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Let G be a finite group. For a based G-space X and a Mackey functor M , a topological
Mackey functor X ⊗̃ M is constructed, which will be called the stable equivariant
abelianization of X with coefficients in M . When X is a based G-CW complex, X ⊗̃ M
is shown to be an infinite loop space in the sense of G -spaces. This gives a version
of the RO(G)-graded equivariant Dold–Thom theorem. Applying a variant of Elmendorf’s
construction, we get a model for the Eilenberg–Mac Lane spectrum HM. The proof uses
a structure theorem for Mackey functors and our previous results.
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1. Introduction

In nonequivariant algebraic topology, a fundamental tool to study singular homology is the abelianization functor
X �→ X ⊗F Z, from topological spaces to topological abelian groups (X ⊗F Z is our notation for the free abelian on X
appropriately topologized; see Example 2.23). The classical Dold–Thom theorem [3] asserts a natural isomorphism

πi(X ⊗F Z) ∼= Hi(X;Z),

when X is a CW complex. Applying (the reduced version of) this functor to spheres produces a geometric model for the
Eilenberg–Mac Lane spectrum HZ.

In this paper, we construct a functor that will play the role of the abelianization functor in the context of stable equiv-
ariant algebraic topology over a finite group G (which will be fixed throughout the paper).
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First we need to establish some notation. We denote by F , U , T , and Ab the categories of finite sets, unbased (com-
pactly generated) topological spaces, based (compactly generated) topological spaces, and abelian groups. The corresponding
categories of G-objects (given by a monoid homomorphism from G to the Hom monoid of the object) and equivariant mor-
phisms are denoted by G F , G U , G T (where the base point is G-fixed), and G-Mod (G-modules). We will denote a Hom
space in a topological category C (such as U , G U , T , G T ) by MapC .

One important distinction between the equivariant and nonequivariant settings is that in the former, coefficients are
more complicated objects, and differ for homology and cohomology. By definition, a covariant coefficient system k is a co-
variant functor k : G F → Ab that transforms disjoint unions into direct sums, and this is the coefficient system needed for
equivariant homology. The corresponding contravariant coefficient systems are needed for equivariant cohomology.

Another related notion is that of based G -space, i.e. a contravariant functor X : G F op → T transforming disjoint unions
into products. The functor category of based G -spaces is denoted by G T . Naturally, there is also the notion of (unbased)
G -space whose category we denote by G U .

Remark 1.1. Let G be the orbit category of G—the objects are orbits G/H and the morphisms are G-maps. There is a natural
inclusion functor G → G F , since G is finite. Furthermore, each finite G-set S can be uniquely written as a disjoint union of
G-orbits (hence G/H for some H after we choose one point in the orbit). Therefore a G -space X is completely determined
by its restriction

X : G op → T ,

since X is required to transform disjoint unions to products. We will interchangeably use the two equivalent definitions
throughout the paper.

The importance of the category G T stems from the fact that it is related to G T by the functor of fixed points:

Φ : G T → G T ; X �→ (
(S ∈ G F ) �→ MapG U (S, X) ∼= MapG T (S+, X)

)
, (1.2)

where the equivariant mapping spaces are based by the constant map to the base point of X . (When S = G/H , Φ X(G/H) =
MapG U (G/H, X) = X H is the fixed point space.) If no risk of confusion arises, we will often abuse notation and write X for
Φ X ∈ G T . Similarly, there is an unbased version of the functor of fixed points also denoted Φ : G U → G U . We will also use
a variant of the coalescence functor Ψ : G U → G U introduced by Elmendorf in [5]. Up to homotopy it is the right adjoint
of Φ , and allows us to work in the category G U , with its standard model structure [9, Chapter VI], and then translate results
back to G U .

The natural replacement for singular homology in the equivariant setting is Bredon homology [1]. In [10] the second
author constructed an equivariant abelianization functor (not stable yet). For each covariant coefficient system k and each
G-space X , he defined a topological abelian group X ⊗G F k (the original notation was G X ⊗G F k), by the following coend
construction

X ⊗G F k =
∐

S∈G F
MapG U (S, X) × k(S)/≈, (1.3)

where the equivalence relation is generated by

MapG U (S, X) × k(S) 	 (φ f ∗, κ) ≈ (φ, f∗κ) ∈ MapG U (T , X) × k(T ) (1.4)

for a map f : S → T in G F with φ f ∗ = φ ◦ f and f∗ = k( f ). In [10, Theorem 1], he showed that for a G-CW complex X ,
there is a natural isomorphism

πi(X ⊗G F k) ∼= H G
i (X;k), (1.5)

where the right-hand side denotes the Bredon equivariant homology of X with coefficients in k.
Thus, for Bredon homology with a general covariant coefficient system, the question of finding an equivariant abelian-

ization functor is satisfactorily settled. However, for the important class of covariant coefficient systems which also have
suitably coupled contravariant functoriality to form some objects called Mackey functors (we will recall the definition in
Section 2), Bredon homology has a lot more structure since:

(i) it can be enhanced to a theory with values in the category of Mackey functors [11];
(ii) it can be enhanced to an RO(G)-graded theory [9].

From the viewpoint of stable equivariant homotopy theory, Mackey functors are the coefficient systems needed for
an ordinary stable equivariant cohomology theory [9]. Our goal in this paper is precisely to construct a version of the
abelianization functor adapted to the stable equivariant homotopy theory, which we call the stable equivariant abelianization
functor.

To this end, we start with a Mackey functor M and a G-space X and enhance the topological abelian group (1.3) to a
topological Mackey functor X ⊗ M (see Definition 2.3). We achieve this by following closely the procedure used in [11] to
endow H∗(X; M) with a canonical Mackey functor structure.
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We then proceed to verify expected properties, like the fact that for a point x0 one gets x0 ⊗ M = M , and the existence
of a reduced version of the construction X ⊗̃ M (Definition 2.18) satisfying

X ⊗ M = M ⊕ X ⊗̃ M,

for X based. In Example 2.23 we show that our construction generalizes that given in [4] where the special case of a Mackey
functor associated to a G-module was treated.

Being a topological Mackey functor, X ⊗̃ M is in particular a based G -space (we consider a topological abelian group to be
based at 0). Thinking of G -spaces as generalizations of G-spaces, X ⊗̃ M is a reasonable candidate for the stable equivariant
abelianization functor. In Section 3 we show that this is indeed the right candidate: for a based G-CW complex X ,

(i) we introduce the notion of Ω-G -spectrum (Definition 3.11) and prove in Theorem 3.15 that the correspondence
V �→ (Σ V X) ⊗̃ M defines an Ω-G -spectrum, denoted (Σ∞ X) ⊗̃ M (here V ranges over finite dimensional G-
representations, S V := V ∪ ∞ is the V -sphere, and Σ V X = S V ∧ X is the corresponding suspension);

(ii) we establish the following RO(G)-graded version of the Dold–Thom theorem (Theorem 3.20)

π G
V (X ⊗̃ M) := [

Φ S V , X ⊗̃ M
]

G T
∼= H̃ G

V (X; M),

where the [−,−]G T denotes based homotopy classes of based G -maps and the right-hand side denotes the RO(G)-
graded equivariant homology of X .

