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1. Introduction

There are spectra P_k constructed from stunted real protective spaces as in [1]
such that H*(P_k) is the span in l/2[x,x~1] of those x1 with i ^ — k. (All cohomology
groups have Z/2-coefficients unless specified otherwise.) Using collapsing maps, these
form an inverse system

. . . ^P_*_ 1 ^P_ f c -> . . . -»P 0 , (1-1)
which is similar to those of Lin ([15], p. 451). It is a corollary of Lin's work that there
is an equivalence of spectra

holim (P_k) » /3~\

where holim is the homotopy inverse limit ([3], ch. 5) and S~l the 2-adic completion
of a sphere spectrum. One may denote by P™m this holim (P_k), although one must
constantly keep in mind that H*(P1m) + l/2[x,x~1], but rather

(1/2 i = - 1

W^)=lo < + -!•
If E is a spectrum, we may apply EA to the inverse system (1-1), and let (P AE)_a>

denote holim (P_k A E). AS we shall see, this can be quite different from P^.x A E.
Let bo denote the spectrum for connective &o-theory localized at 2. The spectra

Pk A bo have had a variety of applications [19,8,9,10, and 18] and satisfy the periodicity
24Pfc Abo ~ Pk+i A bo ([7]). For nel, the homotopy groups are [11, 19 and 9]

-Z/(2<*+3>/2) k = 3(8), k > V

Z/(2<*+«/2) k = 7(8), k > 0

1/2 k= 1,2(8), k > 0
0̂ otherwise. ,

If bo is applied to (1-1), then the homomorphisms vt(P4n_3 A bo) ->• ^i(P4n+i A bo) are
surjective when i = 3(4) and 0 otherwise. Then (1-2) implies

* bo) X (1-2)

invlim (ni(P_k A bo)) x F2 %~ 3 ( 4 ) ) (1-3)
xK k l0 i £ 3(4) J

where Z2 = invlim (Z/2n) is the 2-adic integers. This suggests the following theorem,
our main result. Let fi denote the Eilenberg-MacLane spectrum satisfying

"s i = 0
i * 0.

THEOREM 1-4. There is an equivalence of spectra (PA6O)_0 0 « Vyez^4*"1^-
As an immediate corollary of 1-4 we have (using [19], 1-6):
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86 DONALD M. DAVIS AND MAEK MAHOWALD

COROLLARY 1-5. There is an equivalence of spectra (PAbu)_rx> x Viez^2*"1^-
This corollary is the case n = 1 of the following conjecture.

Conjecture 1-6. Let BP(ri) denote the spectra associated to the prime 2 which were
constructed in [12]. There is an equivalence of spectra

(PABP(n))_m x V S"- i£P<n- l> ,
ieZ

where E denotes the 2-adic compeltion of the spectrum E.
The proof of 1-4 occupies Section 2. In Section 3, Theorem 1-4 is applied to construct

2-adic characteristic classes for Spin-bundles.

THEOREM 1-7. There are elements Qt e#4*(BSpin;Z2) such that
(i) the mod-2 reduction p2Qi is the Wu class v4i;
(ii) there is a map r such that the composite

BSpin ^ * V 2 4 i # • SPX A bo -• SPra A 60

is tfAe orientation constructed in [7].
The applicability and limitations of this result will be discussed in Section 3. In

Section 4, 1-4 is compared with recent work of Jones and Wegmann[13].

2. Proof of Theorem 1-4

Definition 2-1. Let H denote the Eilenberg-MacLane spectrum for Z(2), the subring
of the rationals with odd denominators. Let H_k = \l^_kYfi~xH and t = 0 v l :
TT TT V̂  4jt- 5 TT . . TT T J. ^ \ / V4i 1 H T «+ t/ \ / V4/ —1 M
tl_k—> Il_k_i = ZJ ^/Z V n_k. \JaXi tl_k = Vj>— k^ tl • U8\i "—OO == yjeZ^ ** =

dirlim jELfc, where the maps in the direct system are the inclusion H_k -> H_k_1.
Let c denote the collapsing map Pk -*• Pk+l for stunted projective spaces. Most of the

work in the proof of 1-4 is incorporated in
THEOREM 2-2. There are maps j k for all k ^ 0, surjective in 7r4+_1( ), such that the

diagrams

commute.

Proof that 2-2 implies 1-4
We apply the 2-completion functor to the diagram of 2-2. Since nj(P_ik+1 A bo) is

finite, (P_4fc+i A 60)2 x P_4ft+1 A bo, so that we obtain maps jk:H_k^- P_4fe+1 Abo. If
I > k, letj', fc denote the composite

A

6-1 JL-^ P-u+i A bo -^-> P_4fc+1 A bo.

