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R-MOTIVIC STABLE STEMS

EVA BELMONT AND DANIEL C. ISAKSEN

ABSTRACT. We compute some R-motivic stable homotopy groups. For s—w <
11, we describe the motivic stable homotopy groups 7s,w of a completion of
the R-motivic sphere spectrum. We apply the p-Bockstein spectral sequence
to obtain R-motivic Ext groups from the C-motivic Ext groups, which are well-
understood in a large range. These Ext groups are the input to the R-motivic
Adams spectral sequence. We fully analyze the Adams differentials in a range,
and we also analyze hidden extensions by p, 2, and 7. As a consequence of
our computations, we recover Mahowald invariants of many low-dimensional
classical stable homotopy elements.

1. INTRODUCTION

The goal of this article is to compute the stable homotopy groups of the R-
motivic sphere spectrum in a range. These stable homotopy groups are the most
fundamental invariants of the R-motivic stable homotopy category, and thus lead
to a deeper understanding of many of the computational aspects of R-motivic ho-
motopy theory. More specifically, we work in cellular R-motivic stable homotopy
theory, completed appropriately at 2 and 7 so that the R-motivic Adams spectral
sequence converges.

Our main tool is the R-motivic Adams spectral sequence, which takes the form

E2 :EXtA(MQ,MQ) = Tax.

Here A is the R-motivic Steenrod algebra, My is the R-motivic cohomology of a
point, and 7, . is the bigraded homotopy groups of the R-motivic sphere (completed
at 2 and 7). We obtain complete results about 7, ,, for s —w < 11. This approach
follows [11], which computed 75 ,, for s —w < 3.

See [7] for large-scale R-motivic Adams charts. These charts are an essential
companion to this manuscript. In a sense, this manuscript consists of a series of
arguments for the computational facts displayed in the Adams charts.

1.1. The p-Bockstein spectral sequence. The first step in an Adams spectral
sequence program is to obtain the algebraic Fs-page. We study this computation
in Sections 5, 6, and 7. We use the p-Bockstein spectral sequence, which takes the
form

Ext_4c(MS, MS)[p] = Ext4 (Mg, My).
Here A® is the C-motivic Steenrod algebra, and MS is the C-motivic cohomology
of a point.
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The p-Bockstein spectral sequence is a tool that passes from C-motivic Ext
groups to R-motivic Ext groups. We discuss the general properties of this spec-
tral sequence in Section 5, and we describe an unexpectedly effective strategy
for computing differentials. The key idea is to compute the p-periodic groups
Ext4(Mz, My)[p~!] in advance. Then naive combinatorial considerations force a
very large number of Bockstein differentials. We discuss specific Bockstein differ-
ential computations in Section 6.

Having obtained the E.-page of the p-Bockstein spectral sequence, we do not
yet have a complete knowledge of Ext 4(Ms, Ms). It remains to resolve extensions
that are hidden by the p-Bockstein filtration. There is an unmanageable quantity
of hidden extensions, so we do not attempt to analyze them completely, not even
in a range. Nevertheless, we do analyze all extensions by hg and h; in the range
under consideration. These computations are carried out in Section 7.

1.2. The R-motivic Adams spectral sequence. Having obtained the Fs-page
of the R-motivic Adams spectral sequence, the next step is to determine Adams
differentials. We carry out these computations in Section 8. These differentials
can be obtained by a variety of techniques. One important technique is the use of
the Moss Convergence Theorem 8.2 to compute Toda brackets, which determine
that certain elements are permanent cycles. Another technique is comparison to
previously established computations in the C-motivic and classical computations.
See Section 1.3 for more discussion of these comparisons.

After computing Adams differentials and obtaining the Adams E.-page, there
are once again hidden extensions to resolve. As in the algebraic case, there are
too many extensions to study exhaustively, but we do consider all extensions by p,
h, and 7 exhaustively (where p, h, and n are stable homotopy elements detected
by p, ho, and hy respectively). These computations are carried out in Section 9.
Once again, the key techniques are shuffling relations involving Toda brackets and
comparison to the C-motivic and classical cases.

1.3. Comparison of homotopy theories. An essential ingredient in our com-
putations is comparison between the R-motivic, C-motivic, Cs-equivariant, and
classical stable homotopy theories, as depicted in the diagram

.. realization . .
(1.1) R-motivic ——————— Cy-equivariant
extension of scalarsl lforgctful

C-motivic ————— classical.
realization

The horizontal arrows labelled “realization” refer to the Betti realization functors
that take a variety over C (resp., over R) to the space (resp., Ca-equivariant space)
of C-valued points. The vertical arrow labelled “extension of scalars” refers to the
functor that takes a variety over R and views it as a variety over C. The vertical
arrow labelled “forgetful” refers to the functor that takes a Cy-equivariant object
to its underlying non-equivariant object.

Our philosophy in this article is to accept computational information about the
C-motivic and classical stable homotopy groups as given, and to use this information
to study the R-motivic stable homotopy groups. See [18] for an extensive summary
of computational information about the C-motivic and classical Adams spectral
sequences. The presence of the Cs-equivariant stable homotopy category in this
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diagram is relevant for our consideration of Mahowald invariants, to be discussed
below in Section 1.4.

There is a surprising connection between C-motivic and R-motivic that enables
many of our detailed computations. Namely, Theorem 3.4 shows that the C-motivic
stable homotopy groups are isomorphic to the R-motivic homotopy groups of the
cofiber S/p of p. This means that the structure of C-motivic stable homotopy
groups governs both the cokernel and the kernel of multiplication by p. This allows
us to deduce many R-motivic computational facts with relative ease from known
C-motivic information.

1.4. Mahowald invariants. Let o be a non-zero classical stable homotopy ele-
ment. The Mahowald invariant (or root invariant) R(c) is a non-zero equivalence
class of classical stable homotopy elements in a stem that is higher than the stem
of @. One source of interest in Mahowald invariants is that R(«) appears to have
greater chromatic complexity than «. Thus one can construct more exotic stable
homotopy elements out of elements that are better understood [20)].

Bruner and Greenlees reformulated the definition of the Mahowald invariant in
terms of Ch-equivariant stable homotopy groups [9]. Although we do not study
Cs-equivariant homotopy groups directly, we have indirectly obtained information
about them because the R-motivic and Cs-equivariant stable homotopy groups are
isomorphic in a range [6]. In Section 4, we show how many Mahowald invariants
can be immediately deduced from our R-motivic computations. While these results
only recover previously known Mahowald invariants [20] [4], we believe that our
techniques can be extended into uncharted territory without much more effort.

Theorem 1.5. Table 1 gives some values of the Mahowald invariant.

Table 1: Some Mahowald invariants

stem « R(a) indeterminacy
0 2 n

0 4 n?

0 8 n3

1 n v 2u, v

2 n? 2

3 v o 20, 40, 8o
3 v no €

3 v n?c ne

6 V2 o2 K

7 o o

7 200 m np15

7 40 nm vk, Ppis
8 noc Iy 2uy, 4y

8 € T

9 n?c vvy 1R

Proof. Theorem 4.10 reduces the computation to an R-motivic Mahowald invariant,
as defined in Section 4.3. Table 3 gives the values of the R-motivic Mahowald
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invariant. Finally, Table 17 gives the Betti realizations of the R-motivic Mahowald
invariants. O

See Examples 4.9 and 4.11 for detailed illustrations of how this technique plays
out in practice.

We have computed the Mahowald invariant of most, but not every, a through
the 11-stem. In particular, we do not compute the Mahowald invariants of 2% for
k >4, 80, ne, pg, nitg, nor (11 and its multiples. In these cases, the problem is that
the inequality of Theorem 4.10 does not apply, so our R-motivic computations do
not determine Cs-equivariant behavior.

2. NOTATION

We write My for the R-motivic homology of a point with coefficients in F5. Recall
that M is isomorphic to Fa[p, 7], where p and 7 have degrees (—1,—1) and (0,—1)
respectively [26].

We write A for the R-motivic dual Steenrod algebra. Recall that A is described
by the equations

A=Malro,71,...,€1,8,...1/(Th = 7&+1 + pThs1 + pTobkr1)
(1) =7, nr(T) =7+ p10, nLlp) =nr(p) =p
Am) =n®1+) &G0

Ag) =Y ¢, w8,

where 7; and & have degrees (201 — 1,2¢ — 1) and (2! — 2,2 — 1) respectively
[27].

We write MS for the C-motivic homology of a point with coefficients in Fy, and
we write AC for the C-motivic dual Steenrod algebra. These objects are easily
described in terms of My and A. Namely, they are the result of setting p equal to
Zero.

We write A for the classical dual Steenrod algebra, which can be obtained from
A by setting p and 7 to be 0 and 1 respectively.

We write Ext or Extg for Ext 4 (Mg, My), i.e., the cohomology of the R-motivic
Steenrod algebra. We write Extc and Ext.; for the cohomologies of the C-motivic
and classical Steenrod algebras respectively.

We write ), or wﬁq for the stable homotopy groups of the R-motivic sphere
spectrum. Similarly, we write wg o for the stable homotopy groups of the C-motivic
sphere spectrum. We adopt the usual motivic grading convention, so that m, X
denotes maps out of SP?, where SP? is the smash product of p — ¢ copies of the
simplicial sphere and g copies of A — 0.

We write ﬂ'pcjz for the stable homotopy groups of the Cs-equivariant sphere spec-
trum. We use an equivariant grading convention that is compatible with the motivic
grading convention, so that 7, ;X denotes maps out of S¥*¢, where SP¢ is the one-
point compactification of RP, with Cs acting by negating the last ¢ coordinates.
Betti realization takes R-motivic SP'? to Cs-equivariant SP-9.

We write m, for the classical stable homotopy groups.
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All stable homotopy groups are suitably completed so that Adams spectral se-
quences converge. Classically, this means completion at 2. In the motivic cases,
this means completion at 2 and 7 [17].

Grading conventions. Following [18] and [11], we use the following grading con-
vention for the motivic Adams spectral sequence: s denotes the stem, f denotes
the Adams filtration, and w denotes the motivic weight. Then the internal degree
is s+ f. In this grading, Adams differentials take the form

. g frw s—1,f+r,w
dy: E; — E7 .

The coweight of an element in degree (s, f,w) is defined to be s — w. Note that
p has coweight 0. In particular, an element = and its p-multiple pz lie in the same
coweight. This makes coweights particularly useful in the p-Bockstein perspective
that we adopt.

2.1. Stable homotopy elements. We adopt conventional notation, as used (for
example) in [18] [19], for the names of elements in the classical stable homotopy
groups 7, and the C-motivic stable homotopy groups wf)*.

