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Abstract. We establish the flat cohomology version of the Gabber–Thomason purity for étale
cohomology: for a complete intersection Noetherian local ring pR,mq and a commutative, finite,
flat R-group G, the flat cohomology Hi

mpR,Gq vanishes for i ă dimpRq. For small i, this settles
conjectures of Gabber that extend the Grothendieck–Lefschetz theorem and give purity for the
Brauer group for schemes with complete intersection singularities. For the proof, we reduce to a
flat purity statement for perfectoid rings, establish p-complete arc descent for flat cohomology of
perfectoids, and then relate to coherent cohomology of Ainf via prismatic Dieudonné theory. We also
present an algebraic version of tilting for étale cohomology, use it reprove the Gabber–Thomason
purity, and exhibit general properties of fppf cohomology of (animated) rings with finite, locally free
group scheme coefficients, such as excision, agreement with fpqc cohomology, and continuity.
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1. Absolute cohomological purity for flat cohomology

1.1. Purity theorems

Purity in algebraic and arithmetic geometry is the phenomenon of various invariants of schemes
being insensitive to removing closed subsets of large enough codimension, perhaps the most basic
instance being the Hartogs’ extension principle in complex geometry. Our main goal is to exhibit
purity in the context of flat cohomology, more precisely, to show that on Noetherian schemes with
complete intersection singularities, flat cohomology classes with coefficients in commutative, finite,
flat group schemes extend uniquely over closed subsets of sufficiently large codimension. In its key
local case, this amounts to the following vanishing (see Theorem 7.1.2 for a general global statement).

Theorem 1.1.1 (Theorems 6.2.3 and 6.2.7). For a Noetherian local ring pR,mq that is a complete
intersection1 and a commutative, finite, flat R-group scheme G,

H i
mpR,Gq – 0 for

#

i ă dimpRq;

i ď dimpRq, if R is regular and not a field.

Theorem 1.1.1 is the flat cohomology version of absolute cohomological purity2 for étale cohomology
that had been conjectured by Grothendieck. The latter, stated in Theorem 1.1.2, was proved by
Gabber: first in [Fuj02] by building on the K-theoretic approach of Thomason [Tho84], and then
again in [ILO14, exposé XVI] in the framework of general structural results on étale cohomology
of Noetherian schemes. We give a third proof that uses perfectoid techniques to reduce to positive
characteristic.3

Theorem 1.1.2 (Theorem 3.1.3). For a regular local ring pR,mq and a commutative, finite, étale
R-group G whose order is invertible in R,

H i
mpR,Gq – 0 for i ă 2 dimpRq.

Gabber used Theorem 1.1.2 to deduce the case of Theorem 1.1.1 when the order of G is invertible
in R in [Gab04b, Theorem 3]. We review one such deduction based on the Lefschetz hyperplane
theorem in local étale cohomology in §3.2. Since the Lefschetz isomorphism range is roughly in
degrees ă dimpRq, the weaker condition i ă 2 dimpRq is specific to Theorem 1.1.2.

Theorem 1.1.1 for regular R was conjectured in [Pop19, Conjecture A.1] and desired reductions
quickly lead to including complete intersections (see Lemma 4.1.12). In unpublished work, Gabber
obtained it for G “ Z{pZ and also for G “ µp with i ď 3 by building on the combination of perfectoid
techniques that were used to settle the complete intersection case of the weight monodromy conjecture
of Deligne in [Sch12] and the purity for the Brauer group conjecture of Grothendieck in [Čes19].

The following corollary of Theorem 1.1.1 settles conjectures of Gabber [Gab04b, Conjectures 2 and 3].

Theorem 1.1.3 (Theorems 7.2.1 and 7.2.5). Let pR,mq be a Noetherian local ring that is a complete
intersection and let UR :“ SpecpRqztmu be its punctured spectrum.

(a) If dimpRq ě 3, then PicpURqtors – 0 (recall that if dimpRq ě 4, then even PicpURq – 0).

1Recall that pR,mq is a complete intersection if its completion is a quotient of a regular ring by a regular sequence.
2In the terminology of [SGA 2new, exposé XIV, théorème 1.10] or [SGA 4 1

2
, exposé Cycle, rappel 2.2.8], vanishing of

cohomology with supports in low cohomological degrees as in Theorems 1.1.1 and 1.1.2 goes by the name semipurity,
as opposed to purity that would also include high cohomological degrees. In this article, for the sake of brevity, we do
not make this distinction.

3A proof that uses perfectoids was also discovered by Fujiwara.
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(b) If dimpRq ě 4 or if both R is regular and dimpRq ě 2, then BrpRq
„
ÝÑ BrpURq.

The parenthetical aspect of (a) is the Grothendieck–Lefschetz theorem [SGA 2new, exposé XI,
théorème 3.13 (ii)]. Although the statement of Theorem 1.1.3 (a) is relatively basic, we do not know
how to argue it without ideas that go into proving Theorem 1.1.1. Nevertheless,

‚ its case when pR is a quotient of a regular local ring by a principal ideal (the hypersurface
case) was settled by Dao [Dao12, Corollary 3.5], who even found a version for vector bundles;

‚ its case when R is an Fp-algebra was settled in [Gab04b, Theorem 5 (1)] (also in [DLM10,
Corollary 2.10]); and

‚ its case for torsion of order invertible in R was settled in [Rob76] (also in [SGA 2new, exposé X,
théorème 3.4]).

Theorem 1.1.3 (b) reproves the purity for the Brauer group from [Čes19] and extends it to schemes
with complete intersection singularities. In the cases when R is an Fp-algebra or when dimpRq ě 5,
this extension was obtained by Gabber in [Gab04b, Theorem 5]. For regular R, even though the
proof is more complex than the one in [Čes19], it does not require treating the case dimpRq “ 3
separately (this case was settled in [Gab81, Chapter I, Theorem 21] and used in [Čes19] as an input).

The global version of Theorem 1.1.3 (b) may be formulated as follows.

Theorem 1.1.4 (Theorem 7.2.8). For a Noetherian scheme X and a closed subset Z Ă X such that
each OX, z with z P Z is either a complete intersection of dimension ě 4 or regular of dimension ě 2,

H2pX,Gmqtors
„
ÝÑ H2pXzZ,Gmqtors.

As for Theorem 1.1.1 itself, except for its assertion about the cohomological degree i “ dimpRq that
requires further arguments, we exploit a suitable version of André’s lemma to eventually reduce
the key case when G is of p-power order with p “ charpR{mq ą 0 to the following purity for flat
cohomology in an (integral) perfectoid setting (for a basic review of perfectoid rings, see §2.1.2).

Theorem 1.1.5 (Theorem 6.1.2). For a perfectoid Zp-algebra A, a commutative, finite, locally free
A-group G of p-power order, and a closed subset Z Ă SpecpA{pAq such that depthZpAq ě d in the
sense that there is an A-regular sequence a1, . . . , ad P A that vanishes on Z, we have

H i
ZpA,Gq – 0 for i ă d.

For instance, a basic case is when A is a perfect Fp-algebra. Then, by results of Berthelot [Ber80], Gab-
ber (unpublished), and Lau [Lau13], such A-groups G are classified by their crystalline Dieudonné
modules MpGq, which are p-power torsion, finitely presented W pAq-modules (that is, AinfpAq-
modules) of projective dimension ď 1 equipped with semilinear Frobenius and Verschiebung endo-
morphisms F and V . We use this classification to describe the flat cohomology with coefficients in G
in terms of the quasi-coherent cohomology with coefficients in MpGq: we show in Theorem 4.1.8 that

RΓZpA,Gq – RΓZpAinfpAq,MpGqqV´1. (1.1.6)

Since p is a nonzerodivisor in AinfpAq, the sequence p, a1, . . . , ad is regular in AinfpAq and vanishes
on Z. By expressing MpGq as the cokernel of a map between finite projective AinfpAq-modules, we
may then deduce the vanishing of the right side of (1.1.6) in the desired range of degrees from the
fact that “enough depth” implies the vanishing of quasi-coherent cohomology with supports.

An analogous argument proves Theorem 1.1.5 in general, except that now the key formula (1.1.6)
lies significantly deeper. To make sense of it, we replace crystalline Dieudonné theory used to
define MpGq by its prismatic generalization developed in [ALB23], which built on the classification
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of G in terms of MpGq over perfectoid rings due to Lau and the second named author [Lau13],
[SW20, Appendix to Lecture 17]. Our strategy for settling (1.1.6) in general is to first show that
both of its sides satisfy hyperdescent in the p-complete arc topology of Bhatt–Mathew [BM21]
(reviewed in §2.2.1) and to then use the resulting ability to replace A by a p-complete arc cover
to reduce to the case when A is a product of perfectoid valuation rings with algebraically closed
fraction fields, a case that admits a reasonably direct argument. With (1.1.6) in place, the regular
sequence p, a1, . . . , ad gets replaced by ξ, a1, . . . , ad, where ξ is a generator of Kerpθ : AinfpAq� Aq
(that is, ξ is an orientation of the perfect prism that corresponds to A), and the same depth argument
gives Theorem 1.1.5.

Overall, a critical point of the proof of Theorem 1.1.1 is the implication

depthZpAq ě d ñ depthZpAinfpAqq ě d` 1,

where we understand depthZ naïvely, that is, in terms of regular sequences. Indeed, in the end it
seems critical to work over AinfpAq—direct reductions of Theorem 1.1.1 to positive characteristic, in
cases in which they are available, seem to always produce a “one off” cohomological degree problem,
and hence to not give optimal statements. For instance, under the weaker assumption dimpRq ě 5,
Gabber proved Theorem 1.1.3 (b) in [Gab04b, Theorem 5] by first reducing to p-torsion free R and
then further to the complete intersection Fp-algebra R{p of dimension ě 4.

1.2. Flat cohomology of animated rings

The p-complete arc hyperdescent for the flat cohomology side of the key formula (1.1.6) is a major
portion of the overall argument of Theorem 1.1.1, a portion for which we resort to flat cohomology
in the more flexible setting of derived algebraic geometry (as defined in §5.2.5). For the latter, we
use simplicial rings, for which we decided to use different terminology than the usual one because
we believe it to be confusing to continue calling the objects of the resulting 8-category “simplicial
rings”—certainly, we do not think of them as simplicial objects in the category of rings.4

We refer to the 8-category obtained from simplicial rings (resp., simplicial abelian groups; resp., sim-
plicial sets, etc.) by inverting weak equivalences as the 8-category of animated rings (resp., animated
abelian groups; resp., animated sets, etc.). In the background there is a general “free generation
by sifted colimits” procedure described in §5.1.4 that from any reasonable category C produces an
8-category AnipC q, the animation of C , that contains C as full subcategory: AnipC q is nothing
else than a “nonabelian derived category” in the sense of Quillen, compare with [HTT, Section 5.5.8].
The inclusion C ãÑ AnipC q has a left adjoint π0 : AnipC q Ñ C .

For example, the 8-category of animated sets (the case C “ Set) is exactly the 8-category of
“spaces” in the sense of Lurie. We prefer the term “animated set,” or “anima” for brevity, suggested
by the general naming convention: we believe the term “space,” whose origins seem to be historical,
to be highly nondescriptive—it is arguable whether something as combinatorial as a simplicial set
should count as a space, and also note that “spaces” in the sense of Lurie do not have an underlying
set of points. Philosophically, “anima” means something like “soul”—and, indeed, the functor from
topological spaces to their homotopy category extracts something like the soul of a space: it only
remembers data independent of any worldly representation in terms of physical points.

4The following standard example explains why we do not like to think in terms of simplicial rings: if A‚ is a
simplicial ring, then any scheme X gives rise to the simplicial set XpA‚q; however, for general X this functor does
not preserve weak equivalences. There is another functor A ÞÑ XpAq whose input is a simplicial ring up to weak
equivalence and whose output is a simplicial set up to weak equivalence. This functor is slightly tricky to define in the
simplicial language, but it is the one that will be relevant to us.
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The animation procedure is quite powerful: for example, the 8-category of pairs consisting of an
animated ring A and an animated A-module (also known as a connective A-module) is obtained by
animating the usual category of rings equipped with a module. In particular, by passing to the fibre
over any given animated ring A, we obtain the 8-category of animated A-modules. Derived tensor
products (of animated modules or animated rings) are obtained by animating the usual functors.5

We show the following properties of fppf cohomology of animated rings with coefficients in commuta-
tive, finite, locally free group schemes. These properties are new already for usual commutative rings
but their proofs greatly benefit from the flexibility of the more general setting: intermediate steps,
such as passage to derived p-adic completions or derived base changes, leave the realm of usual rings.

Theorem 1.2.1 (Theorem 5.4.4 with Lemma 5.4.3). For a ring R, a map f : AÑ A1 of animated R-
algebras, and a finitely generated ideal I “ pa1, . . . , arq Ă π0pAq such that f induces an isomorphism
after iteratively forming derived ai-adic completions for i “ 1, . . . , r,

RΓIpA,Gq
„
ÝÑ RΓIpA

1, Gq for every commutative, finite, locally free R-group G.

For instance, this excision result allows us to replace R in Theorem 1.1.1 by its completion pR.

Theorem 1.2.2 (Theorem 5.5.2). For a ring R and a commutative, finite, locally free R-group G,
the functor A ÞÑ RΓfppfpA,Gq satisfies hyperdescent in the fpqc topology on animated R-algebras A.

The following result is the p-complete arc hyperdescent for the left side of the key formula (1.1.6).
An important input to its proof is the analogous p-complete arc descent for the structure (pre)sheaf
functor A ÞÑ A on perfectoids that was exhibited in [BS22, Proposition 8.10].

Theorem 1.2.3 (Theorem 5.5.1). For a p-complete arc hypercover AÑ A‚ of perfectoid Zp-algebras,
a closed Z Ă SpecpA{pAq, and a commutative, finite, locally free A-group G of p-power order,

RΓZpA,Gq
„
ÝÑ R lim∆ pRΓZpA

‚, Gqq, where ∆ is the simplex category.

The following continuity formula, among other things, computes the flat cohomology of complete
Noetherian local rings with commutative, finite, flat group coefficients and has consequences for
invariance of flat cohomology under Henselian pairs, see Example 5.6.7 and Corollary 5.6.9.

Theorem 1.2.4 (Theorem 5.6.6). For a ring R, an animated R-algebra A, elements a1, . . . , ar P A
such that A agrees with its iterated derived ai-adic completion for i “ 1, . . . , r, and a commutative,
finite, locally free R-group G,

RΓpA,Gq
„
ÝÑ R limną0pRΓpA{Lpan1 , . . . , a

n
r q, Gqq.

For the derived quotient notation used above, see §5.1.7. Roughly speaking, we deduce Theorems 1.2.1–
1.2.4 from the positive characteristic case of the key formula (1.1.6), that is, from crystalline Dieudonné
theory. More precisely, for G of p-power order we first analyze RΓpp´qr1p s, Gq by identifying with
étale cohomology and using arc descent results of [BM21] recalled in Theorem 2.2.5 and Remark 2.2.6
(animated aspects disappear in this step because the 8-category of étale A-algebras is equivalent to
that of étale π0pAq-algebras, see Proposition 5.2.4). We may then work along tp “ 0u to assume that
A is p-Henselian and consequently reduce to Fp-algebras by combining animated deformation theory
with the following general p-adic continuity result that we establish by a more or less direct attack.

5Taking up the previous footnote: in this language, if X “ SpecpRq is an affine scheme and A is an animated ring,
then XpAq refers to the anima of maps RÑ A of animated rings (which is now the only option that suggests itself).
One can extend to nonaffine schemes by Zariski sheafification.
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Theorem 1.2.5 (Theorem 5.3.5). For a prime p, a ring R, a commutative, finite, locally free
R-group G of p-power order, and an animated R-algebra A for which the ring π0pAq is p-Henselian,

RΓfppfpA,Gq
„
ÝÑ R limną0

`

RΓfppfpA{
Lpn, Gq

˘

.

For instance, A in Theorem 1.2.5 could be a p-adically complete (usual) ring, although even in this
case, unless A is p-torsion free, the derived reductions appearing in the limit are animated rings.

1.3. An overview of the proof of purity for flat cohomology

In summary, the overall proof of the purity for flat cohomology of Theorem 1.1.1 proceeds as follows.

(1) Use a Lefschetz hyperplane theorem in local étale cohomology to deduce the prime to the
residue characteristic aspects from the purity for étale cohomology of Theorem 1.1.2 (see §3.2).

(2) Use crystalline Dieudonné theory to establish the positive characteristic case of the key
formula (1.1.6) (see §4.1); this already mostly settles Theorem 1.1.1 when R is an Fp-algebra.

(3) Use the positive characteristic case of the key formula (1.1.6) and animated deformation
theory to show the new properties of fppf cohomology stated in Theorems 1.2.1–1.2.3 (see
§§5.1–5.5).

(4) Combine p-complete arc descent of Theorem 1.2.3 with prismatic Dieudonné theory to
establish the key formula (1.1.6) in general; deduce the perfectoid purity Theorem 1.1.5 (see
§6.1).

(5) Combine excision obtained in Theorem 1.2.1, a version of André’s lemma (see §2.3), and
deformation theory to reduce Theorem 1.1.1 to the perfectoid purity Theorem 1.1.5 (see §6.2).

André’s lemma says that every element of a perfectoid ring attains compatible p-power roots after
passing to a flat modulo powers of p perfectoid cover. We build on ideas of Gabber–Ramero to
generalize it: in Theorem 2.3.4 below, the cover is flat, and even ind-syntomic, before reducing modulo
powers of p. This is well suited for us, although the version of [BS22, Theorem 7.14, Remark 7.15]
combined with Theorem 1.2.5 suffices as well. We apply André’s lemma to elements fi that cut out
our complete intersection inside a regular ring: only regular rings have flat covers by perfectoids (see
[BIM19]), so, by Proposition 2.1.11 (c) below, we need to kill all the f1{p8

i to reach a perfectoid.

Deformation theory used in Step (5) is where the complete intersection assumption manifests itself.

Namely, on flat cohomology the difference between killing fi and, say, f
p´1
p

i amounts to quasi-
coherent cohomology, and if the fi form a regular sequence, then the intervening square-zero ideals
are module-free and so of large enough depth (see Lemma 4.1.11 for this argument). In general,
Theorem 1.1.1 fails for Cohen–Macaulay R (even over C), see Remark 7.2.2.

In contrast, if G is étale, then the complete intersection assumption is a red herring: as the following
refinement of Theorem 1.1.1 shows, then the purity of cohomology is controlled by the virtual
dimension vdimpRq of the Noetherian local ring pR,mq. This numerical invariant is defined in
terms of the number of equations that cut pR out in a regular ring (see (3.2.1.1)) and satisfies
vdimpRq ď dimpRq with equality precisely for complete intersection R.

Theorem 1.3.1 (Theorem 6.2.4). For a Noetherian local ring pR,mq and a commutative, finite,
étale R-group G,

H i
mpR,Gq – 0 for i ă vdimpRq.

Informally, this result says that the “étale depth” of R is at least vdimpRq (the former was defined
in [SGA 2new, exposé XIV, définitions 1.2 et 1.7]). In §3.3, we exhibit a nonabelian version:
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by Theorem 3.3.1, the purity for the étale fundamental group proved in [SGA 2new, exposé X,
théorème 3.4] for complete intersections of dimension ě 3 continues to hold for arbitrary Noetherian
local rings of virtual dimension ě 3.

1.4. Notation and conventions

All our rings are commutative and unital. We use the definition [EGA IV1, chapitre 0, définition 15.1.7,
paragraphe 15.2.2] of a regular sequence (so there is no condition on the quotients being nonzero). A
regular local ring pR,mq is unramified if it is of mixed characteristic p0, pq and p R m2. By the Cohen
structure theorem [EGA IV1, chapitre 0, théorème 19.8.8 (i)], the completion of a Noetherian local
ring pR,mq is a quotient of a regular ring rR that may be chosen unramified if charpR{mq “ p ą 0.
Such an R is a complete intersection if the ideal that cuts pR out in rR is generated by a regular
sequence. We recall that every ideal that cuts out a complete intersection in a regular ring is
generated by a regular sequence (see [SP, Lemma 09Q1]).

For a module M over a ring A, we write Mxay for the kernel of the scaling by a P A, and we set

Mxa8y :“
Ť

ně0Mxa
ny;

we say that M has bounded a8-torsion if Mxa8y “MxaNy for some N ą 0. An Fp-algebra is perfect
(resp., semiperfect) if its absolute Frobenius endomorphism a ÞÑ ap is bijective (resp., surjective);
these conditions ascend along étale maps (see [SGA 5, exposé XV, proposition 2 c) 2)] and [SP,
Lemma 04D1]). For an implicit prime p, we let W p´q denote the p-typical Witt vectors and indicate
Teichmüller lifts by r´s. We use the (somewhat nonstandard) notation

AJx1{p8

1 , . . . , x
1{p8

n K :“ lim
ÝÑm

´

AJx1{pm

1 , . . . , x
1{pm

n K
¯

(1.4.1)

(we do not form an additional px1, . . . , xnq-adic completion). We use the derived quotient notation

A{La :“ AbL
ZrXs Z, where ZrXs Ñ A via X ÞÑ a and ZrXs Ñ Z via X ÞÑ 0.

We let p´q˚ indicate the dual of a vector bundle, or of a p-divisible group, or of a commutative,
finite, locally free group scheme G. We often use the Bégueri resolution of the latter by commutative,
smooth, affine S-group schemes (see [Bég80, proposition 2.2.1] and [SP, Lemma 01ZT]):

0 Ñ GÑ ResG˚{SpGmq Ñ QÑ 0. (1.4.2)

Unless indicated otherwise, we form cohomology in the fppf topology and make the identifications
with étale (smooth coefficients) or Zariski cohomology (quasi-coherent coefficients) implicitly.

We let ∆ be the simplex category, whose opposite indexes simplicial objects. We write DpZq for
the derived 8-category of Z. We say that a functor F defined on some subcategory of rings and,
for the sake of concreteness, valued in DpZq satisfies descent (resp., satisfies hyperdescent) for a
Grothendieck topology T if for every T -cover A Ñ A1 with its Čech nerve A1‚ (resp., for every
T -hypercover AÑ A1‚), we have

F pAq
„
ÝÑ R lim∆pF pA

1‚qq.

We say that an (8-)category C is complete (resp., cocomplete) if it has all small limits (resp., colimits).
A strong limit cardinal of uncountable cofinality is a limit cardinal κ such that for every sequence
κ0, κ1, . . . of cardinals ă κ we have 2κ0 ă κ and supně0 κn ă κ; there exist arbitrarily large such
κ, see [Sch22, Lemma 4.1 and its proof]. We use such cardinals κ to avoid set-theoretic problems
when working with large sites (such as the fpqc site); of course, in such cases we check along the way
that our assertions do not depend on the choice of κ. We say that a scheme S is of size ă κ if the
cardinality of its underlying topological space is ă κ and |ΓpU,OSq| ă κ for every affine open U Ă S.
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2. The geometry of integral perfectoid rings

We begin with generalities about perfectoids that will be important in multiple steps of the overall
argument of purity for flat cohomology. We review the definitions and expose some basic properties
in §2.1. We then present an algebraic approach to controlling cohomology under tilting in §2.2 that
avoids adic spaces and the almost purity theorem in favor of arc descent. Finally, in §2.3, we generalize
André’s lemma: we improve its flatness aspect to ind-syntomicity and we avoid completions.

2.0.1. The implicitly fixed prime. Throughout §§2.1–2.3, to discuss perfectoids, we fix a prime p.

2.1. Structural properties of perfectoid rings

Perfectoids play a central role in our approach to purity, so we summarize their most relevant basic
properties in this section. Our perfectoids are what some authors call “integral perfectoids”: these
appear to be the ones most directly related to commutative algebra. Perfectoid rings generalize
perfect Fp-algebras beyond the setting of positive characteristic, and their definition is intimately
related to the properties of the following tilting adjunction.

2.1.1. The tilting adjunction. In positive characteristic, the inclusion of perfect Fp-algebras into
all Fp-algebras admits a right adjoint given by the inverse limit perfection B ÞÑ B5 :“ lim

ÐÝb ÞÑbp
B.

We define the tilt of general ring A as the inverse limit perfection A5 :“ pA{pAq5 of A{pA. When
restricted to p-adically complete A, the tilting functor is the right adjoint of p-typical Witt vectors:

tperfect Fp-algebrasu
W p´q

//
tp-adically complete Zp-algebrasu,

p´q5
oo

see [SZ18, Proposition 3.12]. The Fontaine functor Ainfp´q is the following composition of these
adjoints:

AinfpAq :“W pA5q, so it comes with the counit of the adjunction θ : AinfpAq Ñ A. (2.1.1.1)

The functors p´q5 and W p´q commute with limits of rings, so the same holds for Ainfp´q. By
[BMS18, Lemma 3.2 (i)], for p-adically complete A, the reduction modulo p map

lim
ÐÝaÞÑap

A
„
ÝÑ lim
ÐÝaÞÑap

A{pA – A5 is a multiplicative isomorphism, (2.1.1.2)

and we let a ÞÑ a7 denote the resulting multiplicative projection A5 Ñ A onto the last coordinate.
The counit map θ satisfies θprasq “ a7 for a P A56 and is uniquely determined by this. By loc. cit., if

6The elements θprasq, a7 P A agree modulo p, and the same holds for their pn-th roots θpra1{pn
sq, pa1{pn

q
7
P A. Thus,

the p-adic completeness of A gives the middle equality in θprasq “ limnÑ8pθpra
1{pn

sq
pn
q “ limnÑ8pppa

1{pn
q
7
q
pn
q “ a7.
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A is $-adically complete for a $ P A with $ | p, then A5 may be defined with $ in place of p: then

A5 “ lim
ÐÝaÞÑap

A{pA
„
ÝÑ lim
ÐÝaÞÑap

A{$A. (2.1.1.3)

2.1.2. Perfectoid rings. As in [BMS18, Definition 3.5], we say that a ring A is perfectoid if

(i) there is a $ P A with $p | p such that A is $-adically (so also p-adically) complete, and

(ii) the counit map θ : AinfpAq� A of (2.1.1.1) is surjective and its kernel is principal.

Since A is p-adically complete, the surjectivity of θ is equivalent to the semiperfectness of A{pA.

One may choose $ to be the p-th root of a unit multiple of p, but it is useful to develop the
theory relative to a general $. More precisely, by [BMS18, Lemma 3.9], the condition (i) and
the semiperfectness of A{pA alone ensure that some unit multiples of $ and p have compatible
p-power roots in A: there are $5, p5 P A5 such that p$5q7, pp5q7 P A are unit multiples of $ and p,
respectively.

By [Lau18, Remark 8.6] or [BS22, Theorem 3.10], the conditions (i)–(ii) may be synthesized: a ring
A is perfectoid if and only if there are a perfect Fp-algebra B and a ξ “ pξ0, ξ1, . . . q P W pBq such
that

A »W pBq{pξq and B is ξ0-adically complete with ξ1 P B
ˆ. (2.1.2.1)

We necessarily have B – A5, the displayed identification is induced by θ, and ξ is a nonzerodivisor
in AinfpAq. In fact, A5 is ξ10-adically complete for any ξ1 P Kerpθq with Witt vector coordinates
ξ1 “ pξ10, ξ

1
1, . . . q and, by [BMS18, Remark 3.11], such a ξ1 generates Kerpθq if and only if ξ11 P pA5qˆ,

in which case ξ1 is a nonzerodivisor in AinfpAq. In particular, ξ continues to generate Kerpθq for
any perfectoid A-algebra, and an Fp-algebra is perfectoid if and only if it is perfect (choose ξ1 “ p).
Explicitly, there is an x P AinfpAq such that p` rp5sx P Kerpθq, and this element is a possible choice
for ξ: the equality x “ rx mod ps ` px1 shows that the first Witt coordinate of p` rp5sx is a unit
because subtracting the Teichmüller of its zeroth Witt coordinate gives pp1` rp5sx1q. More precisely,
we may choose this x in such a way that θpxq be a unit in A; then (2.1.1.2) shows that x mod p is a
unit in A5, to the effect that we may adjust our choice of p5 to arrange that even p5 “ ξ0.

By (ii) and the proof of [BMS18, Lemma 3.10 (i)], the map a ÞÑ a7 induces isomorphisms

A5{p$5qpA5
„
ÝÑ A{$pA and A5{p5A5

„
ÝÑ A{pA. (2.1.2.2)

Thus, p$5qp | p5, and (2.1.1.3) shows that A5 is $5-adically complete (every $5-adic Cauchy sequence
in A5 stabilizes in each term of lim

ÐÝaÞÑap
A{$A). Although $5 and p5 are noncanonical, (2.1.2.2)

determines the ideals p$5q and pp5q of A5, so we will use $5 and p5 when only p$5q and pp5q matter.

By [BMS18, Lemma 3.10], for a perfectoid A that is $-adically complete for a $ P A with $p | p,

the p-power map A{$A „

a ÞÑ ap // A{$pA is an isomorphism, (2.1.2.3)

so if there is a $1{pn P A, then, by applying this to $1{pj with 0 ď j ď n, we get

A{$1{pnA „

a ÞÑ ap // A{$1{pn´1
A „

a ÞÑ ap // . . . „

a ÞÑ ap // A{$A „

a ÞÑ ap // A{$pA. (2.1.2.4)

Conversely, by [BMS18, Lemmas 3.9 and 3.10], if a ring A is $-adically complete for a nonzerodivisor
$ P A with $p | p (the nonzerodivisor condition is automatic if A is p-torsion free) and (2.1.2.3)
holds, then A is perfectoid. This gives a very practical criterion for recognizing perfectoid rings.
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For a perfectoid ring A, both p and ξ are nonzerodivisors in AinfpAq, so the AinfpAq-module

tpx, yq P AinfpAq
2 | ξx “ pyu{tppz, ξzq | z P AinfpAqu is isomorphic to both A5xp5y and Axpy

via the maps px, yq ÞÑ x mod p and px, yq ÞÑ y mod ξ, respectively. Consequently, for every $ P A
with $p | p such that A is $-adically complete, (2.1.2.2) supplies an AinfpAq-module isomorphism

A5x$5y – Ax$y, so A5 is $5-torsion free if and only if A is $-torsion free. (2.1.2.5)

After harmlessly replacing $ by p$5q7, we apply (2.1.2.5) with $1{pn in place of $ and conclude
that Ax$y is killed by the $1{pn , so that Ax$1{p8y “ Ax$y “ Ax$8y (see also (2.1.3.2)).

It is useful to decompose perfectoids as follows, in the style of [GR18, Section 16.4.18, Remark 16.4.19]
or [Lau18, Remark 8.9].

2.1.3. Canonical decompositions of perfectoids. Let A be a perfectoid ring that is $-adically
complete for a $ P A with $p | p, and set A :“ A{Ax$8y and A5 :“ A5{A5xp$5q8y. By the end of
§2.1.2, we have Ax$8y X p$1{p8q “ 0 in A, and analogously for A5, so

A
„
ÝÑ AˆA{p$1{p8 q

A{p$1{p8q and A5
„
ÝÑ A5 ˆ

A5{pp$5q1{p
8
q
A5{pp$5q1{p

8

q.

In particular, pA „
ÝÑ pA, so the ring A is p-adically complete.7 Moreover, (2.1.2.2) and (2.1.2.5)

imply that A{p$1{p8q – A5{pp$5q1{p
8

q, so this quotient is a perfect Fp-algebra. Since the functor
Ainfp´q preserves limits (see §2.1.1), we obtain the decomposition

AinfpAq
„
ÝÑ AinfpAq ˆAinfpA{p$1{p8 qq

AinfpA{p$
1{p8qq.

By considering the counit maps θ (see §2.1.1) and using §2.1.2 and the snake lemma, we now conclude
that the generator ξ of Kerpθq for A is a nonzerodivisor in AinfpAq and that AinfpAq{ξAinfpAq – A.
In particular, by §2.1.2 again, A is a perfectoid ring and A5 is its tilt. Thus, by (2.1.2.2),

A{p$1{p8q – pA{p$qqred and A{p$1{p8q – pA{p$qqred.

In conclusion, A is a glueing of the $-torsion free perfectoid A and the $-torsion one pA{p$qqred:

A
„
ÝÑ Aˆ

pA{p$qqred pA{p$qq
red and, compatibly, A5

„
ÝÑ A

5
ˆ
pA{p$qqred pA{p$qq

red. (2.1.3.1)

For instance, we may choose $p to be a unit multiple of p, in which case A – A{Axp8y. We deduce
that every perfectoid ring A is reduced: (2.1.3.1) allows us to pass to p-torsion free A, and then
we iteratively apply (2.1.2.3) to argue that the nilradical lies in

Ş

ně0 p
nA “ 0. Reducedness then

implies that for every a P A that has compatible p-power roots a1{pn P A, we have

Axa1{pny “ Axay “ Axa8y for n ě 0. (2.1.3.2)

The decomposition (2.1.3.1) admits the following converse that is useful for recognizing perfectoids.

Proposition 2.1.4. For a surjective morphism f : A� A1 of perfectoid Zp-algebras, the map

Ainfpfq : AinfpAq� AinfpA
1q

induces a surjection on the kernels of the counit maps θ, more generally, it induces surjections

AinfpAq� AinfpA
1q ˆA1 A and rp5sAinfpAq� rp5sAinfpA

1q ˆpA1 pA. (2.1.4.1)

Moreover, for any map B Ñ A1 with B perfectoid, C :“ AˆA1B is perfectoid with tilt C5 – A5ˆA15B
5.

7For a ring B and an ideal I Ă B, the property that B be I-adically complete only depends on I as a nonunital
ring: it amounts to the property that every I-adic Cauchy sequence with values in I have a unique limit in I.
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Proof. First of all, the map Ainfpfq inherits its indicated surjectivity from A� A1: by completeness,
this may be checked modulo p and then modulo p5, where it follows from (2.1.2.2). Thus, letting ξ1

be a generator for the kernel of θ for A, we apply the snake lemma and use §2.1.2 to conclude that

KerpAinfpfqq{ξ1 KerpAinfpfqq – Kerpfq.

The snake lemma then also shows that Ainfpfq induces a surjection on the kernels of θ. Since the
map θ : AinfpAq� A is surjective, the first surjection in (2.1.4.1) follows. The second surjection in
(2.1.4.1) follows from the first applied to the quotients of A and A1 by their p-torsion (see §2.1.3).

As for the ring C, it inherits p-adic completeness from the A, A1, and B (the unique limit of a p-adic
Cauchy sequence is computed componentwise), so §2.1.1 identifies the tilt and shows that

AinfpCq
„
ÝÑ AinfpAq ˆAinfpA1q AinfpBq.

Thus, by §2.1.2 and the second surjection in (2.1.4.1), there is a ξ P AinfpCq of the form p` rp5sx
that maps to a generator of the kernel of θ for A, A1, and B. A final application of the snake lemma
then shows that AinfpCq{pξq – C, so that C is indeed perfectoid by (2.1.2.1). �

Example 2.1.5. Consider a perfectoid ring A that is $-adically complete for a $ P A with $ | p.
Proposition 2.1.4 implies that for any map B Ñ pA{p$qqred from a perfect Fp-algebra B, the ring

AˆpA{p$qqred B is perfectoid.

Corollary 2.1.6. For a perfectoid ring A that is $-adically complete for a $ P A with $p | p, the
$-adic (for instance, the p-adic, see §2.1.2) completion of every ind-étale A-algebra is perfectoid.

Proof. Example 2.1.5 and the decomposition A „
ÝÑ Aˆ

pA{p$qqred pA{p$qqred supplied by (2.1.3.1)
reduce to A being either $-torsion free or an Fp-algebra. The $-torsion free case follows from
the criterion (2.1.2.3) mentioned at the end of §2.1.2. The Fp-algebra case follows from the fact
that an ind-étale algebra over a perfect Fp-algebra is again perfect (see [SGA 5, exposé XV,
proposition 2 c) 2)]). �

The perfectoids A as above are more general than those in the rigid analytic approach to the theory.
For instance, in the p-torsion free case we do not build the integral closedness of A in Ar1p s into the
definitions. As we now recall, the p-primary aspect of this closedness is nevertheless automatic.

2.1.7. p-integral closedness of perfectoid rings. For an inclusion of rings A Ă A1, we recall
that A is p-integrally closed in A1 if every a1 P A1 with a1p P A lies in A. In general, the p-integral
closure of A in A1, constructed as

Ť

ně0An where A0 :“ A and An`1 Ă A1 is the An-subalgebra
generated by all the a1 P A1 with a1p P An, is the smallest p-integrally closed subring of A1 containing
A. Evidently, the p-integral closure lies in the integral closure of A in A1.

The relevance of p-integral closedness to perfectoids was pointed out by André in [And18a, section 2.3].
For instance, if $ P A is a nonzerodivisor with $p | p in A, then the map

A{$A
a ÞÑ ap
ÝÝÝÝÑ A{$pA is injective if and only if A is p-integrally closed in Ar 1

$ s. (2.1.7.1)

Indeed, the ‘if’ direction follows from the definition, and for the ‘only if’ one notes that the injectivity
of the map ensures that any a1 “ a

$n P Ar
1
$ szA with a1p P A has its numerator a divisible by $.
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Thus, by (2.1.2.3) and (2.1.3.1), for every perfectoid A that is $-adically complete for a $ P A with
$p | p, the image A Ă Ar 1

$ s of A is p-integrally closed, so we have a multiplicative identification

lim
ÐÝaÞÑap

pAr 1
$ sq

„
ÝÑ A5r 1

$5
s compatible with lim

ÐÝaÞÑap
A

„

(2.1.1.2)
// A5. (2.1.7.2)

The p-integral closedness of perfectoids has the following converse that is a variant of [GR18,
Corollary 16.9.15].

Proposition 2.1.8. Let A be a ring and let $ P A be a nonzerodivisor with $p | p that has compatible
p-power roots $1{pn P A and is such that the map A{$A a ÞÑ ap

ÝÝÝÝÑ A{$pA is surjective. The $-adic
completion of the p-integral closure rA of A in Ar 1

$ s is perfectoid.

Proof. As in loc. cit., for each a P A with ap P $pA, we choose a sequence tanuně0 in A such that

a0 :“ a and apn ” an´1 mod $pA for n ą 0.

By construction, ap
n`1

n P $pA, so also an
$1{pn P

rA, where, as in the statement, rA is the p-integral
closure of A in Ar 1

$ s. We consider the A-subalgebra

A1 :“ Ar an
$1{pn |n ě 0, a P A with ap P $pAs Ă rA.

