
On the homotopy groups of 

BPL and PLIO 


1. Introduction 

Let BO and BPL be the classifying spaces for stable vector bundles and 
stable piecewise linear (PL)microbundles, respectively [21]. Define the  space 
PL/O to be the fibre of the natural map BO -BPL. Hirsch and Mazur have 
shown that  the  homotopy exact sequence of the fibration PLIO -BO -BPL 
breaks up into short exact sequences [15], [16]: 

rz-
Moreover, they have defined an isomorphism n,(PL/O)-r,, where r, is 
the  group of concordance classes of smoothings on the k-sphere. 

Kervaire and Milnor have studied another exact sequence involving the 
group r ,  [18]. Let bP,+,cr, be the subgroup consisting of those exotic 
spheres which bound n-manifolds. Let J:n,(O(N))-- n,+,(SY)r n f  be the 
Hopf-Whitehead homomorphism, N > k + 1. Then there is an exact sequence 

To give this exact sequence a homotopy theoretic interpretation and 
relate i t  to (A), we recall that  there is a classifying space BF for stable 
spherical fibrations modulo fibre homotopy equivalence [13]. There are 
natural maps BO-BF and BPL-BF with fibres F/O and F/PL respec-
tively, and a commutative diagram, with rows and columns fibrations: 

F/O-F/PL 

L O
\ I I 

BO - BPL 

Now, as is well-known, n,+,(BF)rnp and the natural map n,+,(BO)-n,+,(BF) 
coincides with the J-homomorphism above. Thus n:/im(J)c n,(F/O). More-
over, in the homotopy exact sequence 
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we have im(O) = bP,+, c r, E n,(PL/O) and the map n,(PL/O) --n,(F/O) can 
be identified with the Kervaire-Milnor map I', -nf/im(J) c n,(F/O) [26]. The 
space F / P L  has been studied extensively by Sullivan. He makes use of the 
framed surgery arguments of [18], modified for P L  bundles as in [ l l ] ,  to- 
gether with Cerf's result tha t  r, = 0, to show that  n,(F/PL) E 0, Z,, 0, Z for 
k - 1 , 2 , 3 , 4 ,  mod 4, respectively. Thus bPZnIl= 0, bP,,,, = Z, or 0, and bP,, 
is cyclic. Moreover, the map I?, -- nf/im(J) is surjective if k + 4n + 2, and 
has cokernel 0 or Z, if k = 4n + 2 [18]. 

In this paper we obtain further results on the homotopy groups and maps 
in the diagram 

Let 

j, = denom (Bn/4n) 

8, = num (Bn/4n) .a, .22n-2.(2,%-' - 1) 

where B, is the nth Bernoulli number, and a, = 1 if n is even, a, = 2 if n, is 

odd. 
In 5 4 we define a homomorphism f :  r,,_,-ZOn such tha t  the composition 

f O: Z -r,,-,-Zen is the natural projection. Using the result of [18] tha t  0 


im(O) = bP,, E Zen or ZZsn, we are able to deduce 

THEOREM1.3. There  i s  a n  i s o m o r p h i s m  I?,,-, r bP,, @ nS,-,/im(J). 

The invariant f is closely related to the invariant e: nL-, -Zjn studied 
by Adams and others [2]. Recall tha t  Adams showed tha t  im(J)  5Zj, or Zzj, 
and, since e 0 J:Z -.nfn-, -Zjn is the natural projection, deduced tha t  im(J) 
is a direct summand of nS,_,, a t  least for odd n. Let im(J)'  c im(J)  be the 
subgroup of elements of odd order. I t  is clear that  im(J)'cnS,-, is a direct 
summand for all n. In  5 4 we prove 

THEOREM1.4.' There  i s  a n  i s o m o r p h i s m  n,,(BPL) z Z @ nS,-,/im(J)', 
for  all  n > 2. 

We also describe the maps in diagram 1.1 in terms of the invariants e 
and f and the direct sum decompositions of Theorems 1.3 and 1.4, a t  least for 

Theorems 1.3 and 1.4 were conjectured by Novikov. [S. P. Novikov, Homotopically 
equivalent smooth manifolds,  A.M.S. Translations, Ser. 2 (48), 271-3961. 
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all n such that  im(J) G Z jn .  

The homomorphism f :  I'4n-,-Zsnis constructed by studying smooth 4n- 
manifolds with boundary an exotic sphere. Using results on spin and U-
cobordism, we prove 

THEOREM1.5. Every exotic sphere C E F4,-, bounds a spin  manifold M4" 
(resp. a U-manifold) with a l l  Pontrjagin numbers, except possibly p,, zero 
(resp. a l l  Chern numbers, except c,,, zero). 

The invariant f (C.) E Z mod B,Z is then defined to be essentially the index 
of such an M4" modulo the indeterminacy resulting from the non-uniqueness 
of M4". 

In 9 2 we give the necessary preliminary results from K-theory and 
cobordism. In  8 3, we study almost smooth manifolds, that  is, manifolds with 
a smooth structure (in fact, a spin or U-structure) in the  complement of a 
point. In particular, we show that  the P L  normal microbundle of such man- 
ifolds is orientable for K-theory. From this we deduce certain integrality 
conditions on the characteristic numbers, which for the decomposable 
numbers coincide with the Atiyah-Hirzebruch differentiable Riemann-Roch 
theorem [lo]. Using the theorem of Stong that  all relations among charac- 
teristic numbers of closed spin and U-manifolds are given by the Riemann- 
Roch theorem, we obtain Theorem 1.5. 

The results in 8 3 are closely related to the results of Conner and Floyd 
on manifolds with framed boundary [12]. In 5 4 we prove the main theorems 
of the paper, assuming the following result, which is proved in 3 5. 

THEOREM1.6. Let M4" be a spin  manifold or U-manifold with boundary 
a n  exotic sphere C. E I?,,-,, and with decomposable characteristic numbers 
zero. Then 8 divides index (M4"). 