Table 9 gives the notation that we use for elements of WE*. We define these
elements in terms of the elements of the Adams E.-page that detect them. These
definitions have indeterminacy parametrized by elements of the Adams E..,-page in
higher Adams filtration. As a general rule, this indeterminacy does not matter to
our computations. It is possible to use Toda brackets, or geometric constructions

(see [10]), to eliminate the indeterminacy in many cases.

Remark 2.2. We use the symbol h to denote an element of 7 o that is detected by
ho. The symbol stands for “hyperbolic” because it corresponds to the hyperbolic
plane in the Grothendieck-Witt group interpretation of m o [22, Remark 6.4.2].
(Alternatively, it can also stand for “Hopf”, since h is the zeroth Hopf map.) Beware
that h does not equal 2; in fact, 2 = h 4 pn.

Remark 2.3. The element o requires more discussion. We write o for an element
of m7 4 that is detected by hs. There are 256 possible choices for o, because of
the presence of elements in higher Adams filtration. One such element in higher
filtration is pcg. Lemma 7.19 shows that 72hs - pcy equals p*dg. Therefore, some
possible choices of o have the property that 72v-¢ is detected by p*do in 10,4, While
other possible choices of o have the property that 72v - ¢ is zero. (The elements
Thy - TPhy and phy - Thy - 7TPhy are not relevant, by comparison to kg as in Remark
8.15.)

We will need to use the relation 7°v - ¢ = 0 in later computations, so we must
assume that our choice of o satisfies this condition.

2

Remark 2.4. In some cases, we have chosen names for elements of WE* that reflect
the values of the extension of scalars functor given in Table 17. For example, we
write 702 for an element of w%ﬂj that is detected by phy, since this element maps
to 702 in 71'?477.

Remark 2.5. Beware that our use of the symbol % is inconsistent with its usage in
[18]. In this manuscript, 7% refers to a non-zero element of 7T§C0711 that is detected
by 7¢. The symbol & is used in [18] for the same element.
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Remark 2.6. Occasionally we refer to stable homotopy elements that have no
standard name. In these cases, we use the symbol {z} to indicate a stable homotopy
element that is detected by an element x of an Adams F.-page.

3. COMPARISON BETWEEN R-MOTIVIC AND C-MOTIVIC HOMOTOPY

We first discuss the relationship between R-motivic and C-motivic stable homo-
topy theory. We will use these ideas frequently in later sections to obtain R-motivic
information from known C-motivic information.

Consider the cofiber sequence

g-1—1 P_>So,0_>5/p'

The cofiber S/p of p is a 2-cell complex whose structure governs multiplication by
p in the R-motivic stable homotopy groups, in a sense to be made precise in this
section. In addition, we will draw an unexpected connection between the R-motivic
homotopy groups of S/p and C-motivic stable homotopy groups.

As shown in diagram (1.1), there is an extension of scalars functor from R-
motivic stable homotopy theory to C-motivic stable homotopy theory, and a Betti
realization functor from C-motivic stable homotopy theory to classical stable ho-
motopy theory. These functors take Eilenberg-Mac Lane spectra to Eilenberg-Mac
Lane spectra, and thus interact nicely with Adams spectral sequences. In par-
ticular, they induce highly structured morphisms of Adams spectral sequences.
We will frequently use these comparison functors to deduce information about the
R-motivic Adams spectral sequence from already known information about the C-
motivic and classical Adams spectral sequences. See [18] for an extensive summary
of computational information about the C-motivic and classical Adams spectral
sequences.

Extension of scalars takes the element p of m_; _; to zero. In particular, it
induces the map My — Mg that takes p to zero, and it similarly induces the map
A — AC that takes p to zero.

For an R-motivic spectrum, we write Extg(X) for the Es-page of the R-motivic
Adams spectral sequence that converges to m. .(X), i.e., for Ext (M, H**(X)),
and similarly for Extc(X).

Extension of scalars induces a diagram

—— BExtg(S~171) L Extg(S%?) ———— Extg(S/p) ————

l l |

—— Bxte($7H1) — - Exte(9%0) —— Bxte(S%0 Vv §7371) ——

Because p becomes zero after extension of scalars, the bottom row of the diagram
splits. The map Extgr(S/p) — Extc(S%° v §=271) lifts to a map Extgr(S/p) —
Extc(S%9) that makes the diagram

EXtR(SO’O) R EXtR(S/p)

|

EXtc(SO"O)

commute.
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Proposition 3.1. The map Extg(S/p) — Extc(S%°) is an isomorphism.

Proof. Let Cj; and C¢ be the cobar complexes for Extg (5%°) and Extc (S%°) respec-
tively. Note that Cg is isomorphic to Cf;/p. Because multiplication by p is injective
on Cf, this is also isomorphic to the cobar complex that computes Extr(S/p). O

Remark 3.2. Because of the isomorphism of Proposition 3.1, the object Extc is
a module over Extg. By careful inspection of definitions, this module action is
easy to describe. Using the p-Bockstein spectral sequence notation from Section
5, a typical element of Extgr is of the form pFz, where x belongs to Extc. The
Extr-module action on Extc is described by
Kooy — 0 ifk>0

prEy= zy ifk=0,
where the last expression zy is to be interpreted as the usual Yoneda product of
elements in Extc.

Remark 3.3. Proposition 3.1 implies that there is a long exact sequence

Extr P Extr : Extc b Extr P Extr

of Extg-module maps, where Extc is an Extg-module as in Remark 3.2. If z is a
permanent cycle in the p-Bockstein spectral sequence, then the map ¢ takes = in
Extr to the element of Extc of the same name.

Now consider the diagram

p
(31) 7T§+17*+1 ﬂ-R* FE*(S/p)

)

/

*

*
C
*

)

™

C

K,k "

in which the diagonal arrow exists because p maps to zero in 7

Theorem 3.4. The map % ,(S/p) — 7C, is an isomorphism.

*,%

Proof. Proposition 3.1 shows that there is an isomorphism of Es-pages of Adams
spectral sequences, so the targets of the spectral sequences are also isomorphic. [

Corollary 3.5. Let o be an element of WE*. Extension of scalars takes o to zero
mn wicy* if and only if « is divisible by p.

Proof. Chase the diagram (3.1), using that the diagonal map is an isomorphism. [

Remark 3.6. Corollary 3.5 has a Cs-equivariant analogue, as stated later in Propo-
sition 4.2.

Remark 3.7. The isomorphism of Theorem 3.4 can be strengthened to an equiv-
alence of categories [5, Corollary 8.6]. Namely, the 2-complete C-motivic cellular
stable homotopy category is equivalent to the homotopy category of S/p-modules
in the 2-complete R-motivic cellular stable homotopy category.

Corollary 3.8. There is a long exact sequence

o '—>7T]§+1,w+1(8)p—>77R (§)——m

s,w (S)—>7T§w+1 (S)—> e

s, w
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Proof. This is the long exact sequence in homotopy for the fiber sequence

S—L 85— +5/p

in R-motivic spectra, after applying the identification in Theorem 3.4. (Il

4. MAHOWALD INVARIANTS

The goal of this section is to use R-motivic computations to recompute some
Mahowald invariants. See [4, Section 4] for a careful discussion of the definition,
using Lin’s theorem that RP>_ is equivalent to S~!.

— 00

4.1. C3-equivariant homotopy theory and Mahowald invariants. Using Cs-
equivariant homotopy theory, Bruner and Greenlees [9] gave an alternative defini-
tion of the Mahowald invariant. We will summarize this definition, but first we
need some background on Cs-equivariant homotopy theory.

Let S%? be the one-point compactification of R®, where Cy acts by negating the
last b coordinates. Then p : S0 — S1:1 is the inclusion of fixed points. Note that
the cofiber of this map is X(Cs)4, i.e., the suspension of the based free Ca-space.

We use the same notation p for the map S—1~! — S%0 in the Cy-equivariant
stable homotopy group wgi_l. The identification of the cofiber of p leads imme-
diately to the following proposition, whose short proof appears in [12, Proposition
11.2].

Proposition 4.2. Let a be a Co-equivariant stable homotopy element. The under-
lying classical stable homotopy element U(«) of « is zero if and only if « is divisible
by p.

Geometric fixed points gives a map ng — Tq—p, and this map takes p to 1. The
p-periodic groups w&2 [p~1] are isomorphic to 7. ® Z[p*!], i.e., to the classical stable
homotopy groups with p and p~! adjoined [8, Proposition] [2, Proposition 7.0].

With this background on Cs-equivariant stable homotopy groups, we now give
the Bruner-Greenlees definition of the Mahowald invariant. Start with a classical
stable homotopy element « in m,, which we identify with the obvious element of
7. @ Z[pT1] in degree (0, —n). Using the isomorphism

T @ Zp* = 72 p7Y,

write o = p* 3 for some 3 in ﬂ'gi and some integer k, with £ maximal. Finally, the

Mahowald invariant R(«) is the underlying classical stable homotopy element U(f)
of 3.

Note that the Mahowald invariant is not strictly defined; it is a set of classical
stable homotopy elements. While the choice of k is unique, the choice of 3 is not.
Different choices of 3 can lead to different values of U(S3).

Also note that U() is necessarily non-zero by Proposition 4.2. The point is that
[ is not divisible by p, since k was chosen to be maximal.

4.3. R-motivic homotopy theory and Mahowald invariants. We will now
adapt the framework of Bruner and Greenlees [9] from the Cs-equivariant to the R-
motivic settings. In order to carry this out, we need to observe some key R-motivic
properties.

First, the p-periodic groups 7, [p~!] are isomorphic to m, ® Z[p*!], ie., to
the classical stable homotopy groups with p and p~! adjoined [11]. See also [3]
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for a more structured version of this isomorphism. Second, Corollary 3.5 relates
p-divisibility to the kernel of the extension of scalars map.

Definition 4.4. Let « be a classical stable homotopy element in m,,. The R-motivic
Mahowald invariant R¥(«) is defined as follows. Identify o with the obvious element
of

me @ Z[p =l p]
R

*,%

in degree (0, —n). Write a = p¥3 for some 3 in 7%, and some integer k, with k
maximal. Define R¥(a) in wic)* to be the extension of scalars of 3.

Remark 4.5. As for the traditional Mahowald invariant, the R-motivic Mahowald
invariant is not strictly defined. Different choices of 8 can have different values in

7€, under extension of scalars.

*, %

Remark 4.6. As for the traditional Mahowald invariant, the R-motivic Mahowald
invariant is always non-zero by Corollary 3.5. The point is that 3 is not divisible
by p, since k was chosen to be maximal.

Remark 4.7. See [24] [25] for a different consideration of Mahowald invariants in
the motivic context. Our construction does not compare directly.

Theorem 4.8. Some walues of the R-motivic Mahowald invariant are given in

Table 3.

