The spectrum $(P \wedge b o)_{-\infty}$

By DONALD M. DAVIS and MARK MAHOWALD
Lehigh University, Bethlehem, PA 18015 and
Northwestern University, Evanston, IL 60201

(Received 9 December 1982; revised 17 August 1983)

1. Introduction

There are spectra P_{-k} constructed from stunted real projective spaces as in [1] such that $H^{*}\left(P_{-k}\right)$ is the span in $\mathbb{Z} / 2\left[x, x^{-1}\right]$ of those x^{i} with $i \geqslant-k$. (All cohomology groups have $\mathbb{Z} / 2$-coefficients unless specified otherwise.) Using collapsing maps, these form an inverse system

$$
\ldots \rightarrow P_{-k-1} \rightarrow P_{-k} \rightarrow \ldots \rightarrow P_{0}
$$

which is similar to those of $\operatorname{Lin}([15], p .451)$. It is a corollary of Lin's work that there is an equivalence of spectra

$$
\operatorname{holim}\left(P_{-k}\right) \approx \hat{S}^{-1}
$$

where holim is the homotopy inverse limit ([3], ch. 5) and \hat{S}^{-1} the 2 -adic completion of a sphere spectrum. One may denote by $P_{-\infty}^{\infty}$ this holim $\left(P_{-k}\right)$, although one must constantly keep in mind that $H^{*}\left(P_{-\infty}^{\infty}\right) \neq \mathbb{Z} / 2\left[x, x^{-1}\right]$, but rather

$$
H^{i}\left(P_{-\infty}^{\infty}\right)= \begin{cases}\mathbb{Z} / 2 & i=-1 \\ 0 & i \neq-1\end{cases}
$$

If E is a spectrum, we may apply $E \wedge$ to the inverse system (1•1), and $\operatorname{let}(P \wedge E)_{-\infty}$ denote holim $\left(P_{-k} \wedge E\right)$. As we shall see, this can be quite different from $P_{-\infty}^{\infty} \wedge E$.

Let bo denote the spectrum for connective ko-theory localized at 2 . The spectra $P_{k} \wedge b o$ have had a variety of applications $[19,8,9,10$, and 18] and satisfy the periodicity $\Sigma^{4} P_{k} \wedge b o \simeq P_{k+4} \wedge b o([7])$. For $n \in \mathbb{Z}$, the homotopy groups are [11, 19 and 9]

$$
\pi_{4 n+k}\left(P_{4 n+1} \wedge b o\right) \approx\left\{\begin{array}{lll}
\hat{\mathbb{Z}} /\left(2^{(k+3) / 2}\right) & k \equiv 3(8), & k>0 \\
\mathbb{Z} /\left(2^{(k+1) / 2}\right) & k \equiv 7(8), & k>0 \\
\mathbb{Z} / 2 & k \equiv 1,2(8), & k>0 \\
0 & \text { otherwise. }
\end{array}\right\}
$$

If $b o$ is applied to (1-1), then the homomorphisms $\pi_{i}\left(P_{4 n-3} \wedge b o\right) \rightarrow \pi_{i}\left(P_{4 n+1} \wedge b o\right)$ are surjective when $i \equiv 3(4)$ and 0 otherwise. Then (1-2) implies

$$
\operatorname{invlim}\left(\pi_{i}\left(P_{-k} \wedge b o\right)\right) \approx\left\{\begin{array}{ll}
\hat{\mathbb{Z}}_{2} & i \equiv 3(4) \\
0 & i \neq 3(4),
\end{array}\right\}
$$

where $\hat{\mathbb{Z}}_{2}=\operatorname{invlim}\left(\mathbb{Z} / 2^{n}\right)$ is the 2 -adic integers. This suggests the following theorem, our main result. Let \hat{H} denote the Eilenberg-MacLane spectrum satisfying

$$
\pi_{i}(\hat{H})= \begin{cases}\hat{\mathbb{Z}}_{2} & i=0 \\ 0 & i \neq 0\end{cases}
$$

Theorem 1.4. There is an equivalence of spectra $(P \wedge b o)_{-\infty} \approx \bigvee_{i \in \mathbb{Z}} \Sigma^{4 i-1} \hat{H}$. As an immediate corollary of 1.4 we have (using [19], 1.6):

Corollary 1.5. There is an equivalence of spectra $(P \wedge b u)_{-\infty} \approx V_{i \in \mathbb{Z}} \Sigma^{2 i-1} \hat{H}$. This corollary is the case $n=1$ of the following conjecture.

