίT1) G Λ[[Γ]]. Evaluating at X = 0 we get c(Γ) =
«^(F(0 ? Γ)) = o2/(Γ). Thus ^ is a formal group homomorphism
from F to G% over i ϊ . The Jacobian matrix of & 9 J{<2?) = (Λy)
where ω/(0) = Σ α θ ^X7 This is invertible over F since ω\, ... , ωn

is an i?-basis. Thus J ? is a formal group isomorphism over i? and

The isomoφhism ^ is called a logarithm of JF . If J{3?) — the
identity matrix, then 3* is called the strict logarithm of F.

II. The formal group of the Jacobian of an algebraic curve.

NOTATION. If / = (i{, ... , ig) is an index set of nonnegative inte-
gers, let /! denote iι\i2l ig\, Nj = i\ +2i2-\ h gig and
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For any k = 1, . . . , g, ikB(I) is a multinomial coefficient and thus is
an integer. If X = (jq , . . . , xg) is a #-tuρle of variables, let X1 de-
note x\χι{ '"Xl

g

g and S{X) = (sι(X),..., sg(X)) where Si(X) is the

/th symmetric function on g letters. Finally, let e^ be the standard
kth basis vector in Rg and let e be the #-tuple (1, 1, . . . , 1).

Let C be a complete nonsingular algebraic curve of genus g de-
fined over a field K, of characteristic zero. Let A be the Jacobian
of C. 4̂ is an abelian variety of dimension g defined over K. If
O is the local ring of functions defined at the origin, Jt its maximal
ideal and O the completion of O in the «/#-adic topology, then O is
isomorphic to AΓ[[X]] where X = (x\, . . . , xg) is a system of param-
eters at the origin. The group morphism m: A xA —• A induces a map
m*: d^Oxδ. Thus there are power series i/(X, Y) e K[[X, 7]]
such that m* = A[{X, 7 ) . Since A is an abelian variety, it is easy to
check that A(X9 Y) = (Aχ(X, Y), . . . , Ag(X, Y)) defines a commu-
tative formal group, the formal group of the Jacobian of C. Chang-
ing the choice of parameters gives rise to an isomorphic though not
strictly isomorphic formal group so we will make a definite choice of
parameters.

Let Po be a ^-rational point on C which is not a Weierstrass point
and let ί be a local parameter at PQ . Choose a basis {η\, . . . , ηg}
for the holomorphic differentials of C such that the AΓ-expansion of
r\ι with respect to the parameter t satisfies

ηiΞΞ(-ty-ιdt (mod t8 dt).

(See for example [1] to see that this can be done.) Let /,-(/) = /*//
be the integral of the formal power series r\ι satisfying //(0) = 0 for
i=l, ... , g and let

Li is symmetric in t\, . . . , tg and thus L/(ίi, . . . , tg) =
where J ^ is a power series is g variables.

Let Λ: C —• A be the canonical map defined over AT with Λ(P0) =
origin of ^4. Λ extends to a map Λ^): Sym^ C -± A which is bira-
tional over K and biregular in a neighborhood of Q = (J?o > > î o) •
This map induces isomorphisms between the completed local ring of
A and the completed local ring of Sym^ C and between the space
of holomorphic differentials on A and those on Sym^ C. Thus we
regard (s\(T), . . . , sg(T)) as a set of local parameters at the origin
of A and dS?ι as the local expansion at the origin of a differential on
A. Using this identification we have the following theorem:
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THEOREM 2. J?(X) = (<S[{X),.. - , &g{X)) is the strict logarithm
of the formal group of the Jacobian of C, i.e.,

is the formal group oftheJacobian of C and &{X) = X (mod deg2).

Before proving the theorem, we need the following lemma express-
ing the sum of the nth powers of the variables jt/ as a polynomial in
the symmetric functions.

LEMMA 1. Let Pn(X) =xf + - + xζ.

Then

Pn(X) = n £ B(I)(S(X)Y.
I

Proof Pn(X) satisfies Newton's identities. That is,

Pn(X) =

where Sj(X) is defined to be 0 if j > g.

The lemma follows from these identities by induction. It is clearly
true for n = 1. Assume it is true for all integers less than n, then we
have:

n-ί

(n-j)
7=1 I'

\ N,,=n-j

(-l)n+ιnsn(X)

n(n-l,^) / n-\

7=1 \ 7=1

+ (-l)n+1nsn(X).

Let / = /' + ej then B(Γ) = ({-\y+ιij/(h + ... + i g - \))B(I).
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As j runs from 1 to min(n - 1, g) and /' runs through all index
sets with Nj = n — j , / runs through index sets with Nj = n except
possibly / = en where n < g.

If n > g we get:

t n-\

Pn{X) =

since iΐ Ni = n < g, I φ en, /7 = 0 for 7 = n, . . . , ^ , we can
replace n - 1 by g in the summation. Therefore

If n > g, as j runs from 1 to n - 1 and /' runs through all index
sets with Nj' = n - j , / runs through all index sets with Nj = n.
Thus we have

N=n

as above.

