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Part I. Completions and localizations 

§0. Introduction to Part I 

Our main purpose in Part I of these notes, i.e. Chapters I 

through VII, is to develop for a ring R a functorial notion of R- 

completion of a s~ace X which 

(i) for R = Z (the integers modulo a prime p) and X 
P 

subject to the usual finiteness conditions, coincides, up to homoto~y, 

with the p-profinite completions of [Quillen (PG)] and [Sullivan, 

Ch.3], and 

(ii) for R ~ Q (i.e. R a subring of the rationals), 

coincides, up to homotopy, with the localizations of [Quillen (RH)], 

[Sullivan, Ch.2], [Mimura-Nishida-Toda] and others. 

Our R-completion is defined for arbitrary spaces, and throughout these 

notes we have tried to avoid unnecessary finiteness and simple 

connectivity assumptions. To develop our R-completion we need some 

homotopy theoretic results on towers of fibrations, cosimplicial 

spaces, and homotopy limits, which seem to be of interest in 

themselves and which we have therefore collected in Part II of these 

notes, i.e. Chapters VIII through XII. 

There are, we believe, two main uses for completions and 

localizations, i.e. for R-completions: first of all, they permit a 

"fracturing of ordinary homotopy theory into mod-p components"; and 

secondly, they can be used to construct important new (and old) 

spaces. 

Of course, the general idea of "fracturing" in homotopy theory 

is very old; and indeed, the habit of working mod-p or using Serre's 
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C-theory is deeply ingrained in most algebraic topologists. However 

"fracturing" in its present form (due largely to Sullivan) goes 

considerably further and, among other things, helps explain the 

efficacy of the familiar mod-p methods. Roughly speaking (following 

Sullivan), one can use completions or localizations to "fracture" a 

homotopy type into "mod-p components" together with coherence 

information over the rationals; and the original homotopy type can 

then be recovered by using the coherence information to reassemble 

the "mod-p components". In practice the rational information often 

"takes care of itself", and ordinary homotopy theoretic problems 

(e.g. whether two maps are homotopic or whether a space admits an 

H-space structure) often reduce to "mod-p problems". Of course, the 

"world of mod-p homotopy" is interesting in its own right (e.g. see 

[Adams (S) ]) . 

As remarked above, another use for R-completions is to construct 

important spaces. It is, in fact, now standard procedure to use 

localization methods, e.g. Zabrodsky mixing, to construct new finite 

H-spaces. As other examples, we note that the space (~S~) (0) is 

homotopy equivalent to the Z-completion of K(S ,i), where S is 

the "infinite symmetric group"(see Ch.VII, 3.4), and that, for the 

Zp-completion of certain spheres, one can obtain classifying spaces 

by Zp-completing suitable non-simply connected spaces (see [Sullivan] 

and Ch.VII, 3.6). Examples of this sort also seem to be useful in 

(higher dimensional) algebraic K-theory. 

Some more comments are required on the relation between our R- 

completion and the completions and localizations of others: 

In the case R c Q, as previously noted, our R-completion agrees, 

up to homotopy, with the localizations proposed by other authors; 

essentially, we have generalized the localization to non-simply 

connected spaces. 
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The situation for R = Z is more complicated. Two homotopical- 
P 

ly equivalent versions of the p-profinite completion have been 

proposed by [Quillen (PG)] and [Sullivan, Ch.3] for arbitrary spaces; 

and it can be shown that our Z -completion and their p-profinite 
P 

completion do not coincide, up to homotopy, for arbitrary spaces, 

although they do for spaces with Z -homology of finite type. One 
p 

difficulty with the p-profinite completion is that for many simply 

connected spaces (e.g. for K(M,n) where M is an infinite 

dimensional Z -module) the iterated p-profinite completion is not 
p -.- 

homotopy equivalent to the single one. This difficulty is avoided by 

the Z -completion. Nevertheless, the p-profinite completion remains 
P 

very interesting, even when it differs from the Z -completion. 
P 

Some further general advantages of the R-completion are worth 

mentioning: 

(i) Up to homotopy, the R-completion preserves fibrations under 

very general conditions (namely, when the fundamental group of the 

base acts "nilpotently" on the R-homology of the fibre). 

(ii) Very many spaces X are R-~ood, i.e. the canonical map 

from X to its R-completion preserves R-homology and is, up to 

homotopy, "terminal" among the maps with this property; for instance, 

if R c Q or R = Z , then all simply connected spaces are R-good, 
P 

and so are many others (see Chapters V, VI and VII). 

(iii) The mod-R homotopy spectral sequence of [Bousfield-Kan 

(HS)] can be used to relate the R-homology of a space with the 

homotopy groups of its R-completion. 

(iv) The R-completion of a K(z,l) has interesting group 

theoretic significance. For example, the Malcev completion of a 

nilpotent group ~ can be obtained as the fundamental group of the 

Q-completion of K(z,l), a fact that suggests how to obtain "Malcev 

completions with respect to subrings of the rationals" (see Chapter V). 
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Similarly, the homotopy groups of the Z -completions of such a 
P 

K(~,I) have group theoretic significance (see Chapter VI). 

Part I of these notes consists of seven chapters, the first four 

of which deal with the general theory, while the other three are 

concerned with various applications for R c Q and R = Zp. In more 

detail: 

Chapter I. The R-completi9 n of a space. Here we define the R- 

completion, R X, of a space X, and prove some of its basic 

properties, such as, for instance, the key property: 

(i) A map X ÷ Y induces an isomorphism on reduced R-homology 

H.(X; R) z H,(Y; R) 

if and only if it induces a homotopy equivalence between the R-comple- 

tions 

R X = R Y. 

Other (not very surprising) properties are: 

(ii) The n-type of R X depends only on the n-type of X. 

(iii) Up to homotopy, the R-completion commutes with arbitrary 

disjoint unions and with finite products, and preserves multi~licative 

structures. 

(iv) There is a generalization to a (functorial) fibre-wise R- 

completion. 

We define R X by first constructing a cosimplicial dia@ram of 

spaces RX, next associating with this a tower of fibrations {RsX}, 

and finally defining the R-completion of X as the inverse limit 
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R X of the tower {RsX}. Justifications for this definition will be 

given in Chapters III and XI, where we show that R X can, in two 

different ways, be considered as an "Artin-Mazur-like R-completion of 

X a! , 

A useful tool in handling the R-completion is the homotopy 

spectral sequence of the tower of fibrations {RsX}. This turns out 

to be the same as the homotopy spectral sequence {Er(X; R)} of X 

with coefficients in R of Bousfield-Kan, which, for R = Zp, is the 

unstable Adams spectral sequence , while, for R = Q, this spectral 

sequence consists of the primitive elements in the rational cobar 

spectral sequence. 

At the end of Chapter I we discuss the role of the rin@ R and 

show that, for all practical purposes, one can restrict oneself to 

the rings R = Z (p prime) and R ~ Q. 
P 

Chapter II. Fibre lemmas. For a general fibration of connected 

spaces F + E ~ B, the map R E ÷ R B is always a fibration, but its 

fibre need not have the same homotopy type as R F. However, there 

is a mod-R fibre lemma, which states that, up to homotopy, the R-com- 

pletion preserves fibrations of connected spaces F ÷ E ÷ B, for 

which "~i B acts nilpotently on each Hi(F; R)" This condition is, 

for instance, satisfied if the fibration is principal, or if B is 

simply connected. 

This fibre lemma is a very useful result. It will, for instance, 

be used in the Chapters V and VI, to compute z,RX in terms of ~,X, 

for nilpotent X (i.e. connected X for which, up to homotopy, the 

Postnikov tower can be refined to a tower of principal fibrations). 

Chapter III. Tower lemmas. A convenient feature of our defini- 

tion of R-completion is its functoriallity. Still, it is often useful 
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to have a more flexible (i.e. up to homotopy) approach available and 

we therefore prove in this chapter various tower lemmas, which give 

rather simple sufficient conditions on a tower of fibrations {Ys }, 

in order that it can be used to obtain the homotopy type of the R- 

completion of a given space X. The strongest of these is the R-nil- 

potent tower lemma which states roughly: 

maps 

If {Ys } is a tower of fibrations, together with compatible 

X + Ys' such that 

(i) for ever[.R-module M 

W * 

lim H (Ys; M) = II (X; M) 

(ii) each Ys is R-nilpotent (i.e. its Postnikov tower can, up 

to homotopy, be refined to a tower of principal fibrations with 

simplicial R-modules as fibres), 

then, in a certain ~recise sense, the tower {Ys } has the same 

homotop~ t~e as the tower {RsX} and hence the inverse limit spaces 

R X = lim R X and lim Y 
÷ s ÷ s 

have the same homotopy type. 

We also observe that R X is an Artin-Mazur-like R-completion 

of X, as the results of this chapter imply that, up to homotopy, the 

tower {RsX} is cofinal in the system of R-nilpotent target spaces 

of X. 

Chapter IV. An R-completion of ~rou~s and its relation to the 

R-completion of spaces. Here we use the greater flexibility of 

Chapter III, to obtain a more ~roup-theoretic approach to the R-com- 
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pletion. For this we first define an Artin-Mazur-like R-completion 

of groups, which, for finitely generated groups and R = Zp, reduces 

to the p-profinite completion of Serre, and which, for nilpotent 

groups and R = Q, coincides with the Malcev completion. Like any 

functor on groups, this R-completion functor from groups to groups 

can be "prolonged" to a functor from spaces to spaces, and we show 

that the latter is homotopically equivalent to the functor R . 

As an application we give a very short proof of Curtis' funda- 

mental conver~enc e theorem for the lower central series spectral 

sequence, at the same time extending it to nilpotent spaces. 

Chapter V. Localizations of nilpotent spaces. The main purpose 

of this chapter is, to show that, for R c Q, the R-completion of a 

nil~otent space (i.e. a space for which, up to homotopy, the Postnikov 

tower can be refined to a tower of principal fibrations) is a 

localization with respect to a set of primes, and that therefore 

various well-known results about localizations of simply connected 

spaces remain valid for nilpotent spaces. 

As an illustration we discuss some fracture lemmas (i.e. lemmas 

which state that, under suitable conditions, a homotopy classification 

problem can be split into a "rational problem" and "problems 

involving various primes or sets of primes") and their application to 

H-spaces. 

We also prove that the homotopy spectral sequence {Er(X; R) } 

converges strongly to ~,R X for R c Q and X nilpotent. 

Chapter VI. p-completions of nilpotent spaces. This chapter 

parallels Chapter V: We discuss the p-completion, i.e. the "up to 

homotopy" version of the Zp-completion, for nilpotent spaces. This 

p-completion is merely a generalization of the familiar p-profinite 
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completion for simply connected spaces of finite type, and we prove 

that various well-known results for such p-profinite completions 

remain valid for p-completions of nilpotent spaces. 

As an illustration we discuss an arithmetic square fracture 

lemma, which states that, under suitable conditions, a homotopy 

classification problem can be split into "Zp-problems" and a 

"rational problem". 

We also obtain c gnver~ence results for the homotopy spectral 

sequence {Er(X; Zp) } of a nilpotent space X, and observe that the 

same arguments apply to the lower p-central series spectral sequences. 

Chapter VII.. A ~lim~se at the R-completion of non-nilpotent 

spaces. It is clear from the results of Chapters V and VI that, for 

nilpotent spaces, the R-completion is quite well understood; however, 

very little is known about the R-completion of non-nilpotent spaces. 

In this last chapter of Part I we therefore discuss some examples of 

non-nilpotent spaces which indicate how much more work remains to be 

done. 

We also make, at the end of this chapter, some comments on 

possible R-homotop[ theories, for R c Q and R = Z p" 

Warning!!! These notes are written simplicially, i.e. whenever 

we say 

space we mean simplicial set. 

However, in order to help make these notes accessible to a reader who 

knows homotopy theory, but who is not too familiar with simplicial 

techniques, we will in Chapter VIII, i.e. at the beginning of Part II: 

(i) review some of the basic notions of simplicial homotopy 

theory, and 



Part I, §0 9 

(ii) try to convince the reader that this simplicial homoto~[ 

theory is equivalent to the usual topological homotopy theory. 

Moreover, we have, throughout these notes, tried to provide the 

reader with references, whenever we use simplicial results or 

techniques, which are not an immediate consequence of their well- 

known topological analogues. 

Some of the results of Part I of these notes were announced in 

[Bousfield-Kan (HR) and (LC)]. 

In writing Part I we have been especially influenced by the work 

of Artin-Mazur, Emmanuel Dror, Dan Quillen and Dennis Sullivan. 
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Chapter I. The R-completion of a space 

§i. Introduction 

In this chapter we define, for every space X and (commutative) 

ring R, a functorial R-completion of X and prove some of its 

basic properties. We also show that there is a corresponding notion 

of fibre-wise R-completion. In more detail: 

§2, §3 and §4 Here we define the R-completion of X by first 

constructing a cosimplicial diagram of spaces RX, next associating 

with this a tower of fibrations {RsX}, and finally defining the R- 

completion of X as the inverse limit R X of the tower {RsX}. 

It turns out that this R-completion comes with a natural map 

¢: X ) R X. 

Justifications for this definition will be given in Chapters III and 

XI, where we show that, up to homotopy, "R X is an Artin-Mazur-like 

R-completion of X" in two different ways. 

An immediate consequence of this definition is the existence of 

the associated spectral sequence, i.e. the homotopy spectral sequence 

of the tower of fibrations {RsX}, which is an important tool in 

handling the R-completion. This spectral sequence is nothing but 

the homotopy spectral sequence {Er(X;R)} of X with coefficients 

in R of [Bousfield-Kan (HS)], which for R = Z (the integers 
P 

modulo a prime p) is the unstable Adams spectral sequence, while 

for R = Q (the rationals) this spectral sequence consists of the 

primitive elements in the rational cobar spectral sequence. 
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§5 Our main results here are: 

(i) a map f: X ÷ Y induces an isomorphism 

H.(X;R) : H.(Y;R) 

if and only if it induces a homotopy equivalence 

R X a R Y . 

(ii) a space X is either "R-@ood" or (very) "R-bad", i.e. 

either the map ~: X ÷ R X induces an isomorphism H,(X;R) 

H,(R X;R) and the maps ~: R~X + Rk+Ix~ are homotopy equivalences 

i, or the induced map H,(X;R) ÷ H,(R X;R) is not an for all k 

isomorphism and none of the maps #: R~X ÷ Rk+Ix~ (k _> i) is a 

homotopy equivalence. 

In Chapters V, VI and VII we give various examples of R-good 

spaces and we show there that "most" (but not all) spaces are R-good 

for R ~ Q and R = Z . An example of a space which is Z -bad is an 
P P 

infinite wedge of circles (Ch. IV, 5.4). 

§6 and §7 contain the useful, but not very surprising results 

that 

(i) the homotopy type of R X in dimensions < k depends only 

on the homotopy type of X in dimensions ! k (this will be some- 

what strengthened in Ch. IV, 5.1), and 

(ii) up to homotopy, the R-completion functor commutes with 

(disjoint) unions and finite products and preserves multiplicative 

structures. 

§8 contains the observation that the notion of R-completion can 
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be generalized to a notion of fibre-wise R-completion, i.e. one can, 

for a fibration X ÷ B, construct in a functorial manner a fibration 

R~X ÷ B of which the fibres are the R-completions of the fibres of 

the map X + B. 

§9 We end this chapter with an investigation of the role of the 

rin~ R and show that, for "most" rings R, the homotopy type of 

R X is completely determined by the homotopy types of the completions 

of X with respect to the rin~s Zp (p prime) and the subrings of 

the rationals Q. 

Notation and terminology. We remind the reader that these notes 

are written simplicially, i.e. 

space = simplicial set. 

In particular in this chapter we will mainly work in the cate@or[ J 

of spaces (i.e. simplicial sets). For more details on this category 

(and its relationship to the category ~ of topological spaces) see 

Chapters VIII, IX and X. 
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§2. The triple {R,¢,~} on the category of spaces 

In preparation for the definition (in §4) of the completion of a 

space with respect to a ring R we consider here a functor 

R: J >J 

on the category of spaces and two natural transformations 

~: Id > R and 9:R2 > R 

which have the properties: 

(i) {R,~,~} is a triple, i.e. [Eilenber@-Moore] 

(R@)~ = (¢R)@ ~(R~) = ~(~R) @(R~) = id = ~(¢R) 

(ii) For every choice of base point * ¢ X, there is a 

canonical isomorphism 

~,RX -- H,(X;R) 

such that the composition 

~.# 
~.x ) ~.RX = ~.(X;R) 

is the Hurewicz homomorphism [May, p. 50], and 

(iii) A map f: X ~ Y e ~ induces an isomorphism 

H. (X;R) = H. (Y;R) 

if and only if it induces a homotopy equivalence 

RX = RY e J 
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2.1 Definition of the triple. For a space (i.e. simplicial 

set) X and a commutative ring R (with unit), let R ® X denote 

the simplicial R-module freely generated by the simplices of X 

(i.e. (R ®X) n is the free R-module on X n) and let 

~: X ) R ® X and 4: R ® (R ~ X) ) R ® X 

respectively be the map given by ~x = lx 

R-module homomorphism given by 4(IY) = y 

we define RX as the subspace 

for all x e X and the 

for all y e R ® X. Then 

RX c R®X 

consisting of the simplices 

E rix i with E r i = i. 

If Rnx = R.-.RX for n > i, then one readily sees that the maps 

and 4 induce natural transformations 

~: Id > R and 4:R2 > R 

and that {R,~,4} is a triple on the cate@or[ J . 

When one uses this triple it is often convenient to work in 

2.2 A pointed situation. The simplicial set RX defined above 

does not inherit an R-module structure from the simplicial R-module 

R ~ X, but only a kind of affine R-structure, which turns into an 

R-module structure the moment one chooses a base point. More 

precisely, if one chooses a base point * e X and denotes also by 

, c X the subspace generated by it, then the composition 
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RX incl.> R ® X proj.> R ® X / R ® * 

obviously is an isomorphism of simplicial sets. Thus, given a base 

point * ~ X, one can consider RX as a simplicial R-module. More- 

over, if one does this, then the ma~ ~: R2X ÷ RX becomes an R- 

module homomorphism. 

This can be used to relate the functor R:J + J to 

2.3 The reduced homology functor H,(;R). The reduced 

homology of a pointed space X with coefficients in R can be 

defined by [May, p. 94] 

H,(X;R) = ~,(R®X / R®*). 

Thus, for every X e J and choice of base point * e X, the 

isomorphism RX = R® X / R ~* of 2.2 induces an isomorphism 

n,RX z H, (X;R) 

Note that the reduced homology does not really depend on the base 

point; in fact we could equivalently have defined 

H,(X;R) = 7, ker(R~X > R~*) 

= ker (n, (R® X) > n,(R®*)) . 

The remaining properties of {R,~,~}, stated at the beginning 

of this §, are now readily verified. 

We end with a 

2.4 Remark on the affine R-structure of RX. If 

yl,.--,y k e RXn, rl,...,r k e R and Z r i = l, then the linear 
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combination Z riY i is a well defined element of 

depend on a choice of base point. 

RX and does not 
n - 
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§3. The total space of a cosimplicial space 

In §4 we will define the R-completion of a space X as "the 

total space of a cosimplicial space RX". We therefore recall here 

first the notions of cosimplicial space and total space of a co- 

simplicial space. For a more detailed discussion of these notions 

we refer the reader to Chapter X, §2 and §3. 

3.1 Cosimplicial spaces. A cosimplicial space X is a co- 

simplicial object over the category J of spaces, i.e. X consists 

of 

(i) for every integer n ~ 0 a space xn £ j , and 

(ii) for every pair of integers (i,n) with 0 ! i ! n co- 

face and codegeneracy maps 

di: X n-I > X n and si: X n+l > X n g J 

satisfying the cosimplicial identities of Chapter X, §2 (which are 

dual to the simplicial identities). 

Similarly a cosimplicial map f: X ÷ Y consists of maps 

f: X n > yn ~ j 

which commute with the coface and codegeneracy maps. 

An important example is 

3.2 The cosimplicial standard simplex. This is the cosimpli- 

cial space ~ which in codimension n consists of the standard n- 

simplex A[n] c J and for which the coface and codegeneracy maps 

are the standard maps between them (Ch. X, 2.2 and Ch. VIII, 2.9 and 
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2.11). 

Using this one can now define 

3.3 The total space of a cosimplicial space. 

cial space X its total space Tot X or Tot 

space 

For a cosimpli- 

is the function 

Tot X = hom(A,X) e .; 

i.e. the space which has as q-simplices the cosimplicial maps 

A[q] × A -> X 
~ 

Often it is useful to consider 

3.4 The total space as an inverse limit. Let 

A [s] c A -i < s 

denote the simplicial s-skeleton of A, i.e. A [s] 

dimension n of the s-skeleton (Ch. VIII, 2.13) of 

can form the function spaces 

consists in co- 

A[n]. Then one 

Tot s X~ = hom(A [s]~ , X)~ e 

and the maps 

T°ts ~ > TOts_ 1 

induced by the inclusions A [s-l] c 

(i) TOt_l X~ = , 

(ii) Tot 0 X z X 0 

(iii) Tot X = lim Tot s X 
~ + ~ 

~[s] 

J 

and observe that 
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We end with a comment on 

3.5 The augmented case. If X is augmented, i.e. comes with 

an augmentation map dO: X -I ÷ X 0 such that 

d0d 0 = dld0: X -I > X 1 c J 

then this augmentation map clearly induces maps 

x -I > Tot X 
S~ 

-i < s < ~ 

which are compatible with the maps Tot s X ~ Tots_ 1 X. 
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§4. The R-completion of a space 

In this section we 

(i) use the triple {R,¢,~} of §2 to construct, for every 

space X, a cosimplicial space RX, its cosimplicial resolution, and 

then define the R-completion of X as the total space (§3) of this 

cosimplicial space RX, and 

(ii) observe that this R-completion of X is the inverse limit 

of a tower of fibrations and that thus there is an associated 

homotopy spectral sequence. 

We also mention the fact (to be proven in §9) that it is no 

restriction to assume that the ring R is solid, i.e. that the 

multiplication map R @Z R ÷ R is an isomorphism. The most impor- 

tant examples of such rings are the rings R = Zp (the integers 

modulo a prime p) and R ~ Q (the subrin~s of the rationals). 

We start with describing 

4.1 The cosimplicial resolution. Let R be a commutative 

ring (with unit) and let X ¢ J The cosimplicial resolution of X 

with respect to R then is the augmented (3.5) cosimplicial space 

RX given by 

(RX) k = R k+l X 

in codimension k 

((RX) k-i 

((RX) k+l 

and 

d i k) Ri~Rk-i> Rk+l 
> (RX) = (Rkx X) 

i k) (Rk+2x Ri~Rk-i> R k+l X) s > (RX) = 



Ch. I, §4 21 

as coface and codegeneracy maps. 

Now we are ready for the definition of 

4.2 The R-completion of a space. For X e J , its R-comple- 

tion will be the total space (3.3) 

R X = Tot RX ~ J 

and, as 

(3.5) 

RX is augmented, this R-completion comes with a natural map 

¢: X > R X e J . 

Justification for this definition will be given in Chapters III 

and X~where we show that, up to homotopy, "R X is an Artin-Mazur- 

like R-completion of X" in two different senses. 

It can be shown (see Ch. X, 4.9, 4.10 and 5.1) that any sur- 

~ection X ÷ Y g J induces a fibration R X ÷ R Y and thus R X 

is always fibrant. We will also often use the fact that 

4.3 R X is the inverse limit of a tower of fibrations {RsX}. 

If for each s >_-1, we put (3.4) 

R X = Tot RX ~ J 
s s ~ 

then 2.2 and (Ch. X, 4.9 and 4.10) imply that {RsX} is a tower of 

fibrations such that 

R X = lim R X . 
÷ s 

Hence (Ch. IX, 3.1) there is, for every 

point * g X, a short exact sequence 

i > 0 and choice of base 
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* > ÷liml ~i+l RsX > ni R X > ÷lim ~l RsX > * 

Another consequence is the existence of 

4.4 The associated spectral sequence. For X c J , a choice of 

base point * e X makes RX and hence the tower of fibrations 

{RsX} pointed. Thus (Ch. IX, 4.2) one can form the extended 

homotopy spectral sequence of this tower. It turns out (see Ch. X, 

6.4) that in dimensions ~ 1 this spectral sequence coincides with 

the homotopy spectral sequence {Es't(X;R)} of X with coefficients 
r 

in R of [Bousfield-Kan (HS)], which 

(i) for R = Z (the integers modulo a prime p) is "the" 
P 

[Bousfield-Kan (HS), §i] unstable Adams spectral sequence, and 

(ii) for R = Q (the rationals) consists of the primitive 

elements in the rational cobar spectral sequence [Bousfield-Kan (PP), 

§15]. 

The convergence of this spectral sequence will be investigated 

in Ch.V, §3 and Ch.VI, §9. 

We end with remarking that 

4.5 The rin~ R can (and will) always be assumed to be 

"solid", i.e. the multiplication map R ®Z R ÷ R is an isomorphism. 

To be precise, let R be a commutative ring and let cR C R be its 

core, i.e. the maximal solid subring of R, or equivalently 

[Bousfield-Kan (CR)] the subring given by 
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Then we will prove in §9 the 

9.1 Core lemma. Let R be a commutative rin~ and let 

cR c R be its core. Then the inclusion cR C R induces, for every 

e ~ , a homotopy e~uivalenc e 

(CR) X _~ R X £ 
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§5. R-complete, R-~ood and R-bad spaces 

Depending on how much R X resembles X one can consider three 

classes of spaces. 

5.1 R-complete spaces, R-~ood spaces and R-bad spaces. A space 

X E J is called 

(i) R-complete if the map ~: X + R X 

equivalence, 

(ii) R-@ood if #,: H,(X;R) ~ H,(R X;R) 

(iii) R-bad if it is not R-good. 

is a weak (homotopy) 

is an isomorphism, and 

Our main purpose here is to prove 

5.2 Proposition. For a space X ~ 

are equivalent: 

(i) X is R-~ood, 

(ii) R X is R-complete, 

(iii) R X is R-~ood. 

the followin~ conditions 

This implies that, roughly speaking, "a ~ood space is very ~ood 

and a bad space is very bad", i.e. 

5.3 Corollary. For X e g , the sequence 

either "consists of only homotopy equivalences", or "contains no 

homotopy equivalence". 
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In Chapters V, VI and VII we give various examples of R-good 

spaces and we show there that "most" (but not all) spaces are R-good 

for R c Q and R = Zp. On the other hand, an infinite wedge of 

circles is Z -bad (Ch. IV, 5.4), while some finite wedge of circles 
P 

and the projective plane p2 are Z-bad (Ch. VII, §5). 

Proof of proposition 5.2. This proposition is an easy conse- 

quence of the following lemmas, which are of some interest in their 

own right. 

5.4 Lemma. For every X e ~ , the map 

~,- H.(x;m > ~,(R x;R) 

has a natural left inverse, i.e. ~, is a monomorphism onto a 

natural direct summand. 

Proof. This lemma follows from 2.3 and the fact that the map 

RX R@ > RRX 

has as a left inverse the composition 

RR X R(proj.)> RRX ~ > RX 

5.5 Lemma. A map f: X ÷ Y e J induces an isomorphism 

f.: H.(x;m -~ H.(Y;R) 

if and only if it induces a homotopy equivalence 
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R f: R X ~ R Y e 

Proof. The "only if" part follows from §2 and Ch. X, 5.2 and 

the "if" part follows from 5.4. 

An obvious consequence of 5.5 is that R induces a functor 

from the (~ointed) homotopy category of spaces to itself. 

The proof of proposition 5.2 can be completed using 

5.6 Tri~le lemma. There exist natural transformations 

Id ~> R and R 2 ~ > R 0 < s < 
s s s -- -- 

such that 

(i) for s = 0 (i.e. R = R) # and ~ are as in §2, 
s 

(ii) for s = = (i.e. R s = R ) # is as in 4.2, 

(iii) {Rs,~, ~) is a triple for all 0 ! s ! =, and 

(iv) these triples are compatible in the sense that the obvious 

diagrams 

Id ~ > R R 2 $ > R 
s s s 

L i I; 
R 2 ~ > R , Id ~ > RS' s' s 

commute for all 0 < s' < s < 

To prove this we need 

5.7 A characterization of triples. Let ~ be a category, 
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let T: ~ ÷ ~ be a functor and let 

#: Id ---~ T and ~: T 2 > T 

be natural transformations such that {T,~,~} is a triple. Then the 

pairing c which assigns to every pair of maps 

f: X > TY, g: W > TX ~ 

the composition 

c(f,g): W g> TX Tf> T2y ~Y> TY c~ 

clearly has the properties 

(i) c is natural (in an obvious sense) 

(ii) c is associative 

(iii) for every map f: X ÷ TY ~ 

c(f,~X) = f = c(~Y,f) 

Conversely, given T,~ and a pairing c with these three 

properties, one can, for every object Y e ~ , define a map 

~Y = c(id,id) : T2y > TY 

and a straightforward calculation then yields that the function 

so defined is, in fact, a natural transformation T 2 + T, and that 

{T,~,~} is a triple. 

Proof of triple lemma 5.6. For Y c ~ , let 

(Ry) k-I = Rky tk-i> Rky = (Ry) k-I 
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be the twist map which "interchanges the (k-i)-th and (k-i-l)-th 

copies of R (counted from Y)", i.e. (see 2.4) 

= dis i di+is i tk_ i + - id 

and let 

(Ry) 2n_l = R2ny w > Rny = (Ry)n_ 1 

be the map which "combines the i-th and (n+i)-th copies of R 2n ", 

i.e. w is the composition 
n 

R2ny tn+l> ... t2n-l) R2ny 0 R2n_Iy s > RWn-l> Rny 

0 
where w I = s . For W, X, Y e J 

cosimplicial spaces 

one can then form the map of 

c: hom(X,RY) x hom(W,RX) > horn (W, RY) 

which assigns to a pair of q-simplices 

u: A[q] × X > Rny 

v: ~[q] x W > Rnx 

£ hom (X,RY) q -I 

e horn (W,RX) q -I 

the composition 

c(u,v): A[q] × W > A[q] x A[q] x W 

> Rn(A[q] × X) > R2ny 

> ~[q] × Rnx 

w 
n> Rny ~J 

where the unnamed maps are the obvious ones. Of course one has to 

verify that c is indeed a cosimplicial map, but that is straight- 

forward (although not short). Moreover it is not hard to see that 
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this map c induces a pairing of function spaces 

c: hom(X,RsY) x hom(W,RsX ) > hom(W,RsY ) ~J 

which in dimension 0 has the three properties of 5.7. Hence the 

function ~ given by 

~Y = c(id,id) : R2y > R Y 
s s 

is a natural transformation such that {Rs,#, ~} is a triple. The 

rest of the lemma now is easy. 
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§6. Low dimensional behavior 

In spite of the fact that, in general, the k-skeleton (R X) [k] 

is not contained in any of the spaces R (x[n]), we will show that 

"the homotopy type of R X in dimensions < k" depends only on 

(part of) "the homotopy t~pe of X in dimensions ! k". More 

precisely 

6.1 C qnneqtivity lemma. Let R be a solid rin9 (4.5), l£t 

k > 0 and let X e J be such that H. (X;R) = 0 for i ~ k. Then 
-- l 

(i) the fibres of the maps RsX ÷ Rs_IX are k-connected for 

all s < ~, and hence (C h. IX, 3.1) 

(ii) the space R X is k-connected. 

6.2 Relative connectivity lemma. Let R be a solid rin9 (4.5)~ 

let k > 0 and let f: X + Y e J be such that the induced map 

Hi(X;R) ÷ Hi(Y;R) is an isomorphism for i < k and is onto for 

i = k+l. Then, for every choice of base point, 

(i) the induced maps ~.R X + w.R Y (s < ~) are isomorphisms 
1 S l S 

for i < k and onto for i = k+l, and hence (Ch. IX, 3.1) 

(ii) The induced map wiR X ÷ ~iR Y is an isomorphism for 

i < k and is onto for i = k. 

A somewhat stronger version of 6.2 (ii) will be obtained in 

Ch. IV, 5.1. 

6.3 Corollar[. Let X e J be fibrant (i.e. X + * is a 

fibration) and let 

X > .... > X (k) > X (k-l) > ... 
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denote its Postnikov tower [May, p. 33]. Then the induced map 

R X > lim R X (k) 

is a homotopy equivalence. 

6.4 Remark on the solidity of R. The first part of lemmas 6.1 

and 6.2 is only true for solid rings, but parts (ii) hold, of course 

(4.5), without this restriction. 

Proof of 6.1. Choose a base point * e X. In view of Ch. X, 

6.2, it then suffices to show that each NRX s is (k+s)-connected, 

where (see 2.2) 

NRX s = RX s N ker s 0 N -'- N ker s s-I c RX s. 

To do this consider the functors 

TS: (R-modules) > (R-modules) 

given by (see 2.2) 

(i) TOM = M 

(ii) TIM = ker ~: RM + M, where ~ denotes the homomorphism 

given by im + m for all m e M, and 

s-i s-i denotes the (iii) TSM = TS-ITIM @ T 2 (M,TIM), where T 2 

2-fold cross effect of T s-l, i.e. 

s-i ' " ' M") TS-IM ' T 2 (M ,M ) = ker (T s-l(M @ > • TS-IM '') • 

Since there are natural isomorphisms 

TsRX z ker (TS-IR2x TS-l~> TS-IRx) s ~ 1 
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it is easy to see that there are natural isomorphisms 

TsRX ~ NRX s 

The desired result now follows readily, by induction on s, from the 

fact that TIRx is (k+l)-connected (because R is solid) and the 

following 

6.5 Lemma [Curtis (L), §5]. Let k ~ 0 and let 

T: (R-modules) > (R-modules) 

be a functor which commutes with direct limits and is such that 

TO = 0 and that, for every connected simplicial free R-module B, 

the space TB is k-connected. Then, for every m-connected simpli- 

cial free R-module C (m ~ 0), the space TC is_(m+k)-connected. 

Proof of 6.2. To prove 6.2 we will use the disjoint union 

lemma 7.1. This is permissible, as the proof of 7.1 involves 6.1, 

but not 6.2. We clearly may assume that f is onto, and, in view 

of 7.1, that X and Y are connected. 

Using the notation of the proof of 6.1 it thus suffices to show 

first that the induced map ni TsRx + ~ TsRyI is an isomorphism for 

i ! k+s and is onto for i = k+s+l. To do this we recall from 

[Kan-Whitehead, §16] and [Curtis (L), §5] the existence of a ma~ic 

exact sequence of simplicial R-modules 

> T s(K,''',K) @ T s 3 j+I(K,...,K,RX) > -'" 

s > TSK ~ T 2(K,Rx) > TSRx > TSRy . 

where K = ker (Rf: RX ÷ RY) and T~ denotes the j-fold cross 
] 
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effect of the functor T s. As K is k-connected (because f is 

onto), lemma 6.5 (together with the fact that R is solid) readily 

implies that in the above magic exact sequence all spaces, except 

possibly TsRX and TsRy, are (k+s)-connected. This proves the 

desired result. 
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§7. Disjoint unions, finite products and 

multiplicative structures 

We now state and prove the not very surprising results that, up 

to homotopy, the R-completion functor commutes with disjoint unions 

and finite products, and preserves multiplicative structures. 

7.1 Disjoint union lemma. Let X ~ g and for each a c w0 x 

let X a c X denote the correspondin@ component. Then the inclusion 

of the disjoint union 

I I R~X a > R X e J 
a 

is a homotop[ equivalence. 

It should be noted that the pointed version of this lemma is 

false, even in the finite case, as some finite wedge of circles is 

not Z-good (Ch.VII, 5.3), while the circle itself is Z-complete. 

7.2 Finite product lemma. For X, Y c g , the projections of 

X x y onto X and Y induce a homotopy equivalence 

R (X x y) = R X x R Y E 

Moreover this map has a natural left inverse 

a: R X × R Y > R (X × Y) ~J 

which is also associative, commutative and compatible with the triple 

structure of R (5.6). 
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7.3 Corollar[. A multiplication 

m: X x X >X sJ 

induces a multiplication 

' a 

m : R X × R X > R (X × X) 
R m 

> R X e J 

Moreover, if m is associative, commutative or has a left (or right) 
! 

unit, then so does m . 

! 

7.4 Remark. If m has a unit and an inverse, then m need 

not have an inverse, as the following triangle commutes, in general, 

only up to homotopy 

~_~ R X × R X 

R X a 

~ R ( X  × X) 

7.5 Corollar[. Let X be an H-space, i.e. X has a base 

point * and a pointed multiplication map m: X × X ÷ X ~ J , 

such that, in the pointed homotop~ class [X,X] (Ch. IX, §3) 

m (id,*) -- id = m (*,id) . 

Then R X is also an H-space. Moreover, if X is, for instance, 

homotopy associative or homotopy commutative, then so is R X. 

The lemmas 7.1 and 7.2 will be proved using the theory of 
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7.6 Ac[clic models [Barr-Beck]. Given a category ~ , a 

functor T: ~+~ , a natural transformation e: Id + T and a cochain 

functor K, i.e. functors 

Kn: ~ > (abelian groups) n h -i 

and natural transformations d: K n ÷ K n+l such that dd = 0, one 

says that 

(i) K is T-acyclic if there is a natural contracting homotopy 

for the composite cochain functor KT, and that 

(ii) K is T-representable if there are natural transformations 

tn: KnT > K n n ~ 0 

such that 

K n Kne> KnT tn> K n 

is the identity. Then [Barr-Beck] prove 

7.7 Lemma. Let K be a cochain functor on ~ which is 

T-ac[clic and let L be a cochain fun ctor which is T-representable. 

Then any natural transformation f-l: K-I ÷ L-I can be extended to 

a natural cochain map f: K + L. Moreover, if f,~: K ÷ L are 

natural cochain maps such that f-i -i = , then there exists a 

natural cochain homotop[ f : ~. 

In our proofs of lemmas 7.1 and 7.2 we will use 

7.8 A slight @eneralization. The acyclic model lemma 7.7 also 

works for cochain functors K, L which are non-abelian in 
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dimension -1, i.e. 

K -I ' L-l: 
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> (groups). 

Proof of 7.1. For each a c ~0 x choose a base point *a e Xa. 

In view of 2.2, each such choice makes RX and R~0 x group-like 

(Ch.X, 4.8) and thus gives rise to a group-like cosimplicial space 

R(X;a) = ker(RX pr°j'> Rz0X) c RX 

One readily verifies that the inclusion of the disjoint union 

I I T°tsR(X;a) > Tot RX = R X a ~ s~ s 

is an isomorphism for all 1 ! s ! ~ , and it thus remains to show 

that, for each a ~ ~0 x, the inclusion 

R X a = Tot RX a > Tot R(X;a) 

is a homotopy equivalence. In view of 6.1, 4.4 and Ch.X, 7.1 and 

7.7, one thus has to prove that (in the notation used there) the 

cochain maps 

(~tRXa,d) > (xtR(X;a),d) t > 1 

are cochain homotopy equivalences. This we will do using 7.7 and 7.8. 

Let J, denote the category of spaces with base point and let 

c ~, be the subcategory consisting of the maps for which n0 is 

i-i (but not necessarily onto). Let T = R and let e = ~. Then 

a simple calculation (or [Bousfield-Kan (HS), 4.4]) yields that both 

cochain functors are T-acyclic. Moreover the fact that the functor 

R admits a triple structure (§2) implies readily that the second 

cochain functor is T-representable, while the T-representability of 
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the first is an easy consequence of the fact that 

is a natural direct summand of ~tRX = Ht(X;R). 

all of ~,). 

Application of 7.7 and 7.8 (several times) now yields the 

desired result. 

~tRXa = Ht(Xa;R) 

(This is not true on 

Proof of 7.2. In view of 7.1 we can assume that X and Y are 

connected and hence (6.1, 4.4 and Ch.X, 7.1 and 7.7) we have to show 

that, for every choice of base points in X and Y, the cochain maps 

(~tR(X x y),d) > (~t(RX x RY),d) t > 1 

are cochain homotopy equivalences. This we again, as in the proof 

of 7.1, do using 7.7 and 7.8. 

Let ~ = J, × ~, , where J, is as in the proof of 7.1, let 

T = R × R and let e = ~ × ~. Then, as in the proof of 7.1, one 

readily verifies that both cochain functors are T-acyclic and that 

the second one is also T-representable, while the T-representability 

of the first one follows from the fact that the map 

R(X × Y) R(~ × ~)> R(RX × RY) 

has a natural left inverse, namely the homomorphism given by the 

formula 

! ! 

(~ rix i, ~ rjyj) > l,j'E rirj(xi,Y j) 

To prove the rest of the lemma observe that this formula 

actually defines a map 

~: RX × RY > R(X x y). 
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This can be used to construct a cosimplicial map 

RX × RY > R(X × Y) ~ c~ 

which in codimension n is the composition 

Rn+Ix x Rn+iy e> R(RnX × Rny) Re> ... Rne> Rn+l(x x y) 

Taking total spaces one then gets the desired map 

a: R X x R Y > R (X × Y) e 
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§8. The fibre-wise R-completion 

The notion of R-completion will now be generalized to a notion 

of fibre-wise R-completion, i.e. we will, for a fibration X ÷ B ~ J, 

construct in a functorial manner a fibration R X + B E J , of which 

the fibres are the R-completions of the fibres of the map X ~ B. 

8.1 Construction of the fibre-wise R-qompletion. We start with 

generalizing the functor R: J ~ J For a map f: X ÷ B ~ 

(which need not be a fibration) let 

~x c Rx 

denote the subspace consisting of the simplices 

rlx I + .-. + rkx k x i e X, r i e R, Z r i = 1 

for which all x i lie over the same simplex of B, i.e. 

fx I . . . . .  fx k • 

There is an obvious map Rf: RX ÷ B e J and hence one can repeat 

this construction and obtain subspaces 

Rnx c RnX n > 0 

which together yield a cosimplicial subspace 

RX c RX . 
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Now we put 

X = Tot RX 
s s ~ 

s < ~. 

The desired fibre-wise R-completion then is 

" R X = lim R X 
÷ s 

There are obvious commutative diagrams 

x >~x >RX 
s s 

L ; ; 
B > B >RB 

s 

s < 

in which the square on the right is, in general, not a pull back. 

It is also not hard to see that 

(i) If B = *, then Rs x = RsX (s & =) 

!ii) The construction is natural, i.e. a commutative diagram 

X >Y 

B > C  

gives rise to commutative diagrams 

RX >RY 
s s 

B > C 

s < 

(iii) If the first diagram in (ii) is a pull back, then so is 

the second for all s < 
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More difficult to prove is 
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8.2 Proposition. If f: X ÷ B e ~ is a fibration, then so 

are the induced maps Rs x ÷ B e J for all s ! ~. 

And combining this with 8.1 (i) and (iii) one gets 

8.3 

fibre F. 

Corollary. 

Then R F 
S 

Let X ÷ B e J be a pointed fibration with 

is the fibre of the map Rs x ÷ B (s ! ~). 

Proof of 8.2. In view of Ch.X, 4.6, it suffices to show that 

(in the notation used there) the maps 

RX Rf> S and ~n+2 x = (~x)n+l s > Mn~x 

are fibrations, and this can be done as follows. 

As f: X + B is a fibration one can, for every pair of 

integers (i,n) with 0 ! i ! n and every n-simplex b e B, choose 

in X functions 

f-i f-i Si,b: (dib) > (b) 

= id. These functions induce in RX similar such that disi, b 

functions 

Si,b: (Rf)-l(dib) > (Rf)-l(b) 

and the proof that Rf: RX ÷ B is a fibration now is essentially 

the same as the proof that a simplicial group is fibrant (see, 

for instance, [May, p. 67]), except that one uses the functions 

Si,b instead of the degeneracies s i. 

The proof that the map s: Rn+2x ÷ MnRX is a fibration is 
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similar and uses the facts that 

(i) the map s: Rn+2x ÷ MnRx is onto, 

(ii) the functions si, b in X induce similar functions in 

Rn+2x and MnRX, and 

(iii) the map s: Rn+2x ÷ MnRX is compatible with the 

functions si, b . 

The last two of these statements are easily verified, while the 

proof of the first one is as in Ch.X, 4.9. 



Ch. I, §9 44 

§9. The role of the rin~ R 

We end this chapter with an investigation of the role of the 

ring R and show that for a large class of rings the homotopy type 

of R X is completely determined by the homotopy types of R X 

for R = Zp (t~9 integers modulo a prime p) and R c Q (subrin~ 

of the rationals). 

We start with observing (see 4.5) that one only has to consider 

solid rings, i.e. rings for which the multiplication map 

R ®Z R ÷ R is an isomorphism. More precisely, if R is a 

commutative ring and cR c R its core, i.e. its maximal solid sub- 

ring or equivalently [Bousfield-Kan (CR)] the subring 

oR = {x ~ R I lex = x®l ~ R®Z R} 

then we have the 

9.1 Core lemma. Let. R be a commutative ring and let 

cR c R be its core. Then the inclusion cR + R induces, for every 

X ~ J , a homotopy equivalence 

(cR) X = R X e J 

In fact this reduction also holds for 

9.2 Certain non-commutative rin@s. The definition of R-com- 

pletion (§2 and §4) clearly also makes sense for non-commutative 

rings. All one has to do is, replace everywhere R-module by left 

R-module. It is, however, questionable whether this gives anything 

new, as an analysis of the proof of 9.1 yields: 
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! 

Let R be a commutative ring and R a not necessarily 

commutative rin~ for which there exists an abelian group homomorphism 
I I 

R + R which sends 1 into i. Then any ring homomor~hism R ÷ R 

induces, for every X E J , a homotopy equivalence 

R X : <X 

For example, this is the case if 

group 

! 

R = R[n], the group ring of a 

over the commutative ring R. 

The next step is 

9.3 Determination of all solid rings. This was done in 

[Bousfield-Kan (CR)], and we recall from there that the only solid 

rings are 

(i) 

(ii) 

the cyclic rings Z n for n ~ 2, 

the subrings of the rationals, i.e. the rings Z[J -I] 

any set J of primes, where Z[J -I] consists of those rationals 

whose denominators involve only primes in J, 

(iii) the product rings Z[J -I] × Zn, where each prime factor 

of n is in J, and 

(iv) all direct limits (over directed s~stems) of the above 

three types of rings. 

for 

Finally we state two propositions which imply that the homotopy 

types of R X for R = Zp (p prime) and R c Q completely deter- 

mine the homotopy type of R X for any solid ring of type (i), (ii) 

or (iii) above. 

! 

9.4 Proposition. Let R = Z (p prime) and let R = Z n 
P p 

~ Z induces, for every X ~ ~ , Then the projection Z n p 
P 
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a homotopy equivalence 

~x : R X J 

9.5 Proposition. Let either 
! 

(i) R = Z m and R = Zn, where m and n are integers such 

that (m,n) = i, or 

[j-l] 
(ii) R = Z and R = Zn, where n is an integer of which 

all the prime factors are in J (see 9.3 (iii)). 

! I 

Then the ~ro~ections of R x R onto R and R induce, for every 

X £ ~ , a homotop[ equivalence 

(R x R )X ~ R X x R X ~ 

Proofs. In view of 7.1 it suffices to prove 9.1, 9.4 and 9.5 

for connected X. 

To prove 9.1 one combines 6.1 with 4.4, Ch.X, 7.4 and the fact 

that [Bousfield-Kan (CR)] the inclusion cR ~ R induces, for every 

choice of base point, an isomorphism 

E2 (X;cR) z E2 (X;R) 

The proof of 9.5 is similar and uses the fact that [Bousfield- 

I ! 

Kan (HS), §8] the projections of R x R onto R and R induce, 

for every choice of base point, an isomorphism 

! ! 

E2(X;R × R ) Z E2(X;R) • E2(X;R ) 

And finally to prove 9.4 one observes that there are natural 

isomorphisms 

I 

Tot Tot(1)RR X z Tot Tot(2)RR'X 
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where Tot (1) and Tot (2) denote the first and second cosimplicial 
! 

total space of the double cosimplicial space RR X. Moreover it 

follows readily from [Bousfield-Kan (HS), 10.6] and Ch.VI, 5.4 that 

the natural maps 

R X = Tot R X > Tot Tot(1)RR X EJ 

! 