By construction, the map A1{$A1
a ÞÑ ap
ÝÝÝÝÑ A1{$

pA1 is surjective, so we may repeat the construction
with A1 in place of A to likewise build an A1-subalgebra A2 Ă A. Proceeding in this way, we obtain
an A-subalgebra A8 :“

Ť

iě1Ai Ă
rA for which the map A8{$

x ÞÑxp
ÝÝÝÝÑ A8{$

p is both surjective
and, since every x P Ai with xp P $pAi is divisible by $ in Ai`1, also injective. Thus, (2.1.7.1)
ensures that A8 “ rA, and (2.1.2.3) then ensures that the $-adic completion of rA is perfectoid. �

We turn to categorical properties of tilting that are analogues of their counterparts in the adic theory.

Proposition 2.1.9. For a perfectoid ring A, there is an equivalence of categories
 

perfectoid A-algebras A1
( „
ÝÑ

!

ξ0-adically complete perfect A5-algebras B
)

,

where ξ “ pξ0, ξ1, . . . q is a generator of Kerpθ : W pA5q� Aq and the pair of inverse functors are

A1 ÞÑ A15 and B ÞÑW pBq{pξq.

Moreover, A15 is $5-adically complete for a $5 P A15 with $5 | ξ0 if and only if A1 is $-adically
complete for $ :“ p$5q7, and A1 is a valuation ring (resp., with an algebraically closed fraction field)
if and only if so is A15, in which case the value groups agree:

FracpA15qˆ{pA15qˆ
„
ÝÑ FracpA1qˆ{pA1qˆ induced by the map x ÞÑ x7.

Proof. By §2.1.2, the functors are well-defined, inverse, and map$-adically complete A1 to$5-adically
complete A15. We now assume that A15 is $5-adically complete, so that W pA15q is r$5s-adically
complete, and seek to show that ξW pA15q is closed in W pA15q for the r$5s-adic topology: A1 will
then be $-adically complete by [SP, Lemma 031A]. For this, it suffices to show that

ξW pA15q X pr$5snq “ ξpW pA15q X pr$5snqq for every n ě 1;

indeed, then the limit of every r$5s-adic Cauchy series of W pA15q with terms in ξW pA15q would lie
in ξW pA15q. We then fix a w :“ pw0, w1, . . . q P W pA

15q with ξw P pr$5snq and seek to show that
w P pr$5snq, that is, that wm P p$5qnp

m
A15 for m ě 0. This is clear when $5 “ 0, so (2.1.3.1) (with
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A there equal to our A15) allows us to replace A15 by A15 :“ A15{A15xp$5q8y. Then $5 becomes a
nonzerodivisor and induction on n reduces us to n “ 1. We fix the smallest hypothetical m with

wm R p$
5qp

m
A15

and, by [BouAC, chapitre IX, section 1, numéro 6, lemme 4], may assume that wm1 “ 0 for m1 ă m.
Then

w “ V mppwm, wm`1, . . . qq, so ξw “ V mppwmξ
pm

0 , wm`1ξ
pm`1

0 ` wpmξ
pm

1 , . . . qq.

Since $5 | ξ0 and ξ1 P pA
5qˆ, the assumption ξw P pr$5sq then implies that p$5qpm`1

| wpm, so that,
by the perfectness of A15, also p$5qpm | wm, which is a desired contradiction to the existence of m.

If A1 is a valuation ring, then (2.1.1.2) and (2.1.2.2) show that A15 is a local domain in which for
a, a1 P A15 either a | a1 or a1 | a, so A15 is a valuation ring. Conversely, if A15 is a valuation ring, then,
by (2.1.2.2), (2.1.2.5), and §2.1.3, the p-adically complete ring A1 is local, p-torsion free unless p “ 0

in A1 (in which case A1 – A15), and reduced. To conclude that A1 is a valuation ring and also settle
the claim about the value groups, we now show that every a P A1 is of the form a “ ub7 for some
u P A1ˆ and b P A15. For this, we follow [GR18, Proposition 16.5.50], namely, by dividing by a power
of pp5q7, we may assume that a is nonzero in A1{pA1, so that, by (2.1.2.2), we have a “ b7`pp5q7c for
a b P A15 that is nonzero modulo p5 and a c P A1. Since A15 is a valuation ring, b strictly divides p5,
so it remains to set u :“ 1` pp

5

b q
7c. In the case of valuation rings of dimension ď 1, the remaining

parenthetical assertion follows from [Sch12, Theorem 3.7 (ii)]. To then deduce it for any perfectoid
valuation ring A1 of dimension ě 1, we may assume that A1 is of mixed characteristic p0, pq and
it suffices to argue that the valuation ring A1p that is the localization of A1 at the height 1 prime
p Ă A1 (concretely, at the intersection of all the primes of A1 containing p) is still perfectoid and
that its tilt is the localization of A15 at its height 1 prime (concretely, at the intersection of all the
primes of A15 containing p5).

For this last claim, the p-adic (resp., p5-adic) topology of A1 (resp., of A15) is the valuation topology,
so, due to (2.1.2.2), it suffices to argue that for any valuation ring V that is a-adically complete for
some a P V and any prime ideal q Ă V containing a, the localization Vq is also a-adically complete.8
However, by the definition of a valuation ring, every element of V zq divides every element of q, so q
maps isomorphically to qVq and kills the quotient Vq{V . It follows that in the inverse system

t0 Ñ Vq{V Ñ V {panq Ñ Vq{pa
nq Ñ Vq{V Ñ 0uną0

of exact sequences the transition maps at the term that is the left copy of Vq{V all vanish because
they are induced by multiplication by a. Thus, by forming the inverse limit and applying the snake
lemma we see that the a-adic completeness of V implies that of Vq. �

Remark 2.1.10. As the proof shows, any localization of a perfectoid valuation ring is still a perfectoid
valuation ring, granted that we exclude the 0-dimensional localization in mixed characteristic.

We will use the following further compatibilities that concern tilting. They also complement
Proposition 2.1.4 with additional general stability properties of perfectoid rings.

8It is also true that if a valuation ring V is complete for its valuation topology, then its localization Vq at any
prime ideal q Ă V is also complete for its valuation topology. To see this, first note that the valuation topology is
characterized by every nonzero ideal of V being open, alternatively, since a2V Ă aq Ă aV for a P q, by every principal
ideal of the nonunital ring q being open. Thus, by considering Cauchy nets, we see that V is complete for its valuation
topology if and only if the nonunital ring q is complete for its topology in which the principal ideals are all open. It
then remains to recall that q „

ÝÑ qVq, to the effect that replacing V by Vq does not change the nonunital ring q.
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Proposition 2.1.11. Let A be a perfectoid ring that is $-adically complete for a $ P A with $p | p,
let I be a set, let tAiuiPI be $-adically complete perfectoid A-algebras, and let S Ă A be a subset.

(a) The $-adic completion of ArX1{p8

i siPI is perfectoid and its tilt is the $5-adic completion of
A5rpX5i q

1{p8siPI , where X5i corresponds to the p-power compatible sequence pX1{pn

i qně0.

(b) (See also [GR18, Proposition 16.3.9]).The $-adically completed tensor product x
Â

iPIAi over
A is perfectoid and its tilt is the $5-adically completed tensor product x

Â

iPIA
5
i over A

5.

(c) Suppose that the ideal pS mod $nq Ă A{p$nq is generated by the pn-th powers of its elements
for n ą 0 (for instance, that each s P S has a root s1{pN P S with N ą 0). Then the $-adic
completion of A{pSq is perfectoid and its tilt is the $5-adic completion of A5{pS5q where

S5 :“ lim
ÐÝa ÞÑ ap

pS mod $q Ă lim
ÐÝa ÞÑ ap

A{p$q – A5.

(d) A product
ś

iPI Bi of Zp-algebras is perfectoid iff so is each Bi, and then p
ś

iPI Biq
5 –

ś

iPI B
5
i .

(e) (See also [GR18, Theorem 16.3.76] and [And20, Proposition 2.2.1]). For a51, . . . , a
5
r P A

5 and
aj :“ pa5jq

7 P A, the pa1, . . . , arq-adic completion of A is perfectoid, agrees with the derived
pa1, . . . , arq-adic completion of A, and has the pa51, . . . , a

5
rq-adic completion of A5 as its tilt.

Proof. For (a), we first note that, by Proposition 2.1.9, the A-algebra W ppA5rpX5i q
1{p8siPIqpq{pξq,

where the completion is $5-adic, is perfectoid. It then remains to note that, since pn P pξ, r$5snq,
the map that sends each X1{pm

i to ppX5i q
7q1{p

m exhibits it as the $-adic completion of ArX1{p8

i siPI .

For (b), a tensor product indexed by I is defined as the direct limit of subproducts over the finite
subsets of I and is a categorical coproduct. With tensor products over WnpA

5q and A5,
Â

iPIWnpA
5
iq

„
ÝÑWnp

Â

iPI A
5
iq (2.1.11.1)

because both the source and the target are initial among the Z{pnZ-algebras whose reduction modulo
p is equipped with a map from

Â

iPI A
5
i (see, for instance, [SZ18, Proposition 3.12]). By reducing

(2.1.11.1) modulo ppn, pn´1r$5sp, . . . , pr$5sp
n´1

, r$5sp
n
q, we obtain

Â

iPIWnpA
5
i{pr$

5sp
n
qq

„
ÝÑWnp

Â

iPIpA
5
i{pr$

5sp
n
qqq,

so, since pp, r$5sqpn Ă ppn, pn´1r$5sp, . . . , pr$5sp
n´1

, r$5sp
n
q Ă pp, r$5sqn, also

x

Â

iPIW pA
5
iq

„
ÝÑW px

Â

iPIA
5
iq (2.1.11.2)

where the first pb is pp, r$5sq-adically completed and over W pA5q. Since $5 | ξ0 in A5 for a generator
ξ “ pξ0, ξ1, . . . q of Kerpθ : W pA5q � Aq (see §2.1.2), the perfect A5-algebra x

Â

iPIA
5
i is ξ0-adically

complete. Thus, by Proposition 2.1.9, the reduction of (2.1.11.2) modulo ξ is a map of $-adically
complete perfectoids, so, since pξ, r$5sq “ pp, r$5sq in W pA5q (see (2.1.2.2)), it is the desired

x

Â

iPIAi
„
ÝÑ pW px

Â

iPIA
5
iqq{pξq.

For (c), by the assumption on S and by construction, S5 surjects onto pS mod $q Ă A{p$q – A5{p$5q
and is stable under p-power roots. Moreover, the pn-th power of an element of A{p$n`1q depends
only on its residue class modulo $, so pS mod $nq “ ppS5q7 mod $nq in A{p$nq. Thus we lose no
generality by assuming that S “ pS5q7, in other words, that every s P S admits a p-th root s1{p P S.
Both A5{pS5q and its $5-adic completion {A5{pS5q are perfect A5-algebras, and

WnpA
5q{prS5sq

„
ÝÑWnpA

5{pS5qq.
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Thus, by Proposition 2.1.9, the A-algebra W p {A5{pS5qq{pξq is a $-adically complete perfectoid. In
conclusion, since pn P pξ, r$5snq and S “ pS5q7, the following map exhibits its perfectoid target as
the $-adic completion of the source:

A{pSq – pW pA5q{pξqq{pSq – pW pA5q{prS5sqq{pξq ÑW p {A5{pS5qq{pξq.

Part (d) is immediate from the definition of §2.1.2 because Ainfp
ś

iPI Biq –
ś

iPI AinfpBiq.

For (e), it suffices to argue that the derived pa1, . . . , arq-adic completion pA of A is perfectoid (so,
in particular, is a classical ring) and that its tilt is the derived pa51, . . . , a5rq-adic completion xA5 of
A5. Indeed, this will imply the claimed agreement with the usual pa1, . . . , arq-adic completion (and
likewise for A5): perfectoid rings are reduced (see §2.1.3), so [SP, Lemma 0G3I] will ensure that pA
is pa1, . . . , arq-adically separated, and hence, by [SP, Proposition 091T], even pa1, . . . , arq-adically
complete, so the map AÑ pA will be initial among maps to pa1, . . . , arq-adically complete A-algebras.

The derived pa1, . . . , arq-adic completion of A agrees with the iterated derived ai-adic completion
for i “ 1, . . . , r, so we lose no generality by assuming that r “ 1 and renaming a :“ a1 and
a5 :“ a51. Since A5 is a perfect Fp-algebra, A5ra5s “ A5rpa5q1{p

8

s, to the effect that the inverse
system tA5rpa5qnsuną0 is almost zero. Thus, the derived a5-adic completion xA5 of A5 agrees with
the classical a5-adic completion of A5. In particular, xA5 is a perfect Fp-algebra that inherits derived
ξ0-adic completeness from A5. Thus, xA5 is reduced and we conclude as in the previous paragraph
that it is ξ0-adically complete. This already settles the positive characteristic case, in which A “ A5.

By arguing via Witt vector coordinates, we see that each Wnp
xA5q is ra5s-adically complete, so that

W pxA5q is also ra5s-adically complete. Moreover, the derived ra5s-adic completion {W pA5q of W pA5q
inherits derived p-adic completeness and its derived reduction modulo p is the derived ra5s-adic
completion xA5 of A5. Thus, we may check on derived reductions modulo p that

{W pA5q
„
ÝÑW pxA5q.

However, §2.1.2 ensures that ξ is a nonzerodivisor in W pxA5q, so this isomorphism shows that
W pxA5q{pξq is the derived a-adic completion pA of A and, simultaneously, that pA is a classical ring.
To then conclude that pA is perfectoid with tilt xA5 it remains to review §2.1.2. �

The following proposition is sometimes useful for reducing to p-torsion free perfectoid rings.

Proposition 2.1.12. Every perfectoid ring A that is $-adically complete for a $ P A with $p | p

is a quotient of a perfectoid ring rA that is r$-torsion free and r$-adically complete for a lift r$ P rA of
$ with r$p | p. In addition, every perfectoid ring is a quotient of a p-torsion free perfectoid ring.

Proof. As in (2.1.2.1), we write A –W pA5q{pξq with ξ “ pξ0, ξ1, . . . q in Witt coordinates such that
ξ1 P pA

5qˆ and A5 is ξ0-adically complete. In fact, A5 is even $5-adically complete and we fix a
choice of $5 P A5, so that $ “ p$5q7u with u P Aˆ (see §2.1.2). We consider the perfect Fp-algebra

B0 :“ FprX
1{p8

a | a P A5s and the surjection B0 � A5 given by Xa ÞÑ a.

Since p$5qp | ξ0 in A5 (see §2.1.2), we may lift the ξi to rξi P B0 with pX$5q
p | rξ0 and let B be the

X$5-adic completion of B0r
1
rξ1
s. Certainly, B is a rξ0-adically complete (see [SP, Lemma 090T]),
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perfect Fp-algebra equipped with a surjection B � A5. Letting rξ P W pBq be defined by its Witt
coordinates rξi and using (2.1.2.1), we obtain a surjection of perfectoid rings

rA1 :“W pBq{prξq�W pA5q{pξq – A, and we set r$1 :“ pX$5q
7 P rA1.

Since pX$5q
p | rξ0 in B, we have pr$1qp | p in rA1 (see §2.1.2), so Proposition 2.1.9 ensures that rA1 is

r$1-adically complete, and (2.1.2.5) then ensures that rA1 is r$1-torsion free. We lift u P A to a ru P rA1,
and we let rA be the r$1-adic completion of rA1r 1

ru s, so that we have the induced surjection rA� A and
the lift r$ :“ r$1ru P rA of $. By Corollary 2.1.6, the ring rA is perfectoid and, by construction, it is
r$-adically complete and r$-torsion free. The proof of the p-torsion free variant is similar but simpler:
it suffices to choose rξ0 :“ Xξ0 , replace X$5 by Xξ0 in the subsequent argument, and set rA :“ rA1. �

2.2. Tilting étale cohomology algebraically

Guided by the idea that comparing a perfectoid ring A and its tilt A5 is close in spirit to an
Elkik-type comparison of a Henselian ring and its completion, in Theorem 2.2.7 we exhibit “algebraic”
incarnations of the paradigm that tilting preserves topological information, specifically, idempotents
(that is, clopen subschemes) and étale cohomology. The idea of the proof is that the idempotent case
is pretty much immediate from (2.1.1.2) with (2.1.7.2) and, by p-complete arc descent, it implies the
assertion about the étale cohomology. This style of argument bypasses any recourse to adic spaces,
although, of course, the conclusion is not as strong as an equivalence of étale sites.

2.2.1. The I-complete arc-topology. We recall from [BM21, Definition 1.2] that a ring map
AÑ A1 is an arc cover if any AÑ V with V a valuation ring of dimension ď 1 fits in a commutative
diagram

A //

��

A1

��

V // V 1

(2.2.1.1)

in which V 1 is a valuation ring of dimension ď 1 and V Ñ V 1 is faithfully flat (that is, an extension
of valuation rings). For a fixed finitely generated ideal I Ă A (example: I “ ppq), if the same holds
whenever V is, in addition, I-adically complete, then AÑ A1 is an I-complete arc cover (called a
$-complete arc cover when I “ p$q is principal). An arc cover is simply a 0-complete arc cover,
and an I-complete arc cover is an I 1-complete arc cover whenever I Ă I 1 (see [SP, Lemma 090T]). In
particular, for every I, an arc cover is an I-complete arc cover and the reduction modulo I of an
I-complete arc cover is an arc cover.

In fact, there is no need to assume that V 1 be of dimension ď 1: one can arrange dimpV q “ dimpV 1q
a posteriori by the argument of [BM21, Proposition 2.1]. In addition, by extending V 1 (of dimension
ď 1) to a valuation ring of dimensionď 1 on the algebraic closure of FracpV 1q (see [BouAC, chapitre VI,
section 8, numéro 6, proposition 6]) and, in the case of I-complete arc covers, I-adically completing
(which preserves algebraic closedness, see [BGR84, Section 3.4, Proposition 3]), we may restrict to
those V 1 of dimension ď 1 in (2.2.1.1) that have an algebraically closed fraction field and, in the
case of I-complete arc covers, are I-adically complete. Similarly, one then loses no generality by
assuming that FracpV q be algebraically closed.

For example,

(1) any faithfully flat AÑ A1 is an arc cover: to see this, we may assume that A “ V , lift the
specialization of points in SpecpV q to SpecpA1q (see [EGA IV2, proposition 2.3.4 (i)]), and
use the maximality of valuation rings with respect to domination;
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(2) any A Ñ A1 that is faithfully flat modulo powers of a finitely generated ideal I Ă A is an
I-complete arc cover: we may assume that A “ V for an I-adically complete valuation ring V
of rank ď 1, assume that A1 is I-adically complete, and use the resulting injectivity V ãÑ A1

to lift the specialization (due to the I-adic completeness of A1, the closure of the generic
V -fiber of SpecpA1q meets the closed V -fiber, so one applies [SP, Lemma 0903] to conclude);

(3) any integral AÑ A1 that is surjective on spectra is an arc cover: now one uses going up to
lift the specialization (see [SP, Lemma 00GU]).

As the name suggests, finite collections of ring maps tAÑ A1iuiPI with AÑ
ś

iPI A
1
i an arc cover

(resp., an I-complete arc cover) are the covering maps for a Grothendieck topology on commutative
rings (resp., on Zrx1, . . . , xns-algebras where I “ p$1, . . . , $nq with xi ÞÑ $i), the arc topology
(resp., the I-complete arc topology). On perfectoids this topology is insensitive to tilting as follows.

Lemma 2.2.2. Let AÑ A1 be a map of perfectoid rings, let $ P A with $p | p be such that A and
A1 are $-adically complete, and let $5 P A5 be such that p$5q7 is a unit multiple of $ (see §2.1.2).
Then AÑ A1 is a $-complete arc cover if and only if its tilt A5 Ñ A15 is a $5-complete arc cover.

Proof. By §2.2.1, the condition of being a $-complete (resp., $5-complete) arc cover may be phrased
to only involve maps to $-adically (resp., $5-adically) complete valuation rings of dimension ď 1
with algebraically closed fraction fields, and such are perfectoid by (2.1.2.3). It then remains to
recall from Proposition 2.1.9 that the tilting equivalence identifies such valuation rings, respects
their dimensions, and matches $-adic completeness with $5-adic completeness. �

We will exploit the following convenient base of the $-complete arc topology.

Lemma 2.2.3. Every ring A (resp., with a $ P A) has an arc (resp., a $-complete arc) cover
A Ñ

ś

iPI Vi whose factors Vi are valuation rings (resp., $-adically complete valuation rings) of
dimension ď 1 with algebraically closed fraction fields.

Proof. For each prime p Ă A, choose an algebraic closure kppq of the residue field at p. Let p vary
and let I be the set of valuation subrings Vi Ă kppq of dimension ď 1 containing the image of A and
with FracpViq “ kppq. To check that the resulting AÑ

ś

iPI Vi is a desired arc cover, we note that,
by the choice of I, any map AÑ V to a valuation ring of dimension ď 1 with an algebraically closed
fraction field factors through some AÑ Vi and use §2.2.1. For the $-complete arc aspect, it suffices
to instead take AÑ

ś

iPI
pVi where pVi is the $-adic completion of Vi (see §2.2.1). �

As we now verify, the arc covers constructed in the previous lemma have no nonsplit étale covers.

Lemma 2.2.4. Let tViuiPI be valuation rings. The connected components of Specp
ś

iPI Viq are the
Specp

ś

U Viq for ultrafilters U on I (where
ś

U :“ lim
ÝÑI 1PU

ś

iPI 1). In particular, if all the FracpViq

are algebraically closed, then each quasi-compact open U Ă Specp
ś

iPI Viq has no nonsplit étale covers
and its connected components are spectra of valuation rings with algebraically closed fraction fields.

Proof. For I 1 Ă I, let eI 1 P
ś

iPI Vi be the idempotent whose coordinates at I 1 (resp., at IzI 1) are 0
(resp., 1). Since eI 1XI2 “ eI 1 ` eI2 ´ eI 1YI2 , for any prime p Ă

ś

iPI Vi, the set Up :“ tI 1 | eI 1 P pu
is an ultrafilter on I. The assignment p ÞÑ Up gives a continuous map Specp

ś

iPI Viq Ñ βI to the
Stone–Čech compactification of I: indeed, the sets UI 1 :“ tU | I 1 P U u Ă βI with I 1 Ă I are a base
of opens for βI, and the preimage of UI 1 is the open Specp

ś

iPI 1 Viq Ă Specp
ś

iPI Viq. Any U P βI is
the intersection of its neighborhoods UI 1 for I 1 P U , so the preimage of U is precisely Specp

ś

U Viq.
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The preceding paragraph works for any rings tViuiPI ; however, if the Vi are valuation rings, then
ś

U Vi is a valuation ring with the fraction field
ś

U FracpViq, and the latter is algebraically closed
whenever so are all the FracpViq. Thus, since βI is totally disconnected and every quasi-compact open
of some Specp

ś

U Viq is the spectrum of a valuation ring (see [SP, Lemma 088Y]), the connected
component aspects of the claim follow. Moreover, if the FracpViq are all algebraically closed, then,
by the above, the local rings of U are strictly Henselian. A limit argument then shows that every
étale cover of U may be refined by a Zariski cover, and, thanks to [SP, Lemma 0968], the latter has
a section. �

Our approach to tilting étale cohomology builds on the following arc descent result of Bhatt–Mathew.

Theorem 2.2.5. Let A be a ring (resp., with a finitely generated ideal I Ă A) and let F be a torsion
sheaf on Aét. On the category of A-algebras A1, the functor

A1 ÞÑ RΓétpA
1,F q (resp., A1 ÞÑ RΓétpSpecpxA1qzV pIq,F q where the completion is I-adicq

satisfies hyperdescent in the arc (resp., I-complete arc) topology, and the functor

A1 ÞÑ RΓétpA
1h,F q, where p´qh denotes the I-Henselization,

satisfies hyperdescent in the I-complete arc topology.

Proof. Since the functors in question are bounded below, descent for them implies hyperdescent, so
we focus on arguing descent. By [Gab94, Theorem 1], we have

RΓétpA
1,F q – RΓétpA

1{IA1,F q

for I-Henselian A1, so the last assertion follows from the rest and §2.2.1. Moreover, the descent
claims were settled in [BM21, Theorem 5.4] and, respectively, [Mat22, Remark 5.18] with [BM21,
Corollary 6.17], except that for the functor

A1 ÞÑ RΓétpSpecpxA1qzV pIq,F q

loc. cit. used the arcI topology instead. The latter is the variant of the arc topology in which in
(2.2.1.1) one requires I to map to nonzero subideals of the maximal ideals of the valuation rings V
and V 1 of dimension ď 1. By replacing such V by its I-adic completion, we see that every I-complete
arc cover is an arcI cover, so our descent claim follows. �

Remark 2.2.6. By [BM21, Theorem 6.11] (or [ILO14, exposé XX, section 4.4]), we have

RΓétpSpecpA1hqzV pIq,F q
„
ÝÑ RΓétpSpecpxA1qzV pIq,F q, where p´qh denotes the I-Henselization,

so the following functor also satisfies I-complete arc hyperdescent on A-algebras A1:

A1 ÞÑ RΓétpSpecpA1hqzV pIq,F q.

We are ready for the promised algebraic approach to tilting étale cohomology of perfectoids.

Theorem 2.2.7. Let p be a prime, let A be a ring, let $ P A with $p | p be such that A is
$-Henselian, has bounded $8-torsion, and its $-adic completion is perfectoid, and let

SpecpAr 1
$ sq Ă U Ă SpecpAq and SpecpA5r 1

$5
sq Ă U 5 Ă SpecpA5q

be opens whose complements agree via (2.1.2.2) with A5 :“ lim
ÐÝaÞÑap

pA{$Aq. There are identifications

of sets of idempotents IdempUq – IdempU 5q compatibly with orthogonality,

of étale cohomology RΓétpU,Gq – RΓétpU
5, Gq for every torsion abelian group G,
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functorial in A, U , and G. In particular, for a closed Z Ă SpecpA{$Aq and a torsion abelian group G,

RΓZpA,Gq – RΓZpA
5, Gq. (2.2.7.1)

Proof. The claim about (2.2.7.1) follows from the rest and the cohomology with supports triangle.

By, for instance, [BČ22, Theorems 2.3.1 and 2.3.4], base change to the $-adic completion of A changes
neither IdempUq nor RΓétpU,Gq, so we assume that A is $-adically complete and, in particular,
perfectoid. The p-power map of any ring induces the identity map on the set of idempotents of
that ring, so the claim about IdempUq when U is either SpecpAq or SpecpAr 1

$ sq follows from the
functorial, compatible, multiplicative isomorphisms (2.1.1.2) and (2.1.7.2), namely, from

lim
ÐÝaÞÑap

A – A5 and lim
ÐÝaÞÑap

pAr 1
$ sq – A5r 1

$5
s.

For a general U , by glueing and limit arguments, giving an idempotent on U amounts to giving
an idempotent e on Ar 1

$ s together with a compatible under pullback system of idempotents eB
on the localizations rB of A along variable principal affine opens SpecpBq Ă UA{$ Ă SpecpA{$q
subject to the condition that after inverting $ each eB agrees with the pullback of e. Moreover,
by Beauville–Laszlo glueing [SP, Lemma 0BNR],9 in this description we may replace rB by its
$-adic completion. By Corollary 2.1.6, this completion is perfectoid and, by (2.1.2.2), its tilt is
the $5-adic completion of the localization of A5 along SpecpBq. Thus, the analogous description of
the idempotents on U 5 and the settled cases U “ SpecpAq and U “ SpecpAr 1

$ sq give the desired
functorial identification IdempUq – IdempU 5q that is compatible with orthogonality.

The analogous glueing (or descent) argument carried out with RΓét in place of Idem, which this time
uses formal glueing for étale cohomology in place of Beauville–Laszlo glueing to pass to completions,
so, concretely, it uses Theorem 2.2.5 and [BM21, Theorem 6.4], reduces us to exhibiting compatible
identifications

RΓétpU,Gq – RΓétpU
5, Gq

in the cases when U “ SpecpAq or U “ SpecpAr 1
$ sq (functorially in A and G). For this, we first

treat the case when A “
ś

iPI Vi for $-adically complete valuation rings Vi over A with algebraically
closed fraction fields (such Vi are perfectoid by (2.1.2.3) and hence, by Proposition 2.1.11 (d), so is
ś

iPI Vi). For such A, we have A5 –
ś

iPI V
5
i . Thus, Lemma 2.2.4 implies that A and A5, as well as

Ar 1
$ s and A

5r 1
$5
s, have no nonsplit étale covers. In particular, both RΓétpU,Gq and RΓétpU

5, Gq are
concentrated in degree zero where they are given by locally constant G-valued functions on U and
U 5, respectively. Due to the functorial identification IdempUq – IdempU 5q, the clopens of U are in a
functorial bijection with those of U 5, compatibly with the relation of disjointness (which amounts
to orthogonality of the corresponding idempotents). Thus, the spaces of locally constant G-valued
functions on U and U 5 are functorially identified, which settles the case when A “

ś

iPI Vi as above.

By Lemma 2.2.3, the A that are products
ś

iPI Vi as above with each Vi of rank ď 1 form a base
of the $-complete arc topology of A. By Proposition 2.1.9 and Lemma 2.2.2, tilting matches this
base with its analogue for the $5-complete arc topology of A5. Thus, to deduce the remaining case
of a general A, it remains to combine the already functorially settled case A “

ś

iPI Vi with the
$-complete arc descent supplied by Theorem 2.2.5. �

9In this proof, one may avoid the Beauville–Laszlo glueing by replacing rB by its $-Henselization and using
[BČ22, Theorem 2.3.1] again (resp., [BČ22, Theorem 2.3.4] for RΓét in place of Idem), but this comes at the expense of
having to consider self-intersections in the limit arguments. The use of the Beauville–Laszlo technique was suggested
by Arnab Kundu.
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2.3. The ind-syntomic generalization of André’s lemma

André’s lemma, which originated in [And18a,And18b], says that up to passing to a perfectoid cover
elements of a perfectoid admit compatible p-power roots. This is useful for constructing perfectoids
above a Noetherian local ring pR,mq with charpR{mq “ p beyond regular R: one writes pR as a
quotient of a regular ring, chooses a faithfully flat perfectoid cover of the latter (as in Lemma 3.1.1
below), uses André’s lemma to ensure that the equations cutting out R have compatible p-power
roots, and then kills these roots (the relevance of such roots is seen already in Proposition 2.1.11 (c)).
This mechanism is how we will use André’s lemma in the proof of Theorem 1.1.1.

The goal of this section is to present a generalization of André’s lemma stated in Theorem 2.3.4 below.
More precisely, in André’s work the refining perfectoid cover was almost faithfully flat modulo powers
of p (see, for instance, [Bha18, Theorem 1.5]), which was improved to actual faithful flatness by
Gabber–Ramero in [GR18, Theorem 16.9.17] at the cost of “decompleting.” We follow their method
to improve further to ind-syntomicity and to eliminate torsion freeness assumptions. Ind-syntomicity
modulo powers of p was achieved in [BS22, Theorem 7.14, Remark 7.15] by a different argument
and, as we explain in the proof of Theorem 6.2.3, suffices for our purposes, so a pragmatic reader
could skip this section.

We begin with the following “integral” variant of the approximation lemma [Sch12, Corollary 6.7 (i)].

Lemma 2.3.1. Let A be a perfectoid ring, let $ P A with $p | p be such that A is $-adically
complete, let a P A, and let m ě 0. There is an a1 P A5 such that for every continuous valuation |¨|
on A with |A| ď 1 we have

|a| ď |$pm| if and only if |a17| ď |$pm|, (2.3.1.1)

more generally, such that for every |¨| above we have∣∣a´ a17∣∣ ď |p| ¨maxp|a17|, |$|pmq. (2.3.1.2)

Here continuity means that |$n| for n ě 0 becomes smaller than any element of the value group.

Proof. For completeness, we give a proof; see [KL15, Corollary 3.6.7] and [GR18, Corollary 16.6.26]
for other variants. We loosely follow the argument from [KL15] whose main inputs are [Ked13,
Lemmas 5.5 and 5.16].

We focus on (2.3.1.2) because it implies (2.3.1.1) by the nonarchimedean triangle inequality. Also,
we assume that $p is a unit multiple of p (see §2.1.2): this change of $ does not increase |$|p
and only enlarges the collection of valuations in question. In addition, we choose a generator ξ
of Kerpθ : W pA5q � Aq, so that ξ´rξs

p P W pA5qˆ where ‚ denotes the residue class modulo p (see
§2.1.2). Let z0 PW pA

5q be a fixed lift of a P A, recursively define further lifts

zn`1 :“ zn ´ ξ
´

ξ´rξs
p

¯´1´
zn´rzns

p

¯

“ rzns ´ rξs
´

ξ´rξs
p

¯´1´
zn´rzns

p

¯

PW pA5q, and set a1 :“ zm.

To check that a1 satisfies (2.3.1.2), we begin by noting that a continuous valuation |¨| on A defines a
$5-adically continuous valuation |¨|5 on A5 by

10 x ÞÑ
∣∣x7∣∣ (see (2.1.1.2)). For z PW pA5q, we set

|z|sup :“ maxjě0p|zpjq|5q in terms of the unique expansion z “
ř

jě0 rzpjqs ¨ p
j PW pA5q;

10The triangle inequality follows from the continuity of |¨| and the formula px`x1q7 “ limnÑ8ppx
7
q

1
pn `px17q

1
pn q

pn

that one deduces from (2.1.1.2) and the fact that, by induction, bp
n´1

mod pnA for b P A only depends on b mod pA.
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we will only use this in inequalities “ď” to abbreviate “every |zpjq|5 is ď” (so the attainment of the

max need not concern us). Since z “ pzp
j

pjqqjě0 is the Witt vector expansion, the nature of Witt
vector addition and multiplication [BouAC, chapitre IX, section 1, numéro 3, a) et b)] ensures
that the map z ÞÑ |z|sup satisfies the nonarchimedean triangle inequality and is submultiplicative.
Consequently, since

a´ a17 “ θpzm ´ rzmsq “
ř

jě1ppzm ´ rzmsqpjqq
7 ¨ pj ,

it suffices to show that
|zm ´ rzms|sup ď maxp|zm|5, |$

5|
pm
5
q. (2.3.1.3)

By the definition of zn`1 and the fact that ξ is a unit multiple of p$5qp (see §2.1.2), we have

|zn`1 ´ rzns|sup ď |$
5|
p
5
¨ |zn|sup.

Thus, for the least 0 ď N ď 8 with |zN |5 ą |$5|
ppN`1q
5

(so N depends on |¨|), induction on n gives

|zn|sup ď |$
5|
pn
5

for n ď N,

which settles (2.3.1.3) when m ď N . In the remaining case m ą N , the preceding displays still give
|zN`1 ´ rzN s|sup ď |$

5|
ppN`1q
5

, so the choice of N and the triangle inequality give |zN`1|sup “ |zN |5
and |zN`1|5 “ |zN |5. Thus, by repeating withN`1 in place ofN we get |zN`2 ´ rzN`1s|sup ă |zN`1|5,
so also |zN`2|sup “ |zN`1|5 and |zN`2|5 “ |zN`1|5. Iteration gives the sufficient |zm|sup “ |zm|5. �

We will use the approximation lemma in conjunction with the following standard fact.

Lemma 2.3.2 (Special case of [GR18, Corollary 15.4.27 (ii)]). Let A be a ring equipped with the
$-adic topology for a nonzerodivisor $ P A. An element a P Ar 1

$ s is topologically nilpotent (that is,
an P $A for large n) if and only if |a| ă 1 for any continuous valuation |¨| on Ar 1

$ s with |A| ď 1.

Proof. The ‘only if’ is clear: if a P Ar 1
$ s is topologically nilpotent and |¨| is continuous, then

any n ą 0 with an P $A satisfies |a|n “ |an| ď |$| ă 1, so |a| ă 1. For the ‘if,’ we first use
[Hub93, Lemma 3.3 (i)] to see that a lies in the integral closure of A in Ar 1

$ s, so its powers are
bounded in Ar 1

$ s. We let A˝˝ Ă A be the ideal of topologically nilpotent elements and consider
the A-subalgebra Ar 1

a s Ă pAr
1
$ sqr

1
a s generated by 1

a . If A
˝˝ ¨Ar 1

a s is the unit ideal of Ar 1
a s, then a

satisfies an equation

aN `
řN´1
i“0 ai ¨ a

i “ 0 in Ar 1
$ s with ai P A

˝˝.

In this case, a is topologically nilpotent because so are the ai ¨ ai by the boundedness of taiuiě0.
Thus, we are left with the case when A˝˝ ¨Ar 1

a s lies in a maximal ideal m Ă Ar 1
a s. In turn, m contains

a minimal prime p of Ar 1
a s, which extends to a minimal prime rp of pAr 1

$ sqr
1
a s (see [SP, Lemmas 00E0

and 00FK]). The target of the injection Ar 1
a s{p ãÑ pAr 1

$ sqr
1
a s{

rp is a domain, so it has a valuation
subring V that dominates pAr 1

a s{pqm (see [SP, Lemma 00IA]). The ideal
Ş

ně0$
nV Ă V is prime,

so V :“ V {p
Ş

ně0$
nV q is a valuation ring in which the powers of $ get arbitrarily close to 0. Thus,

the map Ar 1
$ s Ñ V r 1

$ s gives rise to a continuous valuation |¨| with |A| ď 1 and | 1a | ď 1. The latter
contradicts |a| ă 1. �

As a final preparation for the promised variant of André’s lemma, we review ind-syntomic ring maps.
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2.3.3. Ind-fppf and ind-syntomic ring maps. A ring map A Ñ A1 is ind-fppf (resp., ind-
syntomic) if A1 is a filtered direct limit of faithfully flat, finitely presented (resp., syntomic11)
A-algebras.12 It is useful to note that A Ñ A1 is ind-fppf if and only if it is faithfully flat and
A1 is a filtered direct limit of flat, finitely presented A-algebras. Concretely, A Ñ A1 is ind-fppf
(resp., ind-syntomic) if and only if every A-algebra map B Ñ A1 with B finitely presented over
A factors as B Ñ S Ñ A1 with S faithfully flat, finitely presented (resp., syntomic) over A (see
[SP, Lemma 07C3]). In particular, ind-fppf and ind-syntomic maps are stable under composition13

and base change. A finite product or a filtered direct limit of ind-fppf (resp., ind-syntomic) A-algebras
is ind-fppf (resp., ind-syntomic). Certainly, faithfully flat ind-syntomic maps are ind-fppf.

Theorem 2.3.4. Let A be a ring, let $ P A with $p | p be such that it has compatible p-power roots
$1{pn P A, and suppose that either

(i) A is a $-adically complete perfectoid; or

(ii) A is $-Henselian, its $-adic completion is perfectoid, and $ is a nonzerodivisor in A.

