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Introduetion

In this paper we continue the study initiated in [1] in which familiar
algebraic concepts are studied within the framework of a general category.
In [1] our main emphasis was on the question of the definition of a multi-
plication in this general setting, on the general categorical form of the group
axioms, and on the implications of assuming certain objects in a category to
be group-like. In this paper we concern ourselves more with certain auxiliary
features and concepts associated traditionally with the category of sets
which play an important role in group theory. Our main object in this paper
is to define these concepts in a categorical fashion and to show how, with the
use of some of these concepts, a generalization of the notion of multiplication
may be introduced; in the third paper of the series we will consider more
explicitly the relation of these concepts to the assumption of multiplicative
structure in certain objects of the category.

The nature of the generalization referred to may be indicated by reference
to the category @ of groups and homomorphisms. A multiplication satisfying?)
Axiom I (an H-structure) in this category is a homomorphism u: G x G — ¢
such that ux = d: G * @ > G, where »: G« @ -~ G x & is the canonical map
from free (inverse) to direct product and d: G x G — @ is the “folding” map
{1, 1}. It turns out then (see [1] or [2]) that G admits an H-structure if and
only if it is commutative. Tt would be idle to attempt to generalize the concept
of a multiplication by demanding a map p: GxX G x - -- X G (n factors) > @
with px = d since, as may be readily proved in any DI-category, such a multi-
plication exists if and only if the ordinary multiplication exists. However,
we may factorize ¥ : Gy % - -+ % G, > G, x - xG,in ® as

-1 1
Gl*...*gnzgn"" G-l S R P =G % XG,

(factorization () of Theorem 4.4) and demand in the case Gy =+ = G, = ¢
that there exist a map u: G*~1 - @ such that ux"~1= d. Of course, if n =2
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1) This Axiom asserts the existence of two-gided unity.
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this is just the original concept of an H-structure. It is a satisfactory feature
of this notion of an H,-structure that (see [2]) G admits an H, -structure if
and only if the nilpotency class of @ is less than n. The first two sections of the
present paper lay the necessary foundations for the definition of H,,-structures in
general categories.

We could then develop the study of H,-structures from the point of view
of imposing axioms on such structures analogous to those imposed on H-(= H,)-
structures in [1], and of studying the nature of primitive maps of H,-objects.
This development (which has been carried out in special cases by BERSTEIN,
Hruron and PETERSON) is surely worth carrying out in a general category;
but in this paper our interest has centred on the narrower question of the
existence of such structures on given objects of a category. This leads to the
notion of the length of an object which is defined and investigated in section 5
of the paper.

A further remark about the category & may be helpful in illuminating a
modification of the notion of length (namely, to that of weak length) which is
suggested in section 5. Let K be the kernel of % : G * G ~> G x (. Then we may
replace the condition that there be a homomorphism y with ux = d : G * G - @
by the condition that d annihilate the kernel of x. In the category &,
in which x is an epimorphism, this condition is, of course, equivalent to the
existence of u; indeed the existence of an H,-structure g : G*! - ¢ is equi-
valent to the condition that d annihilate the kernel of »#-1:G" —Gnr-1,
However, in general categories the two conditions are not equivalent; it
remains true that the existence of y implies the annihilator condition but the
opposite implication is not generally valid. We are thus led to a notion of weak
length and the implication that the weak length of an object is never greater
than its length. The notion of weak length has also proved fruitful in topology.

In order to have the concepts of length and weak length available in ab-
stract homotopy theory, it is necessary to introduce a further refinement of the
concepts. Broadly speaking we wish to replace the notion of strict equality
which appears in the statements gx"1 = d, uk = 0 (where k: K ~» G* embeds
ker x*~! in ") by that of homotopy. We could approach this question simply
by considering a classifying functor € - €, which places each map of € in
an appropriate equivalence class called a homotopy class, demanding only the
compatibility of the classification with the law of composition of maps in €.
However, we have preferred to model ourselves on the situation in a topo-
logical category and have therefore adopted Xan’s notion of a calegory with
homotopy, elaborating it only by considering both left and right homotopy
systems (see section 6). In this way we have been able to establish, by category-
theoretical arguments, the homotopy invariance of the factorization (¥) and
of its dual (F') under certain very general assumptions on the homotopy
systems in question. The notions of length and weak length generalize in an
obvious way to those of homotopy length and weak homotopy length. It should
be made clear, however, that the concept of homotopy length for objects of €
is not just the concept of length for the category €,. For the factorization on

11*



152 B. EckmMaxN and P. J. Hivton:

which the concept of homotopy length is based is carried out in €, not in €,;
indeed it may well be [as it is for the category € of based spaces (of the based
homotopy type of CW-complexes) and based maps] that the factorization is
defined in € but not in €,. Thus the definition involves simultaneously the
maps of the category themselves and their homotopy classification?).

We have stated that, from the point of view of this paper, the notions of
equalizer, intersection, union, and direct and inverse limit discussed in the
first two sections are in the nature of necessary preparation for the subsequent
notions of length and weak length. However, we believe that they are basic
to any development of category theory, and they will recur very frequently and
prominently in paper III of the series and in subsequent contributions to
abstract homotopy theory. Of course, we make great use of categorical duality
throughout this paper so that every notion turns up in twin guises; we have
naturally not insisted on always being explicit about dual formulations.

1. Equalizers

Let € be an arbitrary category with zero-maps. The concept of left {right)
equalizer of a finite collection of maps f,, {5, . . ., f, between the same objects
A, B of €, which will be introduced in this section, is in close relation to the
notions of kernel and intersection (cokernel and union), familiar in various
special categories. The definitions are as follows:

Given fi, fo, .. ., [n€ H(4, B), a map k: K —~ 4 is called a left equalizer
of fi, far - - > I if
(LY) () hk=fok="-" = fpk;

(il) for any X in € and é¢ H(X, A4), f,é= [, = - - = [, & implies the
unique factorization & = k&', & ¢ H(X, K).
A map ¢: B— Cis called a right equalizer of f,, f,, . . ., f, if
(12) () efy=cfy="""=cln;
(it for any ¥ in € and 5 € H(B, Y), nf; = nfy= - - = nf, implies the
unique factorization = n'c, 5 € H{C, ¥).
The definitions are illustrated by the diagram

% —_ e

K~ 4=3 B¢

t 4 !

A ,
# / \I"

| v

X Y
Obviously, left and right equalizers are dual to each other; properties of
one of them are obtained from those of the other “by duality” and not always
mentioned in the following.
Proposition 1.3. Left equalizers are monomorphisms, right equalizers epi-
morphisms®.

2} Tt happens that the case n = 2 is exceptional; H-structures in €, are nothing other
than homotopy-H-structures in §.

2} In view of terminological differences appearing in the literature we wish to emphasize
that the terms “monomorphism” and ‘‘epimorphism” are used in agreement with [9],
see also {1]: A map f: X -» Y in the category € is a monomorphism if, for all Z¢ € and
maps g, b : Z — X in €, fg = fh implies g = k; and duaslly for epimorphisms.
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Proof. The second assertion is, by duality, equivalent to the first. To prove
the first, consider, for a map &' € H(X, K), k& € H(X, A4); since f, k& = fy k&’
= -+-= [ k&, the factorization k&' is unique, ie., k& = k& implies & = &".
Thus % is monomorphie.

Note that, conversely, k& being monomorphic implies that the factorization
in (1.1) (ii) is unique. In the postulate (ii) the uniqueness of & can therefore
be replaced by the requirement that & be a monomorphism; and dually, in
(1.2), the uniqueness of %’ by the requirement that ¢ be an epimorphism.

Proposition 1.4. If k: K> 4 and k' : K' > A are two left equalizers of
fisfas o - o5 [y there is a unique equivalence h: K — K' such that k' = kh. (The
dual statement for right equalizers is left to the reader.)

Proof. From fik'=---=f, k' it follows that & = kh, with a unique
kh: K'-> K. Similarly k= k'h', hence k = kh'h. Since k is a monomorphism,
this implies 2’k = 1, and in the same way one proves kb’ = 1, so that A is
an equivalence.

The left equalizer of f,, f,, . . ., [, if it exists, is thus, to the greatest possible
extent, uniquely determined; we denote it by A(f;,...,f,), and the right
equalizer by o(fy, ..., f,). We shall say that € is a category with left (right)
equalizers, if for any two objects 4, B in € and any finite collection of maps
Fiofos oo s fn € H(A, B) left (right) equalizers do exist; examples of such
categories are given later (§ 3). It will follow from the next proposition that
equalizers exist if they exist for any two maps f,, f, € H(A, B). For a single
map f ¢ H(4, B), A(f) is of course simply the identity 1, of A4.

Proposition 1.5. Let fi,fo, .. ..o €EH(A, B), n= 2. If the equalizers
M o ooy fua) =k and A(fLk, f k) = 1 exist, then kl is the left equalizer of f,,
Tore o fon

Proof. In the diagram

11 k e

L—— K— A= B

we have fik=f,k=---=f,_;kand fikl=f,kl, so that fikl= fokl=---=f,kl
Since [ and k& are monomorphisms, so is kl. Now, for any &: X — 4 such that
f1E== fg&=+--=f,Eone has £ = k& : X - K - A, hence fk& = f, k&, and

therefore & = [&", whence & = kl&".

We now give a list of various important properties of equalizers, to be
used throughout this paper and number III of the series.

(1) Afy, for - - -5 fo) and o(fy, far . - -, fu) are independent of the numbering
of the maps. If two of the maps are equal, one of them can be omitted without
changing the equalizers.

(2) The equalizer A(f, 0), determined by f : 4 — B up to a unique equivalence
is usuwally called the kernel of f, written ker f: it is a mapk: K — 4 such that
k= 0and all £ with f& = 0 admit a unique factorization § = k§'.

The equalizer g(g, 0) is usually called the cokernel of f, written coker f:,
it is & map ¢: B — C such that ¢f = 0 and all  with 5f = 0 admit a unique
factorization 9 = n’c.
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Thus, in a category with left (right) equalizers any map f has a (unique)
kernel % (cokernel c). Kernels are monomorphisms, cokernels epimorphisms.
If kernels and cokernels exist, any map f: 4 -~ B can be uniquely factored
through the cokernel of its kernel and through the kernel of its cokernel.

(3} An object Z in € with 1, = 0 is called a zero-object; for such an object
Z and for any X in €, H(Z, X) and H (X, Z) consist each of a single element 0.
Any two zero-objects Z, Z' in € are equivalent, the equivalence being given
by 0: Z -2,

If for 4 ¢ € the equalizer A(1,,0}=k: K~ 4 (ie., the kernel kerl,)
exists, K is a zero-object. Indeed we have

klg=Fk=14k=0k=0=k0g,

where Og is the zero-map K — K ; this implies 1y = Og. Similarly the equalizer
p(l,, 0), i.e. coker 1, yields a zero-object.

Thus existence of left (or right} equalizers in € implies existence of zero-
objects.

(4) Givenmaps f, f,, . - ., [, € H{4, B) the set of maps £ into 4 such that

fE=fo6="---=},Eis a “right ideal” in €; i.e., it is not empty and contains
with any £ all its right multiples & ¢. This ideal may be called the “‘left equalizer
ideal” of f;, fa, . . ., [ 1t always exists; however, the existence of A(f;, fp.---.fn)

= k means (i) that it is a principal right ideal, and (ii) that it is generated by a
monomorphism. The property (ii) implies that the generator is determined up
to a canonical equivalence. — Similar remarks apply to the right equalizer
o(fy, fas - - - fu) and, in particular, to ker f and coker f; the “kernel ideal”
and the “cokernel ideal” always exist and can replace ker f and coker f in
various arguments.

It should be remarked that in the category ¥, (of topological spaces and
homotopy classes of maps) equalizer ideals are principal, but do not possess
a canonical generator.