Then 2-2 implies commutativity of
' fJ k

n-i-i r • • •
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The spectrum (P A bo)_x 87

inducing a map

•#-00 — ^ P-4k+i A bo.

Because each map in the direct system &_, -+ 6_l_1 -> ... is an inclusion of a wedge
summand, lim* [H_t, Y] = 0 for any Y, so that qk is unique. Thus commutativity of

(2-3)

• P_4fc_3 A 60 — -̂»> P_4fc+1 A bo
is clear because there is a corresponding factorization of the inverse systems. The
homomorphism n*(Q_m) -> invlim^. 7r!|.(P_4A.+1 A bo) is an isomorphism by (1-3) and the
surjectivity of vi^_1{jk) given in 2-2. There is an exact sequence

0 -*- lim17Ti+1(P_ik+1 Abo)^-ni(PA bo)_a} -> invlim ni(P_4k+1 A bo) ->• 0,
k

and the Iim1-term is 0 because 7Ti+1(P_ik+1 A bo) is finite. Thus the map S_m -»• (P A bo)_x

induced by (2-3) induces an isomorphism of homotopy groups and hence is an equiva-
lence of spectra. |

In proving 2-2, the following elementary construction and proposition will be useful.

Definition 2-4. If/: X -> YA bo is any map, let/: X A bo -> YA bo denote the composite
(XA/ibo)o(fAbo).

PROPOSITION 2-5. / „ : n%(XA bo) -> 7r*( YA bo) is a homomorphism of n ̂ bo-modules.
Let Yk denote the cofibre of a generator oi 7T_ik_1(Pz'ik-3) ~ Z/8. Thus

H*(Yk) x (i/,Sq1y,Sq'iSq1y: \y\ = — 4& — 3)

and there is a cofibration

Let i:S°^-bo denote the unit.
The following result plays a key role in the proof of 2-2.

LEMMA 2-6. For k > 0 there are maps gk andfk such that

ck ak

P ————y P 1 YP-**
^-4fc-3 ^^-4*:+! ^ r -4A:-3

IA L . D* 11 A.
bk Abo , afc A 60 _7 ..

yfc A bo > S~lk A bo *• SPlJj_3 A bo
is a commutative diagram of cofibrations, and maps hk: Yk -> S~ik~*Abo such that

9k+i = K°fk-
Proof. The induction is begun by constructing g0 so that Go commutes. We will

need:
LEMMA 2-7. [P1,'ZP0_3Abo] x Z/8, with a filtration 1 generator. Filtration, here and

elsewhere, refers to the precise filtration in the Adams spectral sequence.

Proof. The groups [P™, SP^3 A bo] are finite, so that the Iim1-terms vanish and
[Plt SP^Afco] x invlim [Pf,ZP°_z A bo]. The lemma follows from

[Pf+4,2P» A bo] x n_2(P-Jm_b A P°_3 A 60) x 1/8
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88 D O N A L D M. DAVIS AND MARK MAHOWALD

on a filtration 1 generator gn satisfying i*gn+1 = gn. The last isomorphism is given
above filtration 0 by ([5]; ch. 3). There are no filtration 0 classes because the action
of Sq1 shows that there are no nontrivial homomorphisms H*P1 -> H^P0^. \

Let A: Px -> S° be a map such that Sqn is nonzero on the bottom class of the cofibre
for all n ^ 2 [17,14]. Then a0 A A I and a0 A i are both filtration 1 elements of the group
calculated in 2-7. [<Sg2 is nonzero in the mapping cone of each.]) Hence for an appro-
priate generator u of 2/8, ua0A A i = a0 A t. Let g0 = uX A t. Then •<, is satisfied.

Now suppose we have constructed gk satisfying •&• Let/fc be the induced map of
fibres.

LEMMA 2-8. Thefunction[Yk,S-ik-iAbo]-^[P_ik_3,T,Pzik-**bo]definedbyfr(h) =
(ak+1 A bo)ohofk is surjective.

Choose hke•fr~1(ak+1 A t) and let gk+l = hkofk. Then gk+1 satisfies Dfc+1, completing
the inductive proof of 2-6. |

Proof of 2-2. Applying ~ to the vertical maps in the diagram in 2-6 shows that
fibre (fk) -> fibre(^) is an equivalence, which we use to identify the two. There is a
commutative diagram

fibre (fk) = • fibre (gk)J ,
fibre (gk+1 = hjk)

1_ , ck A bo „
P-ik-3 A bo — > P_4k+1 A bo

which we will show is the diagram of 2-2.
Fibre(^0) = Ho by ([19], 4-5). Suppose we have shown fibre (gk) = H_k. We use the

following commutative diagram, in which all rows and columns are cofibrations.