Our strategy to prove these results is to use a structure theorem for Mackey functors of Greenlees and May [7] to reduce
to the case of a Mackey functor obtained from a G-module (see Example 2.23), which was treated in [4].

In Section 4 we show that applying a variant of Elmendorf’s coalescence functor Ψ [5] to the Ω-G -spectrum (Σ∞ X) ⊗̃ M
gives an Ω-G-spectrum. In particular, taking X = S0 we get a new model for the equivariant Eilenberg–Mac Lane spec-
trum HM. This model differs from the previously known models [2] in that it does not require any stabilization with respect
to the representation spheres.

2. Construction and examples

In this section, we associate a topological Mackey functor X ⊗ M to each pair (X, M), where X is a G-space and M is
Mackey functor M . We also introduce a reduced version of this construction for a based G-space X , denoted X ⊗̃ M . We
study the properties of the bifunctors (X, M) �→ X ⊗ M and (X, M) �→ X ⊗̃ M , and we discuss some examples.

Let us start by recalling the definition of a Mackey functor.

Definition 2.1. A Mackey functor M consists of a pair (M∗, M∗) of functors M∗ : G F op → Ab and M∗ : G F → Ab with the
same values on objects, which we denote by M , such that

(1) M transforms disjoint unions into direct sums;
(2) for each pullback diagram

A
f

g

B

h

C
k

D

in G F , there is a commutative diagram in Ab

M(A)
M∗( f )

M(B)

M(C)
M∗(k)

M∗(g)

M(D).

M∗(h) (2.2)

We denote the category of Mackey functors by Mk. This is an abelian category, with kernels and cokernels defined using
the abelian structure of Ab.

A topological Mackey functor is defined similarly with Ab replaced by the category T Ab of topological abelian groups.
We denote the category of topological Mackey functors by T Mk.

Now we introduce our candidate for the abelianization functor for unbased G-spaces.

Definition 2.3. For a G-space X and a Mackey functor M = (M∗, M∗), we define a topological Mackey functor X ⊗ M as
follows.
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On the object level, for a finite G-set S ∈ G F , we define

(X ⊗ M)(S) := (X × S) ⊗G F M∗ =: (X × S) ⊗G F M (2.4)

as in (1.3).
For a morphism f : S → T in G F , we write f∗ = (X ⊗ M)∗( f ) and f ∗ = (X ⊗ M)∗( f ) for simplicity and define them as

follows.

f∗ : (X ⊗ M)(S) = (X × S) ⊗G F M
(id× f )⊗G F id−−−−−−−−−→ (X × T ) ⊗G F M = (X ⊗ M)(T )

is defined by the covariant functoriality of the coend construction − ⊗G F M [10, (2.4)].
We now define

f ∗ : (X ⊗ M)(T ) = (X × T ) ⊗G F M → (X × S) ⊗G F M = (X ⊗ M)(S).

By (1.3), an element on the left is represented by (γ , c) ∈ MapG U (C, X × T )× M(C) for some C ∈ G F . We form the following
pullback diagram in the category G U

B

F

β
X × S

id× f

C
γ

X × T .

(2.5)

Note that B ∈ G F . Define

f ∗ : (X ⊗ M)(T ) → (X ⊗ M)(S); [
(γ , c)

] �→ [(
β, M∗(F )(c)

)]
, (2.6)

where (β, M∗(F )(c)) ∈ MapG U (B, X × S) × M(B). (Here and after, we denote the equivalence class of an element by [−].)

In Lemma 2.8 below we show that f ∗ is well defined, and that X ⊗ M is a topological Mackey functor.

Remark 2.7. In Definition 2.3 it would perhaps be more precise to denote the resulting topological Mackey functor by
Φ X ⊗ M , because it is the G -space Φ X that is used to define the values of X ⊗ M . Indeed, we have (X ⊗ M)(S) =
(Φ X × Φ S) ⊗G F M . In a similar fashion we could define X ⊗ M , for any G -space X . However, in what follows, we will
only be interested in applying this construction to the case where X = Φ X , for some G-space X , and therefore we chose to
simplify the notation by dropping the Φ .

Lemma 2.8. With Definition 2.3, X ⊗ M becomes a topological Mackey functor.

Proof. We first prove that f ∗ in (2.6) is well defined, i.e., the definition is independent of the choice of the representative
(γ , c) ∈ MapG U (C, X × T ) × M(C). Choose another representative (γ ′, c′) ∈ MapG U (C ′, X × T ) × M(C ′). Without loss of
generality, by (1.4), we assume that there is a G-map h : C → C ′ , such that the following diagram

C
γ

h

X × T

C ′

γ ′
(2.9)

commutes, i.e., γ = γ ′ ◦ h = γ ′h∗ , and

c′ = M∗(h)(c). (2.10)

Consider the following diagram

B
β

F

∃!H
X × S

id× fB ′

β ′

F ′

C
γ

h

X × T ,

′

γ ′
C
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where the bottom is diagram (2.9), the back and the right front faces are pullback diagrams of the form (2.5). Then by the
universality of B ′ , there exists a unique H : B → B ′ to make the left front face and the top commute. One can easily see that
the left front face is also Cartesian since both the fibers of F and F ′ are the same as the fibers of id × f .

Then by definition (2.6), we need to show(
β, M∗(F )(c)

) ∈ MapG U (B, X × S) × M(B)

and (
β ′, M∗(F ′)(c′)

) ∈ MapG U (B ′, X × S) × M(B ′)

are equivalent. Since the top is commutative, β = β ′ ◦ H = β ′H∗ . In view of (1.4), we only need to show that
M∗(H)(M∗(F )(c)) and M∗(F ′)(c′) = M∗(F ′)(M∗(h)(c)) by (2.10) are equal. This follows from the left front face being Carte-
sian and the property (2.2) of the Mackey functor M .

It can be checked that f ∗ is a continuous homomorphism, and that X ⊗ M satisfies the conditions for a Mackey functor
in Definition 2.1. �
Proposition 2.11 (Functoriality). The construction introduced in Definition 2.3 gives a bifunctor

⊗ : G U × Mk → T Mk; (X, M) �→ X ⊗ M,

such that X ⊗ − is also exact: For an exact sequence of Mackey functors

0 → M → N → P → 0, (2.12)

there is an exact sequence of topological Mackey functors

0 → X ⊗ M → X ⊗ N → X ⊗ P → 0. (2.13)

Proof. The functoriality in both G U and Mk is easy to see from the definition.
To prove the exactness of (2.13), we need to show that for any S ∈ G F , the following sequence of topological abelian

groups

0 → (X × S) ⊗G F M → (X × S) ⊗G F N → (X × S) ⊗G F P → 0 (2.14)

is exact. For an element in (X × S) ⊗G F M , one can choose a representative (β,b) ∈ MapG U (B, X × S) × M(B) with β

injective. (Otherwise, one can replace β with the inclusion i : Im(β) ↪→ X × S and apply the equivalence relation (1.4).) For
an injective β with B �= ∅,[

(β,b)
] = 0 ∈ (X × S) ⊗G F M ⇔ b = 0 ∈ M(B). (2.15)

The exactness of (2.14) then easily follows from this observation and (2.12). �
Example 2.16. Applying our construction to the space x0 of one point, one canonically recovers M , i.e.,

x0 ⊗ M = M.