(5) A rather trivial generalization of the notion of equalizer will be useful
in the following ; we formulate it here for left equalizers only. Given a collection
of maps f;;: 4> B, 1=1,...,m; j=1,...,n; of an object 4 to several
object B;, we may understand by the left equalizer of the system f;; a map
k: K — A such that

fuk="+=fink, fori=1,...,m

and that the factorization property corresponding to (ii) in (1.1} holds.

Proposition 1.6, If € is a D-category (a category with direct products) and
if in € ordinary left equalizers exist, then they also exist in the above generalized
sense.

Proof. By repeating, if necessary, some of the f;; for fixed ¢, we may assume
that all n; are equal, n;=n, i=1,..., m. Then we write f; for the maps
{ffan s fmip: A= By xByx -+ xB, for j=1,...,n. As one may
easily check, the equalizer A(f,, f,, ..., f,): K — 4 has all the required prop-
erties, and is unique. Dually, in an I.category (a category with inverse prod-
uets) in which ordinary right equalizers exist, they also exist in the generalized
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sense referring to a system of maps f;: 4, —~ B, i=1,...,m;j=1,...,n
of several objects 4, into B.

(6) Naturality. Equalizers are “natural” (i.e., functors between obvious
categories). For let @ be a map of the diagram

’

LN LN
A_: B into A4"_%,

fﬂ "

13

given by two maps «: 4 > A4', f: B-> B’ such that for each f; there is an J;
with ff;= fia; then there is a unique map ¢: K — K’ between the two
equalizers such that

%

K A B
7 @ [
KI ‘,,___,‘k, > A! BI

is commutative: ak= k'@. The proof is immediate from the definition.

Notice as a special case that a map @ from the map f to the map ' (that
is, a pair of maps o, f such that f & = ff) induces a map ¢ from ker f to ker f'.

We may formulate the naturality of equalizers more generally in the follow-
ing proposition; we shall need this extra generality in subsequent applications.

Proposition 1.7. Assume several maps «®, oa®,...: 4> 4" and O,
B®, .. .. B~ B given such that

(1) for each f; there are an a®, F@ and f; with fOf; = fia®), and

(i) aWk=o®@k= ..., and fOf;k= fOf k=" .

Then there is a unique @ : K - K’ such that a®™k = k'@ (for all p).

For putting & = a/P k, we have

fi&= B9k

which is independent of i; hence there is a ¢ with &= k"¢, and ¢ is unique.

(7) In applications it will be useful to know that a functor T preserves
equalizers. Exactly as for the preservation of direct or inverse products, there
is a simple criterion under which this is the case: namely that 7' possess an
adjoint S in the sense of Kaw [8], ¢f. [1], § 6. This is made precise in the follow-
ing statement.

Proposition 1.8. Let T be a covariant funcitor from the category ® o the
category €. If T possesses a left-adjoint funcior 8: € — D, then T preserves left
equalizers.

Proof. Let = gy be the adjugant of T and §; i.e., the natural equiv-
alence H(SX, ¥) > H{X, TY) postulated in the definition of left-adjoint-
ness {cf. [1], § 6). For simplicity, we consider two maps f, g€ H(4,B) in ®
and assume that they have an equalizer A(f,g)= k: K-> A. We have to
prove that Tk: TK > T4 is the left equalizer of T'f, Tg: TA > TB in €.
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‘We first note that
TioTk=T(fok)=T(gok)= TgoTk.

Furthermore, let £: X > T4 in € be such that Tfo&= Tgc§&; writing
7~1(&) = & : 8X —~ A, we have

Tfob=Tfon)=n{fc&)=n(g-&),

hence fo & = g o &, which implies &, = ko & with a unique & € H{(SX, K).
We put n{&})=& ¢ H(X, TK) in € and obtain the unique factorization

E=nE)=nke &)= Thon(&) = Tko¥&.

Thus 7'k has all the required properties. Notice that the existence of 1(T'f, T'g)
is not assumed in €, but established from that of A(f, g) in .

Dually, a covariant functor which possesses a right-adjoint preserves right
equalizers. 1t is easy to formulate and prove the corresponding statements for
contravariant functors (left equalizers are transformed into right ones or
vice-versa). — We further remark that by the above method one easily proves
that a covariant functor 7' which has a left-adjoint preserves monomorphisms
(a right-adjoint, epimorphisms); a contravariant functor transforms one into
the other.

In general, a (covariant) functor 7' will of course not preserve equalizers.
However, there is always a natural transformation T of T 4 into AT, as follows.
For two maps f,g: 4— B, let [K;k]= A(f,¢9) and [K;k]= A(Tf, Tg).
There is a unique map 7,,,: T K — K such that

kov,,=Tk:TK—+K->TA4.
For Tk satisfies Tfo Tk = Tg - Tk and thus factors uniquely through K as
Tk=kor,, — Moreover, if @ maps f,¢ into f', ¢’ (cf. (6)), with induced
maps ¢: K-> K = A(f',g'),and §: K~ K' = A(Tf,Tg), one has
Fotra=Trgo Ty,

i.e. a commutative square
To

TK TK'
9 e
K -

The proof of this is immediate from the definitions.

{8) Equalizers and products. The following statement is an immediate
consequence of the definitions (we omit the proof).

Proposition 1.9. The direct product of left equalizers is the equalizer of the
direct product, the inverse product of right equalizers the egualizer of the inverse
product. More precisely, with restriction to the first case and to equalizers of
two maps: Given maps f;, ¢,: 4, B, i= 1,2, with left equalizers A1(f;, g,)
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=k;: K;—> A,, the map &k, xky: K; x K, A4, x 4, is the left equalizer of
fixfoand gy X gyt 4y x Ay — By X B,.

Remark. The statement is in general not true for the direct product of right
equalizers or the inverse product of left equalizers. (It will be shown, however,
in paper III of this series, that it holds, in a certain sense, in primitive cate-
gories.) Examples:

1) In the category ® of groups and homomorphisms, the kernel of f,  f,:
A, ¥ Ay — B, x B, is in general not the free product K, * K, of the two kernels
of f; and f,.

2) In the category M of based sets, the cokernel of f: 4 — B is the quotient
set B/f(A4) of B modulo the relation f(a) = o for all a € A (cf. § 3). Obviously
the cokernel of f; x f,: 4, X A,— B, X B, is not in general the set B,/f, (4;) x

X Bylfa(4y).

(9) Equalizers of primitive maps (cf. [1], §4). Let (4, m4) and (B, myg) be
M-objects in €, and f, g primitive maps 4 - B, k: K — A4 their left equalizer.
In the diagram

. ixf
K x K —*xF AxA— _—ZBxB
| H
mKi my mp
by
K k A B

naturality of equalizers (1.7) yields a unique maI; mgsuch that kmg=m (kX k);
in other words, there is a unique M-structure in K for which k is primitive.
Moreover any of the axioms I, II, IV of M-structures (cf. [1], § 4) if valid for
m 4 is also satisfied by mg. The three proofs being very similar, we here describe
only the case of axiom I: It asserts that m {1, 0} = m {0, 1} = 1,. In the
commutative diagram

K A
1,0} 1,0}
KxK—2% 444
myg my

K —2— 4

we have kmyg{lg, 0} = m4{14, 0}k = k; hence, k being a monomorphism,
mg{lg, 0} = lg. Similarly mg {0,15} = 1.
We summarize as follows.
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Proposition 1.10. Let k: K-+~ A be the left equalizer of primitive maps
A — B relative to M-structures m 4 and mp. There 8 a unique M-structure my
in K with respect to which k is primitive. If m, satisfies axiom I, II or IV, so
does mg.

With regard to axiom IIT (existence of inverse) the situation is slightly
different ; if 11T is combined with I and IT and if all three hold both in 4 and B,
then my satisfies I, IT and I1L In other words (using the terminologyof[1], §4).

Proposition 1.11. If in (1.10) both m 4 and my are G-structures, then my is
also a G-structure.

Proof. Let s4 and sp be the inverses in 4 and B. We recall (Prop. 4.16
of [1]) that if f: 4 — B is primitive, then fs, = spf. Now in the diagram

) 1
K—Ff 4 —
!
853 84 38
|
i
K—%* 4 B

naturality of equalizers yields a map sg with ksy = s k. Then
0= k+8A]C=~' ]C+ ’CSxfﬂ ]G(l *+“8K) s

since k is primitive. Thus 1 4 sy == 0, since k is a monomorphism, so sy is the
inverse in K.

The duals of (1.10) and (1.11) constitute the analogous statements for right
equalizers of primitive maps relative to M-structures.

2. Intersections and unions. Limits

The concept of intersection (union) familiar, e.g., in the category of sets
will be generalized in such a way that it applies to an arbitrary D-category with
left equalizers € (I-category with right equalizers). The general notion refers
to an arbitrary collection of maps between various objects in €, but we prefer
to formulate it first for the case of two maps o, «, from two objects 4,, 4,
to the same object B.

Given o;: 4, — B and o,: 4, B, we consider ;= a;p, and f,= o3P,
both € H{4, X 4,, B), where p,, p, denote as usual the projections of 4, x 4,
onto 4, and A4,. The equalizer A(f;, fo) = A{oypy, oaps) = k1 K — A, x 4, has
the properties:

(i) cypr k= oy pak.

(ii) For any &§: X — 4; x 4, such that o, p, &= a,p,& one has &= k¥
with a unique §: X - K.
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Writing b = {k,, k,} and & = {&,, &} in components, ie. pk=k : K~ 4,
ete., this can be formulated as follows, and illustrated by the diagram:

/’ \
\\: /
2.1) (1) ogky = atgks.

(i) oy & = ay&, implies the unique factorization & = k&', &, = k,&'.

Given oy, «y, a system [K; k;, k,] with the properties (2.1) will be called the
intersection of oy and «,. Itis determined by &, and «, up to a unique equivalence
of K (cf. Prop. 1.4). In a D-category €, the uniqueness of the factorization (ii)
is equivalent to {k,, k,} being a monomorphism.

Proposition 2.2, Let [K;k,, k] be the intersection of o,: A4, B and
oy Ay — B. If oy is @ monomorphism, then ky: K — A, s also a monomorphism.

Proof. Let &,&": X — K be such that k,&" = k,&"'. From oy ko &' = o, ke &'
and the same equation for & we then conclude that oy k& = oy k, &' since oy
is a monomorphism, this implies £, & = £k &". By (2.1) (ii), ¥;& =k;&" for
j=1, 2 imply & = &’; hence k, is a monomorphism.

Proposition 2.3. In a D-category € the intersection exists for any two maps
o,: Ay — B, ay: Ay — B, if and only if € has left equalizers.

Proof. It has already been shown that left equalizers yield the intersection of
o, and o,. Conversely, assume that intersections exist in €, and let f,, f, be two
maps 4 7 B. They have an intersection [K; k,, k,] — not to be confounded
with the equalizer we are looking for! —, corresponding to the diagram

/A\
\A/

We now put k = {k;, &y} : K -~ A x A and consider the intersection [K';k{, %3]
of d and k, d being as usual the diagonal map {1,1}: 4 -+ 4 x 4. In the

diagram
4 A
P T
/ \ y / \; 5
we then have, forj = 1, 2,
Jipidky = f;pkks;
since p;k = k;, p;d = 1, this means f; k] = f;k; k5. But f,k, = f,k,, whence
hki= frk .
In order to show that k) is the equalizer of f, and f,, it remains to check that &}
fulfills (ii) of (1.1). Let &: X — 4 be such that f, & = f,&. By (ii) of (2.1) there
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isa & : X — K such that & = k, & = k,&', which can be written

k& = {ky, b} &' = {£ &} = dE.
Hence, again by (ii) of (2.1), there is a &"’: X - K’ such that &= k{1 &’ (and
& = k3 &y, Thus we have the required factorization & = k1 &"; and since k is a
monomorphism, so is k] (Prop. 2.2).

