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THE EQUIVARIANT CONNER-FLOYD ISOMORPHISM

STEVEN R. COSTENOBLE

ABSTRACT. This paper proves two equivariant generalizations of the Conner-

Floyd isomorphism relating unitary cobordism and K-theory. It extends a

previous result of Okonek for abelian groups to all compact Lie groups. We

also show that the result for finite groups is true using either the geometric or

homotopical versions of cobordism.

1. Introduction. In [6] Conner and Floyd established a relation between

cobordism and .rf-theory. They proved that

MU*(X)®MU.K* = k*(X),

where MU is unitary cobordism and K is complex Ä"-theory. A generalization

of this result to the equivariant context was proved by Okonek [15]. This paper

improves upon that generalization in two ways. First, it expands the class of groups

considered, from abelian groups to all compact Lie groups. Second, it shows that

both of the usual generalizations of cobordism to the equivariant context can be

used.

The .rf-theory that we use is KG(—), the equivariant K-theory of Segal [17],

which is the obvious generalization of K-theory to the equivariant world. Atiyah

[2] proved that this theory has Bott periodicity; it is periodic with respect to

Spinc-representations of the group. There are two common ways of generalizing

cobordism; we will define these carefully in §2. One gives geometric cobordism,

which we denote by UG( — ), and the other homotopical cobordism, MUG(—). Both

of these are multiplicative cohomology theories. There are multiplicative maps

p: U*G(-) -> K*G(-) and p: MUG(-) -* KG(-). Writing U*G for the ring UG(*),

and similarly for the other theories, the two main results we will show are

THEOREM A. p: ÜG(X) ®w KG —► KG(X) is an isomorphism when G is a

finite group.

THEOREM B. p: MUG(X) ®mu* Kg ~* KG(X) is an isomorphism for every

compact Lie group G.

It should be pointed out that these results use integer grading and not RO(G)

grading. We will use integer grading throughout this paper, except on those occa-

sions when it is necessary or particularly convenient to use RO(G); we will make

it clear at these points that we are using the larger grading.

Theorem B has already been shown for G abelian in [15], and we will use that

result as a starting point. Theorem A follows from Theorem B, as shown in §3, by

Received by the editors March 4, 1986 and, in revised form, September 8, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 57R85.

©1987 American Mathematical Society

0002-9947/87 $1.00 + $.25 per page

801
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



802 S. R. COSTENOBLE

an argument due to Ib Madsen. He and Mel Rothenberg have used Theorem A in

work on the homotopy groups of equivariant automorphism groups of spheres.

The proof of Theorem B is similar in outline to Atiyah and Segal's proof of the

completion theorem for if-theory [3]. By embedding G in U(n), we can reduce to

the case where G is U(n). By a suitable transfer, we can relate U(n) to its maximal

torus Tn, for which the result is already known. To complete the proof we must

delve into the structure of the equivariant cobordism rings. The proof of Theorem

B occupies §§4 and 5.

These results were the main ones of my Ph.D. thesis. I would like to thank my

advisor, J. Peter May, for his helpful guidance. I would also like to thank lb Madsen

for his permission to reproduce the argument of §3 here.

2. Definitions. Before we begin serious work, we establish terminology.

Throughout this paper we will be concerned with group actions; the group which

is acting will always be assumed to be compact Lie, and most of the actions will

be on the left. Actions on smooth manifolds will be assumed to be smooth. When

we refer to a subgroup of a compact Lie group, we always mean a closed subgroup.

A representation of a compact Lie group G is a finite-dimensional real vector space

on which G acts linearly; we may assume that it has a G-invariant inner product.

If V is a representation of G, then

D(V) = {v E V | ||v|| < 1}    and   S(V) = {v E V \ \\v[\ = 1}

are the unit disc and sphere of V. Sv denotes the one-point compactification of V,

with compactification point as basepoint. EVX = X/\SV for any based G-space X.

|V| will always mean the real dimension of V. If W C V is a subrepresentation, then

V — W denotes the orthogonal complement to W in V. In particular, Vh = V-VH,

the //-nontrivial part of V. RO(G) will denote the real representation ring of G,

and R{G) the complex representation ring. Z C RO(G) is the subring of trivial

representations, and R™ is the trivial representation of dimension n.

If X is any G-space, X+ will denote X with a G-fixed disjoint basepoint attached.

Basepoints will in general be referred to as "*," as will any one-point space. If H is

a subgroup of G and X is a based H-soace, then the extension of X to G is the G-

space G+ 7\H X = (G+ i\X)/H where H acts on the right by (g,x)h = (gh,h"1x).

G acts on the left via its action on itself by multiplication. If X and Y are based

G-spaces, then [X, Y]G will denote the set of based G-homotopy classes of based

G-maps from X to Y.

We will have occasion to take limits over "all representations of G." To make

sense of this, we employ a complete G-universe, which is a countably infinite-

dimensional G-inner product space which contains every finite-dimensional rep-

resentation of G infinitely many times. A limit over all of the representations of

G is then interpreted as a limit over the finite-dimensional subspaces of such a

universe, directed by inclusion.

2.1 Geometric cobordism. We now define our cobordism theories. Unfortunately,

there are several different generalizations of unitary cobordism to the equivariant

world.   The most obvious, and the first we will define, is the geometric version.
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We start by defining what a unitary G-manifold is, and here again we have some

choices. Our preferred definition is this:

DEFINITION. A unitary structure on a smooth closed G-manifold M is an em-

bedding of M in a G-representation V©Rn, where V is a complex G-representation,

together with a complex structure on the normal bundle of this embedding. An

equivalence relation is defined on unitary structures in the familiar way, via addi-

tions of complex representations to V ® R" (and the normal bundle), and isotopies

of embeddings. A unitary G-manifold is a G-manifold together with an equivalence

class of unitary structures on it.

