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1 Introduction

Let G be a compact, connected, simple Lie group and let m:P — S* be a
principal G-bundle over S 4. Since m(BG) = m3(G) = Z, we can classify the
principal bundle Py over $* by the map §* — BG of degree k. As Atiyah and
Jones [1] pointed out, %(G) = A,/ $°(P;) is homotopy equivalent to /G ~
$2!BG, that is, G ~ & (G), where A; is the space of the all connections
on P, and &°(P,) is the group of all base-point preserving automorphisms on
Py. In this paper, we study the homology with coefficient Z/(p) of the double
loop space and the triple loop space of SO{n). Especially the homology of the
triple loop space of SO(n) was one of the questions in [3] because it contains
the homological informations of .#2; (SO(n)), the moduli space of instantons for
SO(n) with instanton number k, by the natural inclusion i : .#4(SO(n)) —
%1 (SO(n)). For more informations we refer to [4].
Harris [6] proved that for p odd

SUQ@2n) =~, SUQn)/Spn) x Sp(n)
SU@Zn+1) ~, SUQRn+ 1)/SOQ2n +1) x SO2n + 1)

where ~, means the homotopy equivalence localized at p. But we already
know H*(.Q"SU(n);Z/(p)) when k& = 2,3 [8],[9]. From above facts we can
get H,(2SO(n); Z /(p)) easily for odd p. Therefore we concentrate on the
case at p = 2 . Since Spin(n) is the double covering space of SO(n) ,
22Spin(n) ~ 2°SO(n). Here we will study Spin(n) instead of SO(n).

First we compute the cohomology of {2Spin(n), and then using the the Serre
spectral sequence for the following fibraton

2Spin(n — 1) —  PSpin(n) — 25"

we compute H,(£22Spin(n); Z/(2)), and determine some of the Steenrod actions
on H,(122Spin(n);Z/(2)). By the Bockstein spectral sequence, we get also the
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2-torsion information for H,({22Spin(n); Z). The interesting fact of these compu-
tations is that the structures of H,(£22Spin(n); Z/(2)) depend on the congruence
of n mod 8. Similarly we compute the homology of £23Spin(n) ~ 2350 (n).

2 The basic facts and H*(§2Spin(n); Z/(2))

Let E(x) be the exterior algebra on x and P(x) be the polynomial algebra on
x and I'(x) be the divided power algebra on x which is free over +;(x) with
coproduct

AORE) =D AnmiX) ® (%)

i=0
and the product

i+j
7@y () = ( ! )m-+,-(x).
For (n + 1)—fold loop spaces, there are homology operations
Qi : Hy(2"™' X3 2/(2)) — Hagsi (2" X5 Z/(2)

defined for 0 < i < n which is natural for (n + 1)-fold loop spaces. Let Qf
be the iterated operation Q; ... Q;(a times). If G is a Lie group, G is homotopy
equivalent to 2BG. Hence @, is defined in H,(2*°G;Z/(2)) and Q5 is defined
in H,(£2°G;Z/(2)). Throughout this paper, the subscript of an element always
denotes the degree of an element, i.e. ,i is the degree of x;. We also recall the
following. Let V (x;, . .., x;) be the commutative associative algebra over Z/(2)
such that

L {Gu)%, ..., ()" : & = 0,1} is a basis.
2. () =x, if 2ij=i forsome 1 <s <t
(x;,)* =0 otherwise.

Choose s such that 25 < n < 2°*1. Then

H*(Spin(n);, Z/(2))
Sq7(x;)

]

Vil3<i<n-—1landi #2)®QE(2),
i 2.1
(r)x”"'

i

where |z] = 2°*! — 1. In fact we have the Steenrod actions on z [7]. But we do
not need it here. For small values of n, it is well known that

Spin(3) ~ 3

Spin(4) ~ S3x 83

Spin(5) ~ SpQ2)

Spin(6) ~ SU4)
Spin(Ny ~ (G2 xSy
Spin@®)py = (Spin(7) x ST

Now we will compute H*(£2Spin(n); Z/(2)).
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Lemma 2.2 H*({2Spin(8n);Z/(2)), n >0, is

Plasi—2:1<i <n)/(ag_5) @ I'ans2eax : 0 < k < (n — 1))
®I(cgn—212 : 0 < k < (4n —2), k#£3mod 4)
where v; is the power of 2 such that 8n < v;(4i —2) < 16n — 8.

H*(2Spin8n + 1),Z/(2)), n >0, is

Pasi—2:1<i <n)/(a_5) ® MNasmsarar - 0 <k < (n — 1))
R (Cgnek 1 O < k < (4n — 1), k#£2mod 4)
where v; is the power of 2 such that 8n < v, (4i —2) < 16n — 8.

H*(Q2Spin(8n +2),Z/(2)), n >0, is

Plasi—:1<i <n)/(ag_5) @ IN'Aanszear : 0 < k < (n—1))
@I (cgnsoion : 0 <k < (4n —2), k=t Lmod 4)

®,’ >0 P (v (ds, ))/(('72" (dsn ))4)
where v; is the power of 2such that 8n +8 < v;(4i — 2) < 16n

H*(2Spin(8n +3),Z/(2)) is

Plasi—2: 1 <i <n)f(ag_y) ® [Nasmarean 10 <k <n-1)
@I (cgnszak 1 0 < k < 4n, k¥ 1 mod 4)
where v; is the power of 2 such that 8n + 8 < y;(4i — 2) < 16n.

H*(25pin(8n +4);Z/(2)) is

P(agi—p: 1 <i <n)/(ag;_,)® I'anszear : 0 < k < n)
R (cgnirear - 0 < k < 4n, ki 1 mod 4)
where v; is the power of 2 such that 8n +8 < v;(4i - 2) < 16n.

H*(28pin(8n + 5);Z/(2)) is

Plagi—y: 1 <i <n)f(ay;_,) ® I'asnszear 1 0 < k <n)
RI'(Cape6aox 1 0 < k < 4n, k3 mod 4)
where v; is the power of 2 such that 8n + 8 < v;(4i — 2) < 16n.

H*(2Spin(8n + 6);Z/(2)) is

Plagi 2 1 <i<n+)/(ay_5) ® INasmserar 10 <k <n—1)
RI(Cgnres2k - 0 <k < 4n, k':‘ré 3mod 4)
&0 P (V2 (B8n4a)) /(72 (Bgnsa))®)
where v; is the power of 2 such that 8n + 8 < v;(4i — 2) < 16n + 8.

H*(2Spin(8n +T);Z/(2)) is

Plasi—2:1<i<n+1)/(ag_;)® I'Aanserar :0< k <n—1)
R (Cgnigsak : 0 < k <4n + 2, k":,c‘ 3mod 4)
where v; is the power of 2 such that 8n +8 < v;(4i —2) < 16n + 8.
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Proof. Let H*(£28";Z/(2)) = I'(a,—1). We will prove this lemma by induction
on k for H*(£28pin(k); Z/(2)). Assume that it hold for k¥ < 8r + 3. Remind that
Spin(3) ~ 253. For H*(2Spin(8n+4); Z/(2)), we have the following fibration

NSpin(8n +3) —  OSpin(8n+4) — 2§83,

Since both H*(£2Spin(8n + 3); Z/(2)) and H*(£25%+3,Z/(2)) are even dimen-
sional, the Serre spectral sequence collapses. There is no extension problem by
the dimension reason.