We will also need the following relation between kernels, intersections, and
direct produets. The proof will be left to the reader.

Proposition 2.4, Let o, : 4 — B, and oy : 4 — B, be maps in the D-category €
with kernels k,: K, —~ A4 and k,: K, > A respectively, and let [K; 1, 1,} be the
tnfersection of ky and k,. Then the map k= k1, = kyly: K — A is the kernel of
o= {oy, ap}: A~ By X B,

We turn rapidly to the dual concept: The union of two maps f;: 4 -~ By,
t=1,21is a system [C; ¢, ¢,] of twomaps ¢;: B, - C, 1= 1, 2, such that in the

diagram s,
BN
(i) ¢; By = ¢3 By and /\2\32 //

(ii) for any two maps #»;: B; - Y with #, 5, = 7, [, there is a unique
7':C— Y with 5, = '¢;, =1, 2.

If the union exists, it is determined up to a unique equivalence of C. In an
I.category €, the uniqueness of %’ in (ii) above is equivalent to ¢ = {¢;, ¢;) :
B, x B, — C being an epimorphism. The result dual to (2.2) states that if §;
is an epimorphism, so is ¢,; the result dual to (2.3), that in an I-category €
unions exist for any f,, f, if and only if € possesses right equalizers. The dual
of (2.4) is a relation between cokernels, unions and inverse products; the
precise formulation is left to the reader.

The examples below (§ 3) will show that certain familiar constructions in
homotopy theory and in group theory fall under these generalized notions of
union and intersection. These examples will also prepare the ground for the
later developments generalizing group-like structures to more than fwo factors
which constitute a main objeetive of this paper. However, before passing to
these examples, we discuss the general concept of intersection and union for
arbitrary collections of maps in €, called direct and inverse limits, of which
equalizers as well as the intersection and union above are special cases; we also
investigate their naturality and functorial behaviour.

The collections of maps of € for which we define these concepts will be
called aggregates in € or €-aggregates®); a G.aggregate &7 is, by definition,
a subcategory of € with the understanding that the 0-maps need not belong
to & (but, of course, the identity maps must), and that objects of € can be

3) A G-aggregate is essentially a diagram in the sense of Kax [8]. Kaw, however,
specifies a model category OV and defines a diagram as a functor K: 8 — €. Thus his de-
finition of a limit is formulated quite differently from ours, although the basic idea is the
same, However, an important difference arises in that we consider maps between G-
aggregates (see Proposition 2.6) which are much more general than natural transformations
of functors B — €.
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repeated arbitrarily often (i.e., &7 is a subcategory of g, the category obtained
from € by arbitrary repetition of objects). Although we are here interested in
finite aggregates only, the definitions and general properties are not limited
to that case.

Definition 2.5. The inverse limit lim &/ of a €-aggregate </ is a system [K; k 4]
consisting of an object K of € and maps ky: K — A, one for each?) A€ o,
such that

(i) fey=rkpforall A, Band f: A —~ Bin o

(1) If £4: X — A s a system of maps in €, one for each A € o/, with fE4=&p
forall A, Band f: A — B in s, then there is a unique & : X — K with & ;= k4 &
forall A€ .

The direct limit lim <7 is defined dually as a system [C; c4], ¢4 : 4 — C with
cpf = ¢4 for all maps f: 4+ B of o/ and with the factorization property
corresponding to (ii). — lim./ and lim/, if they exist, are unique up to a
canonical equivalence of K or C respectively.

Remarks. (1) Let fy, f5, ... € H(A4, B); the left equalizer A(f, f,, . ..) and
lim o/ of the aggregate o/ consisting of 4, B, f;, f5, . . ., 14, 15 coincide in the
following sense. k: K > A being the left equalizer, the maps k,= & and
kp= fik = fyk = - -+ constitute lim o/; and conversely, if lim .o/ = [K; k4, kp],
the map k4 : K — 4 is the left equalizer of f,, f,, . . .

The proof is immediate from the definitions. Similarly right equalizers and
lim o/ coincide. In the same sense, for two maps oy : 4, ~ B, a,: 4, B, the
intersection of a; and ay and lim 57 of the correspondmg aggregate coincide;
and for ,: 4 - B, f,: 4 - Bg, the union of f;, and B, and lim+/ of the
corresponding 7. We will often use the terms “union” and ‘intersection” for
lim and lim, in agreement with these facts and with standard terminology in
particular special cases.

(2) If o contains a finite number of objects 4,, . . ., 4,,, we write k; for k4,
i=1,...,m,inlim o If €isa D-category, themap k= {ky, .. ., k,,}: K~ 4
= A, x - x A4, is obviously a monomorphism, and this is equivalent to the

uniqueness of & in (ii) above. This statement can be refined in the following
sense; we will make use of this refinement later.

Propoesitien 2.6, Let the objects of the aggregate o be A,, ..., 4, and let
lim o/ = [K; k;]. Suppose there exists I, 1 <1< m, such that, to each ©>1
thereisaj < land amap f: 4; > A, in . Then k= {ky, ..., k;} is @ mono-
morphism.

Proof. Assume k& = k&"; this means k;& = §,&7,j=1,...,1. For each
¢ > 1, choose j and f: 4; - 4, in &Z. Then k, = fk;, so that k,& = k,&". Thus
8 =Fk&",j=1,...,m, so that & = &',

Dually, in an I-category, the map c= {¢;,...,cpn):dy*---x4,>C
connected with lim is an epimorphism, with the same comments as above.

(3) Similar statements are, of course, valid for arbitrary aggregates if we
work in a category € with infinite direct and inverse products. In the same way,
the following theorem could easily be carried over to the infinite case.

%) If the object 4 € § is repeated in s, there is one k4 for each copy of A!
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Theorem 2.7. In a D-category €, the inverse limit exists for all finite aggregates
if and only if € admits left equalizers. In an I-category € the direct limit exists for
all finite aggregates if and only if € admits right equalizers.

Proof. In view of Remark (1) above we only have to prove the if-part. We
thus assume that in € (finite) left equalizers exist.

Left .7 be a finite aggregate, consisting of objects 4,, ..., 4, and maps
fir fipp o - .1 A;— A; defined for some values of ¢ and j (including in any case
alli=74, f,;= 1). Weput §= 4, x -+ - x 4, and consider f,;p,, fi;p;, . . .: 8~
— A;— A;, for all maps into A4, belonging to o7. There is at least one such map
into 4;, namely p;. In the diagram

let & : K — S be the left equalizer in the slightly generalized sense of (1.7) and
k= {k, ..., k,}. Then
fishi=fispik = pik=k;: K~ 4;.
Hence (i) of definition (2.3) is fulfilled, and the factorization property (ii)
follows immediately from that of the equalizers.
The naturality of limits will be expressed by the next statement (which
we formulate for lim only). For this we have to consider a map @: o/ — &’

of one €-aggregate into another, i.e. a system of maps4®) ¢, 4 given for some
A€ of, A’ € o7 and such that certain squares

f

A B

Faar P8 B

¥

f B

AI .
are commutative (f in &7, ' in &/’). Naturality of limits holds for maps which
fulfil special conditions and which we call essential. We formulate the precise
definition of an essential map @: .o/ — o/’ in the course of stating the next
proposition.

Proposition 2.8. Let o7, o' be €-aggregates with limsZ = [K; k4], lim o’
= [K'; k). If ® is an essential map o — A, i.e. if

(i) for each f': A’ —~ B’ in o', there is at least one commutative square
{'9aa= @ppfWith 944, ppp € P; and

(i) @44 k4 is independent of A € of and of @4 4,
then there exists a unique @ : K — K' suchthat @4 4. k= k. pforall A’ ¢ o', —

44) The notation is not intended to imply that there is only one mayp in @ from 4 to 4”.
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We write @ = Dy ; then for two essential maps @ : sf — o', D' : o' — " one has
(@’ @)* = @; @*.
The statement is illustrated by the diagram

. f
K 4 B
¢ Paar Ypp
, ¥
—a s gL p

We note that for each 4’ € o/’ there is at least one ¢, 4. : it suffices to take in
(iy A'= B, }'= 1,4. According to {(ii), we thus have, for each 4’, a well-
defined map &4 = @ 4 by K- 4"

Proof of 2.8. The maps £ 4. above fulfil, for any /' : 4" — B’ in &,

F'éa=fQanks= pppika
for some B¢ o/ and f: 4 —~ B; but fky= kg by definition of limsZ, hence

fés=opp kp= &g .

Therefore, there is a unique ¢ : K > K’ with £4.== ¥, ¢, i.e.,

Paaka=Fyo

for all 4" and all @44 . — The statement concerning @' @ follows from the
uniqueness of (@' D).

Finally, it need not be emphasized that funclors preserving direct and
inverse limits are of special importance in applications. As before there is a
simple sufficient criterion for this property of a functor, namely to admit an
adjoint. We formulate the statement explicitly for covariant functors 7', leaving
the formulation for contravariant functors to the reader [cf. the remarks after
the proof of (1.8)]. For a functor T from ® to € and a D-aggregate &7, the
images T'4 and T'f of the objects and maps of &7 evidently form a €-aggregate
T <. The following proposition generalizes Proposition 1.8.

Proposition 2.9, Let T be a covariant functor from ® to €. If T possesses a lefi-
adjoint 8 : € — D (a right-adjoint ), then T preserves inverse limits (direct limits).
More precisely, let o/ be a D-aggregate having an inverse limit im o/ = [K; k4];
if T has a left-adjoint then T o/ has in € an inverse limitlim T'.of = [T K; Tky].

Proposition 2.9 is easily proved directly (for a D-category © with left
equalizers it can, of course, be deduced from the preservation of direct products
and from (1.6), together with the fact that lim can be expressed by left equal-
izers).

In general, covariant functors 7' will, of course, not preserve inverse limits.
However, there is always a natural iransformation © of T lim into lim 7', as
follows.
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Proposition 2.10, Let T be covariant functor © — € and 7 an aggregate in D,
There is @ unique map 7. of T lim of = [TK; Thky] into lim T/ = [K; kp 4],
ie., a map Ty TK->R such that Fpaovy= Thy for all A¢ 2. For any
essential map @ of & into a D-aggregate ', with Pyp= @: K — K' and (T D),
= §: K~ K’ one has ¢ ot p= T 00 T .

Proof. For all maps f p5: 4 > B of o/, we have T'f 3o Tk, = Tkp; hence
there is a unique 7, : T K — K such that ky47,,= Tk, for all A. To prove the
second part of the statement, let @ : o7 — &’ be given by maps ¢, 4, 4 € 7,
A’ € s’ ; for each of these ¢, 4 we have

Panoks=kyoqp
and

Togackra=kraed.
N0~W kpgo @ oty =Tospokpaty=TosaoThy= TkpoTg
=k 0740 T, for all A’ € of, which implies.

Fotyg=Ty-To.

In a similar way, one establishes the following useful relation. Let E and
T be covariant functors ® — €, p and 7 the corresponding transformations of
R lim into lim B and of T'lim into lim T respectively, and b a natural trans-
formation of R into 7. For a ©- aggregate &/, we obtain from b a map b, : R/ —
— T given by by: RA—> TA for all A€ o/. This map b, is essential; let
(ba)s be the induced map of lim R/ into lim 7'.</.

Proposition 2.11. Given covariant functors R, T:9 > € and a natural
transformation b of R into T', one has, for any D-aggregate oF, (byr)g © 0.
=T dob li(_!_n o

Rlim o/

T lim o/

Q4 T

In particular, if ® = € and R = I (identity functor), one has

(b)) = Tazo blin_l.ﬂ .

