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Introduction
The present lecture note consists of two parts.
Part I contains an exposition of Quillen's theory [18] of decompositions
of complex cobordism theory localized at a prime p. Quillen's note [18]
itself consists of two parts: the first part is connected with the proof
of universality of the formal group of complex cobordism, of which detailed
expositions are now available in literatures such as Adams [Z], §§1-8&, and

Quillen [19], so I assumed these materials are known in the presen®t lecture;

the second part is the main subject of our Part I. The
overlap with [2], but our exposition is given along original line of Quillen
so it differs from the corresponding treatment of Adams [2] in its philosophy
at least. We start with an exposition of Cartier’s note [6] on the theory

of {typical) curves over formal groups. This is done in §§Z and 3 in a form
suitable for our purpose and restricting to one-dimensional case only. In

.

§4 we discuss a typical formal group which is universal for typical formal
groups, which turns out to be the formal group of Brown-Peterson cohomology
{(in 85). 1In §5 we prove Quillen decompositions. In §6 we discuss generators
of U*(pt) and BP*(pt) in a form related with formal group. I believe
this section contains some new results. Finally in §7 we discuss Landweber-

Novikov type operations in Brown-Peterson cohomology.

In Part 1T we treat typical formal groups in (complex) K-theory and



their relation to Adams® idempotent decomposition of K-theory localized
at a prime p [1]. The results here were announced in [5].

These lecture notes came out of my lectures in Kyushu University,
December 1972, Osaka City University, February and May 1973, and Kyoto
University, July 1973, I acknowledge to Professors T.Kudo and H.Toda for
their organizing my lectures in Kyushu University and Kyoto University,
particularly to the latter for his arrangement to publish the present
lecture notes as a part of '"Lectures in mathematics, Department of Mathematics,

Kyoto University".



Part I
§1. Formal groups
1.1. Let R be a commutative ring with unity. By a (one~dimensional
commutative) formal group, or a group law, we understand a formal power

series F in two variables over R satisfying

(1.1) F(0, X) = X,
(1.2} F{X, Y) = F(Y, X),
(1.3) F(X, F(Y, 7)) = F(F(X, Y), 2)

Then F can be expressed as

We are mainly interested in formal groups asscciated with ccohomology
theories which are complex oriente

In such a case R is graded, i.e.

(1.8) dim F(X, Y) = 2 if dim X -

then a,. € g2 (1-1-3)

1.2, Let F and F' be formal groups over R, and ¥ a formal power
series over R in one variable without constant term satisfying
(1.6) YEX, YI) = FI ), v)),

then we call ¢ a homomorphism,



Y F—>F",

of formal groups.

When Y : F —s F' and o F' —> F", then pouv: F—F",
where 4 ¢ is the composition of formal power series. Thus formal
groups over R and their homomorphisms form a category, which will be
denoted by 3ﬂ(R)= When ¢ : F —> F' and ¢ 1is invertible with respect

to composition, then

lp”l F' —> F
such that w_lo Y =1, and wOIy_1 = lg,, where 1.(T) = 1.,(T) =1

In particular, when

Y(T) = T + higher terms,

we call ¢ a strict isomorphism which we denote by

We denote the set of all homomorphisms F —> F' by HomR(F, F")
and put EndR(F) = HomR(F, F).
1.3. Let 8 : R-—»S be a homomorphism of commutative rings with

unity. Let 6, : R[[X, Y]] — S[[X, Y]] and 6, : R[[T]] —> S[[T]]

3]



be the homomorphisms of rings of formal power series induced by coefficient
. iyiy i j iy _ i

map 8, i.e., e*(iaijx Y') = Ze(aij)x Y’ and 6,(}a;T°) = Je(a)T .

Since &, preserves also compositions, we see that, if F G’Obj{?(R), then

6,F € objz;(S), and if Y € HomR(F, E'), then 6,0 € Homs(e*F, e.,F') and

6*(340 y) = G*f o ., ie., 8, ;HR)—> j#(S) is a covariant functo .

Thus we obtained, roughly speaking, a functor ¥ defined on the

category of commutative rings with unity with values in a
objects are categories of formal groups and morphisms are covariant functors
(#(8) = 8,). Later we meet often with needs to restrict this functor

either restricting the domain to a subcategory or the range, or both.

1.4, We recall some known results without rroof.

A formal group FU defined over a ring U 1is called universal if for
any ring R and for any formal group F on R there exists a unique
homomorphism wu : U —= R of rings with unitv such that u,rU = F., The
existence of a universal formal group and the structure of the ring U was
first established by Lazard [15]. The uniqueness of (FU, U) up to

equivalence follows by the general nature of "universality'. The structure

theorem of U says:
[Lazard's Theorem] U = Z[xl, Xos wens X R I

a polynomial ring over integers with countable indeterminates X5 Xps ones

We call the ring U Lazard ring. For the benefit of topologists we

(93]



mention that the Lazard ring U can be given as a graded ring, graded by
non-positive even dimensions so that FU satisfies the condition (1.5).

In this case dim X, = -2n, Cf., also [2], §85 and 7.

1.5. A formal group Ga given by

G (X, Y) =X +Y

is called additive. Such a formal group is defined over any ring R.

Let F be a formal group. A strict isomorphism

QF F= Ga
is called a2 logarithm of F.
[existence of logarithm] Let F be a formal group defined over a
@-algebra R. There exists a unique logarithm QF : F 2 Ga'

For the proofs, cf., [13], [15] and [9], p.69. The existence is
essential, and the uniqueness is easy.

Let F be a formal group defined over a ring R and suppose that R
is of characteristic zero, i.e., every prime is not a zero divisor in R,
Then RCR® @ and we can regard F as a formal group over R® Q by

extending the domain of coefficients. Now we have a unique logarithm
G, over R® Q.

We often denote as QF = logF, and call it the logarithm of F for

simplicity. If we express as



k+1
1 = m, =
ogFT 2 ka 5 T 0 1,

k>0
then it is known that

(k + 1) mke R.

For topologists this is familiar by Mischenko series in case F = FU’ and

the general case follows by functoriality (cf., §2).



§2. Modules of curves
We describe here modules of curves on formal groups according to

Cartier [6].

N
o

Let R be a commutative ring with unity. The ring of formal

power series in one variable T, R[[T]], is filtered by degrees, i.e.,
RL[TI] = RI[T]], DRI[TI]; D ... DRI[TI]_ D ... ,
where R{[T]]_ = {£(T) = Zfi'l‘l €R[ITI] : £, = ... = £, = 0}

R[{T]] dis complete and Hausdorff with respect to this filtration topology.
R[[T]]1 is the submodule of R[[T]] consisting of all power series without
constant terms.

Let F &€ obj %(R). For v, vy' é}R[[T}]l we define their sum vy +F Y!

(2.1) o+ yDM = By, v M),

Proposition 2.1. R[[T]]] with the sum +F is an abelian group.

Proof. By (1.2) and (1.3) it follows the commutativity and associati-
vity. Zero power series O(T) = 0 is the zero element by (1.1). There
exists a unique power series
(2.2) e € R[[T]]1 satisfying  F(T, 1F(T)) = 0.

Then, for any vy € R[[T]]1

= Y=sigpoy



. . . - F
is the inverse of ~v with respect to the addition +

Put CF = (R[[T]]l, +F), the above additive group. We call an element
of (EF a curve over F. Thus C} is the additive group of curves over F.
The curve Yoo defined by yO(T) = T, plays an important role and will be

called the identity curve (over F).

(2.3) 1; € Endp (F).

a7y

This is proved by observing that there exists a unique power series y({X, Y)
satisfying F(F(X, Y), y(X, Y)) = ¢ and that both 1F{F{X5 YY) and
F({F(X), 1F(Y]} satisfy the property of v(X, Y).

We embed HomR(FE, F)} into CEF canonically. Then we see easily that

Hom, (F', F) 1is a subgroup of C.. And the map
Hom, (F', F) x C%, ——e—C%

is bi-additive. Thus EndR(F) is an additive subgroup of CF and is a
ring with composition as multiplication and with Yo as unity (non-
comnutative in general). Furthermore GF is a left EndR(F)«module.

2.%3. There exists a unique homomorphism of additive groups

[ ]F 7 —> CF

such that [ ]F(l) = Yy We write [ ]F(n) = [n]F for any integer n.



We have

(2'4) {l]p = Yo’ [-1]}: = 1}: and [O]F = O,

N
[ 383

5) [l (T) = B(T, [n - (M) = FG1p(M, [n+ 11.(M).
Remark that

IF(T) = -T + higher terms,

which follows from (1.4) and (2.2). Then we see by (2.5) that
(2.6) En]F(T) = nT + higher terms.
By (2.3) and (2.5) we see that
2.7} [n]F € EndR(F},
i.e., themap [ ]p : Z-_>CF factorizes as
[ 1p : 2 —> Endy () C Cp.

In fact, the first factor of | ]F is a ring homomorphism because
[nm}F = [n]F o {m]F as is easily seen; and the Z-module structure of

GF is the same as that given by this ring homomorphism, i.e.,

2.7y [plge y=n -y, n times of y in C

o
2.4. Let d be an integer which is a unit in R. By (2.6) [d]F

is invertible. We define as

[1/d], = [d];' € Endy(F).



Suppose that R 1s a A-algebra, where A 1is a ring such that
ZCACQ. For any X &€ A express A as a fraction X = a/b such
that (a, b) = 1, then b 1is a unit in R and we define as

-1
[X]F = [a]13 ° [b]F € EndR(F).
This extends the ring homomorphism [ ]F Y —s EndR(F) to the ring
homomorphism
[ ]F : A ——%EndR(F)

And we obtain

Proposition 2.2. When R is a A-algebra with a ring A such that

Z(C A §, then CF is a left A-module by
Aoy = [Algoey

for * &€ LA and vy € C..

2.5, Let F be a formal group over a ring R. We define three kinds

of operators on C..
1) ([a]v)(M = y(aT), a €R,

1) (WM =T, 1>,

‘e F 1/n
i) @M = I v T, n>1,
1<i<n
where ZF is the summation in CF and T,,...., Cn are n-th roots of
1<i<n -
unity. ﬁn*y lies in R[Z;l, cees cn][[Tl/n]] in first glance. Since F

is commutative, each coefficient of ifny is a symmetric polynomial of



;1, s gn, hence a pelynomial of elementary symmetric polynomials ol(c),

s cn(C) of 2;1, eees gn. Put

(5,00 = T (5D s o, ()17,

then gd(cl(g), eees cn(g)) is a polynomial of homogeneous degree d with
deg ci(c) = i. Now ys ++ws G are n-th roots of unity, whence
_ n-1
o (D= ...=0 (@=0, o= D"".

Thus

1]
o

gqloy (@), «vs o (D)) if d £0 (mod n),

. -1
g, (0,(D), «oey 0 (D) = g, (0, ooy 0, (-D7T) ER,

Operators [a] are called homotheties, v =~ are called shifting opera-
tors and fn are called Frobenius operators. Among three kinds of opera-
tors Frobenius operators may be regarded as the most important ones and are
the only ones defined essentially depending on the formal group F, so we
write sometimes as fn = fn,F to clarify on what formal group they are
considered.

We used notations | ] and [ ]F to mean entirely different objects
(with or without suffix ). I hope there arises no confusion.

Proposition 2.3. Operators [a], v, and fn are additive.

Proof follows from routine calculations.

10



Thus GF is an operator-module. These operators satisfy certain

universal relations (cf., Proposition 2.9 below).

2.6. Let F, G €obj¥(R) and y: F —=G in F(R). We define
o G — G

by (h V(T = (b o (T,

Proposition 2.4. Uy is linear and commutes with operators [a],

v and fn’ i.e., a homomorphism of operator-modules.

Proof follows by routine calculations.

in particular, operators [aj, w_ and €  commute with operations
£ n n

— 3 TN o A G TP
of tnc‘iR(FJ on o, And we obtain

Proposition 2.5. When R is a A-algebra such that ZC ACQ

then operators fa], w_ and £ are endomorphisms of A-module (7., i.e.,

)

. 14 g s
~ is an operator-A-module, and i, : c e CG" U & Hom (¥, GJj.

