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Abstract

We define a notion of a connectivity structure on an co-category, analogous
to a f-structure but applicable in unstable contexts—such as spaces, or algebras
over an operad. This allows us to generalize notions of n-skeleta, minimal
skeleta, and cellular approximation from the category of spaces. For modules
over an Eilenberg-Mac Lane spectrum, these are closely related to the notion of
projective amplitude.

We apply these to ring spectra, where they can be detected via the cotangent
complex and higher Hochschild homology with coefficients. We show that the
spectra Y(n) of chromatic homotopy theory are minimal skeleta for HIF; in the
category of associative ring spectra. Similarly, Ravenel’s spectra T (1) are shown
to be minimal skeleta for BP in the same way, which proves that these admit
canonical associative algebra structures.
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1 Introduction

Within homotopy theory, it is commonly understood (if not always made explicit) that
the homology groups of a space X are closely coupled with how X can be built as a
CW-complex. If X is equivalent to a CW-complex, then C,(X) is quasi-isomorphic
to a chain complex with one free generator for each cell in the CW-structure. For
1-connected spaces X we can do better, because a converse holds: if E*(X) is quasi-
isomorphic to a complex that is levelwise free, then there exists a CW-complex
equivalent to X with one cell for each generator.

The engine that makes this technique possible is that we can understand the
relation between connectivity and cell attachment. For maps of simply-connected
spaces, homology detects connectivity. Further, suppose we have built the 7n-skeleton
for a CW-approximation of X: an n-connected map X" — X. The set of possible
ways to “extend this map an (n+ 1)-cell” is governed by the relative homotopy group
T0e1(X, X™); similarly, given a map of chain complexes C — D, the set of possible
ways to “extend this map to an (# + 1)-cell” is governed by the relative homology

group H,1(D,C). The map

11 (X, X™) - Hypq (CX, CX™)



is an isomorphism by the relative Hurewicz theorem, making it possible to lift the
attaching map for each (1 + 1)-dimensional generator uniquely from the chain level
to the space level.

With 1-connected rational or p-complete spaces, the same argument works but
our job is easier: there exists a rational or p-complete CW-structure on X with one
cell for each element in a basis of H,(X;Q) or H*(X;IFP) respectively. This argument
also works for connective spectra, and this is a core component of understanding
objects in stable homotopy theory via their homology. This perspective also makes
it clear that, because the Blakers-Massey excision theorem can be used to give an
isomorphism

70,(X, X)) 5 71,1 (ZX, £X M),

it is possible to lift (up to homotopy equivalence) any CW-structure from XX to X.

This paper studies these types of cell attachments in other categories. Our main
application is to demonstrate that certain spectra in chromatic homotopy theory
have natural multiplicative structures: specifically, that they arise as “skeleta” in
cellular constructions of known ring spectra. The desire to having an analogous
theory of homology for commutative ring spectra, detecting cell attachment, was
one motivation for the development of topological André-Quillen homology by Kriz,
Basterra, and Mandell [Kri95, Bas99, BM05]. However, our first goal will be to
understand exactly what it means to say “K is an n-skeleton of X” in a rather broad
generality.

To say that K is an n-skeleton of X in the terms above relies on the existence
of a particular type of construction of X that produces K at some stage. We hope to
demonstrate that many of the useful homotopy-theoretic properties of a skeleton K
can be derived from the definition of connectivity of a map.

Definition. An object K is k-skeletal if it has the left lifting property with respect
to k-connected maps: for any k-connected map X — Y, every map K — Y lifts to a
map K — X.

A map f: K — X makes K into a k-skeleton of X if K is k-skeletal and f is
k-connected.

For example, a space is k-skeletal if and only if (in the homotopy category)
it is a retract of a k-dimensional CW-complex. However, this definition is cell-
free, interacts well with adjunctions, and has well-behaved generalizations even if
we adopt a flexible notion of what “connectivity” means. When we can construct
objects inductively with cells, the stages will naturally be skeleta. More, because
the definition of skeletal objects is in terms of lifting properties, we can often detect
k-skeletal objects by testing analogues of cohomology.

This will allow us to give criteria under which the construction of a skeleton
can be lifted from one category to another. Our engine for lifting CW-structures
in terms of relative homotopy and homology is a special property of an adjunction
between two categories. The general notion that we introduce is that of a subductive



adjunction: one where a k-connected map X — Y induces a k-Cartesian square

X——Y
RL(X) —— RL(Y).
Subductive adjunctions capture the situation where attaching maps for cells can be

lifted along the functor L. If, instead, k-connected maps are taken to (k+1)-Cartesian
squares, we have a strongly subductive adjunction, where attaching maps lift uniquely.1

11 Main applications

The proofs of the nilpotence and periodicity theorems by Devinatz-Hopkins-Smith
make heavy use of ring spectra X(n), built as Thom spectra on the spaces QS U (n).
These assemble into a directed system

$=X(1) > X(2) > X(3) > --- > MU

of ring spectra (specifically, E, ring spectra) and on integral homology this realizes
a filtration of H, MU by polynomial subalgebras,

Z— Z[x1] > Z[x1,%] > -+ > H MU

where |x;| = 2i. When working p-locally, however, MU ,) has a split summand BP
that is more tractable for computational applications, and the filtration of MU by
X(n) can be replaced by a filtration

S(p) = T(0) = T(1) — T(2) — --- — BP.
On homology this realizes a filtration of H, BP,

Zip) = Zp)[t1] = Zp)[t1,t2] > - — H.BP,

where |t;| = 2p’ — 2. However, the spectrum T(n) is usually constructed as a split
summand of X(p")y) and this splitting does not grant it structured multiplication.
We will show that this sequence can be realized in a canonical way as a sequence
of associative ring spectra. We know that BP exists and has an associative structure,
and we can construct a cellular approximation by attaching cells inductively—but
within the category of associative ring spectra, rather than just within the category of
spectra. We will show that the T(n) arise quite naturally as skeleta of BP as an asso-
ciative algebra, and that the necessary cells are detected by topological Hochschild
homology with coefficients. (Cellular constructions, in various categories, of objects

IThe term “subductive” is loosely borrowed from geology; we think of the adjunction as an interaction
between two tectonic plates, with the left adjoint L: C — D gradually pushing objects from C under the
surface. Even though this process can (and typically does) lose information from the category C, it is still
gradual enough that (with enough effort) we can gradually dig up information about objects and maps to
reassemble them.



related to BP are by no means new: see, for example, work of Priddy [Pri80], Hu-
Kriz-May [HKMOI], or Baker [Bakl4].) By similar methods, it is also possible to
show that the 2-primary spectra Y (1) of Mahowald-Ravenel-Shick [MRS0]] arise
as skeleta of the Eilenberg-Mac Lane spectrum for IF,, although this can be shown
more directly using their construction as Thom spectra.

1.2 Outline

In Section 2 we will introduce the notion of a connectivity structure on C, generalizing
the standard notion of “k-connectedness” for spaces and spectra, and prove several
properties. In the case where C is stable, the most common way to get a connectivity
structure is to have a t-structure on C. Several of our categories of interest, such
as categories of algebras, are not stable, but they still inherit connectivity structures
from a forgetful functor to an underlying stable category.

Section 3 introduces skeleta and skeletal objects in C, defined in terms of lifting
against sufficiently connected maps, and proves basic properties. We will also discuss
the notion of cells in C and give a version of CW-approximation when there is a
sufficient supply of cells. We will introduce minimal skeleta, which (when they exist)
are unique up to homotopy equivalence.

Section 4 discusses the detection of skeletal objects. The chief application is
to show that tools like stabilization can be used to detect skeletality so long as
k-connected maps admit a Postnikov-like decomposition.

Section 5, by contrast, discusses lifting skeleta across an adjunction with left
adjoint L. We introduce subductive adjunctions and how they allow analogues of
lifting CW-structures: inductively, we can lift attaching maps of cells along L from
the target category to the source category. This allows us to obtain results lifting the
construction of skeleta, and minimal skeleta, along L.

Section 6 discusses excision theorems, and how their presence often makes sta-
bilization into a subductive adjunction. This makes it possible to employ homology
theories for ring spectra, such as those introduced by Basterra and Mandell [BM11].

Finally, Section 7 discusses our applications. For the derived category of a ring,
we find that skeletality is closely related to the notion of projective amplitude, and
for spaces we find that k-skeletality is equivalent to a constraint on the projective
amplitude for chains on the universal cover.

We then work with algebra spectra, showing that cellular constructions of as-
sociative algebras are governed by topological Hochschild homology. For these, we
need to make heavy use Ching-Harper’s results on excision for categories of algebras
over an operad.

1.3 Notation and conventions

Throughout this paper, we make the assumption that C is an co-category in the sense
of [Lur09] that admits pullbacks. We write hC for the associated homotopy category.
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2 Connectivity structures

2.1 Definitions

Definition 2.1. Suppose that C is an co-category with homotopy pullbacks. A con-
nectivity structure T on C consists of, for each k € Z, a collection of k-connected maps
in the homotopy category hC, subject to the following axioms.

1. A map that is k-connected is also (k — 1)-connected.

2. Equivalences are k-connected for all k.

3. The homotopy pullback of a k-connected map is k-connected.
4. Suppose we have composable maps f: X > Y and g: Y — Z.

(a) If f and g are k-connected, so is gf.
(b) If f is (k—1)-connected and gf is k-connected, then g is k-connected.
(c) If gf is k-connected and g is (k + 1)-connected, then f is k-connected.

When specifying the connectivity structure is necessary, we refer to a map as k-
connected in T.

A functor F: C — D preserves connectivity if, whenever f is k-connected, the
image F(f) is k-connected.

Remark 2.2. For convenience, we will refer to f as co-connected if it is k-connected
for all k. Similarly, we will refer to all maps as (—oco)-connected. We define a
connectivity structure to be lefi complete if an co-connected map is an equivalence.?

The definition of a connectivity structure is invariant under translation.

Definition 2.3. For d € Z, the connectivity structure (T + d) obtained by shifting
T by d is defined as follows. A map f is k-connected in T if and only if f is
(k +d)-connected in (T + d).

A functor F: C — D adds (at least) d to connectivity if, whenever f is k-connected,
the image F(f) is (k + d)-connected.?

2This is by analogy with t-structures: see §2.4.
3In other words, it is a connectivity-preserving functor (C, Tg +d) — (D, Tp).



Definition 2.4. If {T;} is a collection of connectivity structures, the intersection
connectivity structure NT; is defined as follows. A map f is k-connected in NT; if and
only if, for all 7, f is k-connected in T;.

Definition 2.5. Suppose that R: D — C is a functor that preserves homotopy pull-
backs and that C has a connectivity structure T. Then there is a connectivity struc-
ture R™(T) on D, defined as follows. A map f: X — Y in D is k-connected in
R7Y(T) if and only if the image Rf is k-connected in T. We refer to this as the
connectivity structure liffed from C, and say that the functor R reflects connectivity.

This is possible whenever R is a right adjoint, such as a forgetful functor. The
lifted structure is always the maximal structure such that R preserves connectivity.

Definition 2.6. If C has homotopy pushouts, a connectivity structure on C is com-
patible with cobase change if the homotopy pushout of any k-connected map is k-
connected.

Suppose that C has K-indexed homotopy colimits. A connectivity structure on C
is compatible with K -indexed (homotopy) colimits if, whenever a natural transformation
F — G of K-indexed diagrams is k-connected objectwise, the map hocolimg F —
hocolimg G is k-connected.

2.2 Examples

Example 2.7. Every C has available the minimal connectivity structure T,,;,,, where
only equivalences are k-connected for k # —co. It also has the maximal connectivity
structure T),,,, where all maps are co-connected.

Every functor out of the minimal connectivity structure preserves connectivity;
every functor into the maximal connectivity structure preserves connectivity.

Example 2.8. Amap f: X — Y in the category S of spaces is k-connected if (for all
choices of basepoint) 7;(f) is an isomorphism for all j <k, and 7 (f) is a surjection.

Example 2.9. A morphism f: X — Y of objects in the category Sp of spectra is
called k-connected if 7;(f) is an isomorphism for all j <k, and 7t;(f) is a surjection.

More generally, if C is stable and has a ¢-structure, we can give C a connectivity
structure by declaring that a map f: X — Y is k-connected if its cofiber cofib(f) is
k-connected: T cofib(f) is trivial (cf. Sections 2.4 and 2.5).

Remark 2.10. By [Lurl7, 1.2.1.6], if C is stable and the connectivity structure on C
is determined by a t-structure, then the connectivity structure is compatible with
cobase change and all homotopy colimits that exist in C.

Example 2.11. If C; have connectivity structures, then the product []; C; has a product
connectivity structure: a map (X;) — (Y;) is k-connected when each map X; — Y; is.
This is the intersection of the connectivity structures lifted from each C;.

Example 2.12. If © is an (ordinary) operad, the category of O-algebras in C (if it has
pullbacks) has a connectivity structure lifted from C: the forgetful functor preserves
all homotopy limits that exist in C.

Example 2.13. If C has a connectivity structure, then the slice and coslice categories
Csy and Cx, have a connectivity structure lifted from C.



Example 2.14. Suppose X is an oco-topos in the sense of [Lur09]. Then X admits a
connectivity structure where a morphism is k-connected precisely when it is (k + 1)-
connective in the sense of [Lur09, 6.5.1.10]. Specifically, a morphism f: X — Y in C
is k-connected if it is an effective epimorphism as in [Lur09, 6.2.3.5] and if 77;(f) ~ =
(for the toposic homotopy groups of [Lur09, 6.5.1]) for all 0 < i < k. The first three
axioms of Definition 2.1, as well as part (a) of the fourth axiom, are satisfied as a
result of [Lur09, Proposition 6.5.1.16].