Conjecture 1.6. Let $B P\langle n\rangle$ denote the spectra associated to the prime 2 which were constructed in [12]. There is an equivalence of spectra

$$
(P \wedge B P\langle n\rangle)_{-\infty} \approx \underset{i \in \mathbb{Z}}{ } \Sigma^{2 i-1} B \hat{P}\langle n-1\rangle
$$

where \hat{E} denotes the 2 -adic compeltion of the spectrum E.
The proof of $1 \cdot 4$ occupies Section 2 . In Section 3, Theorem $1 \cdot 4$ is applied to construct 2-adic characteristic classes for Spin-bundles.

Theorem 1.7. There are elements $Q_{i} \in H^{4 i}\left(\mathrm{BSpin} ; \hat{\mathbb{Z}}_{2}\right)$ such that
(i) the mod- 2 reduction $\rho_{2} Q_{i}$ is the $W u$ class $v_{4 i}$;
(ii) there is a map τ such that the composite

$$
\mathrm{BSpin} \xrightarrow{\left\langle Q_{i}\right\rangle} \underset{i \geqslant 0}{\vee} \Sigma^{4 i} \hat{H} \xrightarrow{\tau} \Sigma P_{1} \wedge b o \rightarrow \Sigma P_{n} \wedge b o
$$

is the orientation constructed in [7].
The applicability and limitations of this result will be discussed in Section 3. In Section 4, $1 \cdot 4$ is compared with recent work of Jones and Wegmann [13].

2. Proof of Theorem 1.4

Definition 2.1. Let H denote the Eilenberg-MacLane spectrum for $\mathbb{Z}_{(2)}$, the subring of the rationals with odd denominators. Let $H_{-k}=\bigvee_{j \geq-k} \Sigma^{4 j-1} H$ and $i=0 \vee 1$: $H_{-k} \rightarrow H_{-k-1}=\Sigma^{-4 k-5} H \vee H_{-k}$. Let $\hat{H}_{-k}=V_{j \geq-k} \Sigma^{4 j-1} \hat{H}$. Let $\hat{H}_{-\infty}=V_{j \in \mathbb{Z}} \Sigma^{4 j-1} \hat{H}=$ $\operatorname{dirlim} H_{-k}$, where the maps in the direct system are the inclusion $H_{-k} \rightarrow H_{-k-1}$.
Let c denote the collapsing map $P_{k} \rightarrow P_{k+1}$ for stunted projective spaces. Most of the work in the proof of 1.4 is incorporated in

Theorem 2•2. There are maps j_{k} for all $k \geqslant 0$, surjective in $\pi_{4 *-1}()$, such that the diagrams

Proof that 2.2 implies 1.4

We apply the 2 -completion functor to the diagram of $2 \cdot 2$. Since $\pi_{j}\left(P_{-4 k+1} \wedge b o\right)$ is finite, $\left(P_{-4 k+1} \wedge b o\right)_{2}^{\hat{2}} \approx P_{-4 k+1} \wedge b o$, so that we obtain maps $\hat{j}_{k}: H_{-k} \rightarrow P_{-4 k+1} \wedge b o$. If $l \geqslant k$, let $j_{l, k}$ denote the composite

$$
\hat{H}_{-l} \xrightarrow{\hat{i}} P_{-4+1} \wedge b o \xrightarrow{c} P_{-4 k+1} \wedge b o .
$$

Then $2 \cdot 2$ implies commutativity of

inducing a map

$$
\hat{H}_{-\infty} \xrightarrow{a_{k}} P_{-4 k+1} \wedge b o .
$$

Because each map in the direct system $\hat{H}_{-l} \rightarrow \hat{H}_{-l-1} \rightarrow \ldots$ is an inclusion of a wedge summand, $\lim _{l}^{1}\left[\hat{H}_{-l}, Y\right]=0$ for any Y, so that q_{k} is unique. Thus commutativity of

is clear because there is a corresponding factorization of the inverse systems. The homomorphism $\pi_{*}\left(\hat{H}_{-\infty}\right) \rightarrow \operatorname{invlim}_{k} \pi_{*}\left(P_{-4 k+1} \wedge b o\right)$ is an isomorphism by (1.3) and the surjectivity of $\pi_{4 *-1}\left(j_{k}\right)$ given in $2 \cdot 2$. There is an exact sequence

$$
0 \rightarrow \lim _{k}^{1} \pi_{i+1}\left(P_{-4 k+1} \wedge b o\right) \rightarrow \pi_{i}(P \wedge b o)_{-\infty} \rightarrow \operatorname{invlim} \pi_{i}\left(P_{-4 k+1} \wedge b o\right) \rightarrow 0
$$

and the lim ${ }^{1}$-term is 0 because $\pi_{i+1}\left(P_{-4 k+1} \wedge b o\right)$ is finite. Thus the map $\hat{H}_{-\infty} \rightarrow(P \wedge b o)_{-\infty}$ induced by ($2 \cdot 3$) induces an isomorphism of homotopy groups and hence is an equivalence of spectra. I