For next step consider the following fibration
NSpin(8n +4) —  2Spin(8n+5) — 25844,

1t is well known that H,(£25pin(8n +5); Z/(2)) concentrates in the even dimen-
sions [2]. Therefore so does H *(£2Spin(8n +5); Z./(2)). Since H*(£2534,2./(2))
contains an (8n + 3) dimensional element, we have the first non—zero differential
which comes from an (8n+2)-dimensional generator in H*(2Spin(8n+4);Z/(2))
and goes to ag,,3. But in H*(2Spin(8n+4); Z/(2)) we have two generators agy.2,
cgny2 Of that dimension. So consider the morphism of fibrations

28pin(8n +3) — Spin(8n+5) — (2Spin(8n +5)/Spin(8n + 3)

fl ! !
NSpin(8n +4) — 2Spin(8n +5) — 28 8n+4
9l ! hl
QS8"+3 — * —_ S8n+3.

From the naturality of the differential we have

]

h*(T(agn+2))
h*(x3n43)
0

T(g" (agn42))

,where H*(S%"*3;Z,/(2)) = E(xgys3) and 7 is the transgression. Hence we have
the differential with the source cg,.2 to ag,s3 and from v2(cg,42) 10 Cgn1208243
and so on. 7y« (ag,+3) survives permanently for i > 0. Put vy(asgn+3) = Ci6n+6 -

For H*({2Spin(8n + 6)) consider the following fibration
28pin(8n +5) — 2Spin(8n +6) — 2§,

By the same reason as the case H*({28pin(8n +4); Z/(2)), the spectral sequence
collapses. So we get that the E~term for H*(£2Spin(8n + 6);Z/(2)) is

Pag—2:1<i < n)/(aal,/,'i._z) ® I'(Qans2, Aans2, - - - Agne2) @ T'(agnaa)
Q®I'(cgnsss2k - 0 < k < 4n, k#3mod4)
where v; is the power of 2such that 8n + 8 < v;(4i — 2) < 16n.



Loop space of SO(n) 63

But in this case there are extension problems. We claim that (@ans2)® = agpia.
From H*(Spin(8n + 6); Z/(2)) we can compute Tor y«(spin(sn+6)(Z/(2), Z/(2)).
Since Sq*"*2x4,,3 = (i::g)xgﬁs = Xgnys in H*(Spin(8n + 6); Z/(2)) by (2.1),
(ans2)? = Sq*"asnsy = Sq¥"20(xans3) = 0(SG*"  xans3) = O(Xgnes) = Asnaa
where ¢ is the cohomology suspension. So (v (@4n+2))’ = Yo (agnea) foreach i >
0 and I'(@4n+2) ® I'(agye4) produces ®; 0P (Y2 (@an+2))/ (72 (@an+2))*) as an alge-
bra. Let  ®;>0P(V2(Aans2))/ (V2 (aaas2))) =  Plams2)/(@4,,) ®izo
P (721(a4n+2)) /(21 (@ans2))*) and let v2(@4ns2) = bgnsa. Hence we extend the
conditions: 1 <i <n+1, v;(4i —2) < 16n +8.

Consider the next fibration
2Spin(8n +6) — Spin(8n +7) — 2§85,

Since H*(£25%*%) contains ag,.s, we have the first nonzero differential from
bgnia 10 ag,.s and the next differentials from 7y2(bgni4) tO dguss - bgneq and so
on. Then (7, (bgq4))* survives permanently for each i > O but in fact, by the
previous step (v (bgn14))? = (Y21 (@4ns2))? = Yot (@gnaa) fOr i > 0. Y1 (Ggas) is
also permanent for each i > 0. Let (v, (bgnsa))? = Ciensg and Y2(a8n+5) = Cl6n+10 -
We can prove the other cases in similar way. The induction from
H*(2Spin(8n +i); Z/(2)) to H*(£2Spin(8n +1+1i); Z/(2)) is almost same as that
from H*(28pin(8n+4+i); Z/(2)) to H*(28pin(8n+5+i); Z/(2)). However, com-
pared with H*(2Spin(8n +6); Z./(2)), we have little different extension problems
for H*(£2Spin(8n +2); Z/(2)). Note that in H *(Spin(8n +2); Z/(2)) Sq*" xan+1 =
Xsn+1y S Xone1 = Xans1. SO Agn = 0(Xgas1) = (5S¢ x4n41) = S0 (X4ns1) =
5q*" (asn) = (a4n)* = (0(X401))* = (0(S¢*" x2041))* = (5¢*" a2,) = a3, In fact, the
difference come from the property of the number: 87 = 2%2n, 81 +4 = 2(4n +2).
0

Remark 2.3 If we use the Eilenberg—Moore spectral sequence of Steenrod mod-
ules converging to H*(£2Spin(n);Z/(2)) with E; = Tor ge(spintnyz/ 2y
(Z/(2),Z/(2)), then E, = E,, and after solving algebra extension problems by
the Steenrod actions we get the same result. So we can choose the primitive
generators a;, b;, ¢; such that o(x;) = ajzk where 28j =i — 1 or o(x;) = by
according to the dimension and o(z;) = ¢;—; and p(x,-zk) = cp;_y Where o is
the cohomology suspension and p(xizk) is the transpotence of x,?k. Note that a;
becomes the stable element.

3 The homology of £22Spin(n)

Theorem 3.1 There are choices of the primitive generators u;, v;, w; such that
as a Hopf algebra

H.(£2*Spin8n;Z/(2)), n > 0, is isomorphic to
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E(uss; :0<k <n—1)QPWgnisk—2:0<k <n-1D
P(Qftgniaxs1 @ 20,0<k<n -1
P(Qfwgn—342¢ @ > 0,0 <k <4n — 2 and k#3mod 4)

H, ($2Spin(8n +1);Z/(2)), n > 0, is isomorphic to

E(ape1 :0<k <n—1)QPWgnsgk—2:0<k <n—-1HQ
P(Q?u4n+4k+1 :a>20,0<k<n— 1)®
P(Qfws,—142x @ 20,0 <k <4n — 1 and k3 2mod 4)

H, (2% Spin(8n +2);Z/(2)), n > 0, is isomorphic to

E(uars1 :0<k <n—1D)Q@PWanigka6 : 0 <k <n —-2)Q
P(Qfuspstks1 :a,b>0,0<k <n-1HQ
P(Qfwsnszker a > 0,0<k <4n-—2and k=t 1 mod 4)
QRE(Qfwsn—1:a 2 0)® P(Q5vign-2:a 2 0)

H.(§2Spin(8n + 3); Z/(2)) is isomorphic to

E(uas1 :0<k <n—DO®PWgnsss :0<k <n—1HQ
P(Qfusniaes1 12 >0,0<k <n—-1HQ
P(QfWenszke1 - a > 0,0 < k < 4n and k= 1 mod 4)