For parts (b) and (c) of the fourth axiom, recall that by [Lur(09, 6.1.0.6] any co-
topos X is a left exact localization of a presheaf co-topos P(C) = Fun(C,S). If we say
that X ~ LP(C) for a localization functor L then a morphism f € X" is k-connected
if and only if it is k-connected in P(C). One direction of this assertion follows
from [Lur09, 6.5.1.15], i.e. if f =~ L(fy) is k-connected then so is fy. For the other
direction, notice that the left exact left adjoint L preserves colimits and truncations
(cf. [Lur09, 5.5.6.28]) so preserves k-connectedness (since k-connectedness in an co-
topos can be determined by truncations [Lur09, 6.5.112]). In the presheaf topos
P(C), k-truncation, and therefore k-connectedness, is determined “pointwise” in S,
the statements follow from their usual proofs in S.

Note that by [ABF]J20, 3.6.6] the definition of a k-connected morphism in an
oo-topos X described above agrees with the definition of a k-connected morphism
given in Example 2.8 when X ~ S.

Remark 2.15. There is a discrepancy between the definition of k-connected in an
oco-topos given in [Lur09] and in our notion of a connectivity structure in that, in an
oo-topos, the concept of being k-connected only makes sense for k > —2. However
we can extend the notion of k-connectedness in an co-topos described in Example
2.14 by saying that all morphisms are k-connected for any k < -2.

2.3 Basic properties of connectivity

Proposition 2.16. Suppose that we have a retract diagram A — X — A. Then the map
A — X is k-connected if and only if the map X — A is (k + 1)-connected.

Proof. This follows immediately from the second axiom and items (b) and (c) of the
fourth axiom of Definition 2.1. @

Proposition 2.17. Suppose that we have a commutative diagram
X—sY<~—-2Z
X —Y ~—27

where the middle vertical map is (k + 1)-connected and the outer vertical maps are k-
connected. Then the induced map of homotopy pullbacks X xy Z — X' %y, Z’ is k-
connected.

Proof. Consider the composite map

XXYZ—)X/XY/ZHX/XY/Z/.



We will show that both maps are k-connected, which implies the desired result.

The map X’ Xy Z — X’ xy, Z’ is the pullback of the k-connected map Z — Z’
along the map X’ — Y’, and so it is k-connected.

The map X’ xy» Y — X’ is the pullback of a (k + 1)-connected map ¥ — Y’
along X’ — Y’, and so it is (k + 1)-connected. The composite X — X' xy/ Y — X’
is k-connected. Therefore, the map X — X’ Xy, Y is k-connected. Taking pullback
along the map Z — Y, we find that the map X xy Z — X’ xy/ Z is k-connected. (g

By considering the special case where X =Y = Z = X’ = Z’, we arrive at the
following.

Corollary 2.18. If f: X — Y is (k + 1)-connecied, then the induced map A: X —
X Xy X is k-connected.

Remark 2.19. If C is an co-topos then [Lur09, 6.5.1.18] gives a partial converse to
the above corollary. Specifically, if the map A is k-connected and also an effective
epimorphism then f is (k + 1)-connected.

As another special case, we can take Y =Y’ and Z =Z".

Corollary 2.20. Let f: Z — Y be a morphism in a category C with a connectivity struc-
ture. Then the pullback functor f*: C;y — C,z preserves connectivity (for the connectivity
structures lifted from C).

The following is a dual argument to Proposition 2.17.

Proposition 2.21. Suppose that the connectivity structure on C is compatible with cobase
change, and that we have a commutative diagram

A<—B——C

Ll

A'<—B ——=(C’

where the middle vertical map is (k — 1)-connected and the outer vertical maps are k-
connected. Then the induced map of homotopy pushouts Allg C — A’1lg C’ is k-
connected.

Proof Consider the composite map
A]—[B C —>A]_[B c’ _)A,]—[B’ C.

We will show that both maps are k-connected, which implies the desired result.

The map Allg C — Allg C’ is the homotopy pushout of the k-connected map
C — C’ along the map B — A, and so it is k-connected.

The map A — ALIg B’ is the homotopy pushout of a (k—1)-connected map B —
B’ along B — A, and so it is (k — 1)-connected. The composite A — Allg B’ — A’
is k-connected. Therefore, the map Allg B’ — A’ is k-connected. Taking homotopy
pushouts along the map B’ — C’, we find that the map ALl C’ — A’ Llg C’ is
k-connected. @



Corollary 2.22. Suppose that C has homotopy pushouts and that the connectivity struc-
ture on C is compatible with cobase change. Given any map A — B, the functor
BlIs(=): Cay — Cp, preserves connectivity.

Corollary 2.23. Suppose that C has homotopy pushouts and that the connectivity struc-
ture on C is compatible with cobase change. If X — Y is a (k — 1)-connected map of
objects over Z, then the induced map Z 11y Z — Z 11y Z is k-connected.

2.4 Stable connectivity structures

Suppose C is pointed. Proposition 2.17 shows that whenever f: X — Y is k-
connected, Qf: QX — QY is (k — 1)-connected: the loop operator () adds at
least (—1) to connnectivity. In the case of a stable category, () is an autoequivalence,
and it is common for connectivity structures to satisfy a converse.

Definition 2.24. Suppose that C is stable. A stable connectivity structure on C is a
connectivity structure such that f: X — Y is k-connected if and only if Qf: QX —
QY is (k — 1)-connected.

In the category of spectra, we can detect connectivity by examining connectivity
of the cofiber. This property is always possible with stable connectivity structures.

Definition 2.25. Let C be a pointed category with a connectivity structure. Then we
say that X € C is k-connected if the map from the zero object + — X is k-connected.

Remark 2.26. Note that the zero object of a pointed category will be co-connected.

Lemma 2.27. If C is pointed, then the fiber of any k-connected morphism is (k —1)-
connected.

Proof. Let f: C — D be a k-connected morphism in C and consider the pullback

Square:
fib(f) ——=C
pl f
+— s> D

By pullback stability the morphism p is k-connected, so the zero morphism * —
fib(f) is (k — 1)-connected by Proposition 2.16. @

The above definition allows us to give another characterization of the k-connected
morphisms in a stable connectivity structure, since stable categories always have zero
objects.

Proposition 2.28. IfC has a stable connectivity structure, then a map f: X — Y is
k-connected if and only if the cofiber cofib(f) is k-connected.



Proof- Because C is stable, we have the following two homotopy pullback squares:

X —+« Qcofib(f) —= X
Y
Y —— cofib(f) +——>Y

The left-hand pullback, along with pullback stability of connectivity, shows that if
cofib(f) is k-connected, then the map f is k-connected.

For the converse, consider the right-hand pullback. It shows that if f is k-
connected, then QQcofib(f) is (k — 1)-connected by Lemma 2.27. By stability, the
map * — cofib(f) is k-connected. )

Remark 2.29. Stability of C and Proposition 2.28 of course immediately also imply
that a map f: X — Y is k-connected if and only if fib(f) is (k—1)-connected, giving
a converse to Lemma 2.27.

Remark 2.30. Given a stable connectivity structure on C we can define the subcat-
egory of connective objects, Cs¢, as the full subcategory of all objects which are
(—1)-connected. It is not hard to check that Cs satisfies the following conditions:

1. C5q contains a zero object;
2. Cy is closed under extensions; and
3. Cs is closed under cofibers.

Conversely, given a stable co-category C, a full subcategory D C C determines a
stable connectivity structure on C so long as it satisfies these three conditions. The
third condition can be replaced by closure under the suspension operator ¥, because
a cofiber sequence X — Y — cofib(f) is equivalent data to an extension Y —
cofib(f) — XX.

More specifically, we can say that a morphism f: X — Y is k-connected, for each
k € Z, exactly when cofib(f) € TkIp, Checking that this determines a connectivity
structure on C is straightforward for the first three axioms. All three parts of the
fourth axiom can be checked by recalling that if C is stable then hC is triangulated
and applying the octahedral axiom.

To see that this connectivity structure is stable, notice that the suspension func-
tor ¥ is an equivalence, so preserves cofibers. Thus f: X — Y is k-connected,
i.e. cofib(f) € ZX1D, if and only if cofib(Z~! f) ~ X1 cofib(f) € D, i.e. the
desuspended morphism 7' f: 371X — 271Y is (k — 1)-connected. It also follows
immediately that an object X € C is k-connected in the sense of Definition 2.25 if
and only if X € XK*1D,

Example 2.31. Let E € Sp be a spectrum. Then there is a connectivity structure on
Sp determined by declaring the subcategory of connective objects to be precisely
those spectra X such that the E-homology groups E;(X) = 7;(E ® X) are trivial for
all i <0.

1



2.5 Stabilization

Recall that a functor is reduced if it preserves terminal objects and excisive if takes
pushout squares to pullback squares. If C is an co-category with finite limits then
there is a category Sp(C) of spectrum objects of C [Lurl7, 1.4.2.8]. Explicitly, Sp(C)
is the full subcategory Exc*(&fm,C) - Fun(Sf“,C) of reduced, excisive functors from
finite pointed spaces to C.

Remark 2.32. For any co-category C with finite limits there are functors ev;: Sp(C) —
C for all d > 0 given by evaluation on the d-spheres S € Si" as in [Lurl7, 1.4.2.20].
For d > 0 functors can be equivalently defined by composing ev, with 4. We will
often write (Q* instead of ev.

Definition 2.33. Let C be an co-category with finite limits and a connectivity struc-
ture, and let Sp(C) be its associated category of spectra. Say that an object X of
Sp(C) is connective if for each d > 0, ev;(X) is (d — 1)-connected in C,. Let Sp(C)sg
denote the full subcategory of Sp(C) spanned by the connective objects.

Proposition 2.34. If C has finite limits and a connectivity structure then Sp(C)so C
Sp(C) determines a stable connectivity structure on Sp(C) as in Remark 2.30.

Proof- We only need to check the three conditions of Remark 2.30.

First, the zero object of Sp(C) is the functor given by K + » for every K € Sin,
It follows from Remark 2.26 that its image is contained in Sp(C)s¢.

Now let X — Y — Z be a fiber sequence in Sp(C) with X,Z € Sp(C)s, and fix
d > 0. Then we have a pullback square

X(8%) —— Y(59)

l

s ——Z(87),

in which the bottom horizontal morphism is (d —1)-connected. By pullback stability
we have the top horizontal morphism is also (d — 1)-connected. Because X(8%) is
(d — 1)-connected, the zero map * — X(8%) is (d — 1)-connected, so the composite
+— X(5%) - Y(5%) is (d — 1)-connected, and therefore Y (5¢) is (d — 1)-connected.

Finally, we show that Sp(C)>¢ is closed under the shift operator ¥. Recall that
for a reduced excisive functor X € Sp(C) we have X X(K) =~ X(K A S!) (this follows
for instance from [Lurl7, 1.4.2.13 (2)]). If X(S%) is (d — 1)-connected for all d, then
(£X)(5%) ~ X(S9*1) is d-connected (and therefore (d — 1)-connected) for all d. ()

Recall the following definition from [Lurl7, 6.1.1.6]:

Definition 2.35. An oco-category C is differentiable if it satisfies the following condi-
tions:

1. C admits finite limits;

2. C admits sequential colimits; and

12



3. sequential colimits commute with finite limits.

Lemma 2.36. Suppose that C is differentiable and has finite colimits. Then the functor
Q% Sp(C) — C has a left adjoint ¥°°.

Proof This is [Lurl7, 6.2.3.16], but we give an explicit description of the functor X
for future use. The functor described in [Lurl7] is a composite. An object C € C,
determines a functor f- € Fun(S™,C,) by declaring fo(*) ~ C and extending by
homotopy colimits. This may be extended to a functor f7 € Fun(Si",C) by setting

fE(K) = fe(K) e *

where the morphism C =~ f-(*) = fc(K) is determined by the base point of K. This
gives a functor C, — Fun*(Sfm,C), left adjoint to evaluation on SY. There is an
inclusion Exc,(S,C) < Fun,(S™,C) whose left adjoint is given by the excisive
approximation F +— P, F (cf. the proof of [Lurl7, 6.2.112]). Thus the functor X*°
takes C to the functor P, f. @

Remark 2.37. When C is also pointed, [Lurl7, 6.1.1.28] gives an equivalence P|F ~
colim, Q" o F o X", where Q" is formed in C and X" is formed in S™. Thus * is
the composite functor

: n + n
Cl—)COle(Q ofcoX )

The fact that C is pointed also implies an equivalence f! (8%) ~ »4C giving the
familiar formula

(°C)(5%) ~ colim Q"™ C.
n
In particular, Q®¥X*°C ~ colim, Q"X"C.

Proposition 2.38. Suppose that C is pointed, differentiable, and has finite colimits,
and that the connectivity structure on C is compatible with cobase change and sequential
colimits. Then the stabilization functor X°°: C — Sp(C) preserves connectivity.

