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INTRODUCTION 

EQUIVARIANT stable homotopy theory was invented by G. B. Segal in the early 1970s [45]. 
He was motivated by his work with Atiyah [9] on equivariant K-theory, generalizing an 
earlier theorem of Atiyah’s on the K-theory of classifying spaces of finite groups to compact 
Lie groups, and by his work on configuration space and discrete models for iterated loop 
spaces. His work also suggested to him the “Segal conjecture” (see 4.3), which asserts that 
the zero-dimensional stable cohomotopy group of the classifying space of a finite group is 
isomorphic to the completed Burnside ring of the group. The statement is a non-equivariant 
one, but the methods involved in the eventual proof of the conjecture require heavy use of 
the equivariant theory. In addition, J. P. May and his collaborators have pointed out that 
an equivariant version of spectra is the natural device for making spectrum level versions of 
space level constructions, such as the quadratic or p-adic construction used in defining 
Steenrod operations. 

A first attempt to construct an equivariant stable homotopy theory would define the set 
of stable G-maps (G is finite) from X to Y to be the direct limit l& [Z”X, x” YJG, where the 
G-actions on Z”X and Z”_Y are obtained by directly suspending the actions on X and Y, and 

c-1 - 1’ denotes G-homotopy classes of G-maps. Unfortunately, the theory one obtains 
this way does not allow for many of the familiar constructions one associates with stable 
homotopy theory, such as S-duality and transfer. To obtain these, one must allow the group 
G to act on the “suspension coordinate’*. Precisely, for any representation Vof the group G, 
one can form the one point compactification S” of V, which becomes a based G-space. S” is 
a dim( Q-sphere. 

The stable G-maps from X to Y are now defined to be the direct limit 
l$ [S’ A X, Sy A ylG, where the actions on Sy A X and S” A Y are diagonal actions, 
and the direct limit is taken over a certain ordering on the representations, so that 
V 5 W= V is a summand of IV, This construction permits S-duality and transfer. 

Other topologists quickly began to study the properties of this theory, notably tom 
Deck [21]. It gradually became clear that this theory was the natural way to stabilize 
G-homotopy theory; in this setting, it is possible to construct transfers and S-duality, and to 
prove an equivariant version of Thorn’s transversality theorem. More naive forms of 
stabilization do not permit these constructions. 

Some comments about Frank Adams’ contributions to this subject are in order. He 
became interested in Segal’s conjecture at an early stage, and in [l] he pointed out the 
central role played by the spectrum RP ?,” in the study of the conjecture for G = Z/22. 
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RPZZ was then analyzed by W. H. Lin [373 to prove the conjecture in that case. After 

Lin’s proof, Adams’ interest in the conjecture became strong, and he, together with 

J. Gunawardena and H. Miller, proved the conjecture for elementary abelian groups. Since 

the proof of the conjecture for all p-groups involved equivariant homotopy theory, he also 

became interested in it and in characteristic fashion clarified a number of fuzzy points in the 

theory in his very valuable paper [Z]. More recently, together with collaborators, he proved 

what must surely be the definitive forms of both the Segal conjecture and Atiyah’s theorem 

[4], [S]. Of course, in many ways he invented non-equivariant stable homotopy theory, and 

his work in that area will certainly point out the right directions to follow in the equivariant 

theory in the future. 

It is the aim of this paper to give the reader a feeling for some of the issues that come up 

as one introduces G-actions into stable homotopy theory. I have not attempted to give 

a complete survey of the area but rather have chosen some of the areas with which I am 

reasonably familiar and used them as illustrations. The paper is organized as follows. 

$1 gives a quick summary of the unstable equivariant theory. $2 discusses the equivariant 

version of the usual R”S” construction. It can be taken as a summary of the work of Segal 

[45]. Adams [2], tom Dieck [21] and H. Hausschild [30]. $3 discusses the definitions of 

spectra in the equivariant setting, and some of their properties. Here, the book [35] by 

Lewis, May, and Stcinbcrger is an excellent reference. $4 gives examples of various 

equivariant spectra, and gives some idea of what is known about them and how they arc 

used. Finally, $5 contains a short list of open problems in the area, which seem to be of 

interest to the author. 

I. A BRIEF I)ISCUSSION OF UNSTARLE EQUIVARIANT IlOXlOTOPY THEORY 

We discuss certain fundamental notions of equivariant homotopy theory, which show 

how non-equivariant homotopy theory generalizes. We also introduce some ideas peculiar 

to equivariant theory. Throughout this paper, G will be a finite group. 

Dejnirion 1.1. Let G be a group. Then a left G-space is a space X together with 

a representation p of G into the self-homeomorphism group of X. We write gx for p(g)(x). If 

K E G is a subgroup, we define the K-fixed point set XK to be {XE Xlkx = x’dk~ K}. We 

also let XG denote the orbit space of X, i.e. the identification space of X associated to the 

equivalence relation x - y o 3g E G such that gx = y. If X and Y are G-spaces, a map 

f: X -+ Y is equivariant if f(gx) = gf(x)Vg, x. A homotopy between two G-maps 

firf2: X -+ Y is a G-map H :X x I + Y, where I denotes the unit interval with trivial 

G-action and G acts on X x I by g(x, t) = (gx, r), so that H 1 X x 0 =fl and H(x, 1) =j*(x). 

A based G-space is a G-space X with preferred choice of basepoint in XG; a based G-map is 

defined in the obvious way. A G-map f:X -+ Y is a G-homotopy equivalence if there is 

a G-map g : Y -+ X so that /g and gf are G-homotopic to the respective identity maps. There 

is of course the corresponding based notion. If X and Y are G-spaces, X x Y denotes the 

usual product space with G-action given by y(x, y) = (gx, gy). Similarly, for based G-spaces, 

we have smash products, mapping cylinders, and mapping cones. We say a G-map f: X + Y 

is a weak equivalence if each map f ‘.X”: + Y” (f' denotes the restriction of / to XK for . 
a subgroup K s G) is a weak equivalence. 

Let G be a group, and let K c G be a subgroup. We let G/K denote the collection of 

cosets gK, g E G, it is acted on on the left by G, and is viewed as a discrete G-space. Let D” 

denote the standard n-disc, and let i?D” denote its boundary (n - l)-sphere. Suppose that D” 
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is equipped with the trivial G action, and that we have an equivariant G-map 
f: G/K x SD” -. X. Then we call the space X LI G/K x D”/ z , where E is the equivalence 
relation given by (gK, x) =f(gK, _y). (gK, X)E G,/K x 2D”, the space obtained from X by 
adjoining a G,‘K-cell along 1: 

Definition 1.2. A G - CW complex is a space obtained by iterated adjunction of 
G/K-cells for various different choices of K and dimensions of the cells. More precisely, 
a G - CW complex is a G-space X equipped with a filtration X”‘, so that X”’ is obtained 
from X”-” by adjoining i-cells of the form G/K, x D’, c1 E A, where A is an indexing set, and 
so that the topology on X is the direct limit topology. Fixed point sets of subgroups K E G 
and orbit spaces of G - C’W complexes are C W complexes in the usual sense. 

Definition 1.3. A G-simplicial set is a simplicial set with left G-action. This is equivalent 
to the notion of a simplicial object in the category of G-sets. All the usual notions of 
simplicial topology apply (realization, singular complex, simplicial maps, and simplicial 
homotopies). Also, all the notions defined in 1.1 have their simplicial versions. Note that the 
realization of a G-simplicial set is a G - C W complex. We say a G-map of simplicial G-sets 
is a weak G-equivalence if its realization is a G-equivalence. 

Certainly for finite groups, it is easy to check that the usual comparison theorems 
between the simplicial homotopy category and the homotopy theory of spaces hold. 
Particular examples are that all G-spaces have the weak G-homotopy type of a G - CM/ 
complex. and every G - CCV complex has the G-homotopy type of the realization of 
a G-simplicial set. Further, Dwycr and Kan [23] have shown that the category of G- 
simplicial sets admits the structure of a closed model category in the sense of Quillcn [43]. 
in which the weak cquivalonccs arc the maps whose induced maps on fixed point sets arc 
weak equivalcnccs. 

Let K E G bc a subgroup, and Ict X be a K-space. Then we can form the G-space 
G x,X = G x Xl zvh.. whcrc vg is the equivalence relation generated by (yk. x) 4 (y. kx), 
k E K. This is a left G-space, with G acting by left multiplication on the G-factor. As a space, 
G x,X is a disjoint union of copies of X, one for each left coset gK. If X is equipped with 
a G-action, restricting to the given K-action, then G x,X s G/K x X as G-spaces. A G- 
equivariant map from G x,X into a G-space Y may be identified (by restriction to e x X) 
with a K-equivariant map from X to Y, and this identification is bijective. There is 
a corresponding based analogue. For any G-space Z, let Z, denote Z with a disjoint fixed 
basepoint + added. For K 2: G, and X a based K-space, we can now form G, A~X, 
defined by obvious analogy with the case of G xx X, and there is a similar identification of 
based G-maps with domain G, ~~ X with based K-maps with domain X. Now one can see 
how G - CCV complexes are built up. Non-equivariantly, attaching data for an n-cell to 
a based complex X is an element of n,_ , (X). Equivariantly, attaching data for a based cell 
G/K+ A D”z G, ~~ D” is a based G-homotopy class of G-maps G, /\K S”-’ + X, or by 
the above adjunction, a homotopy class of K-equivariant based maps from S”-’ (with 
trivial K-action) into X. Such a homotopy class is clearly identified with an element of 
n,_ ,( Xk). This analysis of the obstructions to extending maps allows one to prove a useful 
result. 

PROPOSITION 1.4. Let 3 be a collection of subgroups of a finite group G, closed under 

conjugation and passage to subgroups. Suppose further that we are given a based G-space Y, 

with Y’ contractible for all K ~3~. Let X be a G - CW complex, and let X(9) denote 

um,.rX”. Then the space F$(X, Y) of equicariant based maps from X to Y is weakly 

homotopy equivalent, via restriction, to the space Fg(X(9), Y) z Fg(X(S), Y(9)). 
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Proof. X is obtained from X(9) by iteratively attaching cells of the form G/K + A D”, 
with K E 9. From the above analysis, the obstruction to extending a given map over this 
cell is an element in IC,_ ,( Y’). and YK is contractible, so the restriction map is surjective on 
no. Injectivity is proved by showing that homotopies also extend, using a relative form of 
the result. To prove that the map induces isomorphisms on n,, one uses the result for 
no applied to the G - C W complex S” A X. 0 

An important theme in equivariant homotopy theory is the reduction of equivariant 
questions to non-equivariant ones. If X and Y are G-spaces, and F: X + Y is a G-map, then 
if f is a G-homotopy equivalence it is certainly a weak G-equivalence in the sense of 1.1. 
When X and Y are G - C Wcomplexes, we have the following converse to this observation. 

THEOREM 1.5. (see [13]). Let G be finite, and suppose that f: X + Y is a weak G- 
equivalence. Then it is a G-homotopy equivalence. 

