FROM ELLIPTIC CURVES TO HOMOTOPY THEORY

MIKE HOPKINS AND MARK MAHOWALD

Abstract

A surprising connection between elliptic curves over finite fields and homotopy theory has been discovered by Hopkins. In this note we will follow this development for the prime 2 and discuss the homotopy which developed from this.

A preliminary report

1. Introduction

The path which we wish to follow begins with elliptic curves over finite fields and in particular over \mathbb{F}_{4}. From such a curve we get a formal group which will have height 2 . The Lubin-Tate deformation theory constructs a formal group over the ring $\mathbb{W}_{\mathbb{F}_{4}}[[a]]\left[u, u^{-1}\right]$. It can be shown that this ring is the homotopy of a spectrum, E_{2}, which is $M U$ orientable. The group of automorphisms of the formal group over \mathbb{F}_{4} acts on this ring. The HopkinsMiller theory constructs a lift of this action to an action on the spectrum E_{2}. This group is a profinite group, called the Morava stabilizer group S_{2}. There is a finite subgroup G of S_{2} of order 24 which is the automorphism group of the elliptic curve. This finite group acts on E_{2} and we define $E O_{2}=E_{2}^{h G}$. It is the torsion homotopy of this spectrum which illuminates much of the homotopy of spheres in the known range.

We begin with the curve, $x^{3}+y^{2}+y=0$ in $\mathbb{P}^{2}\left(\mathbb{F}_{4}\right)$. In the elliptic curve literature this is called a supersingular curve. It is non-singular and has one point on the line at infinity. If we represent \mathbb{F}_{4} as the set $\left\{0,1, \rho, \rho^{2}\right\}$ where $1+\rho+\rho^{2}=0$, then the solution set in the affine plane consists of eight points. If $x=0$ then $y=0$ or 1 . If $x \in \mathbb{F}_{4}^{+}$then $y=\rho^{i}$ for $i=1,2$. The group of the elliptic curve is $\mathbb{F}_{3} \oplus \mathbb{F}_{3}$.

The group of affine transformations of $\mathbb{F}_{4}{ }^{2}$ consists of matrices

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

[^0]Those which leave the equation of the curve alone satisfy

$$
\begin{align*}
a & =\alpha \in \mathbb{F}_{4}^{+} \tag{1.1}\\
b & =0 \tag{1.2}\\
c^{3} & =f+f^{2} \tag{1.3}\\
d & =a c^{2} \tag{1.4}\\
e & =1 \tag{1.5}
\end{align*}
$$

It is easy to verify that this group G has order 24 and is $S L\left(\mathbb{F}_{3}, 2\right)$. If we include the Galois action we get a $\mathbb{Z} / 2$ extension of this group. Let G_{16} be the 2 primary part. We have the following result, which is well known. It will illuminate the latter calculations.
Theorem 1.1. If we suppress the topological degree, then

$$
H^{*}\left(G_{16}, \mathbb{Z} / 2\right) \simeq \operatorname{Ext}_{A(1)}^{*}(\mathbb{Z} / 2, \mathbb{Z} / 2)
$$

Our program will be to construct a formal group from the group of this elliptic curve. Then G will be a group of automorphisms of this formal group. We will lift the curve to the ring $\mathbb{W}_{\mathbb{F}_{4}}[[a]]$ as

$$
y^{2}+a x y+y=x^{3} .
$$

We can lift G as a group of automorphisms of this curve. Then the formal group associated to this curve will be the universal formal group given by the Lubin-Tate theory. The E_{2} term of the Adams-Novikov spectral sequence to calculate $E O_{2 *}$ will be $H^{*}\left(G ; \mathbb{W}_{\mathbb{F}_{4}}[[a]]\left[u, u^{-1}\right]\right)^{G a l}$.

2. The formal group

The material of this section is standard. We will include it for completeness for the homotopy theory reader who might not be familiar with the algebraic theory of elliptic curves.

The formal group constructed from an elliptic curve is constructed by resolving the multiplication on the curve around the point at infinity which is taken as the unit of the group. First we construct a parametric represention in terms of an uniformizer at infinity. Let

$$
\begin{align*}
w & =y^{-1} \tag{2.6}\\
z & =x / y \tag{2.7}
\end{align*}
$$

Then the equation of the curve becomes $w=z^{3}+w^{2}$. We have not noted signs since we are working over \mathbb{F}_{4}.
Proposition 2.1. (i) $w(z)=\Sigma_{i \geq 0} z^{3} 2^{i}$.
(ii) $x(z)=z / w(z)=z^{-2}+z+z^{4}+z^{10}+\cdots$
(iii) $y(z)=1 / w(z)=z^{-3}+1+z^{3}+z^{9}+\cdots$

This is an easy calculation. At this point one can follow the discussion in Silverman [14] page 114. This discussion is considerably simplified by the fact that the field has characteristic 2 . This gives the following result.

Proposition 2.2. The formal group constructed from the elliptic curve, $x^{3}+$ $y^{2}+y=0$ over \mathbb{F}_{4} has as the first few terms

$$
F(u, v)=u+v+u^{2} v^{2}+u^{4} v^{6}+u^{6} v^{4}+u^{4} v^{12}+u^{12} v^{4}+u^{8} v^{8}+\cdots .
$$

The next term has degree 22. This is a formal group of height 2 and the 2-series is $z^{4}\left(\Sigma_{i \geq 0} z^{12\left(2^{i}-1\right)}\right)$.

Next we want to lift this formal group to a formal group over the ring $\mathbb{W}_{\mathbb{F}_{4}}[[a]]\left[u, u^{-1}\right]$ which gives the above curve under the quotient map to \mathbb{F}_{4}. We will do this by just lifting the elliptic curve. The formal group is then constructed in the usual way as is done in [14]. The equation of the lifted curve is

$$
x^{3}=y^{2}+a u x y+u^{3} y
$$

We want to lift our group as a group of affine transformations which leave the curve alone. Thus we want to make the substitutions

$$
\begin{align*}
x & \mapsto \alpha x+u^{2} r \tag{2.8}\\
y & \mapsto y+u s x+u^{3} t \tag{2.9}
\end{align*}
$$

In order to preserve the curve we require that the coefficient of x^{2}, x, and the constant term all be zero. This gives

$$
\begin{align*}
3 r & =s^{2}+s a \tag{2.10}\\
s & =3 r^{2}-2 a s t-a(r s+t) \tag{2.11}\\
t & =r^{3}-\text { art }-t^{2} \tag{2.12}
\end{align*}
$$

The group G is generated by $\alpha \in \mathbb{F}_{4}{ }^{+}$and a pair (β, γ) which satisfies the equation $\beta^{3}+\gamma+\gamma^{2}=0$. We can take two generators, $\alpha=\rho,(\beta, \gamma)=(0,0)$ and $\alpha=1,(\beta, \gamma)=(1, \rho)$ and lift these. The rest of group will be various products of these. It is clear how to lift the first. We will concentrate on the second. We want to find infinite series for r, s and t which reduce to 1,1 , and ρ modulo the maximum ideal. We begin with these equations and successively substitute into the above equations giving

$$
\begin{align*}
r(a) & =(1 / 3)(1+a) \tag{2.13}\\
s(a) & =(1 / 3)\left(1+2 a+a^{2}\right)-2 a \rho-a((1 / 3)(1+a)+\rho) \tag{2.14}\\
t(a) & =(1 / 3)^{3}(1+a)^{3}-(1 / 3) a(1+a) s(a)-\rho^{2} \tag{2.15}\\
r(a) & =(1 / 3)\left(s(a)^{2}+a s(a)\right) \tag{2.16}\\
s(a) & =3 r(a)^{2}-2 a s(a) t(a)-a(r(a) s(a)+t(a)) \tag{2.17}\\
t(a) & =r(a)^{3}-a r(a) t(a)-t(a)^{2} \tag{2.18}
\end{align*}
$$

Each time we substitute the formula for the classes on the right hand side from the formulas above. After each process we have correct liftings modulo the maximum ideal raised to one higher power. That this works is just Hensel's Lemma. Compare [14], page 112.

What we have constructed is a map $G \rightarrow \mathbb{W}_{\mathbb{F}_{4}}[[a]]\left[u, u^{-1}\right]$. This is the beginning of a co-simplical complex

$$
\mathbb{W}_{\mathbb{F}_{4}}[[a]]\left[u, u^{-1}\right] \Rightarrow \operatorname{Hom}\left(G, \mathbb{W}_{\mathbb{F}_{4}}[[a]]\left[u, u^{-1}\right]\right) \cdots
$$

The action of G on $\mathbb{W}_{\mathbb{F}_{4}}[[a]]\left[u, u^{-1}\right]$ is the only additional part to add. That defines

$$
\begin{align*}
a & \mapsto a+2 s \tag{2.19}\\
u^{3} & \mapsto u^{3}+a r+2 t . \tag{2.20}
\end{align*}
$$

The homology of this co-simplical complex is the E_{2} term of the AdamsNovikov spectral sequence to calculate the homotopy of the Hopkins-Miller spectrum $E O_{2}$. We will do this calculation in several ways but the key will be to show that it is something which is already known.

