The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres

Greg Arone ${ }^{1}$, Mark Mahowald ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, IL 60637, USA (E-mail address: arone@math.uchicago.edu)
${ }^{2}$ Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60288-2730, USA

Oblatum 5-VIII-1996 \& 9-VI-1998 / Published online: 14 January 1999

Contents

0 . Introduction 744

1. The poset of partitions of a finite set 748
2. The layers of the Goodwillie tower of the identity 755
3. The case of sphere - the cohomology of the layers 758
4. The v_{k}-periodic homotopy of the tower 777
Appendix A. Background on v_{k}-periodic homotopy 783
References 787

Abstract

We investigate Goodwillie's "Taylor tower" of the identity functor from spaces to spaces. More specifically, we reformulate Johnson's description of the Goodwillie derivatives of the identity, and prove that in the case of an odd-dimensional sphere the only layers in the tower that are not contractible are those indexed by powers of a prime. Moreover, in the case of a sphere the tower is finite in v_{k}-periodic homotopy.

[^0]
0. Introduction

In this paper we analyze the Goodwillie tower of the identity functor evaluated at spheres. We find that in the case of spheres the tower exhibits a pleasant and surprising behavior. Broadly speaking, we find two new facts that are not consequences of the general theory of calculus. First, in the case of an odd-dimensional sphere localized at a prime p, the only "layers" (homotopy fibers) in the Goodwillie tower of the identity that are not contractible are the ones that are indexed by powers of p. Thus the tower "converges exponentially faster" in this case than it does in general. Second, the stable cohomology of the p^{k}-th layer is free over $A[k-1]$, where $A[k-1]$ is a certain finite subHopf algebra of the Steenrod algebra (to be defined in section 3.2). This implies, in particular, that in our case all the layers beyond the p^{k}-th one are trivial in v_{k}-periodic homotopy (for any reasonable definition of the latter). Thus, in v_{k}-periodic homotopy the tower has only $k+1$ non-trivial layers, namely $p^{0}, p^{1}, \ldots, p^{k}$.

The two facts imply that the unstable v_{k}-periodic homotopy of an odd dimensional sphere can be resolved into a tower of fibrations with $k+1$ stages, with infinite loop spaces as fibers. As indicated above, the fibers are analyzed here to a considerable extent. For instance, their stable cohomology is completely calculated.

In the body of the paper we will assume basic familiarity with the notion of " v_{k}-periodic" homotopy of spaces and spectra. For an informal discussion of the concept, together with references to a more complete discussion, see appendix A. We will also assume familiarity with the basic ideas of Goodwillie's "Calculus of Functors". The basic references for this material are [G90, G92, G3].

We now proceed with a more detailed overview of the paper, its genesis and its goals. The simplest example of periodic homotopy is v_{0}-periodic homotopy, which is essentially the same as rational homotopy. There is an old theorem of Serre on rational homotopy of spheres, which implies that if X is an odd-dimensional sphere, then the map $X \rightarrow \Omega^{\infty} \Sigma^{\infty} X$ induces an equivalence in v_{0}-periodic homotopy. Thus in the v_{0}-periodic world the unstable homotopy of an odd sphere is the same as its stable homotopy.

In [MT92] Mahowald and Thompson found an analogue of Serre's theorem for v_{1}-periodic homotopy. Roughly speaking, $v_{1}-$ periodic homotopy is the homotopy theory one obtains by inverting the maps that induce an isomorphism in K-theory. For a based topological space X, let $P_{2}(X)$ be the homotopy fiber of the well-known natural map $\Omega^{\infty} \Sigma^{\infty}(X) \rightarrow \Omega^{\infty} \Sigma^{\infty}\left(X \wedge X \wedge_{\Sigma_{2}} E \Sigma_{2_{+}}\right)$which may
be defined, at least up to homotopy, as the adjoint of the composed map

$$
\Sigma^{\infty} \Omega^{\infty} \Sigma^{\infty}(X) \stackrel{\simeq}{\rightrightarrows} \bigvee_{i=1}^{\infty} \Sigma^{\infty}\left(X^{\wedge i} \wedge \Sigma_{i} E \Sigma_{i+}\right) \rightarrow \Sigma^{\infty}\left(X \wedge X \wedge \Sigma_{2} E \Sigma_{2_{+}}\right)
$$

where the first map is given by the Snaith splitting and the second map is collapsing on the factor corresponding to $i=2$. Mahowald Thompson's work implies that if X is an odd sphere (localized at 2) then the natural map $X \rightarrow P_{2}(X)$ induces an equivalence in v_{1}-periodic homotopy. Using this result, the v_{1}-periodic homotopy of spheres has actually been computed in [M82] at the prime 2 and in [T90] at odd primes. From this information, it is also possible to recover the "integral" v_{1}-periodic homotopy. This is done in several places [MT92, T90].

From one point of view, our goal here is to extend the work of Mahowald and Thompson cited above to higher order periodicity. The first technical difficulty with it seemed to be that this work used the existence of maps connected with the Snaith splitting. Such maps are constructed by means of configuration space methods. The homotopy fibers of these maps do not have nice configuration space models and thus do not allow new maps to be constructed in the same way. Instead, we use the Goodwillie tower of the identity functor, which turned out to be the perfect tool for attacking this problem. We will analyze this tower of fibrations in the general case to some extent and apply this understanding to spheres.

The Goodwillie tower of the identity ("the Taylor tower of the identity" in Goodwillie's terminology) is a sequence of functors (from pointed spaces to pointed spaces) $P_{n}(X)$ and a tower of natural transformations

The functor D_{n} is the homotopy fiber of the natural transformation $P_{n} \rightarrow P_{n-1}$ and should be thought of as the n-th homogeneous layer,
or the n-th differential of the identity. It follows from the general theory of calculus [G3] that for every n there exists a spectrum \mathbf{C}_{n}, endowed with an action of the symmetric group Σ_{n}, such that

$$
D_{n}(X) \simeq \Omega^{\infty}\left(\left(\mathbf{C}_{n} \wedge X^{\wedge n}\right)_{h \Sigma_{n}}\right):=\Omega^{\infty}\left(\left(\mathbf{C}_{n} \wedge X^{\wedge n} \wedge E \Sigma_{n+}\right)_{\Sigma_{n}}\right) .
$$

Here, as well as everywhere else in the paper, \simeq stands for "weakly homotopy equivalent". The spectrum \mathbf{C}_{n}, considered as a spectrum with an action of Σ_{n}, is the n-th derivative of the identity.

We need to investigate this tower, whose existence derives from the general theory. Some information about it had been available before. As indicated in the diagram above, it is immediate from the definitions that $P_{1}(X) \simeq Q(X)$, i.e., the linear part of homotopy theory is stable homotopy theory. The description of the second stage is still rather classical: as was indicated above, the second quadratic approximation, $P_{2}(X)$, is the homotopy fiber of the "stable JamesHopf'map $Q(X) \rightarrow Q\left(X_{h \Sigma_{2}}^{\wedge 2}\right)$. The second layer of the tower is $D_{2}(X) \simeq \Omega Q\left(X_{h \Sigma_{2}}^{\wedge 2}\right)$.

For a general n, B. Johnson was the first one to provide an explicit closed description of $D_{n}(X)$ in terms of standard constructions of homotopy theory. In [Jo95] certain spaces Δ_{n} are constructed, which have the following properties:
(i) the group Σ_{n} acts on Δ_{n},
(ii) non-equivariantly, $\Delta_{n} \simeq \bigvee_{i=1}^{(n-1)!} S^{n-1}$,
(iii) the n-th derivative of the identity is $\operatorname{Map}_{*}\left(\Delta_{n}, \Sigma^{\infty} S^{0}\right)$, the Spanier-Whitehead dual of Δ_{n}, considered as a spectrum with an action of Σ_{n}. Equivalently,

$$
D_{n}(X) \simeq \Omega^{\infty}\left(\operatorname{Map}_{*}\left(\Delta_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}\right)
$$

The description of the space Δ_{n} is a geometric one, it is defined as a quotient of the $n(n-1)$-dimensional unit cube by a certain subcomplex. In section 1 we reformulate the description of Δ_{n}. Thus we construct a certain combinatorially defined complex K_{n}. K_{n} has a natural action of Σ_{n}, and we show that for our purposes the suspension of K_{n} is equivalent to Δ_{n}. Thus we may write

$$
D_{n}(X) \simeq \Omega^{\infty}\left(\operatorname{Map}_{*}\left(S K_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}\right) .
$$

By the spectral sequence for the homology of Borel construction, the stable homology of $D_{n}(X)$, i.e. the homology of the spectrum $\operatorname{Map}_{*}\left(S K_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}$ is essentially given by the homology of the symmetric group with coefficients in the homology module of
the (dual of) K_{n} tensored with the homology of $X^{\wedge n}$. Thus, the simpler the homology of $X^{\wedge n}$ is, the simpler one may expect the layers to be. This, of course, suggests the spheres as candidates for investigation. In the case of an even-dimensional sphere, one is led to investigating $\mathrm{H}_{*}\left(\Sigma_{n} ; \mathrm{H}_{*}\left(\tilde{K}_{n}\right)\right)$, where \tilde{K}_{n} is the dual of K_{n}. In the case of an odd-dimensional sphere, one is led to study $\mathrm{H}_{*}\left(\Sigma_{n} ; \mathrm{H}_{*}\left(\tilde{K}_{n}\right) \otimes Z[-1]\right)$, where $Z[-1]$ is the sign representation. Not surprisingly, odd-dimensional spheres turn out to be the more basic case. In section 3, we carry out the homology calculations for the odd sphere case. The following theorem summarizes some of the results in section 3.

Theorem 0.1. Let X be an odd-dimensional sphere. If n is not a power of a prime, then

$$
D_{n}(X) \simeq *
$$

If $n=p^{k}$, then $D_{n}(X)$ has only p-primary torsion.
For a spectrum \mathbf{E}, let $\mathrm{H}_{*}^{s}\left(\Omega^{\infty} \mathbf{E}\right)=\mathrm{H}_{*}(\mathbf{E})$ be the stable homology of \mathbf{E}. In section 3 we write an explicit basis for $\mathrm{H}_{*}^{s}\left(D_{p^{k}}\left(S^{2 s+1}\right) ; \mathbb{Z} / p \mathbb{Z}\right)$ and investigate the action of the Steenrod algebra on the stable cohomology $\mathrm{H}_{s}^{*}\left(D_{p^{k}}\left(S^{2 s+1}\right) ; \mathbb{Z} / p \mathbb{Z}\right)$. We prove that the stable cohomology of $D_{p^{k}}\left(S^{2 s+1}\right)$ is $A[k-1]$ free, where $A[k-1]$ is a certain finite subalgebra of the Steenrod algebra. In section 4 we feed this result into the vanishing line theorems of Anderson-Davis [AD73] and Miller-Wilkerson [MW81] to conclude that the v_{k-1} periodic homotopy of $D_{p^{j}}\left(S^{2 s+1}\right)$ is zero for $j \geq k$ and moreover that the Goodwillie tower converges in v_{k} periodic homotopy. This implies the main theorem of the paper which is the following:

Theorem 4.1. Let X be an odd-dimensional sphere localized at a prime p. The map

$$
X \rightarrow P_{p^{k}}(X)
$$

is a v_{j}-periodic equivalence for all $k \geq 0$ and for all $0 \leq j \leq k$.
In the last subsection we formulate and prove the analogue of theorem 4.1 for even dimensional spheres. Basically, the tower is still finite, but it is "twice as long".

1. The poset of partitions of a finite set

Let n be an integer, $n>1$. Let $\underline{n}=\{1, \ldots, n\}$. A partition λ of \underline{n} is an equivalence relation on \underline{n} (similarly, one defines partitions of an arbitrary finite set). Partitions are ordered by refinements, and may be considered as a category. Let k_{n} be the category of partitions of \underline{n}. Thus, for two partitions λ_{1}, λ_{2}, there is a morphism $\lambda_{1} \rightarrow \lambda_{2}$ iff λ_{1} is a refinement of λ_{2}. It is clear that k_{n} has an initial and a final object. Denote these $\hat{0}$ and $\hat{1}$ respectively. Let $\mathrm{N}_{0} k_{n}$ be the simplicial nerve of k_{n}. Since k_{n} has an initial and a final object, the geometric realization of $\mathrm{N}_{0} k_{n}$ is contractible. Let K_{n} denote the subcomplex of the realization of $\mathrm{N}_{0} k_{n}$, whose simplices are those which do not contain the morphism $\hat{0} \rightarrow \hat{1}$ as a face. Thus the zero-simplices of K_{n} are partitions of \underline{n} and i-simplices are increasing chains of partitions

$$
\left(\hat{0}=\lambda_{-1} \leq \lambda_{0}<\lambda_{1}<\cdots<\lambda_{i} \leq \lambda_{i+1}=\hat{1}\right)
$$

such that not both inequalities $\hat{0} \leq \lambda_{0}$ and $\lambda_{i} \leq \hat{1}$ are equalities. Let \tilde{k}_{n} be the full subcategory obtained from k_{n} by deleting $\hat{0}$ and $\hat{1}$. Let $\mathrm{N}_{0} \tilde{k}_{n}$ be the simplicial nerve of \tilde{k}_{n} and let \tilde{K}_{n} be its realization. It is easy to see that K_{n} is homeomorphic to the unreduced suspension of \widetilde{K}_{n}. Equivalently, there is a cofibration sequence

$$
\tilde{K}_{n+} \rightarrow S^{0} \rightarrow K_{n}
$$

Here by cofibration sequence we mean that K_{n} is homeomorphic to the homotopy cofiber of the map $\tilde{K}_{n+} \rightarrow S^{0}$. The + subscript stands for an added disjoint basepoint.

For a partition λ let $r(\lambda)$ be the number of its components. Let $S=\left(S_{0}, S_{1}, \ldots, S_{i}\right)$ be a sequence of integers such that $n \geq S_{0} \geq S_{1} \geq \cdots \geq S_{i} \geq 1$, let $K_{n}^{S} \subset \mathrm{~N}_{i} k_{n}$ be defined as follows

$$
K_{n}^{S}=\left\{\left(\hat{0} \leq \lambda_{0} \leq \cdots \leq \lambda_{i} \leq \hat{1}\right) \in \mathrm{N}_{i} k_{n} \mid r\left(\lambda_{j}\right)=S_{j} \quad \text { for } j=0, \ldots, i\right\}
$$

Let K_{n}^{i} be the set of non-degenerate i-simplices of $\widetilde{k_{n}}$. Thus

$$
\begin{aligned}
\mathrm{N}_{i} k_{n} & =\bigsqcup_{n \geq S_{0} \geq S_{1} \geq \cdots \geq S_{i} \geq 1} K_{n}^{S} . \\
\mathrm{N}_{i} \widetilde{k}_{n} & =\bigsqcup_{n>S_{0} \geq S_{1} \geq \cdots \geq S_{i}>1} K_{n}^{S} . \\
K_{n}^{i} & =\bigsqcup_{n>S_{0}>S_{1}>\cdots>S_{i}>1} K_{n}^{S} .
\end{aligned}
$$

Notice that if $i>n-3$ then $K_{n}^{i}=\emptyset$. Therefore, \tilde{K}_{n} is $n-3$-dimensional. Notice also that K_{n}^{S} is defined even if S is empty, and therefore the sets $\mathrm{N}_{-1} k_{n}$ and K_{n}^{-1} are defined and have one element each. By our convention, $\mathrm{N}_{-2} k_{n}=K_{n}^{-2}=\emptyset$.

Definition 1.1. T_{n} is the following based simplicial set: The set of i simplices, T_{n}^{i}, is

$$
T_{n}^{i}=N_{i-2} k_{n+} \quad \forall i \geq 0 .
$$

In particular, $T_{n}^{0}=\emptyset_{+}=*$ and $T_{n}^{1}=S^{0}$. The face maps are defined as follows: If $0<j<i$ then $d_{j}: T_{n}^{i} \rightarrow T_{n}^{i-1}$ is given by:

$$
d_{j}\left(\lambda_{0}, \ldots, \lambda_{i-2}\right)=\left(\lambda_{0}, \ldots, \hat{\lambda}_{j-1}, \ldots, \lambda_{i-2}\right) .
$$

For $j=0, i$ the formulas are

$$
\begin{aligned}
& d_{0}\left(\lambda_{0}, \ldots, \lambda_{i-2}\right)= \begin{cases}\left(\lambda_{1}, \ldots, \lambda_{i-2}\right) & \text { if } \lambda_{0}=\hat{0} \\
* & \text { otherwise }\end{cases} \\
& d_{i}\left(\lambda_{0}, \ldots, \lambda_{i-2}\right)= \begin{cases}\left(\lambda_{0}, \ldots, \lambda_{i-3}\right) & \text { if } \lambda_{i-2}=\hat{1} \\
* & \text { otherwise }\end{cases}
\end{aligned}
$$

The degeneracy maps are defined similarly. If $0 \leq j \leq i$ then $s_{j}: T_{n}{ }^{i} \rightarrow T_{n}{ }^{i+1}$ is determined by

$$
\begin{aligned}
s_{j}(\hat{0} & \left.=\lambda_{-1}, \lambda_{0}, \ldots, \lambda_{i-2}, \lambda_{i-1}=\hat{1}\right) \\
& =\left(\hat{0}=\lambda_{-1}, \lambda_{0}, \ldots, \lambda_{j-1}, \lambda_{j-1}, \ldots, \lambda_{i-2}, \lambda_{i-1}=\hat{1}\right) .
\end{aligned}
$$

It is easy to check that T_{n} is indeed a simplicial set and that its realization is $S K_{n}=S \Sigma \widetilde{K}_{n}$, where S and Σ denote reduced and unreduced suspension respectively. (This is, essentially, Milnor's suspension construction [Mi72, page 120], applied to \tilde{K}_{n} twice).

