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ABsTRACT. We establish the flat cohomology version of the Gabber—Thomason purity for étale
cohomology: for a complete intersection Noetherian local ring (R, m) and a commutative, finite,
flat R-group G, the flat cohomology Hi (R, G) vanishes for i < dim(R). For small 4, this settles
conjectures of Gabber that extend the Grothendieck-Lefschetz theorem and give purity for the
Brauer group for schemes with complete intersection singularities. For the proof, we reduce to a
flat purity statement for perfectoid rings, establish p-complete arc descent for flat cohomology of
perfectoids, and then relate to coherent cohomology of Ai,¢ via prismatic Dieudonné theory. We also
present an algebraic version of tilting for étale cohomology, use it reprove the Gabber—Thomason
purity, and exhibit general properties of fppf cohomology of (animated) rings with finite, locally free
group scheme coefficients, such as excision, agreement with fpqc cohomology, and continuity.
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1. ABSOLUTE COHOMOLOGICAL PURITY FOR FLAT COHOMOLOGY
1.1. Purity theorems

Purity in algebraic and arithmetic geometry is the phenomenon of various invariants of schemes
being insensitive to removing closed subsets of large enough codimension, perhaps the most basic
instance being the Hartogs’ extension principle in complex geometry. Our main goal is to exhibit
purity in the context of flat cohomology, more precisely, to show that on Noetherian schemes with
complete intersection singularities, flat cohomology classes with coefficients in commutative, finite,
flat group schemes extend uniquely over closed subsets of sufficiently large codimension. In its key
local case, this amounts to the following vanishing (see Theorem 7.1.2 for a general global statement).

Theorem 1.1.1 (Theorems 6.2.3 and 6.2.7). For a Noetherian local ring (R, m) that is a complete
intersection' and a commutative, finite, flat R-group scheme G,

Hi(R.G) =0 for {’. =dmliy
1 < dim(R), if R is reqular and not a field.

Theorem 1.1.1 is the flat cohomology version of absolute cohomological purity” for étale cohomology
that had been conjectured by Grothendieck. The latter, stated in Theorem 1.1.2, was proved by
Gabber: first in [Fuj02] by building on the K-theoretic approach of Thomason [Tho84], and then
again in [[LO14, exposé XVI]| in the framework of general structural results on étale cohomology
of Noetherian schemes. We give a third proof that uses perfectoid techniques to reduce to positive
characteristic.”

Theorem 1.1.2 (Theorem 3.1.3). For a regular local ring (R, m) and a commutative, finite, étale
R-group G whose order is invertible in R,

H.(R,G) =0 for i< 2dim(R).

Gabber used Theorem 1.1.2 to deduce the case of Theorem 1.1.1 when the order of G is invertible
in R in [Gab04b, Theorem 3|. We review one such deduction based on the Lefschetz hyperplane
theorem in local étale cohomology in §3.2. Since the Lefschetz isomorphism range is roughly in
degrees < dim(R), the weaker condition i < 2dim(R) is specific to Theorem 1.1.2.

Theorem 1.1.1 for regular R was conjectured in [Popl9, Conjecture A.1| and desired reductions
quickly lead to including complete intersections (see Lemma 4.1.12). In unpublished work, Gabber
obtained it for G = Z/pZ and also for G = p, with ¢ < 3 by building on the combination of perfectoid
techniques that were used to settle the complete intersection case of the weight monodromy conjecture
of Deligne in [Sch12] and the purity for the Brauer group conjecture of Grothendieck in [Ces19).

The following corollary of Theorem 1.1.1 settles conjectures of Gabber [Gab04b, Conjectures 2 and 3|.

Theorem 1.1.3 (Theorems 7.2.1 and 7.2.5). Let (R, m) be a Noetherian local ring that is a complete
intersection and let Ug := Spec(R)\{m} be its punctured spectrum.

(a) If dim(R) = 3, then Pic(UR)tors = 0 (recall that if dim(R) = 4, then even Pic(Ugr) = 0).

1Recall that (R, m) is a complete intersection if its completion is a quotient of a regular ring by a regular sequence.
2In the terminology of [SGA 2y, exposé XIV, théoréme 1.10] or [SGA 41, exposé Cycle, rappel 2.2.8], vanishing of
cohomology with supports in low cohomological degrees as in Theorems 1.1.1 and 1.1.2 goes by the name semipurity,
as opposed to purity that would also include high cohomological degrees. In this article, for the sake of brevity, we do
not make this distinction.
3A proof that uses perfectoids was also discovered by Fujiwara.
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(b) If dim(R) = 4 or if both R is regular and dim(R) > 2, then Br(R) — Br(Ug).

The parenthetical aspect of (a) is the Grothendieck—Lefschetz theorem [SGA 2., exposé XI,
théoréme 3.13 (ii)|]. Although the statement of Theorem 1.1.3 (a) is relatively basic, we do not know
how to argue it without ideas that go into proving Theorem 1.1.1. Nevertheless,

o its case when R is a quotient of a regular local ring by a principal ideal (the hypersurface
case) was settled by Dao [Daol2, Corollary 3.5], who even found a version for vector bundles;

e its case when R is an Fp-algebra was settled in [Gab04b, Theorem 5 (1)| (also in [DLMI0,
Corollary 2.10]); and

e its case for torsion of order invertible in R was settled in [Rob76] (also in [SGA 2y, exposé X,
théoreme 3.4|).

Theorem 1.1.3 (b) reproves the purity for the Brauer group from [60819] and extends it to schemes
with complete intersection singularities. In the cases when R is an Fj-algebra or when dim(R) > 5,
this extension was obtained by Gabber in [Gab04b, Theorem 5|. For regular R, even though the
proof is more complex than the one in [Ces19], it does not require treating the case dim(R) = 3
separately (this case was settled in [Gab81, Chapter I, Theorem 2’| and used in [60519] as an input).

The global version of Theorem 1.1.3 (b) may be formulated as follows.

Theorem 1.1.4 (Theorem 7.2.8). For a Noetherian scheme X and a closed subset Z < X such that
each Ox . with z € Z is either a complete intersection of dimension = 4 or reqular of dimension > 2,

Hz(Xa Gm)tors o H2 (X\Z’ Gm)tors-

As for Theorem 1.1.1 itself, except for its assertion about the cohomological degree i = dim(R) that
requires further arguments, we exploit a suitable version of André’s lemma to eventually reduce
the key case when G is of p-power order with p = char(R/m) > 0 to the following purity for flat
cohomology in an (integral) perfectoid setting (for a basic review of perfectoid rings, see §2.1.2).

Theorem 1.1.5 (Theorem 6.1.2). For a perfectoid Zy-algebra A, a commutative, finite, locally free
A-group G of p-power order, and a closed subset Z — Spec(A/pA) such that depth,(A) = d in the
sense that there is an A-reqular sequence a1, ...,aq € A that vanishes on Z, we have

HL(A,G)=0 for i<d.

For instance, a basic case is when A is a perfect F)-algebra. Then, by results of Berthelot [Ber80], Gab-
ber (unpublished), and Lau [Laul3], such A-groups G are classified by their crystalline Dieudonné
modules M(G), which are p-power torsion, finitely presented W (A)-modules (that is, Aj,(A)-
modules) of projective dimension < 1 equipped with semilinear Frobenius and Verschiebung endo-
morphisms F' and V. We use this classification to describe the flat cohomology with coefficients in G
in terms of the quasi-coherent cohomology with coefficients in M(G): we show in Theorem 4.1.8 that

RT(A,G) = RT' z(Aine(A), M(G))V L. (1.1.6)

Since p is a nonzerodivisor in Aj,¢(A), the sequence p,aq,...,aq is regular in Ay ¢(A) and vanishes
on Z. By expressing M(G) as the cokernel of a map between finite projective Aj,s(A)-modules, we
may then deduce the vanishing of the right side of (1.1.6) in the desired range of degrees from the
fact that “enough depth” implies the vanishing of quasi-coherent cohomology with supports.

An analogous argument proves Theorem 1.1.5 in general, except that now the key formula (1.1.6)

lies significantly deeper. To make sense of it, we replace crystalline Dieudonné theory used to

define M(G) by its prismatic generalization developed in [ALB23|, which built on the classification
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of G in terms of M(G) over perfectoid rings due to Lau and the second named author [Laul3],
[SW20, Appendix to Lecture 17]. Our strategy for settling (1.1.6) in general is to first show that
both of its sides satisfy hyperdescent in the p-complete arc topology of Bhatt—Mathew [BM21]
(reviewed in §2.2.1) and to then use the resulting ability to replace A by a p-complete arc cover
to reduce to the case when A is a product of perfectoid valuation rings with algebraically closed
fraction fields, a case that admits a reasonably direct argument. With (1.1.6) in place, the regular
sequence p,arp,...,aq gets replaced by &, a1, ..., aq, where £ is a generator of Ker(6: Aj,s(A) — A)
(that is, £ is an orientation of the perfect prism that corresponds to A), and the same depth argument
gives Theorem 1.1.5.

Overall, a critical point of the proof of Theorem 1.1.1 is the implication
depthz(A) > d = depthy(Au(4)) > d+1,

where we understand depth, naively, that is, in terms of regular sequences. Indeed, in the end it
seems critical to work over Aj,¢(A)—direct reductions of Theorem 1.1.1 to positive characteristic, in
cases in which they are available, seem to always produce a “one off” cohomological degree problem,
and hence to not give optimal statements. For instance, under the weaker assumption dim(R) > 5,
Gabber proved Theorem 1.1.3 (b) in [Gab04b, Theorem 5| by first reducing to p-torsion free R and
then further to the complete intersection Fy-algebra R/p of dimension > 4.

1.2. Flat cohomology of animated rings

The p-complete arc hyperdescent for the flat cohomology side of the key formula (1.1.6) is a major
portion of the overall argument of Theorem 1.1.1, a portion for which we resort to flat cohomology
in the more flexible setting of derived algebraic geometry (as defined in §5.2.5). For the latter, we
use simplicial rings, for which we decided to use different terminology than the usual one because
we believe it to be confusing to continue calling the objects of the resulting co-category “simplicial
rings”—certainly, we do not think of them as simplicial objects in the category of rings.”

We refer to the oo-category obtained from simplicial rings (resp., simplicial abelian groups; resp., sim-
plicial sets, etc.) by inverting weak equivalences as the oo-category of animated rings (resp., animated
abelian groups; resp., animated sets, etc.). In the background there is a general “free generation
by sifted colimits” procedure described in §5.1.4 that from any reasonable category € produces an
oo-category Ani(%), the animation of €, that contains € as full subcategory: Ani(%) is nothing
else than a “nonabelian derived category” in the sense of Quillen, compare with [HTT, Section 5.5.8].
The inclusion € < Ani(%) has a left adjoint m: Ani(%) — %.

For example, the oo-category of animated sets (the case ¥ = Set) is exactly the oo-category of
“spaces” in the sense of Lurie. We prefer the term “animated set,” or “anima” for brevity, suggested
by the general naming convention: we believe the term “space,” whose origins seem to be historical,
to be highly nondescriptive—it is arguable whether something as combinatorial as a simplicial set
should count as a space, and also note that “spaces” in the sense of Lurie do not have an underlying
set of points. Philosophically, “anima’” means something like “soul”—and, indeed, the functor from
topological spaces to their homotopy category extracts something like the soul of a space: it only
remembers data independent of any worldly representation in terms of physical points.

4The following standard example explains why we do not like to think in terms of simplicial rings: if A, is a
simplicial ring, then any scheme X gives rise to the simplicial set X (A.); however, for general X this functor does
not preserve weak equivalences. There is another functor A — X (A) whose input is a simplicial ring up to weak
equivalence and whose output is a simplicial set up to weak equivalence. This functor is slightly tricky to define in the
simplicial language, but it is the one that will be relevant to us.
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The animation procedure is quite powerful: for example, the co-category of pairs consisting of an
animated ring A and an animated A-module (also known as a connective A-module) is obtained by
animating the usual category of rings equipped with a module. In particular, by passing to the fibre
over any given animated ring A, we obtain the oo-category of animated A-modules. Derived tensor
products (of animated modules or animated rings) are obtained by animating the usual functors.’

We show the following properties of fppf cohomology of animated rings with coefficients in commuta-
tive, finite, locally free group schemes. These properties are new already for usual commutative rings
but their proofs greatly benefit from the flexibility of the more general setting: intermediate steps,
such as passage to derived p-adic completions or derived base changes, leave the realm of usual rings.

Theorem 1.2.1 (Theorem 5.4.4 with Lemma 5.4.3). For a ring R, a map f: A — A’ of animated R-
algebras, and a finitely generated ideal I = (a1, ...,a,) < mo(A) such that f induces an isomorphism
after iteratively forming derived a;-adic completions fori=1,...,r,

RT[(A,G) = RU[(A,G) for every commutative, finite, locally free R-group G.

For instance, this excision result allows us to replace R in Theorem 1.1.1 by its completion R.

Theorem 1.2.2 (Theorem 5.5.2). For a ring R and a commutative, finite, locally free R-group G,
the functor A — RT'tpe(A, G) satisfies hyperdescent in the fpqc topology on animated R-algebras A.

The following result is the p-complete arc hyperdescent for the left side of the key formula (1.1.6).
An important input to its proof is the analogous p-complete arc descent for the structure (pre)sheaf
functor A — A on perfectoids that was exhibited in [BS22, Proposition 8.10].

Theorem 1.2.3 (Theorem 5.5.1). For a p-complete arc hypercover A — A* of perfectoid Z,-algebras,
a closed Z < Spec(A/pA), and a commutative, finite, locally free A-group G of p-power order,

RTz(A,G) — Rlima (RTz(A*,GQ)), where A is the simplex category.

The following continuity formula, among other things, computes the flat cohomology of complete
Noetherian local rings with commutative, finite, flat group coefficients and has consequences for
invariance of flat cohomology under Henselian pairs, see Example 5.6.7 and Corollary 5.6.9.

Theorem 1.2.4 (Theorem 5.6.6). For a ring R, an animated R-algebra A, elements ay,...,a, € A
such that A agrees with its iterated derived a;-adic completion for i =1,...,r, and a commutative,
finite, locally free R-group G,

RIT(A,G) — Rlim,~o(RT(A/(a?, ..., a"),Q)).

For the derived quotient notation used above, see §5.1.7. Roughly speaking, we deduce Theorems 1.2.1—
1.2.4 from the positive characteristic case of the key formula (1.1.6), that is, from crystalline Dieudonné
theory. More precisely, for G of p-power order we first analyze RF((—)[%], G) by identifying with
étale cohomology and using arc descent results of [BM21] recalled in Theorem 2.2.5 and Remark 2.2.6
(animated aspects disappear in this step because the co-category of étale A-algebras is equivalent to
that of étale my(A)-algebras, see Proposition 5.2.4). We may then work along {p = 0} to assume that
A is p-Henselian and consequently reduce to [F-algebras by combining animated deformation theory
with the following general p-adic continuity result that we establish by a more or less direct attack.

5Taking up the previous footnote: in this language, if X = Spec(R) is an affine scheme and A is an animated ring,
then X (A) refers to the anima of maps R — A of animated rings (which is now the only option that suggests itself).
One can extend to nonaffine schemes by Zariski sheafification.
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Theorem 1.2.5 (Theorem 5.3.5). For a prime p, a ring R, a commutative, finite, locally free
R-group G of p-power order, and an animated R-algebra A for which the ring wo(A) is p-Henselian,

RTgpe(A, G) —> Rlimy=o (RTgppe(A/p", G)).

For instance, A in Theorem 1.2.5 could be a p-adically complete (usual) ring, although even in this
case, unless A is p-torsion free, the derived reductions appearing in the limit are animated rings.

1.3. An overview of the proof of purity for flat cohomology
In summary, the overall proof of the purity for flat cohomology of Theorem 1.1.1 proceeds as follows.

(1) Use a Lefschetz hyperplane theorem in local étale cohomology to deduce the prime to the
residue characteristic aspects from the purity for étale cohomology of Theorem 1.1.2 (see §3.2).

(2) Use crystalline Dieudonné theory to establish the positive characteristic case of the key
formula (1.1.6) (see §4.1); this already mostly settles Theorem 1.1.1 when R is an Fp-algebra.

(3) Use the positive characteristic case of the key formula (1.1.6) and animated deformation
theory to show the new properties of fppf cohomology stated in Theorems 1.2.1-1.2.3 (see
§§5.1-5.5).

(4) Combine p-complete arc descent of Theorem 1.2.3 with prismatic Dieudonné theory to
establish the key formula (1.1.6) in general; deduce the perfectoid purity Theorem 1.1.5 (see

§6.1).

(5) Combine excision obtained in Theorem 1.2.1, a version of André’s lemma (see §2.3), and
deformation theory to reduce Theorem 1.1.1 to the perfectoid purity Theorem 1.1.5 (see §6.2).

André’s lemma says that every element of a perfectoid ring attains compatible p-power roots after
passing to a flat modulo powers of p perfectoid cover. We build on ideas of Gabber—Ramero to
generalize it: in Theorem 2.3.4 below, the cover is flat, and even ind-syntomic, before reducing modulo
powers of p. This is well suited for us, although the version of [BS22, Theorem 7.14, Remark 7.15]
combined with Theorem 1.2.5 suffices as well. We apply André’s lemma to elements f; that cut out
our complete intersection inside a regular ring: only regular rings have flat covers by perfectoids (see

[BIM19]), so, by Proposition 2.1.11 (c) below, we need to kill all the fil/pOO to reach a perfectoid.

Deformation theory used in Step (5) is where the complete intersection assumption manifests itself.

p—1
Namely, on flat cohomology the difference between killing f; and, say, f,; ” amounts to quasi-
coherent cohomology, and if the f; form a regular sequence, then the intervening square-zero ideals
are module-free and so of large enough depth (see Lemma 4.1.11 for this argument). In general,

Theorem 1.1.1 fails for Cohen-Macaulay R (even over C), see Remark 7.2.2.

In contrast, if G is étale, then the complete intersection assumption is a red herring: as the following
refinement of Theorem 1.1.1 shows, then the purity of cohomology is controlled by the wvirtual
dimension vdim(R) of the Noetherian local ring (R, m). This numerical invariant is defined in
terms of the number of equations that cut R out in a regular ring (see (3.2.1.1)) and satisfies
vdim(R) < dim(R) with equality precisely for complete intersection R.

Theorem 1.3.1 (Theorem 6.2.4). For a Noetherian local ring (R,m) and a commutative, finite,
étale R-group G, .
H\(R,G) =0 for i< vdim(R).

Informally, this result says that the “étale depth” of R is at least vdim(R) (the former was defined
in [SGA 2y, exposé XIV, définitions 1.2 et 1.7]). In §3.3, we exhibit a nonabelian version:
7



by Theorem 3.3.1, the purity for the étale fundamental group proved in [SGA 2,., exposé X,
théoréme 3.4| for complete intersections of dimension > 3 continues to hold for arbitrary Noetherian
local rings of virtual dimension > 3.

1.4. Notation and conventions

All our rings are commutative and unital. We use the definition [EGA TV, chapitre 0, définition 15.1.7,
paragraphe 15.2.2] of a regular sequence (so there is no condition on the quotients being nonzero). A
regular local ring (R, m) is unramified if it is of mixed characteristic (0, p) and p ¢ m?. By the Cohen
structure theorem [EGA IV, chapitre 0, théoréme 19.8.8 (i)], the completion of a Noetherian local
ring (R, m) is a quotient of a regular ring R that may be chosen unramified if char(R/m) = p > 0.
Such an R is a complete intersection if the ideal that cuts Rout in R is generated by a regular
sequence. We recall that every ideal that cuts out a complete intersection in a regular ring is
generated by a regular sequence (see [SP, Lemma 09Q1]).

For a module M over a ring A, we write M{a) for the kernel of the scaling by a € A, and we set
M{a™) i= 20 M{a™);

we say that M has bounded a®-torsion if M{a®) = M{a™) for some N > 0. An Fj-algebra is perfect
(resp., semiperfect) if its absolute Frobenius endomorphism a — aP is bijective (resp., surjective);
these conditions ascend along étale maps (see [SGA 5, exposé XV, proposition 2 ¢) 2)| and [SP,
Lemma 04D1]). For an implicit prime p, we let W (—) denote the p-typical Witt vectors and indicate
Teichmiiller lifts by [—]. We use the (somewhat nonstandard) notation

1/p® 1/p® . 1/pm 1/pm
Al 2] = i (A[[xl/p P ]]) (1.4.1)
(we do not form an additional (z1,...,zy,)-adic completion). We use the derived quotient notation

Afta:= A®gx)Z, where Z[X]— A via X —a and Z[X]|—Z via X — 0.

We let (—)* indicate the dual of a vector bundle, or of a p-divisible group, or of a commutative,
finite, locally free group scheme G. We often use the Bégueri resolution of the latter by commutative,
smooth, affine S-group schemes (see [Bég80, proposition 2.2.1] and [SP, Lemma 01ZT]):

Unless indicated otherwise, we form cohomology in the fppf topology and make the identifications
with étale (smooth coefficients) or Zariski cohomology (quasi-coherent coefficients) implicitly.

We let A be the simplex category, whose opposite indexes simplicial objects. We write D(Z) for
the derived co-category of Z. We say that a functor F' defined on some subcategory of rings and,
for the sake of concreteness, valued in D(Z) satisfies descent (resp., satisfies hyperdescent) for a
Grothendieck topology 7 if for every Z-cover A — A’ with its Cech nerve A’ (resp., for every
T -hypercover A — A’®), we have

F(A) = Rlima (F(A™)).

We say that an (co-)category € is complete (resp., cocomplete) if it has all small limits (resp., colimits).
A strong limit cardinal of uncountable cofinality is a limit cardinal x such that for every sequence
Ko, K1,... of cardinals < x we have 270 < k and sup,,>¢ k, < k; there exist arbitrarily large such
K, see [Sch22, Lemma 4.1 and its proof]. We use such cardinals x to avoid set-theoretic problems
when working with large sites (such as the fpqc site); of course, in such cases we check along the way
that our assertions do not depend on the choice of k. We say that a scheme S is of size < k if the
cardinality of its underlying topological space is < k and |['(U, Og)| < & for every affine open U < S.
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2. THE GEOMETRY OF INTEGRAL PERFECTOID RINGS

We begin with generalities about perfectoids that will be important in multiple steps of the overall
argument of purity for flat cohomology. We review the definitions and expose some basic properties
in §2.1. We then present an algebraic approach to controlling cohomology under tilting in §2.2 that
avoids adic spaces and the almost purity theorem in favor of arc descent. Finally, in §2.3, we generalize
André’s lemma: we improve its flatness aspect to ind-syntomicity and we avoid completions.

2.0.1. The implicitly fixed prime. Throughout §§2.1-2.3, to discuss perfectoids, we fix a prime p.

2.1. Structural properties of perfectoid rings

Perfectoids play a central role in our approach to purity, so we summarize their most relevant basic
properties in this section. Our perfectoids are what some authors call “integral perfectoids”: these
appear to be the ones most directly related to commutative algebra. Perfectoid rings generalize
perfect IF)-algebras beyond the setting of positive characteristic, and their definition is intimately
related to the properties of the following tilting adjunction.

2.1.1. The tilting adjunction. In positive characteristic, the inclusion of perfect FF,-algebras into
all Fj,-algebras admits a right adjoint given by the inverse limit perfection B — B’ = lim, .. B.
We define the tilt of general ring A as the inverse limit perfection A” := (A4/pA)° of A/pA. When
restricted to p-adically complete A, the tilting functor is the right adjoint of p-typical Witt vectors:
W(-) .
{perfect F,-algebras} =————— {p-adically complete Z,-algebras},
(=)
see [SZ18, Proposition 3.12|. The Fontaine functor Aj,s(—) is the following composition of these
adjoints:

Aing(A) := W(A"), so it comes with the counit of the adjunction 6: Ajne(A) — A, (2.1.1.1)

The functors (—)” and W(—) commute with limits of rings, so the same holds for Aj,¢(—). By
[BMS18, Lemma 3.2 (i)], for p-adically complete A, the reduction modulo p map

. ~ . ~ ) . . . . . .
im A—lm  A/pA=A isamultiplicative isomorphism, (2.1.1.2)

and we let @ — af denote the resulting multiplicative projection A — A onto the last coordinate.
The counit map 6 satisfies 6([a]) = a for a € A’® and is uniquely determined by this. By loc. cit., if

6The elements 6([a]), a’ € A agree modulo p, and the same holds for their p"-th roots 8([a'/?"]), (a*/*")* € A. Thus,
the p-adic completeness of A gives the middle equality in 6([a]) = lim, 0 (0([a*?"])P") = limn o (((@?")4)P") = af.
9



A is w-adically complete for a @ € A with w | p, then A° may be defined with @ in place of p: then
A =lim  A/pA=lim A/wA (2.1.1.3)

2.1.2. Perfectoid rings. As in [BMS18, Definition 3.5|, we say that a ring A is perfectoid if
(i) there is a w € A with @wP? | p such that A is w-adically (so also p-adically) complete, and
(ii) the counit map 6: Ajs(A) — A of (2.1.1.1) is surjective and its kernel is principal.

Since A is p-adically complete, the surjectivity of 6 is equivalent to the semiperfectness of A/pA.

One may choose @w to be the p-th root of a unit multiple of p, but it is useful to develop the
theory relative to a general . More precisely, by [BMS18, Lemma 3.9]|, the condition (i) and
the semiperfectness of A/pA alone ensure that some unit multiples of @ and p have compatible
p-power roots in A: there are @’,p” € A” such that ()%, (p°)f € A are unit multiples of @ and p,
respectively.

By [Laul8, Remark 8.6] or [BS22, Theorem 3.10], the conditions (i)—(ii) may be synthesized: a ring
A is perfectoid if and only if there are a perfect IF,-algebra B and a & = (&,&1,...) € W(B) such
that

A~W(B)/(§) and B is §-adically complete with & € B*. (2.1.2.1)

We necessarily have B =~ A, the displayed identification is induced by 6, and ¢ is a nonzerodivisor
in Aipe(A). In fact, A” is &y-adically complete for any ¢ € Ker(f) with Witt vector coordinates
¢ = (&,&,...) and, by [BMS18, Remark 3.11], such a & generates Ker(6) if and only if & € (A4°)*,
in which case ¢’ is a nonzerodivisor in Aj,¢(A4). In particular, £ continues to generate Ker(f) for
any perfectoid A-algebra, and an Fp-algebra is perfectoid if and only if it is perfect (choose & = p).
Explicitly, there is an z € Ajn¢(A) such that p + [p’]o € Ker(6), and this element is a possible choice
for &: the equality © = [z mod p] + pz’ shows that the first Witt coordinate of p + [p’]z is a unit
because subtracting the Teichmiiller of its zeroth Witt coordinate gives p(1 + [p”]2’). More precisely,
we may choose this = in such a way that 6(z) be a unit in A; then (2.1.1.2) shows that z mod p is a
unit in A°, to the effect that we may adjust our choice of p’ to arrange that even p” = &.

By (ii) and the proof of [BMS18, Lemma 3.10 (i)], the map a — af induces isomorphisms
A (@A =5 AJmPA and  A°/p"A° 5 A/pA. (2.1.2.2)

Thus, (”)? | p°, and (2.1.1.3) shows that A” is @’-adically complete (every w’-adic Cauchy sequence
in A" stabilizes in each term of lim  A/wA). Although @’ and p’ are noncanonical, (2.1.2.2)

determines the ideals (w”) and (p°) of A’, so we will use @’ and p* when only () and (p°) matter.

By [BMS18, Lemma 3.10], for a perfectoid A that is w-adically complete for a o € A with @P? | p,
the p-power map A/wA atap A/wPA is an isomorphism, (2.1.2.3)
so if there is a @w!P" € A, then, by applying this to /P with 0 < Jj <n, we get

Yl i Ny o Vi P A L N Yoo Rl Yot ) (2.1.2.4)

~

Conversely, by [BMS18, Lemmas 3.9 and 3.10], if a ring A is w-adically complete for a nonzerodivisor
w € A with @wP | p (the nonzerodivisor condition is automatic if A is p-torsion free) and (2.1.2.3)
holds, then A is perfectoid. This gives a very practical criterion for recognizing perfectoid rings.
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For a perfectoid ring A, both p and & are nonzerodivisors in Ajus(A), so the Aj,¢(A)-module
{(z,y) € Ainf(A)2 | &z = py}/{(pz,€2) | z € Aing(A)}  is isomorphic to both Ab<pb> and  Alp)

via the maps (z,y) — x mod p and (x,y) — y mod &, respectively. Consequently, for every w e A
with w? | p such that A is w-adically complete, (2.1.2.2) supplies an Aj,¢(A)-module isomorphism

A’y ~ Alw), so A’ is w’-torsion free if and only if A is w-torsion free. (2.1.2.5)

After harmlessly replacing @ by (@”)¥, we apply (2.1.2.5) with w!/?" in place of @ and conclude
that A(w) is killed by the w!'/P", so that A(w!'/P") = Alw) = Alw™) (see also (2.1.3.2)).

It is useful to decompose perfectoids as follows, in the style of [GR18, Section 16.4.18, Remark 16.4.19]
or [Laul8, Remark 8.9|.

2.1.3. Canonical decompositions of perfectoids. Let A be a perfectoid ring that is ww-adically
complete for a w € A with @” | p, and set A := A/Alw™) and A’ := A°/A°((w’)®). By the end of
§2.1.2, we have A{@w®) N (w/?”) = 0 in A, and analogously for A, so

A= Ay A/(@ 7)) and - A= G e AM(@)T).

In particular, pA — pﬁﬁo the ring A is p-adically complete.” Moreover, (2.1.2.2) and (2.1.2.5)
imply that A/(w'/P*) = A>/((w”)"/P"), so this quotient is a perfect F,-algebra. Since the functor
Aijne(—) preserves limits (see §2.1.1), we obtain the decomposition

Ainr(A) = Apne(A) X pone (A (w01/0™)) Ainf(A/(wl/Poo)).

By considering the counit maps € (see §2.1.1) and using §2.1.2 and | the snake lemma, we now conclude
that the generator £ of Ker(f) for A is a nonzerodivisor in 4 Ains(A) and that Aje(A)/EAine(A) = A.

In particular, by §2.1.2 again, A is a perfectoid ring and A is its tilt. Thus, by (2.1.2.2),
A/(@"P7) = (A) (@) and A/(@'P7) = (4/ (@)
In conclusion, A is a glueing of the w-torsion free perfectoid A and the w-torsion one (A/(w))™d:
~ = , . ~ —b \
A — A X Z)(myrea (A (@) °d and, compatibly, 4> >4 X (A /(w))red (A/ () ed (2.1.3.1)

For instance, we may choose @? to be a unit multiple of p, in which case A =~ A/A{(p*). We deduce
that every perfectoid ring A is reduced: (2.1.3.1) allows us to pass to p-torsion free A, and then
we iteratively apply (2.1.2.3) to argue that the nilradical lies in (7,5, p"A = 0. Reducedness then

implies that for every a € A that has compatible p-power roots a'/?" € A, we have

Ala*?"y = Ala)y = Ala™) for n = 0. (2.1.3.2)

The decomposition (2.1.3.1) admits the following converse that is useful for recognizing perfectoids.
Proposition 2.1.4. For a surjective morphism f: A — A’ of perfectoid Z,-algebras, the map
Aing(f): Ainr(A) = Ane(4)
induces a surjection on the kernels of the counit maps 6, more generally, it induces surjections
Aint(A) = Ape(A) x40 A and [P JAine(A) — [P ]Ainr(A') xpar pA. (2.1.4.1)
Moreover, for any map B — A’ with B perfectoid, C := Ax 4 B is perfectoid with tilt C° =~ A X g B.
TFor a ring B and an ideal I c B, the property that B be I-adically complete only depends on I as a nonunital

ring: it amounts to the property that every I-adic Cauchy sequence with values in I have a unique limit in 7.
11



Proof. First of all, the map Aj,¢(f) inherits its indicated surjectivity from A — A’: by completeness,
this may be checked modulo p and then modulo p’, where it follows from (2.1.2.2). Thus, letting &;
be a generator for the kernel of 6 for A, we apply the snake lemma and use §2.1.2 to conclude that

Ker(Aine(f))/§1 Ker(Aing(f)) = Ker(f).

The snake lemma then also shows that Aj,¢(f) induces a surjection on the kernels of 6. Since the
map 6: Ajpr(A) — A is surjective, the first surjection in (2.1.4.1) follows. The second surjection in
(2.1.4.1) follows from the first applied to the quotients of A and A’ by their p-torsion (see §2.1.3).

As for the ring C'| it inherits p-adic completeness from the A, A’, and B (the unique limit of a p-adic
Cauchy sequence is computed componentwise), so §2.1.1 identifies the tilt and shows that

Aint(C) — Aine(A) x a4y Aing(B).

Thus, by §2.1.2 and the second surjection in (2.1.4.1), there is a & € Aju¢(C) of the form p + [p’]z
that maps to a generator of the kernel of 6 for A, A’, and B. A final application of the snake lemma
then shows that Aj,s(C)/(§) = C, so that C is indeed perfectoid by (2.1.2.1). O

Example 2.1.5. Consider a perfectoid ring A that is w-adically complete for a w € A with w | p.
Proposition 2.1.4 implies that for any map B — (A/(w))* from a perfect F,-algebra B, the ring

A X (4)()yrea B s perfectoid.

Corollary 2.1.6. For a perfectoid ring A that is w-adically complete for a w e A with wP | p, the
w-adic (for instance, the p-adic, see §2.1.2) completion of every ind-étale A-algebra is perfectoid.

Proof. Example 2.1.5 and the decomposition A — A X (A () red (A/(w))*d supplied by (2.1.3.1)
reduce to A being either w-torsion free or an [Fj-algebra. The w-torsion free case follows from
the criterion (2.1.2.3) mentioned at the end of §2.1.2. The [F,-algebra case follows from the fact
that an ind-étale algebra over a perfect Fp-algebra is again perfect (see [SGA 5, exposé XV,
proposition 2 ¢) 2)]). O

The perfectoids A as above are more general than those in the rigid analytic approach to the theory.
For instance, in the p-torsion free case we do not build the integral closedness of A in A[%] into the
definitions. As we now recall, the p-primary aspect of this closedness is nevertheless automatic.
2.1.7. p-integral closedness of perfectoid rings. For an inclusion of rings A < A’, we recall
that A is p-integrally closed in A’ if every a’ € A’ with a’? € A lies in A. In general, the p-integral
closure of A in A’, constructed as Un>0 A, where Ag := A and A,;1 < A’ is the A,-subalgebra
generated by all the o’ € A’ with a’? € A,,, is the smallest p-integrally closed subring of A’ containing
A. Evidently, the p-integral closure lies in the integral closure of A in A’.

The relevance of p-integral closedness to perfectoids was pointed out by André in [And18a, section 2.3].
For instance, if @ € A is a nonzerodivisor with @? | p in A, then the map

Aj/wA ara, A/wPA is injective if and only if A is p-integrally closed in A[1].  (2.1.7.1)
Indeed, the ‘if’ direction follows from the definition, and for the ‘only if” one notes that the injectivity

of the map ensures that any o’ = -% € A[L]\A with a’? € 4 has its numerator a divisible by .
12



Thus, by (2.1.2.3) and (2.1.3.1), for every perfectoid A that is w-adically complete for a @ € A with
wP | p, the image A ¢ A[%] of A is p-integrally closed, so we have a multiplicative identification

lim (A[L]) = Al’[ﬁ] compatible with  lim A-——o A (2.1.7.2)

<—a—a?f a? "7 (2.1.1.2)

The p-integral closedness of perfectoids has the following converse that is a variant of [GR1S,
Corollary 16.9.15].

