
FROM ELLIPTIC CURVES TO HOMOTOPY THEORYMIKE HOPKINS AND MARK MAHOWALDAbstract. A surprising connection between elliptic curves over �nite�elds and homotopy theory has been discovered by Hopkins. In thisnote we will follow this development for the prime 2 and discuss thehomotopy which developed from this.A preliminary report1. IntroductionThe path which we wish to follow begins with elliptic curves over �nite�elds and in particular over F4 . From such a curve we get a formal groupwhich will have height 2. The Lubin-Tate deformation theory constructs aformal group over the ring W F 4 [[a]][u; u�1]. It can be shown that this ringis the homotopy of a spectrum, E2, which is MU orientable. The group ofautomorphisms of the formal group over F4acts on this ring. The Hopkins-Miller theory constructs a lift of this action to an action on the spectrum E2.This group is a pro�nite group, called the Morava stabilizer group S2. Thereis a �nite subgroup G of S2 of order 24 which is the automorphism group ofthe elliptic curve. This �nite group acts on E2 and we de�ne EO2 = EhG2 .It is the torsion homotopy of this spectrum which illuminates much of thehomotopy of spheres in the known range.We begin with the curve, x3 + y2 + y = 0 in P2(F4). In the elliptic curveliterature this is called a supersingular curve. It is non-singular and has onepoint on the line at in�nity. If we represent F4as the set f0; 1; �; �2g where1 + � + �2 = 0, then the solution set in the a�ne plane consists of eightpoints. If x = 0 then y = 0 or 1. If x 2 F4+ then y = �i for i = 1; 2. Thegroup of the elliptic curve is F3 � F3.The group of a�ne transformations of F42 consists of matrices0@ a b cd e f0 0 1 1A0@ xy1 1A :
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2 MIKE HOPKINS AND MARK MAHOWALDThose which leave the equation of the curve alone satisfya = � 2 F4+(1.1) b = 0(1.2) c3 = f + f2(1.3) d = ac2(1.4) e = 1(1.5)It is easy to verify that this group G has order 24 and is SL(F 3; 2). If weinclude the Galois action we get a Z=2 extension of this group. Let G16 bethe 2 primary part. We have the following result, which is well known. Itwill illuminate the latter calculations.Theorem 1.1. If we suppress the topological degree, thenH�(G16;Z=2) ' Ext�A(1)(Z=2;Z=2):Our program will be to construct a formal group from the group of thiselliptic curve. Then G will be a group of automorphisms of this formalgroup. We will lift the curve to the ring W F 4 [[a]] asy2 + a xy + y = x3:We can lift G as a group of automorphisms of this curve. Then the formalgroup associated to this curve will be the universal formal group given by theLubin-Tate theory. The E2 term of the Adams-Novikov spectral sequenceto calculate EO2� will be H�(G;W F 4 [[a]][u; u�1])Gal:2. The formal groupThe material of this section is standard. We will include it for complete-ness for the homotopy theory reader who might not be familiar with thealgebraic theory of elliptic curves.The formal group constructed from an elliptic curve is constructed byresolving the multiplication on the curve around the point at in�nity which istaken as the unit of the group. First we construct a parametric representionin terms of an uniformizer at in�nity. Letw = y�1(2.6) z = x=y(2.7)Then the equation of the curve becomes w = z3 + w2. We have not notedsigns since we are working over F4 .Proposition 2.1. (i) w(z) = �i�0z3 2i :(ii) x(z) = z=w(z) = z�2 + z + z4 + z10 + � � �(iii) y(z) = 1=w(z) = z�3 + 1 + z3 + z9 + � � �This is an easy calculation. At this point one can follow the discussion inSilverman [14] page 114. This discussion is considerably simpli�ed by thefact that the �eld has characteristic 2. This gives the following result.



FROM ELLIPTIC CURVES TO HOMOTOPY THEORY 3Proposition 2.2. The formal group constructed from the elliptic curve,x3+y2 + y = 0 over F4has as the �rst few termsF (u; v) = u+ v + u2v2 + u4v6 + u6v4 + u4v12 + u12v4 + u8v8 + � � � :The next term has degree 22. This is a formal group of height 2 and the2-series is z4(�i�0z12(2i�1)).Next we want to lift this formal group to a formal group over the ringW F4 [[a]][u; u�1] which gives the above curve under the quotient map to F4 .We will do this by just lifting the elliptic curve. The formal group is thenconstructed in the usual way as is done in [14]. The equation of the liftedcurve is x3 = y2 + a u x y + u3y:We want to lift our group as a group of a�ne transformations which leavethe curve alone. Thus we want to make the substitutionsx 7! �x+ u2r(2.8) y 7! y + u s x+ u3t(2.9)In order to preserve the curve we require that the coe�cient of x2; x; andthe constant term all be zero. This gives3r = s2 + s a(2.10) s = 3r2 � 2ast� a(rs+ t)(2.11) t = r3 � art� t2(2.12)The group G is generated by � 2 F4+ and a pair (�; ) which satis�es theequation �3+ + 2 = 0: We can take two generators, � = �; (�; ) = (0; 0)and � = 1; (�; ) = (1; �) and lift these. The rest of group will be variousproducts of these. It is clear how to lift the �rst. We will concentrate onthe second. We want to �nd in�nite series for r; s and t which reduce to1; 1; and � modulo the maximum ideal. We begin with these equations andsuccessively substitute into the above equations givingr(a) = (1=3)(1 + a)(2.13) s(a) = (1=3)(1 + 2a+ a2)� 2a�� a((1=3)(1 + a) + �)(2.14) t(a) = (1=3)3(1 + a)3 � (1=3)a(1 + a)s(a)� �2(2.15) r(a) = (1=3)(s(a)2 + as(a))(2.16) s(a) = 3r(a)2 � 2as(a)t(a)� a(r(a)s(a) + t(a))(2.17) t(a) = r(a)3 � ar(a)t(a)� t(a)2(2.18)Each time we substitute the formula for the classes on the right handside from the formulas above. After each process we have correct liftingsmodulo the maximum ideal raised to one higher power. That this works isjust Hensel's Lemma. Compare [14], page 112.