In proving 2.2, the following elementary construction and proposition will be useful.
Definition 2.4. If $f: X \rightarrow Y \wedge b o$ is any map, let $\bar{f}: X \wedge b o \rightarrow Y \wedge b o$ denote the composite $\left(X \wedge \mu_{b o}\right) \circ(f \wedge b o)$.

Proposition 2.5. $\bar{f}_{*}: \pi_{*}(X \wedge b o) \rightarrow \pi_{*}(Y \wedge b o)$ is a homomorphism of $\pi_{*} b o-m o d u l e s$.
Let Y_{k} denote the cofibre of a generator of $\pi_{-4 k-1}\left(P_{-4 k-3}^{-4 k}\right) \approx \mathbb{Z} / 8$. Thus

$$
H^{*}\left(Y_{k}\right) \approx\left\langle y, S q^{1} y, S q^{2} S q^{1} y:\right| y|=-4 k-3\rangle
$$

and there is a cofibration

$$
Y_{k} \xrightarrow{b_{k}} S^{-4 k} \xrightarrow{\alpha_{k}} \Sigma P_{-4 k-3}^{-4 k} .
$$

Let $\iota: S^{0} \rightarrow b o$ denote the unit.
The following result plays a key role in the proof of $\mathbf{2 \cdot 2}$.
Lemma 2.6. For $k \geqslant 0$ there are maps g_{k} and f_{k} such that

is a commutative diagram of cofibrations, and maps $h_{k}: Y_{k} \rightarrow S^{-4 k-4} \wedge$ bo such that $g_{k+1}=\bar{h}_{k} \circ f_{k}$.

Proof. The induction is begun by constructing g_{0} so that \square_{0} commutes. We will need:

Lemma 2.7. $\left[P_{1}, \Sigma P_{-3}^{0} \wedge b o\right] \approx \mathbb{Z} / 8$, with a filtration 1 generator. Filtration, here and elsewhere, refers to the precise filtration in the Adams spectral sequence.

Proof. The groups [$P_{1}^{m}, \Sigma P_{-3}^{0} \wedge b o$] are finite, so that the lim ${ }^{1}$-terms vanish and $\left[P_{1}, \Sigma P_{-3}^{0} \wedge b o\right] \approx \operatorname{invlim}\left[P_{1}^{m}, \Sigma P_{-3}^{0} \wedge b o\right]$. The lemma follows from

$$
\left[P_{1}^{8 n+4}, \Sigma P_{3}^{0} \wedge b o\right] \approx \pi_{-2}\left(P_{-8 n-5}^{-2} \wedge P_{-3}^{0} \wedge b o\right) \approx \mathbb{Z} / 8
$$

on a filtration 1 generator g_{n} satisfying $i * g_{n+1}=g_{n}$. The last isomorphism is given above filtration 0 by ([5]; ch. 3). There are no filtration 0 classes because the action of $S q^{1}$ shows that there are no nontrivial homomorphisms $H^{*} P_{1} \rightarrow H^{*} \Sigma P_{-3}^{0}$. I

Let $\lambda: P_{1} \rightarrow S^{0}$ be a map such that $S q^{n}$ is nonzero on the bottom class of the cofibre for all $n \geqslant 2[17,14]$. Then $\alpha_{0} \lambda \wedge \iota$ and $a_{0} \wedge \iota$ are both filtration 1 elements of the group calculated in $2 \cdot 7$. $\llbracket S q^{2}$ is nonzero in the mapping cone of each. \rrbracket Hence for an appropriate generator u of $\mathbb{Z} / 8, u \alpha_{0} \lambda \wedge \iota=a_{0} \wedge \iota$. Let $g_{0}=u \lambda \wedge \iota$. Then \square_{0} is satisfied.

Now suppose we have constructed g_{k} satisfying \square_{k}. Let f_{k} be the induced map of fibres.

