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R-MOTIVIC STABLE STEMS

EVA BELMONT AND DANIEL C. ISAKSEN

Abstract. We compute some R-motivic stable homotopy groups. For s−w ≤

11, we describe the motivic stable homotopy groups πs,w of a completion of
the R-motivic sphere spectrum. We apply the ρ-Bockstein spectral sequence
to obtain R-motivic Ext groups from the C-motivic Ext groups, which are well-
understood in a large range. These Ext groups are the input to the R-motivic
Adams spectral sequence. We fully analyze the Adams differentials in a range,
and we also analyze hidden extensions by ρ, 2, and η. As a consequence of
our computations, we recover Mahowald invariants of many low-dimensional
classical stable homotopy elements.

1. Introduction

The goal of this article is to compute the stable homotopy groups of the R-
motivic sphere spectrum in a range. These stable homotopy groups are the most
fundamental invariants of the R-motivic stable homotopy category, and thus lead
to a deeper understanding of many of the computational aspects of R-motivic ho-
motopy theory. More specifically, we work in cellular R-motivic stable homotopy
theory, completed appropriately at 2 and η so that the R-motivic Adams spectral
sequence converges.

Our main tool is the R-motivic Adams spectral sequence, which takes the form

E2 = ExtA(M2,M2) =⇒ π∗∗.

Here A is the R-motivic Steenrod algebra, M2 is the R-motivic cohomology of a
point, and π∗,∗ is the bigraded homotopy groups of the R-motivic sphere (completed
at 2 and η). We obtain complete results about πs,w for s−w ≤ 11. This approach
follows [11], which computed πs,w for s− w ≤ 3.

See [7] for large-scale R-motivic Adams charts. These charts are an essential
companion to this manuscript. In a sense, this manuscript consists of a series of
arguments for the computational facts displayed in the Adams charts.

1.1. The ρ-Bockstein spectral sequence. The first step in an Adams spectral
sequence program is to obtain the algebraic E2-page. We study this computation
in Sections 5, 6, and 7. We use the ρ-Bockstein spectral sequence, which takes the
form

ExtAC(MC

2 ,M
C

2 )[ρ] =⇒ ExtA(M2,M2).

Here AC is the C-motivic Steenrod algebra, and MC
2 is the C-motivic cohomology

of a point.
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The ρ-Bockstein spectral sequence is a tool that passes from C-motivic Ext
groups to R-motivic Ext groups. We discuss the general properties of this spec-
tral sequence in Section 5, and we describe an unexpectedly effective strategy
for computing differentials. The key idea is to compute the ρ-periodic groups
ExtA(M2,M2)[ρ

−1] in advance. Then naive combinatorial considerations force a
very large number of Bockstein differentials. We discuss specific Bockstein differ-
ential computations in Section 6.

Having obtained the E∞-page of the ρ-Bockstein spectral sequence, we do not
yet have a complete knowledge of ExtA(M2,M2). It remains to resolve extensions
that are hidden by the ρ-Bockstein filtration. There is an unmanageable quantity
of hidden extensions, so we do not attempt to analyze them completely, not even
in a range. Nevertheless, we do analyze all extensions by h0 and h1 in the range
under consideration. These computations are carried out in Section 7.

1.2. The R-motivic Adams spectral sequence. Having obtained the E2-page
of the R-motivic Adams spectral sequence, the next step is to determine Adams
differentials. We carry out these computations in Section 8. These differentials
can be obtained by a variety of techniques. One important technique is the use of
the Moss Convergence Theorem 8.2 to compute Toda brackets, which determine
that certain elements are permanent cycles. Another technique is comparison to
previously established computations in the C-motivic and classical computations.
See Section 1.3 for more discussion of these comparisons.

After computing Adams differentials and obtaining the Adams E∞-page, there
are once again hidden extensions to resolve. As in the algebraic case, there are
too many extensions to study exhaustively, but we do consider all extensions by ρ,
h, and η exhaustively (where ρ, h, and η are stable homotopy elements detected
by ρ, h0, and h1 respectively). These computations are carried out in Section 9.
Once again, the key techniques are shuffling relations involving Toda brackets and
comparison to the C-motivic and classical cases.

1.3. Comparison of homotopy theories. An essential ingredient in our com-
putations is comparison between the R-motivic, C-motivic, C2-equivariant, and
classical stable homotopy theories, as depicted in the diagram

(1.1) R-motivic
realization

//

extension of scalars

��

C2-equivariant

forgetful

��

C-motivic
realization

// classical.

The horizontal arrows labelled “realization” refer to the Betti realization functors
that take a variety over C (resp., over R) to the space (resp., C2-equivariant space)
of C-valued points. The vertical arrow labelled “extension of scalars” refers to the
functor that takes a variety over R and views it as a variety over C. The vertical
arrow labelled “forgetful” refers to the functor that takes a C2-equivariant object
to its underlying non-equivariant object.

Our philosophy in this article is to accept computational information about the
C-motivic and classical stable homotopy groups as given, and to use this information
to study the R-motivic stable homotopy groups. See [18] for an extensive summary
of computational information about the C-motivic and classical Adams spectral
sequences. The presence of the C2-equivariant stable homotopy category in this
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diagram is relevant for our consideration of Mahowald invariants, to be discussed
below in Section 1.4.

There is a surprising connection between C-motivic and R-motivic that enables
many of our detailed computations. Namely, Theorem 3.4 shows that the C-motivic
stable homotopy groups are isomorphic to the R-motivic homotopy groups of the
cofiber S/ρ of ρ. This means that the structure of C-motivic stable homotopy
groups governs both the cokernel and the kernel of multiplication by ρ. This allows
us to deduce many R-motivic computational facts with relative ease from known
C-motivic information.

1.4. Mahowald invariants. Let α be a non-zero classical stable homotopy ele-
ment. The Mahowald invariant (or root invariant) R(α) is a non-zero equivalence
class of classical stable homotopy elements in a stem that is higher than the stem
of α. One source of interest in Mahowald invariants is that R(α) appears to have
greater chromatic complexity than α. Thus one can construct more exotic stable
homotopy elements out of elements that are better understood [20].

Bruner and Greenlees reformulated the definition of the Mahowald invariant in
terms of C2-equivariant stable homotopy groups [9]. Although we do not study
C2-equivariant homotopy groups directly, we have indirectly obtained information
about them because the R-motivic and C2-equivariant stable homotopy groups are
isomorphic in a range [6]. In Section 4, we show how many Mahowald invariants
can be immediately deduced from our R-motivic computations. While these results
only recover previously known Mahowald invariants [20] [4], we believe that our
techniques can be extended into uncharted territory without much more effort.

Theorem 1.5. Table 1 gives some values of the Mahowald invariant.

Table 1: Some Mahowald invariants

stem α R(α) indeterminacy

0 2 η
0 4 η2

0 8 η3

1 η ν 2ν, 4ν
2 η2 ν2

3 ν σ 2σ, 4σ, 8σ
3 2ν ησ ǫ
3 4ν η2σ ηǫ
6 ν2 σ2 κ
7 σ σ2

7 2σ η4 ηρ15
7 4σ ηη4 νκ, η2ρ15
8 ησ ν4 2ν4, 4ν4
8 ǫ σ
9 η2σ νν4 ηκ

Proof. Theorem 4.10 reduces the computation to an R-motivic Mahowald invariant,
as defined in Section 4.3. Table 3 gives the values of the R-motivic Mahowald
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invariant. Finally, Table 17 gives the Betti realizations of the R-motivic Mahowald
invariants. �

See Examples 4.9 and 4.11 for detailed illustrations of how this technique plays
out in practice.

We have computed the Mahowald invariant of most, but not every, α through
the 11-stem. In particular, we do not compute the Mahowald invariants of 2k for
k ≥ 4, 8σ, ηǫ, µ9, ηµ9, nor ζ11 and its multiples. In these cases, the problem is that
the inequality of Theorem 4.10 does not apply, so our R-motivic computations do
not determine C2-equivariant behavior.

2. Notation

We writeM2 for the R-motivic homology of a point with coefficients in F2. Recall
that M2 is isomorphic to F2[ρ, τ ], where ρ and τ have degrees (−1,−1) and (0,−1)
respectively [26].

We write A for the R-motivic dual Steenrod algebra. Recall that A is described
by the equations

A = M2[τ0, τ1, . . . , ξ1, ξ2, . . . ]/(τ
2
k = τξk+1 + ρτk+1 + ρτ0ξk+1)

ηL(τ) = τ, ηR(τ) = τ + ρτ0, ηL(ρ) = ηR(ρ) = ρ

∆(τk) = τk ⊗ 1 +
∑

ξ2
i

k−i ⊗ τi

∆(ξk) =
∑

ξ2
i

k−i ⊗ ξi,

where τi and ξk have degrees (2i+1 − 1, 2i − 1) and (2i+1 − 2, 2i − 1) respectively
[27].

We write MC
2 for the C-motivic homology of a point with coefficients in F2, and

we write AC
∗ for the C-motivic dual Steenrod algebra. These objects are easily

described in terms of M2 and A. Namely, they are the result of setting ρ equal to
zero.

We write Acl
∗ for the classical dual Steenrod algebra, which can be obtained from

A by setting ρ and τ to be 0 and 1 respectively.
We write Ext or ExtR for ExtA(M2,M2), i.e., the cohomology of the R-motivic

Steenrod algebra. We write ExtC and Extcl for the cohomologies of the C-motivic
and classical Steenrod algebras respectively.

We write πp,q or πR
p,q for the stable homotopy groups of the R-motivic sphere

spectrum. Similarly, we write πC
p,q for the stable homotopy groups of the C-motivic

sphere spectrum. We adopt the usual motivic grading convention, so that πp,qX
denotes maps out of Sp,q, where Sp,q is the smash product of p − q copies of the
simplicial sphere and q copies of A1 − 0.

We write πC2

p,q for the stable homotopy groups of the C2-equivariant sphere spec-
trum. We use an equivariant grading convention that is compatible with the motivic
grading convention, so that πp,qX denotes maps out of Sp,q, where Sp,q is the one-
point compactification of Rp, with C2 acting by negating the last q coordinates.
Betti realization takes R-motivic Sp,q to C2-equivariant S

p,q.
We write πp for the classical stable homotopy groups.
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All stable homotopy groups are suitably completed so that Adams spectral se-
quences converge. Classically, this means completion at 2. In the motivic cases,
this means completion at 2 and η [17].

Grading conventions. Following [18] and [11], we use the following grading con-
vention for the motivic Adams spectral sequence: s denotes the stem, f denotes
the Adams filtration, and w denotes the motivic weight. Then the internal degree
is s+ f . In this grading, Adams differentials take the form

dr : Es,f,w
r → Es−1,f+r,w

r .

The coweight of an element in degree (s, f, w) is defined to be s− w. Note that
ρ has coweight 0. In particular, an element x and its ρ-multiple ρx lie in the same
coweight. This makes coweights particularly useful in the ρ-Bockstein perspective
that we adopt.

2.1. Stable homotopy elements. We adopt conventional notation, as used (for
example) in [18] [19], for the names of elements in the classical stable homotopy
groups π∗ and the C-motivic stable homotopy groups πC

∗,∗.

Table 9 gives the notation that we use for elements of πR
∗,∗. We define these

elements in terms of the elements of the Adams E∞-page that detect them. These
definitions have indeterminacy parametrized by elements of the Adams E∞-page in
higher Adams filtration. As a general rule, this indeterminacy does not matter to
our computations. It is possible to use Toda brackets, or geometric constructions
(see [10]), to eliminate the indeterminacy in many cases.

Remark 2.2. We use the symbol h to denote an element of π0,0 that is detected by
h0. The symbol stands for “hyperbolic” because it corresponds to the hyperbolic
plane in the Grothendieck-Witt group interpretation of π0,0 [22, Remark 6.4.2].
(Alternatively, it can also stand for “Hopf”, since h is the zeroth Hopf map.) Beware
that h does not equal 2; in fact, 2 = h+ ρη.

Remark 2.3. The element σ requires more discussion. We write σ for an element
of π7,4 that is detected by h3. There are 256 possible choices for σ, because of
the presence of elements in higher Adams filtration. One such element in higher
filtration is ρc0. Lemma 7.19 shows that τ2h2 · ρc0 equals ρ4d0. Therefore, some
possible choices of σ have the property that τ2ν ·σ is detected by ρ4d0 in π10,4, while
other possible choices of σ have the property that τ2ν · σ is zero. (The elements
τh1 · τPh1 and ρh1 · τh1 · τPh1 are not relevant, by comparison to kq as in Remark
8.15.)

