Generalizations of the Kervaire invariant

By Edgar H. Brown, Jr. 1

1. Introduction

M. Kervaire in [4], F. Peterson and myself in [1], and W. Browder in [3] defined numerical invariants for various classes of 2n-manifolds roughly as follows: Suppose M is a closed compact 2n-manifold with some additional structure T. In [4] T is a framing of the normal bundle of M and n is odd, in [1] it is a spin structure and $n \equiv 1 \mod 4$ and in [3] it is a v_{n+1} structure. Using T one constructs a function

$$\varphi$$
: $H^n(M; \mathbf{Z}_2) \longrightarrow \mathbf{Z}_2$

satisfying

$$\varphi(u+v)=\varphi(u)+\varphi(v)+(u\cup v)\;(M)\;.$$

The Kervaire invariant of (M, T) is defined to be the Arf invariant of φ . Arf $\varphi = 0$ or 1 and is 0 if and only if φ is zero on more than half the elements of $H^n(M; \mathbf{Z}_2)$.

In this paper we describe a general technique for constructing functions satisfying (1.1) and hence of obtaining generalizations of the Kervaire invariant. This technique gives, as special cases, the functions defined in [1], [3] and [4]. In the remainder of this section we outline in detail our techniques and state our results. Some of these results appear in [2]. Our algebraic results concerning the Arf invariant are stated in Theorem 1.20 and proved in § 3. The proofs of all other lemmas and theorems in this section are either given immediately or in § 2.

All homology and cohomology groups will be with \mathbb{Z}_2 coefficients unless otherwise stated. Usually spaces will have base points. [X, Y] denotes the set of homotopy classes of maps from X to Y. S denotes suspension and

$${X, Y} = \lim [S^k X, S^k Y]$$
.

 K_n will denote $K(\mathbf{Z}_2, n)$.

We first describe how $\{\ \}$ gives rise to quadratic functions. Let X be a CW complex with base point of dimension 2n. We define a function

$$F: H^n(X) \times H^{2n}(X) \longrightarrow \{X, K_n\}$$

as follows:

This work was carried out while the author was supported by NSF grant GP 21510.

LEMMA (1.2).
$$\{S^{2n}, K_n\} \approx \mathbf{Z}_2$$
.

Let $\mu \in \{S^{2n}, K_n\}$ be the generator. We view $u \in H^n(X)$ as a map $u: X \to K_n$. If $v \in H^{2n}(X)$, there is a map $g_v: X \to S^{2n}$ such that $g_v^*(s_{2n}) = v$, where $s_{2n} \in H^{2n}(S^{2n})$ is the generator. Define F(u, v) by

$$F(u, v) = \{u\} + \{\mu g_v\}$$
.

Proposition (1.3). If X is a 2n-dimensional CW complex, then

$$F: H^n(X) \times H^{2n}(X) \longrightarrow \{X, K_n\}$$

is bijective and

$$F(u, v) + F(u', v') = F(u + u', u \cup u' + v + v')$$
.

Remark. If $u^2 \neq 0$, F(u, 0) has order four.

Let $j: \mathbb{Z}_2 \to \mathbb{Z}_4$ be the homomorphism sending 1 to 2. Suppose $h: \{X, K_n\} \to \mathbb{Z}_4$ is a homomorphism. Since hF(0, v) is linear in v, hF(0, v) = jv(x) for some $x \in H_{2n}(X)$. Let $\mathcal{P}_h: H^n(X) \to \mathbb{Z}_4$ be given by

$$\varphi_h(u) = hF(u, 0)$$
.

Then (1.3) yields:

LEMMA (1.4). $\mathcal{P}_h(u+v) = \mathcal{P}_h(u) + \mathcal{P}_h(v) + j(u \cup v)(x)$. Furthermore, if φ and x satisfy the above formula, $\varphi = \varphi_h$ for some h.

Definition (1.5). An m-Poincaré triple (X, ζ, α) is

- (i) A CW complex X with finitely generated homology (X is without base point).
- (ii) A fibration ζ over X with fibres homotopy equivalent to S^{k-1} , k large, (e.g. k>m+1).
- (iii) $\alpha \in \pi_{m+k} (T(\zeta))$ $(T(\zeta) = \text{Thom space})$ such that an m+k Spanier-Whitehead S-duality is given by

$$S^{m+k} \xrightarrow{\alpha} T(\zeta) \xrightarrow{\Delta} T(\zeta) \wedge X^+$$

where Δ is the diagonal map.

Recall $\Delta \alpha$ being an S-duality means that if $\bar{s}_{m+k} \in H_{m+k}(S^{m+k}; \mathbf{Z})$ is a generator and $y = (\Delta \alpha)_* \bar{s}_{m+k}$,

/y:
$$H^{q+k}\left(T(\zeta); \mathbf{Z}\right) \approx H_{m-q}\left(X; \mathbf{Z}\right)$$

for all q. Let $U_k \in H^k(T(\zeta))$ be the Thom class and let $x = U_k/y \in H_m(X)$. It follows from the above isomorphism and the Thom isomorphism that

$$x \cap : H^q(X) \approx H_{m-q}(X)$$
.

Furthermore, for any CW complex Y,

(1.6)
$$A_{\alpha}: \{X^+, Y\} \approx \{S^{m+k}, T(\zeta) \wedge Y\},$$

where $A_{\alpha}\{f\} = \{(\mathrm{id} \wedge f)\Delta\alpha\}.$

Suppose (X, ζ, α) is a 2n-Poincaré triple. Let X_i be the connected components of X and let $\alpha_i : S^k \to T(\zeta \mid X_i) \subset T(\zeta)$ be the inclusion of a fibre. Let $\lambda_i \in \{S^{2n+k}, T(\zeta) \land K_n\}$ be the image of the generator μ under

$$\{S^{2n},\,K_n\}=\{S^{2n+k},\,S^k\,\wedge\,K_n\} \xrightarrow{a_{i*}} \{S^{2n+k},\,T(\zeta)\,\wedge\,K_n\}$$
 .

THEOREM (1.7). If (X, ζ, α) is a 2n-Poincaré triple with fundamental class $x \in H_{2n}(X)$, the functions $\varphi \colon H^n(X) \to \mathbb{Z}_4$ satisfying

$$\varphi(u+v) = \varphi(u) + \varphi(v) + j(u \cup v)(x)$$

are in one-to-one correspondence with homomorphisms

$$h: \{S^{2n+k}, T(\zeta) \wedge K_n\} \longrightarrow \mathbf{Z}_4$$

such that $h(\lambda_i) = 2$ under the correspondence $\varphi(u) = hA_{\alpha}F(u, 0)$ where F and A_{α} are given in (1.3) and (1.6), respectively.