Recall that fibrations and cotibrations are defined in terms of homotopy lifting and 
homotopy extension properties, which make good sense in the equivariant setting, so the 
notions of G-fibration and G-cofibration are defined. If F: X + Y is a G-fibration or 
G-cofibration. then the induced maps f K: Xx + YK are fibrations and cofibrations, respect- 
ively. If f is a G-fibration and *E Y G, then the usual homotopy fiber F(J *) makes sense, 
and is acted on by G. 

We now recall some constructions which do not have counterparts in the non- 
equivariant theory. If G is a group, it is well known that there is a contractible space EG on 
which G acts freely. One can, for instance, take the infinite join of copies of G (Milnor 
construction), or the realization of the simplicial construction WG (see [39]). More gener- 
ally, let .S bc any family of subgroups of a group G, closed under downward inclusion and 
conjugation. Then there is a G-space E,fG so that (E,G)” is contractible for K ~9, and 
empty for K 4 9. EG corresponds to the case 9 = {{e} }. Moreover, E,pG can be taken to 
be a G - C Wcomplex, and any two G - C Wcomplexes satisfying the conditions above are 
naturally G-homotopy equivalent. See [22] for a discussion. The orbit space of E#G is 
called BfG, the classifying space for G relative to the family 9. 

Definition 1.6. We define XLG = EG xc X, the “homotopy orbit space” of X. For any 
two G-spaces X and Y, let F(X, Y) denote the space of functions from X to Y, with the 
compact-open topology. G acts on F(X, Y) via the rule (gf) (x) = gf( y - ’ x). We also define 

XhG = F(EG, X)‘, the “homotopy fixed point set” of X. 
Note that XLc and XhG are orbit and fixed point sets of actions of G on spaces homotopy 

equivalent to X, namely EG x X and F(EG, X), but with some “singularities” ironed out. In 
fact, the map EG -. point induces equivariant maps EG xX --) X and X = F(point, X) -, 
F(EG, X), hence maps Xhc + Xc and Xc 4 XhG. The analysis of these maps is often of 
some interest. For instance, H.+(XhG) and n+(XhG) are computable from data about the 
ambient space X and information about the G-action on H,X and x+X. respectively, 
in the sense that there are spectral sequences with Ei., z H&G, H,(X)) and 
EP.4 

2 = H -P(G; n,(X)) converging to H,( X*o) and 7r+(XhG), respectively. Also, X,,G and XhG 
arc often rccognizablc as well known non-equivariant spaces. 

PROPOSITION 1.7. Let X be a spuce with trivial G-action. Then X hG z F(BG, X). 

We say a G map f: X + Y is a quasi-equivalence if it is a weak equivalence as a map of 
spaces (ignoring the G-action). This is a much weaker notion of equivalence than G-weak 
equivalence, since it says nothing explicitly about fixed point sets. For instance, let G = Z, 



A SURVEY OF EQLJIVARIANT STABLE HOMOTOPY THEORY 5 

let X = R with translation action. let Y denote a single point with trivial action, and let 

f: X -* Y be the unique map from X to Y. Then XG = 0 and YG = Y, so f is clearly not 

a G-equivalence. However, the following proposition is easy to verify. 

PROPOSITION 1.8. If / is a quasi-equiralence, then the induced maps fhG: XhG + U,, and 

fhG:XhG+ YhG are weak homotopy equicalences. More generally. 11 W is any free G- 
complex, the maps R’x, X -+ Wxo Y and F( W, X)G -, F( W, Y)G are weak equivalences. 

The based oersion, where W is free oJtr the basepoint, with based function complex, holds. 

Ifone is now able to prove a result showing that, e.g., a map Xc + XhG is an equivalence 

in an appropriate sense. then one will be able to study Xc from data concerning the ambient 

space and the action of G on its homotopy groups. 

2. STABLE EQUIVARIANT THEORY 

(A) Definitions of stable equivariant homotopy theory 

In attempting to understand what the right notion of equivariant stable homotopy 

theory should be, it is useful to recall three different points of view toward ordinary stable 

homotopy theory. 

(a) We recall first that if X is a based CW complex, Q(X) is defined to bc 

i&R”C”X, under the direct system given by suspension. Recall that 

7r;X = lim n _ ,,ct(I”X). again under suspension maps, and it is clear that 

n;(X) L n,(QX). Marc generally, if Y is a based complex, we define { Y, X1. the 

abclian group of homotopy classes of stable maps from Y to X to be no( F,( Y, QX )), 

where F,(--, --) dcnotcs based function space, cquippcd with compact open 

topology. The space Q(S’) plays a central role; its homotopy groups arc the stable 

homotopy groups of spheres. 

(b) It was discovered by Barratt, Priddy, and Quillen that the space Q(S’) could be 

constructed as follows. Let Z, denote the symmetric group on n letters, and let EC, 

denote the functorial simplicial construction of the classifying space for Z,, (see [393). 

Then we have homomorphisms En x C, -+ & +,,, arising from block sum of permuta- 

tions, and we obtain simplicial maps EZ,, x EC, -+ I&+,,, which turn IJnko BC, into 

a simplicial monoid b1. Then Q(S’) has the homotopy type of the realization of the 

simplicial group obtained from M by formally adjoining inverses levelwise. Equival- 

ently, using Segal’s machine [46] which associates an infinite loop space (indeed, 

a spectrum) to a symmetric monoidal category, the sphere spectrum is the spectrum 

associated to the symmetric monoidal category of finite sets. 

(c) The Pontrjagin-Thorn construction gives an isomorphism of the bordism group of 

framed n-manifolds with the group n’,(S’). 

Now, let G be a finite group. We will work through the versions of equivariant stable 

homotopy theory which correspond to constructions (a), (b). and (c) above. 

(aG) Let V be the regular real representation of G. Let S” denote its one point 

compactification, a based (at cc ) finite C - C Wcomplex. If X is a based G-complex, we can 

form the suspension ZVX = S” A X, also a based G-complex. Also, let R”X denote 

the space of based maps from S’ into X, with action given by (gf )(x) = gf (g- ‘x). 
As in the non-equivariant setting, we have equivariant suspension maps 
nnVz:“Yx ~ flcn+ IiY~(n+ I)Y X, where n V denotes a direct sum of n copies of V. The direct 

limit l&fI”“C”” X is now called QG(X). The group of G-homotopy classes of stable 
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G-maps from Y to X, ( Y, X}‘, is now defined to be no( F,( Y, Q‘X)‘). The graded 
group-valued functor n:X z rr,((Q‘X)‘) is a homology theory on the category of G- 
complexes, in the sense that it assigns to a pair X E Y a long exact sequence 

. ..-n.C(X)~n,C(Y)~n,G(Y,X)~.... 

In fact, QG carries calibration sequences into weak G-fiber sequences. 
(bG) Let X be any finite G-set. We let xx denote the group of equivariant auto- 

morphisms of X. If X and Y are finite G-sets, we have a block sum homomorphism 
XX x Er + Zxur, where XLI Y denotes the disjoint union of X and Y. By choosing a repre- 
sentative of each isomorphism class of finite G-sets appropriately, we obtain a simplicial 
monoid Uxf3C,, whose group completion realizes to a space weakly equivalent to 
(Q‘(S’))‘. In fact if we let 2X denote the full automorphism group of X, including the 
non-equivariant automorphisms, then Cx = (gx)‘, where G acts by conjugation on 2,. This 
gives that LIxBtx = (LIxBZx)‘, and the corresponding statement for the associated group 
completions. Moreover, one easily sees that the group completion of UxBzx has the same 
homotopy type as the group completion of LI,BC,, so we even have a discrete model for the 
G-space Q‘S’, with its G-action. 

H. Hausschild [303 has gone further to construct configuration space models for Q‘X, 
where X is a space, along the lines of May’s models [40] for QX in the non-equivariant 
setting. We discuss what goes into these constructions. Let us recall how the non- 
equivariant version works. Let R D denote the direct limit & R”. with direct limit 
topology, and let X be a based S~WX. Let Ck c (R O)’ be the subspace ((01,. . . , ~t)loi # vj 

when i # ji. C,, acts freely on Ck, and C1, is contractible. Further, for each i, 1 5 i 1; k, we 

have degeneracy maps n,: Ct, -+ C4 _ , , defined by ai(L?l*. . . , vt) = (u,, . . . * 31.. . . , vt.. Let 
X’ be equipped with the permutation action, and let C1, xy, X’ dcnotc the orbit space under 
the diagonal action. Define CX to be the identification space 

where 2 is the equivalence relation generated by the equivalences (vl, . . . , ck) x(x,, . . . , 

Xi-l,*,Xi+l,... ,Xk)Z(o,, . . . . d, ,,.., uk)x(xl ,..., ii ,..., Xk). This relation is re- 
spected by the permutation identifications. In order to obtain the correct configuration 
space model in the equivariant setting, we must only choose the right equivariant model for 
R”. We let R” be I& Vk, where V denotes the regular representation of G. R” thus 
contains each irreducible representation infinitely often. The analogue of Ck is now equip- 
ped with G-action, commuting with the & action, and the resulting CX construction is also 
equipped with a G-action. Hausschild shows that when X has connected fixed point sets XK 
for all K E G, this gives a space with the weak G-homotopy type of Q‘X, and in general 
Q‘X is obtained by a group completion procedure. 

In May’s model, the spaces C. have a homotopy invariant meaning, namely C, 1 EL as 
&spaces. We will give C, in our setting a G x Z, homotopy invariant meaning. Let 9 be 
the family of subgroups of G xx:, consisting of all subgroups whose intersection with 
(e} x C, c G x Z:. consists only of (e}. Recall the definition of E,(G x 1”) from 9 1. We wish 
to show that C, is an E,(G x &)-space. Thus, consider the fixed point sets Cf. K 5 G x &. 
If K n Z. # (e}, then C,” c @, since the action of xfl on C, is free. Let K s G x C. be 
a subgroup so that K n x, = {e}, and let 2 c G be the image of K and G under the 
projection G x 23, -, G. Of course, the projection K -+ E is an isomorphism, since 
K n X, = {e). Consequently, for each EE K, there is a unique permutation /(~)EQ, so that 
(E,f(i;))~ K, and j is easily seen to be a homomorphism k -+ Z.. / determines and is 
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determined by K. Let (K,f) be data for K. C.” = { (ul, . . . , u.)j Vi = ZV,,T,(i, for all i E R, 
iE{l,. . . , n}}. Note that f: K -, I;, determines an action of K on {I,. . . , n}, and let 

(it.. . . , i.} denote a non-redundant set of orbit representatives for this action. Then the 
coordinates Vi,, . . . Ui, clearly determine all the other coordinates. Let K, denote the 
stabilizer of ii in K. Then we see that if (ut, . . . , 0,)~ Cf. ri.E(R”)Kt, and that the converse 
also holds. Thus, C,” may be viewed as the open subspace of my= l (R”)‘I, obtained by 
deleting the intersections C.” with the spaces C.“, L 2 K, which are linear subspaces of 
infinite codimension. Therefore, C,” is contractible, and C, w EJG x C,). 