There are a faithfully flat, ind-syntomic, $-Henselian A-algebra A1 whose $-adic completion xA1 is
perfectoid and a $-divisible ideal I 1 Ă A1 with A1{I 1 faithfully flat over A such that every monic
P P A1rT s has a root αP P A1{I 1 with compatible α1{pn

P P A1{I 1, in particular, the α1{pn

P exist in xA1.

Remark 2.3.5. The perfectoid xA1 contains compatible p-power roots of every a P A, and xA1{p$q
is faithfully flat over A{p$q. Thus, the preceding theorem recovers the original lemma of André
[Bha18, Theorem 1.5], in which one only required xA1{p$q to be almost faithfully flat over A{p$q.

2.3.6. Proof of Theorem 2.3.4. The final assertion follows from the rest because xA1 – zA1{I 1 by the
$-divisibility of I 1. By Proposition 2.1.12, the perfectoid A in (i) is a quotient of a perfectoid rA that
is r$-torsion free and r$-adically complete for a lift r$ P rA of $ with r$p | p. Once some rA1 with a
r$-divisible ideal rI 1 Ă rA1 works for rA with respect to r$, its quotient A1 :“ rA1 b

rA
A with the image

I 1 Ă A1 of rI 1 works for A (see Proposition 2.1.11 (b)). This reduces (i) to (ii).

For the rest of the proof, we assume (ii) and build on the argument of [GR18, Theorem 16.9.17],
which established a similar result without the ind-syntomic aspect. We may then restrict to those
P that belong to the set P of all the monic polynomials in ArT s: indeed, since A1 inherits the
assumption (ii), we may a posteriori iterate the construction countably many times to build a tower

A “: A10 Ñ A11 Ñ A12 Ñ . . . and $-divisible ideals I 1n Ă A1n for n ą 0

such that I 1n Ă A1n satisfy the requirements with respect to the monic polynomials in A1n´1rT s;
since A1n{p

ř

1ďiďn I
1
iA
1
nq is faithfully flat over A1n´1{p

ř

1ďiďn´1 I
1
iA
1
n´1q and hence, by induction,

11A ring map AÑ A1 syntomic if SpecpA1q is covered by spectra of A-algebras of the form Arx1, . . . , xns{pf1, . . . , fcq
with each Arx1, . . . , xns{pf1, . . . , fiq flat over A and f1, . . . , fc a regular sequence in Arx1, . . . , xnsp for every prime
p Ą pf1, . . . , fcq (by [SP, Lemmas 00SY and 00SV], this definition agrees with its counterpart [SP, Definition 00SL]
used in op. cit.).

12The distinction between ind-fppf and merely faithfully flat maps is subtle: for instance, if R is a Noetherian local
ring and pR is its completion, then RÑ pR is flat but, by [Gab96, Proposition 1], not ind-fppf when it has a nonreduced
fiber and R is a Q-algebra (as happens in [FR70, proposition 3.1]). For further examples of maps that are faithfully
flat but not ind-fppf, see [SP, Section 0ATE].

13For instance, to show that the composition of ind-fppf maps AÑ A1 and A1 Ñ A2 is ind-fppf, for a test B Ñ A2

over A we factorize A1 Ñ A1bAB Ñ S Ñ A2 with A1 Ñ S faithfully flat and finitely presented, express A1 as a filtered
direct limit of faithfully flat, finitely presented A-algebras, and then descend the factorization using limit formalism,
faithful flatness of AÑ A2, and [EGA IV3, corollaire 11.2.6.1] (in the syntomic version, we use [SP, Lemma 0C33]
instead).
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also over A, the ring A18 :“ lim
ÝÑně0

A1n with its $-divisible ideal I 18 :“
ř

iě1 I
1
iA
1
8 then satisfies the

requirements with respect to the monic polynomials in A18rT s (see (2.1.2.3) and the end of §2.1.2).
With P fixed, we may drop the requirement that A1 be $-Henselian—indeed, we may acquire this a
posteriori by replacing A1 by its $-Henselization: since $ lies in the maximal ideals of A, this does
not lose faithful flatness (see [SP, Lemma 00HP]). Thus, dropping $-Henselianity and restricting to
P P P, we first define A1 and then, in the rest of the proof, check that it meets the requirements.
We set

A8 :“
´

A
”

T
1{pn

P

ˇ

ˇP P P, n ě 0
ı¯

r
P pTP q
$m sPPP,mě0 Ă

´

A
”

T
1{pn

P

ˇ

ˇP P P, n ě 0
ı¯

r 1
$ s, so that

A8r
1
$ s – pArT

1{pn

P

ˇ

ˇP P P, n ě 0sqr 1
$ s

and define a $-divisible ideal I8 Ă A8 by

I8 :“ pP pTP q$m

ˇ

ˇP P P, m ě 0q Ă A8.

Our candidate A1 and a $-divisible ideal I 1 Ă A1 are (see §2.1.7)

A1 :“ pp-integral closure of A8 in A8r 1
$ sq and I 1 :“ pP pTP q$m

ˇ

ˇP P P, m ě 0q Ă A1.

Since each P pTP q vanishes in A1{I 1, the class of TP is a desired root αP . Moreover, I8 is$-divisible, so

A8{p$
pq is a quotient of pArT

1{pn

P |P P P, n ě 0sq{p$pq,

and hence every element of A8{p$pq is a p-th power (the same holds for A in place of A8, see
§2.1.2 (ii)), to the effect that xA1 is perfectoid by Proposition 2.1.8. Due to the $-divisibility of I8
and I 1, the quotients A8{I8 and A1{I 1 are $-torsion free, so we have

A8{I8 Ă A1{I 1 Ă pA8{I8qr
1
$ s –

´

A
”

T
1{pn

P

ˇ

ˇP P P, n ě 0
ı

{pP pTP q |P P Pq
¯

r 1
$ s.

The $-divisibility of I 1 and (2.1.7.1) with (2.1.2.3) then imply that A1{I 1 is the p-integral closure of
A8{I8 in pA8{I8qr 1

$ s. We may describe A8{I8 explicitly as follows: each P is monic, so

ArT
1{pn

P sP, n{pP pTP qqP Ă
´

ArT
1{pn

P sP, n{pP pTP qqP

¯

r 1
$ s

and, since elements of this subring lift to A8 (even to ArT 1{pn

P sP, n), we have

A8{I8 “ ArT
1{pn

P sP, n{pP pTP qqP inside
´

ArT
1{pn

P sP, n{pP pTP qqP

¯

r 1
$ s.

In particular, A1{I 1 is integral over A and pA1{I 1qr 1
$ s is even ind-(finite, module-free) over Ar 1

$ s.
Thus, since $ P A is a nonzerodivisor, the closed morphism SpecpA1{I 1q Ñ SpecpAq is surjective.
Moreover, by glueing of flatness [RG71, seconde partie, lemme 1.4.2.1], the desired A-flatness of A1{I 1
will follow from the A{p$q-flatness of pA1{I 1q{p$q – A1{p$q. In conclusion, it remains to argue that
A1 is A-ind-syntomic.

For the remaining ind-syntomicity of A1 over A, due the closedness of ind-syntomic maps under
filtered direct limits (see §2.3.3), we may replace P by its variable finite subset. Then, since for finite
P the A-algebra A1 can equivalently be built iteratively, we may replace P by a singleton tP u. To
reduce further, we simplify the notation by setting T :“ TP and for m ě 0 set

Am :“
´

ArT 1{pn
ˇ

ˇn ě 0s
¯

r
P pT q
$m s Ă

`

A
“

T 1{pn
ˇ

ˇn ě 0
‰˘

r 1
$ s – Amr

1
$ s – A8r

1
$ s and

A1m :“ pp-integral closure of Am in Amr 1
$ sq.

By another passage to a limit, it suffices to show that each A1m with m ą 0 is ind-syntomic over A.
To argue this, we will use the perfectoid nature of A0 – A

“

T 1{pn
ˇ

ˇn ě 0
‰

and the fact that $t, P pT q
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is an A0-regular sequence for any t P Zr1p sě0 (since P is monic), to describe A1m explicitly. The
A0-regularity of $m, P already implies an explicit description of Am (see [SP, Lemma 0BIQ]):

Am – A0r
P
$m s – A0rXs{p$

mX ´ P q and, likewise, xA0r
P
$m s – xA0rXs{p$

mX ´ P q, (2.3.6.1)

where xA0 is the $-adic completion.

Since xA0 is perfectoid (see §2.1.2), by Lemma 2.3.1, there is a Q P xA0 that admits compatible
p-power roots Q1{pj P xA0 such that

|P ´Q| ă maxp|Q|, |$m|q for every continuous valuation |¨| on xA0r
1
$ s with |xA0| ď 1. (2.3.6.2)

Letting xA0
` be the integral closure of xA0 in xA0r

1
$ s, we then have

t
∣∣ P
$m

∣∣ ď 1u “ t| Q$m | ď 1u in SpapxA0r
1
$ s,

xA0
`q.

This agreement implies that if we endow xA0r
P
$m s and xA0r

Q
$m s with their $-adic topologies, then

the continuous valuations |¨| on pxA0r
P
$m sqr

1
$ s with |xA0r

P
$m s| ď 1 are identified with the continuous

valuations on pxA0r
Q
$m sqr

1
$ s with |xA0r

Q
$m s| ď 1. Moreover, (2.3.6.2) implies that every such valuation

satisfies | P$m ´
Q
$m | ă 1. Consequently, by Lemma 2.3.2,

every large power of P
$m ´

Q
$m lies both in $pxA0r

P
$m sq and in $pxA0r

Q
$m sq. (2.3.6.3)

Lemma 2.3.2 and (2.3.6.2) also imply that pP ´Qqpt P $xA0 for some t P Zě0, so that, by (2.1.2.4),
we have P ´Q P $1{pt

xA0. In particular,

Q1{pj is monic in xA0{$
1{pj`t

(2.3.6.4)

(see (2.1.2.4)), so the sequence

$m{pj , Q1{pj is xA0-regular for every j ě 0 (2.3.6.5)

(see [SP, Lemma 07DV]). Consequently, analogously to (2.3.6.1), we have

xA0r
Q1{pj

$m{pj
s – xA0rX

1{pj s{p$m{pjX1{pj ´Q1{pj q, (2.3.6.6)

where we chose the label ‘X1{pj ’ for the polynomial variable to make evident the resulting identification

xA0r
Q1{pj

$m{pj
| j ě 0s – xA0rX

1{pj | j ě 0s{p$m{pjX1{pj ´Q1{pj qjě0. (2.3.6.7)

It then follows from (2.1.2.3) that the $-adic completion of the subalgebra xA0r
Q1{pj

$m{pj
| j ě 0s Ă xA0r

1
$ s

is perfectoid, and hence, from (2.1.7.1), that this subalgebra is p-integrally closed. Due to (2.3.6.3),
the p-integral closure of xA0r

P
$m s in xA0r

1
$ s contains

Q
$m and the p-integral closure of xA0r

Q
$m s in xA0r

1
$ s

contains P
$m , so it follows that these two closures agree and both are equal to xA0r

Q1{pj

$m{pj
| j ě 0s.

To describe the sought p-integral closure A1m of A0r
P
$m s in A0r

1
$ s for m ą 0, we now take advantage

of the preceding analysis over xA0. We use (2.3.6.3) to fix a d ą 0 such that

pP ´Qqp
d
P $mpdpxA0r

P
$m sq and pP ´Qqp

d
P $mpdpxA0r

Q
$m sq. (2.3.6.8)

We then fix a
q P A0 congruent to Q P xA0 modulo $mpd ,

25

https://stacks.math.columbia.edu/tag/0BIQ
https://stacks.math.columbia.edu/tag/07DV


so that the image of q in A0{$
1{pt is monic and $m, q is an A0-regular sequence (compare with

(2.3.6.5)). Consequently, as in (2.3.6.1), we have A0r
q
$m s – A0rXs{p$

mX ´ qq. By combining this
with (2.3.6.1) and (2.3.6.6), we see that both maps

A0r
P
$m s Ñ xA0r

P
$m s and A0r

q
$m s – A0rXs{p$

mX´qq
X ÞÑX` q´Q

$m
ÝÝÝÝÝÝÝÝÑ xA0rXs{p$

mX´Qq – xA0r
Q
$m s

induce isomorphisms on $-adic completions. Thus, since these maps are compatible with the $-adic
completion map A0 Ñ xA0, we get from (2.3.6.8) that

pP ´ qqp
d
P $mpdpA0r

P
$m sq and pP ´ qqp

d
P $mpdpA0r

q
$m sq.

Consequently, the p-integral closures of A0r
P
$m s and A0r

q
$m s in A0r

1
$ s agree, and hence equal A1m.

To proceed, we fix qj P A0 for j ě 0 such that q0 :“ q and

qj ” Q1{pj mod $mpA0 for j ą 0. (2.3.6.9)

Since qpj`1 ” qj mod $mpA0, we have p qj`1

$m{pj`1 q
p ´

qj

$m{pj
P A0 for every j ě 0, so the subalgebras

A0r
q
$m s Ă . . . Ă A0r

qj

$m{pj
s Ă A0r

qj`1

$m{pj`1 s Ă . . . in A0r
1
$ s (2.3.6.10)

are contained in the p-integral closure A1m of A0r
q
$m s in A0r

1
$ s. In fact, their union is p-this integral

closure: to show this, we first note that, due to (2.3.6.5) and (2.3.6.9), the sequence $m{pj , qj is
A0-regular, and hence, analogously to (2.3.6.6), that

A0r
qj

$m{pj
s – A0rXjs{p$

m{pjXj ´ qjq.

In terms of these identifications, the inclusions (2.3.6.10) become

. . .Ñ A0rXjs{p$
m{pjXj ´ qjq

Xj ÞÑXp
j`1`

qj´q
p
j`1

$m{pj

ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ A0rXj`1s{p$
m{pj`1

Xj`1 ´ qj`1q Ñ . . .

Since $pm | qj ´ qpj`1 and pm ´ m
pj
ě 1, we see from (2.3.6.7) that the direct limit of these maps

modulo $ is identified with pxA0r
Q1{pj

$m{pj
| j ě 0sq{$. Since xA0r

Q1{pj

$m{pj
| j ě 0s is p-integrally closed in

xA0r
1
$ s, it follows from the Gabber–Ramero criterion (2.1.7.1) (applied with $ there replaced by

$1{p) that A0r
qj

$m{pj
| j ě 0s is p-integrally closed in A0r

1
$ s, and hence that it equals A1m.

Thanks to this explicit description of A1m and the stability of ind-syntomic algebras under filtered
direct limits, all that remains is to show that each A0rXjs{p$

m{pjXj ´ qjq is ind-syntomic over A.
However, qj comes from ArT 1{pns for every large enough n and its image in pA{$1{pj`t

qrT 1{pns is
monic (see (2.3.6.9) and (2.3.6.4)). Thus, the (pArT 1{pnsqrXjs)-regular element $m{pjXj ´ qj stays
regular on every A-fiber of pArT 1{pnsqrXjs. Consequently, each pArT 1{pnsqrXjs{p$

m{pjXj ´ qjq is a
syntomic A-algebra (see [SP, Lemma 00SW]), and it remains to form the direct limit in n. �

The following consequence of André’s lemma gives convenient “semiperfectoid” covers of Zppq-algebras.

Corollary 2.3.7. Every ring A that is p-Zariski in the sense that 1`pA Ă Aˆ admits a faithfully flat
map AÑ A8 such that the p-adic completion of Ared

8 is perfectoid, A8 is a quotient of a p-torsion
free, p-Henselian ring rA8 whose p-adic completion is perfectoid, and every monic polynomial in
rA8rT s has a root in rA8 (so the same also holds with A8 or Ared

8 in place of rA8).
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Proof. The p-Zariski condition amounts to p lying in the Jacobson radical, equivalently, in every
maximal ideal, of A. We recall that the p-Zariskization of a ring B is the localization B1`pB. By
replacing A by the p-Zariskization of the countable iteration of the construction

A ÞÑ ArX1{p8

a | a P As{pXa ´ a | a P Aq,

we lose no generality by assuming that every a P A admits compatible p-power roots a1{pn in A. In
turn, such an A is then a quotient of the p-torsion free Zppq-algebra rA that is the p-Zariskization of

Zrp1{p8srX1{p8

a | a P As.

By Proposition 2.1.11 (a), the p-adic completion of rA is perfectoid, so we apply Theorem 2.3.4
to the p-Henselization of rA to build a faithfully flat, p-Henselian rA-algebra rA8 whose p-adic
completion is perfectoid such that every monic polynomial in rA8rT s has a root in rA8. The quotient
A8 :“ rA8b

rA
A of rA8 is faithfully flat over A and every element of its nilradical admits a p-th root.

Proposition 2.1.11 (d) then ensures that the p-adic completion of Ared
8 is perfectoid. �

3. The prime to the characteristic aspects of the main result

For arguing our purity results, the first task is to dispose of the cases when the order of the coefficients
is invertible. For this, we first give a new, perfectoid-based proof of the Gabber–Thomason purity
for étale cohomology of regular rings in §3.1. We then use it in §3.2 to deduce purity for étale
cohomology in the general singular case via a local Lefschetz style theorem. In §3.3, we present a
nonabelian analogue of the results of §3.2: a generalization of the Zariski–Nagata purity theorem.

3.1. The absolute cohomological purity of Gabber–Thomason

Purity for étale cohomology of regular rings, stated precisely in Theorem 3.1.3 (see also footnote 2),
was conjectured by Grothendieck and settled by Gabber in [Fuj02], who built on the strategy
initiated by Thomason in [Tho84]. Gabber’s alternative later proof given in [ILO14, exposé XVI]
eliminated the use of algebraic K-theory. We present a proof that uses perfectoids, specifically,
Theorem 2.2.7, to reduce to the positive characteristic case that had been settled by M. Artin already
in [SGA 4III, exposé XVI]. The following standard lemmas facilitate the passage to perfectoids.

Lemma 3.1.1. Let pR,mq be a complete, regular, local ring with residue field k.

(a) There is a filtered direct system tpRi,miquiPI of regular, local, finite, flat R-algebras that are
unramified if so is R (see §1.4) such that mi “ mRi and plimÝÑi

Ri, limÝÑi
miq is a regular local

ring whose residue field is an algebraic closure k of k.

(b) If R is of mixed characteristic p0, pq and k is perfect, then there is a tower tRnuně0 of
regular, local, finite, flat R-algebras of p-power rank over R such that the p-adic completion
of R8 :“ lim

ÝÑně0
Rn is perfectoid: explicitly, by the Cohen structure theorem, we have

R »W pkqJx1, . . . , xdK{pp´ fq, where either f “ x1 or f P pp, x1, . . . , xdq
2

(the two cases correspond to whether or not R is unramified), and one may choose

Rn :“W pkqJx1{pn

1 , . . . , x
1{pn

d K{pp´ fq with R8 »W pkqJx1{p8

1 , . . . , x
1{p8

d K{pp´ fq.

For our somewhat nonstandard use of the notation J¨K in part (b) above, see (1.4.1).

Proof. In essence, the claims are restatements of [Čes19, Lemmas 5.1 and 5.2]: part (a) follows from
[Čes19, Lemma 5.1] and its proof, whereas part (b) follows from [Čes19, Lemma 5.2] and its proof.
For a prismatic point of view on the construction of R8, see [BS22, Remark 3.11]. �
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Lemma 3.1.2. Let A be a ring, let a P A be such that A is a-Henselian and has bounded a8-torsion,
let pA be the a-adic completion of A, and let SpecpAr 1

a sq Ă U Ă SpecpAq be an open. We have

RΓétpU,F q
„
ÝÑ RΓétpU pA

,F q for every torsion abelian sheaf F on Uét.

In particular, for every closed subset Z Ă SpecpA{aAq, we have

RΓZpA,F q
„
ÝÑ RΓZp pA,F q for every torsion abelian sheaf F on Aét,

and for a Noetherian ring R, an ideal I Ă R such that R is I-Henselian, and the I-adic completion pR,

RΓIpR,F q
„
ÝÑ RΓIp pR,F q for every torsion abelian sheaf F on Rét.

Proof. The claims are special cases of [BČ22, Theorem 2.3.4, Corollary 2.3.5 (e)], although we
could also use earlier references [Fuj95, Corollary 6.6.4] or [ILO14, exposé XX, section 4.4]; see also
Theorem 5.4.4 below. �

Theorem 3.1.3. For a regular local ring pR,mq and a commutative, finite, étale R-group G whose
order is invertible in R,

H i
mpR,Gq – 0 for i ă 2 dimpRq.

Proof. We use the local-to-global spectral sequence [SGA 4II, exposé V, proposition 6.4] to assume
that R is strictly Henselian and then that G » Z{`Z for a prime `. We then use Lemma 3.1.2 to
assume that R is also complete. Thus, by the Cohen structure theorem [Mat89, Theorem 29.7], if
R is equicharacteristic, then R » kJx1, . . . , xdK for a field k and, by Lemma 3.1.2 again, we may
assume that R is the Henselization of Adk at the origin. For this R the claim was settled already
in [SGA 4III, exposé XVI, théorème 3.7], so from now on we assume that our complete, strictly
Henselian R is of mixed characteristic p0, pq.

Since multiplication by p is an automorphism of Z{`Z, the trace map [SGA 4III, exposé XVII,
sections 6.3.13 et 6.3.14, proposition 6.3.15 (iv)] allows us to replace R by any module-finite, flat
R-algebra R1 of p-power rank over R such that R1 is a regular local ring. Thus, by Lemma 3.1.1 (a)
and a limit argument, we may pass to a tower to reduce to the case when the residue field k of R is
algebraically closed (we use Lemma 3.1.2 to complete R again). We then likewise use Lemma 3.1.1 (b)
to reduce to showing that

H i
pp, x1, ..., xdq

pR8,Z{`Zq – 0 for i ă 2d with R8 –W pkqJx1{p8

1 , . . . , x
1{p8

d K{pp´fq, f P m2Ytx1u,

knowing that the p-adic completion pR8 of R8 is perfectoid. The tilt pR58 of pR8 reviewed in (2.1.1.2) is
the f -adic completion of kJpx51q1{p

8

, . . . , px5dq
1{p8K for some f P kJpx51q1{p

8

, . . . , px5dq
1{p8K: explicitly,

pR58 – lim
ÐÝ
z ÞÑzp

´

kJx1{p8

1 , . . . , x
1{p8

d K{pfq
¯

pznqně0 ÞÑ pz
pn

n qně0

„
// lim
ÐÝ
n

´

kJpx51q
1{p8 , . . . , px5dq

1{p8K{pfp
n

q

¯

where x5i corresponds to the p-power compatible system px
1{pn

i qně0. Thus, by (2.2.7.1) with
Lemma 3.1.2 (the latter removes the f -adic completion), we are reduced to showing

H i
px51,...,x

5
dq
pkJpx51q

1{p8 , . . . , px5dq
1{p8K,Z{`Zq – 0 for i ă 2d.

By the perfection-invariance of étale cohomology, we may replace kJpx51q1{p
8

, . . . , px5dq
1{p8K by

kJx51, . . . , x
5
dK, which brings us to the already discussed equal characteristic case. �

Remarks.
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3.1.4. As Teruhisa Koshikawa pointed out to us, the above argument also reduces the full absolute
cohomological purity for étale cohomology, namely, the statement that for all n P Zą0

invertible in R the étale-sheafification Hi
m of the cohomology with supports H i

m satisfies

Hi
mp´,Z{nZq –

#

0, for i ‰ 2 dimpRq,
Z{nZp´ dimpRqq, for i “ 2 dimpRq,

to positive characteristic. Indeed, the isomorphism in degree i “ 2 dimpRq is induced by
the cycle class map Z{nZp´dimpRqq Ñ H2 dimpRq

m p´,Z{nZq, which one first argues to be
injective as in [Fuj02, Lemma 2.3.1]. The bijectivity then becomes the matter of bounding
the nonzero stalk of the target, which may be done after passing to pR58. The vanishing in
degrees i ‰ 2 dimpRq reduces to positive characteristic as in the proof of Theorem 3.1.3.

3.1.5. Another way to pass to the tilt, without using Theorem 2.2.7, is to use diamonds developed
in [Sch22]. Namely, we consider the “punctured adic spectrum” of R8 defined as

Uad
R8

:“ SpapR8, R8qztx1 “ . . . “ xd “ 0u –
Ťd
i“1 Spa

´

R8x
x1, ..., xd

xi
y, R8x

x1, ..., xd
xi

y`
¯

,

where R8 is endowed with its px1, . . . , xdq-adic topology, so that Uad
R8

is an analytic adic
space over Zp (to simplify we ignore the issue of showing that the appearing Huber pairs are
sheafy).14 Likewise, we endow pR58 with the px51, . . . , x5dq-adic topology and consider

Uad
pR58

:“ Spap pR58,
pR58qztx

5
1 “ . . . “ x5d “ 0u –

Ťd
i“1 Spa

´

pR58x
x51, ..., x

5
d

x5i
y, pR58x

x51, ..., x
5
d

x5i
y`

¯

,

which is a perfectoid space because the coordinate rings of the appearing affinoids inherit per-
fectness from pR58 (see [Sch22, Proposition 3.5]). By tilting (see Proposition 2.1.9 and, for com-
patibility of definitions, [BMS18, Lemma 3.20]), the universal property of adic localization and
(2.1.7.2) show that giving a map from a perfectoid space to Spa

´

R8x
x1, ..., xd

xi
y, R8x

x1, ..., xd
xi

y`
¯

amounts to giving a map from its tilt to the perfectoid space Spa
´

pR58x
x51, ..., x

5
d

x5i
y, pR58x

x51, ..., x
5
d

x5i
y`

¯

,

compatibly with overlaps of such rational subsets. Thus, the perfectoid space Uad
pR58

represents

the diamond associated by [Sch22, Definition 15.5] to the analytic adic space Uad
R8

. Conse-
quently, since the functor that sends an analytic adic space over Zp to its associated diamond
induces an equivalence of étale sites [Sch22, Lemma 15.6], we obtain the key

H i
étpU

ad
R8 ,Z{`Zq – H i

étpU
ad
pR58
,Z{`Zq.

It remains to set

UR8 :“ SpecpR8qztx1 “ . . . “ xd “ 0u and UR58 :“ SpecpR58qztx
5
1 “ . . . “ x5d “ 0u

and apply [Hub96, Theorem 3.2.10]15 (for the flanking isomorphisms) to deduce the passage
to the tilt:

H i
étpUR8 ,Z{`Zq – H i

étpU
ad
R8 ,Z{`Zq – H i

étpU
ad
pR58
,Z{`Zq – H i

étpUR58 ,Z{`Zq.

14In fact, by [Nak20, Example 2.1.4], each Spa appearing in the union on the right side is even an affinoid perfectoid.
15Due to the blanket Noetherianity assumption [Hub96, paragraph 1.1.1], the citation does not apply directly, so

one performs a slightly tedious limit argument, similar to the one used in the proof of [Čes19, Theorem 4.10]. Another
way around this is to pass to the adic spectra at the finite levels of the tower and then use [Sch22, Proposition 14.9] to
pass to the limit of adic spaces.
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3.2. The étale depth is at least the virtual dimension

Purity for étale cohomology of possibly singular Noetherian local rings R was settled in the case
when R is an excellent Q-algebra in [SGA 2new, exposé XIV, théorème 5.6] and in the case when
R is a complete intersection in [Gab04b, Theorem 3] (by reduction to [Ill03, théorème 2.6]). In
Theorem 3.2.4, we deduce the general case from Theorem 3.1.3. We begin with the definition of the
virtual dimension, which is a numerical invariant of R that has already appeared in the context of
purity in [SGA 2new, exposé XIV, définition 5.3].

3.2.1. The virtual dimension of a Noetherian local ring. For a Noetherian local ring pR,mq,
by Cohen’s theorem [EGA IV1, chapitre 0, théorème 19.8.8 (i)], the m-adic completion pR is of the
form

pR – rR{I for a complete regular local ring rR and an ideal I Ă rR.

The virtual dimension of R is

vdimpRq :“ dimp rRq ´ pminimal number of generators for the ideal Iq (3.2.1.1)

and, by [SGA 2new, exposé XIV, proposition 5.2], does not depend on the presentation rR{I. By
[SGA 2new, exposé XIV, proposition 5.4],

vdimpRq ď dimpRq with equality if and only if R is a complete intersection. (3.2.1.2)

By definition, vdimpRq “ vdimp pRq, so also vdimpRq “ vdimpRhq; more generally, by [Avr77,
Proposition 3.6 and equations (3.2.1) and (3.2.2)], for any flat local homomorphism R Ñ R1 of
Noetherian local rings, we have

vdimpR1q “ vdimpRq ` vdimpR1{mR1q, so, in particular, vdimpRq “ vdimpRshq, (3.2.1.3)

(loc. cit. proves this for the complete intersection defect defined as dimp˚q´vdimp˚q but the dimension
dimp˚q is likewise additive, see [EGA IV2, corollaire 6.1.2]).

Remark 3.2.2. Despite the name “geometric depth” used for vdimpRq in [SGA 2new, exposé XIV,
définition 5.3], in general there is no inequality between depthmpRq and vdimpRq: a Cohen–Macaulay
R that is not a complete intersection has depthmpRq ą vdimpRq, whereas, due to [Bur68] (or
[Koh72, Theorem A]) and the Auslander–Buchsbaum formula, any regular local ring rR has an
ideal I generated by three elements such that the quotient R :“ rR{I with depthmpRq “ 0 (and
vdimpRq ě dimp rRq ´ 3).

To deduce Theorem 3.2.4 from Theorem 3.1.3, we will use the following Lefschetz hyperplane theorem
in local étale cohomology. This strategy is close in spirit to the one used by Michèle Raynaud in
[SGA 2new, exposé XIV, théorème 5.6] in the case when R is an excellent Q-algebra.

Lemma 3.2.3. For a regular local ring pR,mq, an f P m, and an invertible in R prime `, the map

H i
mpR,Z{`Zq Ñ H i

mpR{pfq,Z{`Zq is

#

bijective for i ă dimpRq ´ 1,

injective for i “ dimpRq ´ 1.

Proof. Letting j : SpecpRr 1
f sq ãÑ SpecpRq be the indicated open immersion, we need to show that

H i
mpR, j!pZ{`Zqq – 0 for i ă dimpRq. (3.2.3.1)

Moreover, by the local-to-global spectral sequence [SGA 4II, exposé V, proposition 6.4], we may
assume that R is strictly Henselian and, by Lemma 3.1.2, that R is also complete. We will derive
(3.2.3.1) from Gabber’s affine Lefschetz theorem [ILO14, exposé XV, corollaire 1.2.4], which gives

H ipRr 1
f s,Z{`Zq – 0 for i ą dimpRq. (3.2.3.2)
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Namely, by [ILO14, exposé XVII, théorème 0.2], the complex pµb dimpRq
` qr2 dimpRqs of étale sheaves

on R is dualizing and its j!-pullback is dualizing on Rr 1
f s. This pullback is pµbdimpRq

` qr2 dimpRqs

(see [SGA 4III, exposé XVIII, proposition 3.1.8 (iii)]), so, since Rj˚ ˝D – D ˝ j! (see [SGA 5, exposé I,
proposition 1.12 (a)]), the vanishing (3.2.3.2) amounts to

´

H i
´

RH om
´

j!pZ{`Zq, pµ
bdimpRq
` qr2 dimpRqs

¯¯¯

m
– 0 for i ą ´dimpRq,

where p´qm indicates the stalk. To obtain (3.2.3.1) it remains to use local duality in étale cohomology
[SGA 5, exposé I, équation (4.2.2)] (our dualizing complex is normalized as there by [ILO14,
exposé XVI, théorème 3.1.1]). �

Theorem 3.2.4. For a Noetherian local ring pR,mq and a commutative, finite, étale R-group G
whose order is invertible in R,

H i
mpR,Gq – 0 for i ă vdimpRq.

We will remove the assumption on the order of G in Theorem 6.2.4 below.

Proof. Theorem 3.1.3 and Lemma 3.2.3 settle the case when R is a hypersurface, that is, a quotient
of a regular ring by a principal ideal. Thus, it suffices to show how to reduce from a general R to a
hypersurface. This reduction works for any commutative, finite, étale G, so, to be able to reuse it in
the proof of Theorem 6.2.4, we drop the assumption on the order of G.

By the spectral sequence [SGA 4II, exposé V, proposition 6.4], we may assume that R is strictly
Henselian, and then, by dévissage, that G » Z{pZ for a prime p. Lemma 3.1.2 reduces further to
complete R, so that

R » rR{pf1, . . . , fnq for a complete regular local ring p rR, rmq and f1, . . . , fn P rm

chosen so that f1, . . . , fn is a minimal generating set for the ideal pf1, . . . , fnq Ă rR (see §1.4).
Suppose that n ą 1 and consider the rings R1 :“ rR{pf1, . . . , fn´1q and R2 :“ rR{pfnq, as well as
R12 :“ rR{pf1fn, . . . , fn´1fnq. Set theoretically, in Specp rRq we have

SpecpR1q X SpecpR2q “ SpecpRq and SpecpR1q Y SpecpR2q “ SpecpR12q.

Thus, since the étale site is insensitive to nilpotents, we obtain the exact sequence

0 Ñ Z{pZ
R12

z ÞÑ pz|R1
, z|R2

q
ÝÝÝÝÝÝÝÝÝÝÑ Z{pZ

R1
‘ Z{pZ

R2

px, yq ÞÑx|R´y|R
ÝÝÝÝÝÝÝÝÝÝÑ Z{pZ

R
Ñ 0

of sheaves on Specp rRqét. Since vdimpR˚q ě vdimpRq ` 1 for ˚ P t1, 2, 12u, the associated long exact
sequence of cohomology with supports reduces the desired vanishing to its counterpart for the rings
R˚. This allows us to decrease n, so we arrive at n “ 1, that is, at R being a hypersurface rR{pfq. �

3.3. Zariski–Nagata purity for rings of virtual dimension ě 3

The nonabelian analogue of Theorem 3.2.4 is the following generalization of the Grothendieck–
Zariski–Nagata purity theorem [SGA 2new, exposé X, théorème 3.4] (and of the main result of
[Cut95]): for extending finite étale covers over a closed subscheme of a Noetherian scheme, it suffices
to assume that the total space have virtual dimension ě 3 at the missing points (instead of even
being a complete intersection of dimension ě 3 at these points). We learned from de Jong that his
generalizations contained in [SP] of the algebraization theorems from [SGA 2new] and [Ray75] could
be used to prove this—indeed, as the reader will notice, they are the main inputs to the proof of
Theorem 3.3.1. This section is purely classical and does not use perfectoid inputs or other sections.
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Theorem 3.3.1. Let pR,mq be a Noetherian local ring, set UR :“ SpecpRqztmu, and let SpecpRqfét

(resp., pURqfét) denote the category of finite étale R-schemes (resp., of finite étale UR-schemes).

(a) If vdimpRq ě 2, then the pullback SpecpRqfét Ñ pURqfét is fully faithful, UR is connected, and

πét
1 pURq� πét

1 pRq.

(b) If vdimpRq ě 3, then the pullback SpecpRqfét Ñ pURqfét is an equivalence of categories and

πét
1 pURq

„
ÝÑ πét

1 pRq.

Proof. In (a), granted the full faithfulness, the connectedness of UR follows from that of SpecpRq
by considering sections both of the finite étale map SpecpRq

Ů

SpecpRq Ñ SpecpRq and of its base
change to UR. Moreover, by [SGA 1new, V, 6.9, 6.10], the conclusions about the fundamental groups
follow from the claims about the functors. For the latter, patching [FR70, proposition 4.2] and flat
descent allow us to replace R by its m-adic completion. Then we may write

R » rR{pf1, . . . , fnq for a complete regular local ring p rR, rmq and f1, . . . , fn P rm

chosen so that f1, . . . , fn is a minimal generating set for the ideal f :“ pf1, . . . , fnq Ă rR (see §1.4).
Let U Ă X be the formal schemes obtained from U

rR
:“ Specp rRqztrmu Ă Specp rRq by formal f-adic

completion. Since étale sites are insensitive to nilpotents, pullback gives equivalences of categories

Xfét
„
ÝÑ SpecpRqfét and Ufét

„
ÝÑ pURqfét,

so we are reduced to considering the pullback functor Xfét Ñ Ufét. By [SP, Lemma 09ZL], the pullback
Specp rRqfét

„
ÝÑ Xfét is an equivalence, so we only need to consider the pullback Specp rRqfét Ñ Ufét.

(a) The assumption vdimpRq ě 2 allows us to apply the algebraization of formal sections
[SP, Lemma 0DXR (with Lemma 0DX9)] (or [Ray75, chapitre I, théorème 3.9]) to conclude
that any morphism between the U-pullbacks of finite étale rR-schemes Y1 and Y2 algebraizes to
a morphism between their U -pullbacks for some open UR Ă U Ă U

rR
, and this algebraization

is unique up to shrinking U . The complement Z :“ Specp rRqzU is at most n-dimensional
because the fi|Z cut out the closed point of Z. Thus, since n ď dimp rRq ´ 2, the codimension
of Z in Specp rRq is ě 2, to the effect that the algebraized morphism extends uniquely to an
rR-morphism between Y1 and Y2 (see [EGA IV2, théorème 5.10.5]). Consequently, the pullback
Specp rRqfét Ñ Ufét is fully faithful.

(b) The assumption vdimpRq ě 3 allows us to apply the algebraization of coherent formal modules
[SP, Lemma 0EJP] to conclude that any finite étale U-scheme algebraizes to a finite étale
U -scheme Y for some open UR Ă U Ă U

rR
(to algebraize the algebra structure maps, we use

[SP, Lemma 0DXR] as in (a)). The complement of U in Specp rRq is now of codimension ě 3,
so, by the Zariski–Nagata purity for regular rings [SGA 2new, exposé X, théorème 3.4 (i)], we
may extend Y to a finite étale rR-scheme. Consequently, the pullback Specp rRqfét Ñ Ufét is
essentially surjective. �

Remark 3.3.2. The connectedness of UR holds more generally, see [SP, Lemma 0ECR] or [Var09,
Theorem 1.6].
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4. Inputs from crystalline and prismatic Dieudonné theory

Our eventual source of the characteristic-primary aspects of purity for flat cohomology is a relation
to coherent cohomology and the vanishing of the latter in presence of enough depth. To exhibit
this relation, we use crystalline and prismatic Dieudonné theories that classify commutative, finite,
locally free groups of p-power order over perfect and perfectoid rings in terms of Dieudonné modules.
We review the crystalline classification in §4.1 and its prismatic generalization in §4.2.