3. The elliptic curve Hopf algebroid

The Weierstrass form of an elliptic curve is usually written

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} .
$$

A change of coordinates does not change the curve and so substituting

$$
\begin{aligned}
& x=x^{\prime}+r \\
& y=y^{\prime}+s x^{\prime}+t
\end{aligned}
$$

gives us the same curve. The coefficients transfer according to the following table. (Compare [14].)

$$
\begin{aligned}
a_{1}^{\prime} & =a_{1}+2 s \\
a_{2}^{\prime} & =a_{2}-s a_{1}+3 r-s^{2} \\
a_{3}^{\prime} & =a_{3}+r a_{1}+2 t \\
a_{4}^{\prime} & =a_{4}-s a_{3}+2 r a_{2}-(t+r s) a_{1}+3 r^{2}-2 s t \\
a_{6}^{\prime} & =a_{6}+r a_{4}+r^{2} a_{2}+r^{3}-t a_{3}-t^{2}-r t a_{1}
\end{aligned}
$$

These formulas are very suggestive of the structure formulas which result from $M U_{*}$ resolutions. Indeed, we can take these formulas to be the definition of η_{R} and get a Hopf algebroid

$$
(A, \Lambda)=\left(\mathbb{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right], \mathbb{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}, s, r, t\right]\right) .
$$

The two maps from $A \rightarrow \Lambda$ are the inclusion and the one given by the table above. In books such as [14] the classes c_{4} and c_{6} are usually given and they represent classes in the homology in dimension zero of the simplical complex constructed from the above Hopf algebroid. The formulas for them are

$$
\begin{aligned}
& c_{4}=\left(a_{1}^{2}+4 a_{2}\right)^{2}-24\left(2 a_{4}+a_{1} a_{3}\right) \\
& c_{6}=-\left(a_{1}^{2}+4 a_{2}\right)^{3}+36\left(a_{1}^{2}+4 a_{2}\right)\left(2 a_{4}+a_{1} a_{3}\right)-21\left(a_{3}^{2}+4 a_{6}\right)
\end{aligned}
$$

Notice that $c_{4}^{3}-c_{6}^{2}$ is divisible by 1728 . Let $\Delta=\left(c_{4}^{3}-c_{6}^{2}\right) / 1728$. The zero dimensional homology of the above chain complex is

$$
\mathbb{Z}\left[c_{4}, c_{6}, \Delta\right] /\left(c_{4}^{3}-c_{6}^{2}-1728 \Delta\right) .
$$

One of our questions is the computation of the rest of this chain complex. We will do this by getting another interpretation of the chain complex. For this interpretation we will have a complete calculation. Before we do this we want to connect this resolution with the Lubin-Tate theory.

In section 2 we consider the elliptic curve over $\mathbb{W}_{\mathbb{F}_{4}}[[a]]\left[u, u^{-1}\right]$ given by the equation $y^{2}+a u x y+u^{3} y=x^{3}$. Thus we have a map $f: A[\rho] /\left(\rho^{2}+\right.$ $\rho+1) \rightarrow \mathbb{W}_{\mathbb{F}_{4}}[[a]]\left[u, u^{-1}\right]$ defined by

| $a_{1} \mapsto$ | $a u$ |
| ---: | :--- | ---: |
| $a_{3} \mapsto$ | u^{3} |
| $a_{i} \mapsto$ | 0, otherwise |

Theorem 3.1. After completing $A[\rho] /\left(\rho^{2}+\rho+1\right)$ at the ideal $\left(2, a_{1}\right)$ and inverting Δ, the map f induces an isomorphism between the two chain complexes.

Corollary 3.2. The E_{2} term of the $A d a m s$-Novikov spectral sequence to compute the homotopy of $E O_{2}$ is the homology of the Hopf algebroid (A, Λ) completed at the ideal $\left(2, a_{1}\right)$ with Δ inverted.

In the next section we will show that this computation is well known.

4. Ring spectrum Resolutions

Using Bott periodicity we have a map $\gamma: \Omega S U(4) \rightarrow B U$. Let T be the resulting Thom complex. As is the case with any ring spectrum we can construct a resolution \mathbb{T}

$$
S^{0} \rightarrow T \underset{\rightarrow}{\rightarrow} T \wedge T \underset{\rightarrow}{\rightarrow} T \wedge T \wedge T \cdots
$$

This is acyclic from its definition. The first step in understanding such resolutions is the following version of the Thom isomorphism theorem.

Proposition 4.1. There is a homotopy equivalence $T \wedge \Omega S U(4)_{+} \cong T \wedge T$ This homotopy equivalence is induced by a map between the base spaces
$\Omega S U(4) \times \Omega S U(4) \xrightarrow{\Delta, i d} \Omega S U(4) \times \Omega S U(4) \times \Omega S U(4) \xrightarrow{i d, \mu} \Omega S U(4) \times \Omega S U(4)$.
Here, Δ is the map which sends $x \rightarrow(x,-x)$ and μ is the loop space multiplication.

The map in Thom complexes induce by this composite is $T \wedge \Omega S U(4)_{+} \cong$ $T \wedge T$. Let \bar{T} be the cofiber of the unit map. Then $T \wedge \bar{T} \cong T \wedge \Omega S U(4)$. It is the T_{*} homotopy of $\Omega S U(4)$ which describes the T Hopf algebroid. One of the main results of [12] is following.

Proposition 4.2. The map $d=\eta_{L}-\eta_{R}$ can be viewed as a map $T \rightarrow$ $T \wedge \Omega S U(4)$ which is induced by the diagonal

$$
\Delta: \Omega S U(4) \rightarrow \Omega S U(4) \times \Omega S U(4)
$$

Let $b_{i} \in H_{2 i}(\mathbb{C} P)$ be the homology generators. We will identify these classes with their image in $H_{*}(\Omega S U(4))$. Thus

$$
H_{*}(\Omega S U(4)) \cong \mathbb{Z}\left[b_{1}, b_{2}, b_{3}\right]
$$

The homotopy classes in $\pi_{*}(T)$ which are in the Hurewicz image are multiples of primitive classes. On the other hand the classes b_{i} are not primitive for $i>1$. We have:

$$
\begin{aligned}
\Delta b_{1} & =b_{1} \otimes 1+1 \otimes b_{1} \\
\Delta b_{2} & =b_{2} \otimes 1+b_{1} \otimes b_{1}+1 \otimes b_{2} \\
\Delta b_{3} & =b_{3} \otimes 1+b_{2} \otimes b_{1}+b_{1} \otimes b_{2}+1 \otimes b_{3}
\end{aligned}
$$

Thus we can define primitive classes as follows:

$$
\begin{aligned}
& m_{1}=b_{1} \\
& m_{2}=2 b_{2}-b_{1}^{2} \\
& m_{3}=3\left(b_{3}-b_{1} b_{2}\right)+b_{1}^{3}
\end{aligned}
$$

This allows us to define homotopy classes

$$
\begin{aligned}
& a_{1}=2 m_{1} \\
& a_{2}=3 m_{2}-m_{1}^{2} \\
& a_{3}=2 m_{3}
\end{aligned}
$$

We define additional classes

$$
\begin{aligned}
& a_{4}=3 m_{2}^{2}-2 m_{1} m_{3} \\
& a_{6}=m_{2}^{3}-m_{3}^{2}
\end{aligned}
$$

Then we calculate $d a_{i}$ by the following rules:

- compute Δa_{i}
- drop each class of the form $x \otimes 1$.
- classes of the form $x \otimes m_{1}$ are written as $x s$
- classes of the form $x \otimes m_{2}$ are written as $x r$
- classes of the form $x \otimes m_{3}$ are written as $x t$
- classes of the form $x \otimes y$ must have $x \in \mathbb{Z}\left[a_{1}, a_{2}, a_{3}\right]$. We write them as $x y$.
If $\Omega S U(4)$ stably split as a wedge of spheres, then $T \wedge \Omega S U(4)$ would give the free splitting of $T \wedge T$ into a wedge of T 's. This is what $A[s, r, t]$ represents. But $\Omega S U(4)$ does not split in this manner. It would be enough if the pieces into which $\Omega S U(4)$ does split would be trivial T_{*} modules but that is not true
either. The further splitting produces an extra term, $a_{1} r$ in the expression for $\eta_{R} a_{3}$. This gives us:

$$
\begin{aligned}
\eta_{R} a_{1} & =a_{1}+2 s \\
\eta_{R} a_{2} & =a_{2}+3 r-a_{1} s-s^{2} \\
\eta_{R} a_{3} & =a_{3}+2 t+a_{1} r \\
\Delta a_{4} & =3\left(m_{2} \otimes 1+1 \otimes m_{2}\right)^{2} \\
& -2\left(m_{3} \otimes 1+1 \otimes m_{3}+m_{1} \otimes m_{2}\right)\left(m_{1} \otimes 1+1 \otimes m_{1}\right) \\
\eta_{R} a_{4} & =a_{4}+2 a_{2} r+3 r^{2}-a_{3} s-s t-a_{1} t-a_{1} s r \\
\eta_{R} a_{6} & =a_{6}+a_{4} r+a_{2} r^{2}+r^{3}-a_{3} t-t^{2}-a_{1} r t
\end{aligned}
$$

Thus, we have reproduced the formulas constructed in the previous section from the change of variables formulas. We still need to get the setting where the polynomial algebra $\mathbb{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right]$ does represent the homotopy of something.