H,($22Spin(8n + 4); Z./(2)) is isomorphic to

E(ugrs1 :0<k <n—1D)®PWsgnssks6 : 0<k <n -1
P(Qftaniars1 10 20,05k <)@
P(Qfwsnszks1 s a > 0,0 < k < 4n and k# 1 mod 4)

H,(£2°Spin(8n + 5); Z/(2)) is isomorphic to

Eugs1 :0<k <n—~1)®Pugnsss : 0k <n-1DQ
P(Qfusneakn1 1@ >0,0<k <n) @
P(Qfwgpessak 2 @ > 0,0 < k < 4n and k% 3 mod 4)

H,($2Spin(8n + 6); Z/(2)) is isomorphic to

E(ugis1 0 <k <n) Q@ P(vgnisiss : 0 <k <n -1 Q@
P(Q%Usniskes 1 a 20,0<k <n-DQ
P(QfWensssak ta 2> 0,0 < k < 4n and kF 3 mod 4)
®E(Q{* usns1 1 a > 0) ® P(QfVignss;a > 0)

H,(1228pin(8n + 7); Z/(2)) is isomorphic to
E(ugre1 10 <k < n) @ P(Ugnssiss 10 <k <) Q

P(Qftansakss 1 a > 0,05k <n—-1DQ
P(Qfwspsssiox a2 0,0<k <4n+2and k=t 3mod 4)

Y. Choi
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Proof. Recall that there is a choice of a generator ¢, _; such that H,(£228";Z/(2))
is isomorphic to P(Qft,_»la > 0),n > 2 as a Hopf algebra. We will compute
H,(£2’Spin(m)) by induction on m by studying the Serre spectral sequence for
the fibration

2Spin(m) — 22Spin(m+1) — (P2S™,

Note that £22Spin(3) ~ £2°S3. Hence we can start the induction.

(Case 1). From H,(£22Spin(8n +3); Z/(2)) to H.(£22Spin(8n + 4); Z/(2)).
Consider the map of fibrations

Q3S 8n+3 * .QZS 8n+3

! !
2Spin(8n +3) —>  2Spin(8n +4) — 2§,

We know that the source of the first non—trivial differential is an indecompasable
element and the target is a primitive element in the spectral sequence of a Hopf
algebra. But in H,({22Spin(8n +3); Z /(2)) there is no 8n—dimensional primitive
element. So in the Serre spectral sequence for the second row, 7(ig,41) = O.
From the commutativity of the diagram and the naturality of the Dyer— Lashof
operation, the spectral sequence of the second row fibration collapses and we let
tgns1 = Ugn+1. Note that Spind ~ §3 x 3.

(Case 2). From H,(£2*Spin(8n + 4); Z/(2)) to H.(£2*Spin(8n + 5); Z/(2)).
Consider the map of fibrations
Q3S 8n+4 — * — QZS 8n+4

7] | I (3.2)
2. 2
DSpinBn +4) L5 PSpin8n +5) L5 25

We will show that the first differential of the spectral sequence of the second
row fibration is not zero. Assume that it is zero. Then we have a surjection
2>, from H,(£2*Spin(8n +5); Z/(2)) onto H,({22S8*4,Z/(2)) sending (8n +2)
dimensional element, we call it xg,42, tO tg,4+2. But we have the map of fibrations

Q2Spin(8n +5) —s (258

! l
* e *
! !

QSpin(8n +5) 25 nsEn,

By naturality,
(£27)4(0(xgn42)) = 0(t8n42) # 0

Therefore o(xgy.2) should be non-zero odd dimensional primitive element in
H.(28pin(8n + 5); Z/(2)). But H,(2Spin(8n + 5); Z/(2)) concentrates in even
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dimensions, so this is a contradiction. Thus we have nonzero first differential
from tg,42 to a (8n + 1) dimensional primitive element, however, we have two
primitive elements ug,.), Ws,+1 of 8n+1 dimension in H*(QZSpin(8n +4), Z/(2)).
Consider the morphism of fibrations

PSpin(8n +3) — 2Spin(8n +5) —  2*Spin(8n + 5)/Spin(8n +3)

! ! !
228pin(8n +4) — (PSpin(8n +5) — 225844
9] ! bl
QZS 8n+3 — * —_ (OAY 8n+3

G5 (T(tgne2)) = T(hi(tgn+2)). We can check easily from the Serre spectral sequence
of the third column fibration that A,(1g,.2) = 0 . So g.(7(tgn+2)) = 0. From the
Case 1 we know that g.(ugs41) = tgn+1. Hence we should choose wg,4 for
the target of the first differential in the second row spectral sequence. Since
T(Q¢(tgnr2) = fulQftsns)) = QF(fultgnr)) = Qfwsnnr in (3.2) , P(Qfwiner :
a > 0) is contained in ker(£2%i),. Next we claim that Ox(ws..1) = 0. If so,

in 3.2 7(Qi(t8n+2) = filQ2tgne1) = Qalfilign+1)) = Qrwsnsr = 0. Then we get
the conclusion as we expect. From now on we will show that Qx(wsn.1) = 0.
Consider the following fibration

P Spin(8n +5) —> Spin L~ PSpin/Spin(8n +5).

By the Eilenberg-Moore spectral sequence converging to H,(§22Spin(8n +
5HZ/(2)

CotorH»(2Spin /Spin@n+SYZ/@D)(H (122Spin; Z/(2)), Z/(2))
CotorH=(2*Spin [Spin®n+SYZ/ @)/ 11-(Z,/(2), Z,/(2) (3.3)
QH,(§2Spin; Z/(D\\f+ -

E;

This is a spectral sequence of Hopf algebras but it depends on the coalgebra
structure.

Now we will compute H,(£22Spin /Spin(8n + 5);Z/(2)). First consider the
following fibration

Spin(8n +5) — Spin — Spin/Spin(8n +5).

Since H*(Spin(8n +5);Z/(2)) = V(x;|3 <i < 8n+4andi # 2)® E(z) and
H*(Spin;Z/(2)) = V(x;li > 3andi # %), H*(Spin/Spin(8n + 5);,Z/(2)) =
Vli >8n+5andi # 2)® P(z'), where |z] = 21 —1,2° < 8n +5 < 2%
andr(z) =z .So 8n+5 < |z’| < 16n +10. From the Steenrod actions on x; (2.1)
we get

H*(Spin /Spin(8n +5); Z/(2)) = P (xgusssak [k 2 0) ® P(Vsns6s2[0 < k < dn +1)
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where we put xg,.6+2k = Ysns642¢ and 7 = yasst. Using the Eilenberg—Moore
spectral sequence with the path loop fibration converging to H *(£2Spin /Spin(8n+
5):Z/22),

1

Ey Tor g+ (spin/spin@n+s)z/2n(L/(2), L/ (2))
E(agniasn [k > 0)®

E(w8n+5+2k|0 <k <dn+1).