The symmetric group Σ_{n} acts on k_{n}, and therefore on $K_{n}^{S}, K_{n}^{i}, K_{n}$ etc. The action of Σ_{n} on K_{n}^{S} is not, in general, transitive. We need to write K_{n}^{S} as a union of Σ_{n}-orbits. The orbits of zero-simplices (partitions of \underline{n}) are, simply, partitions of positive integers. A partition P of a positive integer n is a collection n_{1}, \ldots, n_{k} of positive integers such that $n_{1} \leq \cdots \leq n_{k}$ and $\sum n_{i}=n$. We call $\left\{n_{i}\right\}$ the components of P. Such a partition of n is not trivial if $1<k<n$. We denote the set of partitions of n by $Q(n)$.

Proposition 1.2. The quotient set K_{n}^{0} / Σ_{n} is naturally isomorphic to the set of non-trivial partitions of n.

Proof. Every partition λ of \underline{n} induces a partition P of the integer n : the components of P are cardinalities of the components of λ. It is elementary to show that this assignment is surjective and that λ_{1} and λ_{2} induce the same partition of n if and only if they are in the same orbit of Σ_{n}.

If P is as above, we will call P the type of λ. We will sometimes use formal sums $\sum_{l} n_{i_{l}} \cdot i_{l}$ to describe partitions of integers. A formal sum as above stands for a partition of $n=\sum_{l} n_{i l} i_{l}$ with $n_{i l}$ components of cardinality i_{l}.

Proposition 1.3. Let λ be a partition of type $P=\sum_{l} n_{i_{t}} \cdot \underline{i}_{\underline{l}}$. The set of partitions of type P is Σ_{n}-equivariantly isomorphic to the set of cosets $\Sigma_{n} / \Sigma_{\lambda}$, where Σ_{λ} is the stabilizer group of λ. There is an isomorphism

$$
\Sigma_{\lambda} \cong \prod_{l} \Sigma_{n_{i_{l}}}\left\langle\Sigma_{i_{l}}\right.
$$

Proof. Easy.

We need to classify orbits of $K_{n}^{i}, i>0$, in a manner similar to the one we have for the orbits of K_{n}^{0}. It is sometimes convenient to represent orbits with certain labeled trees. A tree will always have a root r. Distance will mean the number of edges in the unique path between two nodes. Let v be a node.

Definition 1.4. A tree is balanced if all its leaves have the same distance from the root.

Given a tree, we define a height function on its nodes, which we denote $h(v)$, by letting $h(v)$ be the minimal distance from v to a leaf. Define the height of a tree to be $h(r)-1$.

Definition 1.5. A tree is labeled if to every node v there is assigned a positive integer $l(v)$.

We will make free use of such expressions as sibling nodes, a single child, the subtree spanned by a node, etc. We say that a balanced tree has no forking on level j if all the nodes of height j have only one child. We say that two labeled trees T and T^{\prime} are isomorphic as labeled trees (or just isomorphic) if there is an isomorphism of unlabeled trees $\psi: T \rightarrow T^{\prime}$ such that for any node v of T except possibly the root, $l(v)=l(\psi(v))$.

Definition 1.6. A labeled tree is standard if

1) it is balanced,
2) $l(r)=1$,
3) no two sibling nodes span isomorphic labeled subtrees.

Condition (3) implies that every node of height 1 has exactly one child. In other words, in a standard tree there is no forking on level 1.

Given a standard tree, we define the degree function of its nodes as follows: If $h(v)=0$ then $\operatorname{deg}(v)=l(v)$. If $h(v)>0$, let u_{1}, \ldots, u_{k} be the children of v, then $\operatorname{deg}(v)=l(v)\left(\operatorname{deg}\left(u_{1}\right)+\cdots+\operatorname{deg}\left(u_{k}\right)\right)$. The degree of a tree is the degree of its root.

Proposition 1.7. There is a bijective correspondence between orbits of K_{n}^{i} and standard labeled trees of height $i+1$ and degree n.

Proof. For $i=0$, let $P=\sum_{l=1}^{L} n_{j_{l}} \cdot \underline{j_{l}}$ be an orbit. Then P is represented by the following tree:

For $i>0$, the assignment of trees to orbits is constructed inductively. But before we describe it, we need some more definitions. For a finite set \underline{S}, let $k_{\underline{S}}$ be the category of partitions of \underline{S}. Let \underline{S}_{1} and \underline{S}_{2} be two finite sets. Let $\Lambda^{1}=\left(\lambda_{0}^{1} \leq \cdots \leq \lambda_{i}^{1}\right)$ and $\Lambda^{2}=\left(\lambda_{0}^{2} \leq \cdots \leq \lambda_{i}^{2}\right)$ be i simplices of $\mathrm{N}_{\bullet} k_{\underline{S}_{1}}$ and $\mathrm{N}_{\bullet} k_{\underline{S}_{2}}$ respectively. A morphism $\rho: \Lambda^{1} \rightarrow \Lambda^{2}$ is a map of sets $\underline{S}_{1} \rightarrow \underline{S}_{2}$ which for every $0 \leq j \leq i$ maps every component of λ_{j}^{1} into a component of $\lambda_{j}^{2} . \rho$ is an isomorphism if it has a two-sided inverse. Λ^{1} and Λ^{2} are isomorphic if there exists an isomorphism $\Lambda^{1} \rightarrow \Lambda^{2}$.

Definition 1.8. Let $\Lambda=\left(\lambda_{0} \leq \cdots \leq \lambda_{j}\right)$ be a chain of partitions. Let \underline{S} be a component of λ_{j}. Then $\lambda_{0}, \ldots, \lambda_{j-1}$ determine a $(j-1)$-simplex of $\mathrm{N}_{0} k_{\underline{S}}$. We call it the restriction of Λ to \underline{S} and denote it $\left.\Lambda\right|_{\underline{S}}$.

Let $\Lambda=\left(\lambda_{0} \leq \cdots \leq \lambda_{i}\right)$ be an i-simplex of $\mathrm{N}_{0} k_{n}$. Thus λ_{i} is the coarsest partition in the chain. Let S_{1}, S_{2} be two components of λ_{i}. We say that \underline{S}_{1} and $\underline{S_{2}}$ induce isomorphic blocks if $\left.\Lambda\right|_{S_{1}}$ and $\left.\Lambda\right|_{S_{2}}$ are isomorphic. Of course, a necessary condition for S_{1} and S_{2} to induce isomorphic blocks is that S_{1} and S_{2} are isomorphic sets. The property of inducing isomorphic blocks defines an equivalence relation on the
components of λ_{i}. We consider $\left.\Lambda\right|_{S_{\underline{1}}}$ as an element of $\mathrm{N}_{i-1} K_{\underline{S_{1}}}$ and the orbit of $\Lambda_{\underline{S_{1}}}$ under the action of $\bar{\Sigma}_{S_{1}}$ as an element of $\left(\mathrm{N}_{i-1} K_{S_{1}}\right)_{\Sigma_{S_{1}}}$. Two i-simplices Λ^{1} and Λ^{2} are in the same orbit of Σ_{n} if and only if they have the same isomorphism classes of blocks, counting with multiplicities. Thus, every orbit B of K_{n}^{i} can be written uniquely as a formal sum

$$
B=\sum_{l} n_{l} \cdot \underline{B_{l}}
$$

where $\underline{B_{l}}$ are elements of $\left(K_{k_{l}}^{i-1}\right)_{\Sigma_{k_{l}}}$ for some k_{1}, \ldots, k_{m} such that

$$
\sum_{l} n_{l} k_{l}=n
$$

and $\underline{B_{1}}, \underline{B_{2}}, \ldots, \underline{B_{m}}$ are pairwise distinct. Assume by induction that we have assigned to B_{l} pairwise non-isomorphic standard labeled trees T_{l} of height i. Now for every T_{l} replace the label 1 at the root with n_{l} and join all roots to a common new root. Thus we have constructed a standard tree of height $i+1$, which is the tree assigned to B. It's easy to check that the construction is well-defined, i.e., that two i-simplices are in the same orbit if and only if the above procedure associates to them isomorphic trees.

To describe the orbit of a given i-simplex Λ of type B as above, we notice, as we did in the case of 0 -simplices, that the stabilizer group Σ_{Λ} of Λ has, up to an isomorphism, the following form:

$$
\Sigma_{\Lambda} \cong\left(\Sigma_{n_{1}}\left\langle\Sigma_{B_{1}}\right) \times\left(\Sigma_{n_{2}}\left\langle\Sigma_{B_{2}}\right) \times \cdots \times\left(\Sigma_{n_{m}}\left\langle\Sigma_{B_{m}}\right)\right.\right.\right.
$$

where $\Sigma_{B_{l}}$ are stabilizers of representatives of B_{l}. Notice that all groups in sight are naturally subgroups of Σ_{n}, and the set of partitions of type B can be identified equivariantly with the cosets $\Sigma_{n} / \Sigma_{\Lambda}$. The stabilizer groups of two representatives of a given orbit are conjugate. In the course of the paper we will sometimes confuse between the set of orbits and a set of arbitrarily chosen representatives of orbits.

The group Σ_{Λ} is isomorphic to a semi-direct product

$$
\Sigma_{\Lambda} \cong\left(\Sigma_{n_{1}} \times \Sigma_{n_{2}} \times \cdots \times \Sigma_{n_{m}}\right) \ltimes\left(\Sigma_{B_{1}}^{\times n_{1}} \times \Sigma_{B_{2}}^{\times n_{2}} \times \cdots \times \Sigma_{B_{m}}^{\times n_{m}}\right)
$$

where there is an obvious action of $\Sigma_{n_{1}} \times \cdots \times \Sigma_{n_{m}}$ on $\Sigma_{B_{1}}^{\times n_{1}} \times \cdots \times$ $\Sigma_{B_{m}}^{\times n_{m}}$. Inductively, one may write Σ_{Λ} in the form

$$
G_{i+1} \ltimes\left(G_{i} \ltimes\left(\cdots \ltimes G_{0}\right)\right)
$$

where each G_{l} is a product of symmetric groups and there is a "wreath product type" action of G_{l} on $G_{l-1} \ltimes\left(G_{l-2} \ltimes \cdots \ltimes G_{0}\right)$. As a matter of fact, G_{l} is isomorphic to the product of powers of symmetric groups indexed by nodes on level l in the tree corresponding to the type B of Λ. The size of each symmetric group is given by the corresponding label and the power to which it is raised is given by the label of the father node.

From here until the end of the section, let p be a fixed prime number.

Definition 1.9. Let $\Lambda=\left(\hat{0}=\lambda_{-1} \leq \lambda_{0} \leq \cdots \leq \lambda_{j}\right)$ be a chain of partitions. We say that λ_{j} is a p-coarsening of $\hat{0}=\lambda_{-1} \leq \lambda_{0} \leq \cdots \leq \lambda_{j-1}$ if for every component \underline{S} of λ_{j} the following holds:

1) The number of components of λ_{j-1} contained in \underline{S} is a power of p.
2) Any two components of λ_{j-1} contained is \underline{S} induce isomorphic blocks.

We will say that λ is a p-partition if it is a p-coarsening of $\hat{0}$. Obviously, the property of being a p-partition is invariant under the action of Σ_{n} and therefore we may speak about p-partitions of numbers. A p-partition is simply a partition whose components all have cardinality which is a power of p. We let $\widetilde{P}(\underline{n})$ denote the set of ordered p-partitions of \underline{n} and $P(n)$ denote the set of unordered p-partitions of \underline{n}, which is the same as the set of p-partitions of n. We use the following "logarithmic" notation for elements of $P(n)$: a sequence $\left(n_{0}, n_{1}, \ldots\right)$ denotes the partition with n_{j} components of cardinality p^{j} for all $j \geq 0$. Thus $n=\sum_{j} n_{j} p^{j}$.

Definition 1.10. Let $\Lambda=\left(\lambda_{0} \leq \cdots \leq \lambda_{i}\right)$ be an i-simplex of $\mathrm{N}_{0} k_{n}$. An ordered p-ramification of Λ is a chain of partitions

$$
\left(\hat{0}=\lambda_{-1} \leq \delta_{0} \leq \lambda_{0} \leq \delta_{1} \leq \lambda_{1} \leq \cdots \leq \lambda_{i} \leq \delta_{i+1} \leq \lambda_{i+1}=\hat{1}\right)
$$

such that for all $j=0,1, \ldots, i+1, \delta_{j}$ is a p-coarsening of $\left(\hat{0}=\lambda_{-1} \leq\right.$ $\left.\delta_{0} \leq \lambda_{0} \leq \delta_{1} \leq \lambda_{1} \leq \cdots \leq \lambda_{j-1}\right)$.

Recall that we denote by Σ_{Λ} the subgroup of Σ_{n} which stabilizes Λ. Σ_{Λ} acts on the set of ordered p-ramifications of Λ. We define an unordered p-ramification of Λ to be an orbit of an ordered p-ramification under the action of Σ_{Λ}. It is clear that if Λ^{1} and Λ^{2} are two i-simplices in the same orbit of Σ_{n} then the set of unordered p-ramifications of Λ^{1} is isomorphic to the set of unordered p-ramifications of Λ^{2}.

Let Ψ be an unordered p-ramification of Λ. Consider Ψ as a $2 i+2$-simplex of $\mathrm{N}_{\bullet} k_{n}$ and consider the orbit of Ψ under the action of Σ_{n}. This orbit is represented by a standard tree of height $2 i+3$. It follows easily from the definitions that all the nodes of even height in this tree are labeled by powers of p and that there is no forking on odd levels. It is also easy to see that the set of orbits of ordered p ramifications of Λ under the action of Σ_{n} is isomorphic to the set of orbits under the action of Σ_{Λ}, which is the set of unordered p-ramifications of Λ. We denote the set of ordered p-ramifications of Λ by $\widetilde{P}(\Lambda)$ and the set of unordered p-ramifications of Λ by $P(\Lambda)$. Thus $P(\Lambda) \cong \widetilde{P}(\Lambda)_{\Sigma_{\Lambda}}$. We denote by $\widetilde{P}\left(B_{l}\right)_{P\left(B_{l}\right)}^{k}$. $\stackrel{\sim}{\widetilde{P}}\left(B_{l}\right)^{k}$ fibed product of k copies of $\widetilde{P}\left(B_{l}\right)$ over $P\left(B_{l}\right)$. Thus a point in $\widetilde{P}\left(B_{l}\right)_{P\left(B_{l}\right)}^{k}$ is a k-tuple of elements of $\widetilde{P}\left(B_{l}\right)$ which are all in the same orbit of Σ_{Λ}. We will need inductive formulae for $\widetilde{P}(\Lambda)$ and $P(\Lambda)$. Suppose that λ_{i}, the coarsest partition in Λ, has n_{l} blocks of type B_{l} for $l=1, \ldots, L$ where B_{l} are pairwise non-isomorphic. We denote a generic element of $\prod_{l=1}^{L} P\left(n_{l}\right)$ by $\left(n_{1}^{0}, \ldots, n_{1}^{j_{1}}\right),\left(n_{2}^{0}, \ldots, n_{2}^{j_{2}}\right), \ldots,\left(n_{L}^{0}, \ldots, n_{L}^{j_{L}}\right)$

Proposition 1.11. There is an isomorphism of Σ_{Λ}-equivariant sets

$$
\widetilde{P}(\Lambda) \cong \coprod_{\prod_{l} P\left(n_{l}\right)}\left(\frac{\prod_{l} \Sigma_{n_{l}}}{\prod_{l}\left(\prod_{j=1 . . . j_{l}} \Sigma_{n_{l}^{j}}\left\langle\Sigma_{p^{i}}\right)\right.} \times \prod_{l}\left(\widetilde{P}\left(B_{l}\right)_{P\left(B_{l}\right)}^{p^{j}}\right)^{n_{l}^{j}}\right)
$$

Proof. Fix a p-coarsening δ_{i+1} of Λ. By definition, every component of δ_{i+1} contains a power of p of components of λ_{i+1} of type B_{l} for some l. Let us say that δ_{i+1} has n_{l}^{j} components containing p^{j} components of type B_{l}. A p-ramification of Λ whose coarsest partition is δ_{i+1} is determined by a collection of p-ramifications of the blocks B_{l} such that any two blocks which are in the same component of δ_{i+1} have isomorphic p-ramifications. This set is isomorphic to

$$
\prod_{l} \prod_{j}\left(\widetilde{P}\left(B_{l}\right)_{P\left(B_{l}\right)}^{p^{j}}\right)^{n_{l}^{j}}
$$

On the other hand, the set of p-coarsenings of Λ which have n_{l}^{j} components containing p^{j} components of type B_{l} is clearly isomorphic to

The proposition follows by taking union over the set of types of p-coarsenings which is isomorphic to the set $\prod_{l} P\left(n_{l}\right)$.