(2)RR X eW R X = Tot RX > Tot Tot 

are homotopy equivalences. The rest of the proof now is easy. 
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Chapter II. Fibre lemmas 

§l. Introduction 

For a general fibration of connected spaces F ÷ E ÷ B, the map 

R E ÷ R B is always a fibration (Ch.I, 4.2), but R F need not have 

the same homotopy type as the fibre of R E ÷ R B. For example, if 

R = Q, then 

S 2 > p2 > K(Z2,1 ) 

is, up to homotopy, a fibration, but R=S 2 + R~P 2 ÷ R=K(Z2,1) is not, 

because (Ch.I, 5.5) R P 2 and R K(Z2,1) are contractible, while 

R S 2 i s  n o t .  

However, we will prove in this chapter a mod-R fibre lemma (5.1) 

which, roughly speaking, states that the R-completion preserves, up 

to homotopy, fibrations of connected spaces F ~ E ÷ B, for which 

acts nil~otently on each Hi(F; R)". This is a useful result, "~I s 

for instance, when one wants to compute ~,R X in terms of n,X, 

using Postnikov methods. 

We obtain the mod-R fibre lemma in several steps as follows~ 

§2 and §3 In §2 we state a special case, the principal 

fibration lemma, and obtain several consequences thereof. A rather 

long and technical proof of this principal fibration lemma is the 

content of §3. 

§4 introduces the notion of nilpotent fibration and we prove 

here, with the use of the principal fibration lemma, a more general 

nilpotent fibration lemma. 
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§5 and §6 In §5 we finally state the mod-R fibre lemma and 

discuss various special cases, while §6 contains a proof which uses 

the nilpotent fibration lemma of §4 and the fibre-wise R-completion 

of Ch.I, §8. A different proof will be given in Chapter III, §7. 

Notational warnings. Throughout most of this chapter we will 

work in the categor~ J*C of pointed connected spaces. This is no 

real restriction as the R-completion commutes, up to homotopy, with 

disjoint unions (Oh.I, 7.1). 

Of course (Ch.I, 4.5) we assume throughout that the rin~ R is 

solid. 
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§2. The principal fibration lemma 

We start with a special case of the mod-R fibre lemma, the 

principal fibration lemma, which states that, up to homotopy, the R- 

completion preserves principal fibrations with connected fibres. We 

also list some corollaries and show that the spaces RsX (s < ~) 

are R-complete for all X £ ~*C (the category of pointed connected 

spaces). 

We first recall the definition of [May, p.70]" 

2...1 Principal fibrations. Let E e J, (the category of 

pointe R spaces), let F e J. be a simplicial group and let 

a: F × E )E ~ J, 

be a principal action (see 3.1). Then [May, p.70] the projection 

p: E > B = E/action ~ J, 

is a fibration, which is called a principal fibration, with fibre F, 

as one can identify the fibre p-1, with F under the correspondence 

a(f,*) < > f f e F 

More generally, we will call a map f E J, a principal fibration, 

up to homotopy, if f is equivalent in the pointed homotopy category 

(Ch.VIII, 4.6) to some principal fibration. By [May, Ch. IV and 

Ch.VI] this is the same as requiring that f be equivalent in the 

pointed homotopy category to an induced fibration of a path fibration 

over a connected space. 
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Now we state the 

2.2 Principal fibration lemma. Let p: E ÷ B ¢ J*C be a 

principal fibration with connected fibre F. Then 

R=p: R E + R B e J*C is a fibration which is, up to homotopy, also 

principal and the inclusion 

R F = R (p-l*) ) (R~p)-I* ~ J*C 

is a homotopy equivalence. 

This will be proved in §3. 

2.3 Corollary. Let 

En > En-i ) "'" > E0 g J*C 

be a finite sequence of principal fibrations with connected fibres 

E0 ~ J*C be the composite fibration. Then and let p: E n . . . .  

÷ R E 0 E J*C is also a fibration and the inclusion R p: R E n 

R~(p-I*) ÷ (R~p)-I* ¢ g*C is a homotopy equivalence. 

Combining this with Ch.I, 6.3 one gets 

2.4 Corollary. Let 

) E n ) "'" ) E 0 e J*C 

be a tower of ~rinqipal fibrations with fibres that are connected 

and that "@et higher and higher connected" and let 

p: E = lim E > E 0 ¢ J*C ÷ n 
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be the composite fibration. Then R p: R E~ ÷ R~E 0 ~ J*C is also a 

fibration and the inclusion R (p-l*) + (R p) -I* e J*C is a homotopy 

e~uivalence. 

Another consequence is 

2.5 Proposition. Let X e J'C" Then the spaces RsX (s < ~) 

are Rqcomplete, i.e. the maps #: RsX + R RsX are homotopy equiva- 

lences. 

This is an immediate consequence of 2.2 and the following two 

lemmas: 

2.6 Lemma. Let X ~ J'C" Then the maps RsX ÷ Rs_IX (s < ~) 

are principal fibrations whose fibres are connected simplicial R- 

modules. 

Proof. This follows readily from Ch.I, 6.1 (R is solid) and the 

fact that (Ch.I, 2.2 and Ch.X, 4.10) the choice of base point makes 

RX "R-module-like". By Ch.X, 6.2, the map RsX + Rs_lX actually 

has hom,(sn,NRX s) as fibre. 

2.7 Lemma. Every simplicial R-module B is R-complete. 

Proof. It suffices to show that one has in the homotopy spectral 

sequence (Ch.I, 4.4) 

E20't (B; R) z ~t B 

sit E 2 (B; R) = * for s > 0. 
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This collapsing is not hard to prove, using the obvious homomorphism 

RB ÷ B [Bousfield-Kan (HS), §10]. 

Using 2.6 one can also prove 

2.8 Proposition. Let f: X + Y c g*C induce an isomorphism 

H,(X; R) = H,(Y; R). Then f induces, for ever[ W c g*C' a--n-n 

isomorphism of pointed homotopy classes of maps 

[x, R w] = [x, R W]. 
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§3. Proof of the principal fibration lemma 

To prove the principal fibration lemma 2.2 we use 

3.1 A ma~ic exact sequence. Let 

set and a: F x E ÷ E an action (i.e. 

and a(fl,a(f2,e)) = a(flf2,e) for all 

Then one can form an augmented space X 

F be a group, E a pointed 

a(l,e) = e for all e E E 

fl,f2 e F and e e E). 

(with base point) by putting 

X_I = E/action 

X 0 = E 

X k = F × ... × F × E k > 0 

and defining faces and degeneracies by the formulas 

d0(fl,''',fk,e) 

di(fl,''',fk,e) 

(f2fll,...,fkfll,a(fl,e)) 

^ 

= (fl,...,fi,...,fk,e) 0 < i <k 

si(fl,...,fk,e) = (fl,.--,fi,*,fi+l,--.,fk,e) 0 ! i ! k. 

A covariant functor 

U: (pointed sets) > (pointed sets) 

such that U* = * then can be applied to X dimensionwise and the 

resulting augmented space UX gives rise to a magic sequence 

d 
• .. > UkX --~ Uk_iX ~ ... > U_iX > * 
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where 
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UkX = UX k N ker d I A ... A ker d k 

and short sequences 

'X * > U k > UkX 

* > U k+I(F,-'',F,E) 

> Uk_iX -----> , 

> UkX -----> uk(F,-..,F) > * 

where 

U~X = UX k N ker d o N ... N ker d k c UkX 

and U k denotes the k-fold multiplicative cross effect, i.e. 

^ 

uk(YI'''''Yk ) = Ai ker(U(Yl x...× yk) > U(Yl ×...x yi ×-..x yk) ) . 

The usefulness of these sequences is due to the fact that 

(i) these sequences are natural in the action a: F x E + E 

well as in U, and 

(i i) if the action a: F × E ~ E is principal (i.e. 

a(f,e) = e for any one e e E implies f = i), and 

as 

U: (pointed sets) > (groups) 

then these sequences are exact. 

The first of these properties is obvious. To prove the second 

statement one uses the argument of [Kan-Whitehead, §16] and observes 

that the natural map X ÷ X_I e J is a homotopy equivalence and that 

therefore [Kan (HR)] the map UX ~ UX_l is so too. As X_I is 

discrete, so b~ UX_I and thus n0UX z UX_I , while niUX = 

for i > 0. This readily implies the exactness of the magic sequence. 
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The proof of the exactness of the other sequences is easy. 

Now we turn to the 

Proof of the principal fibration lemma. Consider the exact 

sequences of 3.1 with F and E as in 2.2 and U = TSR, where T s 

is as in the proof of Ch.I, 6.1. As an epimorphism of simplicial 

R-modules is a fibration with the kernel as fibre, the proof of 

Ch.I, 6.1 (R is solid) readily implies that 

(*) all the sim~licial R-modules in the exact sequences of 3.1 

! 

(and in particular the simplicial R-modules UkX) are s-connected. 

Now start all over and let again F and E be as in 2.2, but 

put U = R. Then the sequences of 3.1 become exact sequences of 

group-like cosimplicial spaces (Ch.I, 2.2 and Ch.X, 4.8). As the 

functor Tot turns short exact sequences of group-like cosimplicial 

spaces into fibrations (Ch.X, 4.9 and 5.1), the finite product lemma 

(Ch.I, 7.2) implies that Tot uk(F,-.-,F,E) and Tot uk(F,-'',F) 

and hence Tot UkX are contractible for k > 1 and that the map 

Tot UIX + Tot UF is a homotopy equivalence. Furthermore the 

above observation (*) implies that for all k and s the fibre 
! 

' UkX is connected and that therefore of the map TOts+ 1 UkX ÷ Tot s 
| 

Tot UkX is connected for all k and in fact contractible for 

k > I. Finally it is not hard to see that the map 

R E = Tot U0X > Tot U_IX = R B 

is a fibration and that the inclusion of R F = Tot UF in its fibre 

is a homotopy equivalence. 

We conclude by proving that R E ÷ R B is, up to homotopy, a 

principal fibration. By the classification theorem [May, p.90] the 
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map E + B 
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fits in an induced fibre square 

B >WF 

where WF ÷ WF is a principal fibration with WF contractible, and 

the desired result now follows from the fact that 

RE > R Wr 

R B ) ~WF 

is, up to homotopy, an induced fibre square, with R WF contractible. 
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§4. Nilpotent fibrations 

we will call a fibration E ÷ B s J*C with connected fibre F, 

nilpotent if "~i E acts nilpotently on each ni F'' This turns out 

to be equivalent with requiring that the map E ÷ B factors, up to 

homotopy, into a tower of principal fibrations with connected fibres 

that "get higher and hi@her connected". Corollary 2.4 of the 

principal fibration lemma thus implies that, up to homotop[, the R- 

compl~tion preserves nilpotent fibrations. 

We start with recalling 

4.1 Nilpotent 9roup actions. A group ~ acts on a group G 

if there is given a homomorphism 

~: n > Aut G 

and such an action is called nilpotent if there exists a finite 

sequenqe of subgroups of G 

G = D • m G 3 D •. D G n 

such that for each j 

(i) G. is closed under the action of ~, 
3 

(ii) Gj+ 1 is normal in Gj and Gj/Gj+ 1 is abelian, and 

(iii) the induced action on Gj/Gj+ 1 is trivial. 

The notion of nilpotent action is a generalization of the notion 

of nilpotent group, as a group G is nilpotent if and only if the 

-i 
action of G on itself via inner automorphisms ((~x)g = xgx 

for all x, g e G) is nilpotent. 
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The following easy lemma will be needed: 

4.2 Lemma. If a group ~ acts on a short exact , sequence of 

groups 

* >G' )G >G" )* , 

then the action on G is nilpotent if and only if the actions on 

G' and G" are so. 

Now we define 

4.3 Nilpotent fibrations. A fibration p: E ÷ B e J*C is 

called nilpotent if 

(i) its fibre F is connected, and 

(ii) the (obvious) action of ~i E on each ~i F is nilpotent. 

A space x E ~*C is also called nilpotent if the action of 

~i x on each ~i x is nilpotent. Thus a fibrant space X e J*C i_~s 

n~ipotent if and only if the fibration X ÷ * is nilpotent. 

A useful property of nilpotent fibrations is 

4.4 Proposition. Let 

E 2 q > E 1 P > E 0 e J*C 

be two fibrations with connected fibres. If any two of p, q and 

p~ are nilpotent fibrations, then so is the third. 

Proof. If FI, F 2 and FI2 resp. denote the fibres of p, q 

and pq, then wiE2 acts on the homotopy exact sequence 

• .. > ~n+iFl > ~nF2 > ~nFl2 > ~nFl ~ .-- 



Ch. II, §4 60 

If 31E2 acts nilpotently on any two of ~,F1, n,F 2 and ~,FI2, 

then it also acts nilpotently on the third (by 4.2). The proposition 

now follows readily. 

4.5 Corollary. Let q: E 2 ÷ E 1 e J*C be a fibration with 

connected fibre. If E 1 and E 2 are nilpotent spaces, then 

a nilpotent fibration. 

is 

4.6 Corollar[. Let 

> E n > •.- > E 0 e J*C 

be a tower of ~rincipal fib rations with connected fibres that "get 

higher and higher connected". Then the composition 

E = lim E > E 0 e J*C + n 

is a nilpotent fibration. 

This corollary has a converse 

4.7 Proposition. Let p: E + B e J*C be a nilpotent fibration. 

Then the Moore-Postnikov tower [Ma[, p.34] of p can, up to 

homo to~[, be refined to a tower of ~rinci2al fibrations with connected 

fibres that "get hi~her and higher connected". In fact this can be 

done in such a manner that the fibres are K(~,n)'s [May, p.98]. 

In view of this, corollary 2.4 of the principal fibration lemma 

can thus be restated as the 



Ch. II, §4 61 

4.8 Nilpotent fibration lemma. Let p: E ÷ B e J*C be a 

nilpotent fibration. Then R p: R E ÷ R B is also a nilpotent 

fibration and the inclusion R (p-l*) + (R p)-l* is a homotopy 

equivalence. 

Proof of 4.7. Let F be the fibre and let 

~ F = (~iF)l D ~ (~iF) j D ~ (~iF)ni 

satisfy the conditions of 4.1 with respect to the action of ~I E on 

~i F. Choose a strong deformation retract E' ~ E for which the 

restriction E' ÷ B is a minimal fibration [May, p.140]. Then one 

can, for every pair of integers (i,j) with 1 ! J ! n i, construct 

a space E (i'j) by identifying two simplices x, y c E' whenever 
q 

(i) px = py, 

(ii) the standard maps Ax, Ay: A[q] ÷ E' agree on the (i-l)- 

skeleton of A[q], and 

(iii) the standard maps Ax, Ay: A[q] ÷ E' "differ" on every 

i-simplex of A[q] by an element of (~iF) j. 

A straightforward calculation now yields that the E (i'j) form a 

tower of principal fibrations with the K((ziF) j/(ziF)j+l, i) as 

fibres, which is a refinement of the Moore-Postnikov tower {E (i'l) } 

[May, p.34] . 



62 
Ch. II, §5 

§5. The mod-R fibre lemma 

We now come to the main result of this chapter, namely the 

5.1 Mod-R fibre lemma. Let p: E + B e J*C be a fibration 

with connected fibre F and let the (Serre) action of Zl B o n_n 

Hi(F; R) be nil~otent for all 

fibration and the inclusion 

i ~ 0. Then R p: R E ÷ R B is a 

R F = R (p-l,) ~ (R p)-l* e J*C 

is a homotopy equivalenc e . 

This will be proved in §6 using the nilpotent fibration lemma 

4.8 and the fibre-wise R-completion constructions of Ch.I, §8. A 

different proof will be given in Chapter III, §7. 

In this section we shall show that 5.1 generalizes our previous 

fibre lemmas, and also applies to many new cases. We start with 

5.2 

satisfied if, for instance 

(i) 

(ii) 

(iii) 

(iv) 

Examples. The conditions of the mod-R fibre lemma are 

~i B = ,, 

E = F × B .... and p is the pro~ection, 

the fibration p: E ÷ B is ~rincipal, 

~i B and Hi(F; R) (i > 0) are all finite p-~roups for 

p prime (by [M. Hall, p.47] a finite p-group always acts nilpotently 

on another finite p-group). 

A variation of the mod-R fibre lemma is the 
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5.3 Fibre square lemma. Let 

D )E 

,L l 
A ) B  

be a fibre s~uare in J*C such that E ÷ B satisfies the conditions 

of 5.1. Then 

R D > RE 

1 1  
R A ~ R B 

is, up to homotopy, a fibre square. 

Proof. Apply 5.1 to both D + A and E + B. 

We conclude by deducing a 

5.4 MOd-R nilpotent fibration lemma. Let p: E + B e J*C be a 

fibration with connected fibre F such that 

(i) ~i E acts nilpotently on ~i F, and 

(ii) Zl E acts nilpotently on R ® ~i F and Tot(R, zi F) for 

each i > i. 

Then the action of nl B on each IIi(F; R) is nilpotent and hence 

(5.1) R p: R E ÷ R B is a fibration and the inclusion 

R F = R (p-l*) > (R p)-l* e ~*C 
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is a homotopy equivalence. 
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This result obviously applies to any nilpotent fibration and 

thus the nilpotent fibration lemma 4.8 is indeed a speqial case of 

5.1. 

Proof of 5.4. Apply the following lemmas (5.5 and 5.6) to the 

Moore-Postnikov tower [May, p.34] of p: E ÷ B. 

5.5 Lemma. Let 

E 2 q ~ E 1 P > E 0 e J*C 

be fibrations with connected fibres. If p and q 

conditions of 5.1, then so does pq. 

sa~isf[ the 

Proof. Let F1, F 2 and F12 be the fibres of p, q and pq. 

Then the group ~IE2 acts on the mod-R homology (Serre) spectral 

sequence of the fibration 

F 2 > FI2 > F 1 

To show that ~IE2 acts nilpotently on each Hi(F12, R) it will 

suffice (4.2) that ZlE 2 acts nilpotently on each of the twisted 

homology groups 

H s(F I; H t(F 2; R)) for s, t >_ 0. 

Since ~IE2 acts nilpotently on the R-module Ht(F2; R) there is an 

R-module filtration 

H t(F 2; R) -- [ ~--- o F ='"= F = 0 
1 j n 
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such that each F. is closed under the action of ~lE2 and each 
3 

F/F has trivial hiE2 action. Since ~IE2 acts nilpotently on 
J j+l 

each Hi(F1; R) it is now easy to show that hiE2 also acts 

nilpotently on each Hi(F1; ~/F ). This implies that ~IE2 acts 
3 j+l 

nilpotently on Hs(FI; Ht(F2; R)) as required. 

5.6 Lemma. Let p: E + B e J*C be a fibration with K(G,n) 

as fibre, such that, either 

(i) n = 1 and ~i E acts nilpotentl[ on G, or 

(ii) n ~ 2 and Zl E act A nil~otently on R ® G and Tor(R,G). 

Then Zl B acts nilpotently on each Hi(K(G,n); R). 

Proof. Condition (i) makes the fibration nilpotent and the 

lemma then follows by combining 4.7 and 5.5. We now suppose (ii) and 

consider several cases. 

The case R C Q. It is well-known that the obvious map 

G ÷ R ® G induces an isomorphism 

H,(K(G,n); R) z H,(K(R ® G,n) ; R) 

and thus, by 2.7 and Ch.I, 5.5, a homotopy equivalence 

R K(G,n) ~ K(R ® G,n) . 

The desired result now follows easily from the fact that the 

fibration R E ÷ B (Ch.I, §8) is nilpotent. 

The case R = Zp. For p prime, the Cartan-Serre computations 

provide a natural isomorphism 

H,(K(G,n); Zp) z U(QH,(K(G,n); Zp)) 

where Q(-) is the indecomposable element functor and U(-) is the 
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homology version of the Steenrod-Epstein functor [see Bousfield-Kan 

(HS), 13.1], and, moreover, QH,(K(G,n); Zp) is a natural direct sum 

of copies of Zp ® G and Tor(Zp,G). The desired result now follows 

using the analysis of U(-) given in [Bousfield-Kan (HS), lemma 

13.5]. 

The case R = Zpj. Using Bockstein exact sequences one can 

deduce this case from the case R = Z 
P 

The ~eneral case. It suffices to show that ~i B acts 

nilpotently on each of the groups 

Hi(K(G,n) ; R t) H (K(G,n) ; R/R t) 
l 

where R t denotes the torsion subgroup of R. But by [Bousfield-Kan 

(CR), §3] 

R/R t c Q and R t z • Z e(p) 
pEK p 

where K is a set of primes and each e(p) is a positive integer 

and the desired result now follows from the previous special cases. 
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§6. Proof of the mod-R fibre lemma 

We start with observing that, if, for a fibration E + B e J*C 

with connected fibre F, the group ~i B acts nilpotently on each 

Hi(F; R), then the tower of fibrations (Ch.I, §8) 

• -. > Rs E > Rs_l E > ..- > R0 E = RE > R_I E = B eJ, C 

is a tower of nilpotent fibrations. More precisely 

6.1 Proposition. Let p: E ÷ B e J*C be a fibration with 

connected fibre F. Then the action of ~l B on each Hi(F; R) is 

nilpotent if and Qnl~ if the fibration Rp: RE ÷ B (Ch.I, §8) is 

nilpotent. 

6.2 Proposition. Let p: E ÷ B e g*C be a fibration with 

connec£ed fibre F such that the action of ~i B on each Hi(F; R) 

is nilpotent. Then the fibrations Rs E + B (Ch.I, §8) are nilpotent 

for all s < ~. 

Proof of 6.1. RF is the fibre of the fibration Rp: RE + B 

and ~IRF acts trivially on each ~.RF. 
1 

Proof of 6.2. The fibre F s of the fibration Rs E ÷ Rs_l E is 

also the fibre of the fibration RsF + Rs_IF. Hence (2.6) F s is 

connected and ~iRs F acts trivially on the ~iFs . The exactness of 

the sequence 

~IRs F ) ZlRs E ) Zl B > * 
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now implies that ~i B acts on each ~iFs (through ~lRs E) and that 

it suffices to prove that these actions are nilpotent. But this is 

not hard to show using 4.2. 

Now we turn to the 

Proof of 5.1. Consider the commutative diagram 

RE 

B 

(F) 

E 

l 

(RF) (F') 

÷lim R~Rs E > ÷lim R=RsE 

R B > lim R s 

RsF) ( s ) 

R~RsE 

l 
- ~ / R B ) //R RsB 

B > B > RsB 

in which F' denotes the fibre of the fibration : R E + R B s RsP s s 

(s ! ~) and the spaces in parentheses indicate either the actual 

fibre or a strong deformation retract thereof. It is not difficult 

to see (in view of 6.2, 4.8 and 2.7) that the fibres are indeed as 

indicated. 

Using the triple lemma (Ch.I, 5.6) one readily shows that the 
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composition 

R E > lira R R E > lira R R E 
÷ ~ s ÷ ~ s 

is the obvious map and thus a homotopy equivalence. This implies 

that the map 

F' > fibre(lim R R > ÷ s E R B) 

induces a mqnomor~hism on the homotop~ ~roups. 

Now form the analogue of the above diagram for the fibration 

F ~ * and map it into the above diagram. There results a 

commutative diagram 

lim R R F > fibre(lim R=R > ÷ ~ s ÷ s E R B) 

Clearly the indicated maps are homotopy equivalences and hence so is 

the map 

(p-1. (R p) -I F~ R F = R ) .... > , = 
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Chapter III. Tower lemmas 

§i. Introduction 

In this chapter we establish the following simple and useful 

sufficient conditions on a tower of fibrations {Ys }, in order that 

it can be used to obtain the homotopy type of the R-completion of a 

given space X 

(i) If f: X ÷ {Ys } is a map which induces ., for every R-module 

M, an isomorphism 

lim H (Ys; M) z H (X; M) 

then f induces a homotopy equivalence R X -~ lim R Y . 
• ~_ co S 

(ii) If, in addition, each Ys is R-complete (Ch.I, 5.1), then 

the space lim Y already has the same homotopy type as R X. 
÷ S 

(iii) If, in addition, each Ys satisfies the even stronger 

condition of bein~ R-nilpotent (4.2), then, in a certain precise 

sense, the tower [Ys } has the same homotopy t~pe as the tower 

{ RsX }. 

We will actually formulate and prove these tower lemmas in terms 

of homology instead of cohomology, as this is not only more natural, 

but also easier, even though it requires a little bit of the pro- 

homotopy theory of [Artin-Mazur]. In more detail: 

§2 We recall when a map between towers of groups is a pro- 

isomorphism (i.e. an isomorphism in the category of pro-groups) and 

show that these pro-isomorphisms behave essentially like ordinary 

isomorphisms; in particular they satisfy a five lemma. 
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§3 and §4 Using these pro-isomorphisms we then define, for maps 

between towers of fibrations, a notion of weak pro-homotopy 

e~uivalence. 

Examples of such weak pro-homotopy equivalences are all the 

various maps between towers of fibrations of Chapters I and II, which 

induce homotopy equivalences between the inverse limit spaces. These 

tower versions of the results of Chapters I and II are easily 

verified, except for the case of the mod-R fibre lemma (Ch. II, 5.1), 

which will be dealt with in §7. 

§5 contains a discussion of the notion of R-nilpotent space, 

i.e. a space for which the Postnikov tower can, up to homotopy, be 

refined to a tower of principal fibrations with simplicial R-modules 

as fibres. Examples are, for instance, all simplicial R-modules and 

the spaces RsX for s < ~. 

§6 We state and prove the tower lemmas and show that, of course, 

the tower {RsX} satisfies the hypotheses of all three. 

§7 uses the strongest (R-nilpotent) tower lemma to prove the 

tower version of the mod-R fibre lemma (Ch. II, 5.1). 

§8 Here we interpret some of the preceding results to show 

that, up to homotopy, the R-completion of a space can be obtained in 

two steps: 

(i) an Artin-Mazur completion yielding a "pro-homotopy type", 

followed by 

(ii) a "collapsing" of the Artin-Mazur completion to an ordinary 

homotopy type. 
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This section is mainly intended for the categorically minded 

reader; we include a brief exposition of the relevant pro-category 

theory. 

Notation. As in Chapter II we will mostly work in the category 

J*C of pointed connected s~aces. In view of the tower version 

(see 3.5) of the disjoint union lemma (Ch.I, 7.1) this is again no 

real restriction. 

Of course (Ch.I, 4.5) we again assume throughout that the ring 

R is solid. 
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§2".. Pr°-is°m°rphisms of towers of groups 

We recall from [Artin-Mazur] a few facts about pro-isomorphisms 

that are needed in this chapter, i.e. we 

(i) explain when a map between towers of groups is a pro- 

isomorphism, 

(ii) list various properties of pro-isomorphisms, and 

(iii) observe that most of the results of this section also 

apply to pointed sets. 

2.1 Pro-isomor~hisms. A map f: {Gs} + {H s} between two 

towers of groups (Ch. IX, 2.1) is called a ~ro-ispmorphism if, for 

every group B, it induces an isomorphism 

lira HOm(groups) (IIs,B) z lim HOm(groups) (Gs,B) 

This is equivalent to the condition that, for every s, there is an 

! 

integer s ~ s and a map H s, + G s such that the following diagram 

commutes 

f 
G s , > }I s , 

G ) H 
s f s 

A tower of groups (K s } is called pro-trivial whenever the map 

{K } ÷ (*} into the trivial tower is a pro-isomorphism. 
s 

Clearly the above definitions apply equally well to towers over 

an arbitrary pointed category, e.g. the category of pointed sets. 
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It is easy to show: 

2.2 Proposition. A map of ~roup towers f: {G s} ÷ {H s} is a 

pro-isomorphism if and onl[ if the pointed set towers {ker f} and 

~coker f} are ~ro-trivial, where {coker f} is formed b[ collapsing 

fG s to a point. 

Thus a map of group towers is a pro-isomorphism if and only if 

the underlying map of pointed set towers is a pro-isomorphism. 

Clearly 2.2 would remain valid if {coker f} were replaced by the 

tower of left cosets {Hs/fGs}. 

Some other immediate properties are: 

2.3 Proposition. I_ff k >_ 0 and {G s} is a tower of groups, 

then the inclusion of the k-th derived tower (Ch. IX, 2.2) 

{ sG(k)} ÷ {Gs} is a pro-isomorphism. 

This also holds for pointed set towers. 

2.4 Proposition. Let f: {G s} ÷ {H s} and g: {H s} ÷ {K s } b_~e 

maps of group towers. If an[ two of the maps f, 9 and gf are 

pro-isomor~hisms, then so is the third. 

This also holds for pginted set towers. 

2.5 Proposition. Let 

{G s } > {H s} > {K s} 

be an exact sequence of maps of group towers. If {G s} and {K s } 

are pro-trivial, then so is {Hs}. 



Ch. III, §2 75 

This also holds for pointed set towers. 

2.6 Proposition. Let f: {G s} + {H s} be a ma~ of ~roup towers 

which is a pro-isomorphism. Then f induces isomor~hisms (Ch. IX, 

2 .i) 

lim G z lim H and lim I G z lim I H 
÷ S ÷ S ÷ S + S 

Of course, the first part also holds for pointed set towers. 

Proof of 2.6. Obtain a tower 

f f 
> Gis+l > H.is+l > G.is > H.is > "'" 

by interweaving a cofinal subtower of {G s} with a cofinal subtower 

of {H s} and then apply (Ch. IX, 3.1) to the corresponding tower of 

fibrations of K(~,I) 's. 

Using 2.2 and a large amount of diagram chasing one can also 

obtain a 

2.7 Five lemma. Let 

{G s} > {H s} > {K s } > {L s} > {M s} 

be a diagram of group towers in which both rows are exact, the maps 

h and 1 are pro-isomor~hisms and [coker q} and {ker m} are 

pro-trivial. Then the map k is also a pro-isomorphism. 
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§3. Weak pro-homoto~y equivalences 

We now consider, for maps between towers of fibrations, a notion 

of weak pro-homotopy equivalence, and observe that many of the 

homotopy equivalences of Chapters I and II are induced by such weak 

pro-homotopy equivalences. 

3.1 Weak ~ro-homotop[ equivalences. A map {X s} ÷ {Ys } 

between towers of fibrations in J*C will be called a weak pro- 

homotopy equivalence if the induced maps 

{niXs } > {ziY s} i h 1 

are pro-isomorphisms. This corresponds to the notion of #-isomor- 

phism of [Artin-Mazur, §4]. 

Clearly 2.6 and Ch. IX, 3.1, imply that every weak ~ro-homotopy 

equivalence {X s} z {Ys ) induces a homoto~[ equivalence 

lim X ~ lim Y 
S -- ~ S* 

The following propositions of [Artin-Mazur, §4] indicate that 

the term "weak pro-homotopy equivalence" is indeed an appropriate one. 

3.2 Proposition. For ever[ tower of fibrations {X s} i__nn J*C' 

the natural map into its "Postnikov tower" [May, p.31] 

x(S)} (Xs} > { s 

is a weak pro-homotop~ equivalence. 

The proof is trivial. 
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3.3 Proposition. A map {X s} + {Ys } between two towers of 

fibrations in J*C is a weak pro-homotopy equivalence if and only if 

- (s) - (s) the induced map (.see 3.2) {X s } ÷ ~Ys } of their "Postnikov 

towers" is a pro-isomorphism of towers over the pointed homotopy 

category (see 2.1), i.e. if and only if, for every s, there is an 

, (s) integer s > s and a map Y(~') ÷ X such that in the following 
s s 

diagram both triangles commute up to homotopy 

x(S') ') > y(S 
s s ; J ;  
(s) ) (s) 

Xs Ys 

The proof is rather long and will be postponed until §4. 

For future reference we note: 

3.4 Corollary. A weak pro-homotopy equivalence {X s} ÷ {Ys } 

between towers of fibrations in J*C induces, for every abelian 

9roup G, pro-isomorphisms 

{IIn(Xs; G) } z {Hn(Ys; G) } n >_ 0. 

We end with some remarks on the 

3.5 Tower versions of previous results. Many of the homotopy 

equivalences obtained in Chapters I and II have tower versions, i.e. 

they are induced by a weak pro-homotopy equivalence between towers 

of fibrations. This is very easy to verify for the results of 

Chapter I. The tower version of the mod-R fibre lemma (Ch.II, 5.1) 

will be proved in §7 with the use of the following tower version of 
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the principal fibration lemma (Ch. II, 2.2). 

3.6 Tower version of the ~rinci~al fibration lemma. Let 

p: E ÷ B ~ J*C be a principal fibration with connected fibre F. 

Then the induced map of towers of fibrations 

{RsF} > {Fs}, 

where F' denotes the fibre of s 

homotopy equivalence• 

RsP: RsE ~ RsB, is a weak pro- 

! ! 

Proof Using Ch X, 4.9, one can show that the maps F s Fs_ 1 
! 

are i n d e e d  f i b r a t i o n s ,  w h i l e  C h . I ,  6 . 2  i m p l i e s  t h a t  t h e  F s a r e  

connected. 

We now use the notation of the last part of Ch. II, §3 and 

observe that the results of §2 readily imply that the towers 

{~. Tot uk(F,...,F,E)} and 
l s {~i TOts Uk(F'''''F) } 

are pro-trivial for k > i. Hence the towers {hi TOts UkX} are 

pro-trivial for k > 1 and the towers {hi Tots UkX} are so for 

k > 0. The desired result now follows from the fact that the maps of 

towers 

{~i TOts UlX} > {~i TOts UF} 

! 

{~i TOts UIX} ~ {~i TOts UoX} 

= {~i RsF} 

are pro-isomorphisms. 
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§4. Proof of 3.3 

The "if" part of 3.3 is trivial. 

To prove the "only if" part we first need 

4.1 Lemma. Let {X s} be a tower of fibrations in J, such 

that {~nXs } is pro-trivial for each n ~ 0. Then, for each s and 

t, there exists an integer q (which depends on s and t) such 

that, up to homotop[, the map Xs+ q ÷ X s factors through the 

Eilenberg subspace EtXs ~ X s (EtXs is the fibre of the Postnikov 

+ X (t) [May, p.31]). map X s s 

Proof. The lemma is clear for the tower {EkXs }, when k = t-l; 

and this easily implies the general case. 

We also need 

4.2 Lemma. Let {X s} + {Ys } be a weak pro-homotopy equivalence 

between towers of fibrations in J*C' and let N be a ~iYk-mOdule 

for some k ~ 0. Then the induced map 

lim H (Ys; N) > lira H (Xs; N) (twisted coefficients) 

is an isomorphism. 

Proof. We may suppose that each map X + Y is a fibration 
s s 

with fibre F s. By 2.7 (slightly modified for n = 0) the towers 

{nnFs } (n ~ 0) then are pro-trivial. Thus, by 4.1, the direct 

limit of the E2-terms of the Serre spectral sequences of the 
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fibrations X + Y satisfies 
s s 

+lim H (Ys; H (Fs; N)) z ~im H (Ys; N) (twisted coefficients) 

and the lemma now follows from the fact that the direct limit Serre 

spectral sequence converges to lim H (Xs; N). 

Finally we prove the following lemma which readily implies the 

"only if" part of 3.3. 

4.3 Lemma. Let {X s} + {Ys } 

i__nn J*C such that {ZlXs } ÷ {~iYs } 

be a map of towers of fibrations 

is a pro-isomorphism and 

lim H (Ys; N) z lim H (Xs; N) (twisted coefficients) 

for each nlYk-mOdule N with k ~ 0. Then, for every space 

V ~ J*C which is fibrant (i.e. V ÷ * is a fibration) the induced 

maps between the direct limits of the pointed homotopy classes of 

maps 

lim [Ys' v(n)] > lim [Xs, V (n) ] 0 < n < 

are isomorphisms. 

÷ Y Proof. We may suppose that each map X s s 

To prove that 

is an inclusion. 

V (n) lim [Ys' v(n)] > lim [Xs, ] 0 <_ n < 

is onto, it suffices to show that, for each commutative square 
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X > V (n) 
s 

; ,L 
Y > V (n-l) 
s 

there exists a q h s such that the square 

X > V (n) 
q 

f 
t u 

/ 

y / > V (n-l) 
q 

has a map u making both triangles commute. For n > 1 the 

obstruction to finding u lies in 

n+l 
H (Yq,Xq; ~n v) (twisted cohomology) 

and for n = 1 the obstruction is expressed by 

~lXq 

~iYq 

/ 
/ 

> ~i v 
17 

/ 

In both cases the obstruction can be killed by taking q large 

enough. The i-i part of the lemma can be proved similarly, or, 

alternatively, can be deduced from the onto part using the inclusion 

{(~[i] × Ys ) U (A[I] x Xs) } > {411] × Ys }. 
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§5. R-nilpotent spaces 

In this section we discuss the notion of R-nilpotent spaces, 

i.e. spaces for which the Postnikov tower can, up to homotopy, be 

refined to a tower of principal fibrations with simplicial R-modules 

as fibres. It turns out that the R-nilpotent spaces are exactly the 

spaces for which the natural map 

{x} > {RsX} 

is a weak pro-homotopy equivalence. Useful examples are simplicial 

R-modules and the spaces RsX for s < ~. 

We start with defining~ 

5.1 R-nilpotent groups. A group G is said to be R-nilpotent 

if it has a finite central series 

G1 ~ ... D G = * G = m .-. D G 3 n 

such that each quotient Gj/Gj+ 1 admits an R-module structure (which 

by [Bousfield-Kan (CR), 2.5] is unique. 

Clearly a Z-nilpotent group is the same as a nilpotent group, 

and more generally (see Ch.V, 2.6), a Z[J-l]-nilpotent group is the 

same as a uniquely J-divisible nilpotent group. It is also evident 

that a Zp-nilpotent group is the same as a nilpotent group in which 

k 
the order of each element divides ~ for some fixed k < ~. 

5.2 R-nilpotent spaces. A space X e J*C will be called R- 

nilpotent if 

(i) X is nilpotent (Ch. II, 4.3), and 
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(ii) niX is R-nilpotent for each i k 1. 

An obvious example of an R-nilpotent space is any connected 

simplicial R-module. And clearly a Z-nilpotent space is the same as 

a nilpotent space (Ch. II, 4.3). 

Now we state the main result of this section. 

5.3 Proposition. For a space 

conditions are equivalent: 

(i) X is R-nilpotent. 

(ii) The natural map of towers 

X e ~*C' the following three 

{x} > {RsX} 

is a weak ~ro-homotopy equivalence. 

(iii) The Postnikov tower of X [May, p.31] can, up to 

homotopy, be refined to a tower of principal fibrations with as 

fibres K(n,n)'s for which n k 1 and ~ admits an R-module 

structure. 

5.4 Corollary. 

(i) 

the map 

(ii) 

X 
s 

If X ~ J*C is R-nilpotent, then X is R-complete, i.e. 

#: X + R X is a weak equivalence. 

If {X s} is a tower of fibrations in J*C such that each 

is R-nilpgtent , then the map 

~: {x s} > {RsX s} 

is a weak pro-homotopy equivalence. 

Proof of 5.3. (i) ÷ (iii) is proved in the same way as Ch. II, 
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4.7, using 5.7 below. 

(iii) ÷ (ii) is proved by combining 2.7, 3.6, Ch. II, 2.2 and 

Ch. II, 2.7. 

(ii) ÷ (i). It follows from 3.3 that (ii) implies that each 

X (s) is, up to homotopy, a retract of (~X) (s) for some k (which 

depends on s). Using 5.6 and 5.8 below and Ch. II, 4.2, it is now 

not hard to show that each X (s) is R-nilpotent. This implies (i). 

5.5 Proposition. Let p: E + B e J*C be a principal fibration 

with connected fibre F. If an[ two of F, E and B are R-nil~o- 

tent, then so is the third. 

This follows easily from 5.8 below and Ch. II, 4.2. 

Combining 5.5 with Ch. II, 2.6 one gets~ 

5.6 Corollary. Let X e J'C" Then RsX 

all s < ~. 

is R-nilpotent for 

5.7 Lemma. Let G be an R-nilpotent abelian group on which a 

~roup ~ acts nilpotentl[. Then there is a finite sequence of sub- 

groups of G 

G 1 • ... = , G = D -.. m G 3 D D G n 

such that for each 

(i) G. is closed under the action of z, 
3 

(ii) the induced action on Gj/Gj+ I_ is trivial, and 

(iii) the ~uotient Gj~+I admits an R-module structure. 
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Proof. The "center of G under the action of w" i.e the 8 

group 

{g ~ G{ xg = g for all x e w} 

is R-nilpotent by 5.8 below, because it is the kernel of a homomor- 

phism from G to a product of copies of G. The desired filtration 

of G can thus be obtained by taking the "upper central series of 

G under the action of w". 

5.8 Lemma. Let f: G + H be a homomorphism between R-nil- 

potent groups. Then ker f is R-nilpotent; and if the image of f 

is normal in I{, then coker f is also R-ni!~otent. 

Proof. If G and H are R-modules, then ker f and coker f 

admit R-module structures since f is necessarily R-linear 

[Bousfield-Kan (CR), 2.4]. 

In the general case choose central series 

G 1 . = , G = 9 -.- D G 3 D ... D G n 

H 1 • . = , H = D • • D H 3 9 • • • D H n 

such that for each j 

(i) fG. c H. and 
3 3 

(ii) Gj/Gj+ l and Hj/Hj+ 1 admit R-module structures. 

(The desired pair of central series can be obtained by reindexing an 

arbitrary pair). The map f induces additive relations [MacLane, 

p.51] 

ds: Gj/Gj+ 1 > Hj+s/Hj+s+ 1 
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given by ds[X] = [fx] for each x e Gj with fx £ Hj+ s. Using 

these relations one obtains a spectral sequence of R-modules. 

Passing to the E -term, one gets that the abelian groups 

(Gj+l(ker f N Gj))/Gj+ 1 

Sj/(Hj+l(im f A Hj+I)) 

admit R-module structures. But these abelian groups are precisely 

the quotients of the central series 

{ker f N G.} 
3 

{im (Hj 

This proves the lemma. 

> coker f)} 

for ker f 

for coker f (if it exists) 
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§6. The tower lemmas 

To simplify the formulation of the tower lemmas we define a 

notion of 

6.1 R-towers for a space X. By an R-tower for a space 

X c J*C we mean a tower of fibrations {Ys } in J*C together with 

a map {X} ÷ {Ys } which induces, for every i ~ i, a pro-isomorphism 

{H i(x; R) } z {Hi(Ys; R) } 

or equivalently (see 6.7), for every R-module M, an isomorphism 

lim H (Ys; M) z H (X; R). 

Then one has the main 

6.2 Tower lemma. Let X e J*C and let f: {X} ÷ {Ys } be an 

R-tower for X. Then f induces a weak pro-homoto~ equivalence 

{RsX } ~ {RsYs} 

and hence a homoto~ equivalence 

R X = lim RsX : lim RsY s = lim R Y s 

This result can be strengthened by requiring that each Ys is 

R-complete or even R-nilpotent: 

6.3 R-complete tower lemma. Let X E J*C and let 

f: {X} + {Ys } be an R-tower for X such that each Ys is R-complete. 
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Then the induced map 

lim Ys > lim R Y = lim R Y 
÷ ÷ ss ~ ~s 

is a homotopy equivalence and hence 

homotopy type as R X. 

lim Y already has the same 
÷ s 

6.4 R-nilpotent tower lemma. 

f: {X} ÷ {Ys } be an R-tower for X 

potent. Then the towers {Ys } and 

homotopy type". 

Let X ~ J*C and let 

such that each Y is R-nil- s 

{RsX} have the same "weak pro- 

As one might expect, for every X e J*C' the natural map 

{X} + {RsX} satisfies the conditions of all three tower lemmas. 

This follows immediately from 5.6 and the following result of 

[Dror (C)], which originally suggested the existence of the tower 

lemmas. 

6.5 Proposition. For every X e J*C' the natural map 

{X} ÷ {RsX} is an R-tower for X. 

The above results (6.2-6.5) are easy consequences of 5.4, the 

triple lemma (Ch.I, 5.6) and 

6.6 Proposition. Let {X s} + {Ys } be a map of towers of 

fibrations in J'C" Then the induced map 

{RsX s} > {RsY s} 

is a weak pro-homotopy equivalence if and only if the induced map 

{RX s } > {RY s } 
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is a weak pro-homotopy equivalence, i.e. if and only if, for every 

integer i ~ I, the induced map 

{H i(Xs; R) } > {Hi(Ys; R) } 

is a pro-isgmorphism. 

Proof. To prove the "if" part, observe that 3.4 implies that 

the maps {RnXs } ÷ {Rny s} are weak pro-homotopy equivalences for all 

n ~ i. The desired result now is not hard to prove, using 2.7, Ch.I, 

6.1 and Ch.X, 6.3. 

The "only if" part is an easy consequence of 3.4 and the fact 

that ~,: H,(X; R) ÷ H,(RsX; R) has a natural left inverse (Ch.I, 

5.4) . 

We end this section with a result which may help clarify the 

notion of R-tower. 

6.7 Proposition. Let X e J*C and let {Ys } be a tower of 

fibrations in J'C" For a map {X} + {Ys } the followin~ four 

conditions then are equivalent: 

(i) {X} ÷ {Ys } is an R-tower for X. 

(ii) For every in~ective R-module I 

lim H (Ys; I) z H (X; I) 

(iii) For every R-module M 

lim H (Ys; M) Z H (X; M) 

(iv) For ever[ R-nilpotent space v ~ J*C which is fibrant 
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(i.e. V ÷ * is a fibration) 
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lira [Ys' v(n)] z [X, V (n) ] 0 < n < 

Proof. (i) <-----~(ii). This follows from the fact that 

H (X; I) z HOmR(H,(X; R), I) 

(ii) => (iii). Suppose (ii) and let I be an injective 

resolution for M. Then for each t 

lim HOmR(Ht(Ys; R), I ) z HomR(Ht(X; R), I ) 

and hence, for n ~ 0, 

lim ExtR(H,(Ys; R), M) z ExtR(H,(X; R), M). 

Now (iii) can be deduced using the universal coefficient spectral 

sequence. 

(iii) -~>(ii). This is easy. 

(iii) ---~>(iv). Suppose (iii) and express the Postnikov space 

V (n) as the inverse limit of a finite tower of principal fibrations 

with as fibres K(~,n)'s for which n ~ 1 and z admits an R- 

module structure (5.3). Then (iv) follows by an untwisted version of 

the argument used to prove 4.3. 

(iv) ~>(iii). This again is easy. 



Ch. III, §7 91 

§7. Tower version of the mod-R fibre lemma 

As promised in 3.5, we now prove the 

7.1 Tower version of the mod-R fibre lemma. Let E + B e J*C 

be a fibration with connected fibre F and let the (Serre) action 

o_~f ~i B on each Hi(F; R) be nilpotent. Then the induced map of 

towers of fibrations 

! 

{RsF} > {F s } 

! 

w h e r e  F s d e n o t e s  t h e  f i b r e  o f  t h e  map RsE ÷ RsB , i s  a weak  p r o -  

homotop~ equivalence. 

This result easily implies the mod-R fibre lemma (Ch. II, 5.1), 

and thus our proof below can be used in place of the earlier proof 

(Ch.II, §6). 

Proof (not using Ch. II, 5.1). Using Ch.X, 4.9, one can show 

! I 

÷ are fibrations, while Ch.I, 6.2 implies that that the maps F s Fs_ 1 

the F' are connected. Furthermore it is not hard to show, using 
s 

I 

5.7, 5.8 and Ch.II, 4.2, that the F s are R-nilpotent. By the R- 

nilpotent tower lemma (6.4) it thus remains to show that the natural 

{F} ~ {Fs) is an R-tower for F. map 

To do this we consider the (obvious) map from "the Serre spectral 

sequence of the fibration E ÷ B" to "the tower of Serre spectral 

sequences of the fibrations 

that 

R E + R B" and show, by induction on k 
s s 

(i) k this spectral sequence map is a pro-isomorphism on 

E 2 for all p, and 
p,k 
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! 

(ii) k the map {Hk(F; R)} + {Hk(Fs; R)} is a pro-isomorphism. 

