Generalizations of the Kervaire invariant

By EpGAR H. BROWN, JR.!

1. Introduction

M. Kervaire in [4], F. Peterson and myself in [1], and W. Browder in [3]
defined numerical invariants for various classes of 2n-manifolds roughly as
follows: Suppose M is a closed compact 2n-manifold with some additional
structure 7. In [4] T is a framing of the normal bundle of M and # is odd,

in [1] it is a spin structure and #» = 1 mod 4 and in [3] it is a v,,, structure.
Using T one constructs a function

p: H"(M; Z,) — Z,
satisfying

(1.1) Pu + v) = P(u) + () + (U v) (M) .

The Kervaire invariant of (M, T) is defined to be the Arf invariant of .
Arfo = 0 or 1 and is 0 if and only if @ is zero on more than half the elements
of H"(M; Z,).

In this paper we describe a general technique for constructinrg functions
satisfying (1.1) and hence of obtaining generalizations of the Kervaire in-
variant. This technique gives, as special cases, the functions defined in [1],
[3] and [4]. In the remainder of this section we outline in detail our tech-
niques and state our results. Some of these results appear in [2]. Our alge-
braic results concerning the Arf invariant are stated in Theorem 1.20 and
proved in § 3. The proofs of all other lemmas and theorems in this section
are either given immediately or in § 2.

All homology and cohomology groups will be with Z, coefficients unless
otherwise stated. Usually spaces will have base points. [X, Y] denotes the
set of homotopy classes of maps from X to Y. S denotes suspension and

(X, Y}=1lim[S*X, S*Y].
K, will denote K(Z,, n).

We first describe how { } gives rise to quadratic functions. Let X be a
CW complex with base point of dimension 2n. We define a function

F: H(X) x H"(X) — {X, K.}
as follows:

I This work was carried out while the author was supported by NSF grant GP 21510.
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LEmMMmA (1.2). {S™ K,} ~ Z, .

Let 1€ {S*, K,} be the generator. We view u e H*(X) as a map u: X —
K,. If ve H(X), there is a map g,: X — S* such that g*(s,,) = v, where
Sy, € H*™(S™) is the generator. Define F(u, v) by

F(u, v) = {u} + {rg.} .

ProrosITION (1.8). If X is a 2n-dimensional CW complex, then
F: Hv(X) x H"(X) — {X, K,}
18 bijective and
Fu,v) + F(w',v') = Flu + v/, u U + v+ 7).
Remark. If > -+ 0, F(u, 0) has order four.
Let j: Z,— Z, be the homomorphism sending 1 to 2. Suppose h:{X, K,}—
Z, is a homomorphism. Since AF(0, v) is linear in v, AF(0, v) = jv(x) for
some 2 € H,,(X). Let @, H(X) — Z, be given by
Pu(u) = RF(u, 0) .
Then (1.3) yields:
LEMMA (1.4). @,(u + v) = @u(u) + Pu(v) + J(u U v)(z). Furthermore, iy
® and x satisfy the above formula, @ = @, for some h.
Definition (1.5). An m-Poincaré triple (X, ¢, a) is
(i) A CW complex X with finitely generated homology (X is without
base point).
(ii) A fibration  over X with fibres homotopy equivalent to S**, k large,
(e.g. k> m + 1). |
(iii) @€ Tp.i (T(X) (T(C) = Thom space) such that an m + k Spanier-
Whitehead S-duality is given by

Qnik %, T©) A TE) A X

where A is the diagonal map.
Recall Aa being an S-duality means that if §,,,€ H,., (S*"*; Z) is a
generator and y = (Aa)y S,is

Jy: H**(T(); Z) ~ H,, (X; Z)

for all q. Let U,e H*(T({)) be the Thom class and let » = U,/y e H,(X).
It follows from the above isomorphism and the Thom isomorphism that

xN: H(X)~ H,_,(X) .
Furthermore, for any CW complex Y,
(1.6) A (XF, Y}~ {S™E T A Y},
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where A,{f} = {(id A f)Aa}.

