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Part I. Completions and localizations

§0. Introduction to Part I

Our main purpose in Part I of these notes, i.e. Chapters I
through VII, is to develop for a ring R a functorial notion of R-

completion of a space X which

(i) for R = Zp (the integers modulo a prime p} and X

subject to the usual finiteness conditions, coincides, up to homotopy,

with the p-profinite completions of [Quillen (PG)] and [Sullivan,

Ch.3}1, and
(ii) for Rc Q (i.e. R a subring of the rationals),

coincides, up to homotopy, with the localizations of [Quillen (RH)],

[Sullivan, Ch.2], [Mimura-Nishida-Toda] and others.

Our R-completion is defined for arbitrary spaces, and throughout these

notes we have tried to avoid unnecessary finiteness and simple
connectivity assumptions. To develop our R-completion we need some

homotopy theoretic results on towers of fibrations, cosimplicial

spaces, and homotopy limits, which seem to be of interest in

themselves and which we have therefore collected in Part II of these

notes, i.e. Chapters VIII through XII.

There are, we believe, two main uses for completions and
localizations, i.e. for R-completions: first of all, they permit a
"fracturing of ordinary homotopy theory into mod-p components"; and
secondly, they can be used to construct important new (and old)
spaces.

Of course, the general idea of "fracturing” in homotopy theory

is very old; and indeed, the habit of working mod-p or using Serre's
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C-theory is deeply ingrained in most algebraic topologists. However
“fracturing" in its present form (due largely to Sullivan) goes
considerably further and, among other things, helps explain the
efficacy of the familiar mod-p methods. Roughly speaking (following
Sullivan), one can use completions or localizations to "fracture" a
homotopy type into "mod-p components" together with coherence
information over the rationals; and the original homotopy type can
then be recovered by using the coherence information to reassemble
the "mod-p components". In practice the rational information often
"takes care of itself", and ordinary homotopy theoretic problems
(e.g. whether two maps are homotopic or whether a space admits an
H-space structure) often reduce to "mod-p problems". Of course, the
"world of mod-p homotopy" is interesting in its own right (e.g. see
[Adams (S5)]).

As remarked above, another use for R-completions is to construct
important spaces. It is, in fact, now standard procedure to use
localization methods, e.g. Zabrodsky mixing, to construct new finite
H-spaces. As other examples, we note that the space (Qwa)(o) is
homotopy equivalent to the Z-completion of K(S_,1), where S_ 1is
the "infinite symmetric group"(see Ch.VII, 3.4), and that, for the
Zp—completion of certain spheres, one can obtain classifying spaces
by Zp-completing suitable non-simply connected spaces (see [Sullivan]
and Ch,VII, 3.6). Examples of this sort also seem to be useful in

(higher dimensional) algebraic K-theory.

Some more comments are required on the relation between our R-
completion and the completions and localizations of others:
In the case R € Q, as previously noted, our R-completion agrees,

up to homotopy, with the localizations proposed by other authors;

essentially, we have generalized the localization to non-simply

connected spaces.
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The situation for R = Zp is more complicated. Two homotopical-

ly equivalent versions of the p-profinite completion have been

proposed by [Quillen (PG)] and [Sullivan, Ch.3] for arbitrary spaces;
and it can be shown that our Zp-completion and their p-profinite
completion do not coincide, up to homotopy, for arbitrary spaces,
although they do for spaces with Zp—homology of finite type. One
difficulty with the p-profinite completion is that for many simply
connected spaces (e.g. for K(M,n) where M 1is an infinite
dimensional Zp—module) the iterated p-profinite completion is not
homotopy equivalent to the single one. This difficulty is avoided by
the Zp-completion. Nevertheless, the p-profinite completion remains

very interesting, even when it differs from the Zp—completion.

Some further general advantages of the R-completion are worth
mentioning:

(i) Up to homotopy, the R-completion preserves fibrations under
very general conditions (namely, when the fundamental group of the
base acts "nilpotently" on the R-homology of the fibre).

(ii) Very many spaces X are R-good, i.e. the canonical map
from X to its R-completion preserves R-homology and is, up to
homotopy, "terminal" among the maps with this property; for instance,
if Rc Q or R = Zp’ then all simply connected spaces are R-good,
and so are many others (see Chapters V, VI and VII).

(iii) The mod-R homotopy spectral sequence of [Bousfield-Kan

(HS)] can be used to relate the R-homology of a space with the
homotopy groups of its R-completion.

(iv) The R-completion of a K(m,l) has interesting group
theoretic significance. For example, the Malcev completion of a
nilpotent group T can be obtained as the fundamental group of the
Q-completion of K(m,l), a fact that suggests how to obtain "Malcev

completions with respect to subrings of the rationals" (see Chapter V).
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Similarly, the homotopy groups of the Zp—completions of such a

K(m,1l) have group theoretic significance (see Chapter VI).

Part I of these notes consists of seven chapters, the first four

of which deal with the general theory, while the other three are

concerned with various applications for R& Q and R = Zp. In more

detail:

Chapter I. The R-completion of a space. Here we define the R-

completion, R _X, of a space X, and prove some of its basic
properties, such as, for instance, the key property:

(i) Amap X > Y induces an isomorphism on reduced R-homology

Hy(X; R) = H,(Y¥; R)

if and only if it induces a homotopy equivalence between the R-comple-

tions

Other (not very surprising) properties are:
(ii) The n-type of R _X depends only on the n-type of X.
(iii) Up to homotopy, the R-completion commutes with arbitrary

disjoint unions and with finite products, and preserves multiplicative

structures.
(iv) There is a generalization to a (functorial) fibre-wise R-

completion.

We define R _X by first constructing a cosimplicial diagram of

spaces RX, next associating with this a tower of fibrations {RSX}r

and finally defining the R-completion of X as the inverse limit
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R_X of the tower {RSX}. Justifications for this definition will be
given in Chapters III and XI, where we show that R X can, in two

different ways, be considered as an "Artin-Mazur-like R~completion of

X",
A useful tool in handling the R-completion is the homotopy

spectral sequence of the tower of fibrations {Rsx}. This turns out

to be the same as the homotopy spectral sequence {Er(X; R)} of X
with coefficients in R of Bousfield-Kan, which, for R = Zp, is the

unstable Adams spectral sequence, while, for R = Q, this spectral

sequence consists of the primitive elements in the rational cobar

spectral sequence.

At the end of Chapter I we discuss the role of the ring R and

show that, for all practical purposes, one can restrict oneself to

the rings R = Zp (p prime) and R € Q.

Chapter II. Fibre lemmas. For a general fibration of connected

spaces F » E » B, the map RE » R B 1is always a fibration, but its
fibre need not have the same homotopy type as R_F. However, there

is a mod-R fibre lemma, which states that, up to homotopy, the R-com-

pletion preserves fibrations of connected spaces F + E » B, for

which "wlB acts nilpotently on each ﬁi(F; R)". This condition is,

for instance, satisfied if the fibration is principal, or if B is

simply connected.

This fibre lemma is a very useful result. It will, for instance,
be used in the Chapters V and VI, to compute w,RX in terms of T7,X,
for nilpotent X (i.e. connected X for which, up to homctopy, the

Postnikov tower can be refined to a tower of principal fibrations).

Chapter III. Tower lemmas. A convenient feature of our defini-

tion of R-completion is its functoriallity. Still, it is often useful
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to have a more flexible (i.e. up to homotopy) approach available and
we therefore prove in this chapter various tower lemmas, which give
rather simple sufficient conditions on a tower of fibrations {Ys},
in order that it can be used to obtain the homotopy type of the R-
completion of a given space X. The strongest of these is the R-nil-

potent tower lemma which states roughly:

If {YS} is a tower of fibrations, together with compatible

maps X - YS, such that

(i) for every R-module M

u
—
=
—
b
<
I
=
=

*
lim H (Y _; M)
> S

(ii) each Ys is R-nilpotent (i.e. its Postnikov tower can, up
to homotopy, be refined to a tower of principal fibrations with

simplicial R-modules as fibres),

then, in a certain precise sense, the tower {Ys} has the same

homotopy type as the tower {RSX} and hence the inverse limit spaces

R X = 11m RSX and ilm Ys

have the same homotopy type.

We also observe that R _X is an Artin-Mazur-like R-completion

of X, as the results of this chapter imply that, up to homotopy, the
tower {RSX} is cofinal in the system of R-nilpotent target spaces

of X.

Chapter IV. An R-completion of groups and its relation to the

R-completion of spaces. Here we use the greater flexibility of

Chapter III, to obtain a more group-theoretic approcach to the R-com-
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pletion. For this we first define an Artin-Mazur-like R-completion
of groups, which, for finitely generated groups and R = Zp, reduces
to the p-profinite completion of Serre, and which, for nilpotent

groups and R = Q, coincides with the Malcev completion. Like any

functor on groups, this R-completion functor from groups to groups
can be "prolonged" to a functor from spaces to spaces, and we show
that the latter is homotopically equivalent to the functor R_.

[=]

As an application we give a very short proof of Curtis' funda-

mental convergence theorem for the lower central series spectral

sequence, at the same time extending it to nilpotent spaces.

Chapter V. Localizations of nilpotent spaces. The main purpose

of this chapter is, to show that, for R c @, the R-completion of a
nilpotent space (i.e. a space for which, up to homotopy, the Postnikov
tower can be refined to a tower of principal fibrations) is a
localization with respect to a set of primes, and that therefore

various well-known results about localizations of simply connected

spaces remain valid for nilpotent spaces.

As an illustration we discuss some fracture lemmas {(i.e. lemmas

which state that, under suitable conditions, a homotopy classification
problem can be split into a "rational problem" and "problems
involving various primes or sets of primes") and their application to
H-spaces.

We also prove that the homotopy spectral sequence {Er(X; R) }

converges strongly to w,R X for R C Q and X nilpotent.

Chapter VI. p-completions of nilpotent spaces. This chapter

parallels Chapter V: We discuss the p-completion, i.e. the "up to
homotopy" version of the Zp-completion, for nilpotent spaces. This

p-completion is merely a generalization of the familiar p-profinite
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completion for simply connected spaces of finite type, and we prove

that various well-known results for such p-profinite completions
remain valid for p-completions of nilpotent spaces.

As an illustration we discuss an arithmetic square fracture

lemma, which states that, under suitable conditions, a homotopy
classification problem can be split into "Zp—problems" and a
"rational problem".

We also obtain convergence results for the homotopy spectral
sequence {Er(x; Zp)} of a nilpotent space X, and observe that the

same arguments apply to the lower p-central series spectral sequences.

Chapter VII. A glimpse at the R-completion of non-nilpotent

spaces. It is clear from the results of Chapters V and VI that, for
nilpotent spaces, the R-completion is quite well understood; however,
very little is known about the R-completion of non-nilpotent spaces.
In this last chapter of Part I we therefore discuss some examples of
non-nilpotent spaces which indicate how much more work remains to be
done.,

We also make, at the end of this chapter, some comments on

possible R-homotopy theories, for Rc Q and R = 2 _.

P
Warning!!! These notes are written simplicially, i.e. whenever
we say
space we mean simplicial set.

However, in order to help make these notes accessible to a reader who
knows homotopy theory, but who is not too familiar with simplicial
techniques, we will in Chapter VIII, i.e. at the beginning of Part II:

(1) review some of the basic notions of simplicial homotopy

theorx, and
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(ii) try to convince the reader that this simplicial homotopy

theory is equivalent to the usual topological homotopy theory.

Moreover, we have, throughout these notes, tried to provide the
reader with references, whenever we use simplicial results or
techniques, which are not an immediate consequence of their well-

known topological analogues.

Some of the results of Part I of these notes were announced in
[Bousfield-Kan (HR) and (LC)].
In writing Part I we have been especially influenced by the work

of Artin-Mazur, Emmanuel Dror, Dan Quillen and Dennis Sullivan.
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Chapter I. The R-completion of a space

§1. Introduction

In this chapter we define, for every space X and (commutative)
ring R, a functorial R-completion of X and prove some of its
basic properties. We also show that there is a corresponding notion

of fibre-wise R-completion. In more detail:

§2, §3 and 84 Here we define the R-completion of X by first

constructing a cosimplicial diagram of spaces RX, next associating

with this a tower of fibrations {RSX}, and finally defining the R-

completion of X as the inverse limit R _X of the tower {RSX}.

It turns out that this R-completion comes with a natural map

¢: X — R X.

Justifications for this definition will be given in Chapters III and
X1, where we show that, up to homotopy, "R X 1is an Artin-Mazur-like
R-completion of X" in two different ways.

An immediate consequence of this definition is the existence of

the associated spectral seguence, i.e. the homotopy spectral sequence

of the tower of fibrations {RSX}, which is an important tool in
handling the R-completion. This spectral sequence is nothing but
the homotopy spectral sequence {Er(X;R)} of X with coefficients
in R of [Bousfield-Kan (HS)], which for R = Zp (the integers
modulo a prime p) is the unstable Adams spectral sequence, while
for R = Q (the rationals) this spectral sequence consists of the

primitive elements in the rational cobar spectral sequence.
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§5 Our main results here are;

(i) amap f: X » ¥ induces an isomorphism

Hy (X;R) = H,(Y;R)

if and only if it induces a homotopy equivalence

(ii) a space X is either "R-good" or (very) "R-bad", i.e.
g

either the map ¢: X +» R _X induces an isomorphism ﬁ*(X;R) z

k k+lx

ﬁ*(Rmx;R) and the maps ¢: R X > R are homotopy equivalences

for all k > 1, or the induced map ﬁ*(x;R) - ﬁ*(Rmx;R) is not an
isomorphism and none of the maps ¢: Rix > R§+lx (k > 1) is a
homotopy equivalence.

In Chapters V, VI and VII we give various examples of R-good
spaces and we show there that "most" (but not all) spaces are R-good
for R cQ and R = Zp. An example of a space which is Zp—bad is an

infinite wedge of circles (Ch. IV, 5.4).

§6 and 87 contain the useful, but not very surprising results
that

(i) the homotopy type of R_X 1in dimensions < k depends only

on the homotopy type of X in dimensions < k (this will be some-
what strengthened in Ch. IV, 5.1), and
(ii) up to homotopy, the R-completion functor commutes with

(disjoint) unions and finite products and preserves multiplicative

structures.

§8 contains the observation that the notion of R-completion can
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be generalized to a notion of fibre-wise R-completion, i.e. one can,

for a fibration X -+ B, construct in a functorial manner a fibration

R,X = B of which the fibres are the R-completions of the fibres of

the map X =+ B.

§9 We end this chapter with an investigation of the role of the
ring R and show that, for "most" rings R, the homotopy type of
R_X 1is completely determined by the homotopy types of the completions

of X with respect to the rings Zp (p_prime) and the subrings of

the rationals Q.

Notation and terminology. We remind the reader that these notes

are written simplicially, i.e.

space = simplicial set.

In particular in this chapter we will mainly work in the category

of spaces (i.e. simplicial sets). For more details on this category
(and its relationship to the category J of topological spaces) see

Chapters VIII, IX and X.
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§2, The triple {R,¢,y} on the category of spaces

In preparation for the definition (in §4) of the completion of a

space with respect to a ring R we consider here a functor

R: o/ —>

on the category of spaces and two natural transformations

$: Id —> R and /H R2 —> R

which have the properties:

(i) {R,¢,y} is a triple, i.e. [Eilenberg-Moorel

(R$)o = (9R)¢ v(Ry) = Y(R) v(R$) = id = VY (¢R)

(ii) For every choice of base point * € X, there is a

canonical isomorphism

mT,RX = H,(X;R)

such that the composition

Med -
TeX —5 1, RX H, (X:R)

a

is the Hurewicz homomorphism [May, p. 50], and

(iii) A map f: X + Y € y induces an isomorphism

H, (X;R) = H,(¥;R)

if and only if it induces a homotopy equivalence

RX =~ RY € J .
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2.1 Definition of the triple. For a space (i.e. simplicial

set) X and a commutative ring R (with unit), let R ® X denote
the simplicial R-module freely generated by the simplices of X

(i.e. (R®x)n is the free R-module on Xn) and let
p: X —> R® X and Y: R® (R® X) —D R®X

respectively be the map given by ¢x = 1x for all x € X and the
R-module homomorphism given by ¢(ly) =y for all y € R ® X. Then

we define RX as the subspace
RX c R®X
consisting of the simplices
I r.x, with I r, = 1.

1f R™ = R++*RX for n > 1, then one readily sees that the maps

¢ and ¢ induce natural transformations
¢: Id —> R and P R2 —3> R

and that {R,¢,y} 1is a triple on the category ./ .

When one uses this triple it is often convenient to work in

2.2 A pointed situation. The simplicial set RX defined above

does not inherit an R-module structure from the simplicial R-module

R ® X, but only a kind of affine R-structure, which turns into an

R-module structure the moment one chooses a base point. More
precisely, if one chooses a base point #* € X and denotes also by

* € X the subspace generated by it, then the composition
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RXELI%R®X—&%R®X/R®*
obviously is an isomorphism of simplicial sets. Thus, given a base

point * € X, one can consider RX as a simplicial R-module. More-
2

over, if one does this, then the map y: R“X + RX becomes an R-

module homomorphism.

This can be used to relate the functor R:» + to

2.3 The reduced homology functor ﬁ*( iR). The reduced

homology of a pointed space X with coefficients in R can be

defined by [May, p. 94]

Hy(X;R) = 7, (R®X / R®*).

Thus, for every X e and choice of base point * € X, the

isomorphism RX = R® X / R®#* of 2.2 induces an isomorphism

T.RX = H,(X;R)

Note that the reduced homology does not really depend on the base

point; in fact we could equivalently have defined

Hy(X;R) = 7, ker(R® X —> R % *)

ker (M, (R®X) —D T, (R®*)).

The remaining properties of {R,¢,y}, stated at the beginning
of this §, are now readily verified.

We end with a

2.4 Remark on the affine R-structure of RX. If

yl,u-,yk € Rxn, Lystttery, € R and I r, = 1, then the linear
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combination I L.y is a well defined element of Rxn and does not

depend on a choice of base point.
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§3. The total space of a cosimplicial space

In §4 we will define the R-completion of a space X as "the
total space of a cosimplicial space RX". We therefore recall here

first the notions of cosimplicial space and total space of a co-

simplicial space. For a more detailed discussion of these notions

we refer the reader to Chapter X, §2 and §3,.

3.1 Cosimplicial spaces. A cosimplicial space X is a co-

simplicial object over the category o~ of spaces, i.e. X consists
of

(i) for every integer n > 0 a space gn e &, and

(ii) for every pair of integers (i,n) with 0 < i <n co-

face and codegeneracy maps

at: §n-l —> x" and si, xn+l —5 X €

satisfying the cosimplicial identities of Chapter X, §2 (which are

dual to the simplicial identities).

Similarly a cosimplicial map f: X » Y consists of maps

£: X" —> ¥ € o

which commute with the coface and codegeneracy maps.

An important example is

3.2 The cosimplicial standard simplex. This is the cosimpli-

cial space A which in codimension n consists of the standard n-
simplex A([n] € o/ and for which the coface and codegeneracy maps

are the standard maps between them (Ch. X, 2.2 and Ch. VIII, 2.9 and
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2.11).

Using this one can now define

3.3 The total space of a cosimplicial space. For a cosimpli-

cial space X its total space Tot X or Tot, X is the function

space
Tot X = hom(é,g) € o

i.e. the space which has as g-simplices the cosimplicial maps
Algl x 4 —> X .

Often it is useful to consider

3.4 The total space as an inverse limit. Let

é[s] c A -1 <s

denote the simplicial s-skeleton of 4, i.e. A[S] consists in co-

dimension n of the s-skeleton (Ch. VIII, 2.13) of Aln]}. Then one

can form the function spaces
Tot, X = hom(alS}, x) e v

and the maps

Tot, X —» Tot,_; X € J
induced by the inclusions é[s_l] c al®%)  and observe that
(1) Tot ; X = =«
(ii) Toty X = x°
(iii) Tot X = 1lim Tot_ X .
p by s 2
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We end with a comment on

3.5 The augmented case. If X is augmented, i.e. comes with

an augmentation map a% x7! 5> x% such that

then this augmentation map clearly induces maps

x71 > Tot_ X

which are compatible with the maps Tots X + Tot

-1 <s

|A
8

1 %
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§4. The R-completion of a space

In this section we
(i) use the triple {R,¢,y} of §2 to construct, for every

space X, a cosimplicial space RX, its cosimplicial resolution, and

then define the R-completion of X as the total space (§3) of this
cosimplicial space RX, and

(ii) observe that this R-completion of X is the inverse limit

of a tower of fibrations and that thus there is an associated

homotopy spectral seguence.

We also mention the fact (to be proven in §9) that it is no
restriction to assume that the ring R is solid, i.e. that the
multiplication map R 8% R - R 1is an isomorphism. The most impor-
tant examples of such rings are the rings R = Z (the integers

P
modulo a prime p) and RC Q (the subrings of the rationals).

We start with describing

4.1 The cosimplicial resolution. Let R be a commutative

ring (with unit) and let X e o . The cosimplicial resolution of X

with respect to R then is the augmented (3.5) cosimplicial space

RX given by

in codimension k and

(R¥x ———) KL x)

i .
(Rk+2x M;RH Rk+l X)

1
(ro*t — 4 5 rpk

i

(R 5 5 @k

]
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as coface and codegeneracy maps.

Now we are ready for the definition of

4.2 The R-completion of a space. For X e€o , its R-comple-

tion will be the total space (3.3)

R_X = Tot RX € o

and, as RX is augmented, this R-completion comes with a natural map

(3.5)
o: X —> R X € Jd .
Justification for this definition will be given in Chapters III
and XI, where we show that, up to homotopy, "R X is an Artin-Mazur-

like R-completion of X" in two different senses.

It can be shown (see Ch. X, 4.9, 4.10 and 5.1) that any sur-

jection X + ¥ € # induces a fibration R X + R Y and thus RX

is always fibrant. We will also often use the fact that

4.3 R X 1is the inverse limit of a tower of fibrations {Rsx}.

If for each s > ~1, we put (3.4)

R X = Tot_ RX € o
] S ~

then 2.2 and (Ch. X, 4.9 and 4.10) imply that {Rsx} is a tower of

fibrations such that
RX = lim R X .
00 - S

Hence (Ch. IX, 3.1) there is, for every i > 0 and choice of base

point * e X, a short exact sequence
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.1 .
* —— ilm LEPY Rsx _ > L RX —> ilm L RSX e

Another consequence is the existence of

4.4 The associated spectral sequence. For X € / , a choice of

base point * € X makes RX and hence the tower of fibrations

{RSX} pointed. Thus (Ch. IX, 4.2) one can form the extended

homotopy spectral sequence of this tower. It turns out (see Ch. X,

6.4) that in dimensions > 1 this spectral sequence coincides with

the homotopy spectral sequence {Ei’t(x;R)} of X with coefficients
in R of [Bousfield-Kan (HS)], which

(i) for R = Zp (the integers modulo a prime p)} is "the"
[Bousfield-Kan (HS), §1] unstable Adams spectral sequence, and

(ii) for R = Q (the rationals) consists of the primitive

elements in the rational cobar spectral sequence [Bousfield-Kan (PP},

§15].
The convergence of this spectral sequence will be investigated
in Ch.V, 8§83 and Ch.VI, §9.

We end with remarking that

4.5 The ring R can (and will) always be assumed to be

"solid", i.e. the multiplication map R ®, R+ R is an isomorphism.
To be precise, let R be a commutative ring and let cRC R be its
core, i.e. the maximal solid subring of R, or eguivalently

[Bousfield-Kan (CR)] the subring given by

cR = {xeR | 1®8x = x®1 ¢ R®zR}.
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Then we will prove in §9 the

9.1 Core lemma. Let R be a commutative ring and let

cR c R be its core. Then the inclusion c¢R< R induces, for every

X € o , a homotopy equivalence

(cR) X = RX €S .
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§5. R-complete, R-good and R-bad spaces

Depending on how much R_X resembles X one can consider three

classes of spaces.

5.1 R-complete spaces, R-good spaces and R-bad spaces. A space

X €4 1is called

(i) R-complete if the map ¢: X + R_X is a weak (homotopy)
equivalence,

(ii) R-good if ¢,: ﬁ*(X;R) - ﬁ*(RmX;R) is an isomorphism, and

(iii) R-bad if it is not R-good.
Our main purpose here is to prove

5.2 Proposition. For a space X € o the following conditions

are equivalent:

(i) X is R-good,

(ii) R_X 1is R-complete,

(iii) R_X is R-good.

This implies that, roughly speaking, "a good space is very good

and a bad space is very bad", i.e.

5.3 Corollary. For X € o , the sequence

RX —5 R2x — «ov — 3 r¥x &5 gE*Ix 5 ...

either "consists of only homotopy equivalences", or "contains no

homotopy equivalence".
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In Chapters V, VI and VII we give various examples of R-good
spaces and we show there that "most" (but not all) spaces are R-good
for Rc Q@ and R = Zp' On the other hand, an infinite wedge of
circles is Zp—bad (Ch., IV, 5.4), while some finite wedge of circles

and the projective plane P2 are Z-bad (Ch. VII, §5).

Proof of proposition 5.2. This proposition is an easy conse-

quence of the following lemmas, which are of some interest in their

own right.

5.4 Lemma. For every X € o , the map
$u: Hy(X3R) — HL (R _X;R)

has a natural left inverse, i.e. ¢, is a monomorphism onto a

natural direct summand.

Proof. This lemma follows from 2.3 and the fact that the map
rx 225 RR_x

has as a left inverse the composition

RR_X R(prOJ-)> RRX —4> RX .

5.5 Lemma. A map f: X > Y €, induces an isomorphism

fo: Hy(X;R) = H,(Y:R)

if and only if it induces a homotopy equivalence
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R _f: R.X = R_Y € o .

Proof. The "only if" part follows from §2 and Ch. X, 5.2 and

the "if" part follows from 5.4.

An obvious consequence of 5.5 is that R_ induces a functor

from the (pointed) homotopy category of spaces to itself.

The proof of proposition 5.2 can be completed using

5.6 Triple lemma. There exist natural transformations

1d ——29 R, and Ri —2—9 R 0 <8 <

such that

(i) for s =0 (i.e. R_=R) ¢ and ¢ are as in §2,

o

s
(ii) for s = » (i.e. Rs =R ) ¢ is as in 4.2,

(iii) {Rs,¢,w} is a triple for all 0 < s < «, and

(iv) these triples are compatible in the sense that the obvious

diagrams

a —%3 Ry Ri —rs

]
w e—

a9 —25 Ry,

commute for all 0 < s' < s < =

To prove this we need

5.7 A characterization of triples. Let C be a category,
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let T: & +C be a functor and let
¢: Id —S5 T and s T2 —> T

be natural transformations such that {T,¢,y} is a triple. Then the

pairing ¢ which assigns to every pair of maps

f: X —> TY, g: W —>TX e C
the composition

c(f,g): W —95 mx —LE5 p2y ¥¥5 gy ce

clearly has the properties

(i) ¢ 1is natural {(in an obvious sense)

(ii) ¢ 1is associative

(iii) for every map f: X + TY €

c(f,¢X) = £ = c(¢Y,£) .

Conversely, given T,$ and a pairing ¢ with these three

properties, one can, for every object Y € €& , define a map

WY = c(id,id): T2y —> 1Y €

Q

and a straightforward calcuiation then yields that the function ¢

so defined is, in fact, a natural transformation T2 + T, and that

{T,¢,y} is a triple.

Proof of triple lemma 5.6. For Y ey , let

t, .
(By)k-l = RkY __E:£> RkY - (By)k 1
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be the twist map which "interchanges the (k-i)-th and (k-i-1)-th

copies of R (counted from Y)", i,e. (see 2.4)

b . = atglt 4 gitlgh id

and let

w
(By)Zn—l = R2nY __59 Ry = (BY)n_l

" 2n
r

be the map which "combines the i-th and (n+i)~th copies of R

i.e. v is the composition

t t 0 Rw
Ran n+1E v 2n—L> RZnY S > RZn lY n—lE RnY
where w, = so. For W, X, Y € one can then form the map of

cosimplicial spaces

c: hom(x,gY) x hom(w,gx) > hom(W,BY)
which assigns to a pair of g-simplices

us Algl *x X —> R%Y € hom (X,RY) 57"

v: A[Q] x W —> RX € hom(W,BX)g-l
the composition

clu,v): Algl x W —> Alq) x Alg]l x W —> Alg) x R™X
n 2n Yn n
—> R (A[q] x X) —> R“Y —> R'Y €
where the unnamed maps are the obvious ones. Of course one has to

verify that ¢ is indeed a cosimplicial map, but that is straight-

forward (although not short). Moreover it is not hard to see that
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this map c¢ induces a pairing of function spaces

c: hom(X,RsY) x hom(W,RsX) > hom(W,RsY) € o

which in dimension 0 has the three properties of 5.7. Hence the

function ¢ given by
W = c(id,id): R2Y —> R_Y

is a natural transformation such that {Rs,¢,w} is a triple. The

rest of the lemma now is easy.
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§6. Low dimensional behavior

In spite of the fact that, in general, the k-skeleton (RwX)[k]
is not contained in any of the spaces Rw(x[n]), we will show that

"the homotopy type of R _X in dimensions < k" depends only on

(part of) "the homotopy type of X in dimensions < k". More

precisely

6.1 Connectivity lemma. Let R be a solid ring (4.5), let

k > 0 and let X € be such that ﬁi(X;R) =0 for i < k. Then

(i) the fibres of the maps R.X » Ry X are k-connected for

-1

all s < «, and hence (Ch. IX, 3.1)

(ii) the space R_X is k-connected.

6.2 Relative connectivity lemma. Let R be a solid ring (4.5},

let k>0 and let f: X » Y € / be such that the induced map

Hi(X;R) > Hi(Y;R) is an isomorphism for i1 < k and is onto for

i = k+1. Then, for every choice of base point,

(i) the induced maps TiRX * ﬂiRsY (s < ») are isomorphisms

for i <k and onto for i = k+l1l, and hence (Ch. IX, 3.1)

(ii) The induced map TiRX > TiRY is an isomorphism for

i <k and is onto for i = k.

A somewhat stronger version of 6.2 (ii) will be obtained in

Ch. IV, 5.1.

6.3 Corollary. Let X e, be fibrant (i.e. X > * is a

fibration) and let

X —D sve — X(k) S X(k‘l) — e
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denote its Postnikov tower [May, p. 33]. Then the induced map

; (k)
RX —> lim R_X

is a homotopy equivalence.

6.4 Remark on the solidity of R. The first part of lemmas 6.1

and 6.2 is only true for solid rings, but parts (ii) hold, of course

(4.5), without this restriction.

Proof of 6.1. Choose a base point * € X. In view of Ch. X,
6.2, it then suffices to show that each NRXS is (k+s) -connected,

where (see 2.2)

NRx® = RX® N ker s° n -+ n ker s57% c rx®.

To do this consider the functors

T%: (R-modules) —> (R-modules)

given by (see 2.2)
i) ™™ =n
(ii) T1M = ker Y: RM » M, where ¢ denotes the homomorphism

given by 1lm »m for all m € M, and

(1i1) T = 757 loly o Tg_l(M,TlM), where Tg—l denotes the
2-fold cross effect of Ts_l, i.e.
- [ " - [l " - 1 - "
Tg Lm' My = xer (5 Tmeon)y —> 15 M g 757 IM ).

Since there are natural isomorphisms

s-1
TSRX = ker (T 1R%x I ¥y 1571py) s > 1

|v
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it is easy to see that there are natural isomorphisms

The desired result now follows readily, by induction on s, from the
fact that TlRX is (k+l)-connected (because R 1is solid) and the

following

6.5 Lemma [Curtis (L), §5]. Let Xk > 0 and let

T: (R-modules) ——>» (R-modules)

be a functor which commutes with direct limits and is such that

TO = O and that, for every connected simplicial free R-module B,

the space TB is k-connected. Then, for every m-connected simpli-

cial free R-module C (m > 0), the space TC is (m+k)-connected.

Proof of 6.2. To prove 6.2 we will use the disjoint union

lemma 7.1. This is permissible, as the proof of 7.1 involves 6.1,
but not 6.2. We clearly may assume that £ is onto, and, in view
of 7.1, that X and Y are connected.

Using the notation of the proof of 6.1 it thus suffices to show
first that the induced map niTst + niTsRY is an isomorphism for
i < k+s and is onto for i = k+s+l. To do this we recall from
[Kan-Whitehead, §16] and [Curtis (L), §5] the existence of a magic

exact sequence of simplicial R-modules

o e %TE(K,...'K)@ T§+1(K,"',K,RX) —_ e

cve — 3> T5K @ Tg(K,Rx) —> 15Rx —> TSRY —> *

where K = ker (Rf: RX + RY) and T? denotes the j-fold cross
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effect of the functor T>. As K 1is k-connected (because £ is

onto), lemma 6.5 (together with the fact that R 1is solid) readily
implies that in the above magic exact sequence all spaces, except
possibly T°RX and TSRY, are (k+s)-connected. This proves the

desired result.
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§7. Disjoint unions, finite products and

multiplicative structures

We now state and prove the not very surprising results that, up

to homotopy, the R-completion functor commutes with disjoint unions

and finite products, and preserves multiplicative structures.

7.1 Disjoint union lemma. Let X € and for each a ¢ moX

let X,c X denote the corresponding component. Then the inclusion

of the disjoint union

L | R X, —> R.X €S
a

is a homotopy equivalence.

It should be noted that the pointed version of this lemma is

false, even in the finite case, as some finite wedge of circles is

not Z-good (Ch.VII, 5.3), while the circle itself is Z-complete.

7.2 Finite product lemma. For X, Y € o/ , the projections of

X xY onto X and Y induce a homotopy equivalence

R (X x ¥) = R X x R Y € .

Moreover this map has a natural left inverse

a: RX x R.Y —> R_(X x Y) € o

which is also associative, commutative and compatible with the triple

structure of R_ (5.6).
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7.3 Corollary. A multiplication

m: X x X —>X €

induces a multiplication

1]

R m
a )
m: RX X RX —> Rw(x x X)) —> R_X Ed .

Moreover, if m 1is associative, commutative or has a left (or right)

]
unit, then so does m .

A
7.4 Remark. If m has a unit and an inverse, then m need
not have an inverse, as the following triangle commutes, in general,

only up to homotopy

R X x R X
wa l?
Roo (dlag )
‘ R_(X x X)

7.5 Corollary. Let X be an H-space, i.e. X has a base

point * and a pointed multiplication map m: X X X + X € o/ ,

such that, in the pointed homotopy class (X, X] (Ch.IX, §3)

m(id,*) = id = m(*,id).

Then R X 1is also an H-space. Moreover, if X is, for instance,

homotopy associative or homotopy commutative, then so is R _X.

The lemmas 7.1 and 7.2 will be proved using the theory of
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7.6 Acyclic models [Barr-Beck]. Given a category &, a

functor T:C&-+C , a natural transformation e: Id - T and a cochain

functor K, i.e. functors

k?: ¢ —> (abelian groups) n 2> -1

|v

n+l such that dd = 0, one

and natural transformations d: K" + K
says that

(i) K is T-acyclic if there is a natural contracting homotopy
for the composite cochain functor KT, and that

(ii) X is T-representable if there are natural transformations

t": K% —> K" n>0

such that
n n
gD K eE KPT t > gD
is the identity. Then [Barr-Beck] prove

7.7 Lemma. Let K be a cochain functor on ¢ which is

T-acyclic and let L be a cochain functor which is T-representable.

Then any natural transformation f_lz K-1 -+ L—1 can be extended to

a natural cochain map £: K + L. Moreover, if f,g: K > L are

L =¥g_1, then there exists a

natural cochain maps such that f_

natural cochain homotopy f = g.

In our proofs of lemmas 7.1 and 7.2 we will use

7.8 A slight generalization. The acyclic model lemma 7.7 also

works for cochain functors K, L which are non-abelian in
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dimension -1, i.e.

k1, vl:e —> (groups).

Proof of 7.1. For each a ¢ noX choose a base point * € Xa‘

In view of 2.2, each such choice makes RX and RmyX group-like

(Ch.X, 4.8) and thus gives rise to a group-like cosimplicial space
R(X;a) = ker(RX —-Pl"—j—‘egnOX) c RX .

One readily verifies that the inclusion of the disjoint union
_I?LTotsg(X;a) —> Tot RX = RJX

is an isomorphism for all 1 < s £ «» , and it thus remains to show

that, for each a € w,X, the inclusion

0

Ran = Tot ISXa —> Tot B(X;a)

is a homotopy equivalence. 1In view of 6.1, 4.4 and Ch.X, 7.1 and
7.7, one thus has to prove that (in the notation used there) the

cochain maps
(T ,RX_,d) —> (7,R(X;a),d) t>1

are cochain homotopy equivalences. This we will do using 7.7 and 7.8,

Let ., denote the category of spaces with base point and let

¢ c J, be the subcategory consisting of the maps for which L is
1-1 (but not necessarily onto). Let T =R and let e = ¢. Then
a simple calculation (or [Bousfield-Kan (HS), 4.4]) yields that both
cochain functors are T-acyclic. Moreover the fact that the functor
R admits a triple structure (§2) implies readily that the second

cochain functor is T-representable, while the T-representability of
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the first is an easy consequence of the fact that ﬂtRXa = ﬁt(xa;R)
is a natural direct summand of T RX = ﬁt(X;R). (This is not true on
all of /).

Application of 7.7 and 7.8 (several times) now yields the

desired result.

Proof of 7.2. 1In view of 7.1 we can assume that X and Y are
connected and hence (6.1, 4.4 and Ch.X, 7.1 and 7.7) we have to show

that, for every choice of base points in X and Y, the cochain maps
(M R(X x ¥),d) —> (1, (RX x RY),d) t>1

are cochain homotopy equivalences. This we again, as in the proof
of 7.1, do using 7.7 and 7.8.

Let & = 4, x J, , where o, is as in the proof of 7.1, let
T=RxXxDR and let e = ¢ x ¢, Then, as in the proof of 7.1, one
readily verifies that both cochain functors are T-acyclic and that
the second one is also T-representable, while the T-representability

of the first one follows from the fact that the map

R(X x v) =& X )y pirx x Ry)

has a natural left inverse, namely the homomorphism given by the

formula

1 ]
‘rixee §orgyy) Ty mamy ey

To prove the rest of the lemma observe that this formula

actually defines a map

a: RX X RY — R(X x Y).
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This can be used to construct a cosimplicial map

RX x RY —3 R(X x ¥Y) ¢ C o

which in codimension n is the composition

n+l

n
Ry x gPtly 9y p(RPx x RPy) ROy ... ROy phtliy sy .

Taking total spaces one then gets the desired map

a: R.X x R.Y —> R_(X x Y) £ o
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§8. The fibre-wise R-completion

The notion of R-completion will now be generalized to a notion

of fibre-wise R-completion, i.e. we will, for a fibration X + B £/,

construct in a functorial manner a fibration émx + B e o , of which

the fibres are the R~completions of the fibres of the map X =+ B.

8.1 Construction of the fibre-wise R-completion. We start with

generalizing the functor R: o/ + . For amap f: X + B €

(which need not be a fibration) let
RX c RX
denote the subspace consisting of the simplices
b4 X. EX, r. e R, Zr, =1

for which all Xy lie over the same simplex of B, i.e.

There is an obvious map Rf: RX - B ¢ o and hence one can repeat

this construction and obtain subspaces
R%x c RUx n>0

which together yield a cosimplicial subspace

2§-

c RX .
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Now we put

e
>
]
=
o
P
1]
e
>
n
in
8

The desired fibre-wise R-completion then is

There are obvious commutative diagrams

»
\ 4

)

o
0
A
8

W
v

R_B

\ 4

in which the sguare on the right is, in general, not a pull back.

It is also not hard to see that

(i) If B = *, then ﬁsx = RX (s £

(ii) The construction is natural, i.e. a commutative diagram

X —>Y

)

B—>C

gives rise to commutative diagrams

(iii) If the first diagram in (ii) is a pull back, then so is

the second for all s < = ,
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More difficult to prove is

8.2 Proposition. If f£: X > B e/ is a fibration, then so

are the induced maps ésx + B e for all s < =,

And combining this with 8.1 (i) and (iii) one gets

8.3 Corollary. Let X + B £ o/ be a pointed fibration with

fibre F. Then R_F is the fibre of the map ésx + B (s £ ).

Proof of 8.2. 1In view of Ch.X, 4.6, it suffices to show that

(in the notation used there) the maps
. RE sn+2 _ «. N+l s ng
R{ —> B and R7X = (RX) —> M RX

are fibrations, and this can be done as follows.
As f: X+ B is a fibration one can, for every pair of
integers (i,n) with 0 £ i < n and every n-simplex b € B, choose

in X functions

L (o)

-1 -

si,b' £ (dib) —> £
such that disi b = id. These functions induce in RX similar
-_— I

functions

1

. =1 . -
s; p° (RE) "(d;b) —> (Rf) (b)

and the proof that Rf: RX » B is a fibration now is essentially
the same as the proof that a simplicial group is fibrant (see,
for instance, [May, p. 67]), except that one uses the functions

s instead of the degeneracies S

i,b
en+2 ne . . . .
The proof that the map s: R X + MRX is a fibration is
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similar and uses the facts that

(i) the map s: §9+2x + MPRX is onto,

(ii) the functions s, in X induce similar functions in

i,b
ﬁ“*zx and Mnﬁg, and

(iii) the map s: §F+2X + M"Rx is compatible with the

functions s, .
i,b

The last two of these statements are easily verified, while the

proof of the first one is as in Ch.X, 4.9.
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§9. The role of the ring R

We end this chapter with an investigation of the role of the
ring R and show that for a large class of rings the homotopy type
of R_X is completely determined by the homotopy types of R_X

for R = Zp (the integers modulo a prime p) and RcC Q (subring

of the rationals).

We start with observing (see 4.5) that one only has to consider
solid rings, i.e. rings for which the multiplication map
R&, R+ R is an isomorphism. More precisely, if R is a
commutative ring and cRc R its core, i.e. its maximal solid sub-

ring or equivalently [Bousfield-Kan (CR)] the subring
cR = {x e R | 1lgx = x®l ¢ R@ZR}

then we have the

9.1 Core lemma. Let R be a commutative ring and let

cR c R _be its core. Then the inclusion cR + R induces, for every

X € o , a homotopy equivalence

(cR) X = RX Ed .

In fact this reduction also holds for

9.2 Certain non-commutative rings. The definition of R-com-

pletion (82 and §4) clearly also makes sense for non-commutative

rings. All one has to do is, replace everywhere R-module by left

R-module. It is, however, questionable whether this gives anything

new, as an analysis of the proof of 9.1 yields:
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1
Let R be a commutative ring and R a not necessarily

commutative ring for which there exists an abelian group homomorphism

1 ]
R + R which sends 1 into 1. Then any ring homomorphism R + R

induces, for every X e/ , a homotopy equivalence

RX = RX [ N

1
For example, this is the case if R = R[m], the group ring of a

group T over the commutative ring R.
The next step is

9.3 Determination of all solid rings. This was done in

[Bousfield-Kan (CR)], and we recall from there that the only solid

rings are

(i) the cyclic rings Zn for n 2 2,

(ii) the subrings of the rationals, i.e. the rings z2137Y]  for

any set J of primes, where Z[J—l] consists of those rationals
whose denominators involve only primes in J,

(iii) the product rings Z[J_l] x Zn’ where each prime factor

of n is in J, and

(iv) all direct limits (over directed systems) of the above

three types of rings.