Both Theorems 1.5 and 1.6 are necessary to obtain a sufficiently sharp 
invariant f. The proof of Theorem 1.6, for even n ,  depends crucially on 
properties of U-manifolds. This is the main reason for the simultaneous 
treatment of spin and U-manifolds throughout the paper. 

The author wishes to thank Professors R. Stong and D. Sullivan of 
Princeton, Professor A. Vasquez of Brandeis, and Professor F. P. Peterson of 
Massachusetts Institute of Technology, my thesis adviser, for many useful 
discussions during the preparation of the doctoral thesis of which this paper 
is part. 

2. Preliminaries on K-theory and cobordism 

In this section we collect for later use certain formulas and theorems 
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from K-theory and cobordism. We also compute the smallest integer which 
can occur as the index of a closed, smooth, spin, or U-manifold with decom- 
posable characteristic numbers zero. This is given in Corollary 2.4, which, 
along with Theorem 1.6 of the introduction, characterizes the indeterminacy 
of the index of the manifolds of Theorem 1.5 with a given boundary C. E F,,-,. 

Recall tha t  for each of the structure groups G = SO, spin, U, SU,  there 
are the cobordism groups consisting of cobordism classes of k-manifolds 
M k  together with liftings M-BG of the stable tangent bundle of Mk.  
The tangent maps induce a map 

defined by ?(Mk) = (T,,~),[M~],where [Mk] is the fundamental homology class. 
It is well-known that  .r is an injection. The homology class ~ ( ~ l f "corresponds 
to the evaluation homomorphism on cohomology 

For G = SO or spin, H*(BG, Q) r Q[pl, p,, . . -1 is a polynomial algebra 
on universal Pontrjagin classes p, E H4,(BG, Z). For G = U , H*(BU,  Z) 
r Z[c,, c,, . . -1, and for G = SU,  H*(BSU, Z) r Z[cl, c,, . . .]/(cl) where 
c, E H2j(BU,Z) is the universal Chern class. 

I t  is convenient to introduce variables x,(dim x, = 2) and write the total 
Chern class as c = Z:=,c, = rl[(l - x,). That is, c, is the J elementary 
symmetric function in the s,. Then the Chern character of a complex n- 
dimensional bundle ;is defined by ch(s') - n = C(e"t  - 1). The Todd class is 
defined by T(f) = n ( x , / ( l  - e-"t)). It is also convenient to introduce the 
characteristic classes e,(s'), defined as the jthelementary symmetric function 
in the variables (ex% - 1). 

Let h3(f)be the j" exterior power of the bundle s". Set k t ( ; )= CYz,h1(i')tJ, 
and define K-theory operations r3(s")by the formula r,(:) = C: , r3(s')tJ= 

Xt,(,_,,(s'). The operation r, satisfies r,(; 7 )= rt(s")@ r t (v) ,  and the reform 
power series generators over the integers for all K-theory operations [6]. 
One sees by a computation that  ch(y~(s" - n))= e,(s'), where e,(s') is defined 
above [24]. 

If ;is a real n-bundle, denote i ts  complexification by 2,. Then the Pon- 
trjagin classes are given by p(s")= Cp,(s ' )  = C(- 1)3~,,(s',). The Pontrjagin 
character is defined to be ph(s") = ch(s',). It is convenient to write formally 
p(E) = n ( 1  + x3 (dim x: = 4) and define the characteristic classes f,(s') to be 
the  jthelementary symmetric function in the variables (ex$ + e-xL- 2). Also, 
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the Â  class and L class are defined by Â  = fl{(rc,/2)/sinh(xt/2)) and L = 

TI(.%/tgh xi). 
The KO-theory operations rZ(E)are defined just as for complex bundles. 

One sees by a computation that  f,(s") is a polynomial with integral coefficients 
in the ph(ri(s" - n)) [24]. 

Let 5 be a complex n-bundle over a space X. Denote the Thom space of 
s' by T(s"). Recall that  there is a canonical orientation class U, E K(T(~"))[ 6 ] .  
That is, i "  U, = generator R(s2")  z Z where i :  S2" - T(5) is the inclusion of 
the fibre, compactified a t  infinity. If :is a real spin bundle with fibre 

dimension 8n,  then there is a canonical class U E %(T(F)) with i*U = gene-

rator K?j(s8") = Z [8]. Moreover, these classes satisfy 

where @: H*(X, Q) r H*(T(;'), Q) is the Thom isomorphism in cohomology. 
A unified treatment of the orientations U and U, can be found in [12]. 

The existence of these orientation classes is the main tool in the proof of 
the Atiyah-Hirzebruch, Riemann-Roch theorems for differentiable manifolds 

[lo]. 

THEOREM. Let 5 be a vector bundle over a spin  manifold M (resp. a 
complex bundle over a U-manifold M).  Then 

<ph(:) - A ^ ( M ) ,  [MJ) E a,Z [resp. (ch(2). T(M), [MI) E Zl . 
Here A^(M) and T(M) are the Â  and T classes of the tangent bundle z, 

of M. This theorem gives integrality conditions on the characteristic numbers 
of manifolds. Thus for spin manifolds M4" consider the evaluation homo- 
morphism 

-
e,: H4"(Bspin, Q) -H4"(M4", Q) -H4"(M4", Q/Z) = Q/Z . 

Set R;tn = (I114% ker (G) where the intersection is taken over all 4% spin 
manifolds M4". Similarly, for U-manifolds M2", we have G:H2"(BU, Q) -
H"(M2", Q) -- Q/Z. Set RL = ker (G). 