For this we need the following tower version of the Zeeman 

comparison theorem, c.f. [Quillen (PG), 3.8]: 

7.2 Tower comparison lemma. Let 

{E2p,q(Xs ) >Hp+q(Xs)} f ) {E2p,q(Ys ) >Hp+q(Ys) } 

be a map of towers of first quadrant spectral sequences of homolo~i- 

cal type. If Hn(f) is a pro-isomorphism for all n and E 2 (f) . . . . .  p,q 

is a pro-isomqr~hism for ~ < k, then 

(i) E~,k(f) is a pro-isomorphism, and 

(ii) E~,k(f) is a pro-epimorphism (i.e. the cokernel is pro- 

trivial). 

Continuation of the proof of 7.1. Clearly (6.5) (i) 0 and 

(ii) 0 hold. Now assume (i) j and (ii)j for 0 ! J < k. Then 

(6.5) the map {Hi(E; R) } ÷ {Hi(RsE; R)} is a pro-isomorphism for 

all i h 0 and hence 7.2 implies that the spectral sequenqe map is a 

pro-isomorphism on E 2 E 2 0,k and a pro-e~imorphism on l,k" 

Next put 

M = Hk(F; R) and M s = Hk(Fs; R) 

and let 

I ~ Z~lB and I s ~ Z~lRs B 

denote the augmentation ideals of the group rings. As ~l B acts 

nilpotentl~ on each Hi(F; R) and as (in view of 5.6 and Ch.II, 4.5 

F' and 5.4) nlRs B acts nilpotentl[ on each Hi( s; R), it is not hard 

to see that, in order to obtain (i) k and (ii)k, it suffices to show 
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that for all n > 1 

(iii) n the maps 

{Hp(B; M/InM) } > {Hp(RsB; Ms/InMs) } 

{M/InM} ) {Ms/I~M s} 

p>_0 

are all pro-isomorphisms. 

This is again done by induction. 

since 

The case n = 1 is clear 

H 0 (B; M) z M/IM and H0(RsB; M s ) = Ms/IsM s • 

For the induction step one considers the map from the exact sequence 

) H I(B; M) > H I(B; M/InM) > H 0(B; InM) > 

) H 0 (B; M) ) H 0(B; M/InM) > * 

to the tower of exact sequence involving the 

the five lemma (2.7) one gets that the map 

RsB and M s . Using 

i n n+l {InM/In+iM} Z {H0(B; InM)} ) {H0(RsB ; I~Ms) } z { sMs/I s M s } 

is a pro-isomorphism and from this one readily obtains (iii)n+ 1. 
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§8. An Artin-Mazur-like interpretation of the R-completion 

We first give a brief general exposition of Artin-Mazur comple- 

tions [Artin-Mazur, §3], and we then show that, up to homotopy, the 

R-completion of a space may be obtained in two steps: 

(i) an A rtin-Mazur completion yielding a "pro-homotopy type", 

followed by 

(ii) a "collapsing" of the Artin-Mazur completion to an ordinary 

homotopy type. 

The proof is based on the observation that, roughly speaking, {R X} 
s 

is cofinal in the system of R-nilpotent target spaces of X (see 8.3). 

This Artin-Mazur-like interpretation may help to clarify and 

justify the R-completion; however, the reader interested in "real 

mathematics" may safely skip this section. A different Artin-Mazur- 

like interpretation of the R-completion is given in Chapter XI. 

To explain Artin-Mazur completions we need 

8.1 Categories of pro-objects [Artin-Mazur, Appendix]. Let 

be a category. A pro-object over ~ then is an I-diagram (Ch.XI, 3.1) 

over ~ where I is a small left filterin@ (Ch.XI, 9.3). The pro- 

objects over ~ form a category pro-~ with maps defined by 

H°mp rO-~(X' Y) = ÷lim'(~ imi3 H°m~(Xi'-- YJ)-- 

where ~ = {Xi}i c I and Y = {Yj}j £ j. 

Clearly ~ is a full subcategory of pro-~ , and any functor 

T: ~ + ~ prolongs in an obvious way to a functor 

pro-T: pro-~ > pro-~ . 



Ch. III, §8 95 

Note that in §2 we were "really" working in the category 

pro-(groups); for instance, a map of group towers is a pro-isomorphism 

(2.1) if and only if it corresponds to an isomorphism in the 

category pro-(~roups). 

We can now introduce a categorical version of 

8.2 The Artin-Mazur completion [Artin-Mazur, §3]. Let ~ be a 

full subcategory of a category ~ , with inclusion functor ~:~ ÷~ ; 

and for each object X e ~, let ~\X denote the category whose 

objects are maps X ÷ M e ~ with M e ~, and whose maps are the 

commutative triangles 

M 

M' 

c 

Then pro-~ is a full subcategory of pro-~ and one has: 

If, for each X e ~, there exists a left cofinal (Ch.XI, 9.3) 

functor I ÷ ~\X, where I is a small left filtering, then the 

inclusion functor 

pro-~: pro-~ > pro-~ 

has a left ad~oint 

U: pro-<~ > pro-~ 

Thus, for X e pro-~ , the adjunction map X ÷ UX E pro-~ is 

the universal example of a map from X to an object of pro-~ ; and 

we shall call UX the Artin-Mazur completion of X. 
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For X e ~, it can be shown that, as one might expect, 

UX c pro-~ is represented by any diagram I + ~ obtained by com- 

posing the canonical functor ~\X ÷~ with a left cofinal functor 

I ÷ u\X where I is a small left filtering; and the map 

X ÷ UX e pro-~ is also represented in the obvious way. 

Using the above machinery, one can construct many different 

Artin-Mazur completions in homotopy theory; however, for our 

interpretation of the R-completion we shall need[ 

8.3 A mod-R Artin-Mazur completion in homotopy theory. Let 

~0 be the connected pointed homotopy category (i.e. the full sub- 

category of connected spaces in the usual (Ch.VIII, §4) pointed 

homotopy category); and let 

MR c 9/0 

be the full subcategory of R-nilpotent spaces with onl[ a finite 

number of non-trivial homotopy groups. Then, for any X e ~0' the 

system 

4: {x} > { (RsX) (s) } 

(where {(RsX) (s)} is the "Postnikov tower" of {RsX}) can be 

viewed as a tower in ~\X; and by 6.7 this tower is left cofinal in 

~\X and thus, by 8.2, the inclusion 

pro-~: pro-~R > pro-~/0 

has a left ad~oint 

UR: pro-~/0 > pro-7~ R . 
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Moreover, for X g ~0' the Artin-Mazur completion URX e pro-~R i_~s 

represented by the tower {(RsX) (s)}. 

For our interpretation of the R-completion we also need: 

8.4 Collapsing of pro-homotopy types into homotopy types. Let 

~0 be, as in 8.3, the connected pointed homotopy category, and let 

X £ pro-~ be a pro-object which is isomorphic in pro-~ to some 
-- 0 0 

tower over ~0 (This is automatic if the index filtering of X has 

countably many maps). Then one can collapse X to a well-defined 

pointed homotopy type in the obvious way, i.e. one chooses a tower of 

fibrations {Ys } over J*C such that {Ys } = ~ e pro-~/0 and takes 

the pointed homotopy type of lim Ys' which is well-defined by a 

version of 3.1. Unfortunately, this collapsing does not seem to be 

functorial in X, unless one imposes stringent finiteness conditions 
% 

a la [Sullivan, Ch.3]. 

We now conclude with the promised 

8.5 Interpretation of the R-completion of a space. Combining 

8.3 and 8.4, it is clear that for X e J*C' the homotopy type of 

R X can be obtained by: 

(i) taking the Artin-Mazur completion URX , which is a "pro- 

homotopy type" represented by {(RsX) (s)}; and then 

(ii) "collapsing" this pro-homotopy type to a homotopy type, 

which is represented by ~im(RsX) (s) = R X. 

An obvious defect in this approach to the R-completion is the 

lack of functoriality. One way around this difficulty is to impose 

stringent conditions, such as the finiteness conditions of [Sullivan, 
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Ch.3]. Another way is, not to work in the homotopy category; this 

approach is taken in Chapter XI, where we show that "collapsing" 

then becomes "takin~ homotop[ inverse limits". 
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Chapter IV. An R-completion of ~roups and its 

relation to the R-completion of spaces 

§i. Introduction 

In this chapter we introduce, for any solid (Ch.I, 4.5) ring R, 

an Artin-Mazur-like R-completion of ~roups and show that it can be 

used to construct, up to homotopy, the R-completion of spaces. The 

theoretical basis for this is in Chapter III, where we developed a 

flexible "tower lemma" approach to R-completions. In more detail: 

We define the R-completion of a group as the inverse limit of 

its R-nilpotent (Ch. III, 5.1) target groups. For finitely generated 

groups and R = Zp, this R-completion reduces to the p-profinite 

completion of Serre, and for nilpotent groups and R = Q, it coincides 

with the Malcev completion. Like any functor on groups, this R-com- 
^ 

pletion functor -R on groups induces a functor on reduced spaces 

(i.e. spaces with only one vertex) as follows: 

(i) Replace each reduced space X by its so-called loop group 

GX. This is a simplicial group, which is free in every dimension, 

and which has the homotopy type of "the loops on X". 

(ii) Next apply the "R-completion of ~roups" dimension-wise to 
^ 

GX. This yields a simplicial group (GX) R- 

(iii) Take the classifying space ~(GX) R of the simplicial 
^ 

group (GX) R" 
^ 

Our main result then states this classif[ing space ~(GX) R has the 

same homotopy type as R X, the R-completion of X. 

The chapter is organized as follows: 

§2 Here we define the R-completion of a group, give various 
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examples, and show that the R-completion of a group B can also be 

obtained as the inverse limit of a tower of R-nilpotent groups which 

can be described in terms of the functors R of Ch.I, §4, namely 
s 

^ 

B R z ~im ~IRsK(B, i) . 

§3 contains a variation on the R-nilpotent tower lemma of 

Ch. III, 6.4, which we need to efficiently formulate our main result 

(in §4). 

§4f §6 and §7 In §4 we state the main result mentioned above. 

In fact, we make the slightly stronger statements that (in the sense 

of Ch. III, §3) 

(i) for ~eneral R, the towers of fibrations 

{WTsGX} and {RsX} 

where T s = nlRsK(-,l), have the same weak ~ro-homotopy type 

(ii) if R = Z, then the towers of fibrations 

{W(GX/FsGX)} and {RsX} 

have the same weak pro-homotopy type (& denote the lower central 

series functors), and 

(iii) if R = Zp, then the towers of fibrations 

{W(GX/Fs(P)Gx)} and {RsX} 

same weak Rro-homotopy type (Fs (p) denote the p-lower have the 

central series functors). 

A proof of (i) which uses (ii) is given in §4, (iii) is proven 

in §6, and a proof of (ii) which uses (iii) is given in §7. 
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§5 contains some applications: 

(i) A slight strengthening of the relative connectivity lemma 

(Ch.I, 6.2(ii)) to: "the homotopy type of R X in dimensions 

! k" depends only on "the homoto~[ t~pe of X in dimensions ! k". 

(ii) A first quadrant spectral sequence which, for every 

simplicial group B, goes to ~,R WB. 

(iii) If F is a free group, then 

R K(F, i) -~ K(FR, i). 

(iv) A countable wedge of circles is Z-bad and Zp-bad (in the 

sense of Ch.I, §5). 

(v) A generalization of the Curtis convergence theorem to 

nilpotent spaces. 

(vi) A generalization to fibre-wise qompletions. 

Notation. In this chapter we will mostly work in the category 

J0 of reduced spaces, i.e. spaces with only one vertex. The reason 

for this is that the functors G and W are adjoint if one restricts 

oneself to reduced spaces, but not if one uses pointed connected 

spaces (in which case the functors G and ~ are only "adjoint up 

to homotopy"). 

Of course (Ch.I, 4.5) we again assume throughout that the ring 

R is solid. 
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§2. The R-completion of a group 

We define an Artin-Mazur-like R-completion of groups, which, for 

finitely generated groups and R = Z (the integers modulo a prime 
P 

p), is the p-profinite completion of [Serre], and which, for nil- 

potent groups and R = Q (the rationals) is the Malcev completion 

[Quillen]. 

It turns out that this R-completion of groups can also be 

described in terms of the functors R which we used in Ch.I, §4 to 
s 

obtain the R-completion of a space. 

We start with recalling from Ch. III, 5.1 the notion of 

2.1 R-nilpotent groups. A group N is called R-nilpotent if 

N has a central series 

N = N I m ... m Nj m --- 9 N k = , 

such that, for each j, the quotient group Nj/Nj+ 1 admits an R- 

module structure. For instance: 

(i) Z-nilpotent groups are groups which are nilpotent in the 

usual sense. 

(ii) If f: N ÷ N' is a group homomorphism between R-nilpotent 

abelian groups, then ker f and coker f are also R-nilpotent 

(Ch. III, 5.8). 

(iii) If R s is as in Ch.I, §4, then, for every space X e ~*C' 

the groups WiRsX are R-nilpgten t for all i and s < ~ (Ch.III, 

5.6). 

Now we define 
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2.2 The R-completion of a group. The R-completion of a group 
^ 

B is the group B R obtained by combining [Artin-Mazur, §3] with an 

inverse limit, i.e. by taking the inverse limit [Artin-Mazur, p.147] 

of the functor which assigns to every homomorphism B + N, where N 

is R-nilpotent, the group N, and to every commutative triangle 

with N and N' both R-nilpotent, the map N + N' The required 

inverse limit exists, because the above large diagram of R-nilpotent 

groups has a cofinal small diagram given, for example, by the tower 

{~IRsK(B, i)} (This will follow from the proof of 2.4). 

Clearly this R-completion is a functor and there are natural 

maps 

^ 

^ ^^ ~ >B R B ~ > B R and BRR 

^ 

such that {-R' ¢' 4} is a triple on the category of groups. 

2.3 

implies : 

(i) 

Examples. It is not hard to see that the above definition 

If B is R-nilpotent, then (of course) 

^ 

B R z B. 

(i i) If R = Z (the integers), then 

^ 

B R z lim B/FiB 
4- 
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where {FIB} is the lower central series of B (see [Curtis (If)]). 

More generally one has: 

(iii) Alwa[s 

^ ^ 

B R ~ lim (B/~B)R. 

This follows from the fact that, for every R-nilpotent group N, 

there is a natural isomorphism 

Hom (B, N) z lim Hom (B/FiB, N) 

(iv) If R = Zp, then 

^ 

B R ~ lira B/~i (p) B 

where {Ii(P)B}-- is the p-lower central series of B (see [Rector 

(AS)]). A special case of this is: 

(v) If R = Zp and B is finitely generated, then 

^ 

B R = the ~-profinite completion of B 

of [Serre, p.I-5], and thus, if B is also abelian, then 

^ 

B R z (the ~-adic integers) ® B 

(vi) If R = Q and B is ni!~qtent, then (see Ch.V, §2) 

^ 

B R = the Malcev completion of B 

^ 

of [Malcev] and [Quillen (RH), p.279] and the map ~: B ÷ B R is 

universal for maps of B into nilpotent uniquely divisible groups, 
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and thus, if B is also abelian, then 

^ 

B R z R ® B. 

We end with the observation that the R-completion of an arbitrary 

group can also be obtained as the inverse limit of a tower of R-nil- 

potent groups which is somewhat different than 2.3(iii) and which can 

be described in terms of the functors R of Ch.I, §4: 
s 

2.4 A reduction lemma. Let B 

natural isomorphism 

^ 

B R ~ lim ~IRsK(B, i) 

be a group. Then there is a 

such that the followin@ diagram commutes 

B = ~IK (B, I) 

B R z lim ~IRsK(B, l). 

Proof. As (2.1(ii)) ~IRsK(B, i) is R-nilpotent for all s < 

it suffices to show that, for every R-nilpotent group N, 

lim Horn(groups) (~IRsK(B, I), N) = HOm(groups) (B, N) 

or equivalently that there is a 1-1 correspondence of pointed 

homotopy classes 

lim [RsK(B , i), K(N, i)] z [K(B, i), K(N, I)]. 

But this is the case, in view of Ch. III, 6.5 and 6.7. 
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§3. A variation on the R-nilpotent tower lemma 

In order to be able to efficiently state the main results of 

this chapter (in §4) we formulate here a group-functor version of the 

R-nilpotent tower lemma (Ch. III, 6.4). 

First we recall from [May, p.l18, 87 and 122] a few facts about 

3.1 The loop group functor G and the classifying functor W. 

The loop group functor G assigns to every space X e J0 (the 
! 

category of reduced spaces, i.e. spaces with only one vertex) a 

simplicial group GX which has the homotopy type of "the loops on 

X", and which is a free group in each dimension. Conversely, the 

classifying functor ~ assigns to every simplicial group L a 

reduced space WL such that L has the homotopy type of "the loops 

on ~L". Furthermore the functors G and W are adjoint and the 

resulting natural map 

X ) WGX ~ J0 

is a weak (homotopy) equivalence for all X ~ J0" 

To simplify the formulation of our tower lemma we next introduce 

the notion of 

3.2 R-towers of group-functors. By this we mean a tower 

of funetors and natural transformations between them 

{T s } 

• .. > T s ) TS_ 1 > -.. > T O ~ T_ 1 = , 
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where each T is a functor 
s 

Ts: (groups) > (groups) , 

together with a tower map 

{Id} > {T s } 

such that for every free group F 

(i) the homomorphism TsF + Ts_lF (s h 0) is onto, and its 

kernel is an R-module contained in the center of TsF , and 

(ii) the induced map of group homology 

{H i(F; R) } > {H i(TsF; R) } 

is a pro-isomorphism (Ch. III, §2) for all i ~ 0. 

Now we can finally state: 

3.3 The group functor version of the R-nil potent tower lemma. 

Let {Id} ÷ {T s} be an R-tower of gr0uP functors. Then, for every 

X ¢ JOt 

(i) the spaces WTsGX are R-nilpotent (Ch. III, 5.2), and 

(ii) the induced tower map 

{X} > {WTsGX} 

is an R-tower for X (Ch. III, 6.1). 

Thus (Ch. III, 6.4) the towers of fibrations {WTsGX} 

have the same "weak pro-homotop[ type" and hence 

and {RsX} 

lim T GX = lim WT GX and R X 
+ s ~ s 
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have the same homotopy type. 

Proof. It is not hard to see that the map ~TsGX ÷ ~Ts_IGX is 

a principal fibration with as fibre the simplicial R-module WKsGX, 

where KsGX denotes the kernel of TsGX + Ts_IGX. Hence (Ch.III, 

5.2 and 5.5) the spaces WTsGX are R-nilpotent. 

In order to show that the maps 

{H i(x; R) } > {H i(WTsGX; R) } 

are pro-isomorphisms we recall from [Quillen (PG), 2.1] and [Quillen 

(SS)] that, for a simplicial group L one can form the simplicial 

space (i.e. double simplicial set) K(L, i) and its diagonal 

diag K(L, i), and that 

(i) there is a natural first quadrant homology spectral 

sequence 

E lp,q = Hq(K(Lp, i); R) > Hp+q(diag K(L, i) ; R) , 

(ii) dia~ K(L, i) is homotopically equivalent to WL and hence 

there is a natural isomorphism 

H,(diag K(L, i); R) = H,(WL; R). 

One now easily proves the desired pro-isomorphism, using the map of 

pro-spectral sequences induced by the map {GX} ~ {TsGX}. 
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§4. A relation between the "R-completion of a 

group" and the "R-completion of a space" 

Our main result in this chapter is, that the "R-completion of a 

group" can be used to obtain, at least up to homotopy, the "R-comple- 

tion of a space". More precisely, any functor 

T: (groups) > (groups) 

gives rise to a functor on reduced spaces (3.1) 

J0 G) (simplicial groups) 
T(dimensionwise) 

-> (simplicial groups) ~)J0 

and if T is the R-completion functor for groups (2.2), then the 

resulting functor ~fG is homotopically e~uivalent to the R-comple- 

tion functor for spaces R . In fact, the following somewhat strong 

result holds: 

4.1 Proposition. The map 

~: {Id} > {ZlRsK( , i)} 

is an R-tower of grou~ functors and hence (3.3), for ever[ X ¢ J0' 

the towers of fibrations 

{~IRsK(GX, i) } and {RsX} 

have the same "weak pro-homotopy type" and (2.4) the space s 

^ 

W(GX) R = ~im WZlRsK(G, i) and R X 

have the same homotopy type. 
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For R = Z and R = Z one also has: 
P 

4.2 Proposition. Let {Fs} denote the lower central series 

functors [Curtis (H)] and let R = Z (the integers). Then the 

natural map 

{Id} > {Id/~} 

is an R-tower of group functors and hence (3.3), for every X £ J0' 

the towers of fibrations 

{W(GX/~sGX)} and {RsX} 

have the same "weak pro-homotop~ type". 

4.3. Proposition. Let p be a prime, let {~(P)}-- denote the 

p-lower central series functors [Rector (AS)] and let R = Z (the 
P 

integers modulo p). Then the natural map 

{Id} > {Id/Fs (P) } 

is an R-tower of group functors and hence (3.3), for every X e J0' 

the towers of fibrations 

{W(GX/Fs (P) GX) } and {RsX} 

have the same "weak pro-homotopy type". 

We give here a proof of proposition 4.1 which uses proposition 

4.2. A proof of proposition 4.2 will be given in §7 and uses, in 

turn, proposition 4.3, which we prove in §6. 
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Proof of 4.1 (usin@ 4.2). It is not hard to see, using Ch.II, 

2.5 and Ch. III, 5.5, 5.6 and 5.8, that condition 3.2(i) is satisfied. 

To prove condition 3.2(ii) we observe that, by 4.2 and Ch. III, 

6.6, the map 

{~iRsK(F, i) } > {~iRsK(F/Fs F, i) } 

is a pro-isomorphism for all i and the following two lemmas now 

imply the desired result. 

4.4 Lemma. If B is a torsion-free nilpotent group, then 

{~iRsK(B, i)} is pro-trivial for all i > I. 

Proof. The case where B is torsion-free abelian follows from 

the fact [Bousfield-Kan (HS), §15] that in the homotopy spectral 

sequence of K(B, i) (Ch.I, 4.4) 

~'t(~(B, i); R) -- 0 for t-s / 1 

The general case follows from Ch.III, 3.6 because the upper central 

series of B has torsion free abelian quotients [Lazard, p.160]. 

4.5 Lemma. I_~f {ZiRsK(B, i) } is pro-trivial for i > i, then 

the maps 

{Hi(B; R)} > {Hi (ZlRsK (B , i); R)} 

are pro-isomorphisms for i h 0. 

Proof. As the Postnikov map {RsK(B, i)} ~ {(RsK(B, i)) (I) } is 

a weak pro-homotopy equivalence, Ch. III, 3.4 implies that the maps 
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{H i(RsK(B, i) ; R) } ) {Hi((RsK(B , i)) (i); R)} 

are pro-isomorphisms and the desired result now follows from the fact 

that, by Ch. III, 6.5, the maps 

{Hi(K(B, i); R)} > {Hi(RsK(B , i); R)} 

are also pro-isomorphisms. 
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§5. Applications 

In this section we give several applications of 4.1. 

We start with a slight strengthening of the relative connectiv- 

ity lemma of Ch.I, 6.2 and show that "the homotopy type of R X i__n_n 

dimensions ~ k" depends only on "the homotopy type of X in 

dimensions < k". 

5.1 Proposition. Let k ~ 0 and let f: X + Y e ~0 be such 

that ~if: ~i x ÷ ~i Y is an isomorphism for i ! k and is onto for 

i = k+l. Then the induced map ~iR f: ~iR X ÷ ~iR Y is also an 

isomorphism for i ! k and onto for i = k+l. 

Proof. We may assume that f is i-I in dimensions ! k and is 
^ 

onto in dimension k+l. Then W(Gf) R has the same properties and 

the desired result thus follows from 4.1. 

For a simplicial group L one can apply the spectral sequence 

of a double simplicial group of [Quillen (SS)] to the double 
^ 

sim~licial group GK(L, i) R and get 

5.2 Proposition. For any simplicial group L there is a first 

quadrant spectral sequence with 

E 2 = ~q~pR K(L, i) 
P,q 

which converges to ~p+qR WB. 

Another immediate consequence of 4.1 is: 
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5.3 Proposition. Let F be a free @roup. 

^ 

~IRK(F, i) = F R 

Then 

~.R K(F, i) = , for i ~ i. 

Using this we can now prove (see Ch.I, §5): 

5.4 Proposition. Let F be a free group on a countable 

number of generators, and let R = Z or R = Zp. Then K(F, i) 

R-bad, i.e. (Ch.I, §5) the map H,(K(F, i); R) ÷ H,(R K(F, i); R) 

not an isomorphism. 

is 

is 

Proof. We assume here R = Z, but a similar proof, using the 
^ 

lower p-central series, works for R = Zp. Writing F instead of 
^ ^ ^ 

FZ, it clearly suffices to show that the map F/~F + F /~F is 

not onto. 

Let xi, j (i > j) denote the generators of F, let 

where 

i.e. 

b = [x2,1, x2,2] ... [Xn,l, ..., Xn,n] --. e F 

^ 

[ ,..., ] is the simple commutator, and assume that b e F2 F , 

b can be written 

b = [Ul, u 2] --- [U2k_l, U2k] 

^ 

Ui e F . 

Let F n denote the free group on the generators Xn,l,-.., Xn, n 

let Pn: F ÷ F n be the projection. Then 

and 

^ 

pn b = [Xn, I, "'',Xn, n] 

^ ^ ^ ^ ^ 

= [Pnul,PnU2 ] ... [PnU2k_l,PnU2k ] e F n. 

A straightforward computation shows that [Xn,l,'-',Xn,n] does not 
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lie in the subgroup of F n generated by ~ ~F n and Fn+iFn and 
^ 

hence there is, for each n, at least one i such that PnUi has 

non-zero image in Fn/~F n. But this contradicts the fact that, for 
^ 

each j, there is only a finite number of n's such that PnUi has 
^ 

non-zero image in Fn/~F n. Hence b + ~F . 

5.5 Remark. Proposition 5.4 can certainly be improved, but we 

do not yet know the best possible result. It should not be hard to 

show that K(F, i) is R-bad for any (solid) ring R and any 

infinitely generated free group F. However, it is an open question 

whether K(F, I) is Zp-bad or Zp-good if F is a finitely generated 

free group, although we know that K(F, i) is Z-bad for some finite- 

ly generated free @roup F. This follows because the pro~ective 

plane p2 is Z-bad (Ch.VII, §5) and because one can show, for any 

(solid) ring R, that if K(F, i) were R-good for every finitely 

generated free group F, then all spaces X e J of finite type (i.e. 

X n finite for all n) would also be R-good. 

Another application of §4 is the following generalization to 

nilpotent spaces, of 

5.6 The Curtis convergence theorem. For X e J*C [Curtis (H), 

p.393] defined the lower central series spectral sequence {E~,tX} 

using the homotopy exact couple of the lower central series filtra- 

tion 

GX = ~IGX D F2GX D ... 

and showed that the initial term 

E 1 s,t x = ~t ( FsGX/Fs+l Gx) : ~t Ls (GX/r2GX) 
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depends only on H,(X; Z). Moreover [Curtis (H)] and later [Quillen 

(PG)] showed that, for X simply connected, {E~,tX} conver@es 

st ron~ly to z,X, thereby giving a "generalized Hurewicz theorem". 

Now let X E J*C be nil~otent. Then 

{X} -----> {x} and {X} > {W(GX/FsGX)} 

both satisfy the conditions of the Z-nilpotent tower lemma (Ch.III, 

6.4) and hence one immediately gets the following generalization of 

the Curtis convergence theorem to nilpotent spaces: 

If X c J*C is nilpotent, then the tower map 

{~tGX} > {nt(GX/FsGX) } 

is a pro-isomorphism for t ~ 0 and hence {E~,tX) 

strongly to ~.X in the following sense: 

E r 
s,t 

o~ 

E 
s,t 

quotients of a finite filtration of 

conver@es 

(i) For each (s,t) there exists a number r0(s,t) such that 

= Es, t for r > r0(s,t). 

(ii) For each t there exists a number s0(t) such that 

= 0 for s > s0(t). 

E = (iii) For each t, the terms EI,tX, -.. , s0(t),tX are the 

~tGX z ~t+l x. 

We end with indicating how the result of 4.1 can be generalized 

to 

5.6 Fibre-wise R-completions. For this one generalizes the 

"R-completion of a group" to a "fibre-wise R-completion of a group 

homomorphism" as follows: 

For a group homomorphism L ÷ M, its fibre-wise R-completion will 

be the map LR ÷ M in the commutative diagram of groups and 
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homomorphisms 
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* )K )L )M 

[: I I o 
* ) KR > LR ) M 

in which both rows are exact and in which 

generators 

(l,h) 

LR is the group with 

^ 

1 e L, h e K R 

and relations 

^ 

(ik,h) = (l,kh) k e K, 1 e L, h e K R 

^ 

(l,h) (l',h') = (ll',l'(h)h') i,I' e L, h,h' e K R 

where, for k E K, we denote by the same symbol its images in L and 
^ 

KR, and where, for i' e L, we use the same symbol to denote the 
^ 

automorphism of KR, which is the R-completion of the automorphism of 

K which, in turn, is the restriction of the inner automorphism of L 

induced by i'. 

Using this it is now not hard to construct, for a fibration 
^ 

X ÷ B ~ J0 with fibre F, a fibration with B as base, W(GF) R as 

fibre and of which the total space 

^ 

W(GX) R X~G B B 

has the same homotopy type as the fibre-wise R-completion R X of 

Ch.I, §8. 
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§6. Proof of proposition 4.3 

We have to prove that for every free 9roup 

{Hi(F; Zp)} ) {Hi(F/%(P)F; Zp)} 

is a pro-isomorphism for all i ~ 0. 

F the map 

For this we need the following result of [Stallings] : 

6.1 Lemma. If N is a normal subgroup of a 9roup B, then 

there is a natural exact sequence 

H2(B; Zp) --> H2(B/N; Zp) --9 N/(B#N) ---> HI(B; Zp) ~ HI(B/N; Zp) --) * 

B#N is the subgroup of N generated by all elements of the where 

form 

bnb-ln -1 b e B, n e N 

n P n c N. 

Using this we prove: 

is zero for all 

6.2 Lemma. If F is a free group, then the map 

H2(F/[- (P)F'~ps , Zp) > H2(F/~s(P)F; Zp) 

s > I. 
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Proof, Applying 6.1 to 

H2 (F/Fs (P) F; Zp) 

and the lemma now follows from the fact that 

~ (P)F ~ F one obtains 

% (P) F/(F# Fs (p) F) 

(P)F c F#rs (p) F. s 

Next we show 

6.3 Lemma. If F is a finitel[ generated free group, then 

the map 

{Hi(F; Zp)} > {Hi(F/~s(P)F; Zp)} 

is a pro-isomorphism for all i ~ 0. 

Proof. Since 

Hi(F; Zp) z Hi (F/ Fs (P) F; Zp) i= 0, 1 

= , i > 2 

it suffices to prove for i _> 2 

(6.3)i: The pro-abelian ~roup {Hi(F/Fs(P)F; M s ) } is pro- 

trivial for any tower {M s } such that 

(a) each M s is a module over the Zp-group ring of F/Fs(P)F, 

(b) each M s is finitely generated as a Zp-modul_______~e, 

(c) each tower map M s + Ms_ 1 is e~uivariant with respect to 

F/q(P)F ÷ F/C (P)w 
's-i -" 

To verify that (6.3) i implies (6.3)i+ 1 for i >_ 2, let R s 

denote the Zp-group ring of the finite group F/F s(p)F and define 
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K s by the short exact sequence 

0 > K s > R s ® M s 
mult. 

>M >0 
s 

of R -modules. Then 
s 

{Hi+ 1 (F/rs (p) F; z M s ) } {Hi(F/~s(P)F; K s ) } 

since Hn(F/Fs(P) F; R s ® M s ) = 0 for n > 0. It thus suffices to 

show (6.3) 2 . 

R be the augmentation ideal and take the For this let I s s 

filtration 

M s D IsMs D ... D (Is)JMs D ... 

Since the finite p-group F/Fs(P)F must act nilpotently on the 

finite abelian p-group M s [Hall, p.47], it follows that (Is)qM s = 0 

for some q, depending on s. Moreover 6.2 implies that 

{H 2(F/Fs (p)F; (I s ) JMs/(I s ) J+IM s) } 

is pro-trivial for each j, since the coefficients are not twisted 

and (6.3) 2 now readily follows. 

To generalize lemma 6.3 to proposition 4.3 we need the notion of 

6.4 Functors of finite de@ree. A functor 

T: (pointed sets) > (abelian ~roups) 

is said to be of finite de~ree if 

(i) T* = 0, and 
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(ii) there is an integer d ~ 0 such that, for every pointed 

set X, the abelian group TX is generated by the subgroups 

TX C TX, where X c X runs through the pointed subsets of X 

with ! d elements other than *. 

This definition readily implies: 

6.5 Proposition. If T is of finite degree and a e TX is 

non-zero. Then there is a map of pointed sets f: X ÷ Y such that 

(i) (Tf) a ~ 0, and 

(ii) Y is finite. 

Proposition 4.3 now follows easily from this proposition, 6.3 

and 

6.6 Lemma. Let 

F: (pointed sets) > (groups) 

denote the functor which assigns to a pointed set X the free ~roup 

generated by X with the relation * = i. Then the functors 

Hi(FX/Fs(P)Fx; Zp) 

are of finite degree for all i and s. 

Proof. This is verified by induction on s, using the 

Hochschild-Serre homology spectral sequence for 

Fs(P)Fx/C (P)~Y (P) (P)Fx s+l -- Fx/ +i rx > Fx/Fs 

and the fact that each of the functors 
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Hi ( ~s (p) FX/'s+iC (P)_~X; Zp) 

is of finite degree because ~(P)Fx/~+IC (P)~Y~ z L(P) (ZpX)s where 

L(P) (Zp X ) s  is the s-th component of the free restricted Lie algebra 

(see [Rector (AS)]) generated by Z X. 
P 



Ch. IV, §7 123 

§7. Proof of proposition 4.2 (using 4.3) 

We have to prove that, for every free group F, the maps 

{Hi(F; Z) } > {Hi(F/FsF; Z) } 

a r 9 pro-isomorphisms for all i ~ 0. 

To do this recall from [Curtis (L)] that 

Fs~/Fs+l r = ~s (r/F2F) s >_ 1 

where L s is the s-th component of the free Lie ring functor. The 

argument of the second half of §6 then shows that one only has to 

consider finitely generated F. In that case, however, each of the 

groups Hi(F/FsF; Z) is also finitely generated, and thus it 

suffices to show that the maps 

{H i(F; R) } > {H i(F/rsF; R) } i > 0 

are pro-isomorphisms for R = Q and R = Zp, p ~rime, or equivalent- 

ly (Ch.III, 6.6): 

7.1 Lemma. If F is a free group, then the maps 

{~iRsK(F, i) } > {~iRsK(F/Fs F, i) } i >_i 

are pro-isomorphisms for R = Q and R = Zp, p prime. 

This is an easy consequence of the following four lemmas: 
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7.2 Lemma. For every ~roup B and (solid) rin~ R, the map 

{~IRsK(B, i) } > {nlRsK(B/FsB, i) } 

is a pro-isomorphism. 

Proof. As (2.1(iii)) the groups ~IRsK(B, i) and 

~IRsK(B/~s B, I) are nilpotent for 0 ! s < ~, it suffices to show 

that, for every R-nilpotent group N, 

lim HOm(groups)(~IRsK(B, i), N) z Horn(groups) (B, N) 

lim HOm(groups) (~IRsK(B/Fs B, i) , N) z HOm(groups) (B, N) 

and this is an easy consequence of 2.4 and the easily established 

fact that 

lim HOm(groups) (B/FsB , N) z Horn(groups) (B, N) . 

7.3 Lemma. If F is a free qroup and R is a (solid) ring, 

then {~iRsK(F/Fs F, I) } is pro-trivial for i > I. 

This follows immediately from 4.4: 

7.4 Lemma. If F is a free group and R = Z 
P 

{~iRsK(F; I)} is pro-trivial for i > 1. 

(p prime), then 

Proof. By 4.3 the maps 

{Hi(F; R) ) > {Hi(F/Fs(P)F; R)} i > 1 
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are pro-isomorphisms and hence, by Ch.III, 6.6, so are the maps 

{~iRsK(F, i) } 

Since K (F/Fs (p) ' i) 

that each 

) {~iRsK(F/~s(P)F, i) } i > i. 

is R-nilpotent, it follows from Ch. III, 5.3 

{~iRtK(F/Fs(P) F, i) } i, s > 1 

is pro-trivial and this readily implies the lemma. 

7.5 Lemma. If F is a free group and R = Q, then 

{~iRsK(F, i)} is pro-trivial for i > 1. 

Proof. It was shown in [Bousfield-Kan (PP), 15.6] that for a 

pointed connected space X the homotopy spectral sequence (Ch.I, 4.4) 

satisfies 

H, (X; Q) 
E2(X; Q) z P Cotor (Q, Q) 

where P denotes the primitive element functor. It follows that 

s,t 
E 2 (K(F, i) ; Q) z Ls+IH I(K(F, i) ; Q) 

= 0 

t-s = 1 

t-s ~ 1 

where Ls+ 1 is as in the beginning of this section. This easily 

i m p l i e s  t h e  lemma. 
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Chapter V. R-localizations of nilpotent spaces 

§i. Introduction 

The main purpose of this chapter is to show that, for R c Q, 

the R-completion of the preceding chapters is a localization with 

respect to a set of primes, and that therefore various well-known 

results about localizations of simply connected spaces remain valid 

for nil~otent spaces (i.e. spaces for which, up to homotopy, the 

Postnikov tower can be refined to a tower of principal fibrations). 

In more detail: 

§2 contains some algebraic preliminaries and deals with a 

Malcev completion R ~ N, which is defined for every nilpotent group 

N and ring R c Q, and which we use quite frequently in this 

chapter. 

§3 Here we prove that, for a nilpotent.space X, the homotopy 

(and integral homology) groups of the R-completion of x are the 

Malcev completions of the homotop~ (and integral homolo@~) groups of 

X. We also list some easy consequences of this and obtain a strong 

convergence result for the homotopy spectral sequence {Er(X; R)} 

(Ch.I, 4.4) of a nilpotent space X. 

§4 In this section we observe that the main result of §3 

implies that the usual notion of R-localization for simply connected 

spaces generalizes to nilpotent spaces and, moreover, is merely an 

"up to homotopy" version of the R-completion. we also recall several 

basic properties of localizations. 
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§5, §6 and §7 The last two of these sections deal with a prime 

fracture lemma and a fracture square lemma, which both state that, 

under suitable conditions, a homotopy classification problem can be 

split into a "rational problem" and "problems involving various 

primes or sets of primes". In preparation for the proof of these 

fracture lemmas, we generalize (in §5) the main result of §3 to 

function spaces. 

§~8 Here we use the prime fracture lemma to obtain a prime 

fr_acturing of H-spac e structures for H-spaces, which have the integral 

homology of a finite space (but need not be simply connected). 

§_~9 discusses the zabrodsky mixing of nilP0tent spaces and how 

this can be used, in conjunction with the fracture square lemma, to 

construct H-spaces which have the integral homology of a finite space. 

Notation. In this chapter we will mainly work in the category 

J*C of pointed connected spaces and in its full subcategory J*N of 

pointed connected nilpotent spaces. 

And, of course, throughout this chapter, even when we forget to 

mention it, the ring R will alwa[s be a subring of the rationals Q. 
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§2. Malcev completions for nilpotent groups 

We discuss here, for every nilpotent group N and ring R c Q, 

a Malcev completion R ® N, which will be used in subsequent 

sections to describe homotopy groups and other invariants of R-com- 

pletions of nilpotent spaces. This terminology is justified by the 

fact that, for R = Q, the group R ® N is the Malcev completion of 

[Malcev] and [Quillen (~I)]; we use the notation R ® N because the 

functor R@ - behaves very much like an ordinary tensor product and, 

in fact, for abelian N, is an ordinary tensor product. 

The algebraic results of this section are well-known for R = Q 

[Malcev], [Quillen (~I)]; for R + Q they are implicit in [Lazard]. 

However, with our present machinery, we can avoid the complicated 

algebra used by these authors. 

We start with two propositions: 

2.1 Proposition. If N is an abelian group and 

there are natural isomorphisms 

^ 

~IR~K(N, i) z N R z R @ N. 

R c Q, then 

Moreover {~iRsK(N, i)} is pro-trivial for all i > 1 and hence 

~iR K(N, i) = * for i ~ i. 

Proof. One proves, as in Ch. IV, 4.4, that {~iRsK(N, i)} is 

pro-trivial for i > i. The rest of the proposition then readily 

follows from Ch. IV, 2.2 and 2.4. 
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Combining this with Ch. IV, 2.4 and Ch. III, 3.6 one gets: 

2.2 Proposition. If N is a nil potent group and R c Q, then 
^ 

N R is .Rcnilpotent (Ch. III, 5.1) and there is a natural isomorphism 

^ 

~IR K(N, i) z N R . 

Moreover {~iRsK(N, i)} is pro-trivial for i > 1 and hence 

wiR~K (N, i) = * for i ~ i. 

In view of this we now define 

2.3 The Malcev completion of a nilpotent group (for R c Q). 

For a nilpotent group N and ring R c Q we define the Malcev 

completion R ® N by 

^ 

R ® N = N R 

or equivalently (2.2) 

R ® N = ZlR K(N, i). 

Clearly R ® N is natural in R and N and comes with a natural 

map 

~: N >Re N 

induced by the natural map ~: N ÷ N R or equivalently the natural 

map ~: K(N, i) ÷ R K(N, I). 
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The rest of this section is devoted to showing that R ~ N has 

all the expected properties: 

2.4 

groups 

Exactness property. Every short exact sequence of nilpotent 

* >N' )N >N" ) * 

induces a short exact sequence 

• ) R ® N' ) R ® N ) R ® N" > * 

Proof. This follows from 2.6, since, by Ch. III, 4.4 and 4.8 

R K(N', I) > R K(N, i) ) R K(N", i) 

is, up to homotopy, a fibration. 

2.5 Universal ~roperty. 

(i) R ® N is R-nilpotent (2.2), 

(ii) the map #: N + R ® N is universal for ma~s from N to 

R-nilpotent groups, and 

(iii) the map ¢: N ÷ R ® N is an isomorphism if and only if 

N is R-nilpotent; in particular, the map N + Z ® N is always an 

isomorphism. 

The proof is straightforward. 

To give this universal property the same form as that of 

[Quillen (RH), p.278] for R = Q, we define: 
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2.6 Uni~uel[ J-divisible ~roups. Let J be a set of primes. 

A group G then is called uniquely J-divisible, if, for each prime 

p e J, the p-th power function 

-P: G ) G 

is a bijection. Then one has the following 

2.7 Characterization of R-nilpotent ~roups (for R c Q). Let 

J be a set of primes, and let R = Z[J -I] (Ch.I, §9). A nilpotent 

group N then is unique l[ J-divisible if and only if it is R-nil- 

potent. 

Proof. It suffices to prove: 

(i) If, in a central ~roup extension 

* ) G' ) G ) G" > * 

two of the groups are uniquel~ J-divisible, then so is the third. 

(ii) The center of a nilpotent uniquely J-divisible grou~ is 

also uniquely J-divisible. 

Statement (i) is trivial and (ii) follows from the observation 

of [Lazard, p.159] that [x r, y] = 1 implies [x, y] r(c-l) = i, 

where x and y are elements in a nilpotent group of class ! c 

and [ , ] denotes the commutator. 

2.8 The kernel and image of the map #: N + R ® N. Let J be 

a set of primes and let R = Z[J -I] (Ch.I, §9)" Then 

(i) the kernel of ~: N ÷ R ® N consists of the J-torsion in 

N, i.e. the elements u e N such that u r = 1 for some integer r 
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of which all the prime factors are in J, and 

(ii) for every v s R ® N, there exists an integer r ~ l, of 

which all the prime factors are in J, such that v r is in the image 

of the map ~: N ÷ R @ N. 

Proof. This follows by an easy inductive argument, using the 

ladders of central extensions 

> %N/%+IN > N/Fs+I N > N/F~N "~* 

1 I 
a ~ ~ /Fs+ l  ~ )R e N/Fs N ; ,  

where the % denote the lower central series functors (see [Curtis]% 

2.9 Proposition. If R, R' c Q, then the obvious map (2.5) 

R ® (R' ® N) ) (R ® R') ® N 

is an isomorphism. 

Proof. This is obvious if N is abelian and the general case 

follows inductively. 
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§3. Homotopy and homology properties of the 

R-completion of a nilpotent space (R c Q) 

Our main purpose is to show: 

3.1 P rgposition. If X e J*N (i.e. X is pointed connected 

and Z-nilpotent in the sense of Ch. III, §5) and, of course, R c Q, 

then 

(i) R X is R-nilpotent and so are the 9roups 

w,R X and H,(R X; Z) 

(i i) The canonical maps (2.5) 

R ® ~,X ) ~,R X and R ® H,(X; Z) ) H,(R X; Z) 

are isomorphisms. 

(Note that an abelian group is R-nilpotent if and only if it is an 

R-module). 

Before proving this we list some easy consequences for the 

homotopy and homology properties of R X. It turns out that the 

roles of z, and H,(-; Z) are symmetric. We also obtain a strong 

convergence result for the homotopy spectral sequence {Er(X; R)} 

(Ch.I, 4.4) of a nilpotent space. 

3.2 Proposition. For a map f: X + Y e J*N' the following 

statements are equivalent: 

(i) f induces a homotopy equivalence R X = RaY. 

(ii) f induces an isomorphism R @ ~,X z R ® z,Y. 
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(iii) f induces an isomorphism H,(X; R) z H,(Y; R) . 

(Note that H,(X; R) z R ® H,(X; Z)). 

Proof. In view of Ch.I, 5.5, (i) is equivalent to (iii) and, in 

view of 3.1, (i) is equivalent to (ii). 

3.3 Proposition. 

equivalent: 

(i) 

(ii) 

(iii) 

(iv) 

For a space X e J*N' the followin~ are 

H,(K; R) = H,(L; R), then it induces a bijection 

pointed homotopy classes of maps (Ch.VIII, §4). 

X is R-complete (i.e. X = R X). 

The groups ~n x are R-nilpotent. 

The ~roups Hn(X; Z) are R-nilpotent. 

Whenever a map f: K ÷ L e J, induces an isomorphism 

[L, X] z [K, X] of 

Proof. This is an easy consequence of 3.1 and 3.2, and Ch. II, 

2.8. 

3.4 Proposition. Eyer[ space X e J*N is R-good, i.e. the 

natural map H,(X; R) + H,(R X; R) is an isomorphism. 

This is immediate from 3.1. 

Combining 3.4 with Ch. II, 2.8 one gets: 

3.5 Proposition. If X e J*N' then the natural map ~: X ÷ R X 

induces, for every W e J*C' an isomorphism of pointed homo topy 

classes of maps (Ch.VIII, §4) 

[R X, R W] z [X, R W]. 
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3.6 Example. For R c Q and n k 1 there is an isomorphism 

[R S n, R S n] z nnR S n z R 

which assigns to each map f: R S n + R S n 

deg f e R. 

the obvious degree 

We conclude with a 

3.7 Curtis convergence theorem for R c Q. If X e J*N and 

R c Q, then the homoto~ spectral sequence {Er(X; R)} (Ch.I, 4.4) 

converges strong l~f to 

(i) {Er(X; R) } 

> i. 

(ii) 

~,R X z R ® z,X in the following sense: 

is Mitta~-Leffler (Ch.IX, 5.5) in all dimensions 

For each i ~ i, there exists a number s0(i) such that 

ES'S+i(x;~ R) = 0 for. s > s0(i) . 

(iii) For each i k i, the terms 

s 0(i), s 0(i)+i 
E O,i(X; R), ..- , E (x; R) 

are the quotients, of a finite filtration of 

~iRX z R ® niX. 