Proposition 2.1.8. Let A be a ring and let w € A be a nonzerodivisor with w? | p that has compatible
p-power roots wP" € A and is such that the map A/wA armab, A/wPA is surjective. The w-adic

completion of the p-integral closure A of A in A[%] 1s perfectoid.

Proof. As in loc. cit., for each a € A with a? € wP A, we choose a sequence {a,},>0 in A such that
ap:=a and daf =a,—1 modwPA for n>0.
n+1
By construction, ah, e wPA, so also —{itr € A where, as in the statement, A is the p-integral
closure of A in A[L1]. We consider the A-subalgebra

A=Al In = >0, a€ A with a? € wPA] < A.

By construction, the map A;/wA; aal, Ay /wP Ay is surjective, so we may repeat the construction

with A; in place of A to likewise build an A;-subalgebra As < A. Proceeding in this way, we obtain
an A-subalgebra Ay, = UZ>1 A; C A for which the map Ay /w Lind.iN Ay /wP is both surjective
and, since every = € A; with aP € wPA; is divisible by w in A;,1, also mJectlve Thus, (2.1.7.1)

ensures that A, = A, and (2.1.2.3) then ensures that the w-adic completion of A is perfectoid. [

We turn to categorical properties of tilting that are analogues of their counterparts in the adic theory.

Proposition 2.1.9. For a perfectoid ring A, there is an equivalence of categories
{perfectoz’d A-algebras A’} — {&)—adz’cally complete perfect Ab—algebms B},

where € = (£9,€1,...) is a generator of Ker(6: W(A”) — A) and the pair of inverse functors are
A'— A" and Bw— W (B)/(£).

Moreover, A" is w’-adically complete for a @’ € A” with @” | & if and only if A’ is w-adically
complete for w := (@), and A is a valuation ring (resp., with an algebraically closed fraction field)
if and only if so is A”, in which case the value groups agree:

Frac(A”)* /(A”)* =5 Frac(A")* /(A")* induced by the map x+— aF.

Proof. By §2.1.2, the functors are well-defined, inverse, and map w-adically complete A’ to w’-adically
complete A”. We now assume that A” is w’-adically complete, so that W (A”) is [w’]-adically
complete, and seek to show that EW (A”) is closed in W (A”®) for the [@’]-adic topology: A’ will
then be tw-adically complete by [SP, Lemma 031A]. For this, it suffices to show that

EW(A?) A ([@°]") = EW(A”) A ([&']")  for every n > 1;

indeed, then the limit of every [w’]-adic Cauchy series of W (A”) with terms in EW (A”) would lie

in EW(A”). We then fix a w := (wo,wl, ...) € W(A"?) with éw € ([@]") and seek to show that

w € ([@’]™), that is, that w,, € (”)™" A” for m = 0. This is clear when w” = 0, so (2.1.3.1) (with
13
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A there equal to our A”) allows us to replace A” by AP := A”/A”{(")®). Then =" becomes a
nonzerodivisor and induction on n reduces us to n = 1. We fix the smallest hypothetical m with

Wm ¢ (wb)pmﬁ

and, by [BouAC, chapitre IX, section 1, numéro 6, lemme 4], may assume that w,, = 0 for m" < m.
Then

m m m m+1 m
w=V"((Wm, Wm+1,...)), so &w=V"((wn& ,wm1& +wh V).

Since @’ | & and & eﬁb)x, the assumption w € ([°]) then implies that (w”)?""" | wh,, so that,
by the perfectness of A”, also (ww”)?" | wy,, which is a desired contradiction to the existence of m.

If A’ is a valuation ring, then (2.1.1.2) and (2.1.2.2) show that A” is a local domain in which for
a,a’ € A" either a | a’ or @' | a, so A” is a valuation ring. Conversely, if A” is a valuation ring, then,
by (2.1.2.2), (2.1.2.5), and §2.1.3, the p-adically complete ring A’ is local, p-torsion free unless p = 0
in A’ (in which case A’ = A”), and reduced. To conclude that A’ is a valuation ring and also settle
the claim about the value groups, we now show that every a € A’ is of the form a = ubf for some
ue A and be A”. For this, we follow [GR18, Proposition 16.5.50], namely, by dividing by a power
of (p°)f, we may assume that a is nonzero in A’/pA’, so that, by (2.1.2.2), we have a = bf + (p*)!c for
a be A” that is nonzero modulo p” and a ¢ € A’. Since A” is a valuation ring, b strictly divides p’,

so it remains to set u =1+ (%)ﬁc. In the case of valuation rings of dimension < 1, the remaining
parenthetical assertion follows from [Sch12, Theorem 3.7 (ii)|]. To then deduce it for any perfectoid
valuation ring A’ of dimension > 1, we may assume that A’ is of mixed characteristic (0,p) and
it suffices to argue that the valuation ring A; that is the localization of A" at the height 1 prime
p < A’ (concretely, at the intersection of all the primes of A’ containing p) is still perfectoid and
that its tilt is the localization of A” at its height 1 prime (concretely, at the intersection of all the
primes of A” containing p°).

For this last claim, the p-adic (resp., p’-adic) topology of A’ (resp., of A”) is the valuation topology,
so, due to (2.1.2.2), it suffices to argue that for any valuation ring V' that is a-adically complete for
some a € V' and any prime ideal ¢ V' containing a, the localization V; is also a-adically complete.”
However, by the definition of a valuation ring, every element of V'\q divides every element of g, so q
maps isomorphically to qV; and kills the quotient Vi/V. It follows that in the inverse system

{0 = Vo/V = V/(a") = Vg/(a") = Vo/V = O}nxo

of exact sequences the transition maps at the term that is the left copy of V;/V all vanish because
they are induced by multiplication by a. Thus, by forming the inverse limit and applying the snake
lemma we see that the a-adic completeness of V' implies that of Vj. (|

Remark 2.1.10. As the proof shows, any localization of a perfectoid valuation ring is still a perfectoid
valuation ring, granted that we exclude the 0-dimensional localization in mixed characteristic.

We will use the following further compatibilities that concern tilting. They also complement
Proposition 2.1.4 with additional general stability properties of perfectoid rings.

81t is also true that if a valuation ring V' is complete for its valuation topology, then its localization Vg at any
prime ideal q — V is also complete for its valuation topology. To see this, first note that the valuation topology is
characterized by every nonzero ideal of V being open, alternatively, since a?V < aq < aV for a € q, by every principal
ideal of the nonunital ring q being open. Thus, by considering Cauchy nets, we see that V' is complete for its valuation
topology if and only if the nonunital ring q is complete for its topology in which the principal ideals are all open. It
then remains to recall that ¢ — qVj, to the effect that replacing V by Vg does not change the nonunital ring q.
14



Proposition 2.1.11. Let A be a perfectoid ring that is w-adically complete for a w € A with w? | p,
let I be a set, let {A;}ier be w-adically complete perfectoid A-algebras, and let S < A be a subset.

(a) The w-adic completion of A[Xil/poc]ie] is perfectoid and its tilt is the w’-adic completion of
A[(X)YP i1, where X! corresponds to the p-power compatible sequence (Xl-l/pn)nzo.

(b) (See also [GR18, Proposition 16.3.9]). The w-adically completed tensor product ®z‘eIAi over
A is perfectoid and its tilt is the @’-adically completed tensor product @ieIAIZ? over A°.

(c) Suppose that the ideal (S mod w™) < A/(w™) is generated by the p™-th powers of its elements
for n > 0 (for instance, that each s € S has a root siPY e S with N > 0). Then the w-adic
completion of A/(S) is perfectoid and its tilt is the w’-adic completion of A°/(S) where

Gh— lim (Smodw)clim  Af(w) = AP

(d) A product | [,c; Bi of Zy-algebras is perfectoid iff so is each B;, and then (] [;c; B;)’ ~ [Lics B'i’.
(e) (See also [GR18, Theorem 16.3.76] and [And20, Proposition 2.2.1]). For d},...,a’ € A’ and
aj = (az.)ti € A, the (a1,...,a,)-adic completion of A is perfectoid, agrees with the derived
ai,...,ay)-adic completion of A, and has the a’, ..., a)-adic completion of A’ as its tilt.
1 T

Proof. For (a), we first note that, by Proposition 2.1.9, the A-algebra W ((A[(X2)Y?”1e1)")/(€),
where the completion is w’-adic, is perfectoid. It then remains to note that, since p” € (£, [”]™),
the map that sends each Xil/pm to ((X?)F)1/P™ exhibits it as the w-adic completion of A[Xl.l/poo]ief.
For (b), a tensor product indexed by I is defined as the direct limit of subproducts over the finite
subsets of I and is a categorical coproduct. With tensor products over Wn(Ab) and A°,

®rer WalA2) = Wi(@ye; A7) (2.1.11.1)
because both the source and the target are initial among the Z/p"Z-algebras whose reduction modulo

p is equipped with a map from ),; AE (see, for instance, [SZ18, Proposition 3.12]). By reducing
(2.1.11.1) modulo (p™, p" [="]7, ..., p[="]P" ", [="]""), we obtain
Rier WA/ ([@"1")) = Wi (®@yer (A2/([="1))),
so, since (p, [])7" © (", p" [P, ... o[ [ P")  (p, [2])", also
BtV (A) = W(@,e A7) (2.1.112)
where the first ® is (p, [”])-adically completed and over W (A). Since @’ | & in A” for a generator
€= (&,&1,...) of Ker(: W(A") — A) (see §2.1.2), the perfect A’-algebra ®i€IAE' is &p-adically

complete. Thus, by Proposition 2.1.9, the reduction of (2.1.11.2) modulo ¢ is a map of w-adically
complete perfectoids, so, since (€, [@”]) = (p, [@"]) in W(A®) (see (2.1.2.2)), it is the desired

Rierdi = W (Rier A7)/ (€)-
For (c), by the assumption on S and by construction, S” surjects onto (S mod @) < A/(w) = A°/(=")
and is stable under p-power roots. Moreover, the p"-th power of an element of A/(ww"*!) depends
only on its residue class modulo @, so (S mod @™) = ((S°)¥ mod @") in A/(w"). Thus we lose no
generality by assuming that S = (S b)ﬁ, in other words, that every s € S admits a p-th root s/ € S.

Both A°/(S”) and its w’-adic completion A°/(S) are perfect A’-algebras, and

Wa(A)/([S"]) = Wa(A°/(S)).
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Thus, by Proposition 2.1.9, the A-algebra W (A?/(S?))/(¢) is a w-adically complete perfectoid. In
conclusion, since p” € (£, [@”]™) and S = (S°)%, the following map exhibits its perfectoid target as
the zo-adic completion of the source:

—

A/(S) = (W(A)/(€)/(S) = (W (A)/([S"D)/(€) — W (A/(5))/(£).
Part (d) is immediate from the definition of §2.1.2 because Ain¢([ [,c; Bi) = [ Lics Aint(Bi)-

For (e), it suffices to argue that the derived (aq, ..., a,)-adic completion A of A is perfectoid (so,

in particular, is a classical ring) and that its tilt is the derived (a},...,a)-adic completion A’ of
AP, Indeed, this will imply the claimed agreement with the usual (ai,...,a,)-adic completion (and

likewise for A): perfectoid rings are reduced (see §2.1.3), so [SP, Lemma 0G3I| will ensure that A
is (a,...,a,)-adically separated, and hence, by [SP, Proposition 091T], even (ay, ..., a,)-adically

complete, so the map A — A will be initial among maps to (ay, ..., a,)-adically complete A-algebras.
The derived (aq, ..., a,)-adic completion of A agrees with the iterated derived a;-adic completion
for i = 1,...,7, so we lose no generality by assuming that » = 1 and renaming a := a; and

a’ = a}. Since A" is a perfect F-algebra, A’[a’] = A°[(a”)"?”], to the effect that the inverse
system {A°[(a’)"]}n=0 is almost zero. Thus, the derived a’-adic completion A° of A” agrees with

the classical a’-adic completion of A”. In particular, A’ is a perfect [Fp-algebra that inherits derived

£o-adic completeness from A°. Thus, A° is reduced and we conclude as in the previous paragraph
that it is &y-adically complete. This already settles the positive characteristic case, in which A = A,

By arguing via Witt vector coordinates, we see that each W, (A?) is [a’]-adically complete, so that
W (AP) is also [a"]-adically complete. Moreover, the derived [a’]-adic completion W (A?) of W (AP)
inherits derived p-adic completeness and its derived reduction modulo p is the derived [a’]-adic

completion A° of A”. Thus, we may check on derived reductions modulo p that

W(AP) 5 W(AY),

However, §2.1.2 ensures that ¢ is a nonzerodivisor in W(A”), so this isomorphism shows that
W (A)/(€) is the derived a-adic completion A of A and, simultaneously, that A is a classical ring.
To then conclude that A is perfectoid with tilt A it remains to review §2.1.2. t

The following proposition is sometimes useful for reducing to p-torsion free perfectoid rings.

Proposition 2.1.12. Fvery perfectoid ring A that is w-adically complete for a w € A with w? | p
is a quotient of a perfectoid ring A that is to-torsion free and @-adically complete for a lift ©o € A of
w with @wP | p. In addition, every perfectoid ring is a quotient of a p-torsion free perfectoid ring.

Proof. As in (2.1.2.1), we write A = W (A?)/(¢) with € = (£,&1,...) in Witt coordinates such that
& € (A")>< and A’ is &-adically complete. In fact, A’ is even w’-adically complete and we fix a
choice of @’ € A, so that w = (wb)ﬂu with u e A* (see §2.1.2). We consider the perfect F)-algebra

By := IE‘p[X;/poc |a€ A°] and the surjection By — A” given by X, — a.

Since ()P | & in A” (see §2.1.2), we may lift the & to & € By with (X )P | & and let B be the
X _»-adic completion of Bo[gi]. Certainly, B is a {p-adically complete (see [SP, Lemma 090T]),
1
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perfect [F-algebra equipped with a surjection B —» A’ Letting ge W (B) be defined by its Witt
coordinates & and using (2.1.2.1), we obtain a surjection of perfectoid rings

A=W (B)/(€) » W(A)/(€) ~ A, and weset & = (X_,)f e A.

Since (X _»)P | € in B, we have (&')P | p in A’ (sce §2.1. 2), so Proposition 2.1.9 ensures that A’ is
@'-adically complete, and (2.1.2.5) then ensures that A’ is &/-torsion free. We lift ue A to a i e A,
and we let A be the &/-adic completion of A’ [£], so that we have the induced surjection A — Aand

the lift ¢ := &'t € A of w. By Corollary 2.1.6, the ring Ais perfectoid and, by construction, it is
co-adically complete and co-torsion free. The proof of the p-torsion free variant is similar but s1mpler
it suffices to choose §0 = X¢,, replace X_, by X¢, in the subsequent argument, and set A=A O

2.2. Tilting étale cohomology algebraically

Guided by the idea that comparing a perfectoid ring A and its tilt A is close in spirit to an
Elkik-type comparison of a Henselian ring and its completion, in Theorem 2.2.7 we exhibit “algebraic”
incarnations of the paradigm that tilting preserves topological information, specifically, idempotents
(that is, clopen subschemes) and étale cohomology. The idea of the proof is that the idempotent case
is pretty much immediate from (2.1.1.2) with (2.1.7.2) and, by p-complete arc descent, it implies the
assertion about the étale cohomology. This style of argument bypasses any recourse to adic spaces,
although, of course, the conclusion is not as strong as an equivalence of étale sites.

2.2.1. The I-complete arc-topology. We recall from [BM21, Definition 1.2| that a ring map
A — A’ is an arc cover if any A — V with V a valuation ring of dimension < 1 fits in a commutative
diagram
A—— A
\
l ‘ (2.2.1.1)
¢
V--=V

in which V’ is a valuation ring of dimension < 1 and V' — V" is faithfully flat (that is, an extension
of valuation rings). For a fixed finitely generated ideal I — A (example: I = (p)), if the same holds
whenever V is, in addition, I-adically complete, then A — A’ is an I-complete arc cover (called a
w-complete arc cover when I = (w) is principal). An arc cover is simply a 0-complete arc cover,
and an I-complete arc cover is an I’-complete arc cover whenever I < I’ (see [SP, Lemma 090T]). In
particular, for every I, an arc cover is an I-complete arc cover and the reduction modulo I of an
I-complete arc cover is an arc cover.

In fact, there is no need to assume that V’ be of dimension < 1: one can arrange dim(V') = dim (V")
a posteriori by the argument of [BM21, Proposition 2.1]. In addition, by extending V' (of dimension
< 1) to a valuation ring of dimension < 1 on the algebraic closure of Frac(V”) (see [BouAC, chapitre VI,
section 8, numéro 6, proposition 6]) and, in the case of I-complete arc covers, [-adically completing
(which preserves algebraic closedness, see [BGR84, Section 3.4, Proposition 3|), we may restrict to
those V' of dimension < 1 in (2.2.1.1) that have an algebraically closed fraction field and, in the
case of I-complete arc covers, are I-adically complete. Similarly, one then loses no generality by
assuming that Frac(V') be algebraically closed.

For example,

(1) any faithfully flat A — A’ is an arc cover: to see this, we may assume that A =V, lift the
specialization of points in Spec(V') to Spec(4’) (see [EGA IVs, proposition 2.3.4 (i)]), and
use the maximality of valuation rings with respect to domination;
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(2) any A — A’ that is faithfully flat modulo powers of a finitely generated ideal I < A is an
I-complete arc cover: we may assume that A = V for an I-adically complete valuation ring V'
of rank < 1, assume that A’ is I-adically complete, and use the resulting injectivity V < A’
to lift the specialization (due to the I-adic completeness of A’ the closure of the generic
V-fiber of Spec(A’) meets the closed V-fiber, so one applies [SP, Lemma 0903] to conclude);

(3) any integral A — A’ that is surjective on spectra is an arc cover: now one uses going up to
lift the specialization (see |SP, Lemma 00GUJ).

As the name suggests, finite collections of ring maps {4 — Al};er with A — [[,.; A} an arc cover
(resp., an I-complete arc cover) are the covering maps for a Grothendieck topology on commutative
rings (resp., on Z[x1,...,zy,]-algebras where I = (wy,...,wy,) with x; — w;), the arc topology
(resp., the I-complete arc topology). On perfectoids this topology is insensitive to tilting as follows.

Lemma 2.2.2. Let A — A’ be a map of perfectoid rings, let w € A with w? | p be such that A and
A’ are w-adically complete, and let @° € A” be such that (w”)! is a unit multiple of w (see §2.1.2).
Then A — A is a w-complete arc cover if and only if its tilt A* — A" is a w”-complete arc cover.

Proof. By §2.2.1, the condition of being a w—complete (resp., —complete) arc cover may be phrased
to only involve maps to w-adically (resp., @ —adlcally) complete valuation rings of dimension < 1
with algebraically closed fraction fields, and such are perfectoid by (2.1.2.3). It then remains to
recall from Proposition 2.1.9 that the tilting equivalence identifies such valuation rings, respects
their dimensions, and matches w-adic completeness with w’-adic completeness. O

We will exploit the following convenient base of the w-complete arc topology.

Lemma 2.2.3. Every ring A (resp., with a w € A) has an arc (resp., a w-complete arc) cover
A — [ ,e; Vi whose factors Vi are valuation rings (resp., w-adically complete valuation rings) of
dimension < 1 with algebraically closed fraction fields.

Proof. For each prime p — A, choose an algebraic closure k(p) of the residue field at p. Let p vary
and let I be the set of valuation subrings V; < k(p) of dimension < 1 containing the image of A and
with Frac(V;) = k(p). To check that the resulting A — [[,.; Vi is a desired arc cover, we note that,
by the choice of I, any map A — V to a valuation ring of dimension < 1 with an algebraically closed
fraction field factors through some A — V; and use §2.2.1. For the w-complete arc aspect, it suffices

to instead take A — || V; where V; is the w-adic completion of V; (see §2.2.1). O

el

As we now verify, the arc covers constructed in the previous lemma have no nonsplit étale covers.

Lemma 2.2.4. Let {V;}ier be valuation rings. The connected components of Spec(] [,c; Vi) are the
Spec([ [y, Vi) for ultrafilters % on I (where [, :=lim,,_, [licp). In particular, if all the Frac(V;)
are algebraically closed, then each quasi-compact open U < Spec(] [,o; Vi) has no nonsplit étale covers

and its connected components are spectra of valuation rings with algebraically closed fraction fields.

Proof. For I' < I, let ep € [ [,c; Vi be the idempotent whose coordinates at I’ (resp., at I\I") are 0

(resp., 1). Since epnpw = ey + epr — ey, for any prime p < [[,.; Vi, the set %, := {I' | ey € p}

is an ultrafilter on /. The assignment p — %, gives a continuous map Spec(] [;.; Vi) — BI to the

Stone-Cech compactification of I: indeed, the sets Uy := {#% | I' € %} < SI with I’ I are a base

of opens for 81, and the preimage of Uy is the open Spec(] [,c;» Vi) < Spec(] [;c; Vi). Any % € 51 is

the intersection of its neighborhoods Uy for I’ € %, so the preimage of % is precisely Spec(] ], Vi).
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The preceding paragraph works for any rings {V;}cr; however, if the V; are valuation rings, then
[ [ Vi is a valuation ring with the fraction field | [,, Frac(V;), and the latter is algebraically closed
whenever so are all the Frac(V;). Thus, since 81 is totally disconnected and every quasi-compact open
of some Spec(] [, Vi) is the spectrum of a valuation ring (see [SP, Lemma 088Y]), the connected
component aspects of the claim follow. Moreover, if the Frac(V;) are all algebraically closed, then,
by the above, the local rings of U are strictly Henselian. A limit argument then shows that every
étale cover of U may be refined by a Zariski cover, and, thanks to [SP, Lemma 0968], the latter has
a section. ([l

Our approach to tilting étale cohomology builds on the following arc descent result of Bhatt-Mathew.

Theorem 2.2.5. Let A be a ring (resp., with a finitely generated ideal I < A) and let F be a torsion
sheaf on Ag. On the category of A-algebras A’, the functor

A" RUg (A, ) (resp., A +— RFét(Spec(jﬁl\’)\V(I), F) where the completion is I-adic)
satisfies hyperdescent in the arc (resp., I-complete arc) topology, and the functor
A" — RUg(A™,.F), where (—)" denotes the I-Henselization,
satisfies hyperdescent in the I-complete arc topology.

Proof. Since the functors in question are bounded below, descent for them implies hyperdescent, so
we focus on arguing descent. By [Gab94, Theorem 1|, we have

RFét(A/, ﬁ) = Rrét(A,/IA/, 3?)

for I-Henselian A’, so the last assertion follows from the rest and §2.2.1. Moreover, the descent
claims were settled in [BM21, Theorem 5.4| and, respectively, [Mat22, Remark 5.18] with [BM21,
Corollary 6.17|, except that for the functor

A’ RT¢(Spec(ANV(I),.F)

loc. cit. used the arcy topology instead. The latter is the variant of the arc topology in which in
(2.2.1.1) one requires I to map to nonzero subideals of the maximal ideals of the valuation rings V'
and V' of dimension < 1. By replacing such V' by its I-adic completion, we see that every I-complete
arc cover is an arcy cover, so our descent claim follows. ]
Remark 2.2.6. By [BM21, Theorem 6.11] (or [ILO14, exposé XX, section 4.4]), we have
RT(Spec(AM\V (1), #) — RI’ét(Spec(;l\’)\V(I), F), where (—)" denotes the I-Henselization,
so the following functor also satisfies I-complete arc hyperdescent on A-algebras A’:

A’ — RT&(Spec(A™\V (1), .7).

We are ready for the promised algebraic approach to tilting étale cohomology of perfectoids.

Theorem 2.2.7. Let p be a prime, let A be a ring, let w € A with wP | p be such that A is
w-Henselian, has bounded w® -torsion, and its w-adic completion is perfectoid, and let

Spec(A[L1]) = U = Spec(A) and Spec(Ab[é]) c U’ < Spec(A)
be opens whose complements agree via (2.1.2.2) with A’ := im (A/wA). There are identifications
of sets of idempotents Idem(U) = Idem(Ub) compatibly with orthogonality,

of étale cohomology RTU¢(U,G) = RFét(Ub, G) for every torsion abelian group G,
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functorial in A, U, and G. In particular, for a closed Z < Spec(A/wA) and a torsion abelian group G,
RT,(A,G) =~ RT'z(A°,G). (2.2.7.1)

Proof. The claim about (2.2.7.1) follows from the rest and the cohomology with supports triangle.

By, for instance, [BCQZ, Theorems 2.3.1 and 2.3.4], base change to the w-adic completion of A changes
neither Idem(U) nor RI'¢ (U, G), so we assume that A is w-adically complete and, in particular,
perfectoid. The p-power map of any ring induces the identity map on the set of idempotents of
that ring, so the claim about Idem(U) when U is either Spec(A) or Spec(A[1]) follows from the
functorial, compatible, multiplicative isomorphisms (2.1.1.2) and (2.1.7.2), namely, from

lim A=A and lim  (A[Z]) = A[L].

<«—a—aP

For a general U, by glueing and limit arguments, giving an idempotent on U amounts to giving
an idempotent e on A[é] together with a compatible under pullback system of idempotents eg
on the localizations B of A along variable principal affine opens Spec(B) < Uy, = Spec(4/w)
subject to the condition that after inverting w each ep agrees with the pullback of e. Moreover,
by Beauville-Laszlo glueing [SP, Lemma OBNR],9 in this description we may replace B by its
w-adic completion. By Corollary 2.1.6, this completion is perfectoid and, by (2.1.2.2), its tilt is
the w’-adic completion of the localization of A” along Spec(B). Thus, the analogous description of
the idempotents on U” and the settled cases U = Spec(A) and U = Spec(A[L]) give the desired
functorial identification Idem(U) = Idem(U”) that is compatible with orthogonality.

The analogous glueing (or descent) argument carried out with RI'¢; in place of Idem, which this time
uses formal glueing for étale cohomology in place of Beauville-Laszlo glueing to pass to completions,
so, concretely, it uses Theorem 2.2.5 and [BM21, Theorem 6.4|, reduces us to exhibiting compatible
identifications

RT&(U,G) = R« (U, G)

in the cases when U = Spec(A) or U = Spec(A[2]) (functorially in A and G). For this, we first
treat the case when A = [ [,.; V; for w-adically complete valuation rings V; over A with algebraically
closed fraction fields (such V; are perfectoid by (2.1.2.3) and hence, by Proposition 2.1.11 (d), so is
[ Lic; Vi). For such A, we have AP ~ [ Lics V;b. Thus, Lemma 2.2.4 implies that A and A”, as well as
A[L] and A"[#L have no nonsplit étale covers. In particular, both RT's (U, G) and RI's(U”, G) are
concentrated in degree zero where they are given by locally constant G-valued functions on U and
U’ respectively. Due to the functorial identification Idem(U) = Idem(U”), the clopens of U are in a
functorial bijection with those of U”, compatibly with the relation of disjointness (which amounts
to orthogonality of the corresponding idempotents). Thus, the spaces of locally constant G-valued

functions on U and U’ are functorially identified, which settles the case when A = [ Lic; Vi as above.

By Lemma 2.2.3, the A that are products [ [, ; Vi as above with each V; of rank < 1 form a base
of the w-complete arc topology of A. By Proposition 2.1.9 and Lemma 2.2.2, tilting matches this
base with its analogue for the w’-complete arc topology of A”. Thus, to deduce the remaining case
of a general A, it remains to combine the already functorially settled case A = [[,.; Vi with the
w-complete arc descent supplied by Theorem 2.2.5. O

9n this proof, one may avoid the Beauville-Laszlo glueing by replacing B by its w-Henselization and using
[Bé22, Theorem 2.3.1] again (resp., [Bé22, Theorem 2.3.4] for RT'¢; in place of Idem), but this comes at the expense of
having to consider self-intersections in the limit arguments. The use of the Beauville-Laszlo technique was suggested
by Arnab Kundu.
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2.3. The ind-syntomic generalization of André’s lemma

André’s lemma, which originated in [And18a, And18b], says that up to passing to a perfectoid cover
elements of a perfectoid admit compatible p-power roots. This is useful for constructing perfectoids
above a Noetherian local ring (R, m) with char(R/m) = p beyond regular R: one writes Ras a
quotient of a regular ring, chooses a faithfully flat perfectoid cover of the latter (as in Lemma 3.1.1
below), uses André’s lemma to ensure that the equations cutting out R have compatible p-power
roots, and then kills these roots (the relevance of such roots is seen already in Proposition 2.1.11 (¢)).
This mechanism is how we will use André’s lemma in the proof of Theorem 1.1.1.

The goal of this section is to present a generalization of André’s lemma stated in Theorem 2.3.4 below.
More precisely, in André’s work the refining perfectoid cover was almost faithfully flat modulo powers
of p (see, for instance, [Bhal8, Theorem 1.5]), which was improved to actual faithful flatness by
Gabber-Ramero in [GR18, Theorem 16.9.17] at the cost of “decompleting.” We follow their method
to improve further to ind-syntomicity and to eliminate torsion freeness assumptions. Ind-syntomicity
modulo powers of p was achieved in [BS22, Theorem 7.14, Remark 7.15| by a different argument
and, as we explain in the proof of Theorem 6.2.3, suffices for our purposes, so a pragmatic reader
could skip this section.

We begin with the following “integral” variant of the approximation lemma [Sch12, Corollary 6.7 (i)].

Lemma 2.3.1. Let A be a perfectoid ring, let w € A with @wP | p be such that A is w-adically
complete, let a € A, and let m > 0. There is an a' € A’ such that for every continuous valuation ||
on A with |A| < 1 we have

la| < |@P™| if and only if |a*| < |wP™|, (2.3.1.1)
more generally, such that for every |-| above we have

la — a*| < |p| - max(|a”], |=["™). (2.3.1.2)
Here continuity means that |@"| for n > 0 becomes smaller than any element of the value group.

Proof. For completeness, we give a proof; see [KL15, Corollary 3.6.7| and [GR18, Corollary 16.6.26]
for other variants. We loosely follow the argument from [KL15] whose main inputs are [Ked13,
Lemmas 5.5 and 5.16].

We focus on (2.3.1.2) because it implies (2.3.1.1) by the nonarchimedean triangle inequality. Also,
we assume that @?P is a unit multiple of p (see §2.1.2): this change of @ does not increase |w|”
and only enlarges the collection of valuations in question. In addition, we choose a generator &£

of Ker(f: W(A") — A), so that S_TF] e W(A")* where & denotes the residue class modulo p (see
§2.1.2). Let zp € W(A?) be a fixed lift of a € A, recursively define further lifts

Zpal = zp — & (g—p[é])_l(zn—p[zn]> = [zn] — [€] (g—p[Z])_l(zn—p[zn]) € W(Ab), and set a’ :=Z,,.

To check that o’ satisfies (2.3.1.2), we begin by noting that a continuous valuation |-| on A defines a
w’-adically continuous valuation |-|, on A° by'? z — ’xﬁ’ (see (2.1.1.2)). For z € W(A?), we set

|2]gup = max;>o0(|z(;)lp) in terms of the unique expansion z =3, [2(;] e W(A);

10T he triangle inequality follows from the continuity of |-| and the formula (2 + z')¥ = limnﬂoo((acu)ﬁ + (ar:"j)ﬁ )P
that one deduces from (2.1.1.2) and the fact that, by induction, """ mod p™ A for b € A only depends on b mod pA.
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we will only use this in inequalities “<” to abbreviate “every [z(;)[, is <" (so the attainment of the

max need not concern us). Since z = (2 ‘6.))]'20 is the Witt vector expansion, the nature of Witt
vector addition and multiplication [BouAC, chapitre IX, section 1, numéro 3, a) et b)| ensures
that the map z — |z|  satisfies the nonarchimedean triangle inequality and is submultiplicative.
Consequently, since

sup

a—a*= 0(zm — [Zm]) = Zj>1((zm - [zm])(j))ﬁ 'pj,
it suffices to show that
2m — [Em]lsup < max(|Zmls, |2 ™). (2.3.1.3)

By the definition of z,,; and the fact that £ is a unit multiple of (”)? (see §2.1.2), we have

|Zn+1 - [En]’sup < ‘wb’f ) |Zn|sup-

b|P(N+1) (

Thus, for the least 0 < N < oo with [Zx], > |w so N depends on |-|), induction on n gives

20| gup < ]wb|§m for n <N,

which settles (2.3.1.3) when m < N. In the remaining case m > N, the preceding displays still give

— (N+1
|ZN+1 - [ZN]‘sup < |wb|f =

and [Zy 41|, = |Zn],. Thus, by repeating with N+1 in place of N we get |2y 2 — [EN+1]|Sup < [Zn41ly,

, so the choice of N and the triangle inequality give ’ZN+1|sup = |Zn],

so also |2nt2|gy, = [ZN+1l, and |Zn42], = [Zn+1],- [teration gives the sufficient |z, |

sup sup

We will use the approximation lemma in conjunction with the following standard fact.

Lemma 2.3.2 (Special case of [GR18, Corollary 15.4.27 (ii)|). Let A be a ring equipped with the
w-adic topology for a nonzerodivisor w € A. An element a € A[%] is topologically nilpotent (that is,
a" € wA for large n) if and only if a| < 1 for any continuous valuation || on A[L] with |A| <1

Proof. The ‘only if’ is clear: if a € A[%] is topologically nilpotent and || is continuous, then
any n > 0 with a” € wA satisfies |a|” = |a"| < |w| < 1, so |a|] < 1. For the ‘if,” we first use
[Hub93, Lemma 3.3 (i)] to see that a lies in the integral closure of A in A[X], so its powers are
bounded in A[%] We let A°° < A be the ideal of topologically nilpotent elements and consider
the A-subalgebra A[2] = (A[L])[2] generated by 2. If A°°- A[1] is the unit ideal of A[], then a
satisfies an equation

a¥ + 3N lai-at=0 in A[L] with a;€ A,

In this case, a is topologically nilpotent because so are the a; - a’ by the boundedness of {a‘};>o.

Thus, we are left with the case when A°°- A[1] lies in a maximal ideal m < A[1]. In turn, m contains

a minimal prime p of A[1], which extends to a minimal prime p of (A[2])[2] (see [SP, Lemmas 00E0

w a

and 00FK]). The target of the injection A[1]/p — (A[Z])[1]/p is a domain, so it has a valuation
subring V' that dominates (A[2]/p)w (see [SP, Lemma 00IA]). The ideal ), >o@"V <V is prime,
soV:i=V/ (ﬂn>0 w”V) is a valuation ring in which the powers of w get arbitrarily close to 0. Thus,
the map A[1] — V[2L] gives rise to a continuous valuation |-| with [A| <1 and |1| < 1. The latter

contradicts |a\ < 1. O

As a final preparation for the promised variant of André’s lemma, we review ind-syntomic ring maps.
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2.3.3. Ind-fppf and ind-syntomic ring maps. A ring map A — A’ is ind-fppf (resp., ind-
syntomic) if A’ is a filtered direct limit of faithfully flat, finitely presented (resp., syntomic'!)
A-algebras.'? Tt is useful to note that A — A’ is ind-fppf if and only if it is faithfully flat and
A’ is a filtered direct limit of flat, finitely presented A-algebras. Concretely, A — A’ is ind-fppf
(resp., ind-syntomic) if and only if every A-algebra map B — A’ with B finitely presented over
A factors as B — S — A’ with S faithfully flat, finitely presented (resp., syntomic) over A (see
[SP, Lemma 07C3|). In particular, ind-fppf and ind-syntomic maps are stable under composition'?
and base change. A finite product or a filtered direct limit of ind-fppf (resp., ind-syntomic) A-algebras
is ind-fppf (resp., ind-syntomic). Certainly, faithfully flat ind-syntomic maps are ind-fppf.