Let E be any spectrum. If we smash the resolution \mathbb{T} with E, we still have an acyclic complex with augmentation E. If we apply homotopy, we get a complex whose homology is the E_{2} term of a spectral sequence to compute the homotopy of E. We need a spectrum E so that $\pi_{*}(E \wedge T) \cong$ $\mathbb{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right]$. Hopkins and Miller [7] have constructed a spectrum which almost works. In a latter section a connected version of the HopkinsMiller spectrum $e O_{2}$ is constructed. It has the key properties:

Theorem 4.3. Let $D\left(A_{1}\right)$ be a spectrum whose cohomology, as a module over the Steenrod algebra is free on $S q^{2}$ and $S q^{4}$. Then localized at 2, eo $o_{2} \wedge$ $D\left(A_{1}\right) \cong B P\langle 2\rangle$. Let X be the spectrum whose cohomology, as a module over the mod 3 Steenrod algebra is free on P^{1}, the localized at 3 , e $e o_{2} \wedge X \cong$ $B P\langle 2\rangle \wedge\left(S^{0} \vee S^{8}\right)$

Corollary 4.4. $\pi_{*}\left(e o_{2} \wedge T\right) \cong \mathbb{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right]$ and

$$
\pi_{*}\left(e o_{2} \wedge T \wedge T\right) \cong \mathbb{Z}\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{6}\right] \otimes \mathbb{Z}[s, r, t] .
$$

An easy calculation gives us the following.
Theorem 4.5. If we apply the functor $\operatorname{Ext}_{A(2)}(-, \mathbb{Z} / 2)$ to the resolution \mathbb{T}, we get

$$
\mathbb{Z} / 2\left[v_{0}, v_{1}, a_{2}, v_{3}, a_{4}, a_{6}\right] \rightarrow \mathbb{Z} / 2\left[v_{0}, v_{1}, a_{2}, v_{3}, a_{4}, a_{6}, s, r, t\right] \rightarrow \cdots
$$

where a_{i} has filtration 0. This chain complex will compute $\operatorname{Ext}_{A(2)}(\mathbb{Z} / 2, \mathbb{Z} / 2)$. In particular, this implies $H^{*}\left(e o_{2}, \mathbb{Z} / 2\right) \simeq A \otimes_{A(2)} \mathbb{Z} / 2$.

5. An outline of the calculation

In the rest of this paper we will discuss the homotopy of the spectrum constructed by Hopkins and Miller [7] which they labeled $E O_{2}$. We will also be quite interested in the Hurewicz image in $\pi_{*}\left(S^{0}\right)$.

Theorem 5.1. The action of S_{2} on $E_{2 *}$ lifts to an E_{∞} ring action of S_{2} on E_{2}. Furthermore, S_{2} has a subgroup of order $24, G L\left(\mathbb{F}_{3}, 2\right)$. This group can be extended by the Galois group, $\mathbb{Z} / 2$. The group of order 48 acts on $E O_{2}$ and the homotopy fixed point set of this action defines $E O_{2}$. In addition,

$$
E O_{2} \wedge D\left(A_{1}\right)=E_{2}
$$

We will take this result as an axiom for the rest of this paper. We will calculate the homotopy of $E O_{2}$ in two ways. First we will construct a spectral sequence which untangles the formula $E O_{2} \wedge D\left(A_{1}\right)=E_{2}$. This is done in the next section. Next we will consider the connected cover of $E O_{2}$ and show that it essentially has $A \otimes_{A(2)} \mathbb{Z} / 2$ as its cohomology. We then have an Adams spectral sequence calculation which has been known for about twenty years. This approach allows one to have available a rather large collection of spaces whose $E O_{2 *}$ homology has been computed. See for example [2].

These results also give a counter example to the main result of [3] which asserted that $A \otimes_{A(2)} \mathbb{Z} / 2$ could not be the cohomology of a spectrum. The error in that paper can be traced to a homotopy calculation in [4] which was in error. The correction of the appropriate homotopy calculation is done in [9].

In the last section we discuss homotopy classes in the spheres which can be constructed by this spectrum.

6. The homotopy of $E O_{2}$

Our first calculation of $E O_{2 *}$ uses the formula

$$
E O_{2} \wedge D\left(A_{1}\right)=E_{2}
$$

The CW complex $D\left(A_{1}\right)$ is constructed by the following lemma where we use the notation $M_{\alpha}=S^{0} \cup e^{|\alpha|+1}$.
Lemma 6.1. There is a map

$$
\gamma: \Sigma^{5} M_{\eta} \wedge M_{\nu} \rightarrow M_{\eta} \wedge M_{\nu}
$$

Proof. This is a straightforward calculation in $\pi_{*}\left(S^{0}\right)$.
We can use the definition of $D\left(A_{1}\right)$ and the formula in (2.1) to construct a spectral sequence. Abstractly, we think of $D\left(A_{1}\right)$ as constructed out of three mapping cones, M_{η}, M_{ν} and M_{γ} where γ is defined in the Lemma. Thus we have a contracting homomorphism in $P\left(h_{1}, h_{2}, h_{2,0}\right) \otimes H_{*}\left(D\left(A_{1}\right)\right)$ with $d h_{1}=e_{\eta}, d h_{2}=e_{\nu}$ and $d h_{2,0}=e_{\gamma}$. We will use the defining equation (2.1) to give us a free E_{2} resolution. For the moment we want to think of this as an unfiltered but graded object. There is a total differential whose homology is $E O_{2 *}$. If we assign filtration 0 to h_{1} and v_{1} and filtration one to each of $h_{2}, h_{2,0}, v_{2}$ then the corresponding E_{1} will be $b o_{*}\left[h_{2}, h_{2,0}, v_{2}\right]$. If we recognize the bo structure of the set $<h_{2}, h_{2,0}, v_{2}>$ then the corresponding
resolution is just the Kozul resolution of [2], section 5 (page 319ff). Of course, v_{2} should be inverted and $2=v_{0}$. This gives the following result.

Theorem 6.2. There is a spectral sequence with

$$
E_{2}^{s, t}=v_{2}^{-1} \operatorname{Ext}_{A(2)}^{s, t}(\mathbb{Z} / 2, \mathbb{Z} / 2)
$$

which converges to $E_{0}\left(E O_{2 *}\right)$.
We will explore this in more detail in latter sections. In particular we will want to understand the differentials.

Using the Adams Novikov differentials from the same starting point we get another spectral sequence. In this case we assign filtration 0 to v_{1} and v_{2}, filtration 1 to h_{1}, h_{2} and $h_{2,0}$. We will also work over the integers.

In order to state the answer in a compact form we introduce several homotopy patterns.

Figure 6.3. The following diagram defines A. The solid circles represent $\mathbb{Z} / 2$'s and the open circles represent a $\mathbb{Z} / 8(\mathbb{Z} / 4)$ in stem 0 (stem 3). In stem 3 there is an extension to the $\mathbb{Z} / 2$ giving $a \mathbb{Z} / 8$ in this case too.

Figure 6.4. The following diagram defines B. The diagram starts in filtration (0,0). The starting circle represents a \mathbb{Z} and the circle in dimension 3 represents a $\mathbb{Z} / 4$ with an extension to the $\mathbb{Z} / 2$ giving a $\mathbb{Z} / 8$.

Theorem 6.5. There is a spectral sequence which converges to $E O_{2 *}$ and the E_{2} is given by

$$
h_{2,0}^{4} P\left(h_{2,0}^{4}, v_{2}^{4}, v_{2}^{-4}\right) \otimes A \oplus\left(P\left(v_{2}^{4}, v_{2}^{-4}\right) \otimes B\right) \oplus v_{1}^{4} b o\left[v_{2}^{4}, v_{2}^{-4}\right]
$$

where A is the module of Figure 6.3 and B is the module of Figure 6.4.

7. The Bockstein spectral sequence

In this section we will give the proof of theorem 6.5 . We start with the following resolution, $\mathbb{Z}\left[v_{1}, v_{2}, h_{1}, h_{2}, h_{2,0}\right]$ where the classes v_{i} have filtration 0 and the other classes have filtration 1. The dimension of the classes is
$(2,6,1,3,5)$ respectively. The Novikov differentials give the following formulas:

$$
\begin{align*}
v_{2} & \rightarrow v_{1} t_{1}^{2}+v_{0} t_{2}+v_{1}^{2} t_{1} \tag{7.21}\\
v_{2}^{2} & \rightarrow v_{1}^{2} t_{1} v_{2}+v_{0}^{2} v_{2} t_{2}+v_{1}^{4} t_{1}^{2} \tag{7.22}\\
h_{2,0} & \rightarrow h_{1} h_{2} \tag{7.23}\\
h_{2,0}^{2} & \rightarrow h_{2}^{3}+v_{2} h_{1}^{3} \tag{7.24}
\end{align*}
$$

It is worth noting how the formulas in the Hopf algebroid give these formulas. The class v_{2} corresponds to a_{3}. The differential on $a_{3}=2 t+a_{1} r$. When we substitute the differential on a_{2} which sets $3 r=a_{1} s+s^{2}$ we see that the differential on $a_{3}=2 t+a_{1}^{2} s / 3+a_{1} s^{2} / 3$. Setting $a_{1}=v_{1}, s=t_{1}$ shows that the two formulas are the same. The class $h_{2,0}$ is represented by t_{2} here and t in the Hopf algebroid.