Nj=n
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Proof of Theorem 2. By the results of the last section, we must show
that {d&\, . . . , d&g), where A2? = Σ%\(9^i(X)/dXj) dxj, is the

standard basis for the invariant differentials on A. The canonical map
Λ from C to A induces a bijection Λ*: H°(A, Ω1) -> # ° ( C , Ω1)
from the holomorphic differentials on A to the holomorphic differen-
tials on C. (See [9].) Since all holomorphic differentials on an abelian
variety are invariant, it suffices to show that Λ* dSΊ is a holomorphic
differential of C for i = 1, . . . , g and that Λ2?(0) = dx\.

We write Y\J = Σ ^ U cij{ή)tn~ι dt where as above ί is a parameter
at a rational non-Weierstrass point PQ and α,(/) = ( - l ) 7 " 1 ^ for
ι , 7 = 1, . . . , g. Then

«=1

By Lemma 1,

aj(n)B(I)(S(T)y

Nτ=n

i.e.,

There is a natural map φ: C —• Sym^ C which is given by the com-
position of the diagonal map C —• Cg with the natural projection
Cg —*• Sym^^ C . The induced map on the completed local rings takes
xktoxkoA = sk(t9...9t) = sk(e)tk and (X o Λ)7 =
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A, d&j(X) = Σ Σ ikB(I)aj(Nj)(X o A)7"'* d{xk o Λ)
k=\ I

N

k=\ I

* ) aj(NI)(S(e))I(tN-ι)dt

Y/B(I)NIaj(NI)(S(e))I(ίN'-ι)dt
I

( \
OO

Σ
n=\

B(I)n(S(e)Y

/
n~ι dt

n=\

Note: if a different basis of differentials is used we still have
is a logarithm of the formal group of the Jacobian but it is not the
strict logarithm.

III. The formal group of the Jacobian of XQ{1) . Let / be an odd
positive prime and

Let X be the complex upper half-plane. Let Y0(l) = <%"/Γ0(l). Then
Yo(l) can be compactified by the addition of finitely many cusps. The
resulting complex curve has a complete non-singular model defined
over Q which we denote by XQ(1) (Shimura [12]). The genus of
Xo(l) is

1 7 + 1 1 if 12f / - 1,
12

Γ / + H
12

- 1 if 1 2 1 / - 1 .

Atkin and Ogg have shown that the cusp at oo is not a Weierstrass
point on Xo(l), (Ogg [10]), so we will use this as base point to con-
struct the formal group of the Jacobian of XQ{1) .
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If f(z) = Y^x ane
2πizn is the Fourier expansion at zoo of a cusp

form of weight 2 for ΓQ(/) then a parameter q can be chosen on
XQ{1) at the cusp at ioo so that

is the expansion at ioo of a holomorphic differential on XQ{1) .
Let {/i,... , fg} be a Q-basis for the cusp forms of weight 2 on

ΓQ(/) with Fourier expansions Σci(n)e2πizn at zoo and [c;(y)] = ϊdg,
the g x g identity matrix. Let {ω\, . . . , ωg} be the corresponding
basis for the holomorphic differentials on Xo(l). Let

be the logarithm map as given in the construction above. In this case
the Jacobian matrix of 3>, J{&) = [ ( - l ) / + % ] .

Since the cusp forms of weight 2 on ΓQ(/) have a Z basis also,
(Shimura [12]), there are only finitely many primes which divide the
denominators of {Ci(n)} for / = 1, . . . , g and « G Z + . Let S be
this finite set of primes.

THEOREM 3. Let I e Z be a prime. If the formal group of the
Jacobian of the modular curve XQ{1) is given by Z{X, Y) =
3?-ι(5?(X)+5?(Y)) = (/i(X, 7 ) , . . . , Jg(X, 7)), then J^X, Y) e
%p[[X, Y]] for all primes p $S.

Before proving this we will need the following lemmas. Let Mp =

+PCi(j/P)] for P φ /, and Mt = [Ci(jl)] where Ci(j/p) = 0 if

LEMMA 2.

-Cg(np).

-Mp

.Cg(n).

+ P
"cι(n/py

Cg(n/p)_

= 0

/ί?r all n e Z + and for all primes p.

Proof. Let 7], and C/p be the standard Hecke and Atkin operators.
Since f is a cusp form of weight two on ΓQ(/) , Tp{ff) for all primes
p Φ I and U\{fϊ) are also cusp forms of weight two on Γo(/) (Atkin
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[2]). Since {fi, ... , fg} is a basis we have

for some Cp e Mn(Q) and

for some Q G

Thus the Fourier coefficients of the fi satisfy the following:

251

WO"

Jpifg).