Suppose (X, ¢, @) is a 2n-Poincaré triple. Let X; be the connected com-
ponents of X and let a,: S* — T({| X;) < T({) be the inclusion of a fibre. Let
N € {S™ ¢ T() N K,} be the image of the generator ¢ under

QAix

{S*= K,} = {S***, S* A K,} — {S***, T({) A K,} .
THEOREM (1.7). If (X, {, a) is a 2n-Poincaré triple with fundamental
class xe€ H,,(X), the functions ¢: HY(X) — Z, satisfying
(1.8) P(u + v) = P(u) + P(v) + j(u U v)(x)
are in one-to-one correspondence with homomorphisms
h: {S™*+*, T(O) N K,} — Z,

such that h(\;) = 2 under the correspondence ®(u) = hA,F(u,0) where F and
A, are given in (1.8) and (1.6), respectively. '

Proof. Note A, in (1.6) is natural in Y and it can be applied to the com-
mutative diagram,

Ag
{X;, S}~ (S, T(C]X3) A S™)
lﬂ* l#*
(X, K} = (S, T X) A K -

If g: X;— S™, p Af9} = (9%8:) (¥)N;. Hence A F(0, v) = v(x)n; ifve
H*(X;). (1.7) now follows from (1.3) and (1.4).

Theorem (1.7) suggests a method of constructing quadratic functions for
manifolds in a cobordism theory as follows: Suppose MG = {MG,} is a Thom
spectrum. Let X\ € {S*™** MG, N K,} be the image of g e{S*™** S* A K,}
under the inclusion of a fibre. Choose a homomorphism

h: {S™t¢ MG, N\ K,} — Z,
such that A(\) = 2. If X is a 2n-manifold, { is its normal bundle, « is ob-
tained from the Thom construction and W: T({) — MG, comes from a G struc-
ture on ¢, then
P(u) = W, A F(u, 0))

gives a function on H"(X) satisfying the formula in (1.3). This method works
so long as v #= 0. We would of course choose & above for each k in a consis-
tent way. This amounts to choosing

h: H,(K,: MG)—Z, .

Our next result deseribes when A # 0 and % exists.
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Suppose Y = {Y,, ¢} is a spectrum such that Y, is ¥ — 1 connected and
H(Y)~Z, Let Ue H(Y) be a generator and let p: S— Y be a map of the
sphere spectrum into Y such that p*Ue H’(S) is the generator. Let M€
H, (K,, Y) be the element represented by

RPN TN LA N

PROPOSITION (1.9). X\ == 0 if and only if x(Sq"*)U = 0, where ¥ 1s the
canonical antiautomorphism of the Steenrod algebra. Furthermore, if \ = 0,
1t is at most divisible by 2.

Definition (1.10). A Wu n-spectrum is a pair (Y, &) where Y is as above,
x(S¢**)U = 0 and h: H,(K,, Y)— Z, is a homomorphism such that r(\) =
2. A (Y, h) orientation of a fibration { is a map W: T({) — Y, such that
W*U, is the Thom class of T(C).

CoROLLARY (1.11). If (X, ¢, @) is a 2n-Poincaré triple, Wis (Y, h) orien-
tation of  where (Y, h) is a Wu n-spectrum and @: H*(X)— Z, is given by

P(u) = b WA F(u, 0),
then
P(u + v) = Pu) + P(v) + j(u U v)(x)
where x € H,,(X) ts the fundamental class.

We next describe the geometrical properties of @. Suppose f: S* — X
and f*{ is trivial. Up to homotopy type T(f*{)=S*\ S** . Let f: S*+*—,
T(C) be the inclusion of T(f*{) in T'({) restricted to S"**. Consider the com-
mutative diagram:

{X+, Sn} Iig {Sz'n—l-k’ T(C) /\ Sn} __W_’f_) {SZ'n+k, Yk /\ S’n}
Ax Wy

{X*, K.}~ (S, T@Q) A K,} — {S™**, Y, A K.} .
Let fe {X*, S*} be such that A.f = f, that is, 7 is the S-dual of f. Let 7 =
Suf and let B, = W, A(F).

THEOREM (1.12). f = F(u, v) where u is the Poincaré dual of the element
in H,(X) represented by f: S"— X and
P(u) = ju(x) + h(By) -

Hence, if h(B3;) = 0, P(u) is the obstruction to desuspending f to a map of X+
to K,.