Theorem 2.3.4. Let A be a ring, let w € A with @wP | p be such that it has compatible p-power roots
@w/?" € A, and suppose that either

(i) A is a w-adically complete perfectoid; or
(ii) A is w-Henselian, its w-adic completion is perfectoid, and w is a nonzerodivisor in A.

There are a faithfully flat, ind-syntomic, w-Henselian A-algebra A" whose w-adic completion Al s
perfectoid and a w-divisible ideal I' = A" with A'/T" faithfully flat over A such that every monic

P e A'[T] has a root ap € A'/T" with compatible a]}/pn e A'/I', in particular, the Ozllp/pn exist in Al.

Remark 2.3.5. The perfectoid A’ contains compatible p-power roots of every a € A, and ;1\’/(13)
is faithfully flat over A/(w). Thus, the preceding theorem recovers the original lemma of André

[Bhal8, Theorem 1.5, in which one only required ;1\’/ (w) to be almost faithfully flat over A/(w).

2.3.6. Proof of Theorem 2.3.4. The final assertion follows from the rest because A~ A/’/? ! by the
w-divisibility of I’. By Proposition 2.1.12, the perfectoid A in (i) is a quotient of a perfect01d A that
is w-torsion free and w—adlcally Complete for a lift &5 € A of @ with &P | P Once some A’ with a
&-divisible ideal I’ = A’ works for A with respect to @, its quotient A’ := Al ® 7 A with the image
I' « A’ of I' works for A (see Proposition 2.1.11 (b)). This reduces (i) to (ii).

For the rest of the proof, we assume (ii) and build on the argument of [GR18, Theorem 16.9.17],
which established a similar result without the ind-syntomic aspect. We may then restrict to those
P that belong to the set P of all the monic polynomials in A[T']: indeed, since A’ inherits the
assumption (ii), we may a posteriori iterate the construction countably many times to build a tower

A=: Ay - A} - Ay, —> ... and w-divisible ideals I, < A, for n >0

such that I) < A} satisfy the requirements with respect to the monic polynomials in A/ _[T7];
since A7, /(X}1<i<p 1iA7,) is faithfully flat over A7, /(> cic1 ;A1) and hence, by induction,

B\ ring map A — A’ syntomic if Spec(A’) is covered by spectra of A-algebras of the form A[z1,...,zn]/(f1,- .-, fc)
with each Alz1,...,zx]/(f1,..., fi) flat over A and f1,..., fc a regular sequence in A[z1,...,2n], for every prime
p D (f1,..., fe) (by [SP, Lemmas 00SY and 00SV], this definition agrees with its counterpart [SP, Definition 00SL)]
used in op. cit.).

12The distinction between ind-fppf and merely faithfully flat maps is subtle: for instance, if R is a Noetherian local
ring and R is its completion, then R — R is flat but, by [Gab96, Proposition 1|, not ind-fppf when it has a nonreduced
fiber and R is a Q-algebra (as happens in [FR70, proposition 3.1]). For further examples of maps that are faithfully
flat but not ind-fppf, see [SP, Section 0ATE].

L3For instance, to show that the composition of ind-fppf maps A — A’ and A’ — A” is ind-fppf, for a test B — A”
over A we factorize A’ — A'®a B — S — A” with A’ — S faithfully flat and finitely presented, express A’ as a filtered
direct limit of faithfully flat, finitely presented A-algebras, and then descend the factorization using limit formalism,
faithful flatness of A — A”, and [EGA 1V, corollaire 11.2.6.1] (in the syntomic version, we use [SP, Lemma 0C33]
instead).
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also over A, the ring A, := lim A, with its c-divisible ideal 17, := >},-; I; AL, then satisfies the
requirements with respect to the monic polynomials in AL [T] (see (2.1.2.3) and the end of §2.1.2).
With P fixed, we may drop the requirement that A’ be w-Henselian—indeed, we may acquire this a
posteriori by replacing A’ by its w-Henselization: since w lies in the maximal ideals of A, this does
not lose faithful flatness (see [SP, Lemma 00HP|). Thus, dropping w-Henselianity and restricting to
P € P, we first define A’ and then, in the rest of the proof, check that it meets the requirements.

We set
Ay = <A [T}D/pn |PeP,n> 0]) [P(TP)]pemeo c <A [T}D/pn |PeP,n= OD [£]. so that

wom

Ag[] = (A[TH |[Pe P, n=0])[L]
and define a w-divisible ideal I, € Ay by
Ip = (ZI2 | Pe P, m 2 0) ¢ Ay
Our candidate A" and a w-divisible ideal I’ = A’ are (see §2.1.7)
A’ := (p-integral closure of Ay, in Ay[=]) and I':= (%j;f) |PeP,m=0)c A

1
w
Since each P(Tp) vanishes in A’/I’; the class of Tp is a desired root ap. Moreover, I, is w-divisible, so
Ay /(wP) is a quotient of (A[Tllg/pn | PeP,n=0])/(=?),

and hence every element of Ay /(w?) is a p-th power (the same holds for A in place of Ay, see
§2.1.2 (ii)), to the effect that A’ is perfectoid by Proposition 2.1.8. Due to the w-divisibility of I,
and I’, the quotients Ay /Iy and A’/I' are w-torsion free, so we have

Aw/Ly © AT < (Ag/Lo)[ L] = <A [T;/p" |PeP,n> o] J(P(Tp)| Pe 7>)) [L].
The w-divisibility of I and (2.1.7.1) with (2.1.2.3) then imply that A’/I’ is the p-integral closure of
Ap/Ip in (Aw/I)[Z]. We may describe Ay /I, explicitly as follows: each P is monic, so

1/pn 1/pn
AT 1o/ (PTP)p < (AITH™ 1pa/(P(Tr))p) [£]
and, since elements of this subring lift to A, (even to A[Tllg/ pn]P,n), we have

A/ I = AITE 1/ (P(Tp))p inside  (AITEY 1/ (P(Tp))p ) [£].

In particular, A’/I' is integral over A and (A’/I')[1] is even ind-(finite, module-free) over A[1].
Thus, since w € A is a nonzerodivisor, the closed morphism Spec(A’/I") — Spec(A) is surjective.
Moreover, by glueing of flatness [RG71, seconde partie, lemme 1.4.2.1], the desired A-flatness of A’/I’
will follow from the A/(w)-flatness of (A’/I')/(w) =~ A’/(w). In conclusion, it remains to argue that

A’ is A-ind-syntomic.

For the remaining ind-syntomicity of A’ over A, due the closedness of ind-syntomic maps under
filtered direct limits (see §2.3.3), we may replace P by its variable finite subset. Then, since for finite
P the A-algebra A’ can equivalently be built iteratively, we may replace P by a singleton {P}. To
reduce further, we simplify the notation by setting 7' := Tp and for m > 0 set

A, = (A[Tl/pn ‘n > 0]) [@] c (A [Tl/pn ‘n > O]) [%] ~ Am[é] ~ Aoo[%] and

wom
1
w

Al = (p-integral closure of A, in A,,[=]).

By another passage to a limit, it suffices to show that each A/, with m > 0 is ind-syntomic over A.

To argue this, we will use the perfectoid nature of Ay =~ A [Tl/pn ‘ n = 0] and the fact that w®, P(T)
24


https://stacks.math.columbia.edu/tag/00HP

is an Ap-regular sequence for any t € Z[%];o (since P is monic), to describe A/, explicitly. The
Ap-regularity of @™, P already implies an explicit description of A,, (see [SP, Lemma 0BIQ)]):

A = Ag[ 2] = Ag[X]/(@™X — P)  and, likewise, Ao[-L:] = Ag[X]/(w™X — P), (2.3.6.1)
where ;1\0 is the w-adic completion.

Since Ao is perfectoid (bee §2.1.2), by Lemma 2.3.1, there is a Q) € ;15 that admits compatible
p-power roots Ql/p7 € Ao such that

|P — Q| < max(|Q|,|w™|) for every continuous valuation |-| on ;1\0[%] with |Ag| < 1. (2.3.6.2)

Letting ;1\0+ be the integral closure of ;1\0 in Zg[i], we then have

(&=l <1 ={ZI<1} in Spa(Ao[L], 4p").

This agreement implies that if we endow Ao[wm] and Ao[wm] with their w-adic topologies, then

the continuous valuations |-| on (;1\0[ —)[2] with \Ao[ = ]| < 1 are identified with the continuous

valuations on (;1\0[ > 1)[L] with |A0[ ¢-]| < 1. Moreover, (2.3.6.2) implies that every such valuation
satisfies | Lo — —| < 1. Consequently, by Lemma 2.3.2,

every large power of - — -2 lies both in @ (4 L and in (A % . 2.3.6.3
y large p 0lz 0lw

wm wm

Lemma 2.3.2 and (2.3.6.2) also imply that (P — Q)?" e wA, for some t € Zx, so that, by (2.1.2.4),
we have P — Q € wl/P' 4y. In particular,

Q"7 ismonic in Ag/w'/?" (2.3.6.4)
(see (2.1.2.4)), so the sequence
wm/pj,Ql/pj is ;l\o—regular for every j = 0 (2.3.6.5)

(see [SP, Lemma 07DV]). Consequently, analogously to (2.3.6.1), we have

Ag| Ql/p].] ~ Ag[X VP /(wm/P XV — QU (2.3.6.6)

wm/p]

where we chose the label ‘X /7’ for the polynomial variable to make evident the resulting identification

Ao[ L7 1= 0] = A[ X7 |j = 0]/ (P XP — QUY )jzo. (2.3.6.7)

wm/p]
It then follows from (2.1.2.3) that the w-adic completion of the subalgebra Ao[ m/p] |j 0] ;15[%]
is perfectoid, and hence, from (2.1.7. l) that this subalgebra is p-integrally closed Due to (2.3.6. 3),

the p-integral closure of Ao[ =] in Ao[ ] contains i and the p-integral closure of AO[ ] in AO[ ]

contains %7 so it follows that these two closures agree and both are equal to Ao[ / v ] j=0].

To describe the sought p-integral closure A/, of Ag[-£-] in Ag[L] for m > 0, we now take advantage
of the preceding analysis over Ay. We use (2.3.6.3) to fix a d > 0 such that
(P - QP e @™ (A[L]) and (P — Q)" e @™ (Ag[2]). (2:3.6.8)

We then fix a

g€ Ay congruent to Q€ ;1\0 modulo wmpd,
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so that the image of ¢ in Ao/wl/pt is monic and @w™, ¢ is an Ag-regular sequence (compare with
(2.3.6.5)). Consequently, as in (2.3.6.1), we have Ao[ %] = Ao[X]/(@™X — q). By combining this
with (2.3.6.1) and (2.3.6.6), we see that both maps

XoX+1T82

Aol = Ag[] and Ag[2] = Ao[X]/(@™ X —q) A[X)/(@" X ~Q) = Ap[ ]

induce isomorphisms on w-adic completions. Thus, since these maps are compatible with the w-adic

completion map Ay — ;1?), we get from (2.3.6.8) that
(P—q) e @™ (A[L7]) and (P —q)" e @™ (4[ L)),
Consequently, the p-integral closures of Ag[-2-] and Ag[-%] in Ag[L] agree, and hence equal A7,

To proceed, we fix q; € Ag for j > 0 such that ¢ := ¢ and

g; = QY” mod @™ A, for j> 0. (2.3.6.9)
Since qg.’ 1 = ¢j mod @™ Ay, we have (wij/:; )P — ng/pj € Ag for every j = 0, so the subalgebras
Ag[L] ... Agf m/pj] c Ao[wij/;.lﬂ] c... in A[Z] (2.3.6.10)

are contained in the p-integral closure Al of Ag[-%:] in Ag[L]. In fact, their union is p-this integral

closure: to show this, we first note that, due to (2.3.6.5) and (2.3.6.9), the sequence @™ ¢; is
Ap-regular, and hence, analogously to (2.3.6.6), that

Ao ~ Ag[X;]/(@™P X; — q5).

m/p]]

In terms of these identifications, the inclusions (2.3.6.10) become

aj—a¥,
X XP yL it
J JHLT S m/pl

= Ao[X;]/ (@™ X — Qj) Aol X1 ]/ (@™P " X1 — gji1) —

Since wP™ | q; — qj 1 and pm — 7 > 1, we see from (2.3.6. 7) that the direct limit of these maps

modulo w is identified with (Ao[g;@ |j = 0])/w. Since Ao[

m/pJ

s / - ] j = 0] is p-integrally closed in

;1\0[%], it follows from the Gabber—-Ramero criterion (2.1.7.1) (applied with w there replaced by
w!'/P) that Ag[—2

i |j = 0] is p-integrally closed in Ag[1], and hence that it equals A7,

Thanks to this explicit description of A/, and the stability of ind- syntomic algebras under filtered
direct limits, all that remains is to show that each Ag[X;]/(@w™? X; — ¢;) is ind-syntomic over A.
However, g; comes from A[TV/P"] for every large enough n and its 1rnage in (A/@/P [TV s
monic (see (2.3.6.9) and (2.3.6.4)). Thus, the ((A[T'/P"])[X;])-regular element wm/ij — gj stays
regular on every A-fiber of (A[TP"])[X;]. Consequently, each (A[T'/?"])[X;]/(w m/p X — gj) is a
syntomic A-algebra (see [SP, Lemma 00SW]), and it remains to form the direct limit in n.

The following consequence of André’s lemma gives convenient “semiperfectoid” covers of Z,)-algebras.

Corollary 2.3.7. Every ring A that is p-Zariski in the sense that 1+pA < A* admits a faithfully flat
map A — Ay such that the p-adic completion of A™Y is perfectoid, Ay is a quotient of a p-torsion
free p-Henselian ring Ago whose p-adic completion is perfectoid, and every monic polynomial in
Ay[T] has a root in Ay (so the same also holds with Ay or A™ in place of Au).
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Proof. The p-Zariski condition amounts to p lying in the Jacobson radical, equivalently, in every
maximal ideal, of A. We recall that the p-Zariskization of a ring B is the localization Bi,,p. By
replacing A by the p-Zariskization of the countable iteration of the construction

A A[XYP" [ a e Al/(Xa —alae A),

we lose no generality by assuming that every a € A admits compatible p-power roots a'/P" in A. In
turn, such an A is then a quotient of the p-torsion free Z,-algebra A that is the p-Zariskization of

ZIp" P [ X P71 a € A].

By Proposition 2.1.11 (a), the p-adic completion of A is perfectoid, so we apply Theorem 2.3.4
to the p-Henselization of A to build a faithfully flat, p-Henselian A- algebra AOO whose p-adic
completion is perfectoid such that every monic polynomial in Aoo[ ] has a root in AOO. The quotient
Ay = ﬁoo ®y A of /TOO is faithfully flat over A and every element of its nilradical admits a p-th root.
Proposition 2.1.11 (d) then ensures that the p-adic completion of A% is perfectoid. O

3. THE PRIME TO THE CHARACTERISTIC ASPECTS OF THE MAIN RESULT

For arguing our purity results, the first task is to dispose of the cases when the order of the coefficients
is invertible. For this, we first give a new, perfectoid-based proof of the Gabber—-Thomason purity
for étale cohomology of regular rings in §3.1. We then use it in §3.2 to deduce purity for étale
cohomology in the general singular case via a local Lefschetz style theorem. In §3.3, we present a
nonabelian analogue of the results of §3.2: a generalization of the Zariski-Nagata purity theorem.

3.1. The absolute cohomological purity of Gabber—Thomason

Purity for étale cohomology of regular rings, stated precisely in Theorem 3.1.3 (see also footnote 2),
was conjectured by Grothendieck and settled by Gabber in [Fuj02], who built on the strategy
initiated by Thomason in [Tho84|. Gabber’s alternative later proof given in [ILO14, exposé XVI|
eliminated the use of algebraic K-theory. We present a proof that uses perfectoids, specifically,
Theorem 2.2.7, to reduce to the positive characteristic case that had been settled by M. Artin already
in [SGA 4yy1, exposé XVI|. The following standard lemmas facilitate the passage to perfectoids.

Lemma 3.1.1. Let (R, m) be a complete, regular, local ring with residue field k.
(a) There is a filtered direct system {(R;,m;)}ier of reqular, local, finite, flat R-algebras that are
unramified if so is R (see §1.4) such that m; = mR; and (lim, R;, lim mw;) is a regular local
ring whose residue field is an algebraic closure k of k.
(b) If R is of mized characteristic (0,p) and k is perfect, then there is a tower {Ry}n>0 of
reqular, local, finite, flat R-algebras of p-power rank over R such that the p-adic completion
of R := _H)1n>0 R, is perfectoid: explicitly, by the Cohen structure theorem, we have

R~W(k)[z1,...,z4]/(p— f), where either f=x1 or fe(p,x1,...,2q)>°

(the two cases correspond to whether or not R is unramified), and one may choose
Ry = WR" a1/~ ) with R~ WE™ 2" 10 - £).

For our somewhat nonstandard use of the notation [-] in part (b) above, see (1.4.1).

Proof. In essence, the claims are restatements of [Ces19, Lemmas 5.1 and 5.2]: part (a) follows from

[Ces19, Lemma 5.1| and its proof, whereas part (b) follows from [Ces19, Lemma 5.2| and its proof.

For a prismatic point of view on the construction of Ry, see [BS22, Remark 3.11]. U
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LenAlma 3.1.2. Let A be a ring, let a € A be such that A is a-Henselian and has bounded a® -torsion,
let A be the a-adic completion of A, and let Spec(A[L]) € U = Spec(A) be an open. We have

RT(U, #) — RU«(Uz,.F) for every torsion abelian sheaf F on Us.

In particular, for every closed subset Z < Spec(A/aA), we have
RT (A, F) — sz(ﬁ, F)  for every torsion abelian sheaf F on Ag,

and for a Noetherian ring R, an ideal I < R such that R is I-Henselian, and the I-adic completion ITZ,
RT[(R,7) — RF[(}AR, F)  for every torsion abelian sheaf F on Re.

Proof. The claims are special cases of [BCQQ, Theorem 2.3.4, Corollary 2.3.5 (e)], although we
could also use earlier references [Fuj95, Corollary 6.6.4] or [ILO14, exposé XX, section 4.4]; see also
Theorem 5.4.4 below. ]

Theorem 3.1.3. For a regular local ring (R, m) and a commutative, finite, étale R-group G whose
order is invertible in R,

H.(R,G) =0 for i<2dim(R).

Proof. We use the local-to-global spectral sequence [SGA 4y, exposé V, proposition 6.4] to assume
that R is strictly Henselian and then that G ~ Z/¢Z for a prime ¢. We then use Lemma 3.1.2 to
assume that R is also complete. Thus, by the Cohen structure theorem [Mat89, Theorem 29.7|, if
R is equicharacteristic, then R ~ k[z1,...,z4] for a field k and, by Lemma 3.1.2 again, we may
assume that R is the Henselization of Ag at the origin. For this R the claim was settled already
in [SGA 4y, exposé XVI, théoréme 3.7|, so from now on we assume that our complete, strictly
Henselian R is of mixed characteristic (0, p).

Since multiplication by p is an automorphism of Z/¢Z, the trace map [SGA 4y, exposé XVII,
sections 6.3.13 et 6.3.14, proposition 6.3.15 (iv)| allows us to replace R by any module-finite, flat
R-algebra R’ of p-power rank over R such that R’ is a regular local ring. Thus, by Lemma 3.1.1 (a)
and a limit argument, we may pass to a tower to reduce to the case when the residue field k of R is
algebraically closed (we use Lemma 3.1.2 to complete R again). We then likewise use Lemma 3.1.1 (b)
to reduce to showing that

Hiy oo (R, ZJUZ) = 0 for i < 2d with Ro, = W(K)[2y",....af” 1/(p—f), fem?U{i},
knowing that the p-adic completion ]/%oo of ROC is perfectoid. The tilt ﬁb of ﬁfso reviewed in (2.1.1.2) is
the f-adic completion of k[(z})V/P”, ..., (2%)'/P"] for some f € k[(z )l/p ey (22) VP explicitly,
N . 1/p® 1 (2n)n= ’_’(zn Jn=0 0 n
By = tim (k[ 2P T lim (K[ @) 1))

b

where ] corresponds to the p-power compatible system (xg/pn)nzo. Thus, by (2.2.7.1) with

Lemma 3.1.2 (the latter removes the f-adic completion), we are reduced to showing

Hiy oy (R[(2)YP", .. (a2)VP"],2/02) ~0 for i< 2d.
By the perfection-invariance of étale cohomology, we may replace k[(z})Y/?”, ..., (22)"P"] by
k), ... x d]], which brings us to the already discussed equal characteristic case. O

Remarks.
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3.1.4.

3.1.5.

As Teruhisa Koshikawa pointed out to us, the above argument also reduces the full absolute
cohomological purity for étale cohomology, namely, the statement that for all n € Z~g
invertible in R the étale-sheafification #}, of the cohomology with supports H}, satisfies

for i # 2dim(R),

Hi(—,Z/nZ) = {Z/nZ( dim(R)), for i = 2dim(R),

to positive characteristic. Indeed, the isomorphism in degree i = 2dim(R) is induced by
the cycle class map Z/nZ(— dim(R)) — H%dlm(R)(—,Z/nZ), which one first argues to be
injective as in [Fuj02, Lemma 2.3.1]. The bijectivity then becomes the matter of bounding

the nonzero stalk of the target, which may be done after passing to }ABE,O The vanishing in
degrees i # 2dim(R) reduces to positive characteristic as in the proof of Theorem 3.1.3.

Another way to pass to the tilt, without using Theorem 2.2.7, is to use diamonds developed
in [Sch22]. Namely, we consider the “punctured adic spectrum” of R, defined as

U3l = Spa(Roe, Reo)\{w1 = . = w1 = 0} = UL Spa (Rap( 220, R Bzt ),
where Ry, is endowed with its (x1,...,x4)-adic topology, so that U za%i is an analytic adic
space over Zj, (to simplify we ignore the issue of showing that the appearing Huber pairs are
sheafy).!* Likewise, we endow R’ with the (z%,... ,xEl)—adic topology and consider

A a a ~ d a xb,...,zb -~ z? ey T

U = Spa(Ry, R)\(ah = ... = 2 = 0} = UL, Spa (R, Ry, (st ),

which is a perfectoid space because the coordinate rings of the appearing affinoids inherit per-
fectness from R’ (see [Sch22, Proposition 3.5]). By tilting (see Proposition 2.1.9 and, for com-
patibility of definitions, [BMS18, Lemma 3.20]), the universal property of adic localization and

(2.1.7.2) show that giving a map from a perfectoid space to Spa (Roo<x1’ Fhonfd) Rop(Hhptd >+>
amounts to giving a map from its tilt to the perfectoid space Spa (Rgo<m1’ = xd} R <x1’ S >+>
compatibly with overlaps of such rational subsets. Thus, the perfectoid space U ad represents

the diamond associated by [Sch22, Definition 15.5] to the analytic adic space U ﬁd Conse-
quently, since the functor that sends an analytic adic space over Z, to its associated diamond
induces an equivalence of étale sites [Sch22, Lemma 15.6], we obtain the key

H (UKL, Z)07) = H, (U Z/(7,).
It remains to set
Un,, i= Spec(Ro)\{z1 = ... = 24 = 0} and Up, := Spec(Ry)\{z] = ... = ) = 0}

and apply [Hub96, Theorem 3.2.10]'° (for the flanking isomorphisms) to deduce the passage
to the tilt:

H}(Ur,,, Z/(L) = Hy (UK, Z/UL) = Hy (Ug) | Z/UZ) = Hy (U, ,Z/IZ).

Rb’

11y fact, by [Nak20, Example 2.1.4], each Spa appearing in the union on the right side is even an affinoid perfectoid.

5Due to the blanket Noetherianity assumption [Hub96, paragraph 1.1.1], the citation does not apply directly, so
one performs a slightly tedious limit argument, similar to the one used in the proof of [éeslf), Theorem 4.10]. Another
way around this is to pass to the adic spectra at the finite levels of the tower and then use [Sch22, Proposition 14.9] to
pass to the limit of adic spaces.
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3.2. The étale depth is at least the virtual dimension

Purity for étale cohomology of possibly singular Noetherian local rings R was settled in the case
when R is an excellent Q-algebra in [SGA 2.y, exposé XIV, théoréme 5.6] and in the case when
R is a complete intersection in [Gab04b, Theorem 3| (by reduction to [I1103, théoréme 2.6]). In
Theorem 3.2.4, we deduce the general case from Theorem 3.1.3. We begin with the definition of the
virtual dimension, which is a numerical invariant of R that has already appeared in the context of
purity in [SGA 2,0y, exposé XIV, définition 5.3].

3.2.1. The virtual dimension of a Noetherian local ring. For a Noetherian local ring (R, m),
by Cohen’s theorem [EGA IV, chapitre 0, théoréme 19.8.8 (i)], the m-adic completion R is of the
form R

R~ ﬁ/[ for a complete regular local ring R and anideal I c R.

The virtual dimension of R is

~

vdim(R) := dim(R) — (minimal number of generators for the ideal I) (3.2.1.1)

and, by [SGA 2.y, exposé XIV, proposition 5.2|, does not depend on the presentation E/I . By
[SGA 2,0y, exposé XIV, proposition 5.4],

vdim(R) < dim(R) with equality if and only if R is a complete intersection. (3.2.1.2)

~

By definition, vdim(R) = vdim(R), so also vdim(R) = vdim(R"); more generally, by [Avr77,
Proposition 3.6 and equations (3.2.1) and (3.2.2)], for any flat local homomorphism R — R’ of
Noetherian local rings, we have

vdim(R') = vdim(R) + vdim(R'/mR’), so, in particular, vdim(R) = vdim(R*"), (3.2.1.3)

(loc. cit. proves this for the complete intersection defect defined as dim(*) —vdim(x) but the dimension
dim(*) is likewise additive, see [EGA IV, corollaire 6.1.2]).

Remark 3.2.2. Despite the name “geometric depth” used for vdim(R) in [SGA 2, exposé XIV,
définition 5.3], in general there is no inequality between depth,,(R) and vdim(R): a Cohen—Macaulay
R that is not a complete intersection has depth, (R) > vdim(R), whereas, due to [Bur68] (or
[Koh72, Theorem A]) and the Auslander-Buchsbaum formula, any regular local ring R has an
ideal I generated by three elements such that the quotient R := R/I with depth,(R) = 0 (and

~

vdim(R) > dim(R) — 3).

To deduce Theorem 3.2.4 from Theorem 3.1.3, we will use the following Lefschetz hyperplane theorem
in local étale cohomology. This strategy is close in spirit to the one used by Michéle Raynaud in
[SGA 2,6y, exposé XTIV, théoréme 5.6] in the case when R is an excellent Q-algebra.

Lemma 3.2.3. For a regular local ring (R, m), an f € m, and an invertible in R prime ¢, the map

{bijective for i <dim(R) — 1,

Hy(R, 2/02) — Hy(R/(f), Z/(Z) injective for i = dim(R) — 1.

Proof. Letting j: Spec(R[%]) — Spec(R) be the indicated open immersion, we need to show that
H.(R,5(Z/tZ)) =0 for i< dim(R). (3.2.3.1)

Moreover, by the local-to-global spectral sequence [SGA 4j;, exposé V, proposition 6.4], we may
assume that R is strictly Henselian and, by Lemma 3.1.2, that R is also complete. We will derive
(3.2.3.1) from Gabber’s affine Lefschetz theorem [[LO14, exposé XV, corollaire 1.2.4], which gives

H'(R[4],Z/Z) =0 for i> dim(R). (3.2.3.2)
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Namely, by [ILO14, exposé XVII, théoréme 0.2], the complex (,u?dim(R))[Q dim(R)] of étale sheaves
on R is dualizing and its j'-pullback is dualizing on R[%] This pullback is (M§dlm(R))[2 dim(R)]
(see [SGA 4y, exposé XVIII, proposition 3.1.8 (iii)]), so, since Rj, oD =~ Do j (see [SGA 5, exposé I,
proposition 1.12 (a)]), the vanishing (3.2.3.2) amounts to

(Hi <R%”om <jg(Z/€Z), (u& )2 dim(R)]>>)m ~0 for i>—dim(R),

where (— )y, indicates the stalk. To obtain (3.2.3.1) it remains to use local duality in étale cohomology
[SGA 5, exposé I, équation (4.2.2)] (our dualizing complex is normalized as there by [ILO14,
exposé XVI, théoréme 3.1.1]). O

Theorem 3.2.4. For a Noetherian local ring (R, m) and a commutative, finite, étale R-group G
whose order is invertible in R,

H.\(R,G) =0 for i<vdim(R).
We will remove the assumption on the order of GG in Theorem 6.2.4 below.

Proof. Theorem 3.1.3 and Lemma 3.2.3 settle the case when R is a hypersurface, that is, a quotient
of a regular ring by a principal ideal. Thus, it suffices to show how to reduce from a general R to a
hypersurface. This reduction works for any commutative, finite, étale GG, so, to be able to reuse it in
the proof of Theorem 6.2.4, we drop the assumption on the order of G.

By the spectral sequence [SGA 4y, exposé V, proposition 6.4], we may assume that R is strictly
Henselian, and then, by dévissage, that G ~ Z/pZ for a prime p. Lemma 3.1.2 reduces further to
complete R, so that

R~ R/(fi,...,fn) fora complete regular local ring (R, &) and fi,...,fn €

chosen so that fi,..., f, is a minimal generating set for the ideal (fi,...,fn) < R (see §1.4).
Suppose that n > 1 and consider the rings Ry := R/(f1,..., fn—1) and Ra := R/(f,), as well as

~

Ry := ﬁ/(flfn, ooy fn—1fn). Set theoretically, in Spec(R) we have
Spec(R1) n Spec(R2) = Spec(R) and Spec(R1) u Spec(R2) = Spec(Ri2).
Thus, since the étale site is insensitive to nilpotents, we obtain the exact sequence

2> (2|ry > 2| Ry
_

) (#,9) ~zlrR—y|r
0— Z/pZR12 Z/pZR1 G—)Z/pZR2 — Z/pZR — 0

~

of sheaves on Spec(R)¢. Since vdim(R,) = vdim(R) + 1 for = € {1,2,12}, the associated long exact
sequence of cohomology with supports reduces the desired vanishing to its counterpart for the rings
R,.. This allows us to decrease n, so we arrive at n = 1, that is, at R being a hypersurface R/(f). O

3.3. Zariski—Nagata purity for rings of virtual dimension > 3

The nonabelian analogue of Theorem 3.2.4 is the following generalization of the Grothendieck—
Zariski-Nagata purity theorem [SGA 2., exposé X, théoréme 3.4] (and of the main result of
[Cut95]): for extending finite étale covers over a closed subscheme of a Noetherian scheme, it suffices
to assume that the total space have virtual dimension > 3 at the missing points (instead of even
being a complete intersection of dimension > 3 at these points). We learned from de Jong that his
generalizations contained in [SP] of the algebraization theorems from [SGA 2] and [Ray75| could
be used to prove this—indeed, as the reader will notice, they are the main inputs to the proof of
Theorem 3.3.1. This section is purely classical and does not use perfectoid inputs or other sections.
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Theorem 3.3.1. Let (R, m) be a Noetherian local ring, set Ur := Spec(R)\{m}, and let Spec(R)¢et
(resp., (Ugr)set) denote the category of finite étale R-schemes (resp., of finite étale Ur-schemes).

(a) If vdim(R) = 2, then the pullback Spec(R)tsr — (URr)sst is fully faithful, Ug is connected, and

i (UR) — 75" (R).

(b) If vdim(R) > 3, then the pullback Spec(R)tes — (UR)set is an equivalence of categories and

i (Ur) — i'(R).

Proof. In (a), granted the full faithfulness, the connectedness of Ug follows from that of Spec(R)
by considering sections both of the finite étale map Spec(R)| | Spec(R) — Spec(R) and of its base
change to Ug. Moreover, by [SGA 1y, V, 6.9, 6.10], the conclusions about the fundamental groups
follow from the claims about the functors. For the latter, patching [FR70, proposition 4.2] and flat
descent allow us to replace R by its m-adic completion. Then we may write

R~ ]N%/(fl, ..., fn) for a complete regular local ring (é, m) and fi,...,fpEm

chosen so that fi,..., f, is a minimal generating set for the ideal § := (f1,..., fn) < R (see §1.4).
Let 4 = X be the formal schemes obtained from Ug := Spec(R)\{m} = Spec(R) by formal f-adic
completion. Since étale sites are insensitive to nilpotents, pullback gives equivalences of categories

Xtst —> Spec(R)get and  Uggt —> (UR)set,

so we are reduced to considering the pullback functor Xgs — LUset. By [SP, Lemma 09ZL], the pullback
Spec(R)¢ss —> Xggt is an equivalence, so we only need to consider the pullback Spec(R)gss — get -

(a) The assumption vdim(R) > 2 allows us to apply the algebraization of formal sections
[SP, Lemma 0DXR (with Lemma 0DX9)| (or [Ray75, chapitre I, théoréme 3.9]) to conclude

that any morphism between the {-pullbacks of finite étale R-schemes Y7 and Y> algebraizes to
a morphism between their U-pullbacks for some open Up — U < U, and this algebraization

is unique up to shrinking U. The complement Z := Spec(é)\U is at most n-dimensional
because the f;|z cut out the closed point of Z. Thus, since n < dim(R) — 2, the codimension

~

of Z in Spec(R) is = 2, to the effect that the algebraized morphism extends uniquely to an
R-morphism between Y7 and Ys (see [EGA IV, théoréme 5.10.5]). Consequently, the pullback

~

Spec(R)sey — gt is fully faithful.

(b) The assumption vdim(R) > 3 allows us to apply the algebraization of coherent formal modules
[SP, Lemma OEJP] to conclude that any finite étale {-scheme algebraizes to a finite étale
U-scheme Y for some open Ugr < U < Uj (to algebraize the algebra structure maps, we use

~

[SP, Lemma 0DXR] as in (a)). The complement of U in Spec(R) is now of codimension > 3,
so, by the Zariski-Nagata purity for regular rings [SGA 2y, exposé X, théoréme 3.4 (i)], we

may extend Y to a finite étale R-scheme. Consequently, the pullback Spec(R)sey — LUser 1S
essentially surjective. O

Remark 3.3.2. The connectedness of Ur holds more generally, see [SP, Lemma 0ECR] or [Var09,
Theorem 1.6].
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4. INPUTS FROM CRYSTALLINE AND PRISMATIC DIEUDONNE THEORY

Our eventual source of the characteristic-primary aspects of purity for flat cohomology is a relation
to coherent cohomology and the vanishing of the latter in presence of enough depth. To exhibit
this relation, we use crystalline and prismatic Dieudonné theories that classify commutative, finite,
locally free groups of p-power order over perfect and perfectoid rings in terms of Dieudonné modules.
We review the crystalline classification in §4.1 and its prismatic generalization in §4.2.