Finally we state two propositions which imply that the homotopy
types of R X for R = Zp {p prime) and R < Q completely deter-
mine the homotopy type of R _X for any solid ring of type (i), (ii)

or (iii) above.

1
9.4 Proposition. Let R = Zp (p prime) and let R =12 .
P
Then the projection 2 n” Zp induces, for every X e J ,
P
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a homotopy equivalence

9.5 Proposition. Let either

.
(i) R = Zm and R = Zn' where m and n are integers such

that (m,n) l, or

— v .
(ii) rR=12z(J l] and R = 2, where n is an integer of which

all the prime factors are in J (see 9.3 (iii)).

1 1
Then the projections of R x R onto R and R induce, for every

X €/ , a homotopy equivalence

]
(R x R )QX = RX x RX € .
Proofs. In view of 7.1 it suffices to prove 9.1, 9.4 and 9.5
for connected X.
To prove 9.1 one combines 6.1 with 4.4, Ch.X, 7.4 and the fact
that [Bousfield-Kan (CR)] the inclusion c¢R - R induces, for every

choice of base point, an isomorphism
E,(XjcR) = E,(X;R)

The proof of 9.5 is similar and uses the fact that [Bousfield-
1 )
Kan (HS), 88] the projections of R X R onto R and R induce,

for every choice of base point, an isomorphism
1 - ?
E2(X:R x R) = E2(X;R) D E2(X;R )

And finally to prove 9.4 one observes that there are natural

isomorphisms

1 L}
Tot Tot(l)RR X =~ Tot Tot(z)RR X
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where Tot(l) and Tot(z)

denote the first and second cosimplicial

]
total space of the double cosimplicial space RR X. Moreover it

follows readily from [Bousfield-Kan (HS), 10.6] and Ch.VI, 5.4 that

the natural maps

L L}
R X = Tot RX —> Tot Tot(1)1313 X €

o]
>3
1

]
Tot RX —> Tot Tot(z)lj{{ X €

are homotopy equivalences. The rest of the proof now is easy.
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Chapter II, Fibre lemmas

§1. Introduction

For a general fibration of connected spaces F + E + B, the map
R.E > R B 1is always a fibration (Ch.I, 4.2), but R_F need not have
the same homotopy type as the fibre of RE + R _B. For example, if

R = Q, then

s? —> »? —> K(z,,1)

is, up to homotopy, a fibration, but RNS2 - Rsz -+ RmK(Zz,l) is not,

because (Ch.I, 5.5) RmP2 and RmK(Zz,l) are contractible, while
Rms2 is not.

However, we will prove in this chapter a mod-R fibre lemma (5.1)

which, roughly speaking, states that the R-completion preserves, up

to homotopy, fibrations of connected spaces F + E »+ B, for which

"nlB acts nilpotently on each ﬁi(F; R)". This is a useful result,
for instance, when one wants to compute w,R X in terms of T,X,
using Postnikov methods.

We obtain the mod-R fibre lemma in several steps as follows:

§2 and §3 In §2 we state a special case, the Erincigal

fibration lemma, and obtain several consequences thereof. A rather

long and technical proof of this principal fibration lemma is the

content of §3.

§4 introduces the notion of nilpotent fibration and we prove

here, with the use of the principal fibration lemma, a more general

nilpotent fibration lemma.
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§5 and §6 In §5 we finally state the mod-R fibre lemma and

discuss various special cases, while §6 contains a proof which uses
the nilpotent fibration lemma of §4 and the fibre-wise R-completion

of Ch.I, §8. A different proof will be given in Chapter III, §7.

Notational warnings. Throughout most of this chapter we will

work in the category J*C of pointed connected spaces. This is no
real restriction as the R-completion commutes, up to homotopy, with
disjoint unions (Ch.I, 7.1).

Of course (Ch.I, 4.5) we assume throughout that the ring R is

solid.
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§2, The principal fibration lemma

We start with a special case of the mod-R fibre lemma, the

principal fibration lemma, which states that, up to homotopy, the R-

completion preserves principal fibrations with connected fibres. We

also list some corollaries and show that the spaces RSX (s < =)

are R-complete for all X ¢ J;C (the category of pointed connected

spaces) .

We first recall the definition of [May, p.70]):

2.1 Principal fibrations. Let E € o, (the category of

pointed spaces), let F e o, be a simplicial group and let

a: F x E—>E € oy

be a principal action (see 3.1). Then [May, p.70] the projection

p: E—> B = E/action £ o

is a fibration, which is called a principal fibration, with fibre F,

as one can identify the fibre p-l* with F wunder the correspondence

a(f,*) &> £ feF.

More generally, we will call amap f € o, a principal fibration,

up to homotopy, if £ 1is equivalent in the pointed homotopy category

(Ch.VIII, 4.6) to some principal fibration. By [May, Ch.IV and
Ch.VI] this is the same as requiring that f be equivalent in the
pointed homotopy category to an induced fibration of a path fibration

over a connected space.
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Now we state the

2,2 Principal fibration lemma. Let p: E = B € J*C be a

principal fibration with connected fibre F. Then

R,p: RE + RB € J*c is a fibration which is, up to homotopy, also

principal and the inclusion

RF = Rm(p_l*)-——4> (Rmp)_l* € Vuc
is a homotopy equivalence.
This will be proved in §3.
2.3 Corollary. Let
Ep —>E0 A > Ep & e

be a finite sequence of principal fibrations with connected fibres

and let p: E + Ej € J/xc be the composite fibration. Then

R,p: RE + RE; € o

0 *C
1

Rm(p-l*) + (Rp) ~* € J/xc is_a homotopy equivalence.

is also a fibration and the inclusion

Combining this with Ch.I, 6.3 one gets

2.4 Corollary. Let

cer En —_ ey Eq € Jac

be a tower of principal fibrations with fibres that are connected

and that "get higher and higher connected" and let

p: E, = ilm E. —>E, € J*C
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be the composite fibration. Then R_p: RE_ * RE, € .gc is also a

fibration and the inclusion Rm(p_l*) > (Rmp)_l* € .gc is a homotopy

equivalence.

Another consequence is

2.5 Proposition. Let X ¢ #yc- Then the spaces R.X (s < =)

are R-complete, i.e. the maps ¢: RSX -+ RmRSX are homotopy equiva-

lences.

This is an immediate consequence of 2.2 and the following two

lemmas:

2.6 Lemma. Let X € o,.. Then the maps RX * R _;X (s < =)

are principal fibrations whose fibres are connected simplicial R-

modules.

Proof. This follows readily from Ch.I, 6.1 (R is solid) and the
fact that (Ch.I, 2.2 and Ch.X, 4.10) the choice of base point makes
RX "R-module-like". By Ch.X, 6.2, the map RSX > Rs—lx actually

has hom*(sn,NRXs) as fibre.

2.7 Lemma. Every simplicial R-module B is R-complete.

Proof. It suffices to show that one has in the homotopy spectral

sequence (Ch.I, 4.4)

0,t,.. -
E2 (B; R) = th
Es’t(B; R) = =« for s > 0.
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This collapsing is not hard to prove, using the obvious homomorphism

RB -+ B [Bousfield-Kan (HS), §10].

Using 2.6 one can also prove

2.8 Proposition. Let f: X + Y ¢ #/.c induce an isomorphism

H,(X; R) ~ H,(Y; R). Then f induces, for every W e an

*C!

isomorphism of pointed homotopy classes of maps

[y, RQW] = [x, RwW].



Ch. II, §3 54

§3. Proof of the principal fibration lemma

To prove the principal fibration lemma 2.2 we use

3.1 A magic exact sequence. Let F be a group, E a pointed

set and a: F x E » E an action (i.e. a(l,e) = e for all e e E
and a(fl,a(fz,e)) = a(flfz,e) for all fl,f2 e F and e € E).

Then one can form an augmented space X ({with base point) by putting

x_l = E/action
Xo = E
xk = F X eos X F x E k>0

and defining faces and degeneracies by the formulas

-1 -1
do(fll"'lfkle) = (fol l"'lfkfl Ia(flle))
di(fll...’fk'e) = (fl,"',fi,-",fk,e) 0 <1 < k
Si(fll"'rfkre) = (flr"'lfil*lfi+ll"'lfkie) 0 <1i<k.

A covariant functor

U: (pointed sets) —— (pointed sets)

such that U* = * then can be applied to X dimensionwise and the

resulting augmented space UX gives rise to a magic sequence

d
crr —>ULX —%Uk_lx ——y =D U_ X —D»
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where

X = UX_ N ker d

K K 1 NeseN ker d

k

and short sequences

};x > U X —> U}'c_lx —

» —> UNE, R E) S U X — URE, ) s

1
ka = UXk N ker d0 Nesee N ker dk c U X

and U* denotes the k-fold multiplicative cross effect, i.e.

~

k = - e e a0 e
U (Yl, ,Yk) = rl ker(U(Yl X x Yk) —_ U(Yl x x Yi x x Yk)).

The usefulness of these sequences is due to the fact that

(i) these seguences are natural in the action a: F x E + E as

well as in U, and

(ii) if the action a: F x E » E is principal (i.e.

a(f,e) = e for any one e € E implies £ = 1), and

U: (pointed sets) -—> (groups)

then these sequences are exact.

The first of these properties is obvious. To prove the second
statement one uses the argument of [Kan-Whitehead, §16] and observes
that the natural map X -+ X_l € o 1is a homotopy equivalence and that
therefore [Kan (HR)] the map UX - UX_; is so too. As X_; is
discrete, so is«LUX_l and thus @, UX = UX_

0 1
for i > 0. This readily implies the exactness of the magic sequence.

, while niUX = %
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The proof of the exactness of the other sequences is easy.

Now we turn to the

Proof of the principal fibration lemma. Consider the exact

sequences of 3.1 with F and E as in 2.2 and U = TSR, where T®

is as in the proof of Ch.I, 6.1. As an epimorphism of simplicial
R-modules is a fibration with the kernel as fibre, the proof of
Cch.I, 6.1 (R is solid) readily implies that

(*) all the simplicial R-modules in the exact sequences of 3.1

(and in particular the simplicial R-modules ULX) are s-connected.

Now start all over and let again F and E be as in 2.2, but
put U = R. Then the sequences of 3.1 become exact sequences of
group-like cosimplicial spaces (Ch.I, 2.2 and Ch.X, 4.8). As the
functor Tot turns short exact sequences of group-like cosimplicial
spaces into fibrations (Ch.X, 4.9 and 5.1), the finite product lemma
(Ch.I, 7.2) implies that Tot UN(F,--+,F,E) and Tot UN(F,+++,F)
and hence Tot U _X are contractible for k > 1 and that the map

k

Tot le + Tot UF is a homotopy equivalence. Furthermore the

above observation (*) implies that for all k and s the fibre

' ! .
of the map Tots+l ka -+ Tots ka is connected and that therefore

Tot ULX is connected for all k and in fact contractible for

k > 1. Finally it is not hard to see that the map
R,E = Tot U)X —> Tot U_;X = R.B

is a fibration and that the inclusion of R_F = Tot UF in its fibre
is a homotopy equivalence.
We conclude by proving that RE -+ R B is, up to homotopy, a

principal fibration. By the classification theorem [May, p.90] the
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map E -+ B fits in an induced fibre square

E — WF

B ———>WF

where WF + WF is a principal fibration with WF

the desired result now follows from the fact that

R,E ————> R_WF

R.B —> R_WF

is, up to homotopy, an induced fibre square, with

contractible, and

R WF contractible.
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§4. Nilpotent fibrations

We will call a fibration E > B e o, with connected fibre F,
nilpotent if "m,E acts nilpotently on each niF". This turns out

to be equivalent with requiring that the map E ~ B factors, up to

homotopy, into a tower of principal fibrations with connected fibres

that "get higher and higher connected". Corollary 2.4 of the

principal fibration lemma thus implies that, up to homotopy, the R-

completion preserves nilpotent fibrations.

We start with recalling

4.1 Nilpotent group actions. A group w acts on a group G

if there is given a homomorphism

o: T —> Aut G

and such an action is called nilpotent if there exists a finite
sequenge of subgroups of G

G = G D osee D G. D see D G = *
1 n

J

such that for each j

(i) G. 1is closed under the action of m,

(ii) Gj+l is abelian, and

(iii) the induced action on Gj/G

+1

is trivial.

is normal in G. and G./G.
at in By 3765

j+1
The notion of nilpotent action is a generalization of the notion

of nilpotent group, as a group G is nilpotent if and only if the

action of G on itself via inner automorphisms ((ox)g = xgx_l

for all x, g € G) is nilpotent.
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The following easy lemma will be needed:

4.2 Lemma. If a group 1® acts on a short exact sequence of

grougs
* —>56 —>6 —>G6" —>x,

then the action on G is nilpotent if and only if the actions on

¢' and G" are so.

Now we define

4.3 Nilpotent fibrations. A fibration p: E + B ¢ “uc is

called nilpotent if

(i) its fibre F 1is connected, and

(ii) the (obvious) action of mE on each mF is nilpotent.

A space X € J*C is also called nilpotent if the action of

m,X on each m.,X is nilpotent. Thus a fibrant space X e #,, is

nilpotent if and only if the fibration X + * is nilpotent.

A useful property of nilpotent fibrations is

4.4 Proposition., Let

E, = B —E> 5 € uc

be two fibrations with connected fibres. If any two of p, g and

pg are nilpotent fibrations, then so is the third.

Proof. If F F and F resp. denote the fibres of p, g

17 "2 12

and pg, then "1E2 acts on the homotopy exact sequence

D> T Fp > Ty —D M F, —> M Fp —>
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If mE, acts nilpotently on any two of m,F,, m,F, and W,F{,,
then it also acts nilpotently on the third (by 4.2). The proposition

now follows readily.

4.5 Corollary. Let qg: E, +E ¢ J*C be a fibration with

connected fibre. 1If El and E are nilpotent spaces, then g is

2
a nilpotent fibration.
4.6 Corollary. Let
._>En__>..-__)1:_:0 eJ*C

be a tower of principal fibrations with connected fibres that "get

higher and higher connected". Then the composition

«©

E = ilm En —_— E0 € J*C

is a nilpotent fibration.

This corollary has a converse

4.7 Proposition. Let p: E + B ¢ J*C be a nilpotent fibration.

Then the Moore-Postnikov tower [May, p.34] of p can, up to

homotopy, be refined to a tower of principal fibrations with connected

fibres that "get higher and higher connected". 1In fact this can be

done in such a manner that the fibres are K(m,n)'s [May, p.98].

In view of this, corollary 2.4 of the principal fibration lemma

can thus be restated as the
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4.8 Nilpotent fibration lemma. Let p: E > B e J,. be a

nilpotent fibration. Then R _p: RE > R B is also a nilpotent

fibration and the inclusion Rw(p_l*) - (Rmp)_l* is a homotopy

equivalence.

Proof of 4.7. Let F be the fibre and let

ﬂiF = (ﬂiF)l D eee D (1riF)j D ese D (ﬁiF)ni = %

satisfy the conditions of 4.1 with respect to the action of mE on
mF. Choose a strong deformation retract E' € E for which the
restriction E' » B is a minimal fibration [May, p.140]. Then one
can, for every pair of integers (i,j) with 1 £ j £ n;, construct
a space E(i’j) by identifying two simplices x, y € Eé whenever

(i) px = py,

(ii) the standard maps A4x, Ay: Alql - E' agree on the (i-1l)-
skeleton of A[g]l, and

(iii) the standard maps Ax, Ay: A[g]l » E' "differ" on every
i-simplex of Al[lgl by an element of (wiF)j.
gi-3)

A straightforward calculation now yields that the form a

tower of principal fibrations with the K((niF)j/(niF)j+l, i) as
fibres, which is a refinement of the Moore-Postnikov tower {E(l’l)}

[May, p.34].
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§5,. The mod-R fibre lemma

We now come to the main result of this chapter, namely the

5.1 Mod-R fibre lemma. Let p: E > B e #/,, be a fibration

with connected fibre F and let the (Serre) action of #;B on

Hi(F; R) be nilpotent for all i > 0. Then R_p: RE > RB is a

fibration and the inclusion

RF = Rm(p-l*) —_— (Rmp)_l* € dyc

is a homotopy equivalence.

This will be proved in §6 using the nilpotent fibration lemma

4.8 and the fibre-wise R-completion constructions of Ch.I, §8., A

different proof will be given in Chapter III, §7.
In this section we shall show that 5.1 generalizes our previous

fibre lemmas, and also applies to many new cases. We start with

5.2 Examples. The conditions of the mod-R fibre lemma are

satisfied if, for instance
(1) ﬁlB = *,
E

(ii) =F xB and p is the projection,

(iii) the fibration p: E » B is principal,

(iv) ™ B and Hi(F; R) (i > 0) are all finite p-groups for

p__prime (by [M. Hall, p.47] a finite p-group always acts nilpotently

on another finite p-group).

A variation of the mod-R fibre lemma is the
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5.3 Fibre square lemma. Let

D —————3>E

A——— 3B

be a fibre square in J*C such that E + B satisfies the conditions

of 5.1. Then

RD —— 35 RE

RA —— 5 R B

is, up to homotopy, a fibre square.

Proof. Apply 5.1 to both D + A and E + B.

We conclude by deducing a

5.4 Mod-R nilpotent fibration lemma. Let p: E + B € J;c be a

fibration with connected fibre F such that

(1) mE acts nilpotently on ™, F, and

(ii) m,E acts nilpotently on R ® m.F and Tor(R, m.F) for

each i > 1.

Then the action of ﬂlB on each Hi(F; R) is nilpotent and hence

(5.1) R_p: RE > RB is a fibration and the inclusion

RF = Rm(p—l*) —_ (pr)—l* [> JLC
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is a homotopy equivalence.

This result obviously applies to any nilpotent fibration and

thus the nilpotent fibration lemma 4.8 is indeed a special case of

5.1.

Proof of 5.4. Apply the following lemmas (5.5 and 5.6) to the

Moore-Postnikov tower [May, p.34] of p: E -+ B.

5.5 Lemma. Let
E2J.9E1_2_>E0 t-:n'*c

be fibrations with connected fibres. If p and g satisfy the

conditions of 5.1, then so does pqg.

1’ F2 and Fl2

Then the group lez acts on the mod-R homology (Serre) spectral

Proof. Let F be the fibres of p, @ and pg.

sequence of the fibration

F, —>F, —>F .

To show that m,E, acts nilpotently on each Hi(Flz’ R) it will
suffice (4.2) that m,E, acts nilpotently on each of the twisted
homology groups

Hs(Fl; H (F,; R)) for s, t 2 0.

Since mE, acts nilpotently on the R-module Ht(Fz; R) there is an

R-module filtration

H, (F,; R) = r D eee T r:-..: r = 4]
1 j n
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such that each r: is closed under the action of ﬂlEz and each
J
rﬁ/r' has trivial ﬂlEz action. Since m,E, acts nilpotently on

g+l
each Hi(Fl; R) it is now easy to show that T E; also acts

nilpotently on each H,(F,: [ /[ ). This implies that =.E acts
1 1 ] j+l 172

nilpotently on Hs(Fl; Ht(Fz; R)) as required.

5.6 Lemma. Let p: E >+ B ¢ a;c be a fibration with K(G,n)

as fibre, such that, either

(i) n =1 and mE acts nilpotently on G, or

(ii) n > 2 and ﬂlE acts nilpotently on R ® G and Tor(R,G).

Then m,B acts nilpotently on each H, (K(G,n); R).

Proof. Condition (i) makes the fibration nilpotent and the
lemma then follows by combining 4.7 and 5.5. We now suppose (ii) and
consider several cases.

The case R C Q. It is well-known that the obvious map

G » R® G induces an isomorphism
H,(K(G,n); R} = H,(K(R ® G,n); R)

and thus, by 2.7 and Ch.I, 5.5, a homotopy equivalence
R K(G,n) = K(R® G,n).

The desired result now follows easily from the fact that the
fibration ﬁmE + B (Ch.I, §8) is nilpotent.
The case R = Z_. For p prime, the Cartan-Serre computations

p
provide a natural isomorphism

H, (K(G,n); Zp) T U(QH,(K(G,n): Zp))

where Q(-) 1is the indecomposable element functor and U(-) is the
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homology version of the Steenrod-Epstein functor [see Bousfield-Kan
(Hs), 13.1], and, moreover, QH,(XK(G,n); Zp) is a natural direct sum
of copies of Zp<8 G and Tor(Zp,G). The desired result now follows
using the analysis of U(-) given in [Bousfield-Kan (HS), lemma
13.5].

The case R = Z j° Using Bockstein exact sequences one can
deduce this case frog the case R = Z_.

p

The general case. It suffices to show that ﬂlB acts

nilpotently on each of the groups
t t
H; (K(G,n); R) H, (K(G,n); R/R")

where R® denotes the torsion subgroup of R. But by [Bousfield-Kan

(CR), §3]

R/Rt c Q and R z & Z
peK pe(p)

where K 1is a set of primes and each e(p) 1is a positive integer

and the desired result now follows from the previous special cases.
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§6. Proof of the mod-R fibre lemma

We start with observing that, if, for a fibration E + B ¢ 7xc

with connected fibre F, the group m B acts nilpotently on each

Hi(F; R), then the tower of fibrations (Ch.I, §8)

E > oo > R,E = RE —> R_;E = B €dyg

is a tower of nilpotent fibrations. More precisely

6.1 Proposition. Let p: E + B € Zrc be a fibration with

connected fibre F. Then the action of nlB on each Hi(F; R) is

nilpotent if and only if the fibration Rp: RE » B (Ch.I, §8) is

nilpotent.

6.2 Proposition. Let p: E > B e o, be a fibration with

connected fibre F such that the action of nlB on each Hi(F; R)

is nilpotent. Then the fibrations ﬁsE - B (Ch.I, §8) are nilpotent

for all s < =,

Proof of 6.1, RF 1is the fibre of the fibration ﬁp: RE + B

and anF acts trivially on each niRF.

Proof of 6.2. The fibre Fo of the fibration ﬁsE > R _,E is

also the fibre of the fibration RSF -+ R Hence (2.6) F is

s-1F* s
connected and ansF acts trivially on the ﬂiFs. The exactness of

the sequence

T RF —> TR E — mB —> »
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now implies that m;B acts on each “iFs (through wlﬁsE) and that

it suffices to prove that these actions are nilpotent. But this is

not hard to show using 4.2.
Now we turn to the

Proof of 5.1. Consider the commutative diagram

(RF) (F.)

llm R R E lim R R E
S “ S

\ <:L_;'Lm RooRsB
(F,) (RSF) (F2)
R_E _ waz E R, R.E

R_B —_— / R_B
(F) (R F) (Fg)
I > RIE

in which F; denotes the fibre of the fibration R_p: R.E + R_B

v

v
8?-1
o
o]

w
v
w
\
el
o2}

(s < ») and the spaces in parentheses indicate either the actual
fibre or a strong deformation retract thereof. It is not difficult
to see (in view of 6.2, 4.8 and 2.7) that the fibres are indeed as
indicated.

Using the triple lemma (Ch.I, 5.6) one readily shows that the
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composition
RE —> ilm RmRsE —_ 11m RmRsE

is the obvious map and thus a homotopy equivalence. This implies

that the map
F; —_ fibre(iim RmﬁsE ——> R_B)

induces a monomorphism on the homotopy groups.

Now form the analogue of the above diagram for the fibration
F -+ * and map it into the above diagram. There results a

commutative diagram

lim R R F ~——> fibre(lim R R E —> R B)
« ® s « © g oo

Clearly the indicated maps are homotopy equivalences and hence so is

the map

RF = R, (71w —> (Rp) .

"
o
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Chapter III. Tower lemmas

§1. Introduction

In this chapter we establish the following simple and useful
sufficient conditions on a tower of fibrations {Ys}, in order that
it can be used to obtain the homotopy type of the R-completion of a
given space X

(1) If f£: X ~» {Ys} is a map which induces, for every R-module

M, an isomorphism

] * *
lim H (Y _; M) = H (X; M)
-> S

then f induces a homotopy equivalence R X = lim RY_.
“

(ii) If, in addition, each YS is R-complete (Ch.I, 5.1), then

the space iim Ys already has the same homotopy type as R_X.

(iii) If, in addition, each Ys satisfies the even stronger

condition of being R-nilpotent (4.2), then, in a certain precise

sense, the tower {Ys} has the same homotopy type as the tower

{r_X}.

We will actually formulate and prove these tower lemmas in terms
of homology instead of cohomology, as this is not only more natural,
but also easier, even though it requires a little bit of the pro-

homotopy theory of [Artin-Mazur]. In more detail:

§2 We recall when a map between towers of groups is a pro-
isomorphism (i.e. an isomorphism in the category of pro-groups) and
show that these pro-isomorphisms behave essentially like ordinary

isomorphisms; in particular they satisfy a five lemma.
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§3 and §4 Using these pro~isomorphisms we then define, for maps

between towers of fibrations, a notion of weak pro~homotopy

equivalence.

Examples of such weak pro-homotopy equivalences are all the
various maps between towers of fibrations of Chapters I and II, which
induce homotopy equivalences between the inverse limit spaces. These

tower versions of the results of Chapters I and II are easily

verified, except for the case of the mod-R fibre lemma (Ch.II, 5.1},

which will be dealt with in §7.

§5 contains a discussion of the notion of R-nilpotent space,

i.e. a space for which the Postnikov tower can, up to homotopy, be
refined to a tower of principal fibrations with simplicial R-modules
as fibres. Examples are, for instance, all simplicial R-modules and

the spaces RsX for s < =,

§§_ We state and prove the tower lemmas and show that, of course,

the tower {Rsx} satisfies the hypotheses of all three.

§7 uses the strongest (R-nilpotent) tower lemma to prove the

tower version of the mod-R fibre lemma (Ch.II, 5.1).

§8 Here we interpret some of the preceding results to show
that, up to homotopy, the R-completion of a space can be obtained in
two steps:

(i) an Artin-Mazur completion yielding a "pro-homotopy type",

followed by
(ii) a "collapsing" of the Artin-Mazur completion to an ordinary

homotopy type.
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This section is mainly intended for the categorically minded
reader; we include a brief exposition of the relevant pro-category

theory.

Notation. As in Chapter II we will mostly work in the category

J;c of pointed connected spaces. In view of the tower version

(see 3.5) of the disjoint union lemma (Ch.I, 7.1) this is again no
real restriction.
Of course (Ch.I, 4.5) we again assume throughout that the ring

R 1is solid.
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§2. Pro-isomorphisms of towers of groups

We recall from [Artin-Mazur] a few facts about pro-isomorphisms
that are needed in this chapter, i.e. we

(1) explain when a map between towers of groups is a pro-
isomorphism,

(ii) 1list various properties of pro-isomorphisms, and

(iii) observe that most of the results of this section also

apply to pointed sets.

2.1 Pro-isomorphisms. A map f£: {GS} - {Hs} between two

towers of groups (Ch.IX, 2.1) is called a pro-isomorphism if, for

every group B, it induces an isomorphism

lim Hom (H ,B) = 1lim Hom (G_,B)
- S > ) s

(groups) (groups

This is equivalent to the condition that, for every s, there is an

integer s' > s and a map Hs' * Gy such that the following diagram
H_ 1
lﬁ
H
s

A tower of groups {Ks} is called pro-trivial whenever the map

commutes

& @
(ﬂm [1}]

£
—
£

{k,} » {#} into the trivial tower is a pro-isomorphism.
Clearly the above definitions apply equally well to towers over

an arbitrary pointed category, e.g. the category of pointed sets.
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It is easy to show:

2.2 Proposition. A map of group towers f£: {Gs} + {H} is a

pro-isomorphism if and only if the pointed set towers {ker f} and

{coker f} are pro-trivial, where {coker f} is formed by collapsing

st to a point.

Thus a map of group towers is a pro-isomorphism if and only if
the underlying map of pointed set towers is a pro-isomorphism.

Clearly 2.2 would remain valid if {coker f} were replaced by the

tower of left cosets {Hs/st}.

Some other immediate properties are:

2.3 Proposition. If k > 0 and {Gs} is a tower of groups,

then the inclusion of the k-th derived tower (Ch.IX, 2.2)

{Gék)} + {G,} is a pro-isomorphism.

This also holds for pointed set towers,

2.4 Proposition. Let f: {GJ} » {H_} and g: {HJ} » {K } De

maps of group towers. If any two of the maps f, g and gf are

pro-isomorphisms, then so is the third.

This also holds for pointed set towers.

2.5 Proposition. Let

{Gs} —_—> {Hs} —_— {Ks}

be an exact sequence of maps of group towers. If {G_.} and {K_}

are pro-trivial, then so is {Hs}.
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This also holds for pointed set towers.

2.6 Proposition. Let f: {G } » {H } be a map of group towers

which is a pro-isomorphism. Then £ induces isomorphisms (Ch.IX,

2.1)
. - . 1 . .1
lim G * lim H and lim™ G ~ lim™ H_ .
< S -+ S + ] + ]

Of course, the first part also holds for pointed set towers.

Proof of 2.6. Obtain a tower

_f_aﬂi ___>Gi ...f_>Hi e
s+l s+1 s s

cee — G,

b8

by interweaving a cofinal subtower of {GS} with a cofinal subtower
of {HS} and then apply (Ch.IX, 3.1l) to the corresponding tower of

fibrations of K(w,1l)'s.

Using 2.2 and a large amount of diagram chasing one can also

obtain a

2.7 Five lemma. Let

{6} —> {n) > {K} > L} > {n}
g h k 1 m
{6} —> {u)} > (K} > (L} > (M}

be a diagram of group towers in which both rows are exact, the maps

h and 1 are pro-isomorphisms and {coker g} and {ker m} are

pro-trivial, Then the map k is also a pro-isomorphism.
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§3. Weak pro-homotopy eguivalences

We now consider, for maps between towers of fibrations, a notion
of weak pro-~homotopy equivalence, and observe that many of the
homotopy equivalences of Chapters I and II are induced by such weak

pro-homotopy equivalences.

3.1 Weak pro-homotopy equivalences. A map {Xs} - {Ys}

between towers of fibrations in J*C will be called a weak pro-

homotopy equivalence if the induced maps

v
[

{nixs} —_> {niys} i

are pro-isomorphisms. This corresponds to the notion of #-isomor-
phism of [Artin-Mazur, §4].

Clearly 2.6 and Ch.IX, 3.1, imply that every weak pro-homotopy

equivalence {Xs} = {Ys} induces a homotopy equivalence

lim X_ =~ lim Y _.
bt s bt s
The following propositions of [Artin-Mazur, §4] indicate that

the term "weak pro-homotopy equivalence” is indeed an appropriate one.

3.2 Proposition. For every tower of fibrations {X_} in /..,

the natural map into its "Postnikov tower" [May, p.3l]

(s)
{Xs} —_> {Xs }

is a weak pro-homotopy equivalence.

The proof is trivial,
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3.3 Proposition. A map {Xs} > {Ys} between two towers of

fibrations in Ixc is a weak pro-homotopy eguivalence if and only if

the induced map (see 3.2) {XQS)} -+ {YQS)} of their "Postnikov

towers" is a pro-isomorphism of towers over the pointed homotopy

category {see 2.l), i.e. if and only if, for every s, there is an

1
integer s' >s and a map Yé? ) s xés) such that in the following

diagram both triangles commute up to homotopy

(s")
sl

-t
<

@ sl

<

The proof is rather long and will be postponed until §4.

For future reference we note:

3.4 Corollary. A weak pro-homotopy equivalence {Xs} > {Ys}

between towers of fibrations in e induces, for every abelian

group G, pro-isomorphisms

v
(=
.

{nn(xs; G)} = {Hn(Ys; G)} n
We end with some remarks on the

3.5 Tower versions of previous results. Many of the homotopy

equivalences obtained in Chapters I and II have tower versions, i.e.

they are induced by a weak pro-homotopy equivalence between towers
of fibrations. This is very easy to verify for the results of
Chapter I. The tower version of the mod-R fibre lemma (Ch.II, 5.1)

will be proved in §7 with the use of the following tower version of
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the principal fibration lemma (Ch.II, 2.2).

3.6 Tower version of the principal fibration lemma. Let

p: E+>Be be a principal fibration with connected fibre F.

*C
Then the induced map of towers of fibrations

{RSF} _D {FS},

where F; denotes the fibre of R,p: R.E ~ R_B, is a weak pro-

homotopy equivalence.

. ] 1
Proof. Using Ch.X, 4.9, one can show that the maps Fs -+ Fs—l

are indeed fibrations, while Ch.I, 6.2 implies that the F; are

connected.
We now use the notation of the last part of Ch.II, §3 and

observe that the results of §2 readily imply that the towers
{m, Tot Uk(F +*+,F,E)} and {n, Tot Uk(F ses,F)}
i s ’ rtor i s ’ ’

are pro-trivial for k > 1. Hence the towers {ni Tot UkX} are
pro-trivial for k > 1 and the towers {ﬂi Tot ULX} are so for
k > 0. The desired result now follows from the fact that the maps of

towers
{ni Tot le} _— {ni Tot UF} = {ni RSF}
L}
{n; Tot_ U X} —> {7, Tot_ U X}

are pro-isomorphisms.
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§4. Proof of 3.3

The "if" part of 3.3 is trivial.

To prove the "only if" part we first need

4.1 Lemma. Let {X_} be a tower of fibrations in o, such

that {nnxs} is pro-trivial for each n > 0. Then, for each s and

t, there exists an integer g (which depends on s and t) such

that, up to homotopy, the map Xs+q -+ Xs factors through the
t

Eilenberg subspace E XS c Xs (EtXs is the fibre of the Postnikov

map Xs - X;t)

[May, p.31]1).

Proof. The lemma is clear for the tower {Ekxs}, when k = t-1;

and this easily implies the general case.
We also need

4.2 Lemma. Let {Xs} -+ {Ys} be a weak pro-homotopy equivalence

between towers of fibrations in Jxcr and let N be a m Y, -module

for some k > 0. Then the induced map

*
lim H (Ys; N} —> lim H*(XS; N) (twisted coefficients)
- -

is an isomorphism.

Proof. We may suppose that each map Xs - Ys is a fibration
with fibre F,. By 2.7 (slightly modified for n = 0) the towers
{ﬂnFs} {(n > 0) then are pro-trivial. Thus, by 4.1, the direct

limit of the E,-terms of the Serre spectral sequences of the
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fibrations XS -+ YS satisfies
] * * ~ * 0] 1] k)
lim H (Y ; H (F_; N)) = 1lim H (Y_; N) (twisted coefficients)
> s s > s

and the lemma now follows from the fact that the direct limit Serre

*
spectral sequence converges to lim H (Xs; N).
>

Finally we prove the following lemma which readily implies the

"only if" part of 3.3,

4.3 Lemma. Let {XS} - {YS} be a map of towers of fibrations

in J,. such that {nlxs} - {nlYS} is a pro-isomorphism and

* *
lim H (YS; N) = 1lim H (XS; N) (twisted coefficients)
-> >

for each -module N with k > 0. Then, for every space

m lYk
Ve Jue which is fibrant (i.e. V + % is a fibration) the induced

maps between the direct limits of the pointed homotopy classes of

maES
lim [y, vi® ] —> 1im [x_, v 0<nc<a
-+ s -> ]

are isomorphisms.

Proof. We may suppose that each map X > Y, is an inclusion.

To prove that
lim [v_, vI®] —5 1im (x_, v{®) 0<nc<aw
> s > s

is onto, it suffices to show that, for each commutative square
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X, ———> y(n

v _ v(n-l)

S

there exists a g > s such that the square

X — 5 yn

q
~7
7
s u
7
7 -
Yq SN v(n 1)

has a map u making both triangles commute. For n > 1 the

obstruction to finding u 1lies in
n+l .
H (Yq,xq; nnV) (twisted cohomology)

and for n =1 the obstruction is expressed by

In both cases the obstruction can be killed by taking g large
enough., The 1-1 part of the lemma can be proved similarly, or,

alternatively, can be deduced from the onto part using the inclusion

(A1 x v ) y (8111 x x )} —> {411 x ¥_}.
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§5. R-nilpotent spaces

In this section we discuss the notion of R-nilpotent spaces,

i,e, spaces for which the Postnikov tower can, up to homotopy, be
refined to a tower of principal fibrations with simplicial R-modules
as fibres. It turns out that the R-nilpotent spaces are exactly the

spaces for which the natural map

x} — {RSX}

is a weak pro-homotopy equivalence. Useful examples are simplicial

R-modules and the spaces RSX for s < =,

We start with defining:

5.1 R-nilpotent groups. A group G is said to be R-nilpotent

if it has a finite central series
G = G D oeee D Gj D eee D G = %

such that each guotient Gj/Gj+l admits an R-module structure (which

by [Bousfield-Kan (CR), 2.5] is unique.

Clearly a Z-nilpotent group is the same as a nilpotent group,

and more generally (see Ch.V, 2.6), a Z[J_l]—nilpotent group is the

same as a uniquely J-divisible nilpotent group. It is also evident

that a Zp-nilpotent group is the same as a nilpotent group in which

the order of each element divides pk for some fixed k < =,

5.2 R-nilpotent spaces. A space X ¢ J*C will be called R-

nilpotent if
(i) X 4is nilpotent (Ch.II, 4.3), and
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(ii) wix is R-nilpotent for each i > 1.
An obvious example of an R-nilpotent space is any connected

simplicial R-module. And clearly a Z-nilpotent space is the same as

a nilpotent space (Ch.II, 4.3).

Now we state the main result of this section.

5.3 Proposition. For a space X € o, the following three

conditions are equivalent:

(i) X is R-nilpotent.

(ii) The natural map of towers

{x} —> {RSX}

is a weak pro-homotopy equivalence.

(iii) The Postnikov tower of X [May, p.3l] can, up to

homotopy, be refined to a tower of principal fibrations with as

fibres X(m,n)'s for which n > 1 and 7 admits an R-module

structure.

5.4 Corollary.

(i) If X e % is R-nilpotent, then X is R-complete, i.e.

the map ¢: X » R X is a weak equivalence.

(ii) If {X_} 1is a tower of fibrations in #,. such that each

Xg is R-nilpotent, then the map

b2 {xs} _ {RSXS}

is a weak pro-homotopy equivalence.

Proof of 5.3, (i) ~» (iii) 1is proved in the same way as Ch.II,
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4.7, using 5.7 below.

(iii) -+ (ii) is proved by combining 2.7, 3.6, Ch.II, 2.2 and
Ch.I1I1, 2.7.

(ii) » (i). It follows from 3.3 that (ii) implies that each
X(S) is, up to homotopy, a retract of (ka)(s) for some Xk (which
depends on s). Using 5.6 and 5.8 below and Ch.II, 4.2, it is now

not hard to show that each X(s) is R-nilpotent. This implies (i).

5.5 Proposition. Let p: E + B ¢ JQC be a principal fibration

with connected fibre F. If any two of F, E and B are R-nilpo-

tent, then so is the third.

This follows easily from 5.8 below and Ch.II, 4.2.

Combining 5.5 with Ch.II, 2.6 one gets:

5.6 Corollary. Let X ¢ “«c+ Then R.X is R-nilpotent for

5.7 Lemma. Let G be an R-nilpotent abelian group on which a

group 1 acts nilpotently. Then there is a finite sequence of sub-

groups of G

G = G D ese D G. D ese D G = *
1 j n

such that for each j

(i) Gj is closed under the action of m,

(ii) the induced action on Gj/G is trivial, and

j+l
(iii) the quotient Gj/65+1 ‘admits an R-module structure.
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Proof. The "center of G

group

{g e G|

xg = g for all

85

under the action of 7", i.e. the

x € m}

is R-nilpotent by 5.8 below, because it is the kernel of a homomor-

phism from G to a product of copies of G.

of G

G under the action of =n".

5.8 Lemma. Let f: G » H

The desired filtration

can thus be obtained by taking the "upper central series of

be a homomorphism between R-nil-

potent groups. Then ker f is

R-nilpotent; and if the image of £

is normal in H, then coker f

is also R-nilpotent.

Proof. If G and H are

admit R-module structures since
[Bousfield-Kan (CR), 2.4].

In the general case choose

G = G D e D G, how}
1 ]

H = H D e+« D H. po
1 ]

such that for each 3j

i fG. € H. and

(i) 3 5

(ii)

Gj/Gj+l and Hj/Hj+l

R-modules, then ker £ and coker £

f 1is necessarily R-linear

central series

2 G

Il
*

D> H

H]
*

admit R-module structures.

{The desired pair of central series can be obtained by reindexing an

arbitrary pair). The map f

p.51]

a_:

induces additive relations [MacLane,

st 64/CG541 —> Hype/Hyin
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given by ds[x] = [fx] for each x ¢ Gj with fx e H Using

j+s”
these relations one obtains a spectral sequence of R-modules.

Passing to the E_-term, one gets that the abelian groups
(Gj+l(ker £ n Gj))/Gj+l

Hj/(H (im £ N H ))

j+1 j+1

admit R-module structures. But these abelian groups are precisely

the quotients of the central series
{ker £ N Gj} for ker £
{im (Hj —> coker f)} for coker f (if it exists)

This proves the lemma.
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§6. The tower lemmas

To simplify the formulation of the tower lemmas we define a

notion of

6.1 R-towers for a space X. By an R-tower for a space

X € /4o we mean a tower of fibrations {Ys} in J4 together with

a map {X} » {Ys} which induces, for every i > 1, a pro-isomorphism
{B; (X; R)} = {Hi(Ys; R)}
or equivalently (see 6.7), for every R-module M, an isomorphism
R * *
lim H (Y. ; M) = H (X; R).
- S

Then one has the main

6.2 Tower lemma. Let X ¢ Yo and let f£f: {X} ~» {Ys} be an

R-tower for X. Then f induces a weak pro-homotopy equivalence

{Rsx} ot {RSYS}

and hence a homotopy equivalence

RX = ilm RSX = llm RSYS = ilm Rst .

This result can be strengthened by requiring that each Ys is

R-complete or even R-nilpotent:

6.3 R-complete tower lemma. Let X € o,, and let

£: {x} ~» {Ys} be an R-tower for X such that each Y  is R-complete.
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Then the induced map

ilm YS > ilm RSYS = ilm RmYS

is a homotopy equivalence and hence 1lim Y already has the same
«

homotopy type as R_X.

6.4 R-nilpotent tower lemma. Let X € J+c and let

£: {X} » {Ys} be an R-tower for X such that each Y_ is R-nil-

potent. Then the towers {Ys} and {Rsx} have the same “"weak pro-

homotopy type".

As one might expect, for every X ¢ J*C’ the natural map

{x} » {RSX} satisfies the conditions of all three tower lemmas.
This follows immediately from 5.6 and the following result of
[Dror (C)], which originally suggested the existence of the tower

lemmas.