We will break the calculation into several steps introducing various classes one at a time.

Step 1. We first look at just $\mathbb{Z}\left[h_{2}, h_{2,0}\right]$ and apply the $h_{2,0}^{2}$ differential. This leaves

$$
\left\langle 1, h_{2}, h_{2}^{2}, h_{20}, h_{2,0} h_{2}, h_{2,0} h_{2}^{2}\right\rangle \mathbb{Z}\left[h_{2,0}^{4}\right] .
$$

Much of the rest of the calculation is free over $h_{2,0}^{4}$ and we will drop mention of it until we need it again. We can write this calculation pictorially as the following figure.
Figure 7.1. Each dot represents a $\mathbb{Z}\left[v_{1}, v_{2}, h_{1}, h_{2,0}^{4}\right]$.

Step 2. Next we want to add h_{1}. This amounts to taking the above figure and tensoring it with $\mathbb{Z}\left[h_{1}\right]$. We then feed in the differential defined by $h_{2,0}$. This gives us:

Figure 7.2.

Each circle represents a class which is free on $\mathbb{Z}\left[h_{1}\right]$ and the dots represent a \mathbb{Z}. Of course the picture is free over $\mathbb{Z}\left[v_{1}, v_{2}, h_{2,0}^{4}\right]$.

Step 3 Next we will tensor this picture with $\mathbb{Z}\left[v_{1}\right] \otimes \Lambda\left[v_{2}\right]$. We use the differential defined by v_{2} to kill $v_{1} h_{2}$. We also use the differential on v_{2}
and $h_{2,0}$ to construct the Massey product, $a=v_{1} h_{2,0}+h_{1} v_{2}$. The starting picture is:

Figure 7.3.

We have $h_{2,0} \rightarrow h_{1} h_{2}$ and $v_{2} \rightarrow v_{1} h_{2}$. This defines a Massey product $a=v_{1} h_{2,0}+h_{1} v_{2}$. Now $h_{2} h_{2,0} \rightarrow h_{1} h_{2}^{2}$ and $v_{2} h_{2} \rightarrow v_{1} h_{2}^{2}$ leaving $h_{2} a$. But $v_{2} h_{2,0} \rightarrow h_{2} a$. Also, $h_{2,0} h_{2}^{2} \rightarrow h_{1} h_{2}^{3}=h_{1}^{3} a$ and $v_{2} h_{2}^{2} \rightarrow v_{1} h_{2}^{3}=v_{1} h_{1}^{2} a$ and these leave $h_{2}^{2} a$ which is the target of $h_{2} v_{2} h_{2,0}$. This leaves the following picture.
Figure 7.4. The open circles represent $P\left(h_{1}, v_{1}\right)$ free classes. The dots represent \mathbb{Z}. The x classes represent $\mathbb{Z}\left[v_{1}\right]$ classes.

Step 4. Next we add a copy of the above based on v_{2}^{2}. The starting picture gives:

Figure 7.5.

We have $v_{2}^{2} \rightarrow v_{1}^{2} a$ leaving $h_{1}^{2} v_{2}^{2} \otimes P\left(h_{1}, v_{1}\right)$. Also $v_{2} h_{2,0} h_{2}^{2} \rightarrow h_{1}^{4} v_{2}^{2}$ leaving $h_{1}^{2} v_{2}^{2} P\left(v_{1}\right)\left\langle 1, h_{1}\right\rangle$. Finally $v_{2}^{2} a \rightarrow h_{1}^{2} v_{2}^{2} v_{1}^{2}$ leaving just $v_{2}^{2} h_{1}^{2} a$. This gives
Figure 7.6. The open circles represent $P\left(h_{1}, v_{1}\right)$ and the dots represent \mathbb{Z}.

Step 5. The torsion Bocksteins are now easy. $a \rightarrow 2 h_{2}^{2}, v_{1} \rightarrow 2 h_{1}$, $v_{2}^{2} h_{2} \rightarrow 2 h_{1}^{2} v_{2}^{2}$ and $v_{2}^{2} h_{2}^{2} \rightarrow 2 h_{1}^{3} v_{1} v_{2}^{2}$. This leaves:

Figure 7.7. The open circles represent $P\left(h_{1}, v_{1}\right)$ free classes. In addition the class corresponding to h_{2} and $v_{2}^{2} h_{1}^{2}$ a represents $a \mathbb{Z}$.

Step 6. Next we add $h_{2,0}^{4}$ and we have $v_{2}^{3} h_{2,0} h_{2}^{2} \rightarrow v_{1}^{4} h_{2,0}^{4}$ and $v_{2}^{2} h_{1}^{2} a \rightarrow$ $8 h_{2,0}^{4}$. This last formula uses several substitutions to complete.

$$
\begin{aligned}
v_{2}^{2} h_{1}^{2} a & \rightarrow 4 h_{2,0} v_{2} a h_{1}^{2} \\
=4 h_{2,0}^{2} v_{1} a h_{1} & =4 h_{2,0}^{3} v_{1}^{2} h_{1}=8 h_{2,0}^{4} .
\end{aligned}
$$

The first formula is a consequence of the calculation in the $b o_{*}$ spectral sequence. See, for example, [10]. This completes the calculation and the proof of Theorem 6.5.

It is interesting to compare the filtration of the differential which kills $v_{1}^{4} h_{2,0}^{4}$. It is an Adams-Novikov d_{1} but it would be and Adams differential d_{2}. As we shall see later, it requires the Adams spectral sequence to use d_{2} 's, d_{3} 's and d_{4} 's to recover from this.

8. The Adams-Novikov Spectral sequence

In this section we will compute the Adams-Novikov differentials and thus calculate the associated graded homotopy of $E O_{2}$. The starting point is the following. We will show latter that it is a d_{1} in the usual Adams spectral sequence.

Proposition 8.1. In the Adams-Novikov spectral sequence for $E O_{2}$ we have $d_{5} v_{2}^{4}=h_{2} h_{2,0}^{4}$.

Proof. We begin with a calculation in stable homotopy.
Lemma 8.2. $\nu^{2} \bar{\kappa} \in\left\langle\eta_{4} \sigma, \eta, 2 \iota\right\rangle$.
We will first use this lemma to complete the proof of the proposition. We note that $h_{2}^{2} h_{2,0}^{4}$ is the Adams-Novikov name for $\nu^{2} \bar{\kappa}$. By checking the above calculation, we see that $\eta_{4} \sigma=0$ in $E O_{2 *}$. Thus the bracket of the lemma must go to zero in $E O_{2}$. Hence the class of $h_{2}^{2} h_{2,0}^{4}$ must be in the indeterminacy of the bracket. It is easy to see that only zero is in the indeterminacy and so $h_{2}^{2} h_{2,0}^{4}$ must project to the zero class. The only way this can happen is for $d_{5} v_{2}^{4} h_{2}=h_{2}^{2} h_{2,0}^{4}$. dividing by h_{2} gives the proposition.

Now we will prove the Lemma. This is essentially an Adams d_{1}. First recall that $\eta_{4} \sigma$ is represented by $h_{1} h_{4} c_{0}$ in the Adams E_{2}. In order to form a bracket such as $\left\langle\eta_{4} \sigma, \eta, 2 \iota\right\rangle$ we need to know why $h_{1}^{2} h_{4} c_{0}=0$. The easiest approach is to use the lambda algebra and the calculations of [15]. We see that $\lambda_{2} \lambda_{3} \lambda_{5} \lambda_{7} \lambda_{7}=h_{1} h_{4} c_{0}$. Then from [15] we see that $\lambda_{8} \lambda_{9} \lambda_{3} \lambda_{3} \lambda_{3}$ hits
$\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{5} \lambda_{7} \lambda_{7}$. Thus $\lambda_{0} \lambda_{8} \lambda_{9} \lambda_{3} \lambda_{3} \lambda_{3} \in\left\langle h_{1} h_{4} c_{0}, h_{1}, h_{0}\right\rangle$. Up to the addition of some boundaries, this is just $\lambda_{6} \lambda_{6} \lambda_{5} \lambda_{3} \lambda_{3} \lambda_{3}$. This is equivalent to the leading term name of $\nu^{2} \bar{\kappa}$. This completes the proof.

The following figure illustrates this first differential. We place the chart for v_{2}^{4} in filtration 3 so it is easier to see just what is happening.

Figure 8.3.

We can collect the result of this computation in the following chart. We have listed some exotic multiplications which we will prove in the rest of this section.

Figure 8.4. The class in dimension 4 is a $\mathbb{Z} / 4$. Lines which connect adjacent elements but are of length 2 represent exotic extensions. There are three such. One is multiplication by 2 in stem 27. The other two are multiplications by η, one in stem 27 and the other in stem 39. The complete calculation has this chart multiplied by $\mathbb{Z}[\bar{k}]$.