4.1. Finite, locally free group schemes of p-power order over perfect rings

The positive characteristic case of the key formula (1.1.6) is a perfect ring variant of Kato—Trihan’s
[KT03, Proposition 5.10]. To establish it in Theorem 4.1.8 we build on Gabber’s suggestion to use
the pro-fppf site (see Proposition 4.1.7; alternatively, one could adapt the arguments of op. cit.). A
key input is the crystalline classification of commutative, finite, locally free groups of p-power order
over perfect [F-schemes due to Berthelot, Gabber, and Lau, which we now review.

4.1.1. Crystalline Dieudonné modules over perfect bases. For a perfect F,-scheme S, by
an unpublished result of Gabber that built on [Ber80, théoréme 3.4.1] and was reproved by Lau
[Laul3, Corollary 6.5] by a different method, there is a covariant equivalence of categories

G — M(G)

from the category of commutative, finite, locally free S-groups G that are locally on S of p-power
order to the category of quasi-coherent W (&g)-modules M equipped with Frobenius (resp., inverse
Frobenius) semilinear maps F': Ml — M (resp., V: M — M) with F'V = V F = p such that for every
affine open Spec(R) < S the W(R)-module I'(R, M) is finitely presented, killed by a power of p,
and of projective dimension < 1. The functor is defined by Zariski-local glueing as follows (see
[Laul3, proof of Corollary 6.5]): Zariski locally on S one finds p-divisible groups Hy, H; that fit into
an exact sequence

0—-G—-Hy—H —0 and sets M(G) := Coker(M(Hp) — M(Hy)),
where M(H;) := I'((S/Zp)cris, D(H;)) is the evaluation of the covariant Dieudonné crystal
1 " [BBMS82, section 5.3] 1 "
]D)(HZ) = (goﬁt(s/zp)cris (Hz ’ ﬁ(S/Z;D)CriS) = (éaxt(s/zp)cris (H“ ﬁ(S/ZP)Cris))

(the dual of the locally free crystal of H; defined in [BBMS82, définition 3.3.6, théoréme 3.3.10]) at
the terminal ind-object {(S, W,,(Os))}n=0 of the crystalline site (S/Z;)cis. Since op. cit. uses big
crystalline sites, the formation of M(G) commutes with base change to any perfect S-scheme.

Example 4.1.2. By [BBMS82, exemple 4.2.16 (i)], the W (&g)-module that underlies 1,, := M(Z/p"Z)
is

W(0s)/p" with F =p-Frob(—), V =Frob (-).
Likewise, the W (0s)-module that underlies M(j,n) is

W(0s)/p" with F =Frob(—), V =p-Frob (-).
Lemma 4.1.3. In §4.1.1, the functor G — M(G) and its inverse preserve short exact sequences.

Proof. By [BBM82, proposition 1.1.7, théoréme 3.3.3], the functor H; — ID(H;) preserves short exact

sequences, hence so does H; — M(H;) (compare with [BBMS82, proposition 1.1.19, définition 1.2.1]).

To deduce the same for G — M(G), thanks to the snake lemma, it suffices to Zariski locally on S embed

a short exact sequence 0 — G' — G’ ©> G” — 0 into a short exact sequence 0 — Ho — H} — H}j — 0

of p-divisible groups (see [BBM82, lemme 3.3.12]). For this, we choose Zariski local embeddings into

p-divisible groups ¢': G’ — Hp and /": G” — H{] and replace /' by (', /" om): G' — Hy x H =: Hj).
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For the remaining exactness of the inverse, granted that 0 — M(G;) — M(G2) — M(G3) — 0 is
a short exact sequence, we need to show that the complex G; — G2 — (3 is also a short exact
sequence. In the case when S is geometric point we may decompose this complex into short exact
sequences of finite flat group schemes and conclude by the exactness of G — M(G). Thus, in general
we check on geometric S-fibers that G; — Ker(G2 — G3) (see [EGA 1V, corollaire 17.9.5]). It
then remains to note that Go/G1 < G3 becomes an isomorphism after applying M(—), so is an
isomorphism. ]

The equivalence G — M(G) leads to the following description of the low degree cohomology of G.
Proposition 4.1.4. Let S be a perfect Fp-scheme and let G be a commutative, finite, locally free
S-group killed by p™. We have the following functorial in G identifications of sheaves on Sg:

4.1.1
G =Homs(Z/p"L,G) = Homy, (o), Fv(1n,M(G))

lle

M@ =,
1 " 411,413 _ (4.1.4.1)
Exts(Z/p"L,G) = Exty, (g4, Fv(In, M(G))

lie

M(G)/(V = D(M(G)),

where éaxtg denotes the étale sheafification of the functor of extensions of fopf Z/p™Z-module sheaves.

Proof. The full faithfulness of G+ M(G) gives the first line of (4.1.4.1): the map to M(G)"=! is
the evaluation (f: 1, — M(G)) — f(1). For the second line, we define the last identification
as follows. To a local section m of M(G), we associate the extension M(G) @ 1,, for which the
Verschiebung is determined by (0,1) — (m, 1) and the Frobenius is then necessarily determined
by (0,1) — (=F(m),p) (we write F' and V for those of M(G)). Such extensions for m and
m’ are isomorphic if and only if the isomorphism of W, (0s)-module extensions determined by
(0,1) — (a,1) for some a € M(G) is V- and F-equivariant. The V-equivariance amounts to
(m+a,1) = (m' +V(a),1), that is, to m —m’ € (V — 1)(M(QG)), and the F-equivariance amounts
to (—=F(m) + pa,p) = (=F(m') + F(a),p) and follows from V-equivariance. Since any extension of
1, by M(G) is étale locally split as an extension of W,,(€g)-modules, the claim follows. O

In Theorem 4.1.8, we will upgrade the identifications (4.1.4.1) to a formula that expresses the flat
cohomology RI'(S,G) in terms of the quasi-coherent cohomology RI'(W,,(S),M(G)). For this, we
first show in Proposition 4.1.7 that the map V — 1: M(G) — M(G) is pro-fppf locally surjective.

4.1.5. The pro-fppf site. A scheme map X’ — X is pro-ppf (resp., pro-fppf) if X’ may be covered
by opens Spec(A’) ¢ X’ for which there is a factorization Spec(A’) — Spec(A4) < X in which the
A-algebra A’ is a filtered direct limit of flat, finitely presented A-algebras (compare with §2.3.3)
and Spec(A) ¢ X is an open immersion (resp., and X’ — X is faithfully flat). Pro-ppf maps
{X! — X}ier form a pro-fppf cover if each quasi-compact open of X is a finite union of images of
quasi-compact opens of | |..; X/. By §2.3.3, the pro-ppf maps are stable under base change and
composition, so the category of X-schemes with pro-fppf covers as coverings defines the pro-fppf site
of X. A pro-fppf cover is also an fpqc cover, so an fpqc sheaf is also a pro-fppf sheaf.

Lemma 4.1.6. Let S be a perfect Fp-scheme and let Xrert denote the perfection of an F),-scheme
X. If {X; — Stier is an fpgc (resp., pro-fppf) cover of S, then so is {Xiperf — Stier.

Proof. The composite X; Frob”, X; — S factors as X; — S % S, so it is fpqc (resp., pro-fppf).

Thus, the inverse limit szerf of ... 2xob, X; Frob, X; is fpqc (resp., pro-fppf) over S (see §2.3.3). O
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Proposition 4.1.7. Let S be a perfect F,-scheme and let G be a commutative, finite, locally free
S-group that is locally on S of p-power order. There is a functorial in G short exact sequence

(4.1.4.1) V-1
—_ e

0->G M(G) M(G) — 0 (4.1.7.1)
of sheaves on the category of perfect S-schemes endowed with the pro-fppf topology.

Proof. The left exactness follows from (4.1.4.1). For the remaining surjectivity we may work étale
locally on S, so, by (4.1.4.1), we need to show that a given extension 0 — G — G’ 5 Z/p”ZS -0

of Z/p"Z-module sheaves splits over a pro-fppf cover of S. The extension splits over the fppf cover
7~1(1) = S, which is a G-torsor, so Lemma 4.1.6 supplies a desired pro-fppf cover. (The point of
using Lemma 4.1.6, so, relatedly, the pro-fppf rather than simply the fppf topology, is to stay in the
realm of perfect base schemes in order to be able to consider the functor M(—).) g

Theorem 4.1.8. Let S be a perfect F),-scheme and let G be a commutative, finite, locally free S-group
that locally on S is of p-power order. The map of sites €: Sgypr — S¢y gives a functorial triangle

Re.(G) > M(G) L5 M(G) — (Rex(G))[1] on  Se. (4.1.8.1)
In particular, if G is killed by p™, then, for any closed subset Z < S, we have
RT7(S,G) = RUz(W,(S),M(G)V=1  functorially in S, Z, and G. (4.1.8.2)

Proof. The identification (4.1.8.2) follows from (4.1.8.1) by applying RT'z(S, —). For the latter, we
fix a suitable auxiliary cutoff cardinal xk with x > |S| (see §1.4), consider the small pro-fppf site
Spro-fppf, x bounded by &, its subsite Spyro-tppt, perf, s Of perfect schemes, and the morphisms

Spro—fppf, K T) Spro—fppf, perf, k
al e
Sfppf 46> Sét.
By limit arguments, RZ'a,(G) = 0, so Re.(G) = R(e0a)+(G) = R(cob)«(G) = Re,(Rby(G)). By
Lemma 4.1.6, the functor by is exact, so Re«(G) = Rcy(G). Moreover, by faithfully flat descent for
modules (see [SP, Lemma 023M]), we have RZ!c,(M(G)) = 0. Thus, by applying Rec.(—) to the
short exact sequence (4.1.7.1) we get the desired (4.1.8.1) (independently of the choice of k). O

Corollary 4.1.9. For a perfect Fy-algebra A and a commutative, finite, locally free A-group G of
p-power order,

HY(A,G) =0 for i=2.
Proof. Since affines have no higher quasi-coherent cohomology, (4.1.8.2) with Z = S sulffices. O

Theorem 4.1.8 implies much of the positive characteristic case of purity for flat cohomology. We
record this in Proposition 4.1.13 because the intervening auxiliary lemmas are also important in the
general case. The following example illustrates why positive characteristic is significantly simpler.

Example 4.1.10. For a Noetherian local ring (R,m), by the cohomological characterization of

depth, H (R, G,) = 0 for i < depth(R) (compare with [SGA 2y, exposé III, proposition 3.3 (iv)]).

Thus, if R is also an Fj-algebra, then the Frobenius-kernel and the Artin—Schreier sequences give
Hi(R,ap) =0 and H(R,Z/pZ)=0 for i< depth(R). (4.1.10.1)

Complete intersection R have depth(R) = dim(R), so for them (4.1.10.1) gives cases of Theorem 1.1.1.
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The complete intersection assumption fully manifests itself in the following lemma.

Lemma 4.1.11. Let A be a ring, let f1, ..., fm € A be a reqular sequence, and let G be a commutative
(A/(f1,---, fm))-group scheme that is either smooth or finite locally free. The map

injective for 1 <d,

Hi(A/(f1s s ), G) = HIA/(R™ o fim).G) s {szecmfor i<d-1

forallny,...,nm, >0 and fll/m, ce %nm € A and all ideals I < A/(f1,..., fm) containing some
(A/(f1,--., fm))-regular sequence a,...,aq of length d.

Proof. We use the Bégueri sequence (1.4.2) and the five lemma to assume that G is smooth. By

[SP, Lemma 07DV], the sequence ffl/nl, e #L"/nm, ai,...,aq is regular for all i1,...,4,, = 1. Thus,
if n; > 1, then, by induction on m, the square-zero ideal J that cuts out the closed immersion

jt Spec(A/(fMVM gy fn)) © Spec(A/(f1, o) )

is free as an (A/( 11 / " fa,..., fm))-module. Moreover, deformation theory supplies the short exact
sequence of étale sheaves

0= Homay,.. .)€ Qyasiss, o fu)s7) = G = 3Gy pm-vym o ) =0,

where e is the unit section of G (see, for instance, [Ces15, Lemma B.14 and its proof]). Since G is
smooth, the (A/( 11/m, f2y -+, fm))-module
Homyy(y,, ---,fm)(e*(Qé:/(A/(fl, fm)))7 J)

is finite projective. Consequently, by decreasing induction on ¢ and the regularity of the sequence
ai,...,aq, for i < d —t we have

H} (A/CF, - s (Bomasn, g (€ ) ) /a1, 00)) = 0.

The t = 0 case of this vanishing and the preceding short exact sequence then imply that

Hi(A/(f1, -y )y G) = HAA/F ™ for o ), G) {mjem o i<

bijective for i <d — 1.

By repeating this argument for

Spec(A/(f7 ™ oy ooy fm)) <> Spec(A/(F VM for L fin))

and so on, we eventually replace fi by f11 /™ and then conclude by induction on m. ]

Another useful reduction is the following passage to a cover (compare with [Ces19, Remark 2.7]).

Lemma 4.1.12. Let (R,m) — (R',m’) be a finite, flat, local map of Noetherian local rings that
are complete intersections, let n < dim(R) be an integer, and let G be a commutative, finite, flat
R-group. If for each local ring (A,q) at some mazimal ideal of some finite nonempty self-product
R' ®g...®r R Theorem 1.1.1 holds for A and G in cohomological degrees < n in the sense that

Hy(A,G) =0 for i<n,

then

H.(R,G)=0 for i<n and HX(R,G)<— HYW (R, Q).
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Proof. The maximal ideals q in question are the primes above m. Each A is of dimension dim(R) and,
by (3.2.1.2)~(3.2.1.3) (or by [SP, Lemma 09Q7]), is a complete intersection. Thus, the assumption
gives HL.(R' ®p ...®r R',G) ~ 0 for i < n. It then suffices to use the spectral sequence

By = H'(R//R. H}(~.G)) = H,Y(R,G)
that results from fppf descent for R’ — RI'w(R’,G) (and that could also be derived by choosing an

injective resolution of G and considering the Cech complexes of its terms with respect to R'/R). O

Proposition 4.1.13. For a complete, Noetherian, local Fy-algebra (R, m) that is a complete inter-
section with a perfect residue field k and a commutative, finite, flat R-group G of p-power order,

H.\(R,G) =0 for i<dim(R).

Proof. We use induction on ¢ simultaneously for all R. By the Cohen structure theorem (see §1.4),
R~ kft1,...,tn]/(f1,..., fm) for a k[ti,...,tx]-regular sequence fi,..., fm.

By Lemma 4.1.12, we may pass to the limit of the rings k[[ti/pj, .. ,t%pj]]/(fl, .« fm) to reduce to
He 1/p* 1/p* 2 f ;
(tl,...,tN)(k[[tl sty 1/(f1se i fm),G) =0 for i< N —m.
The ring k‘[[t}/poo, e ,tjl\époo]] is perfect, so Lemma 4.1.11 and a limit argument reduce to

i 1/p® 1/p® 1/p® o ? ]
Hiy oy KI7 1P, 6 =0 for i< N —m.

Since Ry, = k:[[t}/poo, . ,t%poo]]/( ll/poo, ce 71,1/1700) is a perfect [F,-algebra, (4.1.8.2) reduces us to
. ? ,
Hi, o) (W (B0),M(G)) =0 for i <N —m.

Since the W( Ry )-module M(G) is of projective dimension < 1 (see §4.1.1), this, in turn, reduces to

i ?
H(lp,tl,...,tN)(W(Roo)7 W(Ry)) =0 for i<N-—m+1.
By [SP, Lemma 07DV], an R-regular sequence aq,...,an—_,, € m is Ry-regular, so the sequence
ap :=p, ai, - - -, Ggim(R) 18 W(Ry)-regular. Decreasing induction on j then gives the sufficient
ng,tl,_,,,tN)(W(Roo%W(Roo)/(am coya5) =0 for i<N—-m—j and —1<j<N-m. O

4.2. Finite, locally free group schemes of p-power order over perfectoid rings

The classification of commutative, finite, locally free groups of p-power order over perfect F,-algebras
was extended to perfectoid Z,-algebras by Lau [Laul8] in the case p > 2 and by the second-named
author [SW20, Appendix to Lecture 17| in general by using ideas from integral p-adic Hodge theory.
In [ALB23|, Anschiitz—Le Bras drew a parallel to the crystalline theory by relating this classification
to the prismatic point of view. We will use these results for formulating (and proving) the general
case of the key formula (1.1.6), so we now review them and include some relevant for us complements.

4.2.1. Prismatic Dieudonné modules over perfectoid rings. For a perfectoid Z,-algebra
A and a fixed generator £ of Ker(Ajs(A) — A), by [ALB23, Theorem 5.4] (which builds on
[SW20, Theorem 17.5.2]), there is a covariant, compatible with base change equivalence of categories

G — M(G) := Extl (G*,0)
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from the category of commutative, finite, locally free A-groups G of p-power order to the category of
finitely presented, p-power torsion Ajn¢(A)-modules M of projective dimension < 1 equipped with
Frobenius (resp., inverse Frobenius) semilinear maps

F:M—>M (resp., V:M— M) thatsatisfy FV =Frob({) and VF =¢.

The Ext! above is in the absolute prismatic site of A and, by [BS22, Lemma 4.8], is an Aj,¢(A)-
module. The Frobenius F' is induced by the Frobenius of the prismatic structure sheaf O , and
the only role of £ is to define the Verschiebung V. By |[ALB23, Theorem 4.44 and the proof of
Theorem 5.4, in the case when A is a perfect F,-algebra, the functor G — M(G) may be identified
with its crystalline counterpart discussed in §4.1.1. By construction, in the case when G is the
p"-torsion of a p-divisible group, M(G) is a finite projective (Ajp¢(A)/p" Ains(A))-module.

Example 4.2.2. By [ALB23, Lemma 4.75], the Aj,¢(A)-module that underlies M (g ) is
Aing(A)/p"Aine(A)  with F = Frob(—), V =¢-Frob 1(-).
Likewise, the Aj¢(A)-module that underlies 1,, := M(Z/p"Z) is
Aing(A)/p"Aing(A)  with F = Frob(€) - Frob(—), V = Frob™*(—).

Lemma 4.2.3. In §4.2.1, the functor G — M(G) and its inverse preserve short exact sequences.
Proof. Cartier duality is exact, so the assertion is part of [ALB23, Theorem 5.4]. U

Similarly to Proposition 4.1.4, we obtain the following description of low degree cohomology of G.

Proposition 4.2.4. For a perfectoid Zy-algebra A and a commutative, finite, locally free A-group G
of p-power order, we have functorial in A and G identifications

G(A) =M(G)V= and HY(A,G) =M(G)/(V —1)M(G). (4.2.4.1)

Proof. For any p" that kills G, we have H'(A,G) =~ Extl(Z/p”ZA, G) (extensions of fppf Z/p"Z-
module sheaves), so the same argument as for Proposition 4.1.4 (with §4.2.1, Example 4.2.2, and
Lemma 4.2.3 in place of §4.1.1, Example 4.1.2, and Lemma 4.1.3) gives the claim. (|

Remark 4.2.5. In Proposition 4.2.4, the H>2(A, G) vanish: we will deduce this in Corollary 5.3.7
from its positive characteristic case of Corollary 4.1.9 via the p-adic continuity formula of §5.3.

We turn to analyzing the prismatic side of the key formula (1.1.6): we show that it satisfies
p-complete arc descent in Proposition 4.2.7 and then arc locally relate it to flat cohomology in
Proposition 4.2.10. A key input to our arc descent results is the following lemma that in essence
restates [BS22, Proposition 8.10].

Lemma 4.2.6. The following functors satisfy hyperdescent for those p-complete arc hypercovers
whose terms are perfectoid Zy,-algebras:

A Aps(A), A— A, and A~ A

Proof. Since Ker(#: Aine(A) — A) and Ker(Aj(A) - A°) are principal, generated by nonzerodivi-
sors & and p, and Aj¢(A) is p-adically complete, it suffices to treat A — AP, Thus, fixing A and
letting (/—\) denote derived p’-adic completion, Lemma 2.2.2 (with Proposition 2.1.11 (b)) reduces
us to showing that the functor § — S satisfies p’-complete arc hyperdescent on the category of
perfect A’-algebras (by §2.1.2 and (2.1.3.2), the tilts of perfectoid A-algebras are derived p’-adically

complete, so on them this functor agrees with S +— S). Since the functor is bounded below (even
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concentrated in degree 0), hyperdescent for it is equivalent to descent. Moreover, it suffices to show
arc descent: indeed, if S — S’ is a p’-complete arc cover, then S — S’ x S [I%] is an arc cover and the

functor has identical values on the two Cech nerves. We then instead consider the functor S Sz;‘
defined on all Ab—algebras, where Sperr 1= h_r)nSHsp S, and then reduce further to showing arc descent

for S+ Sperf on the category of all AP-algebras S. By [BS17, Theorem 4.1 (i), Proposition 4.5, the
functor S — Syt satisfies v-descent, so, by [BM21, Proposition 4.8 and its proof], it also satisfies
arc descent. 0

Proposition 4.2.7. Let A be a perfectoid Z,-algebra, let a € Aing(A), let G be a commutative, finite,
locally free A-group of p-power order, and let Z < Spec(A/pA) be a closed subset. The functors

A" M(Ga)[2] and A RUz(Aue(A"),M(G )

satisfy hyperdescent for those p-complete arc hypercovers whose terms are perfectoid A-algebras.

Proof. For any cosimplicial abelian group M*, the associated complex M® — M! — ... represents
Rlima (M?*), so, since localization is exact, we may assume that a = 1. By §4.2.1, we have

M(GA/) = M(G) ®a (4) Ainf(A/)
and there are finite projective Ajn¢(A)-modules M; that fit into an exact sequence

inf

Since M(G) is p-power torsion and Aj,s(A’) is p-torsion free, this sequence stays exact after base
change to Aj,s(A’). Thus, for the claim about A’ — M(G /) it suffices note that, by Lemma 4.2.6,
the functors A’ — M; @i (A) Ajnr(A") satisfy hyperdescent for those p-complete arc hypercovers
whose terms are perfectoid A-algebras. For the claim about A’ — R z(Aj(A"),M(G4/)), we use
the functorial triangle

RT z(Ain(A'), M(G ) = RT(Aing(A"),M(G o)) — Rlim_ (RT (At (A)[1],M(Ga)[1]))

where z ranges over the elements of Aj,¢(A) that vanish on Z. This reduces us to the settled claim
about A’ — M(G 4/)[%] because

RT(Aing(A)[Z], M(Ga)[3]) = M(Ga)[Z]. .

The promised arc-local analysis uses the following general lemma about modules on infinite products.
Lemma 4.2.8. For rings {R;}icr and a finitely presented ([ [;,o; Ri)-module M, we have
M — Hie[(M Qr Ri).

Proof. Set R :=]],.; Ri and choose a resolution R"” — R™ — M — 0. Both — ®pr R; and infinite
products are exact, so the claim for M reduces to the evident case of a finite free R-module. g

Proposition 4.2.9. Let {A;}icr be perfectoid Z,-algebras, let A :=1],.; Ai (which is perfectoid by
Proposition 2.1.11 (d)), and let G be a commutative, finite, locally free A-group of p-power order.
We have

M(G) - Hie[
granted that we choose compatible & in Ajnr(A) and Ajs(A;) to define V' (see §4.2.1).

M(Ga,) over Ape(A) = [1,c; Aint(Ai) compatibly with F and V,

el

Proof. Since G — M(G) commutes with base change (see §4.2.1), compatibility with F and V is
automatic and Lemma 4.2.8 gives the claim. O
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Proposition 4.2.10. Let {A;}ier be p-adically complete valuation rings of rank < 1 such that the
fraction field K; of A; is algebraically closed, let A :=]],.; Ai, let K :=]];c; Ki, letae A, and let
G be a commutative, finite, locally free A-group of p-power order. The map

V — 15 M(G)[ ] = M(G) ]

is surjective (for any & € Ajpne(A) used to define V' of M(G), see §4.2.1),
HI(A[}],G) =0 for j=1,

and there is a unique commutative square

wn which the vertical arrows are bijective whenever a is a nonzerodivisor.

Proof. In the statement, A is perfectoid by (2.1.2.3) and Proposition 2.1.11 (d), the element
a’ e A’ = J[,.; A% is a system of compatible p-power roots of a € A (see (2.1.1.2)), and the

. 1%

map V: M(G)[ﬁ] — M(G)[[a—lb]] is defined by V([(aT)n]) = [(ab()T/)p]'
subproducts, we may replace I by parts of a finite partition of I. Thus, since the case a = 0 is clear,
we assume that a is a nonzerodivisor. In this case, since, by Proposition 2.1.9, each AE is a valuation
b

By decomposing A into

ring, @’ is also a nonzerodivisor, and the uniqueness aspect will follow from the bijectivity of the
vertical maps. Moreover, A — A[1] — K, so, since G(4) — G(K) by the valuative criterion of
properness, also G(A) — G(A[1]). Due to the local structure of A[1] described in Lemma 2.2.4, the
valuative of properness applied locally on Spec(A[1]) also ensures that X (A[1]) = X(K) for every
GA[%]—torsor X. Since K is a product of algebraically closed fields, this shows that H'(A[1],G) = 0.

In contrast, Lemma 2.2.4 and the Bégueri sequence (1.4.2) show that H7(A[2],G) = 0 for j > 2.

The remaining claims concern M(G), and we use [BBMS&2, théoréme 3.1.1] to cover Spec(A) by
finitely many affine opens Spec(A’) over which G embeds into a p-divisible group. Since each A; is
local, the map A — A; factors through some A — A’, so we subdivide I to assume that there is an
exact sequence

0-G—->G -G -0

in which G’ is a truncated p-divisible group. Since G(A4) — M(G)V=! and H'(A,G) = 0, the
functor G — M(G)V=! is exact and, by Lemma 4.2.3, the functor G — (I\\AI(G)[[;H])V:1 is left
exact. Thus, by snake lemma, for the injectivity and then also the surjectivity of the right vertical
map in the diagram, we may replace G' by G’ to assume that G is a truncated p-divisible group.
By then p-adically filtering G and again using the snake lemma, we may assume that G is also
killed by p. In this case, M(G) is a projective A’-module (see §4.2.1) and the right vertical map is
injective because @’ is a nonzerodivisor in A°. For its surjectivity, fix an m € (M(G)[ﬁ])vzl. By
the Frob~-semilinearity of V', if bin € M(G) for a b e A°, then also b'/Pm € M(G). Such elements of
Ab[ﬁ] lie in A°, so, since M(G) is a direct summand of a finite free A’-module, m € M(G).

For the remaining surjectivity of V' — 1: M(G)[ﬁ] — M(G)[ﬁ], by Lemma 4.2.3, the bijectivity

of the right vertical arrow, and the snake lemma, the functor G — M(G)[ﬁ]/(v - 1)(M(G)[ﬁ])

is exact. Thus, as before, we may first assume that G is a truncated p-divisible group and then that
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it is also killed by p, so that M(G) is a finite projective A°-module. We then first claim that V — 1

is surjective after passing to the limit over all the nonzerodivisors a’.

Claim 4.2.10.1. Letting Kf be the fraction field of AE-, the map V — 1 is surjective on

4.2.8

M(G) @ 4 (Hie] bi) = HieI(M(GAi) ®AE bi)

Proof. We may assume that I is a singleton {i}. If A; is an Fp-algebra, then M(G) ® 0 K? =~ M(Gg,)
and V — 1 is surjective by (4.2.4.1). Otherwise ¢ is a nonzerodivisor in A”, so both F and V
are bijective on M := M(G4,) ®A? bi Thus, by [Kat73, Proposition 4.1.1 and its proof|, M*=!
is a finite Fp-module and M = ME=1 ®r, Klb compatibly with the Frobenius. By choosing an
[F,-basis for M F=1"the desired surjectivity of V' — 1 on M then amounts to the surjectivity of
¢ -Frob l(x) — % on K?, equivalently, of ¢ - + — Frob(x). The latter translates to the solvability in

bi of any equation 2P — x +b =0 with b e bi , which follows from the algebraic closedness of bi
(see Proposition 2.1.9). O

Thanks to Claim 4.2.10.1, it remains to show that if an m e M(G’)[ﬁ] is of the form V(z) — z for
some = € M(G) ® 4 ([1;c; K?), then z € M(G)[ﬁ] For this, it suffices to show that x lies in each
stalk of M(G) at a variable point of Spec(A[a—lb]). By Lemma 2.2.4, each local ring of Spec(A[3]) is

b
a
a valuation ring whose fraction field is a localization of K, so we are reduced to the following claim.

Clarm 4.2.10.2. For a perfect [Fp-algebra W that is a valuation ring with fraction field L, a finite free
W-module M, and a Frob™!-semilinear V: M — M, any x € My, with V(z) —z € M lies in M.

Proof. 1In the statement, the map V on My, is defined by the same formula as in the beginning of
the proof of Proposition 4.2.10. Suppose that w € W is such that wx € M, so that = 7 for some

m € M. Then, since V(z) —x = YU(JZR — z lies in M, we get that also w'/Pz € M. However, since M
is finite free and w is arbitrary subject to wxz € M, this means that x € M. 0O O

5. PROPERTIES OF FLAT COHOMOLOGY WITH FINITE, LOCALLY FREE COEFFICIENTS

Our argument for purity for flat cohomology uses several new properties of fppf cohomology with
coeflicients in commutative, finite, locally free group schemes. We establish these properties in
this chapter by combining deformation theory discussed in §5.1 with crystalline Dieudonné theory
discussed in §4.1. It is convenient to extend the statements to the setting of fppf cohomology of
animated rings: even for usual rings this removes unnecessary assumptions and makes the proofs
possible because our reductions involve derived p-adic completions and derived base changes that
leave the realm of usual rings. The ultimate goal of these reductions is to end up with perfect
[F,-algebras, which may then be treated by using the key formula (4.1.8.2) in positive characteristic.

5.1. Deformation theory over animated rings

A crucial tool in our reductions is deformation theory, carried out in the setting of simplicial rings.
We will, however, not work with the latter in the strict sense of simplicial objects in the category of
(commutative, as always) rings: instead, we will consider the co-category obtained by inverting the
weak equivalences, that is, the maps that induce weak equivalences of the underlying simplicial sets,
equivalently, the maps that induce quasi-isomorphisms of the underlying simplicial abelian groups
considered as connective chain complexes via the Dold—Kan correspondence. The passage from the

category of commutative rings to this co-category is an instance of a general procedure discussed in
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§5.1.4 that Dustin Clausen, inspired by Beilinson’s [Bei07],'® suggested to term “animation.” For
instance, the animation of the category of sets—the co-category of “animated sets” or, briefly, of
“anima’—is simply the co-category of “spaces” in the sense of Lurie: it is the co-category obtained
from the category of simplicial sets (or topological spaces) by inverting weak equivalences.

To put animation into context, we begin with the following general category-theoretic review.

5.1.1. Free generation by 1-sifted colimits. For a category € that has filtered colimits, we let
€™ < € be the full subcategory of those X € % that are of finite presentation (also called compact)
in the sense that Home (X, —) commutes with filtered colimits. Finite colimits in € of objects of
€' lie in €', and we have fully faithful embeddings'”

¢P — Ind(¢P) — €.

For a category € that has 1-sifted'® colimits, we let €% < € be the full subcategory of those X € €
that are strongly of finite presentation (also called compact projective when % has all colimits) in the
sense that Home (X, —) commutes with 1-sifted colimits. Finite coproducts in € of objects of &'
lie in ¥, and, letting sInd denote the 1-sifted ind-category (the subcategory of Fun((€*'?)°P, Set)
generated under 1-sifted colimits by the Yoneda image of €*), we have fully faithful embeddings

¢S s sInd(€5P) — ¢

(compare with footnote 17). If € is cocomplete and generated under colimits by € in the sense
that € has no proper cocomplete subcategory containing €%, then'

sInd(¢°P) = %. (5.1.1.1)

Consequently, 1-sifted-colimit-preserving functors F' from such a & correspond to functors from
¢, and F' commutes with all colimits if and only if F|s» commutes with finite coproducts. By
[ML98, Chapter V, Section 8, Corollary| and the following proposition, if €' is small, then €' is
also small and the category of functors F': °P — Set that bring colimits in % to limits in Set is
nothing else than the essential image of the Yoneda embedding of €’; equivalently, € is the category
of functors

(€5P)°P - Set
that bring finite coproducts in € to products in Set.

161, [Bei07], Beilinson lifts certain equalities in Ko to actual homotopies in the K-theory space (that is, in the
K-theory anima in the terminology we use), which he refers to as “animations” of that equality.

17 Ty see that the functor f: Ind(¢™®) — € supplied by the universal property of Ind(¢™P) is an embedding,
we use the argument of [HTT, Proposition 5.5.8.22] as follows. For a fixed X € €™, the full subcategory of the
Y € Ind(%™) with Homy, g4ty (X, Y) — Home (X, f(Y)) contains %' and is stable under filtered colimits, so it is
all of Ind(%™). Thus, the full subcategory of the X € Ind(¢'") such that Homy, gty (X,Y) — Home (f(X), f(Y))
for all Y € Ind(¢™) contains €'P; since it is also stable under filtered colimits, it must be all of Ind(%P).

18A small category Z is 1-sifted—usually simply called “sifted” in traditional category theory, but we want to
reserve the term “sifted” for the co-categorical concept—if Z-indexed colimits commute with finite products in the
category Set of sets (see [ARV10, Remark 1.1 (i)] for a concrete description; for context, we recall that 2 is filtered
if and only if Z-indexed colimits commute with finite limits in Set). For example, the category A°P that indexes
simplicial objects is 1-sifted: A°P-indexed colimits, that is, geometric realizations, are computed after restricting to
AZ;, which is 1-sifted [ARV10, Example 1.2]; the A2 -indexed colimits are reflezive coequalizers. If the domain of a
functor F': 4 — %" has finite colimits, then F' commutes with 1-sifted colimits if and only if it commutes with filtered
colimits and reflexive coequalizers (see [ARV10, Theorem 2.1]).

19Indeed, sInd(%€*®) inherits cocompleteness from % since a product of 1-sifted diagrams is 1-sifted, it inherits
the existence of finite coproducts from €=, so, by taking filtered limits, it has arbitrary coproducts, and it remains to
recall that any colimit is a reflexive coequalizer of coproducts.
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Proposition 5.1.2. Let € be a cocomplete category generated under colimits by €%®. The finitely
presented objects of € (that is, the objects of €'P) are precisely the coequalizers (equivalently, the
reflevive coequalizers) of objects in €% and € is generated under filtered colimits by €. In particular,

Ind(¢®) = €.

Proof. The coequalizer X of parallel arrows Y 3 Z agrees with the (reflexive) coequalizer of
Y uZ 33 Z, so the parenthetical claim follows. Moreover, the equalizer of Hom(Z, —) = Hom(Y, —)
is Hom(X, —), so, since equalizers commute with filtered colimits, if Y, Z € €*®, then X e €.