We will need to use the relation τ2ν · σ = 0 in later computations, so we must
assume that our choice of σ satisfies this condition.

Remark 2.4. In some cases, we have chosen names for elements of πR
∗,∗ that reflect

the values of the extension of scalars functor given in Table 17. For example, we
write τσ2 for an element of πR

14,7 that is detected by ρh4, since this element maps

to τσ2 in πC
14,7.

Remark 2.5. Beware that our use of the symbol κ is inconsistent with its usage in
[18]. In this manuscript, τκ refers to a non-zero element of πC

20,11 that is detected
by τg. The symbol κ is used in [18] for the same element.
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Remark 2.6. Occasionally we refer to stable homotopy elements that have no
standard name. In these cases, we use the symbol {x} to indicate a stable homotopy
element that is detected by an element x of an Adams E∞-page.

3. Comparison between R-motivic and C-motivic homotopy

We first discuss the relationship between R-motivic and C-motivic stable homo-
topy theory. We will use these ideas frequently in later sections to obtain R-motivic
information from known C-motivic information.

Consider the cofiber sequence

S−1,−1 ρ
//S0,0 //S/ρ.

The cofiber S/ρ of ρ is a 2-cell complex whose structure governs multiplication by
ρ in the R-motivic stable homotopy groups, in a sense to be made precise in this
section. In addition, we will draw an unexpected connection between the R-motivic
homotopy groups of S/ρ and C-motivic stable homotopy groups.

As shown in diagram (1.1), there is an extension of scalars functor from R-
motivic stable homotopy theory to C-motivic stable homotopy theory, and a Betti
realization functor from C-motivic stable homotopy theory to classical stable ho-
motopy theory. These functors take Eilenberg-Mac Lane spectra to Eilenberg-Mac
Lane spectra, and thus interact nicely with Adams spectral sequences. In par-
ticular, they induce highly structured morphisms of Adams spectral sequences.
We will frequently use these comparison functors to deduce information about the
R-motivic Adams spectral sequence from already known information about the C-
motivic and classical Adams spectral sequences. See [18] for an extensive summary
of computational information about the C-motivic and classical Adams spectral
sequences.

Extension of scalars takes the element ρ of π−1,−1 to zero. In particular, it
induces the map M2 → MC

2 that takes ρ to zero, and it similarly induces the map
A → AC

∗ that takes ρ to zero.
For an R-motivic spectrum, we write ExtR(X) for the E2-page of the R-motivic

Adams spectral sequence that converges to π∗,∗(X), i.e., for ExtA(M2, H
∗,∗(X)),

and similarly for ExtC(X).
Extension of scalars induces a diagram

// ExtR(S
−1,−1)

ρ
//

��

ExtR(S
0,0) //

��

ExtR(S/ρ)

��

//

// ExtC(S
−1,−1)

0
// ExtC(S

0,0) // ExtC(S
0,0 ∨ S−2,−1) // .

Because ρ becomes zero after extension of scalars, the bottom row of the diagram
splits. The map ExtR(S/ρ) → ExtC(S

0,0 ∨ S−2,−1) lifts to a map ExtR(S/ρ) →
ExtC(S

0,0) that makes the diagram

ExtR(S
0,0) //

��

ExtR(S/ρ)

xx♣♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

ExtC(S
0,0)

commute.
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Proposition 3.1. The map ExtR(S/ρ) → ExtC(S
0,0) is an isomorphism.

Proof. Let C∗
R
and C∗

C
be the cobar complexes for ExtR(S

0,0) and ExtC(S
0,0) respec-

tively. Note that C∗
C
is isomorphic to C∗

R
/ρ. Because multiplication by ρ is injective

on C∗
R
, this is also isomorphic to the cobar complex that computes ExtR(S/ρ). �

Remark 3.2. Because of the isomorphism of Proposition 3.1, the object ExtC is
a module over ExtR. By careful inspection of definitions, this module action is
easy to describe. Using the ρ-Bockstein spectral sequence notation from Section
5, a typical element of ExtR is of the form ρkx, where x belongs to ExtC. The
ExtR-module action on ExtC is described by

ρkx · y =

{

0 if k > 0
xy if k = 0,

where the last expression xy is to be interpreted as the usual Yoneda product of
elements in ExtC.

Remark 3.3. Proposition 3.1 implies that there is a long exact sequence

· · · //ExtR
ρ

//ExtR
i

//ExtC
p

//ExtR
ρ

//ExtR // · · ·

of ExtR-module maps, where ExtC is an ExtR-module as in Remark 3.2. If x is a
permanent cycle in the ρ-Bockstein spectral sequence, then the map i takes x in
ExtR to the element of ExtC of the same name.

Now consider the diagram

(3.1) πR
∗+1,∗+1

ρ
// πR

∗,∗
//

��

πR
∗,∗(S/ρ)

zz✉✉
✉
✉
✉
✉
✉
✉
✉

πC
∗,∗,

in which the diagonal arrow exists because ρ maps to zero in πC
∗,∗.

Theorem 3.4. The map πR
∗,∗(S/ρ) → πC

∗,∗ is an isomorphism.

Proof. Proposition 3.1 shows that there is an isomorphism of E2-pages of Adams
spectral sequences, so the targets of the spectral sequences are also isomorphic. �

Corollary 3.5. Let α be an element of πR
∗,∗. Extension of scalars takes α to zero

in πC
∗,∗ if and only if α is divisible by ρ.

Proof. Chase the diagram (3.1), using that the diagonal map is an isomorphism. �

Remark 3.6. Corollary 3.5 has a C2-equivariant analogue, as stated later in Propo-
sition 4.2.

Remark 3.7. The isomorphism of Theorem 3.4 can be strengthened to an equiv-
alence of categories [5, Corollary 8.6]. Namely, the 2-complete C-motivic cellular
stable homotopy category is equivalent to the homotopy category of S/ρ-modules
in the 2-complete R-motivic cellular stable homotopy category.

Corollary 3.8. There is a long exact sequence

· · · //πR
s+1,w+1(S)

ρ
//πR
s,w(S)

//πC
s,w(S)

//πR
s,w+1(S)

// · · · .
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Proof. This is the long exact sequence in homotopy for the fiber sequence

S
ρ

//S //S/ρ

in R-motivic spectra, after applying the identification in Theorem 3.4. �

4. Mahowald invariants

The goal of this section is to use R-motivic computations to recompute some
Mahowald invariants. See [4, Section 4] for a careful discussion of the definition,
using Lin’s theorem that RP∞

−∞ is equivalent to S−1.

4.1. C2-equivariant homotopy theory and Mahowald invariants. Using C2-
equivariant homotopy theory, Bruner and Greenlees [9] gave an alternative defini-
tion of the Mahowald invariant. We will summarize this definition, but first we
need some background on C2-equivariant homotopy theory.

Let Sa,b be the one-point compactification of Ra, where C2 acts by negating the
last b coordinates. Then ρ : S0,0 → S1,1 is the inclusion of fixed points. Note that
the cofiber of this map is Σ(C2)+, i.e., the suspension of the based free C2-space.

We use the same notation ρ for the map S−1,−1 → S0,0 in the C2-equivariant
stable homotopy group πC2

−1,−1. The identification of the cofiber of ρ leads imme-

diately to the following proposition, whose short proof appears in [12, Proposition
11.2].

Proposition 4.2. Let α be a C2-equivariant stable homotopy element. The under-
lying classical stable homotopy element U(α) of α is zero if and only if α is divisible
by ρ.

Geometric fixed points gives a map πC2

a,b → πa−b, and this map takes ρ to 1. The

ρ-periodic groups πC2

∗,∗[ρ
−1] are isomorphic to π∗⊗Z[ρ±1], i.e., to the classical stable

homotopy groups with ρ and ρ−1 adjoined [8, Proposition] [2, Proposition 7.0].
With this background on C2-equivariant stable homotopy groups, we now give

the Bruner-Greenlees definition of the Mahowald invariant. Start with a classical
stable homotopy element α in πn, which we identify with the obvious element of
π∗ ⊗ Z[ρ±1] in degree (0,−n). Using the isomorphism

π∗ ⊗ Z[ρ±1] ∼= πC2

∗,∗[ρ
−1],

write α = ρkβ for some β in πC2

∗,∗ and some integer k, with k maximal. Finally, the
Mahowald invariant R(α) is the underlying classical stable homotopy element U(β)
of β.

Note that the Mahowald invariant is not strictly defined; it is a set of classical
stable homotopy elements. While the choice of k is unique, the choice of β is not.
Different choices of β can lead to different values of U(β).

Also note that U(β) is necessarily non-zero by Proposition 4.2. The point is that
β is not divisible by ρ, since k was chosen to be maximal.

4.3. R-motivic homotopy theory and Mahowald invariants. We will now
adapt the framework of Bruner and Greenlees [9] from the C2-equivariant to the R-
motivic settings. In order to carry this out, we need to observe some key R-motivic
properties.

First, the ρ-periodic groups πR
∗,∗[ρ

−1] are isomorphic to π∗ ⊗ Z[ρ±1], i.e., to

the classical stable homotopy groups with ρ and ρ−1 adjoined [11]. See also [3]
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for a more structured version of this isomorphism. Second, Corollary 3.5 relates
ρ-divisibility to the kernel of the extension of scalars map.

Definition 4.4. Let α be a classical stable homotopy element in πn. The R-motivic
Mahowald invariantRR(α) is defined as follows. Identify α with the obvious element
of

π∗ ⊗ Z[ρ±1] ∼= πR

∗,∗[ρ
−1]

in degree (0,−n). Write α = ρkβ for some β in πR
∗,∗ and some integer k, with k

maximal. Define RR(α) in πC
∗,∗ to be the extension of scalars of β.

Remark 4.5. As for the traditional Mahowald invariant, the R-motivic Mahowald
invariant is not strictly defined. Different choices of β can have different values in
πC
∗,∗ under extension of scalars.

Remark 4.6. As for the traditional Mahowald invariant, the R-motivic Mahowald
invariant is always non-zero by Corollary 3.5. The point is that β is not divisible
by ρ, since k was chosen to be maximal.

Remark 4.7. See [24] [25] for a different consideration of Mahowald invariants in
the motivic context. Our construction does not compare directly.

Theorem 4.8. Some values of the R-motivic Mahowald invariant are given in
Table 3.

Proof. This follows immediately from the computations carried out later in the
article. In particular, one needs the values of the extension of scalars map, as
shown in Table 17 and discussed in Section 10 �

Example 4.9. We illustrate Theorem 4.8 by describing the computation ofMR(σ).
The element σ in π7 is identified with the element α of πR

∗,∗⊗Z[ρ±1] in degree (0,−7)

that is detected by ρ15h4. Then α equals ρ14β, where β is detected by ρh4. Finally,
Table 17 shows that the realization of β is τσ2 in πC

14,7.

In general, the relationship between R(α) and RR(α) is not obvious. The choices
involved in the definitions are not necessarily compatible. For example, it is possible
that an element β in πR

∗,∗ is not divisible by ρ, while its realization in πC2

∗,∗ is divisible
by ρ.

The main result of [6] tells us that the R-motivic and C2-equivariant stable
homotopy groups agree in a range. In this range, R(α) and RR(α) are easier to
compare.

Theorem 4.10. Let RR(α) belong to πC
s,w, and Suppose that 2w − s < 4. Then

R(α) equals the Betti realization of RR(α).

Proof. The isomorphism between R-motivic and C2-equivariant stable homotopy
groups [6] implies that the choice of β in the definition of RR(α) realizes to the
choice of β in the definition of R(α). By the commutativity of the diagram (1.1),
the realization of RR(α) equals R(α). �

Example 4.11. We showed in Example 4.9 that RR(σ) equals τσ2 in πC
14,7. The

numerical condition of Theorem 4.10 is satisfied. It follows that R(σ) equals σ2 in
π14, since σ2 is the realization of τσ2.
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Remark 4.12. Theorem 4.10, together with our computations of R-motivic stable
homotopy groups, can be used to compute the Mahowald invariants R(α) for most
α up to the 11-stem. The exceptions are 2k for k ≥ 4, 8σ, ηǫ, µ9, ηµ9, and ζ11
and its multiples. In these cases, RR(α) can still be computed as shown in Table
3. However, the numerical condition of Theorem 4.10 does not hold, so we cannot
draw a conclusion about R(α) in these cases.