4 MIKE HOPKINS AND MARK MAHOWALDWhat we have constructed is a map G ! W F4 [[a]][u; u�1]. This is thebeginning of a co-simplical complexW F4 [[a]][u; u�1]) Hom(G;W F 4 [[a]][u; u�1]) � � �The action of G on W F 4 [[a]][u; u�1] is the only additional part to add. Thatde�nes a 7! a+ 2s(2.19) u3 7! u3 + ar + 2t:(2.20)The homology of this co-simplical complex is the E2 term of the Adams-Novikov spectral sequence to calculate the homotopy of the Hopkins-Millerspectrum EO2. We will do this calculation in several ways but the key willbe to show that it is something which is already known.3. The elliptic curve Hopf algebroidThe Weierstrass form of an elliptic curve is usually writteny2 + a1xy + a3y = x3 + a2x2 + a4x+ a6:A change of coordinates does not change the curve and so substitutingx = x0 + ry = y0 + sx0 + tgives us the same curve. The coe�cients transfer according to the followingtable. (Compare [14].)a01 = a1 + 2sa02 = a2 � sa1 + 3r � s2a03 = a3 + ra1 + 2ta04 = a4 � sa3 + 2ra2 � (t+ rs)a1 + 3r2 � 2sta06 = a6 + ra4 + r2a2 + r3 � ta3 � t2 � rta1These formulas are very suggestive of the structure formulas which resultfrom MU� resolutions. Indeed, we can take these formulas to be the de�ni-tion of �R and get a Hopf algebroid(A;�) = (Z[a1; a2; a3; a4; a6];Z[a1; a2; a3; a4; a6; s; r; t]):The two maps from A! � are the inclusion and the one given by the tableabove. In books such as [14] the classes c4 and c6 are usually given and theyrepresent classes in the homology in dimension zero of the simplical complexconstructed from the above Hopf algebroid. The formulas for them arec4 = (a21 + 4a2)2 � 24(2a4 + a1a3)c6 = �(a21 + 4a2)3 + 36(a21 + 4a2)(2a4 + a1a3)� 21(a23 + 4a6)



FROM ELLIPTIC CURVES TO HOMOTOPY THEORY 5Notice that c34 � c26 is divisible by 1728. Let � = (c34 � c26)=1728. The zerodimensional homology of the above chain complex isZ[c4; c6;�]=(c34 � c26 � 1728�):One of our questions is the computation of the rest of this chain complex.We will do this by getting another interpretation of the chain complex. Forthis interpretation we will have a complete calculation. Before we do thiswe want to connect this resolution with the Lubin-Tate theory.In section 2 we consider the elliptic curve over W F4 [[a]][u; u�1] given bythe equation y2 + a u xy + u3y = x3. Thus we have a map f : A[�]=(�2 +�+ 1)! W F4 [[a]][u; u�1] de�ned bya1 7! aua3 7! u3ai 7! 0; otherwiseTheorem 3.1. After completing A[�]=(�2 + � + 1) at the ideal (2; a1) andinverting �, the map f induces an isomorphism between the two chain com-plexes.Corollary 3.2. The E2 term of the Adams-Novikov spectral sequence tocompute the homotopy of EO2 is the homology of the Hopf algebroid (A;�)completed at the ideal (2; a1) with � inverted.In the next section we will show that this computation is well known.4. Ring spectrum resolutionsUsing Bott periodicity we have a map  : 
SU(4) ! BU . Let T be theresulting Thom complex. As is the case with any ring spectrum we canconstruct a resolution TS0 ! T!!T ^ T !!! T ^ T ^ T � � � :This is acyclic from its de�nition. The �rst step in understanding suchresolutions is the following version of the Thom isomorphism theorem.Proposition 4.1. There is a homotopy equivalence T ^
SU(4)+ �= T ^ TThis homotopy equivalence is induced by a map between the base spaces
SU(4)�
SU(4)�; id! 
SU(4)�
SU(4)�
SU(4) id; �! 
SU(4)�
SU(4):Here, � is the map which sends x! (x;�x) and � is the loop space multi-plication.The map in Thom complexes induce by this composite is T ^
SU(4)+ �=T ^ T . Let �T be the co�ber of the unit map. Then T ^ �T �= T ^
SU(4). Itis the T� homotopy of 
SU(4) which describes the T Hopf algebroid. Oneof the main results of [12] is following.



6 MIKE HOPKINS AND MARK MAHOWALDProposition 4.2. The map d = �L � �R can be viewed as a map T !T ^
SU(4) which is induced by the diagonal� : 
SU(4)! 
SU(4)� 
SU(4):Let bi 2 H2i(C P ) be the homology generators. We will identify theseclasses with their image in H�(
SU(4)). ThusH�(
SU(4)) �= Z[b1; b2; b3]:The homotopy classes in ��(T ) which are in the Hurewicz image are multi-ples of primitive classes. On the other hand the classes bi are not primitivefor i > 1. We have:�b1 = b1 
 1 + 1
 b1�b2 = b2 
 1 + b1 
 b1 + 1
 b2�b3 = b3 
 1 + b2 
 b1 + b1 
 b2 + 1
 b3Thus we can de�ne primitive classes as follows:m1 = b1m2 = 2b2 � b21m3 = 3(b3 � b1b2) + b31This allows us to de�ne homotopy classesa1 = 2m1a2 = 3m2 �m21a3 = 2m3We de�ne additional classesa4 = 3m22 � 2m1m3a6 = m32 �m23Then we calculate dai by the following rules:� compute �ai� drop each class of the form x
 1.� classes of the form x
m1 are written as xs� classes of the form x
m2 are written as xr� classes of the form x
m3 are written as xt� classes of the form x
 y must have x 2 Z[a1; a2; a3]: We write them asxy.If 
SU(4) stably split as a wedge of spheres, then T^
SU(4) would give thefree splitting of T ^ T into a wedge of T 's. This is what A[s; r; t] represents.But 
SU(4) does not split in this manner. It would be enough if the piecesinto which 
SU(4) does split would be trivial T� modules but that is not true