We will refer to a representation of the form V ® R™, where V is a complex

representation, as a complex ® trivial representation. An equivalent way of defining

a unitary manifold would be to require that the stable tangent bundle of M be given

a complex structure, if we understand stabilization to mean addition of complex

® trivial representations. Many writers use a more restrictive definition, which

allows only trivial representations to be added to the tangent bundle. For many

of our arguments, both definitions will work and lead to the same result. Our

preferred definition has the advantage that it leads to a homology theory which can

be reasonably easily represented by a spectrum, and hence leads to a corresponding

cohomology theory, as explained below.

One more comment on the definition is in order. The representation V ® Rn

which appears could have been specified to have n equal to 0 or 1; other copies of R

can be paired into copies of C and absorbed into V. The choice of one alternative

over the other is purely an aesthetic decision. The trivial summands are there at

all, of course, to allow odd-dimensional manifolds to be considered to be unitary.

Given a definition of unitary G-manifolds, we can define unitary cobordism of

such in the usual way. We can also consider manifolds and cobordisms over a

G-space X, meaning that there are G-maps from the manifolds and cobordisms

into X. The set of unitary cobordism classes of n-dimensional unitary G-manifolds

over X is a group which we will call l/^(X). With an appropriate definition for

the relative case, the collection of functors U?{—) defines a G-homology theory,

as is well known [5]. We call this geometric unitary bordism. As has also become

known, this theory can be represented by a G-spectrum, though not quite the one

we might expect at first (see [18, 19, or 7]). Having such a spectrum, we can

define an associated G-cohomology theory, which we denote by UG(—) and which

we call geometric unitary cobordism. The Cartesian product of manifolds defines

an external product on U^(-), and a product on the spectrum. This makes UG(—)

into a multiplicative cohomology theory. In particular, UG = UG(*) = ¿/if, is a

graded ring, and every UG(X) is a module over this ring.

2.2 Homotopical cobordism. We said that the representing spectrum for geometric

cobordism is not what we expected from the nonequivariant example. What we

expected was the equivariant Thom spectrum, so let us define it and examine the

theory that it does represent.

Let BUG (n) be the classifying space for complex G-bundles of complex dimension

n. Let 7„ be the universal bundle over this space. If V is a complex representation

of G, let MUG(V) be the Thom space of the bundle l\v\/2- If V C W, then we

have a G-map

ct: ZW-VMUG(V) - MUG(W)
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which comes from the classifying map for 7© (W - V). The spaces MUG(V), with

the suspension maps o, fit together to give a G-spectrum (see [12] for a general

discussion of equivariant spectra). We call this spectrum MUG, and refer to it as

the unitary G-Thom spectrum. It represents a homology theory, called homotopical

unitary bordism, written MU^(-), and a cohomology theory called homotopical

unitary cobordism, written MUG(—). For example, if n > 0, we have

MUn(X) = colim[5n A Sv,X A MUG(V)]G,

where the colimit is taken over all complex representations of G. The other cases

are defined similarly, with the X on the other side for the cohomology theory. In

general, these are quite different from the geometric theories.

Classification of the Whitney sum of bundles gives us a G-map MUG(V) A

MUG(W) —> MUG(V ® W), which makes MUG into a ring spectrum and makes

MUG(—) a multiplicative cohomology theory. In particular, MUG = MUG(*) is a

ring, and every MUG(X) is a module over it.

Homotopical cobordism enjoys a form of periodicity similar to, but weaker than,

Bott periodicity. Let V be a complex representation of G, and let r\y be the class

of the map 5'v' —► MUG(V) which classifies the trivial bundle R'vl —► *.

THEOREM 2.1. r¡v E MUG~lvl = MU^^_V is a unit of the RO(G)-graded

ring. Multiplication by nv thus induces isomorphisms

MlJGm(X)^MlJGm+m(YyX)

and
-m ,/-'777-IVI
MUG(ZVX) = MUG       (X).

PROOF. r¡rl is given by the map Sv —► MUG(Yi}v\) which classifies the bundle

V -> *.    D
This result is well known; see particularly [8, 4, and 7].

The homotopical and geometric theories are related. One relation provides a

nice geometric interpretation of the homotopically defined theory. First, notice

that there is a map of homology theories

*: Wr(-)^MU!/(-)

given by the Pontrjagin-Thom construction familiar from the nonequivariant case.

(That this fails to be an isomorphism is due to the failure of transversality in this

context.) Consider the following construction. Suppose that /: M —► X is a unitary

G-manifold over the G-space X, and that V is a complex G-representation. Then

M x D(V) is a unitary G-manifold (with boundary), and we can form the map

/ x 1: (M x D(V),Mx S(V)) -> (X x D(V),Xx S(V)).

This defines a map

lv : U°(X) - Ug+lv](X x (D(V),S(V))).

We call tv stabilization byV.A similar construction can be given in the relative

case, if we round corners.
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Comparing tv to r\y, we can see that we have a commutative diagram

UGm(X) -^ MUg(X)
I Tv lw

UC+lvl(Xx(D(V),S(V)))    -^   MUii+lv](Xx(D(V),S(V))).

Hence we have a map

*: colimllg+lvl(X x (D(V),S(V))) ^ MU^X),

and similarly for the relative versions. For all versions we have

THEOREM 2.2.   $ is an isomorphism.