Proof. Note A_{α} in (1.6) is natural in Y and it can be applied to the commutative diagram,

$$egin{aligned} \{X_i,\,S^{2n}\} &\stackrel{A_lpha}{pprox} \{S^{2n+k},\,T(\zeta\,|\,X_i)\,\wedge\,S^{2n}\}\ &\downarrow \mu_* &\downarrow \mu_*\ &\{X,\,K_i\} &\stackrel{A_lpha}{pprox} \{S^{2n+k},\,T(\zeta\,|\,X_i)\,\wedge\,K_n\} \;. \end{aligned}$$

If $g: X_i \to S^{2n}$, $\mu_* A_{\alpha} \{g\} = (g^* s_{2n})(x) \lambda_i$. Hence $A_{\alpha} F(0, v) = v(x) \lambda_i$ if $v \in H^n(X_i)$. (1.7) now follows from (1.3) and (1.4).

Theorem (1.7) suggests a method of constructing quadratic functions for manifolds in a cobordism theory as follows: Suppose $MG = \{MG_k\}$ is a Thom spectrum. Let $\lambda \in \{S^{2n+k}, MG_k \wedge K_n\}$ be the image of $\mu \in \{S^{2n+k}, S^k \wedge K_n\}$ under the inclusion of a fibre. Choose a homomorphism

$$h: \{S^{2n+k}, MG_k \wedge K_n\} \longrightarrow \mathbf{Z}_4$$

such that $h(\lambda) = 2$. If X is a 2n-manifold, ζ is its normal bundle, α is obtained from the Thom construction and $W: T(\zeta) \to MG_k$ comes from a G structure on ζ , then

$$\varphi(u) = h W_* A_{\alpha} (F(u, 0))$$

gives a function on $H^n(X)$ satisfying the formula in (1.3). This method works so long as $\lambda \neq 0$. We would of course choose h above for each k in a consistent way. This amounts to choosing

$$h: H_{2n}(K_n: MG) \longrightarrow \mathbf{Z_4}$$
.

Our next result describes when $\lambda \neq 0$ and h exists.

Suppose $Y = \{Y_k, \mu_k\}$ is a spectrum such that Y_k is k-1 connected and $H^0(Y) \approx \mathbb{Z}_2$. Let $U \in H^0(Y)$ be a generator and let $p: S \to Y$ be a map of the sphere spectrum into Y such that $p^*U \in H^0(S)$ is the generator. Let $\lambda \in H_{2n}(K_n, Y)$ be the element represented by

$$S^{2n+k} \xrightarrow{\mu} S^k \wedge K_n \xrightarrow{p_k \wedge \mathrm{id}} Y_k \wedge K_n$$
.

PROPOSITION (1.9). $\lambda \neq 0$ if and only if $\chi(Sq^{n+1})U = 0$, where χ is the canonical antiautomorphism of the Steenrod algebra. Furthermore, if $\lambda \neq 0$, it is at most divisible by 2.

Definition (1.10). A Wu n-spectrum is a pair (Y, h) where Y is as above, $\chi(Sq^{n+1})U=0$ and $h\colon H_{2n}(K_n, Y)\to \mathbf{Z}_4$ is a homomorphism such that $h(\lambda)=2$. A (Y, h) orientation of a fibration ζ is a map $W\colon T(\zeta)\to Y_k$ such that W^*U_k is the Thom class of $T(\zeta)$.

COROLLARY (1.11). If (X, ζ, α) is a 2n-Poincaré triple, W is (Y, h) orientation of ζ where (Y, h) is a Wu n-spectrum and φ : $H^n(X) \to \mathbf{Z}_4$ is given by

$$\varphi(u) = h W_* A_{\alpha} F(u, 0)$$
,

then

$$\varphi(u + v) = \varphi(u) + \varphi(v) + j(u \cup v)(x)$$

where $x \in H_{2n}(X)$ is the fundamental class.

We next describe the geometrical properties of φ . Suppose $f: S^n \to X$ and $f^*\zeta$ is trivial. Up to homotopy type $T(f^*\zeta) = S^k \vee S^{n+k}$. Let $\hat{f}: S^{n+k} \to T(\zeta)$ be the inclusion of $T(f^*\zeta)$ in $T(\zeta)$ restricted to S^{n+k} . Consider the commutative diagram:

Let $\widetilde{f} \in \{X^+, S^n\}$ be such that $A_{\alpha}\widetilde{f} = \widehat{f}$, that is, \widetilde{f} is the S-dual of f. Let $\overline{f} = s_{n*}\widetilde{f}$ and let $\beta_f = W_*A_{\alpha}(\overline{f})$.

THEOREM (1.12). $\overline{f} = F(u, v)$ where u is the Poincaré dual of the element in $H_n(X)$ represented by $f: S^n \to X$ and

$$\varphi(u) = jv(x) + h(\beta_f)$$
.

Hence, if $h(\beta_f) = 0$, $\varphi(u)$ is the obstruction to desuspending \bar{f} to a map of X^+ to K_n .

Proof. Let $B: \{X^+, K_n\} \to H^n(X)$ be given by $S^lB(g) = g*S^l\ell_n$ where

 $g: S^{l}X^{+} \to S^{l}K_{n}$. BF(u, v) = u is the S-dual of the element in $H_{n+k}(T(\zeta))$ represented by \hat{f} . Hence u is the Poincaré dual of $f(S^{n}) \in H_{n}(X)$. Since $\bar{f} = F(u, v)$,

$$egin{align} h(eta_f) &= h \, W_* A_lpha F(u, \, v) \ &= h \, W_* A_lpha igl(F(u, \, 0) \, + \, F(0, \, v) igr) \ &= arphi(u) \, + \, \dot{j} v(x) \; . \end{split}$$

COROLLARY (1.13). If (X, ζ, α) is a smooth (or PL) manifold, its normal bundle and its Thom map, $f: S^n \to X$ is a smooth embedding, ν is the normal bundle of $f(S^n)$ in X, ν is stably trivial, and $u \in H^n(X)$ is the Poincaré dual of $f(S^n)$, then $\varphi(u) = \varepsilon + h(\beta_f)$ where

 $egin{aligned} arepsilon & = 0 & \textit{if ν is trivial} \ & = 1 & \textit{if ν is not trivial and n is odd} \ & = \textit{Euler number of ν} mod 4 & \textit{if n is even} \ . \end{aligned}$

Remark. Suppose Y = MG for some Thom spectrum and W comes from a map $(g',g): (\zeta,X) \to (\xi_K,BG)$ where ξ_k is the canonical bundle over BG. If gf = 0, $W\widehat{f} = Vi \in \{S^{n+k}, MG_k\}$ where $V: S^{n+k} \to S^k$ and $i: S^k \to MG_k$. From the proof of (1.9) one sees that $\beta_f = m\lambda$ where m = Hopf invariant of V. Hence if $n \neq 1, 3, 7, h(\beta_f) = 0$.