I-1cof(*fc) >YkAbo

I - 1 *
fibre (fk) »• fibre (hkfk) »• S"1 cof (hk) >Z fibre (/t)

I" . I I i
P_4 f c_3 A bo * P_ 4 J t _ 3 A bo »• • • ZP_4 f c_3 A bo

•'• ,. \v' I
YkAbo *• 8-**-* A bo, • cof (hk) • Z Yk A bo

LEMMA 2-9. cof (hk) =

^*(S/fc;Z(2)) is injective, hence H*(pk;I{i)) = 0, and therefore H*(rk;Z^) = 0.
Since fibre (Jk) = H_k, this implies that rk = 0, and hence the cofibration

fibre (fk) > fibre (hjk) > Z"1 cof (hk)

fibre (gk+l)
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The spectrum {P A 60) _„ 89

splits, implying fibre (gk+1) = H_k_1 and thus extending the induction. Surjectivity of
7r_4fc_1(iA.) follows from 7T_ik_1(Yk A bo) = 0, and the remaining surjectivity of 77p

4+_1

is carried along by the induction. |
In the proofs of 2-8 and 2-9 which follow, we abbreviate Ext (if, 1/2) as Ext (if),

and ~Ext(H*X) as Ex(X). At denotes the subalgebra of the mod 2 Steenrod algebra
generated by {Sqn:n < 2*}. We use charts of Exts>t( ) similar to those of [8] and [9],
with co-ordinates (t —s,s). We also use freely the change-of-rings theorem ([5], 3-1).

Proof of Lemma 2-9. There is an exact sequence

xt^S4*5^/ / ; ! , , ) -> Ex̂ f(Yk)
tsl(X

so that ~ExA(YkAbo) x BxAi(Yk) is given by the chart obtained from that of
(£~4;i~4Z/2) by eliminating the initial tower and decreasing filtration by 1. Applying
Ex^( ) to

Yk A bo

we obtain i

i

and hence l£xA(hk) is nontrivial on the bottom class. Since 7T%(hk) is ^fro-linear by 2-5,
it is injective. Thus

,,(cof(kk)) « F
(.0 otherwise. |

Proof of Lemma 2-8. It follows from the definitions that i/r equals the composite

[Yk, S-«*-* A 60] -±+ [Yk, SPlJfc? A bo] ±+ [P_4fc_3, SP lg l« A 60].

with ijf^h) = (ak+1A bo)oh and rjr^l) = lofk. We show xjr^ and ^ 2 surjective.
\]rx fits into an exact sequence whose next term is [Yk, SFfc+1 A bo]. But %Yk+1 = S~37fc

so [Yk, 2Fft+1 A bo] = n3(DYkAYkAbo), where D denotes Spanier-Whitehead dual. If
6: DYk A Yk -> S° is a duality map, then coker (H*(d)) x 1.-^. Thus ExAi{DYk A Yk) x
ExA(bo V Z-mz/2), which is 0 in t -s = 3.

To show ^ surjective, we begin by showing both groups are Z/8 on filtration 1
generators. For the target group, this is the same calculation as 2-7.
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90 D O N A L D M. DAVIS AND MARK MAHOWALD

[Yk, SPif £1$ A bo] x n_1(DYk A Plf^I* A bo) can be calculated by using the exact
sequence of .^-modules

0 -» Z4*+5Z/2 -> SPAJ/At -> H*DYk -> 0

to see that ExAi(DYk A Pzik-*) is given by the chart

- 7 - 5 - 1

To see that ^ 2 sends one generator to another, note that these can be characterized
as maps nontrivial on the bottom cell of Yk and P_4fc_3, respectively. The restriction
of fk to the bottom cell is the (filtration 0) generator of n_4k_3(Yk A bo). If I is nontrivial
on the bottom cell, it is clear from the definition that lfk is nontrivial on the bottom cell.

3. Characteristic classes

We first expand upon the discussion in [6] that the orientations of [7] factor through
P-oc A bo or P_00 A MO(p).

Let p be a positive integer congruent to 0, 1, 2, or 4 (mod 8), and let ap denote the
order of the cyclic 2-group K0(RPf~1). Let BN = BON(p) denote the classifying space
for iV-plane bundles trivial on the (p— l)-skeleton, and M = M0(p) the associated
stable Thorn spectrum. Assume N = 0(ap).

The primary M-obstruction for finding k sections on .B^-bundles was defined in [7]
to be the map

defined by viewing the composite

BN x P*-1 ^ BN

as a stable map so that we can consider its restriction to BNA Pk~l, dualizing to
obtain

and then following by the composite

•LPzl A W*M - ^ > SP#lf A M ^ - > ZPN_k A M,

where ek is the equivalence of [20].