Proof. Let B:{X*, K,}— H"(X) be given by S'B(g) = ¢g*S%, where
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9: S'X* — S'K,. BF(u,v) =u is the S-dual of the element in H,.,(T(2))
represented by f. Hence u is the Poincaré dual of f(S*) e H,(X). Since f =
F(u, v),
h(B;) = hW A F(u, v)
= hW.A(F(u, 0) + F(0, v))
= @(u) + ju(x) .

COROLLARY (1.13). If (X, &, a) ts a smooth (or PL) manifold, its normal
bundle and its Thom map, f: S"— X is a smooth embedding, v is the normal
bundle of f(S") in X, v is stably trivial, and w e H*(X) ts the Poincaré dual
of f(S*), then ®(u) = ¢ + h(B;) where

e =0 ifvistrivial
=1 if v is not trivial and n is odd
= FEuler number of v mod 4 if n is even .

Remark. Suppose Y = MG for some Thom spectrum and W comes from
amap (¢, 9): ({, X) — ((x, BG) where &, is the canonical bundle over BG.
If gf =0, Wf = Vie{S***, MG,} where V: S*** — S* and i: S* — MG,.
From the proof of (1.9) one sees that 8, = m\x where m = Hopf invariant of
V. Henceif n -+ 1,3,7, h(B;) = 0.

We next consider the situation in which X is a Poincaré space boundary.
Suppose XC Y, 7 is a spherical fibration over Y, 7| X={, &' € 7, 1. T(1)/ T(&))
maps into Sa under the map T()/T({) — ST({) and if y € H,,. (Y, X) is the
element corresponding to ',

yN: H(Y)~ H, (Y, X) .
LEMMA (1.14). If ©: X — Y is the inclusion, pi* = 0.
Suppose (X;, {;, a;), © =1, 2, are 2n-Poincaré triples, W, are (Y, %) ori-
entations of {;, k; is the fibre dimension of {;,
g: &+ 0 ——, + O

where k, + 1, = k, + I, and 0% is the trivial S“~' bundle over X; and g covers
fi X, — X,. W, define (Y, &) orientations W, of {; + 0%. Let ¢, be the quad-
ratic functions on H"(X;). The following is immediate.

PROPOSITION (1.15). If W, = T(9)*W, and T(9).S"a, = Sta, then
P(f*u) = Py(u), ue H'(X,).
We next examine how @ depends on the choice of W and a. Let W(n) =

{W(n)} be the Q-spectrum where W, (n) is the fibration over K, with fibre K, ..,
and k-invariant x(Sg"*')l,. Note by (1.9) there is an & making (W(n), k)
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a Wu n-spectrum. If Yis a spectrum as in (1.10) there isa map 7: Y — W(n)
such that (Y, ht,) is a Wu n-spectrum. Also if (X, {, «) is a 2n-Poincaré
triple, { is W(n) orientable since y(Sq¢"*') of the Thom class of { is the Wu
class v, ;.

If W, W,: T({) —» Wy(n) are (W(n), h) orientations, they differ by an

element
a(Ww,, W,)e H(X) ~ H”*k(T(C)) .

ProOPOSITION (1.16). If @, and @, are the quadratic functions from (X, ¢, a)

and W, and W,, respectively, then
P.(u) = Py(u) + j(u U d(W,, Wy))(x) .

Note if ¢, and @, are two quadratic functions for (X, {, ), @, — @, is

linear and hence @, — @, = j(y U ) for some ye H*(X). This yields:

COROLLARY (1.17). The (W(n), k) orientations of (X, {, &) are in one-to-
one correspondence with functions on HY(X) satisfying (1.8).

Let G, be the H space of unbased maps of S** to itself of degree one.
Recall if (X, {, ), © = 1, 2, are Poincaré triples, there is a map g: X — G,
which defines an automorphism g: { — { such that T(g)a, = «, (see proof of
(1.17)). Let u; € H(G,) be the classes which transgress to w;,, € H**(BG,),
the © + 1 Stiefel-Whitney class. If ¢,, ¥,, and @, are the quadratic functions
associated to (X, ¢, a,, W), (X, ¢, at,, W), and (X, ¢, ay, T(g)*W), respectively,
P, = @, by (1.15) and hence

P=P,+ j@U )
where @ = d(T(g*) W, W).