Proof. This follows immediately from the computations carried out later in the
article. In particular, one needs the values of the extension of scalars map, as
shown in Table 17 and discussed in Section 10 (]

Example 4.9. We illustrate Theorem 4.8 by describing the computation of M% (o).
The element ¢ in 77 is identified with the element a of 7 , ®Z[p*!] in degree (0, —7)
that is detected by p'®h4. Then a equals p'*3, where 3 is detected by phy. Finally,
Table 17 shows that the realization of 3 is 702 in wic477.

In general, the relationship between R(«) and R¥(«) is not obvious. The choices
involved in the definitions are not necessarily compatible. For example, it is possible
that an element 3 in WE* is not divisible by p, while its realization in ﬂ'gi is divisible
by p.

The main result of [6] tells us that the R-motivic and Cs-equivariant stable
homotopy groups agree in a range. In this range, R(a) and R¥(«) are easier to
compare.

Theorem 4.10. Let R¥(a) belong to 7€, and Suppose that 2w — s < 4. Then

s,w?

R(a) equals the Betti realization of R¥(a).

Proof. The isomorphism between R-motivic and Cs-equivariant stable homotopy
groups [6] implies that the choice of 3 in the definition of R¥(a) realizes to the
choice of § in the definition of R(«). By the commutativity of the diagram (1.1),
the realization of R®(a) equals R(«). O

Example 4.11. We showed in Example 4.9 that R¥(0) equals 702 in nf, ;. The
numerical condition of Theorem 4.10 is satisfied. It follows that R(c) equals 02 in
14, since o2 is the realization of 7o2.



10 EVA BELMONT AND DANIEL C. ISAKSEN

Remark 4.12. Theorem 4.10, together with our computations of R-motivic stable
homotopy groups, can be used to compute the Mahowald invariants R(«) for most
a up to the 11-stem. The exceptions are 2% for k > 4, 80, ne, pg, Ny, and (1q
and its multiples. In these cases, R¥(a) can still be computed as shown in Table
3. However, the numerical condition of Theorem 4.10 does not hold, so we cannot
draw a conclusion about R(«) in these cases.

5. THE p-BOCKSTEIN SPECTRAL SEQUENCE

We briefly recall some background on the p-Bockstein spectral sequence that
computes the cohomology of the R-motivic Steenrod algebra. See [16] and [11] for
additional details.

Begin with the observation that the C-motivic cohomology of a point M equals
M, /p, and the C-motivic dual Steenrod algebra AC equals A/p. Then filter the
cobar complex by powers of p to obtain the p-Bockstein spectral sequence

(5.1) By = Ext’{ (M5, M5)[p] = Ext’y (Mg, My).

Our goal is to analyze the p-Bockstein spectral sequence (5.1) in computational
detail in a range of degrees. We recall some structural results about this spectral
sequence from [11].

Proposition 5.1. [11, Lemma 3.4] If d,(x) is nontrivial in the p-Bockstein spectral
sequence, then x and d,.(x) are both p-torsion free on the E,-page.

Recall that A is the classical dual Steenrod algebra.

Proposition 5.2. [11, Theorem 4.1] There is an isomorphism
Exct 41 (F2, F2)[p™'] & Ext 4 (Ma, Mz)[p "]

that takes elements of degree (s, f) in Ext 4a(Fo,F2) to elements of degree (2s +
fofos+f) in Ext g(Ma,Ms). In particular, the classical element h,, corresponds to
the R-motivic element hy,41. Moreover, the isomorphism is highly structured, i.e.,
preserves products and Massey products.

The point of Proposition 5.2 is that we a priori know the elements of Exty that are
p-periodic, in the sense that they support infinitely many non-zero multiplications
by p. In the range considered in this manuscript, these p-periodic elements are hq,
ho, hs, hq, c1, hag, h3g, as well as products of these elements. This corresponds to
the fact that through the 11-stem, Ext. is generated by the classical elements hy,
h1, ha, hs, cg, Phi, and Phy. We may effectively ignore these p-periodic elements
when analyzing the p-Bockstein spectral sequence, since they can be neither source
nor target of any p-Bockstein differential.

Let {z;} be an Fy-linear basis for Extc, i.e., an Fy[p]-linear basis for the p-
Bockstein Fi-page, excluding the p-periodic permanent cycles described in the pre-
vious paragraph. For every i, either z; supports a differential, or p"z; is the target
of the d, differential for some r. In other words, the set {x;} may be partitioned
into pairs (x;, z;) such that d.(z;) = p"z; for some j. Actually, one must be some-
what careful about the choice of basis in situations where two or more elements of
the basis have the same degree. Nevertheless, it is always possible to change basis
so that the basis elements can be partitioned into pairs.
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The Bockstein differential d,. : E3/% — Es~L/+1% pregerves the quantity s +
f —w, and p lies in a degree satisfying s + f —w = 0. Thus we may consider one
value of s + f — w at a time when analyzing the p-Bockstein spectral sequence.

We exploit this structure in the following strategy for analyzing the p-Bockstein
spectral sequence.

Strategy 5.3.

(1) Fix a value N = s+ f — w.

(2) Find an Fs[p]-basis By for the part of the p-Bockstein Ej-page in degrees
(s, f,w) satisfying N = s+ f — w.

(3) Remove elements from By that detect p-periodic elements of Extg.

(4) Use a variety of techniques, to be described below, to identify some differ-
ential d,(x;) = p"x;, where x; and x; belong to By.

(5) Remove z; and z; from By.

(6) Repeat steps (4) and (5) until By is empty.

For this strategy to be effective, we need to know that the basis By chosen in
step 2 is finite. Lemma 5.4 establishes this fact.

Lemma 5.4. Let N be fized. In degrees (s, f,w) satisfying N = s+ f — w, the
p-Bockstein Ey-page is a finitely generated Fa[p]-module.

Proof. Recall that Extc is non-zero only in degrees (s, f, w) satisfying s+ f —2w > 0
[18, Remark 2.20]. This inequality can be rewritten in the form

s—i—f—wZ%(s—i—f).

In other words, we only need consider the part of Extc in total degree at most
2N. O

One consequence of our strategy is that we do not compute the Bockstein dif-
ferentials d, in order of increasing r. Rather, we obtain all differentials as part of
the same process.

Step (4) is the limiting factor in the practical effectiveness of our algorithm. The
ad hoc arguments required to establish specific differentials become more difficult
as the value of IV increases. However, these difficulties increase at a surprisingly
slow rate, and we are able to carry out the computation remarkably far without
much difficulty.

Our goal is to compute the p-Bockstein spectral sequence through coweight 13.
Unfortunately, infinitely many values of N in Step 1 are relevant in this range. For
example, consider the elements k¥ of coweight 0, which belong to degrees satisfying
s+f-—w=k.

Similarly, any hi-periodic sequence of elements h¥z of Extc lies in degrees for
which s + f — w is unbounded. Fortunately, it is only these hi-periodic families
that are problematic.

Lemma 5.5. Let x be a non-zero element of Extc of degree (s, f,w) whose coweight
is at most k. Then:

(1) x is an hy-periodic element, in the sense that hiz is non-zero for all i > 0;
or
(2) s+ f—w<3k+3.
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Proof. If 2f — s > 4, then x is hy-periodic [14]. So we may assume that 2f — s < 4.
By [18, Remark 2.20], we also have the inequality s + f — 2w > 0. Combining
with the assumption s — w < k, we conclude that

s+ f-w=02f—-s)—(s+f—-2w)+3(s—w) <4+0+3k=3k+4.
O

As we wish to consider elements up to coweight 13, Lemma 5.5 suggests we
need to look at degrees satisfying the inequality s + f — w < 42, in addition to
studying hi-periodic elements. However, inspection of elements in Extc shows that
s+ f—w < 28 for all elements that are relevant in our range.

The hi-periodic elements of Extc are well-understood [13]. Up to coweight 13,
all such elements are of the form 1, P*hy, Pkcy, Pdy, P*eqy, Pcydy, d2, or coeg, as
well as the hi-multiples of these elements. Lemma 5.5 indicates that the behavior
of the p-Bockstein spectral sequence on these elements must be studied separately.
See Proposition 6.2 for the analysis of these hi-periodic elements.

6. p-BOCKSTEIN DIFFERENTIALS

The goal of this section is to describe a variety of methods for determining p-
Bockstein differentials. These methods are applied in Step (4) of Strategy 5.3.
Taken together, these methods allow us to determine all p-Bockstein differentials
through coweight 13.

We begin with a result that describes all p-Bockstein differentials on the elements
of Adams filtration zero.

Proposition 6.1. [11, Proposition 3.2]

(1) dl(T)fphok -
(2) dor(72") = p* 7% hy fork > 1.

Next we consider hi-periodic elements. These elements must be treated as special
cases because of Case (1) of Lemma 5.5.

Proposition 6.2. Tuable 4 gives some Bockstein differentials that are non-zero
after inverting hy. Through coweight 13, these are the only hy-periodic p-Bockstein
differentials.

For legibility, we have not included powers of p in the values of the Bockstein
differentials in Table 4. For example, the first row of the table is to be interpreted
as dg(Ph1> = pgh?CO.

Proof. The differentials in the hi-periodic p-Bockstein spectral sequence are com-
pletely known [15]. For each hi-periodic element x, this determines d,.(h¥x) for
large values of k. However, it is possible that the elements h¥z support shorter
differentials for small values of k. By inspection, no such shorter differentials oc-
cur. O

Remark 6.3. The phenomenon considered at the end of the proof of Proposition
6.2 turns out not to occur through coweight 13. However, it does occur in higher
coweights.

The following examples are representative arguments for establishing p-Bockstein
differentials. In many situations, more than one argument leads to the same result.
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Example 6.4. Table 2 summarizes the analysis of Bockstein differentials in degrees
(s, f,w) satisfying s + f — w = 6. In these degrees, the FEj-page consists of p
multiples of twenty elements. The first part of Table 2 lists the two elements that
are p-periodic, as in Proposition 5.2. They correspond to the classical elements h{
and hZhs.

The second section of Table 2 lists some differentials that are easily deduced
from Proposition 6.1 and the Leibniz rule.

At this point, only the elements 7*h? and ¢y remain unaccounted. The third
section of Table 2 gives the only possibility.

Table 2: Bockstein differentials for s + f —w = 6

coweight (s, f,w) = dr  dy(x)
0 (6,6,6)  hS

3 (9,3,6)  h3hg

6 (0,0,—6) 70 dy Th
5 (0,1,—5) T5h0 dl T4h(2)
3 (0,1,-3) 73h3 di T2h}
1 (0,1,—1) 7hj dy h8

4 (3,2,—1) T3h0h2 d1 Tgh?
5 (7, 1, 2) 7'2h3 d2 Thl hg
4 (7, 2, 3) Thohg dl hghg
5 (3,1,—2) T4h2 d4 T2h%
4 (2,2,-2) 'h3 d7 ¢

Example 6.5. In some situations, a more careful analysis of multiplicative struc-
ture establishes a differential. For example, di(fo) cannot equal phiey because
h1fo = 0 but ph2eq is not zero.
For a slightly more complicated example, consider the relation hg - 79 = 7 - hog.
This implies that
ho - di(1g) = di(7) - hog = phig,
so d1(7g) must equal phgg.