By the bidegree reason the spectral sequence collapses from E,—term. But since
the Eilenberg—Moore spectral sequence preserves the Steenrod actions, we have
the following extensions. Sq¥***¥*ag, 4 = Gignesear » that is, a3 40 =

aien+s+ak for k > 0. Hence we get

H*(28pin /Spin(8n + 5); Z/(2)) = P(aguserar : k > 0)®
P(zgnarar 0 <k <2n) ® E(w8n+5+2k10 <k<d4n+1)

where we put dg,.4.4k = Zgn+a+ar - FOr the next step consider the morphism of
fibrations

2Spin  —  (2*Spin [Spin(8n +5) — 2Spin(8n +5)

l | !
2 Spin  —— * — 2Spin
i { !

* —  2Spin/Spin(8n +5) — (2Spin/Spin(8n +3).
From Lemma 2.2 H*(£25pin(8n + 5),Z/(2)) is

P(asi—2:1<i <n)/(a;_,) ® I'(asnsrear : 0 < k <)
QI (cgnrsear - 0 <k < 4n, k$3mod 4)
where v; is the power of 2such that 8n +8 < v;(4i —2) < 16n

and we know that H*(2Spin;Z/(2)) = P(asi_2 : i > 1) and
H*(2*°Spin; Z/(2)) = E(eqi—3 : i > 1) where o(as—2) = e4;_3.

Studying the behaviors of the the Serre spectral sequence of the second row
fibration and the third column fibration and the naturality of the differentials, we
have

) ay-a 1< <@2n+1)
T(e4j-3) = { 0 J>Q@n+1)

in the Serre spectral sequence converging to H *(£22Spin /Spin(8n + 5);Z./(2))
of the top row fibration and ai’;jzlelu_g survives permanently for 1 < i < n.
We put a"{;__zle4i_3 = gui—2w,—1, 1 <1 < n. asi—peq 3 is also permanent for
n+1 <i <2n+1 and let ay;—es; -3 = gg;i—s. We also have a permanent element
Yo(asi—o) forn+1 <i < 2n+1 and let v2(as;—2) = ¢si—4. Then I'(cg;—4) 18 also
permanent, n + 1 < i < 2n + 1. From above, we get the following E—term for
H*(12*Spin /Spin(8n + 5); Z,/(2)) in the Serre spectral sequence for the top row
fibration
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Eoo = E(egnssrak -k > 0)®E(gsi-s:n+1<i<2n+1)
E(qui-2w-1:1<i <n)@ [cgneasz : 0 <k <dn+1).

Here we can check that {gui—2,—1 : 1 <i < n}is {Ggns7, g8n+155- -+ 1 q16n-1}-
In fact, in the Serre spectral sequence of the second column path loop fibration

0(agni6eak) =  €8naseak
O(Z8n4d+4k) =  q8n+3+dk
O(Wen4532k) =  C8n+a42k-

Now we will solve the extension problem. By the dimension reason only
possibility is whether g2, = O or not. Assume that g2, # 0. Then g3,
should be Ciense, that is, Sg¥*3gsnss = Cienss. Since Sg%*3 = Sq'Sq¥+2,
Sq%*2gs,s # 0. But ejgnes is the only primitive element of that dimen-
sion. The fact that Sg¥*2ggns3 = €i6nss imply that Sg¥"*2zg,.s = aienss i
H*(2Spin/Spin(8n + 5);Z/(2)). This implies that Sg¥*’Xgms = Xigns7 in
H*(Spin /Spin(8n + 5);Z/(2)). However from the Steenrod action (2.1 ) in
H*(Spin;Z/(2)) we have Sq%*2xg,.s = (;)x16n+7 = (. This is a contradiction.
Hence there is no extension and we get H *(£22Spin /Spin(8n +5); Z/(2)). Since
every generator in H*(£2°Spin /Spin(8n + 5); Z/(2)) is the image of the coho-
mology suspension, it is primitive. Passing to homology, we get

H.($2*Spin /Spin(8n +5);2/(2)) = E(ugnssear 1 k 2 0)®
E(sgnszaar 1 0 <k <2n)®
P(dgniase :0 <k <dn+1)

,where < Ugnisedk, €aneseak >= 1, < Sgua3ed, Gnsdsar >= L,

< dyneason, Cansarak >= 1. Here <, > is the natural pairing of H, and H*. Hence
every generator in H,(£2*Spin /Spin(8n +5); Z/(2)) is primitive. So back to (3.3)
we have

H,(§2Spin /Spin(8n +5), Z/(2))] [fx =
E(sgnizear - 0 <k <2n) @ P(dgnrase 10 < k <dn+ 1),
H.(Spin; Z/)\\fx = E(ugis1 1 0 < k < 2n).

Hence

E, = CotorH(¥Spin/Spin®mS5Z/D)(H, ((2Spin; 1/(2)), Z/(2))
= Cotor!=(2 Spin/Spin®n+5):L/ @)/ /f. (Z/(2),Z/(2))
®H, ($2*Spin; Z/))\ \fe
= P(Ugpeaear 1 0 <k 2@
P(Qfwspizazr 2@ > 0,0 < k <dn+1) @ E(uges1 1 0 Sk < 2n).

For some technical reason, we express E, like

E(uagsr :0< k <n— 1) QE(ugneraar : 0 <k <n) @ P(Ugnanas 1 0 <k <n)®
P(gnsssr :0 <k <n—1)Q@P(Qfwsnsassk -2 20,0<k <n)
®P(Qf wan4ss2k @ > 0,0 <k < 4n and k% 3 mod 4).

(3.4
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This is the same size as the E ,—term of the previous Serre spectral sequence
converging to H,(£22Spin(8n +5) in (3.2) under the assumption that Qy(wg,.1) =
0. Now we go back to the original question of deciding whether Q,(wsg,41) is
0 or not for wg,,; in H*(QZSpin(8n +4);Z/(2)). Assume that it is not zero.
Then Qy(wen+1) = (Uans)* because (ug,41)* is only the primitive element at that
dimension. So in the bottom row fibration of (3.2), we have

7(Q1(t8n+2) = Q2(Wne1) = (Uansy)*.

That means that the Eilenberg—Moore spectral sequence of (3.4) have a dif-
ferential from wigms t0 (Vgus2)®. But the bidegrees of wig.es and (Vgns2)?
are (—1,16n + 6) and (—2,16n + 6). So there can not exist a differential
from wignss t0 (vgns2)?. Therefore Qy(wg,.1) = 0. Hence we finish the proof
of Case 2. In fact the result says that the above the Eilenberg-Moore spec-
tral sequence collapses from E; but has extensions, (Usniax+1)® = Usassksz fOr
0 < k < n and we have the choices of the primitive generators us,.4x+1 SO that

E (Usn1a241) R P(Vgn48k+2) P (QF Wanask+3) produces P(Qf uapak1) for0 <k <n
in H,(£22Spin(8n +5); Z/(2)) .

