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Abstract

Many interesting spectra can be constructed as Thom spectra of easily constructed bundles. Ma-
howald [2] showed that bu and bo cannot be realized as E1 Thom spectra. We use related techniques
to show that tmf (2) also cannot be realized as an E1 Thom spectrum.

1 Introduction
Theorem 1.1. The spectrum tmf (2) is not a Thom spectrum of anH-map from a loop space to BGL1(S).

We will prove this by contradiction. We show:

Proposition 1.2. Suppose that Z is a loop space and f ∶ Z → BGL1(S) is an H-map such that the Thom
spectrum of f is tmf (2). Then there are spaces X and Y with cell structures as in Section 1 and a map
g∶ Σ8X → Y such that the cohomology of the cofiber C has a cup product x9x13 = x22 where x9 ∈
H9(C;ℤ), x13 ∈ H13(C;ℤ), and x22 ∈ H22(C;ℤ) are generators.

Proposition 1.3. Suppose X and Y are spaces with cell structures as in Figure 1, suppose g∶ Σ8X → Y
is any map and C is the cofiber of g. Then there is a space D with H∗(D;ℤ) ≅ ℤ{x9, x13, x22} and a map
D → C inducing a surjection on cohomology.
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Figure 1: The cell structures of spaces X and Y .
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Figure 2: The cell structures of X′ and Y ′.

If we take the map g to be the map produced in Proposition 1.2, then the resulting space D has a perfect
cup pairing x9x13 = x22. James has a classification theorem that says what attaching maps and cup product
structures are possible on 3-cell CW complexes [1, Theorem 1.2]. Using this we show:

Proposition 1.4. Suppose D is a space with H∗(D;ℤ) ≅ ℤ{x9, x13, x22} and Sq4(x9) = x13 where xi
denotes the image of xi under the reduction map H∗(D;ℤ) → H∗(D;ℤ∕2). Then x9x13 = 2kx22 for some
k ∈ ℤ.

Propositions 1.3 and 1.4 show that the conclusion of Proposition 1.2 is a contradiction, which proves
Theorem 1.1.

1.1 Comparison to Mahowald
Our argument is closely based on Mahowald’s argument in [2] that bo is not a Thom spectrum. For com-
parison, we reformulate Mahowald’s argument in a parallel form to ours to make the similarities and the
differences apparent. Proposition 1.2 is an analogue of:

Proposition 1.5 ([2, Discussion on page 294]). Suppose that Z is a loop space and f ∶ Z → BGL1(S) is
anH-map such that the Thom spectrum of f is bo. Then there are spaces X′ and Y ′ with cell structures as
indicated in Section 1.1 and a map Σ4X′ → Y ′ such that the cohomology of the cofiber C ′ has a cup product
x5x7 = x13 where x5 ∈ H5(C ′;ℤ), x7 ∈ H7(C ′;ℤ), and x12 ∈ H12(C ′;ℤ) are generators.

Proposition 1.3 is an analogue of:

Proposition 1.6 ([2, Lemma 3 and discussion on page 294]). Suppose g∶ Σ4X′ → Y ′ is any map and C ′
is the cofiber. Then there is a space D′ with H∗(D′;ℤ) ≅ ℤ{x5, x7, x12} and a map D′ → C ′ inducing a
surjection on cohomology.

Again taking g to be the map produced in Proposition 1.2, then the resulting space D′ has a perfect cup
pairing x5x7 = x12. This means that D′ is an S5 bundle over S7. The 7-cell in D′ is attached to the 5-cell
by an � so D′ has no section. Mahowald deduces a contradiction:

Lemma 1.7 ([2, Lemma 4]). Every 5-sphere bundle over S7 has a section.

The proof of Proposition 1.2 is exactly the same as the proof of Proposition 1.5, we merely fill in de-
tails. The proof of Proposition 1.3 is completely different from the proof of Proposition 1.6. The analog of
Lemma 1.7 in our setting would state that every 9-sphere bundle over S13 has a section, but this is false –
using [1, Theorem 1.2], it is possible to show that there exists a space D withH∗(D;ℤ) = ℤ{x9, x13, x22},
with D(13) ≃ C(2�9) and with x9x13 = x22. This is an S9 bundle over S13 with no section. We deduce
Lemma 1.7 from the following analog of Proposition 1.4:
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Proposition 1.8. Suppose D′ is a space with H∗(D′;ℤ) ≅ ℤ{x5, x7, x12} and Sq2(x5) = x7 where xi
denotes the image of xi under the reduction mapH∗(D′;ℤ)→ H∗(D′;ℤ∕2). Then x9x13 = 2kx22 for some
k ∈ ℤ.