Choosing integral polynomials in ti = ri(z, - dim M )  in the Riemann- 
Roch theorem, and using the fact above that  the characteristic class fj(z,) is 
an integral polynomial in the p h ( r i ( r ,  - dim M)),we see that  

and similarly 

R:: 2 ((2. T),, 1 x E Z[el, e,, . . -1) . 
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Here, if a E H**(BG,Q), (a),denotes the homogeneous component of degree 
n. Stong has proved that  equality holds in these inclusions [24], [25]. (See 
also [14]). Equivalently, let 

B4Zn = {aE H4,(Bspin, Q) I <(xA^),,,a )  E a,Z vx E Z[f,, f,, .. .I} 
BFn = {a Hz,(BU, Q) I <(xT)z,, a )  E Z vz E Z[e,, e2, ..'1) . 

Then 

THEOREM(Stong). Ta;",'" = B;iinand -rLl& = Bfn where T i s  the inclusion 

T: @/torsion -H,(BG, Q). 

Thus any collection of numbers {p, = pfl. ptr / o=(i,, . .,i,), x 4 j . i j  = 

4%)or {c, 1 o = (i,, ...,i,), x2j . i j  = 2%)which satisfy the integrality condi-
tions of the Riemann-Roch theorem, are the characteristic numbers of some 
spin or U-manifold, respectively. 

Now let E,: Q[p,, p,, -1 --t Q and E,: &[el,c,, .-1 +Q be the homomor-
phisms assigning to a polynomial its coefficient of p, or c,, respectively, with 
the convention that  p, = c, = 1. Then the linear combinations of the decom-
posable characteristic numbers which are integral for all spin or U-manifolds, 
are given by 

8;Fn = R;tn fl ker (E,) 

8,",= R?, n ker (E,) . 
I t  is a corollary of Stong's theorem that ,  given a collection of numbers 

{p, 1 o f (n)}, there is a spin manifold with the {p,) as  decomposable 
Pontrjagin numbers, provided that  the linear combinations of the p, which 
belong to a,"?" are integral. An analogous statement holds for &, and a 
collection of numbers {c, I o z (n)}. This is a very simple fact about vector 
spaces over Q, but since later i t  is a key step in the proof of Theorem 1.5, 
we include the argument. 

Let V = Q[pl, ...,p,-,I,,,, be the vector space with basis the homogeneous 
monomials of degree 4%in the Pontrjagin classes p,, ...,p,_,. Consider the 
homomorphism 

T: n;Cn-V* = Homg(V,Q) 

defined by the decomposable Pontrjagin numbers of manifolds. The image is 
a free, abelian subgroup of maximal rank. By Stong's theorem, the integral 
dual of image(^) in V, that  is, those elements of V which are integral on all 
4n spin manifolds, is Rtn. Since its rank is maximal, image(T) can thus be 
described as the integral dual of 8,";'"in V*. This is precisely the statement 
above. 

We will need the following formulas in 5 3. 
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LEMMA2.1. ( i ) (ej),, = Sj,, cz, + -- . ,  s j , , € Z .
(zn - I)!  

ti,, E Z. Also 

A 

(iii) (A) , ,= -num(B,/4n) p, + .. . a  

(2%- i ) ! jn  

( iv )  (774%= 
(- I).-' num (B,/4n) 

c,, + . 
(2n - l)!(jn/2) 

22n+1(22m-1- I )  num (Bn/4n) 
( v  ) (L),,= 

(2%- i)!j, 
p, + --• 

PROOF. The integers j, and 0, are defined in 1.2. The dots, of course, 
indicate sums of decomposable terms. The last three formulas are well 
known [I?']. The first two are easily proved by using 

e,(E) = ch(rj(5 - dim s")) 

f,(s") = polynomial in ph(ri(;' - dim 5)) 


and evaluating for (%- dim E) = generator K(s~"). In particular, since e,(E) = 

ch(i - dim t),f,(s") = ph(%- dim s"), and <ch(E - dim E), [S4,]> = 1, we see 
that  

and 

We will also need further information on 8:cn and R:,. 

LEMMA2.2. Let (2 .Â ),, E a, .&P,'".Then the constant term E,(z) E Z i s  
divisible by j,. Similarly,  if (2. T),, E then (j,/2) divides E,(z). 

PROOF. The coefficient of p, in (xA^) , ,  is 

By Lemma 2.1, (ii), (iii), this is 

-E,(x) nurn (B,/sn) + t 
= 0 

(zn - I)!jn (zn - I)! 


for some t E Z. It follows immediately that  j, divides E,(z) since j, = 


denom (B,/4n) and num (B,/4n) are relatively prime. The proof of the second 
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statement is analogous. 

LEMMA2.3. Suppose M4" i s  a spin manifold (resp. U-manifold) with 
decomposable characteristic numbers xero. Then an(2n - l )!j, divides pn(M) 
(resp. (jn/2)(2n- I)! divides c,,(M)). Moreover, these results are  best possible. 

PROOF. Since the decomposable numbers of M4" are zero and (fj),= 0, 

we see that  (f,.A^),, = (fl),,. Thus both {(f,),,, [M4"]>= kp,(M)/(2n - I)!, 
and <(Â ),,, [M4"]>= ( - num (Bn/4n)/(2n - 1)! j , ) p , ( ~ )  are in a, .Z. It 
follows that  an(2n- l )!j, divides pn(M). The result for U-manifolds is 
similar. The best possible statement follows from Stong's theorem, since 
{p,) = {0, . . .,0, p, = an(2n- l)!j,) (resp. {c,) = {0, . . ., 0 ,  c,, = (jn/2)(2n- I)!)) 
satisfy the necessary integrality conditions, hence are the  characteristic 
numbers of some manifold. 

COROLLARY Let M4" be a spin  manifold with2.4. (resp. U-manifold) 
decomposable characteristic numbers xero. Then 88, divides index (M4") 
(resp. 88, divides a,. index (M4")). 

PROOF. This is immediate from Lemmas 2.1 (v) and 2.3 and the fact 
that ,  for a U-manifold, p, = - 2c,, + (decomposable terms). 