This fact is rather straightforward, and we leave the details to the reader.

We will now give a reduced version of the functor X ⊗ M , defined for a based space (X, x0). Recall that the base point x0
is G-fixed. Consider the natural maps

x0
i−→ X

p−→ x0.

Example 2.16 shows that x0 ⊗ M = M . Since p ◦ i = id, it follows by functoriality (Proposition 2.11) that one has natural maps

M = x0 ⊗ M
i∗−→ X ⊗ M

p∗−−→ x0 ⊗ M = M,

such that

p∗ ◦ i∗ = id. (2.17)

Definition 2.18. For a based G-space X with base point x0 and a Mackey functor M , define the reduced topological Mackey
functor

X ⊗̃ M = coker(i∗ : x0 ⊗ M → X ⊗ M).

The functor

⊗̃ : G T × Mk → T Mk; (X, M) �→ X ⊗̃ M

is our stable equivariant abelianization functor.
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By the splitting (2.17), one naturally has a direct sum decomposition of Mackey functors

X ⊗ M = M ⊕ X ⊗̃ M. (2.19)

Proposition 2.20. A cofibration sequence of G-spaces

Y
i

↪→ X
q−→ X/Y

gives rises to a short exact sequence of topological Mackey functors

0 → Y ⊗ M
i∗−→ X ⊗ M

q∗−→ (X/Y ) ⊗̃ M → 0. (2.21)

Proof. In view of (2.15), we see that i∗ is injective since i is a closed inclusion, q∗ is surjective since q is, and the sequence
is exact in the middle since the inverse image of the base point under q : X → X/Y is Y . �

One can write out the above definition of X ⊗̃ M in terms of its components as follows. For a (general) based space X ,
first define the reduced topological abelian group

X ⊗̃G F M := coker(i∗ : x0 ⊗G F M → X ⊗G F M).

One then has for a finite G-set S ,

(X ⊗̃ M)(S) ∼= (X ∧ S+) ⊗̃G F M. (2.22)

We now give two important examples of X ⊗ M and X ⊗̃ M in the case where M belongs to two special classes of
Mackey functors. These examples will be used extensively in Section 3.

Example 2.23. A G-module A determines a Mackey functor R A whose value on a finite G-set S is the abelian group
R A(S) = HomG(S, A), where the abelian group structure comes from the target A. For a G-map f : S → T , the restriction
and transfer maps are given by

R A∗( f ) : R A(T ) → R A(S); φ �→ φ ◦ f ,

R A∗( f ) : R A(S) → R A(T ); ψ �→
(

t �→
∑

s∈ f −1(t)

ψ(s)

)
.

Given a G-space X , it is natural to consider the G-module
⊕

x∈X A generated by X with coefficients in A. It has a natural
structure of topological G-module, which can be seen most clearly from its description as the coend X ⊗F A. Here F denotes
the category of finite sets, X denotes the contravariant functor F op → G U : S �→ MapU (S, X), and A denotes the covariant
functor F → G U : S �→ Hom(S, A) with

A∗( f : S → T ) : Hom(S, A) → Hom(T , A); ψ �→
(

t �→
∑

s∈ f −1(t)

ψ(s)

)
.

See [10] for more details.
For a based G-space (X, x0), there is a reduced version of this construction, given by

X ⊗̃F A := coker(A = x0 ⊗F A → X ⊗F A).

Then similar to (2.19), one has the following direct sum decomposition

X ⊗F A = A ⊕ X ⊗̃F A. (2.24)

The functor X �→ X ⊗̃F A has a natural structure of functor with smash products (FSP) given by

LY ,X : Y ∧ (X ⊗̃F A) → (Y ∧ X) ⊗̃F A; (y, c) �→ ( f y ⊗̃F idA)(c) (2.25)

where f y : X → Y ∧ X denotes the function x �→ y ∧ x. This FSP is studied in [4] (where it is denoted X �→ A ⊗̃ X ). In
particular, it is shown there that the corresponding G-prespectrum {S V ⊗̃F A}V is an Eilenberg–Mac Lane Ω-spectrum for
the Mackey functor R A.

Applying the functor R to the topological G-module X ⊗F A, we obtain a topological Mackey functor R(X ⊗F A). (If
we only consider the contravariant functoriality, then R is the same as the Φ in (1.2).) R(X ⊗F A) is closely related to the
topological Mackey functor X ⊗ R A defined in Definition 2.3. Indeed, for a finite G-set S , the forgetful functor G F → F
induces a natural map

(X ⊗ R A)(S) = (X × S) ⊗G F R A → (X × S) ⊗F A,
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and it is shown in [10, Proposition 2] that this map is an isomorphism onto the fixed point set

(X × S) ⊗G F R A ∼−→ (
(X × S) ⊗F A

)G
. (2.26)

There is a natural G-homeomorphism (see [4] for more details)

MapU (S, X ⊗F A)
∼−→ (X × S) ⊗F A; f �→

∑
s∈S

L S+,X+
(
s, f (s)

)
,

where the left is the mapping space with the G-action of conjugation whose fixed point set consists of equivariant maps,
and the L on the right is as in (2.25). Therefore on the level of fixed point sets, we have a homeomorphism(

(X × S) ⊗F A
)G � MapG U (S, X ⊗F A) = R(X ⊗F A)(S). (2.27)

It can be checked that the above defines a natural isomorphism of topological Mackey functors

 : X ⊗ R A → R(X ⊗F A). (2.28)

The class of Mackey functors considered in the previous example is very restrictive but it admits an important general-
ization introduced in [7], which we discuss now.

Example 2.29. Given a subgroup H < G , let WH = NH/H be its Weyl group. There is a functor

R : WH-Mod → Mk,

such that, for a WH-module A and a finite G-set S , one has

R A(S) = HomWH
(

S H , A
)
. (2.30)

For a G-map f : S → T , we consider the restriction f H : S H → T H which is a WH-map. Then

R A∗( f ) : R A(T ) → R A(S); φ �→ φ ◦ f H ,

R A∗( f ) : R A(S) → R A(T ); ψ �→
(

t �→
∑

s∈( f H )−1(t)

ψ(s)

)
.

Whenever it is necessary to make the pair (G, H) explicit we write RG
H instead of R. In particular, if H = {1} and A is a

G-module then RG
H A coincides with the Mackey functor R A defined in Example 2.23.