We next consider the situation in which X is a Poincaré space boundary. Suppose $X \subset Y$, η is a spherical fibration over Y, $\eta \mid X = \zeta$, $\alpha' \in \pi_{2n+k+1}(T(\eta)/T(\zeta))$ maps into $S\alpha$ under the map $T(\eta)/T(\zeta) \to ST(\zeta)$ and if $y \in H_{2n+1}(Y, X)$ is the element corresponding to α' ,

$$y \cap : H^n(Y) \approx H_{n+1}(Y, X)$$
.

LEMMA (1.14). If $i: X \to Y$ is the inclusion, $\varphi i^* = 0$.

Suppose (X_i, ζ_i, α_i) , i = 1, 2, are 2n-Poincaré triples, W_i are (Y, h) orientations of ζ_i , k_i is the fibre dimension of ζ_i ,

$$g: \zeta_1 + 0^{l_1} \longrightarrow \zeta_2 + 0^{l_2}$$

where $k_1 + l_1 = k_2 + l_2$ and 0^{l_i} is the trivial S^{l_i-1} bundle over X_i and g covers $f \colon X_1 \to X_2$. W_i define (Y, h) orientations \overline{W}_i of $\zeta_i + 0^{l_i}$. Let φ_i be the quadratic functions on $H^n(X_i)$. The following is immediate.

PROPOSITION (1.15). If $\overline{W}_1=T(g)^*\overline{W}_2$ and $T(g)_*S^{l_1}\alpha_1=S^{l_2}\alpha_2$, then $\varphi_1(f^*u)=\varphi_2(u),\ u\in H^n(X_2)$.

We next examine how φ depends on the choice of W and α . Let $W(n) = \{W_k(n)\}$ be the Ω -spectrum where $W_k(n)$ is the fibration over K_k with fibre K_{k+n} and k-invariant $\chi(Sq^{n+1}) l_k$. Note by (1.9) there is an k making (W(n), k)

a Wu *n*-spectrum. If Y is a spectrum as in (1.10) there is a map $\tau: Y \to W(n)$ such that $(Y, h\tau_*)$ is a Wu *n*-spectrum. Also if (X, ζ, α) is a 2n-Poincaré triple, ζ is W(n) orientable since $\chi(Sq^{n+1})$ of the Thom class of ζ is the Wu class v_{n+1} .

If W_1 , W_2 : $T(\zeta) \to W_k(n)$ are (W(n), h) orientations, they differ by an element

$$d(W_1, W_2) \in H^n(X) pprox H^{n+k}(T(\zeta))$$
 .

PROPOSITION (1.16). If φ_1 and φ_2 are the quadratic functions from (X, ζ, α) and W_1 and W_2 , respectively, then

$$\varphi_{\scriptscriptstyle 1}(u) = \varphi_{\scriptscriptstyle 2}(u) + j(u \cup d(W_{\scriptscriptstyle 1}, W_{\scriptscriptstyle 2}))(x)$$
.

Note if φ_1 and φ_2 are two quadratic functions for (X, ζ, α) , $\varphi_1 - \varphi_2$ is linear and hence $\varphi_1 - \varphi_2 = j(y \cup)$ for some $y \in H^n(X)$. This yields:

COROLLARY (1.17). The (W(n), h) orientations of (X, ζ, α) are in one-to-one correspondence with functions on $H^n(X)$ satisfying (1.8).

Let G_k be the H space of unbased maps of S^{k-1} to itself of degree one. Recall if (X, ζ, α_i) , i=1,2, are Poincaré triples, there is a map $g\colon X\to G_k$ which defines an automorphism $\overline{g}\colon \zeta\to \zeta$ such that $T(\overline{g})\alpha_2=\alpha_1$ (see proof of (1.17)). Let $u_i\in H^i(G_k)$ be the classes which transgress to $w_{i+1}\in H^{i+1}(BG_k)$, the i+1 Stiefel-Whitney class. If φ_1, φ_2 , and φ_3 are the quadratic functions associated to (X, ζ, α_1, W) , (X, ζ, α_2, W) , and $(X, \zeta, \alpha_1, T(g)^*W)$, respectively, $\varphi_2=\varphi_3$ by (1.15) and hence

$$\varphi_{\scriptscriptstyle 1} = \varphi_{\scriptscriptstyle 2} + j(x \cup)$$

where $x = d(T(g^*)W, W)$.

THEOREM (1.18). If (X, ζ, α_i) , i = 1, 2 are 2n-Poincaré triples, W is a (W(n), h) orientation of ζ , φ_i are the associated quadratic functions and $g: X \to G_k$ is a map such that $T(\overline{g})\alpha_1 = \alpha_2$, then

$$\varphi_{\scriptscriptstyle 1}(u) = \varphi_{\scriptscriptstyle 2}(u) + j(x \cup u)$$

where

$$x = d(W, T(g)^*W) = \sum v_{n+1-2i} \cup g^*u_{2i-1}$$

where $v_i = v_i(\zeta)$ are the Wu classes.

To obtain numerical invariants for (X, ζ, α, W) we construct an algebraic invariant as follows:

Definition (1.19). Suppose V is a finite dimensional vector space over \mathbb{Z}_2 . A function $\varphi \colon V \to \mathbb{Z}_4$ is quadratic if

$$\varphi(u+v)=\varphi(u)+\varphi(v)+jt(u,v)$$

where $t: V \otimes V \to \mathbf{Z}_2$ is a bilinear pairing. φ is nonsingular if t is. If $\varphi_i: V_i \to \mathbf{Z}_4$ are two such functions, φ_1 is isomorphic to φ_2 if there is a linear isomorphism $T: V_1 \to V_2$ such that $\varphi_1 = \varphi_2 T$. $(\varphi_1 + \varphi_2): V_1 \oplus V_2 \to \mathbf{Z}_4$ is defined by $(\varphi_1 + \varphi_2)(u, v) = \varphi_1(u) + \varphi_2(v)$. $(-\varphi_1)(u) = -\varphi_1(u)$. $\varphi_1\varphi_2: V_1 \otimes V_2 \to \mathbf{Z}_4$ is the unique quadratic function such that $\varphi_1\varphi_2(u \otimes u) = \varphi_1(u)\varphi_2(v)$.