Corollary 1.12. There is an isomorphism of sets

$$
P(\Lambda) \cong \coprod_{\prod_{l} P\left(n_{l}\right)}\left(\prod_{l} \prod_{j}\left(P\left(B_{l}\right)\right)_{\Sigma_{n_{l}}}^{n_{l}^{j}}\right)
$$

Proof. Recall that

$$
P(\Lambda) \cong \widetilde{P}(\Lambda)_{\Sigma_{\Lambda}} \cong \widetilde{P}(\Lambda)_{\left(\Sigma_{n_{1}}\left|\Sigma_{B_{1}} \times \cdots \times \Sigma_{n_{L}}\right| \Sigma_{B_{l}}\right)}
$$

Applying proposition 1.11 one readily sees that

$$
P(\Lambda) \cong \prod_{\prod_{l} P\left(n_{l}\right)}\left(\prod_{l} \prod_{j}\left(\left(P\left(B_{l}\right)_{P\left(B_{l}\right)}^{p^{j}}\right)_{\Sigma_{p^{j}}}\right)_{\Sigma_{n_{l}}}^{n_{l}^{j}}\right)
$$

But $\left(P\left(B_{l}\right)_{P\left(B_{l}\right)}^{p^{j}}\right) \cong P\left(B_{l}\right)$ where the right hand side can be considered as a set with a trivial action of $\Sigma_{p^{i}}$. The corollary follows.

2. The layers of the Goodwillie tower of the identity

In this section we will describe $D_{n}(X)$, the n-th layer of the Goodwillie tower of the identity in terms of the complexes K_{n} of the previous section. This amounts, basically, to a reformulation of the main result of Johnson in [Jo95]. In [AK97] a different way to derive our description of $D_{n}(X)$ is presented.

Theorem 2.1.

$$
D_{n}(X) \simeq \Omega^{\infty} \operatorname{Map}_{*}\left(S K_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}
$$

Proof. By [Jo95, corollary 2.3]

$$
D_{n}(X) \simeq \Omega^{\infty} \operatorname{Map}_{*}\left(\Delta_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}
$$

where Δ_{n} is defined in [Jo95, definition 4.7]. We recall the definition. Let

$$
I^{n^{2}}=\left\{t=\left(t_{11}, t_{12}, \ldots, t_{1 n}, t_{21}, \ldots, t_{n n}\right) \in R^{n^{2}} \mid 0 \leq t_{i j} \leq 1\right\}
$$

be an n^{2}-dimensional cube. Let $I^{n(n-1)}$ be the subspace of $I^{n^{2}}$ defined by $t_{i i}=0$ for $i=1, \ldots, n$. Thus $I^{n(n-1)}$ is an $n(n-1)$-dimensional cube. For $1 \leq i<j \leq n$ define

$$
W_{i j}=\left\{t \in I^{n(n-1)} \mid t_{i k}=t_{j k} \quad \text { for } \quad 1 \leq k \leq n\right\}
$$

Define also

$$
Z=\left\{t \in I^{n(n-1)} \mid t_{i j}=1 \quad \text { for some } \quad 1 \leq i, \quad j \leq n\right\} .
$$

Then

$$
\Delta_{n}=I^{n(n-1)} /\left\{Z \cup \bigcup_{i<j} W_{i j}\right\}
$$

Thus to prove the theorem it is enough to prove that there is a Σ_{n}-equivariant map

$$
\Delta_{n} \simeq S K_{n}
$$

which is a non-equivariant homotopy equivalence. Since $I^{n(n-1)}$ is a Σ_{n}-equivariantly contractible space, it follows that Δ_{n} is equivariantly equivalent to the suspension of $Z \cup \bigcup_{i<j} W_{i j}$. Therefore, it is enough to show that there is an equivariant equivalence

$$
K_{n} \simeq Z \cup \bigcup_{i<j} W_{i j}
$$

Recall that K_{n} is itself an unreduced suspension of \tilde{K}_{n}, the geometric realization of the category of non-trivial partitions of \underline{n}. On the other hand, we claim that $\bigcup_{i<j} W_{i j}$ and Z are both equivariantly contractible. Indeed, $\bigcup_{i<j} W_{i j}$ is contractible by radial projection on $(0, \ldots, 0)$ and Z is contractible by radial projection on the point t defined by $t_{i i}=0$ for $i=1, \ldots, n$ and $t_{i j}=1$ for $i \neq j$. It follows that $Z \cup \bigcup_{i<j} W_{i j}$ is equivariantly equivalent to the unreduced suspension of $Z \cap \bigcup_{i<j} W_{i j}$. Thus it is enough to prove that there is an equivariant map

$$
\tilde{K}_{n} \rightarrow Z \cap \bigcup_{i<j} W_{i j}
$$

which is a non-equivariant equivalence. For $1 \leq i<j \leq n$, let $U_{i j}=Z \cap W_{i j}$. The assertion follows from the fact that the spaces $U_{i j}$ cover $Z \cap \bigcup_{i<j} W_{i j}$, all possible intersections of $U_{i j}$ are contractible, and the poset associated with this covering is isomorphic to $\tilde{k}_{n}^{\text {op }}$. We state it in two propositions.

Proposition 2.2.

$$
Z \cap \bigcup_{i<j} W_{i j}=\bigcup U_{i j}
$$

Proof. Obvious.
Let $A=\left\{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots,\left(i_{L}, j_{L}\right)\right\}$ be a collection of pairs $1 \leq i_{l}<j_{l} \leq n$. Let $U_{A}=\bigcap_{\left(i_{l}, j_{l}\right) \in A} U_{i_{l}, j_{l}}$. We associate with A a graph on n vertices, labeled $1, \ldots, n$, as follows: There is an edge (i, j) iff $(i, j) \in A$. The connected components of this graph determine a partition of \underline{n}.

Proposition 2.3. U_{A} depends only on the partition associated with A. Moreover, U_{A} is empty if the partition associated with A is $\hat{1}$ and is contractible otherwise.

Proof. In fact, it is easy to see that

$$
\begin{aligned}
U_{A}=\{t= & \left(t_{11}, t_{12}, \ldots, t_{1 n}, t_{21}, \ldots, t_{n n}\right) \in R^{n^{2}} \mid 0 \leq t_{i j} \leq 1 \\
& t_{i j}=0 \text { if } i \text { and } j \text { are in the same component of the } \\
& \text { partition associated with } A, \text { and } \\
& \left.t_{i j}=1 \text { for some }(i, j)\right\}
\end{aligned}
$$

If the partition associated with A is $\hat{1}$ then $t_{i j}=0$ for all (i, j), contradicting the requirement that $t_{i j}=1$ for some (i, j), so $U_{A}=\emptyset$. If the partition is not 1 then U_{A} is contractible by radial projection on the point given by $t_{i j}=0$ if i and j are in the same component and $t_{i j}=1$ otherwise.

This completes the proof of the theorem.
$D_{n}(X)$ is the infinite loop space associated with the spectrum

$$
\mathbf{D}_{n}(X) \simeq \operatorname{Map}_{*}\left(S K_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}
$$

Since $S K_{n}$ is the geometric realization of the simplicial set T_{n}, it follows that $\mathbf{D}_{n}(X)$ is the total spectrum of a cosimplicial spectrum, which we denote $\mathbf{D}_{n}^{\bullet}(X)$. The spectrum of i cosimplices of $\mathbf{D}_{n}^{\bullet}(X)$ is $\operatorname{Map}_{*}\left(T_{n}^{i}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}$. Moreover, recall that $S K_{n}$ has no non-degenerate simplices in dimensions higher than $n-1$. It follows that the tower of fibrations associated with $\mathbf{D}_{n}^{\bullet}(X)$ has n stages, which we denote $\operatorname{Tot}_{n}^{i}\left(\mathbf{D}_{n}^{\bullet}(X)\right)$. In fact,

$$
\operatorname{Tot}_{n}^{i}\left(\mathbf{D}_{n}^{\bullet}(X)\right)=\operatorname{Map}_{*}\left(\operatorname{sk}^{i} S K_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}
$$

where sk^{i} stands for the i-th skeleton. The homotopy fiber of the map

$$
\operatorname{Tot}_{n}^{i}\left(\mathbf{D}_{n}^{\bullet}(X)\right) \rightarrow \operatorname{Tot}_{n}^{i-1}\left(\mathbf{D}_{n}^{\bullet}(X)\right)
$$

is homotopy equivalent to

$$
\operatorname{Map}_{*}\left(\left(S^{i} K_{n}^{i-2}\right)_{+}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}
$$

Since this is a tower of fibrations of spectra, it yields a spectral sequence calculating the homology of $\mathbf{D}_{n}(X)$, which is the stable homology of $D_{n}(X)$. In the next section we will use this spectral sequence to calculate the stable homology of $D_{n}(X)$ in some interesting special cases.

3. Odd sphere case - the cohomology of the layers

3.1. The homology groups

We now focus our attention on the odd sphere case. Our goal in this section is to study the stable homology of $D_{n}(X)$, the layers of the Goodwillie tower, in this case. Thus, we want to study the homology of the spectra

$$
\mathbf{D}_{n}(X) \simeq \operatorname{Map}_{*}\left(S K_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}
$$

where X is an odd-dimensional sphere.
We begin with a proposition which enables us to focus on the torsion part of homology.

Proposition 3.1. Let X be an odd-dimensional sphere. Let $n>1$. Rationally

$$
\mathbf{D}_{n}(X)=\operatorname{Map}_{*}\left(S K_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}} \simeq *
$$

Proof. We saw in the previous section that there exists a tower of fibrations with n stages converging to $\mathbf{D}_{n}(X)$, in which the fibers are of the form

$$
\operatorname{Map}_{*}\left(\left(S^{i} K_{n}^{i-2}\right)_{+}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}
$$

where K_{n}^{i-2} is the set of non-degenerate $i-2$-chains of partitions. Thus

$$
\operatorname{Map}_{*}\left(\left(K_{n}^{i-2}\right)_{+}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}} \simeq \bigvee_{\Lambda} \Sigma^{\infty} X_{h \Sigma_{\Lambda}}^{\wedge n}
$$

where the wedge sum on the right hand side is indexed by representatives of orbits of $\left(K_{n}^{i-2}\right)_{+}$. Thus each stabilizer group Σ_{Λ} can be written as a semi-direct product

$$
G_{i-1} \ltimes\left(G_{i-2} \ltimes\left(\cdots \ltimes G_{0}\right)\right)
$$

where each G_{l} is a product of symmetric groups. Since we consider only non-degenerate orbits, none of the $G_{l} \mathrm{~s}$ is trivial. In particular, G_{0} is not trivial. The proposition follows since for $k>1$ and X an odd-dimensional sphere, $X_{h \Sigma_{k}}^{\wedge k}$ is rationally trivial.

Notice that proposition 3.1 implies the theorem of Serre that the map $X \rightarrow Q(X)$ is a rational equivalence for an odd sphere X.

From now on all spaces considered will be localized at a fixed prime p. All homology groups are taken with $\mathbb{Z} / p \mathbb{Z}$ coefficients. We will calculate $\mathrm{H}_{*}\left(\mathbf{D}_{n}(X)\right)$ explicitly. The case $n=1$ is trivial. Assume, till the end of the section, that $n>1$.

The plan is to use the homology spectral sequence associated with the tower of fibrations $\operatorname{Tot}_{n}^{i}\left(\mathbf{D}_{n}^{0}(X)\right)$ (as defined on page 14). To see that such a spectral sequence exists, note that since we are dealing with spectra, smashing with a fixed spectrum preserves fibration sequences and finite towers of fibrations. The homology spectral sequence is obtained by smashing our tower of fibrations with the Eilenberg-MacLane spectrum $H \mathbb{Z} / p \mathbb{Z}$ and considering the homotopy spectral sequence of the resulting (finite) tower (see [BK72, page 259] for a reference on the spectral sequence of a tower of fibrations). The first term of the spectral sequence has the following form:

$$
\begin{aligned}
E_{1}^{i, t} & =\mathrm{H}_{t-i}\left(\operatorname{Map}_{*}\left(\left(S^{i} K_{n}^{i-2}\right)_{+}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}\right) \\
& =\mathrm{H}_{t}\left(\operatorname{Map}_{*}\left(\left(K_{n}^{i-2}\right)_{+}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}\right)
\end{aligned}
$$

with a differential

$$
d_{1}: E_{1}^{i, t} \rightarrow E_{1}^{i+1, t}
$$

We may view this E_{1} term as a cochain complex C^{\bullet} of graded $\mathbb{Z} / p \mathbb{Z}$ modules. The module of i-cochains is

$$
C^{i}=\mathrm{H}_{*}\left(\operatorname{Map}_{*}\left(\left(K_{n}^{i-2}\right)_{+}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}\right) .
$$

The differential $\partial^{i}: C^{i} \rightarrow C^{i+1}$ is given by the alternating sum $\sum_{j}(-1)^{j} d_{j}^{\boldsymbol{\bullet}}$, where d_{j}^{\bullet} is induced by the face map d_{j} in $\mathrm{N}_{\bullet} k_{n}$. If we write, as we did in the proof of proposition 3.1,

$$
\operatorname{Map}_{*}\left(\left(K_{n}^{i-2}\right)_{+}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}} \simeq \bigvee_{\Lambda} \Sigma^{\infty} X_{h \Sigma_{\Lambda}}^{\wedge n},
$$

then for $j=0$ and $j=i, d_{j}^{i}$ is the zero homomorphism, and for $1 \leq j \leq i-1, d_{j}^{i}$ is a direct sum of the transfer maps associated with the inclusion of stabilizers of representatives of orbits of chains of the form $\left(\lambda_{0}, \ldots, \lambda_{i-2}\right)$ into stabilizers of representatives of orbits of chains of the form $\left(\lambda_{0}, \ldots, \hat{\lambda}_{j-1}, \ldots, \lambda_{i-2}\right)$. The inclusions are well-defined up to conjugation, and therefore the transfer maps are well-defined.

To study this spectral sequence we will need to study the homology of (reduced) Borel constructions on X with respect to certain subgroups of Σ_{n}. We recall a few standard facts about the homology of $X_{h \Sigma_{n}}^{\wedge n}=X^{\wedge n} \wedge_{\Sigma_{n}} E \Sigma_{n+}$ as described in terms of Dyer-Lashof operations. Let H_{*} be a graded $\mathbb{Z} / p \mathbb{Z}$ module. Let $\Delta_{l}\left(H_{*}\right)$ be the free graded $\mathbb{Z} / p \mathbb{Z}$ module generated by allowable Dyer-Lashof words of length l over H_{*} (see [CLM76, I.2] and [BMMS86, page 298] for details). Thus, if $l>0$, then $\Delta_{l}\left(H_{*}\right)$ is generated by the following set

$$
\begin{aligned}
& \begin{cases}\beta^{\epsilon_{1}} Q^{s_{1}} \ldots \beta^{\epsilon_{l}} Q^{s_{l}} u \mid \\
& u \in H_{*}, \epsilon_{i} \in\{0,1\}, s_{i}>0, p s_{i}-\epsilon_{i} \geq s_{i-1} \\
\text { if } p>2\end{cases} \\
& \left.2 s_{1}-\sum_{i=2}^{l}\left[2 s_{i}(p-1)-\epsilon_{i}\right] \geq|u|\right\} \\
& \begin{cases}Q^{s_{1}} \ldots Q^{s_{l}} u \mid & \text { if } p=2 \\
u \in H_{*}, s_{i}>0,2 s_{i} \geq s_{i-1} & \\
\left.s_{1}-\sum_{i=2}^{l} s_{i} \geq|u|\right\} & \end{cases}
\end{aligned}
$$

where $u \in H_{*}$. By convention, $\Delta_{0}\left(H_{*}\right)=H_{*}$. The operations Q^{s} come from elements in the $\bmod p$ homology of symmetric groups. Q^{s} raises degree by $2(p-1) s$ if $p>2$ and by s if $p=2$ (the β s in the oddprimary case are homology Böcksteins, and thus lower the degree by 1). $Q^{s} u=0$ if $s<\frac{|u|}{2}$ for $p>2$ and $|u|$ even (if $s<|u|$ for $p=2$) and $Q^{\frac{|u|}{2}} u=u^{\otimes p}$ for $p>2\left(Q^{|u|} u=u \otimes u\right.$ for $\left.p=2\right)$. Thus we include powers of elements of H_{*} in Δ_{l}. The convenience of this will become clear later - its purpose is to make the "negligible" summands in the proof of lemma 3.11 negligible.

We will sometimes abbreviate $\Delta_{l}\left(H_{*}\right)$ as Δ_{l} when H_{*} is clear from the context.

Given a graded vector space D, let $V(D)$ be the augmentation ideal of the free symmetric algebra generated by D. Thus $V(D)$ is the quotient of $\oplus_{k=1}^{\infty} D^{\otimes k}$ by the ideal generated by the relations $a \otimes b-(-1)^{|a||b|} b \otimes a$ where a, b are homogeneous elements. Let $E(D)$ be the quotient of $V(D)$ by the ideal generated by $a^{\otimes p}$. Since the relations are homogeneous, we may write $E(D) \cong \oplus E^{k}(D)$. By abuse of notation, we will write $E^{k}(D)$ as $D_{\Sigma_{k}}^{\otimes k}$. From now on, whenever we write $D_{\Sigma_{k}}^{\otimes k}$, where D is a graded $\mathbb{Z} / p \mathbb{Z}$ module, we mean $E^{k}(D)$.