T

peds
A
o]

homomorphism of operator-j-modules.

Now it is clear that " F p—s GF’ P b q‘;# " is a covaiant funcior

on ff{R) with values in the category of operator-modules., We denote this

functor by ((R).

N
~

Let 8 : R —> S be a homomorphism of commutative rings with

unity, and F € obj Z(R).

Proposition 2.6. 8, : CF > Ce p 1s linear and commutes with
*

11



operators [a], v and fn in the sense that g, ¢ [a] = [g(a)] e 6,

and 9, ° fn,F = fn,e*Fo 8,, i.e., 0, 1is a homomorphism of operator-

modules. When R is a A- algebra such that ZCACQ, then 6, 1is a

homomorphism of operator-A- modules.

Proof follows again by routine calculations.

Remark also the commutativity

Cr S Cg
l 6. je*
(6,v)
C’e*F S C}’e*G
for 6 : R—>S and y : F —>G. Thus 6, is a natural homomorphism of
functors : C@®R) —s C(S) ° o,.

2.8. Let R be a commutative ring with unity and F &€ obj £(R). Put

Cn = R[[T]]n for n > 1. By definition we see immediately that Gn are

subgroups of GF = Gl' Thus we have a filtration of GF :

We say that, for two power series f,g €R[[T]], £ = g mod degn iff

f-ge R[[T]]n, i.e., they have the same terms of degree < n.

t

Lemma 2.7. Let vy, v, €Cp vy, =y, md O iff vy, =¥,
mod deg n.

Proof. Suppose that yl =Y, mod C“‘n. There exists a curve vy' @Gn

12



such that Y1 +F Y'

1

Yo Then

¥,(T) = Fly (D), y'(T)

Ut

yl(T) + y'(T) mod deg n+l

yl(T) mod deg n.

The converse will be proved by induction. The case n = 1 1is trivial.

Assume it is true for n - 1, and suppose Yy 2 Y, mod deg n. Then

Yy =Yy mod deg n - 1, hence y6 =Yy F Yy = Cno1 by assumption. Now
Y, (T = F(y'(T), v, (M)
=y (T) + yZ(T) mod deg n
= a_n_l«’l“n—1 + YZ(T) mod deg n,
where ' (T) = an—lanl + higher terms. Since Yy and Y5 have the same
terms of degree n - 1, we conclude that a g = 0 and vy' & Cinu
q. e. d

By the above lemma we conclude the following

Propositioen 2.8, C?F is complete and Hausdorff with respect te the

above filtration topology.

By definition we have

(2] (em) = cm’ Wn( C)m) - CJ’nm’ £ (Gm) - C{m»l/n}ﬂ'

n
Thus all three kinds of operators are continuous with respect to the

filtration topology of CEF.

13



2.9. Let R be a commutative ring with unity and F &€ obj #(R).

Proposition 2.9. Among three kinds of operators on CI? there hold

the following relations.

i) [a]l[b] = [ab], a, b €R,

ii) v, wm = Vo n>1l,m>1,

iii) f £ =4 , n>1,m>1,

n m nm = .

iv) vn{an] = [a]vn, n>1, agR,

v) fn[a] = [an]fn, n>1, a€R,

vi) fn v, o=m - id c. [17 = v, = fl = id C
F F

vii) if (n, m) =1 then fn LA fn,

viii) [a] + [b] = z vn[sn(a,b)] fﬁ.
n>1

In the relation viii) of this proposition sn(X, Y) are symmetric
polynomials of degree n over integers, which are defined recursively by

the formula

X e Yt = Jodeos (X, ™4,

d|n

The right hand side of viii) means an operator which sends each curve

Y < GF to

F
(nzl v [s (a, b)] £y = ngl Wn[sn(a’ )1 £ v,

which is a Cauchy series in GF’ hence convergent to a curve in (BF by

14



Proposition 2.8.

Proof. Relations 1), ii), iii), iv) and v) follow by routine

calculations.

For any vy € Cp, we have
fnvny = [n]F o v,

then by (2.7)' it follows the relation vi).

Suppose (m, n) = 1 and {gl, cees Cn} be n-th roots of unity. Then

{gl, s ;n} = {;?, ces ;2}, by which follows the relation vii).

It remains only the proof of the relation viii}). First we prove the

relation for additive group laws, i.e., suppose F = Gaj an addi
group. Remark that for «~(T) = z ciTl € Cn we have
i>1 “a
([aly) (T) = c,aT, a €R,

i>1
(2.8) W (M = ] T, N>,

i>1

i
(fn,G v{T) = nlz c T n>1,
a i>1

tive formal

and the addition in CG is the ordinary addition of formal power series.

a

Then

([aly + [blv)(TY ) cn(an + by

nz}
m n
= ] () d.syla, B)DT
n>1 n=dm
d
= c, d . s (a, YT
d>15ms1 97 d
= ¥ v,(] dc, - s.(a, D'TH
d>1 d n>1 dm d

15



v [s.(a, (] dc, TH
dgl d-’d mgl dm

Z (Vd[Sd(a, b)] de) (T):
d>1

i.e., the relation is proved for F = Ga'

Next suppese that R 1is of characteristic zero. Then there exists a

unique logarithm
G over R® Q

by 1.5. & C CG (over R® Q) is a topological isomorphism of

a

F >

F# -

operator-modules by Proposition 2.4. Thus Q‘l;i‘ preserves the relations

among operators and the relation viii) holds in C over R® Q. Since

F
coefficients extension RC R® § embeds CF over R into CF over
R® @ as operator-module,the relation viii) is true in GF when R is
of characteristic zero.

The Lazard ring U 1is of characteristic zero (by Lazard's Theorem).-

We consider the universal formal group F,, over U® Z[t, u] extending

U

coefficients domain, where t and u are indeterminates. The relation

viii) is true in GF over U® Z[t, u] by the above arguments. Let
¢]

F be a formal group over an arbitrary ring R. By universality there

exists a homomorphism © : U — R such that 0.F; = F. Let a, b € R.

Extend 6 'to a homomorphism & : U® Z[t, u] —> R by ©O(t) = a and

B(u) = b. Clearly G*FU = F. Now

16



By ¢ CF over U®7zit, u] — C
)

F
is a homomorphism of operator-modules by Propesition 2.6, and hence
sends the relation viii) in (3FU for the pair (t, u) to the relation
viii) in CEF for the pair (a, b). Thus the proof is complete.

2.10. Let F €objF[R).

Proposition 2.10. Every curve + over F can be expressed uniquely

Y= ) \v’n{cn 1]y0, Cn~1€ R, (i.e., y(T) = ) (c 4T ).
n>1 n>l
Proof. Let

v{T) = COT + higher terms.
and put
Yy <Y F LTS
Then by definitions we see easily that Y1 & CZ' Now let

Yy (T) = csz + higher terms

and put

~ F
Yo = vy - Valelvg.
Then we obtain that Yy S CS" By a recursive construction we obtain
F
Yo € Cper 294 vp1 = vn - Vpepleylyg € Cn+2, and so on. Thereby we

obtain a Cauchy series ) Py [cn_l]yo which converges to +vy. The

n

17



uniqueness is obvious by construction. gq. e. d.

2.11. Let F € obj F(R), v GR[[T]]1 and invertible. We put

FYex, v) o= v e Biy(o), vn).

Then we see easily that F' € obj #(R) and
. Y
Y Pl F.

We call F' the transpose of F by Y. Since vy €Hom (E', F) C CF’ it

R
is natural to regard <y as an (invertible) curve over F when we consider

the transpose of F by Y.

18



§3. Typical curves and formal groups

Let I be a set of primes. We use the notation I only to denote
such a set of primes. The following special cases are the most important:
I = (p), the set of all primes except p; I = [p], the set consisting of the
single prime p.

We denote by Z, the following subring of Q:

I
Z. = 1] 1, < Ij
I_ i.qq j‘
Thus Z(p) = integers localized at the prime p,
Z{p] = the ring consisting of rationals of the form a/pk

3.1. Let R be a commutative ring with unity and F a formal group

over R.

A curve v over F is called I-typical iff f vy =0 for all q €1.
F is called I-typical iff the identity curve Yo oOver F is I-typical.
When 1 = (p}, we call simply typical in place of (p)-typical. Tvpical
curves or formal groups are usually observed when R is a Z(p)—algebra,

Denote by <3TF the set of all I-typical curves over F. C(Clearly

s 1
it is a subgroup of (fF and stable under operators [a], a €R, v, and
fn such that (n,q) =1 for all q €1 by Proposition 2.9. We regard

these operators as allowable operators on (fTF T Then CETF I is an

operator-module over allowable operators.

19



When I = (p) we write simply (iTF ) ° (ZTF. In this case allowable

operators are generated by [a], a € R, wp and fp.

3.2. Suppose R 1is a ZI~algebra and define operators

eq: eq,F : CDF———m—)cF, qu,
by eq(y) =y F (%J wqfqy. By Propositions 2.5 and 2.9 we see easily that

e 's are idempotents and mutually commutative. Moreover eqy = vy mod Ca.

Thus the product

(3.1) €. = € = 1 e
qer ¢

is convergent and well-defined operator on (EF' We have also a Cauchy sum

expansion

- F u(m)
(3.2) ey = 1 (5 vy
n rel I

for y € (SF’ where u(n) is the Mobius function and the summation runs

over all natural numbers n of which every prime factor belongs to I (inclu-

ding n = 1),

Proposition 3.1. €1 is an idempotent and projects (?F onto the sub-
group C TF,I .

The proof is straight-forward if we remark that fq eq = 0.

We call the operator €1 Cartier operator over F. In particular the
curve
(3.3) EI =& p = €Yo

20



is I-typical, which we regard as the canonical I-typical curve over F.

By (3.2) we have

gI(T) = T + higher terms.

Thus
£1
(3.4) g, Pz F.
(cf., 2.11 for definition). By Proposition 2.4 £.. maps I-typical

curves to I-typical curves and vice-versa. Then, since EI#YO = glﬂ

I-typical over F, we obtain

£
Proposition 3.2. F I is an I-typical formal group which is strictly

isomorphic to F.

€
We regard F I as the I-typical formal group canonically associated
to F.
3.3. Let R be a Zl-algebra. Let N Dbe the set of all natural
numbers 1, 2, ..., and put

Ny = (k€N ; (k, ) =1 forall q €I},

' = _ "
mi N NI.

First consider a curve

k
Y(T) = [y, T
k>1 k-1

over Ga’ the additive group law over R. By (2.8) we obtain

21



k
(eq g V(D = Yy T
©Ca et

for q € I. Thus

k
(3.5) (e VM = ] v T.
I,Ga kG'N'I' k-1

Next assume that R is of characteristic zero and F € obj F(R).

Proposition 3.3. Let £ and SZ,I be the logarithms of F and

g
F I respectively over R® Q. Put
k
&My = ) m T,
K1 k-1
then
k
2 (Ty = ) m T
£ keN” N <
I
Proof. By (3.4)
EI
% 0 EI :F o= Ga.

Then, by the uniqueness of logarithm we have
Q’I =g o EI’

and

Lp(T) = 2 0 EL(T) = Ly(e; o) (D)

a a

Now by (3.5) the proof follows.

3.4. Let F € obj %(R) and consider CTF,I' Since Frobenius

22



operators are linear and continuous, we see easily that (2TF I is closed
in C?F' Thus CzTF 1 is complete and Hausdorff with respect to the
induced filtrations (CT, N ¢C_.
F,I n
Now suppose that R 1is a ZI—algebra.

Lemma 3.4. Let vy & CF such that
. K .
Y(T) = a-T  + higher terms, a # 0.

If v is I-typical, then k€& N?.

Proof. For any q& I we obtain

(qu)(T) = 3°(c§ oL+ g&)Tk/q + higher terms,
M
where Gys oo Cq are gq-th roots of 1. Since <y 1s I-typical, we have
k k, _
a°(C1 oLl gq] = 0.
If qlk, then
rk—)" +§k=q
) cos a s

which is invertible and contradicts to the assumption. Thus (q, k) = 1.
qg. e. d.