5. The ρ-Bockstein spectral sequence

We briefly recall some background on the ρ-Bockstein spectral sequence that
computes the cohomology of the R-motivic Steenrod algebra. See [16] and [11] for
additional details.

Begin with the observation that the C-motivic cohomology of a point MC
2 equals

M2/ρ, and the C-motivic dual Steenrod algebra AC
∗ equals A/ρ. Then filter the

cobar complex by powers of ρ to obtain the ρ-Bockstein spectral sequence

(5.1) E1 = Ext∗∗AC
∗

(MC

2 ,M
C

2 )[ρ] =⇒ Ext∗∗A (M2,M2).

Our goal is to analyze the ρ-Bockstein spectral sequence (5.1) in computational
detail in a range of degrees. We recall some structural results about this spectral
sequence from [11].

Proposition 5.1. [11, Lemma 3.4] If dr(x) is nontrivial in the ρ-Bockstein spectral
sequence, then x and dr(x) are both ρ-torsion free on the Er-page.

Recall that Acl
∗ is the classical dual Steenrod algebra.

Proposition 5.2. [11, Theorem 4.1] There is an isomorphism

ExtAcl
∗

(F2,F2)[ρ
±1] ∼= ExtA(M2,M2)[ρ

−1]

that takes elements of degree (s, f) in ExtAcl
∗

(F2,F2) to elements of degree (2s +

f, f, s+ f) in ExtA(M2,M2). In particular, the classical element hn corresponds to
the R-motivic element hn+1. Moreover, the isomorphism is highly structured, i.e.,
preserves products and Massey products.

The point of Proposition 5.2 is that we a priori know the elements of ExtR that are
ρ-periodic, in the sense that they support infinitely many non-zero multiplications
by ρ. In the range considered in this manuscript, these ρ-periodic elements are h1,
h2, h3, h4, c1, h2g, h3g, as well as products of these elements. This corresponds to
the fact that through the 11-stem, Extcl is generated by the classical elements h0,
h1, h2, h3, c0, Ph1, and Ph2. We may effectively ignore these ρ-periodic elements
when analyzing the ρ-Bockstein spectral sequence, since they can be neither source
nor target of any ρ-Bockstein differential.

Let {xi} be an F2-linear basis for ExtC, i.e., an F2[ρ]-linear basis for the ρ-
Bockstein E1-page, excluding the ρ-periodic permanent cycles described in the pre-
vious paragraph. For every i, either xi supports a differential, or ρrxi is the target
of the dr differential for some r. In other words, the set {xi} may be partitioned
into pairs (xi, xj) such that dr(xi) = ρrxj for some j. Actually, one must be some-
what careful about the choice of basis in situations where two or more elements of
the basis have the same degree. Nevertheless, it is always possible to change basis
so that the basis elements can be partitioned into pairs.
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The Bockstein differential dr : Es,f,w
r → Es−1,f+1,w

r preserves the quantity s +
f − w, and ρ lies in a degree satisfying s+ f − w = 0. Thus we may consider one
value of s+ f − w at a time when analyzing the ρ-Bockstein spectral sequence.

We exploit this structure in the following strategy for analyzing the ρ-Bockstein
spectral sequence.

Strategy 5.3.

(1) Fix a value N = s+ f − w.
(2) Find an F2[ρ]-basis BN for the part of the ρ-Bockstein E1-page in degrees

(s, f, w) satisfying N = s+ f − w.
(3) Remove elements from BN that detect ρ-periodic elements of ExtR.
(4) Use a variety of techniques, to be described below, to identify some differ-

ential dr(xi) = ρrxj , where xi and xj belong to BN .
(5) Remove xi and xj from BN .
(6) Repeat steps (4) and (5) until BN is empty.

For this strategy to be effective, we need to know that the basis BN chosen in
step 2 is finite. Lemma 5.4 establishes this fact.

Lemma 5.4. Let N be fixed. In degrees (s, f, w) satisfying N = s + f − w, the
ρ-Bockstein E1-page is a finitely generated F2[ρ]-module.

Proof. Recall that ExtC is non-zero only in degrees (s, f, w) satisfying s+f−2w ≥ 0
[18, Remark 2.20]. This inequality can be rewritten in the form

s+ f − w ≥
1

2
(s+ f).

In other words, we only need consider the part of ExtC in total degree at most
2N . �

One consequence of our strategy is that we do not compute the Bockstein dif-
ferentials dr in order of increasing r. Rather, we obtain all differentials as part of
the same process.

Step (4) is the limiting factor in the practical effectiveness of our algorithm. The
ad hoc arguments required to establish specific differentials become more difficult
as the value of N increases. However, these difficulties increase at a surprisingly
slow rate, and we are able to carry out the computation remarkably far without
much difficulty.

Our goal is to compute the ρ-Bockstein spectral sequence through coweight 13.
Unfortunately, infinitely many values of N in Step 1 are relevant in this range. For
example, consider the elements hk

1 of coweight 0, which belong to degrees satisfying
s+ f − w = k.

Similarly, any h1-periodic sequence of elements hk
1x of ExtC lies in degrees for

which s + f − w is unbounded. Fortunately, it is only these h1-periodic families
that are problematic.

Lemma 5.5. Let x be a non-zero element of ExtC of degree (s, f, w) whose coweight
is at most k. Then:

(1) x is an h1-periodic element, in the sense that hi
1x is non-zero for all i ≥ 0;

or
(2) s+ f − w ≤ 3k + 3.
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Proof. If 2f − s ≥ 4, then x is h1-periodic [14]. So we may assume that 2f − s < 4.
By [18, Remark 2.20], we also have the inequality s + f − 2w ≥ 0. Combining

with the assumption s− w ≤ k, we conclude that

s+ f − w = (2f − s)− (s+ f − 2w) + 3(s− w) < 4 + 0 + 3k = 3k + 4.

�

As we wish to consider elements up to coweight 13, Lemma 5.5 suggests we
need to look at degrees satisfying the inequality s + f − w ≤ 42, in addition to
studying h1-periodic elements. However, inspection of elements in ExtC shows that
s+ f − w ≤ 28 for all elements that are relevant in our range.

The h1-periodic elements of ExtC are well-understood [13]. Up to coweight 13,
all such elements are of the form 1, P kh1, P

kc0, P
kd0, P

ke0, P
kc0d0, d

2
0, or c0e0, as

well as the h1-multiples of these elements. Lemma 5.5 indicates that the behavior
of the ρ-Bockstein spectral sequence on these elements must be studied separately.
See Proposition 6.2 for the analysis of these h1-periodic elements.

6. ρ-Bockstein differentials

The goal of this section is to describe a variety of methods for determining ρ-
Bockstein differentials. These methods are applied in Step (4) of Strategy 5.3.
Taken together, these methods allow us to determine all ρ-Bockstein differentials
through coweight 13.

We begin with a result that describes all ρ-Bockstein differentials on the elements
of Adams filtration zero.

Proposition 6.1. [11, Proposition 3.2]

(1) d1(τ) = ρh0.

(2) d2k(τ
2k ) = ρ2

k

τ2
k−1

hk for k ≥ 1.

Next we consider h1-periodic elements. These elements must be treated as special
cases because of Case (1) of Lemma 5.5.

Proposition 6.2. Table 4 gives some Bockstein differentials that are non-zero
after inverting h1. Through coweight 13, these are the only h1-periodic ρ-Bockstein
differentials.

For legibility, we have not included powers of ρ in the values of the Bockstein
differentials in Table 4. For example, the first row of the table is to be interpreted
as d3(Ph1) = ρ3h3

1c0.

Proof. The differentials in the h1-periodic ρ-Bockstein spectral sequence are com-
pletely known [15]. For each h1-periodic element x, this determines dr(h

k
1x) for

large values of k. However, it is possible that the elements hk
1x support shorter

differentials for small values of k. By inspection, no such shorter differentials oc-
cur. �

Remark 6.3. The phenomenon considered at the end of the proof of Proposition
6.2 turns out not to occur through coweight 13. However, it does occur in higher
coweights.

The following examples are representative arguments for establishing ρ-Bockstein
differentials. In many situations, more than one argument leads to the same result.
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Example 6.4. Table 2 summarizes the analysis of Bockstein differentials in degrees
(s, f, w) satisfying s + f − w = 6. In these degrees, the E1-page consists of ρ
multiples of twenty elements. The first part of Table 2 lists the two elements that
are ρ-periodic, as in Proposition 5.2. They correspond to the classical elements h6

0

and h2
0h2.

The second section of Table 2 lists some differentials that are easily deduced
from Proposition 6.1 and the Leibniz rule.

At this point, only the elements τ4h2
1 and c0 remain unaccounted. The third

section of Table 2 gives the only possibility.

Table 2: Bockstein differentials for s+ f − w = 6

coweight (s, f, w) x dr dr(x)

0 (6, 6, 6) h6
1

3 (9, 3, 6) h2
1h3

6 (0, 0,−6) τ6 d2 τ5h1

5 (0, 1,−5) τ5h0 d1 τ4h2
0

3 (0, 1,−3) τ3h3
0 d1 τ2h4

0

1 (0, 1,−1) τh5
0 d1 h6

0

4 (3, 2,−1) τ3h0h2 d1 τ3h3
1

5 (7, 1, 2) τ2h3 d2 τh1h3

4 (7, 2, 3) τh0h3 d1 h2
0h3

5 (3, 1,−2) τ4h2 d4 τ2h2
2

4 (2, 2,−2) τ4h2
1 d7 c0

Example 6.5. In some situations, a more careful analysis of multiplicative struc-
ture establishes a differential. For example, d1(f0) cannot equal ρh1e0 because
h1f0 = 0 but ρh2

1e0 is not zero.
For a slightly more complicated example, consider the relation h0 · τg = τ · h0g.

This implies that
h0 · d1(τg) = d1(τ) · h0g = ρh2

0g,

so d1(τg) must equal ρh0g.

Example 6.6. Sometimes, the multiplicative structure and an already known dif-
ferential imply that a certain element is killed by ρk. Then that element must be
killed by a differential dr with r ≤ k. For example, the element τ4h2

1h3 = (τ2h2)
2h2

is a permanent cycle because it is a product of permanent cycles. There are two
possible differentials that could hit a ρ-multiple of it: d4(τ

6h2
2) or d8(τ

8h2
1). Note

that τ4h2
1h3 is killed by ρ4 because of the differential d4(τ

4) = ρ4τ2h2. Therefore,
ρ4τ4h2

1h3 must be hit by a dr differential with r ≤ 4. The only possibility is that
d4(τ

6h2
2) = ρ4τ2h2

1h3.
This differential can be obtained another way using the Leibniz rule, the multi-

plicative relation τ6h2
2 = τ4 · τ2h2 · h2, and the differential d4(τ

4) = ρ4τ2h2.

Example 6.7. Sometimes one must look ahead to larger values of s + f − w in
order to use multiplicative relations to rule out differentials. For example, in order
to show that d4(i) = ρ4h1c0e0 (in degrees satisfying s + f − w = 18), we first
use other techniques to rule out possible differentials until it suffices to eliminate
the possibility that d11(τ

4Pc0) might equal ρ11h1c0e0. But this would imply that
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d11(τ
4Ph1c0) equals h

2
1c0e0 (in degrees satisfying s+ f −w = 19), and this contra-

dicts the h1-periodic differential d3(Pe0) = ρ3h2
1c0e0 from Table 4.

Example 6.8. The Leibniz rule implies that certain elements survive at least to
a certain page of the spectral sequence. For example, the element τ6h2

3 cannot be
hit by a differential, so it must support a differential. There are two possibilities:
d4(τ

6h2
3) might equal ρ4τ4h2

1h4, or d6(τ
6h2

3) might equal ρ6τ3c1. The Leibniz rule
and the relation τ6h2

3 = τ4 · τ2h2
3 imply that

d4(τ
6h2

3) = d4(τ
4) · τ2h2

3 = ρ4τ2h2 · τ
2h2

3 = 0.

Therefore, d6(τ
6h2

3) must equal ρ6τ3c1.

Example 6.9. The multiplicative structure implies that certain elements do not
support any differentials because they are the product of elements that do not
support any differentials.