For the proof, see [4]. We should note that the more restrictive definition of

"unitary manifold" will still make this result true, because the stabilization maps

Tv effectively eliminate the difference.

This theorem leads to a nice geometric interpretation of homotopical bordism.

DEFINITION. A stable unitary G-manifold is the equivalence class of a unitary

G-manifold M endowed with a map ip : (M, dM) -* (D(V), S(V)) for some complex

G-representation V. The equivalence relation is the one generated by considering

<p to be equivalent to

<p x 1 : (M x D(W), d(M x D(W))) - (D(V ® W), S(V ® W)),

where W is any complex representation of G.

As usual, M x D(W) has its corners rounded. The virtual dimension of M —*

D(V) is defined to be dim M — |V|. Stable cobordisms are defined in the obvious

way. A stable manifold over a G-space X is one with a G-map from the manifold

part M to X; stable cobordisms over X are dealt with similarly. With careful

attention to parts of boundaries, we can define relative versions of these ideas as

well. Thus we can form a new homology theory by taking stable cobordism classes

of stable manifolds over X, giving us groups U£(X). We call this stable unitary

G -bordism.

These groups are easily identified with the groups

colim^+|v|(Xx(£>(V),S(y))).

In fact, a stable manifold M —» D(V) over X is really a manifold over the space

X x D(V), and the stability equivalence relation is identical to the relation forced

by the colimit maps tv- What Theorem 2.2 says then, is that homotopical bor-

dism is identical to a stable bordism, giving us a geometric way to deal with the

homotopically defined theory.

To complete the picture of homotopical bordism, we ought to say what vari-

ous homotopically defined maps—such as naturality maps, Gysin maps, and Thom

maps—look like in the geometric interpretation. We will do this for several maps

as we need them, but here we will outline a proof scheme for verifying such in-

terpretations. Suppose that a given homotopical construction leads to a natural

map ip: MU^(-) —► MU^( — ), and that we also have a geometric construction

on manifolds that we think gives tp. Suppose that this leads to a natural map

ip: £/?(—) —>■ Uf(-). To show that our interpretation is correct, we need to check

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



806 S. R. COSTENOBLE

two things: (1) that <p is stable, i.e., that it commutes with the maps tv, and (2)

that ip is carried to ip by $, i.e., that $<p = ip§.

In practice, we are given ip and must find <p. Happily, we can usually find tp by

assuming that transversality holds and examining the homotopical construction in

this light. To actually verify that a given <p is the correct interpretation, we use the

proof scheme above, which does not need transversality. It is a pleasant exercise to

work out the correspondences for various maps, and a number of these are recorded

in [7].

3. Proof of Theorem A. We now show how Theorem A follows from Theorem

B. The argument is due to lb Madsen. Let G be a finite group for this section.

We will need some results on equivariant transversality. Some references are

[16, 9, 19, and 7]. The sad fact is that transversality often fails in the equivariant

world. One can, as in [16], develop obstructions to obtaining transversality. We

quote a result of his on a sufficient condition for making these obstructions vanish.

Suppose that M is a G-manifold and V is a G-representation, with j' : M —» V

a smooth G-map. We wish to make / transverse to the origin (this is the special

case we will need). Let r = tM be the tangent bundle of M. For H a subgroup

of G, let H denote the set of irreducible real representations of H. If W E H, let

dw = dimR YlomuiW, W). Since Hom//(W, W) is one of R, C, or H, dw is one of

1, 2, or 4.

THEOREM 3.1. Let G be a finite group, M a G-manifold, and V a repre-

sentation of G. Suppose f: M —> V is a G-map. For x E MH write (tx)h =

Ylweñ Waw, and (V)h = J2weñ ^bw > w^ere aw and bw are integers. If

dw(aw -bw+ 1)-1> dimMH - \VH\

for every H C G, every x E MH, and every nontrivial W E H, then f is G-

homotopic to a map which is transverse to the origin o/|V|.

This is a special case of [16, II.4.13].

Let Z be the complex regular representation of G. Let P C UG be the multi-

plicative system generated by the class of CP(Z), the manifold of complex lines

in Z with G-action induced by the action of G on Z. Since localization is exact

we can form a new theory by formally inverting P, considering every UG(X) to be

a module over UG. In this way we get the new theory P_1i/¿(-). Via the ring

homomorphism $, we can also form the theory P~lMUG(—).

THEOREM 3.2.   P-1^-) = P"1 MUG(-) via®.

PROOF. Since both sides are G-cohomology theories, it suffices to show that $

is an isomorphism on the orbits G/H. Since UG(G/H) = U*H and MUG(G/H) =

MU¡*¡, and P is carried by these isomorphisms to a similar system, it suffices to

check that $ induces an isomorphism on the one-point space. (Actually, P is carried

to a slightly different system, but this can be handled by a variation of the argument

which follows.) That is, we need only check that P~lUG = P~*MUG.

We would like to describe an inverse to $, call it *. Suppose that we have a

stable manifold /: M —» D(V). If we could make / transverse to the origin of V,

we could form TV = /_1(0), and it is easy to see that then $[7V] = [/], so we would
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set *[/] = [TV]. In general this is not possible, but we will show that it is possible

if we first allow ourselves to multiply M by sufficiently many copies of CP(Z).

When do the obstructions to making a map M x CP(Z)k —> V transverse to the

origin vanish? We check the conditions of Theorem 3.1. Let H EG and x E MH.

Write (rxM)H = ¿2weHWaw, and vh = T,weñwbw ■ If V G (CP(Z)k)H, then

(ryCP(Z)k)H = ZkH, so

(TyCP(Z)k)H   = X) W2fc|G:"H,V|.