(Case 3). From H,(£22Spin(8n +5); Z/(2)) to H.(£22Spin(8n + 6);Z/(2)).
Consider the morphism of fibrations

D3Spin /Spin(8n +5) Lo PSpin(8n+5) — PSpin

{ l I
23Spin /Spin(8n +6) — (PSpin(8n +6) — (2’ Spin

QZS 8n+5 — QZS 8n+3 _ LE

Look at the spectral sequence of the first column fibration. By the connectivity
of £23Spin /Spin(8n +5) and §2°Spin /Spin(8n + 6) we have non-zero differential
from tgny3 in H, (22585, Z/(2)) to the (8n +2) dimensional element, we call it
tgns2, in H, (£2°Spin /Spin(8n + S);, Z/(2)). Consider the spectral sequence of the
first row fibration. Since there does not exist 8z + 3 dimensional indecompasable
element in H,(§22Spin; Z/(2)), t3ns2 SUIVives ,i.€. , fu(tsns2) # 0. So in the spectral
sequence for the second column fibration

2Spin(8n +5) — (PSpin(8n +6) — 22§85 (3.5

by the naturality of the differential, we have nonzero first differential from
Lgn+3 10 fi(tgns2). Since the target of the first differential is the primitive element,
the only possible element is (i4,,1)* by the dimension reason. From the Cartan
formula for the Dyer—Lashof operations ( See p 217 {5]),

Q1 ((Uans1)?) 201 (Uan+1)Qo(ttans1) =0
Qx(u2,.1) 205 (tan+1)Q0(Mans1) + Q1 (Uan+1)*
+ Uap i1 A2(Uan 1, Uan s Yban+1

Q1 (Uans1)*.

]
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Similarty

1l

(Qf+lu4n+l)2 ya 2 0
0,a>0.

Qx((Qf uan1)?)
O1((Qf usn1)?)

Note that @, is the top operation. Thus we should consider the Browder operation
Ao, But if p =2, Ao(x,x) = 0. So we get the following differentials in the Serre
spectral sequence for the fibration (3.5).

T(bes"ﬁ) = Qg(uz%nﬂ) = (Q{z“4n+l)2 ,az0
T((Qf ign+3)?) 0,a>0.

This imply that P((Qizl,g,,+3)2 :a > 0) and E(Qfup. : a > 0) are the per-
menant cycle in the spectral sequence. Let (igns3)* = Vienss. Hence we get the
H,(§22Spin(8n + 6); Z/(2)).

1l

(Case 4). From H,(£2°Spin(8n + 6); Z/(2)) to H,(£2*Spin(8n + 7); Z/(2)).
Consider the following fibration

PSpin(8n +6) — (2°Spin(Bn+7) — 22586, 3.6)

Using the same method as case 2 or case 3, we can show that we have the first
nonzero differential from ig,,q in H,($2°S%+5,Z/(2)) to Qittans1, since Qyuans1
is the only (8n +3) dimensional primitive element in H,(£2*Spin(8n +6); Z./(2)).
From the commutativity of the Dyer-Lashof operation with the homology sus-
pension and the naturality of the Dyer-Lashof operation,

T(Q3L8n+4) = Qla+lu4n+l ,a 2> 0.

Since there is no (16n + 8) dimensional primitive element, Q»(Q;u4,41) = 0. So
Q1(tgn44) is the permanent cycle and let Q(tgnsa) = Wigns9. Since (Q%ugne1)? =0
for a > 0 in H.($22Spin(8n + 6);Z/(2)), Q¢ usni108t8nss, a > 0, are also
permanent cycles and

(QF 410§ tgnsa)* = 0.

_ 1 _ na.,
Let OQ1uans1t8ns4 = Wiens7> 50 QF Uans1Q tensa = Of wigns7. Hence we get that
E. is

E(uars1 1 0 <k <n) Q@ P(vgnsskss : 0 <k <n)Q
P(Qftansarss :a 20,0 <k <n—1DQP(Qfwienss : a > D
P(Qfwspesik 12 2 0,0< k <4n and k E,é 3 mod 4)
E(Qfwigns7 : a 2 0) @ P(Q5  vignes5a > 0).

(3.7

We claim that there are the following extensions:

(Qf wiens7)? = (QF vi6ns6) ,a > 0.

From Lemma 2.2, H*(2Spin(8n + 7Y, Z/(2)) 1is
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Plasi—2:1<i<n+1)/(as )@ 'danserax :0 <k <n-—-1)
QI (Cgnyssre : 0 < k < dn+2, k$3m0d4)
wherey; is the power of 2 such that 8n + 8 < v;(4i — 2) < 16n + 8.

Using the Eilenberg-Moore spectral sequence converging to H,({22Spin(8n +

HZ/(2)) .

Ey = Exty-qspingneyz/nE/(2),2/(2))
= EQusgsr 1 0<k <0)®
P(vgneskr6 1@ > 0,0 <k <n)®
P(Qfugniakss 1a > 0,0 <k <n - D®
P(Qf Wansss2k 1@ > 0,0 <k <4n +2 and k#3 mod 4).

However the size of this E;—term is the same as the E..—term of the Serre
spectral sequence (3.7). This means that above the Eilenberg—Moore spectral
sequence collapses from the E,~term and in other side, the E—term of the Serre
spectral sequence have the extensions as we claimed. So we get the conclusion.
Note that QrVigns6 = (Wien+7)"

The other four cases is almost same as the previous four cases. In case 7 if
we keep the track of the computation we can observe that Q(vg,—2) = w%,,#l in
H, (22Spin(8n + 1), Z/(2)). |

Remark 3.8 In fact, if we use the Eilenberg-Moore spectral sequence with

E; = Exty«spinmnyz/2)(L/(2), L/(2)) for H,(£2*Spin(n); Z/(2)), the above the-
orem says that the Eilenberg—Moore spectral sequence collapses from E,—term.
So we can choose u;, v;, w; such that < u;,o(a;4) >=1, < w;,o(civ1) >= 1,
< Upkj_g, p(a,-zk) >= ] where g; and ¢; are the elements of Lemma 2.2 and o is
a cohomology suspension and p is a transpotence.

Next we will determine some of the Steenrod actions for H,(£2%Spin(n); Z/(2))
as follows.

Lemma 3.9
442
Sqltun = (" s
]
Sq24 ey = (4£;1+ ) Ot —ai—1
Sq¥wmms = (™ 2 YWamer—2i i =0,2,3 (mod 4)
Sq) Wame1 = Vgmas -

Proof. First, Steenrod actions for the stable element u,, is come from Steenrod
actions for H,(22Spin;Z/(2)) = H.(U /Sp; Z/(2)). The relation between v and w
come from the following argument. As we mentioned in last part of the proof for
Theorem 3.1, we can observe that Q»(vg;.s) = (wgi47)>. By the Nishida relation,

SqiQavsive = D (;fzﬁj)QZjSinzi+6
(vsis6) + 0259 vsiss.