-Uilfg).
Q

•A-

•h-
•/r

-Λ-

and

cι(np)+pc1(n/p)

_cg(n/p)+pcg(n/p)_

cι(nl)i

.cg(nl).

= CD

ci(n)

-cg{n)\

for all p Φ I and

for all neZ+

c\{n)

.Cg{n).

for all n e Z+.

Evaluating at n = 1, . . . , g gives Cp = Mp and Q = Af/.

The following is a special case of a theorem of T. Honda. (Honda
[6].) Hazewinkel ([5] page 59) gives a similar result in a functional
equation lemma. Let Un = {n x n matrices over ^[ [ ί ] ] } . We say
u e Un is a special element if u = pln (mod degree 1). For f(X) =
(MX), . . . , fn(X))9 MX) e Qp[[X]], MO) = 0 and u = γ,Cμi e
Un , we define (u * f)(X) = Σ ^

LEMMA 3 (Honda [6]). Lrt f(X) = (fι(X)9... , /«(!)), Λ W e
Qptt ̂ ]] w/ίΛ y}(0) = 0. Assume J(f) is an invertible matrix in
Mn(Zp). If there exists a special element u e Un such that P / Ξ O
(mod/?) then F{X, Y) = f~ι(f(X) + f(Y)) is a commutative for-
mal group of dimension n defined over Zp. Moreover, if g(X) =
( S i W , . . . , gn(X))> with gi(X) e QP[[X]] and gi(0) = 0 also has
J(g) invertible in Mn(Zp) and P ? Ξ O (mod p) for the same ele-
ment u, then G(X9 Y) = g~ι(g(X)+g(Y)) isisomorphicto F(X9 Y)
over TLP.

LEMMA 4. pB(I/pr)-B(I/pr+ι) ΞΞ 0 (mod pZp) for any r and for
any index set I = (i{, . . . , ig) where B(I/pr) = 0 if pr \ I (i.e., if
Pr t h for some k).
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Proof. Let n € Z with p \ n . Then by induction we see

(JCI + + xgf
n = (*[ + ... + xζ f~ι" (mod pa).

Therefore by the multinomial theorem,

Let J = Uι> ••- > jg) be an index set such that /? f 7^ for some k
and /^C/Ί H h 7^) = /?αn for some b, 1 < & < α. By comparing
the coefficients of Xp J above we have:

/ (pa» - 1)! \

\(Pbh< • • • (Pbΐk - ! ) ! • • • (P^JgVJ

λ
[ p

PbJk \(Pbh< • • • (Pbΐk

_ pa~ιn ( ( p a - ι n - l ) \

Since p\n and p\ j k we have:

(p'l, - 1)!

Now let / = (Ϊ'I , . . . , ig) be any index set and fix r e Z. If pr \ I
then pB(I/pr) - B(I/pr+ί) = 0. Thus assume / = pbJ where p \ J
and b >r.

If b = r,

pB(I/pr)-B(I/pr+ι) =pB(I/pr) =pB(J) = ±{p/jk)jkB(J)

where p\jk and jkB(J) is a multinomial coefficient. Thus pB(I/pr)
-B(I/pr+ι) = 0 (modpZp).

Assume b > r.

pB(I/pr) - B(I/pr+ι) = pB(pb-rJ) - B(pb-r-ιJ)
(pan - 1)!

{pa-ιn-\)\

where pan = pb~r(j\ H h jg) and p \ n.
Hence pB(I/pr) - B(I/pr+ι) = 0 (modpZp) by (4) above.
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THEOREM 4. For any prime p £ S, let up = plg - Mpt +12. Then
Up is a special element in the sense of Honda and up *£? = 0 (mod p).

Theorem 3 follows immediately from this result and Lemma 3.

Proof. Recall that £fj(X) = Σ / > o 5 ( / ) θ ( Λ r / ) χ / T h u s

Using Lemma 2,

)X1 \

-MD

7>0 />0

7>0

Let J =pl. Then /V> =
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Thus we have:

-p

/ VTTO /

p
7>0

p
7>0

I
where B{Jjpι) = 0 if p[ \ J.

7>0

7>0

j = ί

= 0 (mod/?Zp)

by Lemma 4.

REMARKS. (1) If /? > g, Mp reduces to the matrix [Ci(jp)]9 the
Hasse-Witt matrix of the curve. The special element up is then a gen-
eralization of the special element found by Honda ([7]) in the elliptic



FORMAL GROUP OF A JACOBIAN 255

curve case, namely up = p — apt + t1 where ap is the Hasse invariant
of the elliptic curve.

(2) The cusp forms of weight 2 on ΓQ(/) also have a Z-basis. (See
Shimura [12]). If {fx, . . . , fg} is this basis with j\(q) = Σai{n)qn ,
then the primes in the set S are precisely those primes which divide
the determinant of the matrix [

3. The author wishes to thank M. Rosen and J. Lubin for many
helpful discussions about this material. In particular, it was J. Lubin
who suggested the construction given in §11.
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