Proof By Proposition 2.28 it suffices to show that if g: C — D is k-connected in
C then cofib(X¥*°g) is k-connected in Sp(C). By stability, we may equivalently show
that fib(X*°g) ~ Q cofib(£%°g) is (k — 1)-connected. To say that fib(£%g) is (k—1)-
connected is equivalent to saying that QX fib(£%g) € Sp(C)s, i.e. evyQF fib(X™g)
is (d — 1)-connected in C for all d > 0. But from [Lurl7, 1.4.2.20] we have that

ev, QF fib(X®g) ~ Q®TIOF fib(E®g) ~ evy_ fib(Z%g)
because ¥ and () are homotopy inverses in Sp(C). Now notice that by the description
of the functor ¥ given in Lemma 2.36 and Remark 2.37, we can write ev;_;X%g

as the colimit of the morphisms

ang(sd*k‘f’n) ~ andkarnC N and*k‘f’nD ~ Q?lfg(sd*k‘f’n)

13



where () is being applied in C rather than Sp(C). We have the following string of
equivalences:

ﬁb(colim(and—kHzC_>and7k+nD))

n

~ Colim(ﬁb(andfkﬂzC N and—kﬂzD))
n

~ COLim(Qn ﬁb (Zd*kJr?’lC N Ed*kJr?lD))

in which the first equivalence uses the fact that finite limits commute with sequen-
tial colimits in a differentiable category. By Corollary 2.23 we have that £¢~%+"C —

»4-k41D s (d+n)-connected, so by Lemma 2.27 we have that fib (Ed”””c — ZdﬁkJr”D)

is (d + n—1)-connected. The result follows from Proposition 2.17 and the fact that
the connectivity structure of C is compatible with sequential colimits. )

In the unpointed case, Corollary 2.22 allows us to compose with a disjoint base-
point functor X — X L=

Corollary 2.39. Suppose that C is differentiable, admits pushouts, and has an initial
object. Suppose that the connectivity structure on C is compatible with cobase change and
sequential colimits. Then the stabilization functor X°: C — Sp(C) preserves connectiv-

ity.
Finally, in the relative case, we have the following assembly of the above results.

Theorem 2.40. Suppose that C is differentiable, admits pushouts, and has an initial
object. Suppose that the connectivity structure on C is compatible with cobase change and
sequential colimits. Then, for any object Z € C, the stabilization functor

E?P C/z —Sp(C/z)
and its pointed variant X7 preserve connectivity.
2.6 Cartesian squares
Definition 2.41. A commutative square

X—Y

|

Z ——=W

in C is k-Cartesian if the induced map X — Y Xy Z to the homotopy pullback is
k-connected (cf. [Goo92, 1.3]).%

As expected, there is a “stacking lemma” for k-Cartesian squares.

4More generally, just as in the classical case we have notions of k-Cartesian cubes, and k-coCartesian
cubes, in terms of connectivity of maps to total homotopy pullbacks and from total homotopy pushouts
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Proposition 2.42. Given a commutative diagram

X—sY——7Z7

Lo

X —Y —7
with both squares k -Cartesian, the outside rectangular diagram is also k -Cartesian.

Proof. The map X — Z xz» X’ is the composite
X->Y Xy X - (Z Xz Y’) Xy’ X' ~Z Xz’ X',

The first map is k-connected, and the second is the pullback of a k-connected
map. @

Remark 2.43. We say that pullbacks reflect connectivity in C if the connectivity of any
pullback of f is the same as the connectivity of f. For example, this is true of stable
connectivity structures by Proposition 2.28.

When pullbacks reflect connectivity, the proof of Proposition 2.42 can be up-
graded to show that Cartesianness determines a connectivity structure on the arrow
category of C.

3 Skeleta
3.1 Skeletal objects

Definition 3.1. An object A is k-skeletal if, for any k-connected map X — Y, every
map A — Y in hC lifts to a map A — X.

A map A — B is relatively k-skeletal if it is k-skeletal when viewed as a map in
the undercategory Cy;,.

Remark 3.2. If C has an initial object (), then an object A is k-skeletal if and only if
the map () — A is relatively k-skeletal.

Remark 3.3. Relative k-skeletality can be phrased as a lifting property: given a
commutative diagram in C

A2 X
b
B Y

where y is k-connected, we ask for the existence of a lift B — X together with
coherences. This asks that the map to the homotopy pullback

—_—

0

Map(B, X) — Map(B, Y) XMap(4,v) Map(4, X)

is surjective on 7.



More explicitly, we can consider 0 to be a point of the mapping space C/(f, y a).
Note that, given some ¢ € C4/(B, ), we can compose with y to get a point y¢ €
Ca/(B,ya), ie. there is a map of spaces y,: C/a(B,a) — Cay(B,ya). By [Lur09,
5.5.5.12] the fiber over ¢ of this map is precisely the space of maps from a to § in
(Cay)ss- Therefore relative k-skeletality can be rephrased as asking for Lift(f, ), the
mapping space in (C4/)/s, to be non-empty. Or, equivalently, for the morphism y, to
be be surjective on 7ty. This should be compared to the discussion regarding unigue
lifts in [Lur09, 5.2.8.3].

Example 3.4. The sphere SK is k-skeletal in the category S: a k-connected map
X — Y is a surjection on 7ty and on 7t at any basepoint.

Proposition 3.5. If A is k-skeletal and X — Y is (k + d)-connected for d > 0, then the
map of function spaces Map(A,X) — Map(A,Y) is d-connected.

Proof. Recall the following inductive characterization of connectedness: a map U —
V of topological spaces is 0-connected if it is surjective on 77, and it is d-connected
for d > 0 if it is O-connected and the map U — holim(U — V « U) to the
homotopy fiber product is (d — 1)-connected (cf. for instance [Lur09, 6.5.1.18]).

We now prove the proposition by induction on d. Asking that the map Map(4,X) —
Map(A,Y) be 0-connected is the same as asking that every map A — Y in hC lifts
to X, which is implied by the definition of k-skeletality.

Therefore, to complete the induction we need to show that if X — Y is (k + d)-
connected, the diagonal map

Map(A, X) — holim(Map(A, X) — Map(4,Y) « Map(4, X))

is (d — 1)-connected. However, the functor Map(A,—) preserves homotopy limits;
therefore, this is equivalent to asking that the map

Map(A, X) - Map(A,holim(X — Y « X)),

induced by the diagonal A: X — holim(X — Y « X), is (d — 1)-connected. How-
ever, by Corollary 2.18 the map A is k + (d — 1)-connected, and so the inductive
hypothesis completes the proof. @

Corollary 3.6. If A is k-skeletal and f: X — Y is (k + 1)-connected, then every map
A =Y in hC lifts uniquely to a map A — X in hC.

Proof- The map of spaces Map(A, X) — Map(A,Y) is an isomorphism on 7, which
equivalently says that Homy,¢(A, X) — Homy,¢(A,Y) is an isomorphism. )

Definition 3.7. Let ¢p: X - Y and f: A — Y be maps in C. Then we define
Lift(f, ¢) to be the following homotopy pullback:

Lift(f, ) — Map(4,X)

-

* —f> Map(A,Y).
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Remark 3.8. By [Lur09, 5.5.5.12] the space Lift(f, ) is precisely the space of mor-
phisms from f to ¢ in C/y.

Proposition 3.9. Let L: C — D be a functor with a right adjoint R. If R preserves
k-connected morphisms then L preserves k-skeletal objects.

Proof- Let A be k-skeletal in C and suppose we have a diagram
X

f

L(A) ——Y

in D. Then by adjunction we have a diagram

A—>
adj(¢)

in C and by the hypothesis, R(f) is k-connected. Therefore there is a lift

R(X)
“ajp) lR(f)
O R(Y
gy RY)

by the k-skeletality of A. Applying L to above diagram and using the counit natural
transformation of the adjunction, we obtain the following commutative diagram in

hD:

L(A) ——=LR(Y) ——=Y
L(adj(¢)) ey

However, the lower composite is ¢. )
Corollary 3.10. The left adjoint L preserves relatively k -skeletal morphisms.

Proof The adjunction between L and R induces an adjunction between the slice
categories C4, and Dr(4), by [Lur09, 5.2.5.1], and we can apply the proposition to

the slice categories. @
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3.2 Colimits of skeletal objects
A standard result about left-lifting properties implies the following.

Proposition 3.11. Relatively k-skeletal maps are closed under equivalences, coproducts,
composition, pushout, and retracts.

Proposition 3.12. A4 coproduct of objects is k -skeletal if all the summands are k -skeletal.

Proof: Let {A}}ic; be a collection of k-skeletal objects, and suppose ¢: X — Y is
a k-connective morphism. Let i;: A; — |[A; be the standard inclusions and let
f: LHAj = Y be any map so that | [ f oi; =~ f in C/y. By Remark 3.8 we have that

Lift(f, ) = Lift(LL;f o, ) ]—[Llft (fois )

Because all Aj are k-skeletal, the right-hand side is nonempty; therefore, the left-
hand side is nonempty. @

Remark 3.13. This result can be upgraded to an if-and-only-if statement if enough
maps exist: if there exist maps A j = Y for every object Y. For example, this is true
if C is pointed.

Proposition 3.14. Suppose that we have a homotopy pushout diagram
A —p>

B
[k
C P.

If B and C are k-skeletal and A is (k — 1)-skeletal, then the homotopy pushout P is
k -skeletal.

P

Proof- Let f: X — Y be a k-connected map, ¢p: P — Y any map, and consider the

following diagram:

X

f
¢

P——=Y

A

Because B and C are k-skeletal, there are lifts (7);; B — X and (EE C - X.
We can obtain lifts of ¢igp and ¢icqg to X by simply composing p and g with
(?)7; and (EE respectively. Using the fact that f is not just (k — 1)-connected, but
k-connected, and Proposition 3.6, both of these lifts must agree in hC because they
all lift ¢igp =~ ¢picq. Call that unique lift 1p: A — X. Since 1 ~ ¢pigp =~ ¢picq, the
universal property of P induces a lift (E : P> X. @
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3.3 Skeleta and minimal skeleta

Definition 3.15. A map f: A — X is a k-skeleton if A is k-skeletal and f is k-
connected. If f is (k + 1)-connected, we refer to this as a minimal k -skeleton.

Similarly, a factorization A — B — X is a relative k-skeleton if it is a k-skeleton
in the undercategory Cy;,.

Remark 3.16. Notice that saying a factorization A - B — X ofamap A —> X is a
relative k-skeleton is equivalent to saying that A — B is relatively k-skeletal and that
B — X is k-connected. We will show in Section 3.5 that in good cases, every map
of C admits such a factorization. In other words, the classes of relatively k-skeletal
maps and k-connected maps are the left and right classes of a weak factorization
system, respectively.

Example 3.17. Every k-skeletal object is a minimal k-skeleton of itself.

Example 3.18. Suppose that A is a CW-complex with k-skeleton A%). Then these
spaces are built, inductively, by a sequence of (homotopy) pushout diagrams:

Uskfl 5 A(k*l)

_—

LDk — A®

By Proposition 3.12, the space | [S*¥~! is (k — 1)-skeletal and the space | |D* is 0-
skeletal. Inductively assuming that A=) is (k — 1)-skeletal, then by Proposition 3.14
we find that A% is k-skeletal.

The maps A 5 A are then k-skeleta. More generally, if X is a space and
A — X is a weak equivalence from a CW-complex, then the maps AK) 5 X are

k-skeleta.

The following proposition shows that a minimal skeleton is a retract of any other
skeleton.

Proposition 3.19. Suppose that A — X is a minimal k-skeleton and B — X is another
k-skeleton. Then there exists a map r: B — A of objects over X, unique in the homotopy
category, and it admits a section.

Proof Because the map A — X is (k + 1)-connected by assumption, Corollary 3.6
implies that in the homotopy category hC there is a unique lift 7: B — A over X. To
show the existence of a section, the definitions imply that there is a lift i: A — B
over X. The maps ri and id4 are then two lifts A — A along a (k+1)-connected map
A — X, and another application of Corollary 3.6 implies that ri =id4 in hC. @

If we have two minimal k-skeleta of X, we can then arrive at the following
conclusion.

Proposition 3.20. Suppose that Ay — X and Ay — X are minimal k-skeleta of X.
Then in the homotopy category hC there exists a unique isomorphism A, ~ A, over X.
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Corollary 3.21. Any (k + 1)-connected map between k-skeletal objects is an equivalence.

Example 3.22. Retracts of k-dimensional CW-complexes are k-skeletal. For the con-
verse, suppose X is a k-skeletal space, and construct a CW-approximation A — X.
Then A®) — X is a k-skeleton and X — X is a minimal k-skeleton, so X is a retract
of a k-dimensional CW-complex AR,

In particular, a connected 1-skeletal space X is a retract of a wedge of circles.
This means X is a K(G, 1) for G a retract of a free group; such a group G is free,
and choosing generators gives an equivalence from a wedge of circles to X.

3.4 Cells

Definition 3.23. A k-cell is a (k — 1)-connected map A — B such that A is (k—1)-
skeletal and the map is relatively k-skeletal.

We say that a set Sy of k-cells is a set of generating k-cells for the connectivity
structure if it satisfies the following property: a map is k-connected if and only if it
is (k —1)-connected and satisfies the right lifting property with respect to the maps
in Si.

A set of generating cells is a choice of sets Sy of generating k-cells for all k; if one
exists, we say that the connectivity structure is determined by cells.

Definition 3.24. A cell A — B is j-bounded if B is j-skeletal.

Example 3.25. For k > 0 the inclusion k-1 5 Dk isa (0-bounded) k-cell in S, and
the connectivity structure on spaces is determined by these cells.

Example 3.26. Similarly, for k € Z the maps ¥¥18 5 « and * — T¥$ are both
k-cells ((—co)-bounded and k-bounded respectively) for the standard connectivity
structure on the category Sp of spectra. The connectivity structure on spectra is
determined by the first type of cells: a map f: X — Y has the right lifting property
with respect to X718 — « if and only if 7; cofib(f) is trivial.