THEOREM (1.18). If (X, {, a)), © = 1, 2 are 2n-Poincaré triples, W is a
(W(n), h) orientation of C, @, are the associated quadratic functions and
9: X — G, 18 a map such that T(F)a, = a,, then

Pi(w) = Py(u) + J(x U w)
where
@ =d(W, T(@)*W) = 2_ Vasiesi U g% Usi,
where v; = v;() are the Wu classes.

To obtain numerical invariants for (X, {, «, W) we construct an alge-
braic invariant as follows:

Definition (1.19). Suppose V is a finite dimensional vector space over Z,.
A function @: V — Z, is quadratic if



374 EDGAR H. BROWN, JR.

P(u + v) = p(w) + P(v) + jt(u, v)
where t: V® V —Z, is a bilinear pairing. @ is nonsingular if t is. If
P;: V,—Z, are two such functions, @, is isomorphic to @, if there is a linear
isomorphism T: V, — V, such that ¢, = ¢,T. (@, + @,): V. V,—Z, is de-
fined by (P, + Po)(u, v) = P,(w) + P(v). (— P)W) = —P,(w). PP V,Q V,—
Z, is the unique quadratic function such that @,p,(u ® u) = @,(w)Py(v).

THEOREM (1.20). There is a unique function ¢ from non-singular quad-
ratic functions as in (1.9) to Z; satisfying

(1) If P~ Py, 0(@1) = 0'(§02).

(i) o(p, + 9.) = 0(P) + o(Py).

(i) o(—@) = — a(@)-

(iv) o(v) = 1 where v:Z,—Z, by v(0) =0, v(1) = 1.

Furthermore o satisfies:

(V) 0P, = o(p)o(p,).

(vi) If p: V— Z,, o(®) = (dim V) mod 2.

(vil) If ¢ = jo’,

o(p) = l(Arf ')

where 1. Z,— Zs 1s the homomorphism sending 1 to 4.

(viii) If U is a finitely generated free abelian group, 0: URQ U —Z is a
symmetric, unimodular bilinear form, ) = 0(u, w) and @: U2U — Z,
18 defined by P(u) = () mod 4, then @ is quadratic and

o(p) = (signature -y) mod 8.
(ix) Suppose t: VQ V — Z, is the bilinear form associated to p: V—Z,, -
v, v -2,

18 an exact sequence of Z, vector spaces, and t': V, R V,—Z, s a nonsingular
bilinear form such that t'(u, 6v) = t(vu, v). If pv = 0, o(p) = 0.

(x) If @i, Pi: V—Z, have the same bilinear form t, then @, (u) = @,(u) +
Jt(u, ) for some x and

0(@1) - 0'(?32) = m(@x(x))

where m: Z,— Z, sends 1 to 2.

(xi) o(®) s related to @ by the formula

T30 (9)

Zuevi‘p(u) — -l/?dimVe 2

where © =1V — 1.
Definition (1.21). If (X, {, @) is a 2n-Poincaré triple, (Y, &) is a Wu
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n-spectrum and W is a Y oriention of {, we define the Kervaire invariant of
(X, ¢, a, W) to be
K(X,C, a W)= o0(p)eZs
where @: H"(X) — Z, is given by
P(u) = hW A, F(u, 0) .

(1.20) and (1.14) yield:

COROLLARY (1.22). If MG is a Thom spectrum and (MG, h) is a Wu
n-spectrum, K defines a homorphism

K: Q,.(G) — Z4

where Q,,(G) denotes the cobordism group based on G orientable manifolds.

Suppose (X;, {;, a;, W,) are 2n-Poincaré triples with (W (n), k) orienta-
tions and (g, f): (£, X)) — (&, X,) is a fibre map, {, and {; have some fibre
dimension and g is homotopy equivalence on fibres. Then H"(X,) splits over

the cup product pairing into f*H"(X,) @ V. Furthermore, f* is a monomor-
phism (see [3]). (1.15) gives:

COROLLARY (1.23). If T(9)*W,= W, and T(9).a;, = &y,
0(@1' V) = K(Xu Cl) «,, WL) - K(XZ) Cz, «,, Wz) .

If the Wu classes v,({;) = 0 for j = » — (2° — 1), then the above is indepen-
dent of the choice of @, and «,. If, in the above, one replaces W, by T(g)* W,
then o(®| V) is independent of the choice of W,.