6.5 Proposition. For every X e Sacr the natural map

{x} - {RSX} is an R-tower for X.

The above results (6.2-6.5) are easy consequences of 5.4, the

triple lemma (Ch.I, 5.6) and

6.6 Proposition. Let {Xs} - {YS} be a map of towers of

fibrations in o,,. Then the induced map

{RSXS} _—> {RSYS}

is a weak pro-homotopy equivalence if and only if the induced map

{RXS} —_ {RYS}
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is a weak pro-homotopy equivalence, i.e. if and only if, for every

integer i > 1, the induced map

{Hi(xs; R} } —> {Hi(Ys; R) }

is a pro-isomorphism.

Proof. To prove the "if" part, observe that 3.4 implies that
the maps {Rnxs} -> {Ran} are weak pro-homotopy equivalences for all
n > 1. The desired result now is not hard to prove, using 2.7, Ch.I,
6.1 and Ch.X, 6.3.

The "only if" part is an easy consequence of 3.4 and the fact
that  ¢,: H,(X; R) » H,(RX; R) has a natural left inverse (Ch.I,

5.4).

We end this section with a result which may help clarify the

notion of R-tower.

6.7 Proposition. Let X e o,. and let {Y_} be a tower of

fibrations in #,.. For amap {X} » {y_} the following four

conditions then are equivalent:

(1) {x} » {Ys} is an R-tower for X.

(ii) For every injective R-module I

Kl * *
lim H (Y_; I) = H (X; I)
- S

(iii) For every R-module M

* *
lim H (Y_; M) = H (X; M)
> S

(iv) For every R-nilpotent space V ¢ % which is fibrant
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(i.e. V > * 1is a fibration)

lim [y, vty s g, v 0<n<wo,

Proof. (i)<{<=>(ii). This follows from the fact that

H*(X; I) = HomR(H*(X; R), I)

*
(ii) =2 (iii). Suppose (ii) and let I  be an injective

resolution for M. Then for each t
1i ¥ *
+1m HomR(Ht(YS, R), I ) = HomR(Ht(X, R), I)
and hence, for n > 0,
lim Ext®(H,(Y ; R), M) = ExtD(H,(X; R), M)
b R * s’ 7 R * ’ ’ .

Now (iii) can be deduced using the universal coefficient spectral
sequence.

(iii) =>(ii). This is easy.

(iii) => (iv). Suppose (iii) and express the Postnikov space

v(n)

as the inverse limit of a finite tower of principal fibrations
with as fibres K(m,n)'s for which n > 1 and 7 admits an R-
module structure (5.3). Then (iv) follows by an untwisted version of

the argument used to prove 4.3.

(iv) ==>(iii). This again is easy.
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§7. Tower version of the mod-R fibre lemma

As promised in 3.5, we now prove the

7.1 Tower version of the mod-R fibre lemma. Let E - B ¢ J;C

be a fibration with connected fibre F and let the (Serre) action

of mB on each Hi(F; R) be nilpotent. Then the induced map of

towers of fibrations

{RF} —> (F)}

]
where Fg denotes the fibre of the map R.E ~ RsB, is a weak pro-

homotopy equivalence.

This result easily implies the mod-R fibre lemma (Ch.II, 5.1),

and thus our proof below can be used in place of the earlier proof

(Ch.II, §6).

Proof (not using Ch.II, 5.1). Using Ch.X, 4.9, one can show

that the maps F; -> F;_l are fibrations, while Ch.I, 6.2 implies that

the F; are connected. Furthermore it is not hard to show, using

5.7, 5.8 and Ch.II, 4.2, that the F; are R-nilpotent. By the R-
nilpotent tower lemma (6.4) it thus remains to show that the natural

map {F} - {F;} is an R-tower for F.

To do this we consider the (obvious) map from "the Serre spectral
sequence of the fibration E - B" to "the tower of Serre spectral
sequences of the fibrations RsE > RSB“ and show, by induction on k

that

(i)k this spectral sequence map is a pro-isomorphism on

2
Ep,k for all p, and
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L) ' . I3 s
(ii), the map {Hk(F; R)} » {Hk(Fs; R)} is a pro-isomorphism.

For this we need the following tower version of the Zeeman

comparison theorem, c.f. [Quillen (PG), 3.8]:

7.2 Tower comparison lemma. Let

2 £ 2
{Ep,q(xs) ——>Hp+q(xs)} —_ {Ep’q(Ys) =-—_>Hp+q(Ys)}

be a map of towers of first quadrant spectral sequences of homologi-

cal type. If Hn(f) is a pro-isomorphism for all n and E; q(f)
7

is a pro-isomorphism for g < k, then

(i) Eg x(f) is a pro-isomorphism, and
4
(ii

) Ef k(f) is a pro-epimorphism (i.e. the cokernel is pro-
’

trivial).

Continuation of the proof of 7.1. Clearly (6.5) (i), and
(ii)o hold. Now assume (i)j and (ii)j for 0 < j < k. Then
(6.5) the map (Hi(E; R)} » {Hi(RsE; R)} is a pro-isomorphism for

all i > 0 and hence 7.2 implies that the spectral sequence map is a

pro-isomorphism on Eg x and a pro-epimorphism on Ei x*
4 ’

Next put
M = H,_(F; R) d M. = H(F; R)
- k' an s k' s’
and let
I ¢ 2n.B and I ¢ Zn.R B
1 s 17s

denote the augmentation ideals of the group rings. As nlB acts

nilpotently on each Hi(F; R) and as (in view of 5.6 and Ch.II, 4.5

and 5.4) ansB acts nilpotently on each Hi(F;; R), it is not hard

to see that, in order to obtain (i)k and (ii)k, it suffices to show
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that for all n > 1

(iii)n the maps

n n
{Hp(B; M/ITM)} —> {HP(RSB; M /I M)} P

Iv
o

n n
{M/1 M} —> {MS/ISMS}

are all pro-isomorphisms.

This is again done by induction. The case n = 1 1is clear

since
HO(B; M) x M/IM and HO(RSB; Ms) = Ms/IsMs .
For the induction step one considers the map from the exact sequence
er —>H (B; M) —> H) (B; M/I"M) — H (B; I"M) —>
—> Hy(B; M) —> Hj(B; M/I™M) —> *

to the tower of exact sequence involving the R_B and M. Using

the five lemma (2.7) one gets that the map

n+lM }
s

n n+1l - n n - n
{r"'M/1"" M} = {HO(B; IM)} —> {H, (R_B; ISMS)} p {ISMS/I <

is a pro-isomorphism and from this one readily obtains (iii)n+l.
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§8. An Artin-Mazur-like interpretation of the R-completion

We first give a brief general exposition of Artin-Mazur comple-
tions [Artin-Mazur, §3], and we then show that, up to homotopy, the
R-completion of a space may be obtained in two steps:

(i) an Artin-Mazur completion yielding a "pro-homotopy type".

followed by
(ii) a "collapsing"” of the Artin-Mazur completion to an ordinary
homotopy type.

The proof is based on the observation that, roughly speaking, {RSX}
is cofinal in the system of R-nilpotent target spaces of X (see 8.3).
This Artin-Mazur-like interpretation may help to clarify and

justify the R-~completion; however, the reader interested in "real
mathematics" may safely skip this section. A different Artin-Mazur-

like interpretation of the R-completion is given in Chapter XI.

To explain Artin-Mazur completions we need

8.1 Categories of pro-objects [Artin-Mazur, Appendix]. Let ¢

be a category. A pro-object over ¢ then is an I-diagram (Ch.XI, 3.1)

over ¢ where I is a small left filtering (Ch.XI, 9.3). The pro-

objects over ¢ form a category pro-C with maps defined by

Hompro_c(ﬁ, Y) = ilmj(ilmi Homcjgi, Zj)

where X = {X,}

i oer and Y = {Yj}.

j e J’
Clearly C is a full subcategory of pro-C , and any functor

T: ¢ - 5 prolongs in an obvious way to a functor

pro-T: pro-¢ —> pro-J5.
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Note that in §2 we were "really" working in the category
pro-(groups); for instance, a map of group towers is a pro-isomorphism

(2.1) if and only if it corresponds to an isomorphism in the

category pro-(groups).

We can now introduce a categorical version of

8.2 The Artin-Mazur completion [Artin-Mazur, §3]. Let % be a

full subcategory of a category ¢, with inclusion functor u:m +C;;
and for each object X € ¢, let p\X denote the category whose
objects are maps X + M ¢ ¢ with M €, and whose maps are the

commutative triangles

/M
X
\M'
Then pro-m is a full subcategory of pro-¢ and one has:

If, for each X € @, there exists a left cofinal (Ch.XI, 9.3)

functor I + u\X, where I 1is a small left filtering, then the

inclusion functor

pro-u: pro-f —> pro-_¢

has a left adjoint

U: pro-¢ ——> pro-m .

Thus, for X € pro-@ , the adjunction map X + UX € pro-¢ is

the universal example of a map from X to an object of pro-m ; and

we shall call UX the Artin-Mazur completion of X.
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For X €€, it can be shown that, as one might expect,
UX € pro-/; is represented by any diagram I +7 obtained by com-
posing the canonical functor \X + 7 with a left cofinal functor
I » u\X where I is a small left filtering; and the map

X » UX € pro~-C 1is also represented in the obvious way.
Using the above machinery, one can construct many different
Artin-Mazur completions in homotopy theory; however, for our

interpretation of the R-completion we shall need:

8.3 A mod-R Artin-Mazur completion in homotopy theory. Let

Vo be the connected pointed homotopy category (i.e. the full sub-

category of connected spaces in the usual (Ch.VIII, §4) pointed

homotopy category); and let

=3
Ng
»

be the full subcategory of R-nilpotent spaces with only a finite

number of non-trivial homotopy groups. Then, for any X € LAY the

system
o (X} —> {(rx) 5}

(where {(RSX)(S)} is the "Postnikov tower" of {RSX}) can be

viewed as a tower in u\X; and by 6.7 this tower is left cofinal in

U\X and thus, by 8.2, the inclusion

pro-u: proﬁmR ] proﬂvo

has a left adjoint

Ug:  Pro—x, —_— Pro-Mp -
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Moreover, for X ¢ uo, the Artin-Mazur completion URX € pro-mR is

represented by the tower {(RSX)(S)}.

For our interpretation of the R-completion we also need;

8.4 Collapsing of pro-homotopy types into homotopy types. Let

VO be, as in 8.3, the connected pointed homotopy category, and let
X € pro—N0 be a pro-object which is isomorphic in pro—i{0 to some
tower over LA (This is automatic if the index filtering of X has
countably many maps). Then one can collapse X to a well-defined
pointed homotopy type in the obvious way, i.e. one chooses a tower of
fibrations {Y_} over J,. such that {Y_} = X ¢ pro¥, and takes
the pointed homotopy type of iim Ys' which is well-defined by a
version of 3.1. Unfortunately, this collapsing does not seem to be
functorial in X, unless one imposes stringent finiteness conditions

a la [Sullivan, Ch.3].
We now conclude with the promised

8.5 Interpretation of the R-completion of a space. Combining

8.3 and 8.4, it is clear that for X ¢ Jrg the homotopy type of

R_X can be obtained by:

(i) taking the Artin-Mazur completion URX, which is a "pro-

homotopy type" represented by {(RSX)(S)}; and then

(ii) "collapsing" this pro-homotopy type to a homotopy type,

which is represented by iim(RSX)(s) = R_X.

An obvious defect in this approach to the R-completion is the

lack of functoriality. One way around this difficulty is to impose

stringent conditions, such as the finiteness conditions of [Sullivan,
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Ch.3]. Another way is, not to work in the homotopy category; this
approach is taken in Chapter XI, where we show that "collapsing"

then becomes "taking homotopy inverse limits".
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Chapter IV. An R-completion of groups and its

relation to the R-completion of spaces

§1, Introduction

In this chapter we introduce, for any solid (Ch.I, 4.5) ring R,

an Artin-Mazur-like R-completion of groups and show that it can be

used to construct, up to homotopy, the R-completion of spaces. The

theoretical basis for this is in Chapter III, where we developed a
flexible "tower lemma" approach to R-completions. In more detail:

We define the R-completion of a group as the inverse limit of
its R-nilpotent (Ch.III, 5.1) target groups. For finitely generated
groups and R = Zp, this R-completion reduces to the p-profinite
completion of Serre, and for nilpotent groups and R = Q, it coincides
with the Malcev completion. Like any functor on groups, this R-com-

~

pletion functor g ©On groups induces a functor on reduced spaces

(i.e. spaces with only one vertex) as follows:

(i) Replace each reduced space X by its so-called loop group
GX. This is a simplicial group, which is free in every dimension,
and which has the homotopy type of "the loops on X".

(ii) Next apply the "R-completion of groups"” dimension-wise to
1P g

GX. This yields a simplicial group (GX)R.
(iii) Take the classifying space W(GX)R of the simplicial

group (GX)R.

Our main result then states this classifying space W(GX)R has the

same homotopy type as R _X, the R-completion of X.

The chapter is organized as follows:

§2 Here we define the R-completion of a group, give various
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examples, and show that the R-completion of a group B can also be
obtained as the inverse limit of a tower of R-nilpotent groups which
can be described in terms of the functors Rs of Ch.I, §4, namely

B z lim 7
“

R RSK(B,l).

1

§3 contains a variation on the R-nilpotent tower lemma of

I

Ch.III, 6.4, which we need to efficiently formulate our main result

(in §4).

§4, 56 and §7 1In 54 we state the main result mentioned above.

In fact, we make the slightly stronger statements that (in the sense
of Ch.III, §3)

(i) for general R, the towers of fibrations

{Wr_ex} and {rR X}

where Ts = ansK(—,l), have the same weak pro-homotopy type

(ii) if R = Z, then the towers of fibrations

{W(cx/ ['sz) } and {r X}
have the same weak pro-homotopy type (r; denote the lower central

series functors), and

(iii) if R = Zp, then the towers of fibrations

{W(cx/ ['s(P)Gx)} and {R_X}

have the same weak pro-homotopy type (rg(p) denote the p-lower

central series functors).
A proof of (i) which uses (ii) is given in §4, (iii) is proven

in 56, and a proof of (ii) which uses (iii) is given in §7,
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§5 contains some applications:

(i) A slight strengthening of the relative connectivity lemma

(Ch.I, 6.2(ii)) to: "the homotopy type of R_X in dimensions

% k" depends only on "the homotopy type of X in dimensions < k".

(ii) A first quadrant spectral sequence which, for every
simplicial group B, goes to m,R _WB.

(iii) If F 1is a free group, then
L
R K(F, 1) = K(FR, 1).

(iv) A countable wedge of circles is Z-bad and Zp~bad (in the

sense of Ch.I, §5).

(v) A generalization of the Curtis convergence theorem to

nilpotent spaces.

(vi) A generalization to fibre-wise completions.

Notation. 1In this chapter we will mostly work in the category

Jo of reduced spaces, i.e. spaces with only one vertex. The reason

for this is that the functors G and W are adjoint if one restricts
oneself to reduced spaces, but not if one uses pointed connected
spaces (in which case the functors G and W are only "adjoint up
to homotopy"”).

Of course (Ch.I, 4.5) we again assume throughout that the ring

R is solid.
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§2. The R-completion of a group

We define an Artin-Mazur-like R-completion of groups, which, for

finitely generated groups and R = Zp (the integers modulo a prime

p), is the p-profinite completion of [Serre], and which, for nil-

potent groups and R = Q (the rationals) is the Malcev completion

[Quillen].

It turns out that this R~-completion of groups can also be
described in terms of the functors RS which we used in Ch.I, §4 to
obtain the R-completion of a space.

We start with recalling from Ch.IXII, 5.1 the notion of

2.1 R-nilpotent groups. A group N is called R-nilpotent if

N has a central series

1]
*

N = N D ees D Nj D ese D N

such that, for each j, the quotient group Nj/Nj+l admits an R-

module structure. For instance:

(i) 2Z-nilpotent groups are groups which are nilpotent in the
usual sense.
(ii) If f: N+ N is a group homomorphism between R-nilpotent

abelian groups, then ker £ and coker £ are also R-nilpotent

(Ch.III, 5.8).
(iii) 1If R, is as in Ch.I, §4, then, for every space X € J*C’

the groups w®;R_X are R-nilpotent for all i and s < « (Ch.III,

5.6).

Now we define
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2.2 The R-completion of a group. The R-completion of a group

B is the group BR obtained by combining [Artin-Mazur, §3] with an
inverse limit, i.e. by taking the inverse limit [Artin-Mazur, p.l147]
of the functor which assigns to every homomorphism B + N, where N

is R-nilpotent, the group N, and to every commutative triangle

with N and N' both R-nilpotent, the map N + N'. The required
inverse limit exists, because the above large diagram of R-nilpotent
groups has a cofinal small diagram given, for example, by the tower
{ansK(B, 1)} (This will follow from the proof of 2.4).

Clearly this R-completion is a functor and there are natural

maps

¢ ~ ~A ~

B — B, and BR"’—>B

~

such that {_R’ ¢, ¥} 1is a triple on the category of groups.

2.3 Examples. It is not hard to see that the above definition

implies:

(i) If B is R-nilpotent, then (of course)

(ii) If R = % (the integers), then

~

Bp = lim B/[;B
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where {f;B} is the lower central series of B (see [Curtis (H)]).
More generally one has:

(iii) Always

Bp = ilm (B/riB)R‘

This follows from the fact that, for every R-nilpotent group N,

there is a natural isomorphism

Hom (B, N) = iim Hom (B/r;B, N)

(iv) If R = Zp, then

~

- . (p)
By = %lm 13/|’i B

where {fi(p)B} is the p-lower central series of B (see [Rector
(AS)]). A special case of this is:

(v) If R = Zp and B is finitely generated, then

o]
n

the p-profinite completion of B

of [Serre, p.I-5]}, and thus, if B 1is also abelian, then

B * (the p-adic integers) @& B

(vi) If R=Q and B is nilpotent, then (see Ch.V, §2)

B = the Malcev completion of B

A

of [Malcev] and [Quillen (RH), p.279] and the map ¢: B + BR is

universal for maps of B into nilpotent uniquely divisible groups,
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and thus, if B is also abelian, then

BR x R & B.

We end with the observation that the R-completion of an arbitrary
group can also be obtained as the inverse limit of a tower of R-nil-
potent groups which is somewhat different than 2.3(iii) and which can

be described in terms of the functors Rs of Ch.I, §4:

2.4 A reduction lemma. Let B be a group. Then there is a

natural isomorphism

BR ™ 11m ﬂleK(B, 1)

such that the following diagram commutes

B x an(B, 1)
$ $
BR x 11m ansK(B, 1).
Proof. As (2.1(ii)) ansK(B, 1) is R-nilpotent for all s < «

it suffices to show that, for every R-nilpotent group N,

lim Hom R K(B, 1), N) = Hom
-> S

(groups)(“l (groups)(B’ N)

or equivalently that there is a 1-1 correspondence of pointed

homotopy classes
lim [RK(B, 1), K(N, 1)] = [K(B, 1), K(N, 1)].

But this is the case, in view of Ch.III, 6.5 and 6.7.
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§3. A variation on the R-nilpotent tower lemma

In order to be able to efficiently state the main results of

this chapter (in §4) we formulate here a group-functor version of the

R-nilpotent tower lemma (Ch.III, 6.4).

First we recall from [May, p.l118, 87 and 122] a few facts about

3.1 The loop group functor G and the classifying functor W.

The loop group functor G assigns to every space X € JO (the

category of reduced spaces,bi.e. spaces with only one vertex) a

simplicial group GX which has the homotopy type of "the loops on

X", and which is a free group in each dimension. Conversely, the

classifying functor W assigns to every simplicial group L a

reduced space WL such that L has the homotopy type of "the loops

on WL". Furthermore the functors G and W are adjoint and the

resulting natural map

X —> WGX E"o

is a weak (homotopy) equivalence for all X e JO.

To simplify the formulation of our tower lemma we next introduce

the notion of

3.2 R-towers of group-functors. By this we mean a tower {TS}

of functors and natural transformations between them

e =T, —>T | —> v —>T) —>T_; = *

]
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where each TS is a functor

TS: (groups) ——> (qroups),
together with a tower map
{1a} ——> (1.}

such that for every free group F

(i) the homomorphism TSF > Ts_lF (s > 0) is onto, and its

kernel is an R-module contained in the center of TSF, and
(ii) the induced map of group homology
{5, (F; R)} —> {Hi(TSF; R) }
is a pro-isomorphism (Ch.III, §2) for all i > O.

Now we can finally state:

3.3 The group functor version of the R-nilpotent tower lemma.

Let {1d} » {T_} be an R-tower of group functors. Then, for every

xen’ol

(i) the spaces WTSGX are R-nilpotent (Ch.III, 5.2), and

(ii) the induced tower map

{x} — {WTsz}

is an R-tower for X (Ch.III, 6.1).

Thus (Ch.III, 6.4) the towers of fibrations {WTSGX} and {RSX}

have the same "weak pro-homotopy type" and hence

W ilm TSGX = ilm WTSGX and R X
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have the same homotopy type.

Proof. It is not hard to see that the map WTSGX > WTs_lGX is
a principal fibration with as fibre the simplicial R-module WKSGX,
where K_GX denotes the kernel of T_GX » T__,GX. Hence (Ch.III,
5.2 and 5.5) the spaces WTSGX are R-nilpotent.

In order to show that the maps
{H; X; R} —> {H; (WP _GX; R)}

are pro-isomorphisms we recall from [Quillen (PG), 2.1] and [Quillen
(8s)] that, for a simplicial group L one can form the simplicial
space (i.e. double simplicial set) K(L, 1) and its diagonal

diag K(L, 1), and that

(i) there is a natural first quadrant homology spectral

sequence

1 .
E = H (K(L_, 1); P ’ ; ’
Peq q( ( o' ); R) Hp+q(d1ag K(L, 1); R)

(ii) diag K(L, 1) is homotopically equivalent to WL and hence

there is a natural isomorphism

H,(diag K(L, 1); R) = H,(WL; R).

One now easily proves the desired pro-isomorphism, using the map of

pro-spectral sequences induced by the map {GX} - {TSGX}.
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§4. A relation between the "R-completion of a

group" and the "R-completion of a space"

Our main result in this chapter is, that the "R-completion of a

group" can be used to obtain, at least up to homotopy, the "R-comple-

tion of a space". More precisely, any functor

T: (groups) ——» (groups)

gives rise to a functor on reduced spaces (3.1)

G T (dimensionwise) 7
Jb — (simplicial groups) v —> (simplicial groups)-——)Jb

and if T is the R-completion functor for groups (2.2), then the

resulting functor WIG is homotopically equivalent to the R-comple-

tion functor for spaces R, . 1In fact, the following somewhat strong

result holds:

4.1 Proposition. The map

¢: {14} — {ﬂlRSK( , 1)}

is an R-tower of group functors and hence (3.3), for every X ¢ JO’

the towers of fibrations

{Wr,R_K(GX, 1)} and {rR X}

have the same "weak pro-homotopy type” and (2.4) the spaces

W(eX)p = lim WmRK(G, 1) and R_X

have the same homotopy type.
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For R=2 and R = Zp one also has:

4.2 Proposition. Let {r;} denote the lower central series

functors [Curtis (H)] and let R = Z (the integers). Then the

natural map
{1d} — (1a/[}

is an R-tower of group functors and hence (3.3), for every X € JO'

the towers of fibrations

{Wex/[ 6x)} and {r_x}
S — S

have the same "weak pro-homotopy type".

4.3 Proposition. Let p be a prime, let {r;(p)} denote the

p-lower central series functors [Rector (AS)] and let R = Zp {the

integers modulo p). Then the natural map

{14} — (1a/7,®))

is an R-tower of group functors and hence (3.3), for every X ¢ JO'

the towers of fibrations

{(W(Gx/ rs(p) GX) } and {rR X}

have the same "weak pro-homotopy type".

We give here a proof of proposition 4.1 which uses proposition
4.2, A proof of proposition 4.2 will be given in §7 and uses, in

turn, proposition 4.3, which we prove in §6.



Ch. 1v, §4 111

Proof of 4.1 (using 4.2). It is not hard to see, using Ch.II,

2.5 and Ch.I1II, 5.5, 5.6 and 5.8, that condition 3.2(i) is satisfied.
To prove condition 3.2(ii) we observe that, by 4.2 and Ch.III,

6.6, the map
{m,RK(F, )} —> {ﬂiRSK(F/r;F, 1)}

is a pro-isomorphism for all i and the following two lemmas now

imply the desired result.

4.4 Lemma. If B 1is a torsion-free nilpotent group, then

{niRsK(B, 1)} is pro-trivial for all i > 1,

Proof. The case where B 1is torsion-free abelian follows from
the fact [Bousfield-Kan (HS), §15] that in the homotopy spectral

sequence of K(B, 1) (Ch.I, 4.4)
B3 S(K(B, 1); R} = 0 for t-s # 1.

The general case follows from Ch.III, 3.6 because the upper central

series of B has torsion free abelian quotients [Lazard, p.160].

4.5 Lemma, If {niRSK(B, 1)} is pro-trivial for i > 1, then

the maps
{Hi(B; R)} — {Hi('ansK(B, 1); R)}

are pro-isomorphisms for i > 0.

Proof. As the Postnikov map {RSK(B, 1} ~» {(RSK(B, l))(l)} is

a weak pro-~homotopy equivalence, Ch.III, 3.4 implies that the maps
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{5, (RK(B, 1); R} —> {1, ((RK(B, 1)) V)5 Rr))

are pro-~isomorphisms and the desired result now follows from the fact

that, by Ch.III, 6.5, the maps
{Hi(K(B, 1); R)} — {Hi(RsK(B, 1); R}

are also pro-isomorphisms.
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§5. Applications

In this section we give several applications of 4.1.
We start with a slight strengthening of the relative connectiv-

ity lemma of Ch.I, 6.2 and show that "the homotopy type of R _X in

dimensions < k" depends only on "the homotopy type of X in

dimensions < k".

5.1 Proposition. Let %k > 0 and let f: X > Y ¢ #, be such

that n.f: m.X - mY is an isomorphism for i < k and is onto for

i = k+l. Then the induced map TiRLE: MIRX > MRY is also an

isomorphism for i < k and onto for i = k+l.

Proof. We may assume that f is 1-1 in dimensions < k and is
onto in dimension k+1. Then W(Gf)R has the same properties and

the desired result thus follows from 4.1.

For a simplicial group L one can apply the spectral sequence
of a double simplicial group of [Quillen (SS)] to the double

simplicial group GK(L, 1)R and get

5.2 Proposition. For any simplicial group L there is a first

quadrant spectral sequence with

E = R K(L, 1
p.q TqpReK { )

which converges to WB.

R
ptq @

Another immediate consequence of 4.1 is:
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5.3 Proposition. Let F be a free group. Then

m

n
!

1RK(F, 1)

T RK(F, 1) for i 4 1.

il
»*

Using this we can now prove (see Ch.I, §5):

5.4 Proposition. Let F be a free group on a countable

number of generators, and let R =2 or R = Zp. Then K(F, 1) is

R-bad, i.e. (Ch.I, §5) the map H,(K(F, 1); R) + H (R K(F, 1); R) is

not an isomorphism.

Proof. We assume here R = Z, but a similar proof, using the

lower p-central series, works for R = Zp. Writing F instead of

Z'

not onto.

F it clearly suffices to show that the map F/r;F + F /r;F is

Let x5 i (i > j) denote the generators of F, let
r

b = X s [x ses, X ] ) e F

[x2,lf 2'2] n,l'

~

where [ ,+++, ] 1is the simple commutator, and assume that b ¢ réF ,

i.e. b can be written
b= uy, uyl wer fugp g Uyl u, € F .

Let Fn denote the free group on the generators x Pttty X and

let PL* F - Fn be the projection. Then

~ ~ ~

pnb = [xn,l’...'xn,n] = [pnul’pnuZ] o [pnu2k—l’pnu2k] € Fn'

A straightforward computation shows that ([x s ,X n] does not
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lie in the subgroup of F_  generated by [,[,F ~and [ and

+1Fn
hence there is, for each n, at least one i such that PLY; has

non-zero image in Fn/riFn‘ But this contradicts the fact that, for
each j, there is only a finite number of n's such that PLUy has

non-zero image in F_/[,F . Hence b * [,F .

5.5 Remark. Proposition 5.4 can certainly be improved, but we
do not yet know the best possible result. It should not be hard to
show that K(F, 1) is R-bad for any (solid) ring R and any
infinitely generated free group F. However, it is an open guestion
whether XK(F, 1) is Zp-bad or Zp-good if F 1is a finitely generated

free group, although we know that K(F, 1) 1is Z-bad for some finite-

ly generated free group F. This follows because the projective

plane P2 is Z-bad (Ch.VII, §5) and because one can show, for any

(solid) ring R, that if XK(F, 1) were R-good for every finitely

generated free group F, then all spaces X € o of finite type (i.e.

X, finite for all n) would also be R-good.

Another application of §4 is the following generalization to

nilpotent spaces, of

5.6 The Curtis convergence theorem. For X e o, [Curtis (H),

r
s,tx}
using the homotopy exact couple of the lower central series filtra-

p.393] defined the lower central series spectral sequence {E

tion
Gx = [;6Xx 2 [,6Xx D=
and showed that the initial term

- ~ s
Eg (X = nt(['scx/[‘s+lcx) = mlL (Gx/[‘zcx)
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depends only on H,({(X; Z). Moreover [Curtis (H)] and later [Quillen

(PG) ] showed that, for X simply connected, {E: tx} converges
’
strongly to m,X, thereby giving a "generalized Hurewicz theorem".

Now let X € 7/+c be nilpotent. Then
{x} — (x} and x} —> {W(GX/I’SGX)}

both satisfy the conditions of the Z-nilpotent tower lemma (Ch.III,
6.4) and hence one immediately gets the following generalization of
the Curtis convergence theorem to nilpotent spaces:

If X e oJ,, is nilpotent, then the tower map

{n GX} —> {m (cx/ [‘scx) }

is a pro-isomorphism for t > 0 and hence {Eg tX} converges
e ’

strongly to Tm,X in the following sense:

(i) For each (s,t) there exists a number ro(s,t) such that

r R
Es,t Es,t for r > ro(s,t).

(ii) For each t there exists a number so(t) such that
o
Es,t =0 for s > so(t).

PR o [~

(iii) For each t, the terms El'tX’ ’ Eso(t),tx are the
quotients of a finite filtration of ntGX = “t+lx'

We end with indicating how the result of 4.1 can be generalized
to

5.6 Fibre-wise R-completions. For this one generalizes the

"R-completion of a group" to a “"fibre-wise R-completion of a group

homomorphism” as follows:

For a group homomorphism L + M, its fibre-wise R-completion will

be the map ﬁR + M 1in the commutative diagram of groups and
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homomorphisms

v
L 4

= Q—F——— =

A 4

~

in which both rows are exact and in which iR is the group with

generators

~

(1,h) leL, heK
and relations

(lk,h) = (1,kh) k ek, 1eL, heKp

~

(1,h)(1',n") = (11',1'(h)n") 1,1' € L, h,h' ¢ Kp

where, for k € K, we denote by the same symbol its images in L and
K;, and where, for 1' ¢ L, we use the same symbol to denote the
automorphism of K;, which is the R-completion of the automorphism of
K which, in turn, is the restriction of the inner automorphism of L
induced by 1'.

Using this it is now not hard to construct, for a fibration
X + B e Jb with fibre F, a fibration with B as base, W(GF); as

fibre and of which the total space

W(GX)R Xgep B

has the same homotopy type as the fibre-wise R-completion éwx of

Ch.I, §8.
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§6. Proof of proposition 4.3

We have to prove that for every free group F the map

. (p)n.
{H, (F; zp)} —> H (F/[ P zp)}

is a pro-isomorphism for all i > O.

For this we need the following result of [Stallings]:

6.1 Lemma. If N is a normal subgroup of a group B, then

there is a natural exact sequence

H, (B; Zp) —> H, (B/N; Zp) —> N/ (B#N) —> H; (B; Zp) —> Hl(B/N; Zp) - *

where B#N is the subgroup of N generated by all elements of the

form
bnb~1n~1 beB, neN

n € N.

Using this we prove:

6.2 Lemma. If F is a free group, then the map

iy /PR 7)) — /[ PEs 2 )

is zero for all s > 1.
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Proof. Applying 6.1 to r;(p)F c F one obtains
H2(F/|'S(p)1='; 2) = [’S(P)F/(F#I'S(p)f')

and the lemma now follows from the fact that r;ép)F c F#r;(p)F.

Next we show

6.3 Lemma. If F is a finitely generated free group, then

the map
, (P)g.
By (F3 2,0} — (1, (F/[FFs 2)))

is a pro-isomorphism for all i > 0.

Proof. Since

i
"
(3]

?
i

'.l-
o

~

w !

2
oy
(=]
'.l

0
o
[

it suffices to prove for i 2 2

(6.3),: The pro-abelian group {Hi(F/r;(p)F; MS)} is pro-

trivial for any tower {MS} such that

(p)F'

(a) each M is a module over the Zp-group ring of F/r;

(b) each M is finitely generated as a Zp-module,

(c) each tower map M, > M is equivariant with respect to
F/ [ ®Plg 5/ I'S_(FI’)F.

To verify that (6.3)i implies (6.3)i+l for i > 2, let RS

s-1

denote the Zp—group ring of the finite group F/r;(p)F and define
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Ks by the short exact sequence

0 —> K, —> R, & M, Jult., Mg —> 0

of Rs-modules. Then
(p) ... . (p) ..
{Hi+l(F/r; F; M)} = {Hi(F/r; F; K}

since Hn(F/r;(P)F; R, ® M) =0 for n > 0. It thus suffices to

show (6.3)2.

For this let I, R be the augmentation ideal and take the

filtration
M. D IM Dese>d (I)IM Deee .,
s s s s s

Since the finite p-group F/f;(p)F must act nilpotently on the
finite abelian p-group Ms (Hall, p.47], it follows that (Is)qMs =0

for some g, depending on s. Moreover 6.2 implies that
(Plg, J j+l
{HZ(F/r; Fi (Ig)7M /(1) M)}

is pro-trivial for each Jj, since the coefficients are not twisted

and (6.3)2 now readily follows.
To generalize lemma 6.3 to proposition 4.3 we need the notion of

6.4 Functors of finite degree. A functor

T: (pointed sets) ——> (abelian groups)

is said to be of finite degree if

(i) T+ = 0, and
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(ii) there is an integer d > 0 such that, for every pointed
set X, the abelian group TX is generated by the subgroups
Txa < TX, where Xa € X runs through the pointed subsets of X
with < d elements other than =*.

This definition readily implies:

6.5 Proposition. If T is of finite degree and a ¢ TX 1is

non-zero. Then there is a map of pointed sets f: X » Y such that

(i) (Tf)a # 0, and

(ii) Y is finite.

Proposition 4.3 now follows easily from this proposition, 6.3

and

6.6 Lemma. Let

F: (pointed sets) ——> (groups)

denote the functor which assigns to a pointed set X the free group

generated by X with the relation * = 1. Then the functors

(P) py.
H, (FX/[ 7 FX; zp)

are of finite degree for all i and s.

Proof. This is verified by induction on s, using the

Hochschild-Serre homology spectral sequence for
(p) (p) (p) (p)
rs Fx/[—s+l FX —> FX/ [—s+l FX ——> FX/[—S FX

and the fact that each of the functors
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1 ([ (P py/ [_s_'(_lf)FX; z.)

is of finite degree because f;(p)FX/f;ig)FX 2 Lép)(ZpX) where
Lép)(sz) is the s-th component of the free restricted Lie algebra

(see [Rector (AS)]) generated by ZpX.
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§7. Proof of proposition 4.2 (using 4.3)

We have to prove that, for every free group F, the maps

{8, (F; 2)} — (1, (F/[F; 2)}

are pro-isomorphisms for all i > 0.

To do this recall from [Curtis (L)] that

v
=

l'sF/f's+lF x LS(F/FZF) s

where Lg is the s-th component of the free Lie ring functor. The
argument of the second half of §6 then shows that one only has to

consider finitely generated F. 1In that case, however, each of the

groups Hi(F/r;F; Z2) 1is also finitely generated, and thus it

suffices to show that the maps

{8, (F; R)} — {H,(F/[F; R)} i>o0

are pro-isomorphisms for R =Q and R = Zp’ p_Prime, or equivalent-

ly (Ch.III, 6.6):

7.1 Lemma. If F is a free group, then the maps

v
=

{m,RK(F, 1)} —> {n,RK(F/[F, 1)} i

are pro-isomorphisms for R =Q and R = Zp' P_prime.

This is an easy consequence of the following four lemmas:
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7.2 Lemma. For every group B and (solid) ring R, the map

{m RK(B, 1)} —> {ansK(B/['SB, 1)}

is a pro-isomorphism.

Proof. As (2.1(iii)) the groups RSK(B, 1) and

1
ﬂleK(B/r;B, 1) are nilpotent for 0 < s < =, it suffices to show

that, for every R-nilpotent group N,

ilm Hom(groups)("leK(B’ 1), N) = Hom(groups)(B’ N)

lim Hom K(B/[,B, 1), N) = Hom (B, N)

(groups)(ans (groups)

and this is an easy consequence of 2.4 and the easily established

fact that

lim Hom(groups) (B/[_SB, N) = Hom(groups) (B, N).

7.3 Lemma. If F is a free group and R is a (solid) ring,

then {niRsK(F/r;F, 1)} is pro-trivial for i > 1.

This follows immediately from 4.4:

7.4 Lemma. If F 1is a free group and R = Zp (p prime), then

{m,RK(F; 1)} is pro-trivial for i > 1.

Proof. By 4.3 the maps

{1, (F; R} —> {Hi(F/['s‘P)F; R) } i

v
[
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are pro-isomorphisms and hence, by Ch.III, 6.6, so are the maps
{m,R_K(F, 1)} —> {m,R K(F/r'(P)F 1)} i>1
i”'s ! i’s s ! ==

Since K(F/r;(p), 1) is R-nilpotent, it follows from Ch.III, 5.3

that each
(p) .
{niRtK(F/r; F, 1)} i, s> 1

is pro-trivial and this readily implies the lemma.

7.5 Lemma. If F is a free group and R = @, then

{m,RK(F, 1)} 1is pro-trivial for i > 1.

Proof. It was shown in [Bousfield-Kan (PP), 15.6] that for a
pointed connected space X the homotopy spectral seguence (Ch.I, 4.4)

satisfies

H, (X; Q)
E,(X; Q) = P Cotor (Q, Q)

where P denotes the primitive element functor. It follows that

S,t . ~ . - =
E,T(K(F, 1); Q) = L, H (K(F, 1); Q) t-s =1
= 0 t-s F 1
where L is as in the beginning of this section. This easily

s+1

implies the lemma.

3
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Chapter V., R-localizations of nilpotent spaces

§1. Introduction

The main purpose of this chapter is to show that, for R <& Q,
the R-completion of the preceding chapters is a localization with
respect to a set of primes, and that therefore various well-known

results about localizations of simply connected spaces remain valid

for nilpotent spaces (i.e. spaces for which, up to homotopy, the
Postnikov tower can be refined to a tower of principal fibrations).

In more detail:

§2 contains some algebraic preliminaries and deals with a

Malcev completion R ® N, which is defined for every nilpotent group

N and ring R © Q, and which we use quite freguently in this

chapter.

§3 Here we prove that, for a nilpotent space X, the homotopy

(and integral homology) groups of the R-completion of X are the

Malcev completions of the homotopy (and integral homology) groups of

X. We also list some easy consequences of this and obtain a strong

convergence result for the homotopy spectral sequence {Er(X; R} }

(Ch.I, 4.4) of a nilpotent space X.

54 1In this section we observe that the main result of §3

implies that the usual notion of R-localization for simply connected

spaces generalizes to nilpotent spaces and, moreover, is merely an

"up to homotopy" version of the R-completion. We also recall several

basic properties of localizations.
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§5, §6 and §7 The last two of these sections deal with a prime

fracture lemma and a fracture square lemma, which both state that,

under suitable conditions, a homotopy classification problem can be
split into a "rational problem” and “problems involving various
primes or sets of primes". In preparation for the proof of these
fracture lemmas, we generalize (in §5) the main result of §3 to

function spaces.

58 Here we use the prime fracture lemma to obtain a prime

fracturing of H-space structures for H-spaces, which have the integral

homology of a finite space (but need not be simply connected).

§9 discusses the gabrodsky mixing of nilpotent spaces and how

this can be used, in conjunction with the fracture square lemma, to

construct H-spaces which have the integral homology of a finite space.

Notation. In this chapter we will mainly work in the category

J;C of pointed connected spaces and in its full subcategory J*N of

pointed connected nilpotent spaces.

And, of course, throughout this chapter, even when we forget to

mention it, the ring R will always be a subring of the rationals Q.
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§2. Malcev completions for nilpotent groups

We discuss here, for every nilpotent group N and ring R < Q,

a Malcev completion R ® N, which will be used in subsequent

sections to describe homotopy groups and other invariants of R-com-
pletions of nilpotent spaces. This terminology is justified by the

fact that, for R = Q, the group R ® N 1is the Malcev completion of

[Malcev] and [Quillen (RH)]; we use the notation R ® N because the
functor R® - behaves very much like an ordinary tensor product and,
in fact, for abelian N, is an ordinary tensor product.

The algebraic results of this section are well-known for R = Q
[Malcev], [Quillen (RH)]; for R + Q they are implicit in [Lazard].
However, with our present machinery, we can avoid the complicated
algebra used by these authors.

We start with two propositions:

2.1 Proposition. If N is an abelian group and R & Q, then

there are natural isomorphisms

mRK(N, 1) = N *x R ® N.

1

Moreover {m,R.K(N, 1)} is pro-trivial for all i > 1 and hence

miRK(, 1) = o« for 1 # 1.

Proof. One proves, as in Ch.IV, 4.4, that {ﬂiRsK(N, 1)} is
pro-trivial for i > 1. The rest of the proposition then readily

follows from Ch.IV, 2.2 and 2.4.
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Combining this with Ch.IV, 2.4 and Ch.III, 3.6 one gets:

2.2 Proposition. If N is a nilpotent group and R & Q, then

~

Np is R-nilpotent (Ch.III, 5.1) and there is a natural isomorphism

~

R K(N, 1) = N, .

m R

1

Moreover {niRsK(N, 1)} is pro-trivial for i > 1 and hence

mRK(N, 1) = for i 4 1.

In view of this we now define

2.3 The Malcev completion of a nilpotent group (for R C Q).

For a nilpotent group N and ring R © Q we define the Malcev

completion R ® N by

or equivalently (2.2)

R ® N = mRK(N, 1).

1

Clearly R ® N is natural in R and N and comes with a natural

map

$: N —>» R @ N

A~

induced by the natural map ¢: N -+ NR

or equivalently the natural

map ¢: K(N, 1) + R_K(N, 1).
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The rest of this section is devoted to showing that R ® N has

all the expected properties:

2.4 Exactness property. Every short exact sequence of nilpotent

groups

* — 3N —OIN —>3N" — »

induces a short exact sequence

1 "
x —3R ® N —3yR ® N —>3 R ® N —3 * ,

Proof. This follows from 2.6, since, by Ch.III, 4.4 and 4.8
RK(N', 1) —> R K(N, 1) — R K(N", 1)

is, up to homotopy, a fibration.