By contrast, the connectivity structure is not determined by the latter cells. A
(k —1)-connected map f: X — Y has the right lifting property with respect to
+ — Y¥S if and only if 71 (X) surjects onto 77;(Y'), which does not ensure that the
map 7;_1(X) — 11 (Y) is an isomorphism.
Example 3.27. Consider the category Sp,, of connective spectra. The connectivity
structure on Sp restricts to one on Sp20.5 The maps k18 — « for k > 1 are also
k-cells in Sp., but they do not determine the connectivity structure: they do not
detect surjectivity on 77(. To repair this, we must also include the 0-cell * — 5.

Alternatively, the maps Zﬁf’Sk’l — Zﬁf’Dk and * — X°D? are also generating
cells for Sp.

Proposition 3.28. Suppose that D has a connectivity structure lifted from C along a
Sfunctor R: D — C with left adjoint L.

5The inclusion Sp>o — Sp does not preserve homotopy pullbacks, and so the connectivity structure
on Spy is not lifted from Sp. Instead, it is lifted from S along the functor (2*°.
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If L preserves connectivity, then L takes k-cells to k-cells. If, additionally, there are
sets Sy of generating k-cells that determine the connectivity structure on C, then the sets
L(Sy) are generating k-cells that determine the connectivity structure on D.

Proof. Suppose A — Bisa k-cell in C. Then L(A) is (k—1)-skeletal by Proposition 3.9
and L(A) — L(B) is relatively k-skeletal by Corollary 3.10. Therefore, if L preserves
connectivity then L(A) — L(B) is a k-cell.

Suppose now that the connectivity structure on C is determined by cells. A map
f in D is n-connected if and only if Rf is n-connected, and this is true if and only
if Rf has the right lifting property with respect to the generating cells A — B in Sj
for k < n; by adjunction, this is true if and only if f has the right lifting property
with respect to the cells LA — LB. )

Example 3.29. If S is an associative ring spectrum, the category LModg of left S-
modules has a connectivity structure lifted from the forgetful functor R: LModg —
Sp. There is a left adjoint L(X) = S ® X, and it preserves connectivity if and only
if S is connective. In this case, the maps 2X~1S — + are k-cells that determine the
connectivity structure on LModg. Similarly, $k1S s s for k>1 and + > S are
cells that determine the connectivity structure on (LModg)so.

Example 3.30. Consider the category CAlg(Sp) of commutative algebras in Sp, with
the connectivity structure lifted from Sp. The left adjoint to the forgetful functor is

the free algebra functor IP:
k
P(X) = | | X3
k>0

The functor IP does not preserve connectivity in general, because the symmetric
power functors don’t: the map S~! — # is (~1)-connected, but the map (S~! ®
s-! )ny, — * is only (=2)-connected. However, if we restrict attention to the category
Spsq of connective spectra, the free functor IP does preserve connectivity. Therefore,
the maps P(2¥'S) - $ and $ — IP(S) are generating cells for the connectivity
structure on CAlg(Sp,() lifted from Sp..

(A similar result applies to an arbitrary operad acting on the category (LModg)s
of connective modules over a connective commutative ring spectrum.)

Example 3.31. Similarly, if R is a connective [E,-ring spectrum then there is a connec-
tivity structure on Alg(LModpg)s lifted along the forgetful functor Alg(LModg)so —
(LModpg)so. This connectivity structure is determined by the cells TR(Zk1R) - R
for k > 1 and R — TR(R), where TR: LMody — Alg(LMody) is the free R-algebra
functor.

(A similar result applies to [Ey-algebras in the category of left modules over a
connective [Ey 1 -ring spectrum.)

3.5 Cellular skeleta

Definition 3.32. We say that a set Sy of k-cells is sufficient for k-skeleta if the
following properties hold.

1. The set S is a set of generating k-cells for C.
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2. C has homotopy colimits.

3. Given any cells A; — B; in S, any cobase change of the map | [A; — | [B; is
(k — 1)-connected.

Remark 3.33. In particular, the third item is automatic if the connectivity structure
is compatible with cobase change.

Proposition 3.34. Suppose that, for all k > N, we have a set of k-cells Sy that is
sufficient for k-skeleta. Then an N -connected map f: A — X admits relative n-skeleta

for any n.

Proof. The factorization A — A L X is a relative n-skeleton for any n < N: the map
A — A is relatively n-skeletal because it is initial in the undercategory C,4, and the
map f is N-connected by assumption.

We then apply a standard cellular approximation method. Suppose inductively
that we have found a relative (1 — 1)-skeleton A — X(""1) — X. Let S, = {Aj —
Bj}jcj be a set of generating n-cells for the connectivity structure, and consider the
collection T of all (up to equivalance) commutative diagrams

A] — s x-1)

|

B ——X.
Factor the map X (n-1) 5 x through the homotopy pushout

LerAj, —= X1

|

Ljer Bj, — X1,

By assumption, this cobase change X=1) — X is (n—1)-connected. Therefore,
the factorization X("1) — X — X shows that the map XM - X is at least
(n —1)-connected using Definition 2.1. Moreover, since ]_[A]- - ]_[B]- is relatively n-
skeletal, so is the map X(n=1) 5 X and hence the composite A — x(n=1) _ x()
by Proposition 3.1L

To prove that X" — X is n-connected, it then suffices to show that any diagram

Aj
B;

. x)

:

—_—



has a lift when the left-hand vertical arrow is a cell in the generating set S,,. However,
in that case A; is (n —1)-skeletal, and so the topmost map factors through a map

Aj— X(=1); the resulting commutative diagram is then equivalent to a map in T,

and so there is a lift B]- — X by construction of the homotopy pushout. @

Remark 3.35. We refer to this type of construction of a factorization A — B — X, via
iterated pushout, as a cel/lular construction of a map using the cells in Sy —regardless
of whether or not B is a relative skeleton of X.

Remark 3.36. Suppose that the connectivity structure of C is determined by sets of
k-cells Sy and all of the Sy are sufficient for k-skeleta. Then the above proposition
implies that for every k there is a weak factorization system on hC whose left class
is the class of relative k-skeleta and whose right class is the class of k-connected
morphisms.

Corollary 3.37. If 0 is an initial object and O — X is N -connected, then X admits
n-skeleta for any n.

Example 3.38. All objects in the category S of spaces have skeleta, and the proof
above is a standard construction of a CW-approximation to any space using the
cellular approximation theorem.

Example 3.39. Suppose S is a connective ring spectrum. The forgetful functor
LModg — Sp detects homotopy colimits and connectivity, and so LModg satis-
fies the assumptions of the proposition. Therefore, an object in LModg has an
n-skeleton so long as it is N-connected for some N > —oo.

4 Detecting skeleta
4.1 Nilpotence

Definition 4.1. Suppose E is a collection of maps in C. The class of E-nilpotent maps
is the smallest collection of maps in hC which contains E and is closed under base
change, transfinite composition, products, filtered homotopy limits, and retracts.

Example 4.2. Let E be the collection of maps * — K(A,n) in S for n > 2. Recall
that if a space X is nilpotent in the classical sense (i.e. X has nilpotent fundamental
group, which acts nilpotently on the higher homotopy groups) then it can be written
as a limit of a tower X ~lim(--- > Y, > Y,.; —» - Y, > Y] = Yy ~ %) in which
Y, — Y, is the fiber of a map Y, ; — K(A,m) for some A and some m > 2 (cf.
[MP12, 3.2.2]). Then it follows from Definition 4.1 that the terminal morphism X — =
is E-nilpotent.

Proposition 4.3. An object A, or a map A — B, has the left lifting property with respect
to E-nilpotent maps if and only it has the left lifting property with respect to maps in E.

Proof This is the assertion that “right lifting properties” are closed under the oper-
ations that define E-nilpotent maps. )
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Corollary 4.4. Suppose R: D — C is a functor with a left adjoint L and E is a collection
of maps in D. An object A of C has the lifting property with respect to R(E)-nilpotent
maps if and only if LA has the lifting property with respect to maps in E.

Example 4.5. Suppose that S is a connective ring spectrum, and let E be the class of
maps * — X"HN for N a 17¢(S)-module and n > k + 1. Then any k-connected map
X — Y in LModg is E-nilpotent: one can apply the Postnikov tower to its cofiber.
Therefore, if a left S-module M has a k-skeletal image

HT[()(S)®5 M

in the category LModpy(s), then M is k-skeletal. The converse holds by Proposi-
tion 3.9.

4.2 Tangent categories

We begin with a reminder about tangent co-categories.

Suppose that C is a presentable co-category. Let Tp — Fun(A!,C) be a tangent
bundle to C in the sense of [Lurl7, 7.3.1.9, 7.3.1.10], i.e. the category of excisive functors
Exc(Sim,C). There are functors

evg: Tp —C
for d > 0 given by evaluation at S,
U: To—>C
given by evaluation at *, and a map
T, — Fun(A',C)

that takes X to X(SY) — X(#). By restricting to functors which take * to a fixed
object Z € C we obtain pointed excisive functors Exc*(Sfm,C/Z). In other words, the
fiber over an object Z € C, along the map U: Ty — C, is equivalent to the category
Sp(C/z) discussed in Section 2.5.

The results of [Lurl7, 7.3.1] imply that for any morphism f: W — Z in C there
is an pair of functors f*: Sp(C,z) — Sp(C;w) and fi: Sp(C,w) — Sp(C/z) that
form an adjunction f; 4 f*. The functor f, is described as follows: given an excisive
functor Y: S — C with Y (+) = Z,

(fY)(K) = Y(K) xz W.

Its left adjoint f; is described as follows: given an excisive functor X: S — C with
X(*) = W, the image fiX is the excisive approximation to the functor sending K to
the pushout X(K) Lly Z.

Up to equivalence of categories, the objects of T, are pairs (Z, M) of an object
Z of C and an object M of the stable category Sp(C;z). A morphism from (W, M)
to (Z,N) in Tp is equivalent to a pair of morphisms (f,¢) where f: W — Z is a
morphism in C and ¢: M — f*(N) is a morphism in Sp(C,w) (or, equivalently, a
morphism ¢: fi(M) — N in Sp(C,;z)). Under this identification, the functor Ty —
Fun(A!,C) sends the object (Z, M) to the object Q°M — Z in C,, C Fun(A',C).
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Proposition 4.6. Suppose C has a connectivity structure. Then there is a fiberwise
connectivity structure on Tp, defined as follows. A map X — Y in Tp is k-connected if
the map UX — UY is an equivalence and each map ev, X — ev,Y is (k — n)-connected
forn>0.

Proof. 1t is clear that k-connected maps are (k —1)-connected and that equivalences
are co-connected. Moreover, connectivity is preserved by pullback because pullbacks
in the category T are pullbacks of functors to C.

Suppose that we have composable maps f: X - Y and g: Y — Z in T¢, and
two out of three of f, g, and gf are k-connected for some k. Then the maps
UX — UY — UZ are all equivalences. Therefore, this diagram is equivalent to
a diagram in the full subcategory Sp(C,yx). The restriction of connectivity to this
subcategory is the stable connectivity structure of Definition 2.24, where the 2-out-
of-3 axioms for connectivity are satisfied. )

Remark 4.7. Note that the functors evy and U both preserve connectivity; the former
by definition and the latter because equivalences are k-connected for all k.

Remark 4.8. When restricted to the fiber over Z € C the connectivity structure of
Proposition 4.6 recovers the stable connectivity structure on Sp(C,z) induced by
stabilizing the connectivity structure on C,z (which is in turn induced by the con-
nectivity structure on C). It is not hard to check that, for a morphism f: Z - W
in C, the pullback functor f* preserves connectivity. The pushforward f; preserves
connectivity if the connectivity structure is compatible with cobase change and C is
differentiable.

Remark 4.9. The base-change functors f* induced by maps f: W — Z give the
following interpretation of the fiberwise connectivity structure. The map Tp — C
is a Cartesian fibration, whose fiber over Z is the stable category Sp(C,z). Each
fiber has the associated stable connectivity structure from Definition 2.5, and a
map f in C induces a connectivity-preserving functor f*. This fibration determines,
by straightening, a contravariant functor from C to a category of stable categories
and connectivity-preserving functors. If the connectivity structure is compatible
with cobase change and C is differentiable, a dual statement holds: the coCarte-
sian fibration T — C classifies a covariant functor from C to stable categories and
connectivity-preserving functors.

Remark 4.10. If C is an oco-topos it can be shown that Ty is also an co-topos. In
this case Ty has the connectivity structure described in Example 2.14. Note that
this connectivity structure is very different from the connectivity structure on Tp
described in Proposition 4.6. More specifically, a morphism f: X — Y in T is
k-connected in the toposic connectivity structure on Ty exactly when UX — UY is
k-connected in the toposic connectivity structure on C.

Proposition 4.11. An object A € Tp is k-skeletal if and only if it is k-skeletal in the
subcategory Sp(Cya).

Proof One direction is clear: objects which are skeletal in Ty are still skeletal in the
full subcategory.
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For the converse, suppose that A is k-skeletal in Sp(C,;;4), and that we have a
k-connected map g: X — Y in T¢. Let f be a map f: A — Y which we would like
to lift, with associated base-change functor f*: Sp(C,yy) — Sp(C/ua)-

The k-connected map g determines an equivalence UY ~ UX and a k-connected
map X — ¢'Y € Sp(C/yx). The map UA — UY automatically lifts to a map
h: A— UX, and a lift of f is equivalent to asking for a lift of the map A — f*Y =
h*g*Y along "X — h*g"Y in Sp(C,y4). However, "X — h*g"Y is still k-connected,
and so this lift exists. )

The forgetful functor U: Tp — C has a left adjoint: the absolute cotangent
functor IL: C — Tp, sending A € C to IL(A) € Sp(C,4) C T [Lurl7, 7.3.2.14].