Remark. If X, is 1-connected, » is odd, and (X, {,, @) is a smooth or PL
manifold, its normal bundle, and its Thom construction, then g(®| V) is the
surgery obstruction to making f a homotopy equivalence [3].

We conclude this section with some examples of cobordism theories in
which K is defined.

Example (1.24). If G, ={e}, MG, =S* and (S, k) is a W(n) spectrum for
all » with » the unique map taking H,.(K,, S) ~ Z,— Z, such that x — 2.
Q,.(e) is framed cobordism and

K: Q,.(e) > Zs
is 0 or 4 according as the Kervaire invariant [4] is 0 or 1. @ in this case has
a somewhat simpler form, namely if ue H(X), o(u)e{S*™ K,} ~Z,C Z, is

the composition

S2n+ki) T() i, TQ) A X j& S* A K,

where T comes from a framing of .
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Example (1.25). If G, = Spin,, there is a Wu n-spectrum (M Spin, ) for
n = 1 mod 4, since

x(Sq™*) = x(Sq"")Sq* + x(Sq")Sq*

and Sq'U, = W,U, =0, i =1, 2. For certain choices of h, the!K obtained
is equivalent to the Kervaire invariant defined in [1].

Example (1.26). If G, = SU,, the situation is as in (1.25) except % is
unique because H,(BSU) = 0.

Erample (1.27). Suppose {MG,} is a sequence of classifying spaces. Let
BG(v,+,) be the fibration over BG, with fibre K, and k-invariant v,.,. Let
MG(v.+,) be the associated spectrum. Clearly there is an % in this case.
These are the cobordism theories studied in [2], particularly BO,(v,,,). Sup-
pose M is a 2n-manifold with a v,,, orientation. Each choice of & for MG(v,.,)
gives a function

Pu: H (M) — Z, .

Let L = {u|®,(u) is independent of 2}. Then ¢|L is the quadratic function
studied in [2]. In [2] the Kervaire invariant of M is defined if @ is zero on
the radical of L and is (@ |L/R), where R is the radical. In general this will
be different from the invariant we have defined.

Example (1.28). If G, = Z, and n = 1, Q4(Z,) is the cobordism group of
surfaces immersed in R®. (A cobordism is a 3-manifold immersed in R® x I.)
Hy(K,, M(Z,)) ~ Z,, so that h is unique up to a sign. One may prove:

K: Q(Z,) ~ Z, .

@ has the following geometric interpretation suggested to me by Dennis Sul-
livan. Let 7: S — R’ be an immersion of a compact, closed surface S. If u e
H'(S), choose an embedded circle S* C S representing the dual of w. Let T
be a tubular neighborhood of S*in S. #(T) is a twisted strip in R®. Then @(u)
is the number of half twists of 7(7). (Mobius band has =1 half twists depend-
ing on whether its twist is right- or left-handed.) The number of half twists
of 7(T) only makes sense modulo four because one must frame the normal
bundle of (S*) in R? in order to count twists. This framing is determined up
to 720° since 7,(SO;) = Z,. In this situation one easily sees that K((S, ©)) =
o(®) is the surgery obstruction to making S immersion cobordant to S

Example (1.29). If G, = SO, and » is even, there is an » making (MSO,, k)
a Wu n-spectrum for all even n which may be chosen as follows: Let U,:
MSO, — K(Z, k) be the Thom class and let p,: K(Z,, n) — K(Z,, 2n) represent
the Pontrjagin (cohomology) square. Let & be
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(p2* ﬁ*): H2n(Km MSO) E— Hzn(K(Z4, 2%); Z) = Z4 .

With this choice of h, ®(u) is p,(u)(Z) where % ¢ H,,(X; Z) is the funda-
mental class. S. Morita has shown in [5] that o(®), in this case, is the index
of X modulo 8. Hence

K: Q,(S0)— Z,
is the index modulo 8.
2. Proofs

Let N be a large integer and p: E,, — K, be the fibration with fibre K.,
and k-invariant Sq¢"*¢,. Let R:S"K,— E,., beamap such that pR = S"¢,.
Let E, = Q" *FE, and let R,: S*K, — E,,, be the adjoint of R. Since
Sq™t't, = 0, there is a homotopy equivalence ¢, X ¢,: E, — K, X K,,.