The importance of the images of the functors RG
H (for all H < G) as a class of Mackey functors comes from a result

of [7], which states that this class generates all Mackey functors in a precise sense that we recall in Section 3.
The functor R has a left adjoint [7]

L : Mk → WH-Mod; M �→ M(G/H),

where one notes that M(G/H) is a WH-module since HomG F (G/H, G/H) = WH acts on it.
This adjunction has an obvious topological analogue:

topological WH-modules
R

topological Mackey functors.
L

Now, associated to a G-space X and a WH-module A, we have two topological Mackey functors: X ⊗ R A and
R(X H ⊗F A), where X H ⊗F A is a topological WH-module defined in Example 2.23 (with G = WH). The next propo-
sition shows that there is a natural isomorphism between these two functors, generalizing the isomorphism  (2.28) in
Example 2.23.

Proposition 2.31. For a WH-module A and a G-space X, one has a natural isomorphism of topological Mackey functors

 : X ⊗ R A
∼=−→ R

(
X H ⊗F A

)
.

For a based X, taking off from both sides the trivial factor R A in view of (2.19) and (2.24), one also has an isomorphism for the
reduced version:

̃ : X ⊗̃ R A
∼=−→ R

(
X H ⊗̃F A

)
.

For the proof, we need the following lemma.
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Lemma 2.32. Let G be a finite group, H a subgroup of G, and WH the Weyl group of H in G. Then one has the following two adjoint
functors:

R : G U → WH U ; X �→ X H ,

and

L : WH U → G U ; Y �→ G/H ×WH Y ,

such that

MapG U (LY , X) = MapWH U (Y , R X).

Proof. The counit is

ε : LR X = G/H ×WH X H → X; (g H, x) �→ gx, (2.33)

and the unit is

η : Y → RLY = (G/H ×WH Y )H ; y �→ (eH, y). (2.34)

One can easily see that the following composition

R X
ηR−−→ RLR X Rε−−→ R X :

X H → (
G/H ×WH X H)H → X H ;

x �→ (eH, x) �→ x (2.35)

is the identity. Similar composition for LY is also the identity. �
Proof of Proposition 2.31. We only prove the unreduced version, and the reduced version clearly follows by (2.19)
and (2.24).

First note that, for a finite G-set S , we have

R
(

X H ⊗F A
)
(S)

(2.30)= MapWH U
(

S H , X H ⊗F A
)

(2.27)= ((
X H × S H) ⊗F A

)WH (2.26)= (
X H × S H ) ⊗WH F RWH{1} A

(1.3)=
∐

U∈WH F
MapWH U

(
U , X H × S H ) × HomWH(U , A)/≈. (2.36)

For a finite G-set S , we define a morphism  : X ⊗ R A → R(X H ⊗F A) as the following composition:

(X ⊗ R A)(S) = (X × S) ⊗G F R A

=
∐

T ∈G F
MapG U (T , X × S) × HomWH

(
T H , A

)
/≈

R×id−−−→
∐

RT ∈WH F
MapWH U (RT , R X × R S) × HomWH

(
T H , A

)
/≈

(2.36)−−−−→ (
X H × S H ) ⊗WH F RWH{1} A = R

(
X H ⊗F A

)
(S). (2.37)

Also define a morphism ς : R(X H ⊗F A) → X ⊗ R A by

R
(

X H ⊗F A
)
(S)

(2.36)= (
X H × S H) ⊗WH F RWH{1} A

=
∐

U∈WH F
MapWH U

(
U , R(X × S)

) × HomWH(U , A)/≈

L×η∗−−−−→
∐

LU∈G F
MapG U

(
LU , LR(X × S)

) × HomWH(RLU , A)/≈

(ε◦)×id−−−−−→
∐

LU∈G F
MapG U (LU , X × S) × HomWH(RLU , A)/≈

→ (X × S) ⊗G F R A = (X ⊗ R A)(S).

Here the maps R , L, η and ε are as in Lemma 2.32, and the map
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η∗ : HomWH(U , A) → HomWH(RLU , A); a �→
(

(u′ ∈ RLU ) �→
∑

u∈η−1(u′)⊂U

a(u)

)

is the “transfer” map for η : U → RLU (2.34).

Lemma 2.38. Both  and ς are well defined, and are natural transformations of topological Mackey functors.

Proof. After unraveling all the definitions, the well-definedness and the naturality with respect to covariancy of the Mackey
functors are easy to check. The naturality with respect to the contravariancy of Mackey functors (see Definition 2.3) is more
involved, and uses the fact that the R in Lemma 2.32, being a right adjoint, preserves Cartesian diagrams. We leave the
details to the interested reader. �

Let us now show that both the compositions ς ◦  and  ◦ ς are the identity. Fix a finite G-set S .
First we check the equality ς ◦  = id. Pick

(α,a) ∈ MapG U (T , X × S) × HomWH
(
T H , A

)
.

Then

(α,a) = (Rα,a) ∈ MapWH U
(

RT , R(X × S)
) × HomWH

(
T H , A

)
,

and

(α′,a′) = (ς ◦ )(α,a) = (ε ◦ LRα,η∗a) ∈ MapG U (LRT , X × S) × HomWH(RLRT , A).

One has the following commutative diagram

LRT
LRα

ε

LR(X × S)

ε

T
α X × S

by the naturality of ε (2.33). Therefore α′ = ε ◦ LRα = α ◦ ε = αε∗ . By (1.4), one has

(α′,a′) = (αε∗,a′) ≈ (α, ε∗a′).

To illustrate the situation, we draw the following diagram (which we do not claim to be commutative):

RT
a

ηR

RLRT
a′=η∗a

Rε

A.

RT

ε∗a′

Then it is easy to see that

ε∗a′ = ε∗η∗a = a,

by (2.35).
Finally we check the equality  ◦ ς = id. Pick

(β,b) ∈ MapWH U (U , R X × R S) × HomWH(U , A).

Then

ς(β,b) = (ε ◦ Lβ,η∗b) ∈ MapG(LU , X × S) × HomWH(RLU , A),

and

(β ′,b′) = ( ◦ ς)(β,b) = (
R(ε ◦ Lβ),η∗b

) ∈ MapWH U (RLU , R X × R S) × HomWH(RLU , A).

One has the following commutative diagram

U
β

η

R X × R S

ηR

RLU
RLβ

RL(R X × R S)
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by the naturality of η (2.34). Therefore ηR ◦ β = RLβ ◦ η. Composing both sides with Rε from the left, one sees in view
of (2.35) that

β = Rε ◦ RLβ ◦ η = R(ε ◦ Lβ) ◦ η = β ′ ◦ η = β ′η∗.

Therefore by (1.4), one has

(β,b) = (β ′η∗,b) ≈ (β ′, η∗b) = (β ′,b′). �
The following result will be used throughout, which is a generalization of both [7, Proposition 7] and [9, Lemma V.3.1].

Proposition 2.39. Let H < G be a subgroup. There are two adjoint functors

L : G T → WH T ; X �→ X (G/H),

R : WH T → G T ; Y �→ (
S �→ MapWH T

(
S H+, Y

))
such that

MapWH T (L X , Y ) ∼= MapG T (X , RY ).