THEOREM (1.20). There is a unique function σ from non-singular quadratic functions as in (1.9) to \mathbf{Z}_8 satisfying

- (i) If $\varphi_1 \approx \varphi_2$, $\sigma(\varphi_1) = \sigma(\varphi_2)$.
- (ii) $\sigma(\varphi_1 + \varphi_2) = \sigma(\varphi_1) + \sigma(\varphi_2)$.
- (iii) $\sigma(-\varphi_1) = -\sigma(\varphi_1)$.
- (iv) $\sigma(\gamma) = 1$ where $\gamma: \mathbb{Z}_2 \to \mathbb{Z}_4$ by $\gamma(0) = 0$, $\gamma(1) = 1$.

Furthermore σ satisfies:

- (v) $\sigma(\varphi_1\varphi_2) = \sigma(\varphi_1)\sigma(\varphi_2)$.
- (vi) If φ : $V \rightarrow Z_4$, $\sigma(\varphi) = (\dim V) \mod 2$.
- (vii) If $\varphi = j\varphi'$,

$$\sigma(\varphi) = l(\operatorname{Arf} \varphi')$$

where $l: \mathbb{Z}_2 \to \mathbb{Z}_8$ is the homomorphism sending 1 to 4.

(viii) If U is a finitely generated free abelian group, $\theta: U \otimes U \to \mathbf{Z}$ is a symmetric, unimodular bilinear form, $\psi(u) = \theta(u, u)$ and $\varphi: U/2U \to \mathbf{Z}_{\bullet}$ is defined by $\varphi(u) = \psi(u) \mod 4$, then φ is quadratic and

$$\sigma(\varphi) = (signature \psi) \mod 8.$$

(ix) Suppose $t: V \otimes V \to \mathbf{Z}_2$ is the bilinear form associated to $\varphi: V \to \mathbf{Z}_4$,

$$V_1 \xrightarrow{\nu} V \xrightarrow{\delta} V_2$$

is an exact sequence of \mathbf{Z}_2 vector spaces, and $t': V_1 \otimes V_2 \rightarrow \mathbf{Z}_2$ is a nonsingular bilinear form such that $t'(u, \delta v) = t(\nu u, v)$. If $\varphi \nu = 0$, $\sigma(\varphi) = 0$.

(x) If φ_1 , φ_2 : $V \to \mathbf{Z}_4$ have the same bilinear form t, then $\varphi_2(u) = \varphi_1(u) + jt(u, x)$ for some x and

$$\sigma(\varphi_1) - \sigma(\varphi_2) = m(\varphi_1(x))$$

where $m: \mathbb{Z}_4 \longrightarrow \mathbb{Z}_8$ sends 1 to 2.

(xi) $\sigma(\varphi)$ is related to φ by the formula

$$\sum_{u \in V} i^{\varphi(u)} = \sqrt{2^{\dim V}} e^{\frac{\pi i \sigma(\varphi)}{4}}$$

where $i = \sqrt{-1}$.

Definition (1.21). If (X, ζ, α) is a 2n-Poincaré triple, (Y, h) is a Wu

n-spectrum and W is a Y oriention of ζ , we define the Kervaire invariant of (X, ζ, α, W) to be

$$K(X, \zeta, \alpha, W) = \sigma(\varphi) \in \mathbf{Z}_8$$

where $\varphi \colon H^n(X) \to \mathbf{Z}_4$ is given by

$$\varphi(u) = hW_*A_{\alpha}F(u, 0)$$
.

(1.20) and (1.14) yield:

COROLLARY (1.22). If MG is a Thom spectrum and (MG, h) is a Wu n-spectrum, K defines a homorphism

$$K: \Omega_{2n}(G) \longrightarrow \mathbf{Z}_8$$

where $\Omega_{2n}(G)$ denotes the cobordism group based on G orientable manifolds.

Suppose $(X_i, \zeta_i, \alpha_i, W_i)$ are 2n-Poincaré triples with (W(n), h) orientations and (g, f): $(\zeta_1, X_1) \to (\zeta_2, X_2)$ is a fibre map, ζ_1 and ζ_2 have some fibre dimension and g is homotopy equivalence on fibres. Then $H^n(X_1)$ splits over the cup product pairing into $f^*H^n(X_2) \oplus V$. Furthermore, f^* is a monomorphism (see [3]). (1.15) gives:

Corollary (1.23). If
$$T(g)^*W_2 = W_1$$
 and $T(g)_*\alpha_1 = \alpha_2$,

$$\sigma(\varphi_1|V) = K(X_1, \zeta_1, \alpha_1, W_1) - K(X_2, \zeta_2, \alpha_2, W_2)$$
.

If the Wu classes $v_j(\zeta_2) = 0$ for $j = n - (2^j - 1)$, then the above is independent of the choice of α_1 and α_2 . If, in the above, one replaces W_1 by $T(g)^*W_2$, then $\sigma(\varphi \mid V)$ is independent of the choice of W_2 .

Remark. If X_2 is 1-connected, n is odd, and (X_1, ζ_1, α_1) is a smooth or PL manifold, its normal bundle, and its Thom construction, then $\sigma(\varphi \mid V)$ is the surgery obstruction to making f a homotopy equivalence [3].

We conclude this section with some examples of cobordism theories in which K is defined.

Example (1.24). If $G_k = \{e\}$, $MG_k = S^k$, and (S, h) is a W(n) spectrum for all n with h the unique map taking $H_{2n}(K_n, S) \approx \mathbb{Z}_2 \to \mathbb{Z}_4$ such that $\lambda \to 2$. $\Omega_{2n}(e)$ is framed cobordism and

$$K: \Omega_{2n}(e) \longrightarrow \mathbf{Z}_8$$

is 0 or 4 according as the Kervaire invariant [4] is 0 or 1. φ in this case has a somewhat simpler form, namely if $u \in H^n(X)$, $\varphi(u) \in \{S^{2n}, K_n\} \approx \mathbb{Z}_2 \subset \mathbb{Z}_4$ is the composition

$$S^{2n+k} \stackrel{lpha}{\longrightarrow} T(\zeta) \stackrel{\Delta}{\longrightarrow} T(\zeta) \wedge X^+ \stackrel{T \wedge u}{\longrightarrow} S^k \wedge K_n$$

where T comes from a framing of ζ .

Example (1.25). If $G_k = \operatorname{Spin}_k$, there is a Wu *n*-spectrum ($M \operatorname{Spin}_k$, h) for $n \equiv 1 \mod 4$, since

$$\chi(Sq^{n+1}) = \chi(Sq^{n-1})Sq^2 + \chi(Sq^n)Sq^1$$

and $Sq^iU_k = W_iU_k = 0$, i = 1, 2. For certain choices of h, the K obtained is equivalent to the Kervaire invariant defined in [1].

Example (1.26). If $G_k = SU_k$, the situation is as in (1.25) except h is unique because $H_n(BSU) = 0$.