We need to establish some of the compositions which are non-zero in this homotopy module. We introduce some notation. We let ι, η, ν, to represent the generators of the 0,1 , and 3 stems. This is consistent with the traditional names of these classes in the homotopy of spheres. The elements in the 8,14 and 20 stem we will label $\epsilon, \kappa, \bar{\kappa}$ respectively. For other classes, we will use the symbol a_{i} for an element in the ith stem. The exotic extensions referred to above then are covered by the following proposition.

Proposition 8.5. The following compositions are non-zero: $\eta a_{27}, 2 a_{27}, \eta a_{39}$.
Proof. First note that $2 a_{27}$ is just the standard extension which comes from the 3 stem where $4 \nu=\eta^{3}$. Next, the class $a_{28}=\epsilon \bar{\kappa}$. This is a filtration preserving calculation. The definition of ϵ forces $\epsilon \in\langle\nu, 2 \nu, \eta\rangle$. When we
multiply this bracket by $\bar{\kappa}$ we see that $\epsilon \bar{\kappa}=\langle\bar{\kappa}, \nu, 2 \nu\rangle \eta$. This bracket clearly represents a_{27}. Notice that we can not form this latter bracket in spheres but need the differential on v_{2}^{4} in order to form the bracket.

In the homotopy of spheres we have the bracket relation $\langle\nu, \kappa \eta, \eta\rangle=2 \bar{\kappa}$. This follows easily from the Adams spectral sequence where there is a d_{2} which makes $\kappa \eta^{2}=0$. In the usual naming, we have $d_{2} e_{0}=h_{1}^{2} d_{0}$. We also have $h_{2} e_{0}=h_{0} g$. This establishes this relationship. Now if we multiply both sides by $\bar{\kappa}$ we have $\bar{\kappa}\langle\nu, \kappa \eta, \eta\rangle=2 \bar{\kappa}$. But $\bar{\kappa}\langle\nu, \kappa \eta, \eta\rangle=\langle\bar{\kappa}, \nu, \eta \kappa\rangle \eta$. This is the relation we wanted.

Next we want to establish the special ν multiplications.
Proposition 8.6. We have the following compositions: $\nu a_{25}=a_{28}, \nu a_{32}=$ $a_{35}, \nu a_{39}=a_{42}$.
Proof. A bracket construction for a_{25} is $a_{25}=\langle\bar{\kappa}, \nu, \eta\rangle$. If we multiply this on the right by ν we have $\langle\bar{\kappa}, \nu, \eta\rangle \nu=\bar{\kappa}\langle\nu, \eta, \nu\rangle=\bar{\kappa} \epsilon=a_{28}$. In a similar way we see that $a_{32}=\langle\bar{\kappa}, \nu, \epsilon\rangle$. If we multiply both sides by ν we get $\langle\bar{\kappa}, \nu, \epsilon\rangle \nu=\bar{\kappa}\langle\nu, \epsilon, \nu\rangle$. But in spheres $\langle\nu, \epsilon, \nu\rangle=\eta \kappa$ and this gives the relation. In the above proposition we showed $a_{39}=\langle\bar{\kappa}, \nu, \eta \kappa\rangle$. Multiplying this by ν we have $a_{39} \nu=\bar{\kappa}\langle\nu, \eta \kappa, \nu\rangle=\bar{\kappa}^{2} \eta^{2}$ and this is the relationship we wanted.

In a very similar fashion we establish the following. We will skip the proof.

Proposition 8.7. We have the following ϵ compositions. $\epsilon a_{25}=a_{33}, \epsilon a_{27}=$ $a_{35}, \epsilon a_{32}=2 a_{40}, \epsilon a_{34}=a_{42}, \epsilon a_{39}=a_{47}=\bar{\kappa} a_{25}, \epsilon a_{40}=a_{48}$.

With these extensions established, the rest of the spectral sequence is quite easy. We have the following theorem.
Theorem 8.8. We have the following differentials:

$$
d_{5} v_{2}^{8}=\bar{\kappa} a_{27}\left(=2 \nu \bar{\kappa} v_{2}^{4}=2 d_{5} v_{2}^{4}\right)
$$

and

$$
d_{7} v_{2}^{16}=\eta^{2} a_{25} \bar{\kappa} v_{2}^{8}\left(=2 v_{2}^{8} d_{5} v_{2}^{8}\right)
$$

9. The connected cover of $E O_{2}$

In this section we will construct the connected cover of $E O_{2}$ and get some of its properties. We begin with the following which is proved in [7].
Theorem 9.1. $v_{1}^{-1} E O_{2}=K O\left[\left[v_{2} / v_{1}^{3}\right]\right]\left[v_{2}^{4}, v_{2}^{-4}\right]$
Our strategy to construct the the connected cover of $E O_{2}$ will be to construct the following map.

$$
f: b o\left[v_{2}^{4} / v_{1}^{12}\right] \rightarrow v_{1}^{-1} E O_{2}[0, \cdots, \infty] .
$$

With this map we will consider the pull back square as defining the spectrum Y

We will show:
Theorem 9.2. The cohomology of Y is $H^{*}(Y)=A \otimes_{A(2)} \mathbb{Z}$ and the Adams spectral sequence to calculated $\pi_{*}(Y)$ is that given by Theorem 2.2.

The first step is the following Lemma.
Lemma 9.3. There is a map $g: b o \rightarrow v_{1}^{-1} E O_{2}[0, \cdots, \infty]$ such that $g_{*}(\iota)=$ ι, the unit in $v_{1}^{-1} E O_{2}[0, \cdots, \infty]$.
Proof. We begin with $\iota: S^{0} \rightarrow v_{1}^{-1} E O_{2}[0, \cdots, \infty]$. We recall that there is a short exact sequence

$$
\Sigma^{4 k-1} B(k) \rightarrow b o_{k} \rightarrow b o_{k+1}
$$

where $B(k)$ is the integral Brown Gitler spectrum [1] and $b o_{k}$ is the bo Brown Gitler spectrum. This sequence is constructed in [5]. The K theory of $B(k)$ is easily computed and it is zero in dimensions of the form $4 k-1$. Thus we can proceed by induction starting with the map ι. This constructs one copy of bo into $v_{1}^{-1} E O_{2}[0, \cdots, \infty]$.

To continue with the proof of the Theorem we next construct a map of $\Omega S^{24} \rightarrow v_{1}^{-1} E O_{2}[0, \cdots, \infty]$ which gives the polynomial algebra on v_{2}^{4}. Using the ring structure we have the desired map f of the diagram. This completes the construction of Y.

Next we want to compute the homotopy of Y. The E_{2} term of the Adams spectral sequence for Y is $\operatorname{Ext}_{A(2)}(\mathbb{Z} / 2, \mathbb{Z} / 2)$. This has been calculated by many people. The first calculation is due to Iwai and Shimada [6]. Extensive $\operatorname{Ext}_{A(2)}(M, \mathbb{Z} / 2)$ calculations are given in [2]. We refer the reader there to find the details of the calculation. The answers given there are in a compact form which is quite useful. It is based on the following definition.

Definition 9.4. An indexed chart is a chart in which some elements are labeled with integers. A unlabeled x receives the label

$$
\max \left\{\operatorname{label}(y): x=h_{0}^{i} y \text { or } x=h_{1}^{i} y, \text { some } i \geq 1\right\}
$$

or 0 if this set is empty. If C is a labeled chart then $\langle C\rangle$ denotes the chart consisting of all elements $v_{1}^{4 i} x$ such that $i+\operatorname{label}(x) \geq 0$.

The following is an example of an indexed chart.

Let this chart be called E_{0}. Then the following is proved in [2]. (Actually, the chart in [2] has a dot missing in dimension (30,6).)

Theorem 9.5. $\operatorname{Ext}_{A(2)}(\mathbb{Z} / 2, \mathbb{Z} / 2)$ is free over $\mathbb{Z} / 2\left[v_{2}^{8}\right]$ on

$$
\left\langle E_{0}\right\rangle \oplus \mathbb{Z} / 2\left[v_{1}, w\right] \cdot g_{35,7}
$$

We have the following differentials in the chart E_{0}. We use the notation $g_{t-s, s}$ to refer to the dot in position $(t-s, s)$.

Proposition 9.6. $d_{2} g_{20,7}=g_{19,9}$.
Proof. When translated to more familiar notation this is a consequence of the following Lemma.

Lemma 9.7. In the Adams spectral sequence of Theorem 2.1 the first differential occurs in dimension 12 and hits the class $v_{1}^{4} h_{2}$.

Proof. First we need to construct the element. Using the above formulas which are filtration preserving we see that

$$
v_{0} v_{2}^{2}+v_{2} h_{2}^{2}+v_{1} h_{2,0}^{2}
$$

is a cycle and it generates an v_{0} tower in the 12 stem. When we use the filtration increasing part of the differentials we see this class is not a cycle
but its boundary is

$$
v_{1}^{2} v_{0} h_{1} v_{2}+v_{0}^{2} v_{2} h_{2,0}+v_{0} v_{1}^{4} h_{2}+v_{1}^{2} h_{1} h_{2}^{2}
$$

We can begin to try to complete this into a cycle. The first class we would add is $v_{1}^{3} v_{2}$. The boundary on this class is

$$
v_{1}^{2} v_{0} h_{1} v_{2}+v_{1}^{4} h_{2}+v_{0} v_{1}^{3} h_{2,0}+v_{1}^{5} h_{1}
$$

There is nothing we can add to get rid of the $v_{1}^{4} h_{2}$ class and this gives the differential of the Lemma.