(cG) Let M” be a smooth, compact, closed G-manifold. We say that M is G-framed if 
there is a bundle isomorphism s(izI) @ Rk + M x R”+’ of vector bundles respecting the 
G-action, where R’ and R”+k are equipped with trivial G-action, and s(M) denotes the 
tangent bundle of M. Framed bordism groups are defined in the evident way, and the 
&-dimensional framed G-bordism group of a point is the k-dimensional equivariant stable 
homotopy group of So. Note that a zero dimensional framed G-manifold is just a finite G-set 
with a choice of sign for each orbit. Let K c G be a subgroup, and X a G-set. Let aKf(X) be 
the number of orbits of X of type G/K with sign f 1. Then two zero dimensional framed 
G-manifolds X and Y are G-bordant if and only if a: (X) - ai (X) = ai ( Y) - ai ( Y) for all 
K z G. The verification that these definitions are equivalent was outlined in Segal [45]. 

(aG)o(cG) uses equivariant transversality, which requires more hypotheses than the 
non-equivariant version. It is well-known that there are unstable obstructions to 
equivariant transversality. We will return to this point in $4. (aG)o(bG) can be obtained by 
explicitly describing the groups arising from (bG) and (cc), and using a Dyer-Lashof style 
map from the group-theoretic construction in (bG) to the more homotopy theoretic 
construction in (a’), together with the equivalence (aG)o(cG). 

(B) Description of the equivariant stable stems 

The easiest way to predict what the equivariant stable stems are is to use model (bG). Let 
G be a finite group, and K E G a subgroup. The group of G-equivariant automorphisms of 
the left G-set G/K is obtained as follows. Let a: G/K -+ G/K be a G-automorphism; since 
G/K is a transitive G-set, a is determined by a(K). Since K is a fixed point under the 
K-action, so is a(K). gK is fixed under K if and only if kgK = gK VkE K, or 
g- ‘kg E K Vk E K. Thus, g E N,(K), the normalizer of K in G. If g, K = g2 K. then g, = g2k 
for some ke K, so g1 and g2 correspond to the same automorphism of G/K if they differ by 
an element of K. Consequently, one verifies that Aut’(G/K) 2 N,( K)/K, which we call the 
“Weyl group” of K in G, and denote by W,(K). Moreover, it is easy to see that 
AutG(Ui G/K) z Znl W,(K), where Z.I H denotes Zn 2 H”, with E:, acting on H by per- 
muting coordinates. For any G-set X, let X [K] be the union of the orbits of the form G/K, 

where K s G. Then X = uKX[ K], where the disjoint union runs over a set of orbit 
representatives of subgroups of G under conjugation. (Note that X[K] = X[gKg-‘1.) 
Finally, one sees that Aut’(X) z UKAutG(X[ K]), so we have a complete description of 
the automorphism groups of finite G-sets. Also, let H be any group. Then it is standard that 
Ll,SZ,( H is a simplicial monoid, with multiplication being given by the evident “block 
sum” homomorphisms Z, 1 H x Z,,, l H + C,,, 1 H. Further, the group completion of this 
simplicial monoid has the homotopy type of Q(BH+), where “plus” denotes disjoint 
basepoint as usual. From the description (b’) of stable equivariant homotopy, it is now easy 
to use the above description of uxBEx to see that the G-equivariant stable homotopy 
groups of spheres are given by @ KEG?q(BW(K)+), where the direct sum is over the 
conjugacy classes of subgroups of G. 
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One can also see this description via model (c’j). The key observation here is that in 
a framed G-manifold M, if two points p and q are in the same component, then they have the 
same stabilizer. Let us look at the case G = Z/22 to give an idea of why this is so. Let M be 
a smooth G-manifold. and let p E MC. bfG is a submanifold, and the pullback of the tangent 
bundle of M to MG breaks up, via choice of a Riemannian metric, into the sum of the 
tangent bundle of MC and the normal bundle to MG in hf. r,(iZf) is thus isomorphic to 
rp(MG) @ v,(,@), and we claim vp(MG) contains no non-trivial fixed vectors. If it did, 
applying the exponential map to such a vector would yield an arc of G-fixed points normal 
to MG, clearly an impossibility. Thus, if dim M = n, dim MG = g, and E and u denote the 
one-dimensional trivial and sign representations, respectively, r,(hf) 2 q~ @(n - g)a as 
G-modules. But, the definition of a framed G-manifold requires that s,(hf) is a trivial 
G-module, so n - g = 0 and MG is codimension zero in hf. This readily shows that 
M breaks up as a disjoint union of MG and a free framed G-manifold. More generally, it is 
not hard to see that an arbitrary framed G-manifold decomposes as a disjoint union 
Ll,M[K], where the disjoint union ranges over all subgroups of G. Further, it can be 
decomposed as a disjoint union of G-manifolds M = LI,,,G x~~_~, M[ K], where the 
disjoint union is over all conjugacy classes of subgroups of G. Note that each M [ K] is a free 
w,(K) manifold, and is framed. It is now direct that bordism of G-framed, free G-manifolds 
is canonically isomorphic to the ordinary framed bordism groups of the classifying space 
BG. Consequently, we find that the G-equivariant framed bordism groups decompose as 
@kR/+‘(BW( K)) = @I~x;(EW( K),). where the sum again ranges over conjugacy classes of 
subgroups of G. This description is clearly consistent with the one obtained from (bG) 
above. The result may also be obtained via definition (a”), but at a slightly higher technical 
price. We will return to this point later. 

We now turn our attention to rcg(S”). A rcprcscntative for an element of n’o;(S”) is 
a G-map S” 4 S”, for some multiple of the regular representation V. A first observation is 
that the fixed point sets (S”)“, K C_ G, arc themselves sphcrcs, namely the one-point 
compactifications of the vector subspaces V K. Consequently, for each K E G. we get 
a function (easily seen to be a homomorphism) (ok : n$(S’) + Z, given by (p”([/]) = dcgfK. 
The function depends only on the conjugacy class of K, and it turns out that 
$k@:n$(S’) + eDKZ is injective. This homomorphism can also be seen in terms of the 
framed bordism description. Here, we dctine (Pi : @.I’( point) + f$‘(pt) z Z by 
q”(M) = M”, for a framed O-dimensional G-manifold M. A second observation is that 
n$(SO) is actually a ring. We describe the ring structure. Let M(G) be the set of isomorphism 
classes of finite G-sets; it is a free commutative monoid under disjoint union, with basis 
given by the isomorphism classes of the G-sets G/K, as K ranges over the conjugacy classes 
of subgroups of G. We formally invert all elements in M(G) to obtain a group A(G). Note 
that if X and Y are G-sets, we may form the product G-set X x Y, with diagonal G-action. 
This induces a bilinear map A(G) x A(G) -, A(G), and turns A(G) into a ring, called the 
Burnside ring. We claim that ng(S*) is isomorphic to A(G) as a ring. To see this, one notes 
that we have an inclusion M(G) + @*/‘(pt), since every finite G-set can be viewed as a zero 
dimensional framed G-manifold, by choosing the sign + 1 for the framing. This map 

extends over A(G) and gives a homomorphism A(G) -f. flg*fr(pt) ol abelian groups. Con- 

versely, a zero dimensional framed G-manifold is just a discrete G-set together with a choice 
of stable framing of the (trivial) tangent bundle, i.e. a chosen selection for each orbit of an 
element in { _+ I}. An inverse to 0 is now given by sending the zero-dimensional framed 
G-manifold M to Zn,[G/K J. where nn; is the sum of the numbers associated to the orbits of 
type G/K. Note that S2$r’( pt) is also a ring, from products of manifolds, and it is clear that 
0 is a ring homomorphism. One then verifies, as in the non-equivariant case, that @*I’(pt) 
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is isomorphic to ng(S’), as rings. It is now not hard to see that z.“(X). for any n and G-space 

X, is a module over A(G). 

(0 Analogues of some familiar theorems in stable homoropy theory 

The first important result in stable homotopy theory is the Freudenthal suspension 

theorem, which asserts that the suspension map n.X -t n,+,zX is an isomorphism for 

X[f + I]-connected, where [k] is the greatest integer less than or equal to k. This shows 

that the direct limit defining a particular stable homotopy group of X is actually attained. 

There is an analogue for equivariant mapping spaces, due to [29], but the hypotheses are 

a little more involved. Let Y be a G-space, and let H c G be a subgroup. We define 

C,( Y) = max (nl n,( Y “) = 0 for r I n). The equivariant Freudenthal theorem now reads as 

follows. 

THEOREM 2.1. Let X and Y be G-spaces, and suppose X is a G - C W complex. Suppose 

(a) dim(X”) I 2CH( Y) far all H E G 

(b) For any proper inclusion of subgroups K c H. dim(XH) _< C,( Y) - I. 

/-idsYr./ 
Then the suspension map [X, YJc - [S’ A X, Sv A YIG is b~ectke, for any repres- 

entation V of G. 

Remtrrk. In [29], an cvcn more refined theorem of which this is a conscqucnce was 

stated. We prcfcr to state just this slightly simpler result. 

Note that (a) is the hypothesis for the non-equivariant Freudcnthal thcorcm for maps 

from X” to Yil. Condition (b) does not have a non-cquivariant analogue; it is rclatcd to the 

“gap hypothesis” which often enters in equivariant surgery and bordism. We will discuss 

this a bit more in $4. 

Two constructions which arc very useful in ordinary stable homotopy theory are 

Span&-Whitehead duality and transfer. Both admit equivariant versions which we 

summarize. 

One construction of S-duality for finite complexes proceeds by including a given 

complex X in a high dimensional sphere S”, and letting SN - X bc an appropriate 

suspension of the dual to X. The dual is an object in a category of spectra which admits 

formal desuspensions of the form I-“. One then shows that {W, DX A 2) z {X A W, Z}, 

where {A. B) denotes the group of homotopy classes of stable maps from A to B. In the 

equivariant theory, one can of course not embed an arbitrary finite G-complex in a high- 

dimensional sphere with trivial G-action. However, it is easy to see that one can embed 

a finite G-complex X in S ‘@’ for an appropriately chosen representation V. If one does this, 

and takes the complement 2 = S’o’ - X, one obtains an S-dual in the following sense. 

If U and W are G-complexes, there is a natural bijection from (5’ A W, Z A U}” to 

{X A W, U}“. Ideally, the dual should take its values in a stable category, which should 

admit dcsuspcnsions E-” by arbitrary finite dimensional rcprcsentations, and the actual 

dual would then be x-“Z. In 93, we will see such a category. Note that since the fixed point 

sets of Sv are themselves spheres, the fixed point sets Z”, H c G, are themselves suspensions 

of non-equivariant S-duals to X . ” The number of suspensions involved for Z” depends on 

dim(P). See [2] and [SO] for a discussion of this duality. 