FROM ELLIPTIC CURVES TO HOMOTOPY THEORY 7either. The further splitting produces an extra term, a1r in the expressionfor �Ra3. This gives us:�Ra1 = a1 + 2s�Ra2 = a2 + 3r � a1s� s2�Ra3 = a3 + 2t+ a1r�a4 = 3(m2 
 1 + 1
m2)2� 2(m3 
 1 + 1
m3 +m1 
m2)(m1 
 1 + 1
m1)�Ra4 = a4 + 2a2r + 3r2 � a3s� st� a1t� a1sr�Ra6 = a6 + a4r + a2r2 + r3 � a3t� t2 � a1rtThus, we have reproduced the formulas constructed in the previous sectionfrom the change of variables formulas. We still need to get the setting wherethe polynomial algebra Z[a1; a2; a3; a4; a6] does represent the homotopy ofsomething.Let E be any spectrum. If we smash the resolution T with E, we stillhave an acyclic complex with augmentation E. If we apply homotopy, weget a complex whose homology is the E2 term of a spectral sequence tocompute the homotopy of E. We need a spectrum E so that ��(E ^ T ) �=Z[a1; a2; a3; a4; a6]. Hopkins and Miller [7] have constructed a spectrumwhich almost works. In a latter section a connected version of the Hopkins-Miller spectrum eo2 is constructed. It has the key properties:Theorem 4.3. Let D(A1) be a spectrum whose cohomology, as a moduleover the Steenrod algebra is free on Sq2 and Sq4. Then localized at 2, eo2 ^D(A1) �= BP h2i. Let X be the spectrum whose cohomology, as a moduleover the mod 3 Steenrod algebra is free on P 1, the localized at 3, eo2 ^X �=BP h2i ^ (S0 _ S8)Corollary 4.4. ��(eo2 ^ T ) �= Z[a1; a2; a3; a4; a6] and��(eo2 ^ T ^ T ) �= Z[a1; a2; a3; a4; a6]
 Z[s; r; t]:An easy calculation gives us the following.Theorem 4.5. If we apply the functor ExtA(2)( ;Z=2) to the resolution T,we getZ=2[v0; v1; a2; v3; a4; a6]! Z=2[v0; v1; a2; v3; a4; a6; s; r; t]! � � �where ai has �ltration 0. This chain complex will compute ExtA(2)(Z=2;Z=2).In particular, this implies H�(eo2;Z=2) ' A
A(2) Z=2.5. An outline of the calculationIn the rest of this paper we will discuss the homotopy of the spectrumconstructed by Hopkins and Miller [7] which they labeled EO2. We will alsobe quite interested in the Hurewicz image in ��(S0).



8 MIKE HOPKINS AND MARK MAHOWALDTheorem 5.1. The action of S2 on E2� lifts to an E1 ring action of S2 onE2. Furthermore, S2 has a subgroup of order 24, GL(F3; 2). This group canbe extended by the Galois group, Z=2. The group of order 48 acts on EO2and the homotopy �xed point set of this action de�nes EO2. In addition,EO2 ^D(A1) = E2. We will take this result as an axiom for the rest of this paper. We willcalculate the homotopy of EO2 in two ways. First we will construct aspectral sequence which untangles the formula EO2 ^ D(A1) = E2. Thisis done in the next section. Next we will consider the connected cover ofEO2 and show that it essentially has A 
A(2) Z=2 as its cohomology. Wethen have an Adams spectral sequence calculation which has been knownfor about twenty years. This approach allows one to have available a ratherlarge collection of spaces whose EO2� homology has been computed. See forexample [2].These results also give a counter example to the main result of [3] whichasserted that A
A(2) Z=2 could not be the cohomology of a spectrum. Theerror in that paper can be traced to a homotopy calculation in [4] which wasin error. The correction of the appropriate homotopy calculation is done in[9].In the last section we discuss homotopy classes in the spheres which canbe constructed by this spectrum.6. The homotopy of EO2Our �rst calculation of EO2� uses the formulaEO2 ^D(A1) = E2The CW complex D(A1) is constructed by the following lemma where weuse the notation M� = S0 [ ej�j+1.Lemma 6.1. There is a map : �5M� ^M� !M� ^M�Proof. This is a straightforward calculation in ��(S0).We can use the de�nition of D(A1) and the formula in (2.1) to constructa spectral sequence. Abstractly, we think of D(A1) as constructed out ofthree mapping cones, M� ; M� and M where  is de�ned in the Lemma.Thus we have a contracting homomorphism in P (h1; h2; h2;0)
H�(D(A1))with d h1 = e�; d h2 = e� and d h2;0 = e . We will use the de�ning equation(2.1) to give us a free E2 resolution. For the moment we want to think ofthis as an un�ltered but graded object. There is a total di�erential whosehomology is EO2�. If we assign �ltration 0 to h1 and v1 and �ltration one toeach of h2; h2;0; v2 then the corresponding E1 will be bo�[h2; h2;0; v2]. If werecognize the bo structure of the set < h2; h2;0; v2 > then the corresponding



FROM ELLIPTIC CURVES TO HOMOTOPY THEORY 9resolution is just the Kozul resolution of [2], section 5 (page 319�). Ofcourse, v2 should be inverted and 2 = v0. This gives the following result.Theorem 6.2. There is a spectral sequence withEs;t2 = v�12 Exts;tA(2)(Z=2;Z=2)which converges to E0(EO2�).We will explore this in more detail in latter sections. In particular we willwant to understand the di�erentials.Using the Adams Novikov di�erentials from the same starting point weget another spectral sequence. In this case we assign �ltration 0 to v1 andv2, �ltration 1 to h1; h2 and h2;0. We will also work over the integers.In order to state the answer in a compact form we introduce severalhomotopy patterns.Figure 6.3. The following diagram de�nes A. The solid circles representZ=2's and the open circles represent a Z=8 ( Z=4) in stem 0 (stem 3). Instem 3 there is an extension to the Z=2 giving a Z=8 in this case too.
-202 0-3 3r r� r b r r r���b r r r�

Figure 6.4. The following diagram de�nes B. The diagram starts in �ltra-tion (0; 0). The starting circle represents a Z and the circle in dimension 3represents a Z=4 with an extension to the Z=2 giving a Z=8.
b r r r���b r r r�Theorem 6.5. There is a spectral sequence which converges to EO2� andthe E2 is given byh42;0P (h42;0; v42 ; v�42 )
A� (P (v42 ; v�42 )
B)� v41bo[v42 ; v�42 ]where A is the module of Figure 6.3 and B is the module of Figure 6.4.7. The Bockstein spectral sequenceIn this section we will give the proof of theorem 6.5. We start with thefollowing resolution, Z[v1; v2; h1; h2; h2;0] where the classes vi have �ltration0 and the other classes have �ltration 1. The dimension of the classes is