Remark 2.5. Stong has also shown that ,  if M4" is a U-manifold, all of 
whose Chern numbers divisible by c, vanish, and whose Pontrjagin numbers 
satisfy the integrality conditions of the spin Riemann-Roch theorem, then M4% 
is U-cobordant to an SU-manifold [25]. 

We conclude this section with a useful definition of the Adams invariant 

e:T>,+,--Z,, [2]. Let n E n&_,, and let S'+'.-'R S' 1Y-S)i4n-. . . 
N 

be the Puppe sequence with N - 0 mod 8. Since KO (S'i4n-1) = 

j 

0, there is an 
N 

element U" E KO(Y) such that  i*(U") = generator Z ( S ' )  s Z. Then 
p h ( U U ) = g ,  +Lang,  ,, w h e r e g , , g , , , , ~  H'(Y,Z),H'+'"(Y,Z)aregenerators 
and, 1E Q. I t  is easy to show that  the residue class X E Q/Z is independent 
of the choice of U". Then e(n) = X E Q/Z defines a homomorphism. Adams 
proved that  j , - L c Z ,  hence e can be interpreted as a homomorphism 
e: n:,_, -- Z,,. 

If we work with complex K-theory, and choose U," E K(Y) such that  
i*(UIr)= generator K(S') Z, then ch( U,") = g, + ;l.g,+,, where ,G E Q/Z 
is independent of the choice of U:'. Moreover, (j,/a,) - pE Z, hence this de- 
fines a homomorphism e': n:,_, -- Z,,,,,,. 

3. Almost smooth manifolds 

In Lemma 3.1 below we describe the P L  normal microbundle of almost 
smooth manifolds in terms of vector bundles and P L  bundles over spheres. 
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Using this and the K-theory orientability of spin bundles and complex bundles, 
we construct an  explicit K-theory orientation for almost smooth spin or U-
manifolds. Computations of Chern characters then yield the integrality con- 
ditions of the Riemann-Roch theorem for the decomposable characteristic 
numbers. This is stated formally in Theorem 3.7. As a corollary of this and 
Stong's theorem, we obtain Theorem 1.5. 

Let Zk E lTkbe a homotopy sphere. Recall that  homotopy spheres are r-
manifolds, that  is, have trivial stable normal bundles [18]. Embedding Zk in 
a sphere S N + k ,  N > k, and choosing a framing of the normal bundle gives an 
element of the framed cobordism group aPrned By a result of Anderson, znf . 
Brown, and Peterson, the natural homomorphism Oprned- O",P1" is zero, if 
k # 81 + 1,81 + 2 [4]. Since the cobordism groups 0; have no torsion [20], 
we see that  the homomorphism Clyrned- is also zero. In particular, if 
Z E IT4,-,and p :  Z x R' c S"+"-' is a framing, we can find a manifold 
M4ncD.'i4n, aM4" = Z, with a spin or U-structure on its normal bundle which 
extends the framed structure p on Z = OM4". 

Let Y, be the normal vector bundle of M4". By attaching a cone on Z, we 
obtain an almost smooth P L  manifold M = M u ,CZ. 

There are two natural extensions of Y, to bundles over M, namely: 
( 1) A vector bundle ;' obtained via the trivialization p. 
( 2 ) The P L  normal microbundle v of M. 
If M4" is a spin manifold, then s" is a spin vector bundle. If M4" is a U- 

manifold, then 5 is a complex vector bundle. 

LEMMA3.1. There i s  a n  isomorphism of microbundles over M 

v + e, r:+ d*a  , 
where v i s  the normal microbundle, e ,  i s  the tr ivial  bundle, s" i s  the vector 
bundle constructed above, a i s  a P L  bundle over S4", and d: M-s~" i s  a map 
of degree one. Moreover, i n  the homomorphism 

we have P(o) = - Z. 
PROOF. Since ;' 1 , E v 1 .,i t  is clear that  v - ;' = d*(a - ex) for some P L  

bundle a over S4". From the exact sequence 

( A )  0 -n4,(BO)-n4,(BPL) -n,,-, (PLIO)-0 , 
i t  follows that  B(a) E n4,-,(PL/O) = IT4,-,is the obstruction to putting a vector 
bundle structure on the normal microbundle v .  The obstruction to smoothing 
M, which is clearly Z E r4,-,, is identified by smoothing theory with the 
obstruction to putting a vector bundle structure on the tangent microbundle 
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of M. Thus ,B(o) = -2. 
In fact, we can say more. The group n4,-,(PL) can be interpreted as 

concordance classes of framed exotic spheres a: 2'"-' . Thex R.' c S.V+4n-1 
difference v - 5 measures the obstruction to extending the framing 
9:2 x R' =ElZcS.'T4"-1 over a disc D 4 " c  DlT4, with dD4, = 2. That is, stably 
y - ~ =d*a where a E n4,-,(PL) is the concordance class of the framing 
-q: (-2)  x R.' c S.'+4n-'. 

Lemma 3.1 could be proved, without referring to the obstruction theory 
for smoothing, by a direct geometric argument describing the gluing func- 
tions for a ,  u, and 6 in terms of a P L  isotopy of 2 c S'+'"-' to  standard posi- 
tion. 

Remark 3.2. Notice that  we chose the framing q: 2 x R'  c S.'+4n-1,and 
then chose M4*. To obtain Theorem 1.5 for U-manifolds, i t  will be important 
to choose q such that  (j,/2)e'(q) = 0 where q is regarded as an element of the 
framed cobordism group XS,-~, and e': n;),-, -Z,,,,, is defined in 5 2. This is 
no restriction for odd n but holds for only half the possible framings for even 
?Z because then image(n,,-,(U)) c n4,-'(0) = Z has index 2. The point is, 
while all 2 E r,,_,do bound U-manifolds with decomposable Chern numbers 
zero, for even n not all possible framings of 2 bound such U-structures. 