Using h_{2} multiplications we have the following additional differentials.

$$
\begin{aligned}
d_{2} g_{23,7} & =g_{22,9} \\
d_{2} g_{26,7} & =g_{25,9} \\
d_{2} g_{29,7} & =g_{28,9} \\
d_{2} g_{28,5} & =g_{27,7}
\end{aligned}
$$

We have the following d_{3}.
Proposition 9.8. $d_{3} g_{24,6}=g_{23,9}$.
This differential implies the following in addition.

$$
\begin{aligned}
d_{3} g_{25,8} & =g_{24,11} \\
d_{3} g_{30,6} & =g_{29,9}
\end{aligned}
$$

We have the following d_{4}.
Proposition 9.9. $d_{4} g_{31,8}=v_{1}^{4} g_{22,8}$.
We wish to collect the result of these differentials. The pattern which is left from the upper left corner of the figure generates a copy of bo starting in dimension $(8,4)$. The second pair of \mathbb{Z} towers generates a bo in dimension $(32,8)$. This second bo uses $v_{1}^{4} g_{25,5}$ and h_{1} times this class and the class in dimension $(32,7)$ which has h_{0} none zero on it. The picture looks as follows:

This picture leaves a copy of bo, after some extensions, which starts in filtration (32,7). It represents $v_{1}^{4} v_{2}^{4}$. There is an extra dot in the above picture in filtration $(35,10)$ which we still have to account for. The following chart lists everything which is left because the source of a differential is not present.

In addition to this part we have the polynomial algebra on the two generators and v_{1}^{4} free on the following.

The following result gives the differentials for this part of the picture.
Proposition 9.10. Among classes in $\mathbb{Z} / 2\left[v_{1}, w\right] \cdot g_{35,7}$ and between this polynomial algebra and classes in the above diagram we have the following differentials:

$$
\begin{gathered}
d_{2} g_{35,7}=g_{36,9} \\
d_{4} v_{1} g_{35,7}=g_{38,12} \\
d_{4} v_{1} w g_{35,7}=v_{1}^{4} g_{35,8} \\
d_{4} v_{1}^{2} w g_{35,7}=v_{1}^{4} g_{35,10} \\
d_{4} v_{1}^{2} w^{2} g_{35,7}=v_{1}^{8} g_{32,7} \\
d_{4} v_{1}^{3} w^{2} g_{35,7}=v_{1}^{8} g_{34,8} \\
d_{4} w^{3} g_{35,7}=v_{1}^{7} g_{35,7} \\
d_{4} v_{1}^{3} w^{3} g_{35,7}=v_{1}^{10} g_{35,7}
\end{gathered}
$$

If we combine the above diagram, the polynomial algebra and the differentials above we have the following figure.

This allows us to write the v_{1} torsion part of the answer out though the 42 stem. The following is the correct chart.

To compute the next 48 groups we need to put the earlier calculation together with the first 42 groups above multiplied by v_{2}^{8}. This gives the following chart.

This gives the following homotopy starting in dimension 45 .

Beyond 95 this differential pattern leaves a class every 5 dimensions. Because the differential on v_{2}^{8} is a d_{2}, the polynomial algebra $v_{2}^{8} \mathbb{Z} / 2\left[v_{1}, w\right]$ is mapped monomorphically into $\mathbb{Z} / 2\left[v_{1}, w\right]$ leaving just $w^{9} g_{35,7} \mathbb{Z} / 2[w]$. To complete the calculation we need to take into account v_{2}^{16}. We do this by putting our calculation so far together with this pattern and writing in the new differentials. This gives the following pattern. The first chart calculates the homotopy from 95 to 140 .

Here is the picture for 141 to 180.

We can now collect the final charts and write in one place the v_{1} torsion homotopy. Dots correspond to $\mathbb{Z} / 2$'s and circles correspond to \mathbb{Z} 's. Vertical lines indicate multiplication by 2 and slanting lines to the right indicate multiplication by η. There are a large number of multiplications by ν but

Theorem 9.11. The homotopy of eo_{2} is given by the following:

$$
v_{1}^{4} b o\left[v_{2}^{4}\right] \oplus E\left[v_{2}^{32}\right]
$$

where E is the homotopy described in the above charts.

10. Some self maps

Let A_{1} be the suspension spectrum of one of the complexes whose cohomology is free over $A(1)$, the sub algebra of A generated by Sq^{1} and Sq^{2}. Let $M\left(i_{0}, i_{1}\right)$ be the mapping cone of $\Sigma^{2 i_{1}} M\left(2^{i_{0}}\right) \rightarrow M\left(2^{i_{0}}\right)$ which induces an isomorphism in K-theory. In [4] it is claimed that A_{1} and $M(1,4)$ admitted a self map raising dimension by 48 and inducing an isomorphism in $K(2)_{*}$. This result is false as the results here have shown. The argument in [4] is correct in showing the following.
Theorem 10.1. There is a class representing $v_{2}^{8} \in \operatorname{Ext}_{A}^{8,56}(A(1), A(1))$.
Consider a resolution by Eilenberg-Mac Lane spaces constructed as follows for any suspension spectrum X with the property that there is only one class $\alpha \in \pi_{*}(X)$ which is non-zero in mod 2 homology. We begin with a map f_{0} so that the composite

$$
S^{0} \xrightarrow{\alpha} X \xrightarrow{f_{0}} K(\mathbb{Z} / 2)
$$

is non-zero. Now we construct a tower inductively. Suppose we have

$$
X \xrightarrow{f_{s}} X_{s} \xrightarrow{g_{s-1}} \cdots \xrightarrow{g_{0}} K(\mathbb{Z} / 2)
$$

with $g_{0} \cdots g_{s-1} f_{s}=f_{0}$. Let $h_{s}: x_{s} \rightarrow K\left(\boldsymbol{\operatorname { k e r }}\left(H^{*}\left(f_{s}\right)\right)\right)$ and let X_{s+1} be the fiber. Clearly, f_{s} lifts to give f_{s+1}.

Each such resolution defines a spectral sequence with

$$
E_{1}^{s, t}=\operatorname{ker}\left(H^{*}\left(f_{s}\right)\right)^{t-s+1}
$$

As with the usual Adams spectral sequence we have convergence to the 2adic completion and we can define $E_{2}(X, X)$ as equivalence classes of maps between these resolutions.

In this language [4] showed the following result for $M(1,4)$. A very similar argument works for $M(2,4)$.
Theorem 10.2. For $X=M(1,4)$ or $X=M(2,4)$ there is a class

$$
v_{2}^{8} \in E_{2}^{8,56}(X, X)
$$

Using an $e o_{2}$ resolution we see that v_{2}^{8} commutes with the possible targets of the differentials on v_{2}^{8}. Thus in each case if $d_{2}\left(v_{2}^{8}\right) \neq 0$, which is the case, then v_{2}^{32} will be a class in E_{4} and for dimensional reasons, $d_{4} v_{2}^{32}=0$. This proves the following theorem.
Theorem 10.3. For $X=A_{1}, X=M(1,4)$ or $X=M(2,4)$, there is a map

$$
v_{2}^{32}: \Sigma^{192} X \rightarrow X
$$

which is detected in $K(2)_{*}$.
Thus the results discussed in [13], [11] and possibly other places which used the maps of [4] are established in this modified form. We will discuss some of these classes, particularly those of [11] in the next section.
11. The Hurewicz image and some homotopy constructed from $E O_{2}$
Using the results of the last section we can construct many v_{2}-families.
Theorem 11.1. If $\alpha \in \pi_{*}\left(S^{0}\right)$ is represented by $a \in E x t_{A}(\mathbb{Z} / 2, \mathbb{Z} / 2)$ and under the $\operatorname{map} \operatorname{Ext}_{A}(\mathbb{Z} / 2, \mathbb{Z} / 2) \rightarrow \operatorname{Ext}_{A(2)}(\mathbb{Z} / 2, \mathbb{Z} / 2)$ a maps to a non-zero cycle then $v_{2}^{32 k} \alpha \neq 0$.
Proof. This is the standard Greek letter proof. There is an $\alpha^{\#}$ so that the following composite is α.

$$
S^{|\alpha|} \rightarrow M^{|\alpha|+10}(2,4) \xrightarrow{\alpha^{\#}} M^{0}(2,4) \rightarrow S^{0}
$$

Then

is non-zero in $\pi_{*} E O_{2}$.
Corollary 11.2. We list the classes which this is known to apply to

stem	6	8	9	14	15	17	28	32	33	34	35	39	40	41	42	45	46	
name	ν^{2}	ϵ	$\eta \epsilon$	κ	$\eta \kappa$	$\nu \kappa$	$\epsilon \kappa$	q	ηq	e_{0}^{2}	ηe_{0}^{2}	u	$\bar{\kappa}^{2}, 2 \bar{\kappa}$	$\eta \bar{\kappa}^{2}$	$\eta^{2} \kappa^{2}$	w	ηw	
			stem	52	53	59	60	65	66	80	85							
			name	$\bar{\kappa} q$	$\bar{\kappa} \eta q$	$\bar{\kappa} u$	$\bar{\kappa}^{3}, 2 \bar{\kappa}^{3}$	$\bar{\kappa} w$	$\eta \bar{\kappa} w$	$\bar{\kappa}^{4}$	$\bar{\kappa}^{2} w$							

Next consider $\bar{\kappa}$. The only problem is that it has order 8 and so the argument does not quite work.
Proposition 11.3. $\bar{\kappa}$ is v_{2}^{32}-periodic.
Proof. We look at map $\bar{\kappa}^{\#}$ which makes this diagram commute.