10 MIKE HOPKINS AND MARK MAHOWALD(2; 6; 1; 3; 5) respectively. The Novikov di�erentials give the following for-mulas: v2 ! v1t21 + v0t2 + v21t1(7.21) v22 ! v21t1v2 + v20v2t2 + v41t21(7.22) h2;0 ! h1h2(7.23) h22;0 ! h32 + v2h31(7.24)It is worth noting how the formulas in the Hopf algebroid give theseformulas. The class v2 corresponds to a3. The di�erential on a3 = 2t+ a1r.When we substitute the di�erential on a2 which sets 3r = a1s + s2 we seethat the di�erential on a3 = 2t + a21s=3 + a1s2=3: Setting a1 = v1; s = t1shows that the two formulas are the same. The class h2;0 is represented byt2 here and t in the Hopf algebroid.We will break the calculation into several steps introducing various classesone at a time.Step 1. We �rst look at just Z[h2; h2;0] and apply the h22;0 di�erential.This leaves h1; h2; h22; h20; h2;0h2; h2;0h22iZ[h42;0]:Much of the rest of the calculation is free over h42;0 and we will drop mentionof it until we need it again. We can write this calculation pictorially as thefollowing �gure.Figure 7.1. Each dot represents a Z[v1; v2; h1; h42;0].
r r rr� r rStep 2. Next we want to add h1. This amounts to taking the above�gure and tensoring it with Z[h1]. We then feed in the di�erential de�nedby h2;0. This gives us:Figure 7.2.
b r r bEach circle represents a class which is free on Z[h1] and the dots representa Z. Of course the picture is free over Z[v1; v2; h42;0].Step 3 Next we will tensor this picture with Z[v1] 
 �[v2]. We use thedi�erential de�ned by v2 to kill v1h2. We also use the di�erential on v2



FROM ELLIPTIC CURVES TO HOMOTOPY THEORY 11and h2;0 to construct the Massey product, a = v1h2;0 + h1v2. The startingpicture is:Figure 7.3.
b r r bb r r bWe have h2;0 ! h1h2 and v2 ! v1h2. This de�nes a Massey producta = v1h2;0 + h1v2. Now h2h2;0 ! h1h22 and v2h2 ! v1h22 leaving h2a. Butv2h2;0 ! h2a. Also, h2;0h22 ! h1h32 = h31a and v2h22 ! v1h32 = v1h21a andthese leave h22a which is the target of h2v2h2;0. This leaves the followingpicture.Figure 7.4. The open circles represent P (h1; v1) free classes. The dotsrepresent Z. The x classes represent Z[v1] classes.
b r r r�� br rx x�Step 4. Next we add a copy of the above based on v22. The startingpicture gives:Figure 7.5.

b r r r�� br rx x� b r r r�� br rx x�We have v22 ! v21a leaving h21v22 
P (h1; v1): Also v2h2;0h22 ! h41v22 leavingh21v22P (v1)h1; h1i. Finally v22a! h21v22v21 leaving just v22h21a. This givesFigure 7.6. The open circles represent P (h1; v1) and the dots represent Z.
b r r r��r rr r� r rr� rr r�� r bStep 5. The torsion Bocksteins are now easy. a ! 2h22, v1 ! 2h1,v22h2 ! 2h21v22 and v22h22 ! 2h31v1v22 . This leaves:



12 MIKE HOPKINS AND MARK MAHOWALDFigure 7.7. The open circles represent P (h1; v1) free classes. In additionthe class corresponding to h2 and v22h21a represents a Z.
b r r �r r r r� r r bStep 6. Next we add h42;0 and we have v32h2;0h22 ! v41h42;0 and v22h21a !8h42;0. This last formula uses several substitutions to complete.v22h21a! 4h2;0v2ah21= 4h22;0v1ah1 = 4h32;0v21h1 = 8h42;0:The �rst formula is a consequence of the calculation in the bo� spectralsequence. See, for example, [10]. This completes the calculation and theproof of Theorem 6.5.It is interesting to compare the �ltration of the di�erential which killsv41h42;0. It is an Adams-Novikov d1 but it would be and Adams di�erentiald2. As we shall see later, it requires the Adams spectral sequence to used2's,d3's and d4's to recover from this.8. The Adams-Novikov spectral sequenceIn this section we will compute the Adams-Novikov di�erentials and thuscalculate the associated graded homotopy of EO2. The starting point is thefollowing. We will show latter that it is a d1 in the usual Adams spectralsequence.Proposition 8.1. In the Adams-Novikov spectral sequence for EO2 we haved5v42 = h2h42;0:Proof. We begin with a calculation in stable homotopy.Lemma 8.2. �2�� 2 h�4�; �; 2�i.We will �rst use this lemma to complete the proof of the proposition.We note that h22h42;0 is the Adams-Novikov name for �2��. By checkingthe above calculation, we see that �4� = 0 in EO2�. Thus the bracket ofthe lemma must go to zero in EO2. Hence the class of h22h42;0 must be inthe indeterminacy of the bracket. It is easy to see that only zero is in theindeterminacy and so h22h42;0 must project to the zero class. The only way thiscan happen is for d5v42h2 = h22h42;0. dividing by h2 gives the proposition.Now we will prove the Lemma. This is essentially an Adams d1. Firstrecall that �4� is represented by h1h4c0 in the Adams E2. In order to forma bracket such as h�4�; �; 2�i we need to know why h21h4c0 = 0. The easiestapproach is to use the lambda algebra and the calculations of [15]. We seethat �2�3�5�7�7 = h1h4c0. Then from [15] we see that �8�9�3�3�3 hits



FROM ELLIPTIC CURVES TO HOMOTOPY THEORY 13�1�2�3�5�7�7. Thus �0�8�9�3�3�3 2 hh1h4c0; h1; h0i. Up to the additionof some boundaries, this is just �6�6�5�3�3�3. This is equivalent to theleading term name of �2��. This completes the proof.The following �gure illustrates this �rst di�erential. We place the chartfor v42 in �ltration 3 so it is easier to see just what is happening.Figure 8.3.
246 2017 23r rr r� �r rb br rr rr r

��� ���b br rr rr r� �
bAAK CCCCO ���r r rbAAK rAAK r�r rAAK �r rAAK bAAK CCCCO ���r r rAAK b rAAK r�r

We can collect the result of this computation in the following chart. Wehave listed some exotic multiplications which we will prove in the rest ofthis section.Figure 8.4. The class in dimension 4 is a Z=4. Lines which connect ad-jacent elements but are of length 2 represent exotic extensions. There arethree such. One is multiplication by 2 in stem 27. The other two are mul-tiplications by �, one in stem 27 and the other in stem 39. The completecalculation has this chart multiplied by Z[��].
25 30 35 40 45r��r rr��r r�r r�r r��b��r r

We need to establish some of the compositions which are non-zero in thishomotopy module. We introduce some notation. We let �; �; �; to representthe generators of the 0, 1, and 3 stems. This is consistent with the traditionalnames of these classes in the homotopy of spheres. The elements in the 8, 14and 20 stem we will label �; �; �� respectively. For other classes, we will usethe symbol ai for an element in the ith stem. The exotic extensions referredto above then are covered by the following proposition.Proposition 8.5. The following compositions are non-zero: �a27; 2a27; �a39.Proof. First note that 2a27 is just the standard extension which comes fromthe 3 stem where 4� = �3. Next, the class a28 = ���. This is a �ltrationpreserving calculation. The de�nition of � forces � 2 h�; 2�; �i. When we