By Lemma 3.1 we have the stable equation v = ;' + d*a over M. Thus 
T(u) = T(E + d * ~ ) .  Now over M x M i t  is well known that  T(6 x d*a) = 

T(E) A T(d*a) [7]. This gives rise to a diagram 

where 7t is a map of degree one determined by an embedding M- S2"-4". 
Specifically, 7t is the identity on the normal bundle u and collapses SZNt4" - v 
to the point infinity in T(v). A is the diagonal. 

If M4" is a spin manifold, there is the canonical orientation class 

U' E K?)(T(E)), and if M4" is a U-manifold, there is the complex orientation 
u: E IZ(~ ( 5 ) ) .  

Next note tha t  since o is a bundle over S4",  T(a) is a 2-cell complex. In  
fact, i t  is the cofibre of J,,(o) E nSn-, where JpL:  n,,(BPL) -n4,(BF) z7t5-, 
is the P L  J-homomorphism. The proof of this for smooth bundles given in 

[2] works for P L  bundles also. Let U" E %(T(o)) and U:' E R(T(a))  be 
orientations. 

LEMMA3.4. Let M" be a n  almost smooth spin  manifold or U-manifold. 
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Then, in the first case, U = A*(U'sd* U") E %(T(Y))  i s  an  orientation class 
for KO-theory. I n  the second case, U, = A*(U,' - d* U,") i s  an  orientation for 
K-theory. 

PROOF. By naturality, d * U" E %(T(d*o)) and d*(U,'')E 4~ ( d * o ) )are 
orientations. By well-known multiplicative properties of KO- and K-theory, 
the products U t-d*U" and U,' .d* U," are orientations in E(T(E)A T(d*o))  
and I?(T(;) A T(d*a)) respectively. Again by naturality, A*(Uted* U") E 

%(T(v))  and A*(U:ad* U:') E X ( T ( Y ) )are orientations, where, of course, A is 
the diagonal as in diagram 3.3. 

We will use these orientation classes to deduce integrality theorems for 
the characteristic numbers of M. First, 

LEMMA3.5. Let E be the vector bundle over M4" and a the associated 
element of n,,(BPL) constructed above. Then, i f  M4" i s  a spin manifold, 

PROOF. Let U E %(T(v) )  be the orientation class constructed above. We 
compute 

ph(U) = ph A*(U'.d*UU)= A*(phU'.ph d* U")  
= A*($'A-I(:) d*$"(l + hangn)) 

where g ,  E H4"(S4",Z )  is the generator, and $', $" are respectively the Thom 
isomorphisms in cohomology for the bundles t ,o.  Since d: M -- S 4 ,  and 
T : ~ 2 ~ + 4 n,T(v)are maps of degree one, we have 

Since, by definition, e(JpL(a))= X in Q/Z,  the first statement follows. The 
proof of the second statement is identical, with ch replacing ph, and T-'(E) 
replacing A^-'(;). 

Remark 3.6. This is a special case of a result proved by Conner and 
Floyd in their work on manifolds with framed boundary [12]. 

THEOREM3.7. Let M4" be an  almost smooth manifold, and let .r be i ts  
tangent microbundle. I f  M4" i s  a spin manifold and (*A^),,E a,. then 
<x(.r)B(.r),[MI>€a,Z. I f  M4" i s  a U-manifold wi th  v = E + d*a where E 
i s  a complex vector bundle and (jn/2)et(JPL(a))E Z ,  and (xT), ,E &?:, then 
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<Z(T) T(.r), [MI> E Z. 

PROOF. Since (x i ) , ,  e a,.&"', the coefficient of p, in (xA )̂,, is zero. It 
follows from Lemma 3.1 that  ~(T)A^(T) - - = z( [)A-YE), for the = x( [)A^( E) -

lower Pontrjagin classes of T and (-E) coincide. According to remarks in 3 2 
on the characteristic classes f j ,  z(- E) = ph(x) for some x E KO(M). There is 

the product pairing KO(M) @ =(T(V)) -%(T(v)), and we compute 
ph(x U) = ph(x) .ph(U) = z(- [).$(A^-'(s") -(I+ a,.e(J,,(a))d*g,)). Thus 

<ph n*(x- U),  [S2\+4"J> 	= <$-I ph(xU), [MI) 

= <z(- :)A^-'(E), [MI) + E,(z) .a, .e(~,,(a)) E a,.Z. 


By Lemma 2.2, j, divides E,(z) hence ~,(x).a,.e(J,,(o)) E a;Z, and the first 
statement follows. The proof of the second is nearly identical, but a t  the 
last step requires the additional hypothesis on o. 

The following theorem, which is Theorem 1.5 of the introduction, now 
drops out and is the main objective of the preceding work. 

THEOREM3.8. Let 2 E I?,,-,. Then 2 = aM4" where M4" can be chosen to 
be either a spin manifold with decomposable Pontrjagin numbers zero or a 
U-manifold with decomposable Chern numbers zero. 

PROOF. Let 2 = dM' where M' is some spin manifold. By Theorem 3.7 
and the properties of R,"?"which follow from Stong's theorem, as discussed 
in 9 2, there is a closed spin manifold M u  with the same decomposable numbers 
as M'. Then M = M'#(- M") satisfies the conditions of the theorem where # 
means "connected sum." The proof for U-manifolds is similar but,  in the 
original choice 2 = dM', one must choose M' to be a U-manifold satisfying the 
extra condition in Theorem 3.7. This is possible by Remark 3.2. 

Remark 3.9. By a result of Brown and Peterson, the homomorphism 
npmed-a;" is zero if k + 81 + 1,  81 + 2 [5 ] .  In particular, if 2 E I?,,-,, then 
2 is the boundary of an SU-manifold M. Since this is both a spin manifold 
and a U-manifold, one can use the orientations for KO-theory and K-theory 
above to show that  the decomposable Chern numbers of M satisfy both the 
weakly complex and spin Riemann-Roch integrality conditions. Hence the 
argument of Theorem 3.8 shows that  2 is the boundary of an SU-manifold 
with decomposable numbers zero. (See Remark 2.5.) 