As for the transfer, recall how it is constructed for finite covering spaces. Let 2 s X be 

a covering map, where X is a finite complex. It can be shown that there is an inclusion 



10 Gunnar Carlsson 

2 CJ 5. over X, where < is a vector bundle over X. In fact, < may be taken to be a trivial 

bundle by adding an inverse to 5. so we have an inclusion .% + Xx R.” over X for 

N sufficiently large. It is now possible to choose a “bundle of tubular neighborhoods” E of 

i in X x RY, over X, so that its closure is a bundle whose fiber over every point x E X is 

a disjoint union of closed discs in R”, one for every point in p-‘(x). Note that as a space E is 

homeomorphic to 2 x RV. Let E’ denote the fiberwise one point compactification of E, and 

let X” denote the fiberwise one point compactification of X x R.‘. Then we can take 

a fiberwise Pontrjagin-Thorn collapse construction and obtain a map X r 4 E’. Since 

X” 2 IEY(X+) and E’ 2 E’(E+). we obtain a stable map from X, to E+. the transfer. 

In the equivariant case. we study the particular case of regular coverings, which may be 

identified with orbit projections from free group actions. Thus, let X be a finite G-complex, 

where G is a finite group; and let N Q G be a normal subgroup. Then the orbit space 

XAv may also be viewed as a G-space (in fact a G,‘N-space). and we wish to construct the 

transfer from X,V to X as a stable G-map. The construction proceeds as above, by 

embedding X in a G-vector bundle over X,v. However. we may not necessarily choose that 

bundle to be of the form X% x R”, where RK has trivial G-action. What we can do is embed 

X in X x V. where V is some representation of G. The construction now proceeds as in the 

nonequivariant case, to produce a G-map Sy A (X/N + ) -+ S” A (X + ). Adams performed this 

construction in [Z]. and showed that one could in fact produce a similar transfer in the 

based context, where the N action on X is free off the basepoint. Both these constructions 

require suspensions by non-trivial representations. and confirm that wc have stabilized in 

the correct way. 

Rcvtwrk. There is an enlightening way to view this transfer in a special cast. Recall that 

on the level of chain complcxcs of free left Z[G]-complexes. there is a transfer 

Z @‘z[c;] C, 4 C,. defined by multiplication by xrc (;t/. In particular, for a free cyclic 

Z[G]-module. WC have the inclusion Z + Z[G], I -+ ~ueti q. On the other hand. the usual 

intuition about the functor Q is that it is the homotopy thcorctic analogue of the free abelian 

group functor. Thus, the ordinary transfer associated to G -+ IC is a stable map S” + Q(G +), 

which has dcgrcc one on each factor in the decomposition Q(G +) 2 n,,* 6 Q( (I+ ). However, 

as it stands, this map cannot bc made G-equivariant. For, (using the non-equivariant 

version of Q), Q(G.)” = Q((G+)‘) = Q( + ) z +, so every G equivariant map from So to 

Q(G + ) is homotopically trivial. The point is that although we have a homotopy equivalence 

Q(G+) z ns6 c Q( y+) 2 F(G+, Q(S’)), the equivalence cannot be made equivariant when 

G acts on F(G+. Q(S’)) via its left multiplication action on G. However, it is not hard to 

check that Q”(G + ) is G-homotopy equivalent to F(G +, Q(S’)), and hence a suitable transfer 

is defined from So, with trivial action, to QG(G+). Thus, the non-trivial suspensions have the 

effect of allowing the functor Q to better mimic the behavior of the free abelian group 

functor in the presence of group action. 

Another very useful construction in stable homotopy theory is the Snaith decomposi- 

tion. Let X nn denote the n-fold smash product of X with itself, with E. acting in the evident 

way. Then, if X is connected, the Snaith decomposition asserts that 

Q(Q(X)) z ~LQ(=,. A" X ““). The fact that May’s construction CX is a model for QX 

shows that there is a filtration by subspectra of xmQX whose subquotients are 

1.” EE,, AX” X^“, and Snaith proved that the filtration is actually split. The equivariant 

analogue proceeds as follows. Let EGEn denote the G x &-space E/(G x I.), where 9 is the 

family of subgroups of G x 1”. which intersect En trivially. Hausschild’s configuration space 

construction, and the analysis of the equivariant configuration spaces, show that sub- 
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quotients in the corresponding filtration of Q‘X are QG(EG&. A~_ X*“). The correspond- 
ing Snaith decomposition (see [35] for a proof) now asserts that if XK is connected for all 
K c G, Q‘(Q‘X) is G-homotopy equivalent to the product n,Qe(&r,+ hr.XA”). This 
splitting is important in applications [17], [lS]. 

(D) Interpretation of IT: in terms of fixed point sets 

From definition (ac), we see that elements of nf( X) are elements in [S”, QG( X)lG. Since 
G acts trivially on S”, this is the same thing as nJ(Q‘X)‘), so the equivariant stable 
homotopy groups of X are identified with the ordinary homotopy groups of a fixed point 
space. We have already obtained an identification of the homotopy groups of (Q‘X)‘; we 
will now identify it as a space. For simplicity, we deal only with the case G = Z/22. 

The first observation is that we have a map p:Q’(X)‘ -+ Q(X‘) defined by 
(f:S’--, S”AX) -+(j‘:SvG+ SvG~XG). It is easy to check that (S”AX)~ 
=SVG A XG), and of course SvO. IS itself a sphere. One can check that since this map amounts 
to a restriction map of function spaces, it is in fact a fibration. Further, it admits a section 
since we have a G-decomposition V 2 VG $ vG, and can therefore construct an inclusion 
s:~,RkvOSkvG(X‘) -r~kRkvSkv(X‘) -, Q’(X), which is easily checked to split the 
restriction map. We now wish to examine the fiber of this restriction map. By inspection, the 
fiber of the map F(S”, S” A X)G 4 F(S”O, S”OA XG). f-f G, can be identified with the 
function space F(S”/S”Y S” A X)‘. As a G-complex, Sv/Svais free off the basepoint, so by 

the based version of 1.8, F(Sv/SvC: S” A X)G 2 F(Sv/SvO, S” A X A EG+)G, where EC de- 

notes a contractible space on which G acts freely. S” A X A EC, is now free off the 
bascpoint. so any equivariant map (and homotopy from S” to S” A X A EC, automatically 

factors through S’/S”‘: so we have F(Sv/SvU, S”AXAEG+)~~ F(S”, S”AXAEG+)~. 

The concluson is, after passing to limits, that the fiber of p may be identified with 
Q”(X A EG.)“, and the above splitting shows that QG(X)” z Q”(X A EG+)‘x Q(XG). One 
uses the fact that all spaces in question are infinite loop spaces and that the section s is an 
infinite loop map. WC now identify Q”(X A EC, )“. 

PROPOSITION 2.2. Let 2 be a free (off the basepoint) G-complex. Then Q’(Z)’ r Q(Z,) 

Proofi On the homotopy group level, and if Z = Z”, , where Z” is a free G-complex, this 
can be obtained from model (cc) from the observation that a framed G-manifold over Z” is 
the same thing (via passing to universal covers) as a framed manifold over Zg. We use the 
transfer to obtain the result. Define j:Q(Z,) -+ QG(Z)G to be the composite 

Q(ZG) -+ Q’(Ze)G A QG(Z)‘, where the first map is obtained by viewing ZG as a G-space 

with trivial action, and applying the section s to the given map, and r is Adams’ transfer 
applied to the map Z -+ Ze, which satisfies Adams’ hypotheses since the action on Z is free 
(off the basepoint). One can now apply an induction over the cells of Z, and check the case 
G,, which is straightforward. The case of a general complex which is free off the basepoint 

follows directly. 0 

The following corollary is a theorem of tom Dieck [Zl]. 

COROLLARY 2.3. For the case G = Z/22, QG(X)G z Q(EG+ A G X) x Q(XC). More gen- 

erulk (Q‘X)G z &EGQ(EWG(K)+ A w, (K, X x). where K ranges ooer conjugacy classes of 
subgroups of G. 



12 Gunnar Citrlsson 

Proof The case G = Z/ZZ is immediate from the above analysis. The general case is just 

an elaboration of this case. q 

Recall that in the non-equivariant situation, a cofiber sequence X + Y --, Y/X induces 

a fibration up to homotopy QX + Q Y 5 Q Y/X, i.e. the natural Q(X) ---, F( p, a) is a weak 

equivalence, where F( p. *) denotes the homotopy fiber of the map p at the basepoint l of 

Y/X. A similar result holds in the equivariant setting. 

PROPOSITION 2.3. Let X -+ Y + Y/X be a cojibration sequence of G-spaces. Then the 

natural map Q”X + F( p, *) is a weak equiralence of G-spaces, where F( p, *) denotes the 

G-homotopy fiber of p at *. We say QG(X) 4 QC( Y) + QG( Y/X) is a G-fibration up to 

homotopy. 

Proo/: From the definition of G weak equivalences. it will suffice to show that 

QG(X)K + F(p, *)K is a weak equivalence for each K. From the formula for fixed point 

spaces 2.3, it suffices to show that for any subgroup K c G, the sequence 

Q EW,(K)+ A 
( 

X” -Q EW,(K)+ A 
> ( 

YK -Q EW,(K)+ 
1 ( 

A (Y/X)K 
Hi;(hl We(K) W’CKI > 

is a tibration up to homotopy. But by the remarks about G cofibrations in $ I, X’; 4 YK is 

a cofibration, and clearly the functor EWC;(K)+A\,,,,, takes cotibration sequences of 

W,(K)-complexes to cofibcr sequences of spaces, so the non-equivariant result implies the 

cquivariant case. cl 

This means that the functor rrz is a homology theory on the category of G-spaces, in the 

sense that it assigns long exact sequences to cotibration scqucnces, and rr(;: is canonically 

decomposed into a sum of copies of the non-equivariant theory a: applied to Bore1 

constructions applied to fixed point sets of subgroups K s G. It is interesting to consider 

the corresponding equivariant cohomology theory, n:(X) 2 {X, 57)‘. It behaves well on 

free complexes, as does rrz. 

PROPOSITION 2.5. n:(X) z x:(X,) when X is /ree ofl rhe basepoinr. 

Proof A straightforward induction reduces to the case X = G,, for which it is immedi- 

ate. Cl 

We note further that, for example, when G = Z/22, we have natural maps 

n;(X) -+ ai by restriction to the fixed point set. Further, the fiber of the restriction map 

F(X, QG(Sn))’ + F(X’, Q(W) 

which induces this map on homotopy groups can be identified with F(X. QG(EG + A S”)p. 
so we have a fibration sequence 

F(X, QG(EG+ AS”))’ 4 F(X, QG(Sn))' + F(XG, Q(Y)), 

However, in contrast to the case of a.“, this is definitely not split in general. For instance, 

examining the case X = S’, where Vis the sign representation, will convince the reader that 

this is the case. 
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3. EQL’IVARIAST SPECTR.l AND COHO%lOLOGY THEORIES 

(A) G-spectra and spectra wirb G-action 

We recall that a spectrum is a family of based spaces (Xi} together with homeomor- 

phisms Si : Xi + RXi + 1. A prespectrum is a family of based spaces with closed inclusions 

ZXi+Xi+r. Maps of spectra and prespectra are families of maps (1;:) which strictly 

commute with the given structure. There is a canonical construction of a spectrum from a 

prespectrum, which replaces Xi by k, Rk.Yi+k. For any jo Z and spectrum & = {Xi ). we 

define xi(&) = ni+j(Xi), whenever this is defined. A map of spectra is said to be a weak 

equivalence if it induces isomorphisms on all homotopy groups. 