Extending Example 6.6, sometimes the Massey product structure of ExtR implies
that some element ρkx must be zero. Then ρkx must be the target of a Bockstein dr
differential for r ≤ k. Through coweight 12, we apply this method only once in the
following Lemma 6.10. However, we anticipate that this approach will become more
and more important in higher coweights. Massey products in ExtR are discussed
below in Section 7 and Table 6.

Lemma 6.10. d2(τ
2g) = ρ2h2f0.

Proof. Table 6 shows that h2f0 equals the Massey product
〈

τh1, h
4
1, h4

〉

in ExtR.
Shuffle to obtain

ρ2
〈

τh1, h
4
1, h4

〉

=
〈

ρ2, τh1, h
4
1

〉

h4,

which equals zero because the last bracket is zero. Therefore, ρ2h2f0 is hit by a d1
or d2 differential, and the only possibility is that d2(τ

2g) = ρ2h2f0. �

Theorem 6.11 summarizes the results of the analysis of ρ-Bockstein differentials.

Theorem 6.11. Table 5 lists some values of the ρ-Bockstein dr differentials on
multiplicative generators of the Er-page. Through coweight 13, the dr differential
vanishes on all other multiplicative generators of the Er-page.

For legibility, we have not included powers of ρ in the values of the Bockstein
differentials in Table 5. For example, the first row of the table is to be interpreted
as d1(τ) = ρh0.

7. Hidden extensions in the ρ-Bockstein spectral sequence

Section 6 explains how to obtain the E∞-page of the ρ-Bockstein spectral se-
quence through coweight 12. As usual, this E∞-page is an associated graded object
of ExtR.

We abuse notation and use the same name for generators of the ρ-Bockstein
E∞-page and elements of ExtR that they represent. A generator of the ρ-Bockstein
E∞-page can represent more than one element in ExtR, where the indeterminacy
is parametrized by elements of the E∞-page in higher filtration. For example, the
element τ2h2 of the E∞-page represents two elements of ExtR whose difference is
ρ4h3.
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We adopt the following convention in selecting generators in ExtR. We always
choose an element of ExtR that is annihilated by the same power of ρ as its repre-
sentative in the E∞-page. For example, τ2h2 is annihilated by ρ4 in the E∞-page.
Therefore, we write τ2h2 for the (unique) element of ExtR that is annihilated by
ρ4. (The other possible choice is ρ-periodic.)

This convention concerning annihilation by powers of ρ eliminates much of the
ambiguity in passing from the E∞-page to ExtR. In some cases, our convention
does not eliminate all ambiguities. However, the remaining ambiguities make little
practical difference.

In order to recover the full structure of ExtR from the ρ-Bockstein E∞-page, we
must determine hidden multiplicative extensions. We adopt the precise definition
of a hidden extension given in [18, Section 4.1.1]. In this section, we will analyze
all hidden extensions by h0 and h1 through coweight 12.

The ρ-Bockstein spectral sequence has numerous hidden extensions by other
elements. There are so many examples that it is not practical to enumerate them
exhaustively. In practice, these other hidden extensions are occasionally useful, and
we treat them on an ad hoc basis as necessary.

Definition 7.1. A hidden a extension from x to y is decomposable if there exists
a hidden a extension from u to v, and there exists z such that x = zu and y = zv
in the E∞-page.

Example 7.2. There is a hidden h0 extension from τh1 to ρτh2
1. Multiplication

by τh1 gives the decomposable hidden h0 extension from τ2h2
1 to ρτ2h3

1.

Definition 7.1 allows us to focus only on the hidden extensions that are most
significant. In practice, decomposable hidden extensions are easy to understand,
once the indecomposable hidden extensions have been studied.

Remark 7.3. The structure of the ρ-Bockstein spectral sequence guarantees that
there are no hidden extensions by ρ. For degree reasons, if there is a possible hidden
ρ extension from x to y, then in fact y is a multiple of ρ. According to the definition
of a hidden extension [18, Section 4.1.1], this means that y cannot be the target of
a hidden ρ extension.

7.4. Massey products. Our main tool for establishing hidden extensions is the
May Convergence Theorem [21, Theorem 4.1], restated here for convenience.

Theorem 7.5 (May Convergence Theorem). Let α0, α1, and α2 be elements of
ExtR such that the Massey product 〈α0, α1, α2〉 is defined. For each i, let ai be a
permanent cycle in the Bockstein Er-page that detects αi. Suppose further that:

(1) there exist elements a01 and a12 in the Bockstein Er-page such that dr(a01)
equals a0a1 and dr(a12) equals a1a2;

(2) if either a01 or a12 has degree (s, f, w) and ρ-Bockstein degree m, and x is
an element in degree (s, f, w) and ρ-Bockstein degree m′ such that m′ ≤ m,
then dt(x) = 0 for all t such that m′ + t > (m−m′) + r.

Then a0a12 + a01a2 is a permanent cycle in the ρ-Bockstein spectral sequence, and
it detects an element of 〈α0, α1, α2〉 in ExtR.

We will often use Theorem 7.5 in the situation when a01 has ρ-Bockstein degree
0 and a12 has negative ρ-Bockstein degree. Since the ρ-Bockstein spectral sequence
is zero in negative ρ-Bockstein degrees, condition (2) of Theorem 7.5 simplifies to
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the condition that no element in the same degree as a01 with ρ-Bockstein degree 0
supports a longer differential.

Proposition 7.6. Table 6 lists some Massey products in ExtR.

Proof. Most of these Massey products are straightforward applications of the May
Convergence Theorem 7.5. In those cases, the sixth column of Table 6 gives the
ρ-Bockstein differential that is relevant for computing the Massey product.

In some cases, the Massey products follow by comparison to the C-motivic case.
This is denoted by the word “C-motivic” in the sixth column of Table 6. However,
this only determines the Massey product up to multiples of ρ. These ambiguities
can typically be eliminated by the multiplicative structure. In particular, if the
Massey product 〈x, y, z〉 is defined and ρax and ρbz are both zero, then

ρa+b 〈x, y, z〉 = ρb 〈ρa, x, y〉 z = 0.

The indeterminacies can be computed by inspection. �

Table 6 is not meant to be an exhaustive list of Massey products. It merely
provides an assortment of Massey products that are needed for various specific
computations throughout the manuscript.

7.7. Hidden h0 extensions.

Proposition 7.8. Table 7 lists all indecomposable hidden h0 extensions in the
ρ-Bockstein spectral sequence, through coweight 12.

Proof. All of the hidden h0 extensions in Table 7 are proved using a single technique,
which was introduced in the proof of [11, Lemma 6.2]. To illustrate this technique,
we will show that there is a hidden h0 extension from τ2h1c0 to ρ2Ph2.

First we show that the product h0 · τ2h1c0 is nonzero in ExtR. If not, then
the Massey product

〈

ρ, h0, τ
2h1c0

〉

would be defined in ExtR. The May Conver-
gence Theorem 7.5, together with the ρ-Bockstein differential d1(τ) = ρh0, would
then imply that τ3h1c0 is a permanent cycle. But this contradicts the ρ-Bockstein
differential d3(τ

3h1c0) = ρ3Ph2.
This shows that there must be a hidden h0 extension on τ2h1c0. The target of

this hidden extension can only be ρ2Ph2 or τPh1. But the target must have higher
ρ-Bockstein filtration than the source, which rules out τPh1.

In some cases, one needs to use multiplicative relations to rule out possible hidden
h0 extensions. For example, the target of a hidden h0 extension cannot support a
ρ multiplication, since ρh0 = 0 in ExtR.

We must also show that many elements do not support hidden h0 extensions. In
all cases through coweight 12, the non-existence follows from simple multiplicative
relations. For example, if x is already known to not support an h0 extension, then
the product xy cannot support an h0 extension. Similarly, if h1y or ρy is non-zero,
then y cannot be the target of a hidden extension because of the relations h0h1 = 0
and ρh0 = 0 in ExtR. �

7.9. Hidden h1 extensions.

Proposition 7.10. Table 8 lists all indecomposable hidden h1 extensions in the
ρ-Bockstein spectral sequence, through coweight 12.
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Proof. Many of the extensions are established using the map

ExtC
p

//ExtR

of Remark 3.3. To illustrate this technique, we will show that there is a hidden h1

extension from τ2h1c0 to ρPh2. The relation h1 ·τ
3c0 = τ3h1c0 in ExtC implies that

h1 ·p(τ
3c0) = p(τ3h1c0). Observe that p(τ3c0) = ρτh1 ·τc0 and p(τ3h1c0) = ρ2Ph2.

This shows that there is a hidden h1 extension from ρτ2h1c0 to ρ
2Ph2, and it follows

that there is also a hidden h1 extension from τ2h1c0 to ρPh2.
Several more difficult cases are established in the following lemmas.
We must also show that many elements do not support hidden h1 extensions. In

most cases through coweight 12, the non-existence follows from simple multiplica-
tive relations. For example, if x is already known to not support an h1 extension,
then the product xy cannot support an h1 extension. Similarly, if h0y is non-
zero, then y cannot be the target of a hidden h1 extension because of the relation
h0h1 = 0 in ExtR.

Additionally, the map p : ExtC → ExtR can be used to detect the absence of
some h1 extensions. �

Remark 7.11. The first three extensions in Table 8 were established in [11].

Lemma 7.12. There is a hidden h1 extension from τ3h3
2 to ρ4d0.

Proof. The element τ3h3
2 of the ρ-Bockstein E∞-page detects the element τ2h2 ·τh

2
2

in ExtR. Table 8 shows that h1 · τh
2
2 = ρc0, and h2

1 · τ
2h2 = ρ3c0. Therefore,

h3
1 · τ

2h2 · τh
2
2 = ρ3c0 · ρc0 = ρ4h2

1d0.

It follows that h1 · τ
2h2 · τh

2
2 equals ρ4d0. �

Lemma 7.13. There is a hidden h1 extension from τ2f0 to ρ2τ2h1g.

Proof. Table 6 shows that τ2f0 belongs to the Massey product
〈

τ2h2, h3, h
2
0h3

〉

.

Table 8 shows that there is a hidden h1 extension from τ2h2 to ρ2τh2
2. Therefore,

we have

h1

〈

τ2h2, h3, h
2
0h3

〉

=
〈

ρ2τh2
2, h3, h

2
0h3

〉

= ρ2
〈

τh2
2, h3, h

2
0h3

〉

,

where the equalities follow from inspection of indeterminacies. Table 6 shows that
the element τ2h1g of the Bockstein E∞-page detects both elements of the Massey
product

〈

τh2
2, h3, h

2
0h3

〉

, so ρ2τ2h1g is the target of the hidden h1 extension. �

Lemma 7.14.

(1) There is a hidden h1 extension from τ8h1c0 to ρτ6Ph2.
(2) There is a hidden h1 extension from τ6Ph2 to ρ2τ5h2

0d0.
(3) There is a hidden h1 extension from τ4Ph1c0 to ρτ2P 2h2.
(4) There is a hidden h1 extension from τ2P 2h2 to ρ2τPh2

0d0.

Proof. We will show that h3
1 · τ

8c0 equals ρ3τ5h2
0d0. This will establish the first two

extensions simultaneously.
Table 6 shows that h1 · τ

8c0 equals the Massey product
〈

τh1 · τ
5c0, τh1, ρ

2
〉

. By
inspection of indeterminacies,

h2
1

〈

τh1 · τ
5c0, τh1, ρ

2
〉

= h1

〈

h1 · τh1 · τ
5c0, τh1, ρ

2
〉

.
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This expression equals h1

〈

ρτ4Ph2, τh1, ρ
2
〉

, since Table 8 shows that there is a

hidden h1 extension from τ6h1c0 to ρτ4Ph2. By inspection of indeterminacies
again, this also equals ρh1

〈

τ4Ph2, τh1, ρ
2
〉

.
Now shuffle to obtain

ρh1

〈

τ4Ph2, τh1, ρ
2
〉

= ρ3
〈

h1, τ
4Ph2, τh1

〉

.

Finally, Table 6 shows that
〈

h1, τ
4Ph2, τh1

〉

equals τ5h2
0d0. This establishes the

first two extensions.
The argument for the last two extensions is essentially identical. The Massey

product
〈

τh1 · τPc0, τh1, ρ
2
〉

equals h1 · τ
4Pc0. We have

h2
1

〈

τh1 · τPc0, τh1, ρ
2
〉

= h1

〈

h1 · τh1 · τPc0, τh1, ρ
2
〉

,

which equals
h1

〈

ρP 2h2, τh1, ρ
2
〉

= ρh1

〈

P 2h2, τh1, ρ
2
〉

.

