LECTURES IN MATHEMATICS

Department of Mathematics KYOTO UNIVERSITY

6

TYPICAL FORMAL GROUPS IN
 COMPLEX COBORDISM AND K-THEORY

BY SHÔRÔ ARAKI

Published by
KINOKUNIYA BOOK-STORE Co., Ltd.
Tokyo, Japan

LECTURES IN MATHEMATICS
 Department of Mathematics
 KYOTO UNIVERSITY

6

Typical Formal Groups
in
Complex Cobordism and K -Theory

BY
Shôrô Araki

Published by

Copyright (c) 1973 by Kinokuniya Book-store Co., Ltd.

ALL RIGHT RESERVED

Printed in Japan

Introduction

Part I.

§1. Formal groups. 1
§2. Modules of curves 6
§3. Typical curves and formal groups 19
54. Univexsai typical formal groups. 26
55. Quilien decomposition. 36
56. Generators of $U^{*}(p t)$ and $B P^{*}(p t)$. 52
§7. Operations in Brown-Peterson cohomology. 57
Part II
58. Typical formal groups in complex k-theory. 65
59. Adams decompositions and typical formal groups. 70
§10. Coefficients of curves. 81
§11. Stong-Hattori Theorem. 88
§12. Conner-Floyd Theorem. 96
References. 100

Introduction

The present lecture note consists of two parts.

Part I contains an exposition of Quillen's theory [18] of decompositions of complex cobordism theory localized at a prime p. Quillen's note [18] itself consists of two parts: the first part is connected with the proof of universality of the formal group of complex cobordism, of which detalled expositions are now available in literatures such as Adams [2], $581-8$, and Quillen [19], so I assumed these materials are known in the present lecture; the second part is the main subject of our part I. The coneents have much overlap with [2], but our exposition is given along original line of Quillen so it differs from the corresponding treatment of Adams [2] in its philosophy at least. We start with an exposition of Cartier's note [6] on the cheory of (typical) curves over formal groups. This is done in $\xi^{5} 2$ and 3 in a form suitable for our purpose and restricting to one-dimensional case only. In §4 we discuss a typical formal group which is universai for typical fomal groups, which turns out to be the formal group of Brown-Peterson cohomology (in §5). In $\S 5$ we prove Quillen decompositions. In $\S 6$ we discuss generators of $U^{*}(p t)$ and $\mathrm{BP}^{*}(\mathrm{pt})$ in a form related with formal group. I believe this section contains sone new results. Finally in $\S 7$ we discuss Landweber. Novikov type operations in Brown-Peterson cohomology.

In Part II we treat typical formal groups in (complex) K-theory and
their relation to Adams" idempotent decomposition of K-theory localized at a prime p [1]. The results here were announced in [5].

These lecture notes came out of my lectures in Kyushu University, December 1972, Osaka City University, February and May 1973, and Kyoto University, July 1973. I acknowledge to Professors T.Kudo and H. Toda for theix organizing my lectures in Kyushu University and Kyoto University, particularly to the latter for his arrangement to publish the present Mecture notes as a part of "Lectures in mathematics, Department of Mathematics, Kyoto University".

Part I

§1. Formal groups
1.1. Let R be a comnutative ring with unity. By a (one-dimensional commutative) formal group, or a group law, we understand a formal power series F in two variables over R satisfying
$(1.1) \quad F(0, X)=X$,
(1.2) $F(X, Y)=F(Y, X)$,
$(1,3) \quad F(X, F(Y, Z))=F(F(X, Y), Z)$.

Then F can be expressed as
$(1,4) F(X, Y)=X+Y+X Y F(X, Y)$
with $F(X, X) \in R[[X, Y]]$.

We are mainly interested in formal groups associated with cohomology theories which are complex oriented in the sense of $[8],[19](c f 0,3,1)$. In such a case R is graded, i.e., $R=\sum R^{i}$, and P satisfies (1.5) $\operatorname{dim} F(X, Y)=2$ if $\operatorname{dim} X=\operatorname{dim} Y=2$, i.e., if we put

$$
F(X, Y)=\sum_{i, j} a_{i j} X^{i} Y j
$$

then $\quad a_{i j} \in R^{2(1-i-j)} \quad(c e ., 5.2)$.
1.2. Let F and F^{\prime} be formal groups over R, and ψ a formal power series over R in one variable without constant term satisfying $(1.6) \quad \psi(F(X, Y))=F^{j}(\psi(X), \psi(Y))$,
then we call ψ a homomorphism,

$$
\dot{\psi}: F \longrightarrow F^{\prime},
$$

of formal groups.