The $\bmod p$ homology of $X_{h \Sigma_{n}}^{\wedge n}$ is described in terms of the DyerLashof operations. For any based space X, the following is true (the homology is taken with $\mathbb{Z} / p \mathbb{Z}$ coefficients)

$$
\begin{equation*}
\mathrm{H}_{*}\left(X_{h \Sigma_{n}}^{\wedge n}\right)=\bigoplus_{\left(n_{0} \ldots \ldots .\right) \in P(n)}\left(\bigotimes_{l \geq 0}\left(\Delta_{l}\left(\mathrm{H}_{*}(X)\right)^{\otimes n_{l}}\right)_{\Sigma_{n_{l}}}\right) \tag{1}
\end{equation*}
$$

Because of our choice to suppress the p-th powers of elements of $\mathrm{H}_{*}(X)$, the splitting in (1) is not natural, but depends on a choice of basis of $\mathrm{H}_{*}(X)$. The point is that the projection map $V(D) \rightarrow E(D)$ splits, but not naturally. However, it is easy to see that if we filter $P(n)$ by the number of components, then the splitting is natural up to elements of lower filtration. Thus we get a (more or less natural) expansion of $\mathrm{H}_{*}\left(X_{h \Sigma_{n}}^{\wedge n}\right)$ into a direct sum indexed by p-partitions of n. We will call the terms in the expansion the standard summands (or just summands) of $\mathrm{H}_{*}\left(X_{h \Sigma_{n}}^{\wedge n}\right)$.

It is well known that the standard summands are detected by certain elementary abelian subgroups of Σ_{n}. We proceed to recall the basic facts about this. Let us begin with Δ_{k} as a summand of $\mathrm{H}_{*}\left(\Sigma_{p^{k}}\right)$, or more generally of $\mathrm{H}_{*}\left(X_{\Sigma_{p^{k}}}^{\wedge p^{k}}\right)$. For $k=0,1, \ldots$ let $A_{k} \cong(\mathbb{Z} / p)^{k}$. $\left|A_{k}\right|=p^{k}$, therefore the action of A_{k} on itself defines an inclusion (up to conjugation) of $A_{k} \hookrightarrow \Sigma_{p^{k}}$. We will consider A_{k} as a subgroup of Σ_{k} via this inclusion (this is the subgroup that is defined as Δ_{k} in [KaP78,
page 95]). Thus A_{k} acts transitively on $p^{k} . A_{k}$ is very useful for detecting elements in the homology of $\Sigma_{p^{k}}$: the pure part of $\mathrm{H}_{*}\left(\Sigma_{p^{k}}\right)$ is detected on A_{k}. This was probably first proved by Kahn and Priddy in [KaP78]. For a more detailed account we recommend [AdMi95]. We need a slightly more general version of this:

Proposition 3.2. Let X be a based space. Let $H_{*}=\mathrm{H}_{*}(X)$. Recall that Δ_{k} is a summand of $\mathrm{H}_{*}\left(X_{h \Sigma_{p^{k}}}^{\wedge p^{k}}\right)$. Write $\mathrm{H}_{*}\left(X_{h \Sigma_{p^{k}}}^{\wedge p^{k}}\right) \cong \Delta_{k} \oplus$. Consider the homomorphism

$$
\mathrm{H}_{*}\left(X \wedge B A_{k+}\right) \rightarrow \mathrm{H}_{*}\left(X_{h \Sigma_{p^{k}} \wedge k^{k}}\right)
$$

induced by inclusion of subgroups and the diagonal map $X \rightarrow X^{\wedge n}$. This map is onto the summand Δ_{k} and zero on the summand A.

Proof. For $X=S^{0}$ (a zero-dimensional sphere) this is precisely [KaP78, proposition 3.4]. The proof generalizes straightforwardly. The idea is to reduce the question from $\Sigma_{p^{k}}$ to its p-Sylow subgroup and then proceed by direct calculation.

Now consider a summand on the right hand side of (1) corresponding to a p-partition $\left(n_{0} \ldots, n_{l}, \ldots\right) \in P(n)$. This summand is detected, in a suitable sense, by the elementary abelian group $A=\prod_{l} A_{l}^{\times n_{l}}$. Consider the space $X^{\wedge \Sigma_{l} n_{l}}$ as a space with a trivial action of A. It is easy to see that there is a diagonal map $X^{\wedge \Sigma_{l} n_{l}} \rightarrow X^{\wedge n}$ that is equivariant with respect to the subgroup inclusion $A \rightarrow \Sigma_{n}$. We have the following proposition

Proposition 3.3. With notation as above, consider the homomorphism

$$
\mathrm{H}_{*}\left(X^{\wedge \Sigma_{l} n_{l}} \wedge B A_{+}\right) \rightarrow \mathrm{H}_{*}\left(X_{h \Sigma_{n}}^{\wedge n}\right)
$$

induced by group inclusion $A \rightarrow \Sigma_{n}$ and the diagonal map $X^{\wedge \Sigma_{l n} n_{l}} \rightarrow X^{\wedge n}$. This homomorphism is onto the summand corresponding to the p-partition $\left(n_{0} \ldots, n_{l}, \ldots\right)$ and zero on the other summands of the same filtration and the summands of higher filtration.

Proof. The case $X=S^{0}$ is well-known. It is largely proved in [KaP78] and in more detail in [AdMi95]. It is a longish, but straightforward, exercise to extend the result to a general X.

The reason that we need proposition 3.3 is that we have to study the transfer map in the homology of Borel construction. Let $n_{0} \underline{p^{0}}+n_{1} \underline{p^{1}}+\cdots n_{k} \underline{p^{k}}$ be a p-partition of n. Let $\Sigma_{P}=$
$\Sigma_{n_{0}} \backslash \Sigma_{p^{0}} \times \cdots \times \Sigma_{n_{k}} \swarrow \Sigma_{p^{k}}$ and $\Sigma_{P}^{\prime}=\Sigma_{n_{0} p^{0}} \times \cdots \times \Sigma_{n_{k} p^{k}}$. Let X be any based space. The homology groups $\mathrm{H}_{*}\left(X_{h \Sigma_{n}}^{\wedge n}\right), \mathrm{H}_{*}\left(X_{h \Sigma_{P}}^{\wedge n}\right)$ and $\mathrm{H}_{*}\left(X_{h \Sigma_{P}^{\prime}}^{\wedge n}\right)$ each have a summand isomorphic to $\left(\Delta_{0}^{\otimes n_{0}}\right)_{\Sigma_{n_{0}}} \otimes \cdots \otimes\left(\Delta_{0}^{\otimes n_{k}}\right)_{\Sigma_{n_{k}}}$ which we denote simply Δ. Write $\mathrm{H}_{*}\left(X_{h \Sigma_{n}}^{\wedge n}\right)=\Delta \oplus A, \mathrm{H}_{*}\left(X_{h \Sigma_{P}}^{\wedge n}\right)=$ $\Delta \oplus B$ and $\mathrm{H}_{*}\left(X_{h \Sigma_{P}^{\prime}}^{\wedge n}\right)=\Delta \oplus B^{\prime}$. Consider the homomorphisms $\Delta \oplus A$ $\rightarrow \Delta \oplus B$ and $\Delta \oplus A \rightarrow \Delta \oplus B^{\prime}$ induced by the appropriate transfers. These homomorphisms can be represented as two by two matrices of maps

$$
\left(\begin{array}{ll}
\Delta \rightarrow \Delta & \Delta \rightarrow B \\
A \rightarrow \Delta & A \rightarrow B
\end{array}\right) \text { and }\left(\begin{array}{ll}
\Delta \rightarrow \Delta & \Delta \rightarrow B^{\prime} \\
A \rightarrow \Delta & A \rightarrow B^{\prime}
\end{array}\right)
$$

Proposition 3.4. The map $\Delta \rightarrow \Delta$ in both matrices is an isomorphism.
Proof. The proof is similar to the proof of the main theorem of [KaP78]. To prove that the homomorphism $\Delta \rightarrow \Delta$ is an isomorphism it is enough to prove that it is surjective. To do this for the case of the first matrix, it is enough to show that the composite homomorphism

$$
\mathrm{H}_{*}\left(X^{\wedge \Sigma_{l} n_{l}} \wedge\left(B A_{0}^{n_{0}} \times \cdots \times A_{k}^{n_{k}}\right)_{+}\right) \xrightarrow{i_{*}} \mathrm{H}_{*}\left(X_{h \Sigma_{n}}^{\wedge n}\right) \xrightarrow{t r} \mathrm{H}_{*}\left(X_{h \Sigma_{P}}^{\wedge n}\right)
$$

is surjective onto Δ. This composed homomorphism can be analyzed by means of a suitable version of the double coset formula. It is not hard to show that the composed map above is the same as the homomorphism induced by the group inclusion $A_{0}^{n_{0}} \times \cdots \times A_{k}^{n_{k}} \rightarrow \Sigma_{P}$, essentially because of two reasons: the normalizer of $A_{0}^{n_{0}} \times \cdots \times A_{k}^{n_{k}}$ in Σ_{n} is the same as in Σ_{P} and the transfer from an elementary Abelian group to a proper subgroup is zero (see [KaP78]). The argument for the second matrix is similar.

We will need to consider a slightly more general situation. Let $n=i_{0} p^{0}+i_{1} p^{1}+\cdots i_{k} p^{k}$ as before. Let $K_{1}, K_{2}, \ldots, K_{j}$ be disjoint subsets of $\{0,1, \ldots, k\}$ whose union is $\{0,1, \ldots, k\}$. For $1 \leq l \leq j$, let $m_{l}=\sum_{t \in K_{l}} i_{t} p^{t}$. Consider the group $\Sigma_{m_{1}} \times \cdots \Sigma_{m_{j}}$ as a subgroup of Σ_{n}. It is easy to see that Δ is a summand of $\mathrm{H}_{*}\left(X_{h \Sigma_{m_{1}} \times \cdots \Sigma_{m_{j}}}^{\wedge n}\right)$. Write $\mathrm{H}_{*}\left(X_{h \Sigma_{m_{1}} \times \cdots \Sigma_{m_{j}}}^{\wedge n}\right)=\Delta \oplus C$ and consider the matrix

$$
\left(\begin{array}{ll}
\Delta \rightarrow \Delta & \Delta \rightarrow C \\
A \rightarrow \Delta & A \rightarrow C
\end{array}\right)
$$

describing the transfer map. We have the following proposition

Proposition 3.5. In the matrix above the map $\Delta \rightarrow \Delta$ is an isomorphism.
Proof. Similar to the proof of the previous proposition.
Next we need to generalize the formula (1) and proposition 3.3 to $H_{*}\left(X_{h \Sigma_{\Lambda} \wedge}^{\wedge n}\right)$, where Σ_{Λ} is the stabilizer of a chain of partitions of n. More precisely, we will show that $H_{*}\left(X_{h \Sigma_{\Lambda}}^{\wedge n}\right)$ splits as a certain direct sum indexed by unordered p-ramifications of Λ. We first show how to associate a graded $\mathbb{Z} / p \mathbb{Z}$-vector space to a p-ramification of Λ. Indeed, let $\Lambda=\left(\hat{0}=\lambda_{-1} \leq \lambda_{0} \leq \cdots \leq \lambda_{i} \leq \lambda_{i+1}=\hat{1}\right)$ be an i-chain of partitions of \underline{n} and let ϵ be an unordered p-ramification of Λ. Recall that we associate with ϵ a standard tree of height $2 i+3$ in which all the nodes of even height are labeled by powers of p and there is no forking on odd levels. Given such a tree, a node v in the tree and a graded $\mathbb{Z} / p \mathbb{Z}$ vector space $H_{*}=\mathrm{H}_{*}(X)$, we construct a graded $\mathbb{Z} / p \mathbb{Z}$-vector space H_{*}^{v} and, for future use, a detecting elementary abelian group A_{v} as follows: if the height of v is zero then it is labeled by p^{k} for some k (since 0 is even) and we define $H_{*}^{v}=\Delta_{k}\left(H_{*}\right)$ and $A_{v}=A_{k}$. Assume now that we defined H_{*}^{v} and A_{v} for all v of height $j-1$ or less. Let v be a node of height j. Let l be the label of v. Assume, first, that j is even. Then $l=p^{k}$ for some k. Let u_{1}, \ldots, u_{m} be the children of v. We define

$$
H_{*}^{v}=\Delta_{k}\left(H_{*}^{u_{1}} \otimes \cdots \otimes H_{*}^{u_{m}}\right)
$$

and

$$
A_{v}=A_{k} \times\left(A_{u_{1}} \times \cdots \times A_{u_{k}}\right)
$$

(A_{v} should be thought of as the diagonal subgroup of $\Sigma_{p^{k}} 2\left(A_{u_{1}} \times \cdots \times A_{u_{k}}\right)$. Now assume j is odd. Then v has only one child u and we define

$$
H_{*}^{v}=\left(H_{*}^{u}\right)_{\Sigma_{l}}^{\otimes l}
$$

and

$$
A_{v}=\left(A_{u}\right)^{\times l} .
$$

Let H_{*}^{ϵ} be the module associated with the root of the tree and similarly let A_{ϵ} be the elementary abelian group associated with the root of the tree. A_{ϵ} is in fact a subgroup of Σ_{n} (determined up to conjugation).

Lemma 3.6. Let $\Lambda=\left(\hat{0}=\lambda_{-1} \leq \lambda_{0} \leq \cdots \leq \lambda_{i} \leq \lambda_{i+1}=\hat{1}\right)$ be an i-chain of partitions of \underline{n}. Recall that $P(\Lambda)$ is the set of unordered p-ramifications of Λ. There is an isomorphism

$$
\mathrm{H}_{*}\left(X_{h \Sigma_{\Lambda}}^{\wedge n}\right) \cong \bigoplus_{\epsilon \in P(\Lambda)} H_{*}^{\epsilon} .
$$

Proof. We will prove it by induction on i. The induction starts with $i=-1$. In this case $\Lambda=(\hat{0}, \hat{1})$ and the lemma is given precisely by (1) and proposition 3.3. Assume the lemma holds for $i-1$. Let $\Lambda=\left(\hat{0}=\lambda_{-1} \leq \lambda_{0} \leq \cdots \leq \lambda_{i} \leq \lambda_{i+1}=\hat{1}\right)$ be an i-chain of partitions. Consider λ_{i}, the coarsest partition in the chain. The relation of inducing isomorphic blocks is an equivalence relation on the components of λ_{i}. Let λ_{i} have n_{l} components of type B_{l}, where the $B_{l} \mathrm{~s}$ are pairwise distinct orbits of $i-1$ chains of partitions of a set with k_{l} elements and $l=1, \ldots, L$. Thus, in the tree corresponding to the orbit of Λ, the root has L children labeled n_{1}, \ldots, n_{L}. The stabilizer group of Λ has the following form

$$
\Sigma_{\Lambda} \cong \Sigma_{n_{1}}\left\langle\Sigma_{B_{1}} \times \cdots \times \Sigma_{n_{L}}\left\langle\Sigma_{B_{L}} .\right.\right.
$$

Thus

$$
\mathrm{H}_{*}\left(X_{h \Sigma_{\Lambda}}^{\wedge n}\right)=\bigotimes_{l=1}^{L}\left(\bigoplus_{\left(n_{0}^{l}, n_{1}^{l}, \ldots, n_{J_{l}^{\prime}}^{\prime}\right) \in P\left(n_{l}\right)}\left(\bigotimes_{j=0}^{J_{l}}\left(\Delta_{j}\left(\mathrm{H}_{*}\left(X_{h \Sigma_{B_{l}}}^{\wedge k_{l}}\right)\right)\right)_{\Sigma_{n_{j}^{l}}}^{\otimes n_{j}^{l}}\right)\right)
$$

which implies

$$
\begin{aligned}
\mathrm{H}_{*}\left(X_{h \Sigma_{\Lambda}}^{\wedge n}\right)= & \oplus\left(\bigotimes_{l=1}^{L}\left(\bigotimes_{j=0}^{J_{l}}\left(\Delta_{j}\left(\mathrm{H}_{*}\left(X_{h \Sigma_{B_{l}}}^{\wedge k_{l}}\right)\right)\right)_{\Sigma_{n_{j}^{l}}}^{\otimes n_{j}^{l}}\right)\right) . \\
& \prod_{l=1}^{L} P\left(n_{l}\right)
\end{aligned}
$$

We see that $\mathrm{H}_{*}\left(X_{h \Sigma_{\Lambda}}^{\wedge n}\right)$ splits as a direct sum indexed by $\prod_{l=1}^{L} P\left(n_{l}\right)$. By the induction assumption,

$$
\mathrm{H}_{*}\left(X_{h \Sigma_{B_{l}}}^{\wedge k_{l}}\right) \cong \bigoplus_{\epsilon \in P\left(B_{l}\right)} H_{*}^{\epsilon}
$$

Obviously, if H_{*}^{1} and H_{*}^{2} are two graded modules then $\Delta_{l}\left(H_{*}^{1} \oplus H_{*}^{2}\right) \cong \Delta_{l}\left(H_{*}^{1}\right) \oplus \Delta_{l}\left(H_{*}^{2}\right)$, therefore

$$
\Delta_{j} \mathrm{H}_{*}\left(X_{h \Sigma_{B_{l}}}^{\wedge k_{l}}\right) \cong \bigoplus_{\epsilon \in P\left(B_{l}\right)} \Delta_{j} H_{*}^{\epsilon}
$$

Thus

$$
\begin{aligned}
\mathrm{H}_{*}\left(X_{h \Sigma_{\Lambda}}^{\wedge n}\right)= & \oplus \\
& \prod_{l=1}^{L} P\left(n_{l}\right)
\end{aligned} \bigotimes_{l=1}^{L}\left({\left.\left.\underset{j=0}{J_{l}}\left(\bigoplus_{\epsilon \in P\left(B_{l}\right)} \Delta_{j} H_{*}^{\epsilon}\right)_{\Sigma_{n_{j}^{l}}}^{\otimes n_{j}^{l}}\right)\right) .}\right.
$$

By multiplying out, we see that $H_{*}\left(X_{h \Sigma_{\Lambda}}^{\wedge n}\right)$ splits as a direct sum indexed by the set

$$
\underset{\prod_{l} P\left(n_{l}\right)}{\amalg}\left(\prod_{l} \prod_{j}\left(P\left(B_{i}\right)\right)_{\varepsilon_{i l}}^{n_{i}}\right)
$$

which, by corollary 1.12 is isomorphic to $P(\Lambda)$. It is tedious, but entirely straightforward to verify that the summand corresponding to $\epsilon \in P(\Lambda)$ is indeed H_{*}^{ϵ}.