Definition 4.12. Amap f: X — Y in C is nilpotent if it is (J*°(E)-nilpotent, where E
is the class of morphisms f in Tr whose underlying morphism U f is an equivalence.

Remark 413. We may think of such a morphism X — Y as being a map of abelian
group objects in some slice category C,y.

The following lemma gives a good supply of nilpotent morphisms in a presentable
co-category:

Lemma 4.14. IfC is presentable and a map f: A — B is a square-zero morphism in the
sense of [Lurl7, 7.4.1.6] then it is nilpotent.

Proof. Note that by [Lurl?7, 7.4.1.7], any square-zero extension f: A — B by an object
M € Sp(C/p) is a pullback of a map B — B@® XM. This latter map is Q*°(0g —
YM) where 0 — XM is the image of the zero morphism in Sp(C/p) under its
inclusion (as the fiber over B) into Tp. Therefore A — B is the pullback of a nilpotent
morphism. @

Proposition 4.15. Suppose that all k-connected maps in C are nilpotent. Then an object
A of C is k-skeletal if and only if the absolute cotangent complex 1L(A) is k-skeletal in

Sp(Ca)-

Proof. The object A is k-skeletal in C if and only if IL(A) is k-skeletal in Ty by
Proposition 4.4. We can then deduce the result from Proposition 4.11. )

Remark 4.16. Recall that T, — Fun(Al,C) is the stable envelope, in the sense of
[Lurl7, 7.3.11], of the presentable fibration Fun(Al,C) = C given by evaluating a
morphism at its target. One can generalize Definition 4.12 and say that for any
presentable fibration p: C — D with stable envelope q: C’ — C, an object of C is
nilpotent if it is in the essential image of g. In the case that we take p to be the
presentable fibration S — AV the classically nilpotent spaces are nilpotent objects

of § (cf. Example 4.2).
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5 Lifting constructions of skeleta

5.1 Subductivity

Definition 5.1. Suppose that we have an adjunction

L
c2D.
R

We say that the adjunction is k-subductive on C if, whenever a map X — Y in C is
k-connected, the square
X Y

RL(X) — RL(Y)

_— >

is always k-Cartesian, and strongly k -subductive if the square is always (k+1)-Cartesian.

The subduction zone is the set of k such that the adjunction is k-subductive. If it
is subductive for all k, we simply refer to it as subductive. (Similar definitions apply
for terms such as the strong subduction zone.)

Example 5.2. Consider the ¥ — () adjunction on pointed spaces. The condition of
k-subductivity asks whether, for a k-connected map X — Y, the diagram

X——Y

L

QXX —Q¥Yy

is k-Cartesian. If the spaces are allowed to be disconnected, this is generically false.
If we restrict attention to pointed connected spaces, this adjunction is subductive:
subductivity is equivalent to asking for surjectivity of the map

Th+1 (Y, X) - T(k+2(2Yw EX),
which is a consequence of the Blakers-Massey excision theorem for any k > 1. If we

further restrict to pointed 1-connected paces, this adjunction is strongly subductive.

Example 5.3. Suppose that f: R — S is a map of connective ring spectra, determin-
ing an adjunction between LModg and LModg. Then this adjunction is subductive
if and only if, for any k-connected map M — N, the square

M — N
SOrM —— S®r N

is k-Cartesian. Taking fibers, we find that subductivity is equivalent to showing that
for any (k —1)-connected object F, the map F — S®g F is k-connected. On 7y, this
is the map

70 (F) = 100(S) @y (r) Tk (F),
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Therefore, this adjunction is subductive if and only if the map R — S is 0-connected.
Similarly, the adjunction is strongly subductive if and only if the map R — S is
1-connected.

Proposition 5.4. Suppose that we have a strongly k-subductive adjunction

such that R preserves (k + 1)-connectivity, and that f: X — Y is k-connected in C. If
Lf: LX — LY is (k+1)-connected, then f is (k + 1)-connected.

Proof.: The map f factors as a composite
X - RL(X) XRL(Y) Y—>Y.

The first map is (k + 1)-connected by strong k-subductivity, and the second is a
pullback of the (k + 1)-connected map RL(X) — RL(Y). )

Applying the previous proposition inductively gives the following result.

Corollary 5.5. Suppose that we have an adjunction

such that {k,k +1,...,N} are in the strong subduction zone, that f: X — Y in C is

k-connected, and that L and R preserve connectivity. Then f is N -connected if and only
if Lf is N -connected.

Proposition 5.6. Let k and j be integers with j > 0. Suppose that we have a (strongly)
k -subductive adjunction

L
c2D
R

and a (strongly) (k + j)-subductive adjunction

M
D2¢,
S

that L increases connectivity by at least j, and that R decreases connectivity by no more
than j. Then the composite adjunction is also (strongly) k -subductive.

Proof- Suppose that f: X — Y is k-connected. Let € be 0 in the case of subductivity,
and 1 in the case of strong subductivity; we wish to show X — Y xgspr(v)RSML(X)
is (k + €)-connected.

From [RV2], Proposition 2.1.9], we know that the unit of the composite adjunction
is given the composite transformation idp — RL — RSML. Therefore we have a
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composite of cospans:

X X
idy idy

1@ X RLJ%X)

I>1 _—1

Y RL(Y) RSML(X)

~ 1
RSML(Y)

which induces a factorization of the universal map X — Y xgspyr(y)RSML(X). Thus
we need to prove that the composite map

X — YXRL(Y)RL(X) — YXRL(Y)(RL(Y)RSA;[(L(X)RSML(X)) ~ YXRSML(Y)RSML(X)

is (k + €)-connected. The first map is (k + €)-connected because the first adjunction
is (strongly) k-subductive, and so it suffices to prove that the second map is (k + €)-
connected.

Because L increases connectivity by at least j, the map Lf: LX — LY is (k + j)-
connected, and therefore the map

LX > LY XSML(X) SML(Y)

is (k+ j+€)-connected because the second adjunction is (strongly) (k + j)-subductive.
Applying R, the map

is (k + €)-connected. Taking the fiber product with Y over RL(Y), we find that the
map
Y xgr(y) RL(X) = Y Xpspmr(x) RSML(X)

is (k + €)-connected, as desired. @
If the ¥ — () adjunction is (strongly) subductive, we get the following result.

Corollary 5.7. Suppose C is pointed and has pushouts, that connectivity is compatible
with cobase change, and that {k,k+1,...,k +n— 1} are in the (strong) subduction zone
of the ¥ — Q adjunction. Then the X" — Q)" adjunction is (strongly) k -subductive.

Proof. The functors Q) and X both shift connectivity by 1 in opposing directions, the
latter by Corollary 2.23. Therefore, iterated application of Proposition 5.6 implies
that the composite 2" — ()" adjunction is subductive. )
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Proposition 5.8. Suppose that C is differentiable, pointed, and admits pushouts. Suppose
that the connectivity structure on C is compatible with cobase change and sequential
colimits.

If the X —Q) adjunction is (strongly) subductive, then the ¥ —Q* adjunction between
C and Sp(C) is (strongly) subductive.

Proof. The proof of Proposition 2.38 shows that Q®X*X ~ colim,, Q™¥X"X. There-
fore we need to prove that, for any k-connected map X — Y, the square

X Y

| l

colim,, Q"¥"X —— colim,, Q"X"Y

is (k + €)-Cartesian. For any individual m, this diagram is (k + €)-Cartesian by
Corollary 5.7. The fiber product, and the connectivity of the map from X to it, are
preserved by sequential colimits because C is differentiable. @

5.2 Excavation

Definition 5.9. Let L: C — D be a colimit-preserving functor. Suppose that we
have a set S of maps in C, a map X — Y in C, and a commutative diagram

[er LA, —LX

|

Ller LB;, — LY

where the left-hand map is a coproduct of maps in LS. We say that this can be ex-
cavated from D if the square diagram from each term in the coproduct is equivalent
to the image of a diagram in L. In particular, the diagram lifts to a commutative
diagram

]—[tGT A]t X

|

Ueer Bj, —=Y

in C, and the constructed factorization LX — Z — LY through the pushout lifts to
a constructed factorization X - W — Y.
More generally, if we have sets of cells Sy and a map X — Y with a factorization

LX=z0Y 5 zn _ zm) o 7(N) 1y,

where each map AL AR cellularly constructed from maps in LSk, then we
say that this can be excavated if each stage can be excavated: there exists a lift to a
sequence

X=wrh 5w 5wl o, wiN) Ly,
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in C, where each map W*~1) — W) is cellularly constructed from the maps in Sy,
lifting the construction of Z*),

5.3 Excavating cells

The following lemma assures us that, when we have a subductive adjunction, “cells
can be excavated so long as their ranges can.”

Lemma 5.10. Suppose that
L
cz2D
R

is a k-subductive adjunction and that f: X — Y is a k-connected map in C. Then, for
any (k+1)-cell A— B in C, a commutative diagram

LA——LX

L

LB——=1LY
can be excavated from D if and only if the map LB — LY lifis to C.

Proof Showing that this diagram is the image of one in L is the same as asking that
we can complete the commutative diagram

A—— - RIX)

By adjunction, lifting LB — LY to a map B — Y is the same as constructing the
bottom commutative triangle.

Suppose that a lift B— Y is chosen. Then we have a map A — Bxpr(y)RL(X) —
Y xgp(y) RL(X), and what remains is to lift it along the map X — Y xgy(y) RL(X).
However, this map is k-connected by assumption and A is k-skeletal, so such a lift

exists. @

Remark 5.11. The lifting requirement holds automatically in several important cases,
such as if the object B is a zero object of C. Our principal case will use boundedness:
lifting holds if the cell is j-bounded and the unit Y — RL(Y) is j-connected.

Corollary 5.12. Fix a k-subductive adjunction C:é D. Let S,q be a set of j-bounded
(k+1)-cells in C.

Suppose that Y — RL(Y) is j-connected, that we have a k-connected map f: X —
Y in C and a choice of factorization LX — Z — LY where LX — Z is cellularly
constructed from the maps in LSy, 1. Then LX — Z — LY can be excavated from D.
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5.4 Excavating skeleta

Our goal in this section is to expand the previous section inductively, and show that
by using subductive adjunctions C 2 D, we can lift cellular constructions from D.
In particular, this will allow us to construct minimal skeleta.

Theorem 5.13. Suppose that we have an adjunction

L
cz2D
R
such that {n,n+1,...,N —1} are in the subduction zone. Fix sets Sy of j-bounded k -cells
inC forn <k <N.
Suppose Y — RL(Y) is j-connected, that we have an n-connected map f: X — Y in
C, and a cellular construction LX = 7" — zn+1) 5 ... 7(N) , 1y using the cells
in LSi. Then the cellular construction of ZN) can be excavated from D to a sequence
X=wn s wh+l) 5 ... s WwiN) 5y,
If L reflects N -connectivity, then the map WN) — Y is an N -skeleton if the original
map ZWN) — Y was. IfL also reflects (N + 1)-connectivity, this skeleton is minimal if
the original map was.

Proof- Starting with w =X, inductively apply Corollary 5.12 to excavate the cel-
lular constructions of (LW)*-1) ~ z(k=1) 5 7(k) 5 LY to cellular constructions of
wkl  wk -y,

Because the Sy are k-cells, each map W(=1) — W) js relatively k-cellular.

If L reflects connectivity appropriately, and the map (LW)N) ~ Z(N) LY is
N-connected, then the map WW) 5 Y is N-connected and hence an N-skeleton.
If the original was a minimal N-skeleton, then this connectivity estimate improves,
making W) into a minimal N-skeleton of Y. )

Example 5.14. The X — () adjunction between 0-connected pointed spaces and 1-
connected pointed spaces has subduction zone [1,00) as in Example 5.2. The con-
nectivity structure in both cases is determined by 0-bounded cells S¥ — D¥*!, which
are preserved by suspension.

For a path-connected space Y, the map ¥ — QXY is O-connected. Given a
l-connected map X — Y between O-connected spaces, we can therefore excavate
any relative CW-factorization X — Z(?) — ... - ZIN+1) 3y 0 a relative CW-
factorization X - W) ... 5 WiN) v,

On 1-connected spaces, X reflects connectivity. Therefore, if Y is 1-connected,
any cellular construction of an (N +1)-skeleton for XY can be excavated to a cellular
construction of an N-skeleton for Y.

6 Excision
In this section we will show that many of these important properties hold for cate-

gories of algebras and modules over an operad in spectra. The fundamental tools
to prove this are excision theorems, and excision theorems are hard work. For our
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applications, we will be appealing to the work of Ching-Harper on excision for alge-
bras in a category of module spectra [CHI6]. However, our use of their main result
is simple enough that we can axiomatize it in this section.

6.1 Excisive connectivity structures

Definition 6.1. Fix C with homotopy pushouts and an initial object, with a connec-
tivity structure that is compatible with cobase change. We say that the connectivity
structure on C satisfies algebraic excision if the following conditions hold.

1. All maps X — Y in C are (—1)-connected.

2. Let W be a nonempty finite set with power set P(W), viewed as a poset, and
X: P(W)—C a“W-cube” in C. Suppose that:

(a) for each nonempty subset V C W, the V-cube X|p(y) is ky -coCartesian,
and

(b) ky <ky forall UCV CW.

Then X is k-Cartesian, where k is the minimum of —|W|+ ) (ky + 1) over
all partitions A of W by nonempty finite sets.