Example (1.27). Suppose $\{MG_k\}$ is a sequence of classifying spaces. Let $BG_k(v_{n+1})$ be the fibration over BG_k with fibre K_n and k-invariant v_{n+1} . Let $MG_k(v_{n+1})$ be the associated spectrum. Clearly there is an k in this case. These are the cobordism theories studied in [2], particularly $BO_k(v_{n+1})$. Suppose M is a 2n-manifold with a v_{n+1} orientation. Each choice of k for $MG(v_{n+1})$ gives a function

$$\varphi_h: H^n(M) \to \mathbf{Z}_4$$
.

Let $L = \{u \mid \varphi_n(u) \text{ is independent of } h\}$. Then $\varphi \mid L$ is the quadratic function studied in [2]. In [2] the Kervaire invariant of M is defined if φ is zero on the radical of L and is $\sigma(\varphi \mid L/R)$, where R is the radical. In general this will be different from the invariant we have defined.

Example (1.28). If $G_k = \mathbb{Z}_2$ and n = 1, $\Omega_2(\mathbb{Z}_2)$ is the cobordism group of surfaces immersed in \mathbb{R}^3 . (A cobordism is a 3-manifold immersed in $\mathbb{R}^3 \times I$.) $H_2(K_1, M(\mathbb{Z}_2)) \approx \mathbb{Z}_4$, so that h is unique up to a sign. One may prove:

$$K: \Omega_2(\mathbf{Z}_2) \approx \mathbf{Z}_8$$
.

 φ has the following geometric interpretation suggested to me by Dennis Sullivan. Let $i: S \to \mathbf{R}^3$ be an immersion of a compact, closed surface S. If $u \in H^1(S)$, choose an embedded circle $S^1 \subset S$ representing the dual of u. Let T be a tubular neighborhood of S^1 in S. i(T) is a twisted strip in \mathbf{R}^3 . Then $\varphi(u)$ is the number of half twists of i(T). (Möbius band has ± 1 half twists depending on whether its twist is right- or left-handed.) The number of half twists of i(T) only makes sense modulo four because one must frame the normal bundle of $i(S^1)$ in \mathbf{R}^3 in order to count twists. This framing is determined up to 720° since $\pi_1(SO_3) = \mathbf{Z}_2$. In this situation one easily sees that $K((S,i)) = \sigma(\varphi)$ is the surgery obstruction to making S immersion cobordant to S^2 .

Example (1.29). If $G_k = SO_k$ and n is even, there is an h making (MSO_k, h) a Wu n-spectrum for all even n which may be chosen as follows: Let \overline{U}_k : $MSO_k \to K(\mathbf{Z}, k)$ be the Thom class and let p_2 : $K(\mathbf{Z}_2, n) \to K(\mathbf{Z}_4, 2n)$ represent the Pontrjagin (cohomology) square. Let h be

$$(p_{2*}\bar{U}_*): H_{2n}(K_n, MSO) \longrightarrow H_{2n}(K(\mathbf{Z_4}, 2n); \mathbf{Z}) = \mathbf{Z_4}.$$

With this choice of h, $\varphi(u)$ is $p_2(u)(\overline{x})$ where $\overline{x} \in H_{2n}(X; \mathbb{Z})$ is the fundamental class. S. Morita has shown in [5] that $\sigma(\varphi)$, in this case, is the index of X modulo 8. Hence

$$K: \Omega_{4l}(SO) \rightarrow \mathbb{Z}_8$$

is the index modulo 8.

2. Proofs

Let N be a large integer and $p \colon E_N \to K_N$ be the fibration with fibre K_{N+n} and k-invariant $Sq^{n+1} \, \ell_N$. Let $R \colon S^N K_n \to E_{N+n}$ be a map such that $pR = S^N \ell_N$. Let $E_k = \Omega^{N-k} E_N$ and let $R_k \colon S^k K_n \to E_{k+n}$ be the adjoint of R. Since $Sq^{n+1} \ell_n = 0$, there is a homotopy equivalence $\ell_n \times \ell_{2n} \colon E_n \to K_n \times K_{2n}$.

The following is well known:

LEMMA (2.1). If $\mu: E_n \times E_n \to E_n$ is the loop multiplication map,

$$\mu^*(\ell_{2n}) = \ell_{2n} \otimes 1 + 1 \otimes \ell_{2n} + \ell_n \otimes \ell_n$$
.

The following is easily checked:

LEMMA (2.2). If m > 1 and Y is a CW complex such that dim $Y \leq 2n + m$,

$$\{Y, S^m \wedge K_n\} = [Y, S^m \wedge K_n]$$

and

$$[Y, S^m \wedge K_n] \stackrel{R_{m^*}}{pprox} [Y, E_{n+m}]$$
.

Proof of (1.2). By (2.1) and (2.2)

$$\{S^{2n},\,K_n\}pprox [S^{2n+2},\,E_{n+2}]pprox {f Z}_2$$
 .

Proof of (1.3). Let T be the isomorphism

$$\{X,\,K_n\}=[S^2X,\,S^2K_n]pprox[S^2X,\,E_{n+2}]pprox[X,\,E_n]pprox[X,\,K_n imes K_{2n}]$$
 .

If $u \in H^n(X)$, $v \in H^{2n}(X)$, and $g: X \to S^{2n}$ is a map such that $g^*s_{2n} = v$,

$$TF(u, v) = T(\{u\} + \{\mu g\}) = u \times v$$

(where $\mu \in \{S^{2n}, K_n\}$ is the generator). With respect to the H space structure on $K_n \times K_{2n}$ coming from E_n , (2.1) yields

$$u \times v + u' \times v' = (u + u') \times (u \cup u' + v + v')$$
.

Proof of (1.9). We wish to show

$$\{S^{2n}, K_n\} \longrightarrow \{S^{2n+k}, S^k \wedge K_n\} \longrightarrow \{S^{2n+k}, Y_k \wedge K_n\}$$

is nonzero if and only if $\chi(Sq^{n+1})U_k \neq 0$. Since

$$\lim \{S^{2n+k}, Y^a \wedge K_n\} \approx \{S^{2n+k}, Y_k \wedge K_n\}$$

where Y^a are the finite subcomplexes of Y_k , we may assume Y_k is a finite complex. Let Y^* be an m S-dual of Y_k . Let $g: Y^* \to S^{m-k}$ be the S-dual of the generator $v: S^k \to Y_k$. S-duality gives a commutative diagram

$$\{S^{2n+k}, S^k \wedge K_n\} \xrightarrow{p_*} \{S^{2n+k}, Y_k \wedge K_n\}$$
 \emptyset
 $\{S^{2n+m}, S^m \wedge K_n\} \xrightarrow{g^*} \{S^{2n+k} \wedge Y^*, S^m \wedge K_n\}$
 \emptyset
 $[S^{2n+m}, E_{n+m}] \xrightarrow{g^*} [S^{2n+k}, Y^*, E_{n+m}].$