Lemma 3.5. Let F be I-typical. Then, for any k& N?, a#0 in

R, we have
(53
wk[a]yo CIF,I'

Proof. For any qe€ I, (q, k) = 1. Thus fq Vi = vy iq by
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Proposition 2.9, vii). And
= q -
quk[a]yo = wk[a ]fqyo =0,

qg. e. d.

Theorem 3.6. Let R be a ZI-algebra and F an I-typical formal

group over R. A curve vy over F 1is I-typical iff it can be expressed

as
y= 3% wile . ly or y(M = JF (¢, T
KEN k*"k-1°'0 KENY k-1
I I
with ck_l‘E R. The expression is unique.

Proof. Suppose <y is I-typical and express <y as a Cauch series

F
= ) vl Iy
B =L Vi o

in C by Proposition 2.10. Let ¢ be the first non-zero coefficient

F n-1

in this expression. Then
y(T) = Cn_lTn + higher terms,

and n € N¥ by Lemma 3.4. Since v is I-typical by Lemma 3.5 we

nlCn-11vo
see that
F F
Yl =Y - \vn[cn-l]YO = z Wk[ck-l]YO
k>n
is I-typical. Now apply the same argument to Y1 and repeat. We see that

A 0 unless k€ NE. Thus we obtain the desired expression.

The converse follows by Lemma 3.5 and the completeness of (?TF I
3
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The uniqueness of the expression follows by the uniqueness of

Proposition 2.10.
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§4. Universal typical formal groups

4,1, Let U be the Lazard ring and F,. the universal formal group

U

over U. We regard U  as the graded ring by non-positive even dimensions

so that FU satisfies the condition (1.5).

i - 1. = / =
Let I be a set of primes and put LI U® ZI, FU,I FU over

UI by coefficients extension. By the universality of FU it follows

immediately the universality of F for formal groups over Z_-algebras.

U,I I

Now we want to construct an I-typical formal group which is universal
for I-typical formal groups over ZI-algebras (by restricting the range

of the functor ’¢).

homomorphism

of 2;-algebras such that S*FU 1 = F By Proposition 2.6 and the definition

of Cartier operators we see that

G*EI’U = eI’Fe*
where €1.u denotes the Cartier operator over FU,I' (Similar conventions
apply also for other notations).
Put
, Fu k
fo( = (™M = ] T, ™.
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By definitions we see that
(4.1) E. €U and £, = 1.
Since F is I-typical iff €I,PYO = Yoo and since

Ox81 y = OxE1,uY0 T E1 Y0’

we obtain

Damgmm e S 4 3
FTOopositior

{613(225 cnsy gn__l, }C_Ke:(‘ e,

4.2, Put U =U®AQ, then

uCUICG,

Put

1ogU T = vgl ey Tk, m, = 1,
k>

where logU is the logarithm of FU (and of course of FU I) over U.

Then
(4.2) U= Q[ml, Moy ey Ty, oo 1, dim m = -2k,

as is well known.

bPut

= the transpose of F

Hy,1 u,1 Y gL

is I-typical by Proposition 3.2. (Hereafter we use the letter " p "

Hy,1
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to denote typical (or I-typical) formal groups in general). Let

be the unique homomorphism of ZI-algebras such that

E

Ursfy,1 7 Mu,1

and

the homomorphism of U obtained from u, by coefficient extension.

I
Apply ﬁI* to the strict isomorphism

1ogU * By G over U

and obtain
Gralogy) = 1y 13 G,
by the functoriality. Thus

(4.3) i.,(log.) = log
I v Hu,1

by the uniqueness of logarithm. Then, by Proposition 3.3 we obtain

1
o

Proposition 4.2. uI(mk_l) = if ke Ni

=m _, if ke,

Corollary 4.3. Uy and ﬁI are idempotents,

N = 4 . '
Ker Uy the ideal (mg_1 5 216 NI)
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and

Im Gy = Q[mk_1 k€ N?, k #1].

4.3. Put

U = Z[ml, m

2 o 1

As is well known
gCuCu

and U is the minimal extension of U over which

to G_.
a
Since
togy @ &yt My, 36,
we obtain
(4.4) logU” o= logU o EI,U
u,I
by the uniqueness of logarithm.
Now we compute
Logy @ By y(T) = Togy, Z i-1”
= 1 Imo el
i>1 j>1 J-1
- 1 Im &
k>1 ij=k J Lei- 1

On the other hand, by Proposition 3.3 we have

(4.5) log T= ) m .T.

29
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Thus, by. (4.4), comparing the coefficients of Tk we see the relations

I -
(4.6) Eep * -Z mj-lgi-l =0 for k€ N; {1},
ij=k
1<i<k
; Jo2 e N!
(4.7) mk_1+gk_l+‘z_ ’“j~151-1 0 for k €N/
ij=k
I<i<k

By (4.6), inductively on k, we see that

(4.8) Ek-l = 0 for k€ Ny - {1},
and
(4.9) £ .(T) = I U

LU keN1U{1} k-1

By (4.7), again inductively on k we obtain

b o — ]
(4.103 gk_le U{'\UI for k C!NI
and
(4.11) Ek-l = - me_q mod decomposables in U for k G’Ni.
Thus

= - = N ! "o

(4.12) U = z[gl_l, % & Nyl ® Z[m_,, k€ Ny {1}].

4.4, Let Xps Xgu wees Xy e be a polynomial basis of U, dim X,
= - 2n. Then

UI = ZI[XI’ Xps vees X5 ooen 1.

Observe the inclusion
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I o
U C UI = U ® ZI.
For k € Ni by (4.11)

-1 Z 0 mod decomposables and mod q

~

for all q& I in UI' The same must be true also in UI' Hence

we can use gi_l, L GlNi, as a part of the polynomial basis of UI

and we obtain
Proposition 4.4.

UI = ZI[EQ,-I’ ,QefNi] ®ZI[Xk-1’ ke iN'I' - {1313.

By Proposition 4.1 we have
9
{gk_li k € NI} . Ker ur
On the other hand, putting §£_1 = uI(Xk~I} for k EENE - {1}t we have
mod decomposables

# 0, Thus x

k-1 ke Ng - {1}, are algebraically inde-

in U with Ck—l

~ 1t & PPN T ) -
pendent and u; maps ZI[Xk—l’ k GINI {1}] isomorphically onto ZI[Xk—l’

ke Ny - {1}]. Hence we obtain
Proposition 4.5. i) Ker up = (51-1’ 2 E—Ni),

1) Up/Ker u; 42 keny - {1} Cug,

1 X 1o

iil) Uy = 200Ey 1, AEN] @ 2p0x s KENY - {13],
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where X 1 < uI[xk_l).

4.5. Put
(4.13) BP_ = Im uIC: UI'
Then

BP, = Z.[X, ;. k €N} - {1}] » U;/Ker u

I I

u.,,F we see that all coefficients of

by Proposition 4.5. Since 1+Fy

My, 1~

Uy I(Xﬁ Y) belong to BPI’ and Yy 1 determines a formal group

lgp 1 € obj F (BP)

which extends to Wy 1 by extension of the domain of coefficients
BP. C U, .
I I
Theorem 4.6. Upp 1 is I-typical and universal for I-typical formal
groups over Z.-algebras.

I
Proof. Clearly “BP,I is I-typical by definition because “U,I is
I-typical.
Let R be a ZI—algebra and y an I-typical formal group over R.
There exists a unique homomorphism 6 : UI — R such that e*FU,I = u.

By Proposition 4.1 Ker § DXKer u Thus 6 factorizes to

I
U Oy
UI —_— BPI ~——> R.
Since u.,F , we have

1*'u,1 -~ HBp,I1
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Opsigp,p = Opslp«fy, 1 = 64Fy 1 =1

The uniqueness of 61 follows by the uniqueness of 8.

Thereby we obtained also the following

Corollary 4.7. Let R be a ZI—algebra and y be an I-typical

formal group over R. The homomorphism @ : U —> R such that S*FU =y

£a_ctorizes to @ = 61 ° U, ; : BP. —= R such that

1 1 Opadpp 7 = W~

4.6. Let 1 and J be sets of primes such that I CJ. Let €1 3

be the canonical J-typical curve over Uy T (over UJ)., Since Uy o1 is
I-typical we have
g ey Y I e
1,J J,uto qeJ-1 4°H 0

where y = Uy g Then

Er,u ® B,y T Erue( T Cq0)

q;sJ—I 4. ?
i.e.,
(4.14) EI,U o ‘EI,J = ‘EJ,U'
Since is of course I-typical, we have the homomorphism

€1,7

up g ¢ BPI®Z'J ———>BPI®ZJ

.71, . .
of ZJ—algebras such that uI,J*uBP,I = “BP,I' Using 1°gBP,I instead of
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logU, by the same arguments as Proposition 4.2 we see that

T - 1 E "noo_ 1)

(4.15) uI,J(mkwl) 0 if k INI [NJ
=m_; if k e [N"f,

where uI,J is the Q-extension of uI,J' In particular uI,J is an

idempotent of BPI ® .7IJ and we can expect a decomposition of BPI ® ZJ.

By Proposition 4.2 and {(4.15) we see that

(4.16) u;y = uI,J ° u;
regarded as the map : UJ — UJ. Thus
(4.17) Im ur g = BPJC BPI®ZJ.

Next we express EI g 2s
3

ZUBP,I

X
(€
keNy k-1

£p 5D =
by Theorem 3.6. By (4.4) and (4.14) we see that

IOgBPI ° &y 57 10gBPJ ;

then by parallel arguments to (4.7) and (4.8) we see that

gl . =0 for keny - {1}

and
1
Ek-l (= BPI M BPI ® ZJ,

~

51!(_1 g =z 0 mod decomposables in BPI
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& "o 1
for k NI NJ. Thus

u
PR @ T,

(4.18) &1 5(M = _
’ keUN'I'4N§)U{1}

and by the same arguments as Propositions 4.4 and 4.5 we obtain
Proposition 4.8.
i = "o
i) BP, ©Z; = 7;0E; |, k€ Ny -] @ BP,,

o - _ INY
ii) Ker uLJ = (Eﬁnl’ k € N¥ Nj}“
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§5. Quillen decomposition

5.1. Let h* bea nultiplicative cohomology theory defined on
finite CW-complexes. We assume that the multiplication in h* is
commutative (in graded sense) and associative, and that the Euler class
eh(L) is defined for any complex line bundle L over a complex X such
that i) it is natural for bundle maps, ii) eh(L) € hZ(X), and 1ii) h*(CPn)
is the truncated polynomial algebra over h*(pt) generated by the Euler
class x of the canonical line bundle over CPn,‘truncated by xn+l.
Then we can define Chern classes and multiplicative Thom classes in h*

for complex vector bundles. Cf., Dold [8] for details. We call such a

cohomology theory h* complex oriented by a terminology of Quillen [19].

In complex cobordism Thom classes and hence Euler classes for complex
vector bundles are canonically defined [7]. Hence complex cobordism is
one of the typical examples of complex oriented cohomology theories. We
denote by eU(L) the Euler classes of line bundles in complex cobordism.

We recall the following well-known universality of complex cobordism
for complex oriented cohomology theories.

[Universality of complex cobordism] Let h* be a complex oriented

cohomology theory defined on finite CW-complexes. There exists a unique

cohomology transformation

9 : U*¥ — h*
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which is 1) linear, ii) degree-preserving, iii) multiplicative (6(1) =1

1
for 1€ Uo(pt)), and iv) s(eJ(L)) = eh(L) for complex line bundle L.

For proofs we refer to [8], [19].

This universality is actually true also for complex oriented h*
defined on ' arbitrary " CW-complexes if we assume h* to be ' additive "
[81. And we can expect to develop Quillen decomposition theory for arbitrary
CW-complexes. But in that case we need in certain places to discuss

convergences with respect to filtrations by finite subcomplexe To avoid

%

this complexity we shall be content with limiting our discussions cnly to
finite CW-complexes.
5.2. Let h* be a complex oriented cohomology theory. For complex

line bundles Ll and LZ we have

h . h,o i h, i
e (L1 & L2) =) aij e (Ll) e (LZ)

with 255 € hz(l-l—J)(pt}, By naturality the coefficients a,. dc not
1 3
depend on the choices of L1 and LZ and we have a well-determined

formal power series

- iy7
FL(X, ) = ) a5 XY

of two variables over h*(pt). By commutativity and associativity of
tensor products, and naturality of Euler classes, we see that Fh satisfies

(1.1), (1.2) and (1.3), i.e., is a formal group. Moreover Fh satisfies
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the condition (1.5) by our choice of dimension of Euler classes.