The following is well known:

LemMmA (2.1). If pu: E, X E,— E, 1is the loop multiplication map,
) = e @1+ 1Rty + ta @t

The following is easily checked:

LEMMA (2.2). If m > 1and Y 1sa CW complex such that dim Y < 2n + m,

{Y,S" AK,} =[Y,8" A K,
and

[V, 8" A K12 (Y, B, -
Proof of (1.2). By (2.1) and (2.2)
{S*, K,} ~ [S™*, B,..] ~ Z. .
Proof of (1.3). Let T be the isomorphism
{X, K.} = [§°X, §'K,] ~ [S’X, E,.] ~ [X, E,] ~ [X, K, X K,,] .
If we H(X), ve H™(X), and g: X — S** is a map such that g*s,, = v,
TF(w, v) = T({u} + {r9}) = u x v

(where rt € {S*, K,} is the generator). With respect to the H space structure
on K, x K,, coming from E,, (2.1) yields

uxv+uxv=ww+uw)xX@Uu +v+ ).
Proof of (1.9). We wish to show
{S, K} — {S§**, 88 N K} —{S™*, Y, A\ K.}
is nonzero if and only if ¥%(Sq¢"**)U, + 0. Since
lim {S***, Y* A K,} ~ {8, Y. A K,}
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where Y* are the finite subcomplexes of Y,, we may assume Y, is a finite
complex. Let Y* be an m S-dual of Y,. Let g: Y* — S™* be the S-dual of
the generator v: S* — Y,. S-duality gives a commutative diagram

{S2n+k’ Sk /\ Kn} _pi> {SZn+k’ Yk /\ Kn}

2 . 2
{Szn+m,sm/\Kn}__g__){S2n+k A Y*, S™ A Kn}
2 2

+3
[S2n+my En+m] '_g_> [Szn+k Y*s En+m] M
The fibration K, ,, — E,.,— K, gives exact sequences:

> H2n+m(S2n+1n) A [S2n+m’ E’n+m] > Hm(SZ'rH-m)

U |~ |

H® (Y *) L0 Hin(Y ) s [$05 Y, B,,,] — HY(Y™) .

Hence p, above is nonzero if and only if Sg*t' H™+»! (Y*) = '0, if and only
if x(S¢*")H*(Y,) = 0. (x(Sg"*'") corresponds to S¢"** under S-duality.)

Proof of (1.13). In this situation T(f*() is the S-dual of T(v). S-duality
gives a commutative diagram:

(TW), K.} & (S, T(f*0) A K.)

JT* li*

(X+, K,} R (S, T(O) A K}

where T: X' — T(v) is the Thom construction. If V is the Thom class
of vy, T*V = F(u,0) where u is the Poincaré dual of f(S*) e H,(X).
T(r*8) = S*v S*** Hence dV = a, + a, where a,€{S™** S*A K,} and
a, e (S, S"t* A K,}. Note «, is the generator because V is the Thom class.

P(uw) = hW, A F(u, 0)
= hW, i (a, + ay)
= h’W*i*al + h(Bf) .

Thus @o(u) — K(B;) =0 or 2 according as «, = 0 or the generator of
{S*™+*, S* A K,}. Note a, depends only on v; hence to compute @(u) we can
choose any X* containing S” with normal bundle v. ‘

Suppose v is trivial. Referring to (1.12), fe {X*, S*} desuspends to X+ —
T(v) — S* and hence f desuspends to . Hence by (1.12), ®(u) — h(3,) = 0.

Suppose v is not trivial and » is odd. Let f: S*— S* x S* be the di-
agonal. Then v is the normal bundle of f(S"). Take Y, = S* Then g, =0,
u=s,®1+1Xs, and
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Pu) =P, Q1) + P Y s,) + 5(s. @ s.) (S* X S") = 2.

P(s, @ 1) = 0 because (S~ *x) C S* x S* has trivial normal bundle.
The same argument as above works for n even if one takes f to be a
multiple of the diagonal.

Proof of (1.14). We use T(n) U f’(\C), the mapping cone of T({) < T(%),
instead of T'()/T({). Consider the following commutative diagram:

T() U T(C) — T() A (Y U X)

. | c

Szt | T() A SX* — T(n) A SY+— Y* A SK,
\ |
N~ I

STE) — T N SX*

where ¢ = W A Sv, v: Y"— K, and the unlabeled maps are the obvious
maps. If g: S+ — Y, A SK, denotes the composition of the bottom line,
P(i*v) = h(B). The top line is zero because Y U X — SX*— SY* is zero.
Hence o(t*v) = 0.