Remark 6.2. The category S of spaces does not satisfy this type of excision: excision
estimates for spaces differ by a shift.0

Example 6.3. Suppose © is a connective operad in the category of modules over a
connective commutative symmetric ring spectrum S, with category Alg® of connec-
tive algebras. Then [CHI6, Theorem 1.7] is precisely that Alg satisfies algebraic
excision. This includes models for the category of IE, S-algebras, where S is a

commutative ring spectrum.7

Remark 6.4. The property of having algebraic excision is inherited by slice and
coslice categories, because the colimits and limits of deleted cubical diagrams are
calculated in the underlying co-category.

6.2 Excision and augmentations

Proposition 6.5. Suppose that C satisfies algebraic excision and has a final object, and
that the map 0 — * from the initial object to the final object is j-connected. Then there is
an adjunction

czc,

6In principle, pointed connected spaces are equivalent to topological groups via the loop
space/classifying space relationship, and topological groups do satisfy algebraic excision; this can help
make sense of the shift in connectivity.

"The paper [CHI6] is written in terms of operads © in symmetric spectra, using the Quillen adjunction
between positive stable model structures on Modg and Algy. However, passage to the associated
oco-category preserves structures of rings, modules, and algebras, and the definitions of Cartesian and
coCartesian cubes are defined using homotopy limits and colimits, which are equally well computed in
Algy or the associated co-category. Moreover, in the case where © is the suspension spectrum of an
ordinary operad O, algebras can be rectified: the co-category associated to Alggy is a model for the
category of algebras for the associated co-operad.
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that is subductive if j > 0, and strongly subductive if j > 0.

Proof. The left adjoint is the functor (=), = (=) Ll*. By pushing out along the
map @ — *, we find that X — X, is always j-connected. As a result, consider the
coCartesian square

X——Y

X, —Y,
viewed as a 2-cube. If the map X — Y is k-connected, then algebraic excision shows

that the square is n-Cartesian, where n = min{-2+(k+ 1)+ (j+1),-2+ oo} =k +J,
as desired. @

Corollary 6.6. Suppose that C satisfies algebraic excision and that ) — Z is j-connected.
Then the adjunction C;z 2 (C/z)., between objects over Z and objects augmented over Z,
is subductive if | > 0 and strongly subductive if j > 0. The unit X — X 11Z is always
j-connected.

6.3 Excision and suspension

Proposition 6.7. Suppose that C satisfies algebraic excision and that X — Z is a k-
connected map in C, where k > 0. Then the map X — Q37X is 2k-connected.

Proof. Consider a homotopy pushout diagram

X——Z

|

7 —— sz,

viewed as a 2-cube. The two arrows X — Z are k-connected by assumption, and
the full cube is a pushout cube and hence is co-coCartesian. Algebraic excision then
shows that it is n-Cartesian where n = min{-2+ (k+ 1)+ (k+ 1),—-2 + oo} = 2k. By
definition, this means that the map X — Q¥ X is 2k-connected. @

Remark 6.8. In particular, this implies that the map ;¥ ;X — Z is still k-connected.

Proposition 6.9. Suppose that C satisfies algebraic excision. Let X — Y — Z be maps,
where X — Y is k-connected and the maps X — Z and Y — Z are {-connected, for
k+1>¢>0. Then the diagram

X Y

L

Q,5,X —=Q,%,Y

is (k + €)-Cartesian.
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Proof Consider the cubical diagram:

X—— 7

The natural map from X to the total homotopy pullback of the cube with the initial
vertex deleted is equivalent to the map from X to the homotopy pullback in the
proposition statement, and hence it suffices for us to show that this cube is (k +¢)-
Cartesian.

The maps X — Z are {-connected, and the map X — Y is k-connected. The
top and bottom faces are homotopy pushout diagrams, and hence co-coCartesian;
in particular, the whole cube is co-coCartesian by [CHI6, 3.8(b)]. Because the map
X — Y is k-connected and the map Z — Z is co-connected, the left-hand and back
faces are both (k + 1)-coCartesian, again by [CHI6, 3.8(b)].

The inclusion of each initial face into a larger face improves connectivity, and so
the excision estimate applies. The whole cube is n-Cartesian, where

n=min{-3+(k+1)+(f+1)+(€+1),-3+(k+1)+00,-3+(€+1)+(k+2),-3+00} = k+{,
as desired. )

Corollary 6.10. IfC satisfies algebraic excision, the ¥; — (), adjunction is subductive
when restricted to objects X such that X — Z is 0-connected, and strongly subductive
when restricted to objects such that X — Z is 1-connected.

Proposition 6.11. Suppose that C satisfies algebraic excision, and that X — Y is a map
of objects over Z such that X — Z and Y — Z are 1-connected. Then, for k > 0, the
map X — Y is k-connected if and only if the map Q; ¥, X — QY ;Y is k-connected.

Proof. Because the maps X — Z and Y — Z are 1-connected, the map X — Y is
0-connected. Therefore, we can apply Proposition 5.4. @

7 Applications

7.1 Skeleta in derived categories

In this section we will examine what skeletality means for an object in the classical
derived category of a ring R, with the connectivity structure determined by the
t-structure as in Example 2.9.

Definition 7.1. Let R be an ordinary ring. We say that a complex of R-modules has
projective amplitude in [a, D] if it is equivalent to a complex of projectives concentrated

in degrees a through b.
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Proposition 7.2. A complex of R-modules has projective amplitude in [a, b] if and only
if it is (a—1)-connected and b-skeletal.

Proof Suppose A is a complex with the given projective amplitude; since the prop-
erties we need to show are invariant under equivalence, we may assume that A is
a complex of projectives concentrated in degrees a through b. Then its homology
is clearly concentrated in degrees a through b, so it is (a — 1)-connected. Moreover,
if X — Y is a b-connected map of complexes, its cofiber Y/X is (b + 1)-connected,
and hence [A, Y/X] = 0 via a hypercohomology spectral sequence with E;-term

Hompg(A,, Hi(Y/X)) = H;_sHom(A, Y/X).

This implies the desired lifting property by the long exact sequence for [A,—].

To prove the converse, we proceed by induction on b —a. By first applying a shift
Y74, we may assume without loss of generality that a = 0.

For the base case, suppose that A is (—1)-connected and 0-skeletal; we wish to
show that A is equivalent to a projective complex concentrated in degree 0. Without
loss of generality we may assume A is a complex of projectives in nonnegative
degrees. Any surjective map of (discrete) R-modules M — N can be viewed as a
0-connected map of complexes concentrated in degree 0. The map [A,M] — [A,N]
is therefore surjective; however, this is isomorphic to the map

Homp(HyA, M) — Homp(HyA, N).

Since M — N was an arbitrary surjection, Hy(A) is a projective module P. Both
A and P are 0-skeletal, and the maps A — P and P — P are both 1-connected.
This makes both A and P minimal 0-skeleta of P, and hence equivalent by Proposi-
tion 3.20.

Now suppose by induction that we have shown the result for b — 1. Given a
complex A which is (—1)-connected and b-skeletal, let P — H((A) be a surjection
from a projective module, with a lift to a map P — A. Then the cofiber A/P
is 0-connected, and it is b-skeletal by Proposition 3.14. By induction it then has
projective amplitude in [1,b]. The complex A is equivalent the cofiber of the map
¥~1A/P — P, and thus has projective amplitude in [0, b]. )

Proposition 7.3. Suppose that R is a principal ideal domain. Then a complex M of
R-modules is k-skeletal if and only if Hy(M) is free and H.M = 0 for = > k.

Proof- Since principal ideal domains have projective dimension 1, any complex of
R-modules splits: there is an equivalence

EBZ"IHd(M) ~ M.
d

Therefore, M is k-skeletal if and only if each X¢H;(M) is k-skeletal by Proposi-
tion 3.12, which is true if and only if H;(M) is (k — d)-skeletal.

By the previous proposition, this is equivalent to H;(M) having projective am-
plitude in [0,k — d]. Since R has projective dimension 1, every discrete module has
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projective amplitude in [0,1], and so this is automatically satisfied for d < k — 1.
When d = k, we must have that Hi(M) has projective amplitude in [0, 0], which is
equivalent to asking that Hy(M) is projective, and hence free. When d > k, we must
have that Hy (M) is trivial. @

Corollary 7.4. Suppose that R is a field. Then a complex M of R-modules is k -skeletal
if and only if H,(M) = 0 for= > k.

We now consider the construction of minimal skeleta.

Proposition 7.5. Suppose that A — M is a map of chain complexes over R that is a
(k — 1)-skeleton, with cofiber M/A. Then there exists a minimal k-skeleton B — M if
and only if H(M/A) is a projective R-module and Hy,1(M/A) = 0.

Proof. Suppose that B— M is a minimal k-skeleton. Then there exists a unique lift

A — B over M by Corollary 3.6. The object B/A is (k —1)-connected and k-skeletal

by Proposition 3.14, and hence equivalent to a shift kP ofa projective R-module.
Because of the identification

(M/A)/(B/A) ~ M/B,

the map B — M is (k + 1)-connected if and only if the map B/A — M/A is (k+1)-
connected. However, for the map kP — M/A to be (k+1)-connected we must have
that Hi(M/A) =P and Hy,;(M/A) = 0.
Conversely, suppose that Hy(M/A) is a projective module P and that Hy . (M/A) =

0. Then, since M/A is (k — 1)-connected, there is a (k + 2)-connected map M/A —
kP, which has a section because TXP is k-skeletal; the section is (k + 1)-connected.
Let C be the cofiber of the map kP — M/A; it is (k + 1)-connected. Let B be the
fiber of the map M — C; the map B — M is (k + 1)-connected. The octahedral
axiom implies that there is a cofiber sequence

y*1p 5 A-B
and hence B is k-skeletal. Therefore, B is a minimal k-skeleton of M. )

Corollary 7.6. Suppose R is a principal ideal domain. Then a chain complex of R-
modules M admits a minimal k -skeleton if and only if H.(M) is free and Hy .1 (M) = 0.

Proof. Let A be any (k — 1)-skeleton of M. Then Hy,;(M/A) = Hy, (M), and so
these groups are either both zero or both nonzero. There is also an exact sequence

0 — Hy(M) — H(M/A) — Hi_1(A).

The group Hy_;(A) is free by Proposition 7.3, and since R is a principal ideal
domain the image of the map Hi(M/A) — Hj_1(A) is also free. Therefore, the
group Hy(M/A) splits as a direct sum of Hi(M) and a free module, and so Hi(M)
is projective if and only if Hy(M/A) is. )

Because there is an equivalence between complexes of R-modules and modules
over the Eilenberg-Mac Lane spectrum HR [SS03, 5.1.6], taking homology groups
to homotopy groups, we arrive at the following.
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Proposition 7.7. Suppose R is a principal ideal domain. An HR-module M is k -skeletal
if and only if 7ti. (M) is projective and 1t.(M) = 0 for » > k. An HR-module M admits
a minimal k-skeleton if and only of T, (M) is free and 113, (M) = 0.

In particular, suppose R is a field. An HR-module M is k-skeletal if and only if
1. (M) = 0 for + > k. An HR-module M admits a minimal k-skeleton if and only if
Tt (M) = 0.

Corollary 7.8. If R is a principal ideal domain, then any N -skeleton of an (n —1)-
connected HR-module M admits a cellular construction using the cells ({=F1HR -

“})u<k<N-
7.2 Skeleta for spaces

For k > 2, any k-connected map of spaces X — Y is nilpotent: the relative Postnikov
tower expresses each path component as a limit of pullbacks

P,(Y,X) K(mY,1)

l l

Po1(Y,X) —= K(r1 Y, 1) < K(10,(Y, X), n + 1).

As a result, X is k-skeletal for k > 2 if and only if its image in the stable category
Sp(S/x) is k-skeletal.

Following Waldhausen, this stable category is equivalent to the category of func-
tors X — Sp, and the image of X is the constant functor with value $. In the case
where X is connected, this is equivalent to the category of modules over the spherical
group algebra $[Q2X], and the image of X is the trivial module S.

The Postnikov truncation map $[QX] — HZ[n; X] is 1-connected. As in Ex-
ample 4.5 we find that X is k-skeletal if and only if the left HZ[7; X]-module

S®sjox] HZ[m X]~HZ®X

has projective amplitude in [0, B, where X is the universal cover. This is equivalent
to asking that the complex C,(X) of Z[m; X] has projective amplitude in [0, k]. This
is related, but somewhat orthogonal, to Wall’s finiteness obstruction.

7.3 Algebras in module categories

Throughout this section we assume that S is a commutative ring spectrum and
AlglEn(S) is the oco-category of IE,-algebras in left S-modules. Recall that there is
a connectivity structure on AlglEn(S )>0, lifted from LModg, that is described in
Examples 3.30 and 3.31. In particular, this connectivity structure is determined
by the (0-bounded) cells Tén(zkfls) — S for k>1and S — Tl%n(s)’ where
Tlgn: LModg — Algy, (LMods) is the free IE, S-algebra functor. Moreover, Propo-
sition 3.28 and the fact that the connectivity structure on Algy (S) is compatible

with cobase change imply that these cells are sufficient for k-skeleta for all k > 0, in
the sense of Section 3.5.
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As discussed in Example 6.3, the category AlglEn(S) satisfies algebraic excision
by [CH16, Theorem 1.7], and hence all the results of Section 6 apply.

Proposition 7.9. Any connective E,, S-algebra A has a (convergent) Postnikov tower
—>P2A —>P1A —>POA
in [E,, -algebras, where each stage is given by a pullback diagram

PpyA————P,A

l l

P,A ——— P, A®X"™?Hrm,, 1A

in which the right-hand map is (O* of a map in Sp(Algy, (R)/p, ). In particular, the
maps Py, .1 A — Py A are nilpotent for m > 0.