Remark 3.7. Recall that given an unordered p-ramification ϵ of Λ we constructed an elementary abelian group A_{ϵ} (just before lemma 3.6). It is not hard to show that A_{ϵ} detects the summand H_{*}^{ϵ} of the homology of $X_{h \Sigma_{\Lambda}}^{\wedge n}$ in the sense of proposition 3.3. If ϵ_{1} and ϵ_{2} are different p-ramifications of Λ then $A_{\epsilon_{1}}$ and $A_{\epsilon_{2}}$ are non-conjugate in Σ_{Λ}. The map on the homology of Borel constructions induced by the inclusion (defined up to conjugation) $A_{\epsilon} \hookrightarrow \Sigma_{n}$ is non-zero only on the summand H_{*}^{ϵ} and summands corresponding to elementary abelian groups with strictly fewer components (the number of components of a subgroup G of Σ_{n} is the number of components of the induced partition of n).

Definition 3.8. An integer n is pure if $n=p^{k}$ for some integer k. If n is pure, an i-chain of partitions of $\underline{n}, \Lambda=\left(\hat{0}=\lambda_{-1} \leq \lambda_{0} \leq \cdots \leq\right.$ $\lambda_{i} \leq \lambda_{i+1}=\hat{1}$), is pure if λ_{j} is a p-coarsening of $\lambda_{-1} \leq \lambda_{0} \leq \cdots \leq \lambda_{j-1}$ for all $j=0, \ldots, i+1$.

Clearly, purity is preserved by the action of Σ_{n}, hence we may speak about pure orbits of chains of partitions. It is easy to see that an orbit is pure iff the corresponding tree has one branch and has all labels powers of p. Given a pure Λ, the corresponding stabilizer group has the form $\Sigma_{\Lambda} \cong \Sigma_{p^{k_{0}}}\left\langle\Sigma_{p^{k_{1}}} \backslash \cdots \backslash \Sigma_{p^{k_{i}}}\right.$ for some (k_{0}, \ldots, k_{i}) such that $\sum k_{j}=k$. Also, consider the chain of partitions $\left(\hat{0}=\lambda_{-1} \leq \delta_{0} \leq \lambda_{0} \leq \cdots \leq \delta_{i} \leq \lambda_{i} \leq \delta_{i+1} \leq \lambda_{i+1}=\hat{1}\right) \quad$ in \quad which $\delta_{j}=\lambda_{j}$ for all $j=0, \ldots, i+1$. Since Λ is pure, it is easy to see from definition that it is a p-ramification of Λ. The corresponding summ-
and of $H_{*}\left(X_{h \Sigma_{\Lambda}}^{\wedge n}\right)$ is of the form $\Delta_{k_{0}}\left(\Delta_{k_{1}} \ldots\left(\Delta_{k_{i}}\right)\right)$. We call it the pure summand associated with Λ. All other summands are impure.

Let C^{i} be the graded $\mathbb{Z} / p \mathbb{Z}$-module of i-cochains in the complex C^{\bullet} defined above. C^{i} can be written as a direct sum $C^{i} \cong P^{i} \oplus I^{i}$ where P^{i} and I^{i} are the pure and impure summands of C^{i} (P^{i} is often trivial). The coboundary map $\partial^{i}: P^{i} \oplus I^{i} \rightarrow P^{i+1} \oplus I^{i+1}$ can be represented by a matrix of matrices as follows

$$
\left(\begin{array}{cc}
P^{i} \rightarrow P^{i+1} & P^{i} \rightarrow I^{i+1} \\
I^{i} \rightarrow P^{i+1} & I^{i} \rightarrow I^{i+1}
\end{array}\right) .
$$

Proposition 3.9. $P^{i} \rightarrow I^{i+1}$ are zero matrices for all i.
Proof. It is not hard to show (similar to proposition 3.2) that the pure summands are detected by the elementary abelian group A_{k} (the transitive elementary abelian subgroup of $\Sigma_{p^{k}}$). More precisely, the homomorphism

$$
\mathrm{H}_{*}\left(X \wedge B A_{k+}\right) \rightarrow \mathrm{H}_{*}\left(X_{\left.h \Sigma_{p^{k_{0}}}^{\wedge \Sigma_{p^{k_{1}}} \cdots \cdots \Sigma_{p^{k_{i}}}}\right)}\right)
$$

is onto the pure summand and zero on the impure summands. The proposition follows, using the double coset formula.

Corollary 3.10. The pure summands span a subcomplex of C^{\bullet}, which we denote $P^{\bullet} . P^{\bullet}$ is non-trivial only if n is a power of p. There is a short exact sequence of cochain complexes

$$
0 \rightarrow P^{\bullet} \rightarrow C^{\bullet} \rightarrow I^{\bullet} \rightarrow 0
$$

where I^{\bullet} is the complex of impure summands.
The following lemma is important:
Lemma 3.11. I^{\bullet} is acyclic.
Proof. We will use the following evident proposition

Proposition 3.12. Let

$$
C_{0}^{1} \oplus C_{0}^{2} \rightarrow C_{1}^{1} \oplus C_{1}^{2} \rightarrow C_{2}^{1} \oplus C_{2}^{2} \rightarrow \cdots \rightarrow C_{j}^{1} \oplus C_{j}^{2} \rightarrow \cdots
$$

be a cochain complex of graded $\mathbb{Z} / p \mathbb{Z}$-vector spaces, where C_{0}^{1} is the trivial module. Suppose that for all $j \geq 0$ the differential $C_{j}^{1} \oplus C_{j}^{2} \rightarrow C_{j+1}^{1} \oplus C_{j+1}^{2}$ is given by a matrix

$$
\left(\begin{array}{ll}
C_{j}^{1} \rightarrow C_{j+1}^{1} & C_{j}^{1} \rightarrow C_{j+1}^{2} \\
C_{j}^{2} \rightarrow C_{j+1}^{1} & C_{j}^{2} \rightarrow C_{j+1}^{2}
\end{array}\right)
$$

where $C_{j}^{2} \rightarrow C_{j+1}^{1}$ is an isomorphism. Then the complex is acyclic.
Consider now the cochain complex I^{\bullet}. Obviously, I^{0} is the trivial module (since $n>1$). For $j \geq 1$ we will write I^{j} as a direct sum of two modules $I_{1}^{j} \oplus I_{2}^{j}$, which we now proceed to define. Recall that I^{j} is the direct sum of the impure summands of $\oplus_{\Lambda} \mathrm{H}_{*}\left(X_{h \Sigma_{\Lambda}}^{\wedge n}\right)$ where Λ ranges through a set of representatives of orbits of non-degenerate ($j-2$)-chains of partitions $\left(\hat{0}=\lambda_{-1}<\lambda_{0}<\cdots<\lambda_{j-2}<\lambda_{j-1}=\hat{1}\right)$. Moreover by lemma 3.6 we know that given $\Lambda=\left(\hat{0}=\lambda_{-1}<\right.$ $\left.\lambda_{0}<\cdots<\lambda_{j-2}<\lambda_{j-1}=\hat{1}\right)$, the impure summands of $\mathrm{H}_{*}\left(X_{h \Sigma_{\Lambda}}^{\wedge n}\right)$ are indexed by unordered p-ramifications

$$
\epsilon=\left(\hat{0}=\lambda_{-1} \leq \delta_{0} \leq \lambda_{0}<\cdots \leq \delta_{j-2} \leq \lambda_{j-2} \leq \delta_{j-1} \leq \lambda_{j-1}=\hat{1}\right)
$$

such that not for all $i \delta_{i}=\lambda_{i}$. We say that an unordered p-ramification ϵ of Λ is admissible if there exists $0 \leq l \leq j-2$ such that $\delta_{m}=\lambda_{m}$ for all $0 \leq m \leq l$ and $\lambda_{m}=\delta_{m+1}$. If ϵ is not admissible then we say it is unadmissible. Let $P_{a}(\Lambda)$ and $P_{u}(\Lambda)$ be the set of admissible, impure and unadmissible, impure p-ramifications of Λ. We define

$$
I_{1}^{j}=\bigoplus_{\Lambda \in\left(K_{n}^{j-2}\right)_{\Sigma_{n}}}\left(\bigoplus_{\epsilon \in P_{a}(\Lambda)} H_{*}^{\epsilon}\right)
$$

and

$$
I_{2}^{j}=\underset{\Lambda \in\left(K_{n}^{j-2}\right)_{\Sigma_{n}}}{\bigoplus}\left(\underset{\epsilon \in P_{u}(\Lambda)}{ } H_{*}^{\epsilon}\right) .
$$

By lemma 3.6, $I^{j} \cong I_{1}^{j} \oplus I_{2}^{j}$ for all j. Clearly, I_{1}^{1} is the trivial module. It remains to prove that the map $I_{2}^{j} \rightarrow I_{1}^{j+1}$ induced by the coboundary map in I^{\bullet} is an isomorphism for all j. Then the lemma will follow from proposition 3.12.

First we establish that I_{2}^{j} and I_{1}^{j+1} are abstractly isomorphic. Let

$$
\Lambda=\left(\hat{0}=\lambda_{-1}<\lambda_{0}<\cdots<\lambda_{j-2}<\lambda_{j-1}=\hat{1}\right)
$$

be a $(j-2)$-chain and let

$$
\epsilon=\left(\hat{0}=\lambda_{-1} \leq \delta_{0} \leq \lambda_{0}<\cdots \leq \delta_{j-2} \leq \lambda_{j-2} \leq \delta_{j-1} \leq \lambda_{j-1}=\hat{1}\right)
$$

be an unadmissible p-ramification of Λ. Let l be the smallest index such that $\delta_{l+1} \neq \lambda_{l+1}$. Such an l exists because otherwise ϵ would be pure. Call l the level of ϵ. Suppose first that $l=-1$. We claim that if $\lambda_{-1}=\delta_{0}$ then H_{*}^{ϵ} is the trivial module. Indeed, in this case it is easy to see that the tree corresponding to ϵ has all the nodes on level 0 labeled by 1 , but not all the nodes on level 1 labeled by 1 , since $\lambda_{-1} \neq \lambda_{0}$. It follows that H_{*}^{ϵ} has a tensor factor of the form $\left(\Delta_{0}\left(H_{*}\right)\right)_{\Sigma_{k}}^{\otimes k}$, where $k>1$. But it is easy to see that $\left(\Delta_{0}\left(H_{*}\right)\right)_{\Sigma_{k}}^{\otimes k}$ is the trivial module if H_{*} has exactly one generator of odd degree, which it does if X is an odddimensional sphere. Thus if $l=-1$ and $\lambda_{-1}=\epsilon_{0}$ we say that ϵ is a negligible p-ramification and H_{*}^{ϵ} is a negligible summand of I_{j}^{2}. We denote the set of non-negligible unadmissible impure p-ramifications of Λ by $P_{u}^{n}(\Lambda)$. We proceed to establish an isomorphism between the sum of non-negligible summands of I_{j}^{2} and I_{j+1}^{1}. We may assume now that $\lambda_{l} \neq \delta_{l+1}$ because otherwise ϵ is either negligible (if $l=-1$) or admissible (if $l>-1$). It follows that the sequence
$\Lambda^{\prime}=\left(\hat{0}=\lambda_{-1}<\lambda_{0}<\cdots<\lambda_{l}<\delta_{l+1}<\lambda_{l+1}<\cdots<\lambda_{j-2}<\lambda_{j-1}=\hat{1}\right)$
is a non-degenerate $(j-1)$-chain of partitions. It is obvious by inspection that

$$
\begin{array}{r}
\epsilon^{\prime}=\left(\hat{0}=\lambda_{-1}, \delta_{0}, \lambda_{0}, \delta_{1}, \ldots, \delta_{l}, \lambda_{l}, \delta_{l+1}, \delta_{l+1}, \delta_{l+1},\right. \\
\left.\lambda_{l+1}, \ldots, \lambda_{j-2}, \delta_{j-1}, \lambda_{j-1}=\hat{1}\right)
\end{array}
$$

is an admissible, impure p-ramification of Λ^{\prime} and thus $H_{*}^{\epsilon^{\prime}}$ is a summand of I_{j+1}^{1}. It is also obvious by inspection that H_{*}^{ϵ} is isomorphic to $H_{*}^{\epsilon^{\prime}}$ and that the above procedure establishes an abstract isomorphism between the sum of non-negligible summands of I_{2}^{j} and I_{1}^{j+1}. It remains to prove that the coboundary homomorphism of I^{\bullet} induces an isomorphism between the two. We now may write this map as follows:

$$
\bigoplus_{\Lambda \in\left(K_{n}^{j^{j-2}}\right) \Sigma_{\Sigma_{n}}}\left(\underset{\epsilon \in P_{u}^{n}(\Lambda)}{\oplus} H_{*}^{\epsilon}\right) \rightarrow \underset{\Lambda \in\left(K_{n}^{j-2}\right)_{\Sigma_{n}}}{\bigoplus}\left(\underset{\epsilon \in P_{u}^{n}(\Lambda)}{ } H_{*}^{\epsilon^{\prime}}\right)
$$

where ϵ^{\prime} is obtained from ϵ by the procedure described above. This map can be described as a matrix \mathscr{M} of maps $H_{*}^{\epsilon_{1}} \rightarrow H_{*}^{\epsilon_{2}}$. To show
that this map is an isomorphism it is enough to show that the matrix is block upper triangular with respect to a certain ordering of the indexing set and that all the diagonal blocks are isomorphisms. To show that all the diagonal blocks are isomorphisms we need to show that for any $(j-2)$-chain Λ as above and for any $\epsilon \in P_{u}^{n}(\Lambda)$ the map $H_{*}^{\epsilon} \rightarrow H_{*}^{\epsilon^{\prime}}$, induced by the transfer map from Σ_{Λ} to $\Sigma_{\Lambda^{\prime}}$, is an isomorphism. We may write

$$
\Sigma_{\Lambda} \cong G_{j-1} \ltimes\left(\cdots G_{l+1} \ltimes\left(G_{l} \ltimes\left(\cdots G_{0}\right)\right)\right)
$$

where all G_{i} are products of symmetric groups. Now consider $\Sigma_{\Lambda^{\prime}}$. It is not difficult to see that for $i=l+1, \ldots, j-1$

$$
\Sigma_{\Lambda^{\prime}} \cong G_{j-1}^{\prime} \ltimes\left(\cdots G_{l+1}^{\prime \prime} \ltimes G_{l+1}^{\prime} \ltimes\left(G_{l} \ltimes\left(\cdots G_{0}\right)\right)\right)
$$

where $G_{l+1}^{\prime \prime} \ltimes G_{l+1}^{\prime}$ is a subgroup of G_{l+1} of the form $\prod_{i} \Sigma_{m_{i}}>\Sigma_{p^{i}}$ and G_{i}^{\prime} is a subgroup of G_{i} of the form required for corollary 3.5. The fact that the map $H_{*}^{\epsilon} \rightarrow H_{*}^{\epsilon^{\prime}}$ is an isomorphism follows from propositions 3.4 and 3.5.

It remains to show that the matrix \mathscr{M} is equivalent to a block upper triangular one with respect to some ordering of the indexing set. It is easy to see, using remark 3.7 and the double coset formula, that if Λ is a $(j-2)$-chain of partitions, and ϵ is an unadmissible p-ramification of Λ (so $H_{*}^{\epsilon} \in I_{2}^{J}$), then the only summands of I_{1}^{j+1} that H_{*}^{ϵ} maps non-trivially on are H_{*}^{ϵ} and summands whose detecting elementary abelian group has strictly fewer components than the elementary abelian group detecting H_{*}^{ϵ}. This completes the proof of lemma 3.11.