4.1. Finite, locally free group schemes of p-power order over perfect rings

The positive characteristic case of the key formula (1.1.6) is a perfect ring variant of Kato–Trihan’s
[KT03, Proposition 5.10]. To establish it in Theorem 4.1.8 we build on Gabber’s suggestion to use
the pro-fppf site (see Proposition 4.1.7; alternatively, one could adapt the arguments of op. cit.). A
key input is the crystalline classification of commutative, finite, locally free groups of p-power order
over perfect Fp-schemes due to Berthelot, Gabber, and Lau, which we now review.

4.1.1. Crystalline Dieudonné modules over perfect bases. For a perfect Fp-scheme S, by
an unpublished result of Gabber that built on [Ber80, théorème 3.4.1] and was reproved by Lau
[Lau13, Corollary 6.5] by a different method, there is a covariant equivalence of categories

G ÞÑMpGq
from the category of commutative, finite, locally free S-groups G that are locally on S of p-power
order to the category of quasi-coherent W pOSq-modules M equipped with Frobenius (resp., inverse
Frobenius) semilinear maps F : MÑM (resp., V : MÑM) with FV “ V F “ p such that for every
affine open SpecpRq Ă S the W pRq-module ΓpR,Mq is finitely presented, killed by a power of p,
and of projective dimension ď 1. The functor is defined by Zariski-local glueing as follows (see
[Lau13, proof of Corollary 6.5]): Zariski locally on S one finds p-divisible groups H0, H1 that fit into
an exact sequence

0 Ñ GÑ H0 Ñ H1 Ñ 0 and sets MpGq :“ CokerpMpH0q ãÑMpH1qq,

where MpHiq :“ ΓppS{Zpqcris,DpHiqq is the evaluation of the covariant Dieudonné crystal

DpHiq :“ E xt1pS{Zpqcris
pH˚i ,OpS{Zpqcris

q
[BBM82, section 5.3]

– pE xt1pS{Zpqcris
pHi,OpS{Zpqcris

qq˚

(the dual of the locally free crystal of Hi defined in [BBM82, définition 3.3.6, théorème 3.3.10]) at
the terminal ind-object tpS,WnpOSqquně0 of the crystalline site pS{Zpqcris. Since op. cit. uses big
crystalline sites, the formation of MpGq commutes with base change to any perfect S-scheme.

Example 4.1.2. By [BBM82, exemple 4.2.16 (i)], theW pOSq-module that underlies 1n :“MpZ{pnZq
is

W pOSq{p
n with F “ p ¨ Frobp´q, V “ Frob´1p´q.

Likewise, the W pOSq-module that underlies Mpµpnq is

W pOSq{p
n with F “ Frobp´q, V “ p ¨ Frob´1p´q.

Lemma 4.1.3. In §4.1.1, the functor G ÞÑMpGq and its inverse preserve short exact sequences.

Proof. By [BBM82, proposition 1.1.7, théorème 3.3.3], the functor Hi ÞÑ DpHiq preserves short exact
sequences, hence so does Hi ÞÑMpHiq (compare with [BBM82, proposition 1.1.19, définition 1.2.1]).
To deduce the same forG ÞÑMpGq, thanks to the snake lemma, it suffices to Zariski locally on S embed
a short exact sequence 0 Ñ GÑ G1

π
ÝÑ G2 Ñ 0 into a short exact sequence 0 Ñ H0 Ñ H 10 Ñ H20 Ñ 0

of p-divisible groups (see [BBM82, lemme 3.3.12]). For this, we choose Zariski local embeddings into
p-divisible groups ι1 : G1 ãÑ H0 and ι2 : G2 ãÑ H20 and replace ι1 by pι1, ι2 ˝πq : G1 ãÑ H0ˆH

2
0 “: H 10.

33



For the remaining exactness of the inverse, granted that 0 Ñ MpG1q Ñ MpG2q Ñ MpG3q Ñ 0 is
a short exact sequence, we need to show that the complex G1 Ñ G2 Ñ G3 is also a short exact
sequence. In the case when S is geometric point we may decompose this complex into short exact
sequences of finite flat group schemes and conclude by the exactness of G ÞÑMpGq. Thus, in general
we check on geometric S-fibers that G1

„
ÝÑ KerpG2 Ñ G3q (see [EGA IV4, corollaire 17.9.5]). It

then remains to note that G2{G1 ãÑ G3 becomes an isomorphism after applying Mp´q, so is an
isomorphism. �

The equivalence G ÞÑMpGq leads to the following description of the low degree cohomology of G.

Proposition 4.1.4. Let S be a perfect Fp-scheme and let G be a commutative, finite, locally free
S-group killed by pn. We have the following functorial in G identifications of sheaves on Sét:

G –H omSpZ{pnZ, Gq
4.1.1
– H omWnpOSq, F, V p1n,MpGqq –MpGqV“1,

E xt1SpZ{pnZ, Gq
4.1.1, 4.1.3
– E xt1WnpOSq, F, V

p1n,MpGqq –MpGq{pV ´ 1qpMpGqq,
(4.1.4.1)

where E xt1S denotes the étale sheafification of the functor of extensions of fppf Z{pnZ-module sheaves.

Proof. The full faithfulness of G ÞÑ MpGq gives the first line of (4.1.4.1): the map to MpGqV“1 is
the evaluation pf : 1n Ñ MpGqq ÞÑ fp1q. For the second line, we define the last identification
as follows. To a local section m of MpGq, we associate the extension MpGq ‘ 1n for which the
Verschiebung is determined by p0, 1q ÞÑ pm, 1q and the Frobenius is then necessarily determined
by p0, 1q ÞÑ p´F pmq, pq (we write F and V for those of MpGq). Such extensions for m and
m1 are isomorphic if and only if the isomorphism of WnpOSq-module extensions determined by
p0, 1q ÞÑ pa, 1q for some a P MpGq is V - and F -equivariant. The V -equivariance amounts to
pm` a, 1q “ pm1 ` V paq, 1q, that is, to m´m1 P pV ´ 1qpMpGqq, and the F -equivariance amounts
to p´F pmq ` pa, pq “ p´F pm1q ` F paq, pq and follows from V -equivariance. Since any extension of
1n by MpGq is étale locally split as an extension of WnpOSq-modules, the claim follows. �

In Theorem 4.1.8, we will upgrade the identifications (4.1.4.1) to a formula that expresses the flat
cohomology RΓpS,Gq in terms of the quasi-coherent cohomology RΓpWnpSq,MpGqq. For this, we
first show in Proposition 4.1.7 that the map V ´ 1: MpGq ÑMpGq is pro-fppf locally surjective.

4.1.5. The pro-fppf site. A scheme map X 1 Ñ X is pro-ppf (resp., pro-fppf ) if X 1 may be covered
by opens SpecpA1q Ă X 1 for which there is a factorization SpecpA1q Ñ SpecpAq Ă X in which the
A-algebra A1 is a filtered direct limit of flat, finitely presented A-algebras (compare with §2.3.3)
and SpecpAq Ă X is an open immersion (resp., and X 1 Ñ X is faithfully flat). Pro-ppf maps
tX 1i Ñ XuiPI form a pro-fppf cover if each quasi-compact open of X is a finite union of images of
quasi-compact opens of

Ů

iPI X
1
i. By §2.3.3, the pro-ppf maps are stable under base change and

composition, so the category of X-schemes with pro-fppf covers as coverings defines the pro-fppf site
of X. A pro-fppf cover is also an fpqc cover, so an fpqc sheaf is also a pro-fppf sheaf.

Lemma 4.1.6. Let S be a perfect Fp-scheme and let Xperf denote the perfection of an Fp-scheme
X. If tXi Ñ SuiPI is an fpqc (resp., pro-fppf) cover of S, then so is tXperf

i Ñ SuiPI .

Proof. The composite Xi
Frobn

ÝÝÝÑ Xi Ñ S factors as Xi
// S

Frobn

„
// S , so it is fpqc (resp., pro-fppf).

Thus, the inverse limit Xperf
i of . . . Frob

ÝÝÝÑ Xi
Frob
ÝÝÝÑ Xi is fpqc (resp., pro-fppf) over S (see §2.3.3). �
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Proposition 4.1.7. Let S be a perfect Fp-scheme and let G be a commutative, finite, locally free
S-group that is locally on S of p-power order. There is a functorial in G short exact sequence

0 Ñ G
(4.1.4.1)
ÝÝÝÝÝÑMpGq V´1

ÝÝÝÑMpGq Ñ 0 (4.1.7.1)

of sheaves on the category of perfect S-schemes endowed with the pro-fppf topology.

Proof. The left exactness follows from (4.1.4.1). For the remaining surjectivity we may work étale
locally on S, so, by (4.1.4.1), we need to show that a given extension 0 Ñ GÑ G1

π
ÝÑ Z{pnZ

S
Ñ 0

of Z{pnZ-module sheaves splits over a pro-fppf cover of S. The extension splits over the fppf cover
π´1p1q� S, which is a G-torsor, so Lemma 4.1.6 supplies a desired pro-fppf cover. (The point of
using Lemma 4.1.6, so, relatedly, the pro-fppf rather than simply the fppf topology, is to stay in the
realm of perfect base schemes in order to be able to consider the functor Mp´q.) �

Theorem 4.1.8. Let S be a perfect Fp-scheme and let G be a commutative, finite, locally free S-group
that locally on S is of p-power order. The map of sites ε : Sfppf Ñ Sét gives a functorial triangle

Rε˚pGq ÑMpGq V´1
ÝÝÝÑMpGq Ñ pRε˚pGqqr1s on Sét. (4.1.8.1)

In particular, if G is killed by pn, then, for any closed subset Z Ă S, we have

RΓZpS,Gq – RΓZpWnpSq,MpGqqV“1 functorially in S, Z, and G. (4.1.8.2)

Proof. The identification (4.1.8.2) follows from (4.1.8.1) by applying RΓZpS,´q. For the latter, we
fix a suitable auxiliary cutoff cardinal κ with κ ą |S| (see §1.4), consider the small pro-fppf site
Spro-fppf, κ bounded by κ, its subsite Spro-fppf, perf, κ of perfect schemes, and the morphisms

Spro-fppf, κ
b
//

a
��

Spro-fppf, perf, κ

c
��

Sfppf
ε // Sét.

By limit arguments, Rě1a˚pGq – 0, so Rε˚pGq – Rpε ˝ aq˚pGq – Rpc ˝ bq˚pGq – Rc˚pRb˚pGqq. By
Lemma 4.1.6, the functor b˚ is exact, so Rε˚pGq – Rc˚pGq. Moreover, by faithfully flat descent for
modules (see [SP, Lemma 023M]), we have Rě1c˚pMpGqq – 0. Thus, by applying Rc˚p´q to the
short exact sequence (4.1.7.1) we get the desired (4.1.8.1) (independently of the choice of κ). �

Corollary 4.1.9. For a perfect Fp-algebra A and a commutative, finite, locally free A-group G of
p-power order,

H ipA,Gq – 0 for i ě 2.

Proof. Since affines have no higher quasi-coherent cohomology, (4.1.8.2) with Z “ S suffices. �

Theorem 4.1.8 implies much of the positive characteristic case of purity for flat cohomology. We
record this in Proposition 4.1.13 because the intervening auxiliary lemmas are also important in the
general case. The following example illustrates why positive characteristic is significantly simpler.

Example 4.1.10. For a Noetherian local ring pR,mq, by the cohomological characterization of
depth, H i

mpR,Gaq – 0 for i ă depthpRq (compare with [SGA 2new, exposé III, proposition 3.3 (iv)]).
Thus, if R is also an Fp-algebra, then the Frobenius-kernel and the Artin–Schreier sequences give

H i
mpR,αpq – 0 and H i

mpR,Z{pZq – 0 for i ă depthpRq. (4.1.10.1)

Complete intersection R have depthpRq “ dimpRq, so for them (4.1.10.1) gives cases of Theorem 1.1.1.
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The complete intersection assumption fully manifests itself in the following lemma.

Lemma 4.1.11. Let A be a ring, let f1, . . . , fm P A be a regular sequence, and let G be a commutative
pA{pf1, . . . , fmqq-group scheme that is either smooth or finite locally free. The map

H i
IpA{pf1, . . . , fmq, Gq Ñ H i

IpA{pf
1{n1

1 , . . . , f1{nm
m q, Gq is

#

injective for i ă d,

bijective for i ă d´ 1

for all n1, . . . , nm ą 0 and f1{n1

1 , . . . , f
1{nm
m P A and all ideals I Ă A{pf1, . . . , fmq containing some

pA{pf1, . . . , fmqq-regular sequence a1, . . . , ad of length d.

Proof. We use the Bégueri sequence (1.4.2) and the five lemma to assume that G is smooth. By
[SP, Lemma 07DV], the sequence f i1{n1

1 , . . . , f
im{nm
m , a1, . . . , ad is regular for all i1, . . . , im ě 1. Thus,

if n1 ą 1, then, by induction on m, the square-zero ideal J that cuts out the closed immersion

j : SpecpA{pf
pn1´1q{n1

1 , f2, . . . , fmqq ãÑ SpecpA{pf1, f2, . . . , fmqq

is free as an pA{pf1{n1

1 , f2, . . . , fmqq-module. Moreover, deformation theory supplies the short exact
sequence of étale sheaves

0 Ñ H omA{pf1, ..., fmqpe
˚pΩ1

G{pA{pf1, ..., fmqq
q, Jq Ñ GÑ j˚pGA{pf pn1´1q{n1

1 , f2, ..., fmq
q Ñ 0,

where e is the unit section of G (see, for instance, [Čes15, Lemma B.14 and its proof]). Since G is
smooth, the pA{pf1{n1

1 , f2, . . . , fmqq-module

HomA{pf1, ..., fmqpe
˚pΩ1

G{pA{pf1, ..., fmqq
q, Jq

is finite projective. Consequently, by decreasing induction on t and the regularity of the sequence
a1, . . . , ad, for i ă d´ t we have

H i
I

´

A{pf1, . . . , fmq,
´

HomA{pf1, ..., fmqpe
˚pΩ1

G{pA{pf1, ..., fmqq
q, Jq

¯

{pa1, . . . , atq
¯

– 0.

The t “ 0 case of this vanishing and the preceding short exact sequence then imply that

H i
IpA{pf1, . . . , fmq, Gq Ñ H i

IpA{pf
pn1´1q{n1

1 , f2, . . . , fmq, Gq is

#

injective for i ă d,

bijective for i ă d´ 1.

By repeating this argument for

SpecpA{pf
pn1´2q{n1

1 , f2, . . . , fmqq ãÑ SpecpA{pf
pn1´1q{n1

1 , f2, . . . , fmqq

and so on, we eventually replace f1 by f1{n1

1 and then conclude by induction on m. �

Another useful reduction is the following passage to a cover (compare with [Čes19, Remark 2.7]).

Lemma 4.1.12. Let pR,mq Ñ pR1,m1q be a finite, flat, local map of Noetherian local rings that
are complete intersections, let n ă dimpRq be an integer, and let G be a commutative, finite, flat
R-group. If for each local ring pA, qq at some maximal ideal of some finite nonempty self-product
R1 bR . . .bR R

1 Theorem 1.1.1 holds for A and G in cohomological degrees ă n in the sense that

H i
qpA,Gq – 0 for i ă n,

then
H i

mpR,Gq – 0 for i ă n and Hn
mpR,Gq ãÑ Hn

m1pR
1, Gq.

36

https://stacks.math.columbia.edu/tag/07DV


Proof. The maximal ideals q in question are the primes above m. Each A is of dimension dimpRq and,
by (3.2.1.2)–(3.2.1.3) (or by [SP, Lemma 09Q7]), is a complete intersection. Thus, the assumption
gives H i

mpR
1 bR . . .bR R

1, Gq – 0 for i ă n. It then suffices to use the spectral sequence

Eij2 “ H ipR1{R,Hj
mp´, Gqq ñ H i`j

m pR,Gq

that results from fppf descent for R1 ÞÑ RΓmpR
1, Gq (and that could also be derived by choosing an

injective resolution of G and considering the Čech complexes of its terms with respect to R1{R). �

Proposition 4.1.13. For a complete, Noetherian, local Fp-algebra pR,mq that is a complete inter-
section with a perfect residue field k and a commutative, finite, flat R-group G of p-power order,

H i
mpR,Gq – 0 for i ă dimpRq.

Proof. We use induction on i simultaneously for all R. By the Cohen structure theorem (see §1.4),

R » kJt1, . . . , tN K{pf1, . . . , fmq for a kJt1, . . . , tN K-regular sequence f1, . . . , fm.

By Lemma 4.1.12, we may pass to the limit of the rings kJt1{p
j

1 , . . . , t
1{pj

N K{pf1, . . . , fmq to reduce to

H i
pt1, ..., tN q

pkJt1{p
8

1 , . . . , t
1{p8

N K{pf1, . . . , fmq, Gq
?
– 0 for i ă N ´m.

The ring kJt1{p
8

1 , . . . , t
1{p8

N K is perfect, so Lemma 4.1.11 and a limit argument reduce to

H i
pt1, ..., tN q

pkJt1{p
8

1 , . . . , t
1{p8

N K{pf1{p8

1 , . . . , f1{p8

m q, Gq
?
– 0 for i ă N ´m.

Since R8 :“ kJt1{p
8

1 , . . . , t
1{p8

N K{pf1{p8

1 , . . . , f
1{p8

m q is a perfect Fp-algebra, (4.1.8.2) reduces us to

H i
pp, t1, ..., tN q

pW pR8q,MpGqq
?
– 0 for i ă N ´m.

Since the W pR8q-module MpGq is of projective dimension ď 1 (see §4.1.1), this, in turn, reduces to

H i
pp, t1, ..., tN q

pW pR8q,W pR8qq
?
– 0 for i ă N ´m` 1.

By [SP, Lemma 07DV], an R-regular sequence a1, . . . , aN´m P m is R8-regular, so the sequence
a0 :“ p, a1, . . . , adimpRq is W pR8q-regular. Decreasing induction on j then gives the sufficient

H i
pp, t1, ..., tN q

pW pR8q,W pR8q{pa0, . . . , ajqq – 0 for i ă N ´m´ j and ´ 1 ď j ď N ´m. �

4.2. Finite, locally free group schemes of p-power order over perfectoid rings

The classification of commutative, finite, locally free groups of p-power order over perfect Fp-algebras
was extended to perfectoid Zp-algebras by Lau [Lau18] in the case p ą 2 and by the second-named
author [SW20, Appendix to Lecture 17] in general by using ideas from integral p-adic Hodge theory.
In [ALB23], Anschütz–Le Bras drew a parallel to the crystalline theory by relating this classification
to the prismatic point of view. We will use these results for formulating (and proving) the general
case of the key formula (1.1.6), so we now review them and include some relevant for us complements.

4.2.1. Prismatic Dieudonné modules over perfectoid rings. For a perfectoid Zp-algebra
A and a fixed generator ξ of KerpAinfpAq � Aq, by [ALB23, Theorem 5.4] (which builds on
[SW20, Theorem 17.5.2]), there is a covariant, compatible with base change equivalence of categories

G ÞÑMpGq :“ Ext1
A�
pG˚,O�q
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from the category of commutative, finite, locally free A-groups G of p-power order to the category of
finitely presented, p-power torsion AinfpAq-modules M of projective dimension ď 1 equipped with
Frobenius (resp., inverse Frobenius) semilinear maps

F : MÑM (resp., V : MÑMq that satisfy FV “ Frobpξq and V F “ ξ.

The Ext1 above is in the absolute prismatic site of A and, by [BS22, Lemma 4.8], is an AinfpAq-
module. The Frobenius F is induced by the Frobenius of the prismatic structure sheaf O�, and
the only role of ξ is to define the Verschiebung V . By [ALB23, Theorem 4.44 and the proof of
Theorem 5.4], in the case when A is a perfect Fp-algebra, the functor G ÞÑMpGq may be identified
with its crystalline counterpart discussed in §4.1.1. By construction, in the case when G is the
pn-torsion of a p-divisible group, MpGq is a finite projective pAinfpAq{p

nAinfpAqq-module.

Example 4.2.2. By [ALB23, Lemma 4.75], the AinfpAq-module that underlies Mpµpnq is

AinfpAq{p
nAinfpAq with F “ Frobp´q, V “ ξ ¨ Frob´1p´q.

Likewise, the AinfpAq-module that underlies 1n :“MpZ{pnZq is
AinfpAq{p

nAinfpAq with F “ Frobpξq ¨ Frobp´q, V “ Frob´1p´q.

Lemma 4.2.3. In §4.2.1, the functor G ÞÑMpGq and its inverse preserve short exact sequences.

Proof. Cartier duality is exact, so the assertion is part of [ALB23, Theorem 5.4]. �

Similarly to Proposition 4.1.4, we obtain the following description of low degree cohomology of G.

Proposition 4.2.4. For a perfectoid Zp-algebra A and a commutative, finite, locally free A-group G
of p-power order, we have functorial in A and G identifications

GpAq –MpGqV“1 and H1pA,Gq –MpGq{pV ´ 1qMpGq. (4.2.4.1)

Proof. For any pn that kills G, we have H1pA,Gq – Ext1pZ{pnZ
A
, Gq (extensions of fppf Z{pnZ-

module sheaves), so the same argument as for Proposition 4.1.4 (with §4.2.1, Example 4.2.2, and
Lemma 4.2.3 in place of §4.1.1, Example 4.1.2, and Lemma 4.1.3) gives the claim. �

Remark 4.2.5. In Proposition 4.2.4, the Hě2pA,Gq vanish: we will deduce this in Corollary 5.3.7
from its positive characteristic case of Corollary 4.1.9 via the p-adic continuity formula of §5.3.

We turn to analyzing the prismatic side of the key formula (1.1.6): we show that it satisfies
p-complete arc descent in Proposition 4.2.7 and then arc locally relate it to flat cohomology in
Proposition 4.2.10. A key input to our arc descent results is the following lemma that in essence
restates [BS22, Proposition 8.10].

Lemma 4.2.6. The following functors satisfy hyperdescent for those p-complete arc hypercovers
whose terms are perfectoid Zp-algebras:

A ÞÑ AinfpAq, A ÞÑ A, and A ÞÑ A5.

Proof. Since Kerpθ : AinfpAq� Aq and KerpAinfpAq� A5q are principal, generated by nonzerodivi-
sors ξ and p, and AinfpAq is p-adically complete, it suffices to treat A ÞÑ A5. Thus, fixing A and
letting yp´q denote derived p5-adic completion, Lemma 2.2.2 (with Proposition 2.1.11 (b)) reduces
us to showing that the functor S ÞÑ pS satisfies p5-complete arc hyperdescent on the category of
perfect A5-algebras (by §2.1.2 and (2.1.3.2), the tilts of perfectoid A-algebras are derived p5-adically
complete, so on them this functor agrees with S ÞÑ S). Since the functor is bounded below (even
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concentrated in degree 0), hyperdescent for it is equivalent to descent. Moreover, it suffices to show
arc descent: indeed, if S Ñ S1 is a p5-complete arc cover, then S Ñ S1ˆSr 1

p5
s is an arc cover and the

functor has identical values on the two Čech nerves. We then instead consider the functor S ÞÑ zSperf

defined on all A5-algebras, where Sperf :“ lim
ÝÑsÞÑsp

S, and then reduce further to showing arc descent
for S ÞÑ Sperf on the category of all A5-algebras S. By [BS17, Theorem 4.1 (i), Proposition 4.5], the
functor S ÞÑ Sperf satisfies v-descent, so, by [BM21, Proposition 4.8 and its proof], it also satisfies
arc descent. �

Proposition 4.2.7. Let A be a perfectoid Zp-algebra, let a P AinfpAq, let G be a commutative, finite,
locally free A-group of p-power order, and let Z Ă SpecpA{pAq be a closed subset. The functors

A1 ÞÑMpGA1qr 1
a s and A1 ÞÑ RΓZpAinfpA

1q,MpGA1qq
satisfy hyperdescent for those p-complete arc hypercovers whose terms are perfectoid A-algebras.

Proof. For any cosimplicial abelian group M‚, the associated complex M0 ÑM1 Ñ . . . represents
R lim∆pM

‚q, so, since localization is exact, we may assume that a “ 1. By §4.2.1, we have

MpGA1q –MpGq bAinfpAq AinfpA
1q

and there are finite projective AinfpAq-modules Mi that fit into an exact sequence

0 ÑM0 ÑM1 ÑMpGq Ñ 0.

Since MpGq is p-power torsion and AinfpA
1q is p-torsion free, this sequence stays exact after base

change to AinfpA
1q. Thus, for the claim about A1 ÞÑMpGA1q it suffices note that, by Lemma 4.2.6,

the functors A1 ÞÑ Mi bAinfpAq AinfpA
1q satisfy hyperdescent for those p-complete arc hypercovers

whose terms are perfectoid A-algebras. For the claim about A1 ÞÑ RΓZpAinfpA
1q,MpGA1qq, we use

the functorial triangle

RΓZpAinfpA
1q,MpGA1qq Ñ RΓpAinfpA

1q,MpGA1qq Ñ R lim
ÐÝz

`

RΓpAinfpA
1qr1z s,MpGA1qr

1
z sq

˘

where z ranges over the elements of AinfpAq that vanish on Z. This reduces us to the settled claim
about A1 ÞÑMpGA1qr 1

a s because

RΓpAinfpA
1qr1z s,MpGA1qr

1
z sq –MpGA1qr1z s. �

The promised arc-local analysis uses the following general lemma about modules on infinite products.

Lemma 4.2.8. For rings tRiuiPI and a finitely presented p
ś

iPI Riq-module M , we have

M
„
ÝÑ

ś

iPIpM bR Riq.

Proof. Set R :“
ś

iPI Ri and choose a resolution Rn Ñ Rm ÑM Ñ 0. Both ´bR Ri and infinite
products are exact, so the claim for M reduces to the evident case of a finite free R-module. �

Proposition 4.2.9. Let tAiuiPI be perfectoid Zp-algebras, let A :“
ś

iPI Ai (which is perfectoid by
Proposition 2.1.11 (d)), and let G be a commutative, finite, locally free A-group of p-power order.
We have

MpGq „
ÝÑ

ś

iPI MpGAiq over AinfpAq
„
ÝÑ

ś

iPI AinfpAiq compatibly with F and V ,

granted that we choose compatible ξ in AinfpAq and AinfpAiq to define V (see §4.2.1).

Proof. Since G ÞÑ MpGq commutes with base change (see §4.2.1), compatibility with F and V is
automatic and Lemma 4.2.8 gives the claim. �
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Proposition 4.2.10. Let tAiuiPI be p-adically complete valuation rings of rank ď 1 such that the
fraction field Ki of Ai is algebraically closed, let A :“

ś

iPI Ai, let K :“
ś

iPI Ki, let a P A, and let
G be a commutative, finite, locally free A-group of p-power order. The map

V ´ 1: MpGqr 1
ra5s
s ÑMpGqr 1

ra5s
s

is surjective (for any ξ P AinfpAq used to define V of MpGq, see §4.2.1),

HjpAr 1
a s, Gq – 0 for j ě 1,

and there is a unique commutative square

GpAq

����

(4.2.4.1)
„ // MpGqV“1

����

GpAr 1
a sq

„ // pMpGqr 1
ra5s
sqV“1,

in which the vertical arrows are bijective whenever a is a nonzerodivisor.

Proof. In the statement, A is perfectoid by (2.1.2.3) and Proposition 2.1.11 (d), the element
a5 P A5 –

ś

iPI A
5
i is a system of compatible p-power roots of a P A (see (2.1.1.2)), and the

map V : MpGqr 1
ra5s
s Ñ MpGqr 1

ra5s
s is defined by V p m

rpa5qns
q :“ V pmq

rpa5qn{ps
. By decomposing A into

subproducts, we may replace I by parts of a finite partition of I. Thus, since the case a “ 0 is clear,
we assume that a is a nonzerodivisor. In this case, since, by Proposition 2.1.9, each A5i is a valuation
ring, a5 is also a nonzerodivisor, and the uniqueness aspect will follow from the bijectivity of the
vertical maps. Moreover, A ãÑ Ar 1

a s ãÑ K, so, since GpAq „
ÝÑ GpKq by the valuative criterion of

properness, also GpAq „
ÝÑ GpAr 1

a sq. Due to the local structure of Ar 1
a s described in Lemma 2.2.4, the

valuative of properness applied locally on SpecpAr 1
a sq also ensures that XpAr 1

a sq
„
ÝÑ XpKq for every

GAr 1
a
s-torsor X. Since K is a product of algebraically closed fields, this shows that H1pAr 1

a s, Gq – 0.
In contrast, Lemma 2.2.4 and the Bégueri sequence (1.4.2) show that HjpAr 1

a s, Gq – 0 for j ě 2.

The remaining claims concern MpGq, and we use [BBM82, théorème 3.1.1] to cover SpecpAq by
finitely many affine opens SpecpA1q over which G embeds into a p-divisible group. Since each Ai is
local, the map AÑ Ai factors through some AÑ A1, so we subdivide I to assume that there is an
exact sequence

0 Ñ GÑ G1 Ñ G2 Ñ 0

in which G1 is a truncated p-divisible group. Since GpAq „
ÝÑ MpGqV“1 and H1pA,Gq – 0, the

functor G ÞÑ MpGqV“1 is exact and, by Lemma 4.2.3, the functor G ÞÑ pMpGqr 1
ra5s
sqV“1 is left

exact. Thus, by snake lemma, for the injectivity and then also the surjectivity of the right vertical
map in the diagram, we may replace G by G1 to assume that G is a truncated p-divisible group.
By then p-adically filtering G and again using the snake lemma, we may assume that G is also
killed by p. In this case, MpGq is a projective A5-module (see §4.2.1) and the right vertical map is
injective because a5 is a nonzerodivisor in A5. For its surjectivity, fix an m P pMpGqr 1

a5
sqV“1. By

the Frob´1-semilinearity of V , if bm PMpGq for a b P A5, then also b1{pm PMpGq. Such elements of
A5r 1

a5
s lie in A5, so, since MpGq is a direct summand of a finite free A5-module, m PMpGq.

For the remaining surjectivity of V ´ 1: MpGqr 1
ra5s
s� MpGqr 1

ra5s
s, by Lemma 4.2.3, the bijectivity

of the right vertical arrow, and the snake lemma, the functor G ÞÑMpGqr 1
ra5s
s{pV ´ 1qpMpGqr 1

ra5s
sq

is exact. Thus, as before, we may first assume that G is a truncated p-divisible group and then that
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it is also killed by p, so that MpGq is a finite projective A5-module. We then first claim that V ´ 1

is surjective after passing to the limit over all the nonzerodivisors a5.

Claim 4.2.10.1. Letting K5
i be the fraction field of A5i , the map V ´ 1 is surjective on

MpGq bA5 p
ś

iPI K
5
i q

4.2.8
–

ś

iPIpMpGAiq bA5i
K5
i q.

Proof. We may assume that I is a singleton tiu. If Ai is an Fp-algebra, then MpGqbA5iK
5
i –MpGKiq

and V ´ 1 is surjective by (4.2.4.1). Otherwise ξ is a nonzerodivisor in A5, so both F and V

are bijective on M :“ MpGAiq bA5i
K5
i . Thus, by [Kat73, Proposition 4.1.1 and its proof], MF“1

is a finite Fp-module and M – MF“1 bFp K
5
i compatibly with the Frobenius. By choosing an

Fp-basis for MF“1, the desired surjectivity of V ´ 1 on M then amounts to the surjectivity of
ξ ¨ Frob´1p˚q ´ ˚ on K5

i , equivalently, of ξ ¨ ˚ ´ Frobp˚q. The latter translates to the solvability in
K5
i of any equation xp ´ ξx` b “ 0 with b P K5

i , which follows from the algebraic closedness of K5
i

(see Proposition 2.1.9). �

Thanks to Claim 4.2.10.1, it remains to show that if an m PMpGqr 1
a5
s is of the form V pxq ´ x for

some x PMpGq bA5 p
ś

iPI K
5
i q, then x PMpGqr

1
a5
s. For this, it suffices to show that x lies in each

stalk of MpGq at a variable point of SpecpAr 1
a5
sq. By Lemma 2.2.4, each local ring of SpecpAr 1

a5
sq is

a valuation ring whose fraction field is a localization of K, so we are reduced to the following claim.

Claim 4.2.10.2. For a perfect Fp-algebra W that is a valuation ring with fraction field L, a finite free
W -module M , and a Frob´1-semilinear V : M ÑM , any x PML with V pxq ´ x PM lies in M .

Proof. In the statement, the map V on ML is defined by the same formula as in the beginning of
the proof of Proposition 4.2.10. Suppose that w PW is such that wx PM , so that x “ m

w for some
m PM . Then, since V pxq ´ x “ V pmq

w1{p ´ x lies in M , we get that also w1{px PM . However, since M
is finite free and w is arbitrary subject to wx PM , this means that x PM . � �

5. Properties of flat cohomology with finite, locally free coefficients

Our argument for purity for flat cohomology uses several new properties of fppf cohomology with
coefficients in commutative, finite, locally free group schemes. We establish these properties in
this chapter by combining deformation theory discussed in §5.1 with crystalline Dieudonné theory
discussed in §4.1. It is convenient to extend the statements to the setting of fppf cohomology of
animated rings: even for usual rings this removes unnecessary assumptions and makes the proofs
possible because our reductions involve derived p-adic completions and derived base changes that
leave the realm of usual rings. The ultimate goal of these reductions is to end up with perfect
Fp-algebras, which may then be treated by using the key formula (4.1.8.2) in positive characteristic.

5.1. Deformation theory over animated rings

A crucial tool in our reductions is deformation theory, carried out in the setting of simplicial rings.
We will, however, not work with the latter in the strict sense of simplicial objects in the category of
(commutative, as always) rings: instead, we will consider the 8-category obtained by inverting the
weak equivalences, that is, the maps that induce weak equivalences of the underlying simplicial sets,
equivalently, the maps that induce quasi-isomorphisms of the underlying simplicial abelian groups
considered as connective chain complexes via the Dold–Kan correspondence. The passage from the
category of commutative rings to this 8-category is an instance of a general procedure discussed in
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§5.1.4 that Dustin Clausen, inspired by Beilinson’s [Bei07],16 suggested to term “animation.” For
instance, the animation of the category of sets—the 8-category of “animated sets” or, briefly, of
“anima”—is simply the 8-category of “spaces” in the sense of Lurie: it is the 8-category obtained
from the category of simplicial sets (or topological spaces) by inverting weak equivalences.

To put animation into context, we begin with the following general category-theoretic review.

5.1.1. Free generation by 1-sifted colimits. For a category C that has filtered colimits, we let
C fp Ă C be the full subcategory of those X P C that are of finite presentation (also called compact)
in the sense that HomC pX,´q commutes with filtered colimits. Finite colimits in C of objects of
C fp lie in C fp, and we have fully faithful embeddings17

C fp ãÑ IndpC fpq ãÑ C .

For a category C that has 1-sifted18 colimits, we let C sfp Ă C be the full subcategory of those X P C
that are strongly of finite presentation (also called compact projective when C has all colimits) in the
sense that HomC pX,´q commutes with 1-sifted colimits. Finite coproducts in C of objects of C sfp

lie in C sfp, and, letting sInd denote the 1-sifted ind-category (the subcategory of FunppC sfpqop,Setq
generated under 1-sifted colimits by the Yoneda image of C sfp), we have fully faithful embeddings

C sfp ãÑ sIndpC sfpq ãÑ C

(compare with footnote 17). If C is cocomplete and generated under colimits by C sfp in the sense
that C has no proper cocomplete subcategory containing C sfp, then19

sIndpC sfpq
„
ÝÑ C . (5.1.1.1)

Consequently, 1-sifted-colimit-preserving functors F from such a C correspond to functors from
C sfp, and F commutes with all colimits if and only if F |C sfp commutes with finite coproducts. By
[ML98, Chapter V, Section 8, Corollary] and the following proposition, if C sfp is small, then C fp is
also small and the category of functors F : C op Ñ Set that bring colimits in C to limits in Set is
nothing else than the essential image of the Yoneda embedding of C ; equivalently, C is the category
of functors

pC sfpqop Ñ Set

that bring finite coproducts in C sfp to products in Set.

16In [Bei07], Beilinson lifts certain equalities in K0 to actual homotopies in the K-theory space (that is, in the
K-theory anima in the terminology we use), which he refers to as “animations” of that equality.

17 To see that the functor f : IndpC fp
q Ñ C supplied by the universal property of IndpC fp

q is an embedding,
we use the argument of [HTT, Proposition 5.5.8.22] as follows. For a fixed X P C fp, the full subcategory of the
Y P IndpC fp

q with HomIndpC fpqpX,Y q
„
ÝÑ HomC pX, fpY qq contains C fp and is stable under filtered colimits, so it is

all of IndpC fp
q. Thus, the full subcategory of the X P IndpC fp

q such that HomIndpC fpqpX,Y q
„
ÝÑ HomC pfpXq, fpY qq

for all Y P IndpC fp
q contains C fp; since it is also stable under filtered colimits, it must be all of IndpC fp

q.
18A small category D is 1-sifted—usually simply called “sifted” in traditional category theory, but we want to

reserve the term “sifted” for the 8-categorical concept—if D-indexed colimits commute with finite products in the
category Set of sets (see [ARV10, Remark 1.1 (i)] for a concrete description; for context, we recall that D is filtered
if and only if D-indexed colimits commute with finite limits in Set). For example, the category ∆op that indexes
simplicial objects is 1-sifted: ∆op-indexed colimits, that is, geometric realizations, are computed after restricting to
∆op
ď1, which is 1-sifted [ARV10, Example 1.2]; the ∆op

ď1-indexed colimits are reflexive coequalizers. If the domain of a
functor F : C Ñ C 1 has finite colimits, then F commutes with 1-sifted colimits if and only if it commutes with filtered
colimits and reflexive coequalizers (see [ARV10, Theorem 2.1]).

19Indeed, sIndpC sfp
q inherits cocompleteness from C : since a product of 1-sifted diagrams is 1-sifted, it inherits

the existence of finite coproducts from C sfp, so, by taking filtered limits, it has arbitrary coproducts, and it remains to
recall that any colimit is a reflexive coequalizer of coproducts.
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Proposition 5.1.2. Let C be a cocomplete category generated under colimits by C sfp. The finitely
presented objects of C (that is, the objects of C fp) are precisely the coequalizers (equivalently, the
reflexive coequalizers) of objects in C sfp and C is generated under filtered colimits by C fp. In particular,

IndpC fpq
„
ÝÑ C .

Proof. The coequalizer X of parallel arrows Y Ñ Z agrees with the (reflexive) coequalizer of
Y \Z Ñ Z, so the parenthetical claim follows. Moreover, the equalizer of HompZ,´q Ñ HompY,´q
is HompX,´q, so, since equalizers commute with filtered colimits, if Y, Z P C sfp, then X P C fp.