Lemma 2.8. The function $\left[Y_{k}, S^{-4 k-4} \wedge b o\right] \xrightarrow{\psi}\left[P_{-4 k-3}, \Sigma P_{-4 k-7}^{-4 k-4} \wedge b o\right]$ defined $b y \psi(h)=$ $\left(\alpha_{k+1} \wedge b o\right) \circ \bar{h} \circ f_{k}$ is surjective.

Choose $h_{k} \in \psi^{-1}\left(a_{k+1} \wedge \iota\right)$ and let $g_{k+1}=\bar{h}_{k} \circ f_{k}$. Then g_{k+1} satisfies \square_{k+1}, completing the inductive proof of $2 \cdot 6$. I

Proof of 2.2. Applying - to the vertical maps in the diagram in 2.6 shows that fibre $\left(\bar{f}_{k}\right) \rightarrow$ fibre $\left(\bar{g}_{k}\right)$ is an equivalence, which we use to identify the two. There is a commutative diagram

which we will show is the diagram of $2 \cdot 2$.
$\operatorname{Fibre}\left(\bar{g}_{0}\right)=H_{0}$ by ([19], 4.5). Suppose we have shown fibre $\left(\bar{g}_{k}\right)=H_{-k}$. We use the following commutative diagram, in which all rows and columns are cofibrations.

Lemma 2.9. $\operatorname{cof}\left(\bar{h}_{k}\right)=\Sigma^{-4 k-4} H$.
$H^{*}\left(\Sigma \bar{f}_{k} ; \mathbb{Z}_{(2)}\right)$ is injective, hence $H^{*}\left(p_{k} ; \mathbb{Z}_{(2)}\right)=0$, and therefore $H^{*}\left(r_{k} ; \mathbb{Z}_{(2)}\right)=0$. Since fibre $\left(\bar{f}_{k}\right)=H_{-k}$, this implies that $r_{k}=0$, and hence the cofibration

splits, implying fibre $\left(\bar{g}_{k+1}\right)=H_{-k-1}$ and thus extending the induction. Surjectivity of $\pi_{-4 k-1}\left(i_{k}\right)$ follows from $\pi_{-4 k-1}\left(Y_{k} \wedge b o\right)=0$, and the remaining surjectivity of $\pi_{4 *-1}$ is carried along by the induction. I

In the proofs of 2.8 and 2.9 which follow, we abbreviate $\operatorname{Ext}(M, \mathbb{Z} / 2)$ as $\operatorname{Ext}(M)$, and $\operatorname{Ext}\left(H^{*} X\right)$ as $\operatorname{Ex}(X) . A_{i}$ denotes the subalgebra of the mod 2 Steenrod algebra generated by $\left\{S q^{n}: n \leqslant 2^{i}\right\}$. We use charts of Exts, ${ }^{\text {t }}$) similar to those of [8] and [9], with co-ordinates $(t-s, s)$. We also use freely the change-of-rings theorem ([5], 3•1).

Proof of Lemma 2.9. There is an exact sequence

$$
\rightarrow \operatorname{Ext}_{A_{1}}^{s, t}\left(\Sigma^{-4 k-5} \mathbb{Z} / 2\right) \rightarrow \operatorname{Ext}_{\int \mathrm{S}_{A_{1}}^{s, t}\left(\Sigma^{-4 k-5} A_{1} / / A_{0}\right) \rightarrow \operatorname{Ex}_{A_{1}}^{s, t}\left(Y_{k}\right) \rightarrow \operatorname{Ext}_{A_{1}}^{s+1, t}\left(\Sigma^{-4 k-5} \mathbb{Z} / 2\right) \rightarrow} \operatorname{Ext}_{A_{0}}^{s_{s_{0}} t}\left(\Sigma^{-5} \mathbb{Z} / 2\right),
$$

so that $\operatorname{Ex}_{A}\left(Y_{k} \wedge b o\right) \approx \operatorname{Ex}_{A_{1}}\left(Y_{k}\right)$ is given by the chart obtained from that of $\operatorname{Ext}_{A_{1}}$ ($\Sigma^{-4 k-4} \mathbb{Z} / 2$) by eliminating the initial tower and decreasing filtration by 1. Applying $\mathrm{Ex}_{A}()$ to

we obtain

and hence $\mathrm{Ex}_{A}\left(\bar{h}_{k}\right)$ is nontrivial on the bottom class. Since $\pi_{*}\left(\bar{h}_{k}\right)$ is $\pi_{*} b o$-linear by $2 \cdot 5$, it is injective. Thus

$$
\pi_{i}\left(\operatorname{cof}\left(\bar{h}_{k}\right)\right) \approx \begin{cases}\mathbb{Z}_{(2)} & i=-4 k-4 \\ 0 & \text { otherwise. } \mid\end{cases}
$$