An immediate consequence of lemma 3.11 is the following theorem:

Theorem 3.13. Let X be an odd-dimensional sphere localized at a prime p. Assume n is not a power of p. Then

$$
D_{n}(X) \simeq \Omega^{\infty} \operatorname{Map}_{*}\left(S K_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}} \simeq * .
$$

Proof. Let E_{1} be the first term of the spectral sequence associated with the skeletal filtration of K_{n} abutting to

$$
\mathrm{H}_{*}\left(\operatorname{Map}_{*}\left(S K_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}\right) .
$$

We saw that E_{1} can be identified with the cochain complex C^{\bullet} of graded $\mathbb{Z} / p \mathbb{Z}$-vector spaces. Moreover, there is a short exact sequence $P^{\boldsymbol{\bullet}} \rightarrow C^{\bullet} \rightarrow I^{\boldsymbol{\bullet}}$. It is obvious that since n is not a power of a prime, $P^{\boldsymbol{\bullet}}$ is trivial. By lemma 3.11, I^{\bullet} is acyclic. It follows that E_{2} is zero. Therefore, $\mathrm{H}_{*}\left(\operatorname{Map}_{*}\left(S K_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}\right.$) is zero and the proposition follows.

Thus if X is an odd-dimensional sphere localized at a prime p then the only interesting values of n are powers of p. If $n=p^{k}$ then the E_{2} term of the spectral sequence computing

$$
\mathrm{H}_{*}\left(\operatorname{Map}_{*}\left(S K_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}\right)
$$

may be identified with the cohomology of the cochain complex P^{\bullet}. So we proceed to analyze the complex P^{\bullet}.

Definition 3.14. An ordered partition of a positive integer k is an ordered sequence $K=\left(k_{1}, \ldots, k_{j}\right)$ of positive integers with $k_{1}+\cdots+k_{j}=k$.

For future use, we denote by 2_{l} the ordered partition

$$
\underbrace{(1, \ldots, 1,2,1, \ldots, 1)}_{2 \text { at place } l} .
$$

Ordered partitions of k are partially ordered by refinement, we write $K \leq J$ if K is a refinement of J. Moreover, ordered partitions form a lattice: any collection of partitions $\left\{K_{m}\right\}_{m}$ has well behaved greatest common refinement and least common coarsening (denoted by $\cap_{m}\left(K_{m}\right)$ and $\cup_{m}\left(K_{m}\right)$ respectively). In fact, the lattice of ordered partitions of k is isomorphic to the Boolean lattice of subsets of $\underline{k-1}$ ordered by inclusion. Given $K=\left(k_{1}, \ldots, k_{j}\right)$, let Σ_{K} be the group $\Sigma_{p^{k_{1}}} \imath \cdots \imath \Sigma_{p^{k_{j}}}$ and let Δ_{K} be the summand $\Delta_{k_{1}} \Delta_{k_{2}} \cdots \Delta_{k_{j}}$ of $\mathrm{H}_{*}\left(\Sigma_{K}\right)$ or more generally of $\mathrm{H}_{*}\left(X_{h \Sigma_{K}}^{\wedge p^{k}}\right)$ depending on the context. We denote by $N^{j}(k)$ the set of ordered partitions of k with j components. The following is obvious by inspection:

$$
P^{0} \cong 0
$$

For $j>0$

$$
P^{j} \cong \bigoplus_{K \in N^{j}(k)} \Delta_{K} .
$$

In particular, if $j>k$ then $P^{j} \cong 0$.

In the following definition, the underlying assumption is that X is a $2 s+1$-dimensional sphere and u is a generator of $\mathrm{H}_{2 s+1}(X)$.

Definition 3.15. For a fixed k, let $C U_{*}$ be the free graded $\mathbb{Z} / p \mathbb{Z}$ module on the following generators:
if $p>2$

$$
\left\{\beta^{\epsilon_{1}} Q^{s_{1}} \ldots \beta^{\epsilon_{k}} Q^{s_{k}} u \mid s_{k} \geq s, s_{i}>p s_{i+1}-\epsilon_{i+1} \forall i\right\}
$$

if $p=2$

$$
\left\{Q^{s_{1}} \ldots Q^{s_{k}} u \mid s^{k} \geq 2 s+1, s^{i}>2 s^{i+1}\right\}
$$

Thus $C U_{*}$ is generated by the "completely unadmissible" words of length k (hence the notation).

Theorem 3.16. Let $n=p^{k}$. The cohomology of P^{\bullet} is concentrated in degree k. Moreover there are isomorphisms of modules over the Steenrod algebra

$$
\mathrm{H}^{k}\left(P^{\bullet}\right) \cong C U_{*} \cong \Sigma^{k} \mathrm{H}_{*}\left(\operatorname{Map}_{*}\left(S K_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}\right)
$$

where the action of the Steenrod algebra on $C U_{*}$ is given by the Nishida relations ([CLM76]).

Proof. The results about the cohomology of $P^{\boldsymbol{\bullet}}$ are known, and are more or less implicit in [Ku85] (see also [Ku82] and [KuP85]), although the language there is somewhat different from ours. First of all, let us see that the claim is plausible by counting dimensions. Consider a pure summand of a form $\Delta_{k_{1}} \Delta_{k_{2}}$. The module $\Delta_{k_{1}+k_{2}}$ is a submodule of $\Delta_{k_{1}} \Delta_{k_{2}}$ (however, this obvious inclusion is not the same as the transfer map in homology - if it was, the theorem would be easier to prove). When we consider $\Delta_{k_{1}+k_{2}}$ as a subobject of $\Delta_{k_{1}} \Delta_{k_{2}}$ we will denote it $\Delta_{k_{1}}^{a} \Delta_{k_{2}}$ - the module generated by words which are admissible at place k_{1} (from the left). Let $\Delta_{k_{1}}^{u} \Delta_{k_{2}}$ be the quotient of $\Delta_{k_{1}} \Delta_{k_{2}}$ by $\Delta_{k_{1}}^{a} \Delta_{k_{2}}$. Thus $\Delta_{k_{1}}^{u} \Delta_{k_{2}}$ is generated by words which are unadmissible at place k_{1}. By a slight abuse of notation, we will write

$$
\Delta_{k_{1}} \Delta_{k_{2}}=\Delta_{k_{1}}^{a} \Delta_{k_{2}} \oplus \Delta_{k_{1}}^{u} \Delta_{k_{2}} .
$$

The splitting is valid on the level of vector spaces, and is valid up to filtration on the level of A-modules. More generally, given an ordered partition $K=\left(k_{1}, \ldots, k_{j}\right)$ of k, we may write Δ_{K} as a direct sum of 2^{j-1} modules. These 2^{j-1} "subsummands" are indexed by sequences
$\left(s_{1}, \ldots, s_{j-1}\right)$ where each s_{i} stands for either the letter a or the letter u. The subsummand corresponding to a sequence $S=\left(s_{1}, \ldots, s_{j-1}\right)$ is generated by the words which are admissible (resp. unadmissible) at the place $k_{1}+\cdots+k_{i}$ if s_{i} is a (resp. s_{i} is u). We denote this subsummand by Δ_{K}^{S}. Let \underline{u} stand for the sequence (u, u, \ldots, u). Clearly, if s_{i} is a for some i, then

$$
\Delta_{K}^{S} \cong \Delta_{\left(k_{1}, \ldots, k_{i}+k_{i+1}, \ldots . k_{j}\right)}^{\left(s_{1}, \ldots, \hat{s}_{i}, \ldots, s_{j-1}\right)}
$$

Thus every "subsummand" is canonically isomorphic to Δ_{K}^{u} for some K. It is easy to see that for any $K \in N^{j}(k)$, the summand Δ_{K}^{u} occurs in $P_{j+i}(i \geq 0)$ with multiplicity

$$
\sum_{\left(i_{1}, \ldots, i_{j}\right)}\binom{k_{1}-1}{i_{1}} \ldots\binom{k_{j}-1}{i_{j}}
$$

where the summation is over j-tuples $\left(i_{1}, \ldots, i_{j}\right)$ of non-negative integers whose sum is i. It is also easy to see that

$$
\sum_{i}(-1)^{i} \sum_{\left(i_{1}, \ldots, i_{j}\right)}\binom{k_{1}-1}{i_{1}} \cdots\binom{k_{j}-1}{i_{j}}=(1-1)^{k_{1}-1} \ldots(1-1)^{k_{j}-1}
$$

where $0^{0}=1$. Thus the alternating sum of multiplicities of all subsummands is 0 except for the subsummand $\Delta_{(1,1, \ldots, 1)}^{u}$, for which the "total multiplicity" is 1 . Also, it is obvious that $\Delta_{(1,1, \ldots, 1)}^{\underline{u}} \cong C U_{*}$. Thus $C U_{*}$ concentrated in dimension k is a "lower bound" for $\mathrm{H}^{*}\left(P^{\bullet}\right)$. Thus we have to show that the rank of the coboundary map in P^{\bullet} is as large as possible. This boils down to analyzing the effect of the transfer map on the pure part of the homology of spaces of the form $X_{h \Sigma_{k_{1}} l \cdots \mid \Sigma_{k j}}^{\wedge k^{k_{1}}+\cdots+k_{j}}$ and showing that the intersection of the images of such various transfer maps is as small as possible (this, and much more, was done in [Ku85]). It is helpful to consider the chain complex P_{\bullet} which is the "reverse" of $P^{\bullet} . P_{k} \cong P^{k}$ for all k and the boundary maps in P_{\bullet} are induced by inclusion of groups where the coboundary maps in P^{\bullet} are induced by transfer maps. Indeed, given two ordered partitions $K \leq K^{\prime}$ of k, the map $\Delta_{K^{\prime}} \rightarrow \Delta_{K}$ induced by the transfer has a retraction induced by inclusion of subgroups. It is a retraction (up to multiplication by a unit in $\mathbb{Z} / p \mathbb{Z}$) because all the groups in sight contain a common p-Sylow subgroup. We let $e_{K, K^{\prime}}$ denote the idempotent (up to a unit in $\mathbb{Z} / p \mathbb{Z}$) homomorphism given by the composition $\Delta_{K} \xrightarrow{i_{*}} \Delta_{K^{\prime}} \xrightarrow{t r_{*}} \Delta_{K}$. In the special case $K=(1, \ldots, 1), K^{\prime}=2_{l}$,
we denote $e_{K, K^{\prime}}$ simply e_{l}. The following crucial properties of these idempotents are proved in [Ku85]:

1) $e_{l_{1}} e_{l_{2}}=e_{l_{2}} e_{l_{1}}$ if $\left|l_{1}-l_{2}\right| \geq 2$
2) $e_{l} e_{l+1} e_{l}=e_{l+1} e_{l} e_{l+1}$

Moreover, for any ordered partition K of k and a collection $\left\{K_{i}^{\prime}\right\}_{i \in I}$ of ordered partitions such that $K \leq K_{i}^{\prime}$ for all $i \in I$ the following holds:
3) $\operatorname{Im}\left(e_{K, \mathrm{U}_{i \in I} K_{i}^{\prime}}\right)=\cap_{i \in I} \operatorname{Im}\left(e_{K, K_{i}^{\prime}}\right)$
4) $\operatorname{ker}\left(e_{K, \mathrm{U}_{i \in I} K_{i}^{\prime}}\right)=\sum_{i \in I} \operatorname{ker}\left(e_{K, K_{i}^{\prime}}\right)$.

The basic reason that properties (1)-(4) hold is that the (dual of the) summand Δ_{K} of the cohomology of Σ_{K} is detected by the ring of invariants $\mathrm{H}^{*}\left(A_{k}\right)^{P_{K}}$, where P_{K} is the parabolic subgroup of $\mathrm{GL}_{k}\left(\mathbb{F}_{p}\right)$ associated with the partition K, and thus propreties (1)-(4) can be read off the structure of the Hecke algebra of endomorphisms of $\mathbb{Z} / p \mathbb{Z}\left[\mathrm{GL}_{k}\left(\mathbb{F}_{p}\right) / B\right]$ where B is the Borel subgroup of $\mathrm{GL}_{k}\left(\mathbb{F}_{p}\right)$. As a matter of fact, (3) and (4) are only proved in [Ku85, theorem 4.11 (2) and (3)] for the special case $K_{i}^{\prime}=2_{i}, I=\{1, \ldots, k-1\}$, but the general case can be deduced from it quite easily.

Property (3) implies, by the inclusion-exclusion principle, that the rank of the coboundary maps in P^{\bullet} is as large as it can be. Therefore $\mathrm{H}^{i}\left(P^{\bullet}\right) \cong 0$ for $i<k$ and $\mathrm{H}^{*}\left(P^{\bullet}\right)$ is concentrated in degree $*=k$, moreover, $\mathrm{H}^{k}\left(P^{\bullet}\right)$ is abstractly isomorphic to $C U_{*}$, at least as a graded vector space. Property (4) implies the same for $\mathrm{H}_{*}\left(P_{\boldsymbol{\bullet}}\right)$. It remains to show that the isomorphisms are isomorphisms of Steenrod algeba modules, and not only of graded vector spaces.

The graded vector space $\mathrm{H}^{k}\left(P^{\bullet}\right)$ can be identified with the cokernel of the coboundary homomorphism $P_{k-1} \rightarrow P_{k}$. The maps $i_{*}: \Delta_{(1, \ldots, 1)} \rightarrow \Delta_{2_{l}} l=1, \ldots, k-1$ assemble to the boundary homomorphism $P_{k} \rightarrow P_{k-1}$ in $P_{\bullet} . \mathrm{H}_{k}\left(P_{\bullet}\right)$ is the kernel of this map

$$
\mathrm{H}_{k}\left(P_{\bullet}\right)=\bigcap_{l=1}^{k-1} \operatorname{ker}\left\{\Delta_{(1,1, \ldots, 1)} \rightarrow \Delta_{2_{l}}\right\}
$$

Obviously, $\mathrm{H}_{k}\left(P_{\bullet}\right)=\bigcap_{l=1}^{k-1} \operatorname{ker}\left(e_{l}\right)$ and $\mathrm{H}_{k}\left(P^{\bullet}\right)=\operatorname{coker}\left\{\oplus_{l=1}^{k-1} \operatorname{Im}\left(e_{l}\right)\right.$ $\left.\rightarrow \Delta_{(1, \ldots, 1)}\right\}$. There is a homomorphism of Steenrod algebra modules $C U_{*} \rightarrow \mathrm{H}_{k}\left(P_{\bullet}\right)$, given by the Adem relations, which is clearly injective and thus is an isomorphism. On the other hand, there is a homomorphism of Steenrod algebra modules $\mathrm{H}_{k}\left(P_{\bullet}\right) \rightarrow \mathrm{H}^{k}\left(P^{\bullet}\right)$ given by the composition $\mathrm{H}_{k}\left(P_{\bullet}\right) \rightarrow \Delta_{(1, \ldots, 1)} \rightarrow \mathrm{H}^{k}\left(P^{\bullet}\right)$. We claim that this homomorphism is surjective, and therefore is an isomorphism. To prove that the map is surjective, we need to show that for any element of $u \in \Delta_{(1, \ldots, 1)}$ there exists an element $v \in \Sigma_{l=1}^{k-1} \operatorname{Im}\left(e_{l}\right)$ such that $u+v \in \mathrm{H}_{k}\left(P_{\bullet}\right)$ (we consider $\mathrm{H}_{k}\left(P_{\bullet}\right)$ as a subspace of $\Delta_{(1, \ldots 1)}$). To see this, let

$$
\begin{aligned}
w= & \left(1-e_{1}\right)\left(1-e_{2}\right) \ldots\left(1-e_{k-1}\right)\left(1-e_{1}\right)\left(1-e_{2}\right) \ldots\left(1-e_{k-2}\right) \\
& \times\left(1-e_{1}\right) \ldots\left(1-e_{k-3}\right)\left(1-e_{1}\right) \ldots\left(1-e_{1}\right)\left(1-e_{2}\right)\left(1-e_{1}\right) u .
\end{aligned}
$$

Let $v=w-u$. It is easy to see that $v \in \sum_{l=1}^{k-1} \operatorname{Im}\left(e_{l}\right)$. It is also easy to see that since the idempotents e_{i} satisfy the braid relations, so do the idempotents $1-e_{i}$ and that as a consequence $\left(1-e_{l}\right) w=w$ for all $l=1, \ldots, k-1$, and thus $w=u+v \in \mathrm{H}_{k}\left(P_{\bullet}\right)$. It follows that $\mathrm{H}^{k}\left(P^{\bullet}\right)$ is isomorphic to $C U_{*}$ as a module of the Steenrod algebra.

Once we know that the cohomology of P^{\bullet} is concentrated in degree k, it follows that the spectral sequence collapses at E_{2} for dimensional reasons. Thus $E_{2} \cong E_{\infty}$. Since E_{∞} has only one column, there is an isomorphism
$E_{\infty}^{*, k} \cong \mathbf{H}_{*-k}\left(\operatorname{Map}_{*}\left(S K_{p^{k}}, \Sigma^{\infty} X^{\wedge p^{k}}\right)_{h \Sigma_{p^{k}}}\right)$.

3.2. Action of the Steenrod algebra.

Let $n=p^{k}$. Our goal in this subsection is to study the action of the Steenrod algebra on

$$
\mathrm{H}^{*}\left(\operatorname{Map}_{*}\left(K_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}\right)
$$

where X is an odd-dimensional sphere localized at a prime p.
Let A be the mod- p Steenrod algebra. Let $A[k]$ be the subalgebra of A, generated by the Milnor basis (see [Mar, ch. 15] for notation and basic definitions) elements $P_{1}^{0}, P_{1}^{1}, \ldots, P_{1}^{k}$ and (if $p>2$) by Q_{0}, \ldots, Q_{k}.