A colimit is a coequalizer of coproducts, so any X P C is a coequalizer of some
Ů

iPI Yi Ñ
Ů

jPJ Zj
with Yi, Zj P C sfp. Since the Yi are finitely presented, for every finite subset I 1 Ă I there is a finite
subset J 1 Ă J such that one has a subdiagram

Ů

iPI 1 Yi Ñ
Ů

jPJ 1 Zj . Its coequalizer XI 1, J 1 is finitely
presented by the above, so, by taking the filtered colimit over all such choices of I 1, J 1, we express X
as the filtered colimit of the XI 1, J 1 , so that C is generated under filtered colimits by C fp.

It remains to see that every X P C fp is a coequalizer of objects of C sfp. The preceding arguments
imply that X is a retract of some coequalizer X 1 of a diagram Y Ñ Z in C sfp; let f : X 1 Ñ X 1 be
the corresponding idempotent endomorphism of X 1. Then X is the coequalizer of X 1 Ñ X 1, where
the two maps are the identity and f . Since Z P C sfp, the map f : X 1 Ñ X 1 can be lifted to a map
rf : Z Ñ Z, and then X is also the coequalizer of Z \ Y Ñ Z where the two maps are the given ones
on Y and the identity (resp., rf) on Z. �

Example 5.1.3. The following cocomplete categories C are generated under colimits by C sfp:

(1) Set of sets: Setsfp consists of the finite sets;

(2) Gp of groups: Gpsfp consists of the free groups on finite sets;

(3) Ab of abelian groups: Absfp consists of the finitely generated, free abelian groups;

(4) Ring of (unital, commutative) rings: Ringsfp consists of the retracts of finite type, polynomial
Z-algebras, in other words, of Z-algebras R that are quotients π : Zrx1, . . . , xns � R such
that there is a Z-algebra map ι : RÑ Zrx1, . . . , xns with π ˝ ι “ idR.

The claimed descriptions of the subcategories C sfp follow from the case C “ Set and [HA, Corol-
lary 4.7.3.18], which in each of the cases characterizes C sfp as the full subcategory consisting of the
retracts of the “finite free” objects (one also uses the Nielsen–Schreier theorem, according to which
a subgroup of a free group is free, so that any retract of a finitely generated, free group inherits
these properties). Loc. cit. applies because the forgetful functor from the respective category to
sets commutes with 1-sifted colimits, that is, with filtered colimits and reflexive coequalizers: the
former is clear and for the latter we note that the set-theoretic equivalence relation generated by
the parallel arrows of reflexive equalizers preserves the algebraic structures (thanks to the built in
simultaneous splitting).

5.1.4. The animation of a category. For a cocomplete category C generated under colimits by
C sfp (so C – sIndpC sfpq by (5.1.1.1)), the animation of C is the 8-category AnipC q freely generated
under sifted colimits by C sfp, that is, AnipC q has sifted colimits20 and a functor

C sfp Ñ AnipC q

20For siftedness in the 8-categorical context, see [HTT, Definition 5.5.8.1 and what follows]; prototypical examples
are filtered colimits and geometric realizations (that is, ∆op-indexed colimits), and in some sense all sifted colimits are
generated from these.
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such that FunsiftedpAnipC q,A q
„
ÝÑ FunpC sfp,A q for any 8-category A that has sifted colimits,

where p´qsifted indicates the full subcategory of functors that commute with sifted colimits (equiva-
lently, with filtered colimits and geometric realizations). This characterization determines AnipC q
uniquely, whereas [HTT, Definition 5.5.8.8, Proposition 5.5.8.10 (4), Proposition 5.5.8.15] ensure its
existence. By [HTT, Theorem 5.5.1.1, Proposition 5.5.8.10 (1)], the8-category AnipC q is presentable,
so, by [HTT, Definition 5.5.0.1, Corollary 5.5.2.4], it is complete and cocomplete. If the objects
of C are widgets, then those of AnipC q are animated widgets, except we abbreviate AnipSetq to
Ani and the term ‘animated set’ to anima (plural: anima). For a comparison between AnipC q and
constructions going back to Quillen’s [Qui67], see [HTT, Section 5.5.9, especially, Corollary 5.5.9.3].

By Example 5.1.3 (1) and [HTT, Definition 5.5.8.8], the 8-category Ani of anima is obtained from
the category of simplicial sets by inverting weak equivalences, and for a general C as above, for
which C sfp is small, AnipC q is the 8-category of functors pC sfpqop Ñ Ani that take finite coproducts
in C sfp to products in Ani. By [HTT, Lemma 5.5.8.14], any such functor can be lifted to a functor
that is representable by a simplicial object of C (even of IndpC sfpq Ă sIndpC sfpq – C ). In fact,
[HTT, Corollary 5.5.9.3] (with the final paragraph of §5.1.1 above) describes AnipC q as the 8-
category obtained from the category of simplicial objects of C by inverting weak equivalences with
respect to a suitable model structure induced by the Quillen model structure on the category sSet of
simplicial sets.

By [HTT, Remark 5.5.8.26, Proposition 5.5.6.18], composition of a pC sfpqop Ñ Ani with the
truncation τďn : Ani Ñ Ani induces a truncation functor τďn : AnipC q Ñ AnipC q that is left
adjoint to the inclusion of the full subcategory of n-truncated objects of AnipC q (in the sense of
[HTT, Definition 5.5.6.1]). In particular, by the last aspect of §5.1.1, there is a fully faithful inclusion
C ãÑ AnipC q that identifies C with the full subcategory of the 0-truncated objects of AnipC q; the
functor π0 :“ τď0 is left adjoint to the inclusion and is given by composition with the connected
component functor π0 : Ani Ñ Set.

In particular, for a functor F : C Ñ D between cocomplete categories as above, if F preserves 1-sifted
colimits, then it induces a unique functor AnipF q : AnipC q Ñ AnipDq, the animation of F , that
preserves sifted colimits, whose restriction to C sfp Ă AnipC q is given by F : C sfp Ñ D Ă AnipDq,
and such that π0 ˝AnipF q “ F ˝ π0. In general this operation is not compatible with composition;
this is akin to the formation of derived functors that only compose well under certain assumptions.

Proposition 5.1.5. Let F : C Ñ D and G : D Ñ E be 1-sifted-colimit-preserving functors between
cocomplete categories generated under colimits by their strongly finitely presented objects.

(a) There is a natural transformation from the composite AnipGq ˝AnipF q to AnipG ˝ F q.

(b) If either F pC sfpq Ă IndpD sfpq in D or pAnipGqqpF pC sfpqq Ă E in AnipE q, then the natural
transformation AnipGq ˝AnipF q Ñ AnipG ˝ F q of (a) is an equivalence.

Proof. Both AnipGq ˝ AnipF q and AnipG ˝ F q are functors AnipC q Ñ AnipE q that preserve sifted
colimits, so it suffices to compare their restrictions to C sfp. Such restriction of the first functor is
X ÞÑ AnipGqpF pXqq, while that of the second one is X ÞÑ GpF pXqq. However, π0 ˝AnipGq “ G ˝π0

and F pXq is 0-truncated, so we have the desired natural transformation

AnipGqpF pXqq Ñ π0pAnipGqpF pXqqq – Gpπ0pF pXqqq – GpF pXqq.

For the second part, we need to see that this is an equivalence if F pXq is a filtered colimit of objects
of D sfp or if pAnipGqqpF pXqq is 0-truncated. The latter is clear and for the former we note that the
class of Y P D such that AnipGqpY q

„
ÝÑ GpY q contains D sfp and is stable under filtered colimits. �
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Example 5.1.6. The animations of the categories Gp, Ab, and Ring may be described as follows.

(1) The 8-category AnipGpq of animated groups is obtained from the category of simplicial
groups by inverting weak equivalences and, by a classical theorem (see [HA, Theorem 5.2.6.10,
Corollary 5.2.6.21]), is identified with the 8-category of E1-groups (also known as associative
groups) in Ani.

(2) The8-category AnipAbq of animated abelian groups is obtained from the category of simplicial
abelian groups by inverting weak equivalences and, by the Dold–Kan correspondence (see
[HA, Theorem 1.2.3.7]), is identified with the connective part21 Dď0pZq Ă DpZq of the derived
8-category of Z (however, AnipAbq is not equivalent to what might be called commutative
groups in Ani, namely, it is not equivalent to the 8-category of E8-groups in Ani). The
8-category AnipAbq is also identified with the 8-category of abelian group objects in Ani.22

(3) The 8-category AnipRingq of animated rings is obtained from the category of simplicial
commutative rings by inverting weak equivalences.

Since the forgetful functors Ring Ñ Ab Ñ Set commute with 1-sifted colimits (see Example 5.1.3),
they induce functors AnipRingq Ñ AnipAbq Ñ Ani. In this case, Proposition 5.1.5 ensures that the
functors compose well. Moreover, these functors admit left adjoints, given by the animations of the
usual left adjoints; in particular, these forgetful functors commute with all limits.

5.1.7. Animated rings and modules. For an animated ring A, we write a P A for a map ˚ a
ÝÑ A

of anima (equivalently, a map ZrXs Ñ A of animated rings), call a an element of A, and set

Ar 1
a s :“ AbL

ZrXs ZrX,
1
X s and A{La :“ AbL

ZrXs, X ÞÑ0 Z.

Up to equivalence, the datum of an a P A amounts to that of an element of π0pAq. More generally,
elements a1, . . . , an P A correspond to a map ZrX1, . . . , Xns

Xi ÞÑ ai
ÝÝÝÝÝÑ A of animated rings, and we set

A{Lpa1, . . . , anq :“ AbL
ZrX1,...,Xns, Xi ÞÑ0 Z, so that A{Lpa1, . . . , anq – ppA{

La1q{
L . . . q{Lan.

Thanks to Example 5.1.6, every animated ring A has its associated graded ring of homotopy groups

π˚pAq :“
À

ně0 πnpAq;

the m-truncation functor of §5.1.4 gives the universal map AÑ τďmpAq to an animated ring with
vanishing homotopy πąmp´q. To work with animated algebras over a base ring R, one either starts
with the category of R-algebras and animates it or considers animated rings equipped with a map
from R—the two perspectives are equivalent (compare with [SAG, Corollary 25.1.4.3]).

For an animated ring A, the 8-category ModpAq of A-modules is, by definition, the 8-category of
modules over the underlying E1-ring of A, compare with [SAG, Notation 25.2.1.1]. The 8-category
of animated A-modules is its subcategory Modď0pAq Ă ModpAq of connective objects. When A is a
usual ring, ModpAq is nothing else but the derived 8-category of A (see [HA, Theorem 7.1.2.13])
and Modď0pAq agrees with the animation of the category of A-modules (so there is no clash of
terminology). For a general animated ring A, the 8-category Modď0pAq is identified with the
8-category of modules in animated abelian groups over A (regarded as an E1-algebra in animated
abelian groups), which may reasonably be called animated A-modules.

21As pointed out to us by Hesselholt, it is pleasing to recover Dď0
pZq in this way because the cochain complex

requirement d2
“ 0 becomes part of a solution to a universal problem instead of a construction.

22Recall that an abelian group object (or a Z-module object) in an 8-category C that has finite products is a
contravariant functor from the category of finite free Z-modules to C that commutes with finite products.
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Equivalently, one may define the 8-category of animated rings A equipped with an animated
A-module M by animating the category of rings equipped with modules, compare with [SAG,
Proposition 25.2.1.2]. One can then define various forms of derived tensor products between
animated rings or animated modules by animating the usual functors. In particular, for a diagram
B Ð AÑ C of animated rings, one may define the animated ring B bL

A C, by animating the usual
functor on rings.

5.1.8. The cotangent complex of an animated ring. For an animated ring A and an animated
A-module M , one defines an animated ring A ‘M , the prototypical example of a “square-zero
extension,” by animating the corresponding functor defined on usual rings equipped with modules,
compare with [SAG, Construction 25.3.1.1]. The animated ring A‘M comes with maps from and to
A and, as can be checked on underlying anima, the functor pA,Mq ÞÑ A‘M commutes with limits.

A derivation of an animated ring A with values in an animated A-module M is a map AÑ A‘M of
animated rings splitting the projection A‘M Ñ A. We follow [SAG, Definition 25.3.1.4] in writing
DerpA,Mq for the anima of derivations of A with values in M . By [SAG, Proposition 25.3.1.5] or,
rather, by the theorem on corepresentable functors [HTT, Proposition 5.5.2.7], there is a universal
derivation: for an animated ring A, the cotangent complex LA{Z is the universal animated A-module
equipped with a derivation of A with values in LA{Z, that is, such that postcomposition induces an
equivalence of anima

HomApLA{Z,Mq – DerpA,Mq for all animated A-modules M .

When A is 0-truncated, this LA{Z agrees with the usual cotangent complex, see [SAG, Exam-
ple 25.3.1.8].

More generally, one defines the cotangent complex of a map of animated rings f : A1 Ñ A by
repeating the above definitions verbatim, defining A1-derivations of A with values in M as maps of
animated A1-algebras AÑ A‘M splitting the projection. By [SAG, Remark 25.3.2.4], this agrees
with the definition of LA{A1 as the cofiber of the map LA1{Z bL

A1 AÑ LA{Z, so there is a transitivity
triangle

LA1{Z b
L
A1 AÑ LA{Z Ñ LA{A1 Ñ pLA1{Z b

L
A1 Aqr1s,

and for any morphism A1 Ñ B1 of animated rings with B :“ AbL
A1 B

1, we have

LA{A1 b
L
A B – LB{B1 . (5.1.8.1)

5.1.9. Square-zero extensions of animated rings. A square-zero extension of animated rings
is the datum of a map of animated rings f : A1 Ñ A, an animated A-module M (the ideal of the
square-zero extension), and a pullback square of animated rings

A1
f

//

��

A

i

��

A
s // A‘ pM r1sq,

(5.1.9.1)

where i is the inclusion and s is a derivation of A with values in M r1s (that is, s is a map of
animated rings that splits the projection A‘ pM r1sq Ñ A, see §5.1.8). Equivalently, the 8-category
of square-zero extensions of animated rings is the 8-category of pairs pA,Mq of an animated ring A
and an animated A-module M equipped with a derivation s of A with values in M r1s. Indeed, this
defines A1 as the equalizer of A Ñ A‘ pM r1sq, where the two maps are s and the inclusion.
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To define a commutative diagram as in the definition it suffices to define a map LA{A1 Ñ M r1s:
indeed, by §5.1.8, this gives a derivation, that is, a map between the A1-algebras A and A‘ pM r1sq
splitting the projection (even as A1-algebras; one forgets that part of the information).

Example 5.1.10. Let us give several examples of square-zero extensions.

(1) Taking any pair pA,Mq and s to be the inclusion, by the commutation of pA,Mq ÞÑ A‘M
with limits in M , we recover the trivial square-zero extension A1 – A‘M .

(2) Let A1 � A be a square-zero extension of usual rings with M :“ KerpA1 � Aq, which is
an A-module. To find a map s : A Ñ A ‘ pM r1sq that gives A1 Ñ A the structure of a
square-zero extension of animated rings, we need to exhibit a map LA{A1 ÑM r1s, and for
this it suffices to recall from [SP, Lemmas 08US and 07BP] that τď1pLA{A1q –M r1s.

(3) Let A1 be an pm ` 1q-truncated animated ring, set A :“ τďmpA
1q, and consider the π0pAq-

moduleM :“ πm`1pA
1q as an animated A-module. There is a map s : AÑ A‘pM rm`2sq that

realizes A1 as a square-zero extension of A: to define the corresponding map LA{A1 ÑM rm`2s,
we recall from [SAG, Proposition 25.3.6.1] that τďm`2pLA{A1q »M rm` 2s.

We now apply these ideas to deformation theory, in particular, we derive the crucial Theorem 5.1.13.

5.1.11. Deformation-theoretic setup. For a ring R, a commutative, flat, affine R-group scheme
G is automatically a Z-module object in the 8-category opposite to that of animated rings over
R. It follows that for animated R-algebras A, the anima GpAq of A-valued points has a functorial
Z-module structure, and thus becomes an animated abelian group. We are interested in the behavior
of GpAq under square-zero extensions, so we consider the functor from the 8-category of animated
A-modules M to that of animated abelian groups defined by

M ÞÑ T pMq :“ FibpGpA‘Mq Ñ GpAqq.

Since G is affine, the functor A ÞÑ GpAq commutes with limits (as can be checked on underlying
anima), so the functor T commutes with limits. It then follows from [HTT, Proposition 5.5.2.7] that
T it is corepresentable by some Z-module LGA{A in animated A-modules.

Let e : SpecpRq Ñ G be the unit section. If G is of finite presentation, then e˚pLG{Rq has perfect
amplitude r´1, 0s (see [Ill72, chapitre VII, équation (3.1.1.3)]); if G is even smooth, then e˚pLG{Rq
even has perfect amplitude r0, 0s. In particular, in these cases the Z-module structure on e˚pLG{Rq
is the trivial one (obtained from the animated R-module structure by restriction of scalars): indeed,
a priori e˚pLG{Rq is a module over the E8-ring ZbL

S R but, being 1-truncated, it is a module over
τď1pZbL

S Rq – R.

Proposition 5.1.12. In §5.1.11, the animated A-module that underlies LGA{A is e˚pLG{Rq bL
R A.

In particular, the formation of LGA{A commutes with base change.

Proof. Let G “ SpecpSq. Then T , as a functor to anima, sends M to the anima of R-algebra maps
S Ñ A‘M whose projection to A is identified with the composite S Ñ RÑ A where the first map
corresponds to the unit section of G, in other words, to that of R-algebra maps S Ñ R‘M whose
first component is the unit section. But this functor is also corepresented by e˚pLG{Rq bL

R A. �

Theorem 5.1.13. Let R be a ring, let G be a flat, affine, commutative R-group of finite presentation,
and let e be the unit section of G. For a square-zero extension of animated R-algebras A1 � A with
ideal M , there is the following functorial fiber sequence of animated abelian groups:

GpA1q Ñ GpAq Ñ HomRpe
˚pLG{Rq,M r1sq. (5.1.13.1)
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Proof. Since the functor A ÞÑ GpAq commutes with limits, by applying Gp´q to the Cartesian square
(5.1.9.1) that is part of the structure of a square-zero extension gives a Cartesian square

GpA1q //

��

GpAq

Gpiq

��

GpAq // GpA‘ pM r1sqq

of animated abelian groups. The map Gpiq is split by the projection, so its cofiber is identified with
the fiber of GpA‘ pM r1sqq Ñ GpAq, which is HomApLGA{A,M r1sq by the definition of LGA{A. The
conclusion now follows from Proposition 5.1.12. �

Remark 5.1.14. When thinking of animated abelian groups as connective objects of DpZq, the last
term of (5.1.13.1) is the connective cover τě0 of the RHom. In practice, G is of finite presentation,
so e˚pLG{Rq has perfect Tor-amplitude in r´1, 0s (see §5.1.11) and the truncation is not necessary.
However, in the latter case the fibre sequence (5.1.13.1) in animated abelian groups may fail to be a
fibre sequence in DpZq because the last map may not be surjective on π0. On fppf cohomology, this
issue disappears by Theorem 5.2.8 below.

5.2. Flat cohomology of animated rings

Flat cohomology in the setting of animated rings is at the heart of our approach to exhibiting new
properties of flat cohomology of usual rings. We define the former in this section and record its basic
features, for instance, hyperdescent and convergence of Postnikov towers in Theorem 5.2.6 and a
key deformation-theoretic cohomology triangle in Theorem 5.2.8. We begin by discussing the basic
properties of flatness in the setting of animated rings.

5.2.1. Flat and étale maps of animated rings. An animated module M over an animated ring
A is flat (resp., faithfully flat) if π0pMq is a flat (resp., faithfully flat) π0pAq-module and

πipAq bπ0pAq π0pMq
„
ÝÑ πipMq for all i or, more succinctly, π˚pAq bπ0pAq π0pMq

„
ÝÑ π˚pMq,

so that the graded π˚pAq-module π˚pMq is flat (resp., faithfully flat). If M is flat, then for any
animated A-module M 1 we have

Tor
π˚pAq
i pπ˚pM

1q, π˚pMqq –

#

π˚pM
1q bπ0pAq π0pMq for i “ 0,

0 for i ą 0,

so the spectral sequence [Qui67, Chapter II, Section 6, Theorem 6 (b)] gives

π˚pM
1 bL

AMq – πipM
1q bπ0pAq π0pMq.

In particular, (resp., faithful) flatness is stable under base change along a map A Ñ A1 of ani-
mated rings.

In the animated setting, flatness is insensitive to infinitesimal thickenings as follows.

Lemma 5.2.2. Let AÑ A1 be a map of animated rings that induces a surjective map π0pAq� π0pA
1q

with nilpotent kernel. An animated A-module M is (resp., faithfully) flat if and only if so is the
animated A1-module A1 bL

AM . In particular, M » 0 if and only if A1 bL
AM » 0.

Proof. A flat M vanishes if and only if π0pMq vanishes, which may be tested modulo any nilpotent
ideal of π0pAq, so the ‘in particular’ follows from the main assertion. Moreover, in the latter the
‘only if’ is clear and for the ‘if’ we may focus on flatness because the support of π0pMq is insensitive
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to base change to π0pA
1q. For the flatness, we first consider the special case when A1 “ π0pAq, that

is, we first claim that M is A-flat if and only if π0pAq b
L
AM is π0pAq-flat.

For this, since base change to τďmpAq does not affect the πipMq with i ď m, we lose no generality
by assuming that A is m-truncated for some m ą 0 and, by induction, need to show that M is A-flat
if τďm´1pAq b

L
AM is τďm´1pAq-flat. However, the latter assumption and §5.2.1 give

πmpAqrms b
L
AM – πmpAqrms b

L
τďm´1pAq

pτďm´1pAq b
L
AMq – pπmpAq bπ0pAq π0pMqqrms,

and the exact triangle pπmpAqrmsq bL
AM ÑM Ñ τďm´1pAq b

L
AM then shows that M is A-flat.

The settled case when A1 is 0-truncated allows us to replace A and A1 by π0pAq and π0pA
1q, and

hence assume that A and A1 are 0-truncated. Moreover, induction on the order of nilpotence of the
ideal I :“ KerpA� A1q allows us to assume that I2 “ 0. In this case, §5.2.1 gives

I bL
AM – I bL

A1 pA
1 bL

AMq – I bAM,

so the exact triangle I bL
A M Ñ M Ñ A1 bL

A M shows that M is 0-truncated. Thus, since
A1 bL

A M is 0-truncated, we have TorA1 pA
1,Mq – 0, so that M is A-flat by the flatness criterion

[SP, Lemma 051C]. �

5.2.3. Grothendieck topologies on the 8-category of animated rings. A map f : A Ñ A1

of animated rings is flat (resp., faithfully flat) if A1 is flat (resp., faithfully flat) as an animated
A-module (see §5.2.1), concretely, if

π0pfq : π0pAq Ñ π0pA
1q has the same property and πipAq bπ0pAq π0pA

1q
„
ÝÑ πipA

1q for all i.

A map f of animated rings is étale if it is flat and π0pfq is étale. A flat map f is of finite presentation
(resp., finite) if so is π0pfq. All of these properties are inherited by the map π˚pfq of graded rings.
Moreover, by §5.2.1, they are stable under composition and base change.

A map f : A Ñ A1 of animated rings is an fpqc cover (resp., fppf cover ; resp., étale cover) if it is
faithfully flat (resp., faithfully flat and of finite presentation; resp., faithfully flat and étale). The
stability properties above imply that such are covering maps for a Grothendieck topology on the
8-category of animated rings (see [HTT, Definition 6.2.2.1, Remark 6.2.2.3]). Of course, if A is
0-truncated, then so is A1, to the effect that one does not obtain new covers of 0-truncated rings.

The étale site of an animated ring is insensitive to derived structure as follows.

Proposition 5.2.4. For an animated ring A, the π0p´q (or base change) functor from étale (resp., fi-
nite étale) A-algebras to étale (resp., finite étale) π0pAq-algebras is an equivalence of 8-categories.

Proof. The two functors agree because A1 bL
A π0pAq – π0pA

1q for any A-étale (or even A-flat) A1
(see §5.2.3). In particular, by (5.1.8.1) and Lemma 5.2.2, we have LA1{A – 0 for any A-étale A1.

To prove the full faithfulness, it suffices to argue that for any A-étale A1 and any animated A-algebra
B, the following map is an equivalence of anima:

HomApA
1, Bq Ñ HomApA

1, π0pBqq

Since B „
ÝÑ R limnpτďnpBqq, by induction it suffices to show that

HomApA
1, τďnpBqq Ñ HomApA

1, τďn´1pBqq is an equivalence of anima.

Since τďnpBq Ñ τďn´1pBq admits the structure of a square-zero extension (see Example 5.1.10 (3))
and HomApA

1,´q commutes with limits, it then suffices to argue that for any trivial square-zero
49

https://stacks.math.columbia.edu/tag/051C


extension C ‘M of an animated A-algebra C,

HomApA
1, Cq Ñ HomApA

1, C ‘Mq is an equivalence of anima.

But this map has an evident section, whose fibers are given by maps LA1{A ÑM by the definition
of the cotangent complex. Since LA1{A – 0, the claim follows.

For the remaining essential surjectivity, it is enough to handle the étale case (finiteness can be
checked on π0). Ideally, one should prove the result by deformation theory, using the vanishing of
the cotangent complex, but we give an ad hoc argument. Namely, Zariski localizations can be lifted
(for f P A, one can form Ar 1

f s by base change from the universal case Zrf s Ñ Zrf, 1
f s), and étale

algebras can be constructed Zariski locally. However, Zariski locally an étale map is standard étale,
whose explicit description gives a lift to A by lifting the defining elements from π0pAq to A. �

5.2.5. Cohomology over an animated ring. For an animated ring A, we define the 8-topoi of
étale, fppf, or fpqc sheaves over A (the latter for an implicit sufficiently large cardinal bound κ as in
§1.4) by considering the corresponding 8-category of presheaves, that is, of functors from animated
A-algebras étale/fppf/flat over A to anima, and taking the full subcategory of those functors that
satisfy the sheaf condition for the respective notion of covers. The inclusion into all presheaves has a
left adjoint, the sheafification. The same applies to (pre)sheaves with values in any 8-category, so
for a presheaf F with values in DpZq we let

RΓétpA,F q P DpZq and RΓfppfpA,F q P DpZq

denote the values at A of the étale and the fppf sheafifications of F and write H i
étpA,F q and

H i
fppfpA,F q for the resulting cohomology groups. Since a 0-truncated A does not attain new étale

or flat covers in the animated setting (see §5.2.3), for 0-truncated A this definition reproduces the
classical étale and fppf cohomology, respectively. In this article, we will get by with cohomology in
the affine setting, but for any open U Ă Specpπ0pAqq we also set

RΓfppfpUA, F q :“ R limA1pRΓfppfpA
1, F qq

where A1 ranges over those animated A-algebras fppf over A for which Specpπ0pA
1qq Ñ Specpπ0pAqq

factors over U ; the subscript in UA reminds us that we are not merely forming the usual flat
cohomology of the scheme U . We often abbreviate RΓfppf and H i

fppf to RΓ and H i, respectively.

It is useful to keep in mind that in this setting cohomology need not vanish in negative degrees: for
instance, if A is an animated algebra over a commutative ring R and G is a commutative, affine
R-group,23 then, by fpqc descent (see, for instance, [SAG, Remark D.6.3.6]),

GpAq
„
ÝÑ τď0pRΓfppfpA,Gqq. (5.2.5.1)

We recall that a sheaf F is a hypersheaf if it satisfies the sheaf condition with respect to hypercovers.
This is automatic when F is n-truncated for some n; for example, if F is a sheaf of coconnective
complexes (as in the usual setting of cohomology). Another important example is that quasi-coherent
sheaves are hypersheaves in the étale, fppf, and fpqc sites: the quasi-coherent sheaf defined by
some animated module M is the limit of the sheaves defined by its truncations τďnpMq, all of
which are truncated, so the claim follows as limits of hypersheaves are hypersheaves (see also
[SAG, Corollary D.6.3.4]).

23Throughout this article we limit ourselves to group schemes defined over a base classical ring R because this
suffices for our applications and is expedient. It would be more natural to allow groups G defined over A itself, but
it seems unclear how to correctly define commutative finite flat group schemes over animated rings (in particular,
so as to admit Cartier duals and Bégueri resolutions (1.4.2)). We expect that with the correct definition, all such
commutative finite flat group schemes may arise via base change from classical rings.
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Despite possible negative degree cohomology, we have the following hyperdescent and Postnikov
convergence result; it also extends Grothendieck’s fppf-étale comparison [Gro68b, théorème 11.7] to
animated rings.

Theorem 5.2.6. Let R be a ring and let G be an affine, commutative R-group that is either smooth or
finite locally free. The functor A ÞÑ RΓfppfpA,Gq satisfies fppf hyperdescent on animated R-algebras
A and

RΓfppfpA,Gq
„
ÝÑ R limnpRΓfppfpτďnpAq, Gqq. (5.2.6.1)

If G is smooth, then even the functor A ÞÑ RΓétpA,Gq satisfies fppf hyperdescent and, in particular,

RΓétpA,Gq
„
ÝÑ RΓfppfpA,Gq. (5.2.6.2)

Proof. For a finite, locally free G, the Bégueri resolution

0 Ñ GÑ ResG˚{RpGmq Ñ QÑ 0 (5.2.6.3)

is exact on the fppf site of any animated R-algebra A because the map ResG˚{RpGmq Ñ Q is
faithfully flat and finitely presented. Thus, it reduces us to the case when G is smooth. Moreover,
since G is affine, for any A we have the Postnikov tower equivalence

GpAq
„
ÝÑ R limnpGpτďnpAqqq. (5.2.6.4)

By induction on n and Theorem 5.1.13, the fiber GpτďnpAqq0 of GpτďnpAqq Ñ Gpπ0pAqq satisfies
fppf hyperdescent (see §5.2.5). By (5.2.6.4), we have the identification

GpAq0 – R limn

`

GpτďnpAqq
0
˘

, where GpAq0 is the fiber of GpAq Ñ Gpπ0pAqq. (5.2.6.5)

Thus, the functor A ÞÑ GpAq0 satisfies fppf hyperdescent. By then sheafifying the fiber sequence

GpAq0 Ñ GpAq Ñ Gpπ0pAqq

for the étale topology and using Proposition 5.2.4, we obtain a fiber sequence

GpAq0 Ñ RΓétpA,Gq Ñ RΓétpπ0pAq, Gq (5.2.6.6)

(see §5.2.5). The base change of an fppf hypercover of A along the map A Ñ π0pAq is an fppf
hypercover of π0pAq obtained by forming π0p´q levelwise, so the functor A ÞÑ RΓétpπ0pAq, Gq
satisfies fppf hyperdescent by Grothendieck’s [Gro68b, théorème 11.7]. Thus, the outer terms of
(5.2.6.6) satisfy fppf hyperdescent in A, and hence so does the middle term A ÞÑ RΓfppfpA,Gq. By
combining (5.2.6.5) with (5.2.6.6) applied with τďnpAq in place of A, we obtain (5.2.6.1). �

We will use the following mild strengthening of the Postnikov completeness of A ÞÑ RΓpA,Gq.

Corollary 5.2.7. Let R be a ring, let G be a commutative affine R-group that is either smooth or finite
locally free, and let A be an animated R-algebra. For a tower of maps . . .Ñ An`1 Ñ An Ñ . . .Ñ A0

of animated A-algebras such that τďnpAq
„
ÝÑ τďnpAnq for all n, we have

RΓfppfpA,Gq
„
ÝÑ R limnpRΓfppfpAn, Gqq. (5.2.7.1)

Proof. We consider the inverse limit diagram tRΓfppfpτďmpAnq, Gqum,ně0. If one first forms R lim in
m and afterwards in n, then, by (5.2.6.1) with An in place of A, one obtains the right side of (5.2.7.1).
If, on the other hand, one first forms R lim in n and afterwards in m, then, by the assumption on
the An, one obtains R limmpRΓpτďmpAq, Gqq, which, by (5.2.6.1) again, is RΓpA,Gq. �

The following sheafification of the deformation-theoretic Theorem 5.1.13 plays a central role below.
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Theorem 5.2.8. Let R be a ring, let G be a commutative, affine R-group that is either smooth
or finite locally free, and let e be the unit section of G. For a square-zero extension of animated
R-algebras A1 � A with ideal M , there is the following functorial fiber sequence in DpZq:

RΓfppfpA
1, Gq Ñ RΓfppfpA,Gq Ñ RHomRpe

˚pLG{Rq,M r1sq.

Proof. For smooth G, this follows from Theorem 5.2.6 and Theorem 5.1.13 by étale sheafification
(the right-most term is 1-connective, so the fibre sequence in animated abelian groups gives a fibre
sequence in DpZq). For finite, locally free G, as in the proof of Theorem 5.2.6, the Bégueri resolution
(5.2.6.3) reduces us to the smooth case. �

The following description of the positive degree flat cohomology of animated rings with suitable
coefficients complements (5.2.5.1), which gave a description of the negative degree cohomology.

Corollary 5.2.9. Let R be a ring and let G be a smooth (resp., finite, locally free), affine, commutative
R-group. For an animated R-algebra A, the map

H i
fppfpA,Gq Ñ H i

fppfpπ0pAq, Gq

is surjective for all i and is bijective for i ě 0 (resp., for i ě 1).

Proof. The finite locally free case reduces to the smooth one via the Bégueri sequence (5.2.6.3). In
the smooth case, e˚pLG{Rq in Theorem 5.2.8 is a projective module concentrated in degree 0, so

H i
fppfpτďnpAq, Gq Ñ H i

fppfpτďn´1pAq, Gq is

#

surjective for i ě ´1,

bijective for i ě 0.

The Postnikov convergence (5.2.6.1) then gives our claim. �

Deformation theory has the following consequence for the insensitivity to nonreduced structure.

Corollary 5.2.10. For a ring R, an ideal I Ă R whose elements are nilpotent, and a smooth
(resp., finite, locally free), affine, commutative R-group G, the map

H i
fppfpR,Gq Ñ H i

fppfpR{I,Gq is

#

surjective for i ě 0 (resp., for i ě 1),
bijective for i ě 1 (resp., for i ě 2).

For finite, locally free G, we will extend this result to general Henselian pairs in Corollary 5.6.9. For
smooth G, the same statement does not hold for arbitrary Henselian pairs, but see [BČ22, Proposi-
tion 2.1.4, Theorem 2.1.6, Remarks 2.1.7 and 2.1.8] for positive results in low cohomological degrees
and counterexamples to general statements, as well as [SGA 3III new, exposé XXIV, lemme 8.1.8,
remarque 8.1.9] for positive results for Čech cohomology.

Proof. The ring R is a filtered direct union of its finite type Z-subalgebras R1 and R{I is a similar
direct union of the R1{pR1 X Iq. Thus, limit formalism reduces us to the case when R is Noetherian,
so that I is nilpotent and, arguing by induction, even square-zero. In this case, Theorem 5.2.8 (with
Example 5.1.10 (2)) supplies the long exact sequence

. . .Ñ H ipRHomRpe
˚pLG{Rq, Iqq Ñ H ipR,Gq Ñ H ipR{I,Gq Ñ H i`1pRHomRpe

˚pLG{Rq, Iqq Ñ . . .

To get a desired vanishing of the flanking terms it now remains to recall from §5.1.11 that in the
smooth (resp., finite, locally free) case, e˚pLG{Rq has perfect amplitude r0, 0s (resp., r´1, 0s). �
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5.3. The p-adic continuity formula for flat cohomology

The ultimate driving force of our analysis of new properties of fppf cohomology is the positive
characteristic case of the key formula that we established in Theorem 4.1.8. To deduce mixed
characteristic phenomena from this positive characteristic statement, we rely on the p-adic continuity
formula that we exhibit in Theorem 5.3.5 below (see also Theorem 5.6.6 for a subsequent extension
to adically complete rings). This formula has the flavor of a flat cohomology counterpart of Gabber’s
affine analog of proper base change for étale cohomology [Gab94, Theorem 1] and is new already for
p-adically complete, p-torsion free rings. The proof of this case does not require animated inputs,
but for the sake of maximal applicability we directly treat the general case. The technique is to
reduce to rings that have no nonsplit fppf covers via the following lemma.

Lemma 5.3.1. For each ring R, there is an ind-fppf R-algebra rR that has no nonsplit fppf covers.
For each ideal I Ă R contained in every maximal ideal, there is an I rR-Henselian such rR.

Proof. The first claim is the I “ 0 case of the second. Fix a set S of representatives for isomorphism
classes of faithfully flat, finitely presented R-algebras R1, and consider the ind-fppf R-algebra

R1 :“
Â

R1PS R1 and its I-Henselization Rh1 .

By iterating this construction (with Rh1 in place of R and so on), we obtain a tower of ind-fppf
R-algebras R1 Ñ Rh1 Ñ R2 Ñ Rh2 Ñ . . . that are faithfully flat (see [SP, Lemma 00HP]). By
construction,

rR :“ lim
ÝÑną0

Rn – lim
ÝÑną0

Rhn

is I rR-Henselian. By a limit argument, every fppf cover rf : rR Ñ rS descends to an fppf cover
f : Rn Ñ S for some n. There is an Rn-morphism S Ñ Rn`1 Ñ rR, so the cover rf has a section. �

Remark 5.3.2. Lemma 5.3.1 continues to hold with an analogous proof if in its formulation
ind-fppf/fppf is replaced by ind-étale/étale, or by ind-smooth/smooth, or by ind-syntomic/syntomic.

Another input to the p-adic continuity formula is the following lemma of Beauville–Laszlo type.

Lemma 5.3.3. For a map AÑ A1 of animated rings and an a P A such that A{La „
ÝÑ A1{La,

A
„
ÝÑ A1 ˆA1r 1

a
s Ar

1
a s (even in the derived 8-category DpZq).

Proof. Consider the fiber M of the morphism A Ñ Fib
`

A1 ‘Ar 1
a s Ñ A1r 1

a s
˘

, where the second
arrow is the difference map. We have M r 1

a s – 0 and M{La – 0; the former shows that the homotopy
groups of M are a-power torsion, and the latter that multiplication by a is an isomorphism on them.
In conclusion, M – 0, so also A „

ÝÑ A1 ˆA1r 1
a
s Ar

1
a s. �

The final input is the following lemma that will be useful for us on multiple occasions.

Lemma 5.3.4. For an animated ring A, an element a P A, and the derived a-adic completion
pA :“ R limną0pA{

Lanq, the ring π0p pAq is a square-zero extension of the a-adic completion of π0pAq.

Proof. To analyze π0p pAq we use the exact sequence

0 Ñ lim
ÐÝ

1
ną0
pπ1pA{

Lanqq Ñ π0p pAq Ñ lim
ÐÝną0

pπ0pAq{pa
nqq Ñ 0.