]

But Qquj vgi+6 = 0. For if it were not zero, by the dimension reason the only
possible case would be that Sqlugie = ws;ss and 0259l vgie = (vgise)?. By
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the Nishida relation Sqg2Qywsiss = Q25qlwgiss = 0, since there is no (8i + 4)
dimensional primitive in each case. On the other hands Sq2v, ¢ = (Sq.vsis6)* =
(wsiss)®. This is a contradiction. Now SgX(wgiv7)* = Sq2Q0x(vsive) = (vsise)™.
Since (Sg)wsis1)? = Sq2(wsis1)?, Sqiwsisr = vsive-

Now turn to other relations. The Lemma 2.2 and Theorem 3.1 say that if we
use the Eilenberg-Moore spectral sequence twice with E; = Tor p«(spin(nyz/2))
(Z/(2),Z/(2)) for H*({2Spin(n);Z/(2)) and with E; = Tor g«aspin(n)z/2)
(Z/(2),Z/(2)) for H*(£22Spin(n); Z/(2)), both the Eilenberg-Moore spectral se-
quences collapse from E,-terms. Moreover the Eilenberg—Moore spectral se-
quence is the spectral sequence of Steenrod modules. So we can prove the
other relations from the Steenrod actions for H *(Spin(n); Z/(2)) and the Nishida
relations. Here we assume that above relations of the Steenrod actions hold
for H,($2*Spin(k); Z/(2)) for k < 8n and will prove the Steenrod actions for
H,(12°Spin(8n + 1); Z/(2)). The other inductive steps are almost same. We will
determine the Steenrod actions for wje,—3 using the naturality of the Steenrod
operations for the following fibration

DSpin@dn +1) — PSpin(8n+1) -5  (22Spin(8n +1)/Spin(dn + 1).
By the same computation as Theorem 3.1 we have choices of the generators

H, (2% Spin(8n + 1)/Spin(4n + 1), Z/(2))
=P(Qf2n_1+i Q= 0,0<i<4n—1).

From the Steenrod actions for H*(§0(n); Z/(2)) we can get Steenrod actions for
H,($22Spin(8n+1)/Spin(4n+1); Z/(2)) = H.(£2S0(8n +1)/SO(4n+1); Z/(2)):
(4n+lj4-i—j

Sqhzan—14i ) 2an14i—j 0 < i < dn — 1 especially
Sqlzans = Zanam-1,0<k <2n-1.

(3.10)

From above fact and the knowledge of H,(£2°Spin(4n+1); Z/(2)) and H,(£22Spin
(87 + 1); Z/(2)) we have the following differentials

_ Van-2 , R€ven
T(@n-1) = { u}_, ,nodd
_ Wap —1 B n:e\}en
T@n) = Oiugs_1 , niodd
T(uns) = 0
T(Zans2) = Wann

Then z2,_ 14> O 2an—14sis QF 2ansair Qfzans1sai a0d Qf*'2aniz0ai survive
and become vgn1gi—2, Of Wensgi—1 » OFf Wen48i+1, OF an+aivy and OF wenysiss, for
a>00<i<n-—1in H(2Spin(8n + 1);Z/(2)). First we claim that
Sqlwign—3 = 0. If it is not zero, the only possibility is Sqlwien—3 = v&,_,.
Then Sg}f,(Wign—3) = fu(0R,_5), 80 Sq)Q128n—2 = (zan—1)*. But by the Nishida
relation, in H,(£22Spin(8n + 1)/Spin(4n + 1); Z/(2))
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SqlQizgn—2 = (?’L'zj-z)szSq{;ZSn%
(8n - 2)282,’_2
0.

i

Hence Sq)wign—3 = 0. So SqgZ* wign—3 = SqZ Sqlwien—3 = 0. For Sg2 wien—3
we consider

Sq¥Q1z8n—2 = 2 (8" ' 2‘)Qmj 2i8Ghz8n 2
0159, 2802
(** ") Q1z8n-i-2 by (3.10).

Hence by the naturality of the Steenrod operation

{ (Zni_i)wlﬁn —2i—3 i
(n ’)QtuSn —~i—=2 i

1f

1t

0,2,3 mod 4

5q2 wi6n-3 1 mod 4

o

O

Corollary 3.11 The 2-torsions of H,(§2*Spin(8n +i); Z) are of order 2 if i # 2,6
and H.(£2*Spin(8n +i);Z) has the 2—torsions of order 2 and order 22 ifi =

Proof. We will prove this by the Bockstein spectral sequence converging to
H,(£2°Spin(8n); Z) with E; = H.(£2*Spin(8n); Z/(2)). By the Nishida relation

8¢ 0 ugniars1 = QoQfUansaknr ,a>0,0<k <n-—1
Sq* a+1w8"___3+2k = QOQ;IWSn-—fH-Zk ,a Z 0,0 S k < 4n — 2 and k¢3 mod 4.

And by Lemma 3.9
Sqiwgnisk-1 = Ugnam—2 ,0<k<n—1.
Hence

Ey = E(aga :0<k <n - 1)@ EQUanars1 0k <n—1)
QFE(way—3ac : 0 <k <2n - 1).

Therefore E; = Eo. So the 2—torsions of H,.(§22Spin(8n); Z) are of order 2. We
can prove the other H,(£22Spin(8n +i);Z) for i = 1,3,4,5,7 in the same ways.

For H,(£2*Spin(8n +2); Z), Ey = H.(£2*Spin(8n + 2); Z/(2)).
Like above case we get

Ey = E(uge1 102k <n—1)QEWpars1 05k <n - 1)®
E(Waperear 10 <k <2n - 1DH®
E(Qfws,—1 ® P(Q51en-2:a >0).

Consider the following fibration

2SpinBn +1) — PSpin(8n +2) — (22§84
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The behaviors of the Serre spectral sequence for the above fibration are exactly
same as the Case 3 of the proof for Theorem 3.1, ie. , we have

T(tgn—1) = Ugn-2
Q8 18, _1) (Qf wgu—1)* ,a > 0.

Note that Q»(vg,—2) = (W 1) in H,(£22Spin(8n +1); Z/(2)). Here (QF tg,-1)%,
a > 0, survives and become QFvign—2, @ > 0, in H,(£2°Spin(8n + 2); Z/(2)).
Since Sq!Qfwgu—1 = (Qfws.—1)® in H.(Q*Spin(8n + 1);Z/(2)) and
5q100 g, 1 = (Qf tgn—1)? in H($228%*1,Z/(2)), by the Bockstein Lemma
we get

1l

BIQf wga-1)) = (QFvien—) @ >0. (3.12)

Therefore

Ey = E(uga:0<k<n-1QEpara :0<k <n—-1®
E(wsnii4ak : 0 <k <2n — 1)@ E(wgn—1).

So E; = Eo,. That means that H,(£2°Spin(8n +2); Z) has the 2-torsions of order
2 and order 22. We can also prove this for H,(£2°Spin(8n + 6); Z) by the same
method. W]
The proof of the above Corollary implies the following well-known fact.

Corollary 3.13

S0Q2n+1) ~p $3x8§7x...x 8§41
SO02n+2) =~ §3 % 8T x ... x Sl g+l

4 The homology of £23Spin(n)

In this section we will compute H,,(.QgSpin(n); Z/(2)) by studying the Serre
spectral sequence for the fibration

PSpin(m) — PSpin(m+1) — 2S™.

Recall that H.($35%Z/(2)) = P(QFQ2[1] * [-2°**] : a,b > 0), where
2383 is the zero component in £2°S? and [1] is the image of the generator in
Hy(S%Z/(2)) for the map: S® — §2°S® and * is the loop sum pontryagin
product. Let H, (28" Z/(2)) = P(Q¢ Q% tn_3 1 a,b > 0), n > 3.