Finally, shuffle to obtain

ρh1

〈

P 2h2, τh1, ρ
2
〉

= ρ3
〈

h1, P
2h2, τh1

〉

= ρ3τPh2
0d0.

�

Lemma 7.15. There is a hidden h1-extension from τ3c1 to ρ2τ2h2c1.

Proof. Table 6 shows that τ3c1 is contained in the Massey product
〈

ρ2, τh1, τc1
〉

.
Shuffle to obtain

〈

ρ2, τh1, τc1
〉

h1 = ρ2 〈τh1, τc1, h1〉 .

Table 6 shows that the element τ2h2c1 of the Bockstein E∞-page detects both
elements of 〈τh1, τc1, h1〉, so ρ2τ2h2c1 is the target of the hidden h1 extension. �

Lemma 7.16.

(1) There is a hidden h1 extension from τ3h2
2e0 to ρ2j.

(2) There is a hidden h1 extension from j to ρd20.

Proof. Table 8 shows that h1 · τh
2
2 = ρc0, and h3

1 · τ
2e0 = h1 · ρτh

2
2 · d0 = ρ2c0d0.

Therefore,
h4
1 · τh

2
2 · τ

2e0 = ρ3c20d0 = ρ3h2
1d

2
0.

Both hidden extensions are immediate consequences. �

7.17. Miscellaneous relations. We briefly consider a few other types of hidden
extensions.

In the Bockstein E∞-page, we have the relation h2
1 · τ4h3 + (τ2h2)

2h2 = 0.
However, in ExtR, it is possible that the sum h2

1 ·τ
4h3+(τ2h2)

2h2 equals a non-zero
element that is detected in higher ρ-Bockstein filtration. Lemma 7.18 demonstrates
that this does in fact occur. It provides one additional piece of information about
the multiplicative structure of ExtR.

Lemma 7.18. In ExtR we have the relation

h2
1 · τ

4h3 + (τ2h2)
2h2 = ρ5τh0h

2
3.

Proof. This follows by comparison along the map p : ExtC → ExtR of Remark
3.3. The relation h1 · τ8h1 = τ8h2

1 in ExtC implies that h1 · p(τ8h1) = p(τ8h2
1)

in ExtR. Observe that p(τ8h1) = ρ7τ4h1h3 and p(τ8h2
1) = ρ12τh0h

2
3. This shows

that there is a hidden h1 extension from ρ7τ4h1h3 to ρ12τh0h
2
3, which implies the

desired relation. �
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Lemma 7.19. There is a hidden τ2h2 extension from c0 to ρ3d0.

Proof. Table 8 shows that there are hidden h1 extensions from τh2
2 to ρc0, and from

τ3h2
2 to ρ4d0. Therefore,

τ2h2 · ρc0 = τ2h2 · h1 · τh
2
2 = ρ4d0.

�

Lemma 7.20. There is a hidden h2 extension from h2f0 to ρh2
1h4c0.

Proof. We use the map p : ExtC → ExtR of Remark 3.3. The relation h2 · τ
2g =

τ2h2g in ExtC implies that h2 · p(τ
2g) = p(τ2h2g). Observe that p(τ2g) = ρh2f0,

and p(τ2h2g) = ρ2h2
1h4c0.

Therefore, there is a hidden h2 extension from ρh2f0 to ρ2h2
1h4c0, and also a

hidden h2 extension from h2f0 to ρh2
1h4c0. �

8. Adams differentials

Sections 6 and 7 describe how to compute ExtR, which serves as the E2-page
of the R-motivic Adams spectral sequence. We now proceed to analyze Adams
differentials. We remind the reader of the notation for stable homotopy elements
discussed in Section 2.1 and Table 9.

Recall from Section 3 that extension of scalars induces a map from the R-motivic
Adams spectral sequence to the C-motivic Adams spectral sequence. We will fre-
quently use these comparison functors to deduce information about the R-motivic
Adams spectral sequence from already known information about the C-motivic and
classical Adams spectral sequences. See [18] for an extensive summary of compu-
tational information about the C-motivic and classical Adams spectral sequences.

8.1. Toda brackets. The Moss Convergence Theorem 8.2 is a key tool for deter-
mining Toda brackets [23] [18, Section 3.1]. We restate a version of the theorem
here for convenience.

Theorem 8.2 (Moss Convergence Theorem). Let α0, α1, and α2 be elements of
the R-motivic stable homotopy groups such that the Toda bracket 〈α0, α1, α2〉 is
defined. Let ai be a permanent cycle on the Adams Er-page that detects αi for each
i. Suppose further that:

(1) the Massey product 〈a0, a1, a2〉Er
is defined (in ExtR when r = 2, or using

the Adams dr−1 differential when r ≥ 3).
(2) if (s, f, w) is the degree of either a0a1 or a1a2; f

′ < f − r+1; f ′′ > f ; and

t = f ′′− f ′; then every Adams differential dt : E
s+1,f ′,w
t → Es,f ′′,w

t is zero.

Then 〈a0, a1, a2〉Er
contains a permanent cycle that detects an element of the Toda

bracket 〈α0, α1, α2〉.

Theorem 8.3. Table 10 lists some Toda brackets in π∗,∗.

Proof. Most of these Toda brackets are straightforward applications of the Moss
Convergence Theorem 8.2. When a Massey product appears in the fifth column of
Table 10, the Toda bracket follows from the Moss Convergence Theorem 8.2 with
r = 2. When an Adams differential appears in the fifth column of Table 10, the
Toda bracket follows from the Moss Convergence Theorem 8.2 with r > 2, and the
given Adams differential is relevant for computing the Toda bracket.
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In some cases, the Toda brackets follow by comparison along the extension of
scalars functor to the C-motivic case. This is denoted by the word “C-motivic” in
the fifth column of Table 10.

One slightly different case is handled below in Lemma 8.4. �

Table 10 is not meant to be exhaustive in any sense. It merely provides the
Toda brackets that are needed for various specific computations. Beware that
these brackets have non-trivial indeterminacies, although we have not specified the
indeterminacies because they are not generally relevant to our specific needs.

Beware that some of the Toda brackets in Table 10 require knowledge of Adams
differentials that are established below in Section 8.5.

Lemma 8.4. The Toda bracket
〈

ρ2, τη, ν4
〉

is detected by τ2h2 · h4.

Proof. Table 6 shows that τ2h2 is contained in the Massey product
〈

ρ2, τh1, h2

〉

.
By inspection of indeterminacies,

τ2h2 · h4 =
〈

ρ2, τh1, h2

〉

h4 =
〈

ρ2, τh1, h2h4

〉

.

The Moss Convergence Theorem 8.2 implies that τ2h2 ·h4 detects the corresponding
Toda bracket. �

8.5. Adams d2 differentials. We now proceed to analyze Adams differentials.

Theorem 8.6. Table 12 lists some values of the R-motivic Adams d2 differential.
Through coweight 12, the d2 differential is zero on all other multiplicative generators
of the R-motivic Adams E2-page.

Proof. The multiplicative structure rules out many possible differentials. For ex-
ample, d2(τ

5h1) cannot equal τ4h0 · h2
0 because h2

0 · τ5h1 = 0, while τ4h0 · h4
0 is

non-zero.
Other multiplicative generators are known to be permanent cycles, because the

Moss Convergence Theorem 8.2 shows that they must survive to detect various
Toda brackets. These instances are shown in Table 11. In one case, the element
h4 · τc0 must survive to detect the product σ · τη4, by comparison to the C-motivic
stable homotopy groups.

Many non-zero differentials follow by comparison to the C-motivic or classical
Adams spectral sequences.

Several more difficult cases are established in the following lemmas. �

Remark 8.7. Table 11 shows that τ4h3 is a permanent cycle because it detects
the Toda bracket

〈

ρ4, τ2ν, σ
〉

. We give an alternative proof that is geometrically
interesting, following the method of [11, Lemma 7.3].

There is a functor from classical homotopy theory to R-motivic homotopy theory
that takes the sphere Sp to Sp,0. Let σtop : S15,0 → S8,0 be the image of the classical
Hopf map σ : S15 → S8 under this functor.

The cohomology of the cofiber of σtop is free on two generators x and y of degrees

(8, 0) and (16, 0), satisfying Sq8(x) = τ4y and Sq16(x) = ρ8y. The proof of these
formulas is essentially identical to the proof of [11, Lemma 7.4].

This shows that τ4h3+ρ8h4 is a permanent cycle in the Adams spectral sequence,
since it detects the stabilization of σtop in π7,0. Also, ρ8h4 is a permanent cycle
because there are no possible values for differentials. Therefore, τ4h3 is a permanent
cycle.
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Lemma 8.8. d2(τh0h
2
3) = ρ2h1d0.

Proof. Table 12 shows that d2(e0) = h2
1d0. Therefore,

d2(h1 · τh0h
2
3) = d2(ρ

2e0) = ρ2h2
1d0.

It follows that d2(τh0h
2
3) equals ρ

2h1d0. �

Lemma 8.9. d2(f0) = h2
0e0.

Proof. Comparison to the C-motivic or classical case shows that d2(f0) equals either
h2
0e0 or h2

0e0 + ρ2h2
1e0. But h1 · f0 = 0 in the E2-page, while h1(h

2
0e0 + ρ2h2

1e0) is
non-zero. The only possibility is that d2(f0) equals h

2
0e0. �

Lemma 8.10. d2(τ
2f0) = h2

0 · τ
2e0 + ρ3τh2

2 · d0.

Proof. The C-motivic differential d2(τ
2f0) = τ2h2

0e0 implies that d2(τ
2f0) equals

either h2
0 · τ

2e0 or h2
0 · τ

2e0 + ρ3τh2
2 · d0. We rule out the first possibility by noting

that (h2
0 + ρ2h2

1) · τ
2f0 = 0 in ExtR whereas (h2

0 + ρ2h2
1) · τ

2h2
0e0 = ρ6h1c0d0. �

Lemma 8.11. d2(τ
2h1g) = ρ2c0d0.

Proof. Table 8 shows that h1 · τ
2h1g = ρτh2

2 · e0. Therefore,

h1 · d2(τ
2h1g) = ρτh2

2 · d2(e0) = ρτh2
2 · h

2
1d0,

which equals ρ2h1c0d0 because Table 8 shows that h1 · τh
2
2 = ρc0. �

8.12. Higher Adams differentials. Theorem 8.6 completely describes the Adams
d2 differential through coweight 12. From this information, one can compute the
Adams E3-page in a range. We now proceed to analyze higher differentials.

Theorem 8.13. Table 13 lists some values of the R-motivic Adams d3 differential
for r ≥ 3. Through coweight 12, the d3 differential is zero on all other multiplicative
generators of the R-motivic Adams E3-page. Moreover, through coweight 12, there
are no higher differentials, and the R-motivic Adams E4-page equals the R-motivic
Adams E∞-page.

Proof. As in the proof of Theorem 8.6, many multiplicative generators cannot
support differentials because there are no possible targets. Comparison to the
C-motivic and classical cases also determines some differentials. For example,
d3(h1h4) cannot equal h1d0.

Other multiplicative generators are known to be permanent cycles, because the
Moss Convergence Theorem 8.2 shows that they must survive to detect various
Toda brackets. These instances are shown in Table 11.

The multiplicative structure rules out additional cases. For example d3(ρh4)
cannot equal ρd0 because of the relation h1 · ρh4 = ρ · h1h4, together with the fact
that d3(h1h4) is already known to be zero.

The harder cases are established in the following lemmas. �

Lemma 8.14. d3(ρ
6e0) = 0.

Proof. If d3(ρ
6e0) equaled ρh1 · τh1 · τPh1, then ρ7e0 would be a permanent cycle

that detected an element α of π10,3, and α could not be divisible by ρ. Therefore,
by Corollary 3.5, α would map to a non-zero element β in πC

10,3. Then β would

have to be detected by τ3Ph2
1, so ηβ would also have to be non-zero in πC

11,4.

But ηα would be detected by ρ7h1e0 and would be divisible by ρ, so it would
map to zero in πC

11,4. This contradicts that ηβ is non-zero. �
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Remark 8.15. Lemma 8.14 can also be proved using the R-motivic spectrum kq,
which is the very effective slice cover of the Hermitian K-theory spectrum KQ [1].
The cohomology of kq is isomorphic to A//A(1), where A(1) is the M2-subalgebra
of the R-motivic Steenrod algebra that is generated by Sq1 and Sq2.