Of course this formal group Fh depends on the complex orientation
of h*(i.e., the choice of Euler classes). So that we may have several
foimal groups associated with the same cohomology theory h* depending
on various choices of Euler classes.

Here we recall that Quillen identified U*(pt) with the Lazard ring
U, whereby he identified the formal group of complex cobordism with the

universal formal group FU, i.e., we have
U _ U U
e (Ll ® Lz) = Fu(e (Ll) s € (Lz))

for complex line bundles L, and L,. Cf., [18

New let h* be complex oriented and
8 : U¥ —> h*

the unique cohomology transformation by the universality of complex
cobordism. Since 6 is linear, multiplicative and preserves Euler classes

we see readily that
(5.1) 8(pt), FU = Fhv
5.3. Let I be a set of primes. The assignment
(Xs &) F=>U*(X, A)p = UX(X, A) ©Z

is a multiplicative cohomology, denoted by U*( )I.
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Using the power series we define

1,0
ey’ € oo,

as Euler class of a line bundle L over X for U¥( )I. Thus U*( )I

is complex oriented. Since

A R B T R G U M EIN

By the universality of complex cobordism we have a cohomology

transformation

U* s U*( )
7

I

which sends eU(L) to E;lU(eU{L)). Extending this ZI~1inear§y we
.l

obtain the cohomolegy transformation
(5'2) t)I : Ux( )I —> U~ )I

which is ZI~1inear, degree-preserving, multiplicative and EI(eU(L)) =

g;fu(eU(L)). Then
EI(Pt)*FU,I = UU,I
by (5.1), i.e.,
(5.3) E;(pt) = up : U*(pt); —> U*(pt) ;.

In particular El(pt) is an idempotent of U*(pt)I by Corollary 4.3.

39



5.4. We want to show that éI is an idempotent of the cchomology
theory U*( )I. To this end we use Landweber-Novikov operations [14], [17]

in a modified form.

Let t = (t,, t . ) be a sequence of indeterminates

1! 2’ ° t

n}

ty with dim tr = -2n, For each finite CW-pair (X, A) we put

UK, A)[E] = UFCX, A) @ Z[ty, tyy vvos T, onn 1.

Obviously U*{ }Jt] is a multiplicative cohomology theory.
Put

FU k
(5'4) ¢ﬂ(T) = 2 (tk-lT ), tO = 1)
k>1

and assign
8y (" (1)) € P (0 [1]

as Euler class of a line bundle L over X. Thus U*{ )[t] is complex
oriented and its formal group is F t. Then by the universality of

U

complex cobordism we have a cohomology transformation

g, 1 UF —> Ur()[t]

which is linear, degree-preserving, multiplicative and

(5.5) s,e" () = o7t ")
for a line bundle L. And

0
(5.6) 3, (1) ,F, = FU".
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This is parallel to Quillen's presentation [19] of Landweber-Novikov
operations but not the same. After certain polvnomial changes of

indeterminates over U*(pt) our 5§, could be identified with Quillen's

t

Put

$, ()

i
Q ™~
w
~—
»
—
&
Q

for any x € U*(X), where ¢ = [ul, Uy wees Ops ooe 3 is a seauence of
r4 i1

w

non-negative integers such that all 0 but finite are zero, and %

denotes the monomial

Then we get linear cohomology operations

3 U —s Ut
8]

of degree 2|u| for each sequence ¢, where |gl = Yney_. These are our
modified Landweber-Novikov operations and can be expressed as linear
combinations of Landweber-Novikov operations over U¥(pt).

By the property of §u it follows that

(5.7) §0 = id, where 0= (0, 0, ..., 0, ...,
(5.8) 5 (x, y) = s, (x) 5 (V)
’ o B+§=OL B Y

for internal and external multiplications.
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5.5. Let
01 U )TE] —> U*( )

be a cohomology transformation defined by p(tj) = Ej’ j >1, and
o{x) = x for x €U*(X), where gJ are coefficients of EI,U(T) in the
expression (4.9), whence 1 = 0 if k C N¥ and k # 1.

Clearly o is linear, degree preserving énd multiplicative, and

pes

t sends eU(L) to g;lu(eU(L)). Hence, by the uniqueness of
3

cohomology transformation obtained by the universality of complex cobordism

we see that

N
1%}
w

)

A

O

o
)
=

Theorem 5.1. £, is an idempotent of U*( )I.

I

Proof. By (5.3) and Proposition 4.5 it follows that

E (8D =0 if o # 0,

%4 G2 '
5 e Now for any x € U*{X, A)I we have

where &% = g €
E ) =] 5 g
84

by (5.9). Then

Ep(Ey00) = [ E7(5 (D) - £1(EM
a

= E1(3,(x) = £;(0),

i.e., gI is an idempotent.
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Corollary 5.2. There holdsnatural stable direct sum decomposition

U*(X, A); = Im él(x, A) @ Ker zI(x, A).
For any x € Ker éI(X, A) we have

X + 5§ (0E% = E.(x) =0,
ugo o I

and we obtain

Corollary 5.3. Ker éI(X’ A) = (Ker éI(pt)} = UR(X, A)g.

Ut

.6. Put
5.1 BPX(X, A) = Im él(x, A)
for any finite CW-pair (X, A). By {5.3) and (4.13)

BP* (pt) = BP

I I’

and by Corollary 5.2 the assignment
is a cohomology theory. Mecreover it is multiplicative because EI is

multiplicative, that is,

Proposition 5.4. BP? is a multiplicative cohomology theory such that

* = a -
BPI(pt) BPI, 3_21 algebra.

By definition (5.10) we have canonical cohomology transformations
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(5.11) Tt U*( )I —> BP? natural surjection,

I’
(5.12) iI : BPT-—~+ U*( )I’ natural injection,
such that
(5.13) iI ° mp = EI'

Using coefficients 52—1 of 51 U(T) in the expression (4.9) we put
* — 1 -
VI(X, A) = 21[52_1, 2 €INI] ®BP’£(X, AY

for finite CW-pairs (X, A). Then Vf is a multiplicative cohomology
theory. Define

O * V? —> U*( )I
by OI(£Q<:)X) = g“ o iI(x) for x € BP?(X, A). As is easily seen @I
is a linear multiplicative cohomology transformation, and OI(pt) is an
isomorphism by Proposition 4.5. Hence @I is an isomorphism of cohomology
theories by the comparison theorem of cohomology theories over finite

CW-pairs. Thus

Theorem 5.5. iI induces the natural isomorphism

(), 2705, L €N @ BPY

of cohomology theories.

5.7. Let p be a specified prime and put

(5.14) BP* = BPY
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for I = (p). This is called Brown-Peterson cohomology theory.

In this case the isomorphism of Theorem 5.5 takes the form

(5.15) U )y = ZepylEps 2F P71 @BPE

This is the Quillen decomposition of complex cobordism localized at the

prime p.

5.8. Let I be a set of primes and put

(5.16) (W = e L))

o)

for a line bundle L. By the decomposition Theorem 5.5 we see easily that

BP,I . e . . : 5 3
e ’7(L} satisfies the required properties of Fuler classes. Hence BPY

is complex oriented. By definition of éj and {5.13) we have

. P, 1. -1, U, .
(5.17) ile (L)) = g, (e (1))
Then, by (5.1}, (5.3} and the definition of Mgp 5 e obtain

Theorem 5.6. BP* 1is complex oriented and its associated formal group

*
I

22 Fgp,1-

5.9. Our next purpose is to give a decomposition of BP%( 3 @)Zj
into BPE (I CJ) which extends the decomposition of Proposition 4.8 to
cohomology theory. For this purpose we start with introducing Landweber-

Novikov type operations in BP%.

Let I be a set of primes and

t; = {t, 3 K €N} - {1}}
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the subsequence of t. We consider multiplicative cohomology
BPE( ) [8,] = BPH( ) ©2[t, ;5 k €Ny - {1}].

Putting

YBp, T k
(5.18) %’I(T) = ez (t 1T ty =1,
kENY

we assign
o Ty el

as Euler class of a line bundle L over X. Thus BPT( )[tI] is complex

¢

oriented and its associated formal group is uBg’i. By the universality

of complex cobordism we have a cohomology transformation

§ﬁ,1 U — BP;( )[EI]

which is linear, degree-preserving, multiplicative and
~ ] _ -1 _BP,I
5y p(e (1)) = ¢g ((e7 > (1))

for a line bundle L. Then

bg 1
Sy, 1(Pt)Fy = ugp -

Here we remark that is I-typical and is an I-typical
VP, 1 P P¢,1 YP

curve over (extending the domain of coefficients to BPI C)Z[nI])

HBp, 1

by Theorem 3.6. Thus L1 is I-typical. Then, by Proposition 4.1

. "
{gk—l’ k EEWI} C Ker sﬂ’I(pt)

(extending §t ; over U? by lelinearity), where gk , are coefficients
5 3 ~d
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of gI’U(T) in expression (4.9). Now by Corollary 5.3 we have a factori-

zation of §
1,1

- r
Us( ), ——— BP3() —Ls Ber(n ],

(5.19) | K

St,1

By construction it is clear that r is a linear cohomology trans-

t,I

formation which is degree-preserving, multiplicative and

(5.20) CRRR A I CLERI )

3,1

for a line bundle L. Then

=
(2]
N
pond
fS—
&)
=3
M
—
Yo
o
o+
—
*
1=
i
=
%

If we take the coefficients of monomials (of ﬁI) in T we get

1,1
Landweber-Novikov type operations in BPE“ We discuss their properties

for T = (p)} later in §7.

5.10. Let I and J be sets of primes such that I J. Take the

. _ . N I,
canonical J-typical curve EI,J OvVeT ipp g (ovex BP, & ZJ), Let & 4
k EIN'I', be the coefficients of EI J(T) in expression (4.18} and define

cohomology transformation
P * N Y
p' t BPE()[t] —— BPY( ) ®1Z,

s f = ! \ili 1 - *
by 0 (tk_l) ‘Zk—l’ k ea\I, and p'(x) x for x GBPI(X). Put

(5.22) Epg=0' o8 BIOI®Z; —> B @75



This is a linear cohomology transformation which is degree-preserving, mul-

tiplicative and
= BP,I _ -1 BP,I
£ gl 2 ) = g pe ).
Thus
5.23 z. t = EI’J =
(5.23) & 5(Pt)s Wpp 1 = Hpp 1 = Vgp, g
Therefore
(5.24) ELJ(pt’) = uI,J : BPI(@ZJ R — BPI®ZJ.

In particular Ei j(pt) is an idempotent of BPI(:)ZTV Now by a para-

ilel argument to Theorem 5.1 we obtain

Proposition 5.7. is an idempotent of BP;( ) ® ZJ,

gI,J

Corollary 5.8. 1) Im "EI’J = BP%.

ii) Ker ?;'I,J(X;A} = (Ker EI’J(pt))-BP’EEX,A) ®1;.

iil) BPI()®7Z; = zJ[g];_l, k GN'I' - Nyl ® BP%.

In particular, when p® I and J = (p) we have the decomposition

(5.25, BPY() @2y = 218 5, K €Ny, K £ D] @ BPY,

which we call the Quillen decomposition of BP? localized at the prime p.

5.11. Let Q*( ) be the oriented cobordism theory. Here we consider

the Quillen decomposition of Q¥( )[2] = () ® Z[%ﬂ. Let
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S:oUR() —— @*()

be the forgetful functor of complex structures. Clearly S 1is a multipli-
cative cohomology transformation.,

In Q*( ) Euler classes are canonically defined for real oriented
vector bundles. Every complex line bundile L determines canonically an

oriented 2Z-plane bundle Ly We define
*®
eSO(L) = () -Euler class of %R'

Thus Q*( )} 1is complex oriented. We denote its associated formal group

by FSG“ We see easily that

S(pt)*ru = ESOO
Remark that, if we change the orientation ¢f a real oriented vector

bundle, then Q*-Euler class changes to its negative., Thus

eso(fﬁ . . eSO(L)

and

FSO( - T, T) = 0.