2.5 Universal property.

(i) R ® N is R-nilpotent (2.2),

(ii) the map ¢: N> R ® N 1is universal for maps from N to

R-nilpotent groups, and

(iii) the map ¢: N+ R ® N is an isomorphism if and only if

N is R-nilpotent; in particular, the map N -z ® N is always an

isomorphism.

The proof is straightforward.
To give this universal property the same form as that of

[Quillen (RH), p.278] for R = Q, we define:
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2,6 Uniquely J-divisible groups. Let J be a set of primes.

A group G then is called uniquely J-~divisible, if, for each prime

p € J, the p-th power function

P ¢ —¢

is a bijection. Then one has the following

2.7 Characterization of R-nilpotent groups (for R © Q). Let

J be a set of primes, and let R = Z[J—I] (Ch.I, §9). A nilpotent

group N then is uniquely J-divisible if and only if it is R-nil-

potent.

Proof. It suffices to prove:

(i) If, in a central group extension

*—3G —3 G —>G" — *

two of the groups are uniquely J-divisible, then so is the third.

(ii) The center of a nilpotent uniquely J-divisible group is

also uniquely J-divisible.

Statement (i) is trivial and (ii) follows from the observation
(c-1)
of [Lazard, p.159] that ([x, y] =1 implies f[x, yl¥ =1,
where x and y are elements in a nilpotent group of class < ¢

and [ , ] denotes the commutator.

2.8 The kernel and image of the map ¢: N+ R ® N. Let J be

a set of primes and let R = Z[J Y] (Ch.I, §9). Then

(i) the kernel of ¢: N - R ® N consists of the J-torsion in

N, i.e. the elements u & N such that u’ = 1 for some integer r
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of which all the prime factors are in J, and

(ii) for every v € R ® N, there exists an integer r > 1, of

which all the prime factors are in J, such that vF is in the image

of the map ¢: N - R @ N.

Proof. This follows by an easy inductive argument, using the

ladders of central extensions

# > [ W[V ——> V[ N —— N[N >

Co R B QW —— R & W R e W ——

where the [; denote the lower central series functors (see [Curtis])

2.9 Proposition. If R, R' € @, then the obvious map (2.5)

R ® (R ® N) —> (R ® R') @ N

is an isomorphism.

Proof. This is obvious if N is abelian and the general case

follows inductively.
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§3. Homotopy and homology properties of the

R-completion of a nilpotent space (R S Q)

Our main purpose is to show:

3.1 Proposition. If X € 7an (i.e. X is pointed connected

and Z-nilpotent in the sense of Ch.III, §5) and, of course, R cC Q,

then
(i) RX is R-nilpotent and so are the groups
TR X and ;I*(RmX; z)
(ii) The canonical maps (2.5)
R ® m,X —> m,R X and R ® H,(X; 2) —)ﬁ*(wa; 2)

are isomorphisms.

(Note that an abelian group is R-nilpotent if and only if it is an

R-module) .

Before proving this we list some easy consequences for the
homotopy and homology properties of R X. It turns out that the
roles of w, and ﬁ*(—; Z) are symmetric. We also obtain a strong
convergence result for the homotopy spectral sequence {Er(X; R) }
{(Ch.I, 4.4) of a nilpotent space.

3.2 Proposition. For amap f: X > Y ¢ o the following

*N'

statements are equivalent:

(i) f induces a homotopy equivalence R X = R_Y.

(ii) f induces an isomorphism R ® 7m,X ¥ R ® m,Y.
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(iii) f induces an isomorphism H,(X; R) = H,(Y; R).

(Note that H,(X; R) = R ® H,(X; Z)).

Proof. 1In view of Ch.I, 5.5, (i) is equivalent to (iii) and, in

view of 3.1, (i) is equivalent to (ii).

3.3 Proposition. For a space X € '&N’ the following are

equivalent:
(i) X is R-complete (i.e. X = R X).

(ii) The groups T X are R-nilpotent.

(iii) The groups ﬁn(x; Z) are R-nilpotent.

(iv) Whenever a map f: K » L € o, induces an isomorphism

Hy(K; R) = H,(L; R), then it induces a bijection [L, X] = [K, X] of

pointed homotopy classes of maps (Ch.VIII, §4).

Proof. This is an easy consequence of 3.1 and 3.2, and Ch.II,

3.4 Proposition. Every space X € o is R-good, i.e. the
Y _SPx *N

natural map H,(X; R) » H,(R_X; R) 1is an isomorphism.

This is immediate from 3.1.

Combining 3.4 with Ch.II, 2.8 one gets:

3.5 Proposition. If X ¢ JQN, then the natural map ¢: X + R X

induces, for every W e .gc, an isomorphism of pointed homotopy

classes of maps (Ch.VIII, §4)

[R,X, R W]l = [X, RWI.
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3.6 Example. For R € Q and n > 1 there is an isomorphism

n .

%, R,s" = mRsS" I R

(RS

n

which assigns to each map f£: RmSn + R_S the obvious degree

deg f € R.
We conclude with a

3.7 Curtis convergence theorem for R < Q. If X ¢ J*N and

R < Q, then the homotopy spectral seguence {Er(x; R)} (ch.I, 4.4)

converges strongly to #,R X = R ® w,X in the following sense:

> 1.

(i) {Er(X; R)} is Mittag-Leffler (Ch.IX, 5.5) in all dimensions

(ii) For each i > 1, there exists a number so(i) such that

s,s+i(
o]

E X; R) = 0 for s > so(i).

(iii) For each i > 1, the terms

so(i), so(i)+i

2 x; R), +o- , E (X; R)

o

are the quotients of a finite filtration of

This convergence result was initially proved in [Bousfield-Kan
(HS), 86] for simply connected spaces by combining Curtis' fundamental
theorem (Ch.IV, 5.6 and [Curtis (H)]) with some ad-hoc simplicial
arguments. Our present approach is much more direct; it is essen-
tially the same as our generalization to nilpotent spaces (Ch.IV, 5.6)

of Curtis' original theorem.
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Proof of 3.7. If R = Z, then (Ch.III, 6.4) the map
{x} » {RSX} is a weak pro-homotopy eguivalence and this immediately
implies the desired result.

The general case now follows from the fact that

Er(X; R) = R ® Er(X; Z) for R € Q and 1 £ r < =,
Finally we give the

Proof of 3.l1l. First consider the case that X = K(G, n) with
G abelian. Then the obvious map XK(G, n) + X(R ® G, n) induces an
isomorphism on R-homology and the desired result follows from Ch.I,
5.5 and Ch.1I1, 2.7.

Next suppose that F + E + B ¢ J*C is a principal fibration and
that the proposition is already proved for X = F and X = B. Then
R,F + R,E + R B ¢ J*C is (by Ch.II, 2.2), up to homotopy, a principal
fibration and thus (Ch.III, 5.5) R_E 1is R-nilpotent. It follows
that 7,R_E is R-nilpotent and, using the obvious homotopy exact
sequences, one shows that R ® 7,E = m,R E. Using the obvious Serre
spectral sequences one shows that ﬁ*(E; R) = ﬁ*(RwE; R) and that
H, (R E; Zp) = 0 for each p € J, where R = 210711, Hence
ﬁ*(RwE; Z) is R-nilpotent and R ® ﬁ*(E; z) = ﬁ*(RmE; Z). Thus the
proposition holds for X = E.

The general case now follows from Ch.I, 6.2.
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§4. R-localizations of nilpotent spaces (R C Q)

Following [Quillen (RH)], [Sullivan)], [Mimura-Nishida-Toda] and
others in the simply connected case, we introduce the notion of an

R-localization of a nilpotent space, and show that it is merely an

"up to homotopy" version of our R-completion. We then deduce that
the R-completion preserves, up to homotopy, various basic construc-
tions and end this section with an easy example of an R-localization,

obtained as an infinite mapping cylinder.

4.1 R-localizations. For X ¢ J;N and, of course, R < Q, an

R-localization of X is amap X + X ¢ J*N such that either of the

following (equivalent by §3) conditions hold:

(i) The groups m,X are R-nilpotent and the canonical map
R ® m,X + n,X is an isomorphism.

(ii) The groups ﬁ*(f; Z2) are R-nilpotent and the canonical
map R ® ﬁ*(x; zZ) -+ ﬁ*(f; Z) is an isomorphism.

The results of §3 then immediately imply:

4.2 Proposition. R-localization is well-defined and functorial

on the pointed homotopy category of nilpotent spaces. It is induced

by the functor R .

4.3 Homotopy characterization of R X. For X e J*N (and, of

course, R < Q), the R-completion X + R X is an R-localization,

and, in the pointed homotopy category, any R-localization X + X is

canonically equivalent to X + R _X.

Next we show that, up to homotopy, the R-completion preserves
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various constructions (R < Q).

We already have, from Ch.II, 4.4 and 4.7 a

4.4 Fibre lemma. Let p: E > B e o,  be a fibration with

nlE + 1.B onto. Then R p: RE + R B is a fibration, and the
1 — ] =) ]

inclusion Rw(p-l*) > (Rmp)-l* is a homotopy equivalence. Moreover

the fibre p_l* € oy-

There is a corresponding

4.5 Cofibre lemma. Let i: A+ X € oy, be a cofibration (i.e.

injection) with ™A > mX onto. Then R i: RA > R X 1is a
1 e e -] 00’ ) —_—

cofibration and the obvious map R _X/R A ~ R (X/A) is a weak equiv-

alence.

Proof. It is easy to check that R always preserves cofibra-
tions. Since nlA -> an and R ® nlA + R ® an are onto, it
follows that the cofibres X/A and R _X/R A are l-connected. A
homology argument now shows that X/A + R_X/R_A 1is an R-localization,

so the lemma follows from 4.3.

Some more "preservation properties" of R, (R < Q) are given

in

4.6 Proposition. If X, Y € J*N then, in the pointed homotopy

category, there are canonical equivalences

R_(SX) = SR_X, where S denotes the suspension [May, p.l24]

(1)
(ii) R_(9X) = QR_X, where ( denotes the loop functor {[May,

p.99] and X is l-connected.

(iii) R_(XX¥Y) = R_X X RY
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(iv) R (XvY) = R Xv RY, where X and Y are l-connected.

(v) R_(XY) = R X . RY

Proof. The obvious maps

SX —> SR _X X*x Y —>RXXRY

XvY—>RIXVRY

X — QR_X X~Y —3R_X ~RY

are clearly R-localizations, so the proposition follows from 4.3.

R~localizations can often be constructed by direct limit methods

using:

4.7 Infinite mapping cylinders. For an infinite sequence of

maps

0
Xo_f__)xl 3y s )Xn f)... EJ*C

the infinite mapping cylinder is the space X e J*C obtained from

the disjoint union of the pointed mapping cylinders M(fn), by
n

identifying for all n
2 o MY with L < metL

It is easy to show that the inclusions X' ¢ X° induce natural

isomorphisms

oo

lim ﬂ*Xn T OT.X
->

lim B, (% o = 5,(5; © for G _abelian.
->
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We end with applying this to an example of an

4.8 R-localization for loop spaces and suspensions. Let

X €& oyy be fibrant (i.e. X » * is a fibration) and assume that X
has the homotopy type of a loop space (resp. a suspension). Then,
for each positive integer n, there is a map n: X + X € Fuyr which

induces "multiplication by n"
n: TMeX —> m.X (resp. n: H,(X; 2) — H,(X; 2)).

Now let Ny, Ny, Ng, o be a sequence of positive integers such
that the prime factors of each n, lie in J (where R = Z[J_l]),
and each prime in J occurs as a factor of infinitely many n,. Then

it is easy to show that the inclusion of XO = X in the infinite

mapping cylinder X" of

is an R-localization, i.e. X" = R _X.

This construction, of course, works also for H-spaces and

nilpotent co-H-spaces.




ch. v,

141
§5

§5. R-localizations of function spaces

In preparation for the fracture lemmas (§6) we show here that

the homotopy types of the pointed function spaces (Ch.VIII, §4)

hom, (W, X) and hom, (W, R_X)

are often closely related.

We start with a proposition which implies that, under suitable

conditions, the R-completion of any component of hom, (W, X) has the

same homotopy type as the corresponding component of hom, (W, R _X).

5.1 Proposition. Let X e o,y be fibrant, let W € o, be

finite (i.e. have a finite number of non-degenerate simplices) and

let, of course, R < Q. Then, for every map f: W + X ¢ Ixc and
all i>1,

(i) ﬂi(hom*(W, X), f) is nilpotent,

(ii) ﬂi(hom*(w, R_X), ¢f) is R-nilpotent, and

(iii) the map ¢: X *» R_X induces an isomorphism

R ® 7, (hom, (W, X), £) = 7, (hom, (W, R X), ¢f)

To prove this we need

5.2 Lemma., If E + B ¢ » is a fibration such that every compo-

nent of E is nilpotent, then every component of every fibre is also

nilpotent.

Proof. Choose a base point * € E and let F be the fibre

containing it. Then 7,F acts on the resulting long exact homotopy

1
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sequence and the desired result follows easily from Ch.II, 4.2.
Proof of 5.1. We may assume that W is reduced (i.e. has only

one vertex) and show first, by induction on the skeletons of W, that

every component of hom, (W, X) is nilpotent. Clearly

[0],

hom, (W X) = =*,
Furthermore the map
hom*(W[k], X) — hom*(w[k_l], X), k21,

is, up to homotopy, a fibration induced from the obvious map

[k-1]

hom, (W ;, X) — hom, (V, X)

where V 1is a wedge of boundaries of standard k-simplices (Ch.VIII,
2.12), and the desired result follows from lemma 5.2.
The rest of the proposition is now easy to prove, using 3.1, 2.4

and, again, induction on the skeletons of W.

The relation between the sets of components of hom, (W, X} and

hom, (W, R _X), i.e. the relation between the pointed homotopy classes

of maps (Ch.VIII, §4)
[w, X] and (W, R X]

is not so easy to describe. Of course one has

5.3 Proposition. Let X € J*N be fibrant, let W ¢ J*C be

finite and let either W be a reduced suspension [May, p.124] or X

be a homotopy associative H-space (Ch.I, 7.5). Then
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(i) [W, X] is a nilpotent group,
(ii) [wWw, R _X] 1is an R-nilpotent group, and

(iii) the map ¢: X » R_X induces an isomorphism

R ® [W, X] = [W, RXI].

Proof. If W 1is a reduced suspension, then the proof goes as

in 5.1.

If X 1is a homotopy associative H-space, then [Stasheff (H),

p-10] X has a homotopy inverse and thus [G.W. Whitehead] [W, X]
is a nilpotent group. Furthermore, by Ch.I, 7.5, R X is also a
homotopy associative H-space. The rest of the proof proceeds as in

5.1.

In general, however, the sets [W, X] and [W, R X] do not
come with a group structure. Still it is possible to make some use-
ful statements (5.5) by observing that for every map f: W + X

there are subsets
W, Xl < W, X] and W, RX], ¢ < [W, R.X]

which have a group structure and which we call

5.4 Neighborhood groups. Let X € J*C be fibrant, let W e J*C

be finite and reduced and let n =dim W (i.e. W has at least one
[n]

non-degenerate n-simplex and W = W). Then one has, up to homotopy,

a fibration

[n-1]

hom, (W, X) —33 hom, (W Xx) —E3 hom, (V, X)

where V is a wedge of boundaries of standard n-simplices (Ch.VIII,

2.12) and thus, for every map f: W » X, the corresponding long exact



144
Ch. v, §5

homotopy sequence

P
«++ —> 7, (hom, w1l yy ) gwin-lly 2 m (hom, (V, X), £[V) AN

(n-1]

3 I (n-1)
— m, (hom, (W, X), £) — m,(hom, (W X), f|w ) — .

Using this we now define the neighborhood group [W, X]f of f to

be the group

W, XJ¢ coker p,

which is abelian if n > 2; and which, as a set, is also given by
(w, X]f = ker j, < nohom*(w, X) = [w, X]
i.e. [W, X]f consists of all u € [W, X] such that

(n-1) [n-1]

ulw = flw

Using 5.1 and the definition of [W, X]f it is now not hard to

prove:

5.5 Proposition. Let X € o, be fibrant and let W ed,, be

finite and reduced. Then, for every map £: W + X € J*C'

(i) [w, RmX]¢f is an R-nilpotent group, and

(ii) the map ¢: X +» R X induces an isomorphism

R ® [W, Xlg = W, RX] ..

5.6 Remark. It has long been recognized that Brown's repre-
sentability theorem can be used to define localizations for certain
H-spaces. Although we will not pursue this idea, we note that

proposition 5.3 implies that the R-localization of an Q-spectrum
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corresponds to the R-tensoring of the associated cohomology theory

for finite spaces.
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§6., Fracture lemmas

"Fracture lemmas" show that, under suitable conditions, a
homotopy classification problem can be split into a "rational
problem" and "problems involving various primes or sets of primes".
They 'yield many of the interesting applications of localizations.

The first satisfactory fracture lemma seems to have been proved
by Sullivan in the context of his completion theory [Sullivan, Ch.3],
and our approach was inspired by his work. Also [Hilton-Mislin-
Roitberg] have independently proved fracture lemmas by methods some-

what similar to ours.

6.1 Notation., For a set 1 of primes, let Z(I) denote the

integers localized at I, i.e. (Ch.I, 9.3)

yA = z[J'1

(1) !

where J consists of all primes not in 1I; and, for X € 2/, let
X = (Z(I))mX € .

(1)

In particular

Then we have the

6.2 Prime fracture lemma. Let X € J*N have finitely gener-

ated homotopy groups, let W ¢ J*C be finite (i.e. have a finite

number of non-degenerate simplices) and let I be a set of primes.
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Then the natural map of pointed homotopy classes of maps (Ch.VIII,

§4)

o: (W, X(I)] —_ E;li—?ack {[{w, X(p)] — (W, x(o)]}

where p ranges over all primes in I, is an isomorphism.

The most interesting case of 6.2 occurs when I consists of all

primes and thus [W, X(I)] T [w, X].

6.3 Fracture square lemma. Let I and J be sets of primes,

let X € o4y and let We #;C be finite. Then

(i) the natural diagram

X (1u7) > X1

6D > X(1ng)

is, up to homotopy, a fibre square, and

(ii) the natural square of pointed homotopy classes of maps

(Ch.VIII, §4)

(w, X _— [W,

(! X!

is a pull-back.

6.4 Remark., In view of the fracture square lemma one can, for

X € Juy and any finite partition I o0ty In of the primes,
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recover the homotopy type of X from

(i) the homotopy types of X and

; X ’
(1) (1)
(ii) the rational information contained in the homotopy equiv-
alences

X X .
(1) (0) (1) (0)

One cannot dispense with this last ingredient since, for
instance, the "Hilton-Roitberg criminal" and Sp(2) have homotopic-
ally equivalent localizations at the prime 2 and at the odd primes
[Mislin].

Also the homotopy type of X is usually not recovered if one

takes the pull-back of the fibrations corresponding to

=
=

X Y X(p) cs e

p prime
X (0)

A counter example already occurs when X = K(Z, n), because of a

lim1 term (see Ch.IX).
<

To prove the above fracture lemmas we need their group theoretic

analogues:

6.5 Lemma. If N is a finitely generated nilpotent group and

I is a set of primes, then the natural map

z(I) ® N — pull-back {2 ® N—Q ® NI}

pel (p)

where p ranges over all primes in I, is an isomorphism.
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Proof. The lemma clearly is true when N is finitely generated
abelian. Moreover, if

* —3 N' —3 N —> N" —— »

is a short exact seguence of finitely generated nilpotent groups and
the lemma holds for N' and N then, in view of 2.4, it also holds
for N. This readily implies the general case.

A similar argument shows:

6.6 Lemma. If I and J are sets of primes and N is a nil-

potent group, then the natural diagram

® _ ®
vy § 8 Z(I)J( N
® —_—
Z(J) N Z(IOJ)® N
is a pull-back. Moreover every element u € Z(an) ® N can be

expressed as u = vw where v (resp. w) is in the image of

Z(I) ® N (resp. Z(J) ® N).

Proof of 6.2. We can assume that W is reduced (i.e. has only

one vertex) and we will prove 6.2 by induction on the skeletons W[n]
of W. Thus assuming that

n, [n] - (n] (n]

o7 W T, X(1y] —> pull back {(w ,x(p)] —> (W ,X(O)]}

pel

is an isomorphism for n = k-1, we have to show that this is also the

case for n = k.
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To show that ¢k is injective, we suppose £, g: W[k] + X(I)
with ¢k[f] = ¢k[g] and thus, by our inductive hypothesis
[f][W[k-l] = [g]|W[k-l]. Since the element [g] € [W[k], X(I)]f

(5.4) goes to zero under the obvious map

Y. [W[k], X(I)]f —> pull-back {[W[k] ] —_— [W[k], X }

1
5e T (0) "¢f

! X(p) ¢f
and since, by 5.5 and 6.5, ¥ is an isomorphism, it follows that

[g] = 0 ¢ [wlX]

, X(I)]f' Hence [g] = [f] € [W[k], X(I)]’ and thus
¢k is injective.

To show that ¢k is surjective, we suppose

_ [k] [k1]
he pulicback (], x )1 — W, X, 10.

[k-1]

By our inductive assumption, there exists a map d: W + X

k-1 [k-1]

(1)
such that ¢
Wik

[d] = h|wW The map d has an extension

e: + X(I) since the obstruction to extending d lies in a

finite product of copies of ﬂkX(I) and since (3.1)

"kX(I) z Eu;l;b§0k {ﬂkX(p) - ﬂkX(O)}'

[k]

Let g e [W ’ X(I)]e denote the element corresponding to h under

the isomorphism

(k1] [k1]

vo ™, x 1, — pull-back (X!, x — W }

;X (o]
Lhe (0)" ¢e

(p) ]¢e

Then it is easy to check that g € [W[k], X(I)] satisfies ¢kg = h,

and thus ¢k is surjective.

Proof of 6.3. Part (i) is an easy conseguence of 3.1 and 6.6,
while part {ii) follows by a proof similar to that of 6.2. O0f course,
the surjectivity of the map from [W, X(IUJ)] to the pull-back can

also be deduced from part (i).



Ch. v, §6 151

6.7 Remark, When X € H;C is a homotopy associative H-space

(Ch.I, 7.5) or W 1is a reduced suspension [May, p.l124], then one

can use 5.3 (instead of 5.5) to give an easy proof of the fracture

lemmas 6.2 and 6.3.
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§7. Some slight generalizations

The fracture lemmas 6.2 and 6.3 are certainly not best possible:
although it is not clear whether the restrictions on X can be re-
laxed, both lemmas obviously hold for many spaces W which are not
finite. For instance, one clearly has:

7.1 Proposition. If f: W + W e ,QC is such that H,(f; 2)

is an isomorphism, and if the fracture lemmas 6.2 and 6.3 hold for

W', then (Ch.II, 2.8) they also hold for W.

7.2 Proposition. If the fracture lemmas 6.2 and 6.3 hold for

some W e o

*C then they also hold for any space dominated by W.

7.3 Proposition. If the fracture lemmas 6.2 and 6.3 hold for a

set of spaces Wa € Jugs then they also hold for their wedge \/ Wy
a

A useful consequence of 7.1 is the following which is also not

hard to prove:

7.4 Proposition. Let W € J/4c be of finite type (i.e. each

W, 1s finite) and suppose there is an integer n such that

Hi(w; Z) =0 for i > n. Then there exists a map f: W o+ We e

such that W' is finite and H,(f; 2) is an isomorphism, and hence

the fracture lemmas 6.2 and 6.3 hold for W.

The usefulness of this proposition is due to the following lemma,

or actually its corollary 7.6:
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7.5 Lemma. For a space W € J*N the following conditions are

equivalent:
(i) W has the (weak) homotopy type of a space of finite type

(ii) Hi(w; 2) is finitely generated for each i > 1

(iii) LA is finitely generated for each i 2> 1.

7.6 Corollary. If We J*N has the (integral) homology of a

finite complex, then the fracture lemmas 6.2 and 6.3 hold for W.

Proof of 7.5. (i) = (ii). This is obvious

(ii)

>(iii). Since each H, (X; 2) is finitely generated, so

is each of the groups

- S
Bg (W = 7L (GW/|'2GW)

in the lower central series spectral sequence (Ch.IV, §3). Since,
for nilpotent W, this spectral sequence converges strongly to Tm,W
(Ch.1V, §5), it follows that each m.W is finitely generated.
(iii)=—=)(i). since m,W is finitely generated and nilpotent,
it is finitely presentable [P. Hall, p.426] and its integral group

ring is left and right Noetherian [P. Hall, p.429]. Since the
universal cover W is simply connected with finitely generated
homotopy groups, each Hi(ﬁ; 2) is finitely generated. Thus [Wall,

p.58 and p.61] implies (i).

We end this section with observing that, while (7.3) "finite
homological dimensionality" is not a necessary condition, the
following counter example indicates that it is not enough to assume

that W be merely of finite type.
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7.7 Counter example. If I and J are non-empty complementa-

ry sets of primes, then the square

r%c, s¥1 —— 5 %, s3(J)1

o 3 ® 3
[P C, S(I)] ————> [P CI S(O)]

is not a pull-back.
To see this, it suffices (Ch.IX, 3.3) to show that the obvious
map

] ® 1limi[sP™C, s
-

liml[spnc, 3 iiml[spnc, s ?J)]

3
(1)
*
is not injective. Taking the 1lim exact sequence (Ch.IX, 2.3) of
-
the short exact sequence of abelian group towers

3

n 3
()} ™ [sPC, 8] — 0

0 — [sP"c, s3] — [spP'Cc, S%I)] & [sp'c, s

it now suffices to show that lim[sP"C, S?O)] is not generated by
-

the images of lim[SPnC, S3 ]
« (1)
1

pose, note that SpPC = S3 and consider the restriction maps

and lim[spc, S3 1. For this pur-
bt (J)

. n 3 3 3
ilm[SP c, S(O)] — [S87, S(O)] = Q

. n 3 3 3 -
ilm[SP c, S(I)] — [87, S(I)] < Z(I)

\ n 3 3 3 -
lim[sp’c, Sy — 87, sy = 24y

Since S%O) represents H3(—; Q), the first map is an isomorphism,
so it suffices to show that the images of the other two maps do not

generate Q. This is easily proved using the non-triviality of the
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Steenrod operation
pl: w3 (sp7c;

for all primes p.

155

z) — H3*2P (sp™c;

Z
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§8. Fracturing H-space structures

In this section we discuss the fact that, under suitable condi-
tions, the problem whether a space has an H-space structure, can be
fractured into mod-p problems (see [Mislin]).

We start with some remarks on

8.1 H-spaces and quasi Hopf algebras. If X ¢ TS is an

*
H-space (Ch.I, 7.5) with H (X; Q) of finite type, then clearly
* *
H (X; Q) (z H (X(I); Q) for all 1I)

is a connected quasi Hopf algebra [Milnor-Moore, p.232]. This quasi

Hopf algebra completely determines the homotopy type and the homotopy
class of the H-space structure of the localization X(O); in fact one
even has the somewhat stronger result that:

*
The functor H (-; Q) 1is an eguivalence between the category of

*
Q-nilpotent H-spaces for which H (-; Q) is of finite type (i.e. the

category with as objects the connected Q-nilpotent H-spaces for which
*
H (-; Q) 1is of finite type, and as maps the homotopy classes of maps

which are compatible with the H-space structures) and the category of

connected quasi Hopf algebras over Q of finite type, which have a

commutative and associative multiplication.

This is not hard to prove once one observes that the Borel
theorem of [Milnor-Moore, p.255]} implies that these quasi Hopf alge-

bras are free as algebras and that therefore, as algebras, they are

the cohomology of a product of K(Q, n)'s.

We end with the comment that clearly a Q-nilpotent H-space

X € oy is homotopy associative if and only the quasi Hopf algebra

*
H (X; Q) is a Hopf algebra.
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An easy consequence of Ch.I, 7.5, the prime fracture lemma 6.2

and its generalization 7.6 now is the

8.2 Prime fracture lemma for H-spaces. Let X € 4, have the

integral homology of a finite space and let

* * *
A: H (X; Q) —> H (X; Q) ® H (X; Q)

be a quasi Hopf algebra comultiplication. Then X has an H-space

structure inducing A if and only if, for each prime p, the space

X(p) has an H~space structure inducing A under the canonical

isomorphism H*(X(p); Q) = H*(X; Q).

8.3 Remark. In order that H*(X; Q) has a quasi Hopf algebra
comultiplication, it is necessary that H*(X; Q) be an exterior alge-
bra [Milnor-Moore, p.255]. Moreover, if H*(X; Q) 1is an exterior
algebra, then there is a unique comultiplication map making H*(X; Q)

a Hopf algebra. Hence 8.2 has the following refinement:

8.4 Proposition. Let X € Jry have the integral homology of a

finite space, Then X has a homotopy associative H-space structure

if and only if X has a homotopy associative H-space structure

(p)
for every prime p.

We end with an

8.5 Example [Adams (S)]. Consider the n-sphere s® for n

odd. If p is an odd prime, then S?p) has an H-space multiplica-

tion given by
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?p) £f x id gh

n
2 < Sipy ——

n n
S(p) xS s(p)

where f 1is of degree 1/2 and g 1is induced by a map

s x s + 8" of degree (2,1) (see [Steenrod-Epstein, p.14]). Thus

the problem whether s™ is an H-space is purely a mod-2 problem,

n
(2)
H-space if and only if n =1, 3, 7. Note also that the H-space

and, of course, the Hopf invariant theorem shows that S is an

structure on S?p) has the obvious implication that Whitehead prod-

ucts in n*Sn vanish when either factor is of odd order.
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§9. Zabrodsky mixing of nilpotent spaces

In recent years, localization methods have played a central role
in the construction of new H~spaces (e.g. [Zabrodsky] and [Stasheff])

and the basic tool in this work has been Zabrodsky mixing [Zabrodskyl].

9.1 Zabrodsky mixing of nilpotent spaces. Let the primes be

partitioned into two disjoint sets I and J and let
f: X —> W and g: Y —3W € J;N
be maps which induce isomorphisms

Q ® 1,X = Q ® w,W Q ® n,Y = Q0 ® mw,W.

Then, in the notation of 6.1, the Zabrodsky mixing M e o, of X(I)

with Y over W(O) is the homotopy inverse limit (i.e., Ch.XI,

(J)
the "dual" to the double mapping cylinder) of the diagram

Xy 7 2 W) ¢ Yo

induced by £ and g. This means that, up to homotopy, there is a

pointed fibre square

M > Yy

9
£
oy Y

The point of this construction is that "M looks like X over

the primes I" and "M looks like Y over the primes J". More

precisely:
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9.2 Lemma. The space M ¢ o, 1is connected and nilpotent, the

obvious maps

Z(I) ® T,M —> ﬂ*X(I) Z(J) ® MM — n*Y(J)

are isomorphisms and hence the obvious maps

Moy T X Moy T Y

are homotopy equivalences.

Also, Zabrodsky mixings have the virtue:

9.3 Lemma. If X and Y have the integral homology of a

finite space, then, assuming of course the hypotheses of 9.1, so does

the Zabrodsky mixing M.,

Before proving these lemmas we show how Zabrodsky mixing can be

used to create new H-spaces.

9.4 Proposition. Let I and J be complementary sets of

primes, let X, Y g o have the integral homolo of a finite space
= = * N g gy

and suppose that X and Y are H-spaces and that the induced

(n) (J3)
quasi Hopf algebras (8.1) H*(X; Q) and H*(Y; Q) are isomorphic.

Then there exists an H-space M e o, which has the integral homolo-

gy of a finite space and is such that, as H-spaces

and M = Y

Proof. This follows readily from 8.1, 9.2, 9.3 and the fracture

square lemma 6.3 and its generalization 7.6.
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9.5 Remarks. Of course, this proposition applies when X and
Y are connected H-spaces with the integral homology of a finite
space, such that H*(x; Q) and H*(Y; Q) are Hopf algebras with the
same number of generators in each dimension. However, it is also
useful when X and Y are not themselves H-spaces.

The above Zabrodsky mixing technique has a number of refinements
and variants; for instance, one can mix classifying spaces to create

new examples of finite loop spaces.

Proof of 9.2. We first claim that, for n > 1, each element

u € ﬂnW(o) can be expressed as a product u = vw, where v and w

are in the respective images of “nx(I) and ﬂnY(J). This follows,
since 2.8 shows the existence of relatively prime integers s and t
such that u® and ut are in the respective images of nnx(I) and
ﬂnY(J).

This claim implies that M is connected and that, for n 2> 1,

the square

—_———
nnM nnY(J)

ﬂnx(I) —_——— "nW(O)

is exact in the sense that it is a pull-back such that every element
of nnw(o) factors as in the claim. Using the obvious action of

7M on this exact square it is easy to show that M is nilpotent,
and since (2.4) Q ® - preserves exactness for a square of nilpotent

groups, it is clear that Q ® nnM x nnw And finally, since the

(0)°

obvious map of exact squares



162
Ch. v, 89

n

'nnM _— Z(J) ¥ ™M 'nnM —_— ﬂnY(J)
l
® X1

Z(I) @ T M — [0} T M “n

n n

) T "a¥(0)

is an isomorphism on the initial and terminal corners, it is an iso-

morphism on all corners.

Proof of 9.3. 1In view of 3.1 and 9.2 each

Z ® Hi(M; Z) resp. 2 P Hi(M; Z)

(1) (J3)

is finitely generated as a -module, resp. a Z(J)-module, and so

2
(1)
each Hi(M; Z) 1is a finitely generated abelian group. Moreover, by

the same argument, for sufficiently large i

2 ® H,(M; 2) = 0 = Z ® H,(M; 2Z2)
1 1

(I) (3)

and hence Hi(M; Z) = 0.
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Chapter VI. p-completions of nilpotent spaces

§1. Introduction

In this chapter we discuss the p-completion, i.e. the "up to
homotopy" version of the Zp—comgletion, for nilpotent spaces. It
turns out that this p-completion is closely related to the p-profinite
completion of [Quillen (PG)] and [Sullivan, Ch.3]; indeed, one can
show that these completions coincide for spaces with Zp—homology of
finite type, although they differ for more general spaces. The basic
properties of p-profinite completions are well-known for simply

connected spaces of finite type, and the main purpose of this chapter

is to obtain similar results for p-completions of arbitrary nilpotent
spaces.

The organization of this chapter is similar to that of Chapter V.

52, 83 and §4 contain some algebraic preliminaries. In §2 we

define for every nilpotent group N and prime p, an

Ext completion Ext(2 _, N) and a
p

Hom completion Hom(z _, N)

P

and we show in §3 that

Ext(Z _, N} is "really" a completion of N
P

Hom(pr, N) is nothing but Homgroups(zpw’ N).

Various examples of Ext and Hom completions are discussed in §4.
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§5 and §6 Our key result in §5 is that, for a nilpotent space

X and R = Zp, there are splittable exact sequences

* —> Ext(Zz _, nnx) _D nanX —> Hom(z _, nn_lx) —_— k.,
P P

In 56 we use this result to introduce a notion of p-completion

for nilpotent spaces, which is merely an "up to homotopy" version of

the Zp—comEletion and which generalizes the usual p-profinite comple-

tion for simply connected spaces of finite type. We also list

several basic properties of p-completions.

§7 and §8 In §7 we generalize the main result of §5 to function

spaces and then use this in §8 to prove an arithmetic sguare fracture

lemma, which states that, under suitable conditions, a homotopy
classification problem can be split into "Zp—problems" and a

"rational problem".

§9 contains convergence results for the homotopy spectral

sequence {Er(X; Zp)} of a nilpotent space X (Ch.I, 4.4).

Notation. In this chapter we again work mainly in the category

HLC of pointed connected spaces and its full subcategory H;N of

pointed connected nilpotent spaces.

And, of course, throughout this chapter, even when we forget to

mention it, the ring R will always be R = Zp (p prime).
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§2. Ext-completions and Hom-completions

for nilpotent groups

We introduce here, for every nilpotent group N and prime p,

an

Ext-completion Ext(Z _, N) and an
P

Hom-completion Hom(Z _, N)
P

which will be used in subsequent sections, to describe homotopy
groups and other invariants of Zp—completions of nilpotent spaces.

For N abelian, Ext(2 _, N) and Hom(2Z _, N) will, of course,
be the usual groups, where g - denotes the p-primary component of

p
Q/2, while for a general nilpotent group N we will have

Ext (2 ot N) = “lRmK(N' 1)
p
Hom(z _, N) = ﬂszK(N, 1)
P
where R =2 . 1In the important case of a nilpotent group N, whose

p
p-torsion elements are of bounded order this will imply that

Ext(Zz _, N) = NZ Hom(z _, N) = «
P P P
where NZ is the 2_-completion of N of Ch.IV, 2.2.
D P
In the abelian case several algebraists [Harrison], [Rotman],

[Stratton] have previously studied the "total Ext-completion"

Ext(Q/Z, N) = T [ Ext(z _, N).
p p
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We begin by reviewing the somewhat familiar

2.1 Ext and Hom completions of abelian groups from an algebraic

point of view. For abelian groups the functors

-) and Hom(Z _, -)

oo’ pradalchead oo

P P

Ext (2

th st

and 1 left derived functors of the Zp-comple-

are resp. the 0

~

Z
P

tion functor () on abelian groups of Ch.IV, 2.2.

Proof. To prove this observe that

Z , = ilm Z n

P P

i.e. 2 _ 1is the direct limit of the monomorphisms

Z_ —> 2z induced by z —£5 7.

n n+l
P p
Then, for abelian N,

lim Ext{(2 _, N) lim N/pnN z N
* p" * %p

i

and hence [Roos, Th.l] there is a natural short exact sequence

* — }_iml Hom (Z n’ N) ——> Ext(Z2 _, N) ——> NZ —_) *
p P p

and thus, by Ch.IX, 2.2, if N 1is an abelian group, whose p-torsion

elements are of bounded order, then

~

N} = N Hom (2

oo’ VA !

p P P

Ext (2 N) = =

and the desired result now follows from the fact that a short exact
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sequence of abelian groups

gives rise to a natural exact sequence

* —> Hom(z _, N') —> Hom(z _, N) —> Hom(Z _, N") —>

P P P

(-]

— Ext(Z _, N') —> Ext(2 _, N) —> Ext(Z _, N") —> * .
P P P

Next we look at the

2.2 Ext and Hom completions of abelian groups from a homotopical

point of view. For an abelian group N and R = Zp, there are

natural isomorphisms

anmK(N’ 1) = Ext(2 o’ N)
P

anmK(N, 1) = Hom(2Z _, N)
P

fl
*

for i #1, 2

"iRmK(N' 1)

such that the following diagrams commute:

(i) the diagram

2

anmK(N, 1) Ext (2 _, N)

P

~

N

P

L3

ilm anSK(N, 1)

where the map on the left is as in Ch.IX, §3 and the bottom isomor-

phism is as in Ch.Iv, 2.4,
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(ii) for every short exact sequence of abelian groups

« > N' » N+ N" + %, the diagran

T Hom(Zz _, N)

I

HRK(N", 1)

ﬂ N')

1]

R_K(N', 1) Ext(Z _,

P

1

where the map on the left is defined using Ch.II, 2.2.

Proof. If N is free abelian, then, by Ch.IX, 3.1 and Ch.IV,

2.4 and 4.4

T RK(N, 1)

u
=z
Hh
0]
R
=
il
[

= * for i # 1.

Moreover, a short exact sequence of abelian groups

* > N +» N+ N" »> » yields (Ch.II, 2.2), up to homotopy a fibration
RK(N', 1) —> R_K(N, 1) —> R_K(N", 1)

with a long exact sequence

er = TREKMN", 1) - mRK(N', 1) = mRKEN, 1) —> mRK(N", 1)«

Thus one can, for N abelian, identify RmK(N, 1) with the i-th

Tiel
left derived functor of the Zp-completion functor for abelian groups,

and the desired result follows easily.

An obvious consequence of 2.2 and Ch.II, 4.8 is:
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2.3 Corollary. If N 1is a nilpotent group and R = Zp, then

R_K(N, 1) is a nilpotent space and niRmK(N, 1) = % for i 41, 2.

Now we finally define:

2.4 Ext and Hom completions for nilpotent groups. 1In view of

the above, we can (and will) for every nilpotent group N and

R = Zp (p prime), define

Ext(Z _, N) m

P

1RLK(N, 1)

]

Hom(z _, N)
p

anmK(N, 1).

This definition immediately implies that

(i) Ext(Z _, N) 1is nilpotent and the natural map (Ch.IX, §3

>

p
and Ch.IV, 2.4)

Ext(Z , N) = #.R K(N, 1) —> 1lim 7n,R_K(N, 1) = N
pm 1 - 1's Zp

2RK(N, 1)

N) 1is abelian and

is onto, with abelian kernel liml m
«+

(ii) Hom(Z _,
P

Hom(Z _, N) = lim an K(N, 1)}
p * s

and the obvious

2.5 Exactness property. Every short exact sequence of nilpo-

tent groups
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gives rise to an exact sequence

* —> Hom(Z _, N') —> Hom(Z _, N) —> Hom(Z _, N') —
p P p

—> Ext(z _, N') —> Ext(Z _, N) —» Ext(z _, N") —> = .
2 P 2

The behavior of the Ext and Hom completions for "ordinary" nil-

potent groups is given by:

2.6 Proposition, If N is a nilpotent group, whose p-torsion

elements are of bounded order, then

A

Ext(Z2 _, N) = NZ and Hom(Zz _, N) = =* .
P P P

Proof. For a nilpotent group G, the condition (#) that

{r,R.K(G, 1)} 1is pro-trivial clearly implies that

wt G} * G, and Hom(Z _, G) = * .
p P P

Ext (2

If # >G +G+G" » * is a short exact sequence of nilpotent groups
and (#) holds for G' and G", then (#) holds for G, by Ch.III,
2.5 and 7.1.

By Ch.III, 6.4, (#) holds for Zp—nilpotent groups, i.e. nilpo-
tent p-torsion groups whose elements are of bounded order. Moreover
(#) holds for nilpotent groups without p-torsion, because the upper
central series quotients for such groups lack p-torsion [Lazard,
Th.3.2] and thus the argument of Ch.Iv; 4.4 applies.

The proposition now follows easily since the Malcev completion

N-———-)Z[%] ® N

has Zp-nilpotent kernel (Ch.v, 2.8) and has p-torsion free image

(Ch.v, 2.7).
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We end with a few comments on

2.7 The completion map N =+ Ext(Z _, N). For a nilpotent group

P
N and R = Zp, the obvious completion map

bu
N * mK(N, 1) —> m,RK(N, 1) = Ext(Z ,, N)
P

fits into the commutative completion triangle

Ext(Zz _, N)

Moreover, if N is abelian, then this completion map is nothing but

the usual coboundary

§: N = Hom(Z, N) —» Ext(Z _,
P

N)

associated with the obvious short exact sequence

*—)Z—>z[%l——>zw——>*.
P
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§3. Ext-p-complete nilpotent groups

In this section we will, for a given prime p, discuss the

obvious notion of Ext-p-completeness for nilpotent groups and show

that

(i) Ext(Z N) is "really" a completion of N

!