Proof of Lemma 2.8. It follows from the definitions that ψ equals the composite

$$
\left[Y_{k}, S^{-4 k-k} \wedge b o\right] \xrightarrow{\psi_{1}}\left[Y_{k}, \Sigma P_{-4 k-7}^{-4 k-4} \wedge b o\right] \xrightarrow{\psi_{2}}\left[P_{-4 k-3}, \Sigma P_{-4 k-7}^{-4 k-4} \wedge b o\right],
$$

with $\psi_{1}(h)=\left(\alpha_{k+1} \wedge b o\right) \circ h$ and $\psi_{2}(l)=\bar{l} \circ f_{k}$. We show ψ_{1} and ψ_{2} surjective.
ψ_{1} fits into an exact sequence whose next term is $\left[Y_{k}, \Sigma Y_{k+1} \wedge b o\right]$. But $\Sigma Y_{k+1}=\Sigma^{-3} Y_{k}$ so $\left[Y_{k}, \Sigma Y_{k+1} \wedge b o\right]=\pi_{3}\left(D Y_{k} \wedge Y_{k} \wedge b o\right)$, where D denotes Spanier-Whitehead dual. If $\theta: D Y_{k} \wedge Y_{k} \rightarrow S^{0}$ is a duality map, then coker $\left(H^{*}(\theta)\right) \approx \Sigma^{-3} A_{1}$. Thus $\operatorname{Ex}_{A_{1}}\left(D Y_{k} \wedge Y_{k}\right) \approx$ $\operatorname{Ex}_{A}\left(b o \vee \Sigma^{-3} H \mathbb{Z} / 2\right)$, which is 0 in $t-s=3$.

To show ψ_{2} surjective, we begin by showing both groups are $\mathbb{Z} / 8$ on filtration 1 generators. For the target group, this is the same calculation as $2 \cdot 7$.
$\left[Y_{k}, \Sigma P_{-4 k-7}^{-4 k-4} \wedge b o\right] \approx \pi_{-1}\left(D Y_{k} \wedge P_{\left.-4 k-\frac{4}{-4} \wedge b o\right)}\right.$ can be calculated by using the exact sequence of A_{1}-modules

$$
0 \rightarrow \Sigma^{4 k+5} \mathbb{Z} / 2 \rightarrow \Sigma^{4 k} A_{1} / / A_{0} \rightarrow H^{*} D Y_{k} \rightarrow 0
$$

to see that $\operatorname{Ex}_{A_{1}}\left(D Y_{k} \wedge P_{-4 k-7}^{-4 k-4}\right)$ is given by the chart

To see that ψ_{2} sends one generator to another, note that these can be characterized as maps nontrivial on the bottom cell of Y_{k} and $P_{-4 k-3}$, respectively. The restriction of f_{k} to the bottom cell is the (filtration 0$)$ generator of $\pi_{-4 k-3}\left(Y_{k} \wedge b o\right)$. If l is nontrivial on the bottom cell, it is clear from the definition that $\bar{l} f_{k}$ is nontrivial on the bottom cell.

3. Characteristic classes

We first expand upon the discussion in [6] that the orientations of [7] factor through $P_{-\infty} \wedge b o$ or $P_{-\infty} \wedge M O\langle\rho\rangle$.

Let ρ be a positive integer congruent to $0,1,2$, or $4(\bmod 8)$, and let a_{ρ} denote the order of the cyclic 2-group $\widetilde{K O}\left(R P^{\rho-1}\right)$. Let $B_{N}=B O_{N}\langle\rho\rangle$ denote the classifying space for N-plane bundles trivial on the ($\rho-1$)-skeleton, and $M=M O\langle\rho\rangle$ the associated stable Thom spectrum. Assume $N \equiv 0\left(a_{\rho}\right)$.