This convergence result was initially proved in [Bousfield-Kan 

(HS), §6] for simply connected spaces by combining Curtis' fundamental 

theorem (Ch. IV, 5.6 and [Curtis (H)]) with some ad-hoc simplicial 

arguments. Our present approach is much more direct; it is essen- 

tially the same as our generalization to nilpotent spaces (Ch. IV, 5.6) 

of Curtis' original theorem. 
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Proof of 3.7. If R = Z, then (Ch.III, 6.4) the map 

{X} ÷ {RsX} is a weak pro-homotopy equivalence and this immediately 

implies the desired result. 

The general case now follows from the fact that 

Er(X; R) ~ R ~ Er(X; Z) for R c Q and 1 ! r < ~. 

Finally we give the 

Proof of 3.1. First consider the case that X = K(G, n) with 

G abelian. Then the obvious map K(G, n) ÷ K(R ® G, n) induces an 

isomorphism on R-homology and the desired result follows from Ch.I, 

5.5 and Ch. II, 2.7. 

Next suppose that F ÷ E ÷ B e J*C is a principal fibration and 

that the proposition is already proved for X = F and X = B. Then 

R F ÷ R E + R B e J*C is (by Ch. II, 2.2), up to homotopy, a principal 

fibration and thus (Ch. III, 5.5) R E is R-nilpotent. It follows 

that ~,R E is R-nilpotent and, using the obvious homotopy exact 

sequences, one shows that R ® n,E z n,R E. Using the obvious Serre 

spectral sequences one shows that H,(E; R) z H,(R E; R) and that 

H,(R E; Zp) = 0 for each p e J, where R = Z[J-I]. Hence 

H,(R E; Z) is R-nilpotent and R ® H,(E; Z) z H,(R E; Z). Thus the 

proposition holds for X = E. 

The general case now follows from Ch.I, 6.2. 
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§4. R-localizations of nilpotent spaces (R c Q) 

Following [Quillen (RH)], [Sullivan], [Mimura-Nishida-Toda] and 

others in the simply connected case, we introduce the notion of an 

R-localization of a nilpotent space, and show that it is merely an 

"up to homotopy" version of our R-completion. We then deduce that 

the R-completion preserves, up to homotopy, various basic construc- 

tions and end this section with an easy example of an R-localization, 

obtained as an infinite mapping cylinder. 

4.1 R-localizations. For X e J*N and, of course, R c Q, an 

R-localization of X is a map X ÷ ~ e J*N such that either of the 

following (equivalent by §3) conditions hold: 

(i) The groups ~,~ are R-nilpotent and the canonical map 

R ® ~,X ÷ ~,~ is an isomorphism. 

(ii) The groups H,(~; Z) are R-nilpotent and the canonical 

map R ® H,(X; Z) ÷ H,(~; Z) is an isomorphism. 

The results of §3 then immediately imply: 

4.2 Proposition. R-localization is well-defined and functorial 

on the pointed homotop[ cate~or~ of nilpotent spaces. It is induced 

by the functor R . 

4.3 Homotop~ characterization of R X. For X ~ J*N (and, of 

course, R c Q), the R-completion X + R X is an R-localization, 

and, in the pointed homotop[ category, any R-localization X + ~ i__ss 

canonically equivalent to X ÷ R X. 

Next we show that, up to homotopy, the R-completion preserves 
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various constructions (R c Q). 

We already have, from Ch. II, 4.4 and 4.7 a 

4.4 Fibre lemma. Let p: E + B e J*N be a fibration with 

~i E ÷ ~i B onto. Then R p: RoE ÷ R B is a fibration, and the 

inclusion R (p-l*) ÷ (R p)-l, is a homotopy equivalence. Moreover 

the fibre p-l, E J'N" 

There is a corresponding 

4.5 Cofibre lemma. Let i: A ÷ X e J*N be a cofibration (i.e. 

in~ection) with ~i A ÷ ~I x onto. Then R i: R A ÷ R X is a 

cofibration and the obvious map R X/R A ÷ R (X/A) is a weak equiv- 

alence. 

Proof. It is easy to check that R always preserves cofibra- 

tions. Since nl A ÷ ~i X and R ® ~i A + R ® ~i x are onto, it 

follows that the cofibres X/A and R X/R A are 1-connected. A 

homology argument now shows that X/A ÷ R X/R A is an R-localization, 

so the lemma follows from 4.3. 

in 

Some more "preservation properties" of R (R c Q) are given 

4.6 Proposition. If X, Y £ J*N then, in the pointed homotopy 

category, there are canonical equivalences 

(i) R (SX) ~- SR X, where 

(ii) R (~X) : ~R X, where 

p.99] and X is 1-connected. 

(iii) R (X×Y) -- R X x R Y 

S denotes the sus~ensign [May, p.124] 

denotes the loop functor [May, 
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(iv) 

(v) 
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R (XvY) = R X v R Y, where 

R (X^Y) = R X ^ R Y 

X and Y are 1-connected. 

Proof. The obvious maps 

SX > SR X X × Y ~ R X x R Y 

X q Y > R X ~ R Y 

~X ) ~R X X ^ Y ) R X ^ R~Y 

are clearly R-localizations, so the proposition follows from 4.3. 

R-localizations can often be constructed by direct limit methods 

using: 

4.7 Infinite mapping cylinders. For an infinite sequence of 

maps 

X0 f0 fn 
> ... ... 

"*c 

the infinite mapping czlinder is the space X ~ e J*C obtained from 

the disjoint union of the pointed mapping cylinders I I M(fn), by 
n 

identifying for all n 

X n c M(f n) with X n c M(f n-l) 

It is easy to show that the inclusions X n c X ~ induce natural 

isomorphisms 

lim ~,X n z z,X ~ 

lim H,(xn; G) z H,(X~; ~ for G abelian. 
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We end with applying this to an example of an 

4.8 R-localization for loop spaces and suspensions. Let 

X c J*N be fibrant (i.e. X + * is a fibration) and assume that X 

has the homotopy type of a loop space (resp. a suspension). Then, 

for each positive integer n, there is a map n: X + X e J*N' which 

induces "multiplication by n" 

n: ~,X > ~,X (resp. n: H, (X; Z) > H, (X; Z)) . 

Now let n I, n 2, n 3, "-- be a sequence of positive integers such 

that the prime factors of each n i lie in J (where R = Z[J-I]), 

and each prime in J occurs as a factor of infinitely many n i. Then 

it is easy to show that the inclusion of X 0 = X in the infinite 

mappin~ cylinder X ~ of 

n I n 2 n 3 
X ° = X ) X ) X ) ... 

is an R-localization, i.e. X ~ = R X. 

This construction, of course, works also for H-spaces and 

nilpotent co-H-spaces. 
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§5. R-localizations of function spaces 

In preparation for the fracture lemmas (§6) we show here that 

the homotopy types of the pointed function spaces (Ch.VIII, §4) 

hom,(W, X) and hom, (W, R X) 

are often closely related. 

We start with a proposition which implies that, under suitable 

conditions, the R-completion of any component of hom,(W, X) has the 

same homotopy type as the corresponding component of hom,(W, R X). 

5.1 Proposition. Let X e J*N be fibrant, let W e J*C be 

finite (i.e. have a finite number of non-degenerate simplices) and 

R ~ Q. Then, for every map let, of course, 

all i ~ i, 

(i) ~i(h°m* (W, X) , f) 

(ii) 

(iii) 

is nilpotent, 

f: W + X e J*C and 

~i(hom,(W, R X), #f) is R-nilpotent, and 

the map #: X ÷ R X induces an isomorphism 

R ® ~i(h°m* (W, X) , f) z ~i(h°m* (W, R X) , ~f) 

To prove this we need 

5.2 Lemma. If E ~ B e ~ is a fibration such that every compo- 

nent of E is nilpotent, then every component of every fibre is also 

nilpotent. 

Proof. Choose a base point * e E and let F be the fibre 

containing it. Then ~i F acts on the resulting long exact homotopy 
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sequence and the desired result follows easily from Ch. II, 4.2. 

Proof of 5.1. We may assume that W is reduced (i.e. has only 

one vertex) and show first, by induction on the skeletons of W, that 

every component of hom.(W, X) is nilpotent. Clearly 

hom, (W [0] X) = * 

Furthermore the map 

hom, (W [k] , X) ) hom, (W [k-l] X) k ~ i, 

is, up to homotopy, a fibration induced from the obvious map 

hom,(W [k-l] , X) > hom,(V, X) 

where V is a wedge of boundaries of standard k-simplices (Ch.VIII, 

2.12), and the desired result follows from lemma 5.2. 

The rest of the proposition is now easy to prove, using 3.1, 2.4 

and, again, induction on the skeletons of W. 

The relation between the sets of components of hom,(W, X) and 

hom,(W, R X), i.e. the relation between the pointed homotopy classes 

of maps (Ch.VIII, §4) 

[W, X] and [W, R X] 

is not so easy to describe. Of course one has 

5.3 Proposition. Let X e J*N be fibrant, let W c J*C be 

finite and let either W be a reduced suspension [May, p.124] or X 

be a homotopy associative H-space (Ch.I, 7.5). Then 
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(i) 

(ii) 

(iii) 

[W, X] is a nilpotent group, 

[W, R X] is an R-nilpotent group, and 

the map ~: X + R X induces an isomorphism 

R ~ [W, X] = [W, R X]. 

Proof. If W is a reduced suspension, then the proof goes as 

in 5.1. 

If 

p.10] X 

X is a homotopy associative H-space, then [Stasheff (H), 

has a homotopy inverse and thus [G.W. Whitehead] [W, X] 

is a nilpotent group. Furthermore, by Ch.I, 7.5, R X is also a 

homotopy associative H-space. The rest of the proof proceeds as in 

5.1. 

In general, however, the sets [W, X] and [W, R X] do not 

come with a group structure. Still it is possible to make some use- 

ful statements (5.5) by observing that for every map f: W ÷ X 

there are subsets 

[W, X]f c [W, X] and [W, R X]#f c [W, R X] 

which have a ~rou~ structure and which we call 

5.4 Neighborhood groups. Let X ¢ ~*C be fibrant, let W E ~*C 

be finite and reduced and let n = dim W (i.e. W has at least one 

non-degenerate n-simplex and W [n] = W). Then one has, up to homotopy, 

a fibration 

hom, (W, X) ~ > hom, (W [n-l] , X) P~, horn, (V, X) 

where V is a wedge of boundaries of standard n-simplices (Ch.VIII, 

2.12) and thus, for every map f: W + X, the corresponding long exact 
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homotop[ sequence 

P, 
Zl(h°m* (W [n-l] , X) , flW [n-l]) > ~l(h°m* (V, X) , flV) 

J* [n-l] , iw[n-l] 
) ~0(h°m* (W, X) , f) > ~0 (hom, (W , X) f ) ) • 

Using this we now define the neighborhood ~roup 

be the ~roup 

[W, X] f of f to 

[W, X]f = coker p, 

which is abelian if n ~ 2; and which, as a set, is also given by 

[W, X]f = ker j, c ~0hom,(W, X) = [W, X] 

i.e. [W, X]f consists of all u E [W, X] such that 

ui W[n-l] = f]W [n-l] 

Using 5.1 and the definition of [W, X]f it is now not hard to 

prove: 

5.5 Proposition. Let X e J*N be fibrant and let 

finite and reduced. Then, for ever[ map f: w + X e J*C' 

(i) [W, R X]~f is an R-nilpotent group, and 

(ii) the map ~: X + R X induces an isomorphism 

W £ J*C be 

R ® [W, X]f ~- [W, R X]¢f. 

5.6 Remark. It has long been recognized that Brown's repre- 

sentability theorem can be used to define localizations for certain 

H-spaces. Although we will not pursue this idea, we note that 

proposition 5.3 implies that the R-localization of an ~-spectrum 
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corresponds to the R-tensoring of the associated cohomology theory 

for finite spaces. 
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§6. Fracture lemmas 

"Fracture lemmas" show that, under suitable conditions, a 

homotopy classification problem can be split into a "rational 

problem" and "problems involving various primes or sets of primes". 

Theyyield many of the interesting applications of localizations. 

The first satisfactory fracture lemma seems to have been proved 

by Sullivan in the context of his completion theory [Sullivan, Ch.3], 

and our approach was inspired by his work. Also [Hilton-Mislin- 

Roitberg] have independently proved fracture lemmas by methods some- 

what similar to ours. 

6.1 Notation. For a set I of primes, let Z(I ) 

integers localized at I, i.e. (Ch.I, 9.3) 

Z(I ) = Z[j -I ] 

where J consists of all primes not in I; and, for X e J, let 

In particular 

x(1 ) = (z(1)) x ~ g. 

z(0 ) = Q x(0 ) = Q x. 

Then we have the 

denote the 

6.2 Prime fracture lemma. Let X E J*N have finitely gene r- 

ated homotop~ groups, let W c J*C be finite (i.e. have a finite 

number of non-degenerate simplices) and let I be a set of primes. 
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Then the natural map of pointed homoto~ classes of maps (Ch.VIII, 

§4) 

~: [W, X(I)] > pull-back {[W, X(p)] > [W, X(0)]} 
p e I 

where p ranges over all primes in I, is an isomorphism. 

The most interesting case of 6.2 occurs when I 

primes and thus [W, X(I )] z [W, X]. 

consists of all 

6.3 Fracture square lemma. Let I and J be sets of primes, 

let X e J*N and let W e J*C be finite. Then 

(i) the natural diagram 

(IUJ) > X (I) 

i 1 
X(j) > X(inj) 

is, up to homotopy, a fibre square, and 

(ii) the natural square of pointed homoto~y classes of maps 

(Ch.VIII, §4) 

[W, X 

[W, X 

(IUJ) ] > [W, X(I) ] 

(j)] > [W, X(IAj) ] 

is a pull-back. 

6.4 

X c J*N 

Remark. In view of the fracture square lemma one can, for 

and any finite partition Ii, .." , I n of the primes, 
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recover the homotopy type of X from 

(i) the homotopy types of X(II) , ... , X(in), and 

(ii) the rational information contained in the homotopy equiv- 

alences 

X(I I) (0) ..... X(I n) (0)" 

One cannot dispense with this last ingredient since, for 

instance, the "Hilton-Roitberg criminal" and Sp(2) have homotopic- 

ally equivalent localizations at the prime 2 and at the odd primes 

[Mislin] . 

Also the homotopy type of X is usually not recovered if one 

takes the pull-back of the fibrations corresponding to 

i/ x 
. . .  

x(0) ///~~/ 

X 
(P) 

, o ,  

p prime 

A counter example already occurs when X = K(Z, n), because of a 

l i m  1 t e r m  ( s e e  Ch. I X ) .  

To prove the above fracture lemmas we need their group theoretic 

analogues: 

6.5 Lemma. If N is a finitel[ @enerated nilpotent ~roup and 

I is a set of primes, then the natural map 

z(i ) ® N ) pull-back {Z ® N ) Q ® N} 
p ~ I (P) 

where p ranges over all primes in I, is an isomorphism. 
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Proof. The lemma clearly is true when N is finitely generated 

abelian. Moreover, if 

' N" * )N >N ) >* 

is a short exact sequence of finitely generated nilpotent groups and 

the lemma holds for N' and N" then, in view of 2.4, it also holds 

for N. This readily implies the general case. 

A similar argument shows: 

6.6 Lemma. If I and J are sets of primes and N is a nil- 

potent group, then the natural diagram 

z (IUJ) 

Z 
(J) 

® N 

® N 

> Z (I) q N 

$ 
> Z (InJ) ® N 

is a pull-back. Moreover every element 

expressed as u = vw where v (resp. 

Z(I) ® N (resp. Z(j) ® N) . 

u e Z(INJ ) ® N can be 

w) is in the image of 

Proof of 6.2. We can assume that W is reduced (i.e. has only 

one vertex) and we will prove 6.2 by induction on the skeletons W [n] 

of W. Thus assuming that 

~n: [W [n] , X(I )] > Full-back {[W In] , X(p)] ) [W [n] , X(0)]} 
p e I 

is an isomorphism for 

case for n = k. 

n = k-l, we have to show that this is also the 
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To show that @k is in~ective, we suppose f, g: W [k] ÷ X (I) 

with @k[f] = ~k[g] and thus, by our inductive hypothesis 

[f] IW [k-l] = [g] IW [k-l] . Since the element [g] c [W [k] , X(i ) ]f 

(5.4) goes to zero under the obvious map 

~: [W [k] , X(1)] f > pull-back {[W [k] , X(p)]~f > [W [k] , X(0)]@f} 
p e I 

and since, by 5.5 and 6.5, ~ is an isomorphism, it follows that 

[g] = 0 c [W [k] , X(i)] f. Hence [g] = [f]e [W [k] , X(i) ], and thus 

~k is injective. 

To show that #k is surjective, we suppose 

h e pull-baCkp e I {[w[k] , X(p) ] ) [W [k] , X(0)]}. 

By our inductive assumption, there exists a map d: W [k-l] ÷ X (i) 

such that ~k-l[d] = hIW [k-l] . The map d has an extension 

e: W [k] ~ X(I ) since the obstruction to extending d lies in a 

finite product of copies of ZkX(i) and since (3.1) 

~kX(i) z pull-back {Wk X > nk x }. 
p e I (P) (0) 

Let g £ [W [k] X ] denote the element corresponding to h 
' (I) e 

the isomorphism 

under 

~: [W [k] , X(I)] e > pull-back {[W [k] , X 
p ~ I 

Then it is easy to check that g e [W [k] , X 

and thus @k is surjective. 

(p)]#e ) [W [k] , X(0)]#e} 

satisfies @kg = h, 
(i) ] 

Proof of 6.3. Part (i) is an easy consequence of 3.1 and 6.6, 

while part (ii) follows by a proof similar to that of 6.2. Of course, 

the surjectivity of the map from [W, X(IOj ) ] to the pull-back can 

also be deduced from part (i). 
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6.7 Remark. When X E J*C is a homotopy associative H-space 

(Ch.I, 7.5) or W is a reduced suspension [May, p.124], then one 

can use 5.3 (instead of 5.5) to give an easy proof of the fracture 

lemmas 6.2 and 6.3. 
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§7. Some slight generalizations 

The fracture lemmas 6.2 and 6.3 are certainly not best possible: 

although it is not clear whether the restrictions on X can be re- 

laxed, both lemmas obviously hold for many spaces W which are not 

finite. For instance, one clearly has: 

• W w 7.1 Proposition If f: ÷ W e ~C is such that H,(f; Z) 

is an isomorphism, and if the fracture lemmas 6.2 and 6.3 hold for 

W', then (Ch. II, 2.8) they also hold for W. 

7.2 Proposition. If the fracture lemmas 6.2 and 6.3 hold for 

some W E ~*C' then they also hold for any space dominated by W. 

7.3 PrOposition. If the fracture lemmas 6.2 and 6.3 hold for a 

set of spaces W a e ~*C' then they also hold for their wedge V w a- 
a 

A useful consequence of 7.1 is the following which is also not 

hard to prove: 

7.4 Proposition. Let W e J*C be of finite type (i.e. each 

W k is finite) and suppose there is an integer n such that 

Hi(W; Z) = 0 for i > n. Then there exists a map f: W' ÷ W c J*C 

such that W' is finite and H,(f; Z) is an isomorphism, and hence 

the fracture lemmas 6.2 and 6.3 hold for W. 

The usefulness of this proposition is due to the following lemma, 

or actually its corollary 7.6: 
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7.5 Lemma. For a space W e J*N the following conditions are 

equivalent: 

(i) W has the (weak) homotopy type of a space of finite type 

(ii) Hi(W; Z) is finitely generated for each i ~ 1 

(iii) ~.W is finitely ~enerated for each i > i. 
l 

7.6 Corollary. If W e J*N has the (integral) homology of a 

finite complex, then the fracture lemmas 6.2 and 6.3 hold for W. 

Proof of 7.5. (i) > (ii). This is obvious 

(ii) -->(iii). Since each Hi(X; Z) is finitely generated, so 

is each of the groups 

Els,t w : Ls (GW! F2Gw  

in the lower central series spectral sequence (Ch. IV, §5). Since, 

for nilpotent W, this spectral sequence converges strongly to w,W 

(Ch. IV, §5), it follows that each n.W is finitely generated. 
l 

(iii)-->(i). Since ~i W is finitely generated and nilpotent, 

it is finitely presentable [P. Hall, p.426] and its integral group 

ring is left and right Noetherian [P. Hall, p.429]. Since the 

universal cover Q is simply connected with finitely generated 

each Hi(W; Z) is finitely generated. Thus [Wall, homotopy groups, 

p.58 and p.61] implies (i). 

We end this section with observing that, while (7.3) "finite 

homological dimensionality" is not a necessary condition, the 

following counter example indicates that it is not enough to assume 

that W be merely of finite type. 
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7.7 Counter example. If I and J 

ry sets of primes, then the square 

are non-empty complementa- 

[P=C, S 3] > [P~C, S~j)] 

l l 
[ P~C, 3 ~ S(I) ] > [P C, S 0) ] 

is not a pull-back. 

To see this, it suffices (Ch. IX, 3.3) to show that the obvious 

map 

liml[spnc, S 3] 
÷ 

> liml [ spnc, 3 ÷ S(I )] ~ ÷liml[spnc' S3(j)] 

is not injective. Taking the lim exact sequence (Ch. IX, 2.3) of 

t h e  s h o r t  e x a c t  s e q u e n c e  o f  a b e l i a n  g r o u p  t o w e r s  

0 --9 [spnc, S 3] --9 [spnc, 3 ~ 3 S(I)] ~ [spnc, S j)] --) [spnc, S(0 )] --) 0 

3 it n6w suffices to show that ~im[spnc, S(0 ) ] is not generated by 

the images of lim[spnc, 3 3 ÷ S(I ) ] and lim[spnc, S(j) ] . For this pur- 
÷ 

pose, note that SpIc = S 3 and consider the restriction maps 

~im[spnc, 3 3 S(0 )] ) [S 3, S(0 ) ] = Q 

3 lim[spnc, S i)] ) [S 3, S(I)] z Z(I ) 

÷lim[spnc' S~j)] ) [S 3, S~j)] = Z(j) 

S~0 )3 represents H3(-; Q), the first map is an isomorphism, Since 

so it suffices to show that the images of the other two maps do not 

generate Q. This is easily proved using the non-triviality of the 
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Steenrod operation 

pl: H3(SP~C; Zp) 

for all primes p. 

155 

> H3+2P(sP~C; Zp) 



Ch. V, §8 156 

§8. Fracturing H-space structures 

In this section we discuss the fact that, under suitable condi- 

tions, the problem whether a space has an H-space structure, can be 

fractured into mod-p problems (see [Mislin]). 

We start with some remarks on 

8.1 H-spaces and quasi Hopf algebras. If X e J*C is an 

H-space  ( C h . I ,  7 .5)  w i t h  H (X; Q) o f  f i n i t e  t y p e ,  t h e n  c l e a r l y  

H (X; Q) (z H (X(I) ; Q) for all I) 

is a connected quasi Hopf al~ebra [Milnor-Moore, p.232]. This quasi 

Hopf algebra completely determines the homotopy type and the homotopy 

class of the H-space structure of the localization X(0) ; in fact one 

even has the somewhat stronger result that: 

The functor H (-; Q) is an equivalence between the category of 
, 

Q-nilpotent H-spaces for which H (-; Q) is of finite type (i.e. the 

category with as objects the connected Q-nilpotent H-spaces for which 

H (-; Q) is of finite type, and as maps the homotopy classes of maps 

which are compatible with the H-space structures) and the category of 

connected quasi Hoof algebras over Q of finite type, which have a 

commutative and associative multiplication. 

This is not hard to prove once one observes that the Borel 

theorem of [Milnor-Moore, p.255] implies that these quasi Hopf alge- 

bras are free as algebras and that therefore, as algebras, they are 

the cohomology of a product of K(Q, n)'s. 

We end with the comment that clearly a Q-nilpotent }[-space 

x e J*C is homotopy associative if and only the quasi Hopf algebra 

H (X; Q) is a Hopf al@ebra. 
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An easy consequence of Ch.I, 7.5, the prime fracture lemma 6.2 

and its generalization 7.6 now is the 

8.2 Prime fracture lemma for H-spaces. Let X ~ J*N 

integral h0mglog~ ' of a finite space and let ' 

A: H (X; Q) > H (X; Q) ® H (X; Q) 

have the 

be a quasi .......... Hoof algebra comultiplication ,. ....... Then X has an H-space 

structure inducing ' A if and only if, for each prime p, the space 

X(p) has an H-space structure inducin~ 
, . 

isomorphism H (X(p) ; Q) = H (X; Q). 

A under the canonical 

8.3 Remark. In order that H (X; Q) has a quasi Hopf algebra 

comultiplication, it is necessary that H (X; Q) be an exterior alge- 

bra [Milnor-Moore, p.255]. Moreover, if H (X; Q) is an exterior 

algebra, then there is a unique comultiplication map making H (X; Q) 

a Hopf algebra. Hence 8.2 has the following refinement: 

8.4 Proposition. Let X e J*N have the integral homology of a 

finite space. .... Then x has a homotopy associative H-space structure 

if and only if X(p) has a homotopy associative H-space structure 

for every prime p. 

We end with an 

8.5 Example !.Adams (S)]. Consider the n-sphere S n for n 

odd. If p is an odd prime then S n , (p) has an H-space multiplica- 

tion given by 
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S n × S n f × id S n S n ~ > S n (p) (p) ) (p) x (p) (p) 

where f is of degree 1/2 and g is induced by a map 

S n x S n + S n of degree (2,1) (see [Steenrod-Epstein, p.14]). Thus 

the problem whether S n is an H-space is purely a mod-2 problem, 

n 
and, of course, the Hopf invariant theorem shows that S(2 ) is an 

H-space if and only if n = i, 3, 7. Note also that the H-space 

structure on S n (p) has the obvious implication that Whitehead prod- 

ucts in w,S n vanish when either factor is of odd order. 
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§9. Zabrodsk[ mixing of nilpotent spaces 

In recent years, localization methods have played a central role 

in the construction of new H-spaces (e.g. [Zabrodsky] and [Stasheff]) 

and the basic tool in this work has been Z abrodsky mixing [Zabrodsky]. 

9.1 Zabrodsk~ mixing o k nilpotent spaces. Let the primes be 

partitioned into two disjoint sets I and J and let 

f: X ) W and g: Y ) W ~ ~*N 

be maps which induce isomorphisms 

Q ® ~,x z Q ® n,w Q ® n,Y : Q ~ n,W. 

Then, in the notation of 6.1, the Zabrodsky mixing M e ~, of X (I) 
with Y(j) over W(0 ) is the homotopy inverse limit (i.e., Ch.XI, 

the "dual" to the double mapping cylinder) of the diagram 

f( ) g( ) 
X(I ) ) W(0 ) ( Y(j) 

induced by f and g. This means that, up to homotopy, there is a 

pointed fibre square 

M 

i 
x(i) 

f( ) 

) Y 

) W 

(J) 

g( ) 

(0) 

The point of this construction is that "M looks like X over 

the primes I" and "M looks like Y over the primes J". More 

precisely: 
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9.2 Lemma. The space 

obvious maps 

M e J, is connected and nilpotent, the 

Z(I ) ® n,M > z,X(i ) Z(j) ® z,M ) z,Y(j) 

are isomorphisms and hence the obvious maps 

M(I ) > X(i ) M(j) ) Y(j) 

are homotopy equivalences. 

Also, Zabrodsky mixings have the virtue: 

9.3 Lemma. If X and Y have the integral homology of a 

finite space, then, assuming of course the hypotheses of 9.1, so does 

the Zabrodsky mixing M. 

Before proving these lemmas we show how Zabrodsky mixing can be 

used to create new H-spaces. 

9.4 Proposition. Let I and J be complementary sets of 

primes, let X, Y e J*N have the inte@ral homology of a finite space 

and suppose that X(I ) and Y(j) are H-spaces and that the induced 

quasi Hopf algebras (8.1) H (X; Q) and H (Y; Q) are isomorphic. 

Then there exists an H-space M e ~*N which has the integral homolo- 

gy of a finite space and is such that, as H-spaces 

M(I ) = X(I ) and M(j) -- Y(j) . 

Proof. This follows readily from 8.1, 9.2, 9.3 and the fracture 

square lemma 6.3 and its generalization 7.6. 
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9.5 Remarks. Of course, this proposition applies when X and 

Y are connected H-spaces with the integral homology of a finite 

space, such that H (X; Q) and H (Y; Q) are Hopf algebras with the 

same number of generators in each dimension. However, it is also 

useful when X and Y are not themselves H-spaces. 

The above Zabrodsky mixing technique has a number of refinements 

and variants; for instance, one can mix classifying spaces to create 

new examples of finite loop spaces. 

Proof of 9.2. We first claim that, for n A i, each element 

u ~ ~nW(0) can be expressed as a product u = vw, where v and w 

are in the respective images of ZnX(i) and ~nY(j). This follows, 

since 2.8 shows the existence of relatively prime integers s and t 

such that u s and u t are in the respective images of ZnX(i ) and 

~nY(j) • 

This claim implies that M is connected and that, for n ~ i, 

the square 

Zn M ) ~n Y (j) 

l l 
~nX(i) ) ~nW(0) 

is exact in the sense that it is a pull-back such that every element 

of nnW(0) factors as in the claim. Using the obvious action of 

~I M on this exact square it is easy to show that M is nilpotent, 

and since (2.4) Q ® - preserves exactness for a square of nilpotent 

groups, it is clear that Q ® ~n M z nnW(0). And finally, since the 

obvious map of exact squares 
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z(1) 

~n M ) Z(j) ~ ZnM ZnM ) nnY(j) 

1 i > i 
® ~n M > Q ® "~n N ~nX(i) ) ~nW(o) 

is an isomorphism on the initial and terminal corners, it is an iso- 

morphism on all corners. 

Proof of 9.3. In view of 3.1 and 9.2 each 

Z(I) ® H i(M; Z) resp. Z (j) ® H i(M; Z) 

is finitely generated as a Z(I)-module, resp. a Z(j)-module, and so 

each Hi(M; Z) is a finitely generated abelian group. Moreover, by 

the same argument, for sufficiently large i 

Z(I) ® H i(M; Z) = 0 = Z(j) @ H i(M; Z) 

and hence Hi(M; Z) = 0. 
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Chapter VI. p-completions of nil~otent spaces 

§l. Introduction 

In this chapter we discuss the p-completion, i.e. the "up to 

homotopy" version of the Z -completion, for nilpotent spaces. It 
P 

turns out that this p-completion is closely related to the p-profinite 

completion of [Quillen (PG)] and [Sullivan, Ch.3] ; indeed, one can 

show that these completions coincide for spaces with Z -homology of 
P 

finite type, although they differ for more general spaces. The basic 

properties of p-profinite completions are well-known for simply 

connected spaces of finite type, and the main purpose of this chapter 

is to obtain similar results for p-completions of arbitrary nilpotent 

spaces. 

The organization of this chapter is similar to that of Chapter V. 

§2, §3 and §4 contain some algebraic preliminaries. In §2 we 

define for every nilpotent group N and prime p, an 

Ext completion Ext(Z ~, N) and a 

P 

Hom completion Hom(Z ~, N) 
P 

and we show in §3 that 

Ext(Z ~, N) is "really" a completion of N 
P 

Hom(Z ~, N) is nothing but Hom (Z ~, N). 
P groups P 

Various examples of Ext and Hom completions are discussed in §4. 
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§5 and §6 Our key result in §5 is that, for a nilpotent space 

X and R = Zp, there are splittable exact sequences 

. ) Ext(Z ~, ~n x) > ~nR X ) Hom(Z ~, ~n_l x) ) ,. 
P P 

In §6 we use this result to introduce a notion of p,completion 

for nilpotent spaces, which is merely an "up to homotopy" version of 

the Zp-completion and which generalizes the usual p-profinite comple- 

tion for simply connected spaces of finite type. We also list 

several basic properties of p-completions. 

§7 and §8 In §7 we generalize the main result of §5 to function 

spaces and then use this in §8 to prove an arithmetic square fracture 

lemma, which states that, under suitable conditions, a homotopy 

classification problem can be split into "Z -problems" and a 
P 

"rational problem". 

§9 

sequence 

contains convergence results for the homotopy spectral 

{Er(X; Zp)} of a nilpotent space X (Ch.I, 4.4). 

Notation. In this chapter we again work mainly in the category 

~*C of pointed connected spaces and its full subcategory d,N of 

pointed connected nilpotent spaces. 

And, of course, throughout this chapter, even when we forget to 

mention it, the rin~ R will always be R = Zp (p prime). 
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§2. Ext-completions and Hom-completions 

for nilpotent groups 

an 

We introduce here, for every nil~otent group N and prime p, 

Ext-completion Ext(Z ~, N) and an 

P 

Hom-completion Hom(Z ~, N) 

P 

which will be used in subsequent sections, to describe homotopy 

groups and other invariants of Z -completions of nilpotent spaces. 
P 

For N abelian, Ext(Z ~, N) and Hom(Z ~, N) will, of course, 

P P 
be the usual groups, where Z denotes the p-primary component of 

p~ 

Q/Z, while for a general nilpotent group N we will have 

Ext(Z ~, N) = ZlR K(N, i) 
P 

Hom(Z ~, N) = z2R K(N, i) 
P 

where R = Z . In the important case of a nilpotent group N, whose 
P 

p-torsion elements are of bounded order this will imply that 

^ 

Ext(Z ~, N) ~ N z Hom(Z ~, N) 
P P P 

^ 

where N Z 
P 

is the Z -completion of N of Ch. IV, 2.2. 
P 

= * 

In the abelian case several algebraists [Harrison], [Rotman], 

[Stratton] have previously studied the "total Ext-completion" 

Ext(Q/Z, N) = I I Ext(Z ~, N). 

P P 
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We begin by reviewing the somewhat familiar 

2.1 Ext and Hom completions of abelian groups from an algebraic 

point of view. For abelian groups the functors 

Ext(Z ~, -) and Hom(Z ~, -) 

P P 

are resp. the 0 th 

tion functor ( )~ 

P 

and i st left derived functors of the Zp-comele- 

on abelian groups of Ch.IV, 2.2. 

Proof. To prove this observe that 

i.e. Z 

P 

Z 
n 

P 

Z = lim Z 
p~ ÷ pn 

is the direct limit of the monomorphisms 

) Z n+l induced by Z 
P 

P>z. 

Then, for abelian N, 

^ 

lim Ext(Z n' N) z lim N/pnN z N z 
4- 4- 

P P 

and hence [Roos, Th.l] there is a natural short exact sequence 

^ 

* ) lim I Hom(Z , N) ) Ext(Z ~, N) > N z > * 
÷ n 

P P P 

and thus, by Ch. IX, 2.2, if N is an abelian group, whose p-torsion 

elements are of bounded order, then 

^ 

Ext(Z ~, N) z N z Hom(Z ~, N) 

P P P 

and the desired result now follows from the fact that a short exact 
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sequence of abelian ~roups 

* )N' )N )N" ) * 

gives rise to a natural exact sequence 

N ' " ) Hom(Z ~, ) ) Hom(Z ~, N) ) Hom(Z ~, N ) 

P P P 

N" ) ) Ext(Z ~, N') ) Ext(Z ~, N) ) Ext(Z ~, ) * 
P P P 

Next we look at the 

2.2 Ext and Hom completions of abelian groups from a homotopical 

point of view. For an abelian grou ~ N and R = Z p' 

natural isomorphisms 

there are 

wiR K(N, i) = Ext(Z ~, N) 
P 

~2R K(N, i) = Hom(Z ~, N) 
P 

n.R K(N, i) = * for i ~ I, 2 

such that the followin~ diagrams commute: 

(i) the diagram 

~IR K(N, i) = Ext(Z ~, N) 

lim ~IRsK(N, l) z N Z 
÷ p 

where the map on the left is as in Ch. IX, §3 and the bottom isomor- 

phism is as in Ch. IV, 2.4, 
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(ii) for every short exact sequence of abelian groups 

* ÷ N' + N + N" ÷ *, the diagram 

n2R K(N", i) z Hom(Z ~, N") 

~lR K(N ', l) z Ext(Z ~, N') 
P 

where the map on the left is defined using Ch. II, 2.2. 

Proof. If N is free abelian, then, by Ch. IX, 3.1 and Ch. IV, 

2.4 and 4.4 

^ 

niR K(N, l) z N z for i = 1 
P 

= * for i ~ I. 

Moreover, a short exact sequence of abelian groups 

* ÷ N' + N ÷ N" + * yields (Ch. II, 2.2), up to homotopy a fibration 

R K(N', I) ~ R K(N, i) ) R K(N", i) 

with a long exact sequence 

• "" --9 ~2R~K(N '', i) --9 nlR~K(N ' , i) ~ WlR K(N, i) -9 ~IR K(N '', 1)--9, 

Thus one can, for N abelian, identify ~i+iR K(N, i) with the i-th 

left derived functor of the Z -completion functor for abelian groups, 
P 

and the desired result follows easily. 

An obvious consequence of 2.2 and Ch. II, 4.8 is: 
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2.3 Corollary. If N is a nilpotent group and 

R K(N, i) i9 a nilpotent space and ~iR K(N, i) = * 

R = Zp, then 

for i # i, 2. 

Now we finally define: 

2.4 Ext and Hom completions for nilpotent grou~s. In view of 

the above, we can (and will) for every nilpotent group N and 

R = Z (p prime), define 
P 

Ext(Z ~, N) = nlR K(N, i) 
P 

Hom(Z ~, N) = n2R K(N, i). 
P 

This definition immediately implies that 

(i) Ext(Z ~, N) 

P 
and Ch. IV, 2.4) 

is nilpotent and the natural map (Ch. IX, §3 

Ext(Z ~, N) = ~IR K(N, i) > lim ~IRsK(N, i) 
p ÷ 

is onto, with abelian kernel lim I n2RsK(N, i) 
÷ 

(ii) Hom(Z ~, N) is abelian and 

P 

Hom(Z ~, N) = lim n2RsK(N, i) 
÷ 

P 

and the obvious 

^ 

-" N Z 
P 

2.5 Exactness property. Ever[ short exact sequence of nilpo- 

tent groups 

! 

* )N ) N )N" )* 
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gives rise to an exact sequence 
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N ' N" * ) Hom(Z ~, ) > Hom(Z ~, N) > Hom(Z ~, ) > 

P P P 

N |! ) Ext(Z ~, N') ) Ext(Z ~, N) ) Ext(Z ~, ) ) * 
P P P 

The behavior of the Ext and Hom completions for "ordinary" nil- 

potent groups is given by: 

2.6 Proposition. 

elements are of bounded order, then 

^ 

Ext(Z ~, N) = N Z and 
P P 

Proof. For a nilpotent group G, the condition 

{~2RsK(G, i)} is pro-trivial clearly implies that 

^ 

Ext(Z ~, G) = G z and Hom(Z ~, G) 
P P P 

S ' " If * ÷ + G ÷ G + * 

and (#) holds for G' 

2.5 and 7.1. 

If N is a nilpotent group, whose p-torsion 

Hom(Z ~, N) 

P 

(#) that 

= * 

is a short exact sequence of nilpotent groups 

and G", then (#) holds for G, by Ch. III, 

By Ch. III, 6.4, (#) holds for Z -nilpotent groups, i.e. nilpo- 
P 

tent p-torsion groups whose elements are of bounded order. Moreover 

(#) holds for nilpotent groups without p-torsion, because the upper 

central series quotients for such groups lack p-torsion [Lazard, 

Th.3.2] and thus the argument of Ch. IV, 4.4 applies. 

The proposition now follows easily since the Malcev completion 

N )Z[~] ~ N 

has Z -nilpotent kernel (Ch.V, 2.8) and has p-torsion free image 
P 

(Ch.V, 2.7). 
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we end with a few comments on 

2.7 The completion map N ÷ Ext(Z ~, N). 

P 
N and R = Zp, the obvious completion map 

For a nilpotent group 

N z ~IK(N, I) > ~IR K(N, i) = Ext (Z ~, N) 

P 

fits into the commutative completion triangle 

Ext(Z ~, N) 

Î  
N z 

P 

Moreover, if N is abelian, then this completion map is nothing but 

the usual coboundar[ 

~: N z Hom(Z, N) ) Ext(Z ~, N) 

P 

associated with the obvious short exact sequence 

I 
>z >z[~] ; z >. 

K- 

P 
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§3. Ext-p-complete nilpotent ~roups 

In this section we will, for a given prime p, discuss the 

obvious notion of Ext-2-completeness for nilpotent groups and show 

that 

(i) Ext(Z ~, N) is "really" a completion of N 
P 

(ii) Hom(Z ~, N) is nothing but Hom (Z ~, N). 
P groups P 

3.1 Ext-~-complete nilpotent groups. A nilpotent group N is 

called Ext-p-com~lete if 

(i) the completion map 

phism, and 

(ii) Hom(Z ~, N) = * 
P 

or equivalently if the space 

Then we have the 

N + Ext(Z ~, N) (2.7) is an isomor- 

P 

K(N, i) is Z -complete (Ch.I, 5.1). 
P 

3.2 Universal property. If N is a nilpotent group, then 

(i) Ext(Z ~, N) and Hom(Z ~, N) are Ext-p-complete, and 
P P 

(ii) the completion map N + Ext(Z ~, N) is universal for 

P 
homomorphisms from N to Ext-p-complete nil~otent ~roups. 

To prove this we need the following important lemma, which 

states that K(N, I) is Zp-good (Ch.I, 5.1) if N is nilpotent. 

3.3 Lemma. For a nilpotent @roup N and R = Zp, 

H,(K(N, i); Zp) ) H,(R K(N, i); Zp) 

the map 

is an isomorphism. 
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Proof. Let F be a free abelian group. Then clearly the 

obvious map 

^ 

F ) F Z = lim F/pnF 
4- 

P 

is a monomorphism of torsion free abelian groups and induces an iso- 

morphism 

^ 

Zp ~ F z Zp ~ F Z 
P 

^ 

Thus F Z /F is uniquely p-divisible and, by Ch.lV, 3.3, 

K(F /F, l) is Zp-acyclic. And since R K(F, i) ~ K(F , i) 
P P 

follows that the lemma holds for F. 

it 

The cases that N is abelian and then nilpotent now follow 

using Ch. II, 2.2. 

Proof of 3.2. Let R = Z and consider the obvious diagram of 
P 

fibrations up to homotopy (Ch. II, 4.8) 

K(Hom(Z ~, N), 2) ) R K(N, i) ) K(Ext(Z ~, N), i) 

R K(Hom(Z ~, N) , 2) 

P 

> R RK(N, i) R K(Ext(Z ~, N), i). 

P 

By 3.3 and Ch. II, 5.2, the middle map is a homotopy equivalence, by 

Ch.I, 6.1, ~iR K(Hom(Z ~, N), 2) = , for i < 2, and, by 2.3, 

P 
wiR K(Ext(Z ~, N), i) = * for i > 2. Hence the outside maps are 

P 
homotopy equivalences and the groups Hom(Z ~, N) and Ext(Z ~, N) 

P P 
are Ext-p-complete. 

The universal property now follows easily since the triple 

structure (Ch.I, 5.6) for R induces a triple structure for 
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Ext(Z ~, -): (nilpotent groups) > (nilpotent groups). 
P 

In order to better understand Ext-p-completeness from an alge- 

braic point of view we show: 

3.4 First characterization of Ext-p-completeness. 

(i) An abelian ~rqup N is Ext-p-comp!ete if and only if 

Hom(z[l], N) = 0 = Ext(z[l], N) 

(ii) A nil~otent ~rou~ N is Ext-p-com~lete if and only if the 

(abelian) quotients of its upper central series are Ext complete. 

Proof. Part (i) follows easily from 2.7 and the "if" part of 

(ii) is immediate. 

Now let N be an Ext complete nilpotent group with center C. 

Using Ch.IX, 4.1(i), one then can show that in the obvious fibration 

up to homotopy (Ch. II, 4.8) 

R K(N, i) ) R K(N/C, i) ) R K(C, 2) 

the image of 

2: ~2R K(C, 2) ) ~IR K(N, I) = N 

is equal to C. Hence N/C z nlR K(N/C, i) and so N/C is Ext-p- 

complete by 3.2. This easily implies that C is also Ext-p-complete 

and the "only if" part is now clear. 

A more explicit algebraic description of Ext-p-completeness is 

given in a 
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3.5 Second characterization of Ext-p-completeness. For a nil- 

potent group N let 

L: (N x N x N x ...) > (N x N x N x ...) 

denote the function defined by 

L(x 0, x I, x 2, -..) = (x0(xl)-P , Xl(X2 )-p, x2(x3)-P , ...). 

If N is abelian, then L is a homomorphism and (Ch. IX, 2.1) 

ker L = lim(N, p) coker L = liml(N, p) 
4- 4- 

where (N, p) denotes the tower 

• .. P> N P) N P" N -----> * ,  

Thus in the following characterization, part (i) is a special case of 

part (ii): 

(i) An abelian grou p N is Ext-p-com~lete if and only if 

lim(N, p) = 0 = liml(N, p). 

(ii) A nilpotent group N is Ext-p-complete if and only if the 

map 

L: (N x N x N x -..) ) (N x N x N x ...) 

is a bijection. 

Proof. Part (i) follows from 3.4 since [Roos, Th.l] 

Hom(Z[pl--], N) Z +lim(N' p) Ext(z[l], N) z +liml(N' p). 
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Part (ii) may be proved by combining 3.4 with the following results 

for a nilpotent group N with center C: 

I. If L is bijective for any two of C, N and N/C, then 

it is also bijective for the third. 

II. If L is bi~ective for N, then it is also bi~ective for 

C. 

The proof of I is straightforward, while II follows from the fact 

that 

(C × C × C × "'') c (N × N × N × "'') 

is the subset fixed under the actions 

(x0, Xl, x2, ..-) ) (ux0u-l, UXlu-l, ux2 u-l, ..-) u c N 

and these actions commute with L. 

The remainder of this section is devoted to a proof that 

Hom(Z ~, N) z HOmgroups(Z ~, N) and for this we need two lemmas with 
P P 

more information on Ext and Hom completions. 

3.6 Lemma. For a nilpotent group N, 

Ext(Z ~, N) = * if and only if N is p-divisible, 

P 

(i.e. for each x E N, there is a y c N with yP = x). 

Proof. 

homotopy 

If Ext(Z ~, N) = *, then in the fibration up to 

P 

F > K(N, i) ~ > R K(N, i) 
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the fibre F is connected and nilpotent, with (3.1) H,(F; Zp) = 0. 

Thus (Ch.V, 3.3) the groups ni F are uniquely p-divisible and the 

"only if" part readily follows. 

If N is p-divisible, then N ÷ Ext(Z ~, N) is the trivial map 

because Ext(Z ~, Z[ ]) = * and the "if" part now follows easily, 

P 
since the functor Ext(Z ~, -) carries the map N + Ext(Z ~, N) to 

P P 
an isomorphism (3.2). 

3.7 Lemma. Let N be a nilpotent ~roup and let K c N be 

the kernel of the completion map N ÷ Ext(Z ~, N). Then K is the 

P 
image of the map 

HOmgroups(Z[l], N) ) HOmgroups(Z, N) = N 

(i.e. K contains the x ¢ N which are "infinitely p-divisible in 

a consistent way") and moreover 

Hom(Z ~, K) x Hom(Z ~, N). 

P P 

Proof. Hom(Z ~, N/K) = * since N/K is contained in an Ext-p- 

P 
complete group (3.2(i)) and thus has a central series whose quotients 

are subgroups of Ext-p-complete abelian groups (3.4(ii)). Moreover 

Ext(Z ~, N) + Ext(Z ~, N/K) is an isomorphism, since 

P 
carries the map N + Ext(Z ~, N) to an isomorphism. 

P 

Ext(Z ~, -) 

P 
Thus 

Hom(Z ~, K) z Hom(Z ~, N) 

P P 

and Ext(Z ~, K) = *, i.e. (3.6) K is p-divisible. 

P 
now follows, because Ext(Z ~, Z[~]) = *. 