Theorem 3.17. Let X be a $2 s+1$-dimensional sphere localized at a prime p. Let $n=p^{k}$. The module

$$
\mathrm{H}^{*}\left(\operatorname{Map}_{*}\left(S K_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}\right)
$$

is free over $A[k-1]$.
Proof. Our situation is very similar to that of [W81, theorem 2.1]. The idea of the proof is taken from there entirely.

Theorem 3.16 gives us a basis for

$$
\mathrm{H}_{*}\left(\operatorname{Map}_{*}\left(S K_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}\right)
$$

We dualize this basis to get a basis for the cohomology groups

$$
\mathrm{H}^{*}\left(\operatorname{Map}_{*}\left(S K_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}\right) .
$$

The action of A is given by dualizing the homology Nishida relations as described in [CLM76, page 6]. To make the connection with [W81] explicit, we will rewrite the basis in terms of Steenrod operations rather then the Dyer-Lashof operations. We define a correspondence between the two kind of operations as follows: If $p=2$ then $\left(Q_{*}^{i}\right) \leftrightarrow P^{i+1}:=S q^{i+1}$, and if $p>2$ then $\left(Q^{i}\right)_{*} \leftrightarrow \beta P^{i}$ and $\left(\beta Q^{i}\right)_{*} \leftrightarrow P^{i}$ (we remind the reader that on the left hand side β stands for the homology Böckstein and thus lowers degree by 1 while on the right hand side it stands for the cohomology Böckstein and hence raises degree by 1.) By comparing the dualized Nishida relations with the Adem relations in the Steenrod algebra, it is not hard to see that this correspondence establishes an isomorphism (up to a dimension shift) of A-modules between $\mathrm{H}^{*}\left(\operatorname{Map}_{*}\left(S K_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}\right)$ and the module generated by admissible (in the sense of the Steenrod algebra) words $P^{s_{1}} \ldots P^{s_{k}}$ such that if $p=2$ then $s_{k} \geq 2 s+2$ and if $p>2$ then $s_{k} \geq s+1$ (in the case $p>2$ there are also Böcksteins which we omitted). It is interesting to notice that in case $X=S^{1}$, the cohomology that we get is isomorphic, as a module over the Steenrod algebra, to the cohomology of certain subquotients of symmetric product of the sphere spectrum which was first computed in [N58] and further studied in [W81]. These subquotients of the symmetric product spectra play a key role in [Ku82, KuP85]. We conjecture that the spectrum

$$
\operatorname{Map}_{*}\left(S K_{p^{k}}, \Sigma^{\infty} S^{\wedge p^{k}}\right)_{h \Sigma_{p^{k}}}
$$

i.e. the p^{k}-th layer of the Goodwillie tower of the identity evaluated at S^{1} is homotopy equivalent (up to a suitable suspension) to the spectrum denoted $L(k)$ in $[\mathrm{Ku} 82, \mathrm{KuP} 85]^{1}$. In any case, when $X=S^{1}$, our statement is equivalent on the level of cohomology to [W81, theorem 2.1]. We sketch Welcher's proof, and indicate the required very minor generalization. Given a sequence $I=\left(s_{1}, \ldots, s_{k}\right)$ we denote by $P^{I} u$ the element $P^{s_{1}} \ldots P^{s_{k}} u$, where $P^{i}=S q^{i}$ if $p=2$. Suppose

[^1]first that $p=2$. Following [W81] we define B_{k}^{s} to be the vector space generated by the set $\left\{P^{I} \mid I=\left(2^{k} j_{1}, \ldots, \quad 4 j_{k}, 2 j_{k}\right)\right.$, where $\left.j_{1} \geq \cdots \geq j_{k} \geq s+1\right\}$. By computing the Poincare series, one can easily show that $B_{k}^{s} \otimes A[k-1] \cong \mathrm{H}^{*}\left(\operatorname{Map}_{*}\left(S K_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}\right)$ as graded $\mathbb{Z} / p \mathbb{Z}$ vector spaces. The calculation is exactly as in [W81] and we omit it. It follows that if the $A[k-1]$ module generated by B_{n} is free, then it must be $H^{*}\left(\operatorname{Map}_{*}\left(S K_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}}\right)$. This part of the proof again carries over from [W81]. If $p>2$, the same strategy applies with
$B_{k}^{s}=\left\{P^{I} \mid I=\left(p^{k-1} j_{1}, \ldots, p j_{k-1}, j_{k}\right), \quad\right.$ where $\left.\quad j_{1} \geq \cdots \geq j_{k} \geq s+1\right\}$.

4. The v_{k}-periodic homotopy of the tower

4.1. The case of an odd-dimensional sphere.

Let p be a fixed prime. All spaces in this section are automatically localized at p. In the previous section we saw that in the Goodwillie tower of the identity evaluated at an odd dimensional sphere, the only layers that are non-trivial are those indexed by powers of p. So, there exists a tower of fibrations converging to the homotopy type of $S^{2 s+1}$

$$
\begin{gathered}
\vdots \\
\downarrow \\
S^{2 s+1} \longrightarrow R_{k} \longleftarrow D_{p^{k}}\left(S^{2 s+1}\right) \\
\searrow f_{k} \downarrow \\
R_{k-1} \longleftarrow D_{p^{k-1}}\left(S^{2 s+1}\right) \\
f_{k-1} \downarrow \\
\vdots \\
\downarrow \\
R_{0}=Q\left(S^{2 s+1}\right)
\end{gathered}
$$

where $R_{k}=P_{p^{k}}\left(S^{2 s+1}\right)$.
Moreover, $D_{p^{k}}\left(S^{2 s+1}\right)$ is an infinite loop space, and we saw in theorem 3.17 that the cohomology of the associated spectrum is free over A_{k-1}. This implies that the $D_{p^{k}}\left(S^{2 s+1}\right)$ is trivial in v_{k-1}-periodic homotopy and so are all the higher layers. In other words, in $v_{k}-$ periodic homotopy, the tower has only $k+1$ non-trivial layers $\left(D_{p^{0}}, \ldots, D_{p^{k}}\right.$). We would like to conclude that the map $S^{2 s+1} \rightarrow R_{k}$ is an equivalence in v_{k}-periodic homotopy. Apriori, it is not clear that
the tower converges in v_{k}-periodic homotopy. Consider, for instance, the Postnikov resolution of a space X. The layers in this resolution are trivial in v_{k}-periodic homotopy, but X need not be, because the tower does not converge after inverting v_{k}. Thus our goal in this section is to study the convergence of this tower in v_{k}-periodic homotopy. It turns out that since the connectivity of the layers grows so fast, the tower converges in the sense that we need. The main theorem of this paper is the following

Theorem 4.1. The map

$$
S^{2 s+1} \rightarrow R_{k}
$$

is a v_{i}-periodic equivalence for all $k \geq 0$ and all $i \leq k$.
Proof. Let k be fixed all along. We are going to use theorem 3.17 in conjunction with the "vanishing line" theorems in [AD73, MW81]. For the rest of the proof we assume, for simplicity, that $p=2$, the odd primary case is only marginally more complicated. Recall the following theorem:

Theorem 4.2. [AD73, theorem 1.1] If M is an A-module and $P_{t_{0}}^{s^{0}}$ is the lowest degree p_{t}^{s} with $s<t$ such that $H\left(M ; P_{t}^{s}\right) \neq 0$, then $E x f^{s, t}(M, \mathbb{Z} / 2 \mathbb{Z})=0$ for $d s>t+c$, where $d=\operatorname{deg}\left(P_{t_{0}}^{s_{0}}\right)$ and $\frac{c}{d-1}$ is approximately $t_{0}-2$.

Let

$$
M=\mathrm{H}^{*}\left(\operatorname{Map}_{*}\left(S K_{2^{k}}, \Sigma^{\infty}\left(S^{2 s+1}\right)^{\wedge 2^{k}}\right)_{h \Sigma_{2^{k}}}\right)
$$

By theorem 3.17, M is free over $A[k-1]$, and since $P_{t}^{s} \in A[k-1]$ if $s+t \leq k$ it follows that the lowest degree P_{t}^{s} with $s<t$ s.t. $H\left(M, P_{t}^{s}\right) \neq 0$ is at least $P_{t_{0}}^{s_{0}}$, where

$$
\begin{gathered}
s_{0}= \begin{cases}\frac{k-1}{2} & \text { if } k-1 \text { is even } \\
\frac{k^{2}}{2} & \text { if } k-1 \text { is odd }\end{cases} \\
t_{0}= \begin{cases}\frac{k-1}{2}+2 & \text { if } k-1 \text { is even } \\
\frac{k}{2}+1 & \text { if } k-1 \text { is odd. }\end{cases}
\end{gathered}
$$

Thus $\left|P_{t_{0}}^{s_{0}}\right|=2^{s_{0}}\left(2^{t_{0}}-1\right)=2^{k+1}-2^{s_{0}}>2^{k}-1$.
Corollary 4.3. The Adams Spectral Sequence converging to the homotopy of $D_{2^{k+i}}$ has an $(s, t-s)$ vanishing line of slope which is smaller than $\frac{1}{2^{k+i}-2}=\frac{1}{\left|v_{k+i-1}\right|}$. It also has a vertical intercept smaller than $k+i$.

Since v_{i} acts on the level of the Adams spectral sequence as multiplication by an element on a line of slope $\frac{1}{\left|v_{i}\right|}$, it follows that $D_{2^{k}}$ is v_{k-1}-trivial and more generally, if $i>0$ then $D_{2^{k+i}}$ is v_{k}-trivial.

We need to prove that the Goodwillie tower converges to $S^{2 s+1}$ in v_{k}-periodic homotopy. Till the end of this section, let $\pi_{*}(-)$ denote $\pi_{*}\left(-; V_{k-1}\right)$, where V_{k-1} is a finite space (not a spectrum) of type k with a v_{k} self map (see appendix). Since $S^{2 s+1}=\operatorname{holim} R_{j}$ we have to show that

$$
v_{k}^{-1} \pi_{*}\left(\operatorname{holim} R_{j}\right) \cong \lim _{v_{k}^{-1}} \pi_{*}\left(R_{j}\right) .
$$

Let $Q_{j}=\operatorname{fiber}\left(R_{k+j} \rightarrow R_{k}\right)$. There is a tower of fibrations
\vdots
\downarrow
$Q_{j} \longleftarrow D_{p^{k+j}}$
$g_{j} \downarrow$
$Q_{j-1} \longleftarrow D_{p^{k+j-1}}$
$g_{j-1} \downarrow$
\vdots
\downarrow
$Q_{1}=D_{p^{k+1}}$

Our statement is equivalent to showing that the v_{k}-periodic homotopy of the inverse limit of this tower is trivial. In other words, we want to show that

$$
v_{k}^{-1} \pi_{*}\left(\operatorname{holim} Q_{j}\right) \cong 0
$$

or equivalently

$$
v_{k}^{-1}\left(\lim _{\leftarrow} \pi_{*}\left(Q_{j}\right)\right) \cong 0 .
$$

Let $\alpha=\left(\ldots, \alpha_{2}, \alpha_{1}\right) \in \lim \pi_{*}\left(Q_{j}\right)$. Then $\alpha_{j} \in \pi_{d}\left(Q_{j}\right), g_{j}\left(\alpha_{j}\right)=\alpha_{j-1}$, $d=\operatorname{deg}(\alpha)$. We identify an element of $\pi_{d} D_{p^{k+j}}$ with its pullback at the E_{∞} term of the corresponding $A S S$. (We will also assume that such an element has $(s, t-s)$ bidegree $(0, d)$. It will be clear that from our point of view it is a harmless assumption, it amounts to taking the worst possible case.)

Suppose that $\alpha=\left(\ldots, \alpha_{j+1}, \alpha_{j}, 0, \ldots\right)$, where $j>1$ and $\alpha_{j} \neq 0$. Since $\alpha_{j-1}=0, \alpha_{j}$ can be thought of as an element of $\pi_{d_{j}}\left(D_{2^{k+j}}\right)$. Let k_{j} be the maximal integer such that $v_{k}^{k_{j}}\left(\alpha_{j}\right) \neq 0$. Let $d_{j+1}=\left|v_{k}^{k_{j}}\left(\alpha_{j}\right)\right|=$
$d_{j}+k_{j}\left(2^{k+1}-1\right)$. It follows from corollary 4.3 that d_{j+1} is bounded by d_{j+1}, which is determined by the following equations

$$
\left\{\begin{array}{l}
\frac{y-(k+j)}{\widetilde{d_{j+1}}}=\frac{1}{2^{k+j}-2} \\
\widetilde{\frac{y}{d_{j+1}}-d_{j}}=\frac{1}{2^{k+1}-2}
\end{array}\right.
$$

Here $\left(\widetilde{d_{j+1}}, y\right)$ are the coordinates of the intersection of the line passing through $(0, k+j)$ and having slope $\frac{1}{2^{k+j-2}}$ (the "vanishing line") and the line passing through $\left(d_{j}, 0\right)$ and having slope $\frac{1}{2^{k+1}-2}$ (the line along which v_{k} moves α_{j}). Solving for d_{j+1} we obtain the following bound

$$
\begin{equation*}
\widetilde{d_{j+1}}=\frac{k+j}{2^{k+1}-2}-\frac{1}{2^{k+j}-2}+\frac{d_{j}}{1-\frac{2^{k+1}-2}{2^{k+j}-2}}<2^{k+1}(k+j)+\frac{3}{2} d_{j} . \tag{2}
\end{equation*}
$$

Now let $\alpha=\left(\ldots, \alpha_{2}, \alpha_{1}\right)$ be any element of $\lim \pi_{*}\left(Q_{j}\right)$. We may assume $\alpha_{1}=0$ (by applying v_{k} enough to annihilate α_{1}). Let d_{j} be the maximal d such that $d=\left|v_{k}^{k_{j}}\left(\alpha_{j}\right)\right|$ and $v_{k}^{k_{j}}\left(\alpha_{j}\right) \neq 0$. It follows from (2) that the sequence d_{j} has the rate of growth of at most $\left(\frac{3}{2}\right)^{j}$ and thus it grows slower than the connectivity of $D_{2^{k+j}}$ (the connectivity of $D_{2^{k+j}}$ has the rate of growth 2^{j}), which proves the theorem.

4.2. The case of an even-dimensional sphere.

Throughout this subsection, let X denote an even-dimensional sphere (possibly localized at a prime p). In this case the tower is still finite in v_{k}-periodic homotopy, but it is "twice as long" as in the odd sphere case. More precisely, there is the following version of our main theorems.

Theorem 4.4. If n does not equal p^{k} or $2 p^{k}$ for some prime p, then

$$
D_{n}(X) \simeq \Omega^{\infty} \operatorname{Map}_{*}\left(S K_{n}, \Sigma^{\infty} X^{\wedge n}\right)_{h \Sigma_{n}} \simeq *
$$

If $n=p^{k}$ or $n=2 p^{k}$ then $D_{n}(X)$ has only p-primary torsion.
Thus, if X is an even sphere localized at p, there is a regraded Goodwillie tower, which, in the case $p>2$, looks as follows

where $R_{k}^{1}=P_{p^{k}}$ and $R_{k}^{2}=P_{2 p^{k}}$. If $p=2$ then the tower looks just as in the odd-sphere case.

Theorem 4.5. If $p>2$ then the map

$$
X \rightarrow R_{k}^{2}
$$

is a v_{k}-periodic equivalence for all $k \geq 0$. If $p=2$ then the map

$$
X \rightarrow R_{k+1}
$$

is a v_{k}-periodic equivalence for all $k \geq 0$.
Proof of theorems 4.4 and 4.5. Rather than adapting the calculations of section 3 to this case, we make use of the Goodwillie calculus and the James fibration. Consider the sequence of natural maps

$$
X \xrightarrow{s} \Omega \Sigma X \xrightarrow{j} \Omega \Sigma X^{\wedge 2}
$$

where s and j are the suspension map and the James map respectively. If X is an odd-dimensional sphere localized at a prime then this is a fibration sequence. For a general X, this is a fibration sequence in the meta-stable range [Ja53]. Let $F(X)$ be the homotopy fiber of j. Since the composition $j \circ s$ is trivial, there is a natural map

$$
f: X \rightarrow F(X)
$$

which is a homotopy equivalence for odd spheres localized at a prime. We want to conclude that the Taylor polynomials of $F(X)$ are the same as of the identity when evaluated at odd spheres.