By a change-of-rings isomorphism, the homotopy of kq is computed by an Adams
spectral sequence whose E2-page is ExtA(1)(M2,M2). This E2-page was computed
in [16], and also in [12, Section 6].

The element ρτh1 · τPh1 · h1 maps to a non-zero permanent cycle in

ExtA(1)(M2,M2),

so it cannot be the target of a differential.

Lemma 8.16. d3(h0h4) = h0d0 + ρh1d0

Proof. The classical differential d3(h0h4) = h0d0 implies that in the R-motivic case,
d3(h0h4) equals either h0d0 or h0d0 + ρh1d0.

Note that τh1 · h0d0 = ρτh1 · h1d0 is non-zero on the E3-page, but τh1 · h0h4 =
ρτh1 ·h1h4 is a permanent cycle, as shown in Table 11. Therefore, d3(h0h4) cannot
equal h0d0. �

Lemma 8.17.

(1) d3(τh
2
2 · τ

2e0) = ρτPh1 · d0.
(2) d3(ρj) = τPh1 · h1d0.

Proof. Let α be an element of π24,13 that is represented by τPh1 ·h1d0. By compar-
ison of Adams spectral sequences, extension of scalars must take α to zero in πC

24,13.
Moreover, τPh1 · h1d0 cannot be the target of a hidden ρ extension. Therefore, by
Corollary 3.5, τPh1 · h1d0 must be the target of an R-motivic Adams differential,
and there is only one possible such differential. This establishes the second formula.

The first formula follows immediately from the second one, using the relation
h1 · τh

2
2 · τ

2e0 = ρc0 · τ
2e0. �

9. Hidden extensions in the Adams spectral sequence

We have now obtained the Adams E∞-page through coweight 11. It remains
to determine hidden extensions that are hidden in the R-motivic Adams spectral
sequence. As in Section 7, we use the precise definition of a hidden extension given
in [18, Section 4.1.1]. We will analyze all hidden extensions by ρ, h, and η through
coweight 11.

We begin by analyzing all hidden extensions by ρ. The main tools are Corollaries
3.5 and 3.8.

Proposition 9.1. Table 14 lists all hidden ρ extensions in the Adams spectral
sequence, through coweight 11.

Proof. The long exact sequence of Corollary 3.8 gives short exact sequences

0 → (cokerρ)s,w → πC

s,w → (ker ρ)s,w+1 → 0.

The rank of πC
s,w, which is entirely known in our range [18] [19], severely constrains

the possible ranks of cokerρ and kerρ. From these constraints, we can generally
deduce the presence and absence of hidden ρ extensions, and there is typically only
one possibility in each case in the range under consideration. The only exception
is considered below in Lemma 9.2. �
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Lemma 9.2. There is a hidden ρ extension from τh1c0d0 to Ph0d0.

Proof. Table 16 shows that there is a hidden η extension from ρτc0 · d0 to Ph0d0.
Therefore, there must be a hidden ρ extension from h1 · τc0 · d0 to Ph0d0. �

Theorem 9.3. Table 15 lists all hidden h extensions in the R-motivic Adams spec-
tral sequence, through coweight 11.

Proof. The long exact sequence of Corollary 3.8 gives short exact sequences

0 → (cokerρ)s,w → πC

s,w → (ker ρ)s,w+1 → 0.

Some of the extensions can be determined via these short exact sequences, using
known 2 extensions in πC

∗,∗. For example, the element ρ6e0 in the R-motivic Adams

E∞-page lies in (cokerρ)11,4, and it maps to the element τ2ζ11 in πC
11,4 that is

detected by τ2Ph2. But 2τ2ζ11 is non-zero in πC
11,4, so hα must also be non-zero.

It follows that ρ6e0 supports a hidden h extension.
We must also show that many elements do not support hidden h extensions.

In most of the cases through coweight 11, the non-existence follows from simple
multiplicative relations. For example, if x is a multiple of ρ or of h1, then x cannot
support a hidden h extension because of the relations ρh = 0 and hη = 0. Similarly,
if h1y or ρy is non-zero, then y cannot be the target of a hidden h extension.

The following lemmas handle a few additional more complicated cases. �

Lemma 9.4. There is a hidden h extension from h2f0 to ρc0d0.

Proof. Table 10 shows that h2f0 detects the Toda bracket 〈ρ, {h2e0}, η〉. Shuffle to
obtain

〈ρ, {h2e0}, η〉 h = ρ 〈{h2e0}, η, h〉 .

Table 10 shows that c0d0 detects the latter bracket. �

Lemma 9.5. There is no hidden h extension on τh2
2 · h4.

Proof. The only possible target is ρτc0 · d0. Table 16 shows that ρτc0 · d0 supports
a hidden η extension, so it cannot be the target of a hidden h extension. �

Lemma 9.6. There is a hidden h extension from τc0 · d0 to Ph0d0.

Proof. Let α be an element of π8,4 that is detected by τc0, so τc0 · d0 detects ακ.
Table 14 shows that there is a hidden ρ extension from h1 · τc0 · d0 to Ph0d0, so
Ph0d0 detects ρηακ. But (h+ ρη)κ is zero, so (h+ ρη)ακ must also be zero. This
implies that hακ is also detected by Ph0d0. �

Lemma 9.7. There is no hidden h extension on h4c0.

Proof. By comparison to the C-motivic (or classical) case, h4c0 detects the product
ση4. By inspection, hη4 is zero in π16,9. �

Theorem 9.8. Table 16 lists some hidden η extensions in the R-motivic Adams
spectral sequence, through coweight 11.

Proof. The long exact sequence of Corollary 3.8 gives short exact sequences

0 → (cokerρ)s,w → πC

s,w → (ker ρ)s,w+1 → 0.

Many of these extensions can be obtained by comparison to the C-motivic case,
using these short exact sequences, as in the proof of Theorem 9.3. For example, the
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element ρτh1 · τPc0 detects an element α in (ker ρ)16,7. The pre-image β of α in
πC
16,6 is detected by τ3Pc0. There is a C-motivic hidden η extension from τ3h3

0h4

to τ3Pc0, so β is divisible by η. This implies that α is also divisible by η, and that
there is an R-motivic hidden η extension from τ2h0 · h

3
0h4 to ρτh1 · τPc0.

We must also show that many elements do not support hidden η extensions. In
all cases through coweight 11, the non-existence follows from simple multiplicative
relations. For example, if x is a multiple of h0, then x cannot support a hidden
η extension because of the relation hη = 0. Similarly, if h0y is non-zero, then y
cannot be the target of a hidden η extension. �

Lemma 9.9. There is no hidden η extension on τ2h2
3.

Proof. Table 10 shows that τ2h2
3 detects the Toda bracket

〈

τ2ν, σ, ν
〉

. Shuffle to
obtain

〈

τ2ν, σ, ν
〉

η = τ2ν 〈σ, ν, η〉 .

The latter bracket is zero. �

Lemma 9.10. There is no hidden η extension on τc1.

Proof. The possible target ρh2f0 is ruled out by the fact that ρh2f0 supports an
h2 extension, as shown in Lemma 7.20. The possible target τh2

2 · d0 is ruled out by
comparison to the C-motivic case. �

10. Extension of scalars

We will now study the values of the extension of scalars map πR
∗,∗ → πC

∗,∗. Corol-

lary 3.5 tells us exactly which elements of πR
∗,∗ have non-trivial images in πC

∗,∗. This
information about extension of scalars is essential to our approach to the Mahowald
invariant described in Section 4.

For the most part, the extension of scalars map is detected by the map from
the R-motivic Adams E∞-page to the C-motivic Adams E∞-page. For example,
the element (τη)2 of πR

2,0 is detected by τh2
1 in the R-motivic Adams E∞-page, so

its image in πC
2,0 must be τ2η2, which is detected by τ2h2

1 in the C-motivic Adams
E∞-page.

However, there are a few values that are hidden by the Adams spectral sequence.
In other words, there exist elements α in πR

∗,∗ such that the Adams filtration of α

is strictly less than the Adams filtration of its image in πC
∗,∗.

Theorem 10.1. Through coweight 11, Table 17 lists all hidden values of the ex-
tension of scalars map πR

∗,∗ → πC
∗,∗.

Proof. We inspect all elements of the R-motivic Adams E∞-page that are not tar-
gets of ρ extensions. Most of these elements map non-trivially to the C-motivic
Adams E∞-page. For example, (τh1)

2 maps to τ2h2
1.

A few elements map to zero in the C-motivic Adams E∞-page. We treat these
elements individually. In some cases, there is only one possible target in sufficiently
high Adams filtration. The remaining cases are handled by the following lemmas.

�

Lemma 10.2. Extension of scalars takes elements detected by ρh4 to elements
detected by τh2

3.
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Proof. Table 10 shows that ρh4 detects the Toda bracket
〈

ρ, h, σ2
〉

. Extension of

scalars takes
〈

ρ, h, σ2
〉

in πR
14,7 to

〈

0, 2, σ2
〉

in πC
14,7, which equals {0, τσ2}. The

only non-zero value is τσ2, which is detected by τh2
3. �

Lemma 10.3. Extension of scalars takes elements detected by ρf0 to elements
detected by τh2d0.

Proof. Table 10 shows that ρf0 detects the Toda bracket 〈ρ, h, νκ〉. Extension of
scalars takes 〈ρ, h, νκ〉 in πR

17,9 to 〈0, 2, νκ〉 in πC
17,9, which equals {0, τνκ}. The

only non-zero value is τνκ, which is detected by τh2d0. �

Lemma 10.4. Extension of scalars takes elements detected by ρ3τ2f0 to elements
detected by τ4h1d0.

Proof. The long exact sequence of Corollary 3.8 gives a short exact sequence

0 → (coker ρ)15,5 → πC

15,5 → (ker ρ)15,6 → 0.

The group πC
15,5 is generated by an element of order 32, detected by τ3h3

0h4, and an

element of order 2, detected by τ4h1d0. Also (ker ρ)15,6 is generated by an element
of order 32, detected by τ2h0 · h3

0h4. It follows that (cokerρ)15,5 maps onto an
element of order 2 that is detected by τ4h1d0. �

11. Tables

Table 3: Some values of the R-motivic Mahowald invariant

s α MR(α) indeterminacy

0 2k ηk

1 η ν 2ν, 4ν
2 η2 ν2

3 ν σ 2σ, 4σ, 8σ
3 2ν ησ ǫ
3 4ν η2σ ηǫ
6 ν2 σ2 κ
7 σ τσ2

7 2σ η4 ηρ15
7 4σ ηη4 η2ρ15, νκ
7 8σ η2η4 η3ρ15
8 ησ ν4 2ν4, 4ν4
8 ǫ σ
9 η2σ νν4 τηκ
9 ηǫ νσ τη2κ
9 µ9 νκ 2νκ, 4νκ
10 ηµ9 ν · νκ
11 ζ11 τν2κ η3ρ23
11 2ζ11 {h1h3g} η5ρ23
11 4ζ11 η{h1h3g} η6ρ23
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Table 4: h1-periodic Bockstein differentials

coweight (s, f, w) x dr dr(x)

4 (9, 5, 5) Ph1 d3 h3
1c0

7 (16, 7, 9) Pc0 d3 h4
1d0

8 (17, 9, 9) P 2h1 d7 h6
1e0

10 (22, 8, 12) Pd0 d3 h2
1c0d0

11 (25, 8, 14) Pe0 d3 h2
1c0e0

12 (25, 13, 13) P 3h1 d3 P 2h3
1c0

13 (30, 11, 17) Pc0d0 d3 h4
1d

2
0

Table 5: Bockstein differentials

coweight (s, f, w) x dr dr(x)