We finally note that the analogues of (1.9) — (1.10) hold for inverse limits
(direct limits): The direct product of lim is lim of the direct product maps.
And lim of an aggregate o consisting of prlmltlve maps, relative to M-structures,
is prumtlve ie., [K; k4] being the limit, there is a unique M-structure in
K for which the k, are primitive; etc. These facts can again be established
directly, or deduced from (1.9)—(1.10) together with the fact that direct
products of primitive maps (rel. to M-structures) are primitive.
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3. Examples of intersections and unions

Example 1. The category & of based sets.

The left equalizer A(f,,fs ..., f,) of an arbitrary collection of element
maps f; : 4 — B is the “coincidence set” of these maps; i.e., the subset K of 4
consisting of those elements a€ 4 for which f (a)= fy(a)= - = [, (a).
More precisely, A(fy, fa, - - -, fu) = kis the embedding map K -> 4. In particular,
the kernel ker f = A(f, 0) of {: 4 — B is the subset of 4 sent by f into the base
element o ¢ B.

The right equalizer g(f,, fs, . - ., f») is the quotient set € of B modulo the
equivalence relation [f, (a) = fy(a) = - - - = f,(a) for all a € 4]; more precisely,
the natural epimorphism of B onto C. The cokernel of f: A - Bis the quotient
set of B modulo the relation [f(a) = o for alla € 4].

The “intersection” [K; ky, k,] of two maps ¢¢,: 4, > B, ot: 4,—~ B in &
is the subset K of 4, x A, consisting of those pairs (a, a,), @, € 4,, a,€ 4,
for which o (a,) = &5(a,), together with the two maps k;: K — 4, j=1, 2,
given by (ay, @) - a;. 1f in particular oy, o, are embedding maps 4, CB,
A, C B, then there is a one-to-one map of K onto the ordinary intersection set
4, N A,, under which K can be identified with 4, N 4,, the maps %,, k, cor-
responding to the embeddings into 4, and 4,:

/\

A, N4,

St

The “union” [C; ¢,, ¢,] of two maps §,: 4 - B, and §§,: 4 — B, is the quotient
set C of B, v B, (the union of B; and B, with identified base element 0) modulo
the relation [f,(a) = f,(a) for all a € 4], together with the two natural maps
¢:B;—> B vB,—~C, j=1,2 1f B, and f, are embedding maps 4 CB,
and 4 CB,, then C can be identified with the ordinary union B, U B,, and ¢;
with the embeddings B; CB, U By, j=1, 2:

PN

B, v B;.

Saa st

Example 2. The category € of based topological spaces and continuous
maps.

Left and right equalizers, and unions and intersections in & are, of course,
described as in &, except for the induced topologies to be taken into account
{subset topology; identification topology). More specifically, if B;, B, are

Math. Ann. 151 12



166 B. Ecgmaxy and P. J. Hivron:

subsets of a space B, or; the embedding maps of B, in Band f; the embedding maps
of B, n Byinto By, § = 1, 2, then B, N B, is the “intersection” of «; and o, and
there is a one-to-one map of the “union” of #, and §, onto B, U B,; this map is
a homeomorphism if, for example, B, and B, are both closed (or open) sets in B.

It may be worthwile to add the following remarks on the intersections and
unions thus obtained.

(3.1) Consider the diagram for the intersection [K; &, k,] of «; and «,:
k,

K A,
ken oy
4,—>*—> B

If o, is & fibre map with fibre F, then so is &y : K — 4,. The map k, is usually

called ““the fibre map with base space 4, induced from the fibremap o, : 4, » B

by the map «, of 4, into B”. We recall from above that K is the subspace of

Ay x A, consisting of all pairs (a,, a,) with oy (@) = a,(a,), and that ky(ay,a,)= a,.
(3.2) Consider the diagram for the union [C; ¢, ¢,] of §; and §,:

ﬂl

A B,
Be Cy
By——— C

If B, is a cofibre map with cofibre F, then so is ¢, : B; — C. The map c, is called
“the cofibre map with cobase B, induced from the cofibre map f,: 4 — B, by
the map B, of 4 into B,.” We recall from above that C is the quotient space
of B, v B, modulo the relation [f,(a)= f,(a) for all a € 4], i.e. obtained
from B, v B, by identifying images of the same a ¢ 4.

We omit the proofs of (3.1) and (3.2) which are straightforward. We mention
the important example of (3.1) where 4, == E B is the path-space of B, the
fibre of a, being the loop space £2 B, and k, the fibre map with fibre £2 B induced
by ay: A;— B; and the example of (3.2) where B, is the cone CA4 over 4,
the cofibre of f, the suspension 24, and ¢, the cofibre map with cofibre X' A
snduced by ff,: A— B; (C is usually called the space obtained by attaching a
cone C4 to By, by means of the map f,: 4 — By).

Ezxample 3. The category & of groups and homomorphisms.

The left equalizer A(fy,f; ...,f,) of the homomorphisms f;: 4 > B,
i=1,...,n,is (the embedding in 4 of) the coincidence subgroup of the f;. The
right equalizer o{}.f,, . . ., f») is the reduction of B modulo the normal subgroup
generated by the elements f,(a) f; ., (a)~2, for all a € 4 and all values 0 < j <n.

The “intersection’’ [K; &y, k,] of two homomorphisms &, : 4, > B, a,: 4,—~B
is the “‘subdirect” product K CA4, x 4, consisting of all (a,, a,) with o (a,)
= oy (d,), together with the projections into 4, and A,. The “union” [C;¢;,¢,]
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of two homomorphisms §,: 4~ By, f,: 4 —~ B, is the “free product of B,
and B, with amalgamated images of 4,” i.e., the free product B, » B, modulo
the normal subgroup generated by all f,(a) f;{a)", a € 4.

Example 4. The category 2 of Abelian groups and homomorphisms.
Egualizers are the same as in ®. The intersection of o, : 4, > Band a3: 4, —+ B
is the same as in &; the union of §,: 4 — B, and f,: 4 — B, is equal to the
Abelianized union in G.

A series of examples of a more general nature is given in the next section,
first for arbitrary categories and then in the special cases & and &.

4. The canonical factorization
In a DI-category €, there is for any system X, X,, ..., X, of n objects
a “‘canonical map” » from the inverse product X; » X, » - - - x X, to the direct
product X; x Xy x « -+ x X, given by

= by e vs tyy = {0y, ..., 7y}

(cf. [1], 3.34). Here ¢; denotes themap {0, ..., 1,...,0}: X; > X; x --- x X,,,
all components being 0 except for the j*®; and z; the map ¢0,...,1,...,0):
X x Xy x X, > X, j=1,...,n In the present section, this
map x will be factorized, in two dual ways, through a sequence of “snter-
mediate products” between the inverse and the direct which will be obtained
as unions (or dually intersections) of maps arising naturally from the construc-
tion of direct and inverse products.

We first illustrate the factorization in a simple example. In the category &
of based topological spaces and continuous maps, let X, ¥, Z be three spaces;
the subspace of X x ¥ x Z consisting of those points with at least two ““co-
ordinates”™ equal to the base-point o is the inverse product X * ¥ x Z, and its
natural embedding in X X ¥ xZ is the canonical map ». The subspace 7' of
X x Y x Z consisting of those points with at least one “coordinate” equal to the
base-point o contains X % ¥ = Z; if the embedding of X » ¥ « Z in T is denoted
by 4 and the embedding of 7' in X x ¥ X Z by u, we obviously have » = pi:

Z
/l—y A, ﬁﬁ% A
X
7 XxYalZ

In view of the generalization we have in mind we give a different description
of T'. For that purpose, we consider the various embeddings given in components

X—————‘£-—>~ Xxy

M \d\
Y 1794 Ewm YxYxZ

bl
[5 f

Z-——-a7-—-' XxZ

by a={1,0}, o' ={1,0}, b={0,1} etc.; d={p, ps, 0}, e= {0, py, Ps},
f={p., 0, py}. Then we take the ‘“‘union” of the six maps @, a’, b,b’, ¢, ¢’;
12%
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more precisely, these maps together with the respective identities form an
aggregate <, and we take lim o = [T'; &, &,, ..., &] where & : X x ¥ > T,
Eg: YXZ->T, §: X xZ — - T play the essential rdle, while &,: X - T is
just £ a = &;a' ete. It is easily seen that this 7' is the same as above; indeed
it is the quotient space of (X x ¥) * (Y x Z) » (X X Z) modulo the relation
[a(z)=a' (z)forallzc X, b(y) = &' (y) for all y € ¥, ete.], i.e., it is obtained by
identifying X xoin X x ¥ and X x Z etc.

This definition of 7' applies, of course, to any DI-category € with right
equalizers (direet limits), the maps a, a’, b,8’, ¢, ¢’ and their union being
well-defined. Moreover, since da = fa’ = {1,0,0},db=eb’ = {0, 1, 0}, ec = f¢’
= {0, 0, 1}, there is unique g : T — X X ¥ x Z such that

péi=d; péy=e péy=f.
If we denote by A the map (&,a, &b, 5,6 X x Y « Z — T, we have
ph=(uéia, p&b’, pésc’y = (da, eb’, fo'y = {4y, 1y, 5y = =,
and we thus obtain the factorization of x as X * Y% Z pt.x X YXZ.

We now pass to the general case of n objects X, X,, ..., X, of € and to
the description of various “intermediate products”. For completeness this
description will be given in more generality than would be necessary for the
factorization of » and for the applications made in the next section. We prefer
to introduce the notations and the whole set-up in the situation dual to that
given above (for n = 3); this factorization, in ® is referred to in the introduction.

Notations. X, . . ., X,, are n fixed objects of €, numbered in a definite way ;
they may be different from each other or equal. We use “‘strings”, i. e. ordered sub-
sets of the ordered set of integers N = (1,2, ...,n);letJ = (j,7s, . - .,jr) be sucha
string, its number r of elements being denoted by |J|. Forany J CN,0 < |J| ==,
let X; be the inverse product X; * - - - * X, (the zero-object if r = 0); Xy is
X, x--xX,. Forany KCJ, K= (ky, ky, ..., k), let ak be the natural map
X ;> Xg given in components by

0 if j,¢K
ak={ay,...,0,y with a,= {q” i ;vi ke K
7t} is the identity map of X;.
Lemma 4.1. Let L CK CJ; then n¥ nk = nf.
Proof. We write in components

={ay ..y, aFk={(b,..., by, al={e ...,c,),
r=|J| =z s= |K|. Then
akag =y by ey, ey =By by ay, by by
By definition we have (b, ..., b4, =0 j,¢ K, = by, ..., s) q,=b, if
j»=k, € K; the second possibility gives (b,,...,b,)a,=0if k, ¢ L, = q; if
k,=1,¢ L. Hence
0 if 4,4L
s by a, = o .
<b1 3)0 {q;, i ?,»‘f—l},EL

which is precisely ¢,, v=1,..., 1.
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In a DI-category € with left equalizers, ¢nfermediate-direct products of
X,, ..., X, are now defined as intersections (inverse limits) of the maps =¥,
as follows.

Definition 4.2, Let X,,..., X, be objects of €; r, s two integers with
0 = s < r = n; /" * the aggregate consisting of all X; and a§ with |J|, |[K|=r
or = s. The intermediate-direct product of X, ..., X,, of type r, s is defined as
lim o/7% = [X75; &:°]. It is an object X7.* together with maps &= §}°:

Xt Xy, for IJ] = r or = s, such that

nk &= &g forall K C J with |J], |K|=1r or < s,

and that any system of maps 7;: ¥ — X; with the property =% n,= 5z can
be uniquely factored through X7 ¢ as n,; = &;7'.