WeH-R

Also, dim(CP(Z)A:)JÏ = 2fc|G : H] — 2k, because the fixed-point components of

CP(Z) correspond to the various one-dimensional complex representations of H,

each of which appears exactly |G : H\ times. Thus, the condition that we need to

satisfy is

dw(2k]G :H\-]W\+aw-bw + l)-l> 2k\G :H\-2k + dimMH - [VH\.

This is easily satisfied by taking k sufficiently large.

Thus * is defined as follows: Given /: M —► D(V), take k so large that we

can assume that f: M x CP(Z)k —* D(V) is transverse to the origin. Let *[/] =

[CP(Z)]-fc[/-1(0)] E P~1U*G. It is straightforward to check that this is the inverse

to $.    D

PROOF OF THEOREM A. Observe that CP(Z) maps to a unit in KG— this is

essentially the fact that the index of a projective space is 1; see [2]. So,

ÜqW ®u*g K*g a P-1Ü*G(X) <»P-lu.a K*G = p-1ÁíUa(X) ®P-*Mu¿ K*G

*MUG(X)®MUhKGÇ*kG(X)

by Theorem B.    D

4. Reductions.

4.1 Thom classes, Euler classes, and p. We have yet to define the map p from

cobordism to Ä"-theory. To do this we need a quick discussion of Thom classes.

Both if-theory and homotopical unitary cobordism have Thom classes for com-

plex bundles. By this we mean that if £ is a complex G-bundle over a compact

G-space X, such that all of the fibers have the same dimension, then there are

classes t{Ç) E Kl¿}(MC) and t(Ç) E MÛG (MÇ) where M£ is the Thom space of

the bundle. These Thom classes obey all of the nice properties that have become

familiar in the nonequivariant case, including giving Thom isomorphisms (see [7 or

15] for more detail). The classes in K-theory were defined by Atiyah in [2], and are

closely related to the Bott periodicity classes. The classes in cobordism are defined

exactly as in the nonequivariant case: Classify £ by a map Mt\ —> MUG(R)^) and

then interpret this map as a cobordism class.

The Thom classes in homotopical cobordism are, in a sense, universal, as in

the nonequivariant case. In particular, there is a unique natural transformation of

cohomology theories, p: MUG(—) —► KG(—), preserving all Thom classes (see [15]).

This map, which is the one used in Theorem B, is necessarily multiplicative. The

map from geometric cobordism to TY-theory is the composite of p with $ : UG(—) —*

MUG(-).
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Having Thom classes, we can also define Euler classes. If £ is a complex bundle

over X, then there is a 0-section map s0 : X+ —► Mf, and we let

e(f) = s0t(0EKl¿l(X)    or    MU^(X).

In particular, if V is a complex representation of G, we may consider the trivial

bundle V —► * over a point; the Euler class of this bundle is an element ey E KG ' or

MUG '. This class is 0 if V has any trivial summands, but in general it is nonzero.

We will see specific examples of this later. In passing, we mention that, as a stable

cobordism class, ey is represented by the stable manifold * t-+ D(V), inclusion of

the origin.

4.2 Reduction to unitary groups.

THEOREM 4.1. Suppose that Theorem B is true for a group G, and that H is

a subgroup of G.  Then Theorem B is true for H.

Proof.

MU*H ®MUh K*G S MUG(G/H) ®MUh K*G S K*G(G/H) = K*H.

So, for any //"-space X we have

MU'H(X) ®mc/- K*H S MUh(X) ®mu.h (MU*H ®MU¿ K*G)

= MZJ*h(X)®mu'gKg

ZMUG(G+r\HX)®MVGKG

^k*G(G+ AHX) = H*H(X).    D

Here is the main sticking point if we wish to use something other than integer

grading for Theorem B, for example RO(G) grading. Theorem 4.1 relies on the

change-of-groups isomorphism, which only seems to work well with integer grading.

Recall now that any compact Lie group embeds as a closed subgroup in some

U(n). This gives us

COROLLARY 4.2. // Theorem B is true for the unitary groups U(n), then it is

true for all compact Lie groups.

4.3 The holomorphic transfer. Having reduced Theorem B to the case of the

unitary group, we now attempt to derive that case from the known result for the

torus. To help, we need a map called the holomorphic transfer, which we define.

Let Tn be the maximal torus of U(n). For convenience, let hjj(n) be the U(n)-

spectrum representing either homotopical unitary cobordism or if-theory, and let

h*Tin)( — ) be the corresponding theory. Recall that

h*T„(X) = h*u{n)((U(n)/Tn)+i\X)

if X is a [/(n)-space.

Take the usual unitary structure on the manifold U(n)/Tn. This will be given

by a complex structure on the normal bundle v to some embedding U(n)/Tn <-> V,

where V is a complex representation of U(n). This embedding gives us a collapse

map c: Sv —► Mv as usual, v gives rise to a map t: YIl^n~v>Mv —* /i[/(n)(V). In

the case of if-theory, this is the Thom class of v shifted into a different degree by
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Bott periodicity. In the case of cobordism, we can do the same thing using Theorem

2.1. Notice that n(n - 1) is the dimension of U(n)/Tn. Finally, there is a map

A: Mv -> (U(n)/Tn)+ A Mv induced by the diagonal map on U(n)/Tn.

Now suppose that we have an element of h*Tn(X) represented by a Í7(n)-map

g:ZA((U(n)/Tn)+7\X)->hu{n)(B)

for some i7(n)-representations A and B. Then consider the composite

EAS77(77-1)EVX Aoc EAE77(77-1)/X A (f/(n)/Tn)+ A Mv)

-^ YlA(U(n)ITn+ A X) A YT^-^Mv

9-^hu(n)(B)r\hu(n)(V)

-^hu(n)(B®V).