P
(ii) Hom(z _, N) .

p

N) is nothing but Homgroups(zpm’

3.1 Ext-p-complete nilpotent groups. A nilpotent group N is

called Ext-p-complete if

(i) the completion map N + Ext(Z _, N) (2.7) is an isomor-

P
phism, and

(ii) Hom(Z N) = =

oo !

P
or equivalently if the space K(N, 1) is Zp—complete (Ch.I, 5.1).

Then we have the

3.2 Universal property. If N is a nilpotent group, then

(i) Ext(2 N) and Hom(Z _, N) are Ext-p-complete, and

o’

1% P
(ii) the completion map N » Ext(Z _, N) is universal for

homomorphisms from N to Ext-p-complete nilpotent groups.

To prove this we need the following important lemma, which

states that K(N, 1) 1is Zp-good (Ch.I, 5.1) if N 1is nilpotent.

3.3 Lemma. For a nilpotent group N and R = zp, the map
P
H* (K(NI l); Zp) _% H*(RmK(Nr l); Zp)

is an isomorphism.
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Proof. Let F be a free abelian group. Then clearly the

obvious map

F — FZ = lim F/pnF
py
P

is a monomorphism of torsion free abelian groups and induces an iso-

morphism

Thus F, /F is uniquely p-divisible and, by Ch.IV, 3.3,

K(FZ /F, 1) is Zp-acyclic. And since R_K(F, 1) = K(FZ , 1) it
p p

follows that the lemma holds for F.

The cases that N 1is abelian and then nilpotent now follow

using Ch.II, 2.2.

Proof of 3.2. Let R = Zp and consider the obvious diagram of

fibrations up to homotopy (Ch.IX, 4.8)

K(Hom(z _, N), 2) —> R_K(N, 1) ——> K(Ext(Z _, N}, 1)
p |

R K(Hom(Z _, N), 2) —> R_R_K(N, 1) —> R_K(Ext(Z N), 1).

p p

w?!

By 3.3 and Ch.II, 5.2, the middle map is a homotopy equivalence, by

Ch.I, 6.1, wiRwK(Hom(Z N), 2) =« for i < 2, and, by 2.3,

!
p
niRwK(Ext(Z wt N), 1) =% for i > 2. Hence the outside maps are
p
homotopy equivalences and the groups Hom(Zz _, N) and Ext(Z _, N)

p p
are Ext-p-complete.

The universal property now follows easily since the triple

structure (Ch.I, 5.6) for R_ induces a triple structure for
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Ext(Z _, -): (nilpotent groups) ——> (nilpotent groups).
P

In order to better understand Ext-p-completeness from an alge-

braic point of view we show:

3.4 First characterization of Ext-p-completeness.

(i) An abelian group N 1is Ext-p-complete if and only if

1 = = .1_
Hom(Z[E], N) 0 Ext(Z[p], N)

(ii) A nilpotent group N 1is Ext-p-complete if and only if the

(abelian) quotients of its upper central series are Ext complete.

Proof. Part (i)} follows easily from 2.7 and the "if" part of
(ii) is immediate.

Now let N be an Ext complete nilpotent group with center C.
Using Ch,IX, 4.1(i), one then can show that in the obvious fibration

up to homotopy (Ch.II, 4.8}
R_K(N, 1) —> R_K(N/C, 1) —> R_K(C, 2)
the image of
3: anwK(C, 2) — anWK(N, 1) = N

is equal to C. Hence N/C = anwK(N/C, 1) and so N/C 1is Ext-p-
complete by 3.2. This easily implies that C 1is also Ext-p-complete

and the "only if" part is now clear.

A more explicit algebraic description of Ext-p-completeness is

given in a
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3.5 Second characterization of Ext-p-completeness. For a nil-

potent group N let
L: (N X NXNX see) ——3 (NXNXDN X se¢)
denote the function defined by
L(xo, Xy Xy ves) = (xo(xl)-p, xl(xz)-p, xz(x3)-p, LR IR
If N 1is abelian, then L is a homomorphism and (Ch.IX, 2.1)
ker L. = iim(N, p) coker L = }iml(N, p)
where (N, p) denotes the tower

-o-_R-)N-—-E—)N—P—)N-——)*-

Thus in the following characterization, part (i) is a special case of
part (ii):

(i) An abelian group N is Ext-p-complete if and only if

lim(N, p) = 0 = Llim (N, p).
“« «

(ii) A nilpotent group N is Ext-p-complete if and only if the

L: (N XNXDNXeste) — 3 (NXNXDNX sev)

is a bijection.

Proof. Part (i) follows from 3.4 since [Roos, Th.l]

Hom(Z[é], N) T Lim(N, p) Ext(Z[%], M = lint(, p).
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Part (ii) may be proved by combining 3.4 with the following results
for a nilpotent group N with center C:

I. If L is bijective for any two of C, N and N/C, then

it is also bijective for the third.

II. If L 1is bijective for N, then it is also bijective for

c.

The proof of I is straightforward, while II follows from the fact

that
(Cxcxcx...) [l (NxNxNx..-)

is the subset fixed under the actions

(xo, X1 Xy, s} —m (uxou_l, uxlu_l, ux,u 7, ERD] ueN

and these actions commute with L.

The remainder of this section is devoted to a proof that

Hom (2 o’ N) = Hom (2 N) and for this we need two lemmas with

roups o’
g9 p p

p
more information on Ext and Hom completions.

3.6 Lemma. For a nilpotent group N,

Ext(z _, N) = = if and only if N is p-divisible,
P

(i.e, for each x € N, there is a y € N with yp = X).

Proof. If Ext(Z _, N) = *, then in the fibration up to

p
homotopy

F —> K(N, 1) —25 R x(n, 1)
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the fibre F is connected and nilpotent, with (3.1) H,(F; Zp) = 0.
Thus (Ch.V, 3.3) the groups " F are uniquely p-divisible and the
"only if" part readily follows.

If N is p-divisible, then N + Ext(Z _, N) is the trivial map

because Ext(Z

o’

P
Z[%]) = * and the "if" part now follows easily,

since the functor Ext(Z -) carries the map N =+ Ext(Zz _, N) to

p

w?!

an isomorphism (3.2).

3.7 Lemma. Let N be a nilpotent group and let K © N be

the kernel of the completion map N + Ext(Z _, N). Then K is the
1%

image of the map

Ho (z[%], N) —> Hom (z, N) = N

mgroups groups

(i.e. K contains the x € N which are "infinitely p-divisible in

a consistent way") and moreover

Hom(Z _, K} = Hom(Z ot N).
P P

Proof. Hom(Z N/K) = * since N/K 1is contained in an Ext-p-

o’
p

complete group (3.2(i)) and thus has a central series whose guotients

are subgroups of Ext-p-complete abelian groups (3.4(ii)). Moreover

Ext(z _, N) + Ext(Z N/K) is an isomorphism, since Ext(Z _, -)

p

!

P
carries the map N '+ Ext(Z »s N)  to an isomorphism. Thus
P

Hom(Z _, K} = Hom(Z wr N)
P P

and Ext(Z _, K) = %, i.e. (3.6) K is p-divisible. The proposition

P
now follows, because Ext(Z _,

1
2[=]) = x.
p p

Finally we prove:



78
Ch. VI, §3 1

3.8 Proposition. For a nilpotent group N, there is a natural

isomorphism

Hom(Zz _, N) = Ho

(z ,, N).
p p

mgroups
Proof. Let K be the kernel of the map N + Ext(Z _, N) and
p
let K' be the kernel of the ma K -+ Z[L] ® K, i.e. K' is the p-
P P
torsion subgroup of K (Ch.v, 2.8). Then K/K' |is p—-torsion free

and thus (2.6)

Hom(z _, K/K') = = Hom(z _, K') = Hom(Z _, K).
P P P
It is now easy to check that
Hom(Z _, K') * Hom(Z _, N)
P P
1
Homgroups(zpw' K) = Homgroups(z ot N)

and the proposition follows since K' is abelian, as [Kurosh, Vol.II,

p.235] every divisible nilpotent torsion group is abelian.




179
Ch. VI, 84

54. Examples of Ext and Hom completions

We shall give some examples of Ext and Hom completions and re-

view some of Harrison's results on Ext-p-complete abelian groups.

We begin by noting some special cases of 2.6:

4.1 Examples. 1In each of the following cases N is supposed

to be a nilpotent group and will satisfy

A

Ext(Zz _, N) = NZ Hom(Z _, N} = =,
P p P
(i) N 1is finitely generated; in this case sz is the p-pro-
finite completion of N [Serre, p.I-5].
(ii) N = Z; in this case NZ = Ep' where
p =
z_ = lim 2/p"2
+

denotes the p-adic integers.

(iii) N is Zp-nilEotent, i.e. there exists an n < « such

n
that xP =% for all x ¢ N; in this case NZ = N.
P

(iv) N is uniquely p-divisible; in this case N = *.

Next we give some examples in which the hypotheses of 2.6 are

not satisfied:

4.2 Examples.

(i) I1f N =2 _, then
P

Ext(z _, N) = 0 Hom(Z _, N)
P P

n
o
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(ii) If N = Zp ® zZ D Z # ++«, then N 1is not Ext-p-

2 3
P

complete, Ext(2 N) 1is not a torsion group, and

o/
~P

Ext(Z ,, N) N, .
P p

The nature of Ext-p-complete abelian groups is perhaps clarified

by:

4.3 Proposition. An Ext-p-complete abelian group has a canoni-

cal 2 module structure.
— =P

Proof. For x € EP and n ¢ N, the product =xn € N 1is the

image of x under

Ny
wr L) —» Ext(Zz _, N) = N.
P P

Z = Ext(2
=P

Equivalently, the module structure of N 1is given by the Yoneda prod-

uct

N
Py

N = Hom(Z Z ) ® Ext(Zz _, N) ——> Ext (2 N) = N.

%4 o

P P P P

o/

4.4 Examples.

(i) If N is a finitely generated abelian group, then the

natural map

Z, ® ¥ ———)Ext(me, N)

is an isomorphism.

(ii) The groups

® and

2 2
=P =p

are not Ext-p-complete, even though they are modules over EP'
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We conclude with an exposition of the results of [Harrison] on

the structure of Ext-p-complete abelian groups (actually we special-

ized his results on "cotorsion groups" [Harrison, p.370], using the
fact that an abelian group is Ext-p-complete if and only if it is a
cotorsion group which is uniquely divisible by all primes different
from p).

Harrison first analyzes [Harrison, p.373]:

4.5 Torsion free, Ext-p-complete abelian groups. The functors

divisible Hom(Z _, -) torsion free
p
p-torsion Ext-p-complete
_—>
. e .
abelian groups abelian groups
z ., % -
p

are adjoint equivalences.

Since each divisible p-torsion abelian group can be decomposed

as a direct sum of Z _'s [Kurosh, Vol.I, p.1l65], it follows that a

(=]

P
torsion free, Ext-p-complete abelian group N is classified, up to

isomorphisms, by the Zp—dimension of Zp ® N.

Next Harrison considers:

4.6 Adjusted Ext-p-complete abelian groups. An Ext-p-complete

(with respect to a prime p) abelian group N is called adjusted if

N/Np is divisible, where Np denote the p-torsion subgroup of N,

and one has [Harrison, p.3751]:
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The functors

p-torsion abelian Ext(Z _, -) adjusted
P
groups with no N Ext-p-complete
7

divisible subgroups abelian groups

are adjoint equivalences.

Finally Harrison gives [Harrison, p.373):

4.7 A decomposition of Ext-p~complete abelian groups. For every

Ext-p-complete abelian group N, there is a unique splittable short

exact sequence

* —>A —> N —> F —> *

such that A is adjusted Ext-p-complete and F is torsion free Ext

complete.

In this decomposition

>
2

Ext(Z _, Np)
P

F = Ext(Z _, N/N))
p P

and the splitting is due to [Harrison, p.370]:

4.8 Lemma. If L is an Ext-p-complete abelian group and M

is a torsion free abelian group, then Ext(M, L) = 0.
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§5. Homotopy and homology properties of the

Zp—completion of a nilpotent space

Our key result is

5.1 Proposition. If X e+,  (i.e. X is pointed, connected

and Z-nilpotent in the sense of Ch.III, §5), and, of course, R = Zp,

then R X e #,  and, for n > 1, there is a splittable short exact

seqguence

r — Ext(me, mX) —> T RX —> Hom(me, M oX) — .

Proof. Except for the splittability, this follows by R-complet-
ing the Postnikov tower of X, using 2.4 and Ch.II, 4.8. The
splittability follows from 4.8, since Ext(Z _,

p
plete and Hom(Z _, T,-1X) is torsion free.

nnx) is Ext-p-com-

An important case of 5.1 is:

5.2 Example. If the groups m X are all finitely generated

abelian (and X ¢ J*N)’ then

where gp denotes the p-adic integers (see 4.1); and of course

Z ® 2 = 7

=P =P

Z2 8 2 =~ 2

= pJ pJ

2 % Z . = 0 for any prime g * pP.
= q’
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Another easy consequence of 5.1 and Ch.I, 5.2 is:

5.3 Proposition. If X ¢ J*N’ then

(i) X is R-good (i.e. H, (X; z) = H, (R_X; z2,))

(ii) R_X is R-complete (i.e. R_X = R R _X).

And, together with Ch.II, 2.8, the above results imply:

5.4 Proposition. For a space X € H;N, the following are

equivalent:

(i) X is Zp-complete.

(ii) The groups nnx are Ext-p-complete.

(iii) Whenever a map f: K + L € #, induces an isomorphism

H, (K; Zp) = H, (L; Zp)’ then it induces a bijection [L, X] = [K, X]

of pointed homotopy classes of maps (Ch.VIII, §4).

5.5 Example. For R = Z and n > 1, there is an isomorphism

which assigns to each map f: R_S =+ R_S the obvious degree

deg £ € Z_.
g Zp

We end with a brief discussion of

5.6 The homology of R _X. Let X ¢ dLN, let R = Zp and let

g be a prime. Then

Hy (R_X; Zq) *  H, (X; Zq) if g=p
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Proof. The case q = p is just 5.3, and the case q # p
follows from Ch.V, 3.3, because the groups nanX are uniquely g-di-

visible (An easy argument, using 3.4, shows that all nilpotent groups

which are Ext-p-complete are uniquely g-divisible for all primes

q#p).

5.7 Remark. If X e o, and R = Zp the integral homology
H, (R _X; Z) is uniquely g-divisible for primes ¢ # p, but still not
very well behaved. For example, if s" is an odd sphere and k > 2,
then Hkn(RmSn; Z) is a huge Q-module (because the Q-completion of
n

RS has the homotopy type of K(g ® gp, n) and Q 2 gp has

uncountable dimension over Q).
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§6. p-completions of nilpotent spaces

We introduce a notion of p-completion for nilpotent spaces which

is merely an "up to homotopy" version of our Zp—completion and which

generalizes the usual p-profinite completion [Quillen (PG)] [Sullivan,

Ch.3] for simply connected spaces of finite type. We also consider

various preservation properties of p-completions and observe that the

p-completion factors through the Z(p)—localization of Chapter V.

6.1 p-completions. For X e J*N’ a p—completion of X 1is a

map X » X e #, . such that
(i) X is Zp-complete, and
(ii) the induced map ﬁ*(x; Zp) > ﬁ*(f; Zp) is an isomorphism.

The results of §5 then immediately imply:

6.2 Proposition. p-completion is well-defined and functorial

on the pointed homotopy category of nilpotent spaces. It is induced

by the functor R where R = Zp.

6.3 Homotopy characterization of R X (R = Zp). For X & #,

NI

the Zp—comgletion X + R X is a p-completion, and, in the pointed

homotopy category, any p-completion X + X is canonically equivalent

to X + R X.

6.4 Example. There are Zp-homology equivalences

K(z _, n-1) —» K(Z, n) —) K(Z , n) —> K(Z_, n)
p (p) =p

and thus the Zp—complete space K(gp, n) 1is a p-completion of all

these spaces.
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Next we discuss the "preservation properties” of p-completions.

We already have from Ch.II, §4:

6.5 Proposition.

(i) If p: E+ B ¢ dQN is a fibration with mE » mB onto,

and

then R p: RE + R B is a fibration with plr ¢ v

R, (p71%) = (R_p) lx.

*N

(ii) If X ¢ J*N is l-connected, then R_QX = QR _X, where Q

denotes the loop functor [May, p.99].

(iii) If X, Y e oy, then R_(XXY) = RX X R,Y.

Because all spaces in J*N are Zp-good, one can apply Ch.I, 5.5

to show:

6.6 Proposition.

(i) If i: A+ X e, is a cofibration, thenm R,i: R,A + R.X

is a cofibration and R (X/A) = R (R _X/R_A).

(ii) If X ¢ J;N, then R _SX = R_SR X, where S denotes the

suspension [May, p.124].

(iii) If X, Y e #,, then R _(X Y) = R (R XVR Y).
(iv) If X, Y & &, then R_(XAY) = R, (R XAR,Y).

Of course the "preservation properties” in 6.6 are not as
pleasant as one might hope. This is because the usual "direct limit

constructions" do not preserve Zp—completeness for nilpotent spaces.

6.7 Example. The spaces RwS"‘v RwSn for m, n > 2,

RmSm ~ R S® for m, n >1 and S2

o Rwsm for m odd, are not Zp—com—

plete because the groups
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m n m n
M @ d
T tn-1 RS v R.S) Ttn-1ReS T 1R.S Z, R Z,
m n
= K]
Tosn (ReS  ~ RST) Z5 Z
are not Ext-p-complete and because
m +2
He (R,S™: Q) 7 He ,(RS" 75 Q)

for m odd (see 5.7).

We conclude by

6.8 Factoring p-completions through Z(p)-localizations. Let

Z(p) € O denote the integers localized at p. Then, for X ¢ 'QN’

the map

is an isomorphism (Ch.V, 3.2), and hence the map

(zp)wx _— (zp)w(z(p))wx € Jay

is a homotopy equivalence. Moreover (5.6) the Zp—complete spaces in

uQN are all Z(p)—comglete.

Thus, up to homotopy, the Zp-completion on J;N can be viewed

as a two-step process:

(i) Z(p)—completion for nilpotent spaces, followed by

(ii) Zp—completion for Z(p)—complete spaces.
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§7. p-completions of function spaces

In preparation for the arithmetic square fracture lemma (§8) we

show here that the homotopy types of the pointed function spaces

(Ch.VvIII, §4)
hom, (W, X) and hom, (W, R_X)

(R = Zp) are often closely related. The results and proofs are
very similar to those for localizations (Ch.V, §5), except that we

assume that X 1is not only nilpotent, but also has finitely gener-

ated (nilpotent) homotopy groups (see 7.4 and 8.5). We shall implic-

itly use the fact that the functor Ext(2 o’ —) preserves exact

P
sequences 0of such groups. We also remind the reader that, for a

finitely generated nilpotent group N

Ext(z _, N} = N, = the p-profinite completion of N
p p

and that, for a finitely generated abelian group N

Ext(z _, N) x* z_ ® N
p
We start with a proposition which implies that, under suitable
conditions, the Zp-completion of any component of hom, (W, X) has
the same homotopy type as the corresponding component of hom, (W, R _X),

where R = Z .
p

7.1 Proposition. Let X € Jxy be fibrant and have finitely

generated nilpotent homotopy groups, let W € 4 be finite and let

*C
and all i > 1,

R = Zp' Then, for every map f: W » X € J*C
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(i) ﬂi(hom*(w, X), £f) 1is finitely generated nilpotent,

(ii) ﬂi(hom*(w, R _X), ¢f) is Ext-p-complete nilpotent, and

(iii) the map ¢: X » R_X induces an isomorphism

~

ni(hom*(w, X), f)Z 2 vi(hom*(w, R_X), ¢f).
P

The proof is similar to that of Ch.v, 5.1.

Again, the relation between the sets of components of hom, (W, X)

and hom, (W, R _X), i.e. the relation between the pointed homotopy

classes of maps (Ch.VIII, §4)

W, X] and [w, R_X]

is not so easy to describe. Of course, as in Ch.V, 5.3, one proves:

7.2 Proposition. Let X € J;N be fibrant and have finitely

generated nilpotent homotopy groups, let W ¢ J*C and let either W

be a reduced suspension [May, p.l124] or X be a homotopy associative

H-space (Ch.I, 7.5). Then

(i) [wW, X] 1is a finitely generated nilpotent group,

(ii) [W, R_X] is an Ext-p-complete nilpotent group, and

(iii) the map ¢: X » R_X induces an isomorphism

W, X1, = [W, RXI.
P

In general, however, the sets [W, X] and (W, R_X] do not

come with a group structure. Still, as in Ch.V, 5.5,

useful result for neighborhood groups:

one can prove a

7.3 Proposition. Let X € 4, be fibrant and have finitely

generated nilpotent homotopy groups and let W ¢ J*C

be finite and
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reduced., Then, for every map f: W + X ¢ &

xC’
w, RwX]¢f is an Ext-p-complete nilpotent group, and

W
(ii

i) the map ¢: X + R _X induces an isomorphism

(W, X1, = W, RX],q .
P
7.4 Remark. 1In proposition 7.1, 7.2 and 7.3 we have supposed
that X has finitely generated nilpotent homotopy groups, and
although this condition can not be omitted (8.5), it should be noted

that propositions 7.1, 7.2 and 7.3 remain true if "finitely generated

nilpotent" is everywhere replaced by "Z[J-ll-nilpotent and finitely

generated over Z[J-ll, where J is a fixed set of primes and a
1

Z[J_l]-nilpotent group is called finitely generated over z[3 "] if

it has a central series whose (abelian) quotients are finitely gener-

ated Z[J-l]-modules in the usual sense.
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§8. The arithmetic square fracture lemma

We end this chapter with a fracture lemma involving Zp-comEle—
tions, which is essentially due to Sullivan. It will be formulated

in terms of the arithmetic sguare [Sullivan, 3.58], i.e., in the

notation of Ch.v, 6.1, a diagram of the form

X — T T (2).X
(1) pe1 P

X —_—— o (T T (2%
(0) olelp B (0)

where X € J*N’ I 1is a set of primes, the top map is induced by the
Zp-completions and the bottom map is the Q-completion of the top map.

The main result is the

8.1 Arithmetic square fracture lemma. Let X ¢ »’yy have

finitely generated homotopy groups, let W € “xc be finite and let

I be a set of primes. Then

(i) the arithmetic square

X —_— s (T T (2 %)
(0) per1 P (0)

is, up to homotopy, a fibre square, and

(ii) the induced square of pointed homotopy classes of maps

(Ch,VIII, §4)
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W, X, 1] — (w, T7T (2 )_X]
(1) pel p

W, X(5y] ——> (W, F()T‘E'['I(zp)mx)(0)]

is a pull-back in which the upper map is an injection.

Proof. The proof is essentially the same as that of the prime
fracture lemma (Ch.V, 6.2) and uses 7.3, 7.4, and the following group

theoretic analogue of 8.1 (whose proof is similar to that of Ch.V,

6.5).

8.2 Lemma. If N is a finitely generated nilpotent group and

I is a set of primes, then the natural diagram

Z,ov ® N — o —» TN
(1) pel Zp

Q ® N —— 0 & ( N, )
pel p

is a pull-back in which the top map is an injection. Moreover, every

element u e Q & ( N, ) can be expressed as u = vw, where v
pel p ~
(resp. w) is in the image of Q ® N (resp. NZ ).
pel’p

8.3 Remark. The arithmetic square fracture lemma shows that a

space X € J*N with finitely generated homotopy groups is, up to

homotopy, determined by its various Zp—completions together with
"rational information". However its most interesting feature is the

assertion that, for W e J*C finite, the map
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W, X,.,] —> T T (W, (z)_XI
(1) pel P

®©

is an injection. Since (6.8) (Zp)mx = (Zp) x(p), this is stronger

than the previous result (Ch.V, 6.2) that

W, X, .1 — T 7T Iw, X,,1]
(1) pe'T (p)

is an injection.

8.4 A relation between Zp—completions and Z(p)-comgletions. We

showed in 6.8 that, for X e & the Zp—completion (ZP)WX is, up

*N’
to homotopy, determined by the Z(p)—completion X(p).

On the other hand 8.1 implies that, for X e o, with finitely
generated homotopy groups, the homotopy type of X(p) is determined
by (Zp)mx and the rational information of the, up to homotopy, fibre

square

X —_— (2 ) X

Im

0 T (Z)X g -

(p)

X

8.5 The restrictions on W and X. The condition in 8.1 that

W e J*C be finite is clearly unnecessarily restrictive and can be
relaxed as in Ch.V, §7.

However, the restriction that X € “Zxy have finitely generated

homotopy groups cannot so easily be dropped, although it can be

modified as in 7.4. Some of the difficulties that arise are, for
instance:
(1) For X = K(Z o+ D), the Zp—completions of the components of

P
hom;(sn, X) are not homotopy equivalent to the corresponding
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components of hom, (s”, (Zp)mx).

(ii) For X = K(Z _, n), the map
P

(s, X1 —  TT (5", (z)X]
p prime P

is not an injection.
(iii) The arithmetic square is not, up to homotopy a fibre

square for

; D)

X = K(IZ
PP

where p runs over all primes.
We end with an interesting consequence of 8.1:

8.6 Proposition. Let X € Zan be fibrant and have finitely

generated homotopy groups, let W € T be finite, let

f, g: W~>Xe€ Te be such that
[£] # Iq] e [W, X]

and let p be a prime. Then there exists a map u: X - Y € SN

such that
[uf] # [ug] e [W, Y]

and such that each ﬂiY is a finite p-group.

Proof. Let R = Zp. Then (Ch.V, 7.5) one readily sees, by
inspecting the El—term of the extended homotopy spectral sequence of
{RSX} (Ch.I, 4.4), that each T.RX is a finite p-group for s < «.

In view of Ch.IX, §3 this implies
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[w, R_X] = lim(W, R_X]
< S

and so the proposition follows from 8.1.
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§9. curtis convergence theorems

We end this chapter with some best possible convergence results

for the homotopy spectral sequence {Er(x; Zp)} of a nilpotent space

X (Ch.I, 4.4) and observe at the end of this section that, as in

Ch.IV, 5.6, these results readily extend to the lower p-central series

spectral sequences. We also indicate a generalization to certain not

necessarily nilpotent spaces. Similar convergence results for
R € Q were obtained in Ch.IV, 5.6 and Ch.V, 3.7.

The main result of this section (9.1) was proved initially in
[Bousfield-Kan (HS), §6] for simply connected spaces, by combining
Rector’s variation [Rector (AS)] on Curtis' fundamental theorem (Ch.IV,
5.6 and [Curtis (H)]) with some ad-hoc simplicial arguments. Our

present approach, however, is more direct and yields stronger results.

9.1 Curtis convergence theorem for R = Zp. If X e oy is

such that in each miX the p-torsion elements are of bounded order,

then {Er(x; Zp)} converges to m,X in the following sense:

(i) {Er(X; zp)} is Mittag-Leffler (Ch.IX, 5.5) in all dimen-
sions > 1.

(ii) For each i > 1 there exists a natural filtration

LI ol an.x c Fln.X [on Fon.x = T,X
i i i i
such that
#5/F5thn x 2 B3 Sty z,) for s 20

and such that f;\ anix is the kernel of the completion map (Ch.VI,

2.6 and 2.7)
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nix e Ext(zpw, nix) < (nix)Zp

or equivalently (Ch.VI, 3.7) is the image of the map

1 -~
Ho (Z[El' ﬂiX) ——> Hom (z, ﬂiX) x m.X

mgroups groups i

(i.e. f;\ anix consists of the elements of nix which are

"infinitely p-divisible in a consistent way").

We remark that [Kurosh, Vol.I, p.173], for nix abelian, the

p-torsion elements in X are of bounded order if and only if the

p-torsion subgroup of m;X decomposes as a direct sum of copies of

Z j where the J are bounded.
p

The result of 9.1 is essentially best possible because:

9.2 Proposition. For G abelian and n > 1, the spectral

sequence {E_(K(G, n); Zp)} is Mittag-Leffler in all dimensions > 1

if and only if the p-torsion subgroup of G decomposes as a (possibly

trivial) direct sum of copies of Z _ and copies of Z 5 where the
p p

j are bounded.

Of course, if G has 2 w @s a direct summand, then the condi-

1%
tion 9.1(ii) will not hold for X = K(G, n).

9.3 Remark. Theorem 9.1 is not the most general convergence
theorem. For instance, it is clear that:

1f X € #c 1s such that H, (X; Zp) is finite for each i > 1,

then each of the groups Ei’t(x; Zp) is also finite. Consequently

{Er(x; Zp)} is Mittag-Leffler in all dimensions 2> 1 (Ch.IX, 5.5)




199
Ch. VI, §9

and converges completely to n*(zp)mx (which may be very different

from w,X).

Proof of 9.1. The proof of Ch.VI, 2.6 implies that the tower of
groups {uqRSK(ﬂix, i)} is pro-trivial for i 21 and g # i. Thus

Ch.II, 5.4 and Ch.III, 7.1 show that the obvious tower maps
. (i)
{niRsK(nix, i)} — {niRsx } —— {niRsx}

are pro-isomorphisms for i > 1, where X(l) denotes the i~th
Postnikov space of X [May, p.31). Using Ch.IV, 2.4 and Ch.VI, 2.3

and 3.7, it is now easy to show that the obvious maps
ﬂiX —_ uiRsK(nix, i) i>l, 0 £ 5 ¢« =
are onto and that

0<s'<w ker(nix —_— niRsK(ﬂiX, 1))

is the subgroup of nix consisting of the elements of ﬂiX which
are "infinitely p-divisible in a consistent way". The theorem now

follows easily.

Proof of 9.2, By [Bousfield-Kan (HS), §15]

S,t . ~ = -
E2 (K{G, n); Zp) T G ® Zp for s 0, t n
* coker (G, Zp) for s > 0, t=s = n
* ker (G, Zp) for s > 0, t~-s = n+l

= 0 otherwise
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where coker (G, Zp) and ker(G, Zp) denote the cokernel and kernel

of the obvious composition
Tor (G, Zp) —_—> G —> G & Zp.

Moreover, for r > 2, Er(K(G, n); Zp) suspends isomorphically to the
E_-term of the Adams spectral sequence for the K(G) spectrum. Thus,
if r > 2 and t-s = n+l, then Ei’t(K(G, n); Zp) is isomorphic to

the kernel of the obvious composition

Tor(G, z,) —>»G —>G & Zpr-l'

Now it is easy to show that {Er(K(G, n); Zp)} is Mittag-Leffler in
all dimensions > 1 if and only if the p-torsion subgroup of G
decomposes as I ® M, where I is divisible and pkM = 0 for some

k. The proposition then follows from [Kurosh, Vol.I, p.l165 and p.173L

9.4 Remark. The analogue of theorem 9.1 for the lower p-central

series spectral sequences ([Rector (AS)], [Quillen (PG)] and

[Bousfield-Curtis]) can be proved in the same way as 9.1. The main
reason for this is that:

(i) for towers of groups, the Mittag-Leffler property (Ch.IX,

3.5) is a pro-isomorphism (Ch.III, 2.1) invariant, and thus (Ch.IX,

5.6)

(ii) for spectral sequences of towers of fibrations in .,

the Mittag-Leffler property in dimension i is a weak pro-homotopy

equivalence (Ch.III, 3.l) invariant.

Note that complete convergence (Ch.IX, 5.3) is, in general, not

invariant under weak pro-homotopy equivalences. For example, if
gp denotes the p~adic integers, then there is a weak pro-homotopy

equivalence
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ces __29 K(gp, n) ——Ee K(gp, n) ——Eé K(gpr n) —> *

f f g

£ £
—=> K(Z,, n) — K(Z,, n) —%K(gp/Z. n) —>

(n > 1), where f induces gp —Ea ép and g induces the quotient
map 2 —> gp/z. However the spectral sequence of the upper tower

=p
converges completely, while that of the lower tower does not.



Ch. VII, §1

Chapter VII. A glimpse at the R-completion

of non-nilpotent spaces

§1. Introduction

Although the R-completion is quite well understood for nilpotent
spaces (Ch.V and Ch.VI), the situation for non-nilpotent spaces is
still very mysterious. So far we have essentially dealt with only
one non-nilpotent example, in Ch.IV, 5.3, where we showed that for

any free group F

~

R,K(F, 1) = K(Fp, 1)

and our main purpose in this chapter is to discuss some other non-
nilpotent spaces and indicate how little is known about them and how

much more work remains to be done for non-nilpotent spaces.

§2 This first section contains some easy homotopy characteriza-

tions of the R-completion for R-good spaces.

§3, §4 and 85 form the central part of this chapter; we discuss

various non-nilpotent spaces and show, in particular, that:

(i) any space X with an R-perfect fundamental group (i.e.

Hl(x; R) = 0) is R-good for R € Q and R = Zp'

(ii) any space with finite homotopy groups in each dimension is

R-good for R € Q@ and R = Zp,

(iii) any space with a finite fundamental group is Zp-good for

all primes p, but

(iv) the projective plane as well as some finite wedge of

circles is not Z-good.
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§6 This last section contains some comments on possible R-homo-

topy theories for R € Q and R = Zp.

Notation. 1In this chapter we will mainly work in the category

Py of pointed connected spaces.

C
Throughout this chapter the ring R will be R c Q or R = Zp,

except in §2, where we allow arbitrary (solid) rings.
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§2. Homotopy characterizations of the

R-completion for R-good spaces

For any (solid) ring R we

(i) give universal properties which characterize, up to homo-

topy, the R-completion for R-good spaces, and

(ii) formulate an "up to homotopy" version of the R-completion

for R-good spaces, which generalizes the localizations (Ch.V, §4)
and the p-completions (Ch.VI, §6); a generality which is justified
because there are many R-good spaces which are not nilpotent (see §3,
§4 and §5).

First we have (in view of Ch.I, §5 and Ch.II, 2.8) the

2.1 Universal properties. For an R-good space X € 4 the

*C'’

map ¢: X - R X has the following "up to homotopy" universal

properties:

(i) ¢: X » R X 1is terminal among the maps f: X > Y € J;C for
which f,: H,(X; R) = H,(Y; R), i.e. for any such map £, there
exists a unique homotopy class of maps u: Y - R X € J;C such that
uf = ¢.

(ii) ¢: X » R_X is initial among the maps f: X » Y ¢ Zyc for
which Y is R-complete and fibrant, i.e. for any such map £, there

exists a unique homotopy class of maps u: R X = Y € J*C such that

up = f£.

Next we introduce our "up to homotopy" version of the R-comple-

tions, which we call
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2.2 Semi-R-completions. For this we first say that a space

K e J*C is semi-R-complete if it is fibrant and every map
f: X » Y ¢ d;c which induces an isomorphism H,(X; R) = H,(¥; R),
also induces a bijection of the pointed homotopy classes of maps

[Y, K] = [X, K]. This is motivated by Ch.II, 2.8, which implies

that, for every W e J*C’ the R-completion R_W is semi-R-complete.

For X € J;C, a semi-R~completion of X now is a map

X+ X e such that

*C
(i) ¥ 1is semi-R-complete, and
(ii) the induced map H,(X; R) =+ H*(f; R) 1is an isomorphism.

Although, in general, the R-completion of X need not be a semi-

R-completion of X, one clearly has:

2.3 Proposition. The semi-R-completion is well-defined and

functorial on the pointed homotopy category of R-good spaces. It is

induced by the functor R_.

-]

2.4 Homotopy characterization of R _X. For an R-good space

X € J;C, the R-completion ¢: X + R X is a semi-R-completion, and,

in the pointed homotopy category, any semi-R-completion of X is

canonically eguivalent to ¢: X + R X.

Note that each "R~homology type" of R-good spaces contains
exactly one homotopy type of (semi-~) R-complete spaces; and the

(semi-) R-completion "selects" that homotopy type.
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§3. Spaces with an R-perfect fundamental group

An interesting class of spaces which are R-good consists of the

spaces whose fundamental group is R-perfect. We will show in several

examples that, for such spaces, m,R_X may be very different from

m.X. We start with recalling the definition of

3.1 R-perfect groups. A group G is called R-perfect if

Hl(G; R} =0, i.e. if

R @ (abelianization of G) = 0.

Thus a Z-perfect group is nothing but a group which is perfect in the

usual sense. Clearly every perfect group is R-perfect.

An immediate consequence of this definition, Ch.I, 5.2 and 6.1,

Ch.v, 3.4 and Ch.VI, 5.3 is

3.2 Proposition. Let X € J*C' let RS Q or R = Zp p

prime) and let nlx be R-perfect. Then X is R-good and R_X is

simply connected.

3.3 Examples.

(i) The projective plane P? is z -good for p 4 2; actually

P2 is also Z,-good, but this we will only see in §5.

(ii) Let A_ denote the infinite alternating group, i.e.
o

A = lim A
> n

where AL denotes the alternating group of degree n, i.e. the group

of the even permutations of {1,-++,n}. Then K(A_, 1) is R-good
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for R € Q and R = Zp, because [Kurosh, Vol.I, p.68] An is

simple for n > 5 and thus A_ 1is perfect.

(iii) Let §S_ denote the infinite symmetric group, i.e.
] = 1im S
> n

where S, denotes the symmetric group of degree n, i.e. the group

of the permutations of {l1,--+,n}. Then K(s,, 1) is R-good for

R <€ Q and R = zp, in spite of the fact that §S_ is only Zp-per—
fect for p f 2. To prove this one observes that there is, for each

n, an obvious monomorphism Al X Z,*S which is compatible with

n+2

the inclusion An -+ Sn+2 and the projection Sn+2 -+ Zz. As
furthermore

Hy{A_, 2) = lim H,(A_, 2)

-] > n

it is not hard to see that, in the fibration

K(Amr l) '——)K(Sm, l) ——)K(er l),
an(ZZ, 1) = 2, acts trivially on H,(K(a_,, 1), 2) = H,(A_, Z). The

desired result now follows from (ii) and Ch.II, 5.1.

The last two of these examples are K(m, 1)'s whose Z-comple-

tion has as higher homotopy groups

3.4 sStable homotopy groups of spheres. There are isomorphisms

?

1,2,K(S,, 1) T 7,(a7s7) i21

nime(Aw, 1) = ni(Q S )0 i

v
N
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o co @ _ o . n.n
where (@ S )0 denotes the constant component of © § = lim Q'S .
-
The first part is a consequence of Ch.I, 5.5, Ch.V, 3.3 and the

fact that [Priddy] there is a map
|K(s,, 1| —> (@7s7),

which induces an isomorphism on integral homology. The second half
follows from the first by applying Ch.II, 5.1 to the fibration (see

3.3(iid))
K(a,, 1) — K(S,, 1) —> K(z,, 1).

It is easy to deduce similar results for other coefficient rings

Next we briefly discuss Dror's observation that, for a perfect
group G, the higher homotopy groups of Z_K(G, 1) can be interpret-

ed as

3.5 Homotopy groups of simple acyclic spaces. Let G be a

perfect group and let G' denote the extension of G

* » H,G

L 4
[}
v
@
v
*

2

corresponding to id ¢ HZ(G; H2(G; Z)). Then ¢' is superperfect,

i.e.
Hi(G'; Z) = 0 i=1, 2

and hence [Dror (A)] there is, up to homotopy, a unique space a(G")
such that

(i) A(G') 1is acyclic, i.e. H,(A(G'); Z) = 0, and
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(ii) nlA(G') = G' and nlA(G') acts trivially on niA(G')
for i > 1,
Moreover A(G') is, up to homotopy, the "fibre" of the map
¢: K(G', 1) + ZwK(G', 1) and from this it is not hard to deduce

(using Ch.II, 2.2) that

Z _K(G, 1)

n

T, H2(G7 Z)

m.2.K(@G, 1) T w, _,A@G) i> 2.

i-1

We end this section with a result of [Sullivan, 4.28 ff] which

shows that a non-nilpotent action of a nilpotent fundamental group on

a higher homotopy group can create as much havoc as a non-nilpotent

fundamental group (see above).

3.6 Classifying spaces for Zp—completions of spheres. Let p

be an odd prime and let n > 2 divide p-1. Then there exists a

space X € H;C such that

, the p-adic integers (Ch.VI, 4.1}

(iii) X = for i > 2, and

(iv) there is a homotopy egqguivalence

QRmX = RmSZn-l where R = 2

and thus
Z
=P

T RX = p-torsion of w. .S i f 2n.
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To prove this one observes that gp contains a (p-l)-st root
of unity (Sullivan, 1.35 ff], i.e. an element § € EP such that
Ep_l =1 and the obvious map EP > Zp carries £ to a primitive
(p-1)-st root of unity in Zp and then constructs X as a space
in which the action of X on TmyX corresponds to that of
{1, E(p—l)/n, EZ(p-l)/n, ***} on 2Z_. Since n,X is Z -perfect, it

= 1 P
follows from 3.2 that R _X is simply connected and that
H*(Rmx; Zp) = H*(X; Zp). An easy computation shows that H*(X; Zp)
is a Zp-polynomial algebra on a generator of degree 2n and hence
QRX 1is a (2n-1)-connected Zp-complete space and H*(QRWX; Zp) is

an exterior algebra on a generator in dimension 2n-1. The desired

result now follows readily.
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§4, Spaces with finite homotopy or homology groups

Another class of spaces which are R-good consists of the spaces

with finite homotopy groups. For such spaces the Z-completion is,

up to homotopy, the product of the Zp—completions. This last state-

ment, in fact, holds for all spaces with finite homology groups, i.e.:

4.1 Proposition. Let J be a set of primes, let R = Z(J)

(Ch.v, 6.1), the integers localized at J, and let X ¢ agc be such

that Hi(x; R) 1is finite for each i > 1. Then the natural map

RX —> T T (2).X
pEeEJ p

is a homotopy equivalence.

4,2 Corollary. Let J be a set of primes, let R = Z(J) and

let X & o, be such that m.,X is finite for each i > 1. Then the

natural map

RX —> TT (2).%
ped p

is a homotopy equivalence.

Proof of 4.1. By Ch.III, 6.2 and 6.5
(Zp)wx ~ iim(zp)mRsX for pe Jd
and, as RSX is an R-nilpotent space with finite homotopy groups,

RX = (Z_ ) R X for s < = ,
s ped p'>~'s
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The desired result follows easily.

Now we can state

4.3 Proposition., Let X ¢ #+c be such that m.X is finite

for each i > 1. Then

(1) ﬂi(Zp)wX is a finite p-group for all i and p (prime).
Hence (4.2, Ch.I, 6.1 and 7.2 and Ch.II, 5.2(iv))

(ii) R_X is nilpotent for R € Q and R = Zp’

and therefore (Ch.I, 5.2, Ch.V, 3.4 and Ch.VI, 5.3)

(iii) X is R-good for R < Q and R = Zp.