14 MIKE HOPKINS AND MARK MAHOWALDmultiply this bracket by �� we see that ��� = h��; �; 2�i�. This bracket clearlyrepresents a27. Notice that we can not form this latter bracket in spheresbut need the di�erential on v42 in order to form the bracket.In the homotopy of spheres we have the bracket relation h�; ��; �i = 2��.This follows easily from the Adams spectral sequence where there is a d2which makes ��2 = 0. In the usual naming, we have d2e0 = h21d0. We alsohave h2e0 = h0g. This establishes this relationship. Now if we multiplyboth sides by �� we have ��h�; ��; �i = 2��. But ��h�; ��; �i = h��; �; ��i�. Thisis the relation we wanted.Next we want to establish the special � multiplications.Proposition 8.6. We have the following compositions: �a25 = a28; �a32 =a35; �a39 = a42.Proof. A bracket construction for a25 is a25 = h��; �; �i. If we multiply thison the right by � we have h��; �; �i� = ��h�; �; �i = ��� = a28: In a similarway we see that a32 = h��; �; �i. If we multiply both sides by � we geth��; �; �i� = ��h�; �; �i. But in spheres h�; �; �i = �� and this gives the relation.In the above proposition we showed a39 = h��; �; ��i. Multiplying this by �we have a39� = ��h�; ��; �i = ��2�2 and this is the relationship we wanted.In a very similar fashion we establish the following. We will skip theproof.Proposition 8.7. We have the following � compositions. �a25 = a33; �a27 =a35; �a32 = 2a40; �a34 = a42; �a39 = a47 = ��a25; �a40 = a48.With these extensions established, the rest of the spectral sequence isquite easy. We have the following theorem.Theorem 8.8. We have the following di�erentials:d5v82 = ��a27 (= 2���v42 = 2d5v42)and d7v162 = �2a25��v82 (= 2v82d5v82)
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16 MIKE HOPKINS AND MARK MAHOWALD9. The connected cover of EO2In this section we will construct the connected cover of EO2 and get someof its properties. We begin with the following which is proved in [7].Theorem 9.1. v�11 EO2 = KO[[v2=v31 ]][v42 ; v�42 ]Our strategy to construct the the connected cover of EO2 will be toconstruct the following map.f : bo[v42=v121 ]! v�11 EO2[0; � � � ;1]:With this map we will consider the pull back square as de�ning the spectrumY Y ���! bo[v42=v121 ]??y ??yEO2[0; � � � ;1] ���! v�11 EO2[0; � � � ;1]We will show:Theorem 9.2. The cohomology of Y is H�(Y ) = A
A(2)Z and the Adamsspectral sequence to calculated ��(Y ) is that given by Theorem 2.2.The �rst step is the following Lemma.Lemma 9.3. There is a map g : bo! v�11 EO2[0; � � � ;1] such that g�(�) =�, the unit in v�11 EO2[0; � � � ;1].Proof. We begin with � : S0 ! v�11 EO2[0; � � � ;1]. We recall that there is ashort exact sequence �4k�1B(k)! bok ! bok+1where B(k) is the integral Brown Gitler spectrum [1] and bok is the bo BrownGitler spectrum. This sequence is constructed in [5]. The K theory of B(k)is easily computed and it is zero in dimensions of the form 4k � 1. Thus wecan proceed by induction starting with the map �. This constructs one copyof bo into v�11 EO2[0; � � � ;1].To continue with the proof of the Theorem we next construct a map of
S24 ! v�11 EO2[0; � � � ;1] which gives the polynomial algebra on v42. Usingthe ring structure we have the desired map f of the diagram. This completesthe construction of Y.Next we want to compute the homotopy of Y . The E2 term of the Adamsspectral sequence for Y is ExtA(2)(Z=2;Z=2). This has been calculated bymany people. The �rst calculation is due to Iwai and Shimada [6]. ExtensiveExtA(2)(M;Z=2) calculations are given in [2]. We refer the reader there to�nd the details of the calculation. The answers given there are in a compactform which is quite useful. It is based on the following de�nition.



FROM ELLIPTIC CURVES TO HOMOTOPY THEORY 17De�nition 9.4. An indexed chart is a chart in which some elements arelabeled with integers. A unlabeled x receives the labelmaxflabel (y) : x = hi0y or x = hi1y; some i � 1gor 0 if this set is empty. If C is a labeled chart then hCi denotes the chartconsisting of all elements v4i1 x such that i+ label(x) � 0:The following is an example of an indexed chart.
rrrrrrr
rrr
2s=8 12 221 1��� rrrrrrr

rrrr 1 1 1120 24 28rrrrrrr
rrrrr

rrrrrrr
rrrrrr
-1r r rrr �r rr r rr r rr r r rr r r rr r r rr r r r� � � �r r r�� ��r r rr r r

Let this chart be called E0. Then the following is proved in [2]. (Actually,the chart in [2] has a dot missing in dimension (30,6).)Theorem 9.5. ExtA(2)(Z=2;Z=2) is free over Z=2[v82 ] onhE0i � Z=2[v1; w] � g35;7:We have the following di�erentials in the chart E0. We use the notationgt�s;s to refer to the dot in position (t� s; s).Proposition 9.6. d2g20;7 = g19;9.Proof. When translated to more familiar notation this is a consequence ofthe following Lemma.Lemma 9.7. In the Adams spectral sequence of Theorem 2.1 the �rst dif-ferential occurs in dimension 12 and hits the class v41h2.Proof. First we need to construct the element. Using the above formulaswhich are �ltration preserving we see thatv0v22 + v2h22 + v1h22;0is a cycle and it generates an v0 tower in the 12 stem. When we use the�ltration increasing part of the di�erentials we see this class is not a cycle