1 (0, 0,−1) τ d1 h0

2 (0, 0,−2) τ2 d2 τh1

4 (0, 0,−4) τ4 d4 τ2h2

4 (1, 1,−3) τ4h1 d6 τh2
2

4 (2, 2,−2) τ4h2
1 d7 c0

4 (7, 4, 3) τh3
0h3 d4 h2

1c0
4 (9, 5, 5) Ph1 d3 h3

1c0
5 (6, 2, 1) τ3h2

2 d3 τc0
6 (7, 4, 1) τ3h3

0h3 d3 τPh1

6 (9, 4, 3) τ3h1c0 d3 Ph2

7 (8, 3, 1) τ4c0 d7 d0
7 (11, 5, 4) τ2Ph2 d6 h2

1d0
7 (14, 6, 7) τh2

0d0 d4 h3
1d0

7 (16, 7, 9) Pc0 d3 h4
1d0

8 (0, 0,−8) τ8 d8 τ4h3

8 (2, 2,−6) τ8h2
1 d13 τh0h

2
3

8 (3, 3,−5) τ8h3
1 d15 e0

8 (7, 4,−1) τ5h3
0h3 d12 h1e0

8 (9, 5, 1) τ4Ph1 d11 h2
1e0

8 (15, 8, 7) τh7
0h4 d8 h5

1e0
8 (17, 9, 9) P 2h1 d7 h6

1e0
9 (3, 1,−6) τ8h2 d12 τ2h2

3

9 (14, 3, 5) τ3h0h
2
3 d5 f0

9 (14, 6, 5) τ3h2
0d0 d3 τPc0

9 (20, 4, 11) τg d1 h0g
10 (6, 2,−4) τ8h2

2 d14 τc1
10 (9, 3,−1) τ7h2

1h3 d9 τ2e0
10 (14, 4, 4) τ4d0 d5 τ2h1e0
10 (15, 8, 5) τ3h7

0h4 d3 τP 2h1

10 (17, 8, 7) τ3Ph1c0 d3 P 2h2

10 (20, 4, 10) τ2g d2 τh1g
10 (22, 8, 12) Pd0 d3 h2

1c0d0
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Table 5: Bockstein differentials

coweight (s, f, w) x dr dr(x)

11 (8, 2,−3) τ8h1h3 d12 τ2c1
11 (14, 3, 3) τ5h0h

2
3 d5 τ2f0

11 (17, 4, 6) τ4e0 d5 τ2h1g
11 (20, 6, 9) τ3h0h2e0 d6 c0e0
11 (23, 5, 12) τ2h2g d3 h2

1h4c0
11 (23, 7, 12) i d4 h1c0e0
11 (25, 8, 14) Pe0 d3 h2

1c0e0
12 (7, 4,−5) τ9h3

0h3 d5 τ6Ph2

12 (9, 5,−3) τ8Ph1 d6 τ5h2
0d0

12 (10, 6,−2) τ8Ph2
1 d7 τ4Pc0

12 (14, 2, 2) τ6h2
3 d6 τ3c1

12 (15, 8, 3) τ5h7
0h4 d5 τ2P 2h2

12 (17, 9, 5) τ4P 2h1 d6 τPh2
0d0

12 (18, 10, 6) τ4P 2h2
1 d7 P 2c0

12 (23, 12, 11) τh5
0i d4 P 2h2

1c0
12 (25, 13, 13) P 3h1 d3 P 2h3

1c0
13 (14, 3, 1) τ7h0h

2
3 d7 τ4g

13 (17, 4, 4) τ6e0 d5 τ4h1g
13 (18, 5, 5) τ6h1e0 d6 τ3h0h2g
13 (20, 6, 7) τ5h0h2e0 d7 j
13 (22, 10, 9) τ3Ph2

0d0 d3 τP 2c0
13 (23, 7, 10) τ2i d6 d20
13 (25, 8, 12) τ2Pe0 d5 h1d

2
0
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Table 6: Some Massey products in ExtR

coweight (s, f, w) bracket contains indeterminacy proof used in

3 (3, 1, 0)
〈

ρ2, τh1, h2

〉

τ2h2 ρ4h3 d2(τ
2) = ρ2τh1

〈

ρ2, τη, ν
〉

, Lemma 8.4
4 (8, 3, 4) 〈c0, h0, ρ〉 τc0 ρτh1 · h1h3 d1(τ) = ρh0 〈ǫ, h, ρ〉
7 (7, 1, 0)

〈

ρ4, τ2h2, h3

〉

τ4h3 ρ8h4 d4(τ
4) = ρ4τ2h2

〈

ρ4, τ2ν, σ
〉

9 (21, 5, 12)
〈

τh1, h
4
1, h4

〉

h2f0 0 C-motivic Lemma 6.10
9 (21, 5, 12) 〈ρ, h2e0, h1〉 h2f0 ρ2h2g d1(τg) = ρh2e0 〈ρ, {h2e0}, η〉
10 (18, 4, 8)

〈

τ2h2, h3, h
2
0h3

〉

τ2f0 τ2h2 · h
2
0h4, ρ

5h4c0 C-motivic Lemma 7.13
10 (21, 5, 11)

〈

τh2
2, h3, h

2
0h3

〉

τ2h1g ρ3h1h4c0 C-motivic Lemma 7.13
11 (3, 1,−8)

〈

ρ2, τ9h1, h2

〉

τ10h2 0 d2(τ
10) = ρ2τ9h1

〈

ρ2, τ9η, ν
〉

11 (9, 4,−2)
〈

τh1 · τ
5c0, τh1, ρ

2
〉

h1 · τ
8c0 0 d2(τ

2) = ρ2τh1 Lemma 7.14
11 (11, 5, 0)

〈

ρ2, τ5h1, Ph2

〉

τ6Ph2 ρ16h3g d2(τ
6) = ρ2τ5h1

〈

ρ2, τ5η, ζ11
〉

11 (14, 6, 3)
〈

h1, τ
4Ph2, τh1

〉

τ5h2
0d0 0 C-motivic Lemma 7.14

11 (17, 8, 6)
〈

τh1 · τPc0, τh1, ρ
2
〉

h1 · τ
4Pc0 0 d2(τ

2) = ρ2τh1 Lemma 7.14
11 (19, 3, 8)

〈

ρ, h0, τ
2c1

〉

τ3c1 ρ2τ2h2 · h2h4 d1(τ) = ρh0

〈

ρ, h, τ2σ
〉

11 (19, 3, 8)
〈

ρ2, τh1, τc1
〉

τ3c1 ρ2τ2h2 · h2h4 d2(τ
2) = ρ2τh1 Lemma 7.15

11 (19, 9, 8)
〈

ρ2, τh1, P
2h2

〉

τ2P 2h2 0 d2(τ
2) = ρ2τh1

〈

ρ2, τη, ζ19
〉

11 (22, 4, 11) 〈τh1, τc1, h1〉 h2 · τ
2c1 ρh4 · τc0 C-motivic Lemma 7.15

11 (22, 10, 11)
〈

h1, P
2h2, τh1

〉

τPh2
0d0 0 C-motivic Lemma 7.14

12 (20, 4, 8)
〈

ρ, τ2h0, ρ, h2e0
〉

τ4g ρ2h2 · τ
3c1 d1(τ

3) = ρτ2h0,
〈

ρ, τ2h, ρ, {h2e0}
〉

d1(τg) = ρh2e0
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Table 7: Hidden h0 extensions in the ρ-Bockstein spectral sequence

coweight (s, f, w) source target

1 (1, 1, 0) τh1 ρτh2
1

3 (3, 3, 0) τ2h2
0h2 ρ6h1c0

3 (7, 4, 4) h3
0h3 ρ3h2

1c0
4 (6, 2, 2) τ2h2

2 ρ2τc0
4 (8, 3, 4) τc0 ρτh1c0
5 (1, 1,−4) τ5h1 ρτ5h2

1

5 (7, 4, 2) τ2h3
0h3 ρ2τPh1

5 (9, 4, 4) τ2h1c0 ρ2Ph2

5 (9, 5, 4) τPh1 ρτPh2
1

6 (6, 2, 0) τ4h2
2 ρ3τ3h3

2

6 (14, 6, 8) h2
0d0 ρ3h3

1d0
7 (3, 3,−4) τ6h2

0h2 ρ14e0
7 (7, 4, 0) τ4h3

0h3 ρ11h1e0
7 (11, 7, 4) τ2Ph2

0h2 ρ10h4
1e0

7 (15, 8, 8) h7
0h4 ρ7h5

1e0
8 (8, 3, 0) τ5c0 ρτ5h1c0
8 (14, 3, 6) τ2h0h

2
3 ρ4f0

8 (14, 6, 6) τ2h2
0d0 ρ2τPc0

8 (16, 7, 8) τPc0 ρτPh1c0
9 (1, 1,−8) τ9h1 ρτ9h2

1

9 (7, 4,−2) τ6h3
0h3 ρ2τ5Ph1

9 (9, 3, 0) τ6h2
1h3 ρ8τ2e0

9 (9, 4, 0) τ6h1c0 ρ2τ4Ph2

9 (9, 5, 0) τ5Ph1 ρτ5Ph2
1

9 (15, 8, 6) τ2h7
0h4 ρ2τP 2h1

9 (17, 8, 8) τ2Ph1c0 ρ2P 2h2

9 (17, 9, 8) τP 2h1 ρτP 2h2
1

10 (14, 3, 4) τ4h0h
2
3 ρ4τ2f0

10 (18, 5, 8) τ2h0f0 ρ5τh2
2e0

10 (20, 6, 10) τ2h0h2e0 ρ5c0e0
11 (3, 3,−8) τ10h2

0h2 ρ6τ8h1c0
11 (7, 4,−4) τ8h3

0h3 ρ4τ6Ph2

11 (11, 7, 0) τ6Ph2
0h2 ρ6τ4Ph1c0

11 (15, 8, 4) τ4h7
0h4 ρ4τ2P 2h2

11 (19, 3, 8) τ3c1 ρ3τ2h2c1
11 (19, 11, 8) τ2P 2h2

0h2 ρ6P 2h1c0
11 (23, 12, 12) h5

0i ρ3P 2h2
1c0

12 (6, 2,−6) τ10h2
2 ρ2τ9c0

12 (8, 3,−4) τ9c0 ρτ9h1c0
12 (14, 3, 2) τ6h0h

2
3 ρ6τ4g

12 (14, 6, 2) τ6h2
0d0 ρ2τ5Pc0

12 (16, 7, 4) τ5Pc0 ρτ5Ph1c0
12 (18, 5, 6) τ6h0f0 ρ5τ3h2

2e0
12 (20, 6, 8) τ4h2

0g ρ6j
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Table 7: Hidden h0 extensions in the ρ-Bockstein spectral sequence

coweight (s, f, w) source target

12 (22, 10, 10) τ2Ph2
0d0 ρ2τP 2c0

12 (24, 11, 12) τP 2c0 ρτP 2h1c0
12 (26, 9, 14) h2

0j ρ4h2
1d

2
0

Table 8: Hidden h1 extensions in the ρ-Bockstein spectral sequence

coweight (s, f, w) source target proof

2 (0, 1,−2) τ2h0 ρτ2h2
1

3 (3, 1, 0) τ2h2 ρ2τh2
2

3 (6, 2, 3) τh2
2 ρc0

5 (9, 4, 4) τ2h1c0 ρPh2

6 (0, 1,−6) τ6h0 ρτ6h2
1

6 (9, 3, 3) τ3h3
2 ρ4d0 Lemma 7.12

7 (14, 3, 7) τh0h
2
3 ρ2e0

9 (9, 3, 0) τ6h2
1h3 ρ7τ2e0

9 (9, 4, 0) τ6h1c0 ρτ4Ph2

9 (17, 8, 8) τ2Ph1c0 ρP 2h2

9 (18, 5, 9) τ2h1e0 ρτh2
2d0

10 (0, 1,−10) τ10h0 ρτ10h2
1

10 (14, 2, 4) τ4h2
3 ρ4τ2c1

10 (18, 4, 8) τ2f0 ρ2τ2h1g Lemma 7.13
10 (19, 3, 9) τ2c1 ρ2τh2c1
11 (3, 1,−8) τ10h2 ρ2τ9h2

2

11 (6, 2,−5) τ9h2
2 ρτ8c0

11 (9, 4,−2) τ8h1c0 ρτ6Ph2 Lemma 7.14
11 (11, 5, 0) τ6Ph2 ρ2τ5h2

0d0 Lemma 7.14
11 (14, 6, 3) τ5h2

0d0 ρτ4Pc0
11 (17, 8, 6) τ4Ph1c0 ρτ2P 2h2 Lemma 7.14
11 (19, 3, 8) τ3c1 ρ2τ2h2c1 Lemma 7.15
11 (19, 9, 8) τ2P 2h2 ρ2τPh2