4. An invariant and computations 

In this section we first define the invariant f :  r,,-,-Za,. Theorem 1.3 
of the introduction then follows fairly easily. The remainder of the section 
is devoted to proving Theorem 1.4, and describing the maps in diagram 1.1. 
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The main step is Lemma 4.5 which uses Theorems 1.5 and 1.6 to compute the 
Pontrjagin class of the generator of n,,(BPL)/(torsion) = Z. 

Let C e 1',,-,. Following Theorem 3.8, Let 2 = aM' = dM" where M' is 
a spin manifold, M u  is a U manifold and the  decomposable numbers of both 
vanish. Define homomorphisms f ':  r,,-,-Z8an for all n and f ": I?,,-, -ZBOn 
for even n, by 

f '(C) = index (M') E Z mod 88,Z 
and 

f "(2)= index (Mu) E Z mod 88,Z . 
Here 8, is the integer defined in 1.2. 

Note that  f '  and f" are well-defined by Corollary 2.4. That is, if C = 

dMl = dM,, with MI, M, spin manifolds, then M = M, u,(- M,) is a closed, spin 
manifold with decomposable numbers zero. According to Corollary 2.4, 88, 
divides index (M) = index (M,) - index (M,). If M,, M, are U-manifolds, Lemma 
3.5 guarantees that  M is also a U-manifold. Again Corollary 2.4 applies. 

Clearly, f' and j" are homomorphisms. For instance, if C, = dM, and 
C, = 8M,, one can form the  connected sum a t  the boundary C,# C, = il(Ml# M,). 
Then 

f '(XI# C2)= index (MI# M,) = index (MI) + index (M,) . 
Remark 4.1. Actually f '  = f"  for even n ,  for as noted in Remark 3.9, 

our methods could be used to show tha t  C = 8M where M is an SU-manifold 
with decomposable numbers zero. Thus f '(2) = f "(2) = index (M). We will 
not need the (weaker) homomorphism f ":r4,-l--z4,ndefined for odd n by using 
U-manifolds and Corollary 2.4. 

The following theorem allows us to improve the invariants f ' ,  j" by a 
factor of 8. The proof will be given in 5 5. 

THEOREM4.2. ( i ) Let M' be a (topological) 8n + 4 manifold with 
w,(M') = w,(M') = 0. Then 8 divides I(M') = index(M'). 

( ii ) Let M" be a n  almost smooth 4n U-mani fold with decomposable 
Chern numbers zero. Then 8 divides I(M") = index (Mu). 

I t  follows from Theorem 4.2 and Remark 4.1 that ,  if M" is an almost 
smooth spin manifold with decomposable numbers zero, then 8 divides I(M4,). 
Thus define f: r,,-, --Z,,, for all n ,  by f(C) = (1/8)I(M,") E Z mod O,Z, where 
C = dM4", and M is a spin manifold with decomposable numbers zero. 

THEOREM4.3. bP4, i s  a direct summand of I?,,-,. That i s ,  

r4,-,z bP4, @ nS,-,/im( J). 

PROOF. The Milnor generator C, of bP4, bounds a framed manifold of 
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---
index 8 [18]. Thus f(Co)= 1. For odd n ,  bP,, -Zsn,hence f is a splitting 
homomorphism for the exact sequence 

0- bP4,-I',,-,- n&-,/im(J) -0 .( B )  

For even n ,  either bP,, zZonor bP,, z ZZa,. In the first case (all known cases), 
we are done as  before. In the  second case, from 1.2 we have 28, = 2'"-' -8; 
where 8; is odd. Then an elementary abelian group argument, which we leave 
to the reader, using 

( 1) the exact sequence (B), 
( 2 ) the homomorphism f : I?,,-, -Zs, with f (C.,) = 1,  
( 3 ) the result of Adams that ,  if a E n,S,-, is a 2-torsion element, n > 2, 

then 2"-'a = 0, 
implies tha t  I?,,-, contains no 2-torsion summand of order greater than 2"-I. 
Thus bP,, must be a direct summand. The fact (3) is a consequence of the 
deep result that  there are no elements of filtration greater than 2n nor less 
than 3 in the Adams spectral sequence in the stem nS,-,,n > 2 131. 

We now seek further information on the groups and maps in the diagram 
discussed in the introduction. 

n,,(F/PL) = n,,(F/PL) z = z zs, 

Here T denotes the torsion subgroup of n,,(BPL). Note that  the 
Pontrjagin class of a bundle over S4" defines a non-trivial homomorphism 
p,: n,,(BPL) -- Q. Thus T = ker (p,). 

I t  is convenient to introduce the odd integers 
j; = largest odd factor of j, 
8; = largest odd factor of 8,. 

Choose a generator 7 of the infinite summand of n,,(BPL). 

LEMMA4.5. For  n > 2, we have 

r(1)= AL.(7)+ tl 
a(l)= 2dn.8;. (7)+ tz , 

where r and a are  the maps indicated i n  diagram 4.4, t,, t, c T, and 2dn = 

O,.jh/B:.j,. (For n > 2, one has d, 2 1[I].) 
PROOF. Milnor has shown that  28, .r(l)= 2j, . a ( l ) ,  [22]. (1n fact, 
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8,.y(1) = j, 'a(1)whenever I i m ( J ) I = j,.) Since j h  and 8; are relatively prime 
[22] i t  follows immediately tha t  

~ (1 )= jL-b(?) + t1 
a ( l )  = 2dnOh.b(7)+ tz 

for some integer b, and t,, t, e T. 
Since y(1) E n,,(BPL) is the  generator of the subgroup of fibre homotop-

ically trivial bundles over S", we know tha t  its Pontrjagin class is the same 
as the Pontrjagin class of the almost framed Milnor manifold of index 8. 
Thus from Lemma 2.1 (v),p,(y(l)) = an(2n - l)!j,/O,, and hence p,(7) = 

a,(2n - l)!j,/O,j;.b. 
Let P(7) = C. = dM4" where M" is a spin manifold with decomposable 

numbers zero. According to Lemma 3.1, Y = E - d*(7) where Y is the normal 
bundle of M = M u2CX, ;5 is a spin vector bundle over M,and d: M-S" is a 
map of degree one. 