It suffices to note that, since lim
ÐÝ

2
ną0

– 0, the ideal lim
ÐÝ

1
ną0
pπ1pA{

Lanqq Ă π0p pAq is square-zero because
the limit filtration on π0p pAq – π0pR limną0pA{

Lanqq is multiplicative. �
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Theorem 5.3.5. For a prime p, a ring R, a commutative, finite, locally free R-group G of p-power
order, and an animated R-algebra A such that π0pAq is p-Henselian,

RΓpA,Gq
„
ÝÑ R limnpRΓpA{Lpn, Gqq. (5.3.5.1)

Proof. For an initial reduction to 0-truncated A, we begin by considering the system

tRΓpτďmpAq{
Lpn, Gqum,ně0.

The map A{Lpn Ñ τďmpAq{
Lpn induces an isomorphism on truncations τďm, so (5.2.7.1) shows

that forming R limm followed by R limn gives the right side of (5.3.5.1). On the other hand, by
(5.2.6.1), forming R limn followed by R limm gives the left side granted that we know (5.3.5.1) for
truncated A. To reduce from the latter to 0-truncated A by induction on the truncation level, we
use Theorem 5.2.8: for any square-zero extension A1 Ñ A with kernel M we have

RΓpA1, Gq Ñ RΓpA,Gq Ñ RHomRpe
˚pLG{Rq,M r1sq, (5.3.5.2)

so it suffices to argue that RHomRpe
˚pLG{Rq,M r1sq is insensitive to replacingM by its derived p-adic

completion xM . For this, it suffices to observe that the cofiber of M Ñ xM is a Zr1p s-module, whereas
e˚pLG{Rq vanishes after inverting p. In conclusion, without losing generality, A is 0-truncated.

Claim 5.3.5.3. On A-algebras, the functor A1 ÞÑ RΓppA1qhp , Gq (where p´qhp is the p-Henselization)
satisfies hyperdescent in the topology whose covers are the filtered direct limits of flat, finitely
presented maps that are faithfully flat modulo p.

Proof. Any filtered direct limit of flat, finitely presented maps that is faithfully flat modulo p is a
p-complete arc cover (see §2.2.1 (2)). Thus, by Remark 2.2.6, the functor A1 ÞÑ RΓppA1qhpr

1
p s, Gq

satisfies the desired hyperdescent. The cohomology with supports sequence then reduces us to
arguing the same for the functor

A1 ÞÑ RΓtp“0uppA
1qhp , Gq, which, by excision, is the functor A1 ÞÑ RΓtp“0upA

1, Gq (5.3.5.4)

(for the last identification, see [Mil80, Chapter III, Proposition 1.27]24). Moreover, since this functor
takes coconnective values, descent (as opposed to hyperdescent) would suffice. The functor also
vanishes on Ar1p s-algebras, so the descent assertion is insensitive to replacing the cover A1 Ñ A2

by A1 Ñ A2 ˆ A1r1p s. Thus, we may assume that our cover is faithfully flat. By limit arguments,
both functors A1 ÞÑ RΓpA1, Gq and A1 ÞÑ RΓpA1r1p s, Gq satisfy descent with respect to ind-fppf maps.
Consequently, so does the functor A1 ÞÑ RΓtp“0upA

1, Gq, and the claim follows. �

By Lemma 5.3.1, we may build a hypercover A‚ of A in the topology whose covers are the filtered
direct limits of flat, finitely presented maps that are faithfully flat modulo p in such a way that each
Ai is p-Henselian and admits no nonsplit fppf covers. By Claim 5.3.5.3, the left side of (5.3.5.1)
satisfies hyperdescent with respect to this hypercover; by also using the deformation triangle (5.3.5.2)
and faithfully flat descent for modules, so does the right side. Effectively, we may replace A by Ai
to reduce to the case when our (0-truncated) p-Henselian ring A has no nonsplit fppf covers, a case
in which

GpAq
„
ÝÑ RΓpA,Gq (5.3.5.5)

(see §5.2.5). We claim that for n ą 0 we also have

GpA{Lpnq
„
ÝÑ RΓpA{Lpn, Gq or, equivalently, that H ipA{Lpn, Gq – 0 for i ą 0. (5.3.5.6)

24The proof of [Mil80, Chapter III, Proposition 1.27], written for étale cohomology, also works for flat cohomology:
after shifting degrees as there, one reduces to the case i “ 0, which is a claim about the restriction of an fppf sheaf to
the small étale site.
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For this, Corollary 5.2.9 gives H ipA{Lpn, Gq
„
ÝÑ H ipA{ppnq, Gq for i ą 0, so the Bégueri resolution

(1.4.2) reduces us to showing that for a smooth, affine R-group Q we have

QpAq� QpA{ppnqq and H ipA{ppnq, Qq – 0 for i ą 0.

The surjectivity follows from [SP, Proposition 07M8]. On the other hand, by [SP, Lemma 04D1],
every étale pA{ppnqq-algebra lifts to an étale A-algebra, and hence is split, so the vanishing follows,
too.

In the view of (5.3.5.5)–(5.3.5.6), it remains to show that for our p-Henselian, 0-truncated A,

GpAq
„
ÝÑ R limną0pGpA{

Lpnqq (limit in the derived 8-category DpZq). (5.3.5.7)

For the derived p-adic completion pA :“ R limnpA{
Lpnq of A, by Lemma 5.3.4, the ring π0p pAq is

a square-zero extension of the p-adic completion of π0pAq, so Remark 2.2.6 and Proposition 5.2.4
imply that GpAr1p sq

„
ÝÑ Gp pAr1p sq. Lemma 5.3.3 and the affineness of G then give

GpAq
„
ÝÑ Gp pAq ˆ

Gp pAr
1
p sq

GpAr1p sq – Gp pAq – limną0pGpA{
Lpnqq

(limit in the 8-category AnipAbq). Thus, to deduce (5.3.5.7), it suffices to show that the system
tπ0pGpA{

Lpnqquną0 is Mittag–Leffler. Let pk be a power that kills e˚pLG{Rq, and consider an n ą k.
By Theorem 5.1.13, the obstruction to lift an x P π0pGpA{

Lpnqq to π0pGpA{
Lp2nqq is an

α P π0

´

HomR

´

e˚pLG{Rq, Ab
L
Z p

pnZ
p2nZqr1s

¯̄

ãÑ π0

´

HomR

´

e˚pLG{Rq, Ab
L
Z p

pnZ
p2nZ b

L
Z

Z
pkZqr1s

¯̄

.

Since the object e˚pLG{Rq is of projective amplitude r´1, 0s (see §5.1.11), the truncation triangle

p
p2n´kZ
p2nZ qr1s Ñ

pnZ
p2nZ b

L
Z

Z
pkZ Ñ

pnZ
pn`kZ Ñ

´

p2n´kZ
p2nZ

¯

r2s

is exact and shows that the last displayed group injects into

π0

´

HomR

´

e˚pLG{Rq, Ab
L
Z p

pnZ
pn`kZqr1s

¯̄

.

Consequently, by functoriality of Theorem 5.1.13, the obstruction to lifting x to π0pGpA{
Lpn`kqq

is also α. In other words, if x is in the image of π0pGpA{
Lpn`kqq, then it is also in the image

of π0pGpA{
Lp2nqq and, by replacing n by 2n ´ k and iterating, we see that x is in the image of

π0pGpA{
LpN qq for every N ě n, so that the system tπ0pGpA{

Lpnqquną0 is indeed Mittag–Leffler. �

Remark 5.3.6. In the final part of the proof, instead of checking the Mittag–Leffler condition we
could also apply Lemma 5.6.4 (that does not use Theorem 5.3.5 or the subsequent parts of §§5.3–5.5).

The following concrete consequence of Theorem 5.3.5 extends Corollary 4.1.9 beyond perfect Fp-
algebras. Its case when A is a 0-truncated Fp-algebra and G “ µp was settled in [Tre80, Theorem].

Corollary 5.3.7. Let R be a ring, let p be a prime, and let G be a commutative, finite, locally free
R-group of p-power order. For each animated R-algebra A such that π0pAq is p-Henselian,

H ipA,Gq – 0 for i ě 3 (resp., H ipA,Gq – 0 for i ě 2 if pπ0pAq{ppqq
red is perfect).

Proof. Corollary 5.2.9 reduces us to 0-truncated A. By Corollary 5.2.10, for n ě 2, the map

H ipA{ppnq, Gq Ñ H ipA{ppn´1q, Gq is

#

surjective for i ě 1,

bijective for i ě 2.

Thus, Theorem 5.3.5 (with Corollary 5.2.9 again) reduces us to the case when A is an Fp-algebra.
By Corollary 5.2.10 again, we may then replace A by Ared to assume that A is reduced. If the
resulting A is perfect, then the Dieudonné-theoretic Corollary 4.1.9 gives the claim. Otherwise,
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we may assume that A is Noetherian and consider the morphism of sites ε : Afppf Ñ Aét with its
spectral sequence

H i
étpA,R

jε˚pGqq ñ H i`j
fppfpA,Gq.

By [Gro68b, théorème 11.7] and the Bégueri sequence (1.4.2), we have Rě2ε˚pGq – 0. The étale
cohomological p-dimension of A is ď 1 (see [SGA 4III, exposé X, théorème 5.1]), so we obtain the
desired Hě3

fppfpA,Gq – 0. �

Theorem 5.3.5 has the following consequence for the passage to the derived p-adic completion for flat
cohomology. At least for 0-truncated A and under additional bounded p8-torsion assumptions, this
could also be argued directly by an argument similar to the one used for [BČ22, Theorem 2.3.3 (d)].

Corollary 5.3.8. Let R be a ring, let p be a prime, let G be a commutative, finite, locally free
R-group of p-power order, and let AÑ A1 be a map of animated R-algebras such that both π0pAq

and π0pA
1q are p-Henselian and A{Lp „

ÝÑ A1{Lp. For each open

Specpπ0pAqr
1
p sq Ă U Ă Specpπ0pAqq

with complement Z :“ Specpπ0pAqqzU , we have (with definitions as in §5.2.5)

RΓpUA, Gq
„
ÝÑ RΓpUA1 , Gq, so also RΓZpA,Gq

„
ÝÑ RΓZpA

1, Gq.

We will complement this last isomorphism with a general excision result of this sort in Theorem 5.4.4.
For a version of Corollary 5.3.8 beyond the p-adic setting, see Corollary 5.6.12 below.

Proof. Lemma 5.3.4 ensures that π0p pAq is a square-zero extension of the p-adic completion of π0pAq,
so is p-Henselian. Thus, we may replace A1 by pA and use Remark 2.2.6 (with Proposition 5.2.4) to
obtain the case U “ SpecpAr1p sq:

RΓpAr1p s, Gq
„
ÝÑ RΓpA1r1p s, Gq. (5.3.8.1)

In general, it remains to see that

RΓtp“0upU,Gq
„
ÝÑ RΓtp“0upUA1 , Gq.

For this, we may work locally on U , so, by passing to an affine cover and forming p-Henselizations
(which do not change the RΓtp“0u; see Lemma 5.4.2 below for a much more general result, in our
case (5.4.2.2) is Cartesian by descent), we reduce to U “ Specpπ0pAqq. Then the continuity formula
(5.3.5.1) gives RΓpA,Gq

„
ÝÑ RΓpA1, Gq, so, due to (5.3.8.1), also the following desired isomorphism:

RΓtp“0upA,Gq
„
ÝÑ RΓtp“0upA

1, Gq. �

5.4. Excision for flat cohomology and reduction to complete rings

To reduce purity for flat cohomology to the case of complete rings, we exhibit a general excision
property of flat cohomology of (animated) rings in Theorem 5.4.4, which vastly extends its special
cases that appear in the literature: for instance, [DH19, Lemma 2.6] proves it for excellent, Henselian
discrete valuation rings (see also [Maz72, Lemma 5.1] for an earlier special case). The argument uses
animated deformation theory of §§5.1–5.2 and the p-adic continuity formula (5.3.5.1) to eventually
reduce to the positive characteristic case (4.1.8.2) of the key formula. The bulk of it is captured by
Lemma 5.4.2, which itself uses the following auxiliary lemma.

Lemma 5.4.1. Let A be a perfect Fp-algebra, let A1 be a semiperfect A-algebra, let a P A be such
that A{La „

ÝÑ A1{La, and let A1perf :“ lim
ÝÑx ÞÑxp

A1 be the perfection of A1. The module

KerpA1 � A1perfq is uniquely a-divisible and A1{La
„
ÝÑ A1perf{

La.
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Proof. Since A is perfect, its a8-torsion is bounded. Thus, since A{Lan „
ÝÑ A1{Lan and hence also

Axany
„
ÝÑ A1xany, the a8-torsion of A1 is also bounded. Consequently, the a-adic completion of A1

agrees with the derived a-adic completion. The latter agrees with the a-adic completion pA of A, and
pA is perfect, so the completion map A1 Ñ pA factors through A1 � A1perf and then even through the
a-adic completion of A1perf . We obtain a factorization

A1{paq� A1perf{paq Ñ
pA{paq – A{paq

in which, by assumption, the composition is an isomorphism. Thus, both maps in this composition
are isomorphisms. By repeating the same argument with an in place of a, we get that A1 Ñ A1perf

induces an isomorphism on a-adic completions. Due to bounded a8-torsion, these completions agree
with their derived counterparts, so the resulting isomorphism A1{La

„
ÝÑ A1perf{

La and the snake
lemma give the unique a-divisibility of KerpA1 � A1perfq. �

Lemma 5.4.2. For a ring R, a commutative, finite, locally free R-group G, a map A Ñ A1 of
animated R-algebras, and an a P A such that A{La „

ÝÑ A1{La, we have

RΓta“0upA,Gq
„
ÝÑ RΓta“0upA

1, Gq, (5.4.2.1)

equivalently, the following square is Cartesian:

RΓpA,Gq //

��

RΓpAr 1
a s, Gq

��

RΓpA1, Gq // RΓpA1r 1
a s, Gq.

(5.4.2.2)

Proof. The two formulations are equivalent because the fibers of the maps

RΓta“0upA,Gq Ñ RΓta“0upA
1, Gq and RΓpA,Gq Ñ RΓpA1, Gq ˆRΓpA1r 1

a
s, Gq RΓpAr 1

a s, Gq

are isomorphic, so we will focus on the Cartesian square statement. By decomposing R into direct
factors, we may assume that the order of G is constant. By then expressing G as the direct product
of its primary factors, we may assume that this order is a power of a prime p.

Claim 5.4.2.3. For a square-zero extension A� B of animated R-algebras and A1 � B1 :“ A1 bL
A B,

RΓpA,Gq //

��

RΓpAr 1
a s, Gq

is a Cartesian square iff so is
��

RΓpB,Gq //

��

RΓpBr 1
a s, Gq

��

RΓpA1, Gq // RΓpA1r 1
a s, Gq RΓpB1, Gq // RΓpB1r 1

a s, Gq.

Proof. For the ideal M of A� B, Lemma 5.3.3 gives

M
„
ÝÑ pA1 bL

AMq ˆpA1bL
AMqr

1
a
sM r

1
a s.

This identification persists after applying RHomRpe
˚pLG{Rq,´q, so the triangle

RΓpA,Gq Ñ RΓpB,Gq Ñ RHomRpe
˚pLG{Rq,M r1sq (5.4.2.4)

of Theorem 5.2.8 and its analogues after base change to A1, Ar 1
a s, and A

1r 1
a s show that the natural

map between the fibers of the map

RΓpA,Gq Ñ RΓpA1, Gq ˆRΓpA1r 1
a
s, Gq RΓpAr 1

a s, Gq

and of its analogue after base change to B is an isomorphism, and the claim follows.
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For later use, we note that, due to the isomorphism between the fibers, we actually obtain a sharper
variant: for instance, if A is 0-truncated, then, by repeating the argument inductively and forming a
filtered direct limit, we see that the claim holds for any surjection A� B whose kernel is nil. �

Claim 5.4.2.5. For a square-zero extension of animated R-algebras A � B whose ideal M is an
Ar 1

a s-module, the following square is Cartesian:

RΓpA,Gq //

��

RΓpB,Gq

��

RΓpAr 1
a s, Gq

// RΓpBr 1
a s, Gq.

For 0-truncated A, the same holds for any surjection A� B whose kernel is nil and an Ar 1
a s-module.

Proof. The assumption on M implies that the term RHomRpe
˚pLG{Rq,M r1sq in the deformation-

theoretic triangle (5.4.2.4) does not change once we replace A by Ar 1
a s. Thus, the same argument that

gave the equivalence of (5.4.2.1) and (5.4.2.2) implies the first part of the claim. For 0-truncated A,
by iteration, the claim holds for any surjection A� B whose kernel is nilpotent and an Ar 1

a s-module.
By forming filtered direct limits, we may then weaken nilpotence to being nil. �

The main stages of the subsequent argument are:

(1) to reduce to the case when R is an Fp-algebra (so that A and A1 are animated Fp-algebras);

(2) to reduce to the case when A is a 0-truncated, perfect Fp-algebra;

(3) to reduce to the case when A and A1 are 0-truncated Fp-algebras with A perfect;

(4) when A and A1 are perfect Fp-algebras, to conclude using Dieudonné-theoretic results of §4.1;

(5) to use the preceding step to reduce to the case when A and A1 are perfect Fp-algebras.

(1) Reduction to the case when R is an Fp-algebra. For any animated R-algebra S, letting Sh
ppq denote

its p-Henselization (defined via Proposition 5.2.4), descent supplies a functorial Cartesian square

RΓpS,Gq //

��

RΓpSh
ppq, Gq

��

RΓpSr1p s, Gq
// RΓpSh

ppqr
1
p s, Gq.

By applying this with S replaced by, in turn, A, A1, Ar 1
a s, and A1r 1

a s, we see that each term of
(5.4.2.2) is a glueing of its version after inverting p with the version after p-Henselizing along the
version where we first p-Henselize and then invert p. Therefore, since limits commute, it suffices to
show that the following analogues of the square (5.4.2.2) are all Cartesian:

RΓpAr1p s, Gq
//

��

RΓpAr 1
pa s, Gq

��

RΓpAh
ppq, Gq

//

��

RΓppAr 1
a sq

h
ppq, Gq

��

RΓpA1r1p s, Gq
// RΓpA1r 1

pa s, Gq, RΓpA1h
ppq, Gq

// RΓppA1r 1
a sq

h
ppq, Gq,
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RΓpAh
ppqr

1
p s, Gq

//

��

RΓppAr 1
a sq

h
ppqr

1
p s, Gq

��

RΓpA1h
ppqr

1
p s, Gq

// RΓppA1r 1
a sq

h
ppqr

1
p s, Gq.

By Proposition 5.2.4, the first and the last of these three squares depend only on the π0p´q of the
animated rings involved. In addition, since A{Lan „

ÝÑ A1{Lan, we have π0pAq{pa
nq

„
ÝÑ π0pA

1q{panq,
and, by Theorem 2.2.5 and Remark 2.2.6 (with §2.2.1), the functors R1 ÞÑ RΓpR1r1p s, Gq and
R1 ÞÑ RΓpR1h

ppqr
1
p s, Gq are arc sheaves on the category of R-algebras R1. Consequently, since arc

descent implies formal gluing squares [BM21, Theorem 6.4], the first and the last squares are
Cartesian. By the p-adic continuity formula (5.3.5.1), the remaining Cartesianness of the second
square reduces us to the case when A is over Z{pnZ for some n ą 0, a case in which this square is
nothing else than (5.4.2.2). Moreover, Claim 5.4.2.3 reduces us further to n “ 1, in other words, we
have achieved the promised overall reduction to the case when R is an Fp-algebra.

(2) Reduction to the case when A is a 0-truncated, perfect Fp-algebra. The map A1 Ñ A1 bL
A τďnpAq

is an isomorphism after applying τďnp´q, so, by (5.2.6.1) and (5.2.7.1),

RΓpA,Gq
„
ÝÑ R limn pRΓpτďnpAq, Gqq and RΓpA1, Gq

„
ÝÑ R limn

`

RΓpA1 bL
A τďnpAq, Gq

˘

,

and likewise after inverting a. Thus, we may assume that A is n-truncated for some n ą 0.
Claim 5.4.2.3 then reduces to n “ 0, that is, to the animated Fp-algebra A being a usual Fp-algebra.
The A-algebra A8 :“ ArX

1{p8

a | a P As{pXa ´ a | a P Aq is ind-fppf and semiperfect, and the same
holds for its tensor self-products over A. Thus, ind-fppf descent for fppf cohomology allows us to
replace A by such a tensor self-product and A1 by its base change to reduce to the case when A is
semiperfect. The last paragraph of the proof of Claim 5.4.2.3 then allows us to divide out the nil-ideal
KerpA� Aperfq to reduce to the case when A is perfect (here and below Aperf :“ lim

ÝÑxÞÑxp
A).

(3) Reduction to the case when A and A1 are 0-truncated Fp-algebras with A perfect. Our 0-truncated,
perfect Fp-algebra A has bounded a8-torsion, and A{Lan „

ÝÑ A1{Lan. Thus, each πipA1q with i ě 2
is uniquely a-divisible and there is an exact sequence

0 Ñ π1pA
1q

an
ÝÑ π1pA

1q Ñ Axany Ñ π0pA
1q

an
ÝÑ π0pA

1q,

which, by letting n grow, shows that π0pA
1q has bounded a8-torsion and that π1pA

1q is also uniquely
a-divisible. Then even Axa8y „

ÝÑ pπ0pAqqxa
8y, so also A{La „

ÝÑ π0pA
1q{La. Moreover, since each

πipA
1q with i ě 1 is an Ar 1

a s-module, the deformation-theoretic (5.4.2.4) implies that for each n ą 0,

RΓpτďnpA
1q, Gq //

��

RΓpτďn´1pA
1q, Gq

��

RΓpτďnpA
1qr 1

a s, Gq
// RΓpτďn´1pA

1qr 1
a s, Gq

is a Cartesian square. Thus, the same square with π0pA
1q in place of τďn´1pA

1q is also Cartesian.
By passing to the inverse limit in n and using (5.2.6.1), we then find that the right square in

RΓpA,Gq

��

// RΓpA1, Gq //

��

RΓpπ0pA
1q, Gq

��

RΓpAr 1
a s, Gq

// RΓpA1r 1
a s, Gq

// RΓpπ0pA
1qr 1

a s, Gq

(5.4.2.6)
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is Cartesian. Thus, the sought Cartesianness of the left square reduces to that of the outer one, so
we may replace A1 by π0pA

1q to reduce to the case when A and A1 are Fp-algebras with A perfect.

(4) Conclusion in the case when A and A1 are perfect Fp-algebras. We now treat the case when the
Fp-algebra A1 is also perfect. Then Theorem 4.1.8 identifies the map

RΓta“0upA,Gq Ñ RΓta“0upA
1, Gq with RΓpp, aqpW pAq,MpGqqV´1 Ñ RΓpp, aqpW pA

1q,MpGA1qqV´1.

For showing that the latter is an isomorphism, by dévissage, we may remove p´qV´1, replace MpGq
by a projective W pAq-module (see §4.1.1), and then even replace it by a free W pAq-module. In other
words, we are reduced to showing that the following map is an isomorphism:

RΓpp, aqpW pAq,W pAqq Ñ RΓpp, aqpW pA
1q,W pA1qq.

The cohomology groups of the fiber of this map are p-power torsion, so we need to show that
multiplication by p is an automorphism on them. Thus, the sequences

0 ÑW pAq
p
ÝÑW pAq Ñ AÑ 0 and 0 ÑW pA1q

p
ÝÑW pA1q Ñ A1 Ñ 0

reduce us to showing that the fiber of the map

RΓpp, aqpW pAq, Aq Ñ RΓpp, aqpW pA
1q, A1q, that is, of RΓta“0upA,Aq Ñ RΓta“0upA

1, A1q,

vanishes. The last fiber agrees with that of the map

RΓpA,Aq Ñ RΓpA1, A1q ˆRΓpA1r 1
a
s, A1r 1

a
sq RΓpAr 1

a s, Ar
1
a sq,

that is, with the fiber of the map AÑ A1 ˆA1r 1
a
s Ar

1
a s, which is an isomorphism by Lemma 5.3.3.

(5) Conclusion in the general case. Having established the case when both of our Fp-algebras A
and A1 are perfect, we return to the situation in which only A is perfect and let pA be the a-adic
completion of A. Since A has bounded a8-torsion, pA agrees with its derived counterpart, so that we
have a map A1 Ñ pA with A1{La „

ÝÑ pA{La. We consider the analogue of (5.4.2.6) with the perfect
Fp-algebra pA in place of π0pA

1q. By the preceding step of the overall argument, in this analogue the
outer square is Cartesian, so we are reduced to showing that the right one is, too. In other words,
we may replace A and A1 by A1 and pA, respectively, to reduce to the case when the Fp-algebra A is
arbitrary but A1 is perfect. In this situation, we repeat the reduction to perfect A and note that it
transforms our perfect A1 into an animated Fp-algebra for which π0pA

1q is semiperfect (the passage
to semiperfect A leaves A1 semiperfect, and the subsequent derived base change along A � Aperf

may introduce higher homotopy). After this, we repeat the reduction that uses the boundedness
of the a8-torsion of A to replace A1 by π0pA

1q and are left with the case in which A is perfect and
A1 is semiperfect. Lemma 5.4.1 then ensures that the nil-ideal KerpA1 � A1perfq is an Ar

1
a s-module.

Thus, Claim 5.4.2.5 shows the Cartesianness of the square

RΓpA1, Gq //

��

RΓpA1perf , Gq

��

RΓpA1r 1
a s, Gq

// RΓpA1perfr
1
a s, Gq.

By Lemma 5.4.1, we have A1{La „
ÝÑ A1perf{

La, so the same argument as for (5.4.2.6) allows us to
replace A1 by A1perf . However, then both A and A1 are perfect, a case that we already settled. �

Before deducing the sought Theorem 5.4.4, we clarify its excision condition.
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Lemma 5.4.3. For a map f : AÑ A1 of animated rings, an ideal I “ pa1, . . . , arq Ă π0pAq satisfies

π0pAq{I
„
ÝÑ pπ0pAq{Iq b

L
A A

1

if and only if f induces an isomorphism after iteratively forming derived ai-adic completions for
i “ 1, . . . , r, equivalently, if and only if

A{Lpan1 , . . . , a
n
r q

„
ÝÑ A1{Lpan1 , . . . , a

n
r q for every n ą 0;

in particular, all of these equivalent conditions depend only on the ideal I and not on the ai.

Proof. By §5.1.7, the iterated derived ai-adic completion of A is identified with

lim
ÐÝn1, ..., nrě0

pA{Lpan1
1 , . . . , anr

r qq,

and likewise for A1. Thus, since the inverse subsystem where all the ni are equal is final, f induces
an isomorphism on iterated derived ai-adic completions if and only if

A{Lpan1 , . . . , a
n
r q

„
ÝÑ A1{Lpan1 , . . . , a

n
r q for every n ą 0. (5.4.3.1)

If this holds for n “ 1, then, since

pπ0pAq{Iq b
L
A A

1 – pπ0pAq{Iq b
L
A{Lpa1, ..., arq

A1{Lpa1, . . . , arq,

also π0pAq{I
„
ÝÑ pπ0pAq{Iq b

L
A A1. Conversely, if this last map is an isomorphism, then the

cofiber of the map (5.4.3.1) is an animated pA{Lpan1 , . . . , anr qq-module that vanishes after applying
pπ0pAq{Iq b

L
A{Lpan1 , ..., a

n
r q
´, and hence itself vanishes by Lemma 5.2.2. �

Theorem 5.4.4. Let R be a ring and let G be a commutative, finite, locally free R-group. For each
map AÑ A1 of animated R-algebras and each finitely generated ideal I Ă π0pAq such that

π0pAq{I
„
ÝÑ pπ0pAq{Iq b

L
A A

1

(see Lemma 5.4.3), we have
RΓIpA,Gq

„
ÝÑ RΓIpA

1, Gq.

Proof. By Lemma 5.4.3, we may write I “ pa1, . . . , arq and assume that A1 is the iterated derived
ai-adic completion of A for i “ 1, . . . , r, and then, by arguing inductively, assume instead that A1 is
the derived a-adic completion of A for some a P I. There is a functorial fiber sequence

RΓIpA,Gq Ñ RΓta“0upA,Gq Ñ R limfPI

´

RΓta“0upAr
1
f s, Gq

¯

, and likewise for A1,

so the claim follows from Lemma 5.4.2 applied to AÑ A1 and to its localizations. �

We are ready to show that the validity of Theorem 1.1.1 depends only on the completion pR.

Corollary 5.4.5. For a Noetherian local ring pR,mq and a commutative, finite, flat R-group G,

H i
mpR,Gq

„
ÝÑ H i

mp
pR,Gq for every i P Z.

In particular, Theorem 1.1.1 reduces to its case when the complete intersection R is m-adically
complete.

Proof. Indeed, pR is R-flat with R{m „
ÝÑ pR{m pR, so Theorem 5.4.4 gives the claim. �

61



Remark 5.4.6. Under additional assumptions on R or G, previous results suffice to reduce The-
orem 1.1.1 to complete R. For instance, if R is excellent (as one can sometimes reduce to using
[Pop19, Corollary 3.10]), then [BČ22, Lemma 2.1.3] (with elementary excision [Mil80, Chapter III,
Proposition 1.27]) gives

H i
mpR,Gq ãÑ H i

mp
pR,Gq.

If instead G is étale, then Lemma 3.1.2 (or already [Fuj95, Corollary 6.6.4]) suffices.

5.5. p-complete arc descent over perfectoids and fpqc descent over general rings

As we saw in Proposition 4.2.7, the Dieudonné module side of the key formula (1.1.6) satisfies
p-complete arc hyperdescent. The main goal of this section is to establish the same for the flat
cohomology side in Theorem 5.5.1, which will lead us to showing the key formula in §6.1. The
main inputs are the p-adic continuity formula (5.3.5.1), deformation theory, and the p-complete arc
hyperdescent for the structure presheaf on perfectoid rings [BS22, Proposition 8.10] (see Lemma 4.2.6).

Theorem 5.5.1. For a prime p, a perfectoid ring A, a commutative, finite, locally free A-group G,
and a closed Z Ă SpecpA{pAq, both functors

A1 ÞÑ RΓpA1, Gq and A1 ÞÑ RΓZpA
1, Gq

satisfy hyperdescent for those p-complete arc hypercovers whose terms are perfectoid A-algebras.

Proof. For any a P A, by Corollary 2.1.6, the p-adic completion zAr 1
a s of Ar

1
a s is perfectoid. Moreover,

by excision Theorem 5.4.4, we have

RΓtp“0upAr
1
a s, Gq

„
ÝÑ RΓtp“0up

zAr 1
a s, Gq,

as one can also deduce from the simpler Corollary 5.3.8 (with (5.3.5.4) and (2.1.3.2)) for the p-primary
part of G and from the consequence [BM21, Theorem 6.4] of arc descent Theorem 2.2.5 for the prime
to p part of G). Letting a P A range over the elements vanishing on Z, the functorial fiber sequence

RΓZpA,Gq Ñ RΓtp“0upA,Gq Ñ R lima

`

RΓtp“0upAr
1
a s, Gq

˘

(5.5.1.1)

therefore reduces us to the case when Z “ SpecpA{pAq. Moreover, by Theorem 2.2.5, the functor
A1 ÞÑ RΓpA1r1p s, Gq satisfies hyperdescent for those p-complete arc hypercovers whose terms are
perfectoid A-algebras, so the cohomology with supports triangle reduces us to the functor

A1 ÞÑ RΓpA1, Gq.

For the latter, the arc descent aspect of Theorem 2.2.5 and invariance of étale cohomology under
Henselian pairs [Gab94, Theorem 1] take care of the prime to p-factor of G. Thus, we may assume
that G is of p-power order and use the p-adic continuity formula (5.3.5.1) to reduce to the functor

A1 ÞÑ RΓpA1{Lpn, Gq.

By Lemma 4.2.6, the functor A1 ÞÑ A1{Lp satisfies hyperdescent for those p-complete arc hypercovers
whose terms are perfectoid A-algebras. Thus, the deformation theoretic Theorem 5.2.8 allows us to
decrease n to reduce to showing p-complete arc hyperdescent for the functor A1 ÞÑ RΓpA1{Lp,Gq. To
reduce further, we choose a system π1{pn P A of compatible p-power roots with π a unit multiple of
p in A (see §2.1.2). As above, by Lemma 4.2.6, each functor A1 ÞÑ A1{Lπ1{pn satisfies hyperdescent
for those p-complete arc hypercovers whose terms are perfectoid A-algebras A1. Thus, by iteratively
applying Theorem 5.2.8 we see that for any p-complete arc hypercover A1 Ñ A1‚ whose terms are
perfectoid A-algebras, the fiber of the hyperdescent comparison map

RΓpA1{Lπ1{pn , Gq Ñ R lim∆pRΓpA1‚{Lπ1{pn , Gqq
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maps isomorphically to the corresponding fiber in which n replaced by n` 1. Thus, by passing to
the filtered direct limit over all n ě 0, we even reduce to considering the functor

A1 ÞÑ RΓplim
ÝÑn

pA1{Lπ1{pnq, Gq.

Since A1{pπ1{p8q – pA1{pA1qred (see (2.1.2.3)) and A1xπy “ A1xπ1{p8y (see (2.1.3.2)), we have

lim
ÝÑn

pA1{Lπ1{pnq
„
ÝÑ pA1{pA1qred.

Thus, we may replace A by the perfect Fp-algebra pA{pAqred to reduce to showing that the functor
A1 ÞÑ RΓpA1, Gq satisfies hyperdescent for those arc hypercovers whose terms are perfect pA{pAqred-
algebras. By (4.1.8.2), this functor is nothing else than

A1 ÞÑ RΓpW pA1q,MpGA1qqV“1,

so Proposition 4.2.7 gives the claim. �

The method also leads to the following agreement of fppf cohomology with fpqc cohomology.

Theorem 5.5.2. For a ring R and a commutative, finite, locally free R-group G, the functor

A ÞÑ RΓfppfpA,Gq

satisfies fpqc hyperdescent on animated R-algebras A.

Proof. We may restrict to G of p-power order for a prime p and have a functorial Cartesian square

RΓfppfpA,Gq //

��

RΓfppfpA
h
ppq, Gq

��

RΓfppfpAr
1
p s, Gq

// RΓfppfpA
h
ppqr

1
p s, Gq,

where p´qh
ppq denotes p-Henselization (see Proposition 5.2.4). By (5.2.6.2) and Proposition 5.2.4,

RΓfppfpAr
1
p s, Gq – RΓétpπ0pAqr

1
p s, Gq and RΓfppfpA

h
ppqr

1
p s, Gq – RΓétpπ0pAq

h
ppqr

1
p s, Gq,

so arc descent, that is, Theorem 2.2.5 and Remark 2.2.6 (with §2.2.1 (1)), reduces us to showing
fpqc hyperdescent for the functor

A ÞÑ RΓfppfpA
h
ppq, Gq.

Theorem 5.3.5 then allows us to instead consider the functor

A ÞÑ RΓfppfpA{
Lpn, Gq.

By fpqc hyperdescent for modules (see §5.2.5), the deformation-theoretic Theorem 5.2.8 reduces us
further to n “ 1. In other words, we have reduced to R being an Fp-algebra. Postnikov-convergence
of Corollary 5.2.7 then allows us to assume that A is n-truncated, and we apply Theorem 5.2.8 again
to assume further that A is even 0-truncated.

The A-flat A1 are then also 0-truncated, so RΓfppfp´, Gq takes coconnective values on them. In
particular, it remains to show fpqc descent as opposed to hyperdescent. Moreover, by ind-fppf
descent as in the proof of Lemma 5.4.2, we may assume that A is semiperfect. By applying the
deformation-theoretic Theorem 5.2.8 and passing to the direct limit over the nilpotent ideals of A,
we may even replace A by its perfection (compare with the proof of Lemma 5.4.2). For perfect A,
we strengthen the sought claim: we will show that any faithfully flat AÑ A1 with Čech nerve A1‚ is
of universal descent for RΓfppfp´, Gq in the sense that for any A-algebra B,

RΓfppfpB,Gq
„
ÝÑ R lim∆ pRΓfppfpA

1‚ bA B,Gqq.
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The advantage of allowing any B is that then, by [LZ17, Lemma 3.1.2 (3)], we can replace AÑ A1

by any refinement. Thus, by Lemma 4.1.6, we may assume that A1 is also perfect. Then we repeat
the same reductions as above to first assume by ind-fppf descent that B is semiperfect and then, by
deformation theory, perfect. Once A, A1, and B are perfect, so is B1 “ B bA A

1, to the effect that
we have reduced the original claim to the case when both A and A1 are perfect Fp-algebras and G is
of p-power order. Theorem 4.1.8 then reduces us to showing that

RΓpW pAq,MpGAqqV“1 „
ÝÑ R lim∆

`

RΓpW pA1‚q,MpGA1‚qqV“1
˘

.

For this, by considering fiber sequences, we may first drop the superscripts “V “ 1,” and then, by
resolving MpGAq by finite projective W pAq-modules (see §4.1.1) and expressing the latter as direct
summands of finite free W pAq-modules, we reduce to showing that

W pAq
„
ÝÑ R lim∆ pW pA

1‚qq.

Since the Witt vectors of a perfect ring is a derived inverse limit of its reductions modulo powers of
p, we may now drop W p´q from both sides and conclude by fpqc descent. �

We conclude the section with the following consequence for p-completely faithfully flat descent.

Corollary 5.5.3. Let R be a ring, let p be a prime, let Z Ă SpecpR{pRq be a closed subset, and let
G be a commutative, finite, locally free R-group of p-power order. On animated R-algebras A, both

A ÞÑ RΓpAhppq, Gq and A ÞÑ RΓZpA,Gq

satisfy hyperdescent for cosimplicial algebras AÑ A‚ such that A{LpÑ A‚{Lp is an fpqc hypercover.

Proof. The p-Henselization Ah
ppq has no effect on A modulo powers of p and, by Lemma 5.2.2,

the map A Ñ A‚ is a faithfully flat hypercover modulo powers of p. Thus, the claim about the
functor A ÞÑ RΓpAh

ppq, Gq follows from the p-adic continuity formula (5.3.5.1) and Theorem 5.5.2.
For the claim about A ÞÑ RΓZpA,Gq, the fiber sequence (5.5.1.1) reduces us to the case when
Z “ SpecpR{pRq. In this case, by excision (5.3.5.4), there is a functorial fiber sequence

RΓtp“0upA,Gq Ñ RΓpAh
ppq, Gq Ñ RΓpAh

ppqr
1
p s, Gq,

which, due to the settled case of A ÞÑ RΓpAh
ppq, Gq, reduces us to considering A ÞÑ RΓpAh

ppqr
1
p s, Gq.