Proof of (1.16). If W, and W, are (W(n), h) orientations of { and v =
a(W,, W,), W, is the composition

T —— T x TO VY W) x K,ow — Win)

where p¢ is the action of K,,,, on W,(n). Consider:
(T@) N X*) vV (TQ) A XH)
/ I N
o/ (TC) v TQ) A X+ \a
7 n . AN
Sk —5 (T() x T(E)) A X+ —— Wi(n) A K,
where o’ is a lifting of Aa, b = (W, x vU,) A u, a = (W, A u) V¢, and
¢ =ivU) A wu, t: K, ., — W,(n) the inclusion. &’ = a, + «, where «, and
a, are on the two factors of the wedge.
Po(u) = h(bAa)
= h(aa,) + h(ac,)
= @,(u) + haa,) .
The generator of 7, (K,+rx A K,) goes into the generator of {S*+*, W,(n) A
K.} (see proof of (1.3)). Hence
haa) = j(vU, & u)(S*+F)
= J(v U u)(®) .
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Proof of (1.18). Let [ be a large integer, F', the H-space of degree one,
based maps of S’ to itself and G, the unbased, degree one maps of S** to
itself. The unreduced suspension gives a map o: G, — F,. Consider

[X, Gl ~ [X, F]C [S'X*, S~ (X*, § R (8=, T(0)

where A, is S-duality with respect to @. Under this map [X, G,] maps to
those @’s such that (X, {, @) is a Poincaré triple. Henceif (X, {, a;), 1 = 1,2
are Poincaré triples, there is a g: X — G, which goes to a, under A.. g
gives a stable automorphism of { by

dxg:{+0—-(+0
where 0' is the trivial bundle X x S*~'and g(x, s) = («, g(®)(s)). T(d x )
is the composition

idAg

StA
§: ST —> SHTO N X7) = TOASX —— T A S = S'T(E)
where § = og. By the definition of ¢, §.a, = «a,. If W is W(n) orientation
for T(Q),

g SI'wW
W' S'T(Q) — S'T(L) — S'Wi(n) — Wipi(n)
is the new orientation produced by g. We wish to determine d(W, W’).
Choose a base point for X. Identifying S'X* with S'\V/ S'X, the adjoint
of pg: X+ — F, gives a map g": S'’X — S'. Identify T()) A S'X*+ with
T N (S'V 8'X) = (T A SHYV(TO) A S'X) .
Under this identification, id A § becomes (id A id) Vv (id A g’).

T A SX 220, 7oy A S = STE) s Wy ()

factors through the inclusion of the fibre : K, ;.,— W, (n). Let
wadd A g') = v, v: T N 8'X— K,.1n. v will have the form
v=_x;U,® Sy,
and d(W, W') = >_ x5, By the fibre space definition of functional operations
v € L(SQ" ians (Ur & 1) -
One easily checks that this operation and x(S¢‘),.(s;), ¢ > 0, has zero indeter-

minacy. Using the Cartan formula, %(S¢*)U, = v»;U, and the exact sequence
definition of functional operations one easily checks that

V=2 Vuiis U @ 2(S09)4(s1)
We complete the proof of (1.18) by proving
LEMMA (2.3).
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x(8q%),(s)) = SHu,;_) of i =27
=0 if 1~ 27,
Proof. Let v be the S'* fibration over SX defined by g: X — G,. It is
well known that
T(v) = S'Ug'S'X
where S* corresponds to the “fibre” of T(v). Hence
S(X(Sqi)g'(sz)) U, = x(Sq") U,
where U, is the Thom class of T(v). x(S¢’)U, = v;(v)U,. Let §: SX — BG,
be the classifying map of v and v, ¢ HY(BG,) the Wu classes. Then
S(X(Sq")g(sl)) =3"7; .
%(S¢*) = S¢*' + decomposables and (S¢’) is decomposable for j==2¢. Hence
¥; 1s decomposable for 5 == 2¢ and is W, + decomposables for j = 2'. H*(SX)
has zero cup products. Hence §*(v;) = 0,7 # 2¢ and w,: for j = 2'. w, sus-
pends to u,_, € H*(G,) and the lemma is proved.