A colimit is a coequalizer of coproducts, so any X € € is a coequalizer of some | |,.;Y; 3| | ey Z;
with Y}, Z; € €. Since the Y; are finitely presented, for every finite subset I’ — I there is a finite
subset J' < J such that one has a subdiagram | |,_.;, ¥; =3 | | e Zj. Its coequalizer Xy is finitely
presented by the above, so, by taking the filtered colimit over all such choices of I’, .J/, we express X
as the filtered colimit of the X j, so that € is generated under filtered colimits by %3

It remains to see that every X € €'P is a coequalizer of objects of €3'P. The preceding arguments
imply that X is a retract of some coequalizer X’ of a diagram Y = Z in €°; let f: X’ — X’ be
the corresponding idempotent endomorphism of X’. Then X is the coequalizer of X’ = X', where
the two maps are the identity and f. Since Z € ¥, the map f : X’ — X’ can be lifted to a map
f: Z — Z, and then X is also the coequalizer of Z LY =3 Z where the two maps are the given ones

~

on Y and the identity (resp., f) on Z. O

Example 5.1.3. The following cocomplete categories € are generated under colimits by €*P:
(1) Set of sets: Set*™ consists of the finite sets;
(2) Gp of groups: Gp*'P consists of the free groups on finite sets;
(3) Ab of abelian groups: Ab™P consists of the finitely generated, free abelian groups;
(4)

4) Ring of (unital, commutative) rings: Ring®'P consists of the retracts of finite type, polynomial
Z-algebras, in other words, of Z-algebras R that are quotients 7: Z[z1,...,2,] - R such
that there is a Z-algebra map ¢: R — Z[x1,...,zy,] with 7o = idg.

The claimed descriptions of the subcategories € follow from the case 4 = Set and [HA, Corol-
lary 4.7.3.18], which in each of the cases characterizes €* as the full subcategory consisting of the
retracts of the “finite free” objects (one also uses the Nielsen—Schreier theorem, according to which
a subgroup of a free group is free, so that any retract of a finitely generated, free group inherits
these properties). Loc. cit. applies because the forgetful functor from the respective category to
sets commutes with 1-sifted colimits, that is, with filtered colimits and reflexive coequalizers: the
former is clear and for the latter we note that the set-theoretic equivalence relation generated by
the parallel arrows of reflexive equalizers preserves the algebraic structures (thanks to the built in
simultaneous splitting).

5.1.4. The animation of a category. For a cocomplete category € generated under colimits by
€ (so € = sInd(€*'P) by (5.1.1.1)), the animation of € is the oo-category Ani(%) freely generated
under sifted colimits by ¢*%, that is, Ani(%) has sifted colimits?” and a functor

&' — Ani(%)

20For siftedness in the oo-categorical context, see [HTT, Definition 5.5.8.1 and what follows|; prototypical examples
are filtered colimits and geometric realizations (that is, A°P-indexed colimits), and in some sense all sifted colimits are
generated from these.
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such that Funggeq(Ani(%), /) — Fun(¢*'P,.o7) for any co-category o7 that has sifted colimits,
where (—)gifted indicates the full subcategory of functors that commute with sifted colimits (equiva-
lently, with filtered colimits and geometric realizations). This characterization determines Ani(%)
uniquely, whereas [HTT, Definition 5.5.8.8, Proposition 5.5.8.10 (4), Proposition 5.5.8.15] ensure its
existence. By [HTT, Theorem 5.5.1.1, Proposition 5.5.8.10 (1)], the co-category Ani(%) is presentable,
so, by [HTT, Definition 5.5.0.1, Corollary 5.5.2.4], it is complete and cocomplete. If the objects
of € are widgets, then those of Ani(%¢’) are animated widgets, except we abbreviate Ani(Set) to
Ani and the term ‘animated set’ to anima (plural: anima). For a comparison between Ani(%’) and
constructions going back to Quillen’s [Qui67], see [HTT, Section 5.5.9, especially, Corollary 5.5.9.3|.

By Example 5.1.3 (1) and [HTT, Definition 5.5.8.8|, the co-category Ani of anima is obtained from
the category of simplicial sets by inverting weak equivalences, and for a general % as above, for
which € is small, Ani(%) is the oo-category of functors (¢?)°P — Ani that take finite coproducts
in €' to products in Ani. By [HTT, Lemma 5.5.8.14], any such functor can be lifted to a functor
that is representable by a simplicial object of € (even of Ind(%*®) = sInd(#*P) =~ ). In fact,
[HTT, Corollary 5.5.9.3] (with the final paragraph of §5.1.1 above) describes Ani(%’) as the oo-
category obtained from the category of simplicial objects of ¥ by inverting weak equivalences with
respect to a suitable model structure induced by the Quillen model structure on the category sSet of
simplicial sets.

By [HTT, Remark 5.5.8.26, Proposition 5.5.6.18], composition of a ()P — Ani with the
truncation 7<,: Ani — Ani induces a truncation functor 7<,: Ani(¢) — Ani(%¢) that is left
adjoint to the inclusion of the full subcategory of n-truncated objects of Ani(%’) (in the sense of
[HT'T, Definition 5.5.6.1]). In particular, by the last aspect of §5.1.1, there is a fully faithful inclusion
¢ — Ani(%) that identifies ¥ with the full subcategory of the 0-truncated objects of Ani(%); the
functor my 1= 7¢o is left adjoint to the inclusion and is given by composition with the connected
component functor mp: Ani — Set.

In particular, for a functor F' : € — 2 between cocomplete categories as above, if F' preserves 1-sifted
colimits, then it induces a unique functor Ani(F): Ani(%¢) — Ani(2), the animation of F, that
preserves sifted colimits, whose restriction to €% < Ani(%) is given by F': €% — 2 < Ani(2),
and such that mp o Ani(F') = F o mp. In general this operation is not compatible with composition;
this is akin to the formation of derived functors that only compose well under certain assumptions.

Proposition 5.1.5. Let F': € — Z and G: Y — & be 1-sifted-colimit-preserving functors between
cocomplete categories generated under colimits by their strongly finitely presented objects.

(a) There is a natural transformation from the composite Ani(G) o Ani(F') to Ani(G o F)).

(b) If either F(€*%) < Ind(25') in 2 or (Ani(G))(F(€*P)) & in Ani(&), then the natural
transformation Ani(G) o Ani(F') — Ani(G o F') of (a) is an equivalence.

Proof. Both Ani(G) o Ani(F') and Ani(G o F') are functors Ani(¢) — Ani(&’) that preserve sifted
colimits, so it suffices to compare their restrictions to €*P. Such restriction of the first functor is
X — Ani(G)(F(X)), while that of the second one is X — G(F(X)). However, mpo Ani(G) = Gom
and F'(X) is O-truncated, so we have the desired natural transformation

Ani(G)(F(X)) — mo(Ani(G)(F(X))) = G(mo(F(X))) = G(F(X)).

For the second part, we need to see that this is an equivalence if F'(X) is a filtered colimit of objects
of 2% or if (Ani(G))(F(X)) is O-truncated. The latter is clear and for the former we note that the

class of Y € 2 such that Ani(G)(Y) > G(Y) contains Z°P and is stable under filtered colimits. [J
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Example 5.1.6. The animations of the categories Gp, Ab, and Ring may be described as follows.

(1) The oo-category Ani(Gp) of animated groups is obtained from the category of simplicial
groups by inverting weak equivalences and, by a classical theorem (see [HA, Theorem 5.2.6.10,
Corollary 5.2.6.21]), is identified with the co-category of E;-groups (also known as associative
groups) in Ani.

(2) The oo-category Ani(Ab) of animated abelian groups is obtained from the category of simplicial
abelian groups by inverting weak equivalences and, by the Dold—Kan correspondence (see
[HA, Theorem 1.2.3.7]), is identified with the connective part”! D<Y(Z) < D(Z) of the derived
oo-category of Z (however, Ani(Ab) is not equivalent to what might be called commutative
groups in Ani, namely, it is not equivalent to the co-category of E-groups in Ani). The
oo-category Ani(Ab) is also identified with the co-category of abelian group objects in Ani.??

(3) The co-category Ani(Ring) of animated rings is obtained from the category of simplicial
commutative rings by inverting weak equivalences.

Since the forgetful functors Ring — Ab — Set commute with 1-sifted colimits (see Example 5.1.3),
they induce functors Ani(Ring) — Ani(Ab) — Ani. In this case, Proposition 5.1.5 ensures that the
functors compose well. Moreover, these functors admit left adjoints, given by the animations of the
usual left adjoints; in particular, these forgetful functors commute with all limits.

5.1.7. Animated rings and modules. For an animated ring A, we write a € A for a map * — A
of anima (equivalently, a map Z[X] — A of animated rings), call a an element of A, and set

Alg] = A®y ZIX, ] and  A/ta:= ARy x 0 L

Up to equivalence, the datum of an a € A amounts to that of an element of my(A). More generally,

elements aq,...,a, € A correspond to a map Z[ X1, ..., X,] Xim i, 4 of animated rings, and we set
A/May,. .. a,) = A ®H2[X1,...,Xn]7XiH0 Z, sothat A/(a1,...,a,) = ((A/%a)/" .. )/ an.

Thanks to Example 5.1.6, every animated ring A has its associated graded ring of homotopy groups

T (A) 1= Bpzo Tn(A);

the m-truncation functor of §5.1.4 gives the universal map A — 7<;,(A) to an animated ring with
vanishing homotopy 7~,,(—). To work with animated algebras over a base ring R, one either starts
with the category of R-algebras and animates it or considers animated rings equipped with a map
from R—the two perspectives are equivalent (compare with [SAG, Corollary 25.1.4.3|).

For an animated ring A, the co-category Mod(A) of A-modules is, by definition, the oo-category of
modules over the underlying E;-ring of A, compare with [SAG, Notation 25.2.1.1]. The co-category
of animated A-modules is its subcategory Mod<?(A) < Mod(A) of connective objects. When A is a
usual ring, Mod(A) is nothing else but the derived co-category of A (see [HA, Theorem 7.1.2.13])
and Mod<°(A) agrees with the animation of the category of A-modules (so there is no clash of
terminology). For a general animated ring A, the oo-category Mod<°(A) is identified with the
oo-category of modules in animated abelian groups over A (regarded as an Ej-algebra in animated
abelian groups), which may reasonably be called animated A-modules.

21As pointed out to us by Hesselholt, it is pleasing to recover D<°(Z) in this way because the cochain complex
requirement d?> = 0 becomes part of a solution to a universal problem instead of a construction.
22Recall that an abelian group object (or a Z-module object) in an co-category ¥ that has finite products is a
contravariant functor from the category of finite free Z-modules to ¥ that commutes with finite products.
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Equivalently, one may define the oo-category of animated rings A equipped with an animated
A-module M by animating the category of rings equipped with modules, compare with [SAG,
Proposition 25.2.1.2]. One can then define various forms of derived tensor products between
animated rings or animated modules by animating the usual functors. In particular, for a diagram
B «— A — C of animated rings, one may define the animated ring B ®HA C, by animating the usual
functor on rings.

5.1.8. The cotangent complex of an animated ring. For an animated ring A and an animated
A-module M, one defines an animated ring A @ M, the prototypical example of a “square-zero
extension,” by animating the corresponding functor defined on usual rings equipped with modules,
compare with [SAG, Construction 25.3.1.1]. The animated ring A® M comes with maps from and to
A and, as can be checked on underlying anima, the functor (A, M) — A @ M commutes with limits.

A derivation of an animated ring A with values in an animated A-module M is a map A —» A® M of
animated rings splitting the projection A@® M — A. We follow [SAG, Definition 25.3.1.4] in writing
Der(A, M) for the anima of derivations of A with values in M. By [SAG, Proposition 25.3.1.5] or,
rather, by the theorem on corepresentable functors [HTT, Proposition 5.5.2.7], there is a universal
derivation: for an animated ring A, the cotangent compler L 47 is the universal animated A-module
equipped with a derivation of A with values in L 47, that is, such that postcomposition induces an
equivalence of anima

Homu (L 4/z, M) = Der(A, M) for all animated A-modules M.

When A is O-truncated, this L4,z agrees with the usual cotangent complex, see [SAG, Exam-
ple 25.3.1.8].

More generally, one defines the cotangent complex of a map of animated rings f: A’ — A by
repeating the above definitions verbatim, defining A’-derivations of A with values in M as maps of
animated A’-algebras A — A @® M splitting the projection. By [SAG, Remark 25.3.2.4|, this agrees
with the definition of L 4,4/ as the cofiber of the map L4/ /7 ®HA, A — Lz, so there is a transitivity
triangle

Lz ®4 A= Lag— Laja — (Layz®% A)1],

and for any morphism A’ — B’ of animated rings with B := A ®Y%, B’, we have

LA/A’ ®HAB%LB/B/. (5181)

5.1.9. Square-zero extensions of animated rings. A square-zero extension of animated rings
is the datum of a map of animated rings f: A’ — A, an animated A-module M (the ideal of the
square-zero extension), and a pullback square of animated rings

Aty

J J (5.1.9.1)

A—"0 A (M[1]),

where ¢ is the inclusion and s is a derivation of A with values in M[1] (that is, s is a map of
animated rings that splits the projection A@® (M[1]) — A, see §5.1.8). Equivalently, the co-category
of square-zero extensions of animated rings is the co-category of pairs (A, M) of an animated ring A
and an animated A-module M equipped with a derivation s of A with values in M[1]. Indeed, this
defines A’ as the equalizer of A 3 A® (M|[1]), where the two maps are s and the inclusion.
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To define a commutative diagram as in the definition it suffices to define a map L4 4 — M[1]:
indeed, by §5.1.8, this gives a derivation, that is, a map between the A’-algebras A and A ® (M|[1])
splitting the projection (even as A’-algebras; one forgets that part of the information).

Example 5.1.10. Let us give several examples of square-zero extensions.

(1) Taking any pair (A, M) and s to be the inclusion, by the commutation of (A, M) — A® M
with limits in M, we recover the trivial square-zero extension A’ =~ A @ M.

(2) Let A" — A be a square-zero extension of usual rings with M := Ker(A" — A), which is
an A-module. To find a map s: A — A@® (M[1]) that gives A’ — A the structure of a
square-zero extension of animated rings, we need to exhibit a map L4,4 — M|[1], and for
this it suffices to recall from [SP, Lemmas 08US and 07BP] that 7<1(L4/4/) = M[1].

(3) Let A’ be an (m + 1)-truncated animated ring, set A := 7<,,(A4’), and consider the my(A)-
module M := 7,,4+1(A’) as an animated A-module. There is amap s: A — A®(M[m+2]) that
realizes A’ as a square-zero extension of A: to define the corresponding map L 4,4 — M[m+2],
we recall from [SAG, Proposition 25.3.6.1] that T<;+2(Lajar) >~ M[m + 2].

We now apply these ideas to deformation theory, in particular, we derive the crucial Theorem 5.1.13.

5.1.11. Deformation-theoretic setup. For a ring R, a commutative, flat, affine R-group scheme
G is automatically a Z-module object in the oco-category opposite to that of animated rings over
R. It follows that for animated R-algebras A, the anima G(A) of A-valued points has a functorial
Z-module structure, and thus becomes an animated abelian group. We are interested in the behavior
of G(A) under square-zero extensions, so we consider the functor from the co-category of animated
A-modules M to that of animated abelian groups defined by

M — T(M) := Fib(G(A® M) — G(A)).

Since G is affine, the functor A — G(A) commutes with limits (as can be checked on underlying
anima), so the functor 7' commutes with limits. It then follows from [HTT, Proposition 5.5.2.7| that
T' it is corepresentable by some Z-module L, /4 in animated A-modules.

Let e: Spec(R) — G be the unit section. If G is of finite presentation, then e*(L¢/r) has perfect
amplitude [—1,0] (see [I1I72, chapitre VII, équation (3.1.1.3)]); if G is even smooth, then e*(Lg/g)
even has perfect amplitude [0,0]. In particular, in these cases the Z-module structure on e*(Lg/g)
is the trivial one (obtained from the animated R-module structure by restriction of scalars): indeed,
a priori e*(L¢/p) is a module over the Ex-ring Z ®]é‘ R but, being 1-truncated, it is a module over

7<1(Z®% R) ~ R.

Proposition 5.1.12. In §5.1.11, the animated A-module that underlies L¢, /4 is €*(Lg/r) ®% A.
In particular, the formation of Lg, /4 commutes with base change.

Proof. Let G = Spec(S). Then T, as a functor to anima, sends M to the anima of R-algebra maps
S — A® M whose projection to A is identified with the composite S — R — A where the first map
corresponds to the unit section of G, in other words, to that of R-algebra maps S — R® M whose
first component is the unit section. But this functor is also corepresented by e*(L¢/r) ®Hé A O

Theorem 5.1.13. Let R be a ring, let G be a flat, affine, commutative R-group of finite presentation,
and let e be the unit section of G. For a square-zero extension of animated R-algebras A’ — A with
tdeal M, there is the following functorial fiber sequence of animated abelian groups:
G(A) - G(A) - Homp(e*(Lg/r), M[1]). (5.1.13.1)
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Proof. Since the functor A — G(A) commutes with limits, by applying G(—) to the Cartesian square
(5.1.9.1) that is part of the structure of a square-zero extension gives a Cartesian square

G(A) —— 5 G(A)

e

G(A) — G(A® (M[1]))

of animated abelian groups. The map G(7) is split by the projection, so its cofiber is identified with
the fiber of G(A @ (M[1])) — G(A), which is Hom(Lg, /4, M[1]) by the definition of L, 4. The
O

conclusion now follows from Proposition 5.1.12.

Remark 5.1.14. When thinking of animated abelian groups as connective objects of D(Z), the last
term of (5.1.13.1) is the connective cover 7 of the R Hom. In practice, G is of finite presentation,
so e*(Lg/r) has perfect Tor-amplitude in [—1,0] (see §5.1.11) and the truncation is not necessary.
However, in the latter case the fibre sequence (5.1.13.1) in animated abelian groups may fail to be a
fibre sequence in D(Z) because the last map may not be surjective on 7y. On fppf cohomology, this
issue disappears by Theorem 5.2.8 below.

5.2. Flat cohomology of animated rings

Flat cohomology in the setting of animated rings is at the heart of our approach to exhibiting new
properties of flat cohomology of usual rings. We define the former in this section and record its basic
features, for instance, hyperdescent and convergence of Postnikov towers in Theorem 5.2.6 and a
key deformation-theoretic cohomology triangle in Theorem 5.2.8. We begin by discussing the basic
properties of flatness in the setting of animated rings.

5.2.1. Flat and étale maps of animated rings. An animated module M over an animated ring
A is flat (vesp., faithfully flat) if mo(M) is a flat (resp., faithfully flat) mo(A)-module and

Ti(A) ®ny(a) To(M) — m;(M) for all i or, more succinctly, m4(A) ®pya) To(M) — s (M),

so that the graded m.(A)-module 7, (M) is flat (resp., faithfully flat). If M is flat, then for any
animated A-module M’ we have

W*(M,) ®7T0(A) 7T()(M) for i = 0,

! 0 for i > 0,

Tor™ W (1, (M), 7 (M)) = {

so the spectral sequence [Qui67, Chapter II, Section 6, Theorem 6 (b)]| gives
(M @ M) = mi(M") ®py(a) To(M).

In particular, (resp., faithful) flatness is stable under base change along a map A — A’ of ani-
mated rings.

In the animated setting, flatness is insensitive to infinitesimal thickenings as follows.

Lemma 5.2.2. Let A — A’ be a map of animated rings that induces a surjective map mwo(A) — mo(A’)
with nilpotent kernel. An animated A-module M is (resp., faithfully) flat if and only if so is the
animated A'-module A’ ®% M. In particular, M ~ 0 if and only if A’ @5 M ~ 0.

Proof. A flat M vanishes if and only if mo(M) vanishes, which may be tested modulo any nilpotent

ideal of my(A), so the ‘in particular’ follows from the main assertion. Moreover, in the latter the

‘only if” is clear and for the ‘if” we may focus on flatness because the support of mo(M) is insensitive
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to base change to my(A’). For the flatness, we first consider the special case when A’ = my(A), that
is, we first claim that M is A-flat if and only if m(A) ®HA M is mo(A)-flat.

For this, since base change to 7<;,(A) does not affect the m;(M) with i < m, we lose no generality
by assuming that A is m-truncated for some m > 0 and, by induction, need to show that M is A-flat
if T<m—1(A) ®% M is T<m—1(A)-flat. However, the latter assumption and §5.2.1 give

T (A)[m] ®F M = 7w (A)[m] @ () (Tem-1(A) @4 M) = (T (A) ®rya) mo(M))[m],
and the exact triangle (m,(A4)[m]) @ M — M — 7<pm—1(A) ®4 M then shows that M is A-flat.
The settled case when A’ is O-truncated allows us to replace A and A’ by mo(A) and mo(A’), and

hence assume that A and A’ are O-truncated. Moreover, induction on the order of nilpotence of the
ideal I := Ker(A — A’) allows us to assume that 12 = 0. In this case, §5.2.1 gives

TQYM=1®% (A% M)=I®sM,

so the exact triangle I @% M —-> M — A ®% M shows that M is O-truncated. Thus, since
A’ ®@% M is O-truncated, we have Tor{!(A’, M) ~ 0, so that M is A-flat by the flatness criterion
[SP, Lemma 051C]. O

5.2.3. Grothendieck topologies on the oo-category of animated rings. A map f: A — A’
of animated rings is flat (resp., faithfully flat) if A’ is flat (resp., faithfully flat) as an animated
A-module (see §5.2.1), concretely, if

mo(f): mo(A) — mo(A’) has the same property and  m;(A) ®x,(a) m0(A") — m;(A’)  for all i.

A map f of animated rings is étale if it is flat and mo(f) is étale. A flat map f is of finite presentation
(resp., finite) if so is mo(f). All of these properties are inherited by the map 7. (f) of graded rings.
Moreover, by §5.2.1, they are stable under composition and base change.

A map f: A — A’ of animated rings is an fpgc cover (resp., fppf cover; resp., étale cover) if it is
faithfully flat (resp., faithfully flat and of finite presentation; resp., faithfully flat and étale). The
stability properties above imply that such are covering maps for a Grothendieck topology on the
oo-category of animated rings (see [HTT, Definition 6.2.2.1, Remark 6.2.2.3]). Of course, if A is
O-truncated, then so is A’, to the effect that one does not obtain new covers of 0-truncated rings.

The étale site of an animated ring is insensitive to derived structure as follows.

Proposition 5.2.4. For an animated ring A, the mo(—) (or base change) functor from étale (resp., fi-
nite étale) A-algebras to étale (resp., finite étale) mo(A)-algebras is an equivalence of co-categories.

Proof. The two functors agree because A’ ®% m(A) = mo(A’) for any A-étale (or even A-flat) A’
(see §5.2.3). In particular, by (5.1.8.1) and Lemma 5.2.2, we have L4/4 = 0 for any A-étale A’.

To prove the full faithfulness, it suffices to argue that for any A-étale A’ and any animated A-algebra
B, the following map is an equivalence of anima:

Hom 4 (A’, B) — Homy (A4, m(B))
Since B — Rlim,,(7<,(B)), by induction it suffices to show that
Homy (A’, 7<n(B)) — Homy (A', 7<,—1(B)) is an equivalence of anima.

Since 7<p(B) — T<n—1(B) admits the structure of a square-zero extension (see Example 5.1.10 (3))
and Homy(A’, —) commutes with limits, it then suffices to argue that for any trivial square-zero
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extension C'@ M of an animated A-algebra C,
Homa(A',C) — Homa(A',C @ M) is an equivalence of anima.

But this map has an evident section, whose fibers are given by maps L4/,4 — M by the definition
of the cotangent complex. Since Ly//4 = 0, the claim follows.

For the remaining essential surjectivity, it is enough to handle the étale case (finiteness can be
checked on ). Ideally, one should prove the result by deformation theory, using the vanishing of
the cotangent complex, but we give an ad hoc argument. Namely, Zariski localizations can be lifted
(for f € A, one can form A[%] by base change from the universal case Z[f] — Z|[f, %]), and étale
algebras can be constructed Zariski locally. However, Zariski locally an étale map is standard étale,
whose explicit description gives a lift to A by lifting the defining elements from 7y(A) to A. O

5.2.5. Cohomology over an animated ring. For an animated ring A, we define the co-topoi of
étale, fppf, or fpqc sheaves over A (the latter for an implicit sufficiently large cardinal bound & as in
§1.4) by considering the corresponding oo-category of presheaves, that is, of functors from animated
A-algebras étale/fppf/flat over A to anima, and taking the full subcategory of those functors that
satisfy the sheaf condition for the respective notion of covers. The inclusion into all presheaves has a
left adjoint, the sheafification. The same applies to (pre)sheaves with values in any oo-category, so
for a presheaf F' with values in D(Z) we let

RT&(A,F) e D(Z) and RTyp(A, F) € D(Z)

denote the values at A of the étale and the fppf sheafifications of F' and write H ét(A, F) and
Hfippf(A, F) for the resulting cohomology groups. Since a O-truncated A does not attain new étale
or flat covers in the animated setting (see §5.2.3), for O-truncated A this definition reproduces the
classical étale and fppf cohomology, respectively. In this article, we will get by with cohomology in
the affine setting, but for any open U < Spec(mp(A)) we also set

erppf(UA, F) = RlimA/ (Rprpf(A/, F))

where A’ ranges over those animated A-algebras fppf over A for which Spec(mg(A’)) — Spec(m(A))
factors over U; the subscript in U4 reminds us that we are not merely forming the usual flat
cohomology of the scheme U. We often abbreviate RI'g,,¢ and Hg, ¢ to RI" and H", respectively.

It is useful to keep in mind that in this setting cohomology need not vanish in negative degrees: for
instance, if A is an animated algebra over a commutative ring R and G is a commutative, affine
R-group,”” then, by fpqc descent (see, for instance, [SAC, Remark D.6.3.6]),

G(A) = 75 RTppe(A, Q). (5.2.5.1)

We recall that a sheaf F' is a hypersheaf if it satisfies the sheaf condition with respect to hypercovers.
This is automatic when F' is n-truncated for some n; for example, if F' is a sheaf of coconnective
complexes (as in the usual setting of cohomology). Another important example is that quasi-coherent
sheaves are hypersheaves in the étale, fppf, and fpqc sites: the quasi-coherent sheaf defined by
some animated module M is the limit of the sheaves defined by its truncations 7<,(M), all of
which are truncated, so the claim follows as limits of hypersheaves are hypersheaves (see also

[SAG, Corollary D.6.3.4]).

23Throughou‘c this article we limit ourselves to group schemes defined over a base classical ring R because this
suffices for our applications and is expedient. It would be more natural to allow groups G defined over A itself, but
it seems unclear how to correctly define commutative finite flat group schemes over animated rings (in particular,
so as to admit Cartier duals and Bégueri resolutions (1.4.2)). We expect that with the correct definition, all such
commutative finite flat group schemes may arise via base change from classical rings.
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Despite possible negative degree cohomology, we have the following hyperdescent and Postnikov
convergence result; it also extends Grothendieck’s fppf-étale comparison [Gro68b, théoréme 11.7] to
animated rings.

Theorem 5.2.6. Let R be a ring and let G be an affine, commutative R-group that is either smooth or
finite locally free. The functor A — RIgppe(A, G) satisfies fppf hyperdescent on animated R-algebras
A and

Rprpf(A, G) — Rlimn(RFfppf (Tgn (A>7 G)) (5261)
If G is smooth, then even the functor A — RU4 (A, G) satisfies fppf hyperdescent and, in particular,
RFét (A, G) — erppf(Aa G) (5.2.6.2)

Proof. For a finite, locally free GG, the Bégueri resolution

is exact on the fppf site of any animated R-algebra A because the map Resgx/r(Gm) — @ is
faithfully flat and finitely presented. Thus, it reduces us to the case when G is smooth. Moreover,
since G is affine, for any A we have the Postnikov tower equivalence

G(A) = Rlim,(G(1<n(A))). (5.2.6.4)
By induction on n and Theorem 5.1.13, the fiber G(7<,(A))°? of G(7<n(A)) — G(mo(A)) satisfies
fppf hyperdescent (see §5.2.5). By (5.2.6.4), we have the identification
G(A)? = Rlim, (G(7<n(A))°), where G(A)Y is the fiber of G(A) — G(mo(4)). (5.2.6.5)
Thus, the functor A — G(A) satisfies fppf hyperdescent. By then sheafifying the fiber sequence
G(A)” — G(4) — G(m(4))
for the étale topology and using Proposition 5.2.4, we obtain a fiber sequence
G(A)? — RI« (A, G) — R« (mo(A),G) (5.2.6.6)

(see §5.2.5). The base change of an fppf hypercover of A along the map A — mp(A) is an fppf
hypercover of my(A) obtained by forming mo(—) levelwise, so the functor A — RI¢(m(A), G)
satisfies fppf hyperdescent by Grothendieck’s [Gro68b, théoréme 11.7|. Thus, the outer terms of
(5.2.6.6) satisfy fppf hyperdescent in A, and hence so does the middle term A — RT'g,p¢(A, G). By
combining (5.2.6.5) with (5.2.6.6) applied with 7<,(A) in place of A, we obtain (5.2.6.1). O

We will use the following mild strengthening of the Postnikov completeness of A — RI'(A, G).

Corollary 5.2.7. Let R be a ring, let G be a commutative affine R-group that is either smooth or finite
locally free, and let A be an animated R-algebra. For a tower of maps ... — Apy1 — Ap — ... = Ay
of animated A-algebras such that T<,(A) — T<n(Ay) for all n, we have

RFprf (Av G) — R limn(RFfppf(Ana G)) (5271)

Proof. We consider the inverse limit diagram { RI'tppt(7<m (An), G)}m,n=0. If one first forms R1lim in
m and afterwards in n, then, by (5.2.6.1) with A,, in place of A, one obtains the right side of (5.2.7.1).
If, on the other hand, one first forms Rlim in n and afterwards in m, then, by the assumption on
the A,, one obtains Rlim,,(RI'(7<m(A4), G)), which, by (5.2.6.1) again, is RI'(4, G). O

The following sheafification of the deformation-theoretic Theorem 5.1.13 plays a central role below.
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Theorem 5.2.8. Let R be a ring, let G be a commutative, affine R-group that is either smooth
or finite locally free, and let e be the unit section of G. For a square-zero extension of animated
R-algebras A’ — A with ideal M, there is the following functorial fiber sequence in D(Z):

RFfppf(A/, G) - RFfppf(A, G) i RHOH]R(E*(LGv/R), M[l])

Proof. For smooth G, this follows from Theorem 5.2.6 and Theorem 5.1.13 by étale sheafification
(the right-most term is 1-connective, so the fibre sequence in animated abelian groups gives a fibre
sequence in D(Z)). For finite, locally free G, as in the proof of Theorem 5.2.6, the Bégueri resolution
(5.2.6.3) reduces us to the smooth case. O

The following description of the positive degree flat cohomology of animated rings with suitable
coefficients complements (5.2.5.1), which gave a description of the negative degree cohomology.

Corollary 5.2.9. Let R be a ring and let G be a smooth (resp., finite, locally free), affine, commutative
R-group. For an animated R-algebra A, the map

prpf(A? G) - Hfippf (770(‘4)7 G)

is surjective for all i and is bijective for i = 0 (resp., fori > 1).

Proof. The finite locally free case reduces to the smooth one via the Bégueri sequence (5.2.6.3). In
the smooth case, e*(Lg / r) in Theorem 5.2.8 is a projective module concentrated in degree 0, so

surjective for > —1,

) A >
H! n(A),G) — H} n_1(A),G) i g
fppf(Tg (4),6) fppf(7-< 1(4),6) s {bijective for i=0.

The Postnikov convergence (5.2.6.1) then gives our claim. ([l

Deformation theory has the following consequence for the insensitivity to nonreduced structure.

Corollary 5.2.10. For a ring R, an ideal I < R whose elements are nilpotent, and a smooth
(resp., finite, locally free), affine, commutative R-group G, the map

, - , surjective for =0 (resp., for i>1),
ngpf(Rﬂ G) - ngpf(R/L G) (& . . . . .
bijective for i =1 (resp., for i>=2).

For finite, locally free G, we will extend this result to general Henselian pairs in Corollary 5.6.9. For
smooth G, the same statement does not hold for arbitrary Henselian pairs, but see [BCQ2, Proposi-
tion 2.1.4, Theorem 2.1.6, Remarks 2.1.7 and 2.1.8| for positive results in low cohomological degrees
and counterexamples to general statements, as well as [SGA 3111 pew, exposé XXIV, lemme 8.1.8,
remarque 8.1.9| for positive results for Cech cohomology.

Proof. The ring R is a filtered direct union of its finite type Z-subalgebras R’ and R/I is a similar
direct union of the R'/(R' n I). Thus, limit formalism reduces us to the case when R is Noetherian,
so that [ is nilpotent and, arguing by induction, even square-zero. In this case, Theorem 5.2.8 (with
Example 5.1.10 (2)) supplies the long exact sequence

. — H'(RHompg(e*(Lgyr). 1)) » H(R,G) — H'(R/I,G) — H"*'(RHomg(e*(Lg/r), 1)) — ...

To get a desired vanishing of the flanking terms it now remains to recall from §5.1.11 that in the
smooth (resp., finite, locally free) case, e*(Lq/r) has perfect amplitude [0,0] (resp., [-1,0]). [
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5.3. The p-adic continuity formula for flat cohomology

The ultimate driving force of our analysis of new properties of fppf cohomology is the positive
characteristic case of the key formula that we established in Theorem 4.1.8. To deduce mixed
characteristic phenomena from this positive characteristic statement, we rely on the p-adic continuity
formula that we exhibit in Theorem 5.3.5 below (see also Theorem 5.6.6 for a subsequent extension
to adically complete rings). This formula has the flavor of a flat cohomology counterpart of Gabber’s
affine analog of proper base change for étale cohomology [Gab94, Theorem 1| and is new already for
p-adically complete, p-torsion free rings. The proof of this case does not require animated inputs,
but for the sake of maximal applicability we directly treat the general case. The technique is to
reduce to rings that have no nonsplit fppf covers via the following lemma.

Lemma 5.3.1. For each ring R, there is an ind-fppf R-algebra R that has no nonsplit fppf covers.
For each ideal I < R contained in every mazximal ideal, there is an IR-Henselian such R.

Proof. The first claim is the I = 0 case of the second. Fix a set .% of representatives for isomorphism
classes of faithfully flat, finitely presented R-algebras R’, and consider the ind-fppf R-algebra

Ry = @pecy R and its I-Henselization Rl

By iterating this construction (with R? in place of R and so on), we obtain a tower of ind-fppf
R-algebras Ry — R} — Ry — R} — ... that are faithfully flat (see [SP, Lemma O0HP]). B
construction,

R:=lm _ R,=lim R
n>0 n>0
is IR-Henselian. By a limit argument, every fppf cover f R - 9 descends to an fppf cover

f: R, — S for some n. There is an R,-morphism S — R,,;1 — R so the cover f has a section. [

Remark 5.3.2. Lemma 5.3.1 continues to hold with an analogous proof if in its formulation
ind-fppf/fppf is replaced by ind-étale/étale, or by ind-smooth/smooth, or by ind-syntomic/syntomic.

Another input to the p-adic continuity formula is the following lemma of Beauville-Laszlo type.