Proof- 1t follows from [Lurl7, 7.1.3.19] that every connective [E,, S-algebra has a Post-
nikov tower. Moreover, by Lemma 4.14 and [Lurl7, 7.4.1.28] we have that each of
the morphisms P,,;A — P, A is nilpotent. It remains to show that each level of
this tower can be obtained by the given pullback. By [Lurl7, 7.4.1.7] we have that
P,.1A — P, A is some pullback of a nilpotent morphism. To check that it is a pull-
back specifically of a morphism P,,A — P, A® ¥ 2Hr,, ;A it suffices to identify
the fiber of P,,,; A — P,,A, which is "1 Hr,,,, A by [Lurl7, 7.1.3.14] parts (3) and

(%)

Proposition 7.10. Suppose f: A — B is a morphism of E,, S -algebras spectra such that
10o(f) is surjective and has nilpotent kernel. Then f is nilpotent.

Proof- Recall that a surjective map of discrete rings R — R’ with nilpotent kernel |
can always be written as a limit of square-zero extensions: the tower of quotients
... R/J® > R/J? > R/] =R. By [Lurl7, 7.4.1.21], if PyA — PyB is a square-zero
extension of discrete rings then it is square-zero as a map of [E,, S-algebras and so,
by Lemma 4.14, is nilpotent. Therefore the map 7((f): PyA — PyB is nilpotent.

Now, using the Postnikov towers of A and B, factor the map A — B as a transfi-
nite composite

A_>..._>P2A)<P2BB—>P1AXPlBB—)P()AXPOBB—)B.

Notice that holim,, (P, A xp g B) ~ A xp B, so A is the homotopy limit of the above
tower. Therefore, it suffices to show that all of the maps in the composition are
nilpotent.

The last map is the base-change of the map PyA — PyB along the map B — FyB,
and so it is nilpotent by the discrete case proven above.

Each of the remaining maps factors as

Pm+1A XPmHB B— Pm+1A Xme B— PmA Xme B.
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The second map is the base-change of the composite P,,,;1A — P,A — P, B along
the map B — P, B, and so it is nilpotent. The first map is the base-change of the
map

Pui1B — Pyi1Bxp, g Pyi1 B

along P, ;1A xp g B — Py41B xp g Pyy1B, and so it suffices to show that Py,,1B —
Pys1A xp, g Pyy1 B is nilpotent.

However, P,,,1 B is a square-zero extension of P, B via a map that becomes trivial
when restricted to Py, 1 B. Therefore, the pullback is the trivial square-zero extension

Py1B&X" Hrtyp 1 B— Pyt B,

and the map P,,.1 B — P,,,1 B®OX"*' Hr,,,1 B is the image of the map 0 — X"*'Hr,, B
in the stable category Sp((Alg )/p,., B)- )

Corollary 7.11. 4 k-connected map of IE, R-algebras f: A — B is nilpotent whenever
k>0.

Recall that the stable category Sp(Alg®"(S) /4) is identified with the category of
(S-linear) E,, A-modules [Lurl7, 7.3.4.18].

Definition 7.12. For a commutative ring spectrum S and an [E,, S-algebra A, we de-
fine £3(A) to be the relative Loday construction, or relative factorization homology
object:

£5(A)=S ® J A.
js”*ls st

The category of S-linear I[E,, A-modules is equivalent to the category of modules
over L5(A) [Lurl7, 7.3.5.3].

By combining Corollary 7.11 with Proposition 4.15 we immediately obtain the
following result:

Proposition 7.13. A4 connective IE,; S -algebra A is k-skeletal for k > 0 if and only if its
absolute cotangent complex WEn(A) is k -skeletal in the stable category LMod £5(A)-

We recall the following formula for this absolute cotangent complex.
Theorem 7.14 ([Fral3, 2.26], [Lurl7, 7.3.5.1]). There is a cofiber sequence
L5(A) —> A — T'LE(A).
of L (A)-modules.

Corollary 7.15. Fork > 1—n, the absolute cotangent complex WEn (A) is k-skeletal if A
is a (k + n)-skeletal £5(A)-module.

Proof The object X 7"£5(A) is always a (—#)-skeletal module and by assumption
Y7"A is a k-skeletal module, and so this follows by Proposition 3.14.

Remark 7.16. For k > 2 — n, the converse is also true.
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If A is connective, the Loday construction £°(A) is connective. Under these
circumstances, Example 4.5 now gives us the following result.

Theorem 7.17. A connective IE,, S-algebra A is k-skeletal fork > 1 if the Hr (ES (A))
module

Hm, (ES(A))KSQ(;A)A

is (n + k)-skeletal.

When n =1, £L5(A) = A®s A% as an algebra, and 77 ([:S(A)) = T0(A) Oy (s)
119(A)°P. The above theorem specializes to a statement about relative topological

Hochschild homology.

Proposition 7.18. Suppose A is a connective IE| S -algebra and that 11(A) is a localized
quotient of 1S (in particular, a commutative ring). Then A is k-skeletal for k > 1 if the
topological Hochschild homology object

THHS (A, HT(()A) =~ HT(()(A) ®A®5A"P A
is a (k + 1)-skeletal Hto(A)-module.

This allows the detection of skeleta. We next turn our attention to the construc-
tion of skeleta and minimal skeleta.

Lemma 7.19. Let S be a commutative ring spectrum and A an E, S-algebra for n >
1 with 11o(A) commutative. If the unit map S — A is O-connected then there is an
isomorphism 110(A) = 10o(L5 (A)).

Proof When n > 1, the result follows immediately from the long exact sequence
in homotopy groups applied to the cofiber sequence of Theorem 7.14 and does not
require the 0-connectivity assumption on the unit nor the commutativity condition
on 7)(A). When n = 1 however we use both conditions along with the isomorphism

e ([:S(A)) = 11(A) ®p(s) T0(A)°P to deduce the result. @

Lemma 7.20. IfA isan E, S-algebra for a commutative ring spectrum S and the unit
S — A is O-connected then the unit A — QCYLA =~ ALy is 0-connected.

Proof. First note that, because S — A is 0-connected, Corollary 6.6 implies that
A —> A, ~A®A is also 0-connected. Note that, by virtue of A, being an object
of pointed [E,, S algebras over A, that there is a retract A — A, — A and therefore
A, — A is 1-connected by Proposition 2.16. By Proposition 6.7 we then have that
A, > QX 4A, is 2-connected.

Now let W be a set with m-elements and consider the cocartesian m-cube
F: P(W) — Algm”(s)/A with A, as the initial vertex, X" 1A, as the final ver-
tex, and A for every other vertex. Given a subset V C W with |V| = k, the homotopy
colimit over the diagram P(V)-V is E§_1A+. By iterating Proposition 2.21 we see
that E§_1A+ - ZZ_IA ~ A is k-connected, so the subcube of F associated to V
is k-cocartesian (except when V = W in which case it is co-coCartesian). In other
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words, in the notation of Definition 6.1, kyy = |V| whenever |V| < |W| and ky = oo
when V = W. Thus the entire cube F must be K-cartesian where K is the minimum
{=IW]+Zyer (IVI+1) = [A] 1 |A] > 1} U {co}. Therefore K = 2. Thus A, — QYWA,
is at least 2-connected for all m > 0.

Note that because the connectivity structure on AlgIE,,(S) /4 is lifted along a for-
getful functor Algy (S),4 — LModg which preserves sifted colimits, it is compatible
with, in particular, nsequential colimits. Thus A, — colim,, QY YYA, ~ A®IL, is
2-connected, and so A - A®IL, is 0-connected. )

The following is well known to experts, but the authors could not readily find a
reference using the co-categorical language of this paper.

Lemma 7.21. Let f: B — A be a morphism of [E,, S -algebra specira for S a commutative
ring spectrum. Then the value of the functor (X°)4: Alg/li” - Sp(Alg/E”) applied to f

is equivalent to L5 (A) ®s(B) ILI}_E”.

Proof. We check that [:S(A)(X)[;s(_)l?a_”) is left adjoint to Q. Let f* + £, be the push-

pull adjunction between Al g}i’“ and Al g}%‘ and F* + F, its associated stabilization
o lEn 1En [Se]

(cf. [Lurl8, Proposition 5.4.1]). We check that F,IL;" ~ L5(A) ®csp)Lg” and EF B

corepresent the same functor in Sp(Algg::”). For any M € Sp(Alg}EA”) we have the
following string of (natural in M) equivalences of mapping spaces:

E, oo E, * ) 00
Alg/A (ﬁB,QAM) :Alg/B (B, f QY M)
~ Alg) (B, QS F'M)
~ Sp(Algp)(Ly", F*M)
IEYI
= Sp(Alg/p)(F.LL", M).

The first equivalence is by definition, because f, simply postcomposes with f and
f* is the pullback functor. The second equivalence follows from [Lurl7, 6.2.2.14 (3)]
combined with [Lurl7, 7.3.1.5]. The third equivalence is the usual adjunction between

a category and its stabilization (as well recalling the equivalence X3’ B ~ ILE” ))- And
the final equivalence is simply given by the extension/restriction of scalars adjunction

between F, and F*. Finally, we apply the fact that Al g}EA” (f.B,Q¥ M) is naturally
equivalent to Sp(Alg}EX)(EZJrB,M). @

Remark 7.22. In Lemma 7.21 we take for granted that the equivalences Modf” ~

LMod s (4 and Modg” ~LMod s g are compatible with the relevant base change
functors. However this follows from the description of those equivalences given, for
instance, in [Fral3, Proposition 2.23].

Theorem 7.23. Suppose that S is a connective commutative ring spectrum such that
10(S) is a principal ideal domain, and that A is a connective IE, S-algebra such that
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S — A is 1-connected. Then given a cellular construction of a (minimal) (N +n)-skeleton

Z > HrgA) ® A
£5(4)

as Hmy(A)-modules, there is a corresponding cellular construction of a (minimal) N -
skeleton B — A of |E,; -algebras. In the case that Z — Hmo(A)®ps(a)A is minimal,
there is an equivalence
Z=~Hmny(A) ® B
£5(B)

of Hrio(A)-modules over Hrig(A)®ps (4) A

Proof. There is a composite adjunction
E, _, E.\ . N
Alg,; 2 Sp (Alg/A ) ~LMods(4) @ LMod ()

between IE,,-algebras over A and Hry(A)-modules. The leftmost adjunction is the
QF + XF adjunction and the rightmost is the base-change adjunction between left
L£5(A)-modules and left Hrto(L5(A)) ~ Hrg(A)-modules (using Lemma 7.19). We
will use this composite adjunction to pass a skeleton of H7o(A)®s(4)A back to a
skeleton of A.

By using Theorem 7.14 to write ILE” as X" cofib(L5(A) — A) we see that the
image of A under the composite left adjoint above is

Hr(A) ® ILh" =~ "cofib| Hry(A) > Hrp(A) @ Al.
£5(A) LS(A)

Given a (minimal) (N +1)-skeleton Z — H7to(A)®s(4) A, Corollary 3.6 implies that
the map Hmo(A) — Hrg(A)®s(a)A lifts to Z because Hrg(A) is 0-skeletal. By
Proposition 2.21, the induced map

cofib(Hmy(A) —» Z) — coﬁb(HTco(A) — Hmy(A) S® A
L£S(A)

is (N +n)-connected (or (N +7n+1) in the case of a minimal skeleton). By Proposition
3.14, cofib(Hmg(A) — Z) is (N + n)-skeletal. Therefore, by stability, the resulting
n-times desuspended map X" cofib(HmgA — Z) — H7o(A)® 5 () ILf” is a (mini-
mal) N-skeleton.

By Corollary 7.8, there exists a cellular construction of this (minimal) N -skeleton
as an Hry(A)-module using the cells (CF1Hry(A) — #)1<k<N-. These cells are
the images of the 0-bounded cells S®E, (S¥"!) - S®E, () in the category of [,
S-algebras.

We now excavate this cellular skeleton by first using the adjunction between left
H1ty(A)-modules and left £5(A)-modules. Because 179(A) = 115(£5 (A)) we have that
the adjunction is subductive by Example 5.3. Because the map £5(A) — Hrry(A)
is a 1-connected map of connective ring spectra, the left adjoint LMOdLS( 2) —
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LModpyy,(a) reflects connectivity in the standard f-structure inherited from Sp. Fi-
nally, because 0-truncation preserves tensor products for connective spectra, we have

that ILE” — Hro(A) ®ps(4) ILE” is 0-connected. So Theorem 5.13 allows us to exca-
vate the (minimal) cellular skeleta of H7to(A)® s A)ILE” to (minimal) cellular skeleta
for ILf”.

We now excavate this skeleton from LMod s 4y ~ Sp(Algi") to Algi". We will
again use Theorem 5.13, but first need to establish that the hypotheses thereof hold in
this case. Because the unit map S — A is 1-connected, and the connectivity structure

i” is lifted from that of AlglE”, we may assume that we have restricted our

on Alg

adjunction to 1-connected objects of Algi". It follows from Corollary 6.10 that the
¥ 4 Q-adjunction thereon is strongly subductive and thus by Proposition 5.8, so is
¥ 40*. Now using Corollary 5.5 (along with Remark 4.7 and Theorem 2.40), we
have that stabilization reflects connectivity. As a result, Theorem 5.13 allows us to

excavate (minimal) cellular skeleta from Sp(Algi") to Algﬁ“.