3. Proof of Theorem (1.20)

Suppose V is a finite dimensional vector space over Z, and @: V — Z, is
any function. Let A® be the complex number defined by

MP) =2 ey ™

M) is well-defined since 4 = 1.7

LEMMA (3.1). If ® is linear,

M) = 207 if =0
=0 fo+0.
Proof. For any ve V
Yo e = 3 etk = e Y gew

Hence M(®) = *® M(®). Hence M®) = 0 or ¢(v) = 0 for all ».

The following is immediatza

LEMMA (3.2).
>"(¢1 + @2) = X(@l)x(¢2)
M=) = M) -
LeEMMA (3.3). If @ is quadratic and non-singular, \(®)® is a positive real
number.

Proof. Let t: V& V — Z, be the bilinear form of . For some z ¢ V,

2 This method of constructing an algebraic invariant was suggested to me by Paul Monsky.
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t(u, u) = t(u, )
for all u.
0 = o(2u) = 2p(u) + jt(u, u) .
Hence 2¢(u) = jt(u, ). Therefore

P(u + v) + ) = P(w) + 2¢(v) + ji(u, v)
= P(u) + ji(u + , v);
%(2¢) — Zu,v ge ) +o@)

— ZWJ 2o utv) +o (@)

— Zu 2o Zv Qituta,)
t(w + @, v) is linear in » and zero for all v if and only if v = 2. Therefore

M2p) = 24m 7V qe=) |
Hence
MP)' = M2p)t = 200

Therefore

Mp) = 1V Zom g
for some n € Z;. Define o(@) = n. By the definition of o and (8.2), it satisfies
(i), (i), (iii), and (xi) (1.20). If v: Z,— Z, by ¥(0) = 0, o(¥) = 1, and hence
(iv) if satisfied. We next show that ¢ is unique. This follows by induction
on dim V and the following lemma.

LEMMA (3.4). If @ is non-singular quadratic,

Y+ prEY + &Y+ P
where ¢;, = + 1.

Proof. Choose w, ve V such that t(u, v) = 1 and v = v if possible. Let
V,={u,v}, V,={we V|t(u, w) = t(v, w) = 0}. Visa direct sum of V, and
Viand |V~ @|V,+ 2|V, If u=wv, @|V,~ . If u=0, let U, U,
and U, be the subspaces of Z, + V, spanned by (1, v), (1, %), and (1, 4 + v)
respectively. One easily checks that

T+HeVi=2 0+ Pl

and (v + @)| U, = £ 7.

The multiplicativity of ¢ easily follows from (3.4) and the fact that vp =
@ for any ®.

If o = j®', M®) = (n — m) where n and m are the number of elements
in V at which ¢’ is 0 and 1, respectively. Hence o(®) is 0 or 4 according as
Arf @’ is 0 or 1.
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To prove (1.20) (ix), there is no loss in generality if we assume

00—V, V, = ¥V, — 0

is exact. Choose a map B: V,— V such that 68 = id. If ue V,,and pv = 0
(V) + B(v) = P(B(w) + jt(v(w), B(v))
= P(8(w)) + jt'(u, v) .

Hence
)\,(gD) — Z e +B())

— Z ,,;qp(ﬁ(u))z PO
Uu v

= positive real number

since t'(u, v) is linear in v and zero for all v if and only if w = 0. Hence if
oy = 0, a(p) = 0.
If ¢, 2 V—1Z, and @ (u) = ¢,(u) + jt(u, ) for some x as in (x),

7\1(¢2) — Z qe1w)+it(u,)
— Z: qP1+2)—py(2)

— g~ %1®) )\,(¢1) .

Hence o(®,) = a(p,) — lp,(x) where l: Z,— Z; takes 1 to 2.

Finally we prove (1.20) (vii). (viii) is obviously true if ¢ is a diagonal
form. Recall the Grothendieck group of symmetric unimodular bilinear forms
over the integers is isomorphic to Z + Z and the isomorphism is given by the
rank + the signature [6]. This means that if ¢ is such a form, there are
forms D, 6,, and 0,, where D is diagonal, such that ¢ + (6, + (- 6,)) ~ D +
(6. + (— 0,)). The desired result now follows.
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