Proof. The proof is similar to those for the above-mentioned results. In particular, the counit L RY → Y is the identity, and
the map

MapG T (X , RY ) → MapWH T (L X , Y ) (2.40)

is obtained by applying L, which is taking the (G/H) component. �
3. Ω-G-spectra and equivariant homology

It is well known that many of the concepts of equivariant homotopy theory can be carried over to the context of G -
spaces. We start this section by introducing the notions of G -prespectrum and Ω-G -spectrum, as generalizations of the
more classical notions of G-prespectrum and Ω-G-spectrum (see the fundamental work [8] about these more classical
objects). Then we use the construction of the topological Mackey functor X ⊗̃ M (for a based G-space X and a Mackey
functor M) to define a G -prespectrum (Σ∞ X) ⊗̃ M . In Theorem 3.15 we show that (Σ∞ X) ⊗̃ M is an Ω-G -spectrum
when X is a based G-CW complex.

We start by defining some basic structures of G T in order to formulate our results.

Definition 3.1. Smash products in the category G T are defined, in view of Remark 1.1, by

(X ∧ Y)(G/H) := X (G/H) ∧ Y(G/H).

Internal Hom’s in G T are defined by

Hom(X , Y)(S) := MapG T
(

X ∧ Φ(S+), Y
)

(3.2)

for S ∈ G F . (We will often abuse notation by omitting Φ .)

Proposition 3.3. One has the following adjunction

MapG T (X ∧ Y, Z) = MapG T
(

X , Hom(Y, Z)
)
. (3.4)

Proof. For an orbit G/H , define the unit to be

η : X (G/H) = MapG T
(
Φ(G/H+), X

)
(Yoneda lemma)

→ Hom(Y, X ∧ Y)(G/H) = MapG T
(
Φ(G/H+) ∧ Y, X ∧ Y

); f �→ f ∧ id;
and the counit to be

μ :
(

Hom(Y, Z) ∧ Y
)
(G/H) = MapG T

(
Y ∧ Φ(G/H+), Z

) ∧ Y(G/H) → Z(G/H); h ∧ y �→ hG/H (y ∧ id). (3.5)

Then one can check the usual conditions for adjunction. �
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Lemma 3.6. The functor Φ (1.2) preserves smash products

Φ(X ∧ Y ) = Φ X ∧ ΦY , (3.7)

and internal Hom’s

ΦMapT (X, Y ) = Hom(Φ X,ΦY ), (3.8)

where MapT denotes the internal Hom for G-spaces with conjugate G-action.

Proof. (3.7) follows from

(X ∧ Y )H = X H ∧ Y H .

There is a functor [9, Lemma V.3.1]

Θ : G T → G T ; X → X (G/e), (3.9)

which is left adjoint to Φ in (1.2). Clearly ΘΦ X = X . Therefore

MapG T (Φ X,ΦY ) ∼= MapG T (ΘΦ X, Y ) = MapG T (X, Y ). (3.10)

On a finite G-set S , (3.8) is defined by

ΦMapT (X, Y )(S)
(1.2)= MapG T

(
S+,MapT (X, Y )

)
= MapG T (X ∧ S+, Y )

(3.10)= MapG T
(
Φ(X ∧ S+),ΦY

)
(3.7)= MapG T

(
Φ X ∧ Φ(S+),ΦY

) (3.2)= Hom(Φ X,ΦY )(S),

where the second equality is by an obvious adjunction in G T . �
Moreover, G T has a model category structure in which the weak equivalences and fibrations are defined component-

wise [9, Chapter VI]. Therefore Φ preserves the model structures by definition.

Definition 3.11. Fix a complete G-universe U and a cofinal set A of indexing spaces, which are defined to be finite dimen-
sional sub G-spaces of U (see [9, Chapter XII]). Define a G -prespectrum to be a collection of G -spaces {XV }V ∈A such that
for W ∈ A, one has the following structure map

σV ,W :Φ S W ∧ XV → XV +W (3.12)

as a map of G -spaces. The structure maps σ are required to satisfy σV ,0 = id and the expected transitivity condition:

Φ SU ∧ Φ S W ∧ XV
id∧σV ,W

(3.7)

Φ SU ∧ XV +W

σV +W ,U

Φ SU+W ∧ XV
σV ,U+W XV +W +U .

For a G -space X , we call ΩW X := Hom(Φ S W , X ) the W th loop space of X as a G -space. We call the G -prespectrum
{XV }V ∈A an Ω-G -spectrum if the adjoint map

τV ,W : XV → ΩW XV +W

associated to (3.12) by (3.4) is a G -weak equivalence.

Let X be a based G-space, and M a Mackey functor. We consider the following natural G -prespectrum (Σ∞ X) ⊗̃ M
with its V th space as the topological Mackey functor (Σ V X) ⊗̃ M , which is thus a G -space. Understanding X generally (i.e.,
sometimes as Σ V X ), there is the natural structure map

ψ :Φ S W ∧ (X ⊗̃ M) → (
ΣW X

) ⊗̃ M,

which is defined as follows. For an orbit G/H , in view of (2.22), we define

ψG/H : MapG T
(
G/H+, S W ) ∧ (

(X ∧ G/H+) ⊗̃G F M
) → (

ΣW X ∧ G/H+
) ⊗̃G F M;

α ∧ ξ �→ ((
(α ◦ pr2) ∧ id

) ⊗̃G F id
)
(ξ) (3.13)

by the functoriality of our coend construction, where

(α ◦ pr2) ∧ id : X ∧ G/H+ → ΣW X ∧ G/H+
is the G-map defined by x ∧ t �→ α(t) ∧ x ∧ t .
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Since we are interested in the adjoint of ψ under the adjunction (3.4):

φ : X ⊗̃ M → ΩW ((
ΣW X

) ⊗̃ M
)
, (3.14)

we now write it out in detail. Given a finite G-set T , the value of φ at T is a map

φT : (X ⊗̃ M)(T ) → ΩW ((
ΣW X

) ⊗̃ M
)
(T ),

which is natural in T . By the Yoneda lemma and the definition of internal Hom (3.2), φT can be described as a map

φT : MapG T
(
Φ(T+), X ⊗̃ M

) → MapG T
(
Φ S W ∧ Φ(T+),

(
ΣW X

) ⊗̃ M
)
,

such that the image of β ∈ MapG T (T+, X ⊗̃ M) is the following composition:

Φ S W ∧ Φ(T+)
id∧β−−−→ Φ S W ∧ (X ⊗̃ M)

ψ−→ (
ΣW X

) ⊗̃ M.

The following result describes one of the most important properties of our stable equivariant abelianization functor.

Theorem 3.15. For a based G-CW complex X, the G -prespectrum (Σ∞ X) ⊗̃ M is an Ω-G -spectrum, i.e., the adjoint map (3.14) is
a G -weak equivalence.

Proof. The strategy of the proof is to use a structure theorem for Mackey functors by Greenlees and May [7] to reduce to
the case that M = R A, where A is a WH-module, as in Example 2.29. Using Propositions 2.31 and 2.39, we will further
reduce this to the case handled in [4] and recalled in Example 2.23 with the group replaced by WH. The case of a general
Mackey functor M is then completed by an application of the 5-lemma.