This defines an element of h*j,AX), which we call r[g]. This defines a map

r: h*nn{X) -^h*u(n)(X).

We call r the holomorphic transfer. Notice that r lowers degree by n(n — 1).

This is a simple case of the sort of construction discussed in [11] (see particularly

his Remark 4.8). r is essentially a transfer for bundles of the form U(n)/Tn x X -*

X. It is a map of /i^,,-modules. If we let £: h*j<AX) —► h*-n(X) be the forgetful

map, then, as with any transfer, r o £ is just multiplication by the Euler class of the

transfer, x = r^(l) E h^?^?- . Since r was defined by means of the Thom class,

p will preserve it and x-

We can identify r more precisely in these two theories.

PROPOSITION 4.3. r: K*^„(-) —> /(J, ,(-) is, up to periodicity, the holomor-

phic transfer of [2 and 3]. In particular, x is a unit of the ring K*j,,.

The argument is given in [14] (see the remark after his 5.2), as noted in [11]. It

comes down to the fact that t is defined in terms of the topological index, while

Atiyah's holomorphic transfer is defined in terms of the analytical index. The

Atiyah-Singer Index Theorem serves to identify them. That x is a unit follows

from [2], which shows that x is a Bott class. This result justifies our calling r the

holomorphic transfer.

PROPOSITION 4.4. r: MU^,n —> MUy,nX is given geometrically as the map

which takes a Tn-manifold M to the U(n)-manifold U(n) Xp M. In particular, x

is the class ofU(n)/Tn in MU~^"~1].

The proof follows the outline given at the end of §2.

Proposition 4.3 suggests the following trick. Let D c MU*j,n, be the multiplica-

tive set of elements which get sent to units in K*j,, by p. Since localization is

exact, we can form a new cohomology theory D~1MU,*,,,(-). This new theory is

at least as useful to us as the old one because of the easy observation

PROPOSITION 4.5.

D-lMU*u{n)(X) ®D-iMU*uin) K*u{n) S MU*u{n)(X) ®MU*(n) K*U{n).

The new theory is better than the old one in the following way.
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PROPOSITION 4.6.   £: D~lMU*u(n)(X) -» D-^c/^ÍX) is a naturally split

monomorphism.

PROOF.   A splitting is given by x~1t, since x S D by Proposition 4.3, and

Ttl(x)=xxVxEMÏJ*u[n)(X).    D

This gives us our next reduction of Theorem B.

THEOREM 4.7.   If MU^n ®mu* n  Kh(n) — Kt»> then Theorem B is true for

U(n).

PROOF. Consider the diagram

i*    D--Mu'Tn(X)®D-iMU.u     K*
U (n) *■    *

Iß

—► K*-n(X).

The maps £ are monomorphisms with compatible splittings. The map p on the left

is the one we wish to show is an isomorphism. A simple diagram chase shows that

it suffices to show that the p on the right is an isomorphism. With our assumption

it is:

D-lMUTn(X) ®x,-.mi/-(b) K(n) = MÛTn(X) ®MU*u{n) K*u(n)

= MUTn(X) ®MU-Tn (MU}n ®MU*u(n) K*u{n))

= MÚ*T„(X) ®MU-Tn K*Tn = K*Tn(X).

The last isomorphism is Okonek's result for abelian groups [15].    D

5. The rest of the proof.

5.1 Euler classes again. What remains to be proved is the isomorphism

(*) MU}n ®mu*vw K*u(n) = K*Tn.

As usual, we may replace MU^,, with D~1MUI*!,, and so on. Equation (*) is

a relation between four rings. We know the structure of two of them. Namely,

KG is R(G) in even degrees, and 0 in odd degrees. The multiplication is specified

by the fact that there is a unit in degree 2. Therefore, studying KG is just like

studying R(G). We know the structures of R(Tn) and R(U(n)) quite well (see, e.g.,

[1]). In particular, R(Tn) is a free R(U(n))-module on n! basis elements. We can

specify those basis elements as follows. Let Vi,...,Vn be the n fundamental one-

dimensional complex representations of Tn given by the projections of Tn = S1 x

■ ■ ■ x S1 onto its factors. Let ei,..., e„ be the Euler classes of these representations.

Then a basis for R(Tn) as an r?(i/(n))-module is given by {e22 •ejln | 0 < ij <

j - 1} (combine 6.20 of [1] with IV.3.28 of [10]). The same is then true of the rings

K*-n and K*u(n).   More generally, R(Tn) is a free R(U(k) x Tn"A:)-module with

basis {e22 ■■■e[k ]0<i3 <j-l}.

0    -    D-*MU'u(ni(X)QD-iMU.wK*utn)

iß

0    - *&(„)(*)
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Since the Euler classes already exist in homotopical cobordism, we see that we

have

Proposition 5.1. p : MU^n ®mu¿    ^û(n) ~* ^t* îS a sp^ epimorphism

ofK*,, ,-modules.

Notice that an explicit splitting is given by taking the basis element e\2 ■ ■ ■ enn in

IC*,n to the element of the same name in MU^n ■ To show that p is a monomorphism,

we need to show that this splitting is an epimorphism. We shall show, in fact, that

these elements generate £>_1Mi7£„ as a .D^McT^^-module.