Now we have

_ 1/2
(fz,SOYO} (T) - FSO( ,- T s T

Proposition 5.9. FSO is [2]-typical.
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Next we observe the cohomology transformation
= : U* e (0 .
Spzy = 5@%py ¢ VO (2]
By Propositions 4.1 and 5.9 we see that
X t Ker E t).
er S[Z] (pt) DO E[Z] (pt)

Then, by Corollary 5.3 and multiplicativity of S[ we see that

2]
Ker s[ZJ(x, A) D Ker sz](X’ A)

factorizes to

for any (X,A), i. e., 5[2]
- 121, pps ¢ -
2y — 2] > 2
i i)
*12]

By Proposition 4.5 we know that Ker ﬂ[Z](pt) is the ideal generated by all
elements of dimensions = 2 (mod 4). But Ker 5[2](pt) is also the same by
Stong [21], p.178. Thus &(pt) is injective. On the other hand S[z](pt)
is surjective by [21], p.180. Hence &(pt) is isomorphic and by the compa-

rison theorem of cohomology theories we obtain

Theorem 5.10. The forgetful functor S of complex structures induces an

isomorEhism
® : BP* Nvooar( )f27

of cohomology theories.
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Let p be an odd prime. By Quillen decomposition (5.25) we obtain

the following decomposition of Q*( )(p)

(5.26) )y X z(p)[gf(_l, k odd and k # p°] ® BP*,



§6. Generators of U*(pt} and BP*(pt)

6.1. Let p be a prime. Putting

ZFU (P) =
(6.1) (£ Yy (T) = (v -7,T)
p,U'0 n31 pn-1
we see that v_ = v(P) € U‘ZS by definitions. Compute log. f_ .v. in two
(3 s : U'p,U'0
ways :
FU n
(Logyf ) Yo (T = logy, (] “(vy, 4T))
n>1
J 1]
= 7 J m vo. T
i51 j51 j-1"pi-1
- j n
= 7 () my_ v, T
n>1 ij=n 41 Pi-l
and

£ . I's =

(cf£.,(2.8)). Then compare the coefficients of Tn, and we obtain

. - J - ()

i<i<n

j
j—lvpi-l'
for all n > 1,

Let S, denote the Chern number corresponding to the power sum Zt?.

Remark that
-2
s, U ®e ——

is a linear map such that

sn(decomposable element) = 0,
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By Mischenko series we have

Thus

Sp-1Mp) = 1
for all k > 1. Now apply Spn—l to {6.2) we obtain
(6.3) s Py L

“pn-1" pn-1’ e

By a well known theorem of Milnor, if a sequence { Xys Xpsooos X opeen
of elements of U¥(pt), dim X, = - 2n, satisfies
s (x) =p if n=p -1 for some prime p,
(6.4)
= 1 otherwise,

then it is a polynomial basis of U*(pt). Such a sequence is called a
Milnor basis of U*(pt). Then (6.3) shows that

(6.5 { Vég%, V(g) 3 e s v(ﬁ) ; ...} forms & part of a Milnor basis.
p -1 P -1

Let k be an integer > 1 which is not a prime power. Let p and g

; . ; Py - (q)
be different prime factors of k. Since Sk_1ka_1) = p and Sknl(vk-l)
= q we find integers a and b such that

(p) @y -
Sk-l( a vty ot b Vk—l) =1
Thus for each dimension - 2n we can find an element X, satisfying

6.4 as a linear combination of our elements v(p)'s, and we obtain
n
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Proposition 6.1. The elements Vpn-l defined by (6.1), for all n >1

and all primes p, generate U*(pt).

6.2. Let p be a fixed prime. In (6.2) we put n = pk_l, then
oL @ P
. — L >
(6.6) pem X + Z M oi (v i ) for all k > 1.

pfe1 PR is1 phar pra

Apply G{p) on both sides of (6.6). By Proposition 4.2 we have

k-i
(6.7) pm = V{ﬁ) + 2 m. . (VPP for all k > 1,
p -1 p -1 i=1 p i pl-l
where V{E) = u( )(v(p) ). Comparing the two recursive formulas (6.6) and
p-1  Ppla
{(6.7) we obtain
(6.8) ( (v(p) ) (E) for all k > 1.
P) pr-1

Now by Proposition 4.5, (6.5) and (6.8) we obtain

Theorem 6.2. BP* (pt) = Z(P)[vép%, v;g) s ey vtﬁ) s eee]-

-1 p -1

Apply ﬂ(p)* to both sides of (6.1) and obtain

U
) BP 7P 3,

(£ Yo (T) =
p,BP 'O n>1 pn -1
where v(p) = (V(p) ) Since f Y is a typical curve over u
pn-1 = "(p) Vpn-17 p,BP 0 BP
we see by Thecorem 3.6 that
5 . 2
(6.9 u(p)(vpn—l) = 0 for n # p,
and using (6.8) we obtain
. H i+l
Theorem 6.3. (£ Y)(T) =} BP(V(P) ™ )
p,BP 0 . i ;
i>1 p -1

where the coefficients are the polynomial basis of BP*(pt) of Theorem 6.2.
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Remark. i) Our polynomial basis of BP*(pt) of Theorem 6.2
satisfies the recursive formula (6.6) which is the same as the corresponding
formula of Hazewinkel [12]. Hence our generators are the same as those
of Hazewinkel. 1In case p = 2 a similar recursive formula is obtained
also by Liulevicius [16].

ii) By our method it is already clear that the generators {VCE) }

p -1
of BP*{pt) are integrable, i.e., elements of U*(pt). This fact was
observed also by Alexander [4].

6.3. Let p be a fixed prime and q be another prime. Since

fq,BPYO = 0, applying th)(pt)* to fq,UYO expressed in the form

(6.1), we see that

(6.10) (-qjl) = 0

u v
(p) ( qn-
for all = > 1. By (6.8}, (6.9), (6.10) and Proposition 6.1 we see

Proposition 6.4 (Integrity of u (U)y = 2zlv i e i 1)U,

COLM ¢S 3

i.e., U 1is stable under the idempotent u(p) and by restriction Yny
A

determines an idempotent of U.

6,4, Let p be a prime and put

fu,, () m
(6.11) [PIy(M = ] "Gty T) .
n>1
D -2(n-1 .
Then W T wéi%éZ U (n-1) and Wo = P Now compute 10gU o [p}u and

obtain
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. - ]
pmy g = bomg g
ij=n
=pm + W + z m. wj
n-1 n-1 LB j-1"1-1
ij=n
1<i<n
In particular we obtain
) k k-1 k-i
(6.12) WP e o pPom - T om WP
p -1 p -1 i=l p -1 p-1
for k > 1. Then we see that
v k
s 4 (w(ﬁ) ) =p-p’,
p-1 p-i
hence {w(p], w(p) s ey w(p) , ...} forms a part of a polynomial basis
p-1 2 k
p -1 p -1
of U*(pt)(p). On the other hand applying u(p] to (6.12) we obtain
u, \(W(E) ) = W(E)
(423 P -1 D -1

Again apply T to [p}U and remark that [p] is a typical curve.

(p)* ‘BP

Thus we obtain

Theorem 6.5. Putting

YBp  (p) .p¥ ®)
plap(T) = Y Pl TPy, wP) = p,
BP Ko pka 0

we obtain

* - (P @ (p)
BP*(pt) = Z, . [w "7, w s eees W [ I
(p) " p-1 p2—1 k..l

These generators are also integrable.
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§7. Operations in Brown-Peterson cohomology.

7.1. Fix a prime p. In 5.9 we defined the cohomology transformation

7.1 r, =T BP* —— BP* t
(7.1 t = "o, (p) !
which is Z(p]vlinear, degree-preserving, multiplicative and
BP -1 BP ..
(72) r‘it (e (L)) - dPTL, (P) (e (L)J 5
where ﬁ{p) = (tzg Chs ones tn’ ...} 1is a sequence of indeterminates with
dim t = - 2{pk - 1) (we replace here the letter < K by ¢, for simpli-
Mpp K P “‘}‘FU 7
city), o . . (T) = } ° (w::k'rp ) with t. =1, and e" (L) € BP“(X), BP*
Es p) k>0 i

Fuler class of a line bundle L over X.

Fut
( ) E ( ) 1 0{ )
Iﬁ X IOC X & (p) H X 6 BE x 3 7

where a = (al’ @2, ...) 1is a sequence of non-negative integers such that

all &k but a finite are zeroc and

; QL.
o 1.2 k
ﬁ(p) = tl tz ”°tk

is a monomial of t,'s. Then we get linear stable operations
g I

k
(7.3) Ty BP*{ ) ~——> BP*( )
with
(7.4) deg Ty = 2 g ai(pi -
for each sequence 0O = (al, %y, ...). These are Landweber-Novikov type
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operations in Brown-Peterson cohomology, and we call them Quillen operationms.
After identifying
BP*{ [t = (BP A BP)*

by making use of Brown-Peterson spectrum, we can see that every operation

in BP* can be expressed uniquely as an infinite sum
: BP*(pt),
Zu Ya T uaé (pt)
as in [21, [14], [17]. But we will not discuss this point here, but rather

we cbserve certain properties of these Quillen operations.

First of all it is clear by definition and properties of Ty that

(7.5) T, = id, 0=1(0,0, ..., 0, ...),
and
(7.6) r (xey) = ] T, (x)er_(¥)

a 8+-Y=a B \1

for internal and external multiplications.

¢
7.2. Putting yu = Rp and p' =y t,(p), we have
(7.7) rﬁ (pt)-& UBP = U"
(cf., (5.21)). Let
10gU T Ga and logu, ooz G,

logarithms over OQ-extensions. Then
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(7.8)

by functionality and the uniqueness of logarithm.

¢t,(p)
(7.9) 1ogu, =

We compute 1ogu, in

rﬂ(pt)*logu =

log

: u'5 u, by the uniqueness of logarithm we obtain

logu ° ¢t,{p)°

two ways by (7.8) and (7.9)

since
k
(7.10) lecg T= ) m X TP
M k>0 p-1
by Proposition 3.3, where me 1 is the coefficient of Tk
we see by (7.8) that
k
log ,T= ] =z (pt)(m , 70 ;
- k>0 p -1
on the other hand by (7.9) we see that
T = ™
log /T = 10g 4 (& (5 (T
j
= ) log (.7
js0 W
k ph pk
= Y () m e L )TE .
k>0 h=0 phoy K0
n
Comparing the coefficients of ™’ we obtain
7 ph
(7.11) T, (pt) (m )= ) m ts
t pn_1 heo ph_1 n-h
after extending rﬁ(pt) over BP*(pt) ®Q by Q-linearity.
fcp h_l]
Since wm = we obtain
h h
p-i P
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On the other hand, since

1ogUT,



Theorem 7.1 (Theorem 5,(iii) of [18]).

o h
r pey([CP 1) = ] pT[er  Ieb
p -1 h=0 p -1 )

This theorem describes the actions of T, on BP*(pt) at least
theoretically.
7.3. 1 feel it is better to formulate a generalvtheorem of which the

operation Ty is obtained by a specialization.

Theorem 7.2. Let h* be a complex-oriented cohomology theory such

that h*(pt) is a 7, ,-algebra and its associated formal group is typical.

§9))]

Then there exists a unique cohomology transformation

9 : BP* —— 5 h*
®

which is Z )-1inear, degree-preserving, multiplicative and

(»

BP _ h
e(p) (e (L)) = e (L)

for a complex line bundle L. It results also

e(p) (Pt)* UBP = Uh’

the typical formal group of h*.

Thus we may say that BP* is universal for cohomology theories with
typical formal groups. 8(p) can be obtained by factorizing the unique

cohomology transformation

6 ¢ U*¥ ——> h*
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which follows by the universality of complex bordism. Our necessary argu-
ments for the proof are quite parallel to those in 5.9 to establish r_,
so I will omit them.