We do the Greek letter construction and get

This composite is non-zero. We can break apart the calculation and get that $\bar{\kappa}$ as an element of order 8 is v_{2}^{32}-periodic. Of course we get easily $4 \bar{\kappa}=v^{2} \kappa$ is v_{2}^{32}-periodic.

The next problem class is $\nu \bar{\kappa}$.
Proposition 11.4. $\nu \bar{\kappa}$ is v_{2}^{32} periodic.
Proof. Suppose not, that is, suppose $\nu \bar{\kappa}\left(v_{2}^{32}\right)=0$. Then we have a map f

in the diagram, the map g is v_{2}^{36}. Thus f would have ∞ order. This contradiction completes the proof.

Next we have classes in $E O_{2}$ which do not come from the sphere. Since there should be nothing extra in homotopy we use these to detect something also.
Proposition 11.5. The classes $\eta_{4}, \eta \eta_{4}, \eta^{2} \eta_{4}$ and $\frac{1}{2} \eta^{2} \eta_{4}$ are v_{2}-periodic.
Proof. It is an easy Ext calculation to show that in the following diagram

the composite along the bottom row is non-zero. $M(1,4)$ also has a v_{2}^{32} self map and this gives the diagram

The map $M^{26+192} \rightarrow E O_{2}$ is essential. Suppose the composite $S^{16+192} \rightarrow$ $M^{26+192} \rightarrow M^{26}(1,4) \rightarrow S^{0}$ was zero. Then M^{26+192} / S^{16+192} factors
through S^{0} giving $M^{26+192} / S^{16+192} \rightarrow S^{0} \rightarrow E O_{2}$. This map is v_{1}-periodic and this contradicts the v_{1}-structure of S^{0}. Thus $v_{2}^{32} \eta_{4}$ is essential. $\eta \eta_{4}$ works the same way and also $\eta^{2} \eta_{4} / 2$.

It is interesting that each extra class in $E O_{2}$ detected something in the sphere.

The next place to study is the 47 stem. Here the differential on v_{2}^{8} eliminates homotopy classes which are in the sphere. Similar to Proposition 11.4 we have

Proposition 11.6. The classes $\left\{e_{0} r\right\}$ and $\eta\left\{e_{0} r\right\}$ are v_{2}-periodic.
Proof. We have established that $2 v_{2}^{32} \bar{\kappa}^{2}=\eta v_{2}^{32}\{u\}$ by Theorem 11.1. Thus we can form the bracket $\left\langle v_{2}^{32} \bar{\kappa}^{2}, 2 \nu, \nu\right\rangle$. Suppose this bracket contains zero. Then

is a commutative diagram. This gives a class of ∞-order in $I \pi_{*} S^{0}$, a contradiction. Thus the bracket is essential and defines $v_{2}^{32}\left\{e_{0} r\right\}$. Now $\eta\left\{e_{0} r\right\}=\nu\{\bar{w}\}$. Suppose $v_{2}^{32} \nu w=0$. Then we could form the bracket $\left\langle v_{2}^{32}\{w\}, \nu, \eta\right\rangle \in \pi_{192+49}\left(S^{0}\right)$ and this class maps to $v_{2}^{40} \eta^{2}$ in $E O_{2}$, which is a v_{1} periodic class. This contradiction establishes the result.

We also get some mileage out of the failure of the v_{2}^{8} self map.
Proposition 11.7. There is a family of classes of order 4 in $38+k 192$ stem detected by $v_{2}^{8+32 k}$ in $B P$.
Proof. Here we use the centrality of our self map. We have established $\left\{e_{0} r\right\}$ is v_{2}^{32} periodic and the failure of the proof of v_{2}^{8} self map shows that the composite $M^{47}(2,4) \xrightarrow{g} M^{47}(4) \rightarrow S^{0}$ is null. This gives the following diagram

Going around the top is the same, by centrality, as going around bottom. The top represents $v_{2}^{32} g$ and so is null which implies that there is a class β such that $M^{47+192}(2) \xrightarrow{v_{1}^{4}} M^{39+192}(2) \rightarrow S^{0}$ is $v_{2}^{32}\left\{e_{0} r\right\}$. As before, β must be on the bottom class or we would get a v_{1}-periodic class.

Following closely the proof of Proposition 11.5 we get,

Proposition 11.8. $v_{1}^{4} \eta_{5}, \mu \eta_{5}, \eta \mu n_{5} / 4$ are v_{2}^{32} periodic. The class θ_{4} is v_{2} to some power periodic but we don't know the power.
Proof. First we look at $\eta_{5} \mu$. We have $M^{51}(1,4) \rightarrow S^{0}$ extending $\eta_{5} \mu$. The map is detected in $E O_{2}$ by $\left\{v_{2}^{8} h_{1}^{2}\right\}$. Thus we have an essential composite

$$
M^{51+192}(1,4) \rightarrow S^{0} \rightarrow E O_{2}
$$

detected by $v_{2}^{40} h_{1}^{2}$.
Suppose the composite $S^{41+192} \rightarrow M^{51+192}(1,4) \rightarrow S^{0}$ is zero. Then it factors through $M^{51+192}(1,4) / S^{41+192} \rightarrow S^{0} \rightarrow E O_{2}$. This map would be v_{1} periodic. This completes the proof. The argument is similar for the other cases. We look at θ_{4}. We have the following

$$
M^{47}(1) \xrightarrow{v_{1}^{8}} M^{31}(1) \xrightarrow{\theta_{4}} S^{0} \text { is essential and detected by }\left\{e_{0} r\right\} .
$$

Thus we can consider the composite $M^{47}(1,8) \rightarrow M^{56}(1,4) \rightarrow S^{0}$. This is null. We have

The map from $M^{47+2^{i} .6}(1,8) \rightarrow S^{0}$ is null so the map $M^{47+2^{i} .6}(1)$ factors through $M^{31+2^{i} \cdot 6}$. As before, it must be on the bottom cell or we get a v_{1}-periodic class.

Some of these homotopy classes were discussed in [1]. The proofs there are valid for $32 k$ replacing $8 k$. In that note $\rho_{k} \eta_{j}$ was also studied and shown to be non-zero. We first discuss $\eta_{4} \sigma$. In the sphere we are looking at the classes $\left\{h_{4} h_{2}\right\}, h_{3}^{3}, h_{3} c_{0}, h_{3} h_{1} c_{0}$ and $\nu^{2} \bar{\kappa}$.
Proposition 11.9. The classes $\left\{h_{4} h_{3}\right\}, h_{3}^{3}, h_{3} c_{0}, h_{3} h_{1} c_{0}$ and $\nu^{2} \bar{\kappa}$ are v_{2}^{32} periodic.

Proof. We begin with $\nu^{2} \bar{\kappa}$. The $M^{27}(1) \xrightarrow{\nu^{2} \kappa^{\#}} S^{0} \rightarrow E O_{2}$ is detected by $M^{27}(1) \rightarrow S^{27} \rightarrow E O_{2}$. Thus the map of $M^{27}(1) \rightarrow S^{0}$ is v_{2}-periodic. Suppose $S^{26+192} \rightarrow M^{27+192}(1) \rightarrow S^{0}$ is null. Then $S^{27+192} \rightarrow E O_{2}$ factors through S^{0}. This class has finite order and so extends to $M^{28+192}\left(2^{i}\right) \rightarrow$ $S^{0} \rightarrow E O_{2}$. The composite is v_{1}-periodic, a contradiction. Next note that the composite $M^{26}(1,4) \rightarrow M^{26}(1) \rightarrow S^{26} \xrightarrow{\nu^{1} \kappa} S^{0}$ is null since $M^{26}(1) \rightarrow$ S^{0} factors through $M^{26}(1) \rightarrow M^{18}(1) \rightarrow S^{18} \xrightarrow{\left\{h_{2} h_{4}\right\}} S^{0}$. By centrality $M^{26+192}(1,4) \rightarrow M^{26+192}(1) \xrightarrow{\nu} S^{26+192} \xrightarrow{v_{2}^{32} \nu^{2} \bar{\kappa}} S^{0}$ is null. This gives $v_{2}^{32}\left\{h_{2} h_{4}\right\}$. $\nu \circ\left\{h_{4} h_{2}\right\}=\sigma^{3}$. This gives $S^{26+192} \xrightarrow{n^{2} \bar{n}} M^{22+192}(1) \rightarrow S^{0}$ is $\nu^{2} \bar{\kappa} v_{2}^{32}$ and so all the in between classes are non-zero too.