Lemma 5.3.3. For a map A — A’ of animated rings and an a € A such that A/*a —> A'/"a,

A= A X 41 AlY] (even in the derived co-category D(Z)).

a

Proof. Consider the fiber M of the morphism A — Fib (4’ ® A[2] — A/[1]), where the second
arrow is the difference map. We have M [%] ~ 0 and M /"a = 0; the former shows that the homotopy
groups of M are a-power torsion, and the latter that multiplication by a is an isomorphism on them.
In conclusion, M = 0, so also A — A’ X A1 A[L]. O

The final input is the following lemma that will be useful for us on multiple occasions.

Lemma 5.3.4. For an animated ring A, an element a € A, and the derived a-adic completion
A:= Rlim,~o(A/“a™), the ring WQ(A) is a square-zero extension of the a-adic completion of wy(A).

Proof. To analyze m (A\) we use the exact sequence
0—lim:_ (m(A/%a™)) — mo(A) — lim _ (m0(A)/(a")) — 0.

It suffices to note that, since @72»0 =~ 0, the ideal liLn}po (m1(A/Aa™)) < o (A\) is square-zero because

the limit filtration on m(A) = mo(R limu=o(A/~a™)) is multiplicative. O
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Theorem 5.3.5. For a prime p, a ring R, a commutative, finite, locally free R-group G of p-power
order, and an animated R-algebra A such that mo(A) is p-Henselian,

RT(A,G) > Rlim,(RT'(A/"p", Q). (5.3.5.1)

Proof. For an initial reduction to O-truncated A, we begin by considering the system
{RT(t<m(A) /D", G)}m, n>0-

The map A/“p" — 7<;n(A)/“p" induces an isomorphism on truncations 7<,,, so (5.2.7.1) shows
that forming Rlim,, followed by Rlim, gives the right side of (5.3.5.1). On the other hand, by
(5.2.6.1), forming R lim,, followed by Rlim,, gives the left side granted that we know (5.3.5.1) for
truncated A. To reduce from the latter to 0-truncated A by induction on the truncation level, we
use Theorem 5.2.8: for any square-zero extension A’ — A with kernel M we have

RT(A',G) - RI'(A,G) — RHompg(e*(Lg/gr), M[1]), (5.3.5.2)
so it suffices to argue that R Hompg(e*(Lq/r), M|[1]) is insensitive to replacing M by its derived p-adic

completion M. For this, it suffices to observe that the cofiber of M — M is a Z[%]—module, whereas
e*(Lg/r) vanishes after inverting p. In conclusion, without losing generality, A is O-truncated.
Claim 5.3.5.3. On A-algebras, the functor A" — RT((A)!, G) (where (=) is the p-Henselization)
satisfies hyperdescent in the topology whose covers are the filtered direct limits of flat, finitely
presented maps that are faithfully flat modulo p.

Proof. Any filtered direct limit of flat, finitely presented maps that is faithfully flat modulo p is a
p-complete arc cover (see §2.2.1 (2)). Thus, by Remark 2.2.6, the functor A" — RF((A’)Q[%],G)
satisfies the desired hyperdescent. The cohomology with supports sequence then reduces us to

arguing the same for the functor

A RF{pzo}((A')h G), which, by excision, is the functor A" — RIy,_o1(A,G)  (5.3.5.4)

p?
(for the last identification, see [Mil80, Chapter III, Proposition 1.27]*%). Moreover, since this functor
takes coconnective values, descent (as opposed to hyperdescent) would suffice. The functor also
vanishes on A[%]—algebras, so the descent assertion is insensitive to replacing the cover A’ — A”
by A’ - A" x A [%] Thus, we may assume that our cover is faithfully flat. By limit arguments,

both functors A’ — RT'(A’,G) and A’ — RI'(A’ [%], G) satisfy descent with respect to ind-fppf maps.
Consequently, so does the functor A" — RT'(,_(A’, G), and the claim follows. O

By Lemma 5.3.1, we may build a hypercover A® of A in the topology whose covers are the filtered
direct limits of flat, finitely presented maps that are faithfully flat modulo p in such a way that each
A? is p-Henselian and admits no nonsplit fppf covers. By Claim 5.3.5.3, the left side of (5.3.5.1)
satisfies hyperdescent with respect to this hypercover; by also using the deformation triangle (5.3.5.2)
and faithfully flat descent for modules, so does the right side. Effectively, we may replace A by A’
to reduce to the case when our (0-truncated) p-Henselian ring A has no nonsplit fppf covers, a case
in which

G(A) — RI'(4,G) (5.3.5.5)
(see §5.2.5). We claim that for n > 0 we also have

G(A/Ep™) = RI(A/Mp™, G)  or, equivalently, that H'(A/Xp",G) =0 for i>0. (5.3.5.6)

24The proof of [Mil80, Chapter III, Proposition 1.27|, written for étale cohomology, also works for flat cohomology:
after shifting degrees as there, one reduces to the case i = 0, which is a claim about the restriction of an fppf sheaf to
the small étale site.
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For this, Corollary 5.2.9 gives H'(A/“p", G) —> H'(A/(p"),G) for i > 0, so the Bégueri resolution
(1.4.2) reduces us to showing that for a smooth, affine R-group @ we have

Q(A) » Q(A/(P")) and H'(A/(p"),Q) =0 for i>0.

The surjectivity follows from [SP, Proposition 07M8|. On the other hand, by [SP, Lemma 04D1],
every étale (A/(p™))-algebra lifts to an étale A-algebra, and hence is split, so the vanishing follows,
too.

In the view of (5.3.5.5)—(5.3.5.6), it remains to show that for our p-Henselian, O-truncated A,
G(A) = Rlim,~o(G(A/*p™)) (limit in the derived co-category D(Z)). (5.3.5.7)
For the derived p-adic completion A := Rlim, (A/%p") of A, by Lemma 5.3.4, the ring WQ(A\) is
a square-zero extension of the p-adic completion of my(A), so Remark 2.2.6 and Proposition 5.2.4
imply that G(A[%]) — G(A[ ]). Lemma 5.3.3 and the affineness of G then give
G(A) = G(A) x -1 G(A[%]) ~ G(A) 2~ limy-o(G(A/~p™))

G(ALLD

(limit in the oo-category Ani(Ab)). Thus, to deduce (5.3.5.7), it suffices to show that the system
{mo(G(A/"p"))}n>0 is Mittag-Leffler. Let p* be a power that kills e*(L¢/g), and consider an n > k.
By Theorem 5.1.13, the obstruction to lift an x € mo(G(A/*p")) to mo(G(A/~p 2")) is an

o € o (Homp e (L), A®% (25 [1])) < mo (Homp (¢* (Leyn), A% (5% &% (1))
Since the object e*(Lg/g) is of projective amplitude [—1,0] (see §5.1.11), the truncation triangle
2n—kZ ny, n7, 2n—kZ

(Zog?) 1] — B % B — 2% — (25t ) [2]
is exact and shows that the last displayed group injects into

mo (Homp (e (Layn) A &% (#552)[1])).

Consequently, by functoriality of Theorem 5.1.13, the obstruction to lifting = to mo(G(A/~p"+¥))
is also a. In other words, if x is in the image of mo(G(A/%p"**)), then it is also in the image
of mo(G(A/“p?™)) and, by replacing n by 2n — k and iterating, we see that x is in the image of
7o(G(A/EpN)) for every N > n, so that the system {m(G(A/“p"))}n=0 is indeed Mittag-Leffler. [

Remark 5.3.6. In the final part of the proof, instead of checking the Mittag—Leffler condition we
could also apply Lemma 5.6.4 (that does not use Theorem 5.3.5 or the subsequent parts of §§5.3-5.5).

The following concrete consequence of Theorem 5.3.5 extends Corollary 4.1.9 beyond perfect [F-
algebras. Its case when A is a O-truncated Fp-algebra and G = p, was settled in [Tre80, Theorem|.

Corollary 5.3.7. Let R be a ring, let p be a prime, and let G be a commutative, finite, locally free
R-group of p-power order. For each animated R-algebra A such that mo(A) is p-Henselian,

H(A,G)=0 for i=3 (resp., HW(A,G)=0 for i>2 if(mo(A)/(p))d is perfect).
Proof. Corollary 5.2.9 reduces us to O-truncated A. By Corollary 5.2.10, for n > 2, the map

Hi(A/(pn), G) — Hi(A/(pn—1)7 G) {SurjeCtive for ,

=1
bijective for i > 2.
Thus, Theorem 5.3.5 (with Corollary 5.2.9 again) reduces us to the case when A is an Fp-algebra.
By Corollary 5.2.10 again, we may then replace A by A™d to assume that A is reduced. If the

resulting A is perfect, then the Dieudonné-theoretic Corollary 4.1.9 gives the claim. Otherwise,
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we may assume that A is Noetherian and consider the morphism of sites €: Ag,pr — Ag with its
spectral sequence

H (A, Rle,(G)) = H %(A,G).

By [Gro68b, théoréme 11.7] and the Bégueri sequence (1.4.2), we have RZ2¢,(G) =~ 0. The étale
cohomological p-dimension of A is < 1 (see [SGA 4y, exposé X, théoréme 5.1]), so we obtain the
desired Hggf(A, G) = 0. O

Theorem 5.3.5 has the following consequence for the passage to the derived p-adic completion for flat
cohomology. At least for O-truncated A and under additional bounded p®-torsion assumptions, this
could also be argued directly by an argument similar to the one used for [BC22, Theorem 2.3.3 (d)].

Corollary 5.3.8. Let R be a ring, let p be a prime, let G be a commutative, finite, locally free
R-group of p-power order, and let A — A’ be a map of animated R-algebras such that both my(A)
and mo(A") are p-Henselian and A/"p > A’/“p. For each open

Spec(mo(A)[3]) € U < Spec(mo(A))

with complement Z := Spec(mo(A))\U, we have (with definitions as in §5.2.5)
RT(Ua,G) — RT(Uu,G), soalso RUz(A,G) — RUz(A',G).

We will complement this last isomorphism with a general excision result of this sort in Theorem 5.4.4.
For a version of Corollary 5.3.8 beyond the p-adic setting, see Corollary 5.6.12 below.

Proof. Lemma 5.3.4 ensures that 71'0(//1\) is a square-zero extension of the p-adic completion of my(A),
so is p-Henselian. Thus, we may replace A" by A and use Remark 2.2.6 (with Proposition 5.2.4) to
obtain the case U = Spec(A[%]):
RT(A[1],G) — RU(A'[],G). (5.3.8.1)
In general, it remains to see that
RF{pZO}(U, G) — RF{pZO}(UA/, G)

For this, we may work locally on U, so, by passing to an affine cover and forming p-Henselizations
(which do not change the RI'y,_q;; see Lemma 5.4.2 below for a much more general result, in our
case (5.4.2.2) is Cartesian by descent), we reduce to U = Spec(mp(A)). Then the continuity formula
(5.3.5.1) gives RT'(A,G) — RI'(A4’,G), so, due to (5.3.8.1), also the following desired isomorphism:

RT(,_0y(A,G) —> RT(_) (4, G). O

5.4. Excision for flat cohomology and reduction to complete rings

To reduce purity for flat cohomology to the case of complete rings, we exhibit a general excision
property of flat cohomology of (animated) rings in Theorem 5.4.4, which vastly extends its special
cases that appear in the literature: for instance, [DH19, Lemma 2.6] proves it for excellent, Henselian
discrete valuation rings (see also [Maz72, Lemma 5.1| for an earlier special case). The argument uses
animated deformation theory of §§5.1-5.2 and the p-adic continuity formula (5.3.5.1) to eventually
reduce to the positive characteristic case (4.1.8.2) of the key formula. The bulk of it is captured by
Lemma 5.4.2, which itself uses the following auxiliary lemma.

Lemma 5.4.1. Let A be a perfect Fp-algebra, let A’ be a semiperfect A-algebra, let a € A be such
that A/“a —> A'/“a, and let Al g = lim A’ be the perfection of A’. The module

Ker(A" — Aloy) s uniquely a-divisible and A fla = A;erf/ﬂ‘a.
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Proof. Since A is perfect, its a®-torsion is bounded. Thus, since A/“a™ — A’/“a™ and hence also
Ala™y — A’{a™), the a®-torsion of A’ is also bounded. Consequently, the a-adic completion of A’
agrees with the derived a-adic completion. The latter agrees with the a-adic completion A of A, and
Ais perfect, so the completion map A’ — A factors through A’ — A;erf and then even through the
a-adic completion of Aé)erf' We obtain a factorization

A'f(a) > Afei/(a) — Af(a) = A/(a)
in which, by assumption, the composition is an isomorphism. Thus, both maps in this composition

are isomorphisms. By repeating the same argument with a” in place of a, we get that A" — A;)erf

induces an isomorphism on a-adic completions. Due to bounded a®-torsion, these completions agree
with their derived counterparts, so the resulting isomorphism A’/“a — Aioerf/l‘a and the snake

lemma give the unique a-divisibility of Ker(4" — Al ). O

Lemma 5.4.2. For a ring R, a commutative, finite, locally free R-group G, a map A — A’ of
animated R-algebras, and an a € A such that A/*a —> A'/“a, we have

RF{G:O} (A, G) = RF{Q:O} (A/, G), (5.4.2.1)
equivalently, the following square is Cartesian:

RI'(A,G) —— RI'(A[%],G)

J J (5.4.2.2)

RI'(A',G) —— RT(4'[1],G).

Proof. The two formulations are equivalent because the fibers of the maps
RT(4=0}(A, G) — RT(q_gy(A",G) and RI(A,G) — RT(A,G) X pr(a1y, ¢ RI'(A[%],G)

1
are isomorphic, so we will focus on the Cartesian square statement. By decomposing R into direct

factors, we may assume that the order of G is constant. By then expressing GG as the direct product
of its primary factors, we may assume that this order is a power of a prime p.

Claim 5.4.2.3. For a square-zero extension A — B of animated R-algebras and A’ — B’ := A’ ®% B,

RI'(A,G) —— RT(A[1],G) RI'(B,G) —— RI'(B[1],G)
J J is a Cartesian square iff so is J l
RT(A',G) — RI(A'[1],G) RI'(B',G) — RI(B'[1],G).

Proof. For the ideal M of A - B, Lemma 5.3.3 gives

1
This identification persists after applying R Hompg(e*(Lg/r), —), so the triangle
RT(A,G) — RT(B,G) — RHomp(e*(Le/p), M[1]) (5.4.2.4)

of Theorem 5.2.8 and its analogues after base change to A’, A[1], and A’[1] show that the natural
map between the fibers of the map

RU(A,G) = RU(A', G) X pr(aq1y,q) RI'(A[1],G)
and of its analogue after base change to B is an isomorphism, and the claim follows.
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For later use, we note that, due to the isomorphism between the fibers, we actually obtain a sharper
variant: for instance, if A is O-truncated, then, by repeating the argument inductively and forming a
filtered direct limit, we see that the claim holds for any surjection A — B whose kernel is nil. [

Claim 5.4.2.5. For a square-zero extension of animated R-algebras A — B whose ideal M is an
A[1]-module, the following square is Cartesian:

RI(A,G) —— RT'(B,G)

| |

RI'(A[%],G) —— RI(B[2],G).

a

For O-truncated A, the same holds for any surjection A — B whose kernel is nil and an A[%]—module.

Proof. The assumption on M implies that the term RHompg(e*(Lg/r), M[1]) in the deformation-

theoretic triangle (5.4.2.4) does not change once we replace A by A[é] Thus, the same argument that
gave the equivalence of (5.4.2.1) and (5.4.2.2) implies the first part of the claim. For O-truncated A,
by iteration, the claim holds for any surjection A — B whose kernel is nilpotent and an A[%]—module.
By forming filtered direct limits, we may then weaken nilpotence to being nil. O

The main stages of the subsequent argument are:
(1) to reduce to the case when R is an Fp-algebra (so that A and A" are animated Fp-algebras);

(

2) to reduce to the case when A is a O-truncated, perfect F-algebra;

(3) to reduce to the case when A and A’ are O-truncated Fp-algebras with A perfect;
)
)

(4) when A and A’ are perfect F-algebras, to conclude using Dieudonné-theoretic results of §4.1;
(5) to use the preceding step to reduce to the case when A and A’ are perfect F,-algebras.

(1) Reduction to the case when R is an Fp-algebra. For any animated R-algebra S, letting S&) denote
its p-Henselization (defined via Proposition 5.2.4), descent supplies a functorial Cartesian square

RI(S,G) —— RI(S! |

J |

RI(S[3],G) — RF(S&)[%], G).

@)

By applying this with S replaced by, in turn, A, A’, A[%], and A’[é], we see that each term of
(5.4.2.2) is a glueing of its version after inverting p with the version after p-Henselizing along the
version where we first p-Henselize and then invert p. Therefore, since limits commute, it suffices to
show that the following analogues of the square (5.4.2.2) are all Cartesian:

RI'(A[3],G) —— RI(A[4],G) RL(Ap,). G) —— RL((A[Z])(,) G)
RT(A'[}],G) — RU(A'[.], G), RU(ADL. G) —— RL((A'[F]),). G),
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By Proposition 5.2.4, the first and the last of these three squares depend only on the mo(—) of the
animated rings involved. In addition, since A/%a™ > A’/“a", we have mo(A)/(a") — 7r0( "/(a™),
and, by Theorem 2.2.5 and Remark 2.2.6 (with §2.2.1), the functors R’ — RT(R’[ ],G) and

R — RF(R’(Z)[%], G) are arc sheaves on the category of R-algebras R’. Consequently, since arc

[1].G) —— RL((ATADE, [, 6.

descent implies formal gluing squares [BM21, Theorem 6.4|, the first and the last squares are
Cartesian. By the p-adic continuity formula (5.3.5.1), the remaining Cartesianness of the second
square reduces us to the case when A is over Z/p"Z for some n > 0, a case in which this square is
nothing else than (5.4.2.2). Moreover, Claim 5.4.2.3 reduces us further to n = 1, in other words, we
have achieved the promised overall reduction to the case when R is an F —algebra.

(2) Reduction to the case when A is a O-truncated, perfect Fp-algebra. The map A’ — A’ @Y 7<,,(A)
is an isomorphism after applying 7<,(—), so, by (5.2.6.1) and (5.2.7.1),

RT(A,G) =5 Rlim, (RT(7<n(A),G)) and RT(A',G) > Rlim, (RT(A’ @Y% 7<n(A),G)),

and likewise after inverting a. Thus, we may assume that A is n-truncated for some n > 0.
Claim 5.4.2.3 then reduces to n = 0, that is, to the animated [Fj-algebra A being a usual F)-algebra.
The A-algebra Ay, 1= A[X, X la € A]/(Xa —a]a€ A) is ind-fppf and semiperfect, and the same
holds for its tensor self—products over A. Thus, ind-fppf descent for fppf cohomology allows us to
replace A by such a tensor self-product and A’ by its base change to reduce to the case when A is
semiperfect. The last paragraph of the proof of Claim 5.4.2.3 then allows us to divide out the nil-ideal

Ker(A — Aperf) to reduce to the case when A is perfect (here and below Apey 1= li_n)lexp A).

(3) Reduction to the case when A and A’ are 0-truncated Fy-algebras with A perfect. Our O-truncated,
perfect Fp-algebra A has bounded a®-torsion, and A/%a™ —> A’/“a™. Thus, each m;(A’) with i > 2
is uniquely a-divisible and there is an exact sequence

0 — m1(A) 5 1 (A) - Ada™y — mo(A') L5 mo(A),

which, by letting n grow, shows that my(A’) has bounded a®-torsion and that m1(A’) is also uniquely
a-divisible. Then even A(a®) — (m(A)){a®), so also A/%a — mo(A’)/“a. Moreover, since each
mi(A’) with i > 1 is an A[1]-module, the deformation-theoretic (5.4.2.4) implies that for each n > 0,

RT(1<n(4"),G) ———— Rl (1<n-1(A), Q)

l |

RI (1<n(A)[3], G) — RI (7<n-1(A)[], G)

a

is a Cartesian square. Thus, the same square with mo(A’) in place of 7<,_1(A’) is also Cartesian.
By passing to the inverse limit in n and using (5.2.6.1), we then find that the right square in

RT(A,G) —— RT(A',G) —— RI(mo(4'), G)

l l J (5.4.2.6)

RI'(A[1],G) —— RT(A'[1],G) —— RI'(mo(A)[1],G)
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is Cartesian. Thus, the sought Cartesianness of the left square reduces to that of the outer one, so
we may replace A’ by mp(A’) to reduce to the case when A and A’ are F-algebras with A perfect.

(4) Conclusion in the case when A and A’ are perfect Fp,-algebras. We now treat the case when the
[F,-algebra A’ is also perfect. Then Theorem 4.1.8 identifies the map

RF{QZO} (A, G) — RP{GZO} (A/, G) with RF(R a)(W(A),M(G))Vil — RP(p, a)(W(A’),M(GA/))Vil.

For showing that the latter is an isomorphism, by dévissage, we may remove (—)¥'~!, replace M(G)
by a projective W (A)-module (see §4.1.1), and then even replace it by a free W (A)-module. In other
words, we are reduced to showing that the following map is an isomorphism:

RT(, o) (W (A), W(A)) = RL(, o)(W(A"), W(A)).

p,a)

The cohomology groups of the fiber of this map are p-power torsion, so we need to show that
multiplication by p is an automorphism on them. Thus, the sequences

0->W(A)LWMA) -A4-0 and 0->WA)LWMUA) - A -0
reduce us to showing that the fiber of the map
RF( )(W(A), A) — RF(p’ a)(W(A/), Al), that is, of RF{GZO}(A,A) — RF{aZO}(A', Al),

p’a

vanishes. The last fiber agrees with that of the map
RF(A, A) d RF(A/, A/) XRF(A/[ ])A/[%D RF(A[%], A[%]),

1
a

that is, with the fiber of the map A — A’ X a2 A[%], which is an isomorphism by Lemma 5.3.3.

1

(5) Conclusion in the general case. Having established the case when both of our F,-algebras A
and A’ are perfect, we return to the situation in which only A is perfect and let A be the a-adic
completion of A. Si’I\ICB A has boundedAaOO—torsion, A agrees with its derived counterpart, so that we
have a map A’ — A with A’/“a —> A/“a. We consider the analogue of (5.4.2.6) with the perfect
Fp-algebra Ain place of my(A’). By the preceding step of the overall argument, in this analogue the
outer square is Cartesian, so we are Izaduced to showing that the right one is, too. In other words,
we may replace A and A’ by A’ and A, respectively, to reduce to the case when the F-algebra A is
arbitrary but A’ is perfect. In this situation, we repeat the reduction to perfect A and note that it
transforms our perfect A’ into an animated Fj-algebra for which mo(A’) is semiperfect (the passage
to semiperfect A leaves A’ semiperfect, and the subsequent derived base change along A — Aperf
may introduce higher homotopy). After this, we repeat the reduction that uses the boundedness
of the a®-torsion of A to replace A’ by mp(A’) and are left with the case in which A is perfect and
A’ is semiperfect. Lemma 5.4.1 then ensures that the nil-ideal Ker(A" — Al ) is an A[1]-module.
Thus, Claim 5.4.2.5 shows the Cartesianness of the square

RU(A',G) —— RU(AL .

| |

RT(A'[1],G) — RU(A] (1], G).

G)

By Lemma 5.4.1, we have A’/a A;erf/ﬂ*a, so the same argument as for (5.4.2.6) allows us to
replace A’ by A]/perf' However, then both A and A’ are perfect, a case that we already settled. [

Before deducing the sought Theorem 5.4.4, we clarify its excision condition.
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Lemma 5.4.3. For a map f: A — A’ of animated rings, an ideal I = (a1, ...,a,) < mo(A) satisfies
mo(A)/1 = (mo(A)/T) @5 A’

if and only if f induces an isomorphism after iteratively forming derived a;-adic completions for
i=1,...,7r, equivalently, if and only if
Ay, .. ah) = ARl a?)  for every no> 0;

) r y Hr

in particular, all of these equivalent conditions depend only on the ideal I and not on the a;.

Proof. By §5.1.7, the iterated derived a;-adic completion of A is identified with

liﬂlm,.‘.,mzo(A/L(a?l’ S am));

and likewise for A’. Thus, since the inverse subsystem where all the n; are equal is final, f induces

an isomorphism on iterated derived a;-adic completions if and only if
A/l ah) = AR} a)  for every mo> 0. (5.4.3.1)

T

If this holds for n = 1, then, since
(mo(A)/T) @Y A = (mo(A)/ 1) &5 oy oy A/ Man, ),

also mo(A)/I —> (mo(A)/I) ®% A’. Conversely, if this last map is an isomorphism, then the
cofiber of the map (5.4.3.1) is an animated (A/%(a?,...,a"))-module that vanishes after applying

T

(mo(A) /1) ®HA/L(Q?7 am) and hence itself vanishes by Lemma 5.2.2. O

Theorem 5.4.4. Let R be a ring and let G be a commutative, finite, locally free R-group. For each
map A — A" of animated R-algebras and each finitely generated ideal I < my(A) such that

mo(A)/1 = (mo(A)/1) @4 A’

(see Lemma 5.4.3), we have

RT;(A,G) > RT (A, G).

Proof. By Lemma 5.4.3, we may write I = (aq,...,a,) and assume that A’ is the iterated derived
a;-adic completion of A for ¢ = 1,...,r, and then, by arguing inductively, assume instead that A’ is
the derived a-adic completion of A for some a € I. There is a functorial fiber sequence

RT1(A,G) — RT(4—0}(A,G) — Rlimyes (Rf{azg} (A[%], G)) , and likewise for A’

so the claim follows from Lemma 5.4.2 applied to A — A’ and to its localizations. O

We are ready to show that the validity of Theorem 1.1.1 depends only on the completion R.
Corollary 5.4.5. For a Noetherian local ring (R, m) and a commutative, finite, flat R-group G,
Hi(R,G) > H.(R,G) for every icZ.

In particular, Theorem 1.1.1 reduces to its case when the complete intersection R is m-adically
complete.

Proof. Indeed, R is R-flat with R/m — ﬁf/mfi, so Theorem 5.4.4 gives the claim. O
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Remark 5.4.6. Under additional assumptions on R or GG, previous results suffice to reduce The-
orem 1.1.1 to complete R. For instance, if R is excellent (as one can sometimes reduce to using
[Pop19, Corollary 3.10]), then [BC22, Lemma 2.1.3] (with elementary excision [Mil80, Chapter III,
Proposition 1.27]) gives

Hi(R,G) — Hi(R,G).
If instead G is étale, then Lemma 3.1.2 (or already [Fuj95, Corollary 6.6.4]) suffices.

5.5. p-complete arc descent over perfectoids and fpqc descent over general rings

As we saw in Proposition 4.2.7, the Dieudonné module side of the key formula (1.1.6) satisfies
p-complete arc hyperdescent. The main goal of this section is to establish the same for the flat
cohomology side in Theorem 5.5.1, which will lead us to showing the key formula in §6.1. The
main inputs are the p-adic continuity formula (5.3.5.1), deformation theory, and the p-complete arc
hyperdescent for the structure presheaf on perfectoid rings [BS22, Proposition 8.10] (see Lemma 4.2.6).

Theorem 5.5.1. For a prime p, a perfectoid ring A, a commutative, finite, locally free A-group G,
and a closed Z < Spec(A/pA), both functors

A"~ RI'(A,G) and A" — RTz(A,G)
satisfy hyperdescent for those p-complete arc hypercovers whose terms are perfectoid A-algebras.

—

Proof. For any a € A, by Corollary 2.1.6, the p-adic completion A[2] of A[1] is perfectoid. Moreover,
by excision Theorem 5.4.4, we have

—_—

RT(,_0)(A[2],G) = RT(,_0)(A[2],G),

as one can also deduce from the simpler Corollary 5.3.8 (with (5.3.5.4) and (2.1.3.2)) for the p-primary
part of G and from the consequence [BM21, Theorem 6.4] of arc descent Theorem 2.2.5 for the prime
to p part of G). Letting a € A range over the elements vanishing on Z, the functorial fiber sequence

RT'z(A,G) — RT',_0y(A,G) — Rlim, (RT(_0y (A[1],G)) (5.5.1.1)

therefore reduces us to the case when Z = Spec(A/pA). Moreover, by Theorem 2.2.5, the functor
A" — RT(A [%], (7) satisfies hyperdescent for those p-complete arc hypercovers whose terms are
perfectoid A-algebras, so the cohomology with supports triangle reduces us to the functor

A RU(A,G).

For the latter, the arc descent aspect of Theorem 2.2.5 and invariance of étale cohomology under
Henselian pairs [Gab94, Theorem 1] take care of the prime to p-factor of G. Thus, we may assume
that G is of p-power order and use the p-adic continuity formula (5.3.5.1) to reduce to the functor

A" — RT(A'/p™, @).

By Lemma 4.2.6, the functor A’ — A’/“p satisfies hyperdescent for those p-complete arc hypercovers
whose terms are perfectoid A-algebras. Thus, the deformation theoretic Theorem 5.2.8 allows us to
decrease n to reduce to showing p-complete arc hyperdescent for the functor A’ — RT(A’/%p,G). To
reduce further, we choose a system 77" € A of compatible p-power roots with 7 a unit multiple of
pin A (see §2.1.2). As above, by Lemma 4.2.6, each functor A’ — A’/L71/P" satisfies hyperdescent
for those p-complete arc hypercovers whose terms are perfectoid A-algebras A’. Thus, by iteratively
applying Theorem 5.2.8 we see that for any p-complete arc hypercover A’ — A’® whose terms are
perfectoid A-algebras, the fiber of the hyperdescent comparison map

RT(A'Lrl/P" @) — Rlima (RT(A" /Lnt/P" Q)
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maps isomorphically to the corresponding fiber in which n replaced by n 4+ 1. Thus, by passing to
the filtered direct limit over all n > 0, we even reduce to considering the functor

/ : //L_1/p™

A > RE(lng (42777, G).
Since A’/(w'/P") = (A /pA")d (see (2.1.2.3)) and A'{(rw) = A(x'/P™) (see (2.1.3.2)), we have

: 1 /L,__1/p™ ~ / \red

L (A//Crl") s (A pATyed,
Thus, we may replace A by the perfect F)-algebra (A/pA)™4 to reduce to showing that the functor
A’ RT(A’, G) satisfies hyperdescent for those arc hypercovers whose terms are perfect (A/pA)red-
algebras. By (4.1.8.2), this functor is nothing else than

A" RT(W(A),M(Ga))" =",

so Proposition 4.2.7 gives the claim. g

The method also leads to the following agreement of fppf cohomology with fpgc cohomology.

Theorem 5.5.2. For a ring R and a commutative, finite, locally free R-group G, the functor
A~ Rlgpe(A,G)
satisfies fpqc hyperdescent on animated R-algebras A.

Proof. We may restrict to G of p-power order for a prime p and have a functorial Cartesian square

erppf(A7 G) e erppf(Ah s G)

J J (p)

erppf(A[%]ﬂ G) — erppf(A?p) [:,%]7 G),
where (—)?p) denotes p-Henselization (see Proposition 5.2.4). By (5.2.6.2) and Proposition 5.2.4,
RTsp(A[ 5], G) = RUgi(m0(A)[5],G)  and erppf(A?p)[}D], G) = Rrét(no(A)?p)[}D], Q),
so arc descent, that is, Theorem 2.2.5 and Remark 2.2.6 (with §2.2.1 (1)), reduces us to showing

fpqc hyperdescent for the functor
A Rlppi(AL), G).

Theorem 5.3.5 then allows us to instead consider the functor
A RTg(A/Mp™, G).

By fpqc hyperdescent for modules (see §5.2.5), the deformation-theoretic Theorem 5.2.8 reduces us
further to n = 1. In other words, we have reduced to R being an Fj-algebra. Postnikov-convergence
of Corollary 5.2.7 then allows us to assume that A is n-truncated, and we apply Theorem 5.2.8 again
to assume further that A is even O-truncated.

The A-flat A" are then also O-truncated, so RI'gpe(—, G) takes coconnective values on them. In
particular, it remains to show fpqc descent as opposed to hyperdescent. Moreover, by ind-fppf
descent as in the proof of Lemma 5.4.2, we may assume that A is semiperfect. By applying the
deformation-theoretic Theorem 5.2.8 and passing to the direct limit over the nilpotent ideals of A,
we may even replace A by its perfection (compare with the proof of Lemma 5.4.2). For perfect A,
we strengthen the sought claim: we will show that any faithfully flat A — A’ with Cech nerve A’® is
of universal descent for RI't,pe(—, G) in the sense that for any A-algebra B,

erppf(B, G) = RIima (erppf(A/. ®a B, G))
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The advantage of allowing any B is that then, by [LZ17, Lemma 3.1.2 (3)], we can replace A — A’
by any refinement. Thus, by Lemma 4.1.6, we may assume that A’ is also perfect. Then we repeat
the same reductions as above to first assume by ind-fppf descent that B is semiperfect and then, by
deformation theory, perfect. Once A, A’, and B are perfect, so is B’ = B®y4 A’, to the effect that
we have reduced the original claim to the case when both A and A’ are perfect Fj-algebras and G is
of p-power order. Theorem 4.1.8 then reduces us to showing that

RT(W(A),M(G))"=! = Rlima (RT(W(A"®),M(Gar))"V=1).
For this, by considering fiber sequences, we may first drop the superscripts “V = 1,” and then, by
resolving M(G 4) by finite projective W (A)-modules (see §4.1.1) and expressing the latter as direct
summands of finite free W (A)-modules, we reduce to showing that
W(A) — Rlimpa (W(A’®)).

Since the Witt vectors of a perfect ring is a derived inverse limit of its reductions modulo powers of
p, we may now drop W (—) from both sides and conclude by fpqc descent. O

We conclude the section with the following consequence for p-completely faithfully flat descent.

Corollary 5.5.3. Let R be a ring, let p be a prime, let Z < Spec(R/pR) be a closed subset, and let
G be a commutative, finite, locally free R-group of p-power order. On animated R-algebras A, both

A RU(A[,),G) and A~ RTz(A,G)
satisfy hyperdescent for cosimplicial algebras A — A® such that A/*p — A*/“p is an fpqc hypercover.

Proof. The p-Henselization Ahp has no effect on A modulo powers of p and, by Lemma 5.2.2,
the map A — A® is a faithfully flat hypercover modulo powers of p. Thus, the claim about the
functor A — RF(A?p), G) follows from the p-adic continuity formula (5.3.5.1) and Theorem 5.5.2.

For the claim about A — RI'z(A,G), the fiber sequence (5.5.1.1) reduces us to the case when
Z = Spec(R/pR). In this case, by excision (5.3.5.4), there is a functorial fiber sequence

RI',_0)(A,G) — RT(Al,),G) — RT(A}, [4],G),

which, due to the settled case of A — RF(A?p), G), reduces us to considering A — RI‘(AZD)[I], G).

P

By (5.2.6.2) and Proposition 5.2.4, this functor agrees with A — Rrét(ﬂ'()(A)?p)[%], G), which, by
Remark 2.2.6 (with §2.2.1 (2)), satisfies hyperdescent for p-completely faithfully flat covers. O

5.6. The continuity formula for flat cohomology

We wish to supplement the p-adic continuity formula of Theorem 5.3.5 with a general continuity
formula for flat cohomology that we present in Theorem 5.6.6 below. We will not use this general
formula other than in §5.7 (whose results will not be used elsewhere in this article), but we give
some of its consequences in Corollaries 5.6.9, 5.6.12 and 5.6.13. The continuity formula concerns
those animated rings that are derived I-adically complete as follows.