Example 6.6. Sometimes, the multiplicative structure and an already known dif-
ferential imply that a certain element is killed by p*. Then that element must be
killed by a differential d,. with r < k. For example, the element 7*h?hs = (72h2)?ha
is a permanent cycle because it is a product of permanent cycles. There are two
possible differentials that could hit a p-multiple of it: ds(7%h3) or ds(78h%). Note
that 7*h2h3 is killed by p* because of the differential dy(7%) = p*72hg. Therefore,
p*7m*h2hz must be hit by a d, differential with » < 4. The only possibility is that
d4(7’6h§) = p4T2h%h3.

This differential can be obtained another way using the Leibniz rule, the multi-
plicative relation 76h3 = 7% - 72hy - hy, and the differential dy(74) = p*72hs.

Example 6.7. Sometimes one must look ahead to larger values of s + f — w in
order to use multiplicative relations to rule out differentials. For example, in order
to show that dy(i) = p*hicoep (in degrees satisfying s + f — w = 18), we first
use other techniques to rule out possible differentials until it suffices to eliminate
the possibility that di; (7% Pcg) might equal p''hicoeg. But this would imply that
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d11 (74 Phyco) equals h2coeq (in degrees satisfying s + f —w = 19), and this contra-
dicts the hi-periodic differential d3(Peg) = p3h3coeq from Table 4.

Example 6.8. The Leibniz rule implies that certain elements survive at least to
a certain page of the spectral sequence. For example, the element 79h3 cannot be
hit by a differential, so it must support a differential. There are two possibilities:
dy(7%h2) might equal p*r*h2hy, or dg(78h2) might equal p®73c;. The Leibniz rule
and the relation 76h% = 7% - 7212 imply that

da(7°h3) = du(7*) - 72h3 = p*r?hy - 7?3 = 0.
Therefore, dg(79h3) must equal pS73¢;.

Example 6.9. The multiplicative structure implies that certain elements do not
support any differentials because they are the product of elements that do not
support any differentials.

Extending Example 6.6, sometimes the Massey product structure of Extg implies
that some element p*z must be zero. Then p*z must be the target of a Bockstein d,-
differential for r < k. Through coweight 12, we apply this method only once in the
following Lemma 6.10. However, we anticipate that this approach will become more
and more important in higher coweights. Massey products in Extr are discussed
below in Section 7 and Table 6.

Lemma 6.10. da(7%g) = phafo.

Proof. Table 6 shows that hsfy equals the Massey product <Th1, hi, h4> in Extg.
Shuffle to obtain

p? (Thy, hi, ha) = (p?, Thy, hi) ha,
which equals zero because the last bracket is zero. Therefore, p?hs fo is hit by a d;
or do differential, and the only possibility is that da(72g) = p?ha fo. O

Theorem 6.11 summarizes the results of the analysis of p-Bockstein differentials.

Theorem 6.11. Table 5 lists some values of the p-Bockstein d,. differentials on
multiplicative generators of the E,.-page. Through coweight 13, the d, differential
vanishes on all other multiplicative generators of the E,-page.

For legibility, we have not included powers of p in the values of the Bockstein
differentials in Table 5. For example, the first row of the table is to be interpreted
as dy () = phyg.

7. HIDDEN EXTENSIONS IN THE p-BOCKSTEIN SPECTRAL SEQUENCE

Section 6 explains how to obtain the F.,-page of the p-Bockstein spectral se-
quence through coweight 12. As usual, this F.-page is an associated graded object
of EXtR.

We abuse notation and use the same name for generators of the p-Bockstein
E-page and elements of Extr that they represent. A generator of the p-Bockstein
FE-page can represent more than one element in Extg, where the indeterminacy
is parametrized by elements of the E.-page in higher filtration. For example, the
element 72hy of the E.o-page represents two elements of Extr whose difference is
p4h3.
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We adopt the following convention in selecting generators in Extg. We always
choose an element of Extg that is annihilated by the same power of p as its repre-
sentative in the E..-page. For example, 72hs is annihilated by p? in the F.o-page.
Therefore, we write 72hy for the (unique) element of Extg that is annihilated by
p*. (The other possible choice is p-periodic.)

This convention concerning annihilation by powers of p eliminates much of the
ambiguity in passing from the F..-page to Extg. In some cases, our convention
does not eliminate all ambiguities. However, the remaining ambiguities make little
practical difference.

In order to recover the full structure of Extg from the p-Bockstein E.-page, we
must determine hidden multiplicative extensions. We adopt the precise definition
of a hidden extension given in [18, Section 4.1.1]. In this section, we will analyze
all hidden extensions by hg and h; through coweight 12.

The p-Bockstein spectral sequence has numerous hidden extensions by other
elements. There are so many examples that it is not practical to enumerate them
exhaustively. In practice, these other hidden extensions are occasionally useful, and
we treat them on an ad hoc basis as necessary.

Definition 7.1. A hidden a extension from x to y is decomposable if there exists
a hidden a extension from u to v, and there exists z such that x = zu and y = zv
in the F..-page.

Example 7.2. There is a hidden hg extension from 7h; to prh?. Multiplication
by Th1 gives the decomposable hidden hg extension from 72h? to pr2h3.

Definition 7.1 allows us to focus only on the hidden extensions that are most
significant. In practice, decomposable hidden extensions are easy to understand,
once the indecomposable hidden extensions have been studied.

Remark 7.3. The structure of the p-Bockstein spectral sequence guarantees that
there are no hidden extensions by p. For degree reasons, if there is a possible hidden
p extension from x to y, then in fact y is a multiple of p. According to the definition
of a hidden extension [18, Section 4.1.1], this means that y cannot be the target of
a hidden p extension.

7.4. Massey products. Our main tool for establishing hidden extensions is the
May Convergence Theorem [21, Theorem 4.1], restated here for convenience.

Theorem 7.5 (May Convergence Theorem). Let g, a1, and as be elements of
Extr such that the Massey product {cg,aq,as) is defined. For each i, let a; be a
permanent cycle in the Bockstein E.-page that detects o;. Suppose further that:

(1) there exist elements ap1 and a2 in the Bockstein E,.-page such that d,(ao1)
equals agay and d.(a12) equals ajas;
(2) if either agy or a1z has degree (s, f,w) and p-Bockstein degree m, and x is
an element in degree (s, f,w) and p-Bockstein degree m’ such that m’ < m,
then di(x) =0 for all ¢ such that m’ +t > (m —m') +r.
Then apat2 + agraz is a permanent cycle in the p-Bockstein spectral sequence, and
it detects an element of (ap, a1, a2) in Extg.

We will often use Theorem 7.5 in the situation when ag; has p-Bockstein degree
0 and a12 has negative p-Bockstein degree. Since the p-Bockstein spectral sequence
is zero in negative p-Bockstein degrees, condition (2) of Theorem 7.5 simplifies to
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the condition that no element in the same degree as ag; with p-Bockstein degree 0
supports a longer differential.

Proposition 7.6. Table 6 lists some Massey products in Extg.

Proof. Most of these Massey products are straightforward applications of the May
Convergence Theorem 7.5. In those cases, the sixth column of Table 6 gives the
p-Bockstein differential that is relevant for computing the Massey product.

In some cases, the Massey products follow by comparison to the C-motivic case.
This is denoted by the word “C-motivic” in the sixth column of Table 6. However,
this only determines the Massey product up to multiples of p. These ambiguities
can typically be eliminated by the multiplicative structure. In particular, if the
Massey product (z,y, z) is defined and p®z and p®z are both zero, then

p* Ty, 2) = p" (p% @, y) 2 = 0.

The indeterminacies can be computed by inspection. (I

Table 6 is not meant to be an exhaustive list of Massey products. It merely
provides an assortment of Massey products that are needed for various specific
computations throughout the manuscript.

7.7. Hidden hg extensions.

Proposition 7.8. Table 7 lists all indecomposable hidden hy extensions in the
p-Bockstein spectral sequence, through coweight 12.

Proof. All of the hidden h( extensions in Table 7 are proved using a single technique,
which was introduced in the proof of [11, Lemma 6.2]. To illustrate this technique,
we will show that there is a hidden hy extension from 72hicy to p?>Phs.

First we show that the product hg - 72hico is nonzero in Extg. If not, then
the Massey product <p, h0,72h100> would be defined in Extg. The May Conver-
gence Theorem 7.5, together with the p-Bockstein differential d; (1) = phg, would
then imply that 73hico is a permanent cycle. But this contradicts the p-Bockstein
differential dz(73hico) = p3 Pha.

This shows that there must be a hidden hgy extension on 72hicy. The target of
this hidden extension can only be p? Phy or 7Phy. But the target must have higher
p-Bockstein filtration than the source, which rules out 7Ph;.

In some cases, one needs to use multiplicative relations to rule out possible hidden
ho extensions. For example, the target of a hidden hy extension cannot support a
p multiplication, since phg = 0 in Extg.

We must also show that many elements do not support hidden hg extensions. In
all cases through coweight 12, the non-existence follows from simple multiplicative
relations. For example, if x is already known to not support an hg extension, then
the product xy cannot support an hy extension. Similarly, if A1y or py is non-zero,
then y cannot be the target of a hidden extension because of the relations hohy = 0
and pho = 0 in Extg. O

7.9. Hidden h; extensions.

Proposition 7.10. Table 8 lists all indecomposable hidden hy extensions in the
p-Bockstein spectral sequence, through coweight 12.
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Proof. Many of the extensions are established using the map

Extc —p>ExtR

of Remark 3.3. To illustrate this technique, we will show that there is a hidden h,
extension from 72h1cg to pPhy. The relation hy -73co = 73hico in Exte implies that
hy-p(13co) = p(73hic). Observe that p(t3¢c) = prhy-Tco and p(3hico) = p? Pho.
This shows that there is a hidden h; extension from p72hycg to p? Phs, and it follows
that there is also a hidden h; extension from 72hico to pPhs.

Several more difficult cases are established in the following lemmas.

We must also show that many elements do not support hidden h; extensions. In
most cases through coweight 12, the non-existence follows from simple multiplica-
tive relations. For example, if = is already known to not support an h; extension,
then the product zy cannot support an h; extension. Similarly, if hgy is non-
zero, then y cannot be the target of a hidden h; extension because of the relation
hohl =0in EXtR.

Additionally, the map p : Extc — Extg can be used to detect the absence of
some h; extensions. [l

Remark 7.11. The first three extensions in Table 8 were established in [11].
Lemma 7.12. There is a hidden hy extension from 73h3 to p*dp.