We start with $\left\{\rho^{1} h_{2} h_{5}\right\}$. There is an extension of $M^{42}(1) \rightarrow S^{42} \rightarrow$ $\rho^{1} h_{1} h_{5} \quad S^{0}$ to $M^{51}(1,4) \rightarrow S^{0}$ and the composite is detected by $v_{2}^{8} \nu$ and so this gives a v_{2}^{32} family. As before, this class must live in the $S^{42+k 192}$ stem. Composing with ν to get $M^{55}(1,4) \xrightarrow{\left\{h_{2} \rho^{1} h_{2} h_{5}\right\}} S^{0}$ and this is detected by $\nu^{2} v_{2}^{8}$. This gives $v_{2} \cdot\left\{\rho^{1} h_{2} h_{5}\right\}, \rho n_{5}, \rho \wedge n_{5}$, as $v_{2}^{32 k}$ periodic classes. The same family of arguments works for n_{5} and related classes. The approach in [1] is different since $E O_{2}$ was not available but complimentary.

The remaining task is to show all the classes in $E O_{2}$ come from the sphere in the above sense. This requires constructing new homotopy classes. These classes are covered by the following propositions.

Proposition 11.10. The class of order 4 represented by $\left\{h_{5} h_{0} i\right\}$ in the 54 stem is v_{2}^{32} periodic and $2\left\{h_{5} h_{0} i\right\}=\bar{\kappa}\left\{e_{0}^{2}\right\}$.
Proof. We first note that $\bar{\kappa}\left\{e_{0}^{2}\right\}$ is $\left\{e_{0}^{2} g\right\}$ and this class fits 11.1. This completes the proof since $\left\{h_{5} h_{0} i\right\}$ must map essentially to $E O_{2 *}$.

Proposition 11.11. The class corresponding to $\left\{P h_{5} h_{1} e_{0}\right\}$ is v_{2}^{32} periodic.
Proof. In $E O_{2 *}$ we have $\nu\left\{h_{5} h_{0} i\right\} \neq 0$. Since $h_{2} h_{5} h_{0} i=h_{1} h_{5} P e_{0}$ in $E x t$ we are done.

Proposition 11.12. The class in the 65 stem with Adams spectral sequence name $P h_{5} j$ maps to a non zero class in $E O_{2 *}$. Thus it represents a homotopy class which is v_{2}^{32} periodic.

We remark that this is the first class beyond Kochman's calculations that was not covered by 11.1.

Proof. In $E O_{2 *}$ the Toda bracket $\left\langle\bar{\kappa}^{3}, \eta, \nu\right\rangle \neq 0$. we can form the bracket in the sphere too and so it must be non-zero there. Since $d_{4} P G=g z$ and $\bar{\kappa}^{2} \eta=\{z\}$ we see that $\left\langle\bar{\kappa}^{3}, \eta, \nu\right\rangle \in\left\{h_{2} P G\right\}=0$. Thus it has filtration ≥ 12. The only other class of higher filtration not in J_{*} is $\bar{\kappa}\{w\}$ and this is also present in $E O_{2 *}$. This gives the result.

Corollary 11.13. The class $P h_{5} h_{0} k$ in the 63 stem maps to a class in $E O_{2 *}$ and thus is v_{2}^{32} periodic.

Proof. In $E O_{2 *}$ we have $\nu\left\langle\bar{\kappa}^{3}, \eta, \nu\right\rangle \neq 0$. We also have $h_{2} P h_{5} j=P h_{5} h_{0} k$ in Ext. This completes the proof.

We remark that in the E_{∞} term of the May spectral sequence the class $P h_{5} h_{0} k$ is divided by only h_{0}. Brunner's calculation of the Ext shows that it is actually divided by h_{0}^{5}. In particular, we have $h_{0}^{5} G_{21}=P h_{5} h_{0} k$.

Proposition 11.14. The bracket $\left\langle\epsilon, \bar{\kappa}^{3}, \eta\right\rangle$ is detected in $E O_{2 *}$. In the Adams spectral sequence it is in the coset $\left\{P^{2} G\right\}$. In addition η on this class is divisible by 4 which is represented by the bracket $\left\langle\bar{\kappa}^{3}, \nu, 2 \nu, \nu\right\rangle$ and is in the coset $\left\{Q_{5}\right\}$. We also have $\eta^{2}\left\langle\bar{\kappa}^{3}, \nu, 2 \nu, \nu\right\rangle \neq 0$.

Proof. In $E O_{2 *}$ it is easy to see that $\left\langle\epsilon, \bar{\kappa}^{3}, \eta\right\rangle \neq 0$. It is also straightforward to see that it is in $\left\{P^{2} G\right\}$. In Ext we have $h_{1} P^{2} G=h_{0}^{2} Q_{5}$. This is verified by Brunner's calculations. Now Q_{5} is a permanent cycle because there is nothing of higher filtration for it to hit. It has order eight for the same reason. It is in the four fold bracket $\left\langle\bar{\kappa}^{3}, \nu, 2 \nu, \nu\right\rangle$ by construction. The other claims follow by easy arguments except we need to show that Q_{5} is non-zero. To this end consider the following diagram.

Since $\eta\left\langle\epsilon, \bar{\kappa}^{3}, \eta\right\rangle=4\left\{Q_{5}\right\}, f_{*}(i)=\left\{h_{0}^{3} v_{2}^{12}\right.$, the generator of Z_{2} in the the 72 stem. Thus Q_{5} must be a non-zero cycle.

Proposition 11.15. The composition $\nu\left\{Q_{5}\right\}$ is a class of order 4 with the generator having Adams spectral sequence name $\left\{P D^{\prime}\right\}$. This class is also $\bar{\kappa}\left\{P h_{5} i h_{0}\right\}$.

Proof.

The map f is $v_{2}^{8} \eta^{2} b$ where b is the $E O_{2 *}$ class of order 2 in dimension 27. Thus the map g can not be null but f can not factor through S^{0} since it would have Adams filtration at least 16 and there is nothing there. Thus $\kappa \bar{\kappa}^{3} \neq 0$ in $\pi_{*}\left(S^{0}\right)$ and we have $\bar{\kappa} 2\left\{h_{1} P h_{5} e_{0}\right\}=\kappa \bar{\kappa}^{3}$ by 11.11. Thus $\bar{\kappa}\left\{P h_{5} i h_{0}\right\} \neq 0$ and generates a $Z / 4$. We need to show that it is $\nu\left\{Q_{5}\right\}$. This follows from the bracket constructed for $\left\{Q_{5}\right\}$ in 11.14.

Proposition 11.16. The remaining classes through the 95 stem detected by $E O_{2 *}$ are $\bar{\kappa}^{4}, \bar{\kappa}^{3}\{w\}$ and $\left\langle\bar{\kappa}^{3}\{w\}, \nu, \eta\right\rangle=\left\{v_{2}^{8} P^{1} d_{0} g\right\}$.

References

[1] F. Cohen, D. M. Davis, P. Goerss, and M. Mahowald, Integral Brown-Gitler spectra, Proc. AMS 103 (1988), 262-266.
[2] D. M. Davis and M. E. Mahowald, Ext over the subalgebra A_{2} of the Steenrod Algebra for stunted projective spaces Canad. Math. Soc. Conf. Proc. Vol. 2, Part 1 (1982), 297-342.
[3] D. M. Davis and M. E. Mahowald, The non realizability of the quotient $A / / A_{2}$ of the Steenrod algebra, Amer. J. of Math. 104 (1982) 1211-1216.
[4] D. M. Davis and M. E. Mahowald, v_{1} and v_{2} periodicity in homotopy theory, Amer. J. of Math. 103 (1981) 615-659.
[5] Paul G. Goerss, John D. S. Jones, and Mark Mahowald, Some generalized BrownGitler spectra, Trans. Amer. Math. Soc. 294 (1986) 113-132.
[6] A. Iwai and N. Shimada, On the cohomology of some Hopf algebras, Nagoya Mat. Jour. 30 (1967) 103-111.
[7] M. J. Hopkins and H. Miller, Title to be announced.
[8] S. O. Kochman, Stable homotopy groups of spheres, a computer assisted approach, Lecture Notes in Math. 1423, Springer Verlag, Berlin 1990.
[9] S. O. Kochman and M. Mahowald, On the computation of the stable stems, Contemporary Mathematics \#181 (1993)299-316.
[10] W. Lellmann and M. Mahowald, The bo-Adams spectral sequence, Trans. AMS 300 (1987), 593-623.
[11] Mark Mahowald, The primary v_{2} family, Math. Z. 177(1981) 381-393.
[12] Mark Mahowald, Ring spectra which are Thom spectra, Duke Journal. 46 (1979) 549559.
[13] D. C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press, 1986.
[14] J. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag (1992).
[15] M. C. Tangora, Computing the homology of the lambda algebra, Memoirs of the AMS Vol 58 Number 337 (1985).

Department of Mathematics, Mit, Cambridge MA 02139
E-mail address: mjh@@math.mit.edu
Department of Mathematics, Northwestern University, Evanston, Illinois 60208

E-mail address: mark@@math.nwu.edu

[^0]: Date: July 20, 1998.