25222. It suffices to construct, for each prime p, a map
X »>Ye HLC which induces an isomorphism H, (X:; Zp) = H, (Y; Zp) and
is such that mY is a finite p-group for all i. This can be done
by "attaching Moore cells" as follows.

Let n be the smallest integer such that nnx is not a p—-group
and let a € ﬂnX be an element of order k, prime to p. We may
suppose X to be fibrant and choose a map

u: M(Zk, n) —> X 3 H;C

representing o, where M(Zk, n) 1is a Moore space of type (Zk, n).
If Cu denotes the mapping cone of u, then the inclusion X > Cu

clearly induces isomorphisms
Hy(X; 2) = H.(C_; Z)
p
T.X 2 niC for i <n

and an epimorphism nnx > "ncu which annihilates a € T X. Moreover
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we will show below that m.Cy is finite for all i and iteration of
the above construction thus yields the desired map X + Y.

To show that the "icu are finite, one considers the universal
covering f: éu - Cu and observes that Eu can be obtained from its

subspace f-l(X) by "attaching Moore cells" for each of the liftings

in the diagram

£ (x)
f
/

/ u
M(Z,, n) —— X .

f

Since there are only finitely many such liftings and since f—l(x)
has finite homotopy (and hence homology) groups, it is clear that
Eu has finite homology (and hence homotopy) groups. Consequently

n.C is finite for all 1i.
i~u

As an illustration of 4.2 and 4.3 we investigate the Z-completion

of K(S3, 1) where S3 denotes the symmetric group of degree 3

(see 3.3(iii)) and prove

4.4 Proposition.

Z,K(S3, 1) = (Z,) K(S3, 1) x (2Z3) K(55, 1)
where
(2,) K(S5, 1) = K(2Z,, 1)

and there is a fibration, up to homotopy,

3 3 3
(24),5° - (2;),8° — (2;) K(54, 1)
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in which j is of degree 3.

Proof. The first statement follows from 4.2 and the fact that
K(S3, 1) 1is Zp-acyclic for p f 2, 3, while the second is true,
because the obvious map K(S3, 1) -+ K(ZZ' 1) is a Zz—homology
equivalence.

To get a hold on (Z3)wK(S3, 1) one applies 4.3 to the obvious
(co-)homology data for K(S3, 1) and finds that (Z3)QK(S3, l) is a

Z3-complete space with

1

*
Hh
[e]
2}
M

A
w

T, (23) K(S5, 1)

*
and that the algebra H ((Z3)QK(S3, 1); Z3) factors as a tensor
product of an exterior algebra on a 3-dimensional generator with a
polynomial algebra on a 4-dimensional generator. From this it is not

hard to obtain the desired result.
We end with a general
4.5 Remark. For the spaces considered in this section one can

obtain more information on w,R X by combining 4.1 with the homotopy

spectral sequences {Er(X; Zp)} (Ch.I, 4.4) as one has (Ch.VI, 9.3).

If X e J;C is such that Hi(X; Zp) is finite for each i > 1,

then the spectral segquence {Er(x; Zp)} is Mittag-Leffler in all

dimensions > 1 (Ch.IX, 5.5), and thus converges completely to

T, (2 X.
*(20)
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§5. Spaces with a finite fundamental group

In this section we show that spaces with a finite fundamental

group are Zp—good for all primes p. However such a space need not

be Z-good; the projective plane P2 already provides a counter

example.

5.1 Proposition. Let X € #«c be such that mX is finite.

Then X 1is Zp-good for all primes p.

Proof. As in the proof of 4.3 one “"attaches Moore cells" to

obtain a Zp—homology equivalence X + Y € & such that HIY is a

*C
finite p-group; and one is thus reduced to proving that Y is Zp-
good. For this it suffices, in turn, to show that the Postnikov

fibration, up to homotopy

Y —> Y — K(m ¥, 1)

satisfies the hypotheses of Ch.II, 5.1, i.e. that WlY acts nil-

potently on each Hi(§7 Zp). But this is indeed the case because a

finite p-group G always acts nilpotently on a Zp—module M.

To prove this last statement, observe that (Ch.II, 5.2(iv)) G
acts nilpotently on the Zp—group ring ZPG. Thus, if I c ZpG
denotes the augmentation ideal, there is an integer n such that
1" = 0. The desired result now follows from the fact that
™ <M is nothing but the n-th term in the "lower central series

of M with respect to the action of G".

Unfortunately, even a finite space with a finite fundamental

group need not be Z-good, as can be seen from the following:
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5.2 Counter example. The projective plane P2 is not Z-good.

5.3 Remark. If XK(F, 1) were Z~good for every finitely
generated free group, then all spaces X € o of finite type (i.e. Xn
finite for all n) would also be Z-good. The above counter example

thus implies that some finite wedge of circles is not Z-good.

Proof of 5.2. We want to show that H4(ZmP2; Q) f 0. For this

let R = Z,. Then (4.1)

and thus (Ch.II, 5.1) there is a fibration, up to homotopy

R_S > 2P > K(Z,, 1)

and H*(ZmPZ; Q) can be identified with the quotient of H*(RWSZ; Q)

under the action of ZZ'

By [J.H.C. Whitehead] there is a "certain exact sequence”
*n e 2 2- 2 2 E N )
—> TR, —> H, (R,5%; 2) —> B (M,R,S7) — TR, S" —

where r' is the functor which assigns to an abelian group A, the
abelian group [(A) with a generator Y(x) for each x € A and

relations
Y(x) = Y(-x)
Y (x+y+z) - Y(x+y) - Y(y+2) - Y(z+x) + Y(x) + Y(y) + Y(2) = O

for all x, y, z € A. Tensoring this with (, we obtain an exact
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sequence

0 —> H4(Rm52; Q) —QqQ @ I'(szwsz) —> Q0 ® WBRWSZ — e

and as Z, acts trivially on Q ® IYWZRWSZ) it follows that

2 . 2
Hy (RS Q) = H, (2. P% Q).

Moreover a close inspection shows that the above map

Q ® r(anwsz) —>0 ® ‘n’BRmSz

corresponds to the map r(Q & 52) - Q ® gz which sends Y (x) to

x2 for each er@gz (Q®§2

2~adic numbers) and it thus remains to show that the map

is, of course, the field of

rYQ ® 22) + QR 52 has non-zero kernel. To do this we choose an
element a € Q @ 52 such that a, a2 and a3 are linearly indepen-
dent over Q. This is possible, by a cardinality argument, since

each equation b3x3 + b2x2 + blx = 0 has only finitely many solutions

X eEQ ® 52‘ The results of [J.H.C. Whitehead, 85] then show that
3 3 2
Y(a+a”) - Y(a) - Y(a”) = 2Y(a“) e [0 ® z,)

is a non-zero element in the kernel of [(Q & Z,) *Q ® Z,.

Actually the above argument shows that the projective plane P2

is not Z(J)—gpod if 2 e J.
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§6. R-homotopy theories

We end this chapter with the observation that there are such

things as

6.1 R-homotopy theories for R € Q and R = Zp. By this we

mean that it is possible to define in the category of spaces o

notions of weak R-equivalence, R-cofibration and R-fibration such

that:

(i) these notions satisfy Quillen's axioms for a closed

simplicial model category (Ch.VIII, 3.5), and

(ii) a map between simply connected spaces is a weak R-equiva-

lence if and only if it induces an isomorphism on R-homology.

In fact, these notions can be defined in such a manner that in
addition

(iii) a map X +» *» € o is a weak R-equivalence if and only if

-~

X 1is R-acyclic, i.e. H,(X; R) = =,

Our main tool for proving this will be

6.2 A partial R-completion functor CR for R € Q and R = Zp

This will be a variation of the functor R_ in which "part of the

fundamental group is not completed", with the result that the natural

map c®x » (CR)ZX is always a homotopy equivalence. In more detail:
Let P denote the functor which associates with every group =

its maximal R-perfect subgroup i.e. (3.1) the largest subgroup

G ©€ 1 for which Hl(G; R) = 0. (Clearly such a maximal R-perfect
subgroup exists and is unique). Next, for X € o, let Sin|X| be
the singular complex of its realization (Ch.VIII, §2) and let

Sin|X|/P denote the space obtained from this by "killing, in each
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component, the higher homotopy groups and the maximal R-perfect sub-
group of the fundamental group", i.e. by identifying two n-simplices
u, v € Sin|X| whenever, for every sequence of integers
(igpev"si ;) with 0 < i) <ser i 1 5n

(i) the l-simplices d, +-+d, u and di ---di v have the

. *n-1 1 n-1

same vertices, and

(ii) these two l-simplices “differ" by an element of the
maximal R-perfect subgroup of the fundamental group (of their compo-

nent) .

The partial R—-completion CRX of X now is obtained by fibre-wise

R-completion of the fibration Sin|X| + Sin|X|/P, i.e. by putting

(Ch.I, §8)
c®x = R&_sin|x|.

This partial R-completion comes with an obvious map (see Ch.I, §8

and Ch.VIII, §2)
¢ X—-—)C%( € o

which has the following useful properties:

6.3 Proposition. Let X € Face Then the map ¢: X -+ cRx

induces isomorphisms

~ R
wlx/Pnlx 2 nlC X

Hy (X; R(T X/PT X)) = u, (c%x; R(nlcRx)) (twisted coefficients)

where R(-) denotes the group ring over R and the twisted coeffi-

cients are the obvious ones.
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6.4 Proposition. For all X e o, the natural map

¢z CRX - (CR)ZX is a weak equivalence.

Proof. These propositions follow readily from 3.2 and Ch.I, §8
and the fact that the homology with twisted coefficients
H, (X; R(ﬂlX/Pan)) is isomorphic with the ordinary homology H,(F; R)

where F denotes the fibre of the fibration Sin|X| + Sin|X|/P.

Now we are ready to define:

6.5 Weak R-equivalences, R-cofibrations and R-fibrations. A

map f: X » Y € o/ will be called a weak R-equivalence if the induced

map CRf: CRX -+ CRY € o is a weak equivalence. Thus, in view of 6.3

and Ch.I, 7.1, amap f: X + Y € o is a weak R-equivalence if and

only if it is the disjoint union of maps fb: Xy =+ Yy between

connected spaces, each of which induces an isomorphism

nlxb/Pnlxb = nle/Pnle

and an isomorphism of homology with twisted coefficients

H*(Xb; R(ﬂlxb/Pnlxb)) M H*(Yb; R(ﬂle/Pnle)).

A map in o will be called an R-cofibration if it is a cofibration

(i.e. injection) in < and a map in » will be called an R-fibration if
it has the right lifting property with respect to all R-cofibrations
which are weak R-equivalences. A simple obstruction argument then

implies that every fibration X + Y ¢ sxo for which

Pm,X = % = PM,Y, is an R-fibration, and so is every pull back of such

a fibration.
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Proof of 6.1(i), (ii) and (iii). Parts (ii) and (iii) follow

from 6.5, while the axioms for a closed model category (Ch.VIII, 3.5)
are easily verified, except for the second factorization axiom
CM5 (ii).

To deal with this consider, for a map f: X + Y € &, the

commutative diagram

X >c]ix
x" y x" > X'

rd rd
I l . l
= , N M
Y > Y > ¥ —> CcY

where X - CRX, Y + CRY and CRX - CRY are the obvious maps,

CRX + X' is a cofibration and a weak equivalence, x' - CRY is a
fibration, Y + Y¥' is a cofibration, Y o CRY is a fibration and a
weak equivalence and X" + Y and X" » ¥' are pull backs of the

map X' - CRY. By 6.5 the map X'+ CRY is an R-fibration and so is
therefore the map x" + Y. Furthermore the fibration Y' » CRY
induces a fibration over the universal covering of c®Y with the same
fibres and it follows readily from the Serre spectral sequence for
this induced fibration and the fact that the map v' » c®y is a weak
equivalence, that all these fibres are R-acyclic. And as these

fibres are also the fibres of the fibration X" + X' one gets, by
reversing this argument, that the map x" » X' is a weak R-equiva-
lence. Thus the map X + X" is a weak R-equivalence and a factoriza-
tion of this map into a cofibration and a fibration which is a weak
equivalence now gives rise to the desired factorization of the map

X + X.
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As an application we consider:

6.6 R-homotopy groups. Given the above model category for R-

homotopy theory one can [Quillen (HA)], for X € »,, define its R-

homotopy groups n*RX by N*RX = W*CRX. The following examples then

show that the R-homotopy groups of a space need not coincide with its
(ordinary) homotopy groups, even if R = 2,

. R, .

(1) Ty X = an/Pnlx.

(ii) If X is simply connected and R < @, then (Ch.V, 3.1)

nRX TR ® m,X.

(iii) If X is simply connected, m.X is finitely generated

for each i, and R =2, then (Ch.VI, 5.2) m,Bx = Z, 8 T.X.

(iv) If s_ denotes the infinite symmetric group, then (3.4)

T 2K(s,, 1) = Ty (2787) ;.
However, just like the ordinary homotopy groups [Kan (AX)], the

R-homotopy groups can be characterized by four simple axioms. All

one has to do for this is to replace everywhere in [Kan (AX)]
“"fibration” by "R-fibration" and “"weak homotopy equivalence” by "weak
R-equivalence”.

The partial R-completion is closely related to:

6.7 The R-acyclic functor. For X € J*C' let

a: a®x — 5 x € Sag

be the fibration induced by the map ¢: X -+ CRX from the path fibra-

tion [May, p.99] over CRX. Then, as in 6.3, one readily proves:

(i) H,(A"X; R) = # for all X € 4o, and
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(ii) the map a: a®x + x is a weak equivalence if and only if

It is not hard to see that this implies that, up to homotopy,

aRx is the maximal R-acyclic subspace of X, i.e. for every B € J*C

with H,(B; R) = * and every map £f: B » X ¢ xc there is a unique
homotopy class of maps g: B -+ ARX such that f ~ ag.

For R = Z the acyclic functor is due to [Dror (A)] and was

used by him to analyze the structure of acyclic spaces.

We end with a comment on possible

6.8 Vvariations. Except for 6.1(iii) and 6.7, the above results

remain true if the functor P of 6.2 is not required to be maximal.
For instance, if one takes for P the functor which assigns to every
group its trivial subgroup, then, for X ¢ J*C’ the resulting partial
R-completion has the same fundamental group as X and its universal
covering space [Lamotke, Ch.III] has the same homotopy type as the
R-completion of the universal covering of X. The resulting Z-homo-
topy theory thus is nothing but the ordinary homotopy theory.

Of course, for fixed R, all the different choices of the
functor P yield the same R-homotopy theory for simply connected

spaces and for spectra.



Part II, §0

Part II. Towers of fibrations, cosimplicial spaces and

homotopy limits

§0. Introduction to Part II

In Part II of these notes we have assembled some results on

towers of fibrations, cosimplicial spaces and homotopy limits (in-

verse and direct) which were needed in our discussion of completions
and localizations in Part I, but which seem to be of some interest in

themselves. More specifically:

Chapter VIII. Simplicial sets and topological spaces. This

chapter does not really contain anything new. It is mainly intended
to help make these notes accessible to a reader who knows homotopy
theory, but who is not too familiar with the simplicial techniques
which we use throughout these notes.

We point out that, in a certain precise sense, there is an

equivalence between the homotopy theories of simplicial sets and

topological spaces (or CW-complexes); and thus, for homotopy theore-

tic purposes, it does not really matter whether one uses simplicial

sets or topological spaces. To emphasize this, we will throughout

these notes (except in Chapter VIII where it might cause confusion)

often use the word

space for simplicial set.

Chapter IX. Towers of fibrations. For use in Chapter X, we

slightly generalize here two well-known results for a pointed tower

of fibrations {Xn}:
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(i) We show that the short exact sequence

L1
* . .
> llm ni+lxn —_— "i llm Xn _— llm nixn —_— *

also exists for i = 0. Por this, of course, we first have to define

a suitable notion of J:iml for not necessarily abelian groups.

(ii) We generalize the usual homotopy spectral sequence to an

"extended" homotopy spectral sequence, which in dimension 1 consists

of (possibly non-abelian) groups, and in dimension 0 of pointed sets,

acted on by the groups in dimension 1. This we do by carefully ana-

lyzing the low-dimensional part of the homotopy sequences of the fib-
rations Xn —_> Xn—l'
At the end of the chapter we show how these results can be used

to get information on the homotopy type of the inverse limit space

iim Xn'

Chapter X. Cosimplicial spaces. This chapter is concerned

with our basic tool: cosimplicial (diagrams of) spaces.
In Part I of these notes (in Chapter I), we defined, for a ring
R, the R-completion of a space X as the so-called "total space" of a

certain cosimplicial space RX, and in order to prove some of the

basic properties of this R-completion we needed, not surprisingly,
various results on cosimplicial spaces. Those results are proved in
this chapter. We

(i) lay the foundations for a homotopy theory of cosimplicial

spaces, and

{(ii) combining this with the results of Chapter IX, obtain,

for every cosimplicial (pointed) space, an extended homotopy

spectral sequence which in many cases (and in particular for RX)
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gives useful information on the homotopy type of the total space.

Chapter XI. Homotopy inverse limits. In this chapter we ex-

tensively discuss a notion of homotopy inverse limits which gets

around the difficulty that, in general, inverse limits do not exist
in the homotopy category.

While this is of interest in itself, our main reasons for in-
cluding a (rather long) chapter on this subject are that:

(i) homotopy inverse limits are closely related to cosimplicial
spaces, and the results of this chapter put some of the results of
the Chapters IX and X in perspective, and

(ii) we show in this chapter that, up to homotopy, the R-com-

pletion of a space X (which was defined in Chapter I as the total

space of the cosimplicial RX), is indeed an R-completion of X, in

the sense that it is a homotopy inverse limit of the "Artin-Mazur-

like" diagram of "target spaces of maps from X to simplicial R-

modules"; and this takes (some of) the mystery out of our definition
of R-completion.

Moreover we show that:

(iii) the homotopy groups of homotopy inverse limits are quite

accessible and there is an extended homotopy spectral sequence for

approaching them,
(iv) homotopy inverse limits are closely related to the derived

functors J:ims of the inverse limit functor for abelian groups; and

this can be used to extend the definition of ‘J:iml which we gave in
Chapter IX for towers of not necessarily abelian groups, to arbitrary
small diagrams,

(v) for a tower of fibrations, the homotopy inverse limit has

the same homotopy type as the (ordinary) inverse limit space, and
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the spectral sequence for the homotopy inverse limit reduces to the
short exact sequences of Chapter IX,

(vi) for many cosimplicial spaces (and in particular for BX)
the homotopy inverse limit has the same homotopy type as the total
space, and the homotopy spectral sequence for the homotopy inverse
limit coincides, from E2 on, with the spectral sequence of Chapter X,
and

(vii) there is a cofinality theorem, which enables us to com-

pare homotopy inverse limits for small diagrams of different "shapes}
and which we use to show that, for certain large diagrams of spaces,
one can, at least up to homotopy, talk of their homotopy inverse

limits.

Chapter XII., Homotopy direct limits. Here we briefly discuss

the dual notion of homotopy direct limits. We do this mainly for

completeness’' sake, although a few of the results of this chapter are

used in Chapter XI in the proof of (ii).

In writing Part II we have been especially influenced by the

work and ideas of Don Anderson and Dan Quillen.
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Chapter VIII. Simplicial sets and topological spaces

§1. Introduction

The purpose of this chapter is

(i) to review some of the basic notions of simplicial homotopy
theory, and

(ii) to convince (or at least try to convince) the reader that

this simplicial homotopy theory is equivalent to the usual topologi-

cal homotopy theory.

In slightly more detail:

§2. Here we define simplicial sets, give a few examples and

construct the singular and realization functors between the category

o of simplicial sets and the category J of topological spaces.

§3 contains Quillen's precise formulation of the sense in

which the singular and realization functors induce an "eguivalence

between the homotopy theories of the categories o and J ". For this

one needs in both categories notions of fibrations, cofibrations and

weak equivalences,

§4. We end the chapter with a discussion of the homotopy rela-

tion for simplicial maps and review the related notion of function

spaces for simplicial sets.

For a more detailed account of simplicial homotopy theory the
reader may consult [May], [Lamotke], [Curtis (S)], [Gugenheim],

[Quillen (HA)] and others.
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§2. Simplicial sets

In this section we

(1) recall a definition of simplicial sets and, more generally,

of simplicial objects over an arbitrary category,

(ii) discuss some simple examples of simplicial sets, and
(iii) observe that the categories o/ of simplicial sets and J

of topological spaces are related by a pair of adjoint functors

7 > 7
S
Sin
the realization functor | |:.+J and the singular functor

Sin: J » # .

We start with

2.1 Simplicial objects and maps. A simplicial object X over a

category 2 consists of
(i) for every integer n > 0 an object X, € ¢, and

(ii) for every pair of integers (i,n) with 0 < i < n, face and

degeneracy maps

djr X, —> X, and s;: X, —> X

satisfying the simplicial identities:
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didj = dj-ldi for i < j

dis] = Sj-l i for i < j
= id for i = j, j+1
= dei—l for i > j+l

S; 3 = S.5; 4 for 1 > j

Similarly a simplicial map f: X + Y between two simplicial objects

consists of maps
f: xn i J Yn e C
which commute with the face and degeneracy maps, i.e.
dif = fdi and sif = fsi for all i.

We now specialize to

2,2 Simplicial sets. A simplicial object over the category

of sets will be called a simplicial set, and we denote the category

of simplicial sets by <.

For X e o, the elements of X, are called n-simplices; O-simpli-
ces are sometimes called vertices.

There are two kinds of simplices:

2.3 Degenerate and non-degenerate simplices. For X €., a

simplex x ¢ X is called degenerate if x = six' for some x' & X and 1i.

Otherwise it is called non-degenerate.

The following property of degenerate simplices is very useful

and not hard to verify.
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Every degenerate x € X has a unique decomposition

such that in > ... > i, and x' € X is non-degenerate. Moreover

il,...,in are precisely the "directions" in which x is degenerate,

i.e. x is in the image of s, if and only if k € {il,...,in}.

k
This implies, for instance, that the product X x Y ¢ J of two

simplicial sets X and Y (which is defined by

(X x Y)n = Xn x Yn for all n

and the obvious face and degeneracy maps) can contain a non-degener-

ate simplex (x,y) for which both x € X and y € Y are degenerate (but

in different "directions").
One can get a better idea what, in general, a simplicial set

looks like by considering the singular and realization functors be-

tween the category # of simplicial sets and the category J of

topological spaces. To define these we need

2.4 The topological standard simplices. For every n > 0, the

topological n-simplex, A[n], is the subspace of (n+l)-dimensional
Euclidean space consisting of the points (to""’tn) for which

I ti =1 and 0 < ti < 1 for all i. Similarly for all 0 < i < n, the
standard maps

a*: Aln-1] —> Aln] s*: Aln+l] — Aln)
are given by the formulas
at (e t ) = (t t,,0,t t 1)
E tEgreeertyy) % AR A AR AL P AR ]

i =
S (tO""'tn+l) = (to,...,ti + ti+l""'tn+l)
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and it is easy to check that these standard maps satisfy the dual of

the simplicial identities (2.1), i.e.

dat = glal? for i < j
slat = 4?7t for i < j
= id for i = j, j+1
= gi_l§? for i > j+1
sist = si7lsd for i > j

2.5 The singular functor. The singular functor

Sin: J —— o
is defined as follows. For X € 7, an n-simplex of Sin X is any map
Aln] Xy xe 7
while its faces d;x and its degeneracies s;x are the compositions
i i
d X S X
Aln-1] —> A[n] — X Aln+l] —— A[n] — X

Similarly, for amap £: X » ¥ ¢ 7 and an n-simplex x € Sin X, the

n-simplex (Sin f)x € Sin Y will be the composition
X £
Aln] —> X —> Y e J

Closely related to the singular functor is

2.6 The realizacion functor. This is the functor

[ |t —> 7
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defined as follows. For X €, the realization |X| is obtained from

the disjoint union space

| IanA[n]
n
by taking the identification space under the relations

(dix,u) ~ (x,g}u) for x € X u e Aln]

n+l’
i
(SiX,u) ~ (x,s7u) for x € X _;, u € Aln]
(in this construction Xn is given the discrete topology). One can

show [May, p. 56]:

For every simplicial set X € &, its realization [X| is a CwW-

complex with one n-cell for every non-degenerate n-simplex of X.

The functors Sin and | | determine each other because of

2.7 The adjointness of | | and Sin. The above definitions

readily imply that [May, p. 61]:

The realization functor is left adjoint to the singular functor,

i.e. for X € #/ and Y € J there is a natural 1-1 correspondence be-

tween the maps

[X] —> ¥ e J
and
X —>3%in Y € o

Corresponding maps are called adjoint. In particular, the ad-
joint of a map f£: |[X| - ¥ € 7 will send x ¢ X, to the simplex of
Sin Y given by the composition

pfn] X0 ) 4 X x &ln] identification
n

> |x] —L> v
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Of special interest are the so-called adjunction maps

X — Sin|Xx| and |sin Y] — ¥
which are adjoint to
(x] 295 |x| and sin ¥ 95 sin v.
We now consider the most obvious example of a simplicial set

(and the cause of its name):

2.8 The simplicial set of an ordered simplicial complex. Let

K be an ordered simplicial complex, i.e. a simplicial complex

[May, p. 2] together with an ordering of its vertices. Then K gives

rise to a simplicial set AK with as n-simplices the {(n+l)-tuples

(Vayeeo,v.) of vertices of K for which
0 n
(i) vy < ... 2v,, and

(ii) the set {vo,...,vn} is an m-simplex of K for some m < n,

and with face and degeneracy operators given by
di(vo,...,vn) = (VO""’vi-l'vi+l""’vn)
si(vo,...,vn) = (vo,...,v.,vi,...,vn)

1

It is not hard to show that AK has exactly one non-degenerate simplex

for every simplex of K and its realization |AK| is nothing but the

topological space usually associated with K [Spanier, p. 111].

An important special case is the analogue of the topological n-

simplex (2.4).

2.9 The standard simplices A[n]. An extremely useful simpli-

cial set is the standard n-simplex A[n], where ([n] denotes the

ordered simplicial complex consisting of the (ordered) set {0,...,n}
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and all its subsets. A g-simplex of A[n] thus is any (g+l)-tuple

(ao,...,aq) of integers such that 0 < ag < .. < aq < n. Thus Aln)

has exactly one non-degenerate n-simplex, which we will denote by

i and its realization |A[n]]| is nothing but the topological stan-

dard simplex Al[nj.
The usefulness of the standard simplices is due to the follow-

ing [May, p. 14]:

2.10 Universal property of the standard simplices. Let X €

and let x € Xn. Then there is a unique map

Ax: A[n}] —>» X € o

which sends in into x.

As an easy application of this, we note that the adjunction map
(2.7) X + Sin|X| € »# is given by x + |Ax].
One can also, as an easy conseguence of the universal property

obtain

2.11 The standard maps. The standard maps

o
[WR
]

A(djin): A[n-11] —> A[n]} 0<3j<n

[0}
.
il

A(sjin): Aln+l] —> A[n]} 0<£3j<&n

satisfy the dual of the simplicial identities 2.1, i.e.
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adal - atai-l for i < j
sJal = aigi-l for i < j
= id for i = j, j+1
= gi-1g3 for i > j+l
sjsl = si—lsJ for i > j

We end with a less obvious example of a simplicial set:

2.12 The n-sphere s™. This is the simplicial set with only

two non-degenerate simplices: a O-simplex x and an n-simplex y

with faces:

d.y = s ses S X for all i

i n-1

It can be obtained from the standard simplex A[n] by "collapsing" its
boundary Z[n], i.e. its simplicial subset generated by its (n-1)-

simplices doin""’dnin’
Its realization |Sn| is the usual CW-complex for the n-sphere

consisting of a vertex and an n-cell.
We end by defining:

2.13 The n-skeleton of a simplicial set. For X € #, the
[n]

n-skeleton X € o is the sub-object generated by all simplices of
X of dimensions < n., For example,

(i) the (n-1l)-skeleton of the standard n-simplex A[n] is
nothing but its boundary Z[n] (2.12), and

of its n-skeleton is the

(ii) for X e o/, the realization |x[n]|

n-skeleton of its realization, the CW-complex |X
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§3. Equivalence of simplicial and topological homotopy

theories

We recall here various results on simplicial sets and topolo-
gical spaces which imply that the realization and singular functors

induce an equivalence between the homotopy theories of the categories

# and J in the following sense:

(i) Both categories are closed model categories, i.e. in each

there are notions of weak eguivalences, fibrations and cofibrations

which satisfy Quillen's axioms [Quillen (RH), p. 233] for a closed
model category.

(ii) The functors | | and Sin both preserve weak equivalences,

and both types of adjunction maps:

X —> Sin [X| € # and |Sin Y| —> Y e 7

are weak equivalences.

(iii) The functors | | and Sin both preserve fibrations and

cofibrations (although Sin preserves cofibres only up to a weak equi-
valence).

According to [Quillen (HA), p. I, 1.13] (i) implies that one
can (without running into set theoretical difficulties) form the

homotopy categories Hoo and HoJ from o and J by localizing with

respect to (i.e. formally inverting) the weak equivalences. It

then follows from (ii) that the functors | | and Sin induce an

equivalence of categories:

Hoo — > HoJ
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Moreover (ii) and {iii) and the adjointness of the functors | | and

Sin imply that every homotopy theoretical notion on the category J

gives rise to a homotopically equivalent notion on the category

and visa versa.

We start with a brief discussion of homotopy groups, as we will

use them to define weak equivalences.

3.1 Homotopy groups (and pointed sets). Although the homotopy

groups of a simplicial set X can be defined "simplicially" [May, p. 7

and p. 61], it is easier to define them as the homotopy groups of the

realization ]X . To be precise: Let X € o, let * € X be a base

point (i.e. an arbitrary but fixed vertex) and denote also by * the

corresponding point % € [X|. Then we put,
T (X, %) = nn(|X|,*) for all n > 0
and, when no confusion is possible, write often,
nnx instead of wn(x,*)

Now we are ready for

3.2 Weak equivalences. A map f: X » Y € o or 7 will be called

a weak equivalence if f induces an isomorphism

for every choice of base point * € X and all n > 0. Then one has
[May, p. 65]:

(i) A map f: X + Y € J is a weak equivalence if and only if

the map Sin f£: Sin X » Sin Y € o is one.
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(ii) A map f: X » Y € # is a weak equivalence if and only if

the map |£]: |X] + [¥Y| € 7 is one.

(iii) The adjunction maps

X ——> Sin |X| € # and |Ssin Y| —> ¥ e 7

are weak equivalences for all X € o and Y €J.

3.3 Fibrations. For 0 < k < n let

A[n,k] < Aln]
denote the simplicial subset generated by the simplices

dai_,ee.,d ,d

0'n k-1'n’%k+1in - r9pig
(i.e. |Aln,k]| consists of all but one face of |Aln]| = A[Al).
A map f: X > Y € o/ then is called a fibration if in every (commuta-

tive) solid arrow diagram

An,kx] ——mMm———3 X
Ve

Ve
v
Ve
Aln] —mMm——— Y

the dotted arrow exists. Furthermore, for every base point % € Y,
we will denote by the same symbol » the simplicial subset of Y gene-

rated by * (which consists of the simplices s ..so*) and call the

0"
simplicial subset f-l* c X, the fibre of f over =*,

These fibrations in # are closely related to the (Serre) fi-
brations in 7 . In fact, it is clear that:

(i) A map f: X » Y € J is a fibration if and only if the map

Sin f: Sin X + Sin Y € # is one.
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On the other hand one has [Quillen (KS)]:

(ii) If f: X » ¥ ¢ o is a fibration, then so is the map

[£]: [X| > |¥]| € & and, for every choice of base point * ¢ Y, the

inclusion If—l*[ > [f[fl*, of "the realization of the fibre" in "the

fibre of the realization", is a homeomorphism.

A convenient related notion is that of a fibrant object
X eod or J, i.e. an object such that the (unique) map
X »* ¢ or J (where * = A[0] or A[0]) is a fibration. Clearly

every topological space is fibrant, but not every simplicial set,

as, for instance, Aln] is not fibrant for n > 0, A fibrant simpli-

cial set is also called a Kan complex or said to satisfy the exten-

sion condition [May, p. 2].

3.4 Cofibrations. A map i: A + B ¢ o/ is called a cofibration

if it is 1-1, while a map i: A - B ¢ J will be called a cofibration

if it has the left lifting property with respect to all fibrations

which are weak equivalences, i.e. if for every {commutative) solid

arrow diagram

where f is a fibration which is a weak equivalence, the dotted arrow
exists. These definitons imply:

(i) A map i: A » B € # is a cofibration if and only if the map

|i]: |A| >~ |B| € J is one.

(ii) If i: A - B ¢ J is a cofibration, then so is the map

Sin i: Sin A » Sin B ¢ #, and the obvious map Sin B / Sin A ~» Sin (B/A)
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from the "cofibre of Sin i" to the "Sin of the cofibre of i" is a

weak equivalence.

Again a convenient related notion is that of a cofibrant object
Be oJorJ, i.e. an object such that the (unique) map ¢ - B € o or 7

(where ¢ is empty) is a cofibration. Clearly every simplicial set

is cofibrant and every CW-complex (but not every topological space)

is cofibrant.
Now we can make clear what is meant by the statement that:

3.5 The categories » and J are closed model categories.

According to [Quillen (HA), p. II, 3.1 and p. II, 3.14] the categories
# and J, with the weak equivalences, fibrations and cofibrations
defined above, are closed model categories, i.e. [Quillen (RH),

p. 233] they satisfy the following five axioms:

CM 1. Each category is closed under finite direct and inverse

limits.

CM 2. If f and g are maps such that gf is defined, then, if two

of f, g and gf are weak equivalences, so is the third.

CM 3. If f is a retract of g (i.e. if there are, in the catego-

ry of maps, maps a: £ » g and b: g » £ such that ba = idf) and g is a

weak equivalence, a fibration or a cofibration, then so is f.

CM 4. (Lifting). Given a solid arrow diagram

where i is a cofibration, p is a fibration, and either i or p is a

weak equivalence, then the dotted arrow exists.
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CM 5. (Factorization). Any map f may be factored in two ways:

(i) f = pi, where i is a cofibration and p is a fibration which

is a weak equivalence.

(ii) £ = pi, where p is a fibration and i is a cofibration

which is a weak equivalence.

These five axioms imply [Quillen (RH), p. 234] that

(i) the class of fibrations (resp. fibrations which are weak

equivalences) is closed under composition and base change and

contains all isomorphisms, and dually

(ii) the class of cofibrations (resp. cofibrations which are

weak equivalences) is closed under composition and co-base change

and contains all isomorphisms.

Indeed, Quillen showed [Quillen (HA)] that in a closed model
category one can develop much of the familiar machinery of homotopy
theory, e.g. the homotopy relation for maps, loops and suspensions,
fibration and cofibration exact sequences, Toda brackets, etc.

In particular we can now discuss:

3.6 The homotopy categories Hoo and HoJ. These are the

categories obtained from ./ and 7 by localizing with respect to (i.e.

formally inverting) the weak eguivalences. To be more precise we

recall from [Quillen (RH), p. 208] that a localization of a category
C with respect to a class I of maps in &, consists of a category

e together with a functor

which carries maps in I into equivalences and which is universal for

1

this property. If it exists, Y:C » I ~C is an isomorphism on

objects, and each map of E'la is a finite composition of maps of
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the form Yg or (Yu)_l where g €e 2 and u € L. We therefore can (and

will) always assume that Z-lc, has the same objects as ¢ .

In [Quillen (HA), p. I, 1.13]) it is shown that any closed model

category has a localization with respect to its weak equivalences;

and thus the above definitions of Hos and HoJ are legitimate.

Using 3.2 it is then easy to show that the adjoint functors

induce an equivalence of categories

[
Ho o/ >

é—.—.
Sin
In fact, as noted at the beginning of this section, the functors | |

and Sin induce an equivalence of the simplicial and topological

"homotopy theories".
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§4. The homotopy relation and function spaces

In the preceding section we have used weak equivalences, rather

than a homotopy relation on maps, to define the homotopy categories

Hos/ and HoJ; and we have thereby emphasized the underlying similar-
ity of the simplicial and topological approaches. In this section
we shall discuss the homotopy relation and show that Hos/ and HoJ
are equivalent to the "usual" homotopy categories of fibrant sim-
plicial sets and CW-complexes. In addition we review the related

topic of function spaces for simplicial sets.

We begin by disposing of the easy topological case.

4.1 The homotopy category Hal is equivalent to the usual CW-

homotopy category, i.e. the category with CW-complexes as objects

and homotopy classes of maps as maps. Moreover, for any CW-complex

K and topological space X

H (X,X) ® {homotopy classes of maps K —> X}.

Myos

Proof. This is straightforward, using the following familiar
facts:

(i) A map X + Y € 7 is a weak equivalence if and only if, for

every CW-complex K, it induces an isomorphism between the homotopy

classes of maps

K —>X and K—%Y

(ii) For every X € J, there is a weak equivalence K ~ X €7,

in which K is a CW-complex.

(iii) If T:J +c~ is a functor which carries weak equivalences

to isomorphisms, then T carries homotopic maps to the same map.
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4,2 The pointed case. In a similar way one can show that the

pointed homotopy category HoJ, (obtained by localizing the category

J, of pointed topological spaces with respect to weak equivalences)

is equivalent to the usual pointed CW-homotopy category.

To obtain similar results for simplicial sets we need:

4.3 The simplicial homotopy relation. Two maps

fo,flz X —>Y € o

are called homotopic if there exists a map (homotopy)
f: A[l] x X —> Y € o

which maps the "top" and "bottom" of A[l] x X by fo and fl

respectively, i.e. the compositions

0
x=04[0] xx XX a1 xx £5v
al x x £
X =A[0] x X ——S35A[1] x X —>Y
are respectively equal to f0 and fl. When Y is fibrant, this homo-

topy relation is an equivalence relation and the homotopy classes

of maps X > Y €/ correspond to the homotopy classes of maps

x| > |¥] e 7.

Now we can give the simplicial analogue of 4.1

4.4 The homotopy category Hoo is equivalent to the "usual”

homotopy category of fibrant simplicial sets, i.e. the category with

fibrant simplicial sets as objects and homotopy classes of maps as

maps. Moreover, for X, Y € o/ and Y fibrant

HomHogAX,Y) % {homotopy classes of maps X —> Y}
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An easy consequence of this is that there are

4.5 Weak equivalences in o/ which are homotopy equivalences.

If f: X > Y € o/ is a weak equivalence and X and Y are fibrant, then

f is actually a homotopy equivalence, i.e. there is a map

g: Y + X € o such that gf and fg are homotopic to the identity maps

of X and Y.

4.6 The pointed case. Let o, denote the category of pointed

simplicial sets ( = simplicial sets with base point = simplicial

pointed sets). Two maps

£0f.: X —> Y €S,

0'"1
then are called homotopic if there is a map (homotopy)
£: (A[1] x X)/(A[l] x %) —> ¥ €

which maps the "top” and "bottom" of (A[l] x X)/(A[l] x =) by f0 and

f, respectively. Again, when Y is fibrant, this is an equivalence

1
relation, and the homotopy classes of maps X + Y € o, correspond to

the pointed homotopy classes of maps |X| + [Y| €J,. Moreover the

pointed homotopy category Ho./, (obtained by localizing #, with

respect to the weak equivalences) is equivalent to the "usual” homo-

topy category of pointed fibrant simplicial sets. Also, of course,

Ho o} is equivalent to HoJ,.

We conclude by reviewing the related topic of

4.7 Simplicial function spaces. For X, Y ¢ o, the function

space

hom (X,Y) € &



247
Ch. VIII, 54
is the simplicial set of which an n-simplex is a map
A(n] x X —> Y € o
with as faces and degeneracies the compositions

at x x
A[n-1] x X ———=3> A[n] x X —> Y

i
An+1l] x X =X X5 An] x Xx —> ¥

Some useful properties of the function space are:

(i) If Y is fibrant, then the elements of wohom(X,Y) correspond

to the homotopy classes of maps X >+ Y €/ .

(ii) If i: K+ L € o is a cofibration and p: X + Y € / is a

fibration, then the map

(i,p): hom(L,X) —> hom(K,X) x hom(L,Y) €

hom(K,Y)

is a fibration, which is a weak equivalence if either i or p is a

weak equivalence.

(iii) For K, X, Y € /, there is a natural isomorphism

hom (K x X,Y) % hom (K, hom(X,Y)) ¢ &

Similarly there are

4.8 Pointed simplicial function spaces. For X, Y ¢ J/,, the

pointed function space

hom, (X,Y) € o/,

is the pointed simplicial set of which an n-simplex is a map

(0[n] x X)/(A[n] x #) —D>Y ¢ J,
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and of which the face and degeneracy maps are induced, as in 4.7, by
the standard maps between the standard simplices.

Again, some useful properties are:

(i) If Y is fibrant, then the elements of nnhom*(X,Y) correspond

to the pointed homotopy classes of maps s Y, where s is the

n-fold reduced suspension of X [May, p. 124].

(ii) If i: K > L € o/, is a cofibration and p: X + Y € o,

is a fibration, then the map

(i,p): hom,(L,X) —> hom, (K,X) x hom, (L,Y) € o,

hom, (K,Y)

is a fibration, which is a weak equivalence if either i or p is a

weak equivalence.

(iii) For K, X, Y € o,, there is a natural isomorphism

hom, (K AX, ¥) X hom, (K, hom,(X,Y)) €,

where KA Y € #/ is the smash product

KAY = (K x Y)/((* x Y) U (K x *)

4.9 Remark. The categories # and o, are closed simplicial

model categories in the sense of [Quillen (HA), p. II, 2.2 and (RH),

p. 233], i.e. they are closed model categories with "compatible

function spaces”,



Ch. IX, §1

Chapter IX. Towers of fibrations

§1. Introduction

In this chapter we generalize two well-known results about
towers of fibrations:

(i) We will show that, for a (pointed) tower of fibrations

{x_ }, the short exact sequence
1 . .
r —> ilm “i+lxn —_—> L ilm xn > llm nan —_— %

which is "well known" for i > 1, also exists for i = 0, if one

uses a suitable notion of liml for not necessarily abelian groups.
“+
(ii) We will generalize the usual homotopy spectral sequence of

a (pointed) tower of fibrations, to an "extended" homotopy spectral

sequence, which in dimension 1 consists of (possibly non-abelian)

groups, and in dimension 0 of pointed sets, acted on by the groups

is dimension 1.

The chapter is organized as follows:

82 and 83 deal with the first result. 1In §2 we discuss the
functors }im and <]:iml for (not necessarily abelian) groups, while

§3 contains the short exact sequences and some applications.

84 contains the construction of the extended homotopy spectral

sequence.,

§5 Here we show how the results of 83 and §4 can be used to get

some information on the homotopy type of the inverse limit space of a

tower of fibrations.