Proof that Proposition 1.8 implies Lemma 1.7. A 5-sphere bundle over S7 is a space D′ with a 5-cell, a 7-
cell, and a 12-cell, where in H∗(X), x5x7 = x12. Such a space has a section if the attaching map S6 → S5
of the 7-cell is null. Proposition 1.8 says that the attaching map cannot be �5, so the remaining possibility is
that it is null.

Mahowald has a different proof of Lemma 1.7.
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2 Proof of Proposition 1.2
For a space X let X(d) denote the d-skeleton of X and let X(d) denote the cofiber of the inclusion map
X(d−1) → X.

Proof of Proposition 1.2. Suppose thatZ is a loop space andZ → BGL1(S) is anH-map such that the Thom
spectrum is tmf (2). Then H∗(Z; F2) ≅ F2[x8, x12, x14, x15, x31,…] where under the Thom isomorphism
H∗(Z) ≅ H∗(tmf (2); F2) = F2[�81 , �

4
2 , �

2
3 , �4, �5,…], the class xi maps to the multiplicative generator of

H∗(tmf (2); F2) in the same degree. BecauseZ is a loop space, the inclusionZ(15) → Z of the 15 skeleton of
Z extends to a map f ∶ ΩΣZ(15) → Z. Let F be the fiber of f and let F = F (25). Let g∶ ΣF → ΣZ(15) be
the adjoint to inclusion of fiber map F → Z(15). The Steenrod action on the homology of ΣZ15 shows that
it has the cell structure indicated for the space Y , so we can take Y = ΣZ15 and X = Y(13). By Lemmas 2.1
and 2.2, we are finished.

Lemma 2.1. There is a unique space X with cell structure as in Section 1. In the context of the proof of
Proposition 1.2, ΣF ≃ Σ8X.

Proof. Suppose X1 and X2 are two spaces with the cell structure as in Section 1. Since the bottom cell of
X is in dimension 13 and the top cell is in dimension 16 < 2 × 13 − 1, there is an isomorphism [X1, X2]→
[Σ∞+X1,Σ∞X2] so it suffices to show that Σ∞X is uniquely determined by its F2 cohomology. The E2 page
of the Adams spectral sequence Ext(H∗(X1; F2),H∗(X2; F2)) is displayed in Figure 3, and the (−1)-stem is
empty, so X is uniquely determined by its cohomology.

So to show ΣF ≃ Σ8X it suffices to check that thatH∗(ΣF ; F2) ≅ H∗(Σ8X; F2). We are computing the
fiber of f ∶ ΩΣZ(15) → Z through dimension 23. The homology H∗(ΩΣZ(15); F2) is the free associative
algebra onH∗(Z(15); F2) andH∗(f ; F2) is the map F2⟨x8, x12, x14, x15⟩ → F2[x8, x12, x14, x15, x31,…] from
the associative algebra to the commutative algebra with kernel generated by commutators, surjective through
dimension 30. Thus, f is 20-connective and since Z is 8-connective, and the sequence 0 → H∗(F ) →

H∗(ΩΣZ(15))→ H∗(Z)→ 0 is exact through dimension 27. Thus,H∗(F ) = F2{[x8, x12], [x8, x14], [x8, x15]},
where the coaction comes from the coaction on the xi’s. We conclude thatH∗(ΣF ; F2) ≅ H∗(Σ8X; F2).
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Lemma 2.2. In the context of the proof of Proposition 1.2, the space C has cohomology ring as follows:
H∗(C; F2) = F2{�9, �13, 
15, �16, �9�13, �9
15, �9
16}. The Steenrod action is generated by Sq4(�9) = �13,
Sq2(�13) = 
15 and Sq1(
15) = �16.

Proof. The fiber sequence F → ΩΣZ(15) → Z deloops to F ′ → ΣZ(15) → BZ, so F = ΩF ′. Let ℎ∶ F →

ΩΣZ(15) be the inclusion of the fiber. The map g∶ ΣF → ΣZ(15) is the composite ΣF → F
′
→ ΣZ(15).