Putting the pieces together, we have that any cellular construction of a (mini-
mal) (N + n)-skeleton Z — Hrp(A) ®,sa) A can be excavated to a cellular con-
struction of a (minimal) N-skeleton B — A. Now notice that the composite left
adjoint Algl/}i,:4 — LModpyy,(4) preserves connectivity and skeletal objects (the latter
by Proposition 3.9). Therefore it also preserves minimal skeleta. Thus, if Z is min-
imal, our description of Z will follow from a computation of the image of B — A
under the composite adjunction given at the beginning of the proof. From Lemma
7.21 we deduce that

B Hrp(A) ® " =3 " cofib| Hro(A) — Hrmg(A) ® B
£5(B) L5(B)

Therefore homotopy uniqueness of minimal skeleta (followed by n-fold suspen-
sion) gives an equivalence

coﬁb(HT(O(A)—>Z):coﬁb[H7z0(A)—>H7'c0(A) ;@ B].
L>(B)

First notice that by functoriality of the fiber sequence given in Theorem 7.14
(cf. for instance [Lurl7, 7.3.5.5]) we have a comutative diagram

£5(B) —— £5(A)

|

B—A

of £5(B)-modules. From this we obtain another commutative diagram
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Hmo(A) Hrty(A)

lz :

H7'(0(A)®£S(B) [,S(B) —— H7'(0(A)®£S(B) [,S (A) — HT(()(A)®£5(A)[,S (A)

| l |

H7'(0(A)®£S(B)B —— Hﬂo(A)@[S(B)A —— H7'(0(A)®£S(A)A

in which the top (and middle) horizontal map is equivalent to the identity. Moreover,
the left and right vertical composites are the ones obtained by tensoring Hry(A)
over £5(B) and £5(A) respectively with the maps £°(B) — B and £5(A) — A aris-
ing in Theorem 7.14. It follows from the proof of Lemma 7.21 that the bottom hori-
zontal map is the map whose cofiber gives the (n-fold suspension of) the N-skeleton
>" cofib(Hrg — Hrto(A)®s(5) B) — 7" cofib (Hreg(A) — Hreg(A) @5 (4) A) de-
scribed above.
Thus we have a commutative diagram

HT(()(A) I HT[()(A)®LS(B)B —— COﬁb(HT[()(A) — Hﬂo(A)@LS(B)B)

] |

Hrg(A) —— Hrto(A)®s(4) A — cofib (Hrg(A) — Hrig(A)®ps(4)A)

whose right vertical map is the n-fold suspension of our skeleton. Notice also that by
continuing the exact sequences to the right, obtaining horizontal maps to XHmg(A),
we may write the map H7o(A)® sg B — Hmo(A)®s(4)A as a fiber, and thus,
by Proposition 2.17, is (N + 1)-connected. Therefore, we may lift the skeleton Z —
Hrtg(A)®ps(a)A along it to obtain a commutative diagram

VA

e

HT(()(A) —_— Hﬂo(A)@ES(A)A <~ HT[()(A)®LS(B)B

in which the left hand triangle is the one obtained by lifting H7y(A) along the
(N + n)-connected map Z — Hrto(A)®,s(4)A, and the right hand triangle is the
one obtained by lifting the (N + n)-skeleton Z along the (N + #)-connected map
HT(()(A)®[:S(B) B.

Fitting the above triangle into the diagram preceding it, and taking the relevant
cofiber, we now have a commuting diagram in which all rows are exact:
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Hmy(A) Zz cofib(Hmy(A) — Z)

L: |

Hrtg(A) —= Hrtg(A)® s (5 B — cofib(Hro(A) > Hg(A)® s 5 B)

) |

Hrtg(A) — Hrtg(A)® 54y A — cofib (Hro(A) — Hro(A)®s(4) A)

By Propositions 3.19 and 3.20, the upper right vertical map in the above diagram
must be the unique-up-to-homotopy equivalence between cofib (H7y(A) — Z) and

cofib (HT[O(A) — HT(()(A)®£S(B)B). It follows that the middle vertical map, Z —
Hrto(A)®,s () B is also an equivalence. )

Remark 7.24. Note that, in the case that we are considering an [E; S-algebra A, there
is an equivalence THH (A, 114(A)) ~ Hrtg(A)®,s(a)A. So Theorem 7.23 allows us
to lift minimal skeleta of the often simpler topological Hochschild homology of A to
minimal skeleta of A itself, which we will use in the next sections.

7.4 Remark on Thom spectra

Recall the universal property of a Thom spectrum as a ring [ABl4]: given a map
of grouplike E,-spaces f: G — GL{(S), maps Mf — R of associative rings are
equivalent to nullhomotopies of the composite

B"G — B"GL,(S) — B"GL,(R).

We will show that if B"G is (k+n—1)-skeletal, then M f is k-skeletal as an [E, -algebra.

Suppose that R — S is a k-connected map of ring spectra for k > 0. The
map B"GL{(R) — B"GL(S) is (k + n)-connected by directly considering homotopy
groups. If B"G is (k + n — 1)-skeletal, then the map B"G — = is a relatively (k + n)-
skeletal map, and so any nullhomotopy of the map B"G — B"GL{(S) lifts to a
nullhomotopy of the map B"G — B"GL;(R). By the universal property, this asserts
that any map M f — S lifts to a map M f — R, as desired.

7.5 T(n) as associative skeleta

In this section we fix a prime p € Z. In [Rav86], Ravenel introduces a sequence of ho-
motopy commutative ring spectra called T(n) and morphisms of homotopy commu-
tative ring spectra T(n) — T(n + 1) such that T(0) =~ S, and hocolim(T(n)) ~ BP,
the Brown-Peterson spectrum. Ravenel computes that BP,(T(n)) = BP,[fy,...,t,] C
BP, BP and the natural map T(n) — BP is a homology isomorphism in degrees less
than |t,,1] = 2(p"*! — 1); hence it is (2p"*! — 3)-connected. In what follows, we
show that this is in fact the inclusion of a minimal skeleton of BP in the category of
IE; -ring spectra.
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We begin with some calculations.

Proposition 7.25. We have
. THH(BP; Z(,)) = Aloty,0ty,... ]

IfT — BP is any map of connective p-local ring spectra inducing the inclusion Z )t ..., t,] =
H,T(n) — H,BP on homology, then the map

. THH(T; Zp)) — 7, THH(BP; Z,))
is isomorphic to the inclusion of the subalgebra

Aloty,...,oty],

which is precisely those elements in degrees less than 2p™' — 1.

Proof From [AHLIO, Lemma 2.2] we have an equivalence

THH(BP,Z(p)) =~ HZ(p) BP/\/}SP"P BP ~ HZ(p)HZ(p)/\/\BP"P HZ(p)

It follows, from either [EKMMJ97, IV, 4.1] or [AHLI10, Corollary 2.3] that we have a
Kiinneth spectral sequence of signature

H.(BP?;Zy) .
Tor.. b (Z(p),Z(p)) = THH*(BP,Z(p)).

The E,-term reduces to
Z(p)[tl,tz,...]
Tor.. (Z(p),Z(p))

which is an exterior algebra A[ot;,0t5,...] with ot; in total degree 2p’ — 1 and
filtration 1. The elements ot; are permanent cycles for degree reasons, and the spec-
tral sequence has multiplicative structure because BP admits an [E4-ring structure
[BM13]. The product structure then implies that all elements in the spectral sequence
are permanent cycles, and there is no room for any hidden multiplicative extensions.
Given such a map T — BP, the same spectral sequence for 7. THH(T;Z ;)
maps injectively to the spectral sequence for THH.(BP;Z;)), and hence has no
differentials or hidden extensions either. The resulting map is the inclusion

Aloty,...,ot,] C Aloty,oty,...].

The highest degree of a nontrivial element on the left is

n

‘ n_q
lotioty...ot,| = Z(2pl -1)= 217’;771 —n<|ot,]
i=1

and therefore the subalgebra consists precisely of those elements in degrees less than

29" —1 = |ty 4], @
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Theorem 7.26. There exists an associative algebra stucture on T (n) making it into a
minimal (2p"™+! — 4)-skeleton of BP as a p-local associative algebra.

Proof. By Proposition 7.7, the Z,)-module THH(BP;Z ;) has a minimal 2p™t -3
skeleton.

Therefore, by Theorem 7.23, this minimal (Zp”Jr1 —3)-skeleton can be excavated:
there is a minimal (2p"™*! — 4)-skeleton T — BP as an associative algebra, whose
THH coincides through degree (2p"*! — 3). By Proposition 7.25, this forces

T(*THH(T,Z(F,)) %"A[O'tl,...,O'tn].

The map T — BP is then (2p*! — 3)-connected. This means ty,...,t, € H, BP
are in the image, so H.T — Z(p)[tl, ..., t,] is surjective and an isomorphism through
degrees (2p™*! —4). Moreover, because we know the homology of the tangent T lifts
the tangent complex, the THH spectral sequence

H. T
Tor (Z(p),Z(p)) = A

for the homology of the tangent complex must be isomorphic to the correspond-
ing spectral sequence for the subalgebra Z,)[ty,...,t,]; this can only be true if
Z(p)[tl,...,tn] — H,T is an isomorphism.

Consider the commutative diagram of inclusions and retractions of p-local ring
spectra [Rav86, p. 217]:

X(p")p) —=T(n)

A

T+ BP —> MU, BP

The dotted lift exists because the map X(p") - MU is a (2p" — 1)-connected map
of associative algebras, and hence we get a composite map T — T(n) of p-local
spectra. On homology this becomes the commutative diagram

Z(p)[xl,...,X2pn_2] E—— Z(p)[tl,...,tn]

e l

Z(p)[xl,xz,...] Z(p)[tl,tz,...]

Z(p)[tl,...,tn] - Z(p)[tl,tz,...]

This makes the map T — T(n) into a homology isomorphism, and thus an equiva-
lence, of spectra over BP. )

Remark 7.27. Theorem 7.26 bears some similarity to [Beal7, Corollary 13] and [Beal9,
Theorem 2] in which it is shown that the spectra X(#) and their p-localizations
X(n)(p), of which the spectra T(n) are wedge summands, can be constructed from
X(n—1) and X(n—1) ) via attachments of [E;-X(n—1)-algebra cells. Those results
however use the construction of X(#) as a Thom spectrum in a crucial way, and T (n)
is not a Thom spectrum. Those results also do not immediately imply that X(n) is a
skeleton of MU as [E;-ring spectra (in contrast to the results for T (1) given above).
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7.6 Y (n) as associative skeleta

Similarly, we recall that at p = 2 there is a spectrum Y(n) with a map Y(n) — HIF,
whose homology maps isomorphically to a subalgebra of the dual Steenrod algebra:

H*(Y(Tl);le) = H:Z[Ell- . -,En]-

By contrast with the previous case, there is a known associative multiplication on
Y (n) [Mah79]. Specifically, the space QS? is equivalent to a CW-complex with one
cell in each even degree, via the James construction; the spectrum Y (#) is the Thom
spectrum of the composite map of loop spaces

Q(Qs32"'-2 1, 0283 - BO.

We will now show that the spectrum Y (#) is a skeleton of HIF, as an associative
ring spectrum.

Proposition 7.28. We have
7, THH(HIF,) = F)[u].

If T — HIF, is any map of connective ring spectra inducing the inclusion F,[&; ..., &, ] =
H.Y(n) — H.HIF, on homology, then the map

7, THH(T;F,) — n, THH(HT,)
is isomorphic to the inclusion of those elements in degrees less than or equal to 2"+' — 2.

Proof. This follows because the map on E,-pages of Kiinneth spectral sequences is
the inclusion of all classes in total degree less than or equal to 2"+l _ 2 and the
Kiinneth spectral sequence for THH(HTF,) degenerates. )

Corollary 7.29. The spectrum Y (n) is (2" — 3)-skeletal as an associative algebra.

Proof The top degree where the topological Hochschild homology of Y(#) is non-
trivial is
n
10E,...08,| = Zzi =l _ g,
i=1
By Proposition 7.18 and 7.7, the spectrum Y (1) is (2"*! — 3)-skeletal as a ring spec-

trum.

The map Y(n) — HEF, is (2"*! — 2)-connected. Therefore, we arrive at the
following conclusion.

Theorem 7.30. The spectrum Y (n) is a minimal (2"*' — 3)-skeleton of HIF, as an
associative algebra.

Remark 7.31. We can give an alterative proof: instead of using topological Hochschild
homology as with T(r), we can use the description of Y(#n) as a Thom spectrum.
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7.7 Involutions

Proposition 7.32. Suppose that R is an IE,-algebra and that T is a minimal k -skeleton
of R. Then there is an involution A: T — TP over R.

Proof. Any E;-algebra is equivalent to its own opposite algebra. The composite
T? - R? SR

then makes TP into a minimal k-skeleton of R. However, uniqueness of minimal
skeleta from Proposition 3.20 implies that there is a canonical equivalence T — TP

of algebras mapping to R. )

Remark 7.33. The self-equivalence R — R becomes, after forgetting the IE,-structure,
the identity self-map of R. By contrast, the involution on T may not be homotopic
to the identity map, and hence this does not prove homotopy commutativity of T.

Corollary 7.34. The spectrum T(n) is equivalent to T(n)°P as an associative algebra
with a map to BP.

In other words, we have an involution A: T (n) — T(n)°P of the algebra T (n).

Corollary 7.35. The spectrum Y (n) is equivalent to Y (n)°P as an associative algebra
with a map to HIF,.

Remark 7.36. The analogous result should be true at odd primes, with a more in-
volved calculation in topological Hochschild homology.
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