Definition 3.1. A spectrum with G-action is a family of based G-spaces {Xi} with 

G-homeomorphisms Xi * RX, + 1, where RX, + 1 is given a G action by ( ycp) (t) = g(cp(r)), for 

any loop cp. There is an analogous notion of prespectrum with G-action, and one may 

associate a spectrum with G-action to any prespectrum with G-action. 

Examples: 

(a) Any spectrum or prespectrum with trivial trivial action. 

(b) Let M be any G-module Then by taking the functorial simplicial construction of 

Eilcnbcrg--MacLanc spaces [39]. WC obtain a spectrum with G-action whose n-th 

space is K(Af, n). 

(c) Let Xi = Q”(S’), whcrc G acts trivially on S’, equipped with the evident maps 

Q”(si) + f2Q”(S’+ ‘). 

Spectra with G-action occur very commonly in practice. For instance. the infinite loop 

space machines of May and Scgal product spectra with G-action when applied to symmet- 

ric monoidal categories with symmetric monoidal G-action. We have seen. though, that 

a more elaborate stabilization procedure is appropriate when considering G-spaces, 

Dcjnition 3.2. A G-spectrum is a family of spaces Xi togcthcr with G-equivalences 

XI 4 R”Xi + 1, where Vdenotes the regular representation of G, and R’X = F(S’, X), with 

conjugation action on F(S”, X) by G. A G-prespectrum is defined in the evident way. 

G-maps of G-spectra and G-prespectra are families of G-maps strictly commuting with the 

structure. 

Remark. We have chosen an economical (in terms of bookkeeping) definition of G- 

spectra. it does not, however. make explicit all the information contained in the definition. 

For instance, let W be any finite dimensional representation of G. Then Wean be embedded 

in Yk for some k, since Y contains a copy of every irreducible representation. Since 

C2w1ewa = R”1CZW2, and since WE Vk admits a complementary summand WI, we see that 

X, = R”‘X,+k = flW(fiWL Xi+t), so the G-spectrum gives rise to ” W-deloopings” by any 

representation W of G. In particular, if we take W to be an n-dimensional trivial representa- 

tion, we see that we obtain a spectrum with G-action as part of the data. A more honest 

definition would be one which dcfincs spectra as families of spaces {XV 1, for any representa- 

tion V of G. To make this precise, one either makes explicit choices for all the representa- 

tions of G, or defines a spectrum as a rule which assigns a space to every finite dimensional 

G-subspace of a given infinite-dimensional G-space which contains every irreducible repres- 

entation infinitely often, subject to certain compatibility hypotheses. This second plan, 
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which is useful even in the non-equivariant situation when dealing, for instance, with 
associativity questions concerning smash products, was carried out by Lewis, May, and 
Steinberger [35]. 

The conclusion of this remark is that to every G-spectrum X we associate a spectrum 
with G-action p.s, and p is in fact a functor from the category of G-spectra to the category of 
spectra with G-action, Note that spectra with G-action admit fixed point and orbit spectra, 
by applying the fixed point and orbit functors to the individual spaces making up the 
spectrum with G-action. 

Definition 3.3. Let X be a G spectrum. Then we define the fixed point and orbit spectra 
of X, XG and &, to be the fixed point and orbit spectra of px, respectively. 

One can ask which spectra with G-action are in the image of p. This is a difficult 
question in general; in our examples above, (a) and (b) are generally not, and (c) is by 
construction. However, one can say the following. 

PROPOSITION 3.4. For any spectrum with G-action &, there is a G-spectrum XA and 
a G-map X -+ pXn which is a quasi-equivalence /or each of the spaces defining X and p$ n. 

(quasi-equioalences were 

Proof: Let V be the regular representation write V zz E @ p, E is a trivial 
one-dimensional define Xc to be %,,, Sct+i)7Xi+t. 
gives the desired spectrum 

based G-space, 

obtain equivariant homology theories 
h?(X) = A W)“) and = A are both homology theories in the 
G-space X, in the that cofibration sequences exact sequences 

admit duality and transfer large of complexes, 
while does. It is immediate admit suspension isomorphisms 
hT(X) (XX), but hi! admits 

first if we let G act trivially ni((X A Z)G) can be 
viewed as 5,C.S’ A X’“, (X A Z)k]G, where V denotes the regular representation. If a de- 
notes any other representation, we may by analogy consider the groups 
lim t [S’ A Sky, (X A Z)klG, and denote this by n:(X A z). Thus, for each representation, not 
7h on y t e trivial ones, we obtain a homotopy group. This is formalized as follows. For any 
finite group G, let RO[G] denote the group completion of the monoid of isomorphism 
classes of finite dimensional real representations. RO[G] is a finitely generated abelian 
group, and by an extension of the assignment a --* A:, one obtains an RO [G]-graded group. 

Consequently, the G-homology theory associated to a G-spectrum can actually taken to be 
an RO[G]-graded group. If a is any finite dimensional real representation and [z] denotes 
its class in RO[G], we obtain a suspension isomorphism hjj(X) 1 h$+,,,(S’ A X), and this 
is the additional kind of suspension isomorphism mentioned above. We will refer to an 
RO[G]-graded homology theory with suspension ismorphisms as a fully equivariant 

G-homology theory. 

Remark. The above discussion sweeps a few details under the rug. Adams [Z] pointed 
out the difficulties involved in constructing an RO[G]-graded theory; one must remember 
that when one writes s”, one must have a fixed model of a in mind, not just its isomorphism 
class, otherwise one may not have a preferred choice of suspension isomorphism. However, 
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the difficulties can be circumvented (see e.g. [353), and indeed Adams [23 suggested 
strategies for doing this. One interesting feature that arises in the following. Note that any 
element in h:(X) = x:(X A z) can be precomposed by any equivariant self map 
S ” A S -+ S”’ A s’, i.e. an element of &(S”) 2 A [G], so h<(X) is always an A [GJ-module. 
What now occurs is that diagrams involving suspension isomorphisms which in the non- 
equivariant case commute up to sign in this case commute up to multiplication by a unit 
in A[G]. 

(B) Permutative categories and the recognition principle 

We recall that a connective spectrum is in fact determined by the zero-th space of the 
spectrum together with structure it carries as a result of being “infinitely deloopable”. This 
structure consists of the H-space structure it carries as a result of being a loop space 
together with a complicated set of higher coherence homotopies. May [40] has encoded all 
these homotopies into a single map CX + X, where CX is the configuration space model 
for QX. There are several diagrams involving CX which are required to commute, making it 
into a “monad”. We have Hausschild’s equivariant configuration space model CcX, 
discussed in $2. It is possible to prove a recognition principle, i.e. a theorem which 
reconstructs a G-spectrum from its zero-th G-space and a G-map CGX 4 X, although to the 
author’s knowledge this has not been published yet. Another formulation of the recognition 
principle is Segal’s principle. which observes that the zero-th space of a connective spectrum 
is a r-space, where r is a category defined by Segal [46], and recovers the entire spectrum 
from this structure. There is a notion of a G-r-space, and it is my understanding that in this 
form the recognition principle has been proved by Matumoto. Rather than discuss these 
constructions in d&l, we explore what some of the necessary conditions on the direct sum 
operation on a G-symmetric monoidal category to produce a G-inhnitc loop space are. We 
hope this will give a feel for the issues involved. 

Recall that a symmetric monoidal category is a category C with sum operation 
@:Cx C+ C, together with isomorphisms of functors @o T 2: CJ and 
@ 0 (@ x Id) 2 @ 0 (Id x a), satisfying certain coherence diagrams. Such categories are the 
information needed by the infinite loop space machines of May and Segal [40], [46] to 
construct spectra. The category may be replaced by one in which the associativity isomor- 
phism is the identity map, so @o(@ x Id) = @ o(Id x @), but one cannot assume this for 
the commutativity isomorphism. The information given by the commutativity isomorphism 
can be summarized as follows. There are n! distinct functors C” + C, obtained by taking 
sums using all the different reorderings of C”; the commutativity isomorphism gives rise to 
a choice of isomorphism between any two of these functors. This can be stated formally by 
giving a Z.,-equivariant functor 0: Z:. x C” - -+ C, where 5 denotes the category whose 
objects are the elements of I,, with a unique morphism between any pair of objects, and 
where 2:. acts on Z. by right multiplication on C” by the evident permutation action, and 
trivially on the target C. Suppose now we have a representation /: G -, C,, and that G acts 
on the category C. Then g E G acts on the left of Z. by left multiplication by J(g), and G acts 
diagonally on C”. We obtain an action of G 3. on Z:., and G x En acts on C via the 

- G-action composed with the projection G x 2:. + G. Each f: G --t Z. gives rise to a different 
G-structure on the category &, and the natural G-equivariant condition is that one should 
have G x Z,-equivariant functions 5 x C” + Q for each such 1: The existence of these 
functors for each f is thus a necessary condition for being the zero-th space of a G-spectrum. 
There are of course also necessary coherences among these functors which we will not 
discuss here. In the case of G = Z/22, this means in particular that in addition to the 
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equivariance of the sum functor C x C -* C, there must also be an equivariant functor 
C x C + C, where Q x C is acted on by g(x, y) = (gy, gx), if G = { 1, g}. 

This last observation gives rise to real restrictions on the categories in question. For 
instance, if G acts trivially on C, the above requirement shows that the sum map C x C + C 
is equivariant, when G acts on C x C by g(x, y) = (y, x). This means that the sum map is 
strictly commutative, so the resulting spectrum turns out to be a product of Eilenberg- 
MacLane spectra. 

(C) The tom Dieck jiItration 

In paragraph (D) of $2, we discussed a theorem of tom Dieck [Zl] to the effect that if 
X is a finite G-complex, then the fixed point set of the G-action on QGX has the homotopy 

type of the product nx~cQ(EWc(K)+ A HE;(KIXK), where the product ranges over con- 
jugacy classes of subgroups of G. On the spectrum level, this tells us that the fixed point 
spectrum ofZ.“X is V~S~Z-EWG(K)+ A w,(K) XK. One could ask whether there is a sim- 
ilar decomposition of the fixed point spectrum for a general G-spectrum. In order to 
understand the generalization, we develop an alternative way to describe the decomposition 
in the case of a suspension spectrum. For simplicity, we deal with the case G = Z/22. 

As above, let EC denote the infinite sphere, with antipodal G-action. Of course, we have 
the equivariant map EC, 4 So, and we let z denote the mapping cone of this map. As 
a space, it is the unreduced suspension of EC. Thus, Eis contractible, but its fixed point set 
consists of two points, i.e. i$ So. From the general remarks in paragraph (A), the sequence 

QGtEG+)+QG(So)-@(EG) is a G-libration up to homotopy, consequently the induced 
sequence on fixed point sets is a fibration up to homotopy. Further, 2.2 asserts that the fixed 
point space of Q”(EG+) is Q(BG+). We expect, then, to be able to identify the fixed point 
space of Q”(z) with Q(S’). 