Since the composition F
′
→ ΣZ(15) → BZ is null there are maps in the following diagram:

ΣF ≃ ΣΩF
′

C

F ′ ΣX C ′

BZ

where C ′ is the cofiber of F ′ → ΣX. I claim that the maps C → C ′ and C ′ → BZ induce isomorphisms
in cohomology in degree ≤ 22. Since BZ is 9-connective and F ′ is 21-connective, by [4, Theorem 6.1]
the map C ′ → BZ induces an isomorphism in cohomology through degree 21 + 9 − 1 = 29 and the map
ΣΩF ′ → F ′ induces an isomorphism in cohomology through degree 21 + 20 − 1 = 40 so the map C → C ′
induces an isomorphism in cohomology through dimension 41. It remains to compute the cohomology of
BZ in this range. The homology ofZ is polynomial, so the cohomology is a divided power algebraH∗(Z) =
Γ[y8, y12, y14, y15, y31,…] so it follows thatH∗(BZ) = Λ(�y8, �y12, �y14, �y15, �y31,…).

3 Extracting the three-cell complex
In this section we prove Proposition 1.3. We show in Lemma 3.2 that any composite Σ8X → Y → X
is a smash product � ∧ idX for some � ∈ �8(S). Let i∶ S21 → Σ8X be the inclusion of the bottom
cell. In Lemma 3.4 we show that because the map Σ8X → Y → X is a smash product, any composite
S21 → Σ8X → Y → Y(15) is null, We deduce that g◦i factors through the 21 skeleton of the fiber of
Y → Y(15), which is C(�9) by Lemma 3.3. From this we deduce Proposition 1.3.

Lemma 3.1. The map �8(S)→ [Σ8X,X] given by � ↦ � ∧ idX is injective.

Proof. First note that since X has its bottom cell in dimension 13 and Σ8X has its top cell in dimension 23
which is less than or equal to 2 × 13 − 2, there is an isomorphism [Σ8X,X]→ [Σ∞+8X,Σ∞X]. I claim that
the further composition �8(S) → [Σ∞+8X,Σ∞X] → [Σ∞+8X,Σ∞S16] is injective, where the second map
is squeezing off to the top cell of X. Let A = Σ13DΣ∞X, which has the following cell structure:
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1
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Figure 3: The E2 pages of the Adams spectral sequences computing �∗F (Σ∞X,Σ∞Y ) (top) and �∗F (Σ∞X,Σ∞X) (bottom).



The map �8(S) → [Σ∞+8X,Σ∞X] → �8(A) is induced by the inclusion of the bottom cell of A. Thus, we
need to show that no Atiyah Hirzebruch differentials hit �� or � on the bottom cell of A. The first differential
is multiplication by two, and since �8(S) is all two-torsion, this does not hit anything. The second differential
is given by the Toda bracket ⟨−, �, 2⟩ ∶ ker(�∶ �6(S) → �7(S)) → �8(S). Since �6(S) consists just of �2,
it suffices to show that the Toda bracket

⟨

�2, �, 2
⟩

= 0. By shuffling,
⟨

�2, �, 2
⟩

= ⟨�, ��, 2⟩ = 0 because
�� = 0, and the indeterminacy is the image of �2 and 2 in �8 which is trivial.

Lemma 3.2. The image of �8F (X, Y )→ �8F (X,X) is contained in the image of the map �8S → �8F (X,X)
– that is, they are maps of the form � ∧ idX .

Proof. Refer to Figure 3. By Lemma 3.1, the two classes labeled �� and � are the images of ��, � ∈ �8(S).
Note that the 8-stem in Ext∗∗(H∗X,H∗X) is ℤ∕2{�, ��, c} so that �8F (X,X) is either (ℤ∕2)2 or (ℤ∕2)3
depending on whether or not the class c supports an Adams d2 hitting 8�. If it does support such a differ-
ential, the map �8S → �8F (X,X) is surjective and we’re done. Otherwise, it suffices to show that c is
not in the image of the map p∶ �8(Σ∞X,Σ∞Y ) → �8(Σ∞X,Σ∞X). I claim that for all x in the 8-stem of
Ext∗∗(H∗X,H∗Y ), �x is detected in filtration at least 4. Since �c is nonzero and in bidegree (11, 3), this
implies that c is not in the image of p. To see that �x is detected in filtration at least 4 note that � multiplica-
tion on the 8-stem is zero in the associated graded, so multiplication by � raises filtration by at least 2. This
implies that �x cannot be the class in (11, 2). Since the class in (11, 3) is 256-torsion, it can’t be divisible by
� so �x is detected in filtration at least 4 as needed.

Lemma 3.3. Let F be the fiber of Y → Y(15). Then F (21) ≃ C(�9).