7.4. Next we discuss-compositions r, ° T of Quillen uperations.

Consider the diagram

Ty re &)1
BP*( ) e > BP¥( )[t, ] s BPR( 3Ms. ., f, ],
Pl Bl Lo

where 3( ) = {sl, S, > Sy )} is another sequence of
such that dim S2 = mzfpi -1 and v ® 1 is an extension of v 1 BP¥{

, : ’ % = -
3 BP*( 31s, .1 such that (r_®1j(t.,) = t., 7 > 1.

(P » J J -

The composition T &1o Te is g cohomology transformation which is

linear, degree-preserving and multiplicative. Moreover, putting u; =

¢ Mg p*
. $,(P) o4 Py oy (T = ¥ $(tiTp ), we have
LN izo
(7.12) (r, @1 0 r) W) =yl 07t € W

for a line bundle L. This formula can be seen as follows : remark that
= T
v (P = g

by (7.7). Then

(1, ®1 0 1)) = (g ® D6y () (e (1))

_ -1, -1 BP
= (5 (PO, () (05 (py (& (D))

and
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]
- U P
(ry Pty (p)) (T = rs(pt)*jZO(th )
oM L,
= aZo (th ) = wu,(p)(T).

We give complex-~orientation of the cohomology theory BP*[S(p), ﬂ(p)]
by assigning (¢ o W )'1(eBP(L)) as Euler class of a line bundle
: $, (p) t, (p)
L. Then the associated formal group u'" 1is the transpose of u; by wt )"
2

Now wt.(p) is a typical curve over u;. Hence y'' 1is typical. Hence
T 1 or . BP* —>» BP* $ , &
) ¢ () SIETRTI Y

is the unique cohomoliogy transformation of Theorem 7.2.

By our construction it is clear that

(7.13) gr$O 10 fijcx) ) rB(ra(x)) T 3",
a,B
where t& and $B are monomials of (11:}a t2, ...} and (Sl’ Sys R I

7.5. Remark that ¢

s, (p) e} wu,(p) is a typical curve over yu, the

extension of Ugpp oOver BP*(pt)[s(p), ﬁ(p)]' Hence we have a unique

expression
4 H Pj
7.1 o T) = u.T u, = 1,
(7.14) @5, 0y © Ve, (p)) (D igoc 5T 05 0
where uj = uj(sl"’°’5j’ tl’ .,tj) are polynomials of Sys-ces Sj’ tl’
s tj over BP*(pt) such that dim uj = - 2(pJ - 1).

We want to obtain these polynomials if possible. Since

Y, ° Vo, ™ = 05, oy Ve, () (T



i _i+j
S A A G L
j>0 i>0
applying logu# on both sides of (7.14) we obtain
L i+Q  i+j+R £ _2+k
m P P }om o TP

i,7,% p£~1 1 k,2 pl—l

n
Comparing the coefficients of ™ we obtain

n L _i+8 n £
y } PP = T 1%
) Mo Y 53t = ) m, Ul .
250 p~-1 i+j=n-2 = 7 9=0 pr-1 "F
or, since the terms of ¢ = n of both sides are the same m ., we ses that
po~1
n-1 pi pi+4 n-1 pz
7.15 ¥ om ¥ ¥ ot = ¥V om .
(7.15) ) i t 2 unm%

& 2 . Lk j ) 2
=0 p7-1 i+j=n-2 2=0 p7-1

This is a recursive formula to determine u  over Q-extensions. Multiply-

ing pn to both sides of {7.15) we obtain

n-1 ) A 0 N E 1 . 2
(7.16) IopiTher ] y sli) F
2=0 pT-1 i+j=n-2

o 1T
i

3
o}

=

H

[
)
)

-

&

This is a recursive formula over BP*{pt].
By (7.18} we see easily that Uj is a polynomial of s,, ..., 5., t.,
.y t.. But it seems to be very difficult to write these polynomials

J

completely.

7.6. Let = ces Uy ...) Dbe a seguence of indetermi-

nates such that dim u. = - 2(p3 - 1), and
: BP* ——> BP* $, ., t
A ( )[w(p)3 (1 ) (p)}
be a cohomology transformation such that R(k} = x for x € BP*(X) and

Xu) = uj(s" ey Sj’ tl, e tj), the polynomizls determined by (7.16).
J &
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A is linear, degree-preserving and multiplicative ; and by (7.14) we see

n

i
that both X ¢ T, and TSGQ 1 ory send eBP(L) to e" (LY. Thus, by

the uniqueness of Theorem 7.2 we obtain

Ao o T rs®1 © Tyo
or
. oy 4O B _ Y
(7.173 L Tt Ty fp § Ty () ¥y

=, RD* wi = < 4
for x € BP*{X), where wu (ul(“l’ tl), uz(sl, Sos tl’ tz), ceos uj(sl,

5 Si’ tl, .o t)s ...} 1s the sequence of polynomials determined by (7.
o J
163, If we write monomials al as polynomials
(p)
Y Y O B
7.18 u = a t $
( ) (p) ) a,B (p) " (p)

over BP*(pt), then we get

- - v Y
(7.19) rB o r, = g aa,B rY,

the formulas to express compesitions rg o T, as linear combinations of

rY over BP*(pt) (Theorem 5, (iv) of [18]).
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Part II
§8. Typical formal groups in complex K-theory

8.1. Let K be the complex K-functor over finite CW-complexes.

For any complex vector bundle E we use
Ky = m = Teenhide
-1 Ly = h
i
as its K-theoretic Euler class. Thus
Ky =1 -1

for a line bundle L. Then

for line bundles L, and L,, i.e., the associated formal group FK of

K-functor is given by

(8.1) FeOG Y) =X+ Y =XV =1 - (1-X0-Y).

n fold multiplication with respect to FK is defined by

F (X

K o X)) = Fp(Xy, Fe(Xy, ooy X))

1}
recursively. Then
(8.2) F (X,, ..., X)y=1-(1 - Xl) o {1 - X0

Thus

[n]g(M =1 - (1 -D"
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for any positive integer n. More generally, over any ring A such that

2C A CQ,
(8.3) [al (M) = 1- (1 -1

for any a € A, where

Q-1 =1-ar+28D 2 DG - L

(cf., 2.4).

The Frobenius operator fn > 1 > 1, applied to the identity curve

s K

Yor is computed as follows.

1/n

n-1. _1/n
(£, M = (D Ty L T
:T’

where Tys =+»» L, BaTe n-th 7roots of 1, i.e.,
(8.4) fn,KYO =¥y
for any n > 1.

Over @ the logarithm

logK : FK = Ga
is described by
= 1 .n
(8.5) logy T = -log(l-T) = §=T,
. K n
n>1

where log is the usual natural logarithm.

66



8.2. Let p be a fixed prime.

typical curve Ex = gK’(p)

and we obtain

Over

can be computed by (8.2),

Z

@) " K(pt)(p) the canonical

(8.3) and (8.4),

F p(my
z K m, m

(8.6) Ex(T) = (epyy) (T) = 1-0a-1m9 )

K K'0

(m,p)=1
=1-P(1-7T),
where u(m) 1is the Mobius function and‘
umy
(8.7) P(1 -T)= T (1-TH?"
(m,p)=1

is the Artin-Hasse series. (Cf., [101.)

gK

Let g = FK , the typical formal grour canonically associated to

FK” Then

. _ r
(8.8) lcguK ],ogK ° &y
aver &, and by Proposition 3.3 and (8.5} we have

. k
1 .p o
(8.9) log T= ) —T° =1L(1-T)
MK k30 p

using a notation L(1 - T) of Hasse [10]. Now

tog, T = logy (£,(T)
= - log (1 - £.(T)
= - log P(1 - T)
Thus
(8.10) L(1 - T) = - 1log P(1 - T
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by (8.9). This was observed also in [10].
8.3. Next we observe formal groups of periodic K-cohomology K*( ).
.. . . . -1 -2 .
Its coefficient object is K*(pt) = Z[u, u ~], where u €K “(pt) is the
Bott periodic element. To make K* complex oriented we define K*-Euler

class of a line bundle L over X by
* -
My = uteef ) € ¥y,

Then its associated formal group is

[uly,
FK* = FK ,
i.e.,
B.1*  F (0 =X+ ¥ -uk¥ = w1 - (- w1 - un).
Thus n fold multiplication with respect to FK* is
-1
* = - - -
(8.2) FK*(Xl, ‘s Xn) =u (1-(1 uxlj...(l an))
and
% _ -1 a
(8.3) [a] (M) = v (1 - (1 - uD®

for any a &€ A over K*(pt) ®A, where ZzC A CQ.

The Frobenius operator fn ges 0> 1, applied to the identity curve Yo»

is

(8.4)* £ n-1

n,k* Yo = fu

I vg-

Finally, over K*(pt) ®Q the logarithm
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lch* : FK* = Ga
is described by
-1 Un»—l n
(8.5)* 1ogK* T = -u clog(l - u°T) = e @ T
4 11
HE}

8.4. Let p be a fixed prime. Over K*(pt) = K*(pt) ® 2 the

— » ()
canonical typical curve EK* can be computed by (8.2)*, (8.3)* and (8.4)%*

and we obtain

m . -1, . -
(8.6)* EK*(s) = {EK*YU)(!) =y (1 - P(1 - ul)).
3 EK* e o L = P 5 PR Rt T 0 - 3 A
Let Hps = FK* , the typical formal group canonically assocciatsd €0
FK* Then
* =
(8.8) log 1ogy, © EK*

My

over K*(pt)() @), and by Proposition 3.3 and (8.5)% we have

k
-1
-1 v up - mpk
(8.9)* T=u "L{1I - ul) = ™.

log 2
Hgx k>0 pk
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§9. Adams decompositions and typical formal groups
9.1. Let p be a fixed prime. Adams [1] and Sullivan [22] gave a
decomposition of complex K-theory localized at p into p-1 factors. Since
Adams' decomposition is more explicit we shall observe his decomposition.
Let K( )(p) =K{()® Z(p)‘ Adams [1] gave linear idempotents of this

functor

Bs ¢ KOy — KOy

for each s € Z by

1 P s K o
(9.1) E(L) == § w1 - e (1)
p-i =1
for a line bundle L, where ¢ 1is a primitive {p-1)-th root of 1 as a

p-adic integer. Even though w € Zp all coefficients of ES{L} (as a
power series of ek(L)) lie actually in Z(p) so that (9.1} is a well-
defined formula. The formula (2.1) determines Z(p)—linear natural trans-

formations Es completely by splitting principle.

Following [1] we list basic properties of ES quickly.
(9.2) E =E if s = s' mod p-1.

] s' -~

Thus these natural transformations are defined actually for elements ¢ =

{s} € z/(p-1)Z. Then

(9.3) | E

H
71

(idempotent),

(9.4) EJEg =0 if o# B8 in 2/(p-1)Z,
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(9.5) ) E =1.
o €2/(p-132 *

By (9.3), (9.4) and (9.5) we have a natural decomposition

(6.0 Ky 7B Oy @ By @ o @ By kO
of the functor K( )(p) as a direct sum. Next

(9.7 E (xy) = )  E(X)E_(¥)
Q B-!-‘Y:a B Y

for internal and external multiplications. In particular we see that, if

X €E K(X)(p} and ¥y G’EyK(X)(p), then xy € EB+YK(X)(p)S and

8

(8.8} EOK{ )(p) is a multiplicative functor.