PROPOSITION 3.5. Let X und Y he based G-spuces with X a G-complex. Then the space 

F(X, z A Y)G eyuioariant maps from X to ,!??f~ Y is weakly homotopy equivalent to the 

space of maps F(X”, YG). and the equivalence is realized by the restriction mup associated to 

XG-+X. 

Proof: This is just 1.4 

COROLLARY 3.6. QG(zA X)G z Q(XG). 

cl 

Proof. 3.5 shows that the mapping space F(S’, S” ADA X)G is equivalent to 
F(SvQ, .S”OA Xc). Passing to direct limits now gives the result. cl 

Thus, for suspension spectra, the cofibration sequence Z:” EC, + So 4 cm% gives 
rise to the tom Dieck formula for fixed point spectra. But with this formulation, we may 
smash the sequence with any G-spectrum & and obtain a cofiber sequence 
Z:” EC + A X + & + E=~A X. This is the analogue of the tom Dieck form& for a general 
G-spectrum. Let us describe the fixed point sets of Z” EC + A X and Z”EG A 8. Let p& 

denote the associated spectrum with G-action to X. 

PROPOSITION 3.8. Let Z be any free (of the basepoint) G-complex. Then the Jixed point 

spectrum 01 Z A x has the homotopy type of Z A G p&. 

ProoJ One observes that the transfer map gives a natural transformation which is 
readily verified to be an equivalence when Z = G,. An induction over skeleta now gives the 
result. cl 
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In particular. we have a spectral sequence with E&term H,(G, a,(2 A X)) converging 
to the homotopy groups of the fixed point speczm of Z A &, i.e. nE,,(Z A X). 

To analyze the fixed point spectrum of IC”EGA& we first note that the fixed point 
spectrum of X is obtained by taking the fixed point spectrum of px, i.e. fixed point sets of 
the deloopings of X0 corresponding to trivial representations. It does not involve the fixed 
point sets of the deloopings by other representations, say of the regular representation V. 
However, we may construct maps x.X,” 4 X,“, 1, where Xt is the delooping corresponding 
to kV. One simply composes the structure map EyXk + Xt+, with the inclusion 
)l’Xt + ZyXL, induced by E E V, where E denotes the one-dimensional trivial representa- 
tion, and takes the induced map on fixed point sets. The colimit of the adjoint direct system 
Q”X,” we call (DGX, the “geometric fixed point spectrum.” 

3.7. Under the standing assumption G = Z/22. the fixed point spectrum of z A 3 has 

the homotopy type of @‘X. 

Proo$ This follows from the same argument as in the suspension case. 0 

In the case of a more general group, where the tom Dieck splitting contains more 
factors, one obtains a filtration on the fixed point spectrum of X by choosing an ordering 
5 on the set of conjugacy classes of subgroups so that if K is subconjugate to H, then 

K 5 H. One then takes the K-fixed point set of a direct limit system {R”Xk}, where 1 is 
the index of h’ in G. to describe the subquotient in the filtration corresponding to the 
subgroup K. 

An unfortunate fact one mu%dcal with is that the fixed point spectrum sequence 
associated wth EG + A X -+ g 4 EC A X is not necessarily split, as is the case when we have 
a suspension spectrum. This can be seen even in the case of a spectrum C-“X. where X is 
a G-complex and V is a non-trivial representation. The notation I-“X denotes the 
G-spectrum obtained from E”X by applying R” levclwise. This has come up recently in 
the work of IIijkstcdt, Hsiang, and Madsen [I23 on Ihe K-theory analogue of the 
Novikov conjecture, where they study the topological Hochshild homology of the 
Eilenberg-MacLane spectrum K(Z, 0) as a Z/p”Z-spectrum. We remark that 0’ is a functor 
from G-spectra to spectra. If X is any G-complex, and E”X denotes its equivariant 
suspension spectrum, then @,“(JCm X) 5 Z:” (Xc). Thus, it isolates one particular functor in 
the tom Dicck splitting of (E:“X)‘. aG also preserves smash products and homotopy 
colimits. 

(D) Equivariant spectra and homotopy Jixed point sets 

Recall from $1 the discussion of the homotopy fixed point set XhG ofa G-complex X. Let 
X be any spectrum with G-action. As usual, we let EG denote a contractible space on which 
G acts freely. We may then form the function spectrum with G-action, whose k-th space is 
F(EG+, Xk), and the fixed point spectrum of this spectrum with G-action is called the 
homotopy fixed point spectrum of &, xbG. Ofcourse, its k-th space is X:“. Similarly, if X is 
a G-spectrum, we may form a function G-spectrum by applying F(EG + , - ) levelwise. Its 
fixed point spectrum will be denoted by 8”‘. For a spectrum with G-action X, let XA 
denote the G-spectrum constructed in 3.3, so X + pX n is an equivalence of spectra, where 
p is the forgetful functor assigning to a G-spectrum a spectrum with G-action. Note that 
X -+ pIuA is of course not necessarily a G-equivalence. 

PROPOSITION 3.9. For X any spectrum with G-action, the natural map X”” + ( pXA )hG is 

a weak equivalence of spectra. Further, ( PX^)~’ z (XA)hG. 
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Proof. The first fact follows directly from the fact that r_! + pXA is an equivalence of 

spectra, and 1.6. The second fact follows from the remark that, for a G-spectrum 8, the fixed 

point spectrum & and the fixed point spectrum of pX are by definition identical. Cl 

PROPOSITIOK 3.10. Suppose X is a spectrum with trivial G-action. Then & n hG is equivalent 

to the function spectrum F(BG+, &), is viewed as an ordinary spectrum. 

Proof Immediate from 3.9 and 1.7. cl 

These two remarks show that if we let So denote the G-suspension spectrum of So, then 

SohG z F(BG+. SO). In general, for a spectrum with G-action X, we have a map zc + XhG. 

The point of the above discussion is that since XhG 2 (&A)hG. we actually have a factoriz- 

ation XG -+ (J “)G + XhG, so in a sense (xA)G is a better approximation to zhG than is Xc. 

We obtain a dramatic illustration of this by considering the case of the spectrum with trivial 

G-action So. In this case, (So)’ z So, and (SoA)G z VK E:” BW,(K)+, and the solution to the 

Segal conjecture [14], [lS] shows that the map (SoA)G --, (8’)“’ is close to being an 

equivalence. 

4. A SURVEY OF THE CURRENT STATE OF VARIOUS G-tiOMOLOGY THEORIES 

(A) Ordinary homukogy, Bore1 homology 

In order to introduce the equivariant analogues of ordinary singular homology theory, 

WC will need some definitions. Let G be a finite group, and let CG dcnotc the category of 

based finite G-sets and G-maps. Note that we do not use only the isomorphisms, so if 

K c If c G, there is a G-map G/K -, G/If given by projection. The following definition is 

due to Brcdon [13]. 

&fnition 4.1. A covariant coefficient system for G is a covariant functor from DG to 

abclian groups, which carries sums (one point unions) to products of abclian groups. 

It will be convenient to think in terms of simplicial G-sets instead of G-spaces. For X. 

a simplicial finite G-set, and a covariant coefficient system E: CG + Ab, we obtain a sim- 

plicial abclian group [X by applying E levelwise. The homology groups of the resulting 

chain complex will be written ffi(X; E). This construction has the property that a cofibra- 

tion sequence X. + I’. + 2. of simplicial finite G-sets induces a long exact sequence on the 

homology groups H,( - ; [ ). This follows from the restriction in 4.1, since at level k, Yk may 

be identified with the one point union of based sets X,, v Zk, so we obtain a short exact 

sequence on the associated chain complexes. 

Examples: 

ti) 

(ii) 

(iii) 

(iv) 

F(X) is the free abelian group on X. This does not depend on the G-action on X, 

and gives ordinary singular homology as its associated homology theory. 

E(X) is the free abelian group on the orbit space Xc. The homology theory assigns 

to X the homology of the orbit space of X. 

E(X) is the free abelian group on XG, or more generally on X” for X c G. The 

homology theory assigns to X the homology of the fixed point set. 

E(X) is the free abelian group on the singular locus S(X) = UKGG XK. The 

homology theory assigns to X the homology of the singular locus of X. 
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We have referred to the groups H,(X; [) as homology theories, and they are homology 
theories in the weak sense mentioned above. They are not necessarily, however, fully 
equivariant homology theories. since they do not necessarily admit suspension isomor- 
phisms by non-trivial representations. Lewis, May, and McClure [36] have determined 
which coefficient systems admit such isomorphisms. and hence give rise to fully equivariant 
theories. We describe their results. 

For G a finite group, we let & denote the category whose objects are finite based G-sets, 
and so that the morphisms from X to Yare the G-linear homomorphisms from Z[X] to 
Z[ Y], where Z[-] denotes the free abelian group functor, with basepoint identified to 
zero. Note that this is a category which can be described in a fairly compact way- the 
objects are one point unions of G-sets of the form G/K+, so the groups HomJZ[G/K], 
Z[G/H]) contain enough information to describe it completely. Note that there is an 
inclusion functor OG -, ,K,; moreover, if X and Y are two objects of PG (and hence of A,), 
then any integral linear combination of morphisms from X to Yin @c defines a morphism 
from X to Y in “Kc. However, not all morphisms in ,Kc are linear combinations of 
morphisms in C?c. For instance, let G = Z/22, let X = So with trivial G-action, and let 
Y = G,, with G acting by left multiplication. Then in Jlc, we have a G-map X -, Y, given 
on the non-basepoint p of So by p 4 1 + T, where G = {I, T). This “transfer” morphism is 
not a linear combination of morphisms in 0 c, since the only morphism from X to Y in 
oG sends all of X to the basepoint. The result of Lewis, May, and McClure [36] now reads 
as follows. 

THEOREM 4.2, Let G be a finite group, and let E be a covmiant coeJicient system. Then 

E extends to a fully equivariant G-homology theory if and only if E extends to a finctor from 

-/JG to uhelian groups. F is thus a “Muckey fknctor.” 

Rrmurk. This thcorcm points out the key role played by transfers in this theory. All the 
morphisms in _/((; can be written as itcrated composites of linear combinations of mor- 
phisms in OG with transfers similar to the one mentioned above for Z/22, so the result can 
be interpreted as saying that the existence of sufficient “transfer data” ensures the existence 
of delooping corresponding to non-trivial representations. Also, their result gives a similar 
characterization for compact Lie groups. 