P 

The proposition 

Finally we prove: 
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3.8 Proposition. For a nilpotent ~roup N, there is a natural 

isomorphism 

Hom(Z ~, N) z HOmgroups(Z ~, N). 
P P 

Proof. Let K be the kernel of the map N + Ext(Z ~, N) and 

' ~ P' 
let K be the kernel of the map K ÷ Z[ ] ~ K, i.e. K is the p- 

torsion subgroup of K (Ch.V, 2.8). Then K/K' is p-torsion free 

and thus (2.6) 

Hom(Z ~, K/K') = * Hom(Z ~, K') z Hom(Z ~, K). 
P P P 

It is now easy to check that 

Hom(Z ~, K') z Hom(Z ~, N) 

P P 

groups (Z K' Hom ~, ) z HOmgroup s (Z ~, N) 
P P 

and the proposition follows since K' is abelian, as [Kurosh, Vol. II, 

p.235] every divisible nilpotent torsion group is abelian. 
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§4. Examples of Ext and Hom completions 

We shall give some examples of Ext and Hom completions and re- 

view some of Harrison's results on Ext-p-complete abelian groups. 

We begin by noting some special cases of 2.6: 

4.1 Examples. In each of the following cases N is supposed 

to be a nilpotent group and will satisfy 

^ 

Ext(Z ~, N) z N z Hom(Z ~, N) = *. 

P P P 

^ 

(i) N is finitely ~enerated; in this case N Z 

P 
finite completion of N [Serre, p.I-5]. 

^ 

(ii) N = Z; in this case N z = ~, where 

P 

is the p-pro- 

Z = lim z/pnz 
_--p ÷ 

denotes the p-adic integers. 

(iii) N is Z -nilpotent, i.e. there exists an n < ~ such 
n P ^ 

that x p = * for all x ¢ N; in this case N z = N. 
p ^ 

(iv) N is uniquely p-divisible; in this case N z = *. 

P 

Next we give some examples in which the hypotheses of 2.6 are 

not satisfied: 

4.2 Examples. 

(i) If N = Z ~, then 

P 

Ext(Z ~, N) = 0 Hom(Z , N) = Z . 
=p 

P P 
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@ Z 2 • Z ~ --- then N is not Ext-p- (ii) If N = Zp 3 ' 

P P 
complete, Ext(Z ~, N) is not a torsion group, and 

^p 
Ext(Z ~, N) ~ N z 

P P 

The nature of Ext-p-complete abelian groups is perhaps clarified 

by: 

4.3 Proposition. An Ext-p-complete abelian group has a canoni- 

cal Z module structure. 
=P 

Proof. For x E Z 
=P 

image of x under 

and n £ N, the product xn E N is the 

n, 
Z z Ext(Z ~, Z) ) Ext(Z , N) z N. 

P P 

Equivalently, the module structure of N is given by the Yoneda prod- 

uct 

Z ~ N z Hom(Z ~, Z ~) ~ Ext(Z N) 
" o0e 

P P P 

) Ext(Z ~, N) z N. 

P 

4.4 Examples. 

(i) If N is a finitely @enerated abelian group, then the 

natural map 

Z ~ N > Ext(Z ~, N) 
=P 

P 

is an isomorphism. 

(ii) The groups 

Z ~ Z and Z ~ Z ~ Z 
=P =P =P p~ p~ 

are not Ext-p-complete, even though they are modules over Z . 
=P 
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We conclude with an exposition of the results of [Harrison] on 

the structure of Ext-~-complete abelian groups (actually we special- 

ized his results on "cotorsion groups" [Harrison, p.370], using the 

fact that an abelian group is Ext-p-complete if and only if it is a 

cotorsion group which is uniquely divisible by all primes different 

from p). 

Harrison first analyzes [Harrison, p.373] : 

4.5 Torsion free, Ext-p-complete abelian groups. The functors 

I divisible 1 

p-torsion 

abelian groups/ 

Hom(Z ~, -) 
P 

) 
< 

Z ~ - 
P 

I torsion free 1 

Ext-p-complete 

abelian groups 

are adjoint equivalences. 

Since each divisible p-torsion abelian group can be decomposed 

as a direct sum of Z 's [Kurosh, Vol. I, p.165], it follows that a 
P 

torsion free, Ext-p-complete abelian group N is classified, up to 

isomorphisms, by the Zp-dimension of Zp ~ N. 

Next Harrison considers: 

4.6 Adjusted Ext-p-complete abelian groups. An Ext-p-complete 

(with respect to a prime p) abelian group N is called adjusted if 

N/Np is divisible, where Np denote the p-torsion subgroup of N, 

and one has [Harrison, p.375] : 
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The functors 

I 
p-torsion abelian 

groups with no J 
! 

divisible sub~rou~s/ 

are adjoint equivalences. 

Ext(Z ~, -) 
P 

-> 
( 

Tor(Z ~, -) = (-)p 
P 

l 
adjusted 

Ext-p-com~lete ) 

abelian groupsJ 

Finally Harrison gives [Harrison, p.373]: 

4.7 A decomposition of Ext-~-com~lete abelian @roups. For every 

Ext-p-complete abelian ~rou~ N, there is a unique splittable short 

exact sequence 

* >A ) N )F >* 

such that A is adjusted Ext-p-complete and F is torsion free Ext 

complete. 

In this decomposition 

A z Ext(Z ~, Np) 
P 

F z Ext(Z ~, N/Np) 

P 

and the splitting is due to [Harrison, p.370] : 

4.8 Lemma. If L is an Ext-p-complete abelian group and M 

is a torsion free abelian group, then Ext(M, L) = 0. 
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§5. Homotopy and homolo~[ properties of the 

Zp-COmpletion of a nilpotent space 

Our key result is 

5.1 Proposition. If X E J*N (i.e. X is pointed, connected 

and Z-nilpotent in the sense of Ch. III, §5), and, of course, R = Zp, 

then R X ~ J*N and, for n ~ I, there is a splittable short exact 

sequence 

* > Ext(Z ~, nn x) > nnR X > Hom(Z ~, nn_l X) > *. 
P P 

Proof. Except for the splittability, this follows by R-complet- 

ing the Postnikov tower of X, using 2.4 and Ch. II, 4.8. The 

splittability follows from 4.8, since Ext(Z =, nn x) 
P 

plete and Hom(Z ~, nn_l x) is torsion free. 
P 

is Ext-p-com- 

An important case of 5.1 is: 

5.2 Example. If the groups 

abelian (and X e J,N ) , then 

nn x are all finitely venerated 

~ R X = Z @ ~ X 
n ~ =p n 

where Z denotes the p-adic integers (see 4.1); and of course 
=P 

Z ~ Z = Z 
=P =P 

Z ~ Z z Z 
=P pJ pJ 

Z ,~ Z ~ 0 
=P q3 for any prime q ~ p. 
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Another easy consequence of 5.1 and Ch.I, 5.2 is: 

5.3 Proposition. If X ¢ J*N' then 

(i) X is R-~ood (i.e. H,(X; Zp) ~ H,(R X; Zp)) , 

(ii) R X is R-complete (i.e. R X = R R X). 

And, together with Ch. II, 2.8, the above results imply: 

5.4 Proposition. For a space X ¢ J*N' the following are 

equivalent: 

(i) X is Z -complete. 
P 

(ii) The ~roups Wn x are Ext-p-complete. 

(iii) Whenever a map f: K ÷ L ~ ~. induces an isomorphism 

H,(K; Zp) z H,(L; Zp), then it induces a bijection [L, X] z [K, X] 

of pointed homotopy classes of maps (Ch.VIII, §4). 

5.5 Example. For R = Z and n > i, there is an isomorphism 
p 

[R S n, R S n] z ~nR S n z Z 
=P 

which assigns to each map f: R S n + R S n the obvious degree 

deg f ¢ Z . 
=P 

We end with a brief discussion of 

5.6 The homolog~ of R X. Let X e F,N, let R = Z 
P 

q be a prime. Then 

and let 

H, CR X; Zq) z H,(X; Zq) 

= 0 

if q = 

if q ~ p. 
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Proof. The case q m p is just 5.3, and the case q ~ p 

follows from Ch.V, 3.3, because the groups ~nR X are uniquely q-di- 

visible (An easy argument, using 3.4, shows that all nilpotent groups 

which are E xt-p-complete are uniquel~ q-divisible for all primes 

q p). 

5.7 Remark. If X E J*N and R = Zp the integral homology 

H,(R X; Z) is uniquely q-divisible for primes q # p, but still not 

very well behaved. For example, if S n is an odd sphere and k ~ 2, 

then Hkn(R sn; Z) is a huge Q-module (because the Q-completion of 

R S n has the homotopy type of K(Q ~ Z , n) and Q ~ Z has 
=p =P 

uncountable dimension over Q). 
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§6. p-completions of nilpotent spaces 

We introduce a notion of p-completion for nilpotent spaces which 

is merely an "up to homotopy" version of our Z -completion and which 
P 

generalizes the usual p-profinite completion [Quillen (PG)] [Sullivan, 

Ch.3] for simply connected spaces of finite type. We also consider 

various preservation properties of p-completions and observe that the 

p-completion factors through the Z(p)-localization of Chapter V. 

6.1 p-completions. For X c ~*N' a p-completion of X is a 

map X ÷ X ~ ~*N such that 

(i) • is Z -complete, and 
P 

(ii) the induced map H,(X; Zp) ÷ H,(~; Zp) is an isomorphism. 

The results of §5 then immediately imply: 

6.2 Proposition. p-completion is well-defined and functorial 

on the pointed homotopy category of nilpotent spaces. It is induced 

by the functor R where R = Z . 
P 

6.3 Homotopy characterization of R X (R = Zp). For X £ ~*N' 

the Zp-completion X ÷ R X is a p-completion, and, in the pointed 

homotopy category, any p-completion X ÷ X is canonically equivalent 

t__oo X ÷ R X. 

6.4 Example. There are Z -homology equivalences 
P 

K(Z ~, n-l) )K(Z, n) 
P 

and thus the Zp-COmplete space 

these spaces. 

> K(Z(p), n) ) K(~, n) 

K(Zp, n) is a p-completion of all 
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Next we discuss the "preservation properties" of p-completions. 

We already have from Ch. II, §4: 

6.5 Proposition. 

(i) If p: E ÷ B e g*N is a fibration with ~i E ÷ Zl B onto, 

then R p: R E ÷ R B is a fibration with p-l, e g*N and 

R (p-l*) = (R p)-l,. 

(ii) If X ~ J*N is 1-connected, then R ~X = ~R X, where 

denotes the loop functor [May, p.99]. 

(iii) If X, Y ~ J*N' then R (XXY) = R X x R Y. 

Because all spaces in J*N are Zp-gOod, one can apply Ch.I, 5.5 

to show: 

6.6 Proposition. 

(i) If i: A ÷ X e J*N is a cofibration, then R~i: R A + R X 

is a cofibration and R (X/A) = R (R X/R A). 

(ii) If X E g*N' then R SX = R SR X, where S denotes the 

suspension [May, p.124]. 

(iii) If X, Y ~ J*N' then R (X Y) = R (R X~R~Y). 

(iv) If X, Y £ ~*N' then R (X^Y) = R (R X^R Y). 

Of course the "preservation properties" in 6.6 are not as 

pleasant as one might hope. This is because the usual "direct limit 

constructions" do not preserve Z -completeness for nilpotent spaces. 
P 

6.7 Example. The spaces R~S m v R~S n for m, n k 2, 

R~S m ^ R S n for m, n ~ 1 and S2R S m for m odd, are not Zp-COm- 

plete because the groups 
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~m+n_l(R~Sm v R~S n) 

nm+n(R~Sm ^ R S n) 

~m+n_iR sm n @ Z ~ Z : @ ~m+n_iR~S =p ==P 

: Z ~ Z 
==P ==P 

are not Ext-p-complete and because 

H, (R sm; Q) / H,+ 2 (R sm+2; Q) 

for m odd (see 5.7). 

We conclude by 

6.8 

Z(p) c Q 

the map 

Factoring p-completions through Z 

denote the integers localized at 

-localizations. Let (p) 

p. Then, for X ¢ ~2,N, 

H, (X; Zp) ) H, ((Z (p)) X; Zp) 

is an isomorphism (Ch.V, 3.2), and hence the map 

(Zp) X > (Zp)~(Z(p)) X ~N 

is a homoto~[ equivalence. P 

~*N are all Z (p)-Complete. 

Thus, up to homotopy, the Zp-completion on ~*N 

as a two-step process: 

(i) 

(ii) 

Moreover (5.6) the Z -complete spaces in 

can be viewed 

Z(p)-Completion for nilpotent spaces, followed by 

Zp-COmpletio n for Z(p)-Complete spaces. 
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§7. p-completions of function spaces 

In preparation for the arithmetic square fracture lemma (§8) we 

show here that the homotopy types of the pointed function spaces 

(Ch.VIII, §4) 

hom.(W, X) and hom. (W, R X) 

(R = Zp) are often closely related. The results and proofs are 

very similar to those for localizations (Ch.V, §5), except that we 

assume that X is not only nilpotent, but also has finitely gener- 

ated (nilpotent) homotopy groups (see 7.4 and 8.5). We shall implic- 

itly use the fact that the functor Ext(Z =, -) preserves exact 
P 

sequences of such groups. We also remind the reader that, for a 

finitely ~enerated nilpotent group N 

^ 

Ext(Z ~, N) z N z z the p-profinite completion of N 
P P 

and that, for a finitely generated abelian group N 

Ext(Z ~, N) z Z ~ N 
=P 

P 

We start with a proposition which implies that, under suitable 

conditions, the Z -completion of any component of hom.(W, X) has 
P 

the same homotopy type as the corresponding component of hom.(W, R X), 

where R = Z . 
P 

7.1 Proposition. Let X g J*N be fibrant and have finitely 

generated nilpotent homotopy ~roups, let w ~ ~*C be finite and let 

R = Zp. Then, for every map f: W + X e J*C and all i ~ i, 
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(i) ~i(h°m* (W, X) , f) is finitely generated nilpotent, 

(ii) ~i(hom,(W, R X), ~f) is Ext-p-com~lete nilpotent, and 

(iii) the map ~: X + R X induces an isomorphism 

^ 

~i(h°m*(W' X), f)z z ~i(h°m*(W' R X) , ¢f) . 
P 

The proof is similar to that of Ch.V, 5.1. 

Again, the relation between the sets of components of hom,(W, X) 

and hom,(W, R X), i.e. the relation between the pointed homotopy 

classes of maps (Ch.VIII, §4) 

[W, X] and [W, R X] 

is not so easy to describe. Of course, as in Ch.V, 5.3, one proves: 

7.2 Proposition. Let X E J*N be fibrant and have finitely 

generated nilpotent homotopy groups, let W ~ J*C and let either W 

be a reduced suspension [May, p.124] or X be a homotopy associative 

H-space (Ch.I, 7.5). Then 

(i) [W, X] is a finitely generated nilpotent group, 

(ii) [W, R X] is an Ext-p-complete nilpotent group, and 

(iii) the map ~: X + R X induces an isomorphism 

^ 

[w, x] z ~ [w, R x]. 
P 

In general, however, the sets [W, X] and [W, R X] do not 

come with a group structure. Still, as in Ch.V, 5.5, one can prove a 

useful result for neighborhood groups: 

7.3 Proposition. Let X e J*N be fibrant and have finitely 

generate d nilpotent homotopy 9roups and let W ~ J*C be finite and 
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reduced. Then, for every map f: w ÷ x ~ g*c' 

(i) [w, R X]#f is an Ext-~-complete nilpotent group, and 

(ii) ........... th e map ~: x ÷ R X induces an isomorphism 

^ 

([w, x]f)z = [w, R~X]~f . 
P 

7.4 Remark. In proposition 7.1, 7.2 and 7.3 we have supposed 

that X has finitely generated nilpotent homotopy groups, and 

although this condition can not be omitted (8.5), it should be noted 

that propositions 7.1, 7.2 and 7.3 remain true if "finitel ~ generated 

nilpotent" is everywhere replaced by "Z[J-l]-nilpotent and finitely 

generated over Z[J-l], where J is a fixed set of primes and a 

Z[J-l]-nilpotent group is called finitel~ generated over z[J -I] if 

it has a central series whose (abelian) quotients are finitely gener- 

ated Z[J-l]-modules in the usual sense. 
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§8. The arithmetic square fracture lemma 

We end this chapter with a fracture lemma involving Zp-comple- 

tions, which is essentially due to Sullivan. It will be formulated 

in terms of the arithmetic square [Sullivan, 3.58], i.e., in the 

notation of Ch.V, 6.1, a diagram of the form 

X(I ) ) I I (Zp) X 
p e I 

l 1 
X(o ) ) (]--T (Zp)X)(o) 

p E I 

where X E ~*N' I is a set of primes, the top map is induced by the 

Z -completions and the bottom map is the Q-completion of the top map. 
P 

The main result is the 

8.1 Arithmetic square fracture lemma. Let X E "~*N have 

finitely generated homotopy groups, let W g ~*C be finite and let 

I be a set of primes. Then 

(i) the arithmetic square 

X(i ) ) I I (Zp) X 
p e I 

l l 
X(O ) ) (~--[ (Zp)X)(0) 

p e I 

is, up to homotopy, a fibre square, and 

(ii) the induced square of pointed homotopy classes of maps 

(Ch.VIII, §4) 
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[W, X(i) ] ) [W, I I (Zp) X] 
p e I 

l l 
[w, x(0 )1 ) [w, (7-T (z)x)(0}] 

psi 

is a pull-back in which the upper map is an injection. 

Proof. The proof is essentially the same as that of the prime 

fracture lemma (Ch.V, 6.2) and uses 7.3, 7.4, and the following group 

theoretic analogue of 8.1 (whose proof is similar to that of Ch.V, 

6.5). 

8.2 Lemma. If N is a finitely ~enerated nilpotent group and 

I is a set of primes, then the natural diagram 

^ 

{I) ~ N > l l N z 
p e I p 

1 1 
Q ~ N ) Q ~ (~-~ N Z ) 

p e I p 

is a pull-back in which the top map is an injection. Moreover, ever[ 
^ 

element u ~ Q ~ (~-~ N Z ) can be expressed as u = vw, where v 
p ~ I p ^ 

(resp. w) is in the image of Q ~ N (resp. l ] N Z ). 
p ~ I p 

8.3 Remark. The arithmetic square fracture lemma shows that a 

space X e ~*N with finitely generated homotopy groups is, up to 

homotopy, determined by its various Z -completions together with 
P 

"rational information". However its most interesting feature is the 

assertion that, for W E J*C finite, the map 
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[W, X(I)] ) I "I [W, (Zp) X] 
p c I 

is an in~ection. Since (6.8) (Zp) X = (Zp) X(p), this is stronger 

than the previous result (Ch.V, 6.2) that 

[W, X(I)] > Pl Ic I[W' X(p)] 

is an injection. 

8.4 A relation between Zp-COmpletions and Z(p)-Completions. We 

showed in 6.8 that, for X e J*N' the Zp-COmpletion (Zp) X is, up 

to homotopy, determined by the Z(p)-Completion X(p). 

On the other hand 8.1 implies that, for X ~ g*N with finitely 

generated homotopy groups, the homotopy type of X(p) is determined 

by (Zp) X and the rational information of the, up to homotopy, fibre 

square 

X (p) ) (Zp) X 

1 1 
x(0 ) ~ ({Zp)~X)(0) 

8.5 The restrictions on W and X. The condition in 8.1 that 

W s J*C be finite is clearly unnecessarily restrictive and can be 

relaxed as in Ch.V, §7. 

However, the restriction that X ~ ~*N have finitely generated 

homotopy groups cannot so easily be dropped, although it can be 

modified as in 7.4. Some of the difficulties that arise are, for 

instance: 

(i) For X = K(Z ~, n), the Zp-completions of the components of 
P 

hom,(S n, X) are not homotopy equivalent to the corresponding 
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components of hom, (S n, (Zp) X) . 

(ii) For X = K(Z ~, n), the map 
P 

[S n, X] ) I I IS n, (Zp) XI 
p prime 

is not an injection. 

(iii) 

square for 

The arithmetic square is not, up to homotopy a fibre 

X = K (~Zp, n) 

where p runs over all primes. 

We end with an interesting consequence of 8.1: 

8.6 Proposition. Let X s ~*N be fibrant and have finitely 

generated homotopy groups, let W ~ ~*C be finite, let 

f, g: W ÷ X £ ~*C be such that 

[f] # [g] e [W, X] 

and let p be a prime. Then there exists a map u: X + Y c J*N 

such that 

[uf] ~ lug] e [W, Y] 

and such that each ~.Y 
l 

is a finite p-group. 

Proof. Let R = Z . Then (Ch.V, 7.5) one readily sees, by 
P 

inspecting the El-term of the extended homotopy spectral sequence of 

{RsX} (Ch.I, 4.4), that each ~iRs x is a finite p-group for s < ~. 

In view of Ch. IX, §3 this implies 
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[W, R X] : ~im[W, RsX ] 

and so the proposition follows from 8.1. 
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§9. Curtis convergence theorems 

We end this chapter with some best possible convergence results 

for the homotopy spectral sequence {Er(X; Zp)} of a nilpotent space 

X (Ch.I, 4.4) and observe at the end of this section that, as in 

Ch. IV, 5.6, these results readily extend to the lower p-central series 

spectral sequences. We also indicate a generalization to certain not 

necessarily nilpotent spaces. Similar convergence results for 

R c Q were obtained in Ch. IV, 5.6 and Ch.V, 3.7. 

The main result of this section (9.1) was proved initially in 

[Bousfield-Kan (HS), §6] for simply connected spaces, by combining 

Rector~ variation [Rector (AS)] on Curtis' fundamental theorem (Ch. IV, 

5.6 and [Curtis (H)]) with some ad-hoc simplicial arguments. Our 

present approach, however, is more direct and yields stronger results. 

9.1 Curtis convergence theorem for R = Zp. If X e J*N i__ss 

such that in each niX the p-torsion elements are of bounded order, 

then {Er(X; Zp)} converges to w,X in the followin 9 sense: 

(i) {Er(X; Zp)} is Mittag-Leffler (Ch. IX, 5.5) in all dimen- 

sions > i. 

(ii) For each i ~ 1 there exists a natural filtration 

--- c F2~.X c Flz.x c F0~.X = x.X 
1 1 1 1 

such that 

(FS/F s+l ) ~i x 

and such that O Fs~ix 

2.6 and 2.7) 

z ES'S+i(x;~ Zp) for s > 0 

is the kernel of the completion map (Ch.VI, 
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^ 

n. Xl > Ext(Z ~, niX) z (niX) z 
P P 

or equivalently (Ch.VI, 3.7) is the image of the map 

HOmgroups(Z[~], ~i x) ) HOmgroups(Z, niX) ~ ~i x 

(i.e. ~ Fsnix consists of the elements of 

"infinitely p-divisible in a consistent way"). 

~.X which are 
1 

We remark that [Kurosh, Vol.I, p.173], for n.X abelian, the l 

p-torsion elements in niX are of bounded order if and only if the 

p-torsion subgroup of n.X dec0mposes as a direct sum of copies of 

Z . where the j are bounded. 
p3 

The result of 9.1 is essentially best possible because: 

9.2 Proposition. For G abelian and n ~ I, the spectral 

sequence {Er(K(G, n); Zp) } is Mittag-Leffler in all dimensions ~ 1 

if and only if the p-torsion subgroup of G decomposes as a (possibly 

trivial) direct sum of copies of Zp~ and copies of Zpj where the 

j are bounded. 

Of course, if G has Z as a direct summand, then the condi- 
P 

tion 9.1(ii) will not hold for X = K(G, n). 

9.3 Remark. Theorem 9.1 is not the most general convergence 

theorem. For instance, it is clear that: 

If X e ~*C is such that Hi(X; Zp) is finite for each i ~ i, 

then each of the groups Es't(x; Z r p) is also finite. Consequently 

{Er(X; Zp)} is Mittag-Leffle r in all . dimensions ! 1 (Ch. IX, 5.5) 
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and converges completely to n,(Zp) X (which may be very different 

from w,X). 

Proof of 9.1. The proof of Ch.VI, 2.6 implies that the tower of 

groups {WqRsK(~iX, i)} is pro-trivial for i ~ 1 and q ~ i. Thus 

Ch. II, 5.4 and Ch. III, 7.1 show that the obvious tower maps 

{WiRsK(WiX, i) } ) {niRs x(i) } < {~iRs x} 

are pro-isomorphisms for i ~ i, where X (i) denotes the i-th 

Postnikov space of X [May, p.31]. Using Ch. IV, 2.4 and Ch.VI, 2.3 

and 3.7, it is now easy to show that the obvious maps 

niX ) WiRsK(WiX, i) i >_ i, 0 <_ s < = 

are onto and that 

(3 
0 < S < = ker(~iX ......... ) WiRsK(~iX , i)) 

is the subgroup of niX consisting of the elements of niX which 

are "infinitely p-divisible in a consistent way". The theorem now 

follows easily. 

Proof of 9.2. By [Bousfield-Kan (HS), §15] 

E~'t(K(G, n); Zp) z G ® Zp for s = 0, t = n 

z coker(G, Zp) for s > 0, t-s = n 

ker(G, Zp) for s >_ 0, t-s = n+l 

= 0 otherwise 
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where coker(G, Zp) and ker(G, Zp) denote the cokernel and kernel 

of the obvious composition 

Tor (G, Zp) > G ) G ® Zp. 

Moreover, for r ~ 2, Er(K(G , n); Zp) suspends isomorphically to the 

Er-term of the Adams spectral sequence for the K(G) spectrum. Thus, 

if r _> 2 and t-s = n+l, then Es't(K(Gr , n) ; Zp) is isomorphic to 

the kernel of the obvious composition 

Tor(G, Zp) > G > G ® Z 
r-l" 

P 

Now it is easy to show that {Er(K(G, n) ; Zp) } is Mittag-Leffler in 

all dimensions ~ 1 if and only if the p-torsion subgroup of G 

decomposes as I • M, where I is divisible and pkM = 0 for some 

k. The proposition then follows from [Kurosh, Vol.I, p.165 and p.173~ 

9.4 Remark. The analogue of theorem 9.1 for the lower p-central 

series spectral sequences ([Rector (AS)], [Quillen (PG)] and 

[Bousfield-Curtis]) can be proved in the same way as 9.1. The main 

reason for this is that: 

(i) for towers of 9roups, the Mittag-Leffler property (Ch.IX, 

3.5) is a pro-isomorphism (Ch. III, 2.1)invariant, and thus (Ch. IX, 

5.6) 

(ii) for spectral sequences of towers of fibrations in ~*C' 

the Mittag-Leffler property in dimension i is a weak pro-homotopy 

equivalence (Ch. III, 3.1) invariant. 

Note that complete convergence (Ch. IX, 5.3) is, in general, qqt 

invariant under weak pro-homotopy equivalences. For example, if 

Z denotes the p-adic integers, then there is a weak pro-homotopy 
=P 

equivalence 
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f> K(~p, n) f ) K(~p, n) f> K(~p, n) > * 

f) K(5, n) f> K(5, n) ~> K(Zp/Z, n) > . 

(n k i), where f induces Z P> Z and g induces the quotient 
=P =P 

map =PZ > 5/Z. However the spectral sequence of the upper tower 

converges completely, while that of the lower tower does not. 



Ch. VII, §I 

Chapter VII. A ~limpse at the R-completion 

of non-nilpotent spaces 

§i. Introduction 

Although the R-completion is quite well understood for nilpotent 

spaces (Ch.V and Ch.VI), the situation for non-nilpotent spaces is 

still very mysterious. So far we have essentially dealt with only 

one non-nilpotent example, in Ch. IV, 5.3, where we showed that for 

any free group F 

R K(F, i) -- K(FR, i) 

and our main purpose in this chapter is to discuss some other non- 

nilpotent spaces and indicate how little is known about them and how 

much more work remains to be done for non-nilpotent spaces. 

§2 This first section contains some easy homotopy characteriza- 

tions of the R-completion for R-good spaces. 

§3, §4 and §5 form the central part of this chapter; we discuss 

various non-nilpotent spaces and show, in particular, that: 

(i) any space X with an R-perfect fundamental group (i.e. 

HI(X; R) = 0) is R-good for R c Q and R = Zp, 

(ii) any space with finite homotopy groups in each dimension is 

R-good for R c Q and R = Zp, 

(iii) any space with a finite fundamental group is Zp-~Ood for 

all primes p, but 

(iv) the pro~ective plane as well as some finite wedge of 

circles is not Z-good. 
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§6 This last section contains some comments on possible R-homo- 

topy theories for R c Q and R = Z 
P 

Notation. In this chapter we will mainly work in the category 

J*C of pointed connected spaces. 

Throughout this chapter the rin 9 R will be R c Q 93 R = Zp, 

except in §2, where we allow arbitrary (solid) rings. 
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§2. Homotop[ characterizations of the 

R-completion for R-~ood spaces 

For any (solid) ring R we 

(i) give universal properties which characterize, up to homo- 

topy, the R-completion for R-good spaces, and 

(ii) formulate an "up to homotopy" version of the R-completion 

for R-good spaces, which generalizes the localizations (Ch.V, §4) 

and the p-completions (Ch.VI, §6); a generality which is justified 

because there are many R-good spaces which are not nilpotent (see §3, 

§4 and §5). 

First we have (in view of Ch.I, §5 and Ch. II, 2.8) the 

2.1 Universal properties. For an R-good space X e g*C' the 

map ~: X ~ R X has the following "up to homotopy" universal 

properties: 

(i) ~: X ~ R X is terminal among the maps f: X + Y ¢ g*C for 

which f,: H,(X; R) z H,(Y; R), i.e. for any such map f, there 

exists a unique homotopy class of maps u: Y ~ R X ¢ g*C such that 

uf = ¢. 

(ii) ¢: X ÷ R X is initial among the maps f: X ÷ Y ¢ g*C for 

which Y is R-complete and fibrant, i.e. for any such map f, there 

exists a unique homotopy class of maps u: R X + Y ¢ g*C such that 

u~ = f. 

Next we introduce our "up to homotopy" version of the R-comple- 

tions, which we call 
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2.2 Semi-R-completions. For this we first say that a space 

K E ~*C is semi-R-com21ete if it is fibrant and every map 

f: X ÷ Y E ~*C which induces an isomorphism H,(X; R) z H.(Y; R), 

also induces a bijection of the pointed homotopy classes of maps 

[Y, K] z [X, K]. This is motivated by Ch. II, 2.8, which implies 

that, for ever~ W E ~*C' the R-completion R W is semi-R-complet e • 

For X c ~*C' a semi-R-completion of X now is a map 

X ÷ ~ £ J*C such that 

(i) [ is semi-R-complete, and 

(ii) the induced map H,(X; R) * H,(X; R) is an isomorphism. 

Although, in general, the R-completion of X need not be a semi- 

R-completion of X, one clearly has: 

2.3 Proposition. The semi-R-completion is well-defined and 

functorial on the pointed homotopy categor[ of R-good spaces. It is 

induced by the functor R . 

2.4 Homo topy characterization of R X. For an R-good space 

X ~ J*C' the R-completion ~: X ÷ R X is a semi-R-completion, and, 

in the pointed homotop[ cate~or[, an Z semi-R-completion of X is 

canonically equivalen t to ~: X + R X. 

Note that each "R-homology type" of R-good spaces contains 

exactly one homotopy type of (semi-) R-complete spaces; and the 

(semi-) R-completion "selects" that homotopy type. 
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§3. Spaces with an R-perfect fundamental group 

An interesting class of spaces which are R-good consists of the 

spaces whose fundamental group is R-perfect. We will show in several 

examples that, for such spaces, W,R X may be very different from 

~,X. We start with recalling the definition of 

3.1 R-perfect groups. A group G is called R-perfect if 

HI(G; R) = 0, i.e. if 

R @ (abelianization of G) = 0. 

Thus a z-perfect group is nothing but a group which is perfect in the 

usual sense. Clearly every perfect group is R-perfect. 

An immediate consequence of this definition, Ch.I, 5.2 and 6.1, 

Ch.V, 3.4 and Ch.VI, 5.3 is 

3.2 Proposition. Let X e W°*C' let R c Q or R = Zp (p 

prime) and let ~i x be R-perfect. Then X is R-@ood and R X is 

simply connected. 

p2 

3.3 Examples. 

(i) The pro~ective plane p2 is Zp-good for P 4 2; actually 

is also Z2-good , but this we will only see in §5. 

(ii) Let A denote the infinite alternating group, i.e. 

A = lim A 
n 

where A n denotes the alternating group of degree n, i.e. the group 

of the even permutations of {l,..-,n}. Then K(A , i) is R-good 
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for R c Q and R = Zp, because [Kurosh, Vol.I, p.68] A n is 

simple for n ~ 5 and thus A is perfect. 

(iii) Let S denote the infinite symmetric group, i.e. 

S~ = lim S 
÷ n 

where S n denotes the symmetric group of degree n, i.e. the group 

of the permutations of {l,--.,n}. Then K(S , i) is R-good for 

R c Q and R = Zp, in spite of the fact that S is only Zp-per- 

fect for p ~ 2. To prove this one observes that there is, for each 

n, an obvious monomorphism An x Z2 ÷ Sn+2 which is compatible with 

and the projection Sn+ 2 ~ Z 2. As the inclusion A n Sn+ 2 

furthermore 

H.(A , Z) = lim H.(An, Z) 

it is not hard to see that, in the fibration 

K(A , i) ) K(S , i) > K(Z2, i), 

~IK(Z2 , l) = Z 2 acts trivially on H,(K(A~, 1), Z) = H,(A , Z). The 

desired result now follows from (ii) and Ch. II, 5.1. 

The last two of these examples are K(~, l)'s whose Z-comple- 

tion has as higher homotopy groups 

3.4 Stable homotopy ~r0ups of spheres. There are isomorphisms 

niZ K (S , i) z ni(~S~)0 i >_ 1 

niZ K(A , i) = ~i(~S~)0 i > 2 
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where (~S~)0 denotes the constant component of ~S ~ = lim ~nsn. 

The first part is a consequence of Ch.I, 5.5, Ch.V, 3.3 and the 

fact that [Priddy] there is a map 

IK(S~, I) I > (~S~)0 

which induces an isomorphism on integral homology. The second half 

follows from the first by applying Ch. II, 5.1 to the fibration (see 

3.3 (iii)) 

K(A , i) ) K(S , i) ) K(Z2, 1). 

It is easy to deduce similar results for other coefficient rings 

R. 

Next we briefly discuss Dror's observation that, for a perfect 

group G, the higher homotopy groups of Z K(G, i) can be interpret- 

ed as 

3.5 Homotopy groups of simple acyc!ic spaces. Let G be a 

perfect group and let G' denote the extension of G 

corresponding to 

i.e. 

) H2G ) G' ) G ) * 

id ~ H 2(G; H 2(G; Z)) . Then G' is superperfect, 

H. (G'; Z) = 0 i = i, 2 
l 

and hence [Dror (A)] there is, up to homotopy, a unique space A(G') 

such that 

(i) A(G') is acyclic, i.e. H,(A(G'); Z) = 0, and 
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(ii) ~IA(G ') z G' and nlA(G') acts trivially on niA(G') 

for i > I. 

Moreover A(G') is, up to homotopy, the "fibre" of the map 

#: K(G', i) ÷ Z K(G', i) and from this it is not hard to deduce 

(using Ch. II, 2.2) that 

w2Z K(G, i) z H2(G; Z) 

~iZ K(G, i) = ni_IA(G') i > 2. 

We end this section with a result of [Sullivan, 4.28 ff] which 

shows that a non-nilpotent action of a nilpotent fundamental group on 

a higher homotopy group can create as much havoc as a non-nilpotent 

fundamental group (see above). 

3.6 

be an odd prime and let n ~ 2 

space X e J*C such that 

!,,i) 

(ii) 

(iii) 

0(iv) 

Classif[in@ spaces for Zp-completions ............. of spheres. Let p 

divide p-l. Then there exists a 

~i x = Z n 

n2X = 5' the p-adic integers (Ch.VI, 4.1) 

niX = * for i > 2, ~nd 

there is a homotopy e~uivalence 

~RX = R S 2n-1 where R = Z 
P 

and thus 

n2nRX = Z =P 

-- z S 2n-I i ~ 2n. niR X p-torsion of i-i 
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To prove this one observes that Z contains a (p-1)-st root =P 

of unity [Sullivan, 1.35 ff], i.e. an element ~ ~ Z such that 
=P 

~p-1 = 1 and the obvious map Z ÷ Z carries ~ to a primitive 
=~ P 

(p-l)-st root of unity in Z and then constructs X as a space 
P 

in which the action of ~i x on n2 x corresponds to that of 

{i, ~(p-l)/n, ~2(p-l)/n 
• ...} on =PZ. Since ~i x is Zp-perfect, it 

follows from 3.2 that R X is simply connected and that 
* * * 

H (R X; Zp) = H (X; Zp). An easy computation shows that H (X; Zp) 

is a Zp-polynomial algebra on a generator of degree 2n and hence 

~R X is a (2n-l)-connected Zp-complete space and H (~R X; Zp) is 

an exterior algebra on a generator in dimension 2n-l. The desired 

result now follows readily. 
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§4~ spaces with finite homotop[ or homology groups 

Another class of spaces which are R-good consists of the spaces 

with finite homotopy groups. For such spaces the Z-completion is, 

up t o homotopy, the product of the Zp-COmpletions. This last state- 

ment, in fact, holds for all spaces with finite homology groups, i.e.: 

4.1 ........ Proposition. Let ~ be a set of primes, let R = Z(j) 

(Ch.V, 6.1) , the integers localized at J~ and let X E J*C be such 

that Hi(X; R) is finite for each i ~ i. Then the natural map 

R X > ~ (Zp) X 
p ~ J 

is a homotopy equivalence ,. 

4.2 Corollar[. Le t J be a set of primes, let R = Z(j) and 

!et X E ~*C be such that ~i x is finite for each i ~ i. Then the 

natural map 

R X > p~j(Zp) X 

is a homo topy equivalence. 

Proof of 4.1. By Ch. III, 6.2 and 6.5 

(Zp) X ~- lim(Zp) RsX for p ~ J 

and, as RsX is an R-nilpotent space with finite homotopy groups, 

RsX = I I (Zp)~RsX for s < ~ 
psJ 
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The desired result follows easily. 

Now we can state 

4.3 Propositio n . Let X c /*C be such that ~i X is finite 

for each i > i. Then 

(i) ~i(Zp) X is a finite p-group for all i and p (prime). 

Hence (4.2, Ch.I, 6.1 and 7.2 and Ch. II, 5.2(iv)) 

(ii) R X is n!!p0tent for R c Q and R = Z p' 

and therefore (Ch.I, 5.2, Ch.V, 3.4 and Ch.VI, 5.3) 

(iii) X is R-~ood fpr R c Q and R = Zp. 

Proof. It suffices to construct, for each prime p, a map 

X + Y e ~*C which induces an isomorphism H,(X; Zp) = H,(Y; Zp) and 

is such that ni Y is a finite p-group for all i. This can be done 

by "attaching Moore cells" as follows. 

Let n be the smallest integer such that ~ X is not a p-group 
n 

and let s ~ nn x be an element of order k, prime to p. We may 

suppose X to be fibrant and choose a map 

u: M(Zk, n) ) X ~ 2,C 

representing ~, where M(Z k, n) is a Moore space of type (Zk, n)- 

If C u denotes the mapping cone of u, then the inclusion X + C u 

clearly induces isomorphisms 

H, (X; Zp) = H, (Cu; Zp) 

~.X z ~.C for i < n 
l I u 

and an epimorphism ~n x + ~nCu which annihilates ~ ~ ~n X. Moreover 
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we will show below that ~.C is finite for all i and iteration of i u 

the above construction thus yields the desired map X ÷ Y. 

To show that the ~.C are finite, one considers the universal I u 

÷ C and observes that C can be obtained from its covering f : Cu u u 

subspace f-l(x) by "attaching Moore cells" for each of the liftings 

in the diagram 

/ 
M(Zk, n) 

f-l(x ) 

if 
u 

> x  

Since there are only finitely many such liftings and since f-l(x) 

has finite homotopy (and hence homology) groups, it is clear that 

Cu has finite homology (and hence homotopy) groups. Consequently 

~.C is finite for all i. I u 

As an illustration of 4.2 and 4.3 we investigate the Z-completion 

of K(S3, i) where S 3 denotes the symmetric group of degree 

(see 3.3(iii)) and prove 

4.4 Prop0sition. 

Z K(S3, l) = (Z2) K(S3, i) x (Z3) K(S3, i) 

where 

(Z2) K(S3, I) = K(Z2, i) 

and there is a fibration, up to hom0top[, 

(z3) $3 J ) (z3) $3 ) (z3) K(S3, i) 
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in which j is of degree 3. 

214 

Proof. The first statement follows from 4.2 and the fact that 

K(S3, i) is Zp-acyclic for p ~ 2, 3, while the second is true, 

because the obvious map K(S3, i) ÷ K(Z2, i) is a Z2-homology 

equivalence. 

To get a hold on (Z3) K(S3, I) one applies 4.3 to the obvious 

(co-)homology data for K(S3, i) and finds that (Z3) K(S3, i) is a 

Z3-complete space with 

~i(Z3) K(S3, i) = * for i < 3 

= Z 3 for i = 3 

and that the algebra H ((Z3) K(S3, I); Z 3) factors as a tensor 

product of an exterior algebra on a 3-dimensional generator with a 

polynomial algebra on a 4-dimensional generator. From this it is not 

hard to obtain the desired result. 

We end with a general 

4.5 Remark. For the spaces considered in this section one can 

obtain more information on ~,R X by combining 4.1 with the homotopy 

spectral sequences {Er(X; Zp)} (Ch.I, 4.4) as one has (Ch.VI, 9.3). 

If X ~ ~;*C is such that Hi(X; Zp) is finite for each i > i, 

then the spectral sequence {Er(X; Zp)} is Mittag-Leffler in all 

dimensions > 1 (Ch. IX, 5.5), and thus converges completely to 

~, (Zp) X. 
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§5. Spaces with a finite fundamental group 

In this section we show that spaces with a finite fundamental 

group are Zp-~Ood for all primes p. However such a space need not 

be Z-good; the projective plane p2 already provides a counter 

example. 

5.1 Proposition. Let X E g*C be such that ~i x is finite. 

Then X is Zp-~Ood for all primes p. 

Proof. As in the proof of 4.3 one "attaches Moore cells" to 

obtain a Zp-homology equivalence X ÷ Y ~ g*C such that ~i Y is a 

finite p-group; and one is thus reduced to proving that Y is Z - 
P 

good. For this it suffices, in turn, to show that the Postnikov 

fibration, up to homotopy 

> Y > K(~IY, i) 

satisfies the hypotheses of Ch. II, 5.1, i.e. that Zl Y acts nil- 

potently on each Hi(Y; Zp). But this is indeed the case because 

finite p-group G always acts nilpotentl~ on a Zp-module M. 

To prove this last statement, observe that (Ch.II, 5.2(iv)) G 

acts nilpotently on the Zp-group ring ZpG. Thus, if I c ZpG 

denotes the augmentation ideal, there is an integer n such that 

I n = 0. The desired result now follows from the fact that 

InM c M is nothing but the n-th term in the "lower central series 

of M with respect to the action of G". 

Unfortunately, even a finite space with a finite fundamental 

group need not be Z-good, as can be seen from the following: 
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5.2 Counter example. Th e projective plane p2 is not Z-good. 

5.3 Remark. If K(F, l) were Z-good for every finitely 

generated free group, then all spaces X e ~ of finite type (i.e. X n 

finite for all n) would also be Z-good. The above counter example 

thus implies that some finite wedge of circles is not Z-~ood. 

Proof of 5.2. We want to show that 

let R = Z 2. Then (4.1) 

R p 2 = Z p 2 

H4(Z P2; Q) ~ 0. For this 

and thus (Ch. II, 5.1) there is a fibration, up to homotopy 

R S 2 ..... > Z P 2 > K(Z2, i) 

and H,(Z P2; Q) can be identified with the quotient of H,(R $2; Q) 

under the action of Z 2. 

By [J.H.C. Whitehead] there is a "certain exact sequence" 

--- ) ~4R~S 2 > H4(R~S2; Z) ) F (g2R~ $2) > g3R~ $2 ) "'" 

is the functor which assigns to an abelian group A, the 

F(A) with a generator Y(x) for each x e A and 

where 

abelian group 

relations 

Y(x) = Y(-x) 

Y(x+y+z) - Y(x+y) - Y(y+z) - Y(z+x) + ¥(x) + Y(y) + Y(z) = 0 

for all x, y, z & A. Tensoring this with Q, we obtain an exact 
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0 ) H 4 (RS2; Q) 

and as 
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) Q ® F(n2R S 2) ) Q ® n3R~S 2 ) --- 

Z 2 acts trivially on Q ® F(n2R~S 2) it follows that 

H 4 (R~S 2; Q) ~ H 4 (Z~P 2; Q) • 

Moreover a close inspection shows that the above map 

Q ® F(~2R s 2) )Q ® ~3R~S 2 

corresponds to the map F(Q ~ Z 2) + Q ® ~2 which sends Y(x) to 

2 
x for each x ~ Q ® ~2 (Q ® ~2 is, of course, the field of 

2-adic numbers) and it thus remains to show that the map 

RQ ® z 2) ÷ Q ® =~z~ has non-zero kernel. To do this we choose an 

element a g Q ® ~2 such  t h a t  a ,  a 2 and a 3 a r e  l i n e a r l y  i n d e p e n -  

d e n t  over Q. This is possible, by a cardinality argument, since 

each e q u a t i o n  b3 x3 + b2 x2 + blX = 0 has  o n l y  f i n i t e l y  many s o l u t i o n s  

x ~ Q @ ~2" The results of [J.II.C. Whitehead, §5] then show that 

- Y(a) - Y(a 3) - 2Y(a 2) 

is a non-zero element in the kernel of F(Q @ z 2) ÷ Q ® z 2- 

Actually the above argument shows that the pr0~ective plane p2 

is not Z(j)-good if 2 E J. 
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§6. R-homotopy theories 

We end this chapter with the observation that there are such 

things as 

6.1 R-homotop[ theories for R c Q and R = Zp. By this we 

mean that it is possible to define in the category of spaces # 

notions of weak R-equivalence, R-cofibration and R-fibration such 

that: 

(i) these notions satisfy Quillen's axioms for a closed 

simplicial model category (Ch.VIII, 3.5), and 

(ii) a map between simply connected spaces is a weak R-equiva- 

lence if and onl[ if it induces an isomorphism on R-homology. 

In fact, these notions can be defined in such a manner that in 

addition 

(iii) a map X ÷ * c ~ is a weak R-equivalence if and only if 

X is R-acyclic, i.e. H,(X; R) = *. 

Our main tool for proving this will be 

6.2 A partial R-completion functor C R for R c Q and R = Z~ 

This will be a variation of the functor R in which "part of the 

fundamental group is not completed", with the result that the natural 

map C~ ÷ (cR)2x is always a homotopy equivalence. In more detail: 

Let P denote the functor which associates with every group 

its maximal R-perfect subgroup i.e. (3.1) the largest subgroup 

G c ~ for which HI(G; R) = 0. (Clearly such a maximal R-perfect 

subgroup exists and is unique). Next, for X E J, let Sinlx I be 

the singular complex of its realization (Ch.VIII, §2) and let 

SinlXl/P denote the space obtained from this by "killing, in each 
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component, the higher homotopy groups and the maximal R-perfect sub- 

group of the fundamental group", i.e. by identifying two n-simplices 

u, v E SinlX I whenever, for every sequence of integers 

(il,-..,in_l) with 0 ! i I < "'" < in_ 1 ! n 

(i) the l-simplices d. .-.d. u and d. ...d. v have the 
~i ~n-i 11 ~n-i 

same vertices, and 

(ii) these two l-simplices "differ" by an element of the 

maximal R-perfect subgroup of the fundamental group (of their compo- 

nent). 

The ~artial R-completion C~ of X now is obtained by fibre-wise 

R-completion of the fibration SinIX I + SinlXl/P , i.e. by putting 

(Ch.I, §8) 

C~ = R SinlX I . 

This partial R-completion comes with an obvious map (see Ch.I, §8 

and Ch.VIII, §2) 

~: X )C~ e 

which has the following useful properties: 

6.3 Proposition. Let X e J'C" Then the map $: x ÷ cRx 

induces isomorphisms 

~IX/Pnl x z ~ICRX 

H,(X; R(~IX/P~IX)) z H,(cRx; R(~ICRX)) (twisted coefficients) 

where R(-) denotes the group ring over R and the twisted coeffi- 

cients are the obvious ones. 
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6.4 Proposition. For all X e J, the natural map 

~: C~ ÷ (cR)2x is a weak equivalence. 