When $\psi: F \longrightarrow F^{\prime}$ and $\varphi: F^{\prime} \longrightarrow F^{\prime \prime}$, then $\varphi \circ \psi: F \longrightarrow F^{\prime \prime}$, where $\varphi 0 \psi$ is the composition of formal power series. Thus formal groups over R and their nomomorphisms form a category, which will be denoted by $\mathscr{F}(R)$. When $\psi: F \rightarrow F$ and ψ is invertible with respect to composition, ther

$$
\psi^{-1}: F^{\prime} \longrightarrow F
$$

such that $\psi^{-1} \circ \psi=1_{F}$ and $\psi \circ \psi^{-1}=1_{F}$, where $1_{F}(T)=1_{F},(T)=T$.
Thus ψ is an isomorphism in the category $f(R)$, denoted by

$$
\psi: F \xrightarrow[\rightarrow]{\sim} F^{\prime}
$$

In particular, when

$$
\psi(T)=T+\text { higher terms }
$$

we call ψ a strict isomorphism which we denote by

$$
\psi: F \underset{\sim}{\approx} F^{\prime} .
$$

We denote the set of all homomorphisms $F \longrightarrow F^{\prime}$ by $\operatorname{Hom}_{R}\left(F, F^{\prime}\right)$ and put $\operatorname{End}_{R}(F)=\operatorname{Hom}_{R}(F, F)$.
1.3. Let $\theta: R \longrightarrow S$ be a homomorphism of commutative rings with unity. Let $\theta_{*}: R[[X, Y]] \longrightarrow S[[X, Y]]$ and $\theta_{*}: R[[T]] \rightarrow S[[T]]$
be the homomorphisms of rings of formal power series induced by coefficient $\operatorname{map} \theta$, i.e., $\quad \theta_{*}\left(\sum a_{i j} X^{i} Y^{j}\right)=\sum \theta\left(a_{i j}\right) X^{i} Y^{j}$ and $\quad \theta_{*}\left(\sum a_{i} T^{j}\right)=\sum \theta\left(a_{i}\right) T^{i}$. Since θ_{*} preserves also compositions, we see that, if $F \in o b j f(R)$, then $\theta_{*} F \in \operatorname{obj} \mathcal{F}(S)$, and if $\psi \in \operatorname{Hom}_{R}\left(F, F^{\prime}\right)$, then $\theta_{*} \psi \in \operatorname{Hom}_{S}\left(\theta_{*} F, \theta_{*} F^{\prime}\right)$ and $\theta_{*}(\varphi \circ \psi)=\theta_{*} \varphi \theta_{*} \psi$, i.e., $\theta_{*}: f(R) \longrightarrow \mathscr{f}(S)$ is a covariant functo. Thus we obtained, roughly speaking, a functor of defined on the category of commutave rings with unity with values in a category whose objects are categories of formal groups and morphisms are covariant functors $\left.(\theta)=\theta_{*}\right)$. Later we meet often with needs to restrict this functor ejther restricting the domain to a subcategory or the range, or both. 1.4. We recall some known results without proof.

A formal group F_{U} defined over a ring U is called universal if for any ring R and for any formal group F on R there exists a unique homomorphism $u: U \rightarrow R$ of rings with unity such that $u_{*} F_{U}=F$, The existence of a miversal formal group and the structure of the ring u was first established by Lazard [15]. The uniqueness of (FU, U) up to equivalence follows by the general nature of "universality". The structure theorem of U says:
[Lazard's Theorem] $U=\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}, \ldots\right]$,
a polynomial ring over integers with countable indeterminates x_{1}, x_{2}, ..., .
We call the ring u Lazard ring. For the benefit of topologists we
mention that the Lazard ring U can be given as a graded ring, graded by non-positive even dimensions so that F_{U} satisfies the condition (1.5). In this case $\operatorname{dim} x_{n}=-2 n$. Cf., also [2], §§5 and 7.
1.5. A formal group G_{a} given by

$$
G_{a}(X, Y)=X+Y
$$

is called additive. Such a formal group is defined over any ring R.