The primary M-obstruction for finding k sections on B_{N}-bundles was defined in [7] to be the map

$$
B_{N} \xrightarrow{\tilde{g}_{N, k}} \Sigma P_{N-k} \wedge M
$$

defined by viewing the composite

$$
B_{N} \times P^{k-1} \xrightarrow{\gamma_{N} \otimes \xi} B_{N} \rightarrow \Sigma^{N} M
$$

as a stable map so that we can consider its restriction to $B_{N} \wedge P^{k-1}$, dualizing to obtain

$$
B_{N} \xrightarrow{f_{k}} \Sigma P_{-k}^{-2} \wedge \Sigma^{N} M
$$

and then following by the composite

$$
\Sigma P_{-k}^{-2} \wedge \Sigma^{N} M \xrightarrow[\simeq]{e_{k}^{-1}} \Sigma P_{N-\frac{k}{N}}^{N-2} \wedge M \xrightarrow{i} \Sigma P_{N-k} \wedge M,
$$

where e_{k} is the equivalence of [20].
Theorem 3.1. For all positive N and L with $N \equiv 0\left(a_{\rho}\right)$, there are maps

$$
B_{N} \xrightarrow{\tilde{\boldsymbol{q}}_{N, L}} \Sigma P_{N-L} \wedge M
$$

such that (i) $c \circ \tilde{g}_{N, L+1}=\tilde{g}_{N, L}$ and (ii) if $N \geqslant L$ then $\tilde{g}_{\mathrm{N}, L}=g_{N, L}$. Thus there are factorizations

Proof. The maps $\tilde{g}_{N, L}$ are constructed as the composites $i e_{\bar{L}}{ }^{1} f_{L}$, where f_{L}, e_{L}, and i are defined similarly to the maps f_{k}, e_{k}, and i above. Now (i) follows easily from the observation that e_{L} may be written as the suspension of the composite

$$
\begin{aligned}
P_{N-L}^{N-2} \wedge M \xrightarrow{\Delta}\left(P_{-L} \wedge P_{N}\right)^{(N-2)} \wedge M & \xrightarrow{T(N \xi)}\left(P_{-L} \wedge \Sigma^{N} M\right)^{(N-2)} \wedge M \\
& \longrightarrow P_{-L}^{-2} \wedge \Sigma^{N} M \wedge M \xrightarrow{\mu} P_{-L}^{-2} \wedge \Sigma^{N} M . \mid
\end{aligned}
$$

A similar result is obtained when M is replaced by $b o$ and $N \equiv 0(4)$, using the map $M O\langle 4\rangle=$ MSpin $\rightarrow b o$ of [2]. Compatibility of the maps g_{N} with respect to increasing N is not clear; however, for any particular bundle one can choose any sufficiently large N. The characteristic class $\left\langle Q_{i}\right\rangle$ of 1.7 is the composite

$$
\operatorname{BSpin}_{N} \xrightarrow{g_{N}} \Sigma(P \wedge b o)_{-\infty} \approx \bigvee_{i \in \mathbb{Z}} \Sigma^{4 i} \hat{H}
$$

The map τ of 1.7 (ii) is the 2 -completion of the map

$$
\bigvee_{i \geqslant 0} \Sigma^{4 i} H \simeq\left(S_{u \lambda}^{0} \cup C P_{1}\right) \wedge b o \rightarrow \Sigma P_{1} \wedge b o
$$

used in the proof of $2 \cdot 2$. To prove 1.7 (ii) we use the commutative diagram

$g_{N, N-1}$ factors through c_{∞} by $3 \cdot 1$. Using the equivalence of $1 \cdot 4$, we obtain a map $\mathrm{BSpin}_{N} \rightarrow \bigvee_{i \in \mathbb{Z}} \Sigma^{4 i} \hat{H}$, which factors through $\bigvee_{i \geqslant 0} \Sigma^{4 i} \hat{H}$ because

$$
H^{*}\left(\operatorname{BSpin}_{N} ; \pi_{*}(\operatorname{cof}(i))\right)=0 . \mid
$$

Because of 1.7 (ii), the maps $\mathrm{BSpin}_{N} \rightarrow \Sigma P_{m} \wedge b o$ factor through $\mathrm{BSpin}_{N} / \mathrm{BSpin}_{m}$. Thus if

$$
X \xrightarrow{\theta} \mathrm{BSpin}_{N} \xrightarrow{\left\langle Q_{i}\right\rangle} \bigvee_{i \geqslant 0} \Sigma^{4 i} \hat{H} \xrightarrow{\tau_{m}} \Sigma P_{m} \wedge b o
$$

is nontrivial, then $g d(\theta)>m$.
Despite the fact that Q_{i} is not canonical, depending upon the choice of the equivalence in 1.4 and perhaps upon N, its mod 2 reduction is, and is given by 1.7 (i). To prove this, we recall from [19] that

$$
\underset{i \geqslant 0}{\vee} \Sigma^{4 i} H \stackrel{\tau}{\longrightarrow} \Sigma P_{1} \wedge b o
$$