Let U E %(T(v)) be the Thom class of 0 3. The top dimensional com-
ponent of ph(E)ph(U)is in a,Z. Since the decomposable numbers of f vanish, 
this implies that  p,(C)/(2n - I)!e a,Z. Thus, -p,(E) = an(2n- l)!c for some 
~ E Z .Now 

since Y = E - d"(7). Since d, 2 1,  we see tha t  

for some even integer c'. By Theorem 4.2, I ( M )  is an integer divisible by 8, 
and i t  is immediate that  b = 1. This proves the lemma. 

For a finite abelian group G, denote i ts  2-primary and odd-primary 
summands by ,G and .G, respectively. The next two results describe , T  and 
,T, where n,,(BPL) E Z + T. 

THEOREM4.6. The P L  J-homomorphism induces a n  isomorphism---
JpL: , T  -, n & ,  for n > 2. 

PROOF. From the  exact sequence 

J~~0-Z-Z r + T-n,S,-,-0, 

we see that  J,, injects T in nS,-,. Dividing by T yields a new exact sequence 

7'0 -Z - nL-l/JpL(T) -0 .Z ---t 

Lemma 4.5 implies that  yf(l)= jh, hence nS,-,/JPL(T)E z jh i san odd torsion 

group. The proposition follows immediately. 
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THEOREM4.7. The maps JpLand /3 induce isomorphisms 

I n  part icular,  , T  n ,(it&-,/im(J)). 
PROOF. Let a e T, and let P(o) = C = a1W4" where M" is a spin manifold 

with decomposable numbers zero. Again, we have Y = ;- d*o. Since a E T, 
p ,  (o) = 0, hence 

As in the proof of Lemma 4.5, we have -pn(f)= a,(2n - l)!c for some c E Z. 
Thus f(C) = (1/8)I(M)= Bnc/jnc Z mod BnZ. Since j; and 8; are relatively 
prime [22], i t  follows that  j', divides c. Thus, f(C) has order a power of 2 in 
Z mod BnZ. In particular, if a E ,T is an odd torsion element, then f (2)= 0. 
Hence /3 maps ,T into "(kerf)  c r,,-,. Similarly, 

A-I(+) - - num (B,/ln)p,(%) -- a, .num (Bn/4n) .c 
S 4n -

(2% - i ) ! j n  jn 

has order a power of 2 in Q/Z. I t  then follows from Lemma 3.5 that  
e(J,,~(a))=0 if a c ,T. Hence J,, maps , T  into ,(ker e) cn,S,_,. The isomorphisms 

---
then guarantee by the 5-lemma that  JpL:, T  -,(ker e) is an isomorphism. 

Since "(kerf)  <,(ker e) -- , (n~-J im (J)), we also see that  p: ,T- ,(kerf )  
is an isomorphism. 

Theorems 4.6 and 4.7 imply Theorem 1.4 of the introduction. 
Finally, we relate the invariants e and f on the 2-primary components of 

the groups involved. Note that  ,Zjn is generated by the residue class of 
num (Bn/4n). j;. 

THEOREM4.8. Let n > 2. Define h: ,Zjl--ZRm by h(num (B,/4n). j l )  = 

2dn.Bh(1) .  Then the following diagram commutes. 
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LJ
PROOF.Let o ~ , T , @ ( o )  = C = dM4", and = s" - d*o as  above. We 
showed in the proof of Theorem 4.7 that  f/3(a)= B,c/j, where a,(2n - l)!c = 

-p,(:), and that  eJpL(a) = (l/a,)A^-'(s"),,= num(B,/4n) .c/j,. Since num(BJ4n) 
is odd, we see that  f@(o) and eJpL(o) have the same order in the 2-primary 
cyclic groups ,Zo, and ,Zj, respectively, namely, the order of c/j, in Q/Z. The 
theorem follows. 

If we combine the results 4.3 and 4.5-4.8, we see that ,  for all n > 2 
such that  im(J)  E Zj,, the groups and maps in diagram 1.1can be described 
as follows: 

The maps J and O are the natural projections onto the factors Zj, and Zen, 
respectively. The splittings of nS,-, and I?,,-, correspond to the invariants 
e: nf,-, -- Zj, and f : I?,,-, -- Z,,. JPLand P map the summand n&_,/im ( J )  of 
n,,(BPL) isomorphically onto ker ( e )  and ker ( f ) ,  respectively. On the 
summand ,(Z,,), JpLand /3 are inclusions into Zjn and Zo,. If rj generates the 
summand Z c n,,(BPL), then ~(1)jk. (rj), and a(1) 2drnBh(17)+ (o) where o = = 

generates ,(Z,,) c n,,(BPL). 

Remark 4.9. We have been ignoring the cases n = 1or 2. The results 
here are well-known [27]: 

n,(BPL) = Z r3= 0 
n,(BPL) = Z + Z, I?, = bP, = Z,, . 

These are exceptional because 2d. = 0, j:/B: j, < 1 only for n = 1 , 2 ,  hence 
Lemma 4.5 does not hold in these dimensions. 

5. Proof of Theorem 4.2 

Let B be a symmetric bilinear form over the integers ( that  is, a symmetric 
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matrix with integral coefficients) with determinant 2 1 .  If the diagonal 
entries of B are even, then the signature of the form is divisible by 8  [ 2 3 ] .  
In a 4n-manifold this condition can be checked on the cup product pairing 

rather easily by reducing cohomology classes mod 2 .  For if x E H2"(M4", Z), 
then xZ is even if Z2 = Sq2"Z= V2,.E = 0, where 5 E H2"(M4", Z2) is the reduc- 
tion of the integral class x, and V2, E HZn(M4",Z2) is the Wu class. V2, is, of 
course, given by a polynomial in the Stiefel-Whitney classes of the tangent 
bundle of M4" [ 1 9 ] .  