By (5.2.6.2) and Proposition 5.2.4, this functor agrees with A ÞÑ RΓétpπ0pAq
h
ppqr

1
p s, Gq, which, by

Remark 2.2.6 (with §2.2.1 (2)), satisfies hyperdescent for p-completely faithfully flat covers. �

5.6. The continuity formula for flat cohomology

We wish to supplement the p-adic continuity formula of Theorem 5.3.5 with a general continuity
formula for flat cohomology that we present in Theorem 5.6.6 below. We will not use this general
formula other than in §5.7 (whose results will not be used elsewhere in this article), but we give
some of its consequences in Corollaries 5.6.9, 5.6.12 and 5.6.13. The continuity formula concerns
those animated rings that are derived I-adically complete as follows.

5.6.1. Derived I-adic completeness. An animated ring A is derived I-adically complete for an
ideal I Ă π0pAq if A is derived a-adically complete for every a P I, in other words, if

A
„
ÝÑ R limną0pA{

Lanq for a P I.

Similarly to §5.1.7, we may consider A as an object of DpZrXsq via the map ZrXs Ñ A given
by X ÞÑ a. Thus, by [BS15, Proposition 3.4.4], derived I-adic completeness of A is equivalent to
each πipAq being derived a-adically complete for every a P I, and [BS15, Lemma 3.4.12] allows us
to restrict to those a that lie in a fixed generating set of I. Thus, derived I-adic completeness is
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stable under truncations and if I “ pa1, . . . , anq is finitely generated, then, arguing as in the proof of
Lemma 5.4.3, we see that A is derived I-adically complete if and only if

A
„
ÝÑ R limną0pA{

Lpan1 , . . . , a
n
r qq. (5.6.1.1)

Derived I-adic completeness of A is weaker than I-adic completeness of homotopy groups: if
each πipAq is (classically) I-adically complete, then A is derived I-adically complete, see [BS15,
Lemma 3.4.13].

Derived I-adic completeness of A implies I-Henselianity of π0pAq as follows.

Lemma 5.6.2. For an animated ring A and an ideal I Ă π0pAq such that A is derived I-adically
complete, the ring π0pAq is I-Henselian.

Proof. By §5.6.1, the animated aspect of the statement is illusory: we may replace A by π0pAq to
assume that A is 0-truncated. In this case, we use [SP, Lemma 0G1S] to reduce further to the case
when I is principal, generated by an a P I, so that, by Lemma 5.3.4, the ring A an extension of
its a-adic completion by a square-zero ideal J . Thus, since the a-adic completion is a-Henselian,
[SP, Lemma 0DYD] ensures that A is pJ ` paqq-Henselian, and then also a-Henselian. �

The following special case of Corollary 5.6.9 is an input to the overall proof of the continuity formula.

Lemma 5.6.3. For a Henselian pair pR, Iq and a commutative, finite, locally free R-group G,

H2pR,Gq
„
ÝÑ H2pR{I,Gq. (5.6.3.1)

Proof. By [BČ22, Theorem 2.1.6], the map (5.6.3.1) is injective and, for every smooth, affine
R-group Q,

H1pR,Qq
„
ÝÑ H1pR{I,Qq and KerpH2pR,Qq Ñ H2pR{I,Qqq “ t˚u. (5.6.3.2)

Thus, the Bégueri sequence (1.4.2) and the five lemma reduce the surjectivity of (5.6.3.1) to that of
the map H2pR1,Gmqtors Ñ H2pR1{IR1,Gmqtors where R1 :“ ΓpG˚,OG˚q. For the latter, by [Gab81,
Chapter II, Theorem 1], every element of H2pR1{IR1,Gmqtors comes from some H1pR1{IR1,PGLnq,
so it suffices to apply (5.6.3.2) to PGLn over the Henselian pair pR1, IR1q. �

We use these lemmas to show the following case of Theorem 5.6.6 that will serve as an input to the
general case. Its vanishing condition holds when A is of characteristic p and G is of p-power order
(see Corollary 5.3.7), so this case essentially includes the continuity formula in positive characteristic.

Lemma 5.6.4. Let R be a ring, let G be a commutative, finite, locally free R-group, let A be an
animated R-algebra, and let a P A be an element such that A is derived a-adically complete and

H ipA,Gq – H ipA{La,Gq – 0 for i ě 3

(equivalently, H ipπ0pAq, Gq – H ipπ0pAq{paq, Gq – 0 for i ě 3). Then the continuity formula holds:

RΓpA,Gq
„
ÝÑ R limną0pRΓpA{Lan, Gqq. (5.6.4.1)

Proof. The parenthetical reformulation of the vanishing condition follows from Corollary 5.2.9.
This condition and Corollaries 5.2.9 and 5.2.10 ensure that the map (5.6.4.1) is an isomorphism in
cohomological degrees i ě 3. Likewise, by also using Lemmas 5.6.2 and 5.6.3 and the surjectivity
aspect of Corollary 5.2.10 in cohomological degree i “ 1 we see that the map (5.6.4.1) is an
isomorphism in cohomological degree i “ 2. As for nonpositive degrees, it suffices to observe the
following identification that results from G being affine and A being derived a-adically complete:

GpAq
„
ÝÑ R limną0GpA{

Lanq (limit in the 8-category AnipAbq).
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To proceed with the remaining cohomological degree 1, one possible approach (suggested by the
referee) is to carry out a discussion of the cohomological classification of G-torsors over animated
rings and then deduce the claim from the equivalence VectpAq » limn VectpA{Lanq for 8-categories
of vector bundles. For the sake of expedience, we opt for a more pedestrian approach that is based
on the following general reduction to the case when A is 0-truncated and a-adically complete.

By [BS15, Proposition 3.4.4], the derived a-adic completeness of A amounts to the derived X-adic
completeness of each πipAq viewed as a ZrXs-module via the map ZrXs ÞÑ π0pAq given by X ÞÑ a.
In particular, the truncations τďmpAq are again derived a-adically complete. Thus, by applying the
strengthened version of Postnikov completeness presented in Corollary 5.2.7, we may replace A by
the τďmpAq to assume that A is m-truncated for some m ě 0. If m ą 0, then, by Example 5.1.10 (3),
such an A is a square-zero extension of τďm´1pAq by πmpAqrms, so that the deformation-theoretic
triangle

RΓpA,Gq Ñ RΓpτďm´1pAq, Gq Ñ RHomRpe
˚pLG{Rq, πmpAqrm` 1sq

supplied by Theorem 5.2.8, its analogues after derived reduction modulo an, and the derived a-adic
completeness of πmpAq allow us to replace A by τďm´1pAq. By decreasing m in this way, we reduce to
the case when our animated R-algebra A that satisfies the condition on the vanishing of cohomology
is 0-truncated. Moreover, since A is derived a-adically complete, by Lemma 5.3.4, it is an extension
of its a-adic completion by an ideal of square-zero. By [SP, Lemma 05GG, Proposition 091T],
the a-adic completion of A is automatically derived a-adically complete, so the same holds for the
square-zero ideal in question. Thus, by repeating the deformation-theoretic reduction once more and
using Corollary 5.2.10 to retain the vanishing condition, we reduce to the case when our R-algebra
A is a-adically complete.

In this case, for the remaining claim about cohomological degree i “ 1, we first show that the map

R limną0pRΓpA{Lan, Gqq Ñ R limną0pRΓpA{panq, Gqq

is an isomorphism in cohomological degree 1. Due to Corollary 5.2.9, for this it suffices to show that

lim
ÐÝ

1
ną0

H0pA{Lan, Gq
„
ÝÑ lim

ÐÝ
1
ną0

GpA{panqq. (5.6.4.2)

Example 5.1.10 (3) ensures that A{Lan is a square-zero extension of A{panq by pAxanyqr1s, so
Theorem 5.2.8 gives the exact sequences

0 Ñ H1pRHomRpe
˚pLG{Rq, Axa

nyqq Ñ H0pA{Lan, Gq Ñ GpA{panqq Ñ 0. (5.6.4.3)

Since A is a-adically and so also derived a-adically complete, we have R limptAxanyuną0q – 0, so

R limptHomApP,Axa
nyquną0q – 0

for every finite projective A-module P . Since e˚pLG{Rq has perfect amplitude r´1, 0s (see §5.1.11), we
conclude that the systems tH ipRHomRpe

˚pLG{Rq, Axa
nyqquną0 have vanishing lim

ÐÝně0
and lim

ÐÝ
1
ną0

(to
argue this concretely, one uses the lim

ÐÝ
1 sequences [BK72, Chapter IX, Propositions 2.3, Remark 2.6]).

Thus, (5.6.4.3) gives

lim
ÐÝną0

H0pA{Lan, Gq – lim
ÐÝną0

GpA{panqq and lim
ÐÝ

1
ną0

H0pA{Lan, Gq – lim
ÐÝ

1
ną0

GpA{panqq,

so that, in particular, (5.6.4.2) is an isomorphism, as desired.

All that remains to argue for our a-adically complete R-algebra A is that the map

RΓpA,Gq Ñ R limną0pRΓpA{panq, Gqq

is an isomorphism in cohomological degree i “ 1, which amounts to the exactness of the sequence

0 Ñ lim
ÐÝ

1
ną0

GpA{panqq Ñ H1pA,Gq Ñ lim
ÐÝną0

H1pA{panq, Gq Ñ 0. (5.6.4.4)
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Since A is a-adically complete and G is finite, locally free, a G-torsor X amounts to a compatible
sequence of GA{panq-torsors pXn, ιn : Xn`1|A{panq

„
ÝÑ Xnqně0 with specified torsor isomorphisms

ιn. In particular, the third arrow is surjective and its kernel consists of the isomorphism classes
of those systems for which each Xn is trivial. By [BK72, Chapter IX, Section 2.1], the ele-
ments of lim

ÐÝ
1
ną0

GpA{panqq are orbits of the sequences pxnq P
ś

ną0GpA{pa
nqq under the action of

ś

ną0GpA{pa
nqq given by

pgnq ¨ pxnq “ pgn ` xn ´ gn`1|A{panqq. (5.6.4.5)

The sequence pxnq amounts to a sequence of torsor isomorphisms ιn as above with each Xn being a
trivial torsor. A sequence pgnq amounts to a change of trivializations of the Xn, and the effect of
this change on the ιn amounts precisely to the formula (5.6.4.5). From this optic, the first map of
(5.6.4.4) is indeed the inclusion of the classes of those pXn, ιnq for which each Xn is trivial. �

The general continuity formula (5.6.6.1) that we are pursuing and fpqc hyperdescent of Theorem 5.5.2
imply that fppf cohomology with commutative, finite, locally free coefficients should satisfy a-
completely faithfully flat hyperdescent on derived a-adically complete animated rings. We now
establish this hyperdescent directly to later use it as an input to the proof of the continuity formula.

Lemma 5.6.5. Let R be a ring, let G be a commutative, finite, locally free R-group, and let A be an
animated R-algebra. For each cosimplicial animated A-algebra A‚ and each a P A such that A and
each Ai are derived a-adically complete and the map AÑ A‚ is a faithfully flat hypercover modulo a,

RΓpA,Gq
„
ÝÑ R lim∆pRΓpA‚, Gqq. (5.6.5.1)

Proof. Thanks to Lemma 5.2.2, the map A Ñ A‚ is a faithfully flat hypercover modulo every an.
Moreover, by decomposing G into primary factors, we assume that it is of p-power order for a prime
p. By Lemma 5.3.4 and [SP, Lemmas 0DYD and 09XI], for an animated A-algebra A1, the π0p´q of
the derived a-adic completion pA1h

ppqqp of the p-Henselization of A1 (defined using Proposition 5.2.4)
is p-Henselian. Thus, the p-adic continuity formula (5.3.5.1) applies and, together with the fact
that the formation of the derived a-adic completion commutes with reduction modulo p, gives the
identification of functors

RΓppp´qh
ppqqp, Gq – R limną0RΓp´{Lpn, Gq

on derived a-adically complete animated A-algebras. Each functor RΓp´{Lpn, Gq satisfies an
analogue of the desired hyperdescent (5.6.5.1) thanks to the fpqc descent of Theorem 5.5.2 and to
Lemma 5.6.4 (we recall that the vanishing condition of the latter holds for inputs whose π0p´q is
p-Henselian, for instance, whose π0p´q is even killed by some pn, see Corollary 5.3.7). Thus, the
functor RΓppp´qh

ppqqp, Gq also satisfies this analogue, to the effect that it suffices to show the analogue
of (5.6.5.1) for the following functor on derived a-adically complete animated A-algebras:

Fib
´

RΓp´, Gq Ñ RΓppp´qhppqqp, Gq
¯

. (5.6.5.2)

For this, we will use an excision trick to replace G by j!pGq, where j : SpecpRr1p sq Ñ SpecpRq

is the indicated open immersion and j!pGq is taken in the étale topology. Namely, for a-adically
complete animated A-algebras A1, the map A1 Ñ pA1h

ppqqp is an isomorphism modulo p, so the excision
Lemma 5.4.2 and its counterpart for étale cohomology supplied by [BM21, Theorems 1.15 and 5.4]
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imply that the following commutative squares of functors are Cartesian when evaluated on such A1:

RΓp´, Gq

��

// RΓppp´qh
ppqqp, Gq

��

RΓp´, j!pGqq

��

// RΓppp´qh
ppqqp, j!pGqq

��

RΓpp´qr1p s, Gq
// RΓppp´qh

ppqqpr
1
p s, Gq, RΓpp´qr1p s, Gq

// RΓppp´qh
ppqqpr

1
p s, Gq,

where in the second square the cohomology is taken in the étale topology. Thus, the functor (5.6.5.2)
agrees with the functor

Fib
´

RΓp´, j!pGqq Ñ RΓppp´qh
ppqqp, j!pGqq

¯

.

We conclude that it suffices to show the analogue of (5.6.5.1) for each of the functors

RΓp´, j!pGqq and RΓppp´qhppqqp, j!pGqq

where the cohomology is étale. By Proposition 5.2.4, étale cohomology depends only on the π0p´q

of the animated ring in question. Moreover, by Lemma 5.6.2 and the invariance of étale cohomology
with torsion coefficients under Henselian pairs [Gab94, Theorem 1], on derived a-adically complete
animated A-algebras these functors agree with the functors

RΓpp´q{La, j!pGqq and RΓppp´q{Lpq{La, j!pGqq – RΓppp´q{Laq{Lp, j!pGqq.

Thus, the desired hyperdescent for them with respect to AÑ A‚ follows from faithfully flat hyperde-
scent for étale cohomology with torsion coefficients, which itself is a special case of Theorem 2.2.5
(and the fact that faithfully flat maps are arc covers, as reviewed in §2.2.1 (1)). �

We are ready for the promised general continuity formula for flat cohomology. We thank Akhil
Matthew for pointing our attention to such a statement in analogy with [DM17, Theorem 1.5].

Theorem 5.6.6. Let R be a ring and let G be a commutative, finite, locally free R-group. For
an animated R-algebra A and an ideal I “ pa1, . . . , arq Ă π0pAq such that A is derived I-adically
complete, we have the following continuity formula:

RΓpA,Gq
„
ÝÑ R limną0pRΓpA{Lpan1 , . . . , a

n
r q, Gqq. (5.6.6.1)

Proof. The case r “ 0 is clear, so we assume that r ą 0. By §5.6.1 and the proof of Lemma 5.4.3,
derived I-adic completeness amounts to A being equal to its iterated derived ai-adic completion for
i “ 1, . . . , r. Moreover, each A{Lpan1 , . . . , anr´1q inherits derived ar-adic completeness from A and

R limną0pA{
Lpan1 , . . . , a

n
r qq – R limną0pR limmě0pA{

Lpan1 , . . . , a
n
r´1, a

m
r qqq,

and likewise after first applying RΓp´, Gq. Thus, since (5.6.1.1) also holds with ar omitted, we
induct on r to reduce to the case r “ 1. From now on we place ourselves in this case and set a :“ a1.

By Theorem 5.5.2 and Lemma 5.6.5, both sides of (5.6.6.1) satisfy hyperdescent with respect to
cosimplicial animated A-algebras A‚ such that each Ai is derived a-adically complete and the map
AÑ A‚ is a faithfully flat hypercover modulo every an. In particular, (5.6.6.1) holds for A once it
holds for each Ai. We use Proposition 5.2.4 and Lemma 5.3.1 to construct such an A‚ for which each
Ai is the derived a-adic completion of an animated A-algebra A1i that has no nonsplit étale covers.
Lemma 5.3.4 ensures that π0pA

iq is a square-zero extension of the a-adic completion of π0pA
1iq, so

Proposition 5.2.4 and [SP, Lemmas 09XI and 04D1] imply that π0pA
iq also has no nonsplit étale

covers. Thus, by applying Proposition 5.2.4 one more time and renaming Ai to A, we are reduced to
the case when our a-adically complete animated R-algebra A, equivalently, π0pAq, has no nonsplit
étale covers. In this case, the Bégueri sequence (1.4.2) shows that HjpA,Gq – 0 for j ě 2. By
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Proposition 5.2.4 and [SP, Lemma 04D1], each A{Lan also has no nonsplit étale covers, so the Bégueri
sequence and (5.2.6.2) also show that HjpA{Lan, Gq – 0 for j ě 2. Thus, applying Lemma 5.6.4
gives the conclusion. �

Example 5.6.7. Let R be a ring that is derived complete (for example, complete) with respect to a
finitely generated ideal I “ pa1, . . . , arq Ă R and let G be a commutative, finite, locally free R-group
scheme. Since R is derived ai-adically complete for i “ 1, . . . , r, one argues as in the beginning of
the proof of Theorem 5.6.6 that the condition (5.6.1.1) holds. Thus, (5.6.6.1) and Corollaries 5.2.9
and 5.2.10 show that for i ě 2 the map

H ipR,Gq Ñ H ipR{I,Gq is

#

surjective for i ě 1,

bijective for i ě 2.
(5.6.7.1)

Similarly, for i “ 1 they give a short exact sequence

0 Ñ lim
ÐÝ

1
ną0

H0pR{Lpan1 , . . . , a
n
r q, Gq Ñ H1pR,Gq Ñ lim

ÐÝną0
H1pR{In, Gq Ñ 0. (5.6.7.2)

The animated rings R{Lpan1 , . . . , anr q are r-truncated, so if R is I-adically complete, then we may
argue as after (5.6.4.3) with Axany replaced by the positive homotopy groups of the R{Lpan1 , . . . , anr q
to inductively replace R{Lpan1 , . . . , anr q by its j-truncation for j “ r ´ 1, . . . , 0 in (5.6.7.2). In effect,
if R is I-adically complete, then the sequence (5.6.7.2) takes the more concrete form

0 Ñ lim
ÐÝ

1
ną0

GpR{Inq Ñ H1pR,Gq Ñ lim
ÐÝną0

H1pR{In, Gq Ñ 0.

Remark 5.6.8. Contrary to the p-adic continuity formula (5.3.5.1), even in the case when the
ideal I in Theorem 5.6.6 is principal, the general continuity formula (5.6.6.1) does not hold if A
is merely I-Henselian (in the sense that π0pAq is I-Henselian). Indeed, if the Henselian version
held, then together with the complete version (5.6.6.1) it would imply that the cohomology groups
H1pFpttu, µpq and H1pFpJtK, µpq are isomorphic, where Fpttu is the t-Henselization of Fprts. However,
the Kummer sequence shows that H1pFpttu, µpq is countable, whereas H1pFpJtK, µpq is not.

As the following corollary shows, the insufficiency of Henselianity is a low degree phenomenon. This
complements [BČ22, Theorem 2.1.6], which showed that for a smooth, quasi-affine group scheme Q,
the functor H1p´, Qq is invariant under Henselian pairs.

Corollary 5.6.9. For a Henselian pair pR, Iq and a commutative, finite, locally free R-group G,

H ipR,Gq Ñ H ipR{I,Gq is

#

surjective for i ě 1,

bijective for i ě 2.

The case G “ µn of this corollary amounts to an unpublished result of Gabber. Moreover, when R is
Henselian local, it continues to hold for any commutative, flat, finitely presented R-group algebraic
space G, see [Čes15, Proposition B.13] which essentially restates [Toë11, corollaire 3.4], but beyond
local R there are counterexamples even when G “ Gm, see [BČ22, Remark 2.1.8].

Proof. The surjectivity for i “ 1 follows from [BČ22, Theorem 2.1.6 (b)] (and does not require G to
be commutative), so we assume that i ě 2. Moreover, we use limit formalism for flat cohomology
to assume that pR, Iq is the Henselization of a finite type Z-algebra along some ideal, so that, by
[SP, Lemma 0AGV], the ring R is Noetherian and, by [SP, Lemmas 0AH3 and 0AH2], the fibers of
the map R Ñ pR to the I-adic completion are geometrically regular. Thus, [BČ22, Lemma 2.1.3]
(which is based on Popescu’s theorem) allows us to assume that R is even complete. This case
follows from (5.6.7.1). �
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This invariance under Henselian pairs leads to the following algebraization statement for flat coho-
mology, which complements analogous algebraization for étale cohomology [BČ22, Corollary 2.1.20]
and for torsors under smooth, quasi-affine groups [BČ22, Corollary 2.1.22].

Corollary 5.6.10. Let B be a topological ring that has an open nonunital subring B1 Ă B such that
B1 is Henselian as a nonunital ring and has an open neighborhood base of zero consisting of ideals of
B1, and let pB be the completion of B. For each commutative, finite, locally free B-group G,

H ipB,Gq
„
ÝÑ H ip pB,Gq for i ě 2.

Proof. By Corollary 5.6.9, the axiomatic criterion [BČ22, Theorem 2.1.15] applies and gives the
claim. �

Example 5.6.11. Letting Rttu denote the t-Henselization of Rrts for a ring R, one may choose
B :“ Rttur1t s and B1 :“ tRttu with B1 equipped with its t-adic topology, so that pB – Rpptqq.
Another example is that of a Henselian pair pA, Iq: one may choose B :“ A and B1 :“ I with B1

equipped with the coarse topology, so that pB – A{I (thus, Corollary 5.6.10 recovers the i ě 2 case
of Corollary 5.6.9). For further examples of possible B and B1, see [BČ22, Example 2.1.18].

The continuity formula also allows us to extend Corollary 5.3.8 beyond a p-adic case as follows.

Corollary 5.6.12. Let R be a ring, let G be a commutative, finite, locally free R-group, let AÑ A1

be a map of animated R-algebras, and let I Ă π0pAq be a finitely generated ideal such that π0pAq is
I-Henselian, π0pA

1q is Ipπ0pA
1qq-Henselian, and π0pAq{I

„
ÝÑ pπ0pAq{Iq b

L
A A

1. Letting

U :“ Specpπ0pAqqzSpecpπ0pAq{Iq

be the complement of the vanishing locus of I, we have

H ipRΓpUA, Gqq
„
ÝÑ H ipRΓpUA1 , Gqq for i ě 2.

Proof. The excision of Theorem 5.4.4, the cohomology with supports sequence, and the five lemma
reduce us to showing that H ipA,Gq

„
ÝÑ H ipA1, Gq for i ě 2. By Corollaries 5.2.9 and 5.6.9, this

map is identified with H ipπ0pAq{I,Gq Ñ H ipπ0pA
1q{Iπ0pA

1q, Gq, which is an isomorphism because,
by our assumptions, even π0pAq{I

„
ÝÑ π0pA

1q{Iπ0pA
1q. �

We conclude this section with an algebraization result whose special case with G “ µn was announced
in [Gab93, Theorem 2.8 (ii)]. For an argument for [Gab93, Theorem 2.8 (i)], see [BČ22, Corol-
lary 2.3.5 (b)–(c)].

Corollary 5.6.13. Let RÑ R1 be a map of Noetherian rings, let G be a commutative, finite, locally
free R-group, and let I Ă R be an ideal such that R is I-Henselian, R1 is IR1-Henselian, and
R{In

„
ÝÑ R1{InR1 for n ą 0. For each open

SpecpRqzSpecpR{Iq Ă U Ă SpecpRq,

we have
H ipU,Gq

„
ÝÑ H ipUR1 , Gq for i ě 2. (5.6.13.1)

Proof. Since the map R Ñ R1 is an isomorphism on I-adic completions, we lose no generality by
assuming that R1 is the I-adic completion of R, so that the map R Ñ R1 is flat. Due to this
flatness, Corollary 5.6.12 applies and settles the case U “ SpecpRqzV pIq. In the general case, we
first note that, by [BČ22, Corollary 2.3.5 (c)], the map (5.6.13.1) is injective for i “ 2. Thus, setting
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Z :“ U X SpecpR{Iq, we use the cohomology with supports sequence and the five lemma to reduce
to showing that

RΓZpU,Gq
„
ÝÑ RΓZpUR1 , Gq. (5.6.13.2)

Both sides of (5.6.13.2) are Zariski sheaves on U , so we may argue locally on U to reduce to the
case U “ SpecpRq and then use the excision of Theorem 5.4.4 to conclude. �

5.7. Adically faithfully flat descent for flat cohomology with supports

The continuity formula of Theorem 5.6.6 and the fpqc descent of Theorem 5.5.2 imply that flat coho-
mology of I-adically complete animated rings satisfies I-completely faithfully flat hyperdescent. We
complement this by establishing the same for flat cohomology with supports in I, see Theorem 5.7.2.
The results of this section will not be used elsewhere in this article.

Lemma 5.7.1. Let A be a perfectoid ring that is derived I-adically complete for a finitely generated
ideal I “ pa1, . . . , arq Ă A and let M be a derived I-adically complete animated A-module. If each
M{Lpan1 , . . . , a

n
r q is flat as an animated A{Lpan1 , . . . , a

n
r q-module, then M is 0-truncated.

Proof. By Lemma 2.2.3, there is a p-complete arc hypercover AÑ A‚ whose terms Ai are perfectoid
rings that are products of p-adically complete valuation rings of dimension ď 1 with algebraically
closed fraction fields. By Lemma 4.2.6, we have A „

ÝÑ R lim∆A
‚, so, for n ě 0, also

A{Lpan1 , . . . , a
n
r q

„
ÝÑ R lim∆pA

‚{Lpan1 , . . . , a
n
r qq.

Thus, if each M{Lpan1 , . . . , anr q is A{Lpan1 , . . . , anr q-flat, as we assume from now on, then we also have

M{Lpan1 , . . . , a
n
r q

„
ÝÑ R lim∆ppM bL

A A
‚q{Lpan1 , . . . , a

n
r qq, and so also M

„
ÝÑ R lim∆pM pb

L
AA

‚q,

where pb
L
A denotes the iterated derived aj-adic completion of the derived tensor product. Since M is

an animated A-module, it is connective. Thus, due to the last isomorphism, it is enough to show
that each M pb

L
AA

i is 0-truncated. The latter is an animated module over the iterated derived aj-adic
completion xAi of Ai. By the explicit nature of Ai, this xAi is the product of a subset of the valuation
rings comprising Ai, in particular, xAi is also perfectoid. In conclusion, we may replace A by xAi and
M by M pb

L
AA

i, respectively, and subdivide into further subproducts if needed, to reduce to the case
when the ideal I Ă A is principal, generated by some a P A that has compatible p-power roots in A.

In this case, we set M 1 :“ lim
ÐÝną0

pM{anMq and we claim that the canonical map M Ñ M 1 is
an isomorphism—this will imply that M is 0-truncated, as desired. Both M and M 1 are derived
a-adically complete (see §5.6.1), so it suffices to check that M{La „

ÝÑM 1{La. Lemma 5.2.2 and the
assumption on M imply that M{La is A{La-flat, and [Yek18, Theorem 2.8] implies that the map in
question is an isomorphism on π0p´q. Thus, by §5.2.1, it suffices to check that M 1{La is A{La-flat
or, by Lemma 5.2.2 again, that M 1 bL

A A{a is 0-truncated and A{a-flat. This, however, is a special
case of [Yek18, Theorem 6.9 (with Theorem 4.3)] (to apply loc. cit., we note that, in the terminology
there, the ideal paq Ă A is weakly proregular because Axay “ Axa8y by (2.1.3.2) above). �

Theorem 5.7.2. Let R be a ring, let G be a commutative, finite, locally free R-group, let A be an
animated R-algebra, and let I “ pa1, . . . , arq Ă π0pAq be an ideal. For each cosimplicial animated
A-algebra A‚ such that the map A{Lpa1, . . . , arq Ñ A‚{Lpa1, . . . , arq is a faithfully flat hypercover,

RΓIpA,Gq
„
ÝÑ R lim∆pRΓIpA

‚, Gqq. (5.7.2.1)
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If A and the terms of A‚ are derived I-adically complete, then, letting U Ă Specpπ0pAqq be the
complement of the vanishing locus of I, equivalently, we have

RΓpA,Gq
„
ÝÑ R lim∆pRΓpA‚, Gqq and RΓpUA, Gq

„
ÝÑ R lim∆pRΓpUA‚ , Gqq. (5.7.2.2)

Proof. By the continuity formula of Theorem 5.6.6 and the fpqc descent of Theorem 5.5.2, if A and
the terms of A‚ are derived I-adically complete, then

RΓpA,Gq
„
ÝÑ R lim∆pRΓpA‚, Gqq.

In particular, the cohomology with supports triangle then implies that (5.7.2.1) and the second
isomorphism in (5.7.2.2) are equivalent. In general, by excision Theorem 5.4.4, the claimed (5.7.2.1)
is insensitive to replacing A and the terms of A‚ by their iterated ai-adic completions for i “ 1, . . . , r,
so we lose no generality by assuming that A and the terms of A‚ are all derived I-adically complete.

By decomposing into primary factors, we may assume that G is of p-power order for a prime p. If p
is invertible in π0pAq, then G is étale over R, so, by (5.2.6.2) and Proposition 5.2.4, we have

RΓIpA,Gq – RΓIpπ0pAq, Gq and RΓIpA
‚, Gq – RΓIpπ0pA

‚q, Gq.

By Lemma 5.6.2, the rings π0pAq and π0pA
‚q are I-Henselian. Moreover, by §2.2.1 (2) and

Lemma 5.2.2, the map π0pAq Ñ π0pA
‚q is an I-complete arc hypercover. Thus, in the case

when p is invertible in π0pAq, the claim follows from I-complete hyperdescent for étale cohomology,
more precisely, from Remark 2.2.6. In general, this case shows that the third term of the triangle

RΓI`ppqpA,Gq Ñ RΓIpA,Gq Ñ RΓIpAr
1
p s, Gq

satisfies the analogue of (5.7.2.1). Thus, we may replace I by I`ppq to henceforth assume that p P I.

Our next goal is to reduce to the case when A is an animated Fp-algebra, and for this, as in the proof
of Lemma 5.6.5, we will use the excision trick of replacing G by the extension by zero j!pGq taken
in the étale topology, where j : SpecpRr1p sq Ñ SpecpRq is the indicated open immersion. Namely,
letting A1 range over those animated A-algebras fppf over A for which Specpπ0pA

1qq Ñ Specpπ0pAqq
factors over U (compare with §5.2.5), by the excision Lemma 5.4.2 and its counterpart for étale
cohomology supplied by [BM21, Theorems 1.15 and 5.4], we have the Cartesian squares

RΓpUA, Gq

��

// R limA1 RΓpA1h
ppq, Gq

��

RΓpUA, j!pGqq

��

// R limA1 RΓpA1h
ppq, j!pGqq

��

RΓpAr1p s, Gq
// R limA1 RΓpA1h

ppqr
1
p s, Gq, RΓpAr1p s, Gq

// R limA1 RΓpA1h
ppqr

1
p s, Gq,

where p´qh
ppq denotes the p-Henselization and in the second square the cohomology is taken in the

étale topology. Of course, we also have the analogous squares for the terms of A‚, and we claim that
the common fiber of the horizontal maps in the two squares above satisfies hyperdescent with respect
to A Ñ A‚, that is, that it satisfies the analogue of (5.7.2.1) and (5.7.2.2). For this, it suffices to
show the same claim for the terms RΓpUA, j!pGqq and R limA1 RΓpA1h

ppq, j!pGqq. For RΓpUA, j!pGqq,
this again follows from I-complete hyperdescent for étale cohomology, that is, from Remark 2.2.6.
On the other hand, by invariance of étale cohomology under Henselian pairs [Gab94, Theorem 1],

R limA1 RΓpA1h
ppq, j!pGqq – RΓpUA1{

Lp, j!pGqq – RΓpUA1{Lp, j!pGqq.

Thus, I-complete arc hyperdescent for étale cohomology discussed in Remark 2.2.6 also handles
the terms R limA1 RΓpA1h

ppq, j!pGqq. In conclusion, the common fibers of the horizontal maps do
indeed satisfy the analogue of (5.7.2.1) and (5.7.2.2). By inspecting the top horizontal map of the
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left square, this means that our overall desired conclusion reduces to its analogue for the term
R limA1 RΓpA1h

ppq, Gq. By the p-adic continuity formula of Theorem 5.3.5, this term is identified with

R limną0RΓpUA{Lpn , Gq.

In effect, it suffices to show that RΓpUA{Lpn , Gq
„
ÝÑ RΓpUA‚{Lpn , Gq for every n ą 0, in other words,

we are allowed to replace A by A{Lpn in the overall claim we are seeking to prove.

To reduce further to the desired n “ 1, we now establish insensitivity to square-zero extensions: for
a square-zero extension AÑ A by an animated A-module M , the desired (5.7.2.1) holds if and only
if it holds after base change to A. For this, by excision of Theorem 5.4.4, the claim is insensitive to
replacing A and A by their iterated ai-adic completions for i “ 1, . . . , r and A‚ by its corresponding
base changes. Thus, since these completions form a square-zero extension by the corresponding
completion of M (see §5.1.9), we lose no generality by assuming that A, A, and M are all derived
I-adically complete. Fpqc hyperdescent for modules, as discussed at the end of §5.2.5, then gives

M
„
ÝÑ R lim∆pM bL

A A
‚q.

Thus, the deformation-theoretic triangle of Theorem 5.2.8 and its counterparts after base change to
A‚ give the claimed insensitivity to square-zero extensions.

In the rest of the proof we focus on the remaining case when A is an animated Fp-algebra. Moreover,
Postnikov completeness of Corollary 5.2.7 allows us to replace A and A‚ by τďnpAq and τďn bL

A A
‚,

respectively, for a variable n, so we may assume that A is n-truncated. By then iteratively combining
the insensitivity to square-zero extensions with Example 5.1.10 (3), we reduce to 0-truncated A.
Once A is a 0-truncated Fp-algebra, we consider the ind-fppf, faithfully flat, semiperfect A-algebra

A8 :“ ArX1{p8

a | a P As{pXa ´ a | a P Aq.

The terms of the Čech nerve of the ind-fppf cover AÑ A8 are all semiperfect Fp-algebras, so, by
ind-fppf descent for flat cohomology, we lose no generality by replacing the hypercover AÑ A‚ by its
bases changes to these terms to reduce to the case when A is a semiperfect Fp-algebra. By iteratively
using the insensitivity to square-zero extensions and passing to a filtered direct limit, we may then
replace A by Ared and A‚ by its base change to Ared to reduce further to a perfect Fp-algebra A.

By excision Theorem 5.4.4 as before, we may replace A and the Aj by their iterated derived ai-
adic completions for i “ 1, . . . , r to assume that A and the Aj are derived I-adically complete:
Proposition 2.1.11 (e) ensures that the resulting A is still a perfect Fp-algebra. By Lemma 5.7.1, the
Aj are then also 0-truncated, to the effect that the functor RΓIp´, Gq takes coconnective values on
them. Thus, it suffices to show descent instead of hyperdescent, more precisely, we lose no generality
by assuming that A Ñ A‚ is of Čech type, associated to a map of Fp-algebras A Ñ A1 such that
A{Lpa1, . . . , arq Ñ A1{Lpa1, . . . , arq is faithfully flat. This property is preserved by the preceding
reductions, so we repeat them once more to again reduce to A being perfect (this time, to preserve
the Čech property, we only I-adically complete A and A1 and not the other terms of A‚).

Once AÑ A‚ is of Čech type with a perfect Fp-algebra A and a 0-truncated A1, we claim that the
desired descent (5.7.2.1) holds even after replacing A Ñ A‚ by its base change to any animated
A-algebra B. The advantage of this claim is that, by [LZ17, Lemma 3.1.2 (3)], it is insensitive to
replacing AÑ A1 by a refinement AÑ A1 Ñ A2. Thus, we let A2 :“ lim

ÝÑaÞÑap
A1 be the perfection

of A1: since A is perfect, the map A{Lpa1, . . . , arq Ñ A2{Lpa1, . . . , arq is still faithfully flat. In effect,
we may assume that both A and A1 are perfect at the cost of having to show (5.7.2.1) after base
change to any animated A-algebra B. We then repeat the preceding reductions for this base change
to B to reduce further to the case when B is also a perfect Fp-algebra. Since A and A1 are also
perfect, by [BS17, Proposition 11.6], the B bL

A A
j are then also perfect Fp-algebras.
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In conclusion, we are left with the case when the hypercover A Ñ A‚ is of Čech type and only
involves perfect Fp-algebras. As before, we pass to iterated derived ai-adic completions of its terms
and use excision Theorem 5.4.4 to arrange that A and all the Aj are derived I-adically complete
(and still perfect by Proposition 2.1.11 (e)). Theorem 4.1.8 then reduces us to showing that

RΓpp, IqpW pAq,MpGqqV“1 „
ÝÑ R lim∆pRΓpp, IqpW pA

‚q,MpGA‚qqV“1q,

where we abusively write pp, Iq for the ideal J ĂW pAq generated by p and the Teichmüllers of the
ai. For this, the mapping fiber triangle allows us to remove the superscripts p´qV“1. Similarly, since
the crystalline Dieudonné module MpGq is of projective dimension ď 1 over W pAq and its formation
commutes with base change (see §4.1.1), it suffices to show that

RΓJpW pAq,W pAqq
„
ÝÑ R lim∆pRΓJpW pA

‚q,W pA‚qqq.

By [SP, Lemma 0954], we have RΓJpW pAq,W pAqq – lim
ÝÑną0

RHomW pAqpW pAq{J
n,W pAqq, and

likewise for W pA‚q, so it suffices to show that

RHomW pAqpW pAq{J
n,W pAqq

„
ÝÑ R lim∆pRHomW pA‚qpW pA

‚q{JnW pA‚q,W pA‚qqq, (5.7.2.3)

where the maps are induced by base change. Since p is a nonzerodivisor in W pAq and W pAjq, our
assumption about faithful flatness modulo pa1, . . . , anq and Lemma 5.2.2 ensure that

W pAq{Jn bL
W pAqW pA

‚q –W pA‚q{JnW pA‚q.