From the naturality theorem for limits (2.8) it is easily seen that X7 ¢ is
a covariant functor of the n variables X;, ..., X,. We will often call X" ¢ the
intermediate-direct product, leaving the &; implicit. Clearly all the maps &;

are determined by those with |J| = r. The map & of X3 into the direct product
of all X;, with components &, is a monomorphism, and so is the map & of X7+ ¢
into the direct product of the X; with |J| = r (cf. Prop. 2.6). We note some
special cases:

(1) X, for any r, 0 < r < n, is the inverse product Xy = X, *---xX,.

(2) X9, for any r, 0 < r < n, is the direct product of all X, with |J|=r.
For example, X1:0= X, x - -+ x X,; X%0ig the zero-object.

(3) X7, for any r, 0 < r £ n, is the same as X" 71, by the definition
above. It is the lim of the aggregate consisting of all #f with |J] and |K| < r.
These products will appear in the factorization of »: X" 7 —» XL.1; we will
simply write X" for X*7, r=0,...,n Thus X*=Xy= X, *---x X,
Xt=X,x - xX,.

Proposmon 4.3, Let X® and X% be two intermediate-direct products
with r < s'. Then there is a unique map y: X™¥ — X% such that &; y = w} &),
for all ' > J, || = ', |J| = r, where &; stands for £;°, &) for £e

sy En
xXr.e XJ'
y xy
&
XT )8 XJ

The maps y are transitive, i.e., if ¥ : X% -~ X" and p'': X7 —» X9,
"=, 8 = then p"' = vy o',

Proof. The assertion follows immediately from the naturality of inverse
limits, Proposition 2.8: y is induced by the map @ of &+ * to &8 given by
all nJ', |J'| =1 or £ &, |J|=r or < s. For each map sk of /"¢ there is at
least one commutative square n% a} = nf’ n§., and the condition (ii) of (2.8)
is fulfilled, since nJ’ &50%" = &% forall |J'| = ', |[J|=ror < s, (since r < ¢,
7}’ belongs to &7"#!1) is independent of J’'. Hence @ is essential, and thus

12a
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there is a unique map y = @, such that &; y = =}’ & for all &} belonging to
¢ and all & to o77+%; in particular, for all |J'| = ', |J| = r, and this is
sufficient to ensure uniqueness of y. The “transitivity” follows from the
functorial behaviour of @, [last part of (2.8)].

For example, the map y of X”to X is the canonical map ». In the following,
we pay special attention to the maps y: X" - X"-1 and denote them by
#t or=2,3,...,n According to the transitivity in (4.3), the composition
wlx® . . . x"1is precisely x.

Theorem 4.4. The canonical map » of X*= X, %+ X, into X' =

X, x -+ x X, can be factored through the intermediate-direct products X* of
X, .o Xpasx=13lx®. . x" T nz 2:
(F) Xn 2 xn-1 20 xnee ces X2 xt

By dualizing the definition (4.2), intermediate-inverse products 75X,
0=r=s=sn of X;,..., X, are obtained, as follows. For a string

JCN,J = (j,...,},), the direct product ;X = X; x - -+ x X, is considered,
and for J CK the map ¥i: ;X — X with components {a,, . . ., a;}, s = |K]|,
is given by a,=0if k, ¢J, = p, if k,=j,€J; ¥t “embeds” ;X in zX. For
0 = r = s = n,"*X is then defined as the direct limit im" *.o/ of the aggregate
.35/ consisting of all X¢ with |J| and |[K|= r or = s; X is provided with
maps p&="7%%: X > "X for all |[K|=r or z s, satisfying £ofi— &
(and with the unique factorization property). The map & of the inverse product
of all ;X to 75X, with components ;& is an epimorphism, and so is the map &
of the inverse product of all ;X with |J| = r to "*X. By naturality, transitive
maps y : X "X are uniquely defined for s < 7'; the map"-17-1X — nrX,
in short 7—1X — X, is written 7~ x, and the map 1X — "X is again the canonical
mapxof 1 X=X, x--- %X, into "X = X, x -+ xX,.

Theorem 4.5. The canonical map % of ‘X = Xx---x X, into "X =

X, x -+ xX, can be factored through the intermediate-inverse products "X of
X, .. Xpasu=""Y.. B n=z2
(F") 1X 22y ne2x X iy 2 Ly

If we return to the special case of three objects X, Y, Z dealt with at the
beginning of this section, we note that 2X is just 7. We will generally adopt
the notation Tor T (X, . . ., X,,) for*~1X associated with n objects X, . . ., X,,,
and T for X?—1 in the dual construction.

Remark. Both factorizations can be completed by adding a map »® (or %
respectively); namely, »®: X' — X%and %: %X — 1X We recall that X° and
0X are zero-objects.

In the case n = 1 only these maps »® and % are available.

As an example we describe the factorizations (F) and (F') in the cafegory
of based sets ©. An element a of the product set 4, x 4, x - - - will as usual be
given by its “‘components” @ = (ay, a,, . . .), @; € 4;; an element of 4, % 4, % - - -
by a = (a,, a,, . . .) with at most one a,== 0 € 4, i.e., we use the construction
of AxA4,*---as a subset of 4 x 4,x -+, % being simply the inclusion map.
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Given n sets X;, ..., X,, the object 7X of the factorization (F") is the set
consisting of those n-tuples (,, . .., z,) € X; x -+ x X, with at most r compo-
nents == o, the maps "k : "X — 7+1X being the corresponding inclusions (cf. the
explicit description, for n = 3, at the beginning of § 4; the proof for general
% is similar and left to the reader). Thus the factorization »="—1x ... % 1x
is non-trivial (for n > 2) and all 7 are monomorphisms.

The dual factorization (F) however, is trivial in & in the following sense:

4.6) In x=2'2>.. . 5" L each »", r > 1, is an equivalence X7+1 > X7,
Hence all X7, 2 < r < n can be identified with X, » « - - x X, and in that sense
#l = .

Proof of (4.6). From the definitions it follows easily that X~ is the following
subset of the direct product of all X, |J]| = r: An element of X, J = (j;,..., j,),

is an r-tuple (2;, . . ., 2;), 7, € X,-y, with at most one x; == 0; an element of X
is a system of such r-tuples, one for each J,

(@, ..o m), (@ o v s ), e )
with components x;, = ;, if j, = k;. In other words, an element of X" is a
system of r-tuples (x;,...,a;) of the type described, one for each J with
|J| = r, of the form

(@, v m), @y e y) v n)
In this system w; == o, for example, implies x;, = o for »= 2, ..., r, and more

generally x;, = o for all k, == j,. Le., if o; 4= 0, all x;, 4= §,, are o (provided
that r = 2). Thus the system is simply given by an n-tuple of representatives
2, € X, i=1,..., n with at most one x; = o0, i.e., an element of X, % -+ - x X,.
The elements of X7 and those of X7+1 are in one-to-one correspondence and
differ only by the arrangement (with repetitions) of one and the same n-tuple
%y, ..., %, in the double bracketing ((...),(...),...), the correspondence
being established precisely by the map x'.

In the category & of groups, the factorizations (F) and (F’) are described
explicitly in [2]. It turns out that » = »lx?. . ."—! is non-trivial and that all
x" are epimorphisms; and that » = "—1x . .. 2xx is trivial in the sense that all
"X > 71X, r = 2, are equivalences (isomorphisms), so that all 7X can be
identified with X, x - - x X,, and 1x with ». The curious duality between &
and ® appearing in these examples will find an explanation in paper III of

this series, in connection with primitive categories. — A study of the occur-
rence of triviality in the factorization of #, for general categories, can be found
in [4].

We finally remark that in the category € of based topological spaces the
situation is exactly the same as in &, the only additional feature being the
natural topologies involved in the constructions and the continuity of the

various maps.
§ 5. Length of an object

We consider, in’ the canonical factorization (¥) (Theorem 4.4) of
Xy kX, > Xy x o0 x X, the map »"~1: X %% X, — X711 and
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write ¢ for " =1, T or T'(X,, ..., X,)) for X*-1; and similarly, in (F') {(Theorem
4.5), 7 for "~Y¢ and T for *-1X. Note that for n = 1, both 7' and T are equal to
the zero-object 0 of €. For # = 2, both ¢ and 7 are equal to » (T = X; x X,,
T =X, % X,;). We assume now that X;= X,=-- = X, = X, and recall
that an H-object in € is an object X together with a “multiplication” m :
X, x X, X such that mx = (m{1, 0}, m{0, 1}> = (1, 1) = d, the folding map
X, *» X; - X; and that an H-object is an object X with a ‘“‘comultiplication”
m: X — X, » X, such that »m = {1, 1} = d, the diagonal map X - X, x X,.
Usingo: X;*-- %X, »Tand7:7 > X, x - -+ x X, above, these concepts
of a multiplicative or comultiplicative structure in X are generalized to an
arbitrary number » = 1 of factors, as follows.

Definition 5.1. In @ DI-cafegory € with left equalizers, an H,-structure in

m

X%+ % X,— T "X,

In a DI-category € with right equalizers, an H,-structure in X ¢ € is a map
m:X—>T(X,...,X)such that tm=d={1,...,1}:

XX x - xX,.

An H,-structure m is thus the same as an H-structure. An H,-objeet is a
pair consisting of an object X and an H, -structure m in X. Similarly for the
dual concepts. An H,-object is an object X and a map m: 0~ X such that
X" 0"Xis equal to d = 1, i.e., an object with 1 = 0, and dually; thus
the only H,-objects and H,-objects in € are the zero-objects.

In the following we concentrate on the question whether a given object
X admits an H,-structure (an H,-structure), rather than on the H,- and H,-
objects themselves. A fundamental fact in that context is given by the fol-
lowing theorem.

Theorem 5.2, For each n = 1, if X admits an H,-structure, it also admits an
H, . ,-structure.

The case # == 1 i3 trivial: zero-objects admit H,-structures for all n. We
assume 7 = 2; in order to establish the theorem, we refer to the construction of
T = X»~1 with respect to n objects X, ..., X, of €, given in §4 and to the
notations used theresuchas N=(1,...,0),J = (§;, ..., J,) CN, Xy, nf: X5
>Xgfor K CJ, &: T~ Xy for |J] = r £ n — 1. For the same construction
of X» with respect to n + 1 objects X, X;, . . ., X, of € with X, = X,, we use the
same notations with a dash: N' = (0,1, ...,n), J'CN’, X , nf. for K’ C.J’,
T=Xn & I +Xy, 0 Xg# X%+ % X, T'. We first prove the follow-
ing lemma.

Lemma 5.3. Let ¢ be the map {¢,,1): Xy = Xo % Xy - Xy. There exists
amap yp: T — T such that o' = o ¢.

Proof. As a first step we define a map a;: Xo— X, J CN, by ay=0if
j1> 1, =¢qy if j; = 1 (g; with respect to X; = X, « X; *---). Then we take for
K= (k,..., k) CJ the map

ﬂ%a‘]-'-—- <Cl,. ..,c,}a,,:Xo——»X‘,»XK,
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wherec, = 0ifj, ¢ K,=q,ifj, = k; € K. Thus ngay = 0ifj, > 1, =¢, ifj; = 1;
i.e., in the second case, =0 if &y, > 1, = ¢, if k; = 1. This means n%a; = 0 if
ky > 1, = ¢, if k; = 1, which is precisely the map ax:

(54) QZ'II(CZJ = Qg .