Theorem 4.1 There are choices of the generators x;, y;, z; such that as an alge-
bra
H.(§23Spin8n;Z/(2)), n > 0, is isomorphic to

PO : 1<k <n—1)Q@P(Qfysnsk-3:a200<k<n-1DQ
P(OfQ%x4nsar 2,0 >0,0<k <n—-1DQ
P(QFQ228n a2 s a,b > 0,0 <k < 4n —2and k= 3 mod 4)
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H.($3Spin(8n + 1); Z/(2)), n > 0, is isomorphic to

Pag: 1<k <n—-1)Q@P(Qfysnisk—3:a>0,0<k <n—-1DQ
PQ{ Qb xapiar a0 >20,0<k <n—-1HQ
P(QEQl z4n—2s2t - ayb 20,0 <k < 4n — 1 and k% 2 mod 4)

H*((ZSSpin(8n +2%,Z/(2)), n > 0, is isomorphic to

POg : 1<k <n—1)Q@P(Qfysnisks5s:a >0,0<k <n-2)Q
POf Q% xanaak a,b 20,0<k <n-DQ
P(Qlanzgmzk 2a,b>0,0<k <4n-—-2and k1 mod 4)
QP(Q%zsn—2 1 a > 0) ® P(Q{ QL yion—3 1 a,b > 0)

H.(§3Spin(8n + 3); Z/(2)) is isomorphic to
Pge 11 <k <n—1)Q@P(QfYsnsgkss :a>0,0<k <n—-1Q
P(QfQ%xapsar :a,b >0,0<k<n—-1DQ®
P(Q? 0l 28ns2k 1 a,b > 0,0 <k < 4n and k= 1 mod 4)
H*(.QSSpin(Sn +4Y,Z/(2)) is isomorphic to
Py : 1<k <n—1D)Q@P(Ofysnssies 10 20,0<k <n -1
PO{ QO xansak a0 > 0,0<k <m)Q
P(QF Ol 28nsak 1 a,b > 0,0 < k < 4n and k3 1 mod 4)
H.(§23Spin(8n + 5); Z/(2)) is isomorphic to
Pg: 1<k <n—1D)@P(Ofygnsskss : 2 >20,0<k <n -1
P(Qf Q% Xaneai 1 a,b > 0,0<k <n) @
P(QP Ol 2gniasni - a,b > 0,0 < k < 4n and k= 3 mod 4)
H.(£23Spin(8n + 6); Z/(2)) is isomorphic to
Py : 1 <k <n)@P(Qfysnaskes :a 20,0k <n— DR
P(Q{QF Xansaira 0,0 20,0<k <n -1
P(Q% Q2 Zgneavk  a,b > 0,0 < k < 4n and k= 3 mod 4)
QP(Q5 Xan 1 a > 0) ® P(Qf OFi6nss : a,b > 0)
H*(Qgspin(Sn +7), Z2/(2)) is isomorphic to
POxg : 1 <k <n)@P(Qfysniskss 1a > 0,0<k <n)@
P(QF Q2 xansapsa 1 a,b > 0,0<k <n -1
P(Q?Q%zgnsasak 1 a,b > 0,0 <k <4n+2 and k3 3 mod 4)

When n =0,

75
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P(QfQ%x0:a,b > 0)
P(Q8Qbrz0:a,b > 0)
P(Q{,‘“xo a>0)

P(QfQII1] % [-2**"]:a,b > 0)
P(QfQF1] *[~2°*") 1 a,b > 0)
P(Q3 (1] *[-2D:a 2 0)

In fact, if we use the Eilenberg—Moore spectral sequence with
Ey = Cotor g (2spinnyz/ )L/ (2), Z/(2)), the above results say that spectral
sequence collapses from the E;—term. So we can choose the generator x;, yi, %
such that

o(x;) = tiv1, 0 = Vigp, 0(Z;) = Wiy,

Proof. We will prove this theorem by the induction on £, i.e., from H.(23Spin
8n +k);Z/(2)) to H*(.QSSpin(Sn +k +1);Z/(2)). Like the double loop case
we will prove four cases when k = 0,1,2 and 3. The proofs of the remain 4
cases, when k =4,5,6 and 8, are almost same as above k =0, 1,2 and 3 cases.
Consider the morphism of fibrations

PSpin/Spin(8n +k) 1> Q2Spin(Bn+k)  — Q3Spin
! ! I

P Spin /Spin(8n +k +1) — (BSpin@Bn+k+1) — (23Spin
l
3 S 8n+k _— (95 S Sn+k . %

By the connectivity of H,(£2°Spin /Spin(8n + k + 1)) we have the non-trivial
differential from tg, _3.4 t0 a (871 —4+k)—dimensional element, we call it cg, 4.4k,
in H,(£2*Spin /Spin(8n + k); Z/(2)) for the Serre spectral sequence of the first
column fibration. Here we exclude the case from Spin3 to Spin4. In that case the
result comes from the fact Spind ~ Spin3 x Spin3. Since there is no (8n —3+k)
dimensional generator in H,(2>Spin) fork =0,1,2 fi(cgn—au) #0,k =0,1,2,
So by the naturality of the differential there is nonzero differential from tg,4x—3
to a (82 +k —4) dimensional primitive element in H*(QgSpin(Sn +k);,Z/(2)) for
k =0, 1,2 for the following fibration

QSpin@n +k) Zh DBspin@n+1+k) L5 dssrk,

(Case 1) k = 0. We have the nonzero differential from tg,_3 to a (8n —4) dimen-

sional primitive element in H*(QgSpin(Sn); Z/(2)). But we have two possible
elements xg,_4, Zgn—4 iN H*(.QSSpin(Sn); Z/(2)). By the same method as Case
2 in the proof of Theorem 3.1, we should choose zg,-4. Since H, (12388 =
P(Qftgn—3:a>0)QPQyQS gy 3 :a,b > 0),

T(Q§(ten—3)) = Qf(zgn-a),a 20
T(Qf (t8n—3)) Q%(z8,-4),a 2 0.

For next we will prove that Q3(zs,—4) = 0. Assume that it is not zero. Since
Q378,—4 is primitive, by the dimension reason the only possible case is that
03(z8n—4) = OQ1Ys8n—3. By the Nishida relation,

(4.13)
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SqiQsz8n-4 = 3 (81’1_—2]?)Q2+2jsq{;z&'2—4 + A3(8G.1 280 -4, Z8n—a)
(8n —2)0228,-4 =0.

Note that Sq:zg,,_4 = 0 because there is no (87 — 5) dimensional primitive
element in H,(§23Spin(8n); Z/(2)). But

54:Q1ysn—3 = 3, (%'L}?)szSqi)’sM:a
(8n — 3)Qoysn—3 = (y8n—3)2 ‘_;é 0.