Proof. The element 73h3 of the p-Bockstein E.-page detects the element 72hy - 7h3
in Extg. Table 8 shows that hy - Th3 = pcg, and h? - 72hy = p3co. Therefore,

h? 72Dy 'Th% = p300 - pcy = p4h%do.
It follows that hy - 72hy - Th3 equals p*dy. O

Lemma 7.13. There is a hidden hy extension from 12fy to p°m%hig.

Proof. Table 6 shows that 72f, belongs to the Massey product <72h2,h3,h(2)h3>.
Table 8 shows that there is a hidden h; extension from 72hs to p?7h3. Therefore,
we have

hy (7%ha, hs, hihs) = (p°Th3, hs, hihs) = p* (Th3, hs, hihs) ,
where the equalities follow from inspection of indeterminacies. Table 6 shows that

the element 72h1g of the Bockstein E..-page detects both elements of the Massey
product <7'h%, hs, h3h3>, so p?72hyg is the target of the hidden h; extension. O

Lemma 7.14.
(1) There is a hidden hy extension from 8hico to pT®Pha.
(2) There is a hidden hy extension from T°Phy to p?>T°h3dy.
(8) There is a hidden hy extension from T74Phicy to pr2P2%hy.
(4) There is a hidden hy extension from 72P2hs to p2TPh3d0.

Proof. We will show that k¥ -3¢y equals p?r°h3dy. This will establish the first two
extensions simultaneously.

Table 6 shows that hy - T8¢ equals the Massey product (7hy - 7°co, Th, p?). By
inspection of indeterminacies,

h% <7'h1 - T0¢q, Thl,p2> =h <h1 -Thy - T%¢o, Tha, p2> .
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This expression equals hj <pT4Ph2,7’h1, p2>, since Table 8 shows that there is a
hidden h; extension from 7%hicy to pr*Phy. By inspection of indeterminacies
again, this also equals phq <T4Ph2, Thl,p2>.
Now shuffle to obtain
phi (T Pha, thy, p*) = p° (h1, 7' Pha, Thy) .

Finally, Table 6 shows that <h1, 74 Phsy, Th1> equals 7°h3dy. This establishes the
first two extensions.

The argument for the last two extensions is essentially identical. The Massey
product <7'h1 -TPcy, Thy, p2> equals hy - 74 Pcy. We have

h% <Th1 -7Pcy, Thl,p2> =hy <h1 -Thy - TPco,Thy, p2> ,
which equals
hy (pP?ha,Th1, p°) = ph1 (P?ha,Thy, p*).
Finally, shuffle to obtain
phy <P2h2,7'h1,p2> = p3 <h1, P2h2, Th1> = pBTPhng.

Lemma 7.15. There is a hidden hi-extension from 3c1 to p*12hacy.

Proof. Table 6 shows that 73¢; is contained in the Massey product <p2, Th1, 7'01>.
Shuffle to obtain

<p2,7’h1,7'cl> hy = p? (Thy,Tc1, hy) .
Table 6 shows that the element 72hoc; of the Bockstein E..-page detects both
elements of (Thy, ey, h1), so p>72hacy is the target of the hidden h; extension. [J

Lemma 7.16.
(1) There is a hidden hy extension from T2h3eq to p®j.
(2) There is a hidden hy extension from j to pd3.

Proof. Table 8 shows that A - Th% = pco, and hzf 1260 = hy -pTh% ~dy = p?codp.
Therefore,

h11 . Thg -T2ep = pgcgdo = pghfdg.
Both hidden extensions are immediate consequences. [l

7.17. Miscellaneous relations. We briefly consider a few other types of hidden
extensions.

In the Bockstein E..-page, we have the relation h? - 7%hs + (72h2)%hy = 0.
However, in Extg, it is possible that the sum h?-7%hs + (72h2)%hs equals a non-zero
element that is detected in higher p-Bockstein filtration. Lemma 7.18 demonstrates
that this does in fact occur. It provides one additional piece of information about
the multiplicative structure of Extg.

Lemma 7.18. In Extg we have the relation

h? -7t hy 4 (12hg)%he = p°Thohs.
Proof. This follows by comparison along the map p : Ext¢ — Extgr of Remark
3.3. The relation hy - 78h; = 78h? in Extc implies that hy - p(78h1) = p(78h3)
in Extg. Observe that p(78h1) = p"7%h1hs and p(78h2) = p'27hoh3. This shows
that there is a hidden h; extension from p"74hihs to p'27Thoh3, which implies the
desired relation. O
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Lemma 7.19. There is a hidden 72hy extension from co to p3dy.

Proof. Table 8 shows that there are hidden h; extensions from 7h3 to pcy, and from
73h3 to p*dy. Therefore,

TQhQ'pCQZTQhQ'hl 'Th§:p4d0.

Lemma 7.20. There is a hidden hy extension from hafy to phihscy.

Proof. We use the map p : Extc — Extg of Remark 3.3. The relation hy - 729 =
72hag in Extc implies that ho - p(72g) = p(72hag). Observe that p(72g) = pha fo,
and p(1°hag) = p*hihaco.

Therefore, there is a hidden hy extension from phsfo to p?h3hscy, and also a
hidden hy extension from ha fy to ph3haco. O

8. ADAMS DIFFERENTIALS

Sections 6 and 7 describe how to compute Extg, which serves as the Es-page
of the R-motivic Adams spectral sequence. We now proceed to analyze Adams
differentials. We remind the reader of the notation for stable homotopy elements
discussed in Section 2.1 and Table 9.

Recall from Section 3 that extension of scalars induces a map from the R-motivic
Adams spectral sequence to the C-motivic Adams spectral sequence. We will fre-
quently use these comparison functors to deduce information about the R-motivic
Adams spectral sequence from already known information about the C-motivic and
classical Adams spectral sequences. See [18] for an extensive summary of compu-
tational information about the C-motivic and classical Adams spectral sequences.

8.1. Toda brackets. The Moss Convergence Theorem 8.2 is a key tool for deter-
mining Toda brackets [23] [18, Section 3.1]. We restate a version of the theorem
here for convenience.

Theorem 8.2 (Moss Convergence Theorem). Let ag, oy, and as be elements of
the R-motivic stable homotopy groups such that the Toda bracket (o, a1, qs) is
defined. Let a; be a permanent cycle on the Adams E,.-page that detects c; for each
i. Suppose further that:
(1) the Massey product {(ao,a1,az) 1is defined (in Extg when r =2, or using
the Adams d,_1 differential when r > 3).
(2) if (s, f,w) is the degree of either agay or ajaz; f' < f—r+1; f" > f; and
t=f"—f'; then every Adams differential d; : Ef“’f/’w — Ets’f”’w is zero.
Then (ag,a1,az2)_contains a permanent cycle that detects an element of the Toda
bracket {ag, a1, ).

Theorem 8.3. Table 10 lists some Toda brackets in m ..

Proof. Most of these Toda brackets are straightforward applications of the Moss
Convergence Theorem 8.2. When a Massey product appears in the fifth column of
Table 10, the Toda bracket follows from the Moss Convergence Theorem 8.2 with
r = 2. When an Adams differential appears in the fifth column of Table 10, the
Toda bracket follows from the Moss Convergence Theorem 8.2 with r > 2, and the
given Adams differential is relevant for computing the Toda bracket.
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In some cases, the Toda brackets follow by comparison along the extension of
scalars functor to the C-motivic case. This is denoted by the word “C-motivic” in
the fifth column of Table 10.

One slightly different case is handled below in Lemma 8.4. O

Table 10 is not meant to be exhaustive in any sense. It merely provides the
Toda brackets that are needed for various specific computations. Beware that
these brackets have non-trivial indeterminacies, although we have not specified the
indeterminacies because they are not generally relevant to our specific needs.

Beware that some of the Toda brackets in Table 10 require knowledge of Adams
differentials that are established below in Section 8.5.

Lemma 8.4. The Toda bracket <p2, ™, V4> is detected by T2hg - hy.

Proof. Table 6 shows that 72hy is contained in the Massey product (p?,7hy, ha).
By inspection of indeterminacies,

T2hy - ha = (p*,Th1, ha) ha = (p*,Th1, hahy) .

The Moss Convergence Theorem 8.2 implies that 72hy-hy detects the corresponding
Toda bracket. (]

8.5. Adams ds differentials. We now proceed to analyze Adams differentials.

Theorem 8.6. Table 12 lists some values of the R-motivic Adams da differential.
Through coweight 12, the dg differential is zero on all other multiplicative generators
of the R-motivic Adams Es-page.

Proof. The multiplicative structure rules out many possible differentials. For ex-
ample, da(7°h1) cannot equal 74hg - h2 because hZ - 7°h; = 0, while 7hg - hg is
non-zero.

Other multiplicative generators are known to be permanent cycles, because the
Moss Convergence Theorem 8.2 shows that they must survive to detect various
Toda brackets. These instances are shown in Table 11. In one case, the element
hy4 - Tco must survive to detect the product o - 774, by comparison to the C-motivic
stable homotopy groups.

Many non-zero differentials follow by comparison to the C-motivic or classical
Adams spectral sequences.

Several more difficult cases are established in the following lemmas. O

Remark 8.7. Table 11 shows that 7%hs is a permanent cycle because it detects
the Toda bracket (p*,72v,0). We give an alternative proof that is geometrically
interesting, following the method of [11, Lemma 7.3].

There is a functor from classical homotopy theory to R-motivic homotopy theory
that takes the sphere SP to SPY. Let oop : S50 — 580 be the image of the classical
Hopf map o : S1° — S® under this functor.

The cohomology of the cofiber of oy, is free on two generators x and y of degrees
(8,0) and (16,0), satisfying Sq®(z) = 7%y and Sq'®(x) = p®y. The proof of these
formulas is essentially identical to the proof of [11, Lemma 7.4].

This shows that 7¢hs+p8hy is a permanent cycle in the Adams spectral sequence,
since it detects the stabilization of oo, in 770. Also, pBhy is a permanent cycle
because there are no possible values for differentials. Therefore, 7#hs is a permanent
cycle.
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Lemma 8.8. da(Thoh3) = p*hidp.
Proof. Table 12 shows that da(eg) = hidy. Therefore,
do(h1 - Thoh3) = da(p?eo) = p*hido.
It follows that da(Thoh3) equals p?hidp. O
Lemma 8.9. da(fo) = hieo.

Proof. Comparison to the C-motivic or classical case shows that da(fo) equals either
h3eq or hieg + p*hieo. But hy - fo = 0 in the Fa-page, while hy(hdeo + p*hieg) is
non-zero. The only possibility is that dx(fo) equals h3eo. O

Lemma 8.10. da(7%fo) = hi - 720 + p37h3 - dy.