Let F be a formal group. A strict isomorphism

$$
\ell_{F}: F \underset{\rightarrow}{\leftrightarrows}
$$

is called a logarithm of F.
[existence of logarithm] Let F be a formal group defined over a

R-algebra R. There exists a unique logarithm $\ell_{F}: F \underset{\rightarrow}{\leftrightarrows} G_{a}$.
For the proofs, cf., [13], [15] and [9], p.69. The existence is essential, and the uniqueness is easy.

Let F be a formal group defined over a ring R and suppose that R is of characteristic zero, i.e., every prime is not a zero divisor in R. Then $R \subset R \otimes Q$ and we can regard F as a formal group over $R \otimes Q$ by extending the domain of coefficients. Now we have a unique logarithm

$$
\ell_{F}: F \underset{a}{\simeq} G \quad \text { over } \quad R \otimes Q
$$

We often denote as $\ell_{F}=\log _{F}$, and call it the logarithm of F for simplicity. If we express as

$$
\log _{F} T=\sum_{k>0} m_{k} T^{k+1}, \quad m_{0}=1
$$

then it is known that

$$
(k+1) m_{k} \in R
$$

For topologists this is familiax by kischenko series in case $F=F_{U}$, and the general case follows by functoriality (cf., छ2).
§2. Modules of curves

We describe here modules of curves on formal groups according to Cartier [6].
2.1. Let R be a commutative ring with unity. The ring of formal power series in one variable $T, R[[T]]$, is filtered by degrees, i.e.,

$$
\mathrm{R}[[\mathrm{~T}]]=\mathrm{R}[[\mathrm{~T}]]_{0} \supset \mathrm{R}[[\mathrm{~T}]]_{1} \supset \cdots \supset \mathrm{R}[[\mathrm{~T}]]_{\mathrm{n}} \supset \ldots
$$

where $R[[T]]_{n}=\left\{f(T)=\sum f_{i} T^{i} \in R[[T]]: f_{0}=\ldots=f_{n-1}=0\right\}$. $R[[T]]$ is complete and Hausdorff with respect to this filtration topology. $R[[T]]_{1}$ is the submodule of $R[[T]]$ consisting of all power series without constant texms.

Let $F \in \operatorname{obj}(R)$. For $\gamma, \gamma^{\prime} \in R[[T]]_{1}$ we define their sum $\gamma+{ }^{F} \gamma^{\prime}$ with respect to F by
$(2.1) \quad\left(\gamma{ }^{F}{ }^{F} \gamma^{\prime}\right)(T)=F\left(\gamma(T), \gamma^{\prime}(T)\right)$.

Proposition 2.1. $\mathrm{R}[[\mathrm{T}]]_{1}$ with the sum $+{ }^{F}$ is an abelian group.
Proof. By (1.2) and (1.3) it follows the commutativity and associativity. Zero power series $0(T)=0$ is the zero element by (1.1). There exists a unique power series

$$
\begin{equation*}
{ }^{\imath_{F}} \in R[[T]]_{1} \quad \text { satisfying } \quad F\left(T,{ }^{\imath} F(T)\right)=0 \tag{2.2}
\end{equation*}
$$

Then, for any $\gamma \in R[[T]]_{1}$

$$
-^{F} \gamma={ }^{1} F 0 \gamma
$$

is the inverse of γ with respect to the addition $+F$.

$$
q, e \cdot d
$$

Put $C_{F}=\left(R[[T]]_{1},+{ }^{F}\right)$, the above additive group. We call an element of C_{F} a curve over F. Thus C_{F} is the additive group of curves over F. The curve γ_{0}, defined by $\gamma_{0}(T)=T$, plays an important role and will be called the identity curve (over F).
2.2. We remark that

$$
\begin{equation*}
{ }^{l_{F}} \in \operatorname{End}_{R}(F) \tag{2,3}
\end{equation*}
$$

This is proved by observing that there exists a unique power sexies $\gamma(X, Y)$ satisfying $F(F(X, Y), Y(X, Y))=0$ and that both ${ }_{2}(F(X, Y))$ and $F\left(u_{F}(X),{ }_{F}(Y)\right)$ satisfy the property of $Y(X, Y)$.