5.2 Symmetry. Recall that the Weyl group of U(n) is N(Tn)/Tn =S £„, the

symmetric group on n letters. To be precise, the isomorphism is specified by con-

sidering the action of N(Tn)/Tn on the left on Tn by conjugation. This action

permutes the factors, defining the desired map into £„. We henceforth identify

N(Tn)/Tn and £„.

Consider now the right action of En on Tn given by ta = o-11. This induces a

left action of Sn on R(Tn), which permutes the representations Vi,..., Vn in the

expected way. Hence it permutes the Euler classes by aek = ea[^ky

£„ acts by multiplication on the right on U(n)/Tn, which is an action by U(n)-

maps. This produces a left action on MU^n = MC/*(n)(i7(n)/rn), by MU*{n)-

module maps, which in turn gives us an action on £)_1MC/^.„(—). Alternatively,

this action is given by twisting the action of Tn on a manifold by the right action

of En on Tn. Again, the action on the Euler classes is as expected.

Let Efe C Sra be the subgroup of elements that permute only the first k letters.

Define a sequence of rings by

Rk^iD-'MUÏnf".

We will show two results.

PROPOSITION 5.2.   Rk-i is generated as an Rk-module by l,ek,.. ■ ,ekk~1.

Proposition 5.3. Rn = D-lMU*1(n) via f.

5.3 Families and Proposition 5.3. To prove these results we need to bring in the

idea of a family of subgroups. Recall that a family of subgroups of G is a collection

of subgroups that is closed under conjugation and taking of subgroups. The only

families that we will need are A, the family of all subgroups, and P, the family of

proper subgroups (A — G). [5] introduced the idea of a manifold with restricted

isotropy. In our case, we are interested in so-called (A, ^-G-manifolds, which

are G-manifolds with no fixed-points on their boundaries. That is, the isotropy

subgroups of the boundaries are restricted to be in P, while there is no restriction

in the interior.

As in [5], we can define cobordism of (A, /p)-manifolds and define cobordism the-

ories using them. Similarly, we can define stable (A, P)-manifolds and cobordisms.

In particular, we can look at the ring of stable cobordism classes of stable unitary

(A, P)-Tn-manifolds, which we call MU^n[A, P].

Since a manifold with no boundary is certainly an (A, P)-manifold, there is a

map

F: MU*Tn ̂MU*Tn[A,P].
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The remarkable fact about this map is:

THEOREM 5.4 (LÖFFLER).   F is a monomorphism.

For the proof see [13]. It is well known from [5] that an (A, ^-manifold is

determined, up to cobordism, by a neighborhood of its submanifold of fixed-points.

In particular, it is determined by its fixed-points and the normal bundle to their

inclusion. Theorem 5.4 allows us to say the same thing about cobordism classes of

T"-manifolds without boundary. Here is an example of its use:

PROOF OF PROPOSITION 5.3. We already know that t¡: D~lMUr)in) -*

D~1MU-*.„ is a monomorphism, and its image is clearly contained in R,,. We

must show that it maps onto Rn.

Consider F£r£(l) = F£(x) = F[U(n)/Tn]. As a Tn-manifold, U(n)/Tn has n!

discrete fixed-points, namely the set N(Tn)/Tn = Sn. Since we can restrict our

attention to a neighborhood of these fixed-points, we can write

F[U(n)/Tn] =J2d°

where d„ is, up to sign, the class of the disc of the tangent T"-representation at
a E U(n)/Tn.

More generally, let M be any Tn-manifold, and consider

F7t[M] = F[U(n) xTn M].

We notice that

(U(n) xT- M)7"1 c N{Tn) xTn M,

and that this latter space consists of n! copies of M, sitting over £„, with the Tn-

action on each twisted by the action of the corresponding element of En. Since a

neighborhood of one of these copies of M in U(n) Xt*M looks like the product of M

(with twisted action) and a neighborhood of the corresponding o eE„ C U(n)/Tn,

we see that

Ffr[M] =  £ daoF[M].

ffgE„

This passes to stable manifolds, giving us

F£r(ro)= Y, daoF(m)    VmeD^MU}*.

Now notice that if m G Rn, then crF(m) = F(m) for every o E En, so that

FtT(m) = ( J2 da\ F(m) = (Fl;x)F(m) = F(Xm).
\(76E„       /

Since F is injective, this says that £r(m) = xm, or that m = ^(x~lr(m))- Hence

m is in the image of £, and £ maps onto Rn.    □

5.4 The idea of the proof of 5.2. In order to prove Proposition 5.2, we need to

show that any m E Rk-i can be written as

fc-i

m = XI aie%k
i=0
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for some elements a¿ € Rk- This is a single equation in the k unknowns a¿, but

we can convert it into k equations by applying the transpositions (j k) S Efe. This

gives us the system of equations

k-l

(j k)m = ^2 aie],        1 < j < k,
7 = 0

since the a, are fixed by Efe.

We can solve this system formally using Cramer's rule. This expresses the a¿ as

quotients of determinants. The question is: Does this division make sense in the

rings in question? We will show that it does by constructing an element similar

to the denominator, showing that it is invertible, and then showing that that im-

plies that the division is possible. Our next task is to set up the tools to do the

construction.

5.5 A representation. Consider Wk = u(k), the adjoint representation of U(k).

This is a real representation of dimension k2. In fact, it is better than that:

PROPOSITION 5.5.   Wk is a Spin0 representation ofU(k).

PROOF. (This argument was shown to me by Dick Lashof.) Recall that

Spinc(fc2) = Spin(fc2) xZ2 £7(1),

and that U(k) = SU(k) Xzk U(l). In the last statement, <7(1) is the center of U(k),

and Zfc is the center of SU(k).