This is a contradiction. So we get Q3(zs,—4) = 0. Hence Ker (£°i), = Qf Q% zg,_4,
a,b > 0, and QfQ2(Qais,—3) are permanent cycles for a,b > 0. Let
Q2(t8n-3) = Zi6n—4-

(Case 2) k = 1. Since yg, -3 is the only 8n — 3 dimensional primitive element in
H*(.QSSpin(Sn +1);Z/(2)), there is the nonzero differential from tg,_> 10 yg, 3.

T(Q§(tgn-2) = Qf(sn—3)a > 0.
We claim that Qayg,—3 # 0.
547083 = 3 (i'i‘zf)Qijqiysn_a
+A3(59.Ly8n—3, 59 yan-3)

) Qiysn—s + (*'57) 2389 ysu—3
Q1ysn—3 # 0.

Hence Q3(yg,-3) # 0. Note that Sql ysn—3 = 0. If it is not zero, Sqiygn_3 = Xgn—4
by the dimension reasion. Then in H,(£2’Spin(8n + 1);Z /2) Sqlvgn_p =
54 0(sn-3) = 0(Sqlysn—3) = 0(xsn_s) = ug,_3, where o is the homology
suspension. However from Lemma 3.9 Sqlwg,_; = vg,_». Since Sq!Sq! = 0,
0= Sql8q}ws,_1 = Sqlvg,_2 = ug,_3. This is a contradiction. So Sgys,_3 = 0.
By the dimension reason Q3(ys,—3) = Q1(Zgn—2).

Next we claim that Q»(vg,—3) = 0. By the Nishida relation, we have

Zj (?'1_-2;)Q2+2jsq{*)’8n—3
+A3(5¢ . Y8n—3, Yan—3)

= (8n — D(rysn-3

= Q2y8n—3-

8q103y8n—3

On the other hand,

54.03Y8n-3 = S$qiQi%8n-2

¥ (5 QuiSdiasn—
(8n — 2)Qozsn-2

= 0.

i

For next we will prove that Q3(Q3ys,—3) # 0.
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54203(Q3ysn-3)

i

2 lgﬁi;jz)Q1+2qui(Q3}’8n—3)
+A3(5¢.1(Q3¥8n—3), S4.4(Q3¥8n—3))

= () 010y 3 + (%47 03591 Qayen -3
Q103¥8n -3

Qizsn—2) #0.

Hence Q3(Qs3ys,-3) # 0. Note that Sq,}(Q3yg,,_3) = 0. Then by the dimension

reason Q3(Q3ygn—3) = Q1(Q2z8n—2)-
Next we claim that Q;(Q3ys,—3) = 0. By the Nishida relation, we have

54, Q3(Q3Ysn—3) Y (751 Q2127544 (Q3y8n )
+A3(8¢. (O3Y8n—3), Q3¥gn—3)
(16n — DQ2(Q3y8n—3) = Q2(Q3¥8n—3) ,

]

[t}

and
Sql03(Q3ysa-3) = Sql01(Qozsn—2)

> (lléf;jz)QZJS‘Ii(szsn—z)
(16n — 2)Qo(Q228n—2)
= 0.

il

In the same method we can prove that

05" (ysn—3) = 01Q%(zgn—2) ,a >0
02(0F ¥sn—3) 0,a>0.

So we have for a,b > 0

T(QEQ  (18n-2)) = QFQL(Ysn—3)
T(QF1 Q2 (184—2)) 0.

Hence Ker(2%i, contains P(QfQtys,—3 : a,b > 0), ie., P(Qfygn-3 : a > 0)
and P(Q7*'Q%zg,2 : a,b > 0). Qfzs,—2 are permanent cycles for a > 0.
Q{'“Qé’ tgs—2 are also permanent cycles for a,b > 0. By the same method as
above we can show that Q¢*'Qfug, > = QF Q2 Qitgn—2. Let Qiign—2 = Yien—3.
In fact, by the Adem relation Q3Qi8,—2 = 1Qztg,—2 and Q3Qiign—2 =
03(030118r-2) = Q3(Q1Q2t8s—1) = A301(Qatgn—2) = Q102(Q208,-2) . Induc-

tively we also get QF*1 Q% 15,2 = 07 QY Q118,—2. So we get the conclusion.

]

(Case 3) k = 2. We have the differential from tg,_; to zg,—». Then

T(Qf(tgr—1) = QF(z8n-2)-

We will show that Q1zg,—2 = 0. Assume that Q25,2 # 0. By the dimension
argument Q128n—2 = Y16n—3. BY the Nishida relation

SqeQozan—2 = 3 (?’S})Qmﬁqﬁz:;n—z
Q1281~2 = Yi6n—3 -

il
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This would imply that in H,(£2%Spin(8n +2);Z/(2))
Sql 0wy, -1 = Sq}o(Qrz85—2) = 0(Sq) Qrzgn—2) = T(Ygn-3) = Vien—2 -
But from (3.12), we know that 32Q wg,_; = Vigz—». Hence Q1zg,2 = 0. Since
Q328:—2 = 0 by the dimension reason, 7(Qatgn—1) = 0. Let Opign—1 = 216, and
Q3Y16n—3 = Y32n—3. Thus we get that the Eo—term for H,(£23Spin(8n +3); Z/(2))
is

Pla : 1<k <n—1)QP(Qfysnssrss :a >0,0<k <n-1DQ
PQf Q%xaniar a,b >0,0<k <n—-1HQ
PO/ Qb zgnik @b > 0,0 <k <4n—2and k# 1 mod H®
P(Q%((tgn—1)* 1 a = 0) @ P(Qf QY y3on—3 : a,b > 0) ® P(Q? Qzi6n 1 a,b > 0).
“4.2)

In other sides using the Eilenberg—Moore spectral sequence converging to
H..($23Spin(8n +3);,Z/(2))

E, = CotorH,,(Qz(Spin(8n+3)<3>);Z/(2))(Z/(2), Z/(2)
=  CotorEWa1<k<n—1)®P (Vgnigrss 0Sk <n—1)Q

PO Uansak+1:a20,0<k <n—1H®

P(Q} wepaake1:a>0,0<k <4n and «#1 mod 4)(Z/(2), Z/(z))

where Spin(8n + 3) < 3 > is the 3—connected cover of Spin(8n + 3). Hence we
get Er—term is

Pl : 1<k <n—-1D)QPQfysnssss:a>0,0<k<n-1DQ
P(QfQ%%snstr 0,6 >0,0<k <n—-1DQ® (4.3)
P(Q?Q228ns2x 1 a,b > 0,0 <k <4n and k1 mod 4).

This E;—term is the same size as the E—term of the previous spectral se-
quence (4.2). This implies that the Eilenberg-Moore spectral sequence(4.3) col-
lapses from the Ey~term and we get the result as we want. In fact, there is a choice
of generator zg,-» such that P(Q%(tsx—1)* : a > 0)QP(QFQly32,—3 :a,b > 0)
becomes P(Q?Q%z16n—2 : a,b > 0) in H, (§23Spin(8n +3), Z/(2)).

(Case 4) k = 3. There is no 8n — 1 primitive element in

H..(£23Spin(8n +3); Z/(2)). Therefore the Serre spectral sequence collapses from
E,—term. 0
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