We embed $\operatorname{Hom}_{R}\left(F^{\prime}, F\right)$ inco C_{F} canonically. Then we see easily that $\operatorname{Hom}_{\mathrm{R}}\left(\mathrm{F}^{9}, F\right)$ is a subgroup of e_{F}. And the map

$$
\operatorname{Hom}_{R^{\prime}}\left(F^{\prime}, F\right) \times C_{F}, \longrightarrow C_{F}
$$

is bi-additive. Thus End ${ }_{R}(F)$ is an additive subgroup of e_{F} and is a ring with composition as multiplication and with γ_{0} as unity (noncommutative in general). Furthermore C_{F} is a left $E_{R}(F)$-module.
2.3. There exists a unique homomorphism of additive groups

$$
[]_{\mathrm{F}}: \mathbb{Z} \longrightarrow e_{\mathrm{F}}
$$

such that []$_{F}(1)=\gamma_{0}$. We write []$_{F}(n)=[n]_{F}$ for any integer n.

We have
(2.4) $[1]_{\mathrm{F}}=\gamma_{0}, \quad[-1]_{\mathrm{F}}={ }^{1} \mathrm{~F}$ and $[0]_{\mathrm{F}}=0$,
(2.5) $[n]_{F}(T)=F\left(T,[n-1]_{F}(T)\right)=F\left(l_{F}(T),[n+1]_{F}(T)\right)$.

Remark that

$$
\mathrm{I}_{\mathrm{F}}(\mathrm{~T})=-\mathrm{T}+\text { higher terms }
$$

which follows from (1.4) and (2.2). Then we see by (2.5) that
(2.6) $[n]_{\mathrm{F}}(T)=n T+$ higher terms.

By (2.3) and (2.5) we see that

$$
\begin{equation*}
[n]_{F} \in \operatorname{End}_{R}(F) \tag{2.7}
\end{equation*}
$$

i.e., the map []$_{F}: \mathbb{Z} \longrightarrow C_{F}$ factorizes as

$$
[]_{\mathrm{F}}: \mathbb{Z} \longrightarrow \operatorname{End}_{\mathrm{R}}(\mathrm{~F}) \subset \mathrm{C}_{\mathrm{F}}
$$

In fact, the first factor of []$_{F}$ is a ring homomorphism because $[n m]_{\mathrm{F}}=[\mathrm{n}]_{\mathrm{F}} \circ[\mathrm{m}]_{\mathrm{F}}$ as is easily seen; and the \mathbb{Z}-module structure of C_{F} is the same as that given by this ring homomorphism, i.e.,
$(2.7)^{\prime}$

$$
[n]_{\mathrm{F}} \circ \gamma=n \cdot \gamma, \quad n \text { times of } \gamma \text { in } C_{F}
$$

2.4. Let d be an integer which is a unit in R. By (2.6) $[d]_{\mathrm{F}}$
is invertible. We define as

$$
[1 / \mathrm{d}]_{F}=[\mathrm{d}]_{\mathrm{F}}^{-1} \in \operatorname{End}_{\mathrm{R}}(\mathrm{~F})
$$

Suppose that R is a Λ-algebra, where Λ is a ring such that $z \subset \Lambda \subset$. For any $\lambda \in \Lambda$ express λ as a fraction $\lambda=a / b$ such that $(a, b)=1$, then b is a unit in R and we define as

$$
[\lambda]_{\mathrm{F}}=[\mathrm{a}]_{\mathrm{F}} \circ[\mathrm{~b}]_{\mathrm{F}}^{-1} \in \operatorname{End}_{\mathrm{R}}(\mathrm{~F}) .
$$

This extends the ring homomorphism []$_{\mathrm{F}}: \mathbb{Z} \longrightarrow \mathrm{End}_{\mathrm{R}}(\mathrm{F})$ to the ring homomorphism

$$
[]_{F}: \Lambda \longrightarrow \operatorname{End}_{R}(F)
$$

And we obtain

Proposition 2.2. When R is a A-algebra with a ring A such that
$\mathbb{Z} \subset \Lambda \subset Q$, then C_{F} is a left Λ-module by