8.2. Let L1 e a line bundle over Sia Since eK(Lljz = {0, we have
-1 m
- 1 PLt Koo oot
E.{L — w (1 -e (L)
1 (L) p-1 m-f1 ( Ly
p-1
LT W - Wty
p m=1 *
p-1
1 - K )
= 5jf’( ] w) - e (Lq)
m=1
B K
= - e (Ll).
Here we used the fact that
p-1 0 if s £ 0 mod p-i
oS -
m=1 p -1 if sz 0 mod p-1,

which will be used later freely. In particular

E, (1) = 0.
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Thus
K - K
El(e (Ll)) = e (Ll).
Since K(Sz)(p) is generated by eK(Ll) (by choosing L1 as the canonical

iine bundle) we see that

) o2
EyK(S )(p) = ks )(p)’

(2.9)
el _ . : .
EK(8T) () = 0 if a#1 in Z/(p-1)Z.
2 2 2n .
Apply (8.7) to the smash product S" A ... A S" =8 and obtain
o 2n S .<2n
E K(S = K(S 3
DK ) gy = KE D
(9.10) .
EQK(SZH),“\ =0 if s#n mod p-1.
-~ \vJ

~ -~ 2
Let ¢ : K(X) = K(8“ A X) be the Bott isomorphism. By (9.7) and
{2.9) we have the commutativity
-~ . 5 ~
K({X —  K(S X
( )(p) G A X
E E

o a+l

E(XJ(P) — b 5 KkEPA X (5

and ¢ induces an isomorphism

) - . > 2
(9.11) by OBKOO 3 3 B KT AX)

->
for each o € Z/(p-1)2.

9.3. From the above idempotents we define linear idempotents
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Fs 1 K0y > KOy

of K-cohomology localized at p for each s € Z. Define

2i . 2i 21
BS 0 KT Oy — KT

by requirement that the following diagram

commutes, where R 1s the Bott periodicity, i.e., the multipiication with
-2 .
u€ K "(pt). Define

2i+1 2i+1 2i+1
E K —s K (
s O p )

by requirement that the following diagram

2i+1 “2i+1 o 25421

K X = K X e K STA X
X () o E‘ e
p2i+l j p2i+2
S 3

2i+1 T2i+1 o T2ie2 .1 . .

K X = K X B ¢ ST X N
&) ) X py SERARNCS!

commutes, where o 1is the suspension isomorphism. Then by (9.11) we see

that E* = {E;, i € 2} commutes with suspensions and is a well-defined

*
S

Z, .-linear, degree-preserving idempotents of the cohomology theory

(p)
SSRNeSE
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Basic properties of these idempotents follow by the corresponding

properties of Es's. First of all

(9.2)* E; = E;, if s =s' mod p-l.

Thus these idempotents are defined actually for elements ¢ = {s}€ Z/(p-1)Z.

Then, by (9.3}, (9.4) and (9.5) we obtain

Y v 2 o om

(9.3) (EO(,) EOL »

(9.4)% EX Eé‘ =0 if a#£p in 2/(p-1)Z,
(9.5)* E* = 1,

a€z2/(p-1)2 ©

Thus we have a natural decomposition
{(9.6)* K* = E*K* E¥*K* . E* _K*
of the cohomology K*( )(p) as a direct sum and each direct factor EéK*

( )(p) itself is a cohomology theory.

Next by (9.7) and the definition of E& we obtain
(9.7)% EX(xy) = ] EX(X)E:(Y)
o B+Y=()L B Y

for internal and external multiplications. In particular we see that, if

*Y K (X v o E*
X € EBK “x){p} and y € EyK*(X)(p), then xy € E§+YK*(X)(p)’ and

(9.8)* ESK*( )(p) is a multiplicative cohomology theory.

9.4. Put

(9.12) G*( ) = ESK*( )(p)'
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This is a multiplicative cohomology theory inheriting its multiplicative

structure from X*{ ). By definitions we see that

(9.13) G*(pt) = Z(p)[ul, uil], u; = up—l,

i.e., G*( ) 1is a periodic cohomology theory of period 2(p-1) with Uy
as the periodicity element.
. . . ‘ . -1, K* .
We give complex orientation of K*{( )(n) by assigning EK*(e (L))
T

as Euler class of a line bundle L. Then its associated formal group is

the typical group law M - We denote as
Mg -1, K*
e " (L) = gpa(e (1)),

Hyx 2
Theorem 2.1. e (LY e 670

for any line bundle L over X.

Proof. Using the notations of {10] we put
1 -1=P(1 -1 and 1 - T =20(1 - 1).
Then
T = EK(T)
by (8.6). As is well known
m
(9.14) 1 -0 =P -0,

~

where ¢ is the primitive (p-1)-th root of 1 in ZP and m€ Z,

which can be seen by taking -log of both sides and by easy computaions.
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Putting

gD = T gm

320

we obtain

m .
(1 . T)U) =1 - Z E—f(wmpr)]"'l
i>0

by (9.14) and (8.6}. Now compute, for s€& Z,

p-1 m
—w—fl ) w iad¢! P
P psn
-1 p-1 . .
1 K +1- +1
===(] W -] NG mlj*l-s)ypi+ly
Pt pe1 3>0 m=1
{1 - % g;.('[‘”l if s = 0 mod p-1
= p-1]j+l1
L- z g:.(TJﬂ if s #0 mod p-1.
p-1|j+l-s ~

Putting T = e\(L), by (9.1) we obtain

1 Ky k-1

)

E, (L) ;s e
0 - k(p-1)-1'°
(9.15) k>l

Es (L) k(p-1)+s

tl

X Uk
- k_Z__O Ek(p-l)+s—l(e m

Mg -1, K
for 1 <s < p-2. (Remark that e (L) = ‘EK (e (L)) )

Put
K* j+1
Ee(M = § &0 T,
. j
>0

then by (8.6) and (8.6)* we see that
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have
M s -1 * N My
e 1) = gt ) = utee N1y
Now put
K Hrr L k(pel)+l
AL = T By (e | FETI
k>0
Then
ACL) = u” pyy et
= umicS?(L}
by (9.15). Hence by definition we ssg that
ALY € B2 () 62 (x)
()

Remark that A(L) is an invertible power series of e (L), and a1l possi-

ble non-zero coefficients are

K* K SLk %
= ED o ( € G (pt)
p-1) T ket TS E 0

*
Thus e K (1L} <can be solved as a power series of A(L) with coefficients

in G*(pt). Hence
s
e ML) € A, q. e. d.

9.5. The above theorem implies that all coefficients of UK*(X’ Y)

lie in G*(pt) and ﬂK* determines a typical formal group pG* over
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G*(pt) by restricting the domain of coefficients to G*(pt). The corres-

ponding complex orientation of G*( ) is given by assigning
G* My 2
e (L) =e (L)€ G (X

as Euler class of a line bundle L over X. Its logarithm

over G*(pt) ®Q 1is given by
‘1 1+p+...4p P
(9.16) log T= 1§ 5y T
> .

(CE., (8.9)%).
Identifying by periodic isomorphisms in G*( ) we obtain a multipli-
. ., AF . . iy i . X . -
cative cohomology G ( )} graded in Z/2(p-1)Z. (Remark that the difference

. . . # . .
of notations from the usual convention in K-theory !) G is complex orien-

ted by assigning

as Euler classes. Its associated formal group is a typical formal group

# .
ug over G (pt) = Z(p) with

L K
(9.16") log T= ] =T°.
' "6 k30 p '

9.6. By the universality of complex cobordism (cf., 5.1) we have a

unique cohomology transformation
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(9.17) td @ U* ——» K¥

which is linear, degree-preserving, multiplicative and

(9.18) tdel (1)) = ey

for a line bundle L. This is essentially the same as the td-map of Conner-
Floyd [7], and we have
L N - . .n
(9.19) td(xZn) = ld(xzn)-u
for x, € Umzn(pt)g where Td(xzq) denotes the Todd genus of the weakly

2n 7

complex manifold representing Xo e Remark the difference of signs from
the corresponding formula of [7]1. This point is adjusted by a choice of
Bott-periodicity element u (among +u).

By (9.18) we see that

-

td(pt)Fy = Fp, and fﬁfpt)*iuz{p) = &g (p)
after localized at a prime p. Hence
(9.20) atePP (L)) = e Ky = &1y
for a line bundle L. This implies that

td(BP* (X)) C G*(X)

(cf., Theorem 7.2). And we obtain

Theorem 9.2, By restricting td 'to BP*( ) we obtain a cohomology
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transformation

Td . BP*() — G*()

which is ch)—linear; degree-preserving, multiplicative and

T ) =

for a line bundle L.
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§10. Coefficients of curves

Practically we need some calculus of coefficients of curves modulo
some ideals. Here we collect some propositions necessary for these
purposes.

10.1. Let R be a commutative rving with unity and I an ideal of

[

R. Let £(T) = ZfiTl and g(T) ZgiTl be formal power series over R,

We say that
£f=z0 mod I
iff fiEE I for all 1 > 0, and
f=g mod I

iff £ -g=0 mod I.

Lemma 10.1. Let £, f', g and g¢g' be formal power series over

R. If f£f=f"mod I and g = g' mod I, then
f+g=f"+g' modlI, fg= frg? mod I

and, when g and g' are without constant terms,

fog=zfto g' modT.

Proof follows by routine arguments.

Let F be a formal group over R.

Lemma 10.2. Let v, Yi’ Yy and Y5 be curves over F. 1If
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Y = Y1 mod I and Y, Z Yé mod I, then

F - F
Y1t Yy = Yi + yé mod I.

Proof follows by definition and the above Lemma.
Proposition 10.3. Let {yl, ACTIREE } and '{yi, yé, ... } be

Canchy sequences in C% such that

2
"

yi mod I

for all i > 1, then

F Y; Z z F yi mod I.
i>1 i>1

Proof. By the above Lemma the congruence is true for every finite
partial sums. Since every coefficient of infinite sums can be found as
a coefficient of suitable finite sum,the Proposition is true.

Lemma 10.4. Let Yy and vy, be curves over F such that Y, = 0

mod I and Y, =0 mod I, then

Proof. By (1.4)
F(X, Y) = X + Y + XYF(X, Y).
Thus

(y +7 M =Y M+ 1y oy (1M (D, 7, M)
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=y, (1) + v (1) mod 1%,

q. e. d
Proposition 10.5. Let {yl, Yoo ce } be a Canchy sequence in
C% such that
v; =0 mod I
for all 1 > 1, then
) Fyi Sy, Y, t e by, ... mod 12,

Proof. The congruence is true for every finite partial sums by
Lemmas 10.1 and 10.4, whence true for infinite sums.

Corollary 10.6. Let vy be a curve over F such that v = 0 mod T.

Express as

F k
v = ] (e 4T,
k>1
then
%(E 1
for all k > 0, and
— 2 K -
v(T) = ol * T+ oo v T+ .. mod T7.

In particular, when R is a Z, ,-algebra, y is a typical formal

(»

group over R and vy is a typical curve over 1y, expressing v as

X
v(T) = Z“(ck’l‘p ), if y =0 mod T, then ¢, € I for all k >0 and
k>0
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k

¥(T) = cOT + clTp oLt ckTp + ... mod I,

10.2. Let R, I, F. be as above.

Lemma 10.7. Let <y be a curve over F such that y =0 mod I.

Then

(Telvy +F M D

i

cT + %;{CT, 0) « v(T) mod 12

for ¢ € R, where Yo is the identity curve over R.