Next we take the aggregates o7 and .o/’ from which T and 7" are defined
as lim, and the map @ of o/’ to &7 given by maps ¢J : X, — X, as follows:
¢ is defined for J' = (0,7;, .. .,7,) = 0 J only; as a map of X; = X x X
to X; it is given by ¢’ = {a;, 1). Note that ¢} = ¢ in the lemma. The maps

g’ fulfill the conditions (i) and (ii) of the naturality theorem (2.6), ie., @ is
essential:

&, afs
T X, > X g
H
! 7 r'g
v 123 2’4
ﬁ
Ir— Xy~ Xk

(i) For J/=0uJ, K'= 0w K, the map af : Xy * Xy~ X, Xy can be
written as {q, ¢,k ). For any n% of <7, taking these J', K’, we find a commu-
tative square

gk 7k = {ag, 1) (@ ©27k) = {ag, 7k): Xo+ X; > X,
and

7‘% 9:’:;' = ﬂ”f; <a’f’ 1> = <”j(§a.7= T“f{> = <“K> ni{f>
by (5.4), hence ¢¥ af. = ak ¢J.

(ii) For a given J, there is only one map ¢J : X, - X;. Thus ¢J &)
depends on J only.

According to (2.6) there is a unique map @, = y: 1" - T satisfying

Eyp= gt &r

for all J with |J] < # — 1. Now, by definition of 6: X, *--- % X, — T', we
have £;0 = n¥ for all J with |J| = n — 1 and similarly &,.¢' = #J/, hence

Erop=mjo=afo = ¢in} = ) €10’ = &po’.
By the unique factorization property of lim this implies o0 ¢ = yo’.
Proof of theorem 5.2. In the diagram

4 n’

Xo* Xy %% X, T X
¢ v 1
X% x X, z 7 = X
we assume X=X, ='--= X, = X, and m to be an H, -structure in X,

mo = d. We put

’

m' = myp;
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thenm'o’ = myo’ = mop=dp=d{g,1): Xg% Xy Xy~ X. This map is
equal to {dg;,d) = {(1,d) = d’: Xy. - X, and hence m’ is an H,,-structure
in X. — Note that m’ is obtained functorially from m.

On the basis of theorem 5.2 and its dual, non-negative integers (possibly oo)
1(X) and 7(X), called lengths, can now be attached to any X € €, as follows.

Definition 5.5. 1(X) < n if and only if X admits an H,-structure; [(X) <n
if and only if X admits an H,-structure.

HX) = nmeans I{X) <<= + 1 but [(X) not < »n; and [(X) = oo if thereis no
integer n such that J(X) < n. And similarly for {(X). In particular, 1(X) = 0 or
7(X) = 0 means that X is a zero-object; [(X) = 1 means that X admits an
H-structure (= H,-structure) without being a zero-object, and similarly for
I(X)=1.

Examples: (1) In the category © of based sets, [(X) is always <2 (any set
can be given an H-structure); and 1(X) = 0 for a one-element set and otherwise
Z(X ) = co. — To prove the last assertion, consider, for n = 2, the map v: 7 —
> X, x Xyx -+ x X,; here T is the subset of the cartesian product consisting
of those elements for whieh at least one coordinate x;, = 0 € X, and 7 is the
embedding. Then given a map m: X - T with tm=d (X, = - - - = X, = X),
we have tm(x)= (v,z,...,2) € X; X Xyx --+x X,; the i-th coordinate
being = o, we thus have x = o. In other words, [ (X) < n implies X — o.

(2) In the category € of based topological spaces, [(X) is always <3; and
1(X) = 0 for a one-point space and otherwise 7(X) = co. — The first assertion
follows from the fact that in € (as in &) the factorization (F) is trivial for n = 3,
ie, Xr= X" 2=<7r < mn, and x' = » (see the end of §4); hence I'(X) = X*,
o=1, so that m = d: X» - X is an H,-structure for n = 3. As one knows,
there are spaces X which do not admit an H,-structure, i.e., with [(X) = 2. —
The proof of the second assertion is exactly as in example (1) above.

By replacing the strict notion of length by a homotopy notion, we may
obtain interesting invariants in € analogous to 7. The general categorical
framework for this refinement of the notion of length is laid in § 6.

{3) In the category ® of groups, I{X) =1 for the non-trivial Abelian
groups, and [(X) = 1 for the non-trivial free groups. As established in [2],
1(X) is the nilpotency class of the group X, and I(X) < 2 for all groups. [This
last assertion is an immediate consequence of the “triviality” of the canonical
factorization (F') for n>2, ie. T=""1X= X, x ---x X,, 7=1; an H,-
structure in X is thus simply given by m = d.]

Before discussing general properties of the lengths 1(X) and 1(X), we
introduce further numerical invariants of objects X in a general category,
called weak lengths and denoted by wl(X) and wi(X). They are closely related
to {(X) and I(X) respectively but in some cases easier to handle (no structure
map m being involved).

Asabove, we consider for X; = X,=+++= X, = Xthemapo:X,*- -+« X, »T;
let kerog=k: K> X, -+ % X, be its kernel, If X admits an H,-structure

m:T - X(mo=d), onehasil'k":mak=~:0:K~LX1*'--*XnJ~*X.
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Definition 5.6. wl(X) <mn, if and only if dk = 0.

It is plain that [(X) < n implies wl(X) < n, but that the converse is not
true in general.

Proposition 5.7, If wl(X) < n, then wi{X) <n + 1.

This justifies the Definition 5.6 and yields a non-negative integer wl(X),
possibly o, exactly as for [(X). The dual definition and proposition yield
wi(X). Obviously one has

Proposition 5.8. wl(X) < U(X) and wi(X) = UX).

Proof of 8.7. We use, in addition to the notations above, those appearing
in the proof of Theorem 5.2 and referring to the constructions made for n» + 1,
instead of n, objects X,, X, ..., X,,. In particular we make use of the map
p: Xgx Xyw-o % X, > Xy % X, and of w: T — T such that op = po’
(Lemma 53) and dgp =d': Xo* X, -+ % X, > X. Let ¥: K’ - X, *
* X;x-+-x X, be the kernel of ¢': Xg+x X, %+ %X, 71" From ook’
= o' k" = 0 we obtain a (unique) y: K’ — K such that ¢k’ = ky. Assuming
now wl(X) < n, i.e. dk = 0, it follows that

Ak =dok = dky=0,
le, wl{X)y<n- 1

Remarks. (1) Themapk: K — X, = - - - » X, on which the definition of weak
length rests has been defined as the kernelof 6: X; % - - - % X, > T. Thereis an
equivalent description of k without using 7’; we give it here in the following
terms (referring to the notations used in § 4).

Proposition 5.9. Let by H ;> X, %+ - % X, be the kernel of ¥ : Xy # -+ -+ X,,—~ X5,
[l =mn — 1, and [K; k;) the intersection (the inverse limit) of all these kernels h;.
Then the map k: K — X, » - - - X,, given by k = hyk; (independent of J ) is the
kernel of o.

Proof. Let P be the direct product of the X; with |J|=n —1, let
w:Xy%+ %X, P be the map with components 7§ and let &:7 - P
be the map with components &;. Then & is a monomorphism by Proposition 2.6
and &¢ = m; thus kers = kero, and the proposition follows from Proposi-
tion 2.4 (more pricesely, its analogue for », instead of 2, maps).

{2) Other “kernels” in X; »---* X, can be chosen either by universal
procedures or by special ones applying to particular categories; these yield
similar numerical invariants. For example, a very general concept of nilpotency
class can be introduced in this way (compare [3]).

There are special circumstances under which weak length and length coincide.
This is obviously the case if d k= 0 implies the factorizationd=mag: X, -+ % X,
— T — X. For example, such a conclusion with a unique m holds if o is the
cokernel of its kernel k. But it is, of course, not necessary in that connection to
assume the existence of cokernels in the category; it would be enough to look
at the cokernel ideal of % (the right annihilator)®), and the conclusion holds

%) The right annihilator of a map g is the (left) ideal consisting of those maps » which
annjhilate ¢ when g stands to the right (hg = 0).
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if it is the principal left ideal generated by ¢. Maps with that property are called
“normal”®); we avoid the introduction of two dual types of normality for
arbitrary maps and define only the concept of normal epimorphism (or dually,
normal monomorphism) without reference to the existence of kernels, or co-
kernels, as follows.

Definition 5.10. In an arbitrary category €, an epimorphism f: X~ Y
is called normal if the following property holds: Any map b of X into some Z
such that Ag = 0 for all maps g into X with fg = 0, can be (uniquely) factored
through f:

h=h'f: X>¥Y->2Z.

{I.o.w., if the right annihilator of the left annihilator of f is the ideal generated
by f.)

For example, any cokernel is a normal epimorphism. — We do not enunciate
the dual definition of a normal monomorphism; any kernel is a normal mono-
morphism. We note that in the category & of groups all epimorphisms are
normal (they are cokernels), but not all monomorphisms (the embedding of a
non-normal subgroup into a group is not a normal monomorphism); and that
in the category & of sets all monomorphisms are normal, but not all epi-
morphisms. This duality between the categories ® and & will again find its
explanation in part III of this series.

Theorem 5.11. If 6: X, %+ % X, - T is a normal epimorphism, wl(X)
=UX). If v: T - X; x + -+ x X,, is a normal monomorphism, wi(X) = [(X).

We now list some general properties of lengths and weak lengths valid in
arbitrary categories (in which the appropriate equalizers exist).

Theorem 5.12. If Y dominates X, i.e., if there exist maps f: X — Y and
g: Y — X such that gf = 1y, then 1(X) = L(Y) and 1(X) < 1(Y).

Proof. We write X*for X;»---x X, with X, = -+ -= X, = X, f for the
map fa---xf: X2 ¥ T(X) for X»-1, T(f) for the map T(X) - T(Y)
induced by f, oy for o: X» - T'(X), my: T(Y) — Y for an H,-structure given
in Y{(myoy=dy: ¥ > Y). In the diagram

my

Xn—E—s 7(X) X
11 iy flle
Yr—T— (Y)Y

the first square is commutative; we put my = gmy T'(f). Then

mzox=gmyT(flog= gmyoyfr=gdyf".
Now dyf* = fdy is immediate to verify; hence
myox= gfdy=dyx .
Thus myx is an H,-structure in X, ie., I(Y) <n implies [(X) <n. — The
inequality {(X) < 1(Y) is obtained by the dual proof, using the same assump-
tion gf = 1 (instead of permuting X and Y and makiug the dual assumption!).
- %) For the concept of normality the reader is referred to [5] and [9].
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A similar proof would yield the same inequalities for w{ and wi. However,
for these weak lengths, we have a stronger result.

Theorem 5.13. If there exists a map f: X — Y with kerf = 0, then
wl(X) £ wl (Y) and wl(X) < wi(Y).

Note that gf = 1 implies kerf == 0.