$$
\lambda \cdot \gamma=[\lambda]_{F} \circ \gamma
$$

for $\lambda \in \Lambda$ and $\gamma \in C_{F}$.
2.5. Let F be a formal group over a ring R. We define three kinds of operators on C_{F}.
i) $([a] \gamma)(T)=\gamma(a T), \quad a \in R$,
ii) $\left(N_{n} \gamma\right)(T)=\gamma\left(T^{n}\right), \quad n \geq 1$,
iii) $\quad\left(\mathbb{I}_{n} \gamma\right)(T)=\sum_{1<\bar{i} \leq n}^{F} \gamma\left(\zeta_{i} T^{1 / n}\right), \quad n \geq 1$,
where $\sum_{1 \leq i \leq n}^{F}$ is the summation in C_{F} and $\zeta_{1}, \ldots, \zeta_{n}$ are n-th roots of unity. $\bar{f}_{n} \bar{\gamma}$ lies in $R\left[\zeta_{1}, \ldots, \zeta_{n}\right]\left[\left[T^{1 / n}\right]\right]$ in first glance. Since F is commutative, each coefficient of $\mathbb{\#}_{n} \gamma$ is a symmetric polynomial of
$\zeta_{1}, \ldots, \zeta_{n}$, hence a polynomial of elementary symmetric polynomials $\sigma_{1}(\zeta)$, $\ldots, \sigma_{n}(\zeta)$ of $\zeta_{1}, \ldots, \zeta_{n}$. Put

$$
\left(\mathrm{f}_{\mathrm{n}} \gamma\right)(\mathrm{T})=\sum_{\mathrm{d} \geq 1} g_{\mathrm{d}}\left(\sigma_{1}(\zeta), \ldots, \sigma_{\mathrm{n}}(\zeta)\right) \mathrm{T}^{\mathrm{d} / n},
$$

then $g_{d}\left(\sigma_{1}(\zeta), \ldots, \sigma_{n}(\zeta)\right)$ is a polynomial of homogeneous degree d with $\operatorname{deg} \sigma_{i}(\zeta)=i$. Now $\zeta_{1}, \ldots, \zeta_{n}$ are $n-t h$ roots of unity, whence

$$
\sigma_{1}(\zeta)=\ldots=\sigma_{n-1}(\zeta)=0, \quad \sigma_{n}(\zeta)=(-1)^{n-1}
$$

Thus

$$
\begin{array}{ll}
g_{d}\left(\sigma_{1}(\zeta), \ldots, \sigma_{n}(\zeta)\right)=0 & \text { if } d \neq 0(\bmod n), \\
g_{n k}\left(\sigma_{1}(\zeta), \ldots, \sigma_{n}(\zeta)\right)=g_{n k}\left(0, \ldots, 0,(-1)^{n-1}\right) \in R
\end{array}
$$

and $f_{n} \gamma$ is a well-defined curve in C_{F}.
Operators [a] are called homotheties, w_{n} are called shifting operators and f_{n} are called Frobenius operators. Among three kinds of operators Frobenius operators nay be regarded as the most important ones and are the only ones defined essentially depending on the formal group F, so we write sometimes as $f_{n}=f_{n, F}$ to clarify on what formal group they are considered.

We used notations [.] and [] F to mean entirely different objects
(with or without suffix !). I hope there arises no confusion.
Proposition 2.3. Operators [a], w_{n} and f_{n} are additive..
Proof follows from routine calculations.

Thus C_{F} is an operator-module. These operators satisfy certain universal relations (cf., Proposition 2.9 below).
2.6. Let $F, G \in \operatorname{obj} \mathcal{H}(R)$ and $\psi: F \longrightarrow G$ in $\mathcal{F}(R)$. We define

$$
\psi_{\#}: C_{F} \rightarrow C_{G}
$$

by $\quad\left(\psi_{\#} \gamma\right)(T)=(\psi \circ \gamma)(T)$.

Proposition 2.4. $\psi_{\#}$ is linear and commutes with operators [a], W_{n} and f_{n} i.e., a homomorphism of operator-modules.

Proof follows by routine calculations.

In particular, operators [a], w_{n} and \tilde{q}_{n} commute with opexations of $E n d_{R}(F)$ on Q_{F}, And we obtain

Proposition 2.5. When R is a A-algebra such that $2 \in A C B$, then operators [a], N_{n} and ${ }_{n}$ are endomorphisms of A-modure Cei.e. \mathcal{C}_{F} is an operator-A-module, and $\psi_{\#}: \mathcal{C}_{\mathrm{H}} \rightarrow C_{G}, \psi \in \operatorname{Hom}_{\mathrm{R}}(\mathrm{B}, \mathrm{Q}):$ is a homomorphism of operator- - -modules.

Now it is clear that $" F \longmapsto C_{F}, \psi \longmapsto \psi_{\#}$ " is a covaiant