Proof. ([C]YO +F YI(T) = F(cT, v(T))

] 2y ey’

n 2
cT + § a (ecT)” « y(T) mod I
n>0

cT + g;{cT, 0) « v(T) mod Iz.

q. e. d.
Next suppose R is of characteristic zero. Differentiating the

relation

logFF(X, Y) = logFX + logFY
with respect to Y, we obtain

JF . _

~y(T, 0) ¢ logg T =1,

where logé is the derivative of logF. This shows firstly that logé
is a power series defined over R, i.e., if we put

n
- k k+1
(10.1) logF T = o1 T

k>l

2 nozl’
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then all nkéé R, and sescondly that all coefficients of %%{T, 0) are

integral polynomials of coefficients n of 1og%,

Proposition 10.8. Let R 'be of characteristic zero, and I an ideal

of R containing all coefficients ny of positive degrees of iﬁgéc Let

v be a curve over F, and expressing as y(T) = E F(ck_l Tk}, SUPPUSE
k>l

that c%_é I for all k > 0. Then

. . .
v{T) = COT + c1T4 el F ckwi‘ﬁ ... mod EZ
" Proof. Put
A‘f‘} (TY = z F{C.%_l Tk},
) k>1
then vy, = 0 mod I and by Proposition 10.5
I K 2
yl(T) = CXT Feeo g T L mod I,
Now by Lemma 10.7
v(T) = ({c,lv 4—F v 1 (T)
AN L OJ.O 11 N
- ., oF 2
= coi + 5?{COT, 03 yl(T) mod I7.
By the remark above the proposition we have
%g{CoT» 0) -1 =0 mod I.
Thus
— 2
v(T) = cOT + yl(T) mod I
= cOT + clT2 oL 4 ck_lTk + ... mod IZ.
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10.3. Let R bea Z(p)—algebra and y a typical formal group
over R, Let ¢ = (tl’ toy o- ) be a sequence of indeterminates and
put

y u Pk
b, (T) = J° (¢, TV ), t, =1,
L K50 k 0
which is a typical curve over 1 (extending the domain of coefficients
to R{t] = R[tl, Ty one .
u' =u

is a typical formal group over R[#]. Since

_l :
by !

and yu is typical, ¢;1 is a typical curve over u'. Put

-1 ) u' Pk
9, (T) = (s, T ), s,=1,
t o Uk 0

then Sj = sj(tl, t2 ... )€ R[t]. Here weput t=0-= (0, ..., 0,
then ¢, = vy, so ¢51 = v, and
sj(O, coes 0, ... ) =0 for j > 0,
i.e.,
(10.2) ‘ € T = (), ty, 0 ) for all j > 0.

Proposition 10.9. Under the above situation let I = (t

1, tz’
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the ideal generated by tl’ t2,

for all

k > 0.

Proof.

Thus

3
i

, in R[t]. Then

s, + t. = 0 mod I2

k k

by © 073 (D

il

[tis
i>0,j>0

i+j>0

i i+
) u(‘t},s}.) TP
i+3>0 7

Then, by Proposition 10.5

Hence

for all

k> 0.

j

]
"o TP
b, ) M s TP )
v 0

) = 0.

i _i+j
0= VM s )
. b ivj
i+3>0
- d 2
tk * S = 0 mod I
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§11. Stong-Hattori Theorem
In this section we prove Stong-Hattori Theorem [11], [20] in our
version based on formal group materials.

11,1, Here we put y = o, Let @ = (tl, tys ... ) Dbe a sequence

of indeterminates with dim tj = ~2(p3 ~ 1), and put

j
¢, (T) = G R t, = 1.
izo

b, is a typical curve over | by extending the domain of coefficients to

6*(pt) [1] = G*(pt)Tty, Ty, ..o ]

is a typical formal group over G*(pt)[t]. We give the complex orientation
. , . . -1, G*

of the cohomology theory G*( )[t] by assigning ¢t (e” (L)) as Euler
class of a line bundle L. Then its associated formal group is the typical

u'. Hence by Theorem 7.2 there exists a unique multiplicative cohomology

transformation

h : BP*( ) —> G*( )[t]
such that

nee® ) = 6.t @
for a line Bundle L, and
(11.1) h(pt) ipp = 1
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Put
h = h(pt)

for simplicity. By a standard argument (cf., [2]) we can identify h

with the Boardman map
m, (BP) —> m, (G ABP),
and the Stong-Hattori map

T, (MUY ——> 7, (K A MU)

decomposes as direct sum of copies of h after localized at the prime

]

p. Thus we can state Stong-Hattori Theorem in our version as

It

Theorem 11.1. h = h(pt) : BP*(pt) —> G*(pt)[t] is a splis
monomorphisn,

Stong-Hattori Theorem in this form is proved also in [3] by a different
method.

11.2. Before going into the proof of Theorem 11.1 we compute some
materials of 11, logu is already given in (9.16).

We compute [p]u

lc T) = « log T
gu[p]u( ) =p .

1 1+p+_.,+pk pk+1
=pT+Z—R——u1 T
k>0 p
1 1l+p+.. +pk'l P pk
=pT+ ] —xu (v, T
k>0 p
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- . -
log, (exp (pT)) + log (u 773,

-1
her e = lo .  Hence
where xpu gu
(11.2) Ip] (1) = exp (@T) +¥ (u;1P).
Hu H
Since

expu : Ga AT over G*(pt) ®Q

and Ga is additive, whence typical, we see that expﬂ

curve over u (over G*(pt) ®Q ). Put

i .
_ M p -
exp T= )~ (e.T" ), e. =1,
I 0
with dim e, = -2(p" - 1). Then
T =

lo e T
gu( xp,, )

i
log ,( ¥ (e.TP ))
St igp 1

1 Lep+...4p - o 1P

]

is a typical

for k > 0.

k > 0.

i50 550 pt ! :
Therefore
ko 1+p+...+pJ_1 P’
'z — U i = 0
j=0p
k
for all k > 0. Or, multiplying pp to this formula we obtain
k j-1  _k-j J
(11.3) gt IRt TP T 3P L
L j 1 k-j
=0 p
k .
Lemma 11.2. p¥ e € p + G*(pt) for all
Proof. For k = 0 : since ey = 1 we have



0
o’ ey =pep - GHpt).

We prove the Lemma by induction on k. Assume it is proved until k - 1.

Then by (11.3)

k k j~1  _k-j J
1 1+p+...
- pp ek = .z ____j_ul p+ +p (pp ek_j)P .
j=1 p
Here
k-j
P’ e € - Gt
J

for 1 < j <k by induction hypothesis. Then, since j <op
1 <j <k we have
k-j j -
1 p . pler e
—(p °k-3

P
for 1 < j < k. Hence

k
- pP e € - G (pt).

Now
k k
exp (p) = ¥ (pF e, ¥ ).
Ly k>0
Then by Proposition 10.5 and the above Lemma, putting I =p - G*(pt) we
obtain

Lemma 11.3. expu(pT) is a power series over G*(pt) and

expﬁ(pT) =0 mod p « G*(pt).

Corollary 11.4. [p]u(T) = ulTp mod p « G*(pt).
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This follows by Lemma 10.2, (11.2) and Lemma 11.3.

11.3. We compute £ Yo ¢

Psu
bies (T, Y0 = o (B
= kxEeYg T e fp,K*Yo
= (P My by (8.0
= [up—l]eK*Yo by Proposition‘2.9
= TP e,
= gK*#[up_l]yo by Proposition 2.4.
Since EK*# : C ;;C% , an isomorphism, we obtain

My K*
f

Do Y0 [ Iy,

Hence

(11.4) ﬁp,uYO = [ul]yo.
pj
Th t £ t.T
en we compute P,U( 3 )

for j = 0, since tO = 1 we have

fp,u(tOT) = (fp,uYO)(T)
= u,T by (11.4) ;

1

for j > 0,

f j f
t. t
D, ('J ) (

: p,u”pij-lftj]Yo)(T)

[p]uﬁij_l[tj]yo)(T) by Proposition 2.9
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plt
[p]“(th )

j
= ultﬁTp mod p-G*(pt)[t]

by Corollary 11.4. Thus we obtained

Lemma 11.5. 1) ﬁp,u(tOT) = ulT,
Pj p Pj
ii £ (t.T = u, 5T d peG*{pt)[t
1) p,ulHT ) F Y mod  peG*(pt)[t]
for j > 0.

11.4. Proof of Theorem 11.1. Put

7. = rev®
i i
p -1
vfgj 's are the polynomial basis of BP*{pt} (Theorem
p -1
6.2). Then by Theorem 6.3 we obtain

for i > 1, where

L il
BP‘YO) (T = . EU (.ViTp ).

(11.5) (ﬂp,UBYO) (1) = h*(ﬁ 5

D

Since ¢ﬁ ¢ u' %oy, we have

9 0 (B, ¥g) = Gy (T 1 Yo)

) fP s ((bﬁ#YO)

B fp,u¢ﬁ'

Thus

j
RN A C LD

(11.6) (£, .v) (D) sf0 PoH

p

) j
0 (7 @ERtP)) med peGrpu)[1)
350
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by Lemma 10.1, Proposition 10.3 and Lemma 11.5. Comparing the lowest terms

{(deg 1) of both sides of (11.6) we obtain

Hi

(11.7) vy Eu mod  p-G*(pt)[t].
Put
-1, H' pj
oy (D = " (5T ), sg =1,
j>0

as in 10.3, and put
I= (tlg tz: °"):
the ideal generated by tis tys een in G*(pt)[t]. Then

2
0 mod I

Il

S, + t.
J J

for j > G by Proposition 10.9. Hence we can use $1s Sys .-+ 25 2 poly-

nomial basis of G*(pt)[t], i.e.,
G*(pt) [t] = 6*(pt)[s), 5,5 «--1.
By (11.6), using Lemma 10.1 and Proposition 10.3, we obtain
u' Pj pj 2
(F v )(T) = ] (uf s.T' ) mod p-G*(pt)[t] + I°,
pﬂu 0 j>0 1 J
whence by (11.5) we see that

j_l 2
u? S, mod peG*(pt)[t] + I

(11.8) v. 1

J

for j > 1.

To prove Theorem 11.1, it is sufficient to prove that 'h mod p" is
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J
injective. Since u, 1is invertible we can use {u? Sj’ j >1} as a
1 -

polynomial basis of G*(pt)[t]. Then by (11.8)

G* (pt) [t] ® FP = G*(pt) [“’—29 VB’ . ® Fp:

where Fp = Z/p+Z, which contains Fp[ul’ Vé, Ve ...] as a subalgebra.
Finally by (11.7) we see that 5&, Vé, ... are algebraically independent
over Fn. Therefore " h mod p" is injective.

'

95



§12. Conner-Floyd Theorem

Conner-Floyd [7] proved the natural isomorphism

* - K%
U0 ® u ey 7 7 KOO
regarding both sides as Zz-graded. Here we shall see a corresponding

relation holds between BP*. and G*.

12.1. Here we write the polynomial basis V(E) of BP*(pt) (Theorem
p -1

6.2) by v, for simplicity. Compute Td(vk) by the recursive formula

k

(6.6). Remarking that

Tdm, )=,
p -1 P

by an induction on k we obtain
Td(vl) =1
(12.1) -

Td(vk) =0 for k > 1.

12.2. Using notations of 9.4 we map a line bundle L over X to

K k  _BP k(p-1) 0
1 - £ v {e (L)) € BP (X)
151 k(p-1)-1 1
where we regard as E?_lé‘ Z(D). By splitting principle this extends to a
natural map
0
X' ¢ KX) —— BP (X).

For a line bundle L we have
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k UK*(L))k(p-l)

tdo x'(L) =1 - kg} gP]f(p—l)-l u (e
" kg} EE(P—l)-l“k(p-l)(“_1‘3“1((“)](@_1)
S kg; B (p-1)-1 ey e
= Ey(D)
by (9.15). Thus
(12.2) td o y' = EOH
Remark that
2y = B K(X) C K(X)
and define
Lo oy —— »m
by a restriction of y'. Since EO is an idempotent, by (12.2) we see that
/{:\aox():l.
For negative integers s such that « 2{(p-1) < s < 0 we define
y> i 6 x) —— BPY(X)

by requiring they commute with suspensions and XO, XS is uniquely defined

by this requirement. Since td also commutes with suspensions we see that
(12.3) td o x° =1

for - 2(p-1) < s < 0.



12.3. Make BP* Z/2(p-1)Z-graded by

BPY(X) = ) BP® (X)
s=o. med 2(p-1)

for d € Z/2(p-1)Z. We denote this cohomology by BP#. Then td induces
multiplicative cohomology transformation

o o) —s ()

such that

~ 4 #

td (pt) = Td : BP (pt) —> Z(P)'
Thus th) is a BP#(pt)-module. Now we can state

Theorem 12.1. There exists natural isomorphism

8" (X) @ -dw.

# Z
BP" (pt} " (p)
For the proof of this theorem the most basic thing is the existence

of natural degree-preserving map

X d —s B
such that
(12.4) | > L
This is defined by x# = {Xs : - 2(p-1) < s < 0} and proved by (12.3).

The rest of the proof is completely parallel to the proof of [7],

Theorem (10.1), p.60. The proof is devided into three steps as in [7].
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At each step Quillen decomposition and the use of corresponding facts

of complex cobordism are helpful. Details are left to readers.
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