Let us examine the problem of extending to J!c the coefficient systems we gave as 
examples above. In example(i), it is immediate that E extends over _/fG. This corresponds to 
the fact that if Y is any representation of G, then Hd+dim “(S” AX) 2 H,(X), in a natural 
way. Of course, the isomorphism is not equivariant, but that is not required. The corres- 
ponding RO[G]-graded homology theory thus is canonically isomorphic to a theory which 
is pulled back from a Z-graded theory along the augmentation map RO[G] + Z, given by 
[V] -+ dim V. In example (ii), it is also easy to see that E extends over _//c. Indeed, it is the 

composite Oc -+ _/ic 5 G-mod f @, where G-mod denotes the category of left Z[G]- 

modules, @ is the functor M + Z @ZtGIM, and r associates to a based finite G-set X the free 
abelian group on X, with the basepoint set to 0. The coefficient systems in (iii) and (iv) do 

not extend over _&c. We show this for (iii). The composite So A G, G So in -tic, where 

r(p) = 1 + T as above, is multiplication by 2. If E were to extend to _/fc, we would have 
that the composite Z + 0 -, Z is multiplication by 2. 

We also observe that Bore1 homology extends to an RO[G]-graded homology theory. 
Let G be finite as usual, and let G be a free contractible G-complex. For a based G-complex 
X, we define the (reduced) Bore1 homology of X with coefficients in an abelian group A to be 
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H,(EG xc X, EC xG *; A). Let Y be any representation of G. Then EC xG(S’ A X)/EC xG + 

is equivalent to the cofiber of the map T(5) f T(t), where T denotes Thorn complex, 5 and ^ 
5 are the vector bundles 

Y+EGxf’ Y-rEGxXxV 

G1 
BG EGxX 

G 

respectively, and i is the inclusion given by + + X. The Thorn isomorphism now will give 
that, in the case of an orientable representation, HFpdi, “(S” AX; A) z Hp’(X; A). This 
yields the appropriate isomorphisms, and hence the result. Bore1 homology, and parti- 
cularly its dual cohomology theory, are extremely useful invariants of group actions. For 
instance, if G = (Z/pZ)“, one can recover information about the fixed point set of a G-action 
on a finite complex as follows. The F,-Bore1 cohomology of So, with trivial G-action, is 
a graded ring, isomorphic to H*(BG; FJ Further, H&,(X; FP) is always a module over 
H&,,,,(S’). There is now the following theorem. 

THEOREM 4.3 [31]. Let X he a finite G-complex. Then the inclusion map XG -P X induces 

an isomorphism on Bore1 cohomology, localized by inverting all non-zero elements in 

HA,,,,(S’) if p = 2, and by inverting all non-nilpotent elements in Hi,,,,(S’) $ p is odd. Thus, 
one can recover the sum of th mod p Betti numbers of the jixed point set from the Bore1 

cohomology of X. as an H fO,,,(SO)-module. 

Remark. The G-spectra representing Bore1 homology as a G-homology theory and 
Bore1 cohomology as a G-cohomology theory are quite ditfercnt. 

(B) Equivariunt K-theory 

Recall that if X is a space, a complex vector bundle over X is a space E with projection 

map E : X, so that there exists an open covering { U.jaeA of X and isomorphisms 

qn,:n-*U,~U,xC”overU,,sothatqn,~cp~’:U,r\UgxC”-rU,nUgxC”isoftheform 
(u, u) + (u, S(u)(v)), where 9: CJ, n U, + CL,(C) is a continuous map. We refer to [6] or [9] 
for a complete discussion. Similarly, if X is a G-space, a G-vector bundle is a G-space E, with 

G-map E G X, so that there is a G-invariant open covering {CJ,}, c A and G-isomorphisms 

$J,:n-‘U,z U, x V, where V is a complex representation of G, satisfying the above 

mentioned properties. Of course, 3 must now be a G-map, where G is acting on Aut( k’) by 
conjugation. See [6] or [9] for a discussion of G-vector bundles. 

Definition 4.4. For X a finite G-complex, we define KU;(X) to be the group completion 
of the monoid of isomorphism classes of G-vector bundles over X. This construction is 
contravariantly functorial in X, via pullback of G-vector bundles. If X is a finite based 
G-complex, then we define the reduced KUG group, DG( X), to be the kernel of the natural 
map KU:(X) + KUz(point). 

Recall from [6] that in the non-equivariant theory, one obtains a periodicity isomor- 

phism KU’(X): m(X x D2/X xS’), and by factoring out KU’(point) and 

=“(XxD2/*xS’), respectively, an isomorphism E”(X) 3 3(X x D2/ * 

x D* u X x S’) z s”(S2 A X). The complex X x D*/X x S1 is of course the Thorn com- 
plex of the one-dimensional trivial complex line bundle over X, and the above mentioned 
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isomorphism is a special case of a Thorn isomorphism theorem for the KV”-groups. Atiyah 

in [8] proved a similar Thorn isomorphism theorem in the equivariant case. 

THEOREM 4.5. Let X be a finite G-complex, let 5 -+ X be a G-vector bundle oter X, and let 

Tt denote the Thorn complex of t, a based finite G-complex. lIere is an isomorphism 

KU:(X) 5 sG(Tt). In particular, if X is a based finite G-complex and V is any complex 

representation of G, then we obtain an isomorphism DG(X) z K?G(Sv A X). 

The proof of this theorem uses the theory of elliptic partial differential operators, with 

G-action. In the non-equivariant theory, one uses this periodicity to show that one obtains 

a Z/ZZ-graded generalized cohomology theory KV*. The same procedure applied in the 

equivariant case gives a G-cohomology theory on based finite G-complexes. The Thorn 

isomorphism further shows that one obtains suspension isomorphisms for aJ!mrepresenta- 

tions, and moreover that the grading factors through the composite RO[G] -+ Z 4 Z/22, 

so the theory is in effect Z/ZZ-graded. There is also a Z/8Z-graded theory KOZ, whose 

properties are more involved. See the paper of Atiyah-Segal [9] for details. 

We have the following result, which in particular computes the coefficients in 

equivariant K-theory. 

PROPOSITION 4.6. 

(a) KU: is a graded ring valued cohomoloyg theory; in particular, KV$(S”) is a ring, and 

it is isomorphic to R [G]. the complex representation ritug of G. The groups KVz( X) 
are thus R [G]-modules Jiw ull X. Also, KVk(S”) = 0. 

(b) KVg(G/K’)r R[K], where KC G is a subgroup of GR[K] is here an R[G]- 

module viu the restriction ring hornomorphi.snt R [G] + R [ K]. 

(c) If X is a finite based G-complrx, free ofl the husepoint. then KVE( X) z KV*(X,). 

KU:-theory is rcprescntcd by a G-spectrum. We describe its zero-th space. Recall that 

the zero-th space for the KU-spectrum is BU x Z, where BV is the union of the spases 

BV(n), and BU(n) is the Grassmanninn of n-planes in C’“. Let Cg denote an infinite sum of 

copies of the regular rcprcsentation of G, and Ict BUG(n) denote the space of n-planes in C$. 

G acts on BUG(n), and there are equivariant inclusions fIrlo(n) + BUc(n + I). The union, 

called BUc, is the zero-th component of the zero-th space in the spectrum representing 

KVG. 

We now show how KU6 gives a quick calculation of KV*(RPF). This is just the method 

of Atiyah-&gal [9]. Let G = Z/22, so RP’” = BG. (Note that RP” is not a finite complex, 

so KU*-theory is not actually defined by vector bundles, but one must take the representa- 

ble version, defined using maps into BU x Z. A similar strategy works equivariantly, using 

G-maps into the G-spectrum described above.) Standard &‘-arguments (li& vanishes here) 

show that KU*(RP,“) 2 &KU*(RP’!+). Let S” denote the n-sphere with antipodal G- 

action. S: is free off the basepoint, so KV~(S”+) z KU*(RP’?+). and we must describe 

+l& KVE(S:). There is a natural map ST -, So, which collapses S” to the non-basepoint, 

so we obtain a homomorphism KUg(S’) 2; @. KVz(S”, ). This map does not, as it stands, 

turn out to be an isomorphism. However, one can 2-adically complete all the groups in 

question. This corresponds geometrically to an equivariant 2-adic completion procedure 

applied to the spectrum representing KU:. We denote the 2-adic completion of an abelian 

group by 2. Since KV,$(S’) 2 RCG], we obtain a homomorphism 

R[G]; -+ +I& KV;(S’!+ ); , 
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which we will show is an isomorphism. Note that if we let E. be the mapping cone of the 

map Y+ + So, we obtain a long exact sequence 

. . . --, Kc&F.); + KU&P)* + KU#“,):^ 4 KU~‘(E,); +’ * . 

and hence (!;m terms can be checked to vanish, so +I& is exact here) a long exact sequence 

Since KUE(S’); is understood, if we can show that l&KUG(E,); = 0; we will have our 

result. Now, we observe that E, is just the one point compactification of the representation 

no, where d is the one-dimensional sign representation of G. This is the same thing as the 

Thorn complex of nrr, viewed as a G-vector bundle over a point. Conseqently, when n is 

even, 

I 

KU:(&); 2 R[G]; 

KU& )j’ a 0 

by the Thorn isomorphism theorem given above. This immediately gives 

lim KU;(&); = 0. and we must describe the homomorphism KLI~(I!Z~,+~)$ + 
-0 KU,(E,,); . Both sides are cyclic R[G];-modules, so we must only describe the image of 

the element 1 in R [G];, i.e. the “Thorn class”. But the calculations in Atiyah [S] show that 

this image is 1 - p, where p denotes the class of the complex sign representation in R[G]i . 

Consequently, I&I. KUz(E,) is isomorphic to the inverse limit of the inverse system 

X(1 -0) x(1-P) ‘(1-P) x(1-p) 

(*) . . s- RU[G]; - RU[G];- . . . - RU[G]; . 

We examine KU [G]. Thcrc arc two isomorphism classes of irreducible complex rcprcsenta- 

tions of G, namely the trivial representation t: and the sign rcprescntation /J, so 

RU[G] 2 ZC + Zp. E acts :IS identity clement in the ring structure, and p2 = E. (I - p)’ is 

therefore equal to 2( I - p), so (I - p)” = 2”-‘( I - p). It is now clear that the inverse system 

(*) has trivial inverse limit, so we show that l&KU:(&); = 0. This leads one to the 

conclusion that 

i 

KU’(RP,“); 2 R[G]; and 

KU’(RP:) z 0 

Atiyah [7] proved a result holding for any finite group, which generalizes this. 

THEOREM 4.7. Let f(G) be rhe kernel of the restriction map R[G] -+ R[ {e}]. and let 
R[G] h denote the completion of RU[G] at I(G). Then 

i 

KU’(BG+) z R[G]^ 

KU’(BG+) z 0 

for all finire groups G. 

Another interesting application of equivariant stable homotopy theory is the dual 

(homological) version of Atiyah’s result. In its cleanest form, it is given by J. P. C. Greenlees 

[ZS] in a recent preprint, but similar results were obtained earlier by G. Wilson [49] and 

K. Knapp [32]. An advantage of Greenlees’ point of view is that it gives a very direct proof 

of Atiyah’s theorem. 

Greenlees’ result reads 2s follows. For any ring A and ideal 1, one can define the 

Grothendieck local cohomology groups H;(A) (see [26] for this construction). If A has 
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KrulJ dimension d, then these groups vanish for I > d. It is not hard to check that for any 
finite group G, R[G] has Krull dimension 1. 