Let M = R A be as in Example 2.29. Since G -weak equivalences are defined component-wise, we need to show that, for
each finite G-set T , the map φT in the top row of the following commutative diagram is a weak equivalence of spaces (for
notational simplicity, we will omit the Φ ’s in this proof):

MapG T (T+, X ⊗̃ R A)
φT

2.31

MapG T (S W ∧ T+, (ΣW X) ⊗̃ R A)

2.31

MapG T (T+, R(X H ⊗̃F A))
τT

2.39

MapG T (S W ∧ T+, R((ΣW H
X H ) ⊗̃F A))

2.39

MapWH T (T H+ , X H ⊗̃F A)
χT

MapWH T (S W H ∧ T H+ ,ΣW H
X H ⊗̃F A).

(3.16)

The vertical arrows in the above diagram are homeomorphisms for a general space X given by Propositions 2.31 and 2.39,
and the maps τT and χT are completely determined by the commutativity of the diagram.

For each γ ∈ MapG T (T+, R(X H ⊗̃F A)), the commutativity of diagram (3.16) implies that the value τT (γ ) is a composite
of the form

S W ∧ T+
id∧γ−−−→ S W ∧ R

(
X H ⊗̃F A

) υ−→ R
((

ΣW H
X H) ⊗̃F A

)
, (3.17)

where υ is determined by the commutativity of the following diagram:

S W ∧ (X ⊗̃ R A)
ψ

id∧̃

(ΣW X) ⊗̃ R A

̃

S W ∧ R(X H ⊗̃F A)
υ R((ΣW H

X H ) ⊗̃F A).

Recall that ̃ is the isomorphism defined in Proposition 2.31. On an orbit G/K , this reads

MapG T (G/K+, S W ) ∧ ((X ∧ G/K+) ⊗̃G F R A)
ψ

id∧̃G/K

(ΣW X ∧ G/K +) ⊗̃G F R A

̃G/K

MapG T (G/K +, S W ) ∧ MapWH T ((G/K )H+, X H ⊗̃F A)
υ

MapWH T ((G/K )H+, (ΣW H
X H ) ⊗̃F A).

Unraveling the definitions of ψ in (3.13) and  in (2.37), it is easy to see that for α ∈ MapG T (G/K +, S W ),
ξ ∈ MapWH T ((G/K )H+, X H ⊗̃F A) and u ∈ (G/K )H+ , we have

υ(α ∧ ξ)(u) = ( fα(u) ⊗̃F idA)
(
ξ(u)

)
, (3.18)

where fα(u) : X H → ΣW H
X H is the map x �→ α(u) ∧ x.
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Next we compute the map χT in diagram (3.16). Denoting by δ = lad(γ ) ∈ MapWH T (T H+ , X H ⊗̃F A) the left adjunct of
γ ∈ MapG T (T+, R(X H ⊗̃F A)) under the adjunction L � R in Proposition 2.39, we have χT (δ) = χT (lad(γ )) = lad(τT (γ )),
by the required commutativity of diagram (3.16). Since the counit of the adjunction is the identity (2.40), we have

lad
(
τT (γ )

) = L
(
τT (γ )

) (3.17)= L(υ) ◦ L(id ∧ γ ).

Therefore, χT (δ) is given by

S W H ∧ T H+
id∧δ−−−→ S W H ∧ (

X H ⊗̃F A
) L(υ)−−−→ (

S W H ∧ X H) ⊗̃F A.

Applying the formula (3.18), we obtain L(υ)(s ∧ ξ) = ( f s ⊗̃F idA)(ξ), where f s denotes the map X H → S W H ∧ X H given by
x �→ s ∧ x.

We conclude that χT is composition with the adjoint map

X H ⊗̃F A → ΩW H ((
ΣW H

X H) ⊗̃F A
)

of the WH-prespectrum {V �→ Σ V X H ⊗̃F A}. Since it is shown in [4] that this is an Ω-WH-spectrum for a G-CW complex X ,
it follows χT is a weak equivalence for each T . Therefore φ (3.14) is G -weak equivalence.

Now for the general case of M , we use the structure theorem for Mackey functors of [7]. This result states that the class
of Mackey functors containing the functors {R A}, for all subgroups H < G and all WH-modules A, and satisfying the 2 out
of 3 property for short exact sequences contains all Mackey functors. Since we have shown that the class of Mackey functors
for which (3.14) is a G -weak equivalence contains Mackey functors of the form R A, it suffices now to show that this class
satisfies the 2 out of 3 property for short exact sequences.

Let

0 → M → N → P → 0

be a short exact sequence of Mackey functors. First we show that, for a G-CW complex X , one gets a fibration sequence of
G -spaces

X ⊗ M → X ⊗ N → X ⊗ P .

This means that, for each finite G-set T , the resulting sequence of topological abelian groups (see (2.22))

(X ∧ T+) ⊗̃G F M → (X ∧ T+) ⊗̃G F N → (X ∧ T+) ⊗̃G F P

is a fibration sequence of topological spaces. To prove this, we use the following detour into simplicial sets and the realiza-
tion functor. Let XT denote X ∧ T+ and S XT denote the total singular simplicial set of XT . Then one has an exact sequence
of simplicial abelian groups

0 → S XT ⊗̃G F M → S XT ⊗̃G F N → S XT ⊗̃G F P → 0.

(This is a simplicial version of Proposition 2.11.) By basic simplicial homotopy theory [6, III.2.10], this is then a fibration
sequence. Since geometric realization is a Quillen equivalence between the categories of simplicial sets and topological
spaces [6], we have the following diagram

|S XT ⊗̃G F M| |S XT ⊗̃G F N| |S XT ⊗̃G F P |

XT ⊗̃G F M XT ⊗̃G F N XT ⊗̃G F P ,

(3.19)

where the first row is a fibration sequence. For a G-CW complex X , the vertical maps are G-homotopy equivalences [10].
Therefore the second row is also a fibration sequence.

Since internal Hom’s clearly preserve fibration sequences, we have the following diagram of fibration sequences

X ⊗G F M

φ

X ⊗G F N

φ

X ⊗G F P

φ

ΩW ((ΣW X) ⊗̃ M) ΩW ((ΣW X) ⊗̃ N) ΩW ((ΣW X) ⊗̃ P ).

If two out of the three vertical maps are weak equivalences, it follows by the 5-lemma that so is the third. This concludes
the proof of the theorem. �

We can now prove the following RO(G)-graded version of the classical Dold–Thom theorem, as an application of our
stable equivariant abelianization functor.
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Theorem 3.20. Let X be a based G-CW complex. There is a natural isomorphism

π G
V (X ⊗̃ M) := [

Φ S V , X ⊗̃ M
]

G T
∼= H̃ G

V (X; M),

where the [−,−]G T denotes based homotopy classes of G -maps, and the right-hand side is the RO(G)-graded equivariant homology
of X with coefficients in M.

Proof. For a G-CW pair (X, Y ), consider the functors

h̃G
V (X, Y ; M) = π G

V

(
(X/Y ) ⊗̃ M

) = [
Φ S V , (X/Y ) ⊗̃ M

]
G T .