0d0 Lemma 7.14
11 (22, 10, 11) τPh2

0d0 ρP 2c0
12 (21, 5, 9) τ4h1g ρτ3h2

2e0
12 (22, 9, 10) τ2Ph0d0 ρτ2Ph2

1d0
12 (23, 6, 11) τ3h2

2e0 ρ2j Lemma 7.16
12 (26, 7, 14) j ρd20 Lemma 7.16
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Table 9: Multiplicative generators of πR
∗,∗

coweight (s, w) element detected by

0 (−1,−1) ρ ρ
0 (0, 0) h h0

0 (1, 1) η h1

1 (1, 0) τη τh1

1 (3, 2) ν h2

2 (0,−2) τ2h τ2h0

3 (3, 0) τ2ν τ2h2

3 (6, 3) τν2 τh2
2

3 (7, 4) σ h3

3 (8, 5) ǫ c0
4 (0,−4) τ4h τ4h0

4 (8, 4) τǫ τc0
5 (1,−4) τ5η τ5h1

5 (9, 4) τµ9 τPh1

5 (11, 6) ζ11 Ph2

6 (0,−6) τ6h τ6h0

6 (14, 8) κ d0
7 (7, 0) τ4σ τ4h3

7 (11, 4) τ2ζ11 ρ6e0
7 (14, 7) τσ2 ρh4

7 (15, 8) ρ15 h3
0h4

7 (16, 9) η4 h1h4

8 (0,−8) τ8h τ8h0

8 (8, 0) τ5ǫ τ5c0
8 (14, 6) τ2σ2 τ2h2

3

8 (16, 8) τη4 τh1 · h4

8 (17, 9) τνκ ρf0
8 (18, 10) ν4 h2h4

8 (19, 11) σ̄ c1
8 (20, 12) {h2e0} h2e0
9 (1,−8) τ9η τ9h1

9 (9, 0) τ5µ9 τ5Ph1

9 (11, 2) τ4ζ11 τ4Ph2

9 (15, 6) τ3ηκ ρ2τ2e0
9 (17, 8) τµ17 τP 2h1

9 (19, 10) τσ τc1
9 (19, 10) ζ19 P 2h2

9 (21, 12) τηκ h2f0
9 (23, 14) νκ h2g
10 (0,−10) τ10h τ10h0

10 (15, 5) τ4ηκ ρ3τ2f0
10 (18, 8) τ2ν4 τ2h2 · h4

10 (19, 9) τ2σ τ2c1
10 (20, 10) τ2hκ h2 · τ

2e0
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Table 9: Multiplicative generators of πR
∗,∗

coweight (s, w) element detected by

10 (21, 11) τνν4 τh2
2 · h4

11 (3,−8) τ10ν τ10h2

11 (6,−5) τ9ν2 τ9h2
2

11 (8,−3) τ8ǫ τ8c0
11 (11, 0) τ6ζ11 τ6Ph2

11 (15, 4) τ4ρ15 τ4h3
0h4

11 (17, 6) τ4νκ τ2h0 · τ
2e0

11 (19, 8) τ3σ τ3c1
11 (19, 8) τ2ζ19 τ2P 2h2

11 (23, 12) ρ23 h2
0i

11 (26, 15) τν2κ ρh3g
11 (28, 17) {h1h3g} h1h3g
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Table 10: Some Toda brackets in π∗,∗

coweight (s, w) bracket detected by proof used in

3 (3, 0)
〈

ρ2, τη, ν
〉

τ2h2

〈

ρ2, τh1, h2

〉

Table 11
4 (8, 4) 〈ǫ, h, ρ〉 τc0 〈c0, h0, ρ〉 Table 11
7 (7, 0)

〈

ρ4, τ2ν, σ
〉

τ4h3

〈

ρ4, τ2h2, h3

〉

Table 11
7 (14, 7)

〈

ρ, h, σ2
〉

ρh4 d2(h4) = h0h
2
3 Lemma 10.2

8 (8, 0)
〈

τ5η, hν, ν
〉

τ5c0 C-motivic Table 11
8 (14, 6)

〈

τ2ν, σ, ν
〉

τ2h2
3 C-motivic Table 11, Lemma 9.9

8 (16, 8)
〈

σ2, 2, τη
〉

τh1 · h4 d2(h4) = (h0 + ρh1)h
2
3 Table 11

8 (16, 8) 〈τµ9, hν, ν〉 τPc0 C-motivic Table 11
8 (17, 9) 〈ρ, h, νκ〉 ρf0 d2(f0) = h2

0e0 Lemma 10.3
8 (18, 10) 〈ν, σ, hσ〉 h2h4 d2(h4) = h0h

2
3 Table 11

9 (15, 6) 〈ρ, ρτη, τη · κ〉 ρ2τ2e0 d2(τ
2e0) = τ2h2

1d0 Table 11
9 (21, 12) 〈ρ, {h2e0}, η〉 h2f0 〈ρ, h2e0, h1〉 Lemma 9.4
9 (21, 13) 〈{h2e0}, η, h〉 c0d0 C-motivic Lemma 9.4
10 (18, 8)

〈

ρ2, τη, ν4
〉

τ2h2 · h4 Lemma 8.4 Table 11
10 (19, 9)

〈

τ2ν, ησ, σ
〉

τ2c1 C-motivic Table 11
11 (3,−8)

〈

ρ2, τ9η, ν
〉

τ10h2

〈

ρ2, τ9h1, h2

〉

Table 11
11 (11, 0)

〈

ρ2, τ5η, ζ11
〉

τ6Ph2

〈

ρ2, τ5h1, Ph2

〉

Table 11
11 (19, 8)

〈

ρ2, τη, ζ19
〉

τ2P 2h2

〈

ρ2, τh1, P
2h2

〉

Table 11
11 (19, 8)

〈

ρ, h, τ2σ̄
〉

τ3c1
〈

ρ, h0, τ
2c1

〉

Table 11
12 (8,−4)

〈

τ9η, hν, ν
〉

τ9c0 C-motivic Table 11
12 (16, 4)

〈

σ2, 2, τ5η
〉

τ5h1 · h4 d2(h4) = (h0 + ρh1)h
2
3 Table 11

12 (16, 4)
〈

τ5µ9, hν, ν
〉

τ5Pc0 C-motivic Table 11
12 (20, 8)

〈

ρ, τ2h, ρ, {h2e0}
〉

τ4g
〈

ρ, τ2h0, ρ, h2e0
〉

Table 11
12 (24, 12) 〈τµ17, hν, ν〉 τP 2c0 C-motivic Table 11
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Table 11: Some permanent cycles in the R-motivic Adams spectral
sequence

coweight (s, f, w) element proof

3 (3, 1, 0) τ2h2

〈

ρ2, τη, ν
〉

4 (8, 3, 4) τc0 〈ǫ, h, ρ〉
7 (7, 1, 0) τ4h3

〈

ρ4, τ2ν, σ
〉

7 (11, 4) ρ6e0 Lemma 8.14
8 (8, 3, 0) τ5c0

〈

τ5η, hν, ν
〉

8 (14, 6) τ2h2
3

〈

τ2ν, σ, ν
〉

8 (16, 7, 8) τPc0 〈τµ9, hν, ν〉
8 (16, 2, 8) τh1 · h4

〈

σ2, 2, τη
〉

8 (18, 2, 10) h2h4 〈ν, σ, hσ〉
9 (15, 4, 6) ρ2τ2e0 〈ρ, ρτη, τη · κ〉
10 (18, 2, 8) τ2h2 · h4

〈

ρ2, τη, ν4
〉

10 (19, 3, 9) τ2c1
〈

τ2ν, ησ, σ
〉

11 (3, 1,−8) τ10h2

〈

ρ2, τ9η, ν
〉

11 (11, 5, 0) τ6Ph2

〈

ρ2, τ5η, ζ11
〉

11 (19, 3, 8) τ3c1
〈

ρ, h, τ2σ̄
〉

11 (19, 9, 8) τ2P 2h2

〈

ρ2, τη, ζ19
〉

11 (23, 4, 12) h4 · τc0 σ · τη4
12 (8, 3,−4) τ9c0

〈

τ9η, hν, ν
〉

12 (16, 2, 4) τ5h1 · h4

〈

σ2, 2, τ5η
〉

12 (16, 7, 4) τ5Pc0
〈

τ5µ9, hν, ν
〉

12 (20, 4, 8) τ4g
〈

ρ, τ2h0, ρ, h2e0
〉

12 (24, 11, 12) τP 2c0 〈τµ17, hν, ν〉

Table 12: Adams d2 differentials

coweight (s, f, w) x d2(x) proof

7 (15, 1, 8) h4 h0h
2
3 classical

7 (17, 4, 10) e0 h2
1d0 classical

7 (14, 3, 7) τh0h
2
3 ρ2h1d0 Lemma 8.8

8 (18, 4, 10) f0 h2
0e0 Lemma 8.9

9 (17, 4, 8) τ2e0 (τh1)
2d0 classical

10 (18, 4, 8) τ2f0 τ2h2
0e0 + ρ3τh2

2 · d0 Lemma 8.10
10 (21, 5, 11) τ2h1g ρ2c0d0 Lemma 8.11
11 (23, 8, 12) h0i Ph2

0d0 classical
11 (27, 5, 16) h3g h3

1h4c0 C-motivic
12 (26, 7, 14) j Ph2 · d0 classical
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Table 13: Adams d3 differentials

coweight (s, f, w) x dr(x) proof

7 (15, 2, 8) h0h4 h0d0 + ρh1d0 Lemma 8.16
12 (23, 6, 11) τh2

2 · τ
2e0 ρτPh1 · d0 Lemma 8.17

12 (25, 7, 13) c0 · τ
2e0 τPh1 · h1d0 Lemma 8.17

Table 14: Hidden ρ extensions in the R-motivic Adams spectral
sequence

coweight (s, f, w) source target

7 (15, 4, 8) h3
0h4 ρ4h1e0

7 (17, 5, 10) h2d0 τh1 · h1d0
8 (15, 2, 7) ρτh1 · h4 h0 · τ

2h2
3

8 (15, 4, 7) ρ3f0 τ2h0 · d0
10 (15, 2, 5) ρ3τ2h2 · h4 τ4h3 · h0h3

10 (15, 4, 5) ρ3τ2f0 τ4h0 · d0
10 (23, 8, 13) h1 · τc0 · d0 Ph0d0
11 (15, 4, 4) τ4h0 · h

2
0h4 τ5h2

0d0
11 (17, 5, 6) τ2h0 · τ

2e0 τ5h1 · h1d0
11 (18, 5, 7) ρ3f0 · τ

2h2 h0 · τ
2h0 · τ

2e0
11 (23, 9, 12) h2

0i τPh2
0d0

Table 15: Hidden h extensions in the R-motivic Adams spectral
sequence

coweight (s, w) source target

7 (11, 4) ρ6e0 τ2h0 · Ph2

9 (21, 12) h2f0 ρc0d0
9 (23, 14) h0h2g h1c0d0
10 (22, 12) τc0 · d0 Ph0d0
11 (23, 12) τ2h0 · h2g τPh1 · d0

Table 16: Hidden η extensions in the R-motivic Adams spectral
sequence

coweight (s, f, w) source target

7 (15, 4, 8) h3
0h4 ρ3h2

1e0
9 (15, 5, 6) τ2h0 · h

3
0h4 ρτh1 · τPc0

9 (21, 5, 12) h2f0 c0d0
10 (20, 5, 10) h2 · τ

2e0 ρτc0 · d0
10 (21, 7, 11) ρτc0 · d0 Ph0d0
11 (15, 4, 4) τ4h0 · h

2
0h4 τ4Pc0

11 (23, 9, 12) h2
0i P 2c0
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Table 17: Hidden values of extension by scalars

coweight (s, f, w) source target

7 (11, 4, 4) ρ6e0 τ2Ph2

7 (14, 1, 7) ρh4 τh2
3

7 (16 + k, 6 + k, 9 + k) ρ3hk+2
1 e0 Phk

1c0
8 (17, 4, 9) ρf0 τh2d0
9 (15, 4, 6) ρ2τ2e0 τ3h1d0
10 (15, 4, 5) ρ3τ2f0 τ4h1d0
10 (22, 7, 12) τc0 · d0 Pd0
10 (23, 8, 13) h1 · τc0 · d0 Ph1d0
11 (20, 5, 9) τ2h2 · ρf0 τ3h2

0g
11 (26, 5, 15) ρh3g τh2

2g
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