Consequently, the target of the map (5.7.2.3) is identified with

R lim∆pRHomW pAqpW pAq{J
n,W pA‚qqq – RHomW pAqpW pAq{J

n, R lim∆W pA
‚qq. (5.7.2.4)

Moreover, by faithfully flat descent and derived J-adic completeness, we have

W pAq{Lpp, a1, . . . , arq
„
ÝÑ R lim∆pW pA

‚q{Lpp, a1, . . . , arqq, so also W pAq
„
ÝÑ R lim∆W pA

‚q.

By combining this isomorphism with (5.7.2.4), we obtain the desired (5.7.2.3). �

6. The characteristic-primary aspects of the main result

We have gathered all the ingredients we need to exhibit purity for flat cohomology. In §6.1, we
establish the general case of the key formula (1.1.6) and obtain the perfectoid version of flat purity.
In §6.2, we then deduce the remaining “bad residue characteristic” cases of our main purity results.

6.1. The key formula and purity for flat cohomology of perfectoid rings

We are ready for the key formula that relates flat cohomology of a perfectoid ring to quasi-coherent
cohomology of its Ainf with values in prismatic Dieudonné modules MpGq reviewed in §4.2.1.

Theorem 6.1.1. For a prime p, a perfectoid ring A, a commutative, finite, locally free, A-group G
of p-power order, and a closed Z Ă SpecpA{pAq, we have a functorial in A, G, and Z identification

RΓZpA,Gq – RΓZpAinfpAq,MpGqqV“1. (6.1.1.1)

Here we choose the same ξ when defining V over perfectoid A-algebras, see §4.2.1 and §2.1.2.

Proof. We may assume that A is a Zp-algebra and, by passing to an inverse limit in the end if
necessary, we may assume that Z is the vanishing locus of a finite number of elements of A.

Let us begin with the case when A “
ś

iPI Ai for perfectoid valuation rings Ai of rank ď 1 that
have algebraically closed fraction fields. For such A, our closed subset Z is cut out by a single
a P A with a | p. We choose compatible p-power roots a5 P A5 of a, so that a5 | p5 and a5 cuts

74

https://stacks.math.columbia.edu/tag/0954


out Z Ă SpecpA5{p5A5q (see §2.1.2, especially (2.1.1.2)–(2.1.2.2), as well as Proposition 2.1.9). By
Proposition 4.2.10, we have

H ipA,Gq – H ipAr 1
a s, Gq – 0 for i ě 1,

the map V ´ 1 is surjective on MpGq and MpGqr 1
ra5s
s, and there is a unique commutative square

GpAq

����

(4.2.4.1)
„

// MpGqV“1

����

GpAr 1
a sq

„ // pMpGqr 1
ra5s
sqV“1.

Thus, by the cohomology with supports sequence, RΓZpA,Gq and RΓZpAinfpAq,MpGqqV“1 are
concentrated in degree 0 and identified. Due to the functoriality of the isomorphism (4.2.4.1) and
the uniqueness of the above diagram, this identification is functorial in A, Z, and G, as desired.

For general A, by Theorem 5.5.1, the left side of (6.1.1.1) satisfies hyperdescent for those p-complete
arc hypercovers whose terms are perfectoid Zp-algebras. By Proposition 4.2.7, so does the right side.
To then deduce the general case from the already settled case of

ś

iPI Ai as above, it remains to
recall from Lemma 2.2.3 that such products form a base of the p-complete arc topology of A. �

With the key formula in hand, a similar argument to the one we used in positive characteristic at
the end of the proof of Proposition 4.1.13 now gives purity for flat cohomology of perfectoid rings.

Theorem 6.1.2. For a prime p, a perfectoid ring A, a commutative, finite, locally free A-group G of
p-power order, a closed Z Ă SpecpA{pAq, and a regular sequence a1, . . . , ad P A that vanishes on Z,

H i
ZpA,Gq – 0 for i ă d.

Proof. By (6.1.1.1) and a long exact cohomology sequence, it suffices to show that

H i
ZpAinfpAq,MpGqq – 0 for i ă d. (6.1.2.1)

By §4.2.1, the AinfpAq-module MpGq is finitely presented of projective dimension ď 1, so

H i
ZpAinfpAq,AinfpAqq – 0 for i ă d` 1

would suffice. For this, we use the AinfpAq-regular sequence a0 :“ ξ, a1, . . . , ad, where ξ is a generator
of Kerpθ : AinfpAq � Aq (see §2.1.2). Namely, since the ai vanish on Z and H i

ZpAinfpAq,Mq is
supported on Z for every AinfpAq-module M , decreasing induction on ´1 ď j ď d gives the sufficient

H i
ZpAinfpAq,AinfpAq{pa0, . . . , ajqq – 0 for i ă d´ j. �

6.2. Purity for flat cohomology of local complete intersections

We conclude the proof of purity for flat cohomology by reducing to its settled perfectoid case in
Theorem 6.2.3. The following lemmas help to pass to completions in the appearing perfectoid towers.

Lemma 6.2.1 ([Yek18, Theorems 1.3 and 1.5]). Let I Ă R be an ideal in a Noetherian ring R. Every
I-adically complete R-module M that is I-completely flat (meaning that M bL

R R{I is concentrated
in degree 0 and R{I-flat) is flat. In particular, the I-adic completion of a flat R-module is flat. �

Lemma 6.2.2. Let A be a ring, let a P A, and let pA be the a-adic completion. Each A-regular sequence
a1, . . . , an P A such that A{pa1, . . . , aiq has bounded a8-torsion for 0 ď i ď n is pA-regular and

pA{pa1, . . . , anq
„
ÝÑ pA{pa1, . . . , anqqp.
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Proof. The bounded torsion assumption implies that the derived a-adic completions of the short
exact sequences 0 Ñ A{pa1, . . . , ai´1q

ai
ÝÑ A{pa1, . . . , ai´1q Ñ A{pa1, . . . , aiq Ñ 0 for 1 ď i ď n

agree with their classical a-adic completions. In particular, we obtain short exact sequences
0 Ñ pA{pa1, . . . , ai´1qqp

ai
ÝÑ pA{pa1, . . . , ai´1qqpÑ pA{pa1, . . . , aiqqpÑ 0, which show the claim. �

Theorem 6.2.3. For a Noetherian local ring pR,mq that is a complete intersection and a commutative,
finite, flat R-group G,

H i
mpR,Gq – 0 for i ă dimpRq.

Proof. By decomposing into primary factors, we may assume that G is of p-power order for a prime
p. Theorem 3.2.4 settles the case when p is invertible in R, so we assume that p “ charpR{mq.
Moreover, by Corollary 5.4.5, we may assume that R is m-adically complete, so that there is an
unramified, complete, regular, local ring p rR, rmq and a regular sequence f1, . . . , fn P rm such that

R » rR{pf1, . . . , fnq

(see §1.4). We will argue the desired vanishing by induction on i for all R at once.

We use Lemma 3.1.1 (a) to find a filtered direct system of regular, local, finite, flat rR-algebras
rRj with lim

ÝÑj
rRj a regular local ring with an algebraically closed residue field. By the inductive

assumption, Lemma 4.1.12, and a limit argument, we may replace R by plim
ÝÑj

rRjq{pf1, . . . , fnq and

then apply Corollary 5.4.5 again to assume that rR has an algebraically closed residue field. Once
this is arranged, the passage to a tower argument carried out with Lemma 3.1.1 (b) instead supplies
a faithfully flat rR-algebra rR8 whose p-adic completion is perfectoid for which we need to show that

H i
mp

rR8{pf1, . . . , fnq, Gq – 0 for i ă dimpRq.

By Corollary 5.3.8 and Lemma 6.2.2, we may replace rR8 by its perfectoid p-adic completion. Thus,
it suffices to show that for any p-torsion free perfectoid ring A that is p-completely faithfully flat
over rR in the sense that A{pnA is faithfully flat over rR{pn rR for n ą 0,

H i
mpA{pf1, . . . , fnq, Gq – 0 for i ă dimpRq. (6.2.3.1)

By Lemma 6.2.1, such an A is even rR-flat, so the sequence f1, . . . , fn is A-regular. By André’s
lemma, that is, by Theorem 2.3.4, there is an ind-syntomic, faithfully flat A-algebra A1 whose p-adic
completion xA1 is perfectoid and contains compatible p-power roots f1{p8

i for i “ 1, . . . , n. A limit
argument then gives the spectral sequence

Est1 “ Ht
mppA

1 bA . . .bA A
1

looooooooomooooooooon

s`1

q{pf1, . . . , fnq, Gq ñ Hs`t
m pA{pf1, . . . , fnq, Gq.

By Corollary 5.3.8 and Lemma 6.2.2 again (with elementary excision as in footnote 24 to p-Henselize
the tensor products), we may replace the A1 bA . . . bA A1 by their p-adic completions, which are
perfectoid by Proposition 2.1.11 (b). Thus, the spectral sequence above allows us to assume that our
perfectoid A in (6.2.3.1) contains compatible p-power roots f1{p8

i .25

25Another way to carry out this reduction is to use the version [BS22, Theorem 7.14] of André’s lemma. Then A1

is only p-completely faithfully flat over A but is a perfectoid right away and contains compatible p-power roots f1{p8

i .
One then combines Corollary 5.5.3 and Theorem 5.4.4 (with Lemma 6.2.2 again) to obtain the spectral sequence with
p-adic completions already inside. This avoids Theorem 2.3.4 at the cost of relying on heavier inputs from Chapter 5.
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For every R-regular sequence r1, . . . , rdimpRq P rm, the sequence f1, . . . , fn, r1, . . . , rdimpRq is A-regular,
so Lemma 4.1.11 together with a limit argument reduces us to showing that

H i
mpA{pf

1{p8

1 , . . . , f1{p8

n q, Gq – 0 for i ă dimpRq. (6.2.3.2)

By the rR-flatness of A and [SP, Lemma 07DV], for every m1, . . . ,mn ě 0, every permutation of
the sequence f1{pm1

1 , . . . , f
1{pmn

n , r1, . . . , rdimpRq is A-regular. Thus, by induction on the number of
nonzero exponents m`, the A-module A{pf1{pm1

1 , . . . , f
1{pmn

n , r1, . . . , rjq is isomorphic to a submodule
of A{pf1, . . . , fn, r1, . . . , rjq for j “ 0, . . . ,dimpRq. In particular, by the rR-flatness of A, its p8-
torsion is killed by pN for some fixed N ą 0 that does not depend on the m` or on j. By forming
colimits, this pN then kills every pA{pf1{p8

1 , . . . , f
1{p8

n , r1, . . . , rjqqxp
8y, so Lemma 6.2.2 ensures that

r1, . . . , rdimpRq is still a regular sequence in the p-adic completion pA{pf1{p8

1 , . . . , f
1{p8

n qqp. However,
by Proposition 2.1.11 (c), the latter is perfectoid, so Theorem 6.1.2 gives

H i
mppA{pf

1{p8

1 , . . . , f1{p8

n qqp, Gq – 0 for i ă dimpRq.

By Corollary 5.3.8, this vanishing gives the desired (6.2.3.2). �

For étale G, the variant of purity that involves the virtual dimension (defined in §3.2.1) follows, too.

Theorem 6.2.4. For a Noetherian local ring pR,mq and a commutative, finite, étale R-group G,

H i
mpR,Gq – 0 for i ă vdimpRq.

Proof. Theorem 3.2.4 and its proof settle the case when the order of G is invertible in R and reduce
the rest to the case when G “ Z{pZ with p “ charpR{mq ą 0 and R is a quotient of a regular local
ring by a principal ideal. Such an R is a complete intersection for which Theorem 6.2.3 gives

H i
mpR,Z{pZq – 0 for i ă vdimpRq

(3.2.1.2)
“ dimpRq. �

Remark 6.2.5. To avoid repetitiveness, we deduced Theorem 6.2.4 from Theorem 6.2.3, although
the proof of the latter simplifies significantly for G “ Z{pZ. For example, to pass to completions in
this case, we may replace Corollaries 5.3.8 and 5.4.5 by the simpler Lemma 3.1.2. Moreover, since
the étale site is insensitive to nilpotents, there is no need to appeal to Lemma 4.1.11 when reducing
to (6.2.3.2). Finally, there is no need to refer to Theorem 6.1.2 in the end: Theorem 2.2.7 directly
reduces to positive characteristic granted that one uses [GR18, Proposition 16.4.17] to transfer depth.

Remark 6.2.6. In contrast to Theorem 6.2.4, in Theorem 6.2.3 we cannot drop the complete intersec-
tion assumption and replace dimpRq by vdimpRq: for example, for R :“ FpJx, y, z, tK{px2, y2, xz´ytq,
the nonzero element xy P R dies on UR :“ SpecpRqztmu, so it is nonzero in H0

mpR,αpq.

We close the section with a slight sharpening of Theorem 6.2.3 in the case when R is regular.

Theorem 6.2.7. For a regular local ring pR,mq that is not a field and a commutative, finite, flat
R-group G,

H i
mpR,Gq – 0 for i ď dimpRq.

Proof. Theorem 6.2.3 gives the vanishing for i ă dimpRq, so we may focus on the cohomological degree
i “ dimpRq. Moreover, by decomposing G into primary pieces and using Theorem 3.2.4, we may
assume that G is of p-power order with p “ charpR{mq ą 0. We then use [BBM82, théorème 3.1.1]
to embed G into a truncated p-divisible group and combine the resulting cohomology sequence with
Theorem 6.2.3 to reduce to G itself being a truncated p-divisible group. The filtration by p-power
torsion then allows us to assume that, in addition, G is killed by p.
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As in the proof of Theorem 6.2.3, we may assume that R is m-adically complete. As there, we then
use Lemma 3.1.1 (a), Lemma 4.1.12, and Theorem 6.2.3 to assume, in addition, that the residue
field k :“ R{m is algebraically closed. As in Lemma 3.1.1 (b), the Cohen theorem then shows that

R »W pkqJx1, . . . , xdK{pp´ fq with either f “ x1 or f P pp, x1, . . . , xnq
2,

and, since R is not a field, d ą 0. We then analogously use Lemma 4.1.12 and Theorem 6.2.3 to pass
to the tower supplied by Lemma 3.1.1 (b), and hence to reduce to showing that

Hd
m8pR8, Gq – 0, where R8 »W pkqJx1{p8

1 , . . . , x
1{p8

d K{pp´ fq, m8 :“ pp, x1, . . . , xdq.

Moreover, for showing this vanishing, Corollary 5.3.8 allows us to replace R8 by its p-adic completion
pR8, which is perfectoid. By Lemma 6.2.1, the sequence x1, . . . , xd is pR8-regular, so the key formula
(6.1.1.1) and the vanishing (6.1.2.1) reduce us to showing that

Hd
ZpAinfp pR8q,MpGqqV“1 – 0, where Z Ă SpecpAinfp pR8qq is the closed point.

Since G is the p-torsion of a p-divisible group and pR58 is local, MpGq is a finite free pR58-module
equipped with a Frob´1-semilinear map V : MpGq Ñ MpGq, so our task is to show that V has no
nonzero fixed points on Hd

Zp
pR58,MpGqq. For this, we first describe pR58-module Hd

Zp
pR58,

pR58q.

As we saw in the proof of Theorem 3.1.3, the tilt pR58 is the f -adic completion of kJpx51q1{p
8

, . . . , px5dq
1{p8K

for some f P px51, . . . , x5dq. By Lemma 6.2.1, the sequence x51, . . . , x5d is pR58-regular. In particular,
similarly to the proof of Theorem 6.1.2, from the exact sequences

0 Ñ pR58{px
5
1, . . . , x

5
j´1q

x5j
ÝÑ pR58{px

5
1, . . . , x

5
j´1q Ñ

pR58{px
5
1, . . . , x

5
jq Ñ 0

we get Hj
Zp

pR58,
pR58q – 0 for j ă d and, letting the transition maps be the indicated multiplications,

Hd
Zp

pR58,
pR58q – Hd

Zp
pR58,

pR58qxpx
5
1q
8y – lim

ÝÑx51
Hd´1
Z p pR58,

pR58{px
5
1q
nq – Hd´1

Z p pR58,
pR58r

1
x51
s{ pR58q.

Continuing in this way, since kJpx51q1{p
8

, . . . , px5dq
1{p8K and its f -adic completion agree modulo each

ppx51q
n1 , . . . , px5dq

ndq, we find that Hd
Zp

pR58,
pR58q agrees with its analogue for kJpx51q1{p

8

, . . . , px5dq
1{p8K

and that, concretely, it is given by the quotient of pkJpx51q1{p
8

, . . . , px5dq
1{p8Kqr 1

x1¨¨¨xd
s by the space of

those elements whose monomials have at least one nonnegative exponent. Thus, we may identify
Hd
Zp

pR58,
pR58q with the k-vector space with the basis tpx51qa1 ¨ ¨ ¨ px5dq

adua1, ..., ad PZr 1p să0
.

Since MpGq is a finite free pR58-module, Hd
Zp

pR58,MpGqq is a finite direct sum of such k-vector spaces.
For any hypothetical nonzero element fixed by V , we choose a monomial px51qa1 ¨ ¨ ¨ px5dq

ad appearing
in it for which the sum a1 ` . . .` ad is the smallest. The effect of V is described by some matrix
with coefficients in kJpx51q1{p

8

, . . . , px5dq
1{p8K postcomposed with Frob´1, and latter divides each ai

by p, so the sum a1` . . .` ad strictly increases after applying V—more informally, V is “contracting”
on Hd

Zp
pR58,MpGqq. Consequently, V has no nonzero fixed points on Hd

Zp
pR58,MpGqq, as desired. �

7. Global purity consequences and the conjectures of Gabber

Our final goal is to deduce global purity consequences from the local Theorem 6.2.3 and to settle
the conjectures of Gabber, as announced in Theorem 1.1.3. In particular, we extend purity for the
Brauer group settled for regular schemes in [Čes19] to the case of complete intersection singularities.
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7.1. Cohomology with finite flat group scheme coefficients

We begin with the most straight-forward global consequence of Theorem 6.2.3: in Theorem 7.1.2 we
show that on Noetherian schemes with complete intersection singularities, flat cohomology classes
with values in commutative, finite, flat group schemes are insensitive to removing closed subschemes
of sufficiently large codimension. The reduction of this statement to its local case uses the following
concrete manifestation of étale descent for fppf cohomology with supports.

Lemma 7.1.1. For a scheme X, a closed subset Z Ă X, an abelian fppf sheaf F on X, and the
étale sheafification Hj

Zp´,F q of the functor X 1 ÞÑ Hj
ZpX

1,F q, there is a spectral sequence

Eij2 “ H i
étpX,H

j
Zp´,F qq ñ H i`j

Z pX,F q.

Proof. One way to show this is by considering injective resolutions, see, for instance, [BČ22,
Lemma 2.3.2]. �

Theorem 7.1.2. Let X be a scheme, let G be a commutative, finite, locally free X-group, and let
Z Ă X be a closed subset such that the immersion XzZ ãÑ X is quasi-compact and each OX, z with
z P Z is either a complete intersection of dimension ě d or regular of dimension ě d´ 1. The map

H ipX,Gq Ñ H ipXzZ,Gq is

#

injective for i ă d,

bijective for i ă d´ 1.

Proof. We will deduce the assertion from the local purity Theorems 6.2.3 and 6.2.7. One may wish
to compare the method of this deduction to [Gab04a, Lemma 3.1 and its proof].

The assertion amounts to the vanishing H i
ZpX,Gq – 0 for i ă d. Thus, the spectral sequence

Eij2 “ H i
étpX,H

j
Zp´, Gqq ñ H i`j

Z pX,Gq

of Lemma 7.1.1 reduces us to the case whenX is strictly Henselian and Z ‰ H (the quasi-compactness
assumption is used in this step to identify the stalks of Hj

Zp´, Gq via limit formalism, compare with
the proof of [Čes19, Theorem 6.1]). Then X is Noetherian and we will show how to shrink Z to
arrive by Noetherian induction at the case Z “ tmu supplied by Theorems 6.2.3 and 6.2.7.

Suppose that Z ‰ tmu, fix a generic point z of Z, and let U be an open neighborhood of z in X.
The Čech-to-derived spectral sequence

qHpptU,XzZu, Hqp´, Gqq ñ Hp`qpU Y pXzZq, Gq

(a concrete incarnation of Zariski descent for fppf cohomology) gives the Mayer–Vietoris sequence

. . .Ñ H ipU Y pXzZq, Gq Ñ H ipU,Gq ‘H ipXzZ,Gq Ñ H ipU X pXzZq, Gq Ñ . . . . (7.1.2.1)

As U shrinks, it becomes SpecpOX, zq and U X pXzZq becomes SpecpOX, zqztzu, so, by Theorems
6.2.3 and 6.2.7, in this limit the maps

H ipU,Gq Ñ H ipU X pXzZq, Gq become

#

injective for i “ d´ 1,

bijective for i ă d´ 1.

Consequently, for i ă d, the sequence implies that any α P H ipX,Gq that dies in H ipXzZ,Gq also
dies in H ipU Y pXzZq, Gq for sufficiently small U . Likewise, for i ă d ´ 1, any β P H ipXzZ,Gq
extends to H ipU Y pXzZq, Gq for some such U . This allows us to apply the inductive hypothesis to
Z 1 :“ Z X pXzUq Ĺ Z to conclude. �
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Moret-Bailly has a nonabelian version of Theorem 7.1.2 in [MB85, lemme 2]. For completeness, we
include its very mild generalization whose argument is independent of the rest of this article and
builds on the omitted one for loc. cit. (that was explained in [Mar16, Chapter 3]).

Theorem 7.1.3. Let X be a scheme, let G be a finite, locally free X-group, and let Z Ă X be a closed
subset such that the immersion j : XzZ ãÑ X is quasi-compact and each OX, z with z P Z is regular
of dimension ě 2. Pullback is an equivalence from the category of G-torsors to that of GXzZ-torsors.
More generally, for any G-gerbe B, the following pullback is an equivalence of categories:

BpXq
„
ÝÑ BpXzZq, so, in particular, KerpH2pX,Gq Ñ H2pXzZ,Gqq “ t˚u.

Proof. The claim about the nonabelian H2 amounts to BpXq being nonempty whenever so is
BpXzZq, so it follows from the claim about B. As for the latter, the classifying stack BG is smooth,
so a general G-gerbe B becomes isomorphic to BG over an étale cover of X, to the effect that étale
descent reduces us to the case B “ BG. Thus, we may and will focus on the claim about G-torsors.

By glueing, the assertion is Zariski-local on X. Thus, by localizing at a point of Z and spreading
out (which uses the quasi-compactness of j), we may assume that X is local and Z ‰ H. Then
X is Noetherian, so [EGA IV2, théorème 5.10.5] gives the full faithfulness because depthZpXq ě 2.
For the essential surjectivity, by Noetherian induction and spreading out, we may localize at a
generic point of Z to assume that Z is the closed point of X. By [EGA IV2, corollaire 5.11.4], for
a GXzZ-torsor Y , the OX -algebra j˚pOY q is coherent, so all we need to show is its flatness as an
OX -module: the proof of full faithfulness will then uniquely extend the torsor structure map of Y to
that of Spec

X
pj˚pOY qq.

For the remaining OX -flatness of j˚pOY q, by a result of Auslander [Aus62, Theorem 1.3] that crucially
uses the regularity of X, it suffices to show that

H omOX
pj˚pOY q, j˚pOY qq » pj˚pOY qq

‘r as OX -modules.

It suffices to argue this over XzZ (see [Čes20, Lemma 2.2]), so, since OG is OX -free, it suffices to
show that

H omOXzZ
pOGXzZ

,OY q
„
ÝÑ H omOXzZ

pOY ,OY q via f ÞÑ

ˆ

OY
a
ÝÑ OGXzZ

bOXzZ
OY

pf, idq
ÝÝÝÑ OY

˙

,

where a is the G-action morphism. The explicit inverse of this OXzZ-module homomorphism is

g ÞÑ

ˆ

OGXzZ

idb 1
ÝÝÝÑ OGXzZ

bOXzZ
OY

pa, idq´1

ÝÝÝÝÝÑ OY bOXzZ
OY

pg, idq
ÝÝÝÑ OY

˙

. �

Remark 7.1.4. We expect that Theorem 7.1.3 also holds when each OX, z with z P Z is either a
complete intersection of dimension ě 3 or regular of dimension ě 2 (compare with Theorem 7.1.2).
Unfortunately, the argument given above, especially, [Aus62, Theorem 1.3], is specific to regular OX, z.

7.2. The conjectures of Gabber and purity for the Brauer group of singular schemes

We are ready to settle Gabber’s conjecture [Gab04b, Conjecture 3] on the local Picard group.

Theorem 7.2.1. For a Noetherian local ring pR,mq that is a complete intersection of dimension ě 3,

PicpURqtors – 0, where UR :“ SpecpRqztmu.

If R is either of dimension ě 4 or regular of any dimension, then even PicpURq – 0.
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Proof. The assertion about the case dimpRq ě 4 was settled in [SGA 2new, exposé XI, théorème 3.13 (ii)].
Moreover, a line bundle L on UR is trivial if and only if it extends to a line bundle on R. For regular
R, one constructs such an extension either by considering Weil divisors or by first extending L as a
coherent module and then taking the determinant of a perfect complex representing this module.

For the remaining assertion about PicpURqtors, Theorem 6.2.3 implies the bijectivity of the left
vertical map in the commutative diagram

H1pR,µnq

„
��

// H1pR,Gmq

��

– PicpRq – 0

H1pUR, µnq // H1pUR,Gmq – PicpURq.

Since every element of PicpURqtors comes from H1pUR, µnq for some n ě 0, the claim follows. �

Remark 7.2.2. Theorem 7.2.1 (so also Theorem 1.1.1) does not hold if pR,mq is merely Cohen–
Macaulay. For instance, consider the normal local domain

R :“ pCJx1, . . . , xnKqZ{2Z where the Z{2Z-action is given by xi ÞÑ ´xi for 1 ď i ď n.

The map RÑ CJx1, . . . , xnK is the normalization in a quadratic extension of the fraction field, is a
nontrivial Z{2Z-torsor away from the maximal ideal, and is an inclusion of an R-module direct sum-
mand (with the antiinvariants as a complementary summand). In particular, a system of parameters
for R is also one for CJx1, . . . , xnK, and R inherits Cohen–Macaulayness from CJx1, . . . , xnK. Thus,
for n ě 2, we have Rˆ „

ÝÑ H0pUR,Gmq and the torsor gives a nonzero element of PicpURqr2s.

Corollary 7.2.3. For a field k and a global complete intersection X Ă Pnk of dimension ě 2,

pPicpXq{pZ ¨ rOp1qsqqtors – 0.

If X is of dimension ě 3, then PicpXq is even free, generated by rOp1qs.

In the case when X is smooth this corollary was established by Deligne in [SGA 7II, exposé XI,
théorème 1.8].

Proof. The assertion about the case dimpXq ě 3 was settled in [SGA 2new, exposé XII, corollaire 3.7].
To deduce the rest from Theorem 7.2.1 we will pass to the affine cone ofX. Namely, as in [Čes20, proof
of Theorem 4.1], the scheme X is the Proj of a graded k-algebra R :“ krx0, . . . , xns{pf1, . . . , fn´dq
for homogeneous elements f1, . . . , fn´d P krx0, . . . , xns that form a krx0, . . . , xns-regular sequence,
and R –

À

mě0 ΓpX,OXpmqq compatibly with the gradings. As there, a line bundle L on X
defines a finite, graded R-module ML :“

À

mě0 ΓpX,L pmqq whose restriction to SpecpRqztmu with
m :“ px0, . . . , xnq is a line bundle ĂL . As there, ML is the pushforward of ĂL , and if ĂL |SpecpRmqztmu

is free, then so is ML , in which case L » OXpmq. Moreover, by [EGA II, théorème 3.4.4],
the OX -module associated to ML is L , so [EGA II, propositions 3.2.4, 3.2.6 et 3.4.3] show
that ĂL b ĂL 1 „

ÝÑ pL bOX
L 1qr. It follows that PicpXq{pZ ¨ rOp1qsq ãÑ PicpSpecpRmqztmuq,

so Theorem 7.2.1 gives the claim. �

Remark 7.2.4. Corollary 7.2.3 (so also Theorem 7.2.1) is sharp: indeed, one cannot drop p´qtors

because the complete intersection X :“ Projpkrx, y, z, ws{pxw ´ yzqq of dimension 2 (the Segre
embedding of P1

kˆk P1
k) satisfies PicpXq » Z‘Z, and one cannot weaken then dimension assumption

because an elliptic curve E over an algebraically closed field has #pPicpEqtorsq “ 8.

We turn to Gabber’s [Gab04b, Conjecture 2] on the Brauer group of local complete intersections.
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Theorem 7.2.5. For a Noetherian local ring pR,mq that is either a complete intersection of dimension
ě 4 or regular of dimension ě 2,

BrpRq
„
ÝÑ BrpURq, where UR :“ SpecpRqztmu.

Proof. We recall that the Brauer group BrpXq of a scheme X is defined using Azumaya algebras:

BrpXq :“
Ť

ną0 Im
`

H1pX,PGLnq Ñ H2pX,Gmqtors

˘

.

By a result of Gabber and de Jong [dJ02] (see also [CTS21, Section 4.2]), we have

BrpXq – H2pX,Gmqtors

whenever X has an ample line bundle, for instance, whenever X is quasi-affine. In our setting,
PicpRq – PicpURq – 0 (see Theorem 7.2.1), so

BrpRqrns – H2pR,µnq and BrpURqrns – H2pUR, µnq for n ě 0.

Thus, except for the case when R is regular of dimension 2, the desired conclusion follows by noting
that H2pR,µnq

„
ÝÑ H2pUR, µnq thanks to Theorems 6.2.3 and 6.2.7. The just excluded case is

actually the most basic and was treated in [Gro68b, théorème 6.1 b)]: in this case, the desired
conclusion follows by considering Azumaya algebras and noting that pullback gives an equivalence
between the category of vector bundles (resp., Azumaya algebras) on R and those on UR. �

Remark 7.2.6. One cannot weaken the dimension assumption of Theorem 7.2.5. Indeed, let S be
the local ring at the vertex of the affine cone over an elliptic curve over C, so that S is a 2-dimensional,
normal, Noetherian, local Q-algebra that is a complete intersection with #pPicpUSqtorsq “ 8 (see
Remark 7.2.4). We have PicpUSq ãÑ PicpUSshq because for any L in the kernel, ΓpUS ,L q is a free
S-module. Thus, for the 3-dimensional, strictly Henselian, complete intersection R :“ SshJx, yK{pxyq,
since PicpUSshJtKq is finitely generated (see, for instance, [Bou78, chapitre V, corollaire 4.9]), the
short exact sequence

0 Ñ Gm Ñ pix“0q˚pGmq ‘ piy“0q˚pGmq
pr1, r2q ÞÑ r1{r2
ÝÝÝÝÝÝÝÝÝÑ pix“y“0q˚pGmq Ñ 0 on SpecpRqét

(compare with [Bou78, chapitre IV, lemme 5.1]) shows that #pBrpURqq “ 8, whereas BrpRq – 0.
The same reasoning carried out with the Segre embedding of P1

C ˆC P1
C in place of an elliptic

curve shows that in Theorem 7.2.5 the full H2pUR,Gmq may contain classes that do not come from
H2pR,Gmq.

To establish purity for the Brauer group of local complete intersections, we globalize Theorem 7.2.5
in Theorem 7.2.8 below. For this, we use the following version of Hartogs’ extension principle.

Lemma 7.2.7. Let X be a scheme and let Z Ă X be a closed subset.

(a) If each mX, z with z P Z contains an OX, z-regular element, then

Y pXq ãÑ Y pXzZq for every separated X-scheme Y .

(b) If each mX, z with z P Z contains an OX, z-regular sequence of length 2, then

Y pXq
„
ÝÑ Y pXzZq for every X-affine X-scheme Y .

Proof.
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(a) Since Y is separated, its diagonal is a closed immersion. Thus, it suffices to check that no
nonzero local section f of OX vanishes away from Z. By shrinking X, we assume that f is
global and let XzZ Ă U be the maximal open on which it vanishes. If U ‰ X, then we choose
a generic point z of XzU and a nonzerodivisor m P mX, z to see that OX, z ãÑ OX, zr

1
m s. Since

f vanishes in OX, zr
1
m s, it also vanishes in OX, z, a contradiction.

(b) By (a), the map is injective, so it suffices to show that every section of Y over XzZ extends
(necessarily uniquely) to a section over X. Moreover, by working locally on X, we may assume
that X is affine. We then embed Y into a (possibly infinite dimensional) affine space over X
and use (a) to reduce to the case when Y “ A1

X . In other words, we have reduced to showing
that every global section of XzZ extends (necessarily uniquely) to a global section of X.

By glueing, there is the largest open XzZ Ă U such that the global section of XzZ in question
extends to a global section of U . To show that the inclusion U Ă X is not strict, we suppose
otherwise and fix a generic point z of XzU . A limit argument reduces us to showing that

OX, z
„
ÝÑ ΓpSpecpOX, zqztzu,OXq.

For Noetherian OX, z, this follows from [EGA IV2, théorème 5.10.5], and in general we fix an
OX, z-regular sequence m1,m2 P mX, z and seek to show that the complex

OX, z ãÑ OX, zr
1
m1
s ‘ OX, zr

1
m2
s
pa, bq ÞÑ a´b
ÝÝÝÝÝÝÝÑ OX, zr

1
m1m2

s

is exact in the middle. This complex is a filtered direct limit of Koszul complexes Kpmn
1 ,m

n
2 q

(see [SP, Lemma 0913]), so it suffices to show that the latter, considered as chain complexes
in degrees between 0 and 2, have vanishing homology in degree 1. The sequence mn

1 ,m
n
2

inherits OX, z-regularity (see [SP, Lemma 07DV]), so this vanishing follows from the fact that
if mn

1a “ mn
2b in OX, z, then b “ mn

1c for some c P OX, z for which also a “ mn
2c. �

Theorem 7.2.8. Let X be a scheme, let T be a finite type X-group of multiplicative type, and let
Z Ă X be a closed subset such that the open immersion j : XzZ ãÑ X is quasi-compact.

(a) If each local ring OX, z for z P Z is Noetherian and geometrically parafactorial,26 then

H0pX,T q
„
ÝÑ H0pXzZ, T q, H1pX,T q

„
ÝÑ H1pXzZ, T q, H2pX,T q ãÑ H2pXzZ, T q.

(b) If each local ring OX, z for z P Z is either a complete intersection of dimension ě 3 (resp., ě 4)
or regular of dimension ě 2, then27

H1pX,T qtors
„
ÝÑ H1pXzZ, T qtors (resp., H2pX,T qtors

„
ÝÑ H2pXzZ, T qtorsq.

The importance of geometric parafactoriality for the H2 aspect of (a) was noticed in [Str79, Teo-
rema 4].

Proof.

26We recall from [EGA IV4, définition 21.13.7] that a local ring pR,mq is parafactorial if pullback is an equivalence
from the category of line bundles on SpecpRq to those on SpecpRqztmu. A local ring is geometrically parafactorial if
its strict Henselization is parafactorial. For example, by [EGA IV4, exemple 21.13.9 (ii)], every Noetherian, local,
geometrically factorial (in the sense that the strict Henselization is factorial) ring of dimension ě 2 is geometrically
parafactorial and, by [SGA 2new, exposé XI, théorème 3.13 (ii)], so is every local complete intersection of dimension
ě 4.

27Here p´qtors denotes classes killed by a locally constant function. For instance, an α P Hi
pX,T q lies inHi

pX,T qtors

if and only if there is a decomposition X “
Ů

nPZą0
Xn into clopens such that each α|Xn is killed by n.
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(a) We need to show that H i
ZpX,T q – 0 for i ď 2. By [EGA IV4, proposition 21.13.8], for each

z P Z we have depthpOX, zq ě 2, so Lemma 7.2.7 (b) gives the i ď 1 part of this vanishing.
Moreover, as in the proof of Theorem 7.1.2, Lemma 7.1.1 reduces us to the case when X
is strictly local and Z ‰ H. Then X is Noetherian and, by realizing T as the kernel of a
morphism between tori, we may assume that T “ Gm. This turns our task into showing that
for every line bundle L on XzZ, the pushforward j˚pL q is also line bundle. For the latter,
we argue by Noetherian induction, so, since the formation of j˚pL q commutes with flat base
change, we replace X by its strict Henselization at a generic point of Z to assume that Z
is the closed point. In this case, the parafactoriality assumption shows that j˚pL q is a line
bundle.

(b) The injectivity follows from Lemma 7.2.7 (b) (resp., from (a)), which also shows that the
clopens of X and XzZ correspond. Thus, for the surjectivity, we may assume that the
cohomology class in question is killed by some n ą 0 and then that T is n-torsion. This
removes the subscripts ‘tors,’ so Lemma 7.1.1 (with Lemma 7.2.7 (a) for the vanishing of
H0
Z) allows us to assume that X is strictly Henselian and Z ‰ H. Then X is Noetherian

and we need to extend a cohomology class on XzZ to X. For this, Noetherian induction,
limit arguments, and the Mayer–Vietoris sequence (7.1.2.1) allow us to replace X by its
localization at a generic point of Z. Then X is local and Z is the closed point, so, except for
the case when X is regular of dimension 2, Theorems 6.2.3 and 6.2.7 give the extension. For
H1 (resp., H2), the remaining case is supplied by (a) (resp., by Theorem 7.2.5). �

Under more restrictive assumptions, Theorem 7.2.8 extends to higher degree cohomology as follows.

Theorem 7.2.9. Let X be a scheme, let T be a finite type X-group of multiplicative type, let d ě 3
be an integer, and let Z Ă X be a closed subset such that the open immersion j : XzZ ãÑ X is
quasi-compact and each OX, z for z P Z either is a complete intersection of dimension ě d all of
whose strict Henselizations are factorial28 or is regular of dimension ě d´ 1. The map

H ipX,T q Ñ H ipXzZ, T q is

#

injective for i ă d,

bijective for i ă d´ 1.

Proof. We need to show that H i
ZpX,T q – 0 for i ă d, and Lemma 7.1.1 reduces us to X being

strictly local with Z ‰ H. Then X is Noetherian, integral, and we may assume that T “ Gm. By
[Gro68a, proposition 1.4], which uses the factoriality assumption, H ipX,Gmq and H ipXzZ,Gmq are
torsion for i ě 2. Thus, since H ipX,Gmq

„
ÝÑ H ipXzZ,Gmq for i ď 1 by Theorem 7.2.8 (a), all the

H i
ZpX,Gmq are also torsion. The vanishing H i

ZpX,µnq – 0 for i ă d supplied by Theorem 7.1.2
then suffices. �
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