Proof. These propositions follow readily from 3.2 and Ch.I, §8 

and the fact that the homology with twisted coefficients 

H,(X; R(~IX/P~IX)) is isomorphic with the ordinary homology H,(F; R) 

where F denotes the fibre of the fibration SinlX I ÷ SinlXl/P. 

Now we are ready to define: 

6.5 Weak R-equivalences, R-cofibrations and R-fibrations. A 

map f: X ÷ Y E ~ will be called a weak R-equivalence if the induced 

map cRf: cRx ÷ cRy E ~ is a weak equivalence. Thus, in view of 6.3 

and Ch.I, 7.1, a ma~ f: X ÷ Y £ ~ is a weak R-equivalence if and 

only if it is the disjoint union of ma~s fb: Xb + Yb between 

connected spaces, each of which induces an isomorphism 

ZlXb/PnlXb = nlYb/PnlYb 

and an isomorphism of homology with twisted coefficients 

H, (Xb; R(~iXb/PZlXb)) z H, (Yb; R(~IYb/P~IYb) ) " 

A map in ~ will be called an R-cofibration if it is a cofibration 

(i.e. injection) in ~ and a map in ~ will be called an R-fibration if 

it has the right lifting property with respect to all R-cofibrations 

which are weak R-equivalences. A simple obstruction argument then 

implies that every fibration X ÷ Y E ~*C for which 

P~I x = * = P~l Y, is an R-fibration, and so is every pull back of such 

a fibration. 
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Proof of 6.1(i), (ii) and (iii). Parts (ii) and (iii) follow 

from 6.5, while the axioms for a closed model category (Ch.VIII, 3.5) 

are easily verified, except for the second factorization axiom 

CM5(ii). 

To deal with this consider, for a map f: X + Y ~ J, the 

commutative diagram 

I !  , |  

X ) X  

l, 1 
! 

)Y >Y 

) cRx 

! 

) x 

) cRy 

where X + cRx, Y + CRY and cRx ÷ CRY are the obvious maps, 

cRx + X' is a cofibration and a weak equivalence, X' + cRy is a 

fibration, Y ÷ Y' is a cofibration, Y' ÷ cry is a fibration and a 

weak equivalence and X"' + Y and X '° ÷ Y' are pull backs of the 

map X' ~ CRY. By 6.5 the map X' + cRy is an R-fibration and so is 

therefore the map X"' ÷ Y. Furthermore the fibration Y' + cRy 

induces a fibration over the universal covering of cRy with the same 

fibres and it follows readily from the Serre spectral sequence for 

this induced fibration and the fact that the map Y' ÷ cry is a weak 

equivalence, that all these fibres are R-acyclic. And as these 

fibres are also the fibres of the fibration X" ÷ X' one gets, by 

reversing this argument, that the map X" + X' is a weak R-equiva- 

lence. Thus the map X ÷ X ''° is a weak R-equivalence and a factoriza- 

tion of this map into a cofibration and a fibration which is a weak 

equivalence now gives rise to the desired factorization of the map 

X ~y. 
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As an application we consider: 

6.6 R-homotopy groups. Given the above model category for R- 

homotopy theory one can [Quillen (HA)], for X ~ ~,, define its R_- 

homotopy groups n.~ by ~,Rx = n.cRx. The following examples then 

show that the R-homotopy groups of a space need not coincide with its 

(ordinary) homotopy groups, even if R = Z. 

(i) ~IRX z wiX/P~IX. 

(i i) If X is simpl[ connected and R c Q, then (Ch.V, 3.1) 

~,Rx z R ~ ~,X. 

(iii) If X is simpl~ connected, w.X is finitely ~enerated 
1 

for each i, and R = Zp, then (Ch.VI, 5.2) ~,Rx z =PZ ® n,X. 

(iv) If S denotes the infinite symmetric 9roup, then (3.4) 

~,ZK(s ~ , i) ~ ~,(~ S )0" 

However, just like the ordinary homotopy groups [Kan (AX)], the 

R-homotopy groups can be characterized b[ four simple axioms. All 

one has to do for this is to replace everywhere in [Kan (AX)] 

"fibration" by "R-fibration" and "weak homotopy equivalence" by "weak 

R-equivalence". 

The partial R-completion is closely related to: 

6.7 The R-acyclic functor. For X E ~*C' let 

e: ARx ) X e ~*C 

be the fibration induced by the map ~: X ÷ cRx from the path fibra- 

tion [May, p.99] over cRx. Then, as in 6.3, one readily proves: 

(i) H,(ARx; R) -- * for all X ~ ~*C' and 
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(ii) the map ~: ARx ÷ X is a weak equivalence if and 0nly if 

H, (X; R) = *. 

It is not hard to see that this implies that, up to homotop[, 

ARx is the maximal R-ac~clic subspace of X, i.e. for every B g g*C 

with H,(B; R) = , and every map f: B ÷ X g ~*C there is a unique 

homotopy class of maps g: B ÷ A~ such that f ~ eg. 

For R = Z the acyclic functor is due to [Dror (A)] and was 

used by him to analyze the structure of acyclic spaces. 

We end with a comment on possible 

6.8 Variations. Except for 6.1(iii) and 6.7, the above results 

remain true if the functor P of 6.2 is not required to be maximal. 

For instance, if one takes for P the functor which assigns to every 

group its trivial subgroup, then, for X ~ g*C' the resulting partial 

R-completion has the same fundamental group as X and its universal 

covering space [Lamotke, Ch. III] has the same homotopy type as the 

R-completion of the universal covering of X. The resulting Z-homo- 

topy theory thus is nothing but the ordinary homotopy theory. 

Of course, for fixed R, all the different choices of the 

functor P yield the same R-homotopy theory for simply connected 

spaces and for spectra. 
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Part II. Towers of fibrations, cosimplicial spaces and 

homotopy limits 

§0. Introduction to Part II 

In Part II of these notes we have assembled some results on 

towers of fibrations, cosimplicial spaces and homotopy limits (in- 

verse and direct) which were needed in our discussion of completions 

and localizations in Part I, but which seem to be of some interest in 

themselves. More specifically: 

Chapter VIII. Simplicial sets and topological s~aces. This 

chapter does not really contain anything new. It is mainly intended 

to help make these notes accessible to a reader who knows homotopy 

theory, but who is not too familiar with the simplicial techniques 

which we use throughout these notes. 

We point out that, in a certain precise sense, there is an 

equivalence between the h omotopy theories of simplicial sets and 

topological spaces (or CW-complexes) ; and thus, for homotopy theore- 

tic purposes, it does not really matter whether one uses simplicial 

sets or topological spaces. To emphasize this, we will throughout 

these notes (except in Chapter VIII where it might cause confusion) 

often use the word 

s~ace for simplicial set. 

Chapter IX. Towers of fibrations. For use in Chapter X, we 

slightly generalize here two well-known results for a pointed tower 

of fibrations {X }: 
n 
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(i) We show that the short exact sequence 

* ) limlni+iXn ) ~i lim Xn -----~ lim ~iXn * * 

also exists for i = 0. For this, of course, we first have to define 

a suitable notion of lim I for not necessarily abelian groups. 

(ii) We generalize the usual homotopy spectral sequence to an 

"extended" homotopy spectral sequence, which in dimension 1 consists 

of (possibly non-abelian) groups, and in dimension 0 of pointed sets, 

acted on by the groups in dimension i. This we do by carefully ana- 

lyzing the low-dimensional part of the homotopy sequences of the fib- 

rations X n ~ Xn_ I. 

At the end of the chapter we show how these results can be used 

to get information on the homotopy type of the inverse limit space 

lim X n . 

Chapter X. Cosimplicial spaces. This chapter is concerned 

with our basic tool: cosimplicial (diagrams of) spaces. 

In Part I of these notes (in Chapter I), we defined, for a ring 

R, the R-completion of a space X as the so-called "total space" of a 

certain cosimplicial space RX, and in order to prove some of the 

basic properties of this R-completion we needed, not surprisingly, 

various results on cosimplicial spaces. Those results are proved in 

this chapter. We 

(i) lay the foundations for a homotopy theory of cosimplicial 

spaces, and 

(ii) combining this with the results of Chapter IX, obtain, 

for every cosimplicial (pointed) space, an extended homotopy 

spectral sequence which in many cases (and in particular for RX) 



Part II, §0 226 

gives useful information on the homotopy type of the total space. 

Chapter XI. Homotopy inverse limits. In this chapter we ex- 

tensively discuss a notion of homotop[ inverse limits which gets 

around the difficulty that, in general, inverse limits do not exist 

in the homotopy category. 

While this is of interest in itself, our main reasons for in- 

cluding a (rather long) chapter on this subject are that: 

(i) homotopy inverse limits are closely related to cosimplicial 

spaces, and the results of this chapter put some of the results of 

the Chapters IX and X in perspective, and 

(ii) we show in this chapter that, up to homotopy, the R-com- 

pletion of a space X (which was defined in Chapter I as the total 

space of the cosimplicial RX), is indeed an R-completion of X, in 

the sense that it is a homotopy inverse limit of the "Artin-Mazur- 

like" diagram of "target spaces of maps from X to simplicial R- 

modules"; and this takes (some of) the mystery out of our definition 

of R-completion. 

Moreover we show that: 

(iii) the homotopy groups of homotopy inverse limits are quite 

accessible and there is an extended homotopy spectral sequence for 

approaching them, 

(iv) homotopy inverse limits are closely related to the derived 

functors lim s of the inverse limit functor for abelian groups; and 

this can be used to extend the definition of lim I which we gave in 

Chapter IX for towers of not necessarily abelian groups, to arbitrary 

small diagrams, 

(v) for a tower of fibrations, the homotopy inverse limit has 

the same homotopy type as the (ordinary) inverse limit space, and 
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the spectral sequence for the homotopy inverse limit reduces to the 

short exact sequences of Chapter IX, 

(vi) for many cosimplicial spaces (and in particular for RX) 

the homotopy inverse limit has the same homotopy type as the total 

space, and the homotopy spectral sequence for the homotopy inverse 

limit coincides, from E 2 on, with the spectral sequence of Chapter X, 

and 

(vii) there is a cofinality theorem, which enables us to com- 

pare homotopy inverse limits for small diagrams of different "shapes~ 

and which we use to show that, for certain large diagrams of spaces, 

one can, at least up to homotopy, talk of their homotopy inverse 

limits. 

Chapter XII. Homotopy direct limits. Here we briefly discuss 

the dual notion of homotopy direct limits. We do this mainly for 

completeness' sake, although a few of the results of this chapter are 

used in Chapter XI in the proof of (ii). 

In writing Part II we have been especially influenced by the 

work and ideas of Don Anderson and Dan Quillen. 
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Chapter VIII. Simplicial sets and topological spaces 

§i. Introduction 

The purpose of this chapter is 

(i) to review some of the basic notions of simplicial homotopy 

theory, and 

(ii) to convince (or at least try to convince) the reader that 

this simplicial homotopy theory is equivalent to the usual topologi- 

cal homotopy theory. 

In slightly more detail: 

__§2" Here we define simplicial sets, give a few examples and 

construct the singular and realization functors between the category 

J of simplicial sets and the category I of topological spaces. 

§3 contains Quillen's precise formulation of the sense in 

which the singular and realization functors induce an "equivalence 

between the homotopy theories of the cate@ories J and ~ " For this 

one needs in both categories notions of fibrations, cofibrations and 

weak equivalences. 

§4. We end the chapter with a discussion of the homotopy rela- 

tion for simplicial maps and review the related notion of function 

spaces for simplicial sets. 

For a more detailed account of simplicial homotopy theory the 

reader may consult [May], [Lamotke], [Curtis (S)], [Gugenheim], 

[Quillen (HA)] and others. 
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§2. Simplicial sets 

In this section we 

(i) recall a definition of simplicial sets and, more generally, 

of simplicial objects over an arbitrar~ category, 

(ii) discuss some simple examples of simplicial sets, and 

(iii) observe that the categories ~ of simplicial sets and 

of topological spaces are related by a pair of ad~oint functors 

It 

< 
Sin 

the realization functor I I: J ~ I and the singular functor 

Sin: ~ + ~ . 

We start with 

2.1 Simplicial objects and maps. A simplicial object X over a 

category ~ consists of 

(i) for every integer n ~ 0 an object X n e ~, and 

(ii) for every pair of integers (i,n) with 0 ! i ! n, face and 

degenerac[ maps 

di: X n ) Xn_ 1 and si: X n ) Xn+ 1 £ 

satisfying the simplicial identities: 
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did j = dj_ld i for i < j 

dis j = Sj_ld i for i < j 

= id for i = j, j+l 

= sjdi_ 1 for i > j+l 

sis j = sjsi_ 1 for i > j 

Similarly a simplicial map f: X ~ Y between two simplicial objects 

consists of maps 

f: X )Y e ~ 
n n 

which commute with the face and degeneracy maps, i.e. 

dif = fd i and sif = fs i for all i. 

We now specialize to 

2.2 Simplicial sets. A simplicial object over the category 

of sets will be called a simplicial set, and we denote the categor[ 

of simplicial sets by ~. 

For X e J, the elements of X are called n-simplices; 0-simpli- 
n 

ces are sometimes called vertices. 

There are two kinds of simplices: 

2.3 Degenerate and non-degenerate simplices. For X e J, a 

.x' for some x' e X and i. simplex x e X is called degenerate if x = s 

Otherwise it is called non-degenerate. 

The following property of degenerate simplices is very useful 

and not hard to verify. 
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Every degenerate x e X has a unique decomposition 

x = Sin''" SilX' 

> . > i I and x' ~ X is non-degenerat ~. Moreover such that i n .. 

il,...,i n are precisel[ the "directions" in which x is degenerate, 

i.e. x is in the image of s k if and only if k E {il,...,in}. 

This implies, for instance, that the product X x y e J of two 

simplicial sets X and Y (which is defined by 

(X x y) = X × Y for all n 
n n n 

and the obvious face and degeneracy maps) can contain a non-degener- 

ate simplex (x,~) for which both x e X and ~ e Y are degenerate (but 

in different " " dlrections") 

One can get a better idea what, in general, a simplicial set 

looks like by considering the singular and realization functors be- 

tween the category J of simplicial sets and the cate@or[ ~ of 

topological spaces. To define these we need 

2.4 The topological standard simplices. For every n k 0, the 

topological n-simplex, ~[n], is the subspace of (n+l)-dimensional 

Euclidean space consisting of the points (t0,...,t n) for which 

t i = 1 and 0 ! t i ! 1 for all i. 

standard maps 

di: ~_[n-1] 

are given by the formulas 

di(t0 .... ,tn_ 1 ) = 

Similarly for all 0 < i < n, the 

) ~[n] i: ~[n+l] ) ~[n] 

(t0,..-,ti,0,ti+l,...,tn_l) 

s_i(t0 .... ,tn+ I) = (t0,...,t i + ti+l,...,tn+ I) 
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and it is easy to check that these standard maps satisfy the dual of 

the simplicial identities (2.1), i.e. 

dJd i = did j-I for i < j 

s3d I = dls 3-I for i < j 

sJs i 

= id for i = j, j+l 

= di-ls j for i > j+l 

= si-ls j for i > j 
N 

2.5 The singular functor. The sin@ular functor 

Sin: ~ ) J 

is defined as follows. For X e I, an n-simplex of Sin X is any map 

A[n] x) X ~ 

while its faces dix and its degeneracies six are the compositions 

d i i 
S 

~[n-l] -- ) ~[n] x) X ~[n+l] -- * ~[n] x) X 

Similarly, for a map f: X ÷ Y E J and an n-simplex x E Sin X, the 

n-simplex (Sin f)x ~ Sin Y will be the composition 

A_[n] x) X f) Y e 

Closely related to the singular functor is 

2.6 The realization functor. This is the functor 

l I :J ) 



Ch. VIII, §2 233 

defined as follows. For X ~ J, the realization IX 

the disjoint union space 

J j x n x  _InJ 
n 

by taking the identification space under the relations 

is obtained from 

(dix,u) ~ (x,diu) 

(six,u) ~ (x,slu) 

for x E Xn+l, u e A_[n] 

for x e Xn_ I, u E A[n] 

(in this construction X is given the discrete topology). One can 
n 

show [May, p. 56]: 

For ev£ry simplicial set X e J,. its realization IXl is a CW- 

complex with one n-cell for every non-degenerate n-simplex of X. 

The functors Sin and I i determine each other because of 

2.7 The adjointness of I I and Sin. The above definitions 

readily imply that [May, p. 61]: 

The realization functor is left ad~oint to the sin@ular functor, 

i.e. for X E J and Y ~ I there is a natural i-i correspondence be- 

tween the maps 

IX I > Y e 

and 

X • Sin Y e 

Corresponding maps are called ad~oint. In particular, the ad- 

joint of a map f: Ixi + Y ~ ~ will send x e X n to the simplex of 

Sin Y given by the composition 

~[n] (x,) > I I X n x ~[n] identification> iX I f> y 
n 
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Of special interest are the so-called ad~unction maps 

X ) SinlX I and 

which are adjoint to 

IX I id> iX I and 

I sin YI ) Y 

Sin Y i-~-)dsin Y. 

We now consider the most obvious example of a simplicial set 

(and the cause of its name): 

2.8 The simplicial set of an ordered simplicial complex. Let 

K be an ordered simplicial complex, i.e. a simplicial complex 

[May, p. 2] together with an ordering of its vertices. Then K gives 

rise to a simplicial set AK with as n-simplices the (n+l)-tuples 

(v0,...,v n) of vertices of K for which 

(i) v 0 ~ ... ! v n, and 

(ii) the set {v0,...,v n} is an m-simplex of K for some m ! n, 

and with face and degeneracy operators given by 

di(v0,...,v n) = (v0, .... Vi_l,Vi+l,..-,v n) 

si(v0,...,v n) = (v0,...,vi,vi,...,Vn) 

It is not hard to show that AK has exactly one non-de@enerate simplex 

for every simplex of K and its realization IAKI is nothin@ but the 

topological space usually associated with K [Spanier, p. iii]. 

An important special case is the analogue of the topoloqical n- 

simplex (2.4). 

2.9 The standard simplices A[n]. An extremely useful simpli- 

cial set is the standard n-simplex A[n], where In] denotes the 

ordered simplicial complex consisting of the (ordered) set {0,...,n} 
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and all its subsets. A q-simplex of A[n] thus is any (q+l)-tuple 

(a0,...,a q) of integers such that 0 ! a 0 ! ... ! aq & n. Thus A[n] 

has exactly one non-degenerate n-simplex, which we will denote by 

in, and its realization IA[n] I is nothin~ but the topological stan- 

dard simplex ~[n]. 

The usefulness of the standard simplices is due to the follow- 

ing [May, p. 14]: 

2.10 Universal property of the standard simplices. 

and let x c X . 
n 

Then there is a unique map 

Ax: A[n] ) X e J 

Let X eJ 

which sends i into x. 
n - -  

As an easy application of this, we note that the adjunction map 

(2.7) X + SinlX I £ J is given by x ÷ IAxl. 

One can also, as an easy consequence of the universal property 

obtain 

2.11 The standard maps. The standard maps 

d j = A(dji n) : A[n-1] ) A[n] 0 <_ j <_ n 

s j = A(sjin): A[n+l] > A[n] 0 < j <_ n 

satisfy the dual of the simplicial identities 2.1, i.e. 
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dJd i = did j-I for i < j 

sJd i = dis j-I for i < j 

= id for i = j, j+l 

= di-ls j for i > j+l 

sJs i = si-lsJ for i > j 

We end with a less obvious example of a simplicial set: 

2.12 The n-sphere S n. This is the simplicial set with only 

two non-degenerate simplices: a 0-simplex x and an n-simplex y 

with faces: 

diY = Sn_ 1 ... s0x for all i 

It can be obtained from the standard simplex ~[n] by "collapsing" its 
O 

boundar~ A[n], i.e. its simplicial subset generated by its (n-l)- 

simplices d0in,...,dni n. 

Its realization Isnl is the usual CW-complex for the n-sphere 

consisting of a vertex and an n-cell. 

We end by defining: 

2.13 The n-skeleton of a simplicial set. For X e J, the 

n-skeleton X [n] c J is the sub-object generated by all simplices of 

X of dimensions ! n. For example, 

(i) the (n-l)-skeleton of the standard n-simplex ~[n] is 
O 

nothing but its boundary ~[n] (2.12), and 

(ii) for X e J, the realization ix[n] i of its n-skeleton is the 

n-skeleton of its realization, the CW-complex iXl. 
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§3. Equivalence of simplicial and topological homotopy 

theories 

We recall here various results on simplicial sets and topolo- 

gical spaces which imply that the realization and singular functors 

induce an equivalence between the homotopy theories of the categories 

J and ~ in the following sense: 

(i) Both categories are closed model categories, i.e. in each 

there are notions of weak equivalences, fibrations and cofibrations 

which satisfy Quillen's axioms [Quillen (RH), p. 233] for a closed 

model category. 

(ii) The functors I I and Sin both preserve weak equivalences, 

and both types of ad~unction maps: 

X ) Sin Ixi e J and I sin YI ) Y e 

are weak equivalences. 

(iii) The functors I I and Sin both preserve fibrations and 

cofibrations (although Sin preserves cofibres only up to a weak equi- 

valence). 

According to [Quillen (HA), p. I, 1.13] (i) implies that one 

can (without running into set theoretical difficulties) form the 

homotopy categories HoJ and Hol from ~ and ~ by localizing with 

respect to (i.e. formally inverting) the weak equivalences. It 

then follows from (ii) that the functors I I and Sin induce an 

equivalence of categories: 

ii 
H o J  ) H o ~  

(Sin 
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Moreover (ii) and (iii) and the adjointness of the functors I I and 

Sin imply that every homotopy theoretical notion on the category 

gives rise to a homotopically equiyalent notion on the category J 

and visa versa. 

We start with a brief discussion of homotopy groups, as we will 

use them to define weak equivalences. 

3.1 Homotopy groups (and pointed sets). Although the homotopy 

groups of a simplicial set X can be defined "simplicially" [May, p. 7 

and p. 61], it is easier to define them as the homotopy groups of the 

realization IXl. To be precise: Let X e J, let * e X be a base 

point (i.e. an arbitrary but fixed vertex) and denote also by * the 

corresponding point , e Ixl. 

Wn(X,*) = ~n([X[,*) 

Then we put, 

for all n > 0 

and, when no confusion is possible, write often, 

X instead of ~ (X,*) 
n n 

Now we are ready for 

3.2 Weak equivalences. A map f: X + Y E ~ or I will be called 

a weak equivalence if f induces an isomorphism 

~n x = ~n Y 

for every choice of base point * e X and all n h 0. Then one has 

[May, p. 65] : 

(i) A map f: X ÷ Y c I is a weak equivalence if and only if 

the map Sin f: Sin X ÷ Sin Y e ~ is one. 
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(ii) 

the map Ifi: Ixl ~ IYI c J is one. 

(iii) The adjunction maps 

A map f: X ~ Y E J is a weak equivalence if and only if 

X > Sin Ixl ~ J and i Sin YI • Y ~ ~ 

are weak equivalences for all X e J and Y e J. 

3.3 Fibrations. For 0 < k < n let 

A[n,k] c A[n] 

denote the simplicial subset generated by the simplices 

d0in,-..,dk_lin,dk+lin,.-.,dni n 

(i.e. I~[n,k] I consists of all but one face of i~[n] I = ~[A]). 

A map f: X + Y e ~ then is called a fibration if in every (commuta- 

tive) solid arrow diagram 

A[n,k] 

I, 
A[nl 

the dotted arrow exists. 

• X 

/ 

) Y 

Furthermore, for every base point . e Y, 

we will denote by the same symbol , the simplicial subset of Y gene- 

rated by * (which consists of the simplices s0...s0*) and call the 

simplicial subset f-1, c X, the fibre of f over *. 

These fibrations in J are closely related to the (Serre) fi- 

brations in ~ . In fact, it is clear that: 

(i) A map f: X + Y E J is a fibration if and only if the map 

Sin f: Sin X ~ Sin Y ~ J is one. 
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On the other hand one has [Quillen (KS)]: 

(ii) If f: X ÷ Y E W is a fibration, then so is the map 

JfJ: JXJ ÷ JYJ c ~ and, for every choice of base point * ~ Y, the 

inclusion jf-l,j + jfj,l,, of "the realization of the fibre" in "the 

fibre of the realization", is a homeomorphism. 

A convenient related notion is that of a fibrant object 

X ~ J or I , i.e. an object such that the (unique) map 

X + * c W or ~ (where * = A[0] or ~[0]) is a fibration. Clearly 

every topological space is fibrant, but not every simplicial set, 

as, for instance, A[n] is not fibrant for n > 0. A fibrant simpli- 

cial set is also called a Ken complex or said to satisfy the exten- 

sion condition [May, p. 2]. 

3.4 Cofibrations. A map i: A ÷ B e J is called a cofibration 

if it is i-i, while a map i: A ÷ B C I will be called a cofibration 

if it has the left lifting property with respect to all fibrations 

which are weak equivalences, i.e. if for every (commutative) solid 

arrow diagram 

A > X 

i / 
/ 

t 
/ 

B > Y 

where f is a fibration which is a weak equivalence, the dotted arrow 

exists. These definitons imply: 

(i) A map i: A + B e ~ is a cofibration if and only if the map 

JiJ: JAJ ÷ JBJ e I is one. 

(ii) If i: A ÷ B e ~ is a cofibration, then so is the map 

Sin i: Sin A ÷ Sin B e ~, and the obvious map Sin B / Sin A + Sin(B/~ 
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from the "cofibre of Sin i" to the "Sin of the cofibre of i" is a 

weak equivalence. 

Again a convenient related notion is that of a cofibrant object 

B e J or ~, i.e. an object such that the (unique) map ~ ÷ B e ~ or 

(where # is empty) is a cofibration. Clearly ever~ simplicial set 

is cofibrant and every CW-complex (but not every topological space) 

is cofibrant. 

Now we can make clear what is meant by the statement that: 

3.5 The categories ~ and I are closed model categories. 

According to [Quillen (HA), p. II, 3.1 and p. II, 3.14] the categories 

J and ~, with the weak equivalences, fibrations and cofibrations 

defined above, are closed model categories, i.e. [Quillen (RH), 

p. 233] they satisfy the following five axioms: 

Each category is closed under finite direct and inverse CM i. 

limits. 

CM 2. If f and g are maps such that gf is defined, then, if two 

of f, g and gf are weak equivalences, so is the third. 

CM 3. If f is a retract of g (i.e. if there are, in the catego- 

ry of maps, maps a: f + g and b: g + f such that ba = idf) and g is a 

weak equivalence, a fibration or a cofibration, then so is f. 

CM 4. (Lifting). Given a solid arrow diagram 

A > X 

i / 
B > Y 

where i is a cofibration, p is a fibration, and either i or p is a 

weak equivalence, then the dotted arrow exists. 
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CM 5. (Factorization). Any map f may be factored in two ways: 

(i) f = pi, where i is a cofibration and p is a fibration which 

is a weak equivalence. 

(ii) f = pi, where p is a fibration and i is a cofibration 

which is a weak equivalence. 

These five axioms imply [Quillen (RH), p. 234] that 

(i) the class of fibrations (resp. fibrations which are weak 

equivalences) is closed under composition and base change and 

contains all isomorphisms, and dually 

(ii) the class of cofibrations (resp. cofibrations which are 

weak equivalences) is closed under composition and co-base chan~e 

and contains all isomorphisms. 

Indeed, Quillen showed [Quillen (HA)] that in a closed model 

category one can develop much of the familiar machinery of homotopy 

theory, e.g. the homotopy relation for maps, loops and suspensions, 

fibration and cofibration exact sequences, Toda brackets, etc. 

In particular we can now discuss: 

3.6 The homotopy qate~ories HoJ and Ho~. These are the 

categories obtained from J and ~ by localizin 9 with respect to (i.e. 

formally inverting) the weak equivalences. To be more precise we 

recall from [Quillen (RH), p. 208] that a localization of a category 

with respect to a class Z of maps in ~, consists of a category 

Z-I~ together with a functor 

which carries maps in Z into equivalences and which is universal for 

this property. If it exists, Y:~ + Z-I~ is an isomorphism on 

objects, and each map of Z-I~ is a finite composition of maps of 
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-i 
the form Yg or (¥u) where g e ~ and u E E. We therefore can (and 

will) always assume that E-l~ has the same objects as ~ . 

In [Quillen (HA), p. I, 1.13] it is shown that an~ closed model 

category has a localization with respect to its weak equivalences; 

and thus the above definitions of HoJ and HoJ are legitimate. 

Using 3.2 it is then easy to show that the ad~oint functors 

i I 
J > I < 

Sin 

induce an equivalence of cate@ories 

l l 
HO J > Ho/r ( 

Sin 

In fact, as noted at the beginning of this section, the functors l I 

and Sin induce an equivalence of the simplicial and topological 

"homotopy theories". 
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§4. The homotopy relation and function spaces 

In the preceding section we have used weak equivalences, rather 

than a homotopy relation on maps, to define the homotopy categories 

HoJ and Ho~; and we have thereby emphasized the underlying similar- 

ity of the simplicial and topological approaches. In this section 

we shall discuss the homotopy relation and show that Ho~ and HoJ 

are equivalent to the "usual" homotopy categories of fibrant sim- 

plicial sets and CW-complexes. In addition we review the related 

topic of function spaces for simplicial sets. 

We begin by disposing of the easy topological case. 

4.1 The homotopy category Ho~ is equivalent to the usual CW- 

homotopy category, i.e. the category with CW-complexes as objects 

and homotopy classes of maps as maps. Moreover, for any CW-complex 

K and topological space X 

HOmHoj(K,X) = {homotopy classes of maps K > X}. 

Proof. This is straightforward, using the following familiar 

facts: 

(i) A map X ~ Y ~ I is a weak equivalence if and only if, for 

every CW-complex K,. it induces an isomorphism between the homotopy 

classes of maps 

K > X and K ) Y 

(ii) For every X E ~, there is a weak equivalence K ÷ X s ~, 

in which K is a CW-complex. 

(iii) If T: ~ +~is a functor whic h carries weak equivalences 

to isomorphisms, then T carries homotopic maps to the same map. 
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4.2 The pointed case. In a similar way one can show that the 

pointed homotopy cate~or[ Hod, (obtained by localizing the category 

~, of pointed topological spaces with respect to weak equivalences) 

is equivalent to the usual pointed CW-homotopy category. 

To obtain similar results for simplicial sets we need: 

4.3 The simplicial hqmotopy relation. Two maps 

f0,fl: X > Y e J 

are called homotopic if there exists a map (homotopy) 

f: All] × X > Y ¢ J 

which maps the "top" and "bottom" of A[I] x X by f0 and fl 

respectively, i.e. the compositions 

d o x X> f 
X = A[0] × X A[I] × X > Y 

d I x X> f 
X = A[0] × X A[I] × X > Y 

are respectively equal to f0 and fl" When Y is fibrant, this homo- 

topy relation is an equivalence relation and the homotopy classes 

of maps X + Y E g correspond to the homotopy classes of maps 

IXI ÷ ]YI ~ ~ "  

Now we can give the simplicial analogue of 4.1 

4.4 The homotopy category Ho J is e~uivalent to the "usual" 

homotop[ cate@or~ of fibrant simplicial sets, i.e. the category with 

fibrant simplicial sets as objects and homotopy classes of maps as 

maps. Moreover, for X, Y e J and Y fibrant 

HOmHo~(X,y ) z {homotop~ classes of maps X > Y} 
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An easy consequence of this is that there are 

4.5 Weak equivalences in J which are homotopy equivalences. 

If f: X ÷ Y E J is a weak equivalence and X and Y are fibrant, then 

f i s actually a homotopy equivalence , i.e. there is a map 

g: Y ÷ X ~ J such that gf and fg are homotopic to the identity maps 

of X and Y. 

4.6 The pointed case. Let J, denote the category of pointed 

simplicial sets ( = simplicial sets with base point = simplicial 

pointed sets). Two maps 

f0,fl: X > Y e ~, 

then are called homotopic if there is a map (homotopy) 

f: (A[I] × X)/(A[I] × *) > Y e J. 

which maps the "top" and "bottom" of (A[I] × X)/(A[I] × ,) by f0 and 

fl respectively. Again, when Y is fibrant, this is an equivalence 

relation, and the homotopy classes of maps X + Y E J, correspond to 

the pointed homotopy classes of maps IXI ~ IYI c I,. Moreover the 

pointed homotopy category Ho~, (obtained by localizing J, with 

respect to the weak equivalences) is equivalent to the "usual" homo- 

topy category of pointed fibrant simplicial sets. Also, of course, 

Ho ~ is equivalent to Hol,. 

We conclude by reviewing the related topic of 

4.7 Simplicial ' function spaces. For X, Y c J, the function 

space 

horn (X,Y) e 
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is the simplicial set of which an n-simplex is a map 

A[n] x X • Y ~ J 

with as faces and degeneracies the compositions 

d i x X> 
A[n-1] x X A[n] x X > Y 

i 
A[n+l] x X s x X> A[n] x X > Y 

Some useful properties of the function space are: 

(i) If Y is fibrant, then the elements of w0hom(X,Y) correspond 

to the homotopy classes of maps X ÷ Y EJ . 

(ii) If i: K + L E J is a cofibration and p: X + Y E J is a 

fibration~ then the map 

(i,p): hom(L,X) > hom(K,X) Xhom(K,y)hom(L,Y) e 

is a fibration, which is a weak equivalence if either i or p is a 

weak equivalence. 

(iii) For K, X, Y e J, there is a natural isomorphism 

hom (K x X,Y) Z hom (K, hom(X,Y)) £ 

Similarly there are 

4.8 Pointed simplicial function spaces. For X, Y E J., the 

pointed function space 

hom.(X,Y) c J. 

is the pointed simplicial set of which an n-simplex is a map 

(n[n] × X)/(n[n] x .) > Y e J. 
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and of which the face and degeneracy maps are induced, as in 4.7, by 

the standard maps between the standard simplices. 

Again, some useful properties are: 

(i) If Y is fibrant, then the elements of ~nhom.(X,Y) correspond 

to the pointed homotopy classes of maps snx ÷ Y, where snx is the 

n-fold reduced suspension of X [May, p. 124]. 

(ii) If i: K + L c J. is a cofibration and p: X + Y E J. 

is a fibration, then the map 

(i,p): hom.(L,X) > hom.(K,X) Xhom.(K,y)hom.(L,Y) E ~. 

is a fibration, which is a weak equivalence if either i or p is a 

weak equivalence. 

(iii) For K, X, Y E ~., there .is a natural isomorphism 

hom.(KAX, Y) ~ hom.(K, hom.(X,Y)) ~. 

where K A Y c J is the smash product 

K^ Y = (K × Y)/((* × Y) U (K × *) 

4.9 Remark. The categories J and J. are closed simplicial 

model categories in the sense of [Quillen (HA), p. II, 2.2 and (RH), 

p. 233], i.e. they are closed model categories with "compatible 

function spaces". 
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Chapter IX. Towers of fibrations 

§l. Introduction 

In this chapter we generalize two well-known results about 

towers of fibrations: 

(i) We will show that, for a (pointed) tower of fibrations 

{Xn} , the short exact sequence 

* ) ~im I lim X > ~im ~iXn ) * ~i+iXn > ~l ÷ n 

which is "well known" for i ~ l, also exists for i = 0, if one 

uses a suitable notion of lim I for not necessarily abelian groups. 

(ii) We will generalize the usual homotopy spectral sequence of 

a (pointed) tower of fibrations, to an "extended" homotopy spectral 

sequence, which in dimension 1 consists of (possibly non-abelian) 

~roups, and in dimension 0 of pointed sets, acted on by the groups 

is dimension i. 

The chapter is organized as follows: 

§2 and §3 deal with the first result. In §2 we discuss the 

functors lim and lim I for (not necessarily abelian) groups, while 

§3 contains the short exact sequences and some applications. 

§4 contains the construction of the extended homotopy spectral 

sequence. 

§5 Here we show how the results of §3 and §4 can be used to get 

some information on the homotopy type of the inverse limit space of a 

tower of fibrations. 
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Notation and terminology. We remind the reader that these notes 

are written simpliciall[, i.e. 

space = simplicial set 

In particular, in this chapter, we will mainly work in the category 

J, of pointed spaces (i.e. simplicial sets with base point), and 

base point preserving maps. 
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§2. The functors lim and lim I for groups 
÷ ÷ 

In preparation for the decomposition of the homotopy groups of 

the inverse limit of a tower of fibrations into a ~im-part and a ÷lim l- 

part, we discuss here in some detail: 

2.1 The functors lim and lim I for (not necessarily abelian) 
÷ ÷ 

groups. A tower of ( p o s s i b l y  n o n - a b e l i a n )  g r o u p s  and homomorphisms 

J> ) > G_ 1 * • G n Gn_ 1 ... = 

gives rise to a left action of the product group ~--~G n on the pro- 

duct set ~G n given by 

(go ..... gi .... )"(x0 .... 'xi .... ) = (g0x0 (Jgl)-l ' gixi (Jgi+l)-I ) 

Clearly 

lim G = {g ~ I I G I g o , = ,} ÷ n n 

and we define limlG as the orbit set 
÷ n 

limlG = ~G n / action 
÷ n 

i.e. limlG is the set of equivalence classes of ~-~G n under the 
÷ n 

equivalence relation given by 

x ~ y <=> y = g o x for some g ~ ~G n. 

In general limlG is only a pointed set, but if the G are 
÷ n n 

abelian, then limlG inherits the usual (see[Milnor] and [Quillen 
÷ n 

(RH), p. 217]) abelian group structure. 
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It is also not hard to verify that the functors lim and lim 1 

h a v e  t h e  f o l l o w i n g  p r o p e r t i e s  w h i c h  a r e  " w e l l  known"  i n  t h e  a b e l i a n  

case. 

2.2 Proposition. Let {G n} be a tower of ~roups, let k ~ 1 

and let {Gn(k)} be the "k-th derived tower", i.e. 

Gn(k) = image (Gn+ k > G n) 

Then the inclusions G(k)c G induce isomorphisms 
n n 

lim G (k) = lim G limlG (k) 
÷ n ÷ n ÷ n 

limlG . 
÷ n 

2.3 Propositions. A short exact sequence of towers of @roups 

* • {G n} > {G n} ) {S n} > * 

gives rise to a natural sequence of @roups and pointed sets 

I , ,  

) lim G ) lim G ) lim G 
÷ n ÷ n ÷ n 

) limlG ' ) limlG > 
÷ n ÷ n 

l ,I 
lim G ) * 
÷ n 

which is exact in the sense that 

(i) "kernel = image" at all six positions, and 

lim G" + limlG ' extends to a natural action of (ii) the map ÷ n ~ n 

lim G" on limlG ' such that elements of limlG ' are in the same 
÷ n -- ÷ n ÷ n 

orbit if and only if they have the same ima@e in limlG . 
÷ n 

each 

2.4 Proposition. Let 

j: G n ÷ Gn_ 1 is onto. 

{G n} be a tower of ~roups such that 

Then limlG = • 
+ n 
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2.5 Example. Let Z denote the additive group of the integers 

and let pnz c Z denote the subgroup generated by pn. Then 

applying 2.3 and 2.4 to the short exact sequence of towers 

0 > {pnz} > {Z} > {z/pnz} > 0 

for p prime, one gets 

~imlpnz z (lim z/pnz)/z 

Thus limlpnz 

(the p-adic inte~ers)/Z. 

is not countable. 

2.6 Remark. The towers of abelian groups form an abelian 

category with enough injectives; and for such towers lim I can be 

interpreted as the first ri@ht derived functor of lim. This follows 

easily using 2.3 and 2.4, since each injective is a tower of epi- 

morphisms. (see also Ch. XI, §6.) 

Also in Ch. XI, §6 we will show how to define lim I for arbi- 

trary small diagrams of groups. 
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§3. The homotopy groups of the inverse limit of a tower 

of fibrations 

We now decompose the homotopy groups of the inverse limit of a 

tower of fibrations into a ~im-part and a liml-part. Various 
4- 

cases and applications of this have been treated by [Milnor], [Gray], 

[Quillen (RH), p. 217] and [Cohen]. 

3.1 Theorem. Let X = lim X n, where 
4- 

P • ) >X_I =* > X n Xn_ 1 • .. 

is a tower of fibrations in ~, , i.e. a tower of fibrations of sim- 

plicial sets with compatible base points , e X n. Then there is, for 

every i > 0, a natural short exact sequence 

. • liml~i+lXn ) ~.X ) lim ~.X • • 4- l 4- in 

3.2 Corollary. For every K e J, there is a natural (in the 

obvious sense) exact sequence of pointed sets 

• ) liml[sK,Xn ] ) [K,X] > lim[K,X n] > . 
4- 4- 

where SK denotes the reduced suspension of K [May, p. 124] and, 

for Y fibrant, [L,Y] stands for the pointed set of homotopy 

classes of maps L ÷ Y e J, (see Ch. VIII, 4.6). 

This follows immediately from the fact that (see Ch. VIII, 4.8), 

for Y fibrant, there are natural isomorphisms 

[K,Y] z ~0hom,(K,Y) [SK,Y] z ~lhOm.(K,Y). 
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3.3 Corollary. Let X e ~, be fibrant, let 

K 0 c K I c ... c K n c ... 

be a sequence of inclusions in J, and let K = lim K . 
÷ n 

is a natural exact sequence of pointed sets 

Then there 

* > ~iml[SKn,X] > [K,X] > ~im [Kn,X] > * . 

Using this [Gray] shows the amusing result that there is an 

essential map f: CP ~ + S 3 such that the restrictions fICP n are 

null-homotopic for all n. 

Proof of theorem 3.1. It is easy to show that the obvious map 

f: ~oX ÷ lim ~.X is onto, and it thus suffices to construct a 
l ÷ i n 

natural isomorphism 

g: ker f z lim 1 
+ ~i÷iXn 

To do this, we recall [May, p. 7], that the elements of ~i x 

can be considered as certain classes of i-simplices of X. Let 

a ~ X be an i-simplex representing an element [a] e ker f c ~i x 

and, for each n, let a n be its image in X n. Then 

[a n ] = , e ~ X~ n and hence one can choose a null-homotopy for an, 

i.e. an (i+l)-simplex b n E X n such that d0b n = a n and djb n = • 

for j > 0. But as the (i+l)-simplices b n and Pbn+ 1 have the same 

faces, they determine an element of ~i+iXn 

be obtained by choosing an (i+2)-simplex c 
n 

d0c n = Pbn+l, dlC n = b n and dkC n = • for 

[d2c n] ~ zi+iX n. Finally we define 

which can, for instance, 

e X such that 
n 

k > 2, and then taking 
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g[a] e ~iml~i+iXn = I l~i+iXn / action 

as the element represented by ([d2c0] ..... [d2Cn],...) and a long 

but straightforward computation now shows that g is well-defined 

and has all the desired properties. 

For future reference we give the following group theoretical 

application of theorem 3.1. 

3.4 Proposition. Let {G n} be a tower of groups. Then there 

is a natural isomorphism 

lim lim k G (k) ~ lim G 
÷ n n ÷ n 

and a natural short exact sequence 

* > lim I lim k G (k) > limlG > lim n lim I Gn(k) > * . 
÷ n n ÷ n 

3.5 Corollary. If {G n} is Mittag-Leffler, i.e. if for each 

n there is an N < ~ such that G (N) = ~im k G (k) then limlG = * 
n n ' ÷ n " 

In particular, if each G is finite, then limlG = *. 
n n 

Proof of 3.4. Construct a commutative lattice 

> Dk+l, n > Dk, n 

; L 

> Dk+l, n+l > Dk, n+l > 

; i 
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of spaces.and fibrations in ~. such that 

(i) Dk, n = * unless k, n ~ 0 

(ii) for each k and n the map 

Dk+l ,n+l Dk+l, n x D Dk,n+ 1 
k,n 

is a fibration, and 

= G (k) (iii) ~iDk,n n for k, n >_ 0, i = 1 

= * otherwise 

The conditions (i) and (ii) ensure that {~im k Dk, n} and 

{~im n Dk, n} are towers of fibrations in ~.. The proposition now 

follows from 3.1 and the fact that 

~im k ~im n Dk, n = ~im n !im k Dk, n 
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§4. The extended homotopy spectral sequence of a tower 

of fibrations 

In this section we generalize the usual homotopy spectral se- 

quence of a tower of fibrations to an "extended" homotopy spectral se- 

quence, which in dimension 1 consists of (possibly non-abelian) groups, 

and in dimension 0 of pointed sets, acted on by the groups in 

dimension i. 

We start with 

4.1 An observation about the homotopy sequences of a tower of 

fibrations. Let {X n} be a tower of fibrations in J, , i.e. a 

tower 

> X n > Xn_ 1 > ... > X_ 1 = , 

of fibrations with compatible base points • e Xn, and let F n c X n 

÷ Then one can form be the fibre over , of the fibration X n Xn_ I. 

the homotopy sequences [May, p. 27] 

> n2Xn_ 1 > ~iFn > ~iXn > WlXn_l • WoFn > 

~0Xn > ~0Xn_l 

and these sequences are "well known" to be exact in the sense that 

(i) the last three objects are pointed sets, all the others are 

~roups, and the ima@e of ~2Xn_l lies in the center of ~iFn , 

(ii) everywhere "kernel = image" , and 

(iii) the sequences come with a natural action of ~iXn_l o__nn 

WOFn which "extends" the map ZlXn_l ÷ n0Fn , add is such that 

"elements of ~0Fn are in the same orbit if and only if they have 
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the same image in T 0xn''. 

From this it readily follows that one can form the r-th derived 

homotopy sequences (r ~ 0) 

where 

. (r) ~iFn(r)r > ~l~n-r ~lXn-r-i ~0:n > ~2Xn_2r_ 1 > v(r) > _ (r) > ~(r) 

> ~0Xn (r) > ~0Xn(r)l 

(r)_ im(~iXn+ r ~iXn - 

F (r)- ker (wiF n ~i n - 

> niXn ) c ~iXn 

(r) > 
> ~iXn/~iA n )/action of ker(ni+IXn_ 1 

~i+iXn-r-i ) 

(for i > 0 the group ~.F (r) is the cokernel of the boundary homo- 
I n 

morphism between the indicated kernels). 

It is not hard to see that these derived homotopy sequences are 

also exact in the above sense. Hence one can form 

4.2 The (extended) homotopy spectral . sequence. For a tower of 

fibrations in ~, we define its (extended) homotopy spectral se- 

quence {E~'t{Xn } } by 

ES,t (r-l) for t > s > 0, r > 1 
r = ~t-sFs -- -- -- 

with as differentials 

dr: E s't ~ E s+r,t+r-I 
r r 

the composite maps 

F (r-l) > (r-l) > F (r-l) 
t-s s Wt-sXs Wt-s-i s+r 
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It clearly has the properties 

(i) E s't is a ~roup of t-s > i, which is abelian if t-s > 2, 
r -- -- 

( i i )  E s ' t  i s  a p o i n t e d  s e t  i f  t - s  = 0 

(iii) the differential dr: ES'tr ÷ Es+r't+r-lr is a homomorphism 

i_~f t-s ~ 2, and its image is a subgroup of the center of 

E s + r ' t + r - 1  i f  t - s  = 2 ;  m o r e o v e r  
r 

= "E s't N im d r) ES$1t (ES,tr N ker dr)/~ r -- t-s > 1 

(iv) the differential d : E s-r's-r-1 ÷ E s's 
r r r 

action of E s - r ' s - r + l  o n  E s ' s  s u c h  t h a t  
r -- r 

extends to an 

S,S EStS Er+ 1 c / action of E s-r's-r+l 
r r 
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§5. Applications 

The results of §3 and §4 can be used to obtain information on 

the homotopy type of the inverse limit space. For instance one has 

5.1 Connectivit[ lemma. Let k ~ 0 and r ~ 1 

{X n} E J, be a tower of fibrations such that E s't = * 
r 

0 < t-s < k. Then 

and let 

for 

lim ~ X = * = ÷liml Z-+lXnl for 0 < i < k 
÷ in -- -- 

and hence (3.1) lim X is k-connected. 
÷ n 

(r-l) = , and that Proof. The hypotheses imply that ~iXn 

X (r-l) ÷ ~ X (r-l) is onto for 0 < i < k. The lemma then 
i+l n i+l n-i -- -- 

follows from 2.2 and 2.4. 