Proof of (5.13). We write keroy= ky: Ky - X" In the diagram

Ky xn— 2. p(x)

Y m pk))

ky

Ky yrn—2—s T(Y)
the second square is commutative. Hence oy f*ky= T (f)oxky= 0; thus there
is a unique y: Ky — Ky such that f*ky= ky y. Now we assume wl(Y) < n,
i.e., (zykyz 0. Then

fdxkx=dyfthky=dykyy=0.

f having 0-kernel, this implies dykx= 0, i.e., wl(X) < n.
Corollary 5.14. For any A and B € €, one has [(4) < I(A x B)and L(4) <
= I(A * B); the same inequalities hold for 1, wl and wi.
For A is dominated by 4 x B (p,{1, 0} = 14),and by 4 * B ({1, 0)¢,= 1).
Theorem 5.15. For any A and B ¢ €, one has

1(4 x B)= max(i(4), [(B))
1(4 * B) = max(I(4), [(B)) .
Proof. We only give the proof of the first assertion. The notations are as

above. We assume [(4) <n and [(B) < n, the H,-structure maps being m 4

and mp. In the diagram

GAXB mAxn

(4 x By T4 x B) A x B
p’f T(py) fh
Ar = I4) — A

we put my  g= {ms 2 (p), mpT (py)}: T(4 x B)—> A x B; thus the diagram
is commutative, and so is the analoguous one with B®, T'(B), B in the second
row, p, being replaced by p,.
Then
My x B4 x 3= {MaT(P1)04 x5 mpT (Ps)04 x B}

= {m 04 %, mpopp} = {d4 P}, dpplf)

= {P1ds « B P24 B} = (P P2} B4 x 3= 4 x5 -
Thus my . p is an H,-structure in 4 x B, and l{4 x B) < n. Therefore
L{4 x B) = max(l(4), [(B)); together with (5.14) this establishes the theo-
rem. — Note that the dual proof yields the result for (4 *B), but not for
1(4 x B)or (4 » B).
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Now let € and € be DI-categories and let 7': € -» €' be a functor preserving
inverse limits. We consider the factorization (F) of Theorem 4.4 for both €
and €'; then, for a family of objects X, . . ., X,, of €, T induces natural trans-
formations ¢7: (T X)" — T(X") such that the diagram

£ -1

(TX)yr—"5— (T Xy
(5.16) i gr-d

T(Xr) ——-}—}‘?—1——» T (Xr —-1)

is commutative (this is shown in the next section, in the special context of
homotopy systems, but the argument is quite general”)). In particular,
gr={Tq,... . Tq) TX ;% xTX, >T(X;%---xX,). We use {5.16)
in the special case r = n to prove

Theorem 5.17. Let T: € — € be a functor from the Dl-category € to the
Dl-category € preserving inverse limits. Then, for each X ¢ €, (T X) < (X)),
wl(TX) = wl(X).

Proof. We assume the existence of a map m: X"~1— X guch that mo
= d: X" X, where ¢ = »"~1, Then we have the diagram

(T Xy —5 s (P X1 —"2E s P X

gn gn-1 1

Toy , Ty

T(X™) rT(Xn-1y——"—TX
andweset myy = T'myocgr—1: (T Xy~ T X.Thenmp yoop y=TmgoToyog
= Tdyo g But ¢g"=(Tq,,...,Tq,), 50 Tdyo g"=(TdyoTqy,...,Tdx-Tq,>
= {T(dxq)), .., T(dxq,)). Further dg;= 1 and T1=1, so Tdyo ¢"
= (1,...,1)=dpy. This shows that {(T'X) =< [(X).

To prove the second assertion of the theorem, we set keroy = k: K - X",
keropy=I1:L — (T X)*. Since T preserves inverse limits, ker Toy= Tk: T K —
— T'(X"); further Toyxyogtol= ¢" loopyol=10, so that there exists
o:L—> TKwith Tkog= ¢"ol. We have the diagram

L —t— (7 xp—2E . X

ot (44 1

TK ——%; T X TX
where the commutativity of the right-hand square was proved above. Then
ETXC‘Z= T{?Xolp”oz: Taxo T’COQ: T(zxofc)og. Thus if (Exokz 0 it
follows that dy yo! = 0 and the theorem is proved.

7} It matters not at all that the functor P considered in § 6 is actually from § to itself,
wheress here the range of the functor 7' need not coincide with its domain.
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We close this section with a theorem which states a consequence of im-
posing a limitation on the length of objects.

Theorem 5.18. Let A, B ¢ &, let (B, m) be an H-object of € and let I(4) < 3.
Then the structure induced in H{A, B) from that in B i3 associative.

Proof. Consider the diagram

A—*—AxAx4

~

\\ v T
T(A) i(fl;fz‘fa) T(B)

We wish to show that the two horizontal routes from A to B are the same.
In view of the commutativity of the diagram it is plainly sufficient to show that

fixfexis mof{mx1}

BxBxB

TS
mof{lxxm)

B.

(5.19) mo(mX1)or=mo(lXm)ort;
but (5.19) is equivalent to the three assertions
(520) mO(MXI)OLiﬂ':mo(lxm)oliiJ (1/’7) = (132):(153): (2? 3)’

where ¢;; embeds Bx B in Bx B x B as the product of the i and j*" factor.
Now (5.20) is a straightforward consequence of the fact that m is an H-structure.
Thus the theorem is completely proved.

Remarks. (i) Recall (Theorem 4.17 of [11]) that H(A, B) is commutative if
1(4) < 2.

(ii) If the H-object B is a quasi-group in € then we are content to suppose
that wl (4) < 3, and conclude that H (4, B) is a group.

§ 6. Homotopy systems and homotopy length

In this section we follow KAx [6] in describing a framework in which, for
general categories €, the notion of homotopy between two maps f,¢: X > Y
can be defined. 1t is, of course, patterned after the homotopy concept in topology,
so as to include this case and various other examples. The homotopy concept
in a general category € will allow us to introduce further integers attached to
the objects of €, called homotopy lengths and weak homotopy lengths, which
are “homotopy type invariants”. In the category € of (based) topological
spaces and continuous maps, with the usual homotopy concept, the ‘‘Lusternik-
Schnirelmann category” catX of a space X (if defined according to G. W.
WaITEHEEAD [11]) is such a homotopy length; its definition is exactly as that
of I(X) in &, except that the characteristic property of the structure map m,

tm=d:X——T——X,x -+ x X, is replaced by “rm homotopic to &”. The
corresponding weak homotopy length (w cat X) is defined by using “cd homo-
topic to 07 instead of cd = 0, ¢ being the cokernel of 7. (NB. The construction
of 7' is made in €, not in §,; in €, equalizers do not exist in general.)
Definition 6.1. (see [6]). A4 left homotopy system S8 = {Z; t, b, p] in the cate-
gory € is a system consisting of
(i) a covariant I-functor Z ; € — € called the “cylinder functor”, and
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(ii) three natural transformations t : I > Z, b:1—~>Z and p:Z — I (I being
the identity functor) satisfying pt = pb=1:1-1.

Relative to a left homotopy system S, a map F:Z A4 — B is called a (left)
homotopy between the maps Fby and Ft,: A ~ZA —~ B. Twomapsf,g: A~ B
are called homotopic, f ~ g, if there is a homotopy F:ZA4 — B such that
Fby=f and Ft, = g. Note that for any map f: 4 — B, we have f ~ f, the
homotopy being ¥ = fp,. To ensure further properties of the relation f ~ ¢
such as symmetry and transitivity, suitable axioms must be imposed on §, in
addition to (ii) above (e.g., symmetry is obtained by means of a natural trans-
formation r : Z - Z satisfying r¢t = b, rb = ¢). In the context of this paper we are
not so interested in the nature (and number) of the natural transformations
attached to a homotopy system as in the cylinder functor itself. We propose to
return to these finer questions of homotopy in a later publication.

If the above homotopy relation between f and ¢ is not an equivalence
relation, one usually considers the equivalence relation it generates; for simplicity
we make here the convention that the symbol f ~ g shall be interpreted to
designate this equivalence relation. Then, e.g., transitivity can be used wherever
it is necessary (in fact this will here be the case only in one instance, namely in
the proof of 6.9). Moreover, as shown in the next proposition, the classification
of maps of € thus obtained is compatible with composition; hence a category €,
is obtained whose objects are the objects of € and whose maps are the equiv-
alence classes of maps of €, with the induced composition.

Proposition 6.2. The relation f ~ g relative to a left homotopy system S is
compatible with the composition of maps in €; ie., if f~g: A~ B, and if
oa: A"~ A and B: B— B’ are arbitrary maps, then fo~ga and ff~ fg.

Proof. It is sufficient to consider a single homotopy F : Z4 — B between
f and ¢g. Then (a) F'=FoZ(a):ZA'—~ZA— B is a homotopy between
foandga,and (b) F' = f o F:ZA — B— B isahomotopy between §fand fg¢.

To prove (a) we use the equation

Z((Z) obAl‘——‘ bAOOC
which holds since b is a natural transformation I - Z. Then
F'obA»zFoZ((x)obA:=FobAOOC= fOC,
and similarly
Fotpy=FoZ(a)otyy=Fotjox=ga.
(b} simply follows from
F'by= fFby= pf and F't ;= pFt= fig.

Dually a right homotopy system in € is defined as a left homotopy system
in the dual category €*. Explicitly:

Definition 6.3. 4 right homotopy system S = [P;t, b, p] in € is a system
consisting of

(i) a covariant D-functor P: € — € called the “path functor”, and

(ii) three natural transformations ¢: P—> 1, b: P->1I and p:I-> P salis-
fyingtp=>bp=1:1-1.
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A homotopy, relative to a right homotopy system, is 8 map F: 4 - PB;
f~g: A B means that there is a homotopy ¥ : 4 — P B such that bzF = f
and tzF = ¢. All the remarks above, including Proposition 6.2 apply as well
to & right homotopy system and the corresponding homotopy relation.

Examples. (1) In any category € there is a trivial left homotopy system
consisting of Z=1, and = b= p=1:1- 1. The corresponding relation
f~ g holds if and only if f = ¢; thus ¢, = €.

(2} The usual homotopy system inE is given by ZX = X x [0, 1]Jo x [0, 1];
tx(ey=ax X (1) for all € X, bp(x)=2x(0), py(r,f)=2 for 0 ¢ 1.

There is, in €, a right homotopy system given by P X = path space of X
(function space of all maps w: {0, 1] X, with the constant map at o ¢ X
as base point), {y(w) = w(l), by(w) = w(0), px(x) = constant path at « € X.
The corresponding homotopy relation f ~ g coincides with that given by the
left homotopy system above: for there is a natural one-to-one correspondence
between the two kinds of homotopies H(Z A, B) and H (A, PB) compatible
with the natural transformations ¢, b and p. In other words, the functor P is
right-adjoint to Z; from this it antomatically follows that Z preserves inverse
products and right equalizers, and that P preserves direct products and left
equalizers. We return below to ‘“‘adjoint homotopy systems” in general.

(3) In the category of group complexes {c.s.s. groups) Kan’s notion of
“homotopy through homomorphisms” or “loop homotopy” (see [7]) is obtained
from a right homotopy system in which the path functor P is essentially
given by P X = function space X011,

Definition 6.4. 4 left homotopy system 8 is called faithful if its cylinder functor
Z preserves right equalizers (direct limits); a right homotopy system, if ils path
functor P preserves left equalizers (inverse limits).

We recall [cf. Prop. (1.8)] that if Z has a right-adjoint then it certainly
preserves right equalizers (and inverse products); this sufficient condition fora
homotopy system to be faithful is available in many cases. Moreover, if Z has
a right-adjoint P, this D-functor P can be used as path functor of a right
homotopy system. S = [P;{,5, 5] — which of course will be faithful — as
follows.

Let n: H(X, PY)~H{ZX, Y) be the adjugant (the natural one-to-one
correspondence) of Z and P. We define £, §, § as the ““adjoint” transformations
of £, b, p; e.g., t: P I is defined by the condition

f"zX::"?(P(f))otpx forall f: X7,
which is equivalent (putting f= 1: X - X) to

ix=1n(lpx)otpx-
Similarly

by =n(lpx)obpyx.

The transformation § : I — P is defined by the condition

N(Bxf) = px - Z(f) forall f:Y—~>X
Math. Ann. 151 13
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which is equivalent to 5(fix) = py o lzx= px, or

Px=n"(px) -
Using the naturality of the transformation ¢ and » we then have
txPx=nlpx)otpx o Px=n(lpx) o Z(Py) oty
= N(lpxPx) oty = n(Px) o tx = Pxix= 1y .
Hence {p = 1: 1 — I and similarly 65 = 1. We summarize

Proposition 6.5. If the cylinder functor Z of the left homotopy system S= [Z;t,
b, p] has a right-adjoint P, then S is faithful, and P together with the adjoint
transformations §, b, p yields a faithful right homotopy system 8= (P;{,5, p].