Ch. IX, §1 250

Notation and terminology. We remind the reader that these notes

are written simplicially, i.e.

space = simplicial set

In particular, in this chapter, we will mainly work in the category

#, of pointed spaces (i.e. simplicial sets with base point), and

base point preserving maps.
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§2. The functors 1lim and liml for groups
« - «
In preparation for the decomposition of the homotopy groups of
the inverse limit of a tower of fibrations into a lim-part and a liml—
“ “
part, we discuss here in some detail:

2.1 The functors 1lim and liml
“

+ =

for (not necessarily abelian)

groups. A tower of (possibly non-abelian) groups and homomorphisms
cee —> 6 —>6 L —> ... —>6; = »

gives rise to a left action of the product group I |Gn on the pro-

duct set ] |Gn given by

. - . -1
(go,...,gi,...)O(xo,...,xi,...) = (goxo(jgl) l,...,gixi(jgi+l) pees)e

Clearly

il._lmGn={g€ IGn|g0*=*}
and we define ‘]:imlGn as the orbit set

1 .
ilm Gn = |Gn / action

1

i.e. lim G, is the set of equivalence classes of |Gn under the
+

equivalence relation given by

X ~ Yy <=> Yy g o x for some g € IGn-

In general }_imlGn is only a pointed set, but if the Gn are
abelian, then limlGn inherits the usual (see[Milnor] and [Quillen
“

(RH), p. 217]) abelian group structure.
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It is also not hard to verify that the functors iim and iim
have the following properties which are "well known" in the abelian

case.

2.2 Proposition. Let {Gn} be a tower of groups, let k > 1
(k)}

and let {Gn be the "k-th derived tower", i.e.

k) _ .
Gn = image (Gn+k — Gn).

Then the inclusions Gék)c G, induce isomorphisms

1im ¢'®) | limg 1inc'®) | 1imlc .
-« n -« n -« n -« n

2.3 Propositions. A short exact sequence of towers of groups

# —> {6} —> {6} —> {G.} —> *

gives rise to a natural sequence of groups and pointed sets

] L] L]
« —> lim G. —> lim G. —> lim G. —> lim'G —> limic. —>
by n - n - n - n . n

"
limlG — > *
by n

which is exact in the sense that

(i) "kernel = image" at all six positions, and

L}
(ii) the map iim G, * limlGn extends to a natural action of
-«
1 1

13
Gn are in the same

orbit if and only if they have the same image in limlGn.
-«

" 12
lim G on 1lim™G such that elements of 1lim
« n — & n «

2.4 Proposition. Let {Gn} be a tower of groups such that

. . N
each j: G - G,.; 4is onto. Then ilm G, = * .

1
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2.5 Example. Let 2 denote the additive group of the integers
and let an c Z denote the subgroup generated by pn. Then

applying 2.3 and 2.4 to the short exact sequence of towers
0 —> {p"z} —> {2} —> {z/p"2} —> 0

for p prime, one gets

lim'p®z = (lim 2z/p"2)/z
“ -+

1t

(the p-adic integers)/Z.

Thus limlpnz is not countable.
-

2.6 Remark. The towers of abelian groups form an abelian
category with enough injectives; and for such towers liml can be
“

interpreted as the first right derived functor of 1lim. This follows
-

easily using 2.3 and 2.4, since each injective is a tower of epi-
morphisms. (see also Ch. XI, §6.)
Also in Ch. XI, §6 we will show how to define liml for arbi-

“«

trary small diagrams of groups.
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§3. The homotopy groups of the inverse limit of a tower

of fibrations

We now decompose the homotopy groups of the inverse limit of a
tower of fibrations into a lim-part and a liml—part. Various
“ “
cases and applications of this have been treated by [Milnor], I[Grayl,

[Quillen (RH), p. 217] and [Cohen].

3.1 Theorem. Let X = lim Xn’ where
2. _lleorem =Lt b wiere
e —>x B3x | —> ... —>x_ =~

is a tower of fibrations in », , i.e. a tower of fibrations of sim-

plicial sets with compatible base points =* € X, - Then there is, for

every i > 0, a natural short exact sequence

1 .
* —> ilm ni+lxn e J niX > ilm nixn —_—D *

3.2 Corollary. For every K € o, there is a natural (in the

obvious sense) exact sequence of pointed sets

. ——)‘l_iml[SK,Xn] —> (K,x] — Lin[K,X_ ] — «

where SK denotes the reduced suspension of K [May, p. 124] and,

for Y fibrant, [L,Y] stands for the pointed set of homotopy

classes of maps L + Y ¢ o/, (see Ch. VIII, 4.6).

This follows immediately from the fact that (see Ch. VIII, 4.8),

for Y fibrant, there are natural isomorphisms

[K,¥Y] = nohom*(K,Y) [SK,Y] = m,hom, (K,Y).

1
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3.3 Corollary. Let X e o, be fibrant, let

be a sequence of inclusions in #, and let K = lim K . Then there
Iy 2hen thaere

is a natural exact sequence of pointed sets

+ —> Lin' [SK,X] —> [K,X] —> lin [K ,X] —> * .

Using this [Grayl shows the amusing result that there is an
essential map £: CP° s3 such that the restrictions £]cp™  are

null-homotopic for all n.

Proof of theorem 3.1. It is easy to show that the obvious map

f: ﬂix + lim nixn is onto, and it thus suffices to construct a
+
natural isomorphism
g: ker £ = liml T, , X
« i+l%n

To do this, we recall [May, p. 7], that the elements of nix
can be considered as certain classes of i-simplices of X. Let
a e X be an i-simplex representing an element [a] € ker f C nix
and, for each n, let a, be its image in Xn' Then

[an] = % € ﬂixn and hence one can choose a null-homotopy for a_,

o]

i.e. an (i+l)-simplex b_ e X such that d.b_ = a and d.b *
n n n n

0 i n

for j > 0. But as the (i+l)-simplices bn and pbn+l have the same

faces, they determine an element of 7 which can, for instance,

i+lxn
be obtained by choosing an (i+2)-simplex c, € X such that

docn = pbn+l’ dlc = bn and d,c_ = % for k > 2, and then taking

n k'n

X_. Finally we define

[dZCn] £ Ti+1®n
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1 .
gla] € ilm ﬂi+an = "i+lxn / action

as the element represented by <[d2C0]""'[d2Cn]"") and a long
but straightforward computation now shows that g 1is well-defined

and has all the desired properties.

For future reference we give the following group theoretical

application of theorem 3.1.

3.4 Proposition. Let {Gn} be a tower of groups. Then there

is a natural isomorphism

lim_ lim G(k) z lim G
- n « k n -« n

and a natural short exact sequence

N B (k) 1 (k)
* — ilmn ilmk Gn

n

—> limG_. —> lim liml G e
-« n -« n « k

3.5 Corollary. If {Gn} is Mittag-Leffler, i.e. if for each

(N) (k)

n there is an N < «» such that Gn n

. L1 _
= ilmk G , then ilm Gn = %,

In particular, if each Gn is finite, then limlGn = k.

Proof of 3.4. Construct a commutative lattice

> Dpsl,n+l > Py, n+1 >
v W

—> Dys1,n —> Dy .n >
A\ v
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of spaces.and fibrations in #_, such that
(i)

Dk,n = * unless k, n > 0

(ii) for each k and n the map

Dy+1,n#l — Dxs1,n *p.  Dk,n+1 € Ja

k,n

is a fibration, and

(iii) n.p, _ = ¥
1

X,n n for k, n >0, 1 =1

= * otherwise

The conditions (i) and (ii) ensure that {lim, D } and
7k “k,n

{}_imn Dy n} are towers of fibrations in ., . The proposition now
r

follows from 3.1 and the fact that
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§4. The extended homotopy spectral sequence of a tower

of fibrations

In this section we generalize the usual homotopy spectral se-

quence of a tower of fibrations to an "extended" homotopy spectral se-

quence, which in dimension 1 consists of (possibly non-abelian) groups,

and in dimension 0 of pointed sets, acted on by the groups in

dimension 1.

We start with

4.1 An observation about the homotopy sequences of a tower of

fibrations. Let {Xn} be a tower of fibrations in J#, , i.e. a

tower
cee —> xn > Xn-l —_ ... —D> X_1 = %

of fibrations with compatible base points « € Xn, and let F. < Xn

be the fibre over =+ of the fibration X_ -+ X Then one can form

n n-1°
the homotopy sequences [May, p. 27]

cee —D X1 e TF, —> X, —> "X —_— LN _—_>
"Oxn > TTOxn—l

and these sequences are "well known" to be exact in the sense that

(i) the last three objects are pointed sets, all the others are

groups, and the image of “2Xn-1 lies in the center of ann,

(ii) everywhere "kernel = image", and

(iii) the sequences come with a natural action of T X1 on
nan which "extends" the map “lxn-l - nan, anpd is such that

"elements of wan are in the same orbit if and only if they have
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the same image in ﬂoXn".

From this it readily follows that one can form the r-th derived

homotopy sequences (r > 0)

e ﬂ2X£r;r 1 _ D ﬂlF(r) —_—> T X(EL —_— ﬂlX(r) —_ noF(r)

n-r-1

(r) (r)
—> TX > LI S

where
x{Fa im(n.x — > 1n.Xx) c m.X
i“n i“n+r i“n i“n
np fa kexr(m.F —> m.X /7, x(r))/actlon of ker(m o
i"n n 1+1 n-1
Ti+1%n-r-1
(r)

(for i > 0 the group "iFn is the cokernel of the boundary homo-
morphism between the indicated kernels).

It is not hard to see that these derived homotopy sequences are

also exact in the above sense. Hence one can form

4.2 The (extended) homotopy spectral sequence. For a tower of

fibrations in o, we define its (extended) homotopy spectral se-

s,t
quence {Er {Xn}} by

gt = nt_sFér-l) for t >8>0, r>1
with as differentials
d,: E ___) Es+r E+r-1
the composite maps
Te-s ér H —> Te-s ér Y —> "t—s—lFéizl) )
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It clearly has the properties

(i) eS't is a group of t-s > 1, which is abelian if t-s > 2,

r
(ii) Ei't is a pointed set if t-s = 0
(iii) the differential dr: Ei't + Ei+r't+r—l is a homomorphism

if t-s > 2, and its image is a subgroup of the center of

Ei+r, t+r-1 if t-s = 2; moreover
s,t _ s,t s/t i -
EJtp = (EJ'° N ker d)/(EJ'" N im d)) £ms 24

s-r,s-r-1

s,s
r -+ Er’ extends to an

(iv) the differential dr: E

- -r+
s-r,s-r+l on Ei's such that

action of Er on

sS,S s,s . s-r,s-r+l
! < E7'" / action of E ' .

Er+l r —_— r
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§5. Applications

The results of §3 and §4 can be used to obtain information on

the homotopy type of the inverse limit space. For instance one has

5.1 Connectivity lemma. Let k > 0 and r > 1 and let

{x } e 4, Dbe a tower of fibrations such that Ei’t = » for

0 £ t-s £ k. Then

.1 .
ilm “i+lxn for 0 £1i <k

1]
*
1

lim 7w.X
“ iln

and hence (3.1) 1lim Xn is k-connected.
“

Proof. The hypotheses imply that vixér-l) = * and that
(r-1) (r-1) . .
T 1¥n SO FPRD Sl is onto for 0 < i < k. The lemma then

follows from 2.2 and 2.4.

5.2 Mapping lemma. Let r > 1, let {Xn} € o, be a tower of

s,t
r

fibrations such that E = * for t-s = 0 and let

£: (X} » {¥_ } e o, be a map between towers of fibrations, which

induces an isomorphism of the Ei’t

for all t-s > 0. Then f in-

duces isomorphisms

. . . L1 - .1
ilm TeX, % ilm ¥, lim™m,X = lim"m,Y,

and hence (3.1 and 5.1) f induces a homotopy egquivalence

lim X 2 lim Y_ .
P n -« n

Proof. The hypotheses imply that xér—l) = % = 7y FD

0 o¥n and
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(r-1)

~ (r-1)
that ﬂan X "iYn

for i > 1 and the lemma again follows

from the results of §2.

We end with a brief discussion of convergence of the spectral

sequence and consider the notion of

5.3 Complete convergence. Let {Xn} e ¢, be a tower of

fibrations, let X = iim xn and let

Then we will say that {Er} converges completely to m.X if,

roughly speaking, nix is the inverse limit of a tower of epimor-

s,s+i

phisms with the E_ as kernels. To be more precise, form the

filtration quotients

anix = im (nix > niXs)

and the small E_-terms

s,s+i
e

oo

= ker (Qs"ix_'é Qs—lniX)

(r)

]

and observe that the inclusions anix c ‘]:imr nix induce

isomorphisms

lim mT.X = im_ .
s Qs i il s 1xs

and inclusions

oSeStL o ps,s+i

oo @

We then say that {Er} converges completely to m.,X (i > 1) if
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. .1
(i) 11m ﬂi+lxn
S,s+i _
o0

* (and hence (3.1) ﬂiX ~ ilms Qsﬂix)

(ii) e pSrs*tl for all s > 0 .
A useful convergence test is provided by the following lemma

(c.f. [Adams (AT)]).

5.4 Complete convergence lemma. Let {Xn} e /, be a tower of

fibrations and let i 2> 1. Then the condition

lim* gSeS*L o for all s > 0
P X r ]

is eguivalent to the combined conditions

liml m.X = %
+ n in
S,S+1 s,s+i
E_’ X em's for all s > 0 .

In particular, if

.1 _s,s+i
lim 4 = %
r Er

.1 .s,s+i+)
ilmr Er

for all s > 0

then {Er} converges completely to T, X.

Proof. To prove this, one combines 3.4 and the results of §2

with the existence of the short exact seguences

s,s+l

r —_— % (r > s).

* E

B )

i“s=-1

Finally we observe that it is sometimes (see Ch.vI, §9) con-

venient to consider the slightly stronger notion of

5.5 Mittag-Leffler convergence. Let {X } ¢ #, be a tower of
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fibrations, let X = lim Xn and let
-

Then we say that {Er} is Mittag-Leffler in dimension i (i > 1) if

the towers {Ei’s+l}r>s are Mittag-Leffler, i.e. (3.5) if for each
s >0
ESZ:;l = Ei's+l for some s < N(s) < » ,

This definition clearly implies

5.6 Mittag-Leffler convergence lemma. {Er} is Mittag-Leffler

in dimension i if and only if the tower of groups {nixn} is

Mittag-Leffler (3.5).

5.7 Proposition.

(i) If {Er} is Mittag-Leffler in dimension i, then

liml Es,s+1

lim E =% for s > 0 and thus (5.4)

(ii) if {Er} is Mittag-Leffler in dimensions i and i+l, then

{E.} converges completely to m X,

5.8 Remark. In practice, i.e. for spectral sequences with

s,t
r

countable groups E , Mittag-Leffler convergence is equivalent to

complete convergence (see [Gray, p. 242]).
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Chapter X. Cosimplicial spaces

§1. Introduction

In this chapter we

(i) lay the foundation for a homotopy theory of cosimplicial

spaces, i.e. we show that it is possible to define, for cosimplicial

spaces, notions of function space, weak equivalence, cofibration and

fibration, which satisfy Quillen's axioms for a closed simplicial

model category (see Ch. VIII, 4.9), and then

(ii) combine this with the results of Chapter IX and obtain,

for every cosimplicial space, an extended homotopy spectral sequence,

which is an important tool in our study of the R-completion of a
space in Part I.

In slightly more detail:

§ contains a definition of cosimplicial spaces and a few

examples.

§3 Here we define a notion of function space and discuss the

important special case of the total space of a cosimplicial space,

which is a kind of codiagonal.

§4 deals with the notions of weak equivalence, cofibration

and fibration, and the closely related notions of cofibrant and
fibrant cosimplicial spaces. A (for Part I of these notes) important
example of such fibrant objects are the so-called grouplike cosimpli-

cial spaces.
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w
[%;]

is devoted to the verification of Quillen's axioms.

§6 Here we construct, for every cosimplicial (pointed) space,

an extended homotopy spectral sequence, which, under suitable circum-

stances, converges to the homotopy groups of the total space.

57 contains a cosimplicial description of the E,-term of the

spectral sequence, which is convenient for the applications in

Chapter I.

Notation. We will work mainly in the categories # of spaces

and #, of pointed spaces.
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§52. Cosimplicial spaces

This section contains a definition of cosimplicial spaces and,
more generally, of cosimplicial objects over an arbitrary category,

and a few examples.

2.1 Cosimplicial objects and maps. For a category £, the

category ¢ b of cosimplicial objects over 5 is defined as follows.

An object X € ¢/ consists of
(i) for every integer n > 0, an object gn e £,
(ii) for every pair of integers (i,n) with 0 < i < n, coface

and codegeneracy maps
: X7 — X and st: "l 5P e &

satisfying the cosimplicial identities (which are dual to the sim-

plicial identities (Ch. VIII, 2.1)):

alal = aigi-l for i < j
siat = aigi-t for i < j
= id for i = j, j+l1
= gi-1lg3 for i > j+1
sIst = gi7lgd for i > 3
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which commute with the coface and codegeneracy maps. A cosimplicial

object (map) over L thus corresponds to a simplicial object (map)

over the dual category Jb * (Ch. VIII, 2.1).

2.2 Examples

(i) The cosimplicial standard simplex

A e c

i.e. the cosimplicial space which in codimension n consists of the

standard n-simplex A[n] € ¢ and for which the coface and codegeneracy

maps are the standard maps (Ch. VIII, 2.9 and 2.11).

dj Sj
A[n-1] ——> A[n] and Aln+tl] —> Aln].

(ii) For X, Y € ¢/, one can form the cosimplicial pointed space

hom, (X,Y) € cJ,, where
P
n _ ,
hom, (X,Y), = {pointed maps X, —> Y, }.

(iii) Our key example of a cosimplicial space is the cosimpli-

cial resolution RX of a space X with respect to a ring R (Ch. I, 4.1)

(iv) A diagram
x —£3 B Iy e

gives rise to a cosimplicial space X x5 Y with
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(X Xg Y)n = XXBX *°** XBxY (n copies of B)
di(x,bl,...,bn,y) = (x,fx,bl,...,bn,y) i=0
(x,bl,...,bi,bi,...,bn,y) l<icg<n
(x,bl,...,bn,gy,y) i = n+l
s (x,byseeasby¥) = (kybo,e.u,by by o,eeub,y) 0 < € n-l

This example was used by [Rector (EM)] in his geometric construction

of the Eilenberg-Moore spectral sequence.
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§3. The total space of a cosimplicial space

We will now associate with every cosimplicial space a very use-
ful space, its total space. This is a kind of codiagonal; it is, in
some sense, dual to the diagonal of a simplicial space (a simplicial
space is a double-simplicial set).

Total spaces are a special case of

3.1 Function spaces. Just as we defined (in Ch. VIII, 4.7),

for X, Y € o/, the function space hom (X,Y) € #, so we now define, for

X, Y € ¢, the function space

hom (X,¥) ¢ o
as the space of which the n-simplices are the maps
A[n] x X —> Y e co
with as faces and degeneracies the compositions

i
pfn-1] x x 2 Xy An] x

i
w4

|

i
atn+l] x x 225 A(n] x x

s

As already said, a very useful example of a function space is

3.2 The total space of a cosimplicial space. For X & c# we

define its total space Tot X or Tot, X by (2.2)

Tot_ X = Tot X hom (A, X) € o



and note that the total space can be considered as an inverse limit

Tot X = 1lim Tot_ X
~ - 8 «
where
Tots X = hom (é[s], §) £

A[s] consists

and A[s]C A denotes the simplicial s-skeleton, i.e.

in codimension n of the s-skeleton (Ch. VIII, 2.13) of Aln].

IfXe c#/ is augmented, i.e. comes with an augmentation map

a% xt —5x° e o

such that dod0 = dldo: §_1 -+ Xl, then this augmentation map obviously

induces maps

which are compatible with the maps between the Tots X.

3.3 Examples

(i) For X, Y e /,, the functors Tot and Tots give rise to the

usual pointed function spaces (2.2 (ii) and Ch. VIII, 4.8)

[s]
Tot hom,(X,Y) = hom, (X,Y) T°ts_223*(X'Y) = hom, (X ,Y)

(ii) The R-completion R _X of a space X with respect to a ring R,

which is (Ch. I, §4) defined by (see 2.2 (ii))
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(iii) Given a diagram
x —f5 B &— v € o

one can form the diagram

£ hom (at, B)

X > B &

0
hom (A[1],B) hom(d",B)y 5 d— v
and verify easily that (see 2.2 (iv))
Tot (X Xp Y) T X x_ hom (A[l],B) x_ Y

B B

Thus, if B is fibrant and f and g are fibrations, then the natural

map
X Xg Y — Tot (X X Y)

is a homotopy equivalence.

We end with another example of a function space.

3.4 The maximal augmentation. Let %= € ¢ denote the cosimpli-

cial space with one element in each bi-dimension. Then it is not
hard to see that, for X € co/, the space hom (%, X) is naturally

isomorphic to the maximal augmentation of X, i.e. the subspace of

Xo which consists of the simplices x ¢ X0 for which dox = dlx.
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84, Weak equivalences, cofibrations and fibrations

In this section we define for cosimplicial spaces notions of

weak equivalences, cofibrations and fibrations, which (as will be

shown in §5) have all the "usual" properties.

4.1 Weak equivalences. A map f: X + Y € co will be called a

weak equivalence if the maps

f: §n —_—> ¥n € o n

v
o

are all weak equivalences.

4.2 Cofibrations. A map i: A + B € ¢+ will be called a co-

fibration if it is 1-1 and induces an isomorphism on the maximal

augmentation (3.4). This readily implies that every simplex b € B

which is not in the image of i can uniquely be written in the form

j j
b=a®™...alp

where jm > e 2> ji and b' is not a coface.

We call an object B € ¢, unaugmentable or cofibrant if the map

g + B is a cofibration (8 denotes the empty cosimplicial space), i.e.

if the maximal augmentation of B is empty.

4.3 Examples

(i) The cosimplicial standard simplex A (2.2) and its simplicial

skeletons é[s] (3.2) are unaugmentable,

(ii) The inclusion maps A[S] + A[n] (s < n) are cofibrations

and so are the maps * > é[n]/A[s].
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4.4 Remark. We could now define a map X - ¥ € c¢c# to be a

fibration if it has the right lifting property with respect to all

cofibrations which are weak equivalences, i.e. if for every

(commutative) solid arrow diagram in co/

where i is a cofibration which is a weak equivalence, the dotted
arrow exists. Instead we shall give an equivalent, but more explicit

definition using

4,5 Matching spaces. For X € c and n > -1, we construct a

matching space Mn§ € o, which is, roughly speaking, the cosimplicial

analogue of "the set of the (n+l)-simplices of the n-skeleton of a

simplicial set". It consists of the simplices

(xo,...,xn) e XM x -.. x §n

for which s*xJ = sj-lxl whenever 0 < i < j < n, and it comes with a

natural map

s: X" S M% e o

given by x » (sox,...,snx) for all x € n+l

<

Clearly

M § = * and M'X =X
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We now define

4.6 Fibrations. A map f: X » Y € cs/ will be called a

fibration if the maps

MBX e o n > -1

(£,s) 2‘(n+1 - ¥n+1 X gy X

are all fibrations.
Similarly we say that X € co 1is fibrant, if X » x is a

fibration, i.e. if the maps

are all fibrations.

4.7 Examples

(i) If X » X' € o/, is a cofibration and Y € #, is fibrant, then

the induced map (2.2 (ii))

hom, (X',¥) —> hom, (X,Y) € Co

is a fibration.
(ii) If Y > Y' € #, is a fibration and X € #,, then the induced

map (2.2 (ii))
hom, (X,¥Y) ——> hom, (X,Y") e oo
N s

is also a fibration.

Another (for our purposes important) example is

4.8 Grouplike cosimplicial spaces. We call an object X & ¢
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grouplike if, for all n > 0, the space x" is a simplicial group (i.e.

a simplicial object over the category of groups) and the operators

at (except do) and all operators st are homomorphisms of simplicial

groups.

Grouplike objects have the following useful properties:

4,9 Proposition

(i) Every "homomorphism" f£: X + Y € co/ of grouplike objects,

which is onto, is a fibration, and hence

(ii) Every grouplike object is fibrant

Proof. This follows from the fact that the maps

(£,s): §n+1 —_ ¥n+l X yny MnX

-~

are epimorphisms of simplicial groups, and hence [May, p. 70] fibra-
tions. This, in turn, is a consequence of the fact that the maps

s:Vn+1

+ M have a natural (simplicial) cross section when V is
grouplike. The proof of this last statement is very similar to the
proof that every simplicial group is fibrant [May, p. 67], but uses

codegeneracies instead of faces and cofaces instead of degeneracies.,

4,10 Examples

(i) Every cosimplicial simplicial group is grouplike and hence

fibrant

(ii) The cosimplicial resolution RX of a space X with respect

to a ring R (2.2 (iii) and Ch. I, §4) is fibrant, because

(Ch. I, 2.2) every choice of a base point * € X makes RX grouplike.
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§5. Cosimplicial spaces form a closed simplicial

model category

The purpose of this section is to prove that

5.1 The category c is a closed simplicial model category, i.e.

the notions of function space, weak equivalence, cofibration and

fibration in the category c , which were defined in §3 and 54,

satisfy the axioms CM1-5 and SM7 of [Quillen (HA), p. II, 2.2 and

(RH), p. 233].

The axioms CM1-5 for a closed model category were listed in
Ch. VIII, 3.5 and involve only the notions of weak equivalence, co-
fibration and fibration, while axiom SM7 relates the notion of

function space with the others as follows.

SM7. . If i: A »> B is a cofibration and p: X + Y is a fibration,

-

then the map

(i,p): hom (B,X) —> hom (a,X) x hom(B,Y) € o

hom (A,Y)

is a fibration, which is a weak equivalence if either i or p is a

weak equivalence.

Before proving this we mention a useful consequence.

5.2 Proposition

(1) If f: § > g € co/ is a weak equivalence, with X and g

fibrant, and Ae co/ is cofibrant, then f induces a homotopy

equivalence

hom (A,X) = hom (A,Y) € o
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(ii) If g: A + B e co is a weak equivalence, with A and B co-

fibrant, and X ¢ c# is fibrant, then g induces a homotopy

equivalence

hom (B,X) = hom (3,X) €

Proof. It follows from 5.1, that f can be factored f = pi,
where p is a fibration, i is a cofibration, and both are weak
equivalences; moreover hom (A,p) is a weak equivalence. Now, by
[{Quillen (HA), p. II, 2.5] i is a strong deformation retract map.

As hom (Q,—) preserves the simplicial homotopy relation, this implies
that hom (g,i) is a weak equivalence. This proves part (i).

The proof of part (ii) is similar.

Proof of 5.1. We will only prove the "difficult” lifting and
factorization axioms CM4 and CM5. The axioms CM1l, CM2 and CM3 are
easy and will be left to the reader, while SM7 follows from [Quillen

(HA), p. II, 2.3 axiom SM7b] which is obvious in our case. First a

5.3 Lemma. A fibration f: X + Y € co/ is a weak equivalence

if and only if the maps

(£,s): §n+l e Yn+l X Mx € n > -1

are all weak equivalences.

n

Proof. For n > -1 and -1 < k < n let Mk

X consist of the

simplices

(xo,...,xk) € ™ x ... x X°
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for which s'xd = s371x% whenever 0 <i < j <k. Clearly M:x = MX

and if k = -1 or n = -1, then M X==x .

~

The lemma now follows by an inductive argument since the obvious

map

n n+l n
Y x X —> Y X X
Y n oy Mp% Y vy M X

Ml

is a fibration induced from the obvious map

n n n-1
§ > ¥ ox n-1 Mk X.
Mk g

Proof of CM5. For m, n > 0, let

[ S B

~

m .m

be the object freely generated by a simplex ig e Al n ]n , and let

Al ﬁ 1 <« Al 2 ] be the sub-object generated by the simplices

~

sdi 0<j<m

o
iA

k < n, n>>0.

Then the inclusion é[ : ] » é[ ﬁ ] is a cofibration and, by 5.3, a
map p: X > g € ¢ has the right lifting property (4.4) with respect
to all the maps é[ 2 ] » é[ 2 ] if and only if p is a fibration and
a weak equivalence. Thus any map £ € ¢/ may be factored f = pi,
where p is a fibration and a weak equivalence, and where i is a
(possibly transfinite) composition of co-base extension of maps

AL 1 >0,

m

Similarly, for 0 £ k £ n and n > 0, let A[n k
~ ’

1 < Al 2 ] be the

sub-object generated by the simplices
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dji 0<j<n, j#k

Then the inclusion A[nmk] + Af 2‘] is a cofibration and a weak
~'n, <
equivalence. Thus any map £ € ¢ may be factored f = pi, where p

is a fibration and where i is a (possibly transfinite) composition of

m

co-base extensions of maps A[n Kk
~ r

m
1 > Al n 1.

Proof of CM4. The case where p is a weak equivalence is easy,
since any cofibration is a (possibly transfinite) composition of co-
base extensions of maps A] 2 ] » A[ ﬁ ].

Now suppose i1 is a weak equivalence. Then, by the proof of CM5,

there is a factorization i = p'i' such that p' is a fibration and a

weak equivalence and i' is a (possibly transfinite) composition of

co-base extensions of maps A[nmk} - Al 2 ]. Since i' has the left
~'n, p

lifting property (Ch. VIII, 3.4) with respect to fibrations, the

desired result now follows easily.
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§6. The homotopy spectral sequence of a cosimplicial

space

Combining the preceding results with those of Chapter IX, §4, we
construct, for every cosimplicial pointed space, a pointed tower of

fibrations and hence an extended homotopy spectral seguence. Under

suitable circumstances this spectral sequence converges to the

homotopy groups of the total space of the cosimplicial space.

6.1 The homotopy spectral sequence of a cosimplicial pointed

space. Let X € co,. If X is fibrant, then (3.2, 4.3 and 5.1)

{Totn §] is a pointed tower of fibrations, and we define the

(extended) homotopy spectral segquence {Ei’t §} by (Ch. IX, 4.2)

s,t = s,t
E]'C X E_ {Totn X}.

Otherwise we choose (5.1) a weak equivalence X > Y ¢ o/, such that

Y is fibrant and put

s,t = s,t
E]'T X E_ {Totn g}.

Under favorable conditions (Ch. IX, 5.4) this spectral sequence

{E_ X} converges to m,Tot X.

s,t

That Er

X is indeed well-defined (and, of course, natural)

follows readily from 5.1 and the following

6.2 Description of the E,-term. Let X ¢ #,. Then there exist

natural isomorphisms

s,t
1

s=-1

E X = x5 N ker s0 N...N ker s t

fv
1]

|v
o

Ty
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This, in turn, follows readily from

6.3 Proposition. Let X € co, be fibrant. Then, for all n,

(i) the fibre of the map Tot, X » Tot _, X is the pointed

function space hom*(Sn,N§n) {Ch. IX, 3.2 and Ch. VIII, 2.12) where

NX" = ker (X" —S—)M“'l}p
= gn nker s° n...n ker s .
(ii) for each i > 0
ﬂiNgn = ker (nign —5 Mn_lnig)

= nign nker s n...n ker s57% .

Proof. Part (i) is obvious, and for part (ii) it suffices to
show that the obvious map ﬂiM: X - Mzni X (see proof of 3.2) is an
isomorphism for all i, k and n. This follows inductively from the
fact that the maps "i§n + Mﬁ-lﬂig are onto for i > 1 (4.9) and that

there are pull backs

n
k+1x—>x k+11rx———)7rx
Mx  — M1y Mr.x  —> M inx
k& k = ki k "iZ

6.4 Remark. The above description of the E;-term (6.2) implies,
in view of the main results of [Bousfield-Kan (SQ), §7 and §10] that
(i) the spectral sequence {Ei'tx} defined above coincides in

dimensions > 1 with the spectral sequence of [Bousfield-Kan (SQ), §7]
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and hence
(ii) 4if X € #/, and RX € o, is the cosimplicial resolution of

X with respect to a ring R (2.2 (iii) and Ch. I, 4.1), then

{Ei'tRx} coincides in dimension > 1 with the homotopy spectral

sequence {E:’t(x;R)} of X with coefficients in R of [Bousfield-Kan

(HS)];
(iii) for X, Ye cs/, there is a natural pairing (at least in

dimensions > 1)

s,t
Er)_s® E
(iv) if X is a cosimplicial simplicial abelian group, then

{Ei'tg} is (part of) the usual spectral sequence of the second

quadrant double chain complex obtained by "doubly normalizing" X.




§7. A cosimplicial description of the E,-term

We end this chapter with a cosimplicial description for the

E,-term of the spectral sequence of §6. For this we need a notion of

7.1 Cohomotopy groups (and pointed sets). For a cosimplicial

abelian group B we define its cohomotopy groups T°B by

°B = ©%(B,d) s

v
o

where B is considered as a cochain complex with coboundary map

d = Z(-l)ldl, or equivalently
B = H%(NB,d)

where (NB,d) is the normalized cochain complex, i.e. the subcomplex

given by

N8 = B" n ker s? N...N ker sS7L,

More generally, for a cosimplicial group B, one can still

construct a cohomotopy group ﬂOB by

B = (beB| d% = alp)

and a pointed cohomotopy set nlB as the orbit set of

z8 = (b ens! | (@%) @) t@%) =+ }

under the group action B0 x ZBl - ZBl given by the formula

(b,b') » (alb)b'(a%) L.
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And finally, for a cosimplicial pointed set B, the above

construction still yields a pointed cohomotopy set nOB.

Then it is not hard to prove the following

7.2 Description of the E,-term. Let X € co,. Then there

2

exist natural isomorphisms

~ S
§ =7 nt§ t

v
0]

v
o
.

We now combine this description of E2 with Ch. IX, 5.1 and 5.2

and get

7.3 Connectivity lemma. Let k > 0 and let X € c, be fibrant

and be such that 7°71_X = * for 0 < t-s < k. Then

<
lim 7, Tot_ X = & = limln. Tot_ X 0 <ic<k
< i n - < i+l n - - -
and hence Tot X is k-connected.
7.4 Mapping lemma. Let X, Y € cJ, be fibrant, let nsntx = =%
for t-s = 0 and let f£: X + Y € co, induce isomorphisms
ﬂsﬂtX z nsntY for all t-s > 0. Then f induces a homotopy equivalence

Tot X = Tot Y € o

We end with some

7.5 Examples

(i) If Y ¢ o, is fibrant, then so is‘ggg*(X,Y) (2.2) for all

X € /4. Moreover
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-~

w1 hom, (X,¥) T H 5(

X; ﬂtY)

(where H ° denotes reduced cohomology) and hence (3.3) {EIDQE*(X'Y)}

provides a new construction for the well-known spectral sequence of

a pointed function space.

(ii) 1If X, B,Y ¢ o/, are fibrant, then so is X Xg ¥ (2.2) for

B

any diagram

Moreover

s —
b nt(x X Y) = = for s > 1
ﬂoﬂ (X x, ¥) = @ X Xx Y
t ~B t ﬂtB t
nln (X x, ¥) = w,B / action
t ~B t

where the action of ﬂtX X ntY on ﬂtB is given by the formula

(u,v)b = (g*v)b(f*u)-l. Hence (3.3) {Er(x X Y)} provides a new

B

construction for the familiar Mayer-Vietoris sequence of a fibre

square .
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Chapter XI. Homotopy inverse limits

§1. Introduction

It is well known that, in general, inverse limits do not exist
in the homotopy category of spaces. 1In this chapter we will, however:

(i) discuss a notion of homotopy inverse limits which gets

around this difficulty, and

(ii) show that, up to homotopy, the R-completion of Part I of

these notes can be considered as such a homotopy inverse limit.

In more detail: if I is a small category,  the category of
spaces, and JI the category of I-diagrams in o/ , then the homotopy

inverse limit is a certain functor

holim: /& —>
“

which satisfies the homotopy lemma:

If £: x> x' e o1

is a map, of which each "component" is a

homotopy equivalence between fibrant spaces, then £ induces a

homotopy equivalence

holim f: holim X = holim X' e o
-+ -+ - “ —

Moreover hoiim has the "desired"” homotopy type in familiar

examples, such as:

(i) If X 1is a tower of fibrations, then holim X is homo-
X b L

topy equivalent to 1lim X.
i
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(ii) If X 1is a fibrant cosimplicial space, then holim X is
2 batutii

homotopy equivalent to the total space Tot X.

(iii) If A 1is an I-diagram of abelian groups and

K(A,n) € e is the corresponding I-diagram of Eilenberg-MacLane

spaces, then

7, holim K(A,n) = lim""*a 0 <i<n
i * - - -

= 0 otherwise

where 1im™ ' is the (n-i)-th derived functor of lim.
« pe

We alsoc construct, for homotopy inverse limits a (homotopy)

spectral sequence, which generalizes the one for cosimplicial spaces

of Chapter X, §6; and we prove a cofinality theorem.

The chapter is organized as follows:

§2 and §3 After some preparations in §2, we give in §3 several,

of course equivalent, descriptions of the homotopy inverse limit

functor holim.
«

54 contains some examples, and a proof of the fact that, for a

fibrant cosimplicial space, the homotopy inverse limit and the total

space have the same homotopy type.

We also observe that the definition of homotopy inverse limits
in » can be generalized to any category ¢ which

(i) has (ordinary) inverse limits, and

(ii) has natural "function objects” hom (X,X) € &, for
Key and X € ¢ .
Thus homotopy inverse limits can, for instance, be defined in the

categories ., of pointed spaces, J of topological spaces, and
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7, of pointed topological spaces; however, nothing really new

happens in o, J or J,..

§5 Here we show that the functor holim: JI -+ admits a
+

factorization through the category c»/ of cosimplicial spaces

*
JI 1:19 co 2939 o .

This implies that one can use cosimplicial methods to study homotopy

inverse limit spaces.

§6 and §7 contain an example of this. We construct for a

pointed diagram of fibrant spaces X, a spectral sequence {Eré}

such that

(i) {E_X} 1is usually closely related to m,holin X,

(ii) E;" X = iimsnti for 0 < s < t, where iims denotes the
s-th derived functor of the inverse limit functor for (abelian)
groups, and

(iii) if X is a cosimplicial space, then, as one might
expect, this spectral sequence coincides, from E2 on, with the

spectral sequence of Ch.X, §6.

58 contains a brief discussion of an interpretation of homotopy

inverse limits in terms of homotopy categories.

§9 and 5§10 Here we observe, that for certain large diagrams of
spaces, one can, at least up to homotopy, talk of their homotopy
inverse limits, and show that, as a consequence, the R-completion of
Part I of these notes can, up to homotopy, be considered as a
homotopy inverse limit of the “"Artin-Mazur-like" diagram of "target

spaces of X which admit a simplicial R-module structure". Our
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main tool is a cofinality theorem, which enables us to compare

homotopy inverse limits for small diagrams of different "shapes".

Notation and terminology. In this chapter we will mainly work

in the category / of spaces, except for §7, where we will also use

the category ~/, of pointed spaces.

We shall assume that the reader is familiar with ordinary

inverse limits for diagrams in various categories (see [Kan (AF)]

and [Artin-Mazur, Appendix]).
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§2. Some spaces associated with a small category

In preparation for the definition of homotopy inverse limits
(in §3) we discuss several useful spaces which one can associate

with a small (i.e, the objects form a set) category. We start with

2.1 The underlying space of a small category. Let I be a

small category. Then we will denote by the same symbol I its

underlying space, i.e. the space of which an n-simplex is any

sequence

with faces and degeneracies given by

%2 %n
dou = (11(——----(—-1n)
oy aia. g o,
dju= (ioé_'"éj_a_”'&in) 0 <j<n
a a
_ s o 1 ... _n-1 .
dnu = (lo <€ ln-]_)
a a. . a, a
_ : 1 ... . id . it L, n .
sju = (i, «— <« iy € iy € < i)
0<j<n

Clearly, for small categories I and J, a functor I =+ J

induces a simplicial map I + J, and [Segal] it is not hard to see

that:

(i) There is an obvious 1-1 correspondence between the functors

I +J and the simplicial maps I =+ J.
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(ii) Moreover, a natural transformation of such functors

corresponds to a homotopy

Afl] x I —> J € J .

We also need

2.2 The (over) categories I/i and their underlying spaces.

Given a small category and an object i e I, one can form the (over)

category I/i, which has as objects the maps
i e— i0 e I

and as maps the appropriate commutative triangles. An n-simplex of

the space I/i thus can be considered as a sequence

Amap B: i + i' € I induces a functor and hence a simplicial

map

1/8: I/i —> I/i' €

and combining these for all B, one gets an I-diagram of spaces, i.e.

a covariant functor

I/-: I —> ¥

which has the property:

2.3 Proposition. The correspondence

(i eXije— s e—i) ——> (ij&— +++ &— i)
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induces an isomorphism

lim1/- = 1 € .
->

Another useful property is

2.4 Proposition. For every i e I, the identity map of

I/i € 4 is homotopic to the composition

I/i —> %« —> 1/i e o

where the last map sends * into (i <;i§ i).

This is immediate from 2.1l.

2.5 Corollary. For every i € I and fibrant space X e ,

the map I/i + * induces a weak egquivalence

X 2 hom(*,X) ——> hom(I/i,X) e o .

2.6 Example. Let A be the category of the finite ordered

sets

[n} = (0,*--,n) .

Then A/~ can be considered as a cosimplicial space and it is

not hard to see that

(i) A/- 1is cofibrant (i.e. unaugmentable),

(ii) the map

6/ —> A
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which sends every vertex (i} & [iO] € A/i into the vertex

a(0) € A[i], is a cosimplicial map.

Moreover, in view of 2.4,

(iii) this map A/- + A e ¢ is a weak equivalence.

We end with the remark that, of course, 2.2 can be dualized.

Thus one has

2.7 The (under) categories INi and their underlying spaces.

The definition is obvious. Note that these spaces give rise to a

contravariant functor

IN-: I —> ¢ .
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§3. Homotopy inverse limits

It is convenient to define first

3.1 Function spaces for diagrams of spaces. Let I be a small

category, let JI be the category of I-diagrams over . (i.e. co-

variant functors I +.) and let W,X ¢ JI . Then the function space

hom (v_v,&) € o

is the obvious (cf. Ch.VIII, §4) space of which the n-simplices are

the maps

Afn] x W —> X ¢ JI .

Or equivalently, hom(W,X) € o is the difference kernel (i.e.

inverse limit) of the maps

a

I hom (Wi, Xi) Z I hom (Wi,Xi")
ie1 b i ——19 i''e I

where a and b are respectively induced by

X
hom (Wi, Xi) ~= hom(Wi,Xi')

W
hom(Wi',Xi') ——» hom(Wi,Xi')

Now we can define

3.2 Homotopy inverse limits. Let I be a small category and

let X ¢ #1 be an I-diagram. The homotopy inverse limit of X then

is the space holim X (or holimi Xi) defined by
« - « -
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holim X = hom(I/-,X) € & .
. a

It is not hard to see that holim X is natural in X and I:
< a 4 anda

in particular, a map f: X + X' ¢ JI induces a map
holim f: holim X —> holim X' € o
“+ <+ — P —_—

and a functor g: J + I between small categories induces a functor

*
g : JI *-JJ, and hence a natural map

. . s *
hoilm g: hoilm X —> hollm g X
One can, of course, also obtain the functor holim using
<+

3.3 An adjoint functor approach. The functor

holim: JI _
+

is right adjoint to the functor

- x (I/-) i —> S

which assigns to every space Y € and object i € I the space

Y x I/i € /.