18 MIKE HOPKINS AND MARK MAHOWALDbut its boundary isv21v0h1v2 + v20v2h2;0 + v0v41h2 + v21h1h22We can begin to try to complete this into a cycle. The �rst class we wouldadd is v31v2. The boundary on this class isv21v0h1v2 + v41h2 + v0v31h2;0 + v51h1There is nothing we can add to get rid of the v41h2 class and this gives thedi�erential of the Lemma.Using h2 multiplications we have the following additional di�erentials.d2g23;7 = g22;9d2g26;7 = g25;9d2g29;7 = g28;9d2g28;5 = g27;7We have the following d3.Proposition 9.8. d3g24;6 = g23;9.This di�erential implies the following in addition.d3g25;8 = g24;11d3g30;6 = g29;9We have the following d4.Proposition 9.9. d4g31;8 = v41g22;8.We wish to collect the result of these di�erentials. The pattern which isleft from the upper left corner of the �gure generates a copy of bo startingin dimension (8; 4). The second pair of Z towers generates a bo in dimension(32; 8). This second bo uses v41g25;5 and h1 times this class and the class indimension (32; 7) which has h0 none zero on it. The picture looks as follows:
rCCCCO �rrrrrrr

rrrBBBBM r r r��r rrrrrrr
r
AAK



FROM ELLIPTIC CURVES TO HOMOTOPY THEORY 19This picture leaves a copy of bo, after some extensions, which starts in�ltration (32; 7). It represents v41v42. There is an extra dot in the abovepicture in �ltration (35; 10) which we still have to account for. The followingchart lists everything which is left because the source of a di�erential is notpresent.
b r r rrr��� r r r� r r� r rrr�r r b r r rr�� r

In addition to this part we have the polynomial algebra on the two gen-erators and v41 free on the following.r r rr�� r rs=7t= 32The following result gives the di�erentials for this part of the picture.Proposition 9.10. Among classes in Z=2[v1; w]�g35;7 and between this poly-nomial algebra and classes in the above diagram we have the following dif-ferentials: d2g35;7 = g36;9d4v1g35;7 = g38;12d4v1wg35;7 = v41g35;8d4v21wg35;7 = v41g35;10d4v21w2g35;7 = v81g32;7d4v31w2g35;7 = v81g34;8d4w3g35;7 = v71g35;7d4v31w3g35;7 = v101 g35;7If we combine the above diagram, the polynomial algebra and the di�er-entials above we have the following �gure.



20 MIKE HOPKINS AND MARK MAHOWALD

r r r r
�� �� �� ��

r r r r
r r r r
r r r r

r r r r
r r r r

r r r r r r r r r r r r r r r r
AAK AAK AAK AAK

CCCCO CCCCO CCCCO CCCCO
�� �� ������ ���������� �� ��r r r r r r r r r r r r r

BBBBM BBBBM BBBBM
CCCCO CCCCO CCCCO

CCCCO CCCCOCCCCO CCCCOCCCCO CCCCO CCCCOCCCCO CCCCOCCCCO CCCCOCCCCO CCCCO
r r r r r r r r r r

r r r r r r r r r
r r r r r rr r r rCCCCO CCCCO

This allows us to write the v1 torsion part of the answer out though the42 stem. The following is the correct chart.
b r r rrr��� r r r� r r� r rrr�r r b r r rr�� r r r r r� �� r rr r r������
To compute the next 48 groups we need to put the earlier calculationtogether with the �rst 42 groups above multiplied by v82. This gives thefollowing chart.

brr r r rrr��� r r r� r r� r rrr�r r b r r rr�� r r r r r� �� r rr r r������
r r r
���� ���� ����r r r

r r r
�� �� ��r r r

r r r
r r�� ��r rr r�� ��r rr r�� ��r rr r���� ����r rr r

AAK CCCCO BBBBM BBBBM AAK BBBBM AAK CCCCO BBBBM AAK BBBBM AAK AAK AAK BBBBM AAK AAK AAK AAK AAKAAK
This gives the following homotopy starting in dimension 45.



FROM ELLIPTIC CURVES TO HOMOTOPY THEORY 21

r r r
�� ��r rb r�rrr����r r rr r r��r rr r r b r r r rr
Beyond 95 this di�erential pattern leaves a class every 5 dimensions. Be-cause the di�erential on v82 is a d2, the polynomial algebra v82Z=2[v1; w] ismapped monomorphically into Z=2[v1; w] leaving just w9g35;7Z=2[w]. Tocomplete the calculation we need to take into account v162 . We do this byputting our calculation so far together with this pattern and writing in thenew di�erentials. This gives the following pattern. The �rst chart calculatesthe homotopy from 95 to 140.

rb r r rrr��� r r r� r r� r rrr�r r b r r rr�� r r r r r� �� r rr r r������r r r r r r r r r
BBBBM BBBBM BBBBMBBBBM

Here is the picture for 141 to 180.

r r r
�� ��r rb r�rrr����r r rr r r��r rr r r b r r rrr r r r r r r r
BBBBM BBBBM BBBBM

BBBBM BBBBM BBBBMBBBBM BBBBM



22 MIKE HOPKINS AND MARK MAHOWALDWe can now collect the �nal charts and write in one place the v1 torsionhomotopy. Dots correspond to Z=2's and circles correspond to Z's. Verticallines indicate multiplication by 2 and slanting lines to the right indicatemultiplication by �. There are a large number of multiplications by � butthey are not indicated on these charts.
10 20 30 40b r r rrr��� r r r� r r� r rrr�r����r b r r rr����r r r r r� �� r rr r r������

45 55 65 75 85r r r
�� ��r rb r�rrr����r r rr r r��r rr r r b r r r rr

96 100 110 120 130 140b r r rrr������ r r r� r r� r rr r����r b r rr����r r r��r r� �� r r r r�� ��r r rr r

144 150 160 170��rr rb rrr�����r r rr r r r b�� rr
Theorem 9.11. The homotopy of eo2 is given by the following:v41bo[v42 ]�E[v322 ]where E is the homotopy described in the above charts.