Now we verify that the h̃G∗ satisfy the axioms for an RO(G)-graded theory with coefficients in M .
The G-homotopy axiom and the excision axiom are easy to check (cf. [4, Corollary 2.7]). For a cofibration sequence

Y i−→ X
p−→ X/Y ,

one has a fibration sequence of topological Mackey functors

Y ⊗̃ M
i∗−→ X ⊗̃ M

p∗−−→ (X/Y ) ⊗̃ M.

The proof again uses a detour into the simplicial category through geometric realization and the simplicial version of Propo-
sition 2.20 (cf. the end of the proof of Theorem 3.15). Hence one has the associated long exact sequence in the h̃G∗ theory.

The dimension axiom follows from Example 2.16.
The only new RO(G)-graded suspension axiom now follows from Theorem 3.15. �

4. Equivariant Eilenberg–Mac Lane spectra

The categories of G-spaces and G -spaces are related by the fixed point functor Φ : G U → G U (cf. (1.2)). The coalescence
functor Ψ : G U → G U defined by Elmendorf [5] shows that, up to weak equivalence, every G -space is the fixed point system
of a G-space. In this section we define a variant of Elmendorf’s functor for both the unbased and the based situations, and
study the relation of Ψ with smash products and internal Hom’s. Application of Ψ turns an Ω-G -spectrum, for example
the (Σ∞ X) ⊗̃ M defined in Section 3, to an Ω-G-spectrum. In the particular case that X = S0, we get a model for the
equivariant Eilenberg–Mac Lane spectrum HM.

First we introduce a variant of Elmendorf’s construction using the category G F of finite G-sets instead of the orbit
category G , for the benefit of the existence of finite products (see Proposition 4.5 below).

Definition 4.1. (Cf. [5, proof of Theorem 1].) Let J : G F → G U be the inclusion functor. For X ∈ G U , Ψ X is a G-space defined
by

Ψ X := B(X , G F , J ) = ∣∣B•(X , G F , J )
∣∣

where B•(−, − ,−) denotes the triple bar construction: B•(X , G F , J ) is a simplicial G-space whose space of n-simplices is{
(x, f ,α)

∣∣ x ∈ X (S0); f = S0
f1←−− S1

f2←−− · · · fn←−− Sn; α ∈ Sn
}
,

where the f i are G-maps, with the usual face (by composition or functoriality of X and J ) and degeneracy (by insertion of
identity) maps. The G-action on Bn(X , G, J ) is induced from the one on the images of J .

The following proposition shows that a G -space X is, up to weak equivalence, the fixed point system of the G-space Ψ X .

Proposition 4.2. (Cf. [5, Theorem 1].) There is a natural transformation ε :ΦΨ → id such that for each X ∈ G U the map
εX :ΦΨ X → X is a weak equivalence. In particular Ψ preserves weak equivalences.

Proof. For an orbit G/H , the natural transformation ε has value

εX (G/H) :ΦΨ X (G/H) = MapG U
(
G/H, B(X , G F , J )

) = B
(

X , G F ,HomG F (G/H,−)
) → X (G/H), (4.3)

which is defined by pullback for each simplex. Here the second equality follows from the fact that the G-action on
B(X , G F , J ) is induced from the one on the images of J , and that G/H is an orbit. It is standard [9, §V.2] that εX (G/H) is
a strong deformation retract.

For the second statement, assume that f : X → Y is a weak equivalence of G -spaces. We now prove that Ψ f :Ψ X → Ψ Y
is a weak equivalence of G-spaces. By definition, we need to show that ΦΨ f :ΦΨ X → ΦΨ Y is a weak equivalence of

G -spaces. This follows from the commutativity of the following diagram,
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ΦΨ X ΦΨ f

εX

ΦΨ Y
εY

X f Y,

by the naturality of ε, and the fact that εX , εY and f are weak equivalences. �
Remark 4.4. It can be checked that our variant in Definition 4.1 is the same as Elmendorf’s construction in [5] up to
homotopy.

Our variant enables us to show the following relation between Ψ and products.

Proposition 4.5. For X , Y ∈ G U , there is a homotopy equivalence of G-spaces

� :Ψ X × Ψ Y → Ψ (X × Y), (4.6)

with a homotopy inverse

Δ :Ψ (X × Y) → Ψ X × Ψ Y

defined in (4.7) below.

Proof. Define � as the geometric realization of

B•(X , G F , J ) × B•(Y, G F , J ) → B•(X × Y, G F , J ) :((
X (S0) 	 x, f1, . . . , fn,α ∈ Sn

)
,
(

Y(T0) 	 y, g1, . . . , gn, β ∈ Tn
))

�→ (
(X × Y)(S0 × T0) 	 (

X (p1)(x), Y(p2)(y)
)
, f1 × g1, . . . , fn × gn, (α,β) ∈ Sn × Tn

)
,

where p1 : S0 × T0 → S0 and p2 : S0 × T0 → T0 denote the projections.
Define

Δ = Ψ (pr1) × Ψ (pr2) :Ψ (X × Y) → Ψ X × Ψ Y

by the functoriality of Ψ for the obvious projections. More concretely, Δ is the geometric realization of

B•(X × Y, G F , J ) → B•(X , G F , J ) × B•(Y, G F , J ) :(
(x, y) ∈ (X × Y)(S0), f1, . . . , fn,α

) �→ ((
x ∈ X (S0), f1, . . . , fn,α

)
,
(

y ∈ Y(S0), f1, . . . , fn,α
))

. (4.7)

It can be checked that � and Δ are homotopy inverses of each other by constructing homotopies on the simplicial space
level using projections and diagonals at appropriate places. �

We now define a version of the coalescence functor for based G -spaces, still denoted Ψ : G T → G T .

Definition 4.8. For X ∈ G T , the based G-space Ψ X is defined to be the geometric realization of a based G-simplicial space,
as follows:

Ψ X = B(X , G F , J ) := ∣∣B•(X , G F , J )
∣∣,

where B•(X , G F , J ) is the based simplicial G-space defined by

Bn(X , G F , J ) = Bn(X , G F , J )/Bn(∗, G F , J ),

where ∗ denotes the base point of X .

We have the following relations of the functor Ψ with smash products and internal Hom’s.

Lemma 4.9. For X , Y ∈ G T , there is a based version of the construction in Proposition 4.5

� :Ψ X ∧ Ψ Y → Ψ (X ∧ Y),

which is a weak equivalence of G-spaces.
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Proof. Consider the natural composition

Ψ X × Ψ Y �−−→ Ψ (X × Y) → Ψ (X ∧ Y),

which is the geometric realization of

B•(X , G F , J ) × B•(Y, G F , J ) → B•(X × Y, G F , J ) → B•(X ∧ Y, G F , J ).