The proof is straightforward.

Another way of saying this is

3.4 Proposition. For every n-simplex

ay a
U= (i e - 2 i) e I
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there is a natural map

ju: A[n] x holim X —> Xi0 €
b 2 2

which, for n > 1 is a (higher) homotopy between the maps

(ial)j(dou) and j(dlu), e, j(dnu), i.e. the diagrams

j(ayu)
Aln-1] x hoiim X — iil

| b

A[n] x holim X ———15——) §i0

4[n-1] x holim X J(dku)

A[n] x X .

ho}_im ju

commute, and holim X together with these maps has the obvious uni-
e, it ot

versal property.

It will be sho in 5.6 that holi tisfies the homoto
wi shown in a o+1m satisfi pY

lemma: If £: X + X' ¢ # is such that, for every i ¢ I, the map

fi: Xi +» Xi' € #/ is a homotopy equivalence between fibrant objects,

then the induced map ho&im X + holim X' is also a homotopy equiva-
2 - 2

lence. However, if some Xi are not fibrant, then ho%im X may
have the "wrong" homotopy type.
In 88 we shall interpret the functor hoiim in terms of

homotopy categories.

We end this section with a comment on the

3.5 Relationship to the (ordinary) inverse limit. For

X € JI, the maps I/i + * induce a natural map
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lim X —> holim X € J

which, in general, is not a weak equivalence. For instance, for

fibrant connected X € /, the diagram

* T2 X
—>

has as inverse limit either * or the empty space (depending on
whether both maps are the same or not), while the homotopy inverse

limit has the homotopy type of the loop space of X.
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§4. Examples and generalizations

We give some examples and generalizations and show that for a

fibrant cosimplicial space, the homotopy inverse limit has the same

homotopy type as the total space.

4.1 Examples. The following are examples for which the natural

map lim X + holim X (3.5) is a weak equivalence and in which each
« - * -

Xi is assumed to be fibrant:

(i) I 1is discrete (i.e. I contains only identity maps); then
the homotopy inverse limit is the cartesian product.

(ii) I contains only two objects and one map between them;
then the homotopy inverse limit reduces to the usual mapping path
space (i.e. the "dual" of the mapping cylinder).

(iii) I has an initial object i, € I (i.e. for each i ¢ I,

0
there is exactly one map iO + i e I); in this case, the natural map

(3.4)
ji,: holim X —> Xi € J
0 < = =0

is also a weak equivalence.

(iv) Every diagram in » of the form

X' —> X &— x"

in which at least one of the maps is a fibration.

(v) Every tower of fibrations

e —D X, —D ot —D> X —) Xy .
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4.2 Example. For X e/, let eX ¢ JI be the constant I-dia-
gram, i.e. (eX)i = X for each i € I and each map is the identity

map of X. Using 2.3 it is easy to show that
holim eX = hom{(I,X) .
In this case the natural map (3.5)
X = 1im X —> hoiim eX = hom(I,X)

is usually not a weak equivalence.

4.3 Example. If I and J are small categories and
X e JIXJ, then

holim. (holim. X(i,j)) = holim X = holim, (holim. X(i,j)).
« ] « 1 = « - +« 1 « 1 -
Another important example is the case of

4.4 Cosimplicial diagrams. Let A be the category of finite

ordered sets (2.6). Then

and the results of 2.6 and Ch.X, 5.2 imply:

If X € cy is fibrant, then the map

/= —> A e ¢

of 2.6 induces a homotopy eguivalence

Tot X = hom(4A,X) —> hom{4s/-,X) = holim X P
-~ ~ o~ ~ “« ~
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4.5 Generalizations. If ¢ 1is a category which

(i) has (ordinary) inverse limits, and

(ii) has natural "function objects" hom(K,X) e, for K € o

and X e C,
then our definition (3.2) of homotopy inverse limits can be applied,

and yields, for every small category I, a functor
holim: ¢t —> ¢ .
+

In particular, holim is defined for the categories ./, of pointed

spaces, J of topological spaces, and J, of pointed topological

spaces, with the obvious "function objects", e.g. for X € J and

K e
hom(K,x) = xI¥I

with the compact-open topology. However, nothing really new happens

in 4, 5 or J,, because the action of holim in /, (resp. J,)
“
can be obtained from its action in & (resp. J) by "remembering" the

base point, while for X est
Sin(holim X) = hoiim(sin X) e J .
A e

It might be interesting to consider the functor hoiim in other

closed simplicial model categories (see [Quillen (HA)]).
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§5. Cosimplicial replacement of diagrams

An important tool in the study of homotopy inverse limits is the

cosimplicial replacement lemma (5.2), which states, that the homotopy

inverse limit of a small diagram of spaces can be considered as the

total space of the cosimplicial space obtained by applying:

*
5.1 The cosimplicial replacement functor I: s > cr . A

diagram X € JI can be considered as a kind of "local coefficient
system" on the space I €/ and its cosimplicial replacement X
is, roughly speaking, the resulting "cosimplicial space of twisted

cochains". More precisely: the cosimplicial replacement of X Sa’I

is the cosimplicial space *§ € Co , which in codimension n

consists of the (product) space

a

n
Tx = T7T %, ¢ where u = (iy &% -+ &2 i
uel
n
with coface and codegeneracy maps induced by the maps
0 X0y
a”: §il  — §i0 €
al: xig —2% xig e o 0<j<n
sd: gio—-l-d—>§io € o 0<j<n.

It is not hard to see that this is the same as saying that
n
| X = hom((I/-) ,X) € J

and that the coface and codegeneracy maps are induced by the face and

degeneracy maps in the diagram of spaces I/- .
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*
This second description of I X immediately implies the

5.2 Cosimplicial replacement lemma. The functor

1 holim
S —>

admits a factorization

*

A TT . Tot

> Cf > J

A long but straightforward argument using the first description
*
of ! X implies (see Ch.X, §4).

I

5.3 Proposition. Let f: X + X' ¢ be such that

fi: Xi » X'i € »# is a fibration for every i ¢ I. Then

* * *
[ £: | X -+ | X' € c/ is also a fibration.

5.4 Proposition. Let f: X + X' ¢ be such that, for every

i eI, the map fi: Xi + X'i € is a weak equivalence between

* * *
fibrant objects. Then the map | £: X ~ [ X' € c/ is also a

weak equivalence,

In view of Ch.X, 5.1 and 5.2 these two propositions imply the

following lemmas.

5.5 Fibration lemma. Let f: X + X' ¢ JI be such that

fi: Xi + X'i € o/ is a fibration for every i e I. Then f induces

a fibration

holim f: holim X —> holim X' € .
« « - « -
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‘e JI be such that for

5.6 Homotopy lemma. Let £f: X + X

every ie¢ 1

(i) Xi and X'i are fibrant, and

(ii) the map fi: Xi » X'i e/ is a homotopy equivalence.

Then £ induces a homotopy equivalence.

holim f: holim X = holim X' € .
“+ « — « e

5.7 A generalization. 1In defining the cosimplicial replacement

functor we only used the fact that the category » was a category
with products. The definition thus also applies to other such
categories, and it thus makes sense to observe that:

For X e,ﬂf with each Xi fibrant, there are natural

isomorphisms
* *
L X = nt§ t >0.

We end with a remark on

5.8 The cosimplicial case. For X € cs there is a natural

isomorphism

X"z hom(An,X) forn > 0
and hence the map A/~ + A € co/ of 2.6 induces a natural map

X —_> *§ € co .

Moreover, application of the functor Tot to this map yields the map

of 4.4

*
Tot X —> Tot X = holim X e J .
~ ~ -+ ~
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§6. The functor 1im° for diagrams of {(abelian) groups
“

We will see in §7 that the functor hoiim is closely related to
the functors }_imS for diagrams of (abelian) groups. In preparation
for this we here

(i) show that the usual functors }_ims for diagrams of

abelian groups can be expressed in terms of the cosimplicial replace-

*
ment functor | | of §5, and

(ii) wuse this to extend the definition of the functor 1iml to
“

diagrams of (not necessarily abelian) groups.

First we recall from [Milnor] and [Roos]:

s

6.1 The usual definition of 1lim for diagrams of abelian
“

groups. Let I be a small category, let ¢ be the category of
abelian groups and let al be the category of I-diagrams in & .
For i1 e I and an injective K & & , there is an injective Ki € dI

characterized by

- " I
Homdl(é,Ki) x Homd(éi,h) for all A cg™ .

Taking products of these injectives one gets "enough" injectives in

dI and defines the functors

1inS: ¢ —> 4 s >0
1

as the s-th right derived functors, in the sense of [Cartan-Eilen-

berg], of the inverse limit functor

lim:aI——>a .
.
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Since 1lim is left exact it follows that
-
(i) lim0 = lim, and
=L b auc

(ii) a short exact sequence

* —>A' —> A —>A" —> eal

gives rise to a long exact sequence

£ —> lim A' —> lim A —> lim A" —> lim® &' —> lint & —> +++ .
“+ - “+ - « - “+ - “« -

Using the notation of 5.7 and Ch.X, 7.1 we will prove

6.2 Proposition. Let A e aI. Then there are natural isomor-

phisms

x
}_ims A = ws| I Aeq

|

Hh
0

R

0]
v
[=}

6.3 Example. For a group G and a G-module M, let M E<7I
be the associated diagram, where I 1is the single-object category
corresponding to G. Then the underlying space of I is K(G,1)

and hence

lin® M = B2 (GM).

6.4 Remark. Considerable work has been done on the vanishing
of ilms for certain directed sets of abelian groups [Jensen],
[Mitchell]. A best possible result is [Mitchell, p. 6]:

If I is the category of a partially ordered set of cardinality

s

st’ and }_\EdI, then }_J.m A =0 for s > k+l.

This is clearly false for general I (see 6.3).
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Proposition 6.2 suggests the following definition of

6.5 The functor liml for diagrams of (not necessarily abelian)
«

groups. Let I be a small category and let 4 be the category of

groups. Then, for G ¢ ﬁI, we define (see Ch.X, 7.1)

un’ ¢ = T T e

Q
"

*
liml G = ﬂl ] G € (pointed sets).

It is not hard to verify that these functors have the properties
(i) 1im® = lim, and
BT b and

(ii) a short exact sequence

* > G G > G" * € &

gives rise to a natural exact sequence

x —> lim G' —> lim ¢ —> lim G" —> lim} G' —> lim' ¢ —> lim® G"
had - « - « - + - « - + -

Moreover, a straightforward calculation yields that, for towers

of groups, this definition of lim! agrees with the one of Ch.IX,
-

§2.

Proof of 6.2. For I corresponding to a directed set this was
proved in [Roos]. The general case requires a different approach,
which is implicit in [andre].

Let J be any function which assigns an abelian group Ji to
each object i € I, and let SJ: I ¢ Dbe the functor given by

J

S 10 = A Ji
1o
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where the product runs over all maps in I with domain io. Among
the SJ there are "enough" injectives for (71 (namely those
indicated in 6.1), and the dual of [André, p. 8-13] shows that each

SJ € dI satisfies

x
ns | SJ = 0 for s > 0.

Using this result together with 6.1(i) and 6.1(ii) one now readily

establishes the desired result.
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§7. A spectral sequence for homotopy groups

of homotopy inverse limit spaces

Using the cosimplicial replacement lemma 5.2 we construct, for
each small diagram X of pointed fibrant spaces, a spectral sequence
{Eri}, which is usually closely related to n*hoiim X. For cosimpli-
cial diagrams this spectral sequence coincides,from E, on, with

the usual one, i.e. the one of Ch.X, §6.

7.1 The spectral sequence. For a small category I and a

diagram X € J{ such that Xi is fibrant for every i ¢ I, we

define the spectral sequence {Eri} by (Ch.X, 6.1)

{E X} = {Er]_['*z} r>1

and get, as an immediate consequence of 5.7, 6.2 and Ch.X, 7.2 that

X = limsn X for 0 < s £ t.
b t= ==

Moreover, in view of 5.3, the spectral sequence {Eri} is closely

related to the groups ﬂjholim X, in the sense of Ch.IX, 5.4.
L

From this one readily deduces the following two propositions

7.2 A homotopy theoretic interpretation of 1im®. For Ace dI,
+

denote by K(A,n) € s the corresponding diagram of Eilenberg-MacLane
spaces [May, p. 98]. Then one has

(i) For A ec?I, there are natural isomorphisms

1im™™t a for 0 <i <n
.

11

m.holim K(A,n)
ive =

= % for 1 > n.
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{ii) For G e.&I, there are natural isomorphisms

m.holim K{(G,1)
1 “ -

u

A
[
3
3]

for i=20, 1

= % for i > 1.

7.3 The functors 1im° for cosimplicial diagrams.
-~

(i) Let A be a cosimplicial abelian group. Then there are

natural isomorphisms

°a = 1in® a for s >0
- “ ~

which are induced by the natural cosimplicial maps (4.4 and 5.8)

A _— *é € co .

{ii) Let G be a cosimplicial group. Then there are,

similarly, natural isomorphisms

156 = 1im® G for s
~ « ~

0, 1.

We next consider two special cases

7.4 Towers of fibrations. It is not hard to see that, for a

tower of fibrations X in J,, the spectral sequence {E X} reduces

to the short exact sequences of Ch.IX, 3.1

r —D limlﬂ. X —> 7m.holim X —> lim m.X — * ,
“ i+l= 1l « - “ 1—

7.5 Cosimplicial spaces. If X € ¢, 1is such that M ey is

*
fibrant for all n > 0, then the map X ~+ X € co/ of 5.8 induces



311
Ch. XI, §7

a map of spectral sequences

v
(-

{E X} —> {Er'l__r*)f} .

and it is not hard to prove, using 7.3, that this spectral sequence

map is an isomorphism, from E on.

2 =

We end with some

7.6 Generalizations. Let X ¢ Ji be such that Xi e is

fibrant for every i e I, and let Y e #,. Then clearly
hoiim hom, (Y,X) = hom*(Y,hoiim X)

where hom, denotes the pointed function space (Ch.VIII, §4) and

hence there is a spectral sequence

v
(-

{Er(Y,ﬁ)} {Erhom*(Y,ﬁ)} r

with

-
lim
-«

B3 5 (v,x) n, hom, (¥,X)

which is closely related (see Ch.IX, 5.4) to

ﬂ*hom*(Y,hoiim X) = w*hoiim hom, (¥,X) .

More generally, let J be another small category and let

!SJE. Then

*

hom, (¥,X) e 7 * T

*
where J denotes the dual of J. Hence there is a spectral sequence
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e (¢,X)} = {E_ hom,(¥,X)}
with

5 Y ,x = Lim®n hom, (¥,X)

which is closely (Ch.IX, 5.4) related to

Tyholim hom(Y,holim X) = m,holim hom, (¥,X).
+ - - - + - =

We will come back to this in Ch.XII, §4.

iv
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§8. Homotopy inverse limits in terms

of homotopy categories

The homotopy inverse limit functor has the following interpreta-
tion in terms of homotopy categories.

Let Hoo denote the homotopy category of o , i.e. the localiza-

tion of »/ with respect to the weak equivalences (Ch.VIII, 3.6) and

let Ho(JI) be the homotopy category of JI, i.e. {(Ch.VIII, 3.6) the

localization of JI with respect to the maps f: X > Y € s such

that fi: Xi »> Yi ¢ o is a weak equivalence for every 1i e I.

Furthermore let

E: Hoy —> HO(JI)

be the functor which assigns to a space X € the corresponding

"constant" diagram of spaces (4.2). Then one has

8.1 Proposition. The functor E has as right adjoint the

"total right derived functor" (in the sense of [Quillen (HA), p.I,

4.3]) of the functor hoiim

R holim: Ho (/') —> Hos .

In particular, if X ¢ JI is such that Xi e, is fibrant for every

i € I, then holim X € represents R holim X.
== - e b IEpresents = Nog 2

8.2 Remark. Note that we did not consider the category (HOJ)I.
The "constant" functor Hos (HoJ)I has, in general, no adjoints,

i.e. limits do not exist in the homotopy category HoJ/.
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Proof of 8.1. We first prove that the category Ho(JI) exists.

To prove this it suffices [Quillen (HA)] to show that the category

;; is a closed simplicial model category with as weak equivalences

the maps f: X + Y ¢ JI such that fi: Xi + Yi €+ is a weak
equivalence for every 1 € I. We define fibrations ins! as maps

£: X » 5' € JI such that f£fi: Xi +§§fi e is a fibration for every
i € I, and cofibrations as maps which have the left lifting property
(Ch.VIII, 3.4) with respect to maps which are both fibrations and
weak equivalences in JI, and we consider the simplicial structure on

JI which comes from viewing objects in o I as simplicial objects

over the category (sets)I of I-diagrams of sets. The desired result

then follows from [Quillen (HA), II, §4,Th.4], since (sets)® is closed

under arbitrary limits and has a set {g}}i e 1 Oof small projective

generators, where each 21 € (sets)I is characterized by the natural

isomorphism

Hom I(g},g) T Yi for all Y e (sets)I .
(sets)

Next we observe that it is not hard to verify that the object

I1/- ¢ JI is cofibrant, and hence that the pair of adjoint functors

of 3.3
- X Ifmr S > ST
holim: 21 S S

satisfy the conditions of [Quillen (HA), p.I, 4.5, Th.3]. Thus the

total left derived functor

L(- x I/-): Hat —> HoWY)
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is left adjoint to the total right derived functor

R holim: Ho(sT) —> Hoo
= «

and the proposition now follows from the fact that

E=1L(- x I/-): Hoo —> HoW?) .



Ch. XI, §9 316

§9. A cofinality theorem

A functor £: I » J between small categories induces, by

*
composition, a functor £ :,’J *-JI and hence, for every diagram of
spaces X € JJ a map
*
holim X —> holim £ X €Jd .
« - “ —_—

Our main purpose here is to give, in theorem 9.2, a sufficient condi-
tion in order that this map is a homotopy equivalence. To formulate

this theorem we need a notion of

9.1 Left cofinal functors. Let I be a small category, let

f: T - M be a (covariant) functor and, for every object m € M, let

f/m denote the category of which an object is any pair (i,u) where
] ]

ieI and u: fi * m € M, and of which a map (i,u) - (i ,u ) 1is

]
any map o: 1 » i € I which makes the following diagram commute

fi

We will then say that £ 1is left cofinal if, for every m € M, the

space f/m is contractible, i.e. the map f/m » % € / is a weak

equivalence.
An obvious example of a left cofinal functor is the identity

functor id: I » I (see §2). Other examples will be discussed in 9.3

and 10.3.
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We now state our

9.2 Cofinality theorem. Let I and J be small categories,

let f: I - J be a left cofinal functor, and let X eng be such

that ﬁj is fibrant for all j € J. Then the induced map
holim X —> holim £ X €
£ < 2

is a homotopy equivalence.

Before proving this, we show that the above notion of left
cofinality agrees with the one of [Artin-Mazur, p.l149] in the case

where theirs was defined. More precisely:

9.3 Proposition. Let I be a small category, which is a "left

filtering", i.e. I is non-empty, and
]
(i) every pair of objects i, i € I can be embedded in a

diagram

k4
(ii) if i I i is a pair of maps in I, then there is a map

i +1i € I such that the compositions i =+ i are equal.

Then a functor f: I + M 1is left cofinal in the sense of 9.1 if and

only if it is left cofinal in the sense of [Artin-Mazur], i.e. if

(iii) for every m € M, there is an i € I and a map

fi » m € M, and
(iv) if me M, i eI and fi I m are two maps in M, then
] 1

there is amap 1 =+ i € I such that the compositions fi -+ m are

equal.
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Proof. One easily shows that (iii) and (iv) hold if and only if
f/m €/ is non-empty and connected for all m e M. This proves the
"only if" part.

Moreover, the conditions (iii) and (iv) imply that £f/m is a

left filtering for all m € M, and the "if" part thus follows from

9.4 Proposition. If a small category I is a left filtering

(9.3), then the underlying space I & y is contractible, i.e. the map

I » * ¢/ is a weak equivalence.

Proof. Let {il,'°',is} be a finite set of objects in I and
let {61,°'-,Bt} be a finite set of maps between them. Then,
because I 1is left filtering, there exist an object io € I and

maps aj: i0 *> ij (1 < j < s) such that the diagrams

commute. Using this it now is not hard to show that, for every
finite K € »# (i.e. K has only a finite number of non-degenerate
simplices), every map K + I € is homotopic to a constant map.

Thus I € is contractible.

* &
Proof of 9.2. Let (X,f) € ccs/ denote the double cosim-

plicial space given by

TT%%,6 = TT xi, e

(u,Y,v)
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where

u = (:L0 € v &— ln) € I
v = 7 & s & 3 € J

(Jy < < ig q
Y = f10 — jq € J

with the obvious (see 5.1) pairs of coface and codegeneracy maps.
It is not hard to verify, that the first cosimplicial total
(1) ok . . \

space Tot (X,f) € ¢/ has the property that, in codimension

d

ot V7T 9x,6) = TT hom (£/3 /X3 ) e
ved

where v = (j0 + e & jq) € Jq' The left cofinality of f implies

that the maps f/jq + % £ o are weak equivalences. They therefore

induce homotopy equivalences
530 x hom(*,éjo)  — hom(f/jq,gjo) € o
which, in turn, induce a weak equivalence (see 5.1)
* . %* %
rx —> Tot(l) I (X,f) E CoJ .

And as both these cosimplicial spaces are fibrant (see 5.3) applica-

tion of the functor Tot yields (Ch.X, 5.2) a homotopy equivalence

hoiim X = Tot *§ >~ Tot Tot(l) [**(ﬁ,f) € < .

It is also not hard to verify that the second cosimplicial total

(2) * % . . .
space Tot (X,f) € co has the property that, in codimension
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Tot TR (x,6) TT ot T—r*(i\fio) €

uel
n

where u = (10 « e € ln) € In and §\f10: J\f:.0 + o denotes the

diagram obtained from X: J +~# by composition with the "inclusion"
functor J\fio +J (see 2.7). As J\fi0 has an initial object, the

obvious map
X(£ig) —> holim(X\fiy) = Tot TT (X\fij) e o
is a weak equivalence (4.1) and hence so is the induced map
TT e —> 1ot DT T x, 0 e co .

Again, both these spaces are fibrant (5.3) and application of the

functor Tot yields (Ch.X, 5.2) a homotopy equivalence

* * * * %
holim £x = Tot TT (£ = mot Tot & TT " (x,0) e -

The theorem now follows from the fact that the map
*
holim X + holim £ X and the two homotopy equivalences constructed
“« - -« -

above, can be combined into a commutative diagram

*
holim X > holim £ X
-« - - -

Tot Tot(l)ﬁ**(_&,f) = Tot Tot(z)]_]'**(g_,f)

The proof is straightforward, although rather long.
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§10. Homotopy inverse limits for certain

large diagrams of spaces

We use the cofinality theorem 9.2 to show that, for certain
large (i.e. not necessarily small) diagrams of spaces, one can, at
least up to homotopy, talk of their homotopy inverse limits. Our key
example will be the Artin-Mazur-like large diagrams that can be
obtained from a triple; and in particular we will show that the R-
completion of Part I of these notes can, up to homotopy, be consid-
ered as a homotopy inverse limit of such an Artin-Mazur-like diagram.

We first describe the class of large diagrams for which our

definition works.

10.1 Left small categories. A category M will be called left

small if there exists a left cofinal functor £: I + M (with I
small, of course).

Clearly every small category is left small,

Now we define

10.2 Homotopy inverse limits for left small diagrams of spaces.

Let M be a left small category and let X be an M-diagram of

spaces, i.e. X esM 2 homotopy inverse limit of X then will be a

space of the form

*
hoiim £fX where f: I - M is left cofinal.

Clearly, if M is small, then holim X is a homotopy inverse limit
P 2

of X.
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That this notion has "homotopy meaning” in general follows from

10.3 Proposition. If Xm is fibrant for all m ¢ M, then the

*
homotopy type of ho}im f X does not depend on £ (or I).

Proof. Let f: I M and g: J + M be left cofinal functors
and let Kc M be the full subcategory of M generated by the
images of f and g. Then K is small and the restrictions I - K
and J + K are left cofinal. Hence, if h: K + M is the inclusion

functor, then 9.2 implies that the induced maps
* * * . *
holim h X —> holim f X and holim h X —> ho}zlm g X
« - + - + -
are homotopy eguivalences.

In order to apply this machinery to the R-completion of Part I,

we first consider

10.4 Diagrams associated with a triple. Let {T,¢,y} be a

triple on a category ¢, i.e. T is a functor T:2-+¢2 and ¢ and

>
Y are natural transformations ¢: Id - T and y: T2 - T such that

(Te)d = (4T) ¢ Y(Ty) = Y (yT) p(Te) = 1id = Y (¢T).

An object Y € 2 is said to admit a T-structure [Barr-Beck, p.337] if

there is amap 171: TY - Y €7 such that 1¢ = id and 19y = t(TT1).
For X €2, let T™X denote the full subcategory of e\X having
as objects the maps X > Y € ¢ for which Y admits a T-structure.

Then there is an obvious Artin-Mazur-like diagram (which sends

X>Y to Y)

™N —> 2 .
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Furthermore let TX be the cosimplicial resolution of X, i.e. the

(augmented) cosimplicial object over & given by

(Tx)k = Tk+lX

in codimension k, and

i i k-i
(it s k) = (rRx IT Ty okl
' i k-i

1
(X 2 k)

(Tk+2X T YT > Tk+lx)

as coface and codegeneracy maps. Then TX (augmented} can be

considered (2.6) as a functor
TX: & —> T\X

*
and it is clear that (TX) carries the Artin-Mazur-like diagram

T™\X > ¢ to the cosimplicial diagram TX ¢ cC.

This is useful because

10.5 Proposition. The functor

TX: A —> T\X

isvleft cofinal.

Proof. Let m: X + Y be an object of T\X. Then
HomT\x(Tx,m) €

is contractible (every T-structure on Y induces a contracting
homotopy) . Furthermore it is not hard to see, that its simplicial

replacement (see Ch.XII, 5.1) satisfies



324
Ch. XI, §10

* HomT\x(?X,m) z TX/m €
and the desired result now follows from Ch.XII, 4.3 and 5.3.

Finally we can give our

10.6 »application to the R-completion. Let {R,¢,¥} be the

triple on the category . of Ch.I, §2. Then (10.2, 10.4 and 10.5)

(i) for every X €/, the space

holim RX e o
- -

is a homotopy inverse limit for the Artin-Mazur-like left small

diagram of spaces R\X *,, which sends a map m: X » Y into the

space , and hence (4.4 and Ch.I, 4.2)

(ii) for every X e o/, the R-completion of X

has the homotopy type of the homotopy inverse limits of this Artin-

Mazur-like diagram of spaces R\X + .
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Chapter XII.

Homotopy direct limits

§1. Introduction

In this chapter we discuss homotopy direct limits.

Our account
Also,

will be brief as many of the results in this chapter are dual to
results in Chapter XI. a construction similar to the homotopy
direct limit was given by [Segall].

In slightly more detail:

§2

deals with the various (equivalent) descriptions of homotopy
direct limits for the category #/, of pointed spaces, dualizing the
results of Ch.XI, §3 and §8.

§3

(1)

dualizes the examples and generalizations of Ch.XI,
particular, we observe that

§4, 1In

for a simplicial space (i.e. double simplicial set) the

homotopy direct limit has the same homotopy type as the diagonal, and

(ii) our definition of holim: J£ + #, applies to many other
-

categories, such as, for instance, the categories » of spaces,
of topological spaces and J,

J
of pointed topological spaces.

direct limit has the same homotopy type as the (ordinary) direct
limit.

We also show that, for a directed system of spaces, the homotopy

§4

In dealing with homotopy inverse limits we used proposition
Ch.X, 5.2 on cosimplicial spaces.

Instead of developing a similar
result for simplicial spaces, we prove in §4 a proposition, which

allows us to translate properties of homotopy inverse limits into
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properties of homotopy direct limits and then use it to prove

observation (i) above, to show that the functor hoiim satisfies a

homotopy lemma and to derive from the (homotopy) spectral sequence

for homotopy inverse limits (Ch.XI, §7) a cohomology spectral

sequence for homotopy direct limits.

§5 Here we obtain a simplicial replacement lemma, dual to the

cosimplicial replacement lemma of Ch.XI, §5, and use it to construct

a homology spectral sequence for homotopy direct limits and to recov-

er the cohomology spectral sequence of §4.

Notation and terminology. 1In this chapter we will mainly work

in the category o, of pointed spaces.

We shall assume that the reader is familiar with ordinary direct

limits for diagrams in various categories (see [Kan (AF)] and [Artin-

Mazur, Appendix]).
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§2. Homotopy direct limits

The homotopy direct limit of a diagram of pointed spaces is,
roughly speaking, the space obtained by

(i) taking the union (i.e. wedge) of all the spaces in the
diagram,

(ii) attaching to this, for every map £f: Y » Y' in the diagram

(which is not an identity), a copy of
A[1] » ¥ = (A[1] x Y)/(A[1l] x *)

L}
by identifying one end with Y and the other end with Y (as in
the reduced mapping cylinder of f£),
1
(iii) -attaching to this, for every two maps f: ¥ + Y and
]

"
g: ¥ ~+Y in the diagram (neither of which is an identity), a copy

of
A[2] = ¥ = (A[2] x ¥)/(A[2] x *)

by identifying the three sides with the reduced mapping cylinders of
f,9 and gf (or, if gf is an identity, collapsing the third side
onto Y = Y"),

(iv) etc., etc., ...

A more efficient and precise definition is:?

2.1 Homotopy direct limits. Let I be a small category and

let Y ¢ JE. The homotopy direct limit of ¥ then is the pointed

space hoiim Y (or ho_];imi Yi) defined by (see Ch.XI, 2.7)

holim ¥ = I\- x ¥ e o,
> = =
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i.e. hoiim Y is given by the difference cokernel (i.e. direct limit)

in #, of the maps

)
IND x Yi INL x  Yi
l Y. = | Y.
i%i'er b ierl

where % 1is as above and a and b are respectively induced by

' Yy '

INL x ¥i =5 INi & Yi
|

INL x Yi I—\-Y—> IND x Yi

One can, of course, obtain the functor holim also by using
->

2.2 An adjoint functor approach. The functor

holim: Jf —> I,
->

is left adjoint to the functor

hom(IN-,-): o/, —> Ji .

Another way of saying this is

2.3 Proposition. For every n-simplex

%1 an
u = (i0 €= v €e— in) e I

there is a natural map

ju: Aln] Yi ——> holim Y e,
L e

which, for n 2 1, is a (higher) homotopy between the maps

j(dou),"', j(dn_lu) and j(dnu)(ggn) (see Ch.XX, 3.4), and
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holim Y together with these maps has the obvious universal property

ill i .2 th 1j isfi h topy
It wi be shown in 4 at ho*lm satisfies the homoto

]
lemma: If £: Y ~>Y ¢ Ji is such that, for every i € I, the map

L
fi: Yi » Y i € o/, 1is a weak equivalence, then the induced map

]
hoiim Y » hoiim Y is also a weak equivalence.
This implies that, as for homotopy inverse limits (Ch.XI, §8),

one has an interpretation of

2,4 Homotopy direct limits in terms of homotopy categories.

The "constant" functor

E: Hod, —> Ho (1)

has as left adjoint the "total left derived functor" (in the sense of

[Quillen (HA), p.I, 4.3])) of the functor hoiim

L hoiim: Ho(JE) —> Hoo, .

In particular, if Y ¢ JE, then holim Y € ., represents L hoiim Y.
= X rhen = X presents 2 X
We end this section with a comment on the

2.5 Relationship to the (ordinary) direct limit. For Y ¢ JE,

the maps INi » * induce a natural map
holim ¥ —> }im Y e o,
Sim L z

which, in general, is not a weak equivalence.
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§3. Examples and generalizations

We start with dualizing the examples of Ch.XI, §4

3.1 Examples. In the following examples the natural map

hoiim Y » iim Y (2.5) is_a weak equivalence:

(i) I 1is discrete; then the homotopy direct limit is the

{pointed) union, i.e. the wedge.

(ii) I contains only two objects and one map between them;

then the homotopy direct limit reduces to the usual reduced mapping

cylinder.
(iii) I has a terminal object io; in this case the natural
map (2.3)
Jige: ¥i, E— hoilm Y € o/,

is also a weak equivalence.

(iv) Every diagram in o, of the form
1] "
Y €e— Y —>Y

in which at least one of the maps is a cofibration.

3.2 Example., For Y ¢ J/,, let eY ¢ Jf be the constant I-dia-

gram {(Ch.XI, 4.2). Then
holim eY =* I x Y .
e bt

In this case the natural map (2.5)

I Xx Y = holim e¥Y —> iim eY =~ Y
frd L =2
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is, of course, usually not a weak equivalence.

3.3 Example. If I and J are small categories and

Y e JEXJ, then
hoilmj(hoilmiE(l,J)) x ho%lm X = hoilmi(hollmji(l,J)).

3.4 sSimplicial diagrams. Let Y be a pointed simplicial space,

* *
i.e. Ye Je , where A denotes the dual of the category A (Ch.XI,
2.6). Then one can form the diagonal of ¥, i.e. the space

diag ¥ € o, given by

(diag !)n = Xn,n for all n
and notice that there is a natural isomorphism

diag ¥ = Ay .
Moreover, obviously

*
AN- = a/-

and thus we can state:

The map 4&/- = A € ¢ of Ch.XI, 2.6, induces, for every
*

Y e Je + a weak equivalence

holimy¥ = A/-x Y —3> A x Y =z diag ¥ € J, .
<> — —_— ~ -_—

A proof of this will be given in 4.3.

Another important example is that of

3.5 PRight filterings. Let I be a small category, which is a

"right filtering", i.e. I is non-empty and
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(i) every pair of objects i,i € I can be embedded in a dia-

gram

(ii) if i3 i is a pair of maps in I, then there is a map
1] " "n

i + i eI such that the compositions i + 1 are equal.

Then, for every Y ¢ JE, the natural map (2.5)

holim ¥ —> 1lim Y € oSy
> > —

is a weak equivalence.

3.6 Corollary. For Y e ,,, let {Ya} denote the diagram of

its finite pointed subspaces (i.e. pointed subspaces with only a

finite number of non-degenerate simplices). Then the obvious map

hollma Ya ] ilm Ya = Y € o,

is a weak equivalence.

Proof of 3.5. Let Y/i denote the I/i-diagram in o/,, which

] v
assigns to an object (i + i) e I/i, the space Y¥Yi . Then it is not

hard to show, that the spaces holim Y/i form an I-diagram and that
>
lim, (holim ¥/i) = holim Y = holim, Yi .
+ 1 hd = - - + 1 -

The desired result now follows readily from the fact that

(i) the map (2.5)

holim ¥/i —> lim Y/i = Yi
-+ -+ -
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is a weak equivalence (3.1(iii)), and

(i1) homotopy groups commute with direct limits of right

filterings.

We end with a few comments on

3.7 Generalizations. One can dualize the remarks of Ch.XI,

4.5, and in particular, define holim for the categories / of
>

spaces, J of topological spaces and J, of pointed topological

spaces. But again, nothing really new happens in these categories,
as the action of hoiim in &/ (or 7 ) can be obtained from its
action in J, (or J,) by "adding a disjoint base point", while,

for every Y e JE, one has
|holim ¥| = holim |Y| € Ty »
-+ - &> -

Again, it might be interesting to consider the functor hoiim

in other closed simplicial model categories (see [Quillen (HA)]).
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§4. A relation between homotopy

direct and inverse limits

In this section we prove a proposition (4.1) which allows us to
translate properties of homotopy inverse limits into properties of

homotopy direct limits, and use it

(1) to derive the homotopy lemma for holim (4.2), which we
->
already mentioned in §2, from the homotopy lemma for hoiim (Ch.XI,
5.6),

(ii) to prove, that, for a simplicial space, the homotopy direct

limit and the diagonal have the same homotopy type, using the dual
result (Ch.XI, 4.4), and
(iii) derive from the (homotopy) spectral sequence for homotopy

inverse limits (Ch.XI, 7.1 and 7.6), a cohomology spectral sequence

for homotopy direct limits.

4.1 Proposition. For Y € JE and X € /., there is a natural

isomorphism
hom, (holim Y, X) = holim hom,(Y, X) € oy
2 . LA

where hom, is the pointed function space functor (Ch.IX, 3.2).

*
Proof. Let I denote the dual of the category I. The

proposition then follows from the fact that
* *
IN- = I/-:1 — » .

One can use this to prove the
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]
4.2 Homotopy lemma. Let f£f: ¥ » Y ¢ Ji be such that

L}
fi: Yi + Y i e #/, 1is a weak equivalence for every i ¢ I. Then £

induces a weak equivalence

Ll
holim £: holim ¥ —> holim ¥ € g o
e - > —

Proof. It suffices to show that, for every fibrant X € ., the

map £ induces a homotopy equivalence
]
hom, (holim ¥ , X) = hom,(holim ¥, X) € Sy -
> - > —_—

But this follows immediately from 4.1 and Ch.XI, 5.6.
Another application is to (see 3.4)

4.3 Simplicial spaces. For a simplicial space (i.e. double

simplicial set) the homotopy direct limit has the same homotopy type

as the diagonal.

Proof. Note that (see 3.4), for every X e /,, there are

obvious isomorphisms

hom, (diag ¥, X) = hom,(A X ¥, X) =

¥ hom(4, hom, (Y, X)) = Tot hom,(¥, X).

The proposition then follows by combining the argument of 4.2 with

4.1 and Ch.XI, 4.4.

Proposition 4.1 also allows us to reinterpret
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4.4 The spectral sequence Er(!’ X) of Ch.XI, 7.6. Let I

and J be small categories. Then, for Y e Jf

and X € Jf, one

has the spectral sequence of Ch.XI, 7.6

{E (¥, X)} = {E_ hom, (¥, X)! r>1
with

eS'Y(y, x) = 1inSw, hom, (Y, X) 0 <s <t .

2 (L X intmy I X

Moreover, if Xi € J, is fibrant for every i ¢ I, then, in view of

4.1, this spectral sequence is closely related (see Ch.IX, 5.4) to

T, hom, (holim ¥, holim X) .
> - “« -

A useful special case of this is:

4.5 A cohomology spectral sequence for homotopy direct limits.

~ %
Let Y € Jf and let h be a reduced generalized cohomology theory
on ., which "comes from a spectrum". Then 4.4 implies:

~k
There is a natural spectral sequence {Er(!; h')} with

~ % ~
Stty, 1Y) = 1im® n % s
Y 1 Y

fv
(=]

which is closely related (see Ch.IX, 5.4) to

~%
h holim Y .
5 i

An interesting case is obtained if, for Y € /., one applies

this to the diagram {Ya} of the finite (pointed) subspaces of Y

(see 3.6 and [Adams, (AT), p.6l).
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§5. Simplicial replacement of diagrams

Another tool in the study of homotopy direct limits is the

simplicial replacement lemma (5.2), which states that the homotopy

direct limit of a small diagram of spaces can be considered as the

diagonal of a certain simplicial space. As an application of this we

construct a homology spectral sequence for homotopy direct limits and

recover the cohomology spectral sequence of 4.5.

We start with

*
5.1 The simplicial replacement functor * Ji + Jé . For

Y e Jf, its simplicial replacement is the simplicial space (i.e.

double simplicial set) ] Y which in dimension n consists of the
.

(pointed) union, i.e. wedge

o o
al = Yi e oy where u = (i, e—£ cer &2 i)
uel
n
with face and degeneracy maps induced by the maps
d.: Yi —igé Yi € o 0 < < n
j* =n = n * =3
Yo,
dn: zln —_— Zln—l € o,
s.: Yi —iga Yi € 0 £j<n
j* ¥i, Yi « < < .

It is not hard to see that this is the same as saying that
Y = (I\-)_ &= Y € oy
n_ noo-

where x 1is as in §2, and that the face and degeneracy maps are
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induced by the face and degeneracy maps in the diagram of spaces

I\-.

This second description of Y readily implies the
*

5.2 Simplicial replacement lemma. The functor

holim
>

I
Sy —2— S,

admits a factorization (see 3.4)

Dualizing Ch.XI, 5.8 one then gets

*

5.3 The simplicial case. For a simplicial space Y ¢ Je , the

map A/- + é € ¢/ of Ch.XI, 2.6 induces a natural map
*
Y —> Y e
. z
of which the diagonal is exactly the map of 4.3

holim ¥ = diag Y —>» diag Y € Sy o
-> *_ -

5.4 A generalization. In defining the simplicial replacement

functor we only used the fact that the category ., was a category
with sums (in this case wedges). The definition thus also applies to
other such categories. For instance, one can, dualizing Ch.XI, 6.1

and 6.2, use the simplicial replacement functor to describe

5.5 The functors 1lim° for diagrams of abelian groups. For
re oL

A ¢ aI, there are natural isomorphisms
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. S
=z >
ilm A Ts *é e d s > 0

where 1im®: aI + @ denotes the s-th left derived functor of the
—_— >

direct limit functor lim: aI + 4.
>

Combining this with 4.3 and 5.3 one gets

5.6 The functors 1lim® for simplicial diagrams. For a simpli-
-

cial abelian group A there are natural isomorphisms

1im® 2 =~ 1A S
s a8

v
o

which are induced by the map of 5.3

lla—na
*

We now use these results to obtain, along the pattern of the

spectral sequence of Ch.XI, 7.1,

5.7 A homology spectral sequence for homotopy direct limits.

First we consider the simplicial case. For a simplicial space
*

Y e Je , one can form the sequence of cofibrations

[o] {k1]

*%é “-Y—._%---__%é p(x,%.-- gbi*

and, applying to this a reduced generalized homology theory h,

which "comes from a spectrum”, one gets a spectral sequence

{Er(Y; h,)}, which, when h, is a connected theory, strongly converges

to

hydiag ¥ = h,(d % Y).
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Moreover an argument dual to the one of Ch.X, 6.1 and 7.1, implies

together with 5.6 that

2 ot - .
Es,t(zf h,) = ilm

s -
htX s > 0.

Now let I be an arbitrary small category. Then we define,

for Y e JE, its homology spectral seguence {Er(z; ﬁ*)} by

Ef(y; h,) = ET( ¥; h,) r> 1.
*

When h, is a connected theory, then, in view of 5.2, this spectral

sequence strongly converges to

ﬂ* holim Y
> L
while 5.5 (always) implies that

s =~
htx s

v
o
.

2 - - .
Es,t(z' h,) = ilm

Moreover it is not hard to prove, that, for simplicial spaces, this

spectral sequence coincides, from E2 on, with the one considered

at the beginning of 5.7.

We end with observing that a similar process yields

5.8 A cohomology spectral sequence. If one replaces the re-

duced generalized homology theory ﬁ* by a reduced generalized co-

~%
homology theory h which "comes from a spectrum”, then the

construction of 5.7 yields a cohomology spectral sequence

~%
{E.(¥; h)}. It is, however, not hard to verify that this cohomology

spectral sequence coincides with the one of 4.5.
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