FROM ELLIPTIC CURVES TO HOMOTOPY THEORY 2310. Some self mapsLet A1 be the suspension spectrum of one of the complexes whose coho-mology is free over A(1), the sub algebra of A generated by Sq1 and Sq2. LetM(i0; i1) be the mapping cone of �2i1M(2i0) ! M(2i0) which induces anisomorphism in K-theory. In [4] it is claimed that A1 and M(1; 4) admitteda self map raising dimension by 48 and inducing an isomorphism in K(2)�.This result is false as the results here have shown. The argument in [4] iscorrect in showing the following.Theorem 10.1. There is a class representing v82 2 Ext8;56A (A(1); A(1)).Consider a resolution by Eilenberg-Mac Lane spaces constructed as followsfor any suspension spectrumX with the property that there is only one class� 2 ��(X) which is non-zero in mod 2 homology. We begin with a map f0so that the composite S0 ����! X f0���! K(Z=2)is non-zero. Now we construct a tower inductively. Suppose we haveX fs���! Xs gs�1���! � � � g0���! K(Z=2)with g0 � � � gs�1fs = f0. Let hs : xs ! K(ker(H�(fs))) and let Xs+1 be the�ber. Clearly, fs lifts to give fs+1.Each such resolution de�nes a spectral sequence withEs;t1 = ker(H�(fs))t�s+1As with the usual Adams spectral sequence we have convergence to the 2-adic completion and we can de�ne E2(X;X) as equivalence classes of mapsbetween these resolutions.In this language [4] showed the following result forM(1; 4). A very similarargument works for M(2; 4).Theorem 10.2. For X =M(1; 4) or X =M(2; 4) there is a classv82 2 E8;562 (X;X). Using an eo2 resolution we see that v82 commutes with the possible targetsof the di�erentials on v82 . Thus in each case if d2(v82) 6= 0, which is the case,then v322 will be a class in E4 and for dimensional reasons, d4v322 = 0. Thisproves the following theorem.Theorem 10.3. For X = A1, X = M(1; 4) or X = M(2; 4), there is amap v322 : �192X ! Xwhich is detected in K(2)�.Thus the results discussed in [13], [11] and possibly other places whichused the maps of [4] are established in this modi�ed form. We will discusssome of these classes, particularly those of [11] in the next section.



24 MIKE HOPKINS AND MARK MAHOWALD11. The Hurewicz image and some homotopy constructed fromEO2Using the results of the last section we can construct many v2-families.Theorem 11.1. If � 2 ��(S0) is represented by a 2 ExtA(Z=2;Z=2) andunder the map ExtA(Z=2;Z=2)! ExtA(2)(Z=2;Z=2) a maps to a non-zerocycle then v32k2 � 6= 0.Proof. This is the standard Greek letter proof. There is an �# so that thefollowing composite is �.Sj�j !M j�j+10(2; 4) �#! M0(2; 4) ! S0ThenSj�j+192 M j�j+202 M j�j+10 S0 EO2M192 M0
- -v

?��# ?�# HHHHHj --v ������*is non-zero in ��EO2.Corollary 11.2. We list the classes which this is known to apply tostem 6 8 9 14 15 17 28 32 33 34 35 39 40 41 42 45 46name �2 � �� � �� �� �� q �q e20 �e20 u ��2; 2�� ���2 �2�2 w �wstem 52 53 59 60 65 66 80 85name ��q ���q ��u ��3; 2��3 ��w ���w ��4 ��2wNext consider ��. The only problem is that it has order 8 and so theargument does not quite work.Proposition 11.3. �� is v322 -periodic.Proof. We look at map ��# which makes this diagram commute.M29(2; 4) M0(2; 4)M20(2) M0(2)-��# ?6 -��^1We do the Greek letter construction and getM20+192(2; 4) ���! M29+192(2; 4) ���! M29(2; 4) ���! M0(2)??y ??y ??y� M192 ���! M0(2; 4) ���! M0(2) ^EO2



FROM ELLIPTIC CURVES TO HOMOTOPY THEORY 25This composite is non-zero. We can break apart the calculation and getthat �� as an element of order 8 is v322 -periodic. Of course we get easily4�� = v2� is v322 -periodic.The next problem class is ���.Proposition 11.4. ��� is v322 periodic.Proof. Suppose not, that is, suppose ���(v322 ) = 0. Then we have a map fS20+192 [ e24+192 S0EO2S24+192 E2
-f

? ??-gin the diagram, the map g is v362 . Thus f would have 1 order. Thiscontradiction completes the proof.Next we have classes in EO2 which do not come from the sphere. Sincethere should be nothing extra in homotopy we use these to detect somethingalso.Proposition 11.5. The classes �4, ��4, �2�4 and 12�2�4 are v2-periodic.Proof. It is an easy Ext calculation to show that in the following diagramM26(1; 4) M0(1; 4)S0S25 M26(1) EO2
-�#4? ??- -the composite along the bottom row is non-zero. M(1; 4) also has a v322 selfmap and this gives the diagramS208 M26+192(1; 4) M26(1; 4)

M192(1; 4) S0 EO2
- -? ?- -The map M26+192 ! EO2 is essential. Suppose the composite S16+192 !M26+192 ! M26(1; 4) ! S0 was zero. Then M26+192=S16+192 factors



26 MIKE HOPKINS AND MARK MAHOWALDthrough S0 giving M26+192=S16+192 ! S0 ! EO2. This map is v1-periodicand this contradicts the v1-structure of S0. Thus v322 �4 is essential. ��4works the same way and also �2�4=2.It is interesting that each extra class in EO2 detected something in thesphere.The next place to study is the 47 stem. Here the di�erential on v82 elimi-nates homotopy classes which are in the sphere. Similar to Proposition 11.4we haveProposition 11.6. The classes fe0rg and �fe0rg are v2-periodic.Proof. We have established that 2v322 ��2 = �v322 fug by Theorem 11.1. Thuswe can form the bracket hv322 ��2; 2�; �i. Suppose this bracket contains zero.Then S40+192 [ e45+192 [ e48+192 S0S48+192 BP h2i? - ?-v402is a commutative diagram. This gives a class of 1-order in I��S0, acontradiction. Thus the bracket is essential and de�nes v322 fe0rg. Now�fe0rg = �f �wg. Suppose v322 �w = 0. Then we could form the brackethv322 fwg; �; �i 2 �192+49(S0) and this class maps to v402 �2 in EO2, which isa v1 periodic class. This contradiction establishes the result.We also get some mileage out of the failure of the v82 self map.Proposition 11.7. There is a family of classes of order 4 in 38+k192 stemdetected by v8+32k2 in BP .Proof. Here we use the centrality of our self map. We have establishedfe0rg is v322 periodic and the failure of the proof of v82 self map shows thatthe composite M47(2; 4) g! M47(4) ! S0 is null. This gives the followingdiagram M47+192(2; 4) M58+192(2; 4)M47(2; 4) M58(2; 4) M0(2)-? ?- -Going around the top is the same, by centrality, as going around bottom.The top represents v322 g and so is null which implies that there is a class �such that M47+192(2) v41! M39+192(2) ! S0 is v322 fe0rg. As before, � mustbe on the bottom class or we would get a v1-periodic class.Following closely the proof of Proposition 11.5 we get,