We now consider, exactly as in § 5, assuming € to be a DI-category with
left equalizers, the map ¢: X; -+ - » X, — T for X, = - - - = X, and its kernel
k: K-> X, %---xX,. Using the homotopy relation f ~ g in € with reference
to a fixed (left or right) homotopy system 8§ we define homotopy length A1(X)
and weak homotopy length whl(X) as follows.

Definition 6.6. k(X)) < n if and only if X admits a homotopy H,-structure,
i.e., a map m: T — X such that ma ~ d. Furthermore whl(X) < n if and only
if 0~ dk.

To justify these definitions, we have to show that (i) 2{(X) < n implies
RI(X)<n+1 and (i) whi(X) < n implies whl(X) < n + 1. The proofs are
as those of (5.2) and (5.7), except that in one instance the equality sign is
replaced by ~. In detail:

(i) Using the notations of the proof of (5.2), we have

m'o' =myo' =mop~dp=d : Xgx - x X, - X.
(ii) Using the notations of the proof of (5.7), we have
O~ dby=dek =dk.
Note that the only property of the homotopy relation used in this context is
that it is compatible with composition of maps. The same remark applies to

the following propositions listing ¢nequalities for bl and whl.
It is plain that the integers Al(X) and whl(X) defined by (6.6) fulfil

LX) = U(X) and whi(X) = wi(X).
Moreover we have

Proposition 6.7. wkl(X) < RI(X).

For, if there is a map m with mo ~ d, one has 0 = mgk ~ dk.

Definifion 6.8. We say that Y homotopy-dominates X if there are maps
f:X—>Yandg: ¥ > X withgf ~ 1y. — We say that X and Y are homotopy-
equivalent, if there are maps f: X — Y and g: ¥ — X such that gf ~ 13 and
fg~1y.

Theorem 6.9. If Y homotopy-dominates X, then (i) hU(X) < RI(Y) and
(if) whl(X) < whi(Y).

Corollary 6.10. If X and Y are homotopy-equivalent, then hl(X)= hL(Y)
and whi(X) = whi(Y). (Homotopy invariance of homotopy lengths.)
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Proof of 6. 9. This proof follows exactly that of (5.12), to which we refer
without any further explanation.

(i) Assuming that there is a map my : T(Y) = ¥ with myoy ~ dy, we put
my = gmy T'(f); then

mxoy = gmyT(f)oy = gmyoyf* ~gdyf* = gfdy ~dy .
(ii) Assuming 0 ~ dyky, we have
0~dykyy=dyfrky = fdyky, hence O~ gfdyky~dyiky.

We now formulate the analogue of Theorem 5.13 on whl, using the concept
of a map f with zero homotopy kernel; i.e., the kernel ideal of the class of f in €,
is the zero-ideal. In other words, f : X - Y having zero homotopy kernel means
that for any map g: 4 — X with 0 ~ fg one has 0 ~ ¢.

Theorem 6.11. If there exists a map f: X - Y with zero homotopy kernel
then whl(X) < whl(Y).

Proof (cf. the proof of 5.13). We assume whi(Y)<n, ie. 0~ dyky.
Then

0~dykyy=fdyky;
hence, f having zero homotopy kernel, 0 ~ dyky, i.e., whl(X) < n.
Theorem 6.12. For any A and B € € one has

hl(A x B) = max (hl(d), Li(B)) .

Proof (cf. Proof of 5.15). Assuming the existence of m, and mgz with
mycy ~ (ZA and mpog ~ JE’ we put

myx = {maT(p), mpT (ps)};
then
My BOA x B= {Ma0 4P}, mpopps} ~ {d v, dgpl} = {p1ds, Padp} = dyx 5.

(Here we have used the fact that, F', F’ being homotopies ZX > A4, ZX -~ B
respectively, with by = f, Fiy =g, F'by=f , F'ty=g¢ {F,F'}: ZX >4 x B
is a homotopy with {F', F'} by = {f, f'} and {F, F'} tx = {g, ¢'}; in other words,
that f~g: X— A4, f ~¢ : X Bimplies {f, f} ~{g.93: X >4 x B))

Thus hl(4 x B) < max (kl(4), hl(B)). On the other hand, hl(4) =
= hi(4 x B), since 4 x B dominates 4.

The dual definitions, for 47(X) and w#I(X) and the duals of all the above
inequalities or equalities are obvious.

We now proceed to a further main objective of this section, namely to
show that not only the homotopy lengths, but the full canonical factorizations
(F) and (F') of #n: Xy %+ X, > X, x-++ xX, (cf. §4) are homotopy
invariant. For this not only the homotopy relation, but the homotopy system
8§ itself is needed.

We first consider the homotopy behaviour of the factorization (¥) with
respect to a left homotopy system 8= [Z;¢, b, p] in € By assumption, Z
is an I-functor; moreover one has the natural transformation { of Z LLE into
ljﬂ Z of Prop. 2.8. Given n objects X, ..., X,, of €, the X" appearing in (F)

13*
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are inverse limits of €-aggregates o/™7 consisting of inverse products X of
X, ..., X, (cf. §4). In the same way we form from ZX,,...,ZX, inverse
products (Z X)), which can be naturally identified with Z (X ), and aggregates
(ZsZ) " which can be identified with Z(&/""); thus (ZX)"=lim (ZZ)""
= lim Z (&™), Similarly, if @: /"7 o/7=1,7-1 is the map inducing »"~!
=gl X* > X3 themaprzx: (ZX) - (ZX) tisinduced by ZD : Z /77—
—>Zs/7~L7-1 The natural transformation { then yields a sequence of maps
i Z(X")—» (ZX),r= 1,2, ..., nsuch that the diagram

z (5

Z(Xr) —2— Z(Xr)

gr fr—1

xr——l
(ZX)y —— (Z Xy

is commutative; in other words, the {* constitute a map of Z(F) into F(Z).
Nowlet Y, ..., Y, ben further objects, and ¥, : Z X, —~ Y, left homotopies,
t=1,...,n; they induce maps F": (ZX)"— Y, r=1,...,n.
Then Fr = Fr{r are homotopies, i.e. maps Z(X7) — ¥ with the properties
(1) wyloFr= Fr-1c Z(uy ) : Z(Xr) > Y7
(i) Froby = (Foby): X" — Y7,
where (¥ o by)" stands for the map induced by ¥, o by, ..., F,oby,.
Proof of (i): »7 is natural, hence

Fr-losgyl = w5l Fr.

Thus »% 1o Fir — Wy lo Frolr = Fr-1o %%}1 ofr = Fr-1o{r1o Z (oY)
= Fr-1. Z ey ly .

Proof of (ii). The natural transformation b yields maps by,: X; > Z X,
and thus induced map (by) : X7 — (ZX)". According to (2.9) {7 o byr= (by),
whence

Froby =Frolroby, = Fro(by) = (Foby) .

(ii) holds, of course, also for the transformation . We summarize the results as
follows, writing f; = F,by, and g, = F;tx,.

Theorem 6.13. If for i = 1,2, ..., n the maps f; and g,: X; —~ Y, are homo-
topic, with respect to a left homotopy system in €, then the induced maps {7 and
g : Xr—> Y are also homotopic; the homotopies Fr:Z(X7)—~ Y* are obtained
canonically from the homotopies F;: Z X; —~ Y ; between f, and g; as Fr = Fro {7,
and are compatible with the maps »" =1 (i.e., u'y 1o Fr = Fr-1o Z (5 1)).

Corollary 6.14. (Homotopy invariance of (F) with respect to a left homotopy
system). If f;: X;— Y, t=1,...,n are homotopy equivalences, then the in-
duced maps fr: X*— Y7 are also homotopy equivalences.

By duality (6.13) and (6.14) hold for the dual factorization (¥F') of
#: Xy -2 X, - X, x---x X, with respect to a right homotopy system.

The results (6.13) and (6.14) on the factorization (F') also hold for a right
homotopy system 8= [P;t, b, p] unter the additional assumption that §
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be faithful, i.e. that P preserves inverse limits. The proof proceeds as before by
establishing a sequence of maps ¢": (PX)"— P(X") such that the diagram

P §
(PX)r —— (PX)-1

@f| gr—1

Py
P(X7) P(Xr-1)

is commutative, and then by defining a (right) homotopy F7: Xr - P(¥") as
Fr= ¢rFr: Xr— (PY) — P(Y), where F" is the map induced by right homo-
topies ¥;: X; -~ PY,, i==1,...,n — In order to get the ¢ one first uses the
natural transformation which maps the inverse product of PX,,..., PX,
into P(X,*---%X,), given by (Pgq, ..., Pg,), to obtain natural maps
(PX);— P(X,) and thus an (essential) map of (P&)", i.e. the aggregate
formed with PX,, ..., PX, instead of X,, ..., X,, into P(&/"7). Then
lim(P /)" = (P X} is mapped naturally into lim P (2/":") which by assumption
can be identified with P lim /"7 = P(X"). Without repeating the further
details, we state the analogues of (6.13) and (6.14) in short as follows:

Theorem 6.15. The factorization (F) is homotopy invariant with respect to a
faithful right homotopy system.

Examples of homotopy-lengths. (1) In the category € of based topological
spaces, £1(X) is the (based) ‘“‘Lusternik-Schnirelmann category” cat X defined
according to G. W. WHITEREAD [11], and whi(X) the ‘“weak category”
w cat X8). There exist examples of spaces for which %7(X) and whi(X) have
prescribed integer values (while 7(X) = oo for non-trivial spaces, cf. example (2)
in § 5). The dual length AI(X) in € is always < 3 (hl(X) = 0 for contractible
spaces, hl(X)=1 for non-contractible H-spaces, hl(X)= 2 otherwise); this
follows from RI(X) < I(X) < 3, cf. example (2) in § 5.

(2) In the category of group complexes (css-groups) and homomorphisms,
with Kan’s concept of homotopy through homomorphisms?), k(X)) and whi(X)
are not limited as in € ; thus non-trivial numerical homotopy invariants can be
obtained by using functors which lead from € to the category of group complexes.

(3) Conversely, functors passing from the category of groups ® to & yield
numerical invarients I or whl of groups which give more information than
7and wi in & itself. For example, EILENBERG and GANEA have considered the
invariant cat K [z, 1] of the group z.

Let € and € be categories and let S = [Z;¢,b,p], 8’ = [Z';¢',0',p'] be
left homotopy systems in €, € respectively. A functor 7': € - €' will be said
to preserve homotopy if TZ=2'T and, for each X¢ €, T{(y)=trx,

8) Cat and w cat are here renormalized so that they take the value O on contractible
spaces (instead of 1).

%) See [7]. A concept of 2L(X) and whi(X) for c.8.s. groups was suggested by HiLroN
[Homotopy theory and duality, Cornell (1958)]; it has recently been shown that whi
coincides in this category with nilpotency.




186 B. Eckmany and P. J. Hiuron: Group-Like Structures 11

T(by)=bypx, T(px) = prx. Notice in particular that if S’ is the trivial left
homotopy system then T preserves homotopy if and only if 7Z = T and
T(tg)= T(bg)= T(px)= lpx. A similar notion is available for right homo-
topy systems.

Proposition 6.16. Let € and € be categories and S, 8’ left homotopy systems
in €, € respectively. Let T:€ — & be a homotopy-preserving functor. Then
Tf~Tg:TA—-TBiff~g:4— B.

Proof. It is plainly sufficient to consider a single homotopy F:ZA4 — B
between f and ¢. Then it is immediately verified that TF : Z'TA = TZA -~ TB
is & homotopy from T'f to T'g.

Theorem 6.17. Let T:€ — & be a functor from the Dl-category € to the
DI.-category € preserving inverse limits. Suppose further that € and €' are
furnished with left (right) homotopy systems and that T preserves homotopy.
Then, for each X € €, hl(T X) < hI(X), whl(T X) < whl(X).

The proof is the obvious small modification of that of Theorem 5.17 and
uses Proposition 6.16.
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