5.6.1. Derived [-adic completeness. An animated ring A is derived I-adically complete for an
ideal I < mp(A) if A is derived a-adically complete for every a € I, in other words, if

A5 Rlimy=o(A/fa™) for ael.

Similarly to §5.1.7, we may consider A as an object of D(Z[X]) via the map Z[X] — A given

by X +— a. Thus, by [BS15, Proposition 3.4.4], derived I-adic completeness of A is equivalent to

each 7;(A) being derived a-adically complete for every a € I, and [BS15, Lemma 3.4.12| allows us

to restrict to those a that lie in a fixed generating set of I. Thus, derived I-adic completeness is
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stable under truncations and if I = (ay,...,a,) is finitely generated, then, arguing as in the proof of
Lemma 5.4.3, we see that A is derived [-adically complete if and only if

A "5 Rlimgso(A/(a?, ... a")). (5.6.1.1)

Derived I-adic completeness of A is weaker than [-adic completeness of homotopy groups: if
each 7;(A) is (classically) I-adically complete, then A is derived I-adically complete, see [BS15,
Lemma 3.4.13].

Derived I-adic completeness of A implies I-Henselianity of my(A) as follows.

Lemma 5.6.2. For an animated ring A and an ideal I < mo(A) such that A is derived I-adically
complete, the ring wo(A) is I-Henselian.

Proof. By §5.6.1, the animated aspect of the statement is illusory: we may replace A by my(A) to
assume that A is O-truncated. In this case, we use [SP, Lemma 0G1S]| to reduce further to the case
when [ is principal, generated by an a € I, so that, by Lemma 5.3.4, the ring A an extension of
its a-adic completion by a square-zero ideal J. Thus, since the a-adic completion is a-Henselian,
[SP, Lemma 0DYD] ensures that A is (J + (a))-Henselian, and then also a-Henselian. O

The following special case of Corollary 5.6.9 is an input to the overall proof of the continuity formula.

Lemma 5.6.3. For a Henselian pair (R,I) and a commutative, finite, locally free R-group G,
H?*(R,G) = H*(R/I, Q). (5.6.3.1)

Proof. By [BC22, Theorem 2.1.6], the map (5.6.3.1) is injective and, for every smooth, affine
R-group @,

H'(R,Q) — H'(R/I,Q) and Ker(H*(R,Q) — H*(R/I,Q)) = {x}. (5.6.3.2)
Thus, the Bégueri sequence (1.4.2) and the five lemma reduce the surjectivity of (5.6.3.1) to that of
the map H?(R',G,)tors — H?(R'/IR', G, )tors where R’ := I'(G*, Og+). For the latter, by [Gab81,
Chapter II, Theorem 1], every element of H?(R'/IR’, Gy, )tors comes from some H'(R'/IR',PGL,),
so it suffices to apply (5.6.3.2) to PGL,, over the Henselian pair (R',IR’). O

We use these lemmas to show the following case of Theorem 5.6.6 that will serve as an input to the
general case. Its vanishing condition holds when A is of characteristic p and G is of p-power order
(see Corollary 5.3.7), so this case essentially includes the continuity formula in positive characteristic.

Lemma 5.6.4. Let R be a ring, let G be a commutative, finite, locally free R-group, let A be an
animated R-algebra, and let a € A be an element such that A is derived a-adically complete and

HY(A,G) = H(A/*a,G) =0 for i>3
(equivalently, H' (mo(A), G) = Hi(mo(A)/(a),G) = 0 fori > 3). Then the continuity formula holds:
RT(A,G) > Rlim,~o(RT(A/~a", G)). (5.6.4.1)

Proof. The parenthetical reformulation of the vanishing condition follows from Corollary 5.2.9.
This condition and Corollaries 5.2.9 and 5.2.10 ensure that the map (5.6.4.1) is an isomorphism in
cohomological degrees i > 3. Likewise, by also using Lemmas 5.6.2 and 5.6.3 and the surjectivity
aspect of Corollary 5.2.10 in cohomological degree i = 1 we see that the map (5.6.4.1) is an
isomorphism in cohomological degree i = 2. As for nonpositive degrees, it suffices to observe the
following identification that results from G being affine and A being derived a-adically complete:
G(A) = Rlim,~oG(A/“a™) (limit in the co-category Ani(Ab)).
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To proceed with the remaining cohomological degree 1, one possible approach (suggested by the
referee) is to carry out a discussion of the cohomological classification of G-torsors over animated
rings and then deduce the claim from the equivalence Vect(A) ~ lim,, Vect(A/“a™) for co-categories
of vector bundles. For the sake of expedience, we opt for a more pedestrian approach that is based
on the following general reduction to the case when A is 0-truncated and a-adically complete.

By [BS15, Proposition 3.4.4], the derived a-adic completeness of A amounts to the derived X-adic
completeness of each m;(A) viewed as a Z[X]-module via the map Z[X ]| — my(A) given by X — a.
In particular, the truncations 7<,,(A) are again derived a-adically complete. Thus, by applying the
strengthened version of Postnikov completeness presented in Corollary 5.2.7, we may replace A by
the 7<m (A) to assume that A is m-truncated for some m > 0. If m > 0, then, by Example 5.1.10 (3),
such an A is a square-zero extension of 7<y,—1(A) by 7, (A)[m], so that the deformation-theoretic
triangle

RI'(A,G) = RI'(t<m-1(A), G) = RHompg(e*(Lg/r), mm(A)[m + 1])

supplied by Theorem 5.2.8, its analogues after derived reduction modulo a”, and the derived a-adic
completeness of 7, (A) allow us to replace A by 7<,,—1(A). By decreasing m in this way, we reduce to
the case when our animated R-algebra A that satisfies the condition on the vanishing of cohomology
is O-truncated. Moreover, since A is derived a-adically complete, by Lemma 5.3.4, it is an extension
of its a-adic completion by an ideal of square-zero. By [SP, Lemma 05GG, Proposition 091T],
the a-adic completion of A is automatically derived a-adically complete, so the same holds for the
square-zero ideal in question. Thus, by repeating the deformation-theoretic reduction once more and
using Corollary 5.2.10 to retain the vanishing condition, we reduce to the case when our R-algebra
A is a-adically complete.

In this case, for the remaining claim about cohomological degree i = 1, we first show that the map
Rlim,~q(RT(A/%a", G)) — Rlim,~o(RT(A/(a™),G))

is an isomorphism in cohomological degree 1. Due to Corollary 5.2.9, for this it suffices to show that

lim' HO(A/Ma",G) — lim! _G(A/(a™)). (5.6.4.2)

Example 5.1.10 (3) ensures that A/“a™ is a square-zero extension of A/(a™) by (A(a™))[1], so
Theorem 5.2.8 gives the exact sequences

0 — H'(RHomp(e*(Lg/r), A¢a™))) — H(A/"a",G) — G(A/(a™)) — 0. (5.6.4.3)
Since A is a-adically and so also derived a-adically complete, we have Rlim({A{a")}n>0) = 0, so
Rlim({Homu (P, A{a"))}n>0) =0

for every finite projective A-module P. Since e*(L¢/ ) has perfect amplitude [—1, 0] (see §5.1.11), we
conclude that the systems { H'(RHompg(e*(Lg/r), A(a™)))}n>0 have vanishing lim _ and liLnrlpo (to

argue this concretely, one uses the ligll sequences [BK72, Chapter IX, Propositions 2.3, Remark 2.6]).
Thus, (5.6.4.3) gives

lim _ HY(A/Ma",G) =lim _ G(A/(a")) and lim' H(A/Ma",G)=lim' _ G(A/(a")),
so that, in particular, (5.6.4.2) is an isomorphism, as desired.
All that remains to argue for our a-adically complete R-algebra A is that the map
RT'(A,G) — Rlim,~o(RT'(A/(a"™),G))
is an isomorphism in cohomological degree ¢ = 1, which amounts to the exactness of the sequence

-1 n 1 : 1 n
0 - lim! _ G(A/(a") - H'(A,G) - lim _ H'(A/(@"),G) — 0. (5.6.4.4)
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Since A is a-adically complete and G is finite, locally free, a G-torsor X amounts to a compatible
sequence of G 4/(qny-torsors (X, tn: Xnt1la)@an) — X,)n>0 with specified torsor isomorphisms
tn. In particular, the third arrow is surjective and its kernel consists of the isomorphism classes
of those systems for which each X, is trivial. By [BK72, Chapter IX, Section 2.1], the ele-
ments of liil;>0 G(A/(a™)) are orbits of the sequences (zy,) € [ [,,~o G(A4/(a™)) under the action of

[1ns0 G(A/(a™)) given by

n>0

(gn) - (#n) = (gn + Tn — Gn+1laj@n))- (5.6.4.5)

The sequence (z,,) amounts to a sequence of torsor isomorphisms ¢, as above with each X,, being a
trivial torsor. A sequence (g,) amounts to a change of trivializations of the X,,, and the effect of
this change on the ¢,, amounts precisely to the formula (5.6.4.5). From this optic, the first map of
(5.6.4.4) is indeed the inclusion of the classes of those (X, t,,) for which each X, is trivial. O

The general continuity formula (5.6.6.1) that we are pursuing and fpqc hyperdescent of Theorem 5.5.2
imply that fppf cohomology with commutative, finite, locally free coefficients should satisfy a-
completely faithfully flat hyperdescent on derived a-adically complete animated rings. We now
establish this hyperdescent directly to later use it as an input to the proof of the continuity formula.

Lemma 5.6.5. Let R be a ring, let G be a commutative, finite, locally free R-group, and let A be an
animated R-algebra. For each cosimplicial animated A-algebra A* and each a € A such that A and
each A" are derived a-adically complete and the map A — A® is a faithfully flat hypercover modulo a,

RT(A,G) > Rlima (RD(A*, G)). (5.6.5.1)

Proof. Thanks to Lemma 5.2.2, the map A — A°® is a faithfully flat hypercover modulo every a”.
Moreover, by decomposing G into primary factors, we assume that it is of p-power order for a prime
p. By Lemma 5.3.4 and [SP, Lemmas 0DYD and 09XI], for an animated A-algebra A’, the mo(—) of
the derived a-adic completion (A’(’;) )" of the p-Henselization of A" (defined using Proposition 5.2.4)
is p-Henselian. Thus, the p-adic continuity formula (5.3.5.1) applies and, together with the fact
that the formation of the derived a-adic completion commutes with reduction modulo p, gives the
identification of functors
RU(() ), G) = Rlimyg RI(~/“p", G)

on derived a-adically complete animated A-algebras. Each functor RI'(—/“p",G) satisfies an
analogue of the desired hyperdescent (5.6.5.1) thanks to the fpqc descent of Theorem 5.5.2 and to
Lemma 5.6.4 (we recall that the vanishing condition of the latter holds for inputs whose mo(—) is
p-Henselian, for instance, whose mp(—) is even killed by some p™, see Corollary 5.3.7). Thus, the

functor RT'(( (—)?p) )", G) also satisfies this analogue, to the effect that it suffices to show the analogue

of (5.6.5.1) for the following functor on derived a-adically complete animated A-algebras:
Fib (Rr(—, @) — RT(((-)})) G)). (5.6.5.2)

For this, we will use an excision trick to replace G by ji(G), where j: Spec(R[%]) — Spec(R)
is the indicated open immersion and jj(G) is taken in the étale topology. Namely, for a-adically
complete animated A-algebras A’, the map A" — (A’(’;) )" is an isomorphism modulo p, so the excision

Lemma 5.4.2 and its counterpart for étale cohomology supplied by [BM21, Theorems 1.15 and 5.4]
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imply that the following commutative squares of functors are Cartesian when evaluated on such A’:

RF(J @) ——— RI(((-),)).C) Rr<r!<a>> 5 RU(()) ) 3(@))
RU(()[2],6) — RO((),CIALG). RT((H)[L.6) —— RU((-) V' [11,0),

=

where in the second square the cohomology is taken in the étale topology. Thus, the functor (5.6.5.2)

agrees with the functor
Fib (RD(=,1(G)) = RO(((-)fy))1(G)) ).
We conclude that it suffices to show the analogue of (5.6.5.1) for each of the functors
RD(—,j1(G)) and  RU(((=){,))0(G))

where the cohomology is étale. By Proposition 5.2.4, étale cohomology depends only on the 7y(—)
of the animated ring in question. Moreover, by Lemma 5.6.2 and the invariance of étale cohomology
with torsion coefficients under Henselian pairs [Gab94, Theorem 1], on derived a-adically complete
animated A-algebras these functors agree with the functors

RL((-)/"a,j1(G)) and RL(((-)/"p)/"a,i1(G)) = RT(((=)/"a)/"p, i G)).
Thus, the desired hyperdescent for them with respect to A — A® follows from faithfully flat hyperde-

scent for étale cohomology with torsion coeflicients, which itself is a special case of Theorem 2.2.5
(and the fact that faithfully flat maps are arc covers, as reviewed in §2.2.1 (1)). O

We are ready for the promised general continuity formula for flat cohomology. We thank Akhil
Matthew for pointing our attention to such a statement in analogy with [DM17, Theorem 1.5].

Theorem 5.6.6. Let R be a ring and let G be a commutative, finite, locally free R-group. For
an animated R-algebra A and an ideal I = (ay,...,a,) < mo(A) such that A is derived I-adically
complete, we have the following continuity formula:

RT(A,G) > Rlimy~o(RT(A/(a?, ..., a"),G)). (5.6.6.1)
Proof. The case r = 0 is clear, so we assume that r > 0. By §5.6.1 and the proof of Lemma 5.4.3,
derived I-adic completeness amounts to A being equal to its iterated derived a;-adic completion for
i=1,...,7. Moreover, each A/%(a},... a™ ;) inherits derived a,-adic completeness from A and

Rlim,~o(A/%(a},...,a")) = Rlim,~o(Rlim,,>0(A/%(a}, ..., a" ;,a™))),

» T

and likewise after first applying RI'(—, G). Thus, since (5.6.1.1) also holds with a, omitted, we
induct on r to reduce to the case r = 1. From now on we place ourselves in this case and set a := a;.

By Theorem 5.5.2 and Lemma 5.6.5, both sides of (5.6.6.1) satisfy hyperdescent with respect to
cosimplicial animated A-algebras A® such that each A’ is derived a-adically complete and the map
A — A* is a faithfully flat hypercover modulo every a™. In particular, (5.6.6.1) holds for A once it
holds for each A*. We use Proposition 5.2.4 and Lemma 5.3.1 to construct such an A*® for which each
A' is the derived a-adic completion of an animated A-algebra A’ that has no nonsplit étale covers.
Lemma 5.3.4 ensures that mo(A?) is a square-zero extension of the a-adic completion of my(A’?), so
Proposition 5.2.4 and [SP, Lemmas 09XI and 04D1] imply that mo(A?) also has no nonsplit étale
covers. Thus, by applying Proposition 5.2.4 one more time and renaming A’ to A, we are reduced to
the case when our a-adically complete animated R-algebra A, equivalently, mo(A), has no nonsplit
étale covers. In this case, the Bégueri sequence (1.4.2) shows that H7(A,G) =~ 0 for j > 2. By
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Proposition 5.2.4 and [SP, Lemma 04D1], Qach A/La" also has no nonsplit étale covers, so the Bégueri
sequence and (5.2.6.2) also show that H7(A/“a™, G) = 0 for j = 2. Thus, applying Lemma 5.6.4
gives the conclusion. O

Example 5.6.7. Let R be a ring that is derived complete (for example, complete) with respect to a
finitely generated ideal I = (aq,...,a,) € R and let G be a commutative, finite, locally free R-group
scheme. Since R is derived a;-adically complete for i = 1,...,r, one argues as in the beginning of
the proof of Theorem 5.6.6 that the condition (5.6.1.1) holds. Thus, (5.6.6.1) and Corollaries 5.2.9
and 5.2.10 show that for ¢ > 2 the map

A » jective for i>1,
Hi(R,G) — HI(R/I,G) is { > ecveion ¢ (5.6.7.1)
bijective for 7 > 2.
Similarly, for ¢ = 1 they give a short exact sequence
0—lim!'  HY(R/(a},...,a}),G) » H'(R,G) — lim _ H'(R/I",G) — 0. (5.6.7.2)

n

The animated rings R/™(a},...,a") are r-truncated, so if R is I-adically complete, then we may

argue as after (5.6.4.3) with Aa™) replaced by the positive homotopy groups of the R/“(a?, ..., al)

to inductively replace R/™(a},...,a") by its j-truncation for j = —1,...,0 in (5.6.7.2). In effect,
if R is I-adically complete, then the sequence (5.6.7.2) takes the more concrete form

s 1 n 1 : 1 n
0 - lim'_ G(R/I") > H'(R,G) —lim _ H'(R/I",G) - 0.

Remark 5.6.8. Contrary to the p-adic continuity formula (5.3.5.1), even in the case when the
ideal I in Theorem 5.6.6 is principal, the general continuity formula (5.6.6.1) does not hold if A
is merely I-Henselian (in the sense that mo(A) is I-Henselian). Indeed, if the Henselian version
held, then together with the complete version (5.6.6.1) it would imply that the cohomology groups
HY(F,{t}, up) and H*(Fp[t], 1) are isomorphic, where F,{t} is the t-Henselization of F,[t]. However,
the Kummer sequence shows that H'(F,{t}, 1) is countable, whereas H'(F,[t], 1) is not.

As the following corollary shows, the insufficiency of Henselianity is a low degree phenomenon. This
complements [BC22, Theorem 2.1.6], which showed that for a smooth, quasi-affine group scheme @,
the functor H'(—, Q) is invariant under Henselian pairs.

Corollary 5.6.9. For a Henselian pair (R,I) and a commutative, finite, locally free R-group G,

H(R,G) — H(R/I,G) {“.L_”'ec.me Jor 121,

biyjective for 1= 2.
The case G = u, of this corollary amounts to an unpublished result of Gabber. Moreover, when R is
Henselian local, it continues to hold for any commutative, flat, finitely presented R-group algebraic
space G, see [Ceslf), Proposition B.13| which essentially restates [Toél1, corollaire 3.4, but beyond
local R there are counterexamples even when G = G,,, see [BCQQ, Remark 2.1.8|.

Proof. The surjectivity for i = 1 follows from [BC22, Theorem 2.1.6 (b)] (and does not require G to
be commutative), so we assume that ¢ > 2. Moreover, we use limit formalism for flat cohomology
to assume that (R, ) is the Henselization of a finite type Z-algebra along some ideal, so that, by
[SP, Lemma 0AGV], the ring R is Noetherian and, by [SP, Lemmas 0AH3 and OAH2] the ﬁbers of
the map R — R to the I-adic completion are geometrically regular. Thus, [BC22, Lemma 2.1.3]
(which is based on Popescu’s theorem) allows us to assume that R is even complete. This case
follows from (5.6.7.1). O
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This invariance under Henselian pairs leads to the following algebraization statement for flat coho-
mology, which complements analogous algebraizationvfor étale cohomology [BC22, Corollary 2.1.20]
and for torsors under smooth, quasi-affine groups [BC22, Corollary 2.1.22].

Corollary 5.6.10. Let B be a topological ring that has an open nonunital subring B' < B such that
B’ is Henselian as a nonunital ring and has an open neighborhood base of zero consisting of ideals of
B’, and let B be the completion of B. For each commutative, finite, locally free B-group G,

HYB,G) > H(B,G) for i=2.

Proof. By Corollary 5.6.9, the axiomatic criterion [BCQQ, Theorem 2.1.15] applies and gives the
claim. g

Example 5.6.11. Letting R{t} denote the ¢-Henselization of R[t] for a ring R, one may choose
B := R{t}[1] and B’ := tR{t} with B’ equipped with its t-adic topology, so that B ~ R(t).
Another example is that of a Henselian pair (A, I): one may choose B := A and B’ := I with B’
equipped with the coarse topology, so that B~ A/I (thus, Corollary 5.6.10 recovers the i > 2 case
of Corollary 5.6.9). For further examples of possible B and B’, see [BCQQ, Example 2.1.18].

The continuity formula also allows us to extend Corollary 5.3.8 beyond a p-adic case as follows.

Corollary 5.6.12. Let R be a ring, let G be a commutative, finite, locally free R-group, let A — A’
be a map of animated R-algebras, and let I < my(A) be a finitely generated ideal such that wo(A) is
I-Henselian, mo(A’) is I(mo(A’))-Henselian, and mo(A)/I — (mo(A)/I) ®% A’ Letting

U := Spec(mo(A))\ Spec(mo(A)/1)
be the complement of the vanishing locus of I, we have

HYRT'(Up,G)) = HY(RL' (U, G)) for i=2.

Proof. The excision of Theorem 5.4.4, the cohomology with supports sequence, and the five lemma
reduce us to showing that H'(A,G) — H'(A’,G) for i > 2. By Corollaries 5.2.9 and 5.6.9, this
map is identified with H(mo(A)/I,G) — H'(m(A")/Imo(A’), G), which is an isomorphism because,
by our assumptions, even mo(A)/I — m(A")/Imo(A"). O

We conclude this section with an algebraization result whose special case with G = p,, was announced
in [Gab93, Theorem 2.8 (ii)]. For an argument for [Gab93, Theorem 2.8 (i)|, see [BC22, Corol-
lary 2.3.5 (b)—(c)].

Corollary 5.6.13. Let R — R’ be a map of Noetherian rings, let G be a commutative, finite, locally
free R-group, and let I < R be an ideal such that R is I-Henselian, R’ is IR'-Henselian, and

~

R/I" — R//I"R’ for n > 0. For each open
Spec(R)\ Spec(R/I) < U < Spec(R),

we have
H'(U,G) — H'(Ugp,G) for i=2. (5.6.13.1)

Proof. Since the map R — R’ is an isomorphism on I-adic completions, we lose no generality by

assuming that R’ is the I-adic completion of R, so that the map R — R’ is flat. Due to this

flatness, Corollary 5.6.12 applies and settles the case U = Spec(R)\V (I). In the general case, we

first note that, by [BC22, Corollary 2.3.5 (c)], the map (5.6.13.1) is injective for i = 2. Thus, setting
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Z :=U n Spec(R/I), we use the cohomology with supports sequence and the five lemma to reduce
to showing that

RI'z(U,G) — RUz(Ug/, G). (5.6.13.2)
Both sides of (5.6.13.2) are Zariski sheaves on U, so we may argue locally on U to reduce to the
case U = Spec(R) and then use the excision of Theorem 5.4.4 to conclude. U

5.7. Adically faithfully flat descent for flat cohomology with supports

The continuity formula of Theorem 5.6.6 and the fpqc descent of Theorem 5.5.2 imply that flat coho-
mology of I-adically complete animated rings satisfies I-completely faithfully flat hyperdescent. We
complement this by establishing the same for flat cohomology with supports in I, see Theorem 5.7.2.
The results of this section will not be used elsewhere in this article.

Lemma 5.7.1. Let A be a perfectoid ring that is derived I-adically complete for a finitely generated
ideal I = (ay,...,a,) < A and let M be a derived I-adically complete animated A-module. If each
M/™(a},...,a") is flat as an animated A/“(a?, ..., a")-module, then M is O-truncated.

T

Proof. By Lemma 2.2.3, there is a p-complete arc hypercover A — A® whose terms A’ are perfectoid
rings that are products of p-adically complete valuation rings of dimension < 1 with algebraically
closed fraction fields. By Lemma 4.2.6, we have A — Rlima A®, so, for n > 0, also

A/tay, ... a?) —> Rlima(A*/“(a},. .., a")).
Thus, if each M/“(a},...,a?) is A/*(a}, ..., a")-flat, as we assume from now on, then we also have
M/E (@}, ... a") — Rlima((M &Y A°)/X(a},...,a")), andsoalso M — RlimA(M(;ékA‘),

where (Q)ﬁ denotes the iterated derived a;-adic completion of the derived tensor product. Since M is
an animated A module, it is connective. Thus, due to the last isomorphism, it is enough to show
that each M ® AA’ is O-truncated. The latter is an ammated module over the iterated derived a;-adic
completion Ai of Al By the explicit nature of A*, this Ai is the product of a subset of the valuation
rings comprising A’, in particular, A is also perfectoid. In conclusion, we may replace A by Ai and

M by M @)HAAi, respectively, and subdivide into further subproducts if needed, to reduce to the case
when the ideal I < A is principal, generated by some a € A that has compatible p-power roots in A.

In this case, we set M’ := liLnn>0(M/a”M) and we claim that the canonical map M — M’ is
an isomorphism—this will imply that M is O-truncated, as desired. Both M and M’ are derived
a-adically complete (see §5.6.1), so it suffices to check that M /“a — M’/“a. Lemma 5.2.2 and the
assumption on M imply that M /“a is A/ a-flat, and [Yek18, Theorem 2.8] implies that the map in
question is an isomorphism on 7o(—). Thus, by §5.2.1, it suffices to check that M’/“a is A/ a-flat
or, by Lemma 5.2.2 again, that M’ ®L Ala is 0- truncated and A/a-flat. This, however, is a special
case of |Yek18, Theorem 6.9 (with Theorem 4.3)] (to apply loc. cit., we note that, in the terminology
there, the ideal (a) c A is weakly proregular because A{a) = A<aoo> by (2.1.3.2) above). O

Theorem 5.7.2. Let R be a ring, let G be a commutative, finite, locally free R-group, let A be an

animated R-algebra, and let I = (aq,...,a,) < mo(A) be an ideal. For each cosimplicial animated
A-algebra A® such that the map A/*(ay,...,a,) — A*/“(a1,...,a,) is a faithfully flat hypercover,
RT[(A,G) — Rlima(RT (A%, GQ)). (5.7.2.1)
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If A and the terms of A® are derived I-adically complete, then, letting U < Spec(mo(A)) be the
complement of the vanishing locus of I, equivalently, we have

RI(A,G) — RUma(RI(A®,G)) and RI(Ua,G) — Rlima(RT(Uge, Q)). (5.7.2.2)

Proof. By the continuity formula of Theorem 5.6.6 and the fpqc descent of Theorem 5.5.2, if A and
the terms of A® are derived I-adically complete, then

RT(A,G) = Rlima (RD(A*, G)).

In particular, the cohomology with supports triangle then implies that (5.7.2.1) and the second
isomorphism in (5.7.2.2) are equivalent. In general, by excision Theorem 5.4.4, the claimed (5.7.2.1)
is insensitive to replacing A and the terms of A® by their iterated a;-adic completions fori =1,...r,
so we lose no generality by assuming that A and the terms of A® are all derived I-adically complete.

By decomposing into primary factors, we may assume that G is of p-power order for a prime p. If p
is invertible in mp(A), then G is étale over R, so, by (5.2.6.2) and Proposition 5.2.4, we have

RP](A, G) = RP](W()(A),G) and RP[(A.,G) = RF[(W()(A.),G).

By Lemma 5.6.2, the rings mo(A) and mo(A®) are I-Henselian. Moreover, by §2.2.1 (2) and

Lemma 5.2.2, the map my(A) — mo(A®) is an [-complete arc hypercover. Thus, in the case

when p is invertible in mp(A), the claim follows from I-complete hyperdescent for étale cohomology,

more precisely, from Remark 2.2.6. In general, this case shows that the third term of the triangle
RFI+(p)(Aa G) - RFI(A> G) - RFI(A[%L G)

satisfies the analogue of (5.7.2.1). Thus, we may replace I by I + (p) to henceforth assume that p € I.

Our next goal is to reduce to the case when A is an animated IF,-algebra, and for this, as in the proof
of Lemma 5.6.5, we will use the excision trick of replacing G by the extension by zero ji(G) taken
in the étale topology, where j: Spec(R[%]) — Spec(R) is the indicated open immersion. Namely,
letting A’ range over those animated A-algebras fppf over A for which Spec(m(A’)) — Spec(mo(A))
factors over U (compare with §5.2.5), by the excision Lemma 5.4.2 and its counterpart for étale

cohomology supplied by [BM21, Theorems 1.15 and 5.4], we have the Cartesian squares

RT(Ua, G) — Rlimy RU (A, G) RT(Ua, ji(G)) — Rlimy RT (A, j1(G))
RU(A[],G) — Rlimas RF(A’(’;)[%], G), RT(A[],G) —— Rlima RF(A’(’;)[%], G),

where (—)?p) denotes the p-Henselization and in the second square the cohomology is taken in the
étale topology. Of course, we also have the analogous squares for the terms of A®, and we claim that
the common fiber of the horizontal maps in the two squares above satisfies hyperdescent with respect
to A — A°, that is, that it satisfies the analogue of (5.7.2.1) and (5.7.2.2). For this, it suffices to
show the same claim for the terms RI'(Ua4, ji(G)) and Rlim 4/ RI’(A’(};]),j;(G)). For RTI'(Ua, 51(G)),
this again follows from I-complete hyperdescent for étale cohomology, that is, from Remark 2.2.6.
On the other hand, by invariance of étale cohomology under Henselian pairs [Gab94, Theorem 1],

Rlima RU(A{}) ji(G)) = RE(Ua/*p, ji(G)) = RU(Uarpy: 1(G)).

Thus, I-complete arc hyperdescent for étale cohomology discussed in Remark 2.2.6 also handles
the terms Rlimy RF(A’(Z), Ji(G)). In conclusion, the common fibers of the horizontal maps do

indeed satisfy the analogue of (5.7.2.1) and (5.7.2.2). By inspecting the top horizontal map of the
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left square, this means that our overall desired conclusion reduces to its analogue for the term
Rlimy RT(A"  G). By the p-adic continuity formula of Theorem 5.3.5, this term is identified with

(p)’
R limn>0 RF(UA/JLpn, G)

In effect, it suffices to show that RT'(Uyyn, G) — RL(Uge zyn, G) for every n > 0, in other words,
we are allowed to replace A by A/]Lp” in the overall claim we are seeking to prove.

To reduce further to the desired n = 1, we now establish insensitivity to square-zero extensions: for
a square-zero extension A — A by an animated A-module M, the desired (5.7.2.1) holds if and only
if it holds after base change to A. For this, by excision of Theorem 5.4.4, the claim is insensitive to
replacing A and A by their iterated a;-adic completions for s = 1,...,r and A® by its corresponding
base changes. Thus, since these completions form a square-zero extension by the corresponding
completion of M (see §5.1.9), we lose no generality by assuming that A, A, and M are all derived
I-adically complete. Fpqc hyperdescent for modules, as discussed at the end of §5.2.5, then gives

M —> Rlima (M ®% A*).
Thus, the deformation-theoretic triangle of Theorem 5.2.8 and its counterparts after base change to
A*® give the claimed insensitivity to square-zero extensions.

In the rest of the proof we focus on the remaining case when A is an animated F,-algebra. Moreover,
Postnikov completeness of Corollary 5.2.7 allows us to replace A and A® by 7<,(A) and 7« ®HA A°,
respectively, for a variable n, so we may assume that A is n-truncated. By then iteratively combining
the insensitivity to square-zero extensions with Example 5.1.10 (3), we reduce to O-truncated A.
Once A is a O-truncated [F)-algebra, we consider the ind-fppf, faithfully flat, semiperfect A-algebra

Ay = A[XMP" |a e A))(X, —alac A).

The terms of the Cech nerve of the ind-fppf cover A — A, are all semiperfect [Fp-algebras, so, by
ind-fppf descent for flat cohomology, we lose no generality by replacing the hypercover A — A® by its
bases changes to these terms to reduce to the case when A is a semiperfect IF,-algebra. By iteratively
using the insensitivity to square-zero extensions and passing to a filtered direct limit, we may then
replace A by A4 and A® by its base change to A™9 to reduce further to a perfect [Fp-algebra A.

By excision Theorem 5.4.4 as before, we may replace A and the A7 by their iterated derived a;-
adic completions for i = 1,...,r to assume that A and the A7 are derived I-adically complete:
Proposition 2.1.11 (e) ensures that the resulting A is still a perfect Fp-algebra. By Lemma 5.7.1, the
AJ are then also O-truncated, to the effect that the functor RT'j(—, G) takes coconnective values on
them. Thus, it suffices to show descent instead of hyperdescent, more precisely, we lose no generality
by assuming that A — A* is of Cech type, associated to a map of [F,-algebras A — A’ such that
A/aq,...,a;) — A /%(a1,...,a,) is faithfully flat. This property is preserved by the preceding
reductions, so we repeat them once more to again reduce to A being perfect (this time, to preserve
the Cech property, we only I-adically complete A and A’ and not the other terms of A*).

Once A — A* is of Cech type with a perfect F,-algebra A and a O-truncated A’, we claim that the
desired descent (5.7.2.1) holds even after replacing A — A*® by its base change to any animated
A-algebra B. The advantage of this claim is that, by [LZ17, Lemma 3.1.2 (3)], it is insensitive to
replacing A — A’ by a refinement A — A" — A”. Thus, we let A” :=lim A’ be the perfection
of A’: since A is perfect, the map A/“(a1,...,a,) — A"/M(ay,...,a,) is still faithfully flat. In effect,
we may assume that both A and A’ are perfect at the cost of having to show (5.7.2.1) after base
change to any animated A-algebra B. We then repeat the preceding reductions for this base change
to B to reduce further to the case when B is also a perfect F,-algebra. Since A and A’ are also
perfect, by [BS17, Proposition 11.6], the B ®% AJ are then also perfect F,-algebras.
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In conclusion, we are left with the case when the hypercover A — A° is of Cech type and only
involves perfect IF,-algebras. As before, we pass to iterated derived a;-adic completions of its terms
and use excision Theorem 5.4.4 to arrange that A and all the A7 are derived I-adically complete
(and still perfect by Proposition 2.1.11 (e)). Theorem 4.1.8 then reduces us to showing that

R, I)(W(A),M(G))V=1 AN Rlimp (BT, I)(VV(A')’1\/]1(@14.))‘/=1)7

where we abusively write (p, I) for the ideal J < W(A) generated by p and the Teichmiillers of the
a;. For this, the mapping fiber triangle allows us to remove the superscripts (—)V=!. Similarly, since
the crystalline Dieudonné module M(G) is of projective dimension < 1 over W (A) and its formation
commutes with base change (see §4.1.1), it suffices to show that

RT (W (A), W(A)) —> Rlima (RT (W (A*), W (A*))).

By [SP, Lemma 0954, we have RT';(W(A), W (A4)) = lim _  RHomy 4)(W(A)/J", W(A)), and
likewise for W(A*), so it suffices to show that

RHomyy(4)(W(A)/J", W(A)) <> Rlima (RHomyy 40y (W (A*)/J"W (A*),W(A*))), (5.7.2.3)

where the maps are induced by base change. Since p is a nonzerodivisor in W (A) and W (A7), our
assumption about faithful flatness modulo (a1, ...,a,) and Lemma 5.2.2 ensure that

W (A)/J" @y ay W(A%) = W(A®)/J"W (A°).
Consequently, the target of the map (5.7.2.3) is identified with
Rlima (R Homyy 4y (W (A)/J", W(A®))) = RHomyy4)(W(A)/J", Rlima W(A®)). (5.7.2.4)
Moreover, by faithfully flat descent and derived J-adic completeness, we have
W(A)/“(p,a1,...,a;) —> RUma(W(A*)/~(p,a1,...,a,)), soalso W(A) "> Rlima W(A®).
By combining this isomorphism with (5.7.2.4), we obtain the desired (5.7.2.3). O

6. THE CHARACTERISTIC-PRIMARY ASPECTS OF THE MAIN RESULT

We have gathered all the ingredients we need to exhibit purity for flat cohomology. In §6.1, we
establish the general case of the key formula (1.1.6) and obtain the perfectoid version of flat purity.
In §6.2, we then deduce the remaining “bad residue characteristic” cases of our main purity results.