Wk has a trivial summand corresponding to the center of U(k); write Wk =

W'k ® R. W'k is the representation given by p, the composite along the bottom in

the diagram

SU(k)

I
U(k) -► U(k)/U(l) =  SU(k)/Zk -        -£ SO(k2 - 1).

Consider su(k):

Spin(fc2 - 1)

I
SU(k)    °^>'    SO(k2 - 1) = Spin(fc2 - 1)/Z2.

a exists because SU(k) is simply connected. cr(Zk) c Z2 since su(k)(Zk) = {I}.

If k is odd, then tr(Zfc) = {/}, so o factors to give a: SU(k)/Zk —► Spin(/c2 - 1),

which, composed with U(k) —> SU(k)/Zk, gives a lift of p. In this case Wk is

actually a Spin representation, and hence a Spin0 representation.

If A; is even, notice that <r(2Zfe) = {/}, so we have a: SU(k)/2Zk —> Spin(/c2-l).

We lift p by the composite

U(k) = SU(k) xZk U(l) ^ SU(k)/2Zk xZ2 U(l)

{^rj Spin(fc2 - 1) xZ2 (7(1) = Spinc(fc2 - 1),

where q is the quotient map, and l(X) = Afc/2 for A E U(l).    D

Wk is of interest to us mainly because of the following fact.

su(k)
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PROPOSITION 5.6. There is an embedding ofU(k)/Tk in Wk with normal bun-
dle U(k)-isomorphic to U(k)/Tk x Rk.

PROOF. To get an embedding, we need a point in Wk with isotropy exactly Tk.

We can appeal to the theory of principal orbit types, which says that the points

with isotropy conjugate to Tk are actually dense. Or, we can be a little more direct,

and notice that any point of Wk will do if the closure of the one-parameter subgroup

of U(k) it determines is Tk. For, if w is a point with this property, then its isotropy

group will be the centralizer of Tk, which is just Tk itself. Since Tk is monogenic,

such points exist.

Suppose then that we have chosen an embedding i: U(k)/Tk ■—> Wk. The normal

bundle to i must be of the form U(k) xTk V for some representation V of Tk

(all bundles over U(k)/Tk must be of this form; see [17]). The tangent bundle of

U(k)/Tk is U(k) xTk V, where V is the tangent representation at ITk E U(k)/Tk.

As a representation of Tk, V has no trivial summands. By virtue of the embedding,

we must have V ® V — Wk as representations of Tk, which means that we must

have V = Wk . In other words, V is trivial, and the normal bundle has the form

stated.    D

We use this embedding to give U(k)/Tk x U(k)/Tk, and hence

(U(k) x Tn~k/Tn) x (U(k) x Tn~k/Tn),

a nonstandard unitary structure. We give Wk ® Wk the complex structure making

it Wk ®R C. Then the product embedding U(k)/Tk x U(k)/Tk «-» Wk ® Wk
has normal bundle U(k)/Tk x U(k)/Tk x (Rfc ® YLk), which we give the complex

structure making it U(k)/Tk x U(k)/Tk x Ck.

For use below, we can determine the tangent space at ITk x ITk E U(k)/Tk x

U(k)/Tk as a complex representation of Tk, using this nonstandard structure. Since

the normal representation to the embedding consists of all of the trivial summands

of Wk ®r C, the tangent space must be

(Wk ®n C)Tk £ u(k)Tk ®R C £ 0 Vi ® V3,
i¥=j

i,j<k

where V¿ is the fundamental representation of Tk defined earlier, and V3 indicates

the complex conjugate representation.

The representation Wk gives rise to several maps. First, the embedding U(k)/Tk

«-» Wk gives a collapse map ck : SWk —* T,klJ(k)/Tk   , and hence a map

c*k: MU?n = MUi?{k)xT„-k(U(k) * Tn~k/Tn)

= MUu*(k)xT«-*(u(k)/Tk)    (trivial Tn-fc-action)

,m+k ,^k k+.
MUu{k)xT„-k(i:kU(k)/Tk  )

■ 77i-r-fc

JU{k)xT"MUv7kUT»-*(SWk)-

Next, the complex structure on Wk ® Wk gives an isomorphism

»It.-   Mil"1, jqWk(BWk) ~ Mrrm-2k'

via Theorem 2.1.
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Finally, we let

ik--MU*u(k)xTn.k^MU*Tn

be the forgetful map.

5.6 A calculation. Our most important construction can be described simply as

follows. Suppose that a and ß are two elements of MU^,n. Then we can form the

element

tigicia-c*kß)EMU*Tn.

We wish to calculate the result in terms of a and ß. What we do is calculate what

F does to it, i.e., we will look at the fixed-points.

The first thing we can do is interpret the whole construction geometrically. We

state the result without proof; the program at the end of §2 can be used to verify

it. Suppose that a is represented by M and ß by N, with the unitary structures

given by embeddings M <—► Z and N '-* Z'. (We ignore the other part of the

structure of a stable manifold, the map into the disk of a complex representation.

This will just pass through the construction in an uninteresting way.) We may

assume, by stabilizing, that the representations Z and Z' are actually complex ©

trivial representations of U(k) x Tn~k. t¡kr]k(cla ■ c*kß) is then represented by the

manifold

[(U(k) x Tn~k) xTn M] x [(U(k) x Tn"k) xT„ N] = (U(k) xTk M) x (U(k) xT* N),

with the unitary structure given by the embedding into Wk © Wk © Z ® Z' induced

by the given unitary structures on M and N and the embedding of U(k)/Tk in Wk

that we constructed.