Proof. Since the composite C(�9) = Y (13) → Y → Y(15) is null, there is a natural map C(�9) → F . We
compute the Serre spectral sequence for the cohomology of the fiber sequence F → Y → Y(15) and see that
the map C(�9)→ F is an equivalence through degree 22. See Figure 4.

Lemma 3.4. There is a commutative square:

S21 C(�9) D

Σ8X Y Cg

where rows are cofiber sequences, the map S21 → Σ8X is the inclusion of the bottom cell and the map
C(�9) → Y is the inclusion of the fiber of Y → Y(15). The map D → C is an isomorphism in cohomology in
degrees 9, 13, and 22.

Proof. By Lemma 3.2, the composite Σ8X → Y → X is a smash product � ∧ idX for some � ∈ �8S. We
get a commutative square:

S21 S13 ∗

Σ8X Y X X(15)

�

Σ8i i
g

�∧idX
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Figure 4: The Serre spectral sequence for F → Y → Y(15)

thus the composite of g◦Σ8i∶ S21 → Y with the projection Y → Y(15) is null and factors through the fiber F
of Y → Y(15) = X(15). In fact it factors through F (21) ≃ C(�9). Thus there is a map ℎ making the following
diagram commute:

S21 C(�9)

Σ8X Y

ℎ

g

The map S21 → Σ8X is an isomorphism in cohomology through dimension 21, and the map C(�9) → Y is
an isomorphism in cohomology through dimension 13 and also in dimension 22, so the map D → C is an
isomorphism in cohomology in dimensions 9, 13 and 21.

Proposition 1.3 is an immediate consequence of Lemma 3.4.

4 Unstable calculations to prove Proposition 1.4
The main ingredient of Proposition 1.4 is the following theorem of James, which tells us which cup product
structures on 3-cell complexes exist. Suppose that K is a three cell CW complex with cells in dimension q,
n, and n + q. For � ∈ �n−1Sq and m an integer, say that K has type (m, �) if the attaching map of the n
cell to the q cell is given by � and the integral cohomology H∗(K;ℤ) = ℤ{xq , yn, zn+q} has cup product
xqyn = mzn+q .

Theorem 4.1 ([1, Theorem 1.2]). Let � ∈ �n−1(Sq) where n − 1 > q ≥ 2. Let [�, iq] denote the Whitehead
product of � and a generator iq ∈ �q(Sq). There exists a complex K of type (m, �) if and only if m[�, iq] is
contained in the image of left composition with �: �∗ ∶ �n+q−2(Sn−1)→ �n+q−2(Sq).

We apply this with � = �9 to show that no three-cell complex of type (1, �9) exists, which is a reformu-
lation of Proposition 1.4:
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Proposition 4.2. A three cell complex D of type (m, �9) exists if and only if m is even.

Lemma 4.3. The map �9 ∶ �20(S12)→ �20(S9) is zero.

Proof. According to [3, Theorem 7.1], �20S12 = ℤ∕2{�12, �12}. By [3, Equations 7.18], �6◦�9 = 2�6◦�14
so suspending this gives �9◦�12 = 2�9◦�17. According to [3, Theorem 7.1], 2�7 = 0 so �9◦�12 = 0.

By [3, Lemma 6.4], �12◦�13 = �12 + �12. Since �6◦�9 = 0, we see that �9◦�12 = �9◦(�12 + �12) =
�9◦�12◦�13 = 0.

Lemma 4.4. The Whitehead product [�9, i9] is of order two.

Proof. First note that [�9, i9] = [i9, i9]◦�17. By [3, Theorem 7.1], �17S9 = ℤ∕2{�9, �9, �9◦�16}, where
under suspension �10 = �10 + �10◦�17. By [3, Theorem 7.4], �20S9 = ℤ∕8{�9}⊕ ℤ∕2{�9◦�17}, where the
element �9 is stably P (�) and �9◦�17 is in the kernel of suspension. According to [3, Equation 7.1], [i9, i9] =
�9 + �9 + �9◦�16 is the nonzero element of the kernel of suspension in �17S9. Since �16◦�17 = 0 = �9◦�17,
we have [�9, i9] = [i9, i9]◦�17 = �9◦�17 is the nontrivial element of the kernel of suspension in �20S9.

Proof of Proposition 4.2. We apply Theorem 4.1 with q = 9, n = 13, � = �9. By Lemma 4.4, the Whitehead
product [�9, i9] is a nonzero two-torsion element, but by Lemma 4.3, the image of �9 ∶ �20S12 → �20S9 is
zero. A type (m, �9) complex exists if and only if m[�9, i9] = 0 which is true when m is even.
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