Proof. The C-motivic differential do(72fy) = 72hZeq implies that da(72fo) equals
either h3 - 72eq or h2 - 72eq + p37h3 - dy. We rule out the first possibility by noting
that (h3 + p?h3) - 72 fo = 0 in Extg whereas (hZ + p?h?) - 72heq = p®hicody. O

Lemma 8.11. dy(7%h1g) = p*codp.
Proof. Table 8 shows that hy - 72h1g = pTh3 - eg. Therefore,
hy - da(T%hig) = pTh} - da(eg) = prha - hido,
which equals p%hicody because Table 8 shows that h; - Th% = pco. O

8.12. Higher Adams differentials. Theorem 8.6 completely describes the Adams
do differential through coweight 12. From this information, one can compute the
Adams E3-page in a range. We now proceed to analyze higher differentials.

Theorem 8.13. Tuble 13 lists some values of the R-motivic Adams ds differential
forr > 3. Through coweight 12, the d3 differential is zero on all other multiplicative
generators of the R-motivic Adams Es-page. Moreover, through coweight 12, there
are no higher differentials, and the R-motivic Adams E4-page equals the R-motivic
Adams E-page.

Proof. As in the proof of Theorem 8.6, many multiplicative generators cannot
support differentials because there are no possible targets. Comparison to the
C-motivic and classical cases also determines some differentials. For example,
d3(h1hg) cannot equal hidp.

Other multiplicative generators are known to be permanent cycles, because the
Moss Convergence Theorem 8.2 shows that they must survive to detect various
Toda brackets. These instances are shown in Table 11.

The multiplicative structure rules out additional cases. For example d3(phy)
cannot equal pdy because of the relation hi - phy = p - h1h4, together with the fact
that ds(hihy4) is already known to be zero.

The harder cases are established in the following lemmas. ([

Lemma 8.14. d3(p®eq) = 0.

Proof. If d3(pSeq) equaled phy - Thy - TPhy, then p’ey would be a permanent cycle
that detected an element « of 710 3, and a could not be divisible by p. Therefore,
by Corollary 3.5, o would map to a non-zero element 3 in 77?0,3- Then S would
have to be detected by 73 Ph?, so 8 would also have to be non-zero in 7f; 4.

But na would be detected by p”hieq and would be divisible by p, so it would
map to zero in 7T(1C1,4- This contradicts that 78 is non-zero. g
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Remark 8.15. Lemma 8.14 can also be proved using the R-motivic spectrum kg,
which is the very effective slice cover of the Hermitian K-theory spectrum K@ [1].
The cohomology of kg is isomorphic to A//A(1), where A(1) is the M-subalgebra
of the R-motivic Steenrod algebra that is generated by Sq' and Sq>.

By a change-of-rings isomorphism, the homotopy of kq is computed by an Adams
spectral sequence whose Es-page is Ext 4(1)(Ma, My). This Eo-page was computed
in [16], and also in [12, Section 6].

The element prhy - TPhy - h1 maps to a non-zero permanent cycle in

Ext a(1)(Mz2, M>),
so it cannot be the target of a differential.
Lemma 8.16. d3(h0h4) = hodo + phidy

Proof. The classical differential ds(hohs) = hodo implies that in the R-motivic case,
dg (h0h4) equals either hodo or hodo + phldo.

Note that 7h; - hodg = pThy - h1dp is non-zero on the Fs-page, but 7hy - hohy =
pThy - hihy is a permanent cycle, as shown in Table 11. Therefore, d3(hohs) cannot
equal hodp. O

Lemma 8.17.
(1) d3(th3 - T%eg) = pTPhy - dp.
(2) d3(pj) = TPhl 'hldo.

Proof. Let o be an element of 74 13 that is represented by 7Ph; - hidyg. By compar-
ison of Adams spectral sequences, extension of scalars must take a to zero in wéc4)13.
Moreover, 7Ph; - hidy cannot be the target of a hidden p extension. Therefore, by
Corollary 3.5, TPh; - hidp must be the target of an R-motivic Adams differential,
and there is only one possible such differential. This establishes the second formula.

The first formula follows immediately from the second one, using the relation

hl'Th%'TQGQZpCO-TQGQ. O

9. HIDDEN EXTENSIONS IN THE ADAMS SPECTRAL SEQUENCE

We have now obtained the Adams F..-page through coweight 11. It remains
to determine hidden extensions that are hidden in the R-motivic Adams spectral
sequence. As in Section 7, we use the precise definition of a hidden extension given
in [18, Section 4.1.1]. We will analyze all hidden extensions by p, h, and 5 through
coweight 11.

We begin by analyzing all hidden extensions by p. The main tools are Corollaries
3.5 and 3.8.

Proposition 9.1. Table 14 lists all hidden p extensions in the Adams spectral
sequence, through coweight 11.

Proof. The long exact sequence of Corollary 3.8 gives short exact sequences
0 — (coker p)s.m — wgw — (ker p)s wy1 — 0.

The rank of 7§, which is entirely known in our range [18] [19], severely constrains
the possible ranks of coker p and ker p. From these constraints, we can generally
deduce the presence and absence of hidden p extensions, and there is typically only
one possibility in each case in the range under consideration. The only exception

is considered below in Lemma 9.2. O
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Lemma 9.2. There is a hidden p extension from Thicody to Phodp.

Proof. Table 16 shows that there is a hidden n extension from p7cg - dy to Phody.
Therefore, there must be a hidden p extension from hq - 7¢g - dy to Phgdp. O

Theorem 9.3. Table 15 lists all hidden h extensions in the R-motivic Adams spec-
tral sequence, through coweight 11.

Proof. The long exact sequence of Corollary 3.8 gives short exact sequences

0 — (coker p)s.m — 7T§,w — (ker p)s wy1 — 0.
Some of the extensions can be determined via these short exact sequences, using
known 2 extensions in 7T*C7*. For example, the element p®eq in the R-motivic Adams
E-page lies in (coker p)11,4, and it maps to the element 72¢11 in 7T§:174 that is
detected by 72Phy. But 272(1; is non-zero in w§174, so ha must also be non-zero.
It follows that pSeq supports a hidden h extension.

We must also show that many elements do not support hidden h extensions.
In most of the cases through coweight 11, the non-existence follows from simple
multiplicative relations. For example, if x is a multiple of p or of hy, then x cannot
support a hidden h extension because of the relations ph = 0 and hn = 0. Similarly,
if hiy or py is non-zero, then y cannot be the target of a hidden h extension.

The following lemmas handle a few additional more complicated cases. ([

Lemma 9.4. There is a hidden h extension from hafo to pcodp.

Proof. Table 10 shows that hs fo detects the Toda bracket {(p, {haeo},n). Shuffle to
obtain

<p7 {thO}v 77> h= P <{h260}7 m, h> .
Table 10 shows that cody detects the latter bracket. (I

Lemma 9.5. There is no hidden h extension on Th3 - hy.

Proof. The only possible target is prcg - dg. Table 16 shows that prcg - dy supports
a hidden 7 extension, so it cannot be the target of a hidden h extension. ]

Lemma 9.6. There is a hidden h extension from Tcq - dg to Phody.

Proof. Let a be an element of 7g 4 that is detected by 7co, so Tcg - dy detects ak.
Table 14 shows that there is a hidden p extension from hj - 7¢g - dg to Phodg, so
Phody detects pnak. But (h + pn)k is zero, so (h + pn)ak must also be zero. This
implies that hak is also detected by Phody. (|

Lemma 9.7. There is no hidden h extension on hycy.

Proof. By comparison to the C-motivic (or classical) case, hacy detects the product
ony. By inspection, hny is zero in 7 9. O

Theorem 9.8. Table 16 lists some hidden n extensions in the R-motivic Adams
spectral sequence, through coweight 11.

Proof. The long exact sequence of Corollary 3.8 gives short exact sequences
0 — (coker p)s w — wgw — (ker p)swt1 — 0.

Many of these extensions can be obtained by comparison to the C-motivic case,
using these short exact sequences, as in the proof of Theorem 9.3. For example, the
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element p7h; - TPcy detects an element « in (ker p)i6.7. The pre-image S of o in
766 is detected by 73 Pcg. There is a C-motivic hidden 7 extension from 73hghy
to 73 Pcy, so 3 is divisible by 1. This implies that « is also divisible by 7, and that
there is an R-motivic hidden 7 extension from 72hq - h3hy to pThy - TPcy.

We must also show that many elements do not support hidden 7 extensions. In
all cases through coweight 11, the non-existence follows from simple multiplicative
relations. For example, if x is a multiple of hg, then z cannot support a hidden
1 extension because of the relation hn = 0. Similarly, if hoy is non-zero, then y
cannot be the target of a hidden 7 extension. O

Lemma 9.9. There is no hidden n extension on T2h3.

Proof. Table 10 shows that 72h3 detects the Toda bracket <721/, o, V>. Shuffle to
obtain

<721/, o, V> n="1v{o,v,n).
The latter bracket is zero. O
Lemma 9.10. There is no hidden n extension on Tc;.

Proof. The possible target phsfo is ruled out by the fact that phsfo supports an
hy extension, as shown in Lemma 7.20. The possible target Th3 - dp is ruled out by
comparison to the C-motivic case. O

10. EXTENSION OF SCALARS

We will now study the values of the extension of scalars map FE* — FS*. Corol-
lary 3.5 tells us exactly which elements of w]}i* have non-trivial images in wﬁkc7*. This
information about extension of scalars is essential to our approach to the Mahowald
invariant described in Section 4.

For the most part, the extension of scalars map is detected by the map from
the R-motivic Adams F..-page to the C-motivic Adams E..-page. For example,
the element (71)2 of w§0 is detected by 7h? in the R-motivic Adams E..-page, so
its image in Wéc,o must be 7212, which is detected by 72h? in the C-motivic Adams
F-page.

However, there are a few values that are hidden by the Adams spectral sequence.

In other words, there exist elements « in WE* such that the Adams filtration of «
C

*,k°

is strictly less than the Adams filtration of its image in

Theorem 10.1. Through coweight 11, Table 17 lists all hidden values of the ex-

; R C
tension of scalars map w;, — T, .

Proof. We inspect all elements of the R-motivic Adams E..-page that are not tar-
gets of p extensions. Most of these elements map non-trivially to the C-motivic
Adams E-page. For example, (Thy)? maps to 72h?.

A few elements map to zero in the C-motivic Adams E..-page. We treat these
elements individually. In some cases, there is only one possible target in sufficiently
high Adams filtration. The remaining cases are handled by the following lemmas.

O

Lemma 10.2. Ezxtension of scalars takes elements detected by phs to elements
detected by Th?.
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Proof. Table 10 shows that phs detects the Toda bracket <p, h, 02>. Extension of
scalars takes (p,h,0?) in 77, ; to (0,2,02) in @7, 7, which equals {0,70%}. The
only non-zero value is 702, which is detected by Th3. O

Lemma 10.3. Ezxtension of scalars takes elements detected by pfy to elements
detected by Thadg.