5.2 Mapping lemma. Let r ~ i, let {X n} E ~, be a tower of 

fibrations such that E s't = * for t-s = 0 and let 
r 

f: {X n} + {Yn } E ~, be a map between towers of fibrations, which 

induces an isomorphism of the E~ 't for all t-s [ 0. Then f in- 

duces isomorphisms 

lim ~.X n z lim ~*Yn ~imlz,Xn z ~iml~,y n 

and hence (3.1 and 5.1) f induces a homotopy equivalence 

lim X = lim Y 
÷ n ÷ n 

y (r-l) 
Proof. The hypotheses imply that z X (r-l) = , = and 

On On 
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that niXn(r-1) z n.y(r-1)l n for i _> 1 and the lemma again follows 

from the results of §2. 

We end with a brief discussion of convergence of the spectral 

sequence and consider the notion of 

5.3 Complete convergence. Let {X n} c g, be a tower of 

fibrations, let X = lim X and let 
÷ n 

E s't = lim E s't = /~ E s't 
÷ r r r>s r 

Then we will say that {E r} converges completely to niX if, 

roughly speaking, n.X is the inverse limit of a tower of epimor- 
l 

phisms with the E~ 's+i as kernels. To be more precise, form the 

filtration quotients 

Qsni x = im (nix > niXs) 

and the small E -terms 

eS,S+i 
= ker (Qsni x > Qs_Ini X) 

and observe that the inclusions - iOsn-X c lim n x,r,1% 
÷ r is 

isomorphisms 

induce 

~im s Qsni x ~ ~im s niX s 

and inclusions 

s,s+i ES,S+i e c ~ s ~ 0 . 

We then say that {E r} converqes completely to niX (i ~ i) if 
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(i) limlwi+lX n = * (and hence (3.1) ~i x ~ ~im s Qs~i X) 
÷ 

( i i )  e ~  ' s + i  = E s ' s + i  f o r  a l l  s > 0 
~ m " 

A useful convergence test is provided by the following lemma 

(c.f. [Adams (AT)]). 

5.4 Complete convergence lemma. Let {X n} c g, be a tower of 

fibrations and let i ~ i. Then the condition 

lim~ E s's+i = • 
÷ r 

for all s > 0 

is equivalent to the combined conditions 

lim I ~. X = * 
÷ n I n 

E~ ,s+i = eS, s+i for all s > 0 . 

In particular, if 

lim I ES, s+i = , = lim I ES, s+i+~ 
÷ r r ÷ r r 

then {E r} converges completely to niX. 

for all s > 0 

Proof. To prove this, one combines 3.4 and the results of §2 

with the existence of the short exact sequences 

~ X (r) (r-l) > > * (r > s) • -- ES'S+l ------> W~Xs i s-i " 

Finally we observe that it is sometimes (see Ch.VI, §9) con- 

venient to consider the slightly stronger notion of 

5.5 Mittag-Leffler convergence. Let {X n} ~ J, be a tower of 
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fibrations, let X = lim X and let 
÷ n 

Es, t = limr ES'r t = r>s~ ES'r t 

Then we say that {E r} 

the towers {E s, s+i} 
r r>s 

s > 0 

is Mittag-Leffler in dimension i (i ~ i) if 

are Mittag-Leffler, i.e. (3.5) if for each 

s,s+i = ES,S+i 
EN(s) ~ for some s < N(s) < 

This definition clearly implies 

5.6 Mitta@-Leffler convergence lemma. {E r} 

in dimension i if and only if the tower of ~roups 

Mittag-Leffler (3.5). 

is Mitta~-Leffler 

{~iXn } i__ss 

5.7 Proposition. 

(i) If {E r} is Mitta@-Leffler in dimension i, then 

lim I E s's+i = * for s > 0 and thus (5.4) 
÷ r r 

(ii) if {E r} is Mitta~-Leffler in dimensions i and i+l r then 

{E r} conver@es completel Z to niX. 

5.8 Remark. In practice, i.e. for spectral sequences with 

groups E~ 't, Mittag-Leffler convergence is equivalent to countable 

complete convergence (see [Gray, p. 242]). 
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Chapter X. Cosimplicial spaces 

§i. Introduction 

In this chapter we 

(i) lay the foundation for a homotopy theory of cosimplicial 

spaces, i.e. we show that it is possible to define, for cosimplicial 

spaces, notions of function space, weak equivalence, cofibration and 

fibration, which satisfy Quillen's axioms for a closed simplicial 

model category (see Ch. VIII, 4.9), and then 

(ii) combine this with the results of Chapter IX and obtain, 

for every cosimplicial space, an extended homotopy spectral sequence, 

which is an important tool in our study of the R-completion of a 

space in Part I. 

In slightly more detail: 

§_____2 contains a definition of cosimplicial spaces and a few 

examples. 

§3 Here we define a notion of function space and discuss the 

important special case of the total space of a cosimplicial space, 

which is a kind of codiagonal. 

§4 deals with the notions of weak equivalence, cofibration 

and fibration, and the closely related notions of cofibrant and 

fibrant cosimplicial spaces. A (for Part I of these notes) important 

example of such fibrant objects are the so-called grouplike cosimpli- 

cial spaces. 
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§5 is devoted to the verification of Quillen's axioms. 

§6 Here we construct, for every cosimplioial (pointed) space, 

an extended homotop[ spectral sequence, which, under suitable circum- 

stances, converges to the homotopy groups of the total space. 

§_____7 contains a cosimplicial description of the E2-term of the 

spectral sequence, which is convenient for the applications in 

Chapter I. 

Notation. We will work mainly in the categories J of spaces 

and J, of pointed spaces. 
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§2. Cosim~licial spaces 

This section contains a definition of cosimplicial spaces and, 

more generally, of cosimplicial objects over an arbitrary category, 

and a few examples. 

2.1 cqsimplicial objects and maps. For a category 9, the 

category c ~ of cosim~licial objects over # is defined as follows. 

An object X ~ c~ consists of 

(i) for every integer n ~ 0, an object xn ~ ~ , 

(ii) for every pair of integers (i,n) with 0 ! i ! n, coface 

and code~eneracy maps 

di: xn-i > xn and si: ~n+l > ~n ~ 

satisfying the cosimplicial identities (which are dual to the sim- 

plicial identities (Ch. VIII, 2.1)): 

dJd i = did j-1 for i < j 

sJd i = dis j-I for i < j 

= id for i = j, j+l 

= di-lsJ for i > j+l 

sJs i = si-lsJ for i > j 

Similarly a cosimplicial map f:X + Y E ca consists of maps 

f: X n ) yn e 
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which commute with the coface and codegeneracy maps. A cos im~licial 

object (map) over I thus corresponds to a sim~licial object (map) 

over the dual category I * (Ch. VIII, 2.1). 

2.2 Examples 

(i) The cosimplicial standard simplex 

¢ cJ 

i.e. the cosimplicial space which in codimension n consists of the 

standard n-simplex A[n] c g and for which the coface and codegeneracy 

maps are the standard maps (Ch. VIII, 2.9 and 2.11). 

A[n-l] dJ) A[n] and A[n+l] sJ> A[n]. 

(ii) For X, Y ¢ g, one can form the cosimplicial pointed space 

h~om,(X,Y) e cg,, where 

n = {pointed maps X ------>Yk } h~°m* (X'Y) k n " 

(iii) Our key example of a cosimplicial space is the cosimpli- 

cial resolution RX of a space X with respect to a ring R (Ch. I, 4.1) 

(iv) A diagram 

X f> B ~ ~ Y £ ~ 

gives rise to a cosimplicial space X ~B Y with 
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(X ~B y)n = XxBx -.- xBxY (n copies of B) 

di(X,bl,...,bn,Y ) = (x,fx,bl, .... bn,Y) i= 0 

(X,bl,...,bi,bi,...,bn,Y) 1 ! i ! n 

(X,bl,...,bn,gY,Y) i = n+l 

si(x,bl,...,bn,Y) = (X,bl,...,bi,bi+2,...,bn,Y) 0 ! i ! n-i 

This example was used by [Rector (EM)] in his geometric construction 

of the Eilenberg-Moore spectral sequence. 
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§3. The total space of a cosimplicial space 

We will now associate with every cosimplicial space a very use- 

ful space, its total space. This is a kind of codia~onal; it is, in 

some sense, dual to the diagonal of a simplicial space (a simplicial 

space is a double-simplicial set). 

Total spaces are a special case of 

3.1 Function spaces. Just as we defined (in Ch. VIII, 4.7), 

for X, Y E J, the function space hom (X,Y) ~ g, so we now define, for 

X, Y ~ cJ, the function space 

hom (X,Y) E J 

as the space of which the n-simplices are the maps 

A[n] x X > Y e CJ 

with as faces and degeneracies the compositions 

di × X 
A[n-1] x X ~> A[n] × X > Y 

i 
A[n+l] x X S x X> A[n] x X > Y 

As already said, a very useful example of a function space is 

3.2 The total space of a cosimplicial space. 

define its total space Tot X or Tot X by (2.2) 

For X e c~ we 

Tot X = Tot X =hom (A, X) £ 
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and note that the total space can be considered as an inverse limit 

Tot X = lim Tot X 

whe re 

Tot X = horn (A [s] X) E f 
S - 

and ~[s]c ~ denotes the simplicial s-skeleton, i.e. ~[s] consists 

in codimension n of the s-skeleton (Ch. VIII, 2.13) of ~[n]. 

If X e cJ is augmented, i.e. comes with an augmentation map 

d0: X -I ) X 0 e J 

such that d0d 0 = dld0: X -1 ÷ X I, then this augmentation map obviously 

induces maps 

~: X -1 > Tot X e J -1 < s < 

which are compatible with the maps between the Tot s X. 

3.3 Examples 

(i) For X, Y E J,, the functors Tot and Tot s give rise to the 

usual pointed function spaces (2.2 (ii) and Ch. VIII, 4.8) 

Tot h/~om,(X,Y) = hom,(X,Y) TOts~,(X,Y) = hom,(X [s] ,Y) 

(ii) The R-completion R X of a space X with respect to a ring R, 

which is (Ch. I, §4) defined by (see 2.2 (ii)) 

R X = Tot RX 
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(iii) Given a diagram 

X f> B ~g Y e J 

one can form the diagram 

X f> B < h°m(dl'B) hom (~[I],B) h°m(d0'B)> B <g Y 

and verify easily that (see 2.2 (iv)) 

Tot (X x B Y) ~ X x B hom (A[I] ,B) x B Y 

Thus, if B is fibrant and f and @ are fibrations, then the natural 

map 

X x B Y > Tot (X ~B Y) 

is a homotopy equivalence. 

We end with another example of a function space. 

3.4 The maximal au@mentation. Let , £ cJ denote the cosimpli- 

cial space with one element in each bi-dimension. Then it is not 

hard to see that, for X e cJ, the space hom (*, X) is naturally 

isomorphic to the maximal augmentation of X, i.e. the subspace of 

X 0 which consists of the simplices x e X 0 for which d0x = dlx. 
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§4. Weak equivalences , cofibrations and fibrations 

In this section we define for cosimplicial spaces notions of 

weak equivalences, cofibrations and fibrations, which (as will be 

shown in §5) have all the "usual" properties. 

4.1 Weak equivalences. 

weak equivalence if the maps 

A map f: X ÷ Y E cJ will be called a 

f: X n > yn E J n h 0 

are all weak equivalences. 

4.2 Cofibrations. A map i: A ÷ B E cJ will be called a co- 

fibration if it is i-i and induces an isomorphism on the maximal 

augmentation (3.4). This readily implies that every simplex b e 

which is not in the image of i can uniquel[ be written in the form 

b = d 3m ... d 31b' 

where Jm > "'" > Ji and b' is not a coface. 

We call an object B E cJ unaugmentable or cofibrant if the map 

÷ B is a cofibration (~ denotes the empty cosimplicial space), i.e. 

if the maximal augmentation of B is empty. 

4.3 Examples 

(i) The cosimplicial standard simplex ~ (2.2) and its simplicial 

skeletons ~[s] (3.2) are unaugmentable. 

(ii) The inclusion maps A [s] ÷ ~[n] (s ! n) are cofibrations 

and so are the maps * ÷ ~[n]/A[s] 
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4.4 Remark. We could now define a map X ÷ Y e cJ to be a 

fibration if it has the ri@ht lifting property with respect to all 

cofibrations which are weak equivalences, i.e. if for every 

(commutative) solid arrow diagram in cJ 

A 

/ 
/ 

B 

>X 

where i is a cofibration which is a weak equivalence, the dotted 

arrow exists. Instead we shall give an equivalent, but more explicit 

definition using 

4.5 Matchin~ spaces. For X e cJ and n ~ -i, we construct a 

matchin 9 space Mnx e j, which is, roughly speaking, the cosimplicial 

analogue of "the set of the (n+l)-simplices of the n-skeleton of a 

simplicial set". It consists of the simplices 

(x0,...,x n) e X n x -.. x X n 

for which slx 3 = s3-1x I whenever 0 < i < j < n, and it comes with a 

natural map 

s: X n+l > Mnx e J 

given by x ÷ (s0x,...,snx) for all x e X n+l 

Clearly 

M-Ix = * and M0X = X 0 
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We now define 

4.6 Fibrations. 

fibration if the maps 

A map f: X ÷ Y ~ cJ will be called a 

(f,s): xn+l > yn+l x Mny Mnx cJ n > -i 

are all fibrations. 

Similarly we say that X e cJ is fibrant, if X ÷ * is a 

fibration, i.e. if the maps 

s: X n+l > MnX E ~ n h -i 

are all fibrations. 

4.7 Examples 

(i) If X ÷ X' e J, is a cofibration and Y e g, is fibrant, then 

the induced map (2.2 (ii)) 

h~om,(X',Y) ----->~,(X,Y) E cJ 

is a fibration. 

(ii) If Y + Y' E ~, is a fibration and X c J,, then the induced 

map (2.2 (ii)) 

h~om, (X,Y) .> hom, (X,Y') e cg 

is also a fibration. 

Another (for our purposes important) example is 

4.8 Grouplike cosim~licial spaces. We call an object X c c~ 
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grouplike if, for all n ~ 0, the space X n is a simplicial group (i.e. 

a simplicial object over the category of groups) and the operators 

d i (except d 0) and all operators s i are homomorphisms of simplicial 

groups. 

Grouplike objects have the following useful properties: 

4.9 Proposition 

(i) Every "homomorphism" f: X ÷ Y e cJ of grouplike objects, 

which is onto, is a fibration, and hence 

(ii) Every grouplike object is fibrant 

Proof. This follows from the fact that the maps 

(f,s) : X n+l ~ yn+l x Mny Mnx 

are epimorphisms of simplicial groups, and hence [May, p. 70] fibra- 

tions. This, in turn, is a consequence of the fact that the maps 

s:V n+l + Mnv have a natural (simplicial) cross section when V is 

grouplike. The proof of this last statement is very similar to the 

proof that every simplicial group is fibrant [May, p. 67], but uses 

codegeneracies instead of faces and eofaces instead of degeneracies. 

(i) 

fibrant 

(ii) 

4.10. Examples 

Every cosimplicial simplicial ~roup is grouplike and hence 

The cosimplicial resolution RX of a space X with respect 

to a ring R (2.2 (iii) and Ch. I, §4) is fibrant, because 

(Ch. I, 2.2) every choice of a base point * E X makes RX grouplike. 
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§5. Cosimplicial spaces form a closed simplicial 

model cate~or[ 

The purpose of this section is to prove that 

5.1 The cate@or~ cJ is a closed simplicial model category, i.e. 

the notions of function space, weak equivalence, cofibration and 

fibration in the category c J , which were defined in §3 and §4, 

satisfy the axioms CMI-5 and SM7 of [Quillen (HA), p. II, 2.2 and 

(RH), p. 233] . 

The axioms CMI-5 for a closed model category were listed in 

Ch. VIII, 3.5 and involve only the notions of weak equivalence, co- 

fibration and fibration, while axiom SM7 relates the notion of 

function space with the others as follows. 

SM7. I_~f i: A + B is a cofibration and p: X ÷ Y is a fibration, 

then the map 

(i,p): hom (B,X) > hom (A,X) Xhom(A,y)hom(B,Y) e 

is a fibration, which is a weak equivalence if either i or p is a 

weak equivalence. 

Before proving this we mention a useful consequence. 

5.2 Proposition 

(i) If f: X ~ Y ~ c~ is a weak equivalence, with X and 

fibrant, and A e c~ is cofibrant, then f induces a homotopy 

equivalence 

hom (A,X) z horn (A,Y) e J 
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(ii) If g: A ~ B ~ c~ is a weak e~uivalence, with A and B co- 

fibrant, and X c cJ is fibrant, then @ induces a homotopy 

e~uivalence 

hom (B,X) z hom (A,X) C 

Proof. It follows from 5.1, that f can be factored f = pi, 

where p is a fibration, i is a cofibration, and both are weak 

equivalences; moreover hom (A,p) is a weak equivalence. Now, by 

[Quillen (HA), p. II, 2.5] i is a strong deformation retract map. 

As hom (A,-) preserves the simplicial homotopy relation, this implies 

that hom (A,i) is a weak equivalence. This proves part (i). 

The proof of part (ii) is similar. 

Proof of 5.1. We will only prove the "difficult" lifting and 

factorization axioms CM4 and CM5. The axioms CMI, CM2 and CM3 are 

easy and will be left to the reader, while SM7 follows from [Quillen 

(HA), p. II, 2.3 axiom SM7b] which is obvious in our case. First a 

5.3 Lemma. A fibration f: X ~ Y e cJ is a weak equivalence 

if and onl[ if the maps 

(f,s): X n+l ~ yn+l x Mnx e ~ n h -i 
~ ~ Mny ~ 

are all weak equivalences. 

Proof. 

simplices 

For n ~ -i and -i ! k ! n let M~X consist of the 

(x 0 ,x k) ~ X n x x X n , e . .  ... 
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for which slx 3 = s3-1x I whenever 0 ! i < j ! k. Clearly M~X = MnX 

and if k = -i or n = -1, then M~ X~ = , . 

The lemma now follows by an inductive argument since the obvious 

map 

n yn+l yn+l x x > 

is a fibration induced from the obvious map 

X n > yn x n-i ~ -Ix" 

~ Mk Y 

Proof of CMS. For m, n ~ 0, let 

A[ m ) c cg 
~ n 

be the object freely generated by a simplex i m ~ A[ m m n ~ n ]n ' and let 

~[ m ] c A[ m ] be the sub-object generated by the simplices 
~ n ~ n 

s]im 0 <_ j < m 

dki ~ 0 ! k ! n, n > 0 . 

Then the inclusion A[ m ] + A[ m ] is a cofibration and, by 5.3, a 
~ n ~ n 

map p: X ÷ Y E cJ has the right lifting property (4.4) with respect 

to all the maps A[m ] + A[ m ] if and only if p is a fibration and 
~ n ~ n 

a weak equivalence. Thus any map f E cJ may be factored f = pi, 

where p is a fibration and a weak equivalence, and where i is a 

(possibly transfinite) composition of co-base extension of maps 

~[ m ] ÷A[ m ] 
~ n ~ n " 

Similarly, for 0 _< k _< n and n > 0, let A[nm k]~ c A[~ mn ] be the 

sub-object generated by the simplices 
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s3i m 0 < i < m 
n 

d.i m O <_ j <_ n, j / k 
3 n 

Then the inclusion ~[nmk ] ~  ~ 4[~ mn "] is a cofibration and a weak 

equivalence. Thus any map f e c J may be factored f = pi, where p 

is a fibration and where i is a (possibly transfinite) composition of 

m 4[ m ]. 
co-base extensions of maps ~[n,k ] ÷ ~ n 

Proof of CM4. The case where p is a weak equivalence is easy, 

since any cofibration is a (possibly transfinite) composition of co- 

base extensions of maps ~[ m ] ÷ 4[ m ]. 
~ n ~ n 

Now suppose i is a weak equivalence. Then, by the proof of CM5, 

there is a factorization i = p'i' such that p' is a fibration and a 

weak equivalence and i' is a (possibly transfinite) composition of 

co-base extensions of maps ~[nmk ] ~  + 4[~ mn ]" Since i' has the left 

lifting property (Ch. VIII, 3.4) with respect to fibrations, the 

desired result now follows easily. 
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§6. The homotopy spectral sequence of a cosimplicial 

space 

Combining the preceding results with those of Chapter IX, §4, we 

construct, for every cosimplicial pointed space, a pointed tower of 

fibrations and hence an extended homotopy spectral sequence. Under 

suitable circumstances this spectral sequence converges to the 

homotopy groups of the total space of the cosimplicial space. 

6.1 The homotopy spectral sequence of a cosimplicial pointed 

space. Let X £ cJ,. If X is fibrant, then (3.2, 4.3 and 5.1) 

{Tot n X) is a pointed tower of fibrations, and we define the 

(extended) homotopy spectral sequence {E s't X} by (Ch. IX 4.2) 
r ~ 

ES'tr X~ = E~'t{Tot n X}.~ 

Otherwise we choose (5.1) a weak equivalence X ÷ Y 

Y is fibrant and put 

ES'tr X~ = ES'tr {T°tn Y}'~ 

e cJ, such that 

Under favorable conditions (Ch. IX, 5.4) this spectral sequence 

{E r X} converges to w,Tot X. 

That E s't X is indeed well-defined (and, of course, natural) 
r ~ 

follows readily from 5.1 and the following 

6.2 Description of the El-term. Let X £ J,. 

natural isomorphisms 

Then there exist 

Es,t. S s O t > S > 0 - 1 X Z ~t x N ker N ...N ker s s-I 
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This, in turn, follows readily from 

6.3 Proposition. Let X E cJ, be fibrant. Then, for all n, 

(i) the fibre of the map Tot n X ÷ TOtn_ 1 X is the pointed 

function space hom,(sn,NX n) (Ch. IX, 3.2 and Ch. VIII, 2.12) where 

NX n = ker (X n s > Mn-lx) 

X n N ker s o n...N ker s s-I 

(ii) for each i > 0 

w.NX n 
1 ~ 

= ker (wiX n s> Mn-I iX) 

= ~ X n N ker s 0 N...N ker s s-1 
i~ 

Proof. Part (i) is obvious, and for part (ii) it suffices to 

show that the obvious map ~iM~ X ÷ M~ i X (see proof of 3.2) is an 

isomorphism for all i, k and n. This follows inductively from the 

~-l#i fact that the maps ~iX n ÷ X are onto for i k 1 (4.9) and that 

there are pull backs 

M~+lX~ > xn~ Mk+l~i x > w'xnl~ 

L ; ; 
n-i 

x > ix 

6.4 Remark. The above description of the El-term (6.2) implies, 

in view of the main results of [Bousfield-Kan (SQ), §7 and §10] that 

(i) the spectral sequence {E~'tx} defined above coincides in 

dimensions ~ 1 with the spectral sequence of [Bousfield-Kan (SQ), §7] 
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and hence 

(ii) if X c ~. and RX E cg, is the cosimplicial resolution of 

X with respect to a ring R (2.2 (iii) and Ch. I, 4.1), then 

{E~'tRX} coincides in dimension ~ 1 with the homotop[ spectral 

{E~'t(X;R)} of X with coefficients in R of sequence [Bous field-Kan 

(HS)]; 

(iii) for X, Y ~ cJ, there is a natural pairing (at least in 

dimensions ~ i) 

Es't'r ~ ® Es'tYr ~ > ES+S''t+t'(Xr ~ AY).~ 

(iv) if X is a cosimplicial simplicial abelian group, then 

{E~'tx} is (part of) the usual spectral sequence of the second 

quadrant double chain complex obtained by "doubly normalizing" X. 
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§7. A c0simplicial description of the E2-term 

We end this chapter with a cosimplicial description for the 

E2-term of the spectral sequence of §6. For this we need a notion of 

7.1 Cohomotopy groups (and pointed sets). For a cosimplicial 

abelian ~roup B we define its cohomotopy groups ~SB by 

~SB = HS(B,d) s ~ 0 

where B is considered as a cochain complex with coboundary map 

d = ~(-l)id i, or equivalently 

wSB = H s (NB, d) 

where (NB,d) is the normalized cochain complex, i.e. the subcomplex 

given by 

NB n = B n N ker s O N...N ker s s-1. 

More generally, for a cosimplicial group B, one can still 

construct a cohomotopy group ~0B by 

~0B = {b ~ B I d0b = dlb} 

and a pointed cohomotopy set wiB as the orbit set of 

ZB 1 = [b e NB 1 1 (d0b) (dlb)-l(d2b) = * } 

under the group action B 0 × ZB 1 ÷ ZB 1 given by the formula 

(b,b') ÷ (dlb)b'(d0b) -I. 
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And finally, for a cosimplicial pointed set B, the above 

construction still yields a pointed cohomotopy set ~0B. 

Then it is not hard to prove the following 

7.2 Description of the E2-term. 

exist natural isomor~hisms 

Let X c cJ,. Then there 

E~'tx~ z ~S~tx~ t ~ s ~ 0. 

We now combine this description of E 2 with Ch. IX, 5.1 and 5.2 

and get 

7.3 Connectivity lemma. Let k ~ 0 and let X c cJ. be fibrant 

and be such that ~S~tx~ = * for 0 ~ t-s ! k. Then 

lim v Tot X = , = lim I Tot X 0 < i < k 
÷ l n ~ ÷ ~i+l n ~ -- -- 

and hence Tot X is k-connected. 

7.4 Map~in~ lemma. Let X, Y E cJ, be fibrant, let ~S~tx = • 

for t-s = 0 and let f: X ÷ Y E c~, induce isomorphisms 

s st Y ~t~ z ~ for all t-s ~ 0. Then f induces a homotopy equivalence 

Tot X ~ Tot Y e J 

We end with some 

7.5 Examples 

(i) If Y e ~, is fibrant, then so is ~,(X,Y) (2.2) for all 

X e J.. Moreover 
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s 
~t ~.(X,Y) - H S(x; 3t Y) 

(where H s denotes reduced cohomology) and hence (3.3) {Er~.(X,Y)} 

provides a new construction for the well-known spectral sequence of 

a pointed function space. 

(ii) If X, B,Y £ J. are fibrant, then so is X ~B Y (2.2) for 

any diagram 

X f)B <g Y E J. 

Moreover 

~s~t(X ~B Y) = * 

~0wt(X ~B Y) = ntX X~tB nt Y 

~l~t(X ~B Y) = ~t B / action 

for s > 1 

where the action of ~t x x ~t Y on ~t B is given by the formula 

(u,v)b = (g.v)b(f.u) -1. Hence (3.3) {Er(X ~B Y)} provides a new 

construction for the familiar Ma~er-Vietoris sequence of a fibre 

square. 
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Chapter XI. Homotopy inverse limits 

§i. Introduction 

It is well known that, in general, inverse limits do not exist 

in the homotopy category of spaces. In this chapter we will, however: 

(i) discuss a notion of homotopy inverse limits which gets 

around this difficulty, and 

(ii) show that, up to homotopy, the R-completio n of Part I of 

these notes can be considered as such a homotopy inverse limit. 

In more detail: if I is a small category, J the category of 

spaces, and ~I the category of I-diagrams in J , then the homotopy 

inverse limit is a certain functor 

holim: ~ > 

which satisfies the homotopy lemma: 

is a map, of which each "component" is a 

homotopy equivalence between fibrant spaces, then f induces a 

homotopy equivalence 

holim f: holim X a holim X' c J 

Moreover holim has the "desired" homotopy type in familiar 

examples, such as: 

(i) If X is a tower of fibrations, then holim X is homo- 

topy equivalent to lim X. 
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(ii) If X is a fibrant cosimplicial space, then holim X is 

homotopy equivalent to the total space Tot X. 

(iii) If A is an I-diagram of abelian groups and 

K(A,n) E ~I is the corresponding I-diagram of Eilenberg-MacLane 

spaces, then 

• holim K(A,n) z limn-lA 0 < i < n 
71 ÷ -- ÷ -- -- _ 

= 0 otherwise 

where lim n-~ is the (n-i)-th derived functor of lim. 

We also construct, for homotopy inverse limits a (homotopy) 

spectral sequence, which generalizes the one for cosimplicial spaces 

of Chapter X, §6; and we prove a cofinalit[ theorem. 

The chapter is organized as follows: 

§2 and §3 After some preparations in §2, we give in §3 several, 

of course equivalent, descriptions of the homotopy inverse limit 

functor holim. 

§4 contains some examples, and a proof of the fact that, for a 

fibrant cosimplicial space, the homotopy inverse limit and the total 

space have the same homotopy ripe. 

We also observe that the definition of homotopy inverse limits 

in ~ can be generalized to any category ~ which 

(i) has (ordinary) inverse limits, and 

(ii) has natural "function objects" hom (K,X) e ~, for 

K e J and X ¢ ~ . 

Thus homotopy inverse limits can, for instance, be defined in the 

categories ~, of pointed spaces, ~ of topological spaces, and 
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~, of pointed topological spaces; however, nothing really new 

happens in J,, ~ or ~,. 

§5 Here we show that the functor holim: /I ÷j admits a 

factorization through the category c~ of cosimplicial spaces 

This implies that one can use cosimplicial methods to study homotopy 

inverse limit spaces. 

§6 and §7 contain an example of this. We construct for a 

pointed diagram of fibrant spaces X, a spectral sequence {ErX} 

such that 

(i) {ErX} is usually closely related to ~,ho~im X, 

(ii) E~'tx_ z ~imS~t x_ for 0 ! s ! t, where ÷lim s denotes the 

s - t h  d e r i v e d  f u n c t o r  o f  t h e  i n v e r s e  l i m i t  f u n c t o r  f o r  ( a b e l i a n )  

groups, and 

(iii) if X is a cosimplicial space, then, as one might 

expect, this spectral sequence coincides, from E 2 on, with the 

spectral sequence of Ch.X, §6. 

§8 contains a brief discussion of an interpretation of homotopy 

inverse limits in terms of h omotopy categories. 

§9 and §i0 Here we observe, that for certain large diagrams of 

spaces, one can, at least up to homotopy, talk of their homotopy 

inverse limits, and show that, as a consequence, the R-completion of 

Part I of these notes can, up to homotopy, be considered as a 

homotopy inverse limit of the "Artin-Mazur-like" diagram of "target 

spaces of X which admit a simplicial R-module structure". Our 
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main tool is a cofinalit~ theorem, which enables us to compare 

homotopy inverse limits for small diagrams of different "shapes". 

Notation and terminology. In this chapter we will mainly work 

in the category J of spaces, except for §7, where we will also use 

the category J, of pointed spaces. 

We shall assume that the reader is familiar with ordinary 

inverse limits for diagrams in various categories (see [Kan (AF)] 

and [Artin-Mazur, Appendix]). 
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§2. Some spaces associated with a small category 

In preparation for the definition of homotopy inverse limits 

(in §3) we discuss several useful spaces which one can associate 

with a small (i.e. the objects form a set) category. We start with 

2.1 The underl~in~ space of a small category. Let I be a 

small category. Then we will denote by the same symbol I its 

underlying space, i.e. the space of which an n-simplex is any 

sequence 

~i an 
u = (i 0 < •-. < in) E I 

with faces and degeneracies given by 

~2 
do u = (i I < ... < n in ) 

dju = (i 0 < ... ~ • < n • . in) 0 < j < n 

~i ~n-I 
dnU = (i 0 < ..- < in_ 1 ) 

<ej+l el u . <id ij < n 
sju = (i 0 < ... ~ 3 i3 ... in ) 

0 <j <_n 

Clearly, for small categories I and J, a functor I ~ J 

induces a simplicial map I ÷ J, and [Segal] it is not hard to see 

that: 

(i) There is an obvious 1-1 correspondence between the functors 

I ÷ J and the simplicial maps I ÷ J. 
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(ii) Moreover, a natural transformation of such functors 

corresponds to a homotopy 

A [i] x I > J E J 

We also need 

2.2 The (over) categories I/i and their underlying spaces. 

Given a small category and an object i E I, one can form the (over) 

category I/i, which has as objects the maps 

i < i 0 c I 

and as maps the appropriate commutative triangles. An n-simplex of 

the space I/i thus can be considered as a sequence 

(i < i0 < ... < n in ) c I 

A map 8: i ~ i' e I induces a functor and hence a simplicial 

map 

I/8: I/i > I/i' C 

and combining these for all ~, one gets an I-diagram of spaces, i.e. 

a covariant functor 

I/-: I >g 

which has the property: 

2.3 Proposition. The correspondence 

(i < q. i 0 < .... < in) > (i 0 < "-. < i n ) 
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induces an isomorphism 

lim I/- z I ~ J 

Another useful property is 

2.4 Proposition. For every i ~ I, the identity map of 

I/i E J is homotopic to the composition 

I/i > * > I/i ~ J 

where the last map sends * into (i < id i). 

This is immediate from 2.1. 

2.5 corollary. For every i ~ I and fibrant space X e 

the map I/i ÷ * induces a weak equivalence 

X z hom (*,X) >hom (I/i,X) cJ . 

2.6 Example. Let A be the category of the finite ordered 

sets 

[n] = (0, ... ,n) 

Then A/- can be considered as a cosimplicial space and it is 

not hard to see that 

(i) A/- is cofibrant (i.e. unaugmentable), 

(ii) the map 

A / -  > A 
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which sends every vertex [i] ~ [i0] c A/i into the vertex 

a(0) ~ A[i], is a cosimplicial map. 

Moreover, in view of 2.4, 

.(iii) this map A/- ÷ A e c~ is a weak equivalence. 

We end with the remark that, of course, 2.2 can be dualized. 

Thus one has 

2.7 The (u~der) categories I\i and their underlyin 9 spaces. 

The definition is obvious. Note that these spaces give rise to a 

contravariant functor 

IX-: I > 
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§3. Homotop~ inverse limits 

It is convenient to define first 

3.1 Function spaces for dia@rams of spaces. Let I be a small 

I 
category, let ~ be the category of I-diagrams over J (i.e. co- 

variant functors I ÷ J) and let W,X e jI Then the function space 

hom(W,X) ~ J 

is the obvious (cf. Ch.VIII, §4) space of which the n-simplices are 

the maps 

A In] × W > X ~ 

Or equivalently, hom(W,X) e J is the difference kernel (i.e. 

inverse limit) of the maps 

a 

hom(Wi,Xi) ~ I I hom(Wi,Xi') 

icI b i 7>i'~I 

where a and b are respectively induced by 

hom(Wi,Xi) 

hom(Wi',Xi') 

Xy> horn (Wi,Xi') 

Wy> horn (Wi,Xi ' ) 

Now we can define 

3.2 Homotopy inverse limits. Let I be a small category and 

let X ~ ~I be an I-diagram. The homotopy inverse limit of X then 

is the space holim X (or holim. Xi) defined by 
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holim X = hom(I/-,X) E J 

It is not hard to see that holim X is natural in X and I: 
4- 

i n  p a r t i c u l a r ,  a m a p  f :  X ÷ X '  e j I  i n d u c e s  a m a p  

holim f: holim X > holim X' c J 
4- 4- ~ 4- -- 

and a functor g: J ~ I between small categories induces a functor 

g* jl 
: + JJ, and hence a natural map 

holim g: holim X > holim g X 
4- 4- -- 4- -- 

One can, of course, also obtain the functor holim using 

3.3 An ad~oint functor approach. The functor 

holim: jl > J 
4- 

is right ad~oint to the functor 

- × (z/-):w > J 

which assi@ns to every space Y e J 

y x I/i ~ ~. 

and object i E I the space 

The proof is straightforward. 

Another way of saying this is 

3.4 Proposition. For every n-simplex 

e I e 
u (i 0 < < n . . . .  i n) e I 
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there is a natural map 

ju: A[n] × holim X > Xi 0 E 

which, for n E 1 

(XUl)J(d0u) and 

is a (higher) homotopy between the maps 

J(dlU), .-. , J(dnU), i.e. the diagrams 

A [n-l] × 

A[nl × 

holim X 

holim X 

j (d0u) 

ju 

> Xi 1 

> xi o 

A In-l] x ho~im i ~  

dk~ Xi 0 

A[n] × holim 3u 

0 < k < n 
m 

commute, and holim X 

versal property. 

together with these maps has the obvious uni- 

It will be shown in 5.6 that holim satisfies the homotopy 

lemma: If f: X + X' e jI is such that, for every i e I, the map 

fi: Xi + Xi' e ~ is a homotopy equivalence between fibrant objects, 

then the induced map holim X + holim X' is also a homotopy equiva- 

lence. However, if some Xi are not fibrant, then holim X may 

have the "wrong" homotopy type. 

In §8 we shall interpret the functor holim in terms of 

homotopy categories. 

We end this section with a comment on the 

3.5 Relationshi P to the (ordinary) inverse limit. For 

X e~ I _ , the maps I/i ~ * induce a natural map 
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lim X > ho~im X e J 

which, in general, is not a weak equivalence. For instance, for 

fibrant connected X e J, the diagram 

* > x ) 

has as inverse limit either * or the empty space (depending on 

whether both maps are the same or not), while the homotopy inverse 

limit has the homotopy type of the loop space of X. 
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§4. Examples and generalizations 

we give some examples and generalizations and show that for a 

fibrant cosimplicial space, the homqtopy inverse limit has the same 

homotopy type as the total space. 

4.1 Examples. The following are examples for which the natural 

map lim X ÷ holim X (3.5) is a weak equivalence and in which each 

Xi is assumed to be fibrant: 

(i) I is discrete (i.e. I contains only identity maps); then 

the homotopy inverse limit is the cartesian product. 

(ii) I contains only two objects and one map between them; 

then the homotopy inverse limit reduces to the usual mapping path 

space (i.e. the "dual" of the mapping cylinder). 

(iii) I has an initial object i 0 e I (i.e. for each i e I, 

there is exactly one map i 0 + i e I); in this case, the natural map 

(3.4) 

Ji0: holim X > Xi 0 e 

is also a weak equivalence. 

(iv) Every diagram in J of the form 

x' >x< x 

in which at least one of the maps is a fibration. 

(v) Every tower of fibrations 

"'" > X n > .... > X 1 ----~ X 0 
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4.2 Example. For X ~ ~, let e X e ~I be the constant I-dia- 

gram, i.e. (eX) i = X for each i ~ I and each map is the identity 

map of X. Using 2.3 it is easy to show that 

holim eX = horn (I,X) 
g- 

In this case the natural map (3.5) 

X = lim eX holim eX z hom (I,X) 

is usually not a weak equivalence. 

X E~ 

4.3 Example. If I and J are small categories and 

IxJ 
, then 

holim. (ho~im i X(i,j)) z holim X z holim. (holim X(i,j)). 
÷ 3 -- ~ - . 1 ÷ 3 -- 

Another important example is the case of 

4.4 Cosimplicial diagrams. Let ~ be the category of finite 

ordered sets (2.6). Then 

~ = c 

and the results of 2.6 and Ch.X, 5.2 imply: 

If X e cJ is fibrant, then the map 

~/- > ~ c c~ 

of 2.6 induces a homotopy equivalence 

Tot X = hom(A,X) > hom(A/-,X) = holim X ~ J 
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4.5 Generalizations. If ~ is a category which 

(i) has (ordinary) inverse limits, and 

(ii) has natural "function objects" hom(K,X) E ~, for K ~ J 

and X e ~, 

then our definition (3.2) of homotopy inverse limits can be applied, 

and yields, for every small category I, a functor 

holim: ~I > ~ . 

In particular, holim is defined for the categories J, of pointed 

spaces, ~ of topological spaces, and ~, of pointed topological 

spaces, with the obvious "function objects", e.g. for X e J and 

K~W 

hom (K,X) = X IKI 

with the compact-open topology. However, nothing really new happens 

in j., ~ or ~,, because the action of holim in g. (resp. I,) 

can be obtained from its action in J (resp. ~) by "remembering" the 

base point, while for X e ~ I 

Sin(holim X) z holim(Sin X) ~ J 

It might be interesting to consider the functor holim 

closed simplicial model categories (see [Quillen (HA)]). 

in other 
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§5. Cosimplicial replacement of dia@rams 

An important tool in the study of homotopy inverse limits is the 

cosimplicial replacement lemma (5.2), which states, that the homotopy 

inverse limit of a small diagram of spaces can be considered as the 

total space of the cosimplicial space obtained by applying: 

5.1 The cosim~licial replacement functor I I: j I + c~2 . A 

diagram X e jI can be considered as a kind of "local coefficient 
m 

system" on the space I £ J and its cosimplicial replacement ~-~X 

is, roughly speaking, the resulting "cosimplicial space of twisted 

I 
cochains". More precisely: the cosimplicial replacement of X e J 

is the cosimplicial space ~ X  e c~ , which in codimension n 

consists of the (product) space 

n 

I T X = I I Xi 0 e J where u = (i 0 

u e I 
n 

with coface and codegeneracy maps induced by the maps 

• .. < n in ) 

X=l> 
d o : Xi I Xi 0 c J 

dj : Xi 0 id> Xi 0 ~ ~ 0 < j ! n 

sj : X_i0 id> Xi 0 e ~ 0 < j < n 

It is not hard to see that this is the same as saying that 

-~-n X = hom((I/-) n,X ) e 

and that the coface and codegeneracy maps are induced by the face and 

degeneracy maps in the diagram of spaces I/- . 
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This second description of ~--[ X immediately implies the 

5.2 Cosimplicial replacement lemma. 

holim 

The functor 

admits a factorization 

gI I I > c~ Tot > j 

A long but straightforward argument using the first description 

of ~-~*~ implies (see Ch.X, §4). 

5.3 proposition. Let f: X ÷ X, e jl be such that 

fi: Xi + X'i ~ ~ is a fibration for every i c I. Then 

~*f: ~*~ ÷ [ I*~' e c~ is also a fibration. 

5.4 Proposition. Let f: X ÷ X' c J be such that, for every 

i e I, the map fi: X_i + X'i e J is a weak equivalence between 

fibrant objects. Then the map ~-~*f: ~*x ÷ ~-~*X' e cJ is also a 

weak equivalence. 

In view of Ch.X, 5.1 and 5.2 these two propositions imply the 

following lemmas. 

5.5 Fibration lemma. Let f: X + X' ~ JI be such that 

fi: Xi ÷ X'i ~ J is a fibration for every i e I. Then f induces 

a fibration 

holim f: holim X > holim X' e 
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5.6 Homotopy !emma. Let f: X ÷ X' e ~I be such that for 

every i ~ I 

(i) Xi and 

(ii) the map 

Then f 

X'i are fibrant, and 

fi: Xi ÷ X'i e F is a homotopy equivalence. 

induces a homoto~y e~uivalence. 

holim f: ho~im X = ho~im X' ~ 

5.7 A generalizatio n . In defining the cosimplicial replacement 

functor we only used the fact that the category J was a category 

with ~roducts. The definition thus also applies to other such 

categories, and it thus makes sense to observe that: 

For X ~ J~ with each Xi fibrant, there are natural 

i§omorphisms 

: T-T t a 0 . 

we end with a remark on 

5.8 The cosimplicial case. 

isomorphism 

For X e cJ there is a natural 

X n ~ hom(An,X ) for n > 0 

and hence the map A/- ÷ A e cJ of 2.6 induces a natural map 

x > I i*x ~ cw 

Moreover, application of the functor Tot to this map yields the map 

of 4.4 

Tot X > Tot I I X = holim X e J 
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§6. The functor lim s for dia@rams of (abelian) groups 
4- 

We will see in §7 that the functor holim is closely related to 
4- 

t h e  f u n c t o r s  l i m  s f o r  d i a g r a m s  o f  ( a b e l i a n )  g r o u p s .  I n  p r e p a r a t i o n  
4- 

for this we here 

(i) show that the usual functors lim s for diagrams of 
4- 

a b e l i a n  g r o u p s  c a n  be  e x p r e s s e d  i n  t e r m s  o f  t h e  c o s i m p l i c i a l  r e p l a c e -  

ment functor ~* of §5, and 

(ii) use this to extend the definition of the functor 

diagrams_of (not necessarily abelian) groups. 

First we recall from [Milnor] and [Roos] : 

lim I to 
4- 

6.1 The usual definition of lim s for diagrams of abelian 
4- 

groups. Let I be a small category, let d be the category of 

abelian groups and let ~ I be the category of I-diagrams in ~ . 

For i £ I and an injective K e ~ , there is an injective K i e 

characterized by 

Horn I(A,Ki) z Horn (Ai,K) for all A e ~Y I 

Taking products of these injectives one gets "enough" injectives in 

dI and defines the functors 

limS: dI > d s h 0 
4- 

as the s-th right derived functors, in the sense of [Cartan-Eilen- 

berg], of the inverse limit functor 

I 
lim: ~ > 
4- 
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Since lim is left exact it follows that 
4- 

(i) lim 0 = lim, and 

(ii) a short exact sequence 

I 
* >A' > A > A" > • E~ 

qives rise to a long exact sequence 

, > lim A' > lim A > lim A" > lim I A' > lim I A > "'" 
-- 4- ~ 4- -- 4- 4- 

Using the notation of 5.7 and Ch.X, 7.1 we will prove 

6.2 Proposition. Let A E dI. Then there are natural isomor- 

phisms 

lim s A z ~s~--[*A-- e ~ for s > 0. 

6.3 Example. For a group G and a G-module M, let M e 

be the associated diagram, where I is the single-object category 

corresponding to G. Then the underlying space of I is K(G,1) 

and hence 

lim s M z H s(G;M) . 
4- 

6.4 Remark. Considerable work has been done on the vanishing 

of lim s for certain directed sets of abelian groups [Jensen], 
4- 

[ M i t c h e l l ] .  A best possible result is [Mitchell, p. 6]: 

If I is the category of a partially ordered set of cardinality 

!~k, and A ~ ~I, then lim s A = 0 for s > k+l. 

This is clearly false for general I (see 6.3). 
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Proposition 6.2 suggests the following definition of 

6.5 The functor lim I for diagrams of (not necessarily abelian) 

groups. Let I be a small category and let ~ be the category of 

groups. Then, for G e h I, we define (see Ch.X, 7.1) 

lim 0 G = ~0~-~*G ~ 
4- -- 

lim I G = ~I~-~*G £ (pointed sets). 
4- -- 

It is not hard to verify that these functors have the properties 

(i) 4-1im 0 = ~im, and 

(ii) a short exact sequence 

* > G' > G > G" > * ~ h I 

gives rise to a natural exact sequence 

* > lim G' > lim G > lim G" > lim I G' > lim I G > lim I G~ 

Moreover, a straightforward calculation yie3ds that, for towers 

o f  g r o u p s ,  t h i s  d e f i n i t i o n  o f  l i m  1 a g r e e . s  w i t h  t h e  one  o f  C h . I X ,  
4 -  . . . .  

§2.  

Proof of 6.2. For I corresponding to a directed set this was 

proved in [Roos]. The general case requires a different approach, 

I 

which is implicit in [Andre]. 

Let J be any function which assigns an abelian group Ji to 

each object i c I, and let Sj: I ÷~ be the functor given by 

sji0 = i i Ji 
i0 + i 
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where the product runs over all maps in I with domain i 0. Among 

the Sj there are "enough" injectives for d I (namely those 

indicated in 6.1), and the dual of [Andre, p. 8-13] shows that each 

Sj E ~I satisfies 

~s~-~*Sj = 0 for s > 0. 

Using this result together with 6.1(i) and 6.1(ii) one now readily 

establishes the desired result. 
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§7. A s~ectral sequence for homotopy groups 

of homotopy inverse limit spaces 

Using the cosimplicial replacement lemma 5.2 we construct, for 

each small diagram X of pointed fibrant spaces, a spectral sequence 

[ErX}, which is usually closely related to ~,ho~im X. For cosimpli- 

cial diagrams this spectral sequence coincides,from E 2 on, with 

the usual one, i.e. the one of Ch.X, §6. 