satisfies $\tau^{*}\left(\sigma a_{4 i-1} \otimes 1\right)=e_{4 i}$ with

$$
e_{4 i}=\iota_{4 i}+\sum_{j=0}^{i-1} \chi S q^{4(i-j)} e_{4 j}
$$

The map

$$
\mathrm{BSpin} \xrightarrow{g} \Sigma P_{1} \wedge b o
$$

of [7] satisfies $g^{*}\left(\sigma a_{4 i-1} \otimes 1\right)=w_{4 i}$. Diagram 3.2 shows $g=\tau \circ Q$. Thus

$$
w_{4 i}=Q^{*} e_{4 i}=Q^{*} i_{4 i}+\sum_{j=0}^{i-1} \chi S Q^{4(i-j)} Q^{*} e_{4 j}=\rho\left(Q_{i}\right)+\sum_{j=0}^{i-1} \chi S q^{4(i-j)} w_{4 j}
$$

The Adem relations and $W u$ relations imply $\chi S q^{m} w_{4 i-m}=0$ if m 三 $0(4)$. Thus $3 \cdot 3$ becomes

$$
\rho\left(Q_{i}\right)=\sum_{m=0}^{4 i} \chi S q^{m} w_{4 i-m}=v_{4 i} \quad(\text { see }[21]) . \mid
$$

In order for the Q_{i} to be useful in obstruction theory, we need to know more than just their mod 2 reduction, but we have not been able to choose them in a controllable fashion. It is tempting to conjecture that Q might be the multiplicative characteristic class

$$
A(\alpha)=\Pi \frac{X_{i}}{\sinh X_{i}}
$$

(where $\Pi\left(1+X_{i}^{2}\right)$ is the Pontryagin class $\left.p(\alpha)\right)$. This appeared in the recent work of Crabb ([4], 2.4) and satisfies $\rho A=v$.

Even knowing this, the application to obstruction theory would be quite complicated. For example, if Q is any multiplicative characteristic class reducing to v, then if H_{n} is the Hopf bundle over quaternionic projective space $Q P^{n}$,

$$
Q\left(4 H_{3}\right)=1+4 a_{1} X+2 a_{2} X^{2}+8 b_{3} X^{3},
$$

with a_{1} and a_{2} odd and $b_{3} \in \mathbb{Z}_{(2)}$. In [10] we showed $g d\left(4 H_{3}\right)>9$, essentially because $\binom{4}{3} \equiv 0 \bmod \pi_{12}\left(\Sigma P_{9} \wedge b o\right) \approx \mathbb{Z} / 8$. From the new perspective, the bundle is classified by the composite

$$
Q P^{3} \xrightarrow{4 H} \mathrm{BSpin}_{12} \rightarrow \hat{H} \vee \Sigma^{4} \hat{H} \vee \Sigma^{8} \hat{H} \vee \Sigma^{12} \widehat{H} \rightarrow P_{9} \wedge b o .
$$

The group $\left[Q P^{3}, \Sigma P_{9} b o\right]$ is $\mathbb{Z} / 8$, generated by

$$
Q P^{3} \xrightarrow{c} S^{12} \xrightarrow{g} P_{9} \wedge b o .
$$

By (3.4), the map

$$
Q P^{3} \xrightarrow{Q_{1}, Q_{2}, Q_{0}} \Sigma^{4} \hat{H} \vee \Sigma^{8} \hat{H} \vee \Sigma^{12} \hat{H}
$$

has $Q_{2}=2 \cdot$ odd, and the attaching map 2ν of the 12 -cell in $Q P^{3}$ causes this to contribute $2^{2} \cdot$ gen to $\left[Q P^{3}, \Sigma P_{\theta} \wedge b o\right]$.

4. Relationship with the work of Jones and Wegmann

An easy consequence of Lin's theorem [15] is that for any finite spectrum E there is an equivalence $S^{-1} \widehat{E} \rightarrow(P \wedge E)_{-\infty}$. Our 1.4 implies that this is not true for $E=b o$.

If E is any spectrum, Jones and Wegmann [13] constructed an inverse system of spectra $P_{-k} E=\Sigma^{k} D_{2}\left(\Sigma^{-k} E\right)$. Let $P_{-\infty} E=\operatorname{holim}\left(P_{-k} E\right)$. They showed that if E is a suspension spectrum there are compatible maps $P_{-k} \wedge E \rightarrow P_{-k} E$, inducing f_{E} : $(P \wedge E)_{-\infty} \rightarrow P_{-\infty} E$, such that if E is finite and h is a connected (co)homology theory, then $h^{*}\left(f_{E}\right)$ and $\hat{h}_{*}\left(f_{E}\right)$ are isomorphisms.