The fibration $K_{m+2n} \to E_{n+m} \to K_m$ gives exact sequences:

$$\longrightarrow H^{2n+m}(S^{2n+m}) pprox [S^{2n+m},\,E_{n+m}] \longrightarrow H^m(S^{2n+m}) \ iggleq g^* \ iggleq H^{m+n-1}(Y^*) \stackrel{Sq^{n+1}}{\longrightarrow} H^{2n+m}(Y^*) \longrightarrow [S^{2n+k},\,Y^*,\,E_{n+m}] \longrightarrow H^m(Y^*) \;.$$

Hence p_* above is nonzero if and only if $Sq^{n+1}H^{m+n-1}(Y^*)=0$, if and only if $\chi(Sq^{n+1})H^k(Y_k)=0$. $(\chi(Sq^{n+1})$ corresponds to Sq^{n+1} under S-duality.)

Proof of (1.13). In this situation $T(f^*\zeta)$ is the S-dual of $T(\nu)$. S-duality gives a commutative diagram:

$$egin{align} \{T(
u),\,K_n\} &\stackrel{d}pprox \{S^{2n+k},\,T(f^*\zeta)\,\wedge\,K_n\}\ &\downarrow T^* &\downarrow i_*\ \{X^+,\,K_n\} &\stackrel{A_lpha}pprox \{S^{2n+k},\,T(\zeta)\,\wedge\,K_n\} \ \end{aligned}$$

where $T: X^+ \to T(\nu)$ is the Thom construction. If V is the Thom class of ν , $T^*V = F(u,0)$ where u is the Poincaré dual of $f(S^n) \in H_n(X)$. $T(f^*\zeta) = S^k \vee S^{n+k}$. Hence $dV = \alpha_1 + \alpha_2$ where $\alpha_1 \in \{S^{2n+k}, S^k \wedge K_n\}$ and $\alpha_2 \in \{S^{2n+k}, S^{n+k} \wedge K_n\}$. Note α_2 is the generator because V is the Thom class.

$$egin{align} arphi(u) &= h \, W_* A_lpha F(u,\, 0) \ &= h \, W_* i_* (lpha_{\scriptscriptstyle 1} + lpha_{\scriptscriptstyle 2}) \ &= h \, W_* i_* lpha_{\scriptscriptstyle 1} + h(eta_{\scriptscriptstyle f}) \; . \end{split}$$

Thus $\varphi(u) - h(\beta_f) = 0$ or 2 according as $\alpha_1 = 0$ or the generator of $\{S^{2n+k}, S^k \wedge K_n\}$. Note α_1 depends only on ν ; hence to compute $\varphi(u)$ we can choose any X^+ containing S^n with normal bundle ν .

Suppose ν is trivial. Referring to (1.12), $\widetilde{f} \in \{X^+, S^n\}$ desuspends to $X^+ \to T(\nu) \to S^n$ and hence \overline{f} desuspends to u. Hence by (1.12), $\varphi(u) - h(\beta_f) = 0$.

Suppose ν is not trivial and n is odd. Let $f: S^n \to S^n \times S^n$ be the diagonal. Then ν is the normal bundle of $f(S^n)$. Take $Y_k = S^k$. Then $\beta_f = 0$, $u = s_n \otimes 1 + 1 \otimes s_n$ and

$$\varphi(u) = \varphi(s_n \otimes 1) + \varphi(1 \otimes s_n) + j(s_n \otimes s_n) (S^n \times S^n) = 2$$
.

 $\varphi(s_n \otimes 1) = 0$ because $(S^n, *) \subset S^n \times S^n$ has trivial normal bundle.

The same argument as above works for n even if one takes f to be a multiple of the diagonal.

Proof of (1.14). We use $T(\eta) \cup \widehat{T(\zeta)}$, the mapping cone of $T(\zeta) \subset T(\eta)$, instead of $T(\eta)/T(\zeta)$. Consider the following commutative diagram:

$$T(\eta) \cup \widehat{T(\zeta)} \longrightarrow T(\eta) \wedge (Y \cup \widehat{X}) \ \downarrow \ \downarrow \ T(\eta) \wedge SX^{+} \longrightarrow T(\eta) \wedge SY^{+} \stackrel{c}{\longrightarrow} Y^{k} \wedge SK_{n} \ \downarrow \ ST(\zeta) \longrightarrow T(\zeta) \wedge SX^{+}$$

where $c=W\wedge Sv$, $v\colon Y^+\to K_n$ and the unlabeled maps are the obvious maps. If $\beta\colon S^{2n+k+1}\to Y_k\wedge SK_n$ denotes the composition of the bottom line, $\varphi(i^*v)=h(\beta)$. The top line is zero because $Y\cup \hat{X}\to SX^+\to SY^+$ is zero. Hence $\varphi(i^*v)=0$.

Proof of (1.16). If W_1 and W_2 are (W(n), h) orientations of ζ and $v = d(W_1, W_2)$, W_2 is the composition

$$T(\zeta) \stackrel{\Delta}{\longrightarrow} T(\zeta) \times T(\zeta) \stackrel{W_1 \times (v U_k)}{\longrightarrow} W_k(n) \times K_{n+k} \stackrel{\mu}{\longrightarrow} W_k(n)$$

where μ is the action of K_{n+k} on $W_k(n)$. Consider:

$$egin{pmatrix} ig(T(\zeta) \, \wedge \, X^+ig) \, ee ig(T(\zeta) \, \wedge \, X^+ig) & ee \ & ee ig(T(\zeta) \, ee \, T(\zeta)ig) \, \wedge \, X^+ & a \ & \cap \ & \cap \ & S^{2n+k} \stackrel{\Delta lpha}{\longrightarrow} ig(T(\zeta) \, imes \, T(\zeta)ig) \, \wedge \, X^+ \stackrel{b}{\longrightarrow} W_k(n) \, \wedge \, K_n \end{pmatrix}$$

where α' is a lifting of $\Delta \alpha$, $b = \mu(W_1 \times vU_k) \wedge u$, $a = (W_1 \wedge u) \vee c$, and $c = i(vU_k) \wedge u$, $i: K_{n+k} \to W_k(n)$ the inclusion. $\alpha' = \alpha_1 + \alpha_2$ where α_1 and α_2 are on the two factors of the wedge.

$$egin{aligned} arphi_2(u) &= h(b\Deltalpha) \ &= h(alpha_{\scriptscriptstyle 1}) + h(alpha_{\scriptscriptstyle 2}) \ &= arphi_1(u) + h(alpha_{\scriptscriptstyle 2}) \; . \end{aligned}$$

The generator of $\pi_{2n+k}(K_{n+k} \wedge K_n)$ goes into the generator of $\{S^{2n+k}, W_k(n) \wedge K_n\}$ (see proof of (1.3)). Hence

$$h(a\alpha_2) = j(vU_k \otimes u)(S^{2n+k})$$

= $j(v \cup u)(x)$.