The ^-fixed-point set is contained in

(N(Tk) xTk M) x (N(Tk) xTk N).

This set consists of copies of MxN, one for each element of Efe x Efe, with the action

of Tn twisted on each copy according to the corresponding pair of permutations.

The normal bundle to the inclusion of a copy of M x N is the trivial bundle with fiber

the tangent representation at (a,r) £ Et x St C U(k)/Tk x U(k)/Tk. However,

our nonstandard unitary structure on U(k)/Tk x U(k)/Tk induces a nonstandard

complex structure on this representation, which was determined above.

Finally, there is a question of signs. This can be resolved by looking at the

embedding

Efe x Efe = N(Tk)/Tk x N(Tk)/Tk --> Wjf ®R C

and how the normal bundle is sent in by this map. At (e,e) the normal fiber is

identified with the representation, and the fiber over (o, t) gets twisted by the action

of those permutations; we see that the sign which must be attached is (—l)lCTl+lTl,

where |a| is 0 or 1, as a is an even or odd permutation.

Putting this all together, we have our calculation.

CALCULATION 5.7.

FtZkVk(c*ka ■ c*kß) = 6k ( £ (-l^W ] ( £ (-l)^crß)
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where

6k =    d(  0K®F,
.   V í¿j

i,j<k i,J<k

5.7 The proof of Proposition 5.2. Let

ek = c*k(e2e2---ekk-1)EMUkJ-)wx^k.

(We will work with i?0(G)-grading in this section.)

LEMMA 5.8.  p(£fc) E K*r,k,xTn_k is a unit of the ring.

PROOF. First, notice that, by Calculation 5.7,

FtkVkcltë ■ --ekk)2 =Sk(j2 (-^Me? ■••#))   -

This is 0 if any ir = is, for then the terms in the sum will cancel in pairs. If we

now require that 0 < i3 < j — 1, then the result will be 0 except when i3 = j — 1

for each j. Since F is injective, this vanishing remains true without it. Since the

Ä'-theory versions of £k and r¡k are injective, it follows that p(c*k(el2 ■ ■ ■ ekh))2 — 0

in Ä'-theory unless i3 = j — 1 for all j.

Now p(c*k(e22 ■ ■ -ekk)) E K^~^Tn_k for some integer N with N - \Wk] even.

Since Wk is Spinc by 5.5, this group is a copy of RO(U(k) x Tn~k), and there are

no zero-divisors in it. Thus it must be that p(ck(e22 ■ ■ -ekk)) =0 unless i3 = j — 1

for all j.

Now if we look at the definition of c*k, considered as a map K%n —> ifytu^î-i,

it is easy to see that it is just evaluation at a fundamental class of the manifold

U(k)/Tk. The machinery of equivariant Poincaré duality now tells us that it is an

epimorphism (see [20 or 12]). But we have just shown that it kills all but one of

the basis elements of R(Tn) as a module over R(U(k) x Tn~k), hence it must carry

that last basis element to a generator, i.e., a unit of the ring. That is, p(ek) is a

unit.    D

LEMMA 5.9. IfbE D~1MU^„ is an element in integer grading for which p(b)

is a unit, then b is a unit.

PROOF. Let b be the product of the elements in the En-orbit of b. Then

b E £>_1Mi/y(n) by 5.3.   p(b) is a unit since p(b) is, but p(b) E K^,,.   Write

b = m/d where m and d are in MUy,n, and d E D.  Then p(m) = p(d)p(b) is

a unit, and m E D.   Hence b is invertible in D~lMUy,,.   Since b divides b in

D~1MUtti, it must also be invertible.    D

Proof of Proposition 5.2. Notice that çk maps D_1Mt/*(l.)><r„_fc into

Rk (we could show, as in Proposition 5.3, that it is actually onto). By Lemma 5.8

and the fact that nk is multiplication by a unit, p{t^kr]ke2) is a unit. Since ^kT]kek

lies in integer grading, Lemma 5.9 shows that it is invertible in D^*MU^.n. We

claim that if m € Rk-i, then it can be written as

1      k~1

m =-2 Y" Çkrik(£kmi)elk
Ç.kVk£k   _
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where m¿ = c*k(e2 ■ • ■ e\    (i k)melA2 ' ■ 'e
„fc-ii If true, then we are done, since the

coefficients certainly lie in Rk.

Apply F and use Calculation 5.7 to examine the coefficients:

F£kVk4 = 6k&l

and

FÇkVk{ekmi) = 6kAk J^ (-l)wtmi<

where Afe = X)aeE (_l)'<T'<T(e2e3 " 'ek  *)•   Hence the coefficient of ek is, after

applying F,
1

i- z2 (-i)"1
—K <r€Zk

which is the quotient of determinants:

ami,

1    ei

1    e2

1    ek

(1 k)m   ei+1

e2~'    (2 Jfc)m    4+1

„7-1 m „¿+i

4-1
A-i

„fc-i

1      C!

1    e2

1    efc

e2
„fc-1

„fc-1

By Cramer's rule, this is the solution to the system of equations

fc-i

(j k)m = ^2 aie),        1 < 3 < k,
i=0

and the last of these is the equation we wish to hold true. Thus we have the equality

when F is applied, hence without it, and we are done.    D

COROLLARY 5.10.   MUÍn ®MU*      K*,,=K*,n.

PROOF. Propositions 5.2 and 5.3 show that the set {e22 • • -ej,"|0 < i3 < j — 1}

generates D~lMU^,n as a D_1Mi/^7n,-module. Since the elements of the same

name form a basis for Kt" as a module over K*j(n\, the result follows.    D

This completes the proof of Theorem B.
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