Proof. Table 10 shows that pfy detects the Toda bracket (p,h,vk). Extension of
scalars takes (p,h,vk) in 71']5779 to (0,2,vk) in 71'%79, which equals {0,7vk}. The
only non-zero value is 7vk, which is detected by Thodp. O

Lemma 10.4. Extension of scalars takes elements detected by p>12fy to elements
detected by T*hidg.

Proof. The long exact sequence of Corollary 3.8 gives a short exact sequence
0 — (coker p)15,5 — 7r§35)5 — (ker p)15,6 — O.

The group 75 5 is generated by an element of order 32, detected by 72hihs, and an
element of order 2, detected by 7*h1dg. Also (ker p)15,6 is generated by an element
of order 32, detected by 72hg - h3h4. It follows that (cokerp)iss maps onto an
element of order 2 that is detected by 7¢h1dp. O

11. TABLES

Table 3: Some values of the R-motivic Mahowald invariant

s« ME(a) indeterminacy
0 219 nk

1 n v 2u, 4v

2 n? v?

3 v o 20, 40, 80
3 2v 1o €

3 4 o ne

6 v? o? K

7T o TO

7T 20 m np15

7T 4o nma np1s, VK
7 8  nm n°p1s

8 no vy 2uy, 4y

8 € T

9 n?c vy TNR

9 e Vo ™R

9 o VK 2UR, 4UR
10 nue v-vk

11 ¢ 7R 1n°pa3

11 2C1 {hihsg}  n°pas

—_
—_

4¢11 n{hihsg} n°pas
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Table 4: hi-periodic Bockstein differentials

coweight (s, f,w) x dr  dy(x)

(
4 (9, 5, 5) Phl d3 h?CO
7 (16,7,9) PCQ d3 hélldo
8 (17,9,9) P2h1 d7 h?eo
10 ( 2, 8, 12) Pdo d3 h%COdO
11 (
12 (
13 (

2
25, 8, 14) Peo d3 h%CQGO
25, 13, 13) P3h1 d3 PQh?CQ
30, 11, 17) PCQdQ d3 hélld(z)

Table 5: Bockstein differentials

coweight (s, f,w) x d, d.(x)
1 0,0,—-1) 7 di  ho

2 (0,0,—2) T2 d2 Thl

4 (0,0, —4) T4 d4 T2h2
4 (1,1,—3) T4h1 d6 Th%

4 (2,2,—2) T4h% d7 Co

4 (7, 4, 3) Thghg d4 h%CO
4 (9, 5, 5) Phl dg h?CO
5 (6,2,1) T3h% d3 TCo

6 (7,4, 1) Tih%hg d3 TPhl
6 9.4,3 hic ds Ph

7 E8,3,1§ T4c01 ’ di do ’
7 (11,5,4) TQPhQ d6 h%do
7 (14, 67 7) Th(z)do d4 h?do
7 (16, 7, 9) PCQ d3 hélldo
8 (0,0, —8) T8 dg T4h3
8 52,2,—65 T:hz d13 Thoh%
8 3, 3, -5 T hl d15 €o

8 (7, 4, —1) T5h(3)h,3 d12 h160
8 (9,5,1) T4Ph1 dll h%eo
8 (15,8,7) Th5h4 dg h?eo
8 (17,9,9)  P2m, d;  hSep
9 (3,1,—6) TShQ d12 Tth
9 (14,3,5)  m3hoh?  ds  fo

9 (14,6,5) T3h(2)d0 d3 TPCQ
9 (20, 4, 11) Tg dl hog
10 (6, 2, —4) Tghg d14 TC1

10 (9,3,—1) T7h%h3 dg 7'260
10 (14, 4, 4) 7'4d0 d5 72h180
10 (15,8,5) T3h(7)h4 d3 7'P2h1
10 (17,8,7) T3Ph160 d3 P2h2
10 (20,4,10) T3¢ dy Thig
10 (22,8,12)  Pdy ds  h3codo
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coweight (s, f,w) x d, de(x)
11 (8,2,—3) T8h1h3 d12 7'201

11 (14,3,3) T5h0h§ d5 T2f0

11 (17,4,6) T4€0 d5 T2hlg
11 (20, 6, 9) T3h0h280 d6 Cp€p

11 (23,5, 12) Tzhgg dg h%h460
11 (23, 7, 12) 7 d4 h10060
11 (25, 8, 14) Peo d3 h%COGO
12 (7,4, —5) Tghghg d5 TGPhg
12 (9, 5, —3) T8Ph1 d6 T5hgd0
12 (10,6,—2) 78Ph? dr 7 Pco
12 (14,2,2) 75h3 ds T3c1

12 (15,8,3) T5h(7)h4 d5 T2P2h2
12 (17,9,5) T4P2h1 d6 TPh%dQ
12 (18,10,6) 7*P2h?  d; P2
12 (23,12,11) Thji dy  P%hicy
12 (25,13,13) P3hy ds  P2hc,
13 (14,3,1) T7h0h§ d7 T4g

13 (17,4,4) T6€0 d5 T4hlg
13 (18,5,5) T6h1€0 d6 Tghohgg
13 (20, 6, 7) T5h0h260 d7 j

13 (22, 1 ,9) Tgphgdo dg TP260
13 (23,7,10) 7% dg  d?

13 (25,8, 12) T2P€0 d5 hld%




Table 6: Some Massey products in Extg

coweight (s, f,w) bracket contains  indeterminacy proof used in

3 (3,1,0) <p2, Thy, h2> T2hy prhs da(7?) = pPrhy <p2, ™, 1/>, Lemma 8.4
4 (8,3,4) (co, ho, p) TCo pThy - hihs dq (1) = pho (e, h, p)

7 (7,1,0) <p4, 72hs, h3> T4hs phy dy(t%) = p*72hy <p4,7'2V, a>

9 (21,5,12)  (7h1,ht, ha) hafo 0 C-motivic Lemma 6.10

9 (21,5,12)  {p, haeg, h1) ha fo p*hag di(rg) = phazeo  (p,{h2e0},n)

10 (18,4,8) (1%ha, h3, hihs) 72 fo 72hg - h2ha, p°hacy C-motivic Lemma 7.13

10 (21,5,11) <Th%, hs, h§h3> 72h1g p3hihaco C-motivic Lemma 7.13

11 (3,1,-8) <p2, 9hy, h2> T710h, 0 do(710) = p1hy <p2, n, I/>

11 (9,4,-2) <7'h1 -7%¢o, Th1, p > hi - 8¢ 0 da(7?) = pPrhy Lemma 7.14

11 (11,5,0) (p?,75h1, Phy) 75 Phy p%hsg do(79) = p?r°hy (P, 71, C11)

11 (14,6,3) <h1, 74 Phs, Th1> > hido 0 C-motivic Lemma 7.14

11 (17,8,6) (Thy - TPco,Th1,p*) hi-1*Pcy 0 do(7?) = p?>th;  Lemma 7.14

11 (19,3,8) <p, ho,’?’261> ey p?72hgy - hohy dq(1) = pho <p, h, 7'25>

11 (19,3,8) <p2, Thy, 7’01> e p?72hgy - hohy da(7?) = pPrhy Lemma 7.15

11 (19,9,8) <p2,Th1,P2h2> T2P2h2 0 d2(T2) =p27'h1 <p2,7”l7,<19>

11 (22,4,11)  (Thy,7c1,hy) he - T2¢1 phy - Tco C-motivic Lemma 7.15

11 (22,10,11) <h1, P2h,, Th1> TPh3dy 0 C-motivic Lemma 7.14

12 (20,4,38) <p, 72ho, p, h2€0> g p2ho - T3¢y d1(7%) = pr2ho, <p, 72h, p, {h2€0}>

di(1g) = phaeg

8¢

NHSMVSI 'O THINVA ANV LNOWTHI VAH
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Table 7: Hidden hg extensions in the p-Bockstein spectral sequence

coweight (s, f,w) source target

1 (1,1,0) Thy pTh?

3 (3,3,0) T2h(2)h2 p6h160

3 (77 4, 4) h8h3 p3h%cO

4 (6,2,2) 72h3 p*reo

4 (8,3,4) TCo pThico

5 (1,1,-4) 7 pToh3

5 E?,4,2; Tzhghg pzTPhl

5 9,4,4 T hlco 14 Ph2

5 (9,5,4) TPhy pTPh?

6 (6,2,0) T4h3 p373h3

6 (1 ) 78) h(%do Pgh?do

7 (3, 3, —4) TGh%hg p1460

7 (7, 4, ) T4hgh3 pllhleo

7 (11,7, 4) T2Ph%h2 ploh%eo

7 (15,8,8) hihy p"hieq

8 (8,3,0) 75¢o pr5hico
8 (14,3,6) 72hoh3 p fo

8 (14,6,6) T2h(2)d0 p2TPCQ

8 (16,7, 8) TPCO pTPhlcQ
9 (1,1,-8)  7m prh?

9 (7,4,-2)  7°h3hs p*75 Phy
9 (9,3,0) 70h2h3 p212eq

9 (9,4,0) T6h100 p2T4Ph2
9 (9,5,0) 75 Phy pTPh?
9 (15,8,6) T2h6h4 pQTPth
9 (17,8,8) T2Ph160 p2P2h2

9 (17,9,8) TP2h, pTP2h3
10 (14,3,4) T4h0h§ p47'2f0
10 (18,5,8) T2h0f0 p57'h%€0
10 (20, 6, 10) T2h0h2€0 p56060

11 53, 3, —83 T;Oféghg pirzhlco
11 7,4, —4 T°hghs p*1° Pho
11 (11,7,0) TijL%hQ pjriP;LlcO
11 15,8,4 T*hih T“P*h
11 219, 3, 8; 7'3010 ! 2372h2012
11 (19,11,8) TQJ_DthhQ p5P?%hico
11 (23,12,12) hdi p3P?h3c
12 (6,2,—6)  T0hZ p*12co
12 (8,3, —4) T900 pTghlcQ
12 (14,3,2) 75hoh3 pS7g

12 (14,6,2) Tﬁh%do p2T5PCQ
12 (16,7,4) 79 Pcy pT?Phyco
12 (18,5,6) 7%ho fo p°7m3h3eo
12 (20,6,8) hig 054