Proposition 4.6. Let

$$
f: G(X) \rightarrow F(X)
$$

be a natural transformation of reduced analytic functors. Suppose there exists a space K such that f induces an equivalence

$$
G\left(S^{2 i} K\right) \rightarrow F\left(S^{2 i} K\right)
$$

for all $i \geq 0$. Then the map

$$
P_{n} f: P_{n} G\left(S^{2 i} K\right) \rightarrow P_{n} F\left(S^{2 i} K\right)
$$

is an equivalence for all i and n.
Proof. By induction on n. The case $n=0$ is trivial. Indeed, since we assume G and F are reduced

$$
P_{0} G(K) \simeq P_{0} F(K) \simeq * .
$$

Assume that the proposition is true for $n-1$. It is clear that it is enough to show that

$$
D_{n} f: D_{n} G(K) \rightarrow D_{n} F(K)
$$

is an equivalence. Recall that the maps $G\left(S^{2 i} K\right) \rightarrow P_{n} G\left(S^{2 i} K\right)$ and $F\left(S^{2 i} K\right) \rightarrow P_{n} F\left(S^{2 i} K\right)$ are $(n+1)(k+2 i)+c$ connected, where k is the connectivity of K. It follows that the map $P_{n} f\left(S^{2 i} K\right)$ is $(n+1)(k+2 i)+c$ connected. Using our induction assumption, it follows that the map $D_{n} f\left(S^{2 i} K\right)$ is $(n+1)(k+2 i)+c$ connected. By Goodwillie's classification of homogeneous functors, there exist spectra G_{n} and F_{n} with an action of Σ_{n} which represent $D_{n} G$ and $D_{n} F$. Thus, the map

$$
D_{n} f:\left(G_{n} \wedge\left(S^{2 i} K\right)^{\wedge n}\right)_{h \Sigma_{n}} \rightarrow\left(F_{n} \wedge\left(S^{2 i} K\right)^{\wedge n}\right)_{h \Sigma_{n}}
$$

is $(n+1)(k+2 i)+c$ connected. By the Thom isomorphism, this implies that the map

$$
D_{n} f:\left(G_{n} \wedge K^{\wedge n}\right)_{h \Sigma_{n}} \rightarrow\left(F_{n} \wedge K^{\wedge n}\right)_{h \Sigma_{n}}
$$

is $(n+1) k+2 i+c$ connected for all i. The proposition follows.
The following proposition is an easy consequence of the general theory of calculus

Proposition 4.7. (1) The operator P_{n} commutes up to natural equivalence with finite homotopy inverse limits of functors. In particular

$$
P_{n}(\Omega F) \simeq \Omega P_{n} F .
$$

(2) Let $\operatorname{Sq}(X)=X \wedge X$. Then

$$
P_{n} F(\Sigma X \wedge X) \simeq P_{n}(F \circ \Sigma \circ S q)(X) .
$$

Returning to the notation of our main text, it follows from the two propositions that if X is an odd sphere localized at p, then there is a fibration sequence

$$
P_{n}(X) \rightarrow \Omega P_{n}(\Sigma X) \rightarrow \Omega P_{n}(\Sigma X \wedge X)
$$

where $P_{n}(X)$ is really $P_{n}(\mathrm{Id})(X)$. Taking $X=S_{(p)}^{2 k-1}$, the fibration sequence becomes

$$
P_{n}\left(S_{(p)}^{2 k-1}\right) \rightarrow \Omega P_{n}\left(S_{(p)}^{2 k}\right) \rightarrow \Omega P_{n}\left(S_{(p)}^{4 k-1}\right) .
$$

Thus, we have a resolution of the Goodwillie tower for an even sphere by towers for odd spheres and theorems 4.4 and 4.5 readily follow.

Appendix A. Background on $\boldsymbol{v}_{\boldsymbol{k}}$-periodic homotopy

In this appendix we collect some material from [MS95] concerning the definition of v_{k}^{-1} homotopy and L_{k}^{f} localization.

Let M be a finite complex, endowed with a $\operatorname{map} v: \Sigma^{d} M \rightarrow M$ such that $M U_{*}(v)$ is not zero. This implies, in particular, that all iterates of v are essential. We can consider the homotopy theory which results from looking at the homotopy classes of maps from M to a space X. We will write $\pi_{i}(X ; M)=\left[\Sigma^{i} M, X\right]$. We can consider this as a $Z[v]$ module. The periodic homotopy of X defined by v is $\pi_{*}(X ; M) \otimes_{Z[v]} Z\left[v, v^{-1}\right]$. The simplest case is obtained by letting $M=S^{1}, k=0$ and v be a map of degree two. Then the periodic theory is obtained by tensoring the homotopy with $Z[1 / 2]$. This is an example of a v_{0}-periodic homotopy.

Higher order periodicity is defined in terms of a family of finite complexes which are detected in $B P_{*}$ by some power of v_{n} (the idea of v_{1}-periodic homotopy goes back to Adams - it can be defined using the Adams map $\Sigma^{13} R P^{2} \rightarrow \Sigma^{5} R P^{2}$). These complexes are not unique
and there does not seem to be a canonical choice, but such complexes do exist and the choices do not matter much. That's the point of the forthcoming discussion.

Definition A.1. We take $M\left(p^{i_{0}}, v_{1}^{i_{1}}, \ldots, v_{k}^{i_{k}}\right)$ to be any choice of a finite spectrum such that

$$
B P_{*}\left(M\left(p^{i_{0}}, v_{1}^{i_{1}}, \ldots, v_{k}^{i_{k}}\right)\right)=B P^{*} /\left(p^{i_{0}}, v_{1}^{i_{1}}, \ldots, v_{k}^{i_{k}}\right)
$$

As shorthand, we write I for $\left(i_{0}, \ldots, i_{k}\right)$, and $M(I)$ for $M\left(p^{i_{0}}, \ldots, v_{k}^{i_{k}}\right)$. We also write $I \leq J$ if $i_{l} \leq j_{l}$ for $0 \leq l \leq k$, and $I \prec J$ if $i_{l}<j_{l}$ for $0 \leq l \leq k$. Below we collect some facts about the spectra $M(I)$.

Proposition A.2. (1) Given a multi-index $I, M(I)$ need not exist, but $M(J)$ exists for some $J \geq I$.
(2) There may be more than one possible choice of homotopy type for $M(I)$, but there are at most finitely many choices.
(3) Given $M(I)$, there is $a J \succ I$ and a map

$$
f_{J}^{I}: M(I) \rightarrow \Sigma^{\left(i_{1}-j_{1}\right)(2 p-2)+\left(i_{2}-j_{2}\right)\left(2 p^{2}-2\right)+\cdots+\left(i_{k}-j_{k}\right)\left(2 p^{k}-2\right)} M(J)
$$

commuting with projection to the top cell. (Note that the top cell of $M(I)$ is in dimension $k+1+i_{1}(2 p-2)+\cdots+i_{k}\left(2 p^{k}-2\right)$, so the suspension is just the difference in dimension between the top cells of $M(I)$ and $M(J)$. To spare notation, we will frequently omit the suspension.) The map f_{I}^{I} induces the obvious map on $B P_{*}$ - multiplication by $p^{j_{0}-i_{0}} v_{1}^{j_{1}-i_{1}} \cdots v_{k}^{j_{k}-i_{k}}$.
(4) For each I,J there are at most finitely many choices of homotopy classes for f_{J}^{I}.
(5) Given $M(I), M(J), M(K)$ with $J \geq I$ and $K \geq I$, and maps f_{J}^{I}, f_{K}^{I} as above, there exists $L \geq J, K, M(L)$ and f_{L}^{J}, f_{L}^{K} so that

$$
\begin{array}{ccc}
M(I) & \stackrel{f_{J}^{I}}{\rightarrow} & M(J) \\
\downarrow f_{K}^{I} & & \downarrow f_{L}^{J} V \\
M(K) & \xrightarrow{f_{L}^{K}} & M(K)
\end{array}
$$

commutes.
(6) One can choose a sequence of spectra $M\left(I_{l}\right)$ and maps $f_{I_{l+1}}^{I_{l}}$ so that given any $M(I)$ there is an $f_{I_{l}}^{I}$ for l sufficiently large. If F is a specific finite type k complex, then one can choose the $M\left(I_{l}\right)$ so that $M\left(I_{l}\right) \wedge F$ is a wedge of 2^{k+1} copies of F (one for each cell in $M\left(I_{l}\right)$), and so that $f_{I_{l+1}}^{I_{l}}$ factors

$$
M\left(I_{l}\right) \wedge F \xrightarrow{g} F \xrightarrow{h} M\left(I_{l+1}\right) \wedge F
$$

where g is projection to the top cell of $M\left(I_{l}\right)$ smashed with F and h is inclusion of the wedge factor of F associated to the top cell of $M\left(I_{l+1}\right)$ (once again we've neglected suspensions here).
(7) The Spanier-Whitehead dual of an $M(I)$ is also an $M(I)$. The Spanier-Whitehead dual of f_{J}^{I} gives the obvious projection

$$
B P_{*} /\left(p^{j^{0}}, \ldots, v_{k}^{j_{k}}\right) \rightarrow B P_{*} /\left(p^{i^{0}}, \ldots, v_{k}^{i_{k}}\right) .
$$

The finiteness results are consequences of the fact that a finite torsion spectrum has finite homotopy groups in every dimension. The existence results are all applications of the Nilpotence and Periodicity theorems.

We will make use of the direct system one can form by using the spectra $M(I)$ and the maps f_{J}^{I}. Let $\bar{M}(I)$ be the fiber of the projection to the top cell

$$
M(I) \xrightarrow{\pi} S^{k+1+i_{1} 2(p-1)+i_{2} 2\left(p^{2}-1\right)+\cdots+i_{k} 2\left(p^{k}-1\right)} .
$$

Then there is a cofiber sequence

$$
\begin{equation*}
S^{k+i_{1} 2(p-1)+i_{2} 2\left(p^{2}-1\right)+\cdots+i_{k} 2\left(p^{k}-1\right)} \xrightarrow{g_{I}} \bar{M}(I) \rightarrow M(I) . \tag{3}
\end{equation*}
$$

Since the f_{J}^{I} have been chosen to commute with the projections to the top cell, we get induced maps (of positive degree which we omit from our notation)

$$
\bar{M}(I) \xrightarrow{\bar{f}_{J}^{I}} \bar{M}(J)
$$

such that $\bar{f}_{J}^{I} g_{I}=g_{J}$.
Corresponding to the direct system of $M(I)$'s and f_{J}^{I} 's, we get a direct system of $\bar{M}(I)$'s and \bar{f}_{J}^{I}.

Proposition A.3. The map

$$
\begin{equation*}
S^{0} \rightarrow \underset{I}{\operatorname{hocolim}}\left[\Sigma^{-k-i_{1} 2(p-1)-\cdots-i_{k} 2\left(p^{k}-1\right)} \bar{M}(I)\right] \tag{4}
\end{equation*}
$$

induced by the $\left\{g_{I}\right\}$ is L_{k} localization.

The next proposition gives a functorial description of v_{k}-torsion generalizing the usual definition when X has a v_{k}-map.

Proposition A.4. Let X be a spectrum and $f \in \pi_{*}(X)$. The following are equivalent:
i) f factors as

$$
S^{0} \xrightarrow{\tilde{f}} M \xrightarrow{g} X
$$

where M is a complex with a v_{k}-map v such that $v^{j} \tilde{f} \simeq *$ for some j.
ii) f factors through a finite complex in C_{k+1}.
iii) f is in the kernel of

$$
\pi_{*} X \rightarrow \pi_{*}\left(L_{k}^{f} X\right)
$$

If X is a finite complex of type k, the above conditions are equivalent to
iv) If v is any v_{k}-map of X, then $v^{j} f \simeq *$ for j sufficiently large.

Here is the definition of v_{k}-periodic homotopy with integral coefficients.

Definition A.5.

$$
v_{k}^{-1} \pi_{k}(X)=\operatorname{dirlim}\left(i_{0}, \ldots, i_{k-1}\right) v_{k}^{-1}\left[M_{l}\left(p^{i_{0}}, \ldots, v_{k-1}^{i_{k-1}}\right), X\right] .
$$

Here the subscript l indicates the dimension of the bottom cell of the coefficient spectrum.

Note that this definition also makes sense unstably for l sufficiently large: suppose for some $\left(i_{0}, \ldots, i_{k-1}\right), M_{k}\left(p^{i_{0}}, \ldots, v_{k-1}^{i_{k-1}}\right)$ exists unstably, and supports a $v_{k}^{i_{k}}$ self map. Then after inverting $v_{k}^{i_{k}}$ we can still form the direct limit over $\left(j_{0}, \ldots, j_{k-1}\right)$ by noting that the stable map

$$
M_{l}\left(p^{i_{0}^{\prime}}, \ldots, v_{k-1}^{i_{k-1}^{\prime}}\right) \rightarrow M_{l}\left(p^{i_{0}}, \ldots, v_{k-1}^{i_{k-1}}\right)
$$

is the stabilization of some unstable map

$$
M_{l+r\left|v_{k}^{i_{k}}\right|}\left(p^{i_{0}^{i}}, \ldots, v_{k-1}^{i_{k-1}^{\prime}}\right) \rightarrow S^{\mid v v_{k}^{i_{k} \mid}} M_{l}\left(p^{i_{0}}, \ldots, v_{k-1}^{i_{k-1}}\right) .
$$

We also need to know that a v_{k}-map of a spectrum can be represented on the level of a (perhaps suitably modified) Adams spectral sequence by multiplication by an element on the line of slope $\frac{1}{\left|v_{k}\right|}$ passing through the origin.

Acknowledgements. The first named author would like to offer a special thanks to T. Kashiwabara for many helpful conversations on this material. We also are grateful to N. Kuhn for many in-depth comments on some of the early versions of the manuscript.

References

[AD73] Anderson, D.W., Davis, D.W.: A vanishing theorem in homological algebra. Comment. Math. Helv. 48, 318-327 (1973)
[AdMi95] Adem, A., Milgram, J.: Cohomology of finite groups. Grundlehren der mathematischen Wissenschaften 309, Springer-Verlag (1995)
[AK97] Arone, G., Kankaanrinta, M.: A functorial model for iterated Snaith splitting with applications to calculus of functors. Stable and Unstable Homotopy, Fields Institute Communications, Vol. 19, 1-30 (1998)
[AD97] Arone, G., Dwyer, W.: Partition posets, Tits buildings and symmetric product spectra (tentative title). in preparation.
[BK72] Bousfield, A.K., Kan, D.M.: Homotopy limits, completions and localizations. Springer Lecture Notes, Vol. 304 (1972)
[BMMS86] Bruner, P.R., May, J.P., McClure, J.E., Steinberg, M.: H_{∞} ring spectra and their applications. Springer Lecture Notes, Vol. 1176 (1986)
[CLM76] Cohen, F.R., Lada, T.J., May, J.P.: The homology of iterated loop spaces. Springer Lecture Notes, Vol. 533 (1976)
[G90] Goodwillie, T.G.: Calculus I: the first derivative of pseudoisotopy theory. K-Theory 4, 1-27 (1990)
[G92] Goodwillie, T.G.: Calculus II: analytic functors. K-Theory 5, 295-332 (1992)
[G3] Goodwillie, T.G.: Calculus III: the Taylor series of a homotopy functor. in preparation
[Ja53] James, I.M.: Reduced product spaces. Annals of Math. 62, 170-197 (1953)
[Jo95] Johnson, B.: The derivatives of homotopy theory. Trans. Amer. Math. Soc. 347, Number 4, 1295-1321 (1995)
[KaP78] Kahn, D.S., Priddy, S.B.: On the transfer in the homology of symmetric groups. Math. Proc. Cambridge Philos. Soc. 83, 91-101 (1978)
[Ku82] Kuhn, N.J.: A Kahn-Priddy sequence and a conjecture of G.W. Whitehead. Math. Proc. Cambridge Philos. Soc. 92, 467-483 (1982)
[Ku85] Kuhn, N.J.: Chevalley group theory and the transfer in the homology of symmetric groups. Topology 24, 247-264 (1985)
[KuP85] Kuhn, N.J., Priddy, S.B.: The transfer and Whitehead conjecture. Math. Proc. Cambridge Philos. Soc. 98, 459-480 (1985)
[M82] Mahowald, M.: The image of J in the EHP sequence. Annals Math 116, 65-112 (1982)
[MS95] Mahowald, M., Sadofsky, H.: v_{n} telescopes and the Adams spectral sequence. Duke Math J. 78, 101-129 (1995)
[MT92] Mahowald, M., Thompson, R.: The K-theory localization of an unstable sphere. Topology 31, 133-141 (1992)
[MT94] Mahowald, M., Thompson, R.: On the secondary suspension homomorphism. Amer. J. of Math. 116, 179-206 (1994)
[Mar] Margolis, H.R.: Spectra and the Steenrod algebra. North Holland Mathematical Library
[MW81] Miller, H., Wilkerson, C.: Vanishing lines for modules over the Steenrod algebra. J. Pure Appl. Algebra 22, 293-307 (1981)
[Mi72] Milnor, J.: On the construction FK. in "Algebraic Topology: A Student's Guide" by J.F. Adams, London Math. Soc. Lecture Note Series 4, Cambridge Univ. Press, Cambridge 119-135 (1972)
[N58] Nakaoka, M.: Cohomology mod p of symmetric products of spheres. J. Inst. Poly., Osaka City Univ. 9 1-18 (1958)
[T90] Thompson, R.: The v_{1}-periodic homotopy groups of an unstable sphere at odd primes. Trans. Am. Math. Soc. 319, 535-559 (1990)
[W81] Welcher, P.J.: Symmetric fiber spectra and K(n)-homology acyclicity. Indiana Univ. Math. J. 30, 801-812 (1981)

[^0]: Mathematics Subject Classification (1991). 05A18; 55P47; 55Q40; 55S12; 55P42; 55R12; 55S10.
 The first author was partially supported by the Alexander von Humboldt foundation.

[^1]: ${ }^{1}$ Added in revision: since this paper was written, W. Dwyer, jointly with the firstnamed author, proved this conjecture. Details will appear in [AD97]. The overall connection of the material in this paper with the work of Kuhn, Mitchell and Priddy is made clear and explicit in [AD97]. As a byproduct, this leads to a substantial simplification of some of the proofs in this paper (especially those in section 3).