6.1. The key formula and purity for flat cohomology of perfectoid rings

We are ready for the key formula that relates flat cohomology of a perfectoid ring to quasi-coherent
cohomology of its A;ys with values in prismatic Dieudonné modules M(G) reviewed in §4.2.1.

Theorem 6.1.1. For a prime p, a perfectoid ring A, a commutative, finite, locally free, A-group G
of p-power order, and a closed Z < Spec(A/pA), we have a functorial in A, G, and Z identification

RT7(A,G) = RT z(Aint(A), M(G))V=L. (6.1.1.1)
Here we choose the same £ when defining V' over perfectoid A-algebras, see §4.2.1 and §2.1.2.

Proof. We may assume that A is a Z,-algebra and, by passing to an inverse limit in the end if
necessary, we may assume that Z is the vanishing locus of a finite number of elements of A.

Let us begin with the case when A = [],.; A; for perfectoid valuation rings A; of rank < 1 that

have algebraically closed fraction fields. For such A, our closed subset Z is cut out by a single

a € A with a | p. We choose compatible p-power roots a” € A’ of a, so that a’ \ p’ and @’ cuts
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out Z < Spec(A°/p’A%) (see §2.1.2, especially (2.1.1.2)—(2.1.2.2), as well as Proposition 2.1.9). By
Proposition 4.2.10, we have
HY(A,G) =~ H(A[2],G) =0 for i>1,

the map V — 1 is surjective on M(G) and M(G)[+25], and there is a unique commutative square

[a”]

Thus, by the cohomology with supports sequence, RI'z(A,G) and RTz(Aps(A), M(G))V=" are
concentrated in degree 0 and identified. Due to the functoriality of the isomorphism (4.2.4.1) and
the uniqueness of the above diagram, this identification is functorial in A, Z, and G, as desired.

For general A, by Theorem 5.5.1, the left side of (6.1.1.1) satisfies hyperdescent for those p-complete
arc hypercovers whose terms are perfectoid Zy-algebras. By Proposition 4.2.7, so does the right side.
To then deduce the general case from the already settled case of [ [,.; Ai as above, it remains to
recall from Lemma 2.2.3 that such products form a base of the p-complete arc topology of A. [

With the key formula in hand, a similar argument to the one we used in positive characteristic at
the end of the proof of Proposition 4.1.13 now gives purity for flat cohomology of perfectoid rings.

Theorem 6.1.2. For a prime p, a perfectoid ring A, a commutative, finite, locally free A-group G of
p-power order, a closed Z < Spec(A/pA), and a regular sequence ay,...,aq € A that vanishes on Z,

Hy(A,G)=0 for i<d.

Proof. By (6.1.1.1) and a long exact cohomology sequence, it suffices to show that
Hy(Apg(A),M(G)) =0 for i< d. (6.1.2.1)
By §4.2.1, the Aj,s(A)-module M(G) is finitely presented of projective dimension < 1, so
Hy(Apg(A), Appp(A)) =0 for i<d+1

would suffice. For this, we use the Ajn¢(A)-regular sequence ag := &, aq,...,aq, where ¢ is a generator
of Ker(6: Ains(A) — A) (see §2.1.2). Namely, since the a; vanish on Z and H}(Aiy(A), M) is
supported on Z for every Aj,s(A)-module M, decreasing induction on —1 < j < d gives the sufficient

H%(Ainf(A),Ainf(A)/(ao, - ,aj)) ~0 for i<d —j. ]

6.2. Purity for flat cohomology of local complete intersections

We conclude the proof of purity for flat cohomology by reducing to its settled perfectoid case in
Theorem 6.2.3. The following lemmas help to pass to completions in the appearing perfectoid towers.

Lemma 6.2.1 (|Yekl18, Theorems 1.3 and 1.5]). Let I < R be an ideal in a Noetherian ring R. Every
I-adically complete R-module M that is I-completely flat (meaning that M ®H}‘2 R/I is concentrated
in degree 0 and R/I-flat) is flat. In particular, the I-adic completion of a flat R-module is flat. [

Lemma 6.2.2. Let A be aring, leta € A, and let A be the a-adic completion. Each/{l-regular sequence
ai,...,an € A such that A/(ay,...,a;) has bounded a®-torsion for 0 < i < n is A-reqular and

Aflar, ... an) => (Af(ay, ... an))~
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Proof. The bounded torsion assumption implies that the derived a-adic completions of the short
exact sequences 0 — A/(ay,...,ai—1) N Al(ar,y ... a;—1) — Af(ar,...,a;) > 0for 1 <i<n
agree with their classical a-adic completions. In particular, we obtain short exact sequences
0— (Af(a1,...,a;1)) 2 (A/(a1,...,ai1)) — (A/(a1,...,a;))" — 0, which show the claim. [J

Theorem 6.2.3. For a Noetherian local ring (R, m) that is a complete intersection and a commutative,
finite, flat R-group G,
H.\(R,G) =0 for i<dim(R).

Proof. By decomposing into primary factors, we may assume that G is of p-power order for a prime
p. Theorem 3.2.4 settles the case when p is invertible in R, so we assume that p = char(R/m).
Moreover, by Corollary 5.4.5, we may assume that R is m-adically complete, so that there is an
unramified, complete, regular, local ring (ﬁ, m) and a regular sequence f1,..., f, € m such that

R~R/(f1,...,[)

(see §1.4). We will argue the desired vanishing by induction on ¢ for all R at once.

We use Lemma 3.1.1 (a) to find a filtered direct system of regular, local, finite, flat E—algebras
R; with l'l)nj R; a regular local ring with an algebraically closed residue field. By the inductive

assumption, Lemma 4.1.12, and a limit argument, we may replace R by (h_n)lj Ej)/(fl, oy fn) and

then apply Corollary 5.4.5 again to assume that R has an algebraically closed residue field. Once
this is arranged, the passage to a tower argument carried out with Lemma 3.1.1 (b) instead supplies
a faithfully flat R-algebra R, whose p-adic completion is perfectoid for which we need to show that

Hi(Ro/(f1, .-, fn),G) =0 for i< dim(R).

By Corollary 5.3.8 and Lemma 6.2.2, we may replace f%oo by its perfectoid p-adic completion. Thus,
it suffices to show that for any p-torsion free perfectoid ring A that is p-completely faithfully flat
over R in the sense that A/p™A is faithfully flat over R/p"R for n > 0,

H U (A/(fiy. ., fa),G) =0 for i< dim(R). (6.2.3.1)

By Lemma 6.2.1, such an A is even ﬁ—ﬂat, so the sequence fi,..., f, is A-regular. By André’s
lemma, that is, by Theorem 2.3.4, there is an ind-syntomic, faithfully flat A-algebra A’ whose p-adic

completion Al s perfectoid and contains compatible p-power roots fil/ P for i = 1,...,n. A limit
argument then gives the spectral sequence

Bt = HL (A ®a...Q04 AN (1, fn),G) = HETHWA/(fr,. ..\ fa), G).

s+1

By Corollary 5.3.8 and Lemma 6.2.2 again (with elementary excision as in footnote 24 to p-Henselize
the tensor products), we may replace the A’ ®4 ... ®4 A’ by their p-adic completions, which are
perfectoid by Proposition 2.1.11 (b). Thus, the spectral sequence above allows us to assume that our

)
25

perfectoid A in (6.2.3.1) contains compatible p-power roots fil/p

25 Another way to carry out this reduction is to use the version [BS22, Theorem 7.14| of André’s lemma. Then A’

is only p-completely faithfully flat over A but is a perfectoid right away and contains compatible p-power roots fil/ P

One then combines Corollary 5.5.3 and Theorem 5.4.4 (with Lemma 6.2.2 again) to obtain the spectral sequence with

p-adic completions already inside. This avoids Theorem 2.3.4 at the cost of relying on heavier inputs from Chapter 5.
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For every R-regular sequence 1, ..., 7qim(R) € m, the sequence fi,..., fn,71,... s Tdim(R) 18 A-regular,
so Lemma 4.1.11 together with a limit argument reduces us to showing that

HL(AJFP7 (7Y, G) =0 for i < dim(R). (6.2.3.2)
By the R-flatness of A and [SP, Lemma 07DV]|, for every mq,...,m, = 0, every permutation of
the sequence f11/pm1 ey i/pmn,rl, -+ Tdim(Rr) 18 A-regular. Thus, by induction on the number of
nonzero exponents my, the A-module A/( f/pml e %/pmn ,T1,...,7;) is isomorphic to a submodule

of A/(fi,..., fa,71,...,7rj) for j = 0,...,dim(R). In particular, by the R-flatness of A, its p®-
torsion is killed by p for some fixed N > 0 that does not depend on the my or on j. By forming

colimits, this p" then kills every (A/(fll/pw, e ,fﬁ/poo,rl, ..., 75)){p*), so Lemma 6.2.2 ensures that

1/p® 1/p®
fl/p . n/p ))

1, Tdim(R) 1 still a regular sequence in the p-adic completion (A/( ~. However,

by Proposition 2.1.11 (c), the latter is perfectoid, so Theorem 6.1.2 gives
Hi((A/(FP° L fP™ ) G) =0 for i < dim(R).
By Corollary 5.3.8, this vanishing gives the desired (6.2.3.2). O

For étale G, the variant of purity that involves the virtual dimension (defined in §3.2.1) follows, too.

Theorem 6.2.4. For a Noetherian local ring (R, m) and a commutative, finite, étale R-group G,

H.(R,G) =0 for i<vdim(R).

Proof. Theorem 3.2.4 and its proof settle the case when the order of G is invertible in R and reduce
the rest to the case when G = Z/pZ with p = char(R/m) > 0 and R is a quotient of a regular local
ring by a principal ideal. Such an R is a complete intersection for which Theorem 6.2.3 gives

HL(R,Z/pZ) =0 for i<vdim(R) 27

dim(R). O
Remark 6.2.5. To avoid repetitiveness, we deduced Theorem 6.2.4 from Theorem 6.2.3, although
the proof of the latter simplifies significantly for G = Z/pZ. For example, to pass to completions in
this case, we may replace Corollaries 5.3.8 and 5.4.5 by the simpler Lemma 3.1.2. Moreover, since
the étale site is insensitive to nilpotents, there is no need to appeal to Lemma 4.1.11 when reducing
to (6.2.3.2). Finally, there is no need to refer to Theorem 6.1.2 in the end: Theorem 2.2.7 directly
reduces to positive characteristic granted that one uses [GR18, Proposition 16.4.17| to transfer depth.

Remark 6.2.6. In contrast to Theorem 6.2.4, in Theorem 6.2.3 we cannot drop the complete intersec-
tion assumption and replace dim(R) by vdim(R): for example, for R := F,[z,y, z, t]/(2%, ¥, 2z —yt),
the nonzero element zy € R dies on Ug := Spec(R)\{m}, so it is nonzero in H2(R, o).

We close the section with a slight sharpening of Theorem 6.2.3 in the case when R is regular.

Theorem 6.2.7. For a regular local ring (R, m) that is not a field and a commutative, finite, flat
R-group G, .
H\(R,G) =0 for i<dim(R).

Proof. Theorem 6.2.3 gives the vanishing for i < dim(R), so we may focus on the cohomological degree
i = dim(R). Moreover, by decomposing G into primary pieces and using Theorem 3.2.4, we may
assume that G is of p-power order with p = char(R/m) > 0. We then use [BBM82, théoréme 3.1.1]
to embed G into a truncated p-divisible group and combine the resulting cohomology sequence with
Theorem 6.2.3 to reduce to G itself being a truncated p-divisible group. The filtration by p-power
torsion then allows us to assume that, in addition, G is killed by p.
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As in the proof of Theorem 6.2.3, we may assume that R is m-adically complete. As there, we then
use Lemma 3.1.1 (a), Lemma 4.1.12, and Theorem 6.2.3 to assume, in addition, that the residue
field k := R/m is algebraically closed. As in Lemma 3.1.1 (b), the Cohen theorem then shows that

R~ W(k)[z1,...,zq]/(p — f) witheither f=212; or fe(px,...,z,)%

and, since R is not a field, d > 0. We then analogously use Lemma 4.1.12 and Theorem 6.2.3 to pass
to the tower supplied by Lemma 3.1.1 (b), and hence to reduce to showing that

ng(ROO,G) >~ (0, where Ry ~ W(k)[[xi/poo,...,x(li/poo]]/(p— f), mg:i=(p,z1,...,24q).

Moreover, for showing this vanishing, Corollary 5.3.8 allows us to replace Ry by its p-adic completion
Roo, which is perfectoid. By Lemma 6.2.1, the sequence z1,...,zq is Roo regular, so the key formula
(6.1.1.1) and the vanishing (6.1.2.1) reduce us to showing that

H%(Ainf(éoo),M(G))V:l ~(0, where Zc Spec(Ainf(}’%oo)) is the closed point.

Since G is the p-torsion of a p-divisible group and ]%Eo is local, M(G) is a finite free ]/i\’go—module
equipped with a Frob™!-semilinear map V: M(G) — M(G), so our task is to show that V has no
nonzero fixed points on Hg (R, M(G)). For this, we first describe R’ -module HE(R’,, R,).

As we saw in the proof of Theorem 3.1.3, the tilt sz'go is the f-adic completion of k[(z})/P" ..., (:EZ)I/”OO]]
for some f € (x'i, ey x%) By Lemma 6.2.1, the sequence x%, . ,.T}Z is Rgo—regular. In particular,

similarly to the proof of Theorem 6.1.2, from the exact sequences

0= B /(@ ) 2o B 28y) = B (0h ., 28) = 0

we get H JZ(EIC’D, }’%20) =~ ( for j < d and, letting the transition maps be the indicated multiplications,
HY(Ry, ) = H(RYy, Ry )(a})™) = limy , Hy (Rl R /(24)") = Hy (R, R[]/ RY)
1 1

Continuing in this way, since k[(z})/?”, ..., (z )1/1”00]] and its f-adic completion agree modulo each
((z)™, ..., (z%)"), we find that HZ(RZO, R’,) agrees with its analogue for k[(x )l/p ey (2P
and that, concretely, it is given by the quotient of (k[(2})'/P”", ..., (2%)/P”" ]])[m =) by the space of
those elements whose monomials have at least one nonnegative exponent. Thus, we may identify
H%(Z’%go, R’)) with the k-vector space with the basis {(27) - - - (x%)ad}ah vaqeZ[L] <o
Since M(G) is a finite free }Aﬁgo—module, H%(ITZZO, M(G)) is a finite direct sum of such k-vector spaces.
For any hypothetical nonzero element fixed by V, we choose a monomial (2})® - - - (:L‘Z)ad appearing
in it for which the sum a1 + ...+ aq is the smallest. The effect of V is described by some matrix
with coefficients in k[(z )1/7’ <o+, (22)YP"] postcomposed with Frob™!, and latter divides each a;
by p, so the sum ay + ...+ aq strictly increases after applying V—more informally, V' is “contracting”
on Hg(ﬁzo, M(G)). Consequently, V' has no nonzero fixed points on H%(}A%ZO, M(G)), as desired. O

7. GLOBAL PURITY CONSEQUENCES AND THE CONJECTURES OF GABBER

Our final goal is to deduce global purity consequences from the local Theorem 6.2.3 and to settle

the conjectures of Gabber, as announced in Theorem 1.1.3. In particular, we extend purity for the

Brauer group settled for regular schemes in [Ces19] to the case of complete intersection singularities.
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7.1. Cohomology with finite flat group scheme coefficients

We begin with the most straight-forward global consequence of Theorem 6.2.3: in Theorem 7.1.2 we
show that on Noetherian schemes with complete intersection singularities, flat cohomology classes
with values in commutative, finite, flat group schemes are insensitive to removing closed subschemes
of sufficiently large codimension. The reduction of this statement to its local case uses the following
concrete manifestation of étale descent for fppf cohomology with supports.

Lemma 7.1.1. For a scheme X, a closed subset Z < X, an abelian fppf sheaf F on X, and the
étale sheafification Hl,(—,.F) of the functor X' — H}, (X', .F), there is a spectral sequence

EY = Hi (X, H,(-, 7)) = H; ) (X, 7).

Proof. One way to show this is by considering injective resolutions, see, for instance, [Bé?2,
Lemma 2.3.2]. O

Theorem 7.1.2. Let X be a scheme, let G be a commutative, finite, locally free X -group, and let
Z < X be a closed subset such that the immersion X\Z — X is quasi-compact and each Ox . with
z € Z 1is either a complete intersection of dimension = d or reqular of dimension = d — 1. The map

HY(X,G) - H(X\Z,Q)

mjective for 1 <d,
bijective for i <d— 1.

Proof. We will deduce the assertion from the local purity Theorems 6.2.3 and 6.2.7. One may wish
to compare the method of this deduction to [Gab04a, Lemma 3.1 and its proof].

The assertion amounts to the vanishing le(X ,G) =0 for i < d. Thus, the spectral sequence
By = Hy (X, 1} (~,G)) = H;7 (X, @)

of Lemma 7.1.1 reduces us to the case when X is strictly Henselian and Z # & (the quasi-compactness
assumption is used in this step to identify the stalks of ’H]é(—, @) via limit formalism, compare with
the proof of [Ces19, Theorem 6.1]). Then X is Noetherian and we will show how to shrink Z to
arrive by Noetherian induction at the case Z = {m} supplied by Theorems 6.2.3 and 6.2.7.

Suppgse that Z # {m}, fix a generic point z of Z, and let U be an open neighborhood of z in X.
The Cech-to-derived spectral sequence

ﬁp({Ua X\Z}7 Hq(_a G)) = Hp+q(U Y (X\Z)? G)
(a concrete incarnation of Zariski descent for fppf cohomology) gives the Mayer—Vietoris sequence
.- H(U v (X\2),G) - H(U,G)® H(X\Z,G) - H(U n (X\Z2),G) - .... (7.1.2.1)

As U shrinks, it becomes Spec(Ox ) and U n (X\Z) becomes Spec(Ox .)\{z}, so, by Theorems
6.2.3 and 6.2.7, in this limit the maps
- : injective fi i =d—1
H'(U,G) - H'(U n (X\Z),G) become H?J.ec ?Ve o Z ’
bijective for ¢ <d — 1.
Consequently, for i < d, the sequence implies that any o € H {(X,@G) that dies in H (X \Z,G) also
dies in H'(U v (X\Z),G) for sufficiently small U. Likewise, for i < d —1, any 8 € H'(X\Z,G)
extends to H'(U u (X\Z), G) for some such U. This allows us to apply the inductive hypothesis to
Z"':=7Zn (X\U) & Z to conclude. O
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Moret-Bailly has a nonabelian version of Theorem 7.1.2 in [MB85, lemme 2|. For completeness, we
include its very mild generalization whose argument is independent of the rest of this article and
builds on the omitted one for loc. cit. (that was explained in [Marl6, Chapter 3|).

Theorem 7.1.3. Let X be a scheme, let G be a finite, locally free X -group, and let Z < X be a closed
subset such that the immersion j: X\Z — X is quasi-compact and each Ox, , with z € Z is reqular
of dimension = 2. Pullback is an equivalence from the category of G-torsors to that of G x\ z-torsors.
More generally, for any G-gerbe B, the following pullback is an equivalence of categories:

B(X) > B(X\Z), so, in particular, Ker(H*(X,G) — H*(X\Z,G)) = {}.

Proof. The claim about the nonabelian H? amounts to %(X) being nonempty whenever so is
B(X\Z), so it follows from the claim about . As for the latter, the classifying stack BG is smooth,
so a general G-gerbe % becomes isomorphic to BG over an étale cover of X, to the effect that étale
descent reduces us to the case 8 = BG. Thus, we may and will focus on the claim about G-torsors.

By glueing, the assertion is Zariski-local on X. Thus, by localizing at a point of Z and spreading
out (which uses the quasi-compactness of j), we may assume that X is local and Z # . Then
X is Noetherian, so [EGA TV,, théoréme 5.10.5| gives the full faithfulness because depth,(X) > 2.
For the essential surjectivity, by Noetherian induction and spreading out, we may localize at a
generic point of Z to assume that Z is the closed point of X. By [EGA IV, corollaire 5.11.4], for
a G x\z-torsor Y, the Ox-algebra j.(Oy) is coherent, so all we need to show is its flatness as an
O'x-module: the proof of full faithfulness will then uniquely extend the torsor structure map of Y to
that of Spec, (j«(0y)).

For the remaining &x-flatness of j.(Oy ), by a result of Auslander [Aus62, Theorem 1.3] that crucially
uses the regularity of X, it suffices to show that

Homoy (j«(Oy), j«(Oy)) = (jx(Oy))®"  as Ox-modules,

It suffices to argue this over X\ Z (see [Ces20, Lemma 2.2]), so, since Og is Ox-free, it suffices to
show that

N , a id
Homegy, ,(OGx 5, Ov) — Homgy ,(Oy, Oy) via [ — <ﬁy = OGx ; Qo , Oy A, ﬁY)

where a is the G-action morphism. The explicit inverse of this &y z-module homomorphism is

id®1

(a,id)~t
g— (ﬁGX\Z - ﬁGX\Z ®ﬁx\z Oy —

id
Oy Qo , Oy L), ﬁy)- O

Remark 7.1.4. We expect that Theorem 7.1.3 also holds when each Ox , with z € Z is either a
complete intersection of dimension > 3 or regular of dimension > 2 (compare with Theorem 7.1.2).
Unfortunately, the argument given above, especially, [Aus62, Theorem 1.3|, is specific to regular Oy .

7.2. The conjectures of Gabber and purity for the Brauer group of singular schemes
We are ready to settle Gabber’s conjecture [Gab04b, Conjecture 3| on the local Picard group.
Theorem 7.2.1. For a Noetherian local ring (R, m) that is a complete intersection of dimension > 3,

Pic(UR)tors = 0, where Ug := Spec(R)\{m}.

If R is either of dimension = 4 or regular of any dimension, then even Pic(Ug) = 0.
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Proof. The assertion about the case dim(R) > 4 was settled in [SGA 2,0y, exposé XI, théoréme 3.13 (ii)].
Moreover, a line bundle .Z on Up is trivial if and only if it extends to a line bundle on R. For regular
R, one constructs such an extension either by considering Weil divisors or by first extending .2 as a
coherent module and then taking the determinant of a perfect complex representing this module.

For the remaining assertion about Pic(URg)tors, Theorem 6.2.3 implies the bijectivity of the left
vertical map in the commutative diagram

HY(R, ptn) — HY (R, Gyp) = Pic(R) = 0
IR l

HY(Ug, pin) — HY(Ugr, G,) = Pic(Ug).

Since every element of Pic(Ug)tors comes from H'(Ug, ) for some n > 0, the claim follows. O

Remark 7.2.2. Theorem 7.2.1 (so also Theorem 1.1.1) does not hold if (R, m) is merely Cohen—
Macaulay. For instance, consider the normal local domain

R := (C[xy,... ,a:n]])Z/QZ where the Z/2Z-action is given by xz; — —x; for 1<i<n.

The map R — C[z1,...,x,] is the normalization in a quadratic extension of the fraction field, is a
nontrivial Z/2Z-torsor away from the maximal ideal, and is an inclusion of an R-module direct sum-
mand (with the antiinvariants as a complementary summand). In particular, a system of parameters
for R is also one for C[x1,...,z,], and R inherits Cohen—Macaulayness from C[x,...,z,]. Thus,
for n > 2, we have R* —> H°(Ug, G,,) and the torsor gives a nonzero element of Pic(Ug)[2].

Corollary 7.2.3. For a field k and a global complete intersection X < P} of dimension = 2,
(Pic(X)/(Z - [6(1)]))ions = 0.
If X is of dimension = 3, then Pic(X) is even free, generated by [O(1)].

In the case when X is smooth this corollary was established by Deligne in [SGA 7y, exposé XI,
théoréme 1.8].

Proof. The assertion about the case dim(X) > 3 was settled in [SGA 2y, exposé XII, corollaire 3.7].
To deduce the rest from Theorem 7.2.1 we will pass to the affine cone of X. Namely, as in [ées20, proof
of Theorem 4.1], the scheme X is the Proj of a graded k-algebra R := k[xo,...,2n]/(f1,- - fa—d)
for homogeneous elements f1,..., f,_q € k[xo, ..., z,] that form a k[zo, ..., z,]-regular sequence,
and R = @,,-o'(X, Ox(m)) compatibly with the gradings. As there, a line bundle .# on X
defines a finite, graded R-module Mg := @,,-, I'(X, £ (m)) whose restriction to Spec(R)\{m} with

m := (zg,...,Ty,) is a line bundle Z. As there, M ¢ is the pushforward of j?, and if %SpeC(Rm)\{m}
is free, then so is Mg, in which case £ ~ Ox(m). Moreover, by [EGA II, théoréme 3.4.4],
the Ox-module associated to Mg is £, so [EGA II, propositions 3.2.4, 3.2.6 et 3.4.3] show
that £ ® 2" —> (£ Quy £')". It follows that Pic(X)/(Z - [0(1)]) — Pic(Spec(Rm)\{m}),
so Theorem 7.2.1 gives the claim. g

Remark 7.2.4. Corollary 7.2.3 (so also Theorem 7.2.1) is sharp: indeed, one cannot drop (—)tors
because the complete intersection X := Proj(k[x,y, z, w]/(xw — yz)) of dimension 2 (the Segre
embedding of P} x; P}) satisfies Pic(X) ~ Z@Z, and one cannot weaken then dimension assumption
because an elliptic curve E over an algebraically closed field has #(Pic(E)tors) = 00.

We turn to Gabber’s [Gab04b, Conjecture 2| on the Brauer group of local complete intersections.
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Theorem 7.2.5. For a Noetherian local ring (R, m) that is either a complete intersection of dimension
= 4 or reqular of dimension = 2,

Br(R) — Br(Ug), where Up := Spec(R)\{m}.

Proof. We recall that the Brauer group Br(X) of a scheme X is defined using Azumaya algebras:
Br(X) := U,=o Im (H*(X,PGL,) = H*(X, Gy )tors) -
By a result of Gabber and de Jong [dJ02] (see also [CTS21, Section 4.2]), we have
Br(X) =~ H*(X, Gm)sors

whenever X has an ample line bundle, for instance, whenever X is quasi-affine. In our setting,
Pic(R) = Pic(Ug) = 0 (see Theorem 7.2.1), so

Br(R)[n] = H*(R, u,) and Br(Ugr)[n] = H*(Ug,pu,) for n=0.

Thus, except for the case when R is regular of dimension 2, the desired conclusion follows by noting
that H?(R, u,) —> H*(Ug, i) thanks to Theorems 6.2.3 and 6.2.7. The just excluded case is
actually the most basic and was treated in |Gro68b, théoréme 6.1 b)|: in this case, the desired
conclusion follows by considering Azumaya algebras and noting that pullback gives an equivalence
between the category of vector bundles (resp., Azumaya algebras) on R and those on Ug. U

Remark 7.2.6. One cannot weaken the dimension assumption of Theorem 7.2.5. Indeed, let S be
the local ring at the vertex of the affine cone over an elliptic curve over C, so that S is a 2-dimensional,
normal, Noetherian, local Q-algebra that is a complete intersection with #(Pic(Ug)tors) = 0 (see
Remark 7.2.4). We have Pic(Ug) < Pic(Ugsn) because for any . in the kernel, I'(Ug, .Z) is a free
S-module. Thus, for the 3-dimensional, strictly Henselian, complete intersection R := S*"[z, y]/(zy),
since Pic(Ugsny) is finitely generated (see, for instance, [Bou78, chapitre V, corollaire 4.9]), the
short exact sequence

(ri,m2) —>r1/r2
— T

0 — Gm = (iz=0)+(Gm) @ (iyzo)*(Gm) (ix:y:O)*(Gm) — 0 on Spec(R)s

(compare with [Bou78, chapitre IV, lemme 5.1|) shows that #(Br(Ugr)) = o0, whereas Br(R) = 0.
The same reasoning carried out with the Segre embedding of IP)}C XC IP’(%: in place of an elliptic

curve shows that in Theorem 7.2.5 the full H*(Ug, G,,) may contain classes that do not come from
H%*(R,Gp,).

To establish purity for the Brauer group of local complete intersections, we globalize Theorem 7.2.5
in Theorem 7.2.8 below. For this, we use the following version of Hartogs’ extension principle.

Lemma 7.2.7. Let X be a scheme and let Z < X be a closed subset.
(a) If each mx . with z € Z contains an Ox, ,-reqular element, then

Y(X) > Y(X\Z) for every separated X -scheme Y .

(b) If each myx ., with z € Z contains an Ox ,-reqular sequence of length 2, then

Y(X) = Y(X\Z) for every X-affine X-scheme Y.

Proof.
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(a) Since Y is separated, its diagonal is a closed immersion. Thus, it suffices to check that no
nonzero local section f of Ox vanishes away from Z. By shrinking X, we assume that f is
global and let X\Z < U be the maximal open on which it vanishes. If U # X, then we choose
a generic point z of X\U and a nonzerodivisor m € mx_ . to see that Ox , < Ox .[X]. Since
f vanishes in Ox .[1], it also vanishes in O ., a contradiction.

(b) By (a), the map is injective, so it suffices to show that every section of Y over X\Z extends
(necessarily uniquely) to a section over X. Moreover, by working locally on X, we may assume
that X is affine. We then embed Y into a (possibly infinite dimensional) affine space over X
and use (a) to reduce to the case when Y = Al.. In other words, we have reduced to showing
that every global section of X\Z extends (necessarily uniquely) to a global section of X.

By glueing, there is the largest open X\Z < U such that the global section of X\ Z in question
extends to a global section of U. To show that the inclusion U < X is not strict, we suppose
otherwise and fix a generic point z of X\U. A limit argument reduces us to showing that

Ox, . — T(Spec(Ox, .)\{z}, Ox).

For Noetherian O, ., this follows from [EGA IV,, théoréme 5.10.5], and in general we fix an
Ox, .-regular sequence m1, mo € my . and seek to show that the complex

ﬁX,Z[ ! ]

mim2

(a,b) —a—b
- >

ﬁX,z - ﬁX,z[le] @ ﬁX,z[mLQ]

is exact in the middle. This complex is a filtered direct limit of Koszul complexes K (mf, my)
(see [SP, Lemma 0913]), so it suffices to show that the latter, considered as chain complexes
in degrees between 0 and 2, have vanishing homology in degree 1. The sequence m?, m5
inherits Ox .-regularity (see [SP, Lemma 07DV]), so this vanishing follows from the fact that
if mPa = mibin Ox ., then b = m7c for some c € Ox, , for which also a = mjc. O

Theorem 7.2.8. Let X be a scheme, let T be a finite type X -group of multiplicative type, and let
Z < X be a closed subset such that the open immersion j: X\Z — X is quasi-compact.

(a) If each local ring Ox . , for z € Z is Noetherian and geometrically parafactorial,’® then

H(X,T) = H°(X\Z,T), HYX,T) = H'(X\Z,T), H*X,T)— H*X\Z,T).

(b) If each local ring Ox . for z € Z is either a complete intersection of dimension > 3 (resp., = 4)
or reqular of dimension > 2, then’’

HI(X7 T)tors ;’ HI(X\Za T)tors (7’6511-: H2(X, T)tors ;’ H2(X\Z7 T)tors)-

The importance of geometric parafactoriality for the H? aspect of (a) was noticed in [Str79, Teo-
rema 4|.

Proof.

26We recall from [EGA TV, définition 21.13.7] that a local ring (R, m) is parafactorial if pullback is an equivalence
from the category of line bundles on Spec(R) to those on Spec(R)\{m}. A local ring is geometrically parafactorial if
its strict Henselization is parafactorial. For example, by [EGA IV, exemple 21.13.9 (ii)], every Noetherian, local,
geometrically factorial (in the sense that the strict Henselization is factorial) ring of dimension > 2 is geometrically
parafactorial and, by [SGA 2., exposé XI, théoréme 3.13 (ii)], so is every local complete intersection of dimension
> 4.

2THere (—)tors denotes classes killed by a locally constant function. For instance, an a € H? (X,T) lies in Hi(X, T )tors
if and only if there is a decomposition X = | | X, into clopens such that each alx,, is killed by n.
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(a) We need to show that HS(X,T) =~ 0 for i < 2. By [EGA IV, proposition 21.13.8], for each
z € Z we have depth(Ox, ;) > 2, so Lemma 7.2.7 (b) gives the ¢ < 1 part of this vanishing.
Moreover, as in the proof of Theorem 7.1.2, Lemma 7.1.1 reduces us to the case when X
is strictly local and Z # (. Then X is Noetherian and, by realizing T" as the kernel of a
morphism between tori, we may assume that T" = G,,,. This turns our task into showing that
for every line bundle .Z on X\Z, the pushforward j. (%) is also line bundle. For the latter,
we argue by Noetherian induction, so, since the formation of j.(-¢) commutes with flat base
change, we replace X by its strict Henselization at a generic point of Z to assume that Z
is the closed point. In this case, the parafactoriality assumption shows that j.(.%) is a line
bundle.

(b) The injectivity follows from Lemma 7.2.7 (b) (resp., from (a)), which also shows that the
clopens of X and X\Z correspond. Thus, for the surjectivity, we may assume that the
cohomology class in question is killed by some n > 0 and then that T is n-torsion. This
removes the subscripts ‘tors,” so Lemma 7.1.1 (with Lemma 7.2.7 (a) for the vanishing of
HY) allows us to assume that X is strictly Henselian and Z # . Then X is Noetherian
and we need to extend a cohomology class on X\Z to X. For this, Noetherian induction,
limit arguments, and the Mayer—Vietoris sequence (7.1.2.1) allow us to replace X by its
localization at a generic point of Z. Then X is local and Z is the closed point, so, except for
the case when X is regular of dimension 2, Theorems 6.2.3 and 6.2.7 give the extension. For
H' (resp., H?), the remaining case is supplied by (a) (resp., by Theorem 7.2.5). O

Under more restrictive assumptions, Theorem 7.2.8 extends to higher degree cohomology as follows.

Theorem 7.2.9. Let X be a scheme, let T be a finite type X -group of multiplicative type, let d = 3
be an integer, and let Z < X be a closed subset such that the open immersion j: X\Z — X is
quasi-compact and each Ox ., for z € Z either is a complete intersection of dimension = d all of
whose strict Henselizations are factorial’® or is reqular of dimension = d — 1. The map

mjective for 1 <d,

HY(X,T) - H(X\Z,T) is o ,
bijective for i <d—1.

Proof. We need to show that H%(X, T) = 0 for i < d, and Lemma 7.1.1 reduces us to X being
strictly local with Z # . Then X is Noetherian, integral, and we may assume that T' = G,,. By
[Gro68a, proposition 1.4], which uses the factoriality assumption, H*(X,G,,) and H (X\Z,G,,) are
torsion for 4 > 2. Thus, since H (X, G,,) — H(X\Z,G,,) for i <1 by Theorem 7.2.8 (a), all the
HY(X,G,,) are also torsion. The vanishing H% (X, p1,,) = 0 for i < d supplied by Theorem 7.1.2
then suffices. O
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