THEOREM 3-1. For all positive N and L with N = 0(ap), there are maps

such that (i) cogA>L+1 = gN L and (ii) if N > L then gy L = gVL. Thus there are
factorizations ' '
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The spectrum (P A &o)-«> 91

Proof. The maps gN L are constructed as the composites iej}f L, where fL, eL, and i
are defined similarly to the maps/j., ek, and i above. Now (i) follows easily from the
observation that eL may be written as the suspension of the composite

(P_L A P w p~» A M ^ (P_i AXNM)<"-2> A

A similar result is obtained when M is replaced by bo and N = 0(4), using the map
M0(4) = MSpin -* 6o of [2]. Compatibility of the maps gN with respect to increasing
N is not clear; however, for any particular bundle one can choose any sufficiently
large N. The characteristic class (Qty of 1-7 is the composite

V 24 i# .

The map T of 1-7 (ii) is the 2-completion of the map

V S 4 i # ~ (S°UCPj) Abo^ SP^bo,

used in the proof of 2-2. To prove 1-7 (ii) we use the commutative diagram

^(PAfto)^

I
(S° U CPJ A bo a V S4<# l ^ ^ I P ! A bo <9N-N~1 BSpin^. (3-2)

9N,N~I factors through cx by 3-1. Using the equivalence of 1-4, we obtain a map
-* Vi£z24i-$> which factors through Voo^4i-^ because

^^fcof^))) = 0. |

Because of 1-7 (ii), the maps BSpinN -*• SPmA bo factor through BSpiniV/BSpinm.
Thus if

X - i -> BSpinA, ^U V S « ^ - ^ SPm A 6o

is nontrivial, then grd(̂ ) > m.
Despite the fact that Qt is not canonical, depending upon the choice of the equiva-

lence in 1-4 and perhaps upon N, its mod 2 reduction is, and is given by 1-7(i). To
prove this, we recall from [19] that

satisfies T*(<jau_x ® 1) = e4i with

3=0

The map

BSpin - ^ S P ^ bo

of [7] satisfies g*(craM_l ® 1) = wit. Diagram 3-2 shows g = TO Q. Thus

w4i = Q*e4). = Q*iti +
12 xS^-^Q***, = P(<?,) + ' S
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92 D O N A L D M. DAVIS AND MARK MAHOWALD

The Adem relations and Wu relations imply x^Qmwn-m = 0 if m ^ 0(4). Thus 3-3
becomes

P(Qi) = 2 xSqmu>4i-m = »« (see [21]). |

In order for the Qt to be useful in obstruction theory, we need to know more than
just their mod 2 reduction, but we have not been able to choose them in a controllable
fashion. I t is tempting to conjecture that Q might be the multiplicative characteristic
class

(̂<x) = n § v
srnh Xi

(where 11(1 + X\) is the Pontryagin class p(oc)). This appeared in the recent work of
Crabb([4], 2-4) and satisfies pA = v.

Even knowing this, the application to obstruction theory would be quite compli-
cated. For example, if Q is any multiplicative characteristic class reducing to v, then
if Hn is the Hopf bundle over quaternionic projective space QPn,

Q(4:H3) = l + 4 a 1 Z + 2a2X2+863Z3,

with a1 and a2 odd and &3eZ<2). In [10] we showed gd(4H3) > 9, essentially because
(|) ^ 0mod7712(EP9 A bo) x Z/8. From the new perspective, the bundle is classified by
the composite

QP3 -^> BSpin12 - ^ f f v S ^ v £ 8 # v S12# -> P9 A bo.

The group [QP3, XP9bo] is 1/8, generated by

By (3-4), the map

has Qz = 2 • odd, and the attaching map 2v of the 12-cell in QP3 causes this to contribute
22 • gen to [QP3, SP9 A bo].

4. Relationship with the work of Jones and Wegmann

An easy consequence of Lin's theorem [15] is that for any finite spectrum E there is
an equivalence S~XE -> (PA E)_X. Our 1-4 implies that this is not true for E = bo.

If E is any spectrum, Jones and Wegmann [13] constructed an inverse system
of spectra P_kE = Z,kD2(L-kE). Let P_nE = holim (P_kE). They showed that if E
is a suspension spectrum there are compatible maps P_fc A E -> P_kE', inducing fE:
(P AE)_ao -*• P_coE, such that if J57 is finite and A is a connected (co)homology theory,
then h*(fE) and %*(fE) are isomorphisms.

In our preprint we argued from 1-4 that no such map could exist for E = bo, but a
better argument utilizes the recent result of Wegmann's thesis, that for any spectrum
of finite type (e.g. bo) there is an equivalence g^.S-1^^- P-^E. I t is clear that gb0

could not factor through V S4*-1^.

We wish to acknowledge helpful comments from John Jones and Haynes Miller,
and to express our thanks to University of Warwick Mathematics Institute for pro-
viding a pleasant and stimulating environment where this work was carried out. We
also acknowledge support from National Science Foundation research grants.
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