Proof of (1.18). Let l be a large integer, F_l the H-space of degree one, based maps of S^l to itself and G_l the unbased, degree one maps of S^{l-1} to itself. The unreduced suspension gives a map $\rho: G_l \to F_l$. Consider

$$[X,G_l] pprox [X,F_l] \subset [S^lX^+,S^l] pprox \{X^+,S^0\} \stackrel{A_{\alpha}}{pprox} \{S^{2n+k},T(\zeta)\}$$

where A_{α} is S-duality with respect to α . Under this map $[X, G_l]$ maps to those $\bar{\alpha}$'s such that $(X, \zeta, \bar{\alpha})$ is a Poincaré triple. Hence if (X, ζ, α_i) , i = 1, 2 are Poincaré triples, there is a $g: X \to G_l$ which goes to α_2 under A_{α_1} . g gives a stable automorphism of ζ by

id
$$\times \bar{g}: \zeta + 0^l \longrightarrow \zeta + 0^l$$

where 0^i is the trivial bundle $X \times S^{i-1}$ and $\overline{g}(x,s) = (x, g(x)(s))$. $T(\mathrm{id} \times \overline{g})$ is the composition

$$\widehat{g}\colon S^{\imath}T(\zeta) \xrightarrow{S^{\imath}\Delta} S^{\imath}ig(T(\zeta) \, \wedge \, X^{\scriptscriptstyle +}ig) = \, T(\zeta) \, \wedge \, S^{\imath}X^{\scriptscriptstyle +} \xrightarrow{\operatorname{id} \, \wedge \, \widetilde{g}} \, T(\zeta) \, \wedge \, S^{\imath} = S^{\imath}T(\zeta)$$

where $\tilde{g} = \rho g$. By the definition of g, $\hat{g}_* \alpha_1 = \alpha_2$. If W is W(n) orientation for $T(\zeta)$,

$$W': S^l T(\zeta) \xrightarrow{\hat{g}} S^l T(\zeta) \xrightarrow{S^l W} S^l W_k(n) \longrightarrow W_{k+l}(n)$$

is the new orientation produced by g. We wish to determine d(W, W').

Choose a base point for X. Identifying $S^{l}X^{+}$ with $S^{l} \vee S^{l}X$, the adjoint of $\rho g \colon X^{+} \to F_{l}$ gives a map $g' \colon S^{l}X \to S^{l}$. Identify $T(\zeta) \wedge S^{l}X^{+}$ with

$$T(\zeta) \wedge (S^l \vee S^l X) = (T(\zeta) \wedge S^l) \vee (T(\zeta) \wedge S^l X)$$
.

Under this identification, id $\wedge \tilde{g}$ becomes (id \wedge id) \vee (id $\wedge g'$).

factors through the inclusion of the fibre $i: K_{k+l+n} \to W_{k+l}(n)$. Let $W(\mathrm{id} \wedge g') = iv$, $v: T(\zeta) \wedge S^l X \to K_{k+l+n}$. v will have the form

$$v = \sum x_i U_k \otimes S^l y_i$$

and $d(W, W') = \sum x_i y_i$. By the fibre space definition of functional operations

$$v \in \chi(Sq^{n+1})_{\mathrm{id} \wedge g'} (U_k \otimes s_l)$$
 .

One easily checks that this operation and $\chi(Sq^i)_{g'}(s_i)$, i > 0, has zero indeterminacy. Using the Cartan formula, $\chi(Sq^i)U_k = v_iU_k$ and the exact sequence definition of functional operations one easily checks that

$$v = \sum v_{n+1-i} \ U_k \otimes \gamma(Sq^i)_{g'}(s_l)$$
 .

We complete the proof of (1.18) by proving

LEMMA (2.3).

$$egin{align} \chi(Sq^i)_{g^{,\cdot}}(s_l) &= S^l(u_{_2j_{-1}}) && if \ i=2^j \ &= 0 && if \ i
ot=2^j \ . \end{split}$$

Proof. Let γ be the S^{l-1} fibration over SX defined by $g: X \to G_l$. It is well known that

$$T(\gamma) = S^l \cup g'S^lX$$

where S^{l} corresponds to the "fibre" of $T(\gamma)$. Hence

$$S(\chi(Sq^i)_{q'}(s_i))U_i = \chi(Sq^i)U_i$$

where U_i is the Thom class of $T(\gamma)$. $\chi(Sq^i)U_i = v_i(\gamma)U_i$. Let $\hat{g} \colon SX \to BG_i$ be the classifying map of γ and $\bar{v}_i \in H^i(BG_i)$ the Wu classes. Then

$$S(\chi(Sq^i)g(s_l)) = \hat{g}^*\bar{v}_i$$
.

 $\chi(Sq^{2^i})=Sq^{2^i}+$ decomposables and $\chi(Sq^j)$ is decomposable for $j\neq 2^i$. Hence \overline{v}_j is decomposable for $j\neq 2^i$ and is $W_{2^i}+$ decomposables for $j=2^i$. $H^*(SX)$ has zero cup products. Hence $\widehat{g}^*(v_j)=0, j\neq 2^i$ and w_{2^i} for $j=2^i$. w_j suspends to $u_{j-1}\in H^*(G_i)$ and the lemma is proved.

3. Proof of Theorem (1.20)

Suppose V is a finite dimensional vector space over \mathbb{Z}_2 and $\varphi \colon V \to \mathbb{Z}_4$ is any function. Let $\lambda \varphi$ be the complex number defined by

$$\lambda(\varphi) = \sum_{u \in V} i^{\varphi(u)}$$
.

 $\lambda(\varphi)$ is well-defined since $i^4 = 1.2$

LEMMA (3.1). If φ is linear,

$$egin{aligned} \lambda(arphi) &= 2^{\dim\,V} & if \,arphi &= 0 \ &= 0 & if \,arphi
ot= 0 \,. \end{aligned}$$

Proof. For any $v \in V$

$$\sum_{u}i^{arphi(u)}=\sum_{u}i^{arphi(u+v)}=i^{arphi(v)}\sum i^{arphi(u)}$$
 .

Hence $\lambda(\varphi) = i^{\varphi(v)} \lambda(\varphi)$. Hence $\lambda(\varphi) = 0$ or $\varphi(v) = 0$ for all v.