In our preprint we argued from $1 \cdot 4$ that no such map could exist for $E=b o$, but a better argument utilizes the recent result of Wegmann's thesis, that for any spectrum of finite type (e.g. bo) there is an equivalence $g_{E}: S^{-1} \widehat{E} \rightarrow P_{-\infty} E$. It is clear that $g_{b o}$ could not factor through $\vee \Sigma^{4 i-1} \hat{H}$.

We wish to acknowledge helpful comments from John Jones and Haynes Miller, and to express our thanks to University of Warwick Mathematics Institute for providing a pleasant and stimulating environment where this work was carried out. We also acknowledge support from National Science Foundation research grants.

REFERENCES

[1] J. F. Adams. Operations of the nth kind in K-theory and what we don't know about $B P$. In New Developments in Topology, L.M.S. Lecture Notes Series no. 11 (Cambridge University Press, 1974), 1-9.
[2] M. F. Atryah, R. Bott and A. Shapiro. Clifford modules. Topology 3 (1964), 3-33.
[3] A. K. Bousfield. The localization of spectra with respect homology. Topology 18 (1979), 257-281.
[4] M. C. Crabb. On the $K O_{\mathbb{Z}_{2}}$-Euler class. To appear.
[5] D. M. Davis. Generalized homology and the generalized vector field problem. Quart. J. Math. Oxford Ser. (2) 25 (1974), 169-193.
[6] D. M. Davis. On the cohomology of $M O\langle 8\rangle$. Proc. Adem Topology Conf., Contemporary Mathematics, vol. 12 (American Mathematical Society, 1982), 91-104.
[7] D. M. Davis, S. Gitler, W. Iberkleid and M. Mahowald. Orientability of bundles with respect to certain spectra. Bol. Soc. Mat. Mexicana (2) 24 (1979), 49-55.
[8] D. M. Davis, S. Gitler and M. Mahowald. The stable geometric dimension of vector bundles over real projective spaces. Trans. Amer. Math. Soc. 268 (1981), 39-61.
[9] D. M. Davis and M. Mahowald. Obstruction Theory and ko-theory, Lesture Notes in Mathematics, vol. 658 (Springer-Verlag, 1978), 134-164.
[10] D. M. Davis and M. Mahowald. The Euler class for connective ko-theory and an application to immersions of quarternionic projective space. Indiana Univ. Math.J. 28 (1979), 1025-1034.
[11] S. Gitler, M. Mahowald and R. J. Milgram. The non-immersion problem for $R P^{n}$ and higher order cohomology operations. Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 432-437.
[12] D. C. Johnson and W. S. Wilson. Projective dimension and Brown-Peterson homology. Topology 12 (1973), 327-353.
[13] J. D. S. Jones and S. A. Wegmann. Limits of stable homotopy and cohomotopy groups. Math. Proc. Cambridge Philos. Soc. 94 (1983), 473-482.
[14] D. S. Kahn and S. B. Priddy. Applications of the transfer to stable homotopy theory. Bull. Amer. Math. Soc. (N.S.) 78 (1972), 981-987.
[15] W. H. Lin. On conjectures of Mahowald, Segal and Sullivan. Math. Proc. Cambridge Philos. Soc. 87 (1980), 449-458.
[16] W. H. Lin, D. M. Davis, M. E. Mahowald and J. F. Adams. Calculation of Lin's Ext groups. Math. Proc. Cambridge Philos. Soc. 87 (1980), 459-469.
[17] M. Mahowald. The metastable homotopy of S^{n}. Mem. Amer. Math. Soc. 72 (1967).
[18] M. Mahowald. The image of J in the $E H P$ sequence. Ann. of Math. (2) 116 (1982), 65-112.
[19] M. Mahowald and R. J. Milgram. Operations which detect $S q^{4}$ in connective K-theory and their applications. Quart. J. Math. Oxford Ser. (2) 27 (1976), 415-432.
[20] M. Mahowald and N. Ray. A note on the Thom isomorphism..Proc. Amer. Math. Soc. 82 (1981), 307-308.
[21] W. T. Wo. Classes caractéristiques et i-carrés d'une variété. C.R. Acad. Sci. Paris 230 (1950), 508-511.