7.1 The spectral sequence. For a small category I and a 

diagram X E J~ such that Xi is fibrant for every i e I, we 

define the spectral sequence {ErX} by (Ch.X, 6.1) 

{Er~} = {Erl I*~) r ~ 1 

and get, as an immediate consequence of 5.7, 6.2 and Ch.X, 7.2 that 

S'tx z ~imSwtx E 2 _ for 0 < s < t. 

Moreover, in view of 5.3, the spectral sequence {Er~} is clqsely 

• holim X, in the sense of Ch.IX, 5.4. related to the groups ~3 ÷ -- 

From this one readily deduces the following two propositions 

7.2 A homotop~ theoretic interpretation of lim s. For A e ~I, 

denote by K(A,n) e jI the corresponding diagram of Eilenberg-MacLane 

spaces [May, p. 98]. Then one has 

(i) For A e dI, there are natural isomorphisms 

~iho~im K(A,n) z lim n-I A for 0 ! i ! n 

= * for i > n. 
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I 
(ii) For G c ~ , there are natural isomorphisms 

~.holim K(G,I) z lim l-i G for i = 0, 1 
i ÷ -- ÷ -- 

= * for i > i. 

7.3 The functors lim s for cosimplicial dia@rams. 

(i) Let A be a cosimplicial abelian ~rou~. Then there are 

natural isomorphisms 

zSA z lim s A for s > 0 

which are induced by the natural cosimplicial maps (4.4 and 5.8) 

A ~ f i*A ~ c~ 

(ii) Let G be a cosimplicial group. Then there are, 

similarly, natural isomorphisms 

~SG z lim s G for s = 0, i. 

We next consider two special cases 

7.4 Towers of fibrations. It is not hard to see that, for a 

tower of fibrations X in ~,, the spectral sequence {Er~} reduces 

to the short exact sequences of Ch.IX, 3.1 

* > ÷ limlzi+iX > ~ holim X ~ lim w.X > * 
-- 1 ÷ -- ~ i-- 

7.5 Cosimplicial spaces. If X e c~, is such that X n e J is 

f i b r a n t  f o r  a l l  n ~ O,  t h e n  t h e  m a p  X ÷ I t X c c ,~ o f  5 . 8  i n d u c e s  
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a map of spectral sequences 

{ErX} > {Er~* ~} r k 1 

and it is not hard to prove, using 7.3, that this s~ectral sequence 

map is an isomorphism, from E 2 on. 

We end with some 

7.6 Generalizations. Let X E J~ be such that Xi E g is 

fibrant for every i c I, and let Y ~ ~,. Then clearly 

holim hom,(Y,X) = hom,(Y,ho~im X) 
4- -- m 

where hom, denotes the pointed function space (Ch.VIII, §4) and 

hence there is a spectral sequence 

{Er(Y,X) } = {ErhOm . (Y,X) } r > 1 

with 

E~'t (Y,X) = limS~ t horn, (Y,X) 

which is closel[ related (see Ch.IX, 5.4) to 

~,hom, (Y,holim X) = ~,holim horn, (Y,X) . 
4- 

More generally, let 

e ~. Then 

J be another small category and let 

hom, (Y,X) E ~J × I 

where J denotes the dual of J. Hence there is a spectral sequence 
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{E r (Y,X) } = {Erhom . (Y,X) } r > 1 

with 

E~'t (y,x) = limSnthom, (y ,X ) 

which is closely (Ch. IX, 5.4) related to 

~,holim hom,(Y,holim X) = ~,holim horn, (Y,X) . 

We will come back to this in Ch.XII, §4. 
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§8. Homotopy inverse limits in terms 

of homotopy categories 

The homotopy inverse limit functor has the following interpreta- 

tion in terms of homotopy categories. 

Let Hog denote the homotopy category of g , i.e. the localiza- 

tion of ~ with respect to the weak equivalences (Ch.VIII, 3.6) and 

let Ho(~) be the homotopy category of gI, i.e. (Ch.VIII, 3.6) the 

localization of jI with respect to the maps f: X + Y c ~I such 

that fi: Xi ÷ Yi E g is a weak equivalence for every i e I. 

Furthermore let 

E: Hog > Ho(g I) 

be the functor which assigns to a space X E g the corresponding 

"constant" diagram of spaces (4.2). Then one has 

8.1 Proposition. The functor E has as right adjoint the 

"total right derived functor" (in the sense of [Quillen (HA), p.I, 

4.3]) of the functor holim 

R holim: Ho(J I) > Hog 

In particular, if X e g is such that Xi ~g is fibrant for every 

i e I, then holim X ~g represents R holim X. 

I 
8.2 Remark. Note that we did not consider the category (Hog) . 

The "constant" functor Ho~ + (Ho~) I has, in general, no adjoints, 

i.e. limits do not exist in the homotopy category Hog. 
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Proof of 8.1. We first prove that the category Ho(J I) exists. 

To prove this it suffices [Quillen (HA)] to show that the category 

is a closed sim~licial model category with as weak equivalences 

the maps f: X ÷ Y ~ jI such that fi: Xi + Yi e J is a weak 

equivalence for every i e I. We define fibrations in J I as maps 

' jI 
f: X ÷ X e such that fi: Xi ÷~M_ i e J is a fibration for every 

i e I, and cofibrations as maps which have the left lifting property 

(Ch.VIII, 3.4) with respect to maps which are both fibrations and 

weak equivalences in j I, and we consider the simplicial ..... structure on 

jI which comes from viewing objects in J I as simplicial objects 

over the category (sets) I of I-diagrams of sets. The desired result 

then follows from [Quillen (HA), II, §4,Th.4], since (sets) I is closed 

under a rbitrar~ limits and has a set {Pi}i e I of small projective 

generators, where each pie (sets) I is characterized by the natural 

isomorphism 

Hom (pi,y) ~ Yi for all Y e (sets) I 
(sets) I - 

Next we observe that it is not hard to verify that the object 

I/- e jI is cofibrant, and hence that the pair of adjoint functors 

of 3.3 

- x I/-: J > jI 

holim: ~ I > 

satisfy the conditions of [Quillen (HA), p.I, 4.5, Th.3]. Thus the 

total left derived functor 

L(- x I/-) : HOg > HO~/I) 
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is left adjoint to the total ri@ht derived functor 

R holim: Ho(J I) > HoJ 

and the proposition now follows from the fact that 

E = L(- × I/-) : Ho~ > Ho~ I) 
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§9. A cofinalit~ theorem 

A functor f: I ÷ J between small categories induces, by 

* J jI 
composition, a functor f :J + and hence, for every diagram of 

spaces X e gJ a map 

holim X -> holim f X e J 

Our main purpose here is to give, in theorem 9.2, a sufficient condi- 

tion in order that this map is a homotopy equivalence. To formulate 

this theorem we need a notion of 

9.1 Left cofinal functors. Let I be a small category, let 

f: ~ ÷ M be a (covariant) functor and, for every object m e M, let 

f/m denote the category of which an object is any pair (i,~) where 
! ! 

i e I and ~: fi + m e M, and of which a map (i,u) ÷ (i ,~ ) is 
! 

any map ~: i + i e I which makes the following diagram commute 

f f i ~  m 

f i , / ~  ' 

We will then say that f is left cofinal if, for every m e M, the 

s~ace f/m is contractible, i.e. the map f/m + * c J is a weak 

equivalence. 

An obvious example of a left cofinal functor is the identity 

functor id: I + I (see §2). Other examples will be discussed in 9.3 

and 10.3. 
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We now state our 

9.2 Cofinality theorem. Let I and J be small categories, 

let f: I + J be a left cofinal functor, and let X e ~ J be such 

that Xj is fibrant for all j e J. Then the induced map 

holim X > holim f X e 

is a homotopy equivalence. 

Before proving this, we show that the above notion of left 

cofinality agrees with the one of [Artin-Mazur, p.149] in the case 

where theirs was defined. More precisely: 

9.3 Proposition. Let I be a small category, which is a "left 

filterin~ '', i.e. I is non-empty, and 

I 
(i) every pair of objects i, i ~ I can be embedded in a 

diagram 
! 

i 
• 11//~ 
l 

l 

(ii) if i ~ i is a pair of maps in I, then there is a map 

,1 I 11 
i + i e I such that the compositions i ÷ i are equal. 

Then a functor f: I ~ M is left cofinal in the sense of 9.1 if and 

only if it is left cofinal in the sense of [Artin-Mazur], i.e. if 

(iii) for every m £ M, there is an i ~ I and a map 

fi ~ m e M, and 

(iv) if m E M, i e I and fi ~ m are two maps in M, then 

there is a map i' + i e I such that the compositions fi' ÷ m are 

equal. 
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Proof. One easily shows that (iii) and (iv) hold if and only if 

f/m c ~ is non-empty and connected for all m ~ M. This proves the 

"only if" part. 

Moreover, the conditions (iii) and (iv) imply that f/m is a 

left filtering for all m e M, and the "if" part thus follows from 

9.4 Proposition. If a small categor[ I is a left filtering 

(9.3), then the underlying space I e g is contractible, i.e. the map 

I ÷ * c F i.s a weak equivalence. 

Proof. Let {il,...,i s} be a finite set of objects in 

let {81,.-.,8 t} be a finite set of maps between them. Then, 

because I is left filtering, there exist an object i 0 £ I and 

maps ~j: i 0 ÷ ij (i ! J ! s) such that the diagrams 

a 

i 0 ] 1 !k it 

a V 1 
v k 

I and 

commute. Using this it now is not hard to show that, for every 

finite K e J (i.e. K has only a finite number of non-degenerate 

simplices), every map K ÷ I e J is homotopic to a constant map. 

Thus I e ~ is contractible. 

Proof of 9.2. Let 

plicial space given by 

J l (X,f) e CC~ denote the double cosim- 

]---[ n'q(X,f) = [ I 

(u,Y,v) 
X j0 e 
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u = (i 0 < ... < i n) e I n 

v = (J0 < "'" < Jq) e Jq 

7 = fi 0 > jq e J 

with the obvious (see 5.1) pairs of coface and codegeneracy maps. 

It is not hard to verify, that the first cosimplicial total 

space Tot(1)~-[**(X,f) E cJ has the property that, in codimension 

q 

Tot(1) I l*'q(x, f) = I I hom(f/jq,Xj 0) eJ 

v e J q 

where v = (J0 ÷ "'" ÷ Jq) e Jq. The left cofinality of f implies 

that the maps f/jq ÷ * e J are weak equivalences. They therefore 

induce homotopy equivalences 

XJ0 z hom(*,XJ0 ) > hom(f/jq,XJ0) e J 

which, in turn, induce a weak equivalence (see 5.1) 

~T*x > Tot (1) I-T** (x, f) E c~ 

And as both these cosimplicial spaces are fibrant (see 5.3) applica- 

tion of the functor Tot yields (Ch.X, 5.2) a homotopy equivalence 

ho~im X Tot i I*X Tot (1) ** = _ : Tot i I (~,f) E W 

It is also not hard to verify that the second cosimplicial total 

space Tot(2) I l**(X,f) e cJ has the property that, in codimension 
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n 

Tot (2)~n,* (X,f) = I I Tot 7-[ (x_Xfi 0) 
u £ I 

n 

~J 

where u = (i 0 ~ -.. ÷ i n ) e I n and X_~fi0: J\fi 0 ÷J denotes the 

diagram obtained from X: J ÷J by composition with the "inclusion" 

functor J\fi 0 + J (see 2.7). As J\fi 0 has an initial object, the 

obvious map 

X(fi O) > holim(X_~fio) = Tot ~--[*(X\fi O) e J 

is a weak equivalence (4.1) and hence so is the induced map 

* * (2) ** t I (f x) >Tot r I (x,f) ~ c~ 

Again, both these spaces are fibrant (5.3) and application of the 

functor Tot yields (Ch.X, 5.2) a homotopy equivalence 

h o l i m  f X T o t  " ~ - *  = (f X) = Tot Tot(2) I 1 (X,f) g j 

The theorem now follows from the fact that the map 

holim X ÷ holim f X and the two homotopy equivalences constructed 

above, can be combined into a commutative diagram 

holim X > holim f X 

Tot Tot(1) I l**(X,f) = Tot Tot(2)~**(X,f) 

The proof is straightforward, although rather long. 
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§i0. Homotop~ inverse limits for certain 

large diagrams of spaces 

We use the cofinality theorem 9.2 to show that, for certain 

lar@e (i.e. not necessarily small) diagrams of spaces, one can, at 

least up to homotopy, talk of their homotopy inverse limits. Our key 

example will be the Artin-Mazur-like large diagrams that can be 

obtained from a triple; and in particular we will show that the R- 

completion of Part I of these notes can, up to homotopy, be consid- 

ered as a homotopy inverse limit of such an Artin-Mazur-like diagram. 

We first describe the class of large diagrams for which our 

definition works. 

10.1 Left small categories. A category M will be called left 

small if there exists a left cofinal functor f: I + M (with I 

small, of course). 

Clearly every small cate@ory is left small. 

Now we define 

10.2 Homotopy inverse limits for left small diagrams of spaces. 

Let M be a left small category and let X be an M-diagram of 

spaces, i.e. X ~ jM. A homotop~ inverse limit of X then will be a 

space of the form 

holim f X where f: I + M is left cofinal. 

Clearly, if M is small, then holim X 

of X. 

is a homotop~ inverse limit 
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That this notion has "homotopy meaning" in general follows from 

10.3 Proposition. If Xm is fibrant for all m e M, then the 

h o m o t o p y  t y p e  o f  h o l i m  f X d o e s  n o t  d e p e n d  on f ( o r  I ) .  
+ 

Proof. Let f: I + M and g: J + M be left cofinal functors 

and let K c M be the full subcategory of M generated by the 

images of f and g. Then K is small and the restrictions I + K 

and J + K are left cofinal. Hence, if h: K + M is the inclusion 

functor, then 9.2 implies that the induced maps 

h o l i m  h X b h o l i m  f X and h o l i m  h X ~) h o l i m  g X 
4 -  - -  " 4 -  - -  "1- "t-  - -  

are homotopy equivalences. 

In order to apply this machinery to the R-completion of Part I, 

we first consider 

10.4 Diagrams associated with a triple. Let {T,¢,~} be a 

triple on a category ~, i.e. T is a functor T: ~+ ~ and ~ and 

are natural transformations #: Id ÷ T and ~: T 2 + T such that 

(T$)¢ = (~T) (T~) = ¢(¢T) ~(T~) = id = ~(~T) . 

An object Y e ~ is said to admit a T-structure [Barr-Beck, p.337] if 

there is a map T: TY + Y eC such that T# = id and T~ = T(TT). 

For X £ ~, let T\X denote the full subcategory of ~\X having 

as objects the maps X ÷ Y e ~ for which Y admits a T-structure. 

Then there is an obvious Artin-Mazur-like diagram (which sends 

X + Y to Y) 

T\X > 
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Furthermore let TX be the cosimplicial resolution of 

(augmented) cosimplicial object over ~ given by 

X, i.e. the 

(TX) k = Tk+Ix 

in codimension k, and 

((TX) k-i di> (TX) k) 

i 
((Tx)k+I s > (Tx)k) 

= (Tkx TisTk-i> Tk+Ix) 

_i _k-i 
= (Tk+2x T ~'x > Tk+lx) 

as coface and codegeneracy maps. 

considered (2.6) as a functor 

Then TX (augmented) can be 

TX: ~ > TXx 

and it is clear that (TX) carries the Artin-Mazur-like diagram 

T\X ~ ~ to the cosimplicial diagram TX c cO. 

This is useful because 

10.5 Proposition. The functor 

Tx: ~ > T\X 

is left cofinal. 

Proof. Let m: X + Y be an object of T\X. Then 

HOmTk X (TX,m) e J 

is contractible (every T-structure on Y induces a contracting 

homotopy). Furthermore it is not hard to see, that its simplicial 

replacement (see Ch.XII, 5.1) satisfies 
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I I* H°mT\x(~X,m) z TX/m cJ 

and the desired result now follows from Ch.XII, 4.3 and 5.3. 

Finally we can give our 

10.6 Application to the R-completion. Let {R,~,~} be the 

triple on the category J of Ch.I, §2. Then (10.2, 10.4 and 10.5) 

(i) for ever[ X e ~, the space 

holim RX c 

is a homotopy inverse limit for the Artin-Mazur-like left small 

diagram of spaces R\X ÷ J , which sends a map m: X ÷ Y into the 

space Y, and hence (4.4 and Ch.I, 4.2) 

(ii) for ever[ X E J, the R-completion of X 

R X = Tot RX e 

has the homotopy type of the homotop[ inverse limits of this Artin- 

Mazur-like diagram of spaces R\X ~ ~. 
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Chapter XII. Homotopy direct limits 

§l. Introduction 

In this chapter we discuss homotopy direct limits. Our account 

will be brief as many of the results in this chapter are dual to 

results in Chapter XI. Also, a construction similar to the homotopy 

direct limit was given by [Segal]. 

In slightly more detail: 

§2 deals with the various (equivalent) descriptions of homotopy 

direct limits for the category ~, of pointed spaces, dualizing the 

results of Ch.XI, §3 and §8. 

§3 dualizes the examples and generalizations of Ch.XI, §4. In 

particular, we observe that 

(i) for a simplicial space (i.e. double simplicial set) the 

homotop~ direct limit has the same homotopy type as the diagonal, and 

I (ii) our definition of holim: ~, + J, applies to many other 

categories, such as, for instance, the categories ~ of spaces, 

of topological spaces and 3, of pointed topological spaces. 

We also show that, for a directed s[stem of spaces, the homotopy 

direct limit has the same homotopy type as the (ordinary) direct 

limit. 

§4 In dealing with homotopy inverse limits we used proposition 

Ch.X, 5.2 on cosimplicial spaces. Instead of developing a similar 

result for simplicial spaces, we prove in §4 a proposition, which 

allows us to translate properties of homotopy inverse limits into 
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properties of homotopy direct limits and then use it to prove 

observation (i) above, to show that the functor holim satisfies a 

homotop[ lemma and to derive from the (homotopy) spectral sequence 

for homotopy inverse limits (Ch.XI, §7) a cohomolo~[ spectral 

sequence for homotopy direct limits. 

§5 Here we obtain a simplicial replacement lemma, dual to the 

cosimplicial replacement lemma of Ch.XI, §5, and use it to construct 

a homology spectral sequence for homotopy direct limits and to recov- 

er the cohomology spectral sequence of §4. 

Notation and terminology. In this chapter we will mainly work 

in the category J, of ~ointed spaces. 

We shall assume that the reader is familiar with ordinar[ direct 

limits for diagrams in various categories (see [Kan (AF)] and [Artin- 

Mazur, Appendix]). 
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§2. Homotopy direct limits 

The homotopy direct limit of a diagram of pointed spaces is, 

roughly speaking, the space obtained by 

(i) taking the union (i.e. wedge) of all the spaces in the 

diagram, 
! 

(ii) attaching to this, for every map f: Y + Y in the diagram 

(which is not an identity), a copy of 

411] ~ Y = (A[I] × Y)/(A[I] × *) 

! 

by identifying one end with Y and the other end with Y (as in 

the reduced mapping cylinder of f), 
I 

(iii) attaching to this, for every two maps f: Y ÷ Y and 
I 

g: Y ~ Y in the diagram (neither of which is an identity), a copy 

of 

4[2] ~ Y = (A[2] × Y)/(~[2] × *) 

by identifying the three sides with the reduced mapping cylinders of 

f,g and gf (or, if gf is an identity, collapsing the third side 

onto Y = Y"), 

(iv) etc., etc., ... 

A more efficient and precise definition is: 

2.1 H omotopy direct limits. Let I be a small category and 

let ~ ~ J~. The homotopy direct limit of Y then is the pointed 

space holim Y (or holim. Yi) defined by (see Ch.XI, 2.7) 

holim Y = I\- ~ Y c J, 
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i,e, 

in ~, 

holim Y is given by the difference cokernel (i.e. direct limit) 

of the maps 

, a 
I L Iki o< Yi ~> I I l\i ~ Yi 

i _~Y i' b " £ I i e I 

where ~ is as above and a and b 

, YY , , 
I~ki ~ Yi -- > I\i ~ Yi 

IV 
I\i ~ Yi > I\i ~ Yi 

are respectively induced by 

One can, of course, obtain the functor holim also by using 

2.2 An ad~oint functor approach. The functor 

holim: J~ > ~. 

is left ad~oint to the functor 

hom(I\-,-) : J, > J~ . 

Another way of saying this is 

2.3 Proposition. For every n-simplex 

u = (i 0 < ... ( n in ) e I 

there is a natural map 

ju: A[n] ~ Yi n > holim Y £ J, 

which, for n >_ i, is a (higher) homotopy between the maps 

J(d0u),-'', J(dn_lU) and J(dnU) (Y~n) (see Ch.XI, 3.4) , and 
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holim Y together with these maps has the obvious universal property 

It will be shown in 4.2 that holim satisfies the homotopy 

lemma: If f: [ ÷ [ e J is such that, for every i e I, the map 
! 

fi: Yi ÷ Y i ~ J, is a weak equivalence, then the induced map 
! 

holim Y ÷ holim Y is also a weak equivalence. 

This implies that, as for homotopy inverse limits (Ch.XI, §8), 

one has an interpretation of 

2.4 Homotopy direct limits in terms of homotopy categories. 

The "constant" functor 

E: HoJ, > Ho(jI,) 

has as left ad~oint the "total left derived functor" (in the sense of 

[Quillen (HA), p.I, 4.3]) of the functor holim 

L holim: Ho(jI,) > HoJ, 

In particular, if Y c ~, then holim Y e j, represents L holim Y. 

We end this section with a comment on the 

2.5 Relationship to the (ordinary) direct limit. For ~ e J~, 

the maps l~i ÷ * induce a natural map 

holim Y > lim Y e g, 

which, in general, is not a weak equivalence. 



330 
Ch. XII, §3 

§3. Examples and @eneralizations 

We start with dualizing the examples of Ch.XI, §4 

3.1 Examples. In the following examples the natural map 

holim Y ÷ lim Y (2.5) is a weak equivalence: 

(i) I is discrete; then the homotopy direct limit is the 

(pointed) union, i.e. the wedge. 

(ii) I contains only two objects and one map between them; 

then the homotopy direct limit reduces to the usual reduced mapping 

cylinder. 

(iii) I has a terminal object i0; in this case the natural 

map (2.3) 

Ji0: [i 0 > holim Y e J, 

is also a weak e~uivalence. 

(iv) Every diagram in J, of the form 

! ms 

x < Y >x 

in which at least one of the maps is a cofibration. 

3.2 Example. For Y E J,, let e_Y ~ J~ be the constant I-dia- 

gram (Ch.XI, 4.2). Then 

holim eY z I ~ Y . 
u 

In this case the natural map (2.5) 

I K y z holim eY > lim eY z y 
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is, of course, usually not a weak equivalence. 

3.3 Example. 

I×J 
[ e ~, , then 

If I and J are small categories and 

ho~imj¢ho~imiX(i,j)) z ho~im ~ z holimi¢holimjX(i,j)). 

3.4 Simplicial diagrams. Let Y be a pointed simplicial space, 

A* * 
i.e. Y e J, , where A denotes the dual of the category A (Ch.XI, 

2.6). Then one can form the diagonal of Y, i.e. the space 

diag Y e J, given by 

¢diag Y)n = Y--n,n for all n 

and notice that there is a natural isomorphism 

diag Y z A ~ Y . 

Moreover, obviously 

A \ -  = 41- 

and thus we can state: 

The map A/- ÷ A e cJ of Ch.Xl, 2.6, induces, for ever[ 

A* 
e J, , a weak equivalence 

holim Y = 4/- ~ Y > A ~ Y z diag Y c J, 

A proof of this will be given in 4.3. 

Another important example is that of 

3.5 Right filterings. Let I be a small cat egor[, which is a 

"riqht filterinq", i.e. I is non-empty and 
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(i) every pair of objects 

gram 
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! 

i,i £ I can be embedded in a dia- 

l 

l 

! 

(ii) if i ~ i is a pair of maps in I, then there is a map 
! i! i! 

i -~ i ~ I s u c h  t h a t  t h e  c o m p o s i t i o n s  i -~ i a r e  e q u a l .  

Then, for every Y e jI, the natural map (2..5) 

holim Y > lim Y ~ g, 

is a weak equivalence. 

3.6 Corollary. For Y e J,, let {Y } denote the diagram of 

its finite pointed subspaces (i.e. pointed subspaces with only a 

finite number of non-degenerate simplices). Then the obvious maj~ 

holim Y > ~im Y = Y e ~, 

is a weak equivalence. 

Proof of 3.5. Let Y_/i denote the I/i-diagram in J,, which 
! ! 

assigns to an object (i ÷ i) e I/i, the space Yi . Then it is not 

hard to show, that the spaces holim Y/i form an I-diagram and that 

~imi(ho~im Y_/i) ~ ho~im Y = ho~im i Yi . 

The desired result now follows readily from the fact that 

(i) the map (2.5) 

holim Y_/i > lim Y/i = Xi 
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is a weak equivalence (3.1(iii)), and 

(ii) homotopy groups commute with direct limits of right 

filterin@s. 

We end with a few comments on 

3.7 Generalizations. One can dualize the remarks of Ch.XI, 

4.5, and in particular, define holim for the categories J of 

spaces, ~ of topological spaces and ~, of pointed topological 

spaces. But again, nothing really new happens in these categories, 

as the action of holim in J (or £ ) can be obtained from its 

action in J, (or ~,) by "adding a disjoint base point", while, 

for every Y g J~, one has 

iho~ im !I = ho~im I!I e £* 

Again, it might be interesting to consider the functor holim 

in other closed simplicial model categories (see [Quillen (HA)]). 
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§4. A relation between homotopy 

direct and inverse limits 

In this section we prove a proposition (4.1) which allows us to 

translate properties of homotopy inverse limits into properties of 

homotopy direct limits, and use it 

(i) to derive the homotop[ lemma for holim (4.2), which we 

already mentioned in §2, from the homotopy lemma for holim (Ch.XI, 

5.6), 

(ii) to prove, that, for a simplicial space, the homotopy direct 

limit and the diagonal have the same homotopy type, using the dual 

result (Ch.XI, 4.4), and 

(iii) derive from the (homotopy) spectral sequence for homotopy 

inverse limits (Ch.XI, 7.1 and 7.6), a cohomology spectral sequence 

for homotopy direct limits. 

I 
4.1 Proposition. For Y c g, and X ~ J,, there is a natural 

isomorphism 

hom, (holim Y, X) z holim hom, (Y, X) e J, 

where hom, is the pointed function space functor (Ch. IX, 3.2). 

Proof. Let I denote the dual of the category I. 

proposition then follows from the fact that 

The 

I X- = I /-: I > J . 

One can use this to prove the 
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' I 
4.2 Homotopy lemma. Let f: [ ÷ Y e ~, be such that 

! 

fi: [i ÷ Y i e J, is a weak equivalence for every i e I. Then f 

induces a weak equivalence 

! 

holim f: holim Y > holim Y £ ~, 

Proof. It suffices to show that, for every fibrant X e J,, the 

map f induces a homotopy equivalence 

! 

hom.(holim Y , X) ~ hom.(holim Y, X) e J, . 

But this follows immediately from 4.1 and Ch.XI, 5.6. 

Another application is to (see 3.4) 

4.3 Simplicial spaces. For a simplicial space (i.e. double 

simplicial set) the homotopy direct limit has the same homotopy type 

as the diagonal. 

Proof. Note that (see 3.4), for every X c ~., there are 

obvious isomorphisms 

hom,(diag [, X) z hom,(~ m Y, X) z 

hom(A, hom,(Y, X)) z Tot hom,(Y, X). 

The proposition then follows by combining the argument of 4.2 with 

4.1 and Ch.XI, 4.4. 

Proposition 4.1 also allows us to reinterpret 
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4.4 The spectral sequence Er(Y , X) 

and J be small categories. Then, for 

has the spectral sequence of Ch.XI, 7.6 

of Ch.XI, 7.6. Let I 

Y e and X e J,, one 

{Er(Y, X)} = {E r hom,(Y, X)} r > 1 

with 

s,t(y X) z limS~ t hom,(Y, X) 0 < s < t . E 2 , _ _ 

Moreover, if Xi e J, is fibrant for ever~ i e I, then, in view of 

4.1, this spectral sequence is closely related (see Ch. IX, 5.4) to 

n, hom,(holim Y, holim X) 

A useful special case of this is: 

4.5 A cohomolog~ spectral sequence for homotop~ direct limits. 

Let Y E ~, and let h be a reduced generalized cohomology theory 

on J .  w h i c h  " c o m e s  f r o m  a s p e c t r u m " .  Then  4 . 4  i m p l i e s :  

There is a natural.spectral sequence {Er(~; h )} with 

E s , t . .  
~* 

2 t~, h ) ~ lim s ~-ty s ~ 0 

which is closely related (see Ch.lX, 5..4) to 

h h o l i m  Y 

An interesting case is obtained if, for Y e ~,, one applies 

this to the diagram {Y } of the finite_(pointed) subspaces of Y 

(see 3.6 and [Adams, (AT), p.6]). 
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§5. Simplicial replacement of diagrams 

Another tool in the study of homotopy direct limits is the 

simplicial replacement lemma (5.2), which states that the homotopy 

direct limit of a small diagram of spaces can be considered as the 

diagonal of a certain sim~licial space. As an application of this we 

construct a homology spectral sequence for homotopy direct limits and 

recover the cohomolo~ spectral sequence of 4.5. 

We start with 

A 
5.1 The sim~licial replacement functor 1 I ,: ~* ÷ ~* For 

e ~, its simplicial replacement is the simplicial space (i.e. 

Y which in dimension n consists of the double simplicial set) t I._ 
(pointed) union, i.e. wedge 

I I Y = I I Yi E ~, where u < . < n n-- -- n = (i0 "" an) 
u c I 

n 

with face and degeneracy maps induced by the maps 

id> Yi e ~, 0 < j < n dj : Yi n -- n 

Y~ 
-- n 

dn: Yi n > Yin_ 1 e J, 

sj: ~i n id> ~i n e J, 0 ! j ! n . 

It is not hard to see that this is the same as saying that 

= ~ Y e J. 1 I ~ (I~-) n - 
n 

where ~ is as in §2, and that the face and degeneracy maps are 
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induced by the face and degeneracy maps in the diagram of spaces 

I\-. 

This second description of I I [ readily implies the 

5.2 Sim~licial replacement lemma. 

holim 

The functor 

admits a factorization (see 3.4) 

II . ~, ,> A dia@> 

Dualizing Ch.XI, 5.8 one then gets 

5.3 The simplicial case. 
A 

For a simplicial space Y ~ J, , the 

map 4/- ÷ ~ e c~ of Ch.XI, 2.6 induces a natural map 

A [IY_ >Y_ 

of which the diagonal is exactly the map of 4.3 

holim Y = diag I I Y > diag Y e J, . 

5.4 A generalization. In defining the simplicial replacement 

functor we only used the fact that the category ~, was a category 

with sums (in this case wedges). The definition thus also applies to 

other such categories. For instance, one can, dualizing Ch.XI, 6.1 

and 6.2, use the simplicial replacement functor to describe 

5.5 The functors lim s for diagrams of abelian groups. Fo___~r 

A £ ~I, there are natural isomorphisms 
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limS A z n ~ I A ~ ~ s > 0 

where limS: ~I ÷ ~ denotes the s-th left derived functor of the 

I 
d i r e c t  l i m i t  f u n c t o r  l i m :  ~ ~ ~ .  

Combining this with 4.3 and 5.3 one gets 

5.6 The functors lim s for simplicial diagrams. 

cial abelian ~roup A there are natural isomorphisms 

For a simpli- 

lim s A : ~ A s > 0 

which are induced by the map of 5.3 

A >A 

We now use these results to obtain, along the pattern of the 

spectral sequence of Ch.XI, 7.1, 

5.7 A homology spectral sequence for homotopy direct limits. 

First we consider the simplicial case. For a sim~licial space 
* 

c ~ , one can form the sequence of cofibrations 

, > A[0] m y > .-. > A[k] ~ y > ... £ ~, 

and, applying to this a reduced generalized homology theory h, 

which "comes from a spectrum", one gets a spectral sequence 

{Er(y; h,)}, which, when h, is a connected theory, strongly converges 

to 

h,diag Y = h,(A ~ y). 
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Moreover an argument dual to the one of Ch.X, 6.1 and 7.1, implies 

together with 5.6 that 

E 2 s,t(Y; h,) z +lim s ~t x s > 0. 

Now let I be an arbitrary small category. Then we define, 

I for Y e J,, its homology spectral sequence {Er(~; h,)} by 

Er(y; h,) = Er(I I Y; h,) r > i. 

When h, is a connected theor[, then, in view of 5.2, this s~ectral 

sequence strongl[ converges to 

h, holim Y 

while 5.5 (always) implies that 

E 2 s,t([; h.) z ~im s ht X s k 0. 

Moreover it is not hard to prove, that, for simplicial spaqest this 

spectral sequence coincides, from E 2 on, with the one considered 

at the beginning of 5.7. 

We end with observing that a similar process yields 

5.8 A cohomolog [ spectral sequence. If one replaces the re- 

duced generalized homology theory h, by a reduced generalized co- 

homology theory h which "comes from a spectrum", then the 

construction of 5.7 yields a cohomology spectral sequence 

{Er([; h )}. It is, however, not hard to verify that this cohomology 

spectral sequence coincides with the one of 4.5. 



Bibl. 

Bibliography 

(AT) 

M. Andre: 

J.F. Adams: 
(S) The sphere considered as an H-space mod-p, 

Quart. J. Math. 12 (1961), 52-60 
Algebraic topology in the last decade, 
Proc. Symp. Pure Math. AMS 22 (1971), 1-22 

Methode simpliciale en algebre homologigue et 
alg~bre commutative, 
Lecture Notes in Math. 32, Springer (1967) 

M. Artin and B. Mazur: 
Etale hom0top[ , 
Lecture Notes in Math. i00, Springer (1969) 

M. Barr and J. Beck: 
Ac~clic models and tri~les, 
Proc. Conf. Cat. Algebra, Springer (1966), 336-343 

M. Barratt and S. Priddy: 
On the homology of non-connected monoids and 
their associated groups, 
Comm. Math. Helv. 47 (1972), 1-14 

A.K. Bousfield and E.B. Curtis: 
A spectral sequence for the homotopy of nice spaces, 
Trans. AMS 151 (1970), 457-479 

A.K. Bousfield and D.M. Kan: 
(HR) Homotopy with respect to a ring, 

Proc. Symp. Pure Math. AMS 22 (1971), 59-64 
(LC) Localization and completion in homotopy theory, 

Bull. AMS 77 (1971), 1006-i010 
(HS) The homotopy spectral sequence of a space with 

coefficients in a ring, 
Topology ii (1972), 79-106 

(SQ) A second quadrant homotop[ spectral sequence, 
Trans. AMS (to appear) 

(PP) Pairings and products in the homotopy spectral sequence, 
Trans. AMS (to appear) 

(CR) The core of a ring, 
J. Pure Applied Algebra 2 (1972), 73-81 

H. Cartan and S. Eilenberg: 
Homological algebra, 
Princeton Univ. Press (1956) 

J.M. Cohen: 
Homotop[ groups of inverse limits, 
Aarhus Univ. (1970) 

E.B. Curtis: 
(L) Lower central series of semi-simplicial complexes, 

Topology 2 (1963), 159-171 
(H) Some relations between homotopy and homolog[, 

Ann. Math. 83 (1965), 386-413 
(S) Simplicial homotopy theory, 

Aarhus Univ. (1967) 



Bibl. 342 

E. Dror: 
(A) 

(c) 

Acyclic spaces, 
Topology (to appear) 
The pro-nilpotent completion of a space, 
Proc. AMS (to appear) 

S. Eilenberg and J.C. Moore: 
Ad~oint functors and triples, 
Ill. J. Math. 9 (1965), 381-398 

B.I. Gray: 
Spaces of the same n-type, for all n, 
Topology 5 (1966), 241-243 

V.K.A.M. Gugenheim: 
Semisimplicial homotopy theory, 
Stud. Mod. Top., Prentice-Hall (1968), 99-133 

M. Hall: 
The theory of groups, 
Macmillan (1959) 

P. Hall: 
Finiteness conditions for soluble @roups, 
Proc. London Math. Soc. 4 (1954), 419-436 

D.K. Harrison: 
Infinite abelian ~roups and homological methods, 
Ann. Math. 69 (1956), 366-391 

P. Hilton, G. Mislin and J. Roitberg: 
Topolo@ical localization and nilpotent groups, 
Bull. AMS (to appear) 

C.U. Jensen: 
On t h e  v a n i s h i n g  o f  l i m  ( i )  
J .  A l g e b r a  15 ( 1 9 7 0 ) , + 1 5 1 - 1 6 6  

D.M. Kan : 
(HR) 

(AF) 

(AX) 

On the homotopy relation for c.s.s, maps, 
Bol. Soc. Mat. Mex. (1957), 75-81 
Adjoint functors, 
Trans. AMS 87 (1958), 294-329 
An axiomatization of the homotop[ @roups, 
Ill. J. Math. 2 (1958), 548-566 

D.M. Kan and G.W. Whitehead: 
The reduced ~qin of two spectra, 
Topology 3 (1965), 239-261 

A.G. Kurosh: 
The theory of groups, 
Chelsea (1955) 

K. Lamotke: 
Semisimpliziale algebraische Topologie, 
Springer (1968) 

M. Lazard: 
Sur les groupes nilpotents et les anneaux de Lie, 
Ann. Ec. Norm. Sup. 71 (1954), 101-190 



Bibl. 343 

S. MacLane: 
Homology, 
Springer (1963) 

A.L. Malcev: 
Nilpotent ~roups without torsion, 
Jzv. Akad. Nauk. SSSR, Math. 13 (1949), 201-212 

J.P. May: 
Simplicial objects in al~ebraic topology, 
Van Nostrand (1967) 

J.W. Milnor: 
On axiomatic homology theory, 
Pac. J. Math. 12 (1962), 337-341 

J.W. Milnor and J.C. Moore: 
On the structure of Hoof al~ebras, 
Ann. Math. 81 (1965), 211-264 

M. Mimura, G. Nishida and H. Toda: 
Localization of CW-complexes and its applications, 
J. Math. Soc. Japan 23 (1971), 593-'624 

G. Mislin: 
H-spaces mod-p (I), 
Lecture Notes in Math. 196, Springer (1970), 5-10 

B. Mitchell: 
Rin~s with several objects, 
Adv. Math. 8 (1972), 1-16 

D.G. Quillen: 
(SS) Spectral sequences of a double semi-simplicial group, 

Topology 5 (1966), 155-157 
(HA) Homotopical al~ebra, 

Lecture Notes in Math. 43, Springer (1967) 
(KS) The ~eometric realization of a Kan fibration is a 

Serre fibration, 
Proc. AMS 19 (1968), 1499-1500 

(RH) Rational homotopy theory, 
Ann. Math. 90 (1969), 205-295 

(PG) An application of simplicial profinite groups, 
Comm. Math. Helv. 44 (1969), 45-60 

D°L. Rector: 
(AS) An unstable Adams spectral sequence, 

Topology 5 (1966), 343-346 
(EM) Steenrod operations in the Eilenberg-Moore spectral 

sequence, 
Comm. Math. Helv. 45 (1970), 540-552 

J.E. Roos: 
Sur les foncteurs derlves de lim, 
C. R. Ac. Sci. Paris 252 (1961), 3702-3704 

J. Rotman: 
A completio n functor on modules and algebras, 
J. Algebra 9 (1968), 369-387 



Bibl. 344 

G. Segal: 
Classifying spaces and spectral sequences, 
Inst. H. Et. Sci. Math. 34 (1968), 105-112 

J.-P. Serre: 
Cohomolo~ie Galoisienne, 
Lecture Notes in Math. 5, Springer (1964) 

E.H. Spanier: 
Algebraic topology, 
McGraw-Hill (1966) 

J.R. Stallings: 
Homology and central series of groups, 
J. Algebra 2 (1965), 170C181 

J. Stasheff: 
(M) Manifolds of the homotopy type of (non-Lie) groups, 

Bull. AMS 75 (1969), 998-1000 
(H) H-spaces from a homotopy point of view, 

Lecture Notes in Math. 161, Springer (1970) 

N.E. Steenrod and D.B.A. Epstein: 
Cohomology operations , 
Princeton Univ. Press (1962) 

A.E. Stratton: 
A note on Ext-completions, 
J. Algebra 17 (1971), 110-115 

D. Sullivan: 
Geometric topology, part I: 
and Galois slnnmetry , 
MIT (1970) 

localization, periodicity 

C.T.C. Wall: 
Finiteness conditions for CW-complexes, 
Ann. Math. 81 (1965), 56-69 

G.W. Whitehead: 
On mappings into group-like spaces, 
Comm. Math. Helv. 28 (1954), 320-328 

J.H.C. Whitehead: 
A certain exact sequence, 
Ann. Math. 52 (1950), 51-110 

A. Zabrodsky: 
Homo topy associativit~ and finite CW-complexes, 
Topology 9 (1970), 121-128 



Index 

Index 

acyclic functor VII,6 
R - -  VII,6 

Artin-Mazur completion III,8 
augment- 1,3 X,3 

base point VIII,3 

closed (simplicial) model category VII,6 VIII,3 VIII,4 X,5 XI,4 
codegeneracy 1,3 X,2 XII,3 
coface 1,3 X,2 
cofibrant VIII,3 X,4 
cofibration VII,6 VIII,3 X,4 XI,8 
cofinality theorem XI,9 
cohomology spectral sequence XII,4 XII,5 
cohomotopy X,7 
complete 
-- convergence VI,9 IX,5 

Ext-p -- VI,3 
R -- 1,5 VII,2 

completion 
Artin-Mazur -- III,8 
Ext -- VI,2 VI,3 VI,4 
Hom -- VI,2 VI,3 VI,4 
Malcev -- IV,2 V,2 
p -- VI,6 
p-profinite -- IV,2 VI,4 
R -- 1,4 IV,2 IV,4 XI,10 

connectivity lemmas 1,6 IV,5 
convergence 

complete -- VI,9 IX,5 
Curtis -- IV,5 V,3 VI,9 
Mittag-Leffler -- V,3 VI,9 VII,4 IX,5 

core 1,4 1,9 
lemma 1,4 1,9 

cosimplicial 
-- diagram XI,4 
-- identities X,2 
--map 1,3 X,2 
--object X,2 
-- replacement XI,5 
-- resolution 1,4 XI,10 
--- space 1,3 X,2 
- -  standard simplex 1,3 X,2 
Curtis convergence IV,5 V,3 VI,9 

degeneracy VIII,2 
degenerate VIII,2 

non -- VIII,2 
diagonal XII,3 
diagram III,8 XI,2 

cosimplicial -- XI,4 
simplicial -- XII,3 

direct limit XII,l XII,5 
homotopy -- XII,2 

disjoint union lemma 1,7 

Ext 
-- completion VI,2 
-- p-complete VI,3 



346 
Index 

face VIII,2 
fibrant VIII,3 X,4 
fibration VII,6 VIII,3 X,4 XI,8 

nilpotent -- II,4 
nilpotent -- lemma II,4 
principal -- II,2 
principal -- lemma II,2 III,3 

fibre VIII,3 
mod-R -- lemma II,5 III,7 

- -  square lemma II,5 
-- wise R-completion 1,8 II,6 IV,5 VII,6 
finite 

product lemma 1,7 
- -  space V,6 
-- type IV,5 V,7 
fracture lemmas V,6 V,7 VI,8 
function space V,5 VI,7 VIII,4 X,3 XI,3 

group-like X,4 

Hom completion VI,2 
homology 

reduced -- 1,2 
- -  spectral sequence XII,5 
homotopy 
-- category III,8 VIII,3 VIII,4 XI,8 XII,2 
-- class of maps VIII,4 
-- direct limit XII,2 
- -  equivalence VIII,4 
w group VIII,3 

inverse limit XI,3 XI,8 XI,10 
(pointed) set VIII,3 

-- relation VIII,4 
sequence IX,4 

- -  spectral sequence 1,4 V,3 VI,9 VII,4 IX,4 X,6 XI,7 
weak pro -- equivalence III,3 

H-space 1,7 V,8 
Hurewicz homomorphism 1,2 

inverse limit IX,2 IX,3 XI,1 XI,6 XI,7 
homotopy -- XI,3 XI,8 XI,10 

large XI,10 
left 
-- cofinal III,8 XI,9 
-- filtering III,8 XI,9 

lifting property VIII,3 
- -  small XI,10 
localization VIII,3 XI,8 

R -- V,4 
lower (p)-central series IV,2 IV,4 VI,9 

Malcev completion IV,2 V,2 
matching space X,4 
maximal augmentation X,3 
Mittag-Leffler IX,3 
-- convergence V,3 VI,9 VII,4 IX,5 
mixing 

Zabrodsky -- V,9 
mod-R fibre lemma II,5 III,7 



347 
Index 

neighborhood group V,5 VI,7 
nilpotent 
-- action II,4 III,5 

fibration II,4 
fibration lemma II,4 

m group II,4 
R - -  III,5 
space II,4 

p-adic integers VI,4 IX,2 
p-completion VI,6 
perfect VII,3 

R -- VII,3 VII,6 
pointed --- VIII,4 
p-profinite completion IV,2 VI,4 
principal fibration II,2 
m lemma II,2 III,3 
pro 
- -  isomorphism III,2 III,8 
-- object III,8 
-- trivial III,2 

weak -- homotopy equivalence III,3 
product 

finite -- lemma 1,7 

R-acyclic VII,6 
functor VII,6 

R-bad 1,5 IV,5 VII,5 
R-complete 1,5 VII,2 

semi -- VII,2 
- -  tower lemma III,6 
R-completion 1,4 IV,2 IV,4 XI,10 

fibre-wise m 1,8 II,6 IV,5 
partial -- VII,6 
semi -- VII,2 

realization functor VIII,2 
reduced 
-- homology 1,2 

space IV,I 
R-good 1,5 VII,2 VII,3 VII,4 VII,5 
R-homotopy theory VII,6 
right 

filtering XII,3 
-- lifting property X,4 
R-localization V,4 
R-nilpotent 
-- group III,5 IV,2 
- -  space III,5 

tower lemma III,6 IV,3 
R-perfect VII,3 VII,6 
R-tower III,6 IV,3 

simplex VIII,2 
cosimplicial standard -- 1,3 X,2 
standard -- VIII,2 

simplicial 
-- diagram XII,3 
-- identities VIII,2 
--map VIII,2 
-- object VIII,2 

replacement XII,5 



348 
Index 

simplicial 
- -  set VIII,2 
singular functor VIII,2 
skeleton VIII,2 
small III,8 XI,2 

left -- XI,10 
solid ring 1,4 1,6 1,9 
space (= simplicial set) I,l 
standard 

cosimplicial -- simplex 1,3 X,2 
--map VIII,2 

simplex VIII,2 

total space 1,3 X,3 
tower 

comparison lemma III,7 
-- of fibrations IX,3 
-- of groups III,2 IX,2 
- -  lemmas III,6 IV,3 

R -- III,6 IV,3 
triple 1,2 XI,10 
- -  lemma 1,5 

unaugmentable X,4 
underlying space XI,2 
union 

disjoint -- lemma 1,7 
universal properties VII,2 XI,3 XII,2 

vertex VIII,2 

weak 
-- equivalence VII,6 VIII,2 X,4 XI,8 
-- pro-homotopy equivalence III,3 

Zabrodsky mixing V, 9 
Z-nilpotent (= nilpotent) III,5 


	Homotopy Limits, Completions and Localizations
	Contents
	Part I. Completions and localizations
	0. Introduction to Part I
	I. The R-completion of a space
	II. Fibre lemmas
	III. Tower lemmas
	IV. An R-completion of groups and its relation to the R-completion of spaces
	V. R-localizations of nilpotent spaces
	VI. p-completions of nilpotent spaces
	VII. A glimpse at the R-completion of non-nilpotent spaces

	Part II. Towers of fibrations, cosimplicial spaces and homotopy limits
	0. Introduction to Part II
	VIII. Simplicial sets and topological spaces
	IX. Towers of fibrations
	X. Cosimplicial spaces
	XI. Homotopy inverse limits
	XII. Homotopy direct limits

	Bibliography
	Index