The following is immediate

LEMMA (3.2).

$$\lambda(\varphi_1 + \varphi_2) = \lambda(\varphi_1)\lambda(\varphi_2)$$
 $\lambda(-\varphi) = \overline{\lambda(\varphi)}$.

LEMMA (3.3). If φ is quadratic and non-singular, $\lambda(\varphi)^s$ is a positive real number.

Proof. Let $t: V \otimes V \to \mathbb{Z}_2$ be the bilinear form of φ . For some $x \in V$,

² This method of constructing an algebraic invariant was suggested to me by Paul Monsky.

$$t(u, u) = t(u, x)$$

for all u.

$$0 = \varphi(2u) = 2\varphi(u) + jt(u, u).$$

Hence $2\varphi(u) = jt(u, x)$. Therefore

$$egin{aligned} arphi(u+v)+arphi(v)&=arphi(u)+2arphi(v)+jt(u,v)\ &=arphi(u)+jt(u+x,v);\ \lambda(2arphi)&=\sum_{u,v}i^{arphi(u)+arphi(v)}\ &=\sum_{u,v}i^{arphi(u+v)+arphi(v)}\ &=\sum_{u}i^{arphi(u+x,v)}. \end{aligned}$$

t(u+x,v) is linear in v and zero for all v if and only if u=x. Therefore

$$\lambda(2\varphi) = 2^{\dim V} i^{\varphi(x)}$$
.

Hence

$$\lambda(arphi)^8 = \lambda(2arphi)^4 = 2^{4\,\dim\,V}$$
 .

Therefore

$$\lambda(\varphi) = \sqrt{2^{\dim V}} e^{\frac{\pi i}{4}n}$$

for some $n \in \mathbb{Z}_8$. Define $\sigma(\varphi) = n$. By the definition of σ and (3.2), it satisfies (i), (ii), (iii), and (xi) (1.20). If $\gamma: \mathbb{Z}_2 \to \mathbb{Z}_4$ by $\gamma(0) = 0$, $\sigma(\gamma) = 1$, and hence (iv) if satisfied. We next show that σ is unique. This follows by induction on dim V and the following lemma.

LEMMA (3.4). If φ is non-singular quadratic,

$$\gamma + \varphi \approx \varepsilon_1 \gamma + \varepsilon_2 \gamma + \varphi'$$

where $\varepsilon_i = \pm 1$.

Proof. Choose $u, v \in V$ such that t(u, v) = 1 and u = v if possible. Let $V_1 = \{u, v\}$, $V_2 = \{w \in V | t(u, w) = t(v, w) = 0\}$. V is a direct sum of V_1 and V_2 and $\varphi | V \approx \varphi | V_1 + \varphi | V_2$. If u = v, $\varphi | V_1 \approx \pm \gamma$. If $u \neq v$, let U_1, U_2 and U_3 be the subspaces of $\mathbf{Z}_2 + V_1$ spanned by (1, v), (1, u), and (1, u + v) respectively. One easily checks that

$$\gamma + \varphi | V_{\scriptscriptstyle 1} = \sum (\gamma + \varphi) | U_i$$

and $(\gamma + \varphi) | U_i = \pm \gamma$.

The multiplicativity of σ easily follows from (3.4) and the fact that $\gamma \varphi = \varphi$ for any φ .

If $\varphi = j\varphi'$, $\lambda(\varphi) = (n - m)$ where n and m are the number of elements in V at which φ' is 0 and 1, respectively. Hence $\sigma(\varphi)$ is 0 or 4 according as Arf φ' is 0 or 1.

To prove (1.20) (ix), there is no loss in generality if we assume

$$0 \longrightarrow V_1 \stackrel{\nu}{\longrightarrow} V_1 \stackrel{\delta}{\longrightarrow} V_2 \longrightarrow 0$$

is exact. Choose a map β : $V_2 \rightarrow V$ such that $\delta \beta = \mathrm{id}$. If $u \in V_1$, and $\varphi \nu = 0$

$$\varphi((\nu) + \beta(v)) = \varphi(\beta(u)) + jt(\nu(u), \beta(v))$$

$$= \varphi(\beta(u)) + jt'(u, v).$$

Hence

$$egin{aligned} \lambda(arphi) &= \sum i^{arphi(arphi(oldsymbol{u})+eta(oldsymbol{v}))} \ &= \sum_{oldsymbol{u}} i^{arphi(eta(oldsymbol{u}))} \sum_{oldsymbol{v}} i^{jt'(oldsymbol{u},oldsymbol{v})} \ &= ext{positive real number} \end{aligned}$$

since t'(u, v) is linear in v and zero for all v if and only if u = 0. Hence if $\varphi v = 0$, $\sigma(\varphi) = 0$.

If $\varphi_1, \varphi_2: V \to \mathbb{Z}_4$, and $\varphi_2(u) = \varphi_1(u) + jt(u, x)$ for some x as in (x),

$$egin{aligned} \lambda(arphi_2) &= \sum i^{arphi_1(u)+jt(u,x)} \ &= \sum i^{arphi_1(u+x)-arphi_1(x)} \ &= i^{-arphi_1(x)} \, \lambda(arphi_1) \, . \end{aligned}$$

Hence $\sigma(\varphi_2) = \sigma(\varphi_1) - l\varphi_1(x)$ where $l: \mathbb{Z}_4 \to \mathbb{Z}_8$ takes 1 to 2.

Finally we prove (1.20) (vii). (viii) is obviously true if θ is a diagonal form. Recall the Grothendieck group of symmetric unimodular bilinear forms over the integers is isomorphic to $\mathbf{Z} + \mathbf{Z}$ and the isomorphism is given by the rank + the signature [6]. This means that if θ is such a form, there are forms D, θ_1 , and θ_2 , where D is diagonal, such that $\theta + (\theta_1 + (-\theta_1)) \approx D + (\theta_2 + (-\theta_2))$. The desired result now follows.

BRANDEIS UNIVERSITY, WALTHAM, MASS.

BIBLIOGRAPHY

- [1] E. H. Brown and F. S. Peterson, The Kervaire invariant of (8k + 2)-manifolds, Amer. J. Math. 88 (1966), 815-826.
- [2] E. H. Brown, Kervaire invariant of manifolds, Proc. of Conference on Algebraic and Differential Topology, Madison, Wisc., 1970, to appear.
- [3] W. Browder, The Kervaire invariant of framed manifolds and its generalizations, Ann. of Math. 90 (1969), 157-186.
- [4] M. KERVAIRE, A manifold which does not admit any differentiable structure, Comm. Math. Helv. 34 (1960), 256-270.
- [5] S. MORITA, On the Pontrjagin square and the signature, to appear.
- [6] J.-P. SERRE, Cours d'arithmétique, Presses Universitaire de France.

(Received September 14, 1971)