THEOREM 4.8 (see [25]). Let KU: denote the generalized G-homology theory associated 
to the equivariant spectrum representing KU:. Then 

i 

KU&EC+) 2 Hi’,oUWl) and 

KU:(EG+) = H:,,,(RCGl). 

Moreover, KiJ,(BG +) z KUz(EG + ). so we obtain an explicit algebraic description of 

KU,(BG+ ). 

In fact, H:,,,(R[G]) is typically rather straightforward to compute. For instance, for 
a p-group G, HT,o,(R[G]) z Z and H,Co,(RIG]) z R[G] @ Z/p”, where R[G] denotes the 
Z-module R[GJ/Z. 

Another recent development is the description by Adams, Haeberly, Jackowski, and 
May of KU2_(E,G+), where 9 is any family of subgroups of G closed under downward 
inclusion and conjugation. The case 9 = ({e}} is Atiyah’s theorem. The description is in 
terms of the completion of the representation ring at an appropriate ideal associated to the 
family 4, and appears in [4]. 

(C) Stable homotopy theory 

An important application of equivariant stable homotopy theory has been the solution 
of &gal’s Burnsidc ring conjecture. Since this has been discussed in detail clsewherc ([ 151, 
(16-j). WC content our sclvcs to state the result. Given a finite group G, let A[G] denote the 
Burnsidc ring of G. Let l(G) c A[G] be the kernel of the restriction map A[G] + AC(e)], 
and let A[G]^ denote the completion of A[G] at I(G). Note that for any G-space X, II:(X) 
is an A[GJ module. The theorem now goes as follows. 

THEOREM 4.9 (W. H. Lin, May-McClure, Adams-Gunawardena-Miller, Carlsson). Let 

X be a finite G-complex. Recall the notation ( - )hG for G-spectra from $3. Then n,((xm X)“G) 

is isomorphic to the I(G)-adic completion of nI;(x “X). In particular, if X has trivial G-action, 

the non-equivariant spectrum F(BG+ , x*X) has homotopy groups given by the I(G)-adic 

completion of n:X, so nO(F(BG+, X”S’)) 2 A[G] h. This last statement is Segal’s original 

conjecture. 

Remarks. 

(i) When G is a finite p-group, f(G)-adic completion is essentially p-adic completion. 
(ii) May-McClure [41] reduced the general case to the case of p-groups, W. H. Lin 

[37] proved the case G = Z/22, J. Gunawardena [27] proved the case G = Z/pZ, 
Adams-Gunawardena - Miller [3] proved the case G = (Z/pZ)‘, and Carlsson [ 143 
reduced the general p-group case to (Z/pZ)‘. 

(iii) In the proof of Atiyah’s theorem, one makes great use of the fact that one can 
describe KU+(S’) explicitly in building the induction to a general p-group from the 
cyclic case. The formal properties of equivariant stable homotopy theory are the 
replacement for the unavailable information concerning n,(s’), and play a much 
more serious role in the proof of this theorem. 

(iv) Adams, Haebcrly, Jackowski, and May [S] have generalized the theorem signific- 
antly to prove similar results about function G-spectra with domain E.,G+, where 
9 is a family of subgroups of G closed under downward inclusion and conjugation. 
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(v) A number of authors (Nishida [42], Feshbach [24], Lee [34], and Bauer [ 111) have 

studied the analogous question for compact Lie groups, but information is still 

incomplete. 

(vi) The theorem can be applied to study homotopy fixed point problems for spaces 

rather than spectra, such as the Sullivan conjecture [17]. See also [IS]. 

(D) Equivariant bordism theories 

The definitions of bordism groups of manifolds with additional structure on their 

tangent bundles (oriented, almost complex, framed, etc.) extends to the equivariant setting 

without change. Some of these groups have been studied by Stong [47], Wasserman [48], 

tom Dieck [ZO], and others, and one has a fair amount of information about them. 

Non-equivariant bordism theories yield homology theories of a space X by considering 

bordism theories of manifolds with reference maps to X. Also, the bordism groups can be 

identified with the homotopy groups of a Thorn spectrum associated to the kind ofstructure 

required of the manifolds and bordisms, via the Pontrjagin-Thorn construction. The 

G-homology theories one obtains via the naive generalization of these constructions do not 

yield fully equivariant theories, because of a failure of transversality in the equivariant 

setting. We give a brief sketch of how transversality fails. 

Recall that if f: M ---) N is a smooth map of manifolds, f is transverse to a submanifold 

P c N if for every point .TE M so that f(.x)~ P, the projection of the Jacobian map Dj(x) to 

the normal bundle of P in M at j‘(x) has maximal rank. In particular, / is transverse to 

a point no N if and only if Df(.u) has maximal rank for all XE/- ‘(n). Under these 

circumstances. / - I(n) is a submanifold of M. Thorn’s transvcrsality theorem asserts that via 

a small perturbation ofj; one may construct a map homotopic to / which is transverse to P, 

if M is compact. The local vcrilication of this amounts to the observation that for any map 

R” -* R” @ RP, with j(0) = 0. them is a neighborhood of 0 in R” and a map Iarbitrarily 

close to/so that fl U is transvcrsc to RP. In particular, rt 0 D?(O), where K is projection from 

R” @ RP to R”, has maximal rank. This local property fails in the equivariant setting. In 

fact, if G = Z/22, R” is RZ with trivial G-action, R’ is R with trivial G-action, R” is R with 

the sign action of G, and /: R” + RP is any surjective map, then any G-map must carry R” 

into RP and cannot, therefore, be of maximal rank when projected into R”. The problem, as 

stated in Hausschild [28], is that there must be “enough room” in the tangent bundle of 

M to allow a surjective G-bundle map to the tangent bundle of N. Hausschild shows, in 

[28], that with a sufficiently large tangent bundle of M, one can prove an equivariant 

version of Thorn’s theorem. This theorem allows one to construct G-homology theories 

with suspension isomorphisms for all representations of G. 

We outline this construction, as described, e.g., in tom Dieck [20]. For simplicity, 

suppose we deal with unoriented bordism. Let X E Y be G-spaces. We define f2,“( Y, X) as in 
Stong [47], to be a bordism group of compact smooth G-manifolds with boundary (M, dM) 

together with reference map f: M 4 Y so that f(iJM) E X. Let V be the regular representa- 

tion of G, and let D(V) and S(V) denote the unit disc and unit sphere in V under an 
invariant metric. Taking products with D( V) gives homomorphisms Qf(o(lV) x X, 

S(IV)xX)dR,C+,,,(D((f + l)V)xX, S((I + l)V)xX), and we Ict 6:(X) = &~R~+~JGI 

(D(IV) x X, S(IV) x X). This will be called the G-equivariant stable bordism group of X, 

and yields a fully equivariant G-homology theory. In addition, this theory is represented by 

a G-spectrum MO’. 
. 

One can ask how much of paragraphs(B) and (C), concerned with stable Ku-theory and 

stable homotopy theory, carries over for these bordism theories. That is, does one obtain 
a calculation for Q*(BG+) and Qt(BG+) as one did for KU l and n3? Recall from §3 that 
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given a spectrum with G-action z, there is a ‘universal” G-spectrum z^, equipped with an 
equivariant map of spectra with G-action Z -+ pZ”, which is an equivalence of spectra 
non-equivariantly. The G-spectrum for TIE is obtained by applying this procedure to So, 
equipped with trivial action. Moreover, equivariant K-theory is obtained by allowing G to 
act on the complex vector spaces, and MOG and MUG are obtained from MO and MU by 
permitting the group to act on the manifolds which represent elements in MO, and MU,. 
Since KVz(SO) and n&5’) are both very closely related to KU*(BG+) and n:(BG+), one 
might hope that this would also be true for equivariant bordism. One might hope, for 
instance, that if G is a p-group, a*(BG +),^ would be isomorphic to fiE(S”); . Unfortunately, 
one can see that this fails, since one has quite explicit control over the bordism groups for 
lens spaces. Thus, the modifications to a homology theory to make it fully equivariant are 
not generally enough to describe homotopy fixed point set problems, although they are in 
the case of K-theory and stable cohomotopy. 

A related problem has been studied by Hopkins, Kuhn, and Ravenel[33]. They attempt 
to describe K(n), (BG + ) and K(n)* (BG + ) for G a finite group, where K(n) denotes the n-th 
Morava K-theory 1441. They do not completely succeed, but they manage to compute the 
Euler characteristic. (Morava K-theory is Z/2( p” - I)-graded.) The answer is described in 
terms of n-tuples of commuting elements in G, and hence depends explicitly on the algebraic 
structure of G. The answer is so explicit that it suggests that one could identify K(n)*(BG+) 
with an appropriately defined G-equivariant Morava K-group of a point. A problem with 
this idea is the way Morava K-theory is defined. As defined by Baas [IO], using ideas of 
Sullivan, the n-th Morava k’-theory is defined using bordism groups of manifolds with 
singularity of a particular kind. Unfortunately, the restriction on the singularity is that it be 
isomorphic to the cone on a family of bordism representatives of particular classes in the 
complex bordism of it point. This kind of restriction doesnot seem to be sufficiently natural 
and functorial to suggest a reasonable definition of equivariant Morava K-theory. Thus, it 
seems that what is nccdcd is a more intrinsic definition of the types of singularities occurring 
in the definition, so that there will be a natural notion of what the G-manifolds and 
G-singularities defining the theory should be. Alternatively, one could attempt to get 
a sufficiently explicit computation of the equivariant stable complex G-bordism of a point, 
so that one can carry out the Baas construction on an appropriate family of generators in 
the equivariant complex bordism of a point. Recent work of Madsen [38] and Costenoble 
[I91 have established an analogue of the Conner-Floyd isomorphism for equivariant 
bordism. Progress in these directions should give a better understanding of the chromatic 
filtration of stable homotopy theory. 

5. PROBLEMS 

(I) Recall that if X is a G-spectrum, then the orbit spectrum XG is obtained by taking 
the orbit space levelwise in the associated spectrum with G-action px. The fixed 
point spectrum of a suspension G-spectrum is well understood by tom Dieck’s 
result; is it possible to give a reasonable description of the orbit spectrum? 

(II) Define and compute equivariant Morava K-theory spectra. See $4 for a brief 
discussion. 

(III) Formulate a conjecture about R:(BG). for G a finite group. 
(IV) Bokstcdt has defined a “topological Hochshild homology” spectrum THH(A) for 

a ring spectrum 4. Let & denote the Eilcnberg-MacLane spectrum associated to 
the integers. THH( IQ is a key tool in the work of Bokstedt, Hsiang, and Madsen 
[IZ] on the K-theory analogue of the Novikov conjecture. THH(K) is equipped 
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with an action by ZfpnZ for all n, and is in fact a Z/f Z-spectrum. Can one give 
a description of THH(&)ZIP"Z? 

(v) Describe the function spectrum F(BG, SO), when G is a compact Lie group. A fair 
amount of work has been done on this problem, (see [24], [34], [ 1 l]), but results 
are incomplete. 

(VI) Develop the equivariant theory for profinite groups, in an attempt to analyze 
homotopy fixed point sets for profinite groups. 
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