It is clear that

B•(X , G F , J ) × B•(∗, G F , J ) → B•(X × ∗, G F , J ) → B•(∗, G F , J )

under the above composition, and similarly for B•(∗, G F , J ) × B•(Y, G F , J ).
Then we define the based � to be the following composition

Ψ X ∧ Ψ Y = ∣∣B•(X , G F , J )
∣∣ ∧ ∣∣B•(Y, G F , J )

∣∣ = ∣∣B•(X , G F , J ) ∧ B•(Y, G F , J )
∣∣

= ∣∣(B•(X , G F , J ) × B•(Y, G F , J )
)
/
((

B•(X , G F , J ) × B•(∗, G F , J )
) ∪ (

B•(∗, G F , J ) × B•(X , G F , J )
))∣∣

→ ∣∣B•(X ∧ Y, G F , J )/B•(∗, G F , J )
∣∣ = ∣∣B•(X ∧ Y, G F , J )

∣∣ = Ψ (X ∧ Y).

By definition, to show that the based � is a weak equivalence, we need to show that

Φ� :ΦΨ X ∧ ΦΨ Y (3.7)= Φ(Ψ X ∧ Ψ Y) → ΦΨ (X ∧ Y)

is a weak equivalence of G -spaces. This follows from the commutativity of the following diagram

ΦΨ X ∧ ΦΨ Y
εX ∧εX

Φ�
ΦΨ (X ∧ Y)

εX ∧Y

X ∧ Y,

(4.10)

and the fact that εX ∧Y and εX ∧ εY are weak equivalences. Recall that εX (G/H) (4.3) is a based deformation retract, so is
εY (G/H). Therefore εX ∧ εY is a weak equivalence. �
Proposition 4.11. For X a based G -CW complex and Y a based G -space, one has a weak equivalence of G-spaces

ζ :Ψ Hom(X , Y)
∼−→ MapT (Ψ X ,Ψ Y). (4.12)

Proof. Define ζ to be the adjoint of the composition

λ :Ψ Hom(X , Y) ∧ Ψ X �−−→ Ψ
(

Hom(X , Y) ∧ X
) Ψμ−−−→ Ψ Y, (4.13)

where � is as in Lemma 4.9 and μ is the counit map in (3.5).
By definition, to show that ζ is a weak equivalence, we need to show that

Φζ :ΦΨ Hom(X , Y) → ΦMapT (Ψ X ,Ψ Y)
(3.8)= Hom(ΦΨ X ,ΦΨ Y)

is a weak equivalence of G -spaces.
This follows from the following commutative diagram

ΦΨ Hom(X , Y)
Φζ

ε

Hom(ΦΨ X ,ΦΨ Y)

Hom(id,εY )

Hom(X , Y)
Hom(εX ,id) Hom(ΦΨ X , Y),

where all the other maps are weak equivalences. Recall that we assume that X is a G -CW complex, so ΦΨ X has
the homotopy type of a G -CW complex. Therefore εX :ΦΨ X → X is a homotopy equivalence by the Whitehead theo-
rem [9, Theorem VI.3.5], which implies that Hom(εX , id) is a homotopy equivalence. That Hom(id, εY ) is a weak equiva-
lence follows from the fact that εY is a weak equivalence and that ΦΨ X has the homotopy type of a G -CW complex by
the Whitehead theorem [9, Theorem VI.3.4]. �

Now we apply the functor Ψ to a G -prespectrum to get a G-prespectrum. However, for a representation V and the
corresponding representation sphere S V , we only have a natural G-map

ΘεV :Ψ Φ S V → S V , (4.14)

which is a weak equivalence of G-spaces. Here Θ is defined in (3.9) (see the proof of Theorem V.3.2 in [9]). To get a
G-prespectrum in the sense of [9], we need to fix the following choices.
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Lemma 4.15. There is a family of G-maps βV : S V → Ψ Φ S V , V ∈ A, such that

(i) βV is a homotopy inverse to ΘεV :Ψ Φ S V → S V ;
(ii) for each V , W ∈ A the following diagram commutes

S V ∧ S W
βV ∧βW

∼=

Ψ Φ S V ∧ Ψ Φ S W

�

S V +W
βV +W

Ψ Φ S V +W ,

(4.16)

where � is defined as in Lemma 4.9.

Proof. Recall that G is finite. Choose a representation V i in each of the finitely many isomorphism classes of irreducible
ones. Since S V i is a G-CW complex, Ψ Φ S V i has the homotopy type of a G-CW complex. By the Whitehead theorem,
ΘεV i in (4.14) is a G-homotopy equivalence. Choose and fix an inverse βi . A general representation V ∈ A has a fixed
decomposition into the irreducible ones {V i}. Without loss of generality, assume that V = V 1 + V 2. Then we define

βV : S V = S V 1 ∧ S V 2
βV1 ∧βV2−−−−−−→ Ψ Φ S V 1 ∧ Ψ Φ S V 2 �−−→ Ψ Φ S V .

The general commutativity in diagram (4.16) then follows by construction. �
Definition 4.17. Given a G -prespectrum X = {XV }V ∈A with structure map

σ :Φ S W ∧ XV → XV +W , (4.18)

define Ψ X to be the G-prespectrum whose value on a representation V ∈ A is

(Ψ X )V := Ψ XV ,

and whose structure map for W ∈ A is the composition

ς : S W ∧ (Ψ X )V
βW ∧id−−−−→ Ψ Φ S W ∧ Ψ XV

�−−→ Ψ
(
Φ S W ∧ XV

)
Ψσ−−−→ Ψ XV +W = (Ψ X )V +W . (4.19)

Lemma 4.20. Together the family {Ψ XV } and the structure maps ς define a G-prespectrum.

Proof. This is a check of compatibility, which follows from our choices in Lemma 4.15 and the natural associativity of � in
Lemma 4.9. We omit the details. �
Theorem 4.21. If X is an Ω-G -spectrum then Ψ X is an Ω-G-spectrum.

Proof. By Definition 3.11, the adjoint map

τ : XV → Hom
(
Φ S W , XV +W

)
associated to the structure map (4.18) is assumed to be a weak equivalence of G -spaces. Therefore the composition

ξ :Ψ XV
Ψτ−−→ Ψ Hom

(
Φ S W , XV +W

) ζ−→ MapT
(
Ψ Φ S W ,Ψ XV +W

) β∗
W−−→ MapT

(
S W ,Ψ XV +W

)
is a weak equivalence of G-spaces, by Propositions 4.2, 4.11 and Lemma 4.15. It can be checked that ξ is the adjoint of the
structure map ς in (4.19) for the prespectrum Ψ X , in view of the definition of ζ as the adjoint of λ in (4.13). Therefore
Ψ X is an Ω-G-spectrum. �

Combining Theorems 3.15 and 4.21, we get the following final result, as another application of our stable equivariant
abelianization functor.

Theorem 4.22. For a based G-CW complex X, the equivariant prespectrum Ψ ((Σ∞ X) ⊗̃ M) is an Ω-G-spectrum satisfying
πG

V Ψ ((Σ∞ X) ⊗̃ M) ∼= H̃ G
V (X; M).

In particular, Ψ ((Σ∞ S0) ⊗̃ M) is an equivariant Eilenberg–Mac Lane spectrum HM, and for each finite dimensional
G-representation V , the G-space Ψ (S V ⊗̃ M) is an equivariant Eilenberg–Mac Lane space K (M, V ).
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