FROM ELLIPTIC CURVES TO HOMOTOPY THEORY 27Proposition 11.8. v41�5, ��5, ��n5=4 are v322 periodic. The class �4 is v2to some power periodic but we don't know the power.Proof. First we look at �5�. We have M51(1; 4) ! S0 extending �5�. Themap is detected in EO2 by fv82h21g. Thus we have an essential compositeM51+192(1; 4)! S0 ! EO2detected by v402 h21:Suppose the composite S41+192 ! M51+192(1; 4) ! S0 is zero. Then itfactors through M51+192(1; 4)=S41+192 ! S0 ! EO2. This map would bev1 periodic. This completes the proof. The argument is similar for the othercases. We look at �4. We have the followingM47(1) v81!M31(1) �4! S0 is essential and detected by fe0rg:Thus we can consider the composite M47(1; 8) ! M56(1; 4) ! S0. This isnull. We haveM47+2i�6(1; 8) M56+2i�6(1; 4)M47(1; 8) M56(1; 4) S0-? ?- -The map from M47+2i�6(1; 8) ! S0 is null so the map M47+2i�6(1) factorsthrough M31+2i�6. As before, it must be on the bottom cell or we get av1-periodic class.Some of these homotopy classes were discussed in [1 ]. The proofs thereare valid for 32k replacing 8k. In that note �k�j was also studied and shownto be non-zero. We �rst discuss �4�. In the sphere we are looking at theclasses fh4h2g, h33, h3c0, h3h1c0 and �2��.Proposition 11.9. The classes fh4h3g, h33, h3c0,h3h1c0 and �2�� are v322periodic.Proof. We begin with �2��. The M27(1) �2��#! S0 ! EO2 is detected byM27(1) ! S27 ! EO2. Thus the map of M27(1)! S0 is v2-periodic. Sup-pose S26+192 ! M27+192(1) ! S0 is null. Then S27+192 ! EO2 factorsthrough S0. This class has �nite order and so extends to M28+192(2i) !S0 ! EO2. The composite is v1-periodic, a contradiction. Next note thatthe composite M26(1; 4) ! M26(1) ! S26 �1�! S0 is null since M26(1) !S0 factors through M26(1) ! M18(1) ! S18 fh2h4g! S0. By centralityM26+192(1; 4)!M26+192(1) �! S26+192 v322 �2��! S0 is null. This gives v322 fh2h4g.� � fh4h2g = �3. This gives S26+192 n2�n! M22+192(1) ! S0 is �2��v322 and soall the in between classes are non-zero too.



28 MIKE HOPKINS AND MARK MAHOWALDWe start with f�1h2h5g. There is an extension of M42(1) ! S42 !�1h1h5 S0 to M51(1; 4) ! S0 and the composite is detected by v82� andso this gives a v322 family. As before, this class must live in the S42+k192stem. Composing with � to get M55(1; 4) fh2�1h2h5g! S0 and this is detectedby �2v82 . This gives v2 � f�1h2h5g, �n5, � ^ n5, as v32k2 periodic classes. Thesame family of arguments works for n5 and related classes. The approachin [1] is di�erent since EO2 was not available but complimentary.The remaining task is to show all the classes in EO2 come from the spherein the above sense. This requires constructing new homotopy classes. Theseclasses are covered by the following propositions.Proposition 11.10. The class of order 4 represented by fh5h0ig in the 54stem is v322 periodic and 2fh5h0ig = ��fe20g.Proof. We �rst note that ��fe20g is fe20gg and this class �ts 11.1. This com-pletes the proof since fh5h0ig must map essentially to EO2�.Proposition 11.11. The class corresponding to fPh5h1e0g is v322 periodic.Proof. In EO2� we have �fh5h0ig 6= 0. Since h2h5h0i = h1h5Pe0 in Ext weare done.Proposition 11.12. The class in the 65 stem with Adams spectral sequencename Ph5j maps to a non zero class in EO2�. Thus it represents a homotopyclass which is v322 periodic.We remark that this is the �rst class beyond Kochman's calculations thatwas not covered by 11.1.Proof. In EO2� the Toda bracket h��3; �; �i 6= 0: we can form the bracketin the sphere too and so it must be non-zero there. Since d4PG = gz and��2� = fzg we see that h��3; �; �i 2 fh2PGg = 0. Thus it has �ltration � 12:The only other class of higher �ltration not in J� is ��fwg and this is alsopresent in EO2�. This gives the result.Corollary 11.13. The class Ph5h0k in the 63 stem maps to a class inEO2� and thus is v322 periodic.Proof. In EO2� we have �h��3; �; �i 6= 0. We also have h2Ph5j = Ph5h0k inExt. This completes the proof.We remark that in the E1 term of the May spectral sequence the classPh5h0k is divided by only h0. Brunner's calculation of the Ext shows thatit is actually divided by h50. In particular, we have h50G21 = Ph5h0k.Proposition 11.14. The bracket h�; ��3; �i is detected in EO2�. In the Adamsspectral sequence it is in the coset fP 2Gg. In addition � on this class is di-visible by 4 which is represented by the bracket h��3; �; 2�; �i and is in thecoset fQ5g. We also have �2h��3; �; 2�; �i 6= 0.



FROM ELLIPTIC CURVES TO HOMOTOPY THEORY 29Proof. In EO2� it is easy to see that h�; ��3; �i 6= 0. It is also straightforwardto see that it is in fP 2Gg. In Ext we have h1P 2G = h20Q5. This is veri�edby Brunner's calculations. Now Q5 is a permanent cycle because there isnothing of higher �ltration for it to hit. It has order eight for the samereason. It is in the four fold bracket h��3; �; 2�; �i by construction. The otherclaims follow by easy arguments except we need to show that Q5 is non-zero.To this end consider the following diagram.S72 EO2M72(8) S0S71
-f -g6 6

�����fQ5g@@@I iSince �h�; ��3; �i = 4fQ5g; f�(i) = fh30v122 , the generator of Z2 in the the 72stem. Thus Q5 must be a non-zero cycle.Proposition 11.15. The composition �fQ5g is a class of order 4 with thegenerator having Adams spectral sequence name fPD0g. This class is also��fPh5ih0g.Proof. S75 EO2M75(2) S0S71
-f -g6 6

��������3@@@I iThe map f is v82�2b where b is the EO2� class of order 2 in dimension 27.Thus the map g can not be null but f can not factor through S0 since it wouldhave Adams �ltration at least 16 and there is nothing there. Thus ���3 6= 0in ��(S0) and we have ��2 fh1Ph5e0g = ���3 by 11.11. Thus ��fPh5ih0g 6= 0and generates a Z=4. We need to show that it is �fQ5g. This follows fromthe bracket constructed for fQ5g in 11.14.Proposition 11.16. The remaining classes through the 95 stem detected byEO2� are ��4, ��3fwg and h��3fwg; �; �i = fv82P 1d0gg.
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