EVA BELMONT AND DANIEL C. ISAKSEN

Table 7: Hidden hg extensions in the p-Bockstein spectral sequence

coweight (s, f,w) source target

12 (22,10,10) 72Ph3dy  p*tP%c
12 (24,11,12) TP2CO pTP2h160
12 (26,9,14)  hij pAh3d2

coweight (s, f,w) source target proof

2 (0,1,-2)  72%hg pT2h3

3 (3,1,0) 72hsy p*7h3

3 (6,2,3) Th3 pCo

5 (9,4,4) Tthco pPhQ

6 (0,1,—6)  7%hg pTOh3

6 (9,3,3) h3 ptdo Lemma 7.12
7 (14, 3, 7) Thoh% p2€0

9 (9,3,0) Tﬁh%h3 p77'2€0

9 (9,4,0) T6h100 pT4Ph2

9 (17,8,8) TQPhlco pP2h2

9 (18,5,9) 72hieg pThdy

10 (0,1,-10) 7%y  pri0p2

10 (14,2,4) h3 pir3cy

10 (18,4,8) 72 fo p?’7?h1g  Lemma 7.13
10 (19,3,9) %¢; p>Thacy

11 (3,1,—-8)  70hy p*rhZ

11 (6,2,—5)  7°h3 p8eo

11 (9,4,-2)  7%hico p18Phy Lemma 7.14
11 (11,5,0) 75 Phy p*mh3dy  Lemma 7.14
11 (14,6,3) ™hidy  pr*Pc

11 (17,8,6) Phicy pr?P?hy  Lemma 7.14
11 (19,3,8) 3¢ p?7%hyc;  Lemma 7.15
11 (19,9,8) 2 P?hy  p*tPh3dy Lemma 7.14
11 (22,10,11) 7Ph2dy  pP2c

12 (21,5,9)  7thig pT3h3eg

12 (22,9,10)  2Phody pr2Phdy

12 (23,6,11)  73h3eq  p?j Lemma 7.16
12 (26,7,14) g pd3 Lemma 7.16
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Table 9: Multiplicative generators of WE*

coweight (s, w) element detected by
0 (-1,-1) »p p

0 0,0)  h ho

0 1,1 g hy

1 (1,0) ™ Thy

1 (3, 2) v hQ

2 (0,—2)  72h 2ho

3 (3,0) T2V 72hsy

3 (6,3) TV? Th3

3 (7, 4) g h3

3 (8,5) € o

4 (0,—4) th ho

4 (8,4) Te TCo

5 (1,—-4) 759 ™hy

5 (9, 4) T 9 TPhl
5 (11,6) (i Phs

6 (0,—6)  7°h 75 hg

6 (14,8) & do

7 (7,0) o 7h3

7 (11, 4) T2411 p6€0

7 (14,7) T0? phy

7 (15.8)  ps Kk

7 (16,9) N4 hiha

8 (0,—-8) 7°h 8ho

8 (8,0) 7S¢ ¢

8 (14,6) 7202 72h3

8 (16,8) T4 Thy - ha
8 (17,9) TUK pfo

8 (18, 10) V4 h2h4

8 (19,11) & e

8 (20, 12) {hzeo} hgeo

9 (1,-8) 797 hy

9 (9,0) 75 p1g 75 Phy
9 (11,2) T4<11 T4Ph2
9 (15,6) 30K p*12eq
9 (17,8) TH17 TP2h1
9 (19,10) 77 TCl

9 (19,10)  ¢uo P?hy
9 (21, 12) T?]E hgfo

9 (23,14) vE hag

10 (0,—10) 7% 108
10 (15,5) TNk 0372 fo
10 (18,8) T2y 72hy - hy
10 (19,9) e ¢y
10 (20,10)  7°hm ha - T2e
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Table 9: Multiplicative generators of WE*

coweight (s, w) element detected by
10 (21,11)  Tvwy Th3 - hy

11 (3,-8) 7% 7108,

11 (6,—-5) 7902 79h3

11 (8,-3) 7% 8¢

11 (11,0) T6<11 TGPhQ

11 (15,4) T4p15 T4h8h4

11 (17,6) Tk 72ho - T2eg
11 (19,8) 37 ¢

11 (19,8) T2C19 T2P2h2

11 (23,12)  po3 h3i

11 (26,15)  TV°R phsg

11 (28,17)  {hihsg} hihsg




Table 10: Some Toda brackets in 7, .

(s,w) bracket detected by proof used in

3 (3,0) <p2,7’77,l/> 72hs <p2,Th1,h2> Table 11

4 (8,4) (e, h, p) TCo (co, ho, p) Table 11

7 (7,0) ot T2V 0> T4hs <p4,7'2h2, h3> Table 11

7 (14,7) p, h, o2 phy da(ha) = hoh3 Lemma 10.2

8 (8,0) 75 o hl/ V ¢ C-motivic Table 11

8 (14,6)  (T%v, 0, V T2h% C-motivic Table 11, Lemma 9.9

8 (16, 8) o2 ,2 T?] Thy - hy dg(h4) = (ho + phl)hg Table 11

8 (16,8) <7'u9, hv,v) TPcy C-motivic Table 11

8 (17,9)  (p,h,vk) pfo da2(fo) = h3eo Lemma 10.3

8 (18, 10) <I/ ag, h0'> h2h4 dg(h4) = hoh% Table 11

9 (15,6)  (p,pn, ™0 - K) p*12eq do(T%e9) = 72h3dy Table 11

9 (21,12) (p,{h2eo}, n> ha fo (p, haeg, h1) Lemma 9.4
(21,13)  ({hzeo}, 77, codp C-motivic Lemma 9.4
(18,8) p2, T, 1/4 T2hy - hy Lemma 8.4 Table 11
(19,9) g 21/ no,o) e C-motivic Table 11
(3,-8) p2,7'977,1/> T10h, p?,7hy, ha) Table 11
(11,0) p?, 71, (11 79 Phy p?,75h1, Pho Table 11
(19,8) 2 ,TT), <19> T2P2h2 p2,Th1,P2h2 Table 11
(19,8) p, h, 7 U> 3e1 P, h0,7201> Table 11
(8,—4) (7 17, hv, v ¢o C-motivic Table 11
(16,4) 2 i T5h1 . h4 dg(h4) = (ho + phl)hg Table 11
(16,4) 7 ug, hv, v) 7 Pcy C-motivic Table 11
(20, 8) p,72h, p, {h2€0}> g <p,72h0,p, h2€0> Table 11
(24,12) (7pa7,hv,v) 7P%¢ C-motivic Table 11

SINHLS HTdVLS DIALLON-Y

€€
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Table 11: Some permanent cycles in the R-motivic Adams spectral

sequence
coweight (s, f,w) element  proof
3 (3,1,0) 72hy <p2,7'77, V>
4 (8,3,4) TCo (e, h, p)
7 (7,1,0) T4hs <p4,7'21/,a>
7 (11,4) pBeg Lemma 8.14
8 (8,3,0) ¢ o0, hy, I/>
8 (14,6) 72h3 v, 0,V
8 (16,7,8) TPcy (Tpg, hv,v)
8 (16,2,8) Thy-hy  {(0?,2,T)
8 (18,2, 10) h2h4 (v, 0, ha>
9 (15,4,6)  p°r%eq  (p,pT0, TN - K)
10 (18,2,8) th hye {(p?, 71, V4>
10 (19,3,9) T2¢1 T2V, 770 o
11 (3,1,-8) 7'y p?, 70 77, v)
11 (11,5,0) 6Ph,2 p2 T 7, <11>
11 (19,3,8) e p,h, 12 O'>
11 (19,9,8)  72P%h, gp ™, C19)
11 (23,4,12) h4 Tco 0T
12 (8,3,—4) 7% T n,hu 1/
12 (16,2,4)  75hy - ha 0 2,75 77
12 (16,7,4) 5Pco 73 g, hu, V
12 (20,4,8) T4g <p,7’ ho, p, h260>
12 (24,11,12) 7P%cq (Tp17, hv,v)

Table 12: Adams ds differentials

coweight (s, f,w) =z da(z) proof

7 (15,1,8)  hy hoh? classical

7 (17,4,10) e h3dy classical

7 (14,3,7)  Thoh3 p*hidp Lemma 8.8
8 (18,4,10) fo h3eq Lemma 8.9
9 (17,4,8) 7%eq  (7hi1)%*do classical

10 (18,4,8) 7%fy  T2hdeo + p?th3-dy Lemma 8.10
10 (21,5,11) 72h1g  p*codo Lemma 8.11
11 (23,8,12) hoi Phidy classical

11 (27,5,16) hag h3hyco C-motivic
12 (26,7,14) j Phs - dy classical
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Table 13: Adams ds differentials

coweight (s, f,w) = d(zx) proof

7 (15, 2, 8) h0h4 hodo + phldo Lemma 8.16
12 (23,6,11) 7h3-7%eq pTPhy -dp Lemma 8.17
12 (25,7,13) co-7%e¢9  TPhy-hidy  Lemma 8.17

Table 14: Hidden p extensions in the R-motivic Adams spectral
sequence

coweight (s, f,w)  source target

7 (15,4,8) h8h4 p4h1€0

7 (17, 5, 10) h2d0 Thl . hldo
8 (15,2,7) pThl 'h4 ho -T2h§

8 (15,4, 7) p3f0 TQhO 'do
10 (15,2,5) p3’7'2h2 . h,4 T4h3 . hohg
10 (15,4, 5) p3’7'2f0 T4h0 'do
10 (23, 8, 13) hl - TCo - do Phodo

11 (15,4,4) T4h0 . h%h4 TSh%do

11 (17,5,6) T2h0 '7'260 T5h1 'hldo
11 (18,5,7) pgfo'TQhQ hQ'TQhO'TQ(iO
11 (23,9,12) hi TPhidy

Table 15: Hidden h extensions in the R-motivic Adams spectral
sequence

coweight (s, w) source target

7 (11,4) p6€0 TQhO Ph,Q
9 (21, 12) h2f0 pCQdQ

9 (23, 14) hohgg hlcodo

10 (22, 12) TCo - do Phodo

11 (23,12) T2h0-hgg TPhl -do

Table 16: Hidden 7 extensions in the R-motivic Adams spectral
sequence

coweight (s, f,w)  source target

7 (15,4,8) h8h4 p3h%€0

9 (15,5,6) T2h0 h8h4 pThl 'TPCQ
9 (21,5, 12) h2f0 Codo

10 (20,5,10) ho - T2eg pTCo - dg

10 (21, 7, 11) pPTCH - do Phodo

11 (15,4,4) T4h0 h3h4 T4PCQ

11 (23,9,12) hZi P2
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Table 17: Hidden values of extension by scalars

coweight (s, f,w) source target
7 (11,4,4) pSeq 72Phy
7 (14,1,7) pha Th3
7 (16 + k,6 +k,94 k) p*hfT2eq  Phlc
8 (17,4,9) pfo Thgdo
9 (15,4,6) p*12eq 3 h1dy
10 (15,4,5) p372 fo h1do
10 (22,7,12) TCo - do Pdo
10 (23, 8, 13) hl s TCQ - do Phldo
11 (20,5,9) m?hy-pfo  Thig
11 (26,5, 15) phsg Th3g
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