PROOFOF 4.2 (i). Let be a manifold with wl(M) =w2(M)=0. By the 
Adem relations Sq4"+2 = Sq2Sq4"+ Sq1Sq4"Sq1. Hence for any x E H4"+'(M, Z2) 
we have 

Thus the cup product form is even, and 8 divides index(MWA4). 
PROOFOF 4.2 (ii). Consider an almost smooth manifold M4" with a U- 

structure on the normal bundle of M4" - (pt). As in 8 3 we can write v = 

f + d * o  where v is the normal microbundle of M, s' is a complex vector bundle 
over M, o is a PL bundle over S4", and d :  M" -S4"is a map of degree one. 
Assume the decomposable Chern numbers of f vanish. We will construct a 
cobordism between M4" and a manifold N4" in which the cup product form is 
even. Then 8 divides index(N4") = index(M4"). 

By performing surgeries on embedded circles in M, we may assume that  
M is simply connected [23] .  Since nl(BU) = 0, the U-structure on M" - (pt) 
can be preserved. In this and subsequent surgery we stay in the smooth part 
of M, that  is, away from the "bad" point. 

Atiyah and Hirzebruch have shown that ,  for a complex bundle 5 ,  the 
total Wu class V is given by [ 9 ]  

where ci = c,([) and T ,  is the Todd polynomial. This formula makes sense 
because the polynomial 2 jT i  has an odd denominator. 

For the manifold M above, the Wu class V2, of M coincides with VZn( -i) 
because of the relation v = [ + d * o .  In particular, VZn is the reduction of an 
integral class, say c, E H2"(M, Z), which is a polynomial in the Chern classes 
c,(t). Suppose that  c, is a torsion class in H"(M, Z). Then the cup product 
form on M is even because, for x E HZ"(M, Z), we have 0 = x-c, - Z. Vz, = 

Z2mod2 .  In general, we will construct a cobordism between M4" and a U- 
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manifold N4" for which c, is a torsion class. 
First, note that  cif = 0 because cL is a decomposable Chern number of 6. 

The argument below was used by Lashof in a more general situation 
[Lashof, Poincare' duality and cobordism, Trans. Amer. Math. Soc. 109 (1963), 
257-2771. For completeness, we include some of the details of our special 
case. 

LEMMA5.1. There i s  a n  integer b # 0 and a map f :M4"4 Sznwith 
f *(xz,)= b.cM where xzn e HZn(SZ",Z) i s  a generator. 

PROOF. This is a special case of a general result on integral cohomology 
classes whose square is zero [Berstein, Comment. Math. Helv. 35 (1961), 9-15]. 
A more elementary proof could be given for Lemma 5.1 since, except for the 
final obstruction in H4"(M4", T~~- , (S~" ) ) ,  Finite-we are in the stable range. 
ness of the last obstruction follows from c; = 0. 

By transverse regularity, f can be factored up to homotopy, as below [19]. 

Here L" = f -'(pt) has a trivial normal bundle, e,,, in M4" and g collapses 
M - L x DZn to the point a t  infinity in T(ezn). If @: H*(LZn)---t H*(T(~,,)) 
is the Thom isomorphism, then g*@(l) = f *(xzn)= b-c,. In particular, since 
gI.K-Lx~zn = 0.= 0, wesee that  b.~, j , - ,~,~,  

The framing ezn of L in M and the complex normal bundle E of M - (pt), 
give a complex structure, EL, on the stable normal bundle of L. 

LEMMA 5.3. The Chern numbers of (LZn,EL) vanish, hence (L2",EL) 
bounds a U-mani fold. 

PROOF. A standard property of the Thom-Gysin map g*@: H*(L)  -
H*(M)  is the following: 

5.4 If y~ H*(M)  and a €  H*(L) ,  then 

In particular, let c be a 2n-dimensional monomial in Chern classes. Since 
i*c(E) = c(EL), we have by 5.4 

since this is a decomposable Chern number of E. Since g*@ is an isomorphism 
in the top dimension, we conclude that  c(EL) = 0, as desired. 

Thus let (LZn,EL) = a(W"-', SFw) where, of course, E,, is a complex 
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structure on the stable normal bundle of W , extending E L .  Now the manifold 

naturally inherits a U-structure and gives a cobordism between M4"and N4" 
where 

We want to prove that  c, E H2"(N,Z) is a torsion class. First, we may 
assume that  no(L)= n,(L)= 0, for instance by constructing a suitable framed 
cobordism, if necessary, using 0 and 1dimensional framed surgeries on L in 
M. Also, we may assume that  no( W )  = nl( W )  = 0. Thus, Hl(L)= HI( W )  = 
H1( W )  = HI(W ,  L )  = 0 and, by Poinear6 duality, H"-'(L) = Hz"( W )  = 0. 

Consider the following portion of the Mayer-Vietoris sequence for the 
decomposition of N in 5.5. 

Since Hz"-'(L") = 0 and Hz"-'( W"+' x S2"-')-- Hz"-'(S"-') is onto, we 
see that  j* is onto, hence d = 0. I t  thus suffices to show that  (it + i,")(c,)is a 
torsion element. First, Hz"( W )  = H1(W )= 0, hence H"(W2"+' x SZn-')= 0 
and i f c ,  = 0. Finally, c, is a Chern class of t., = %,
 1 , .  Since also % ,= C, / ., 

we have by naturality i:(c,) = / , f -Lx,2n.  But we saw abovec , ~  	 that  

b . cIfI H - L X  = 0, hence i:(c,) is a torsion class. This completes the proof. 

Added in proof. Theorems 1.3 and 1.4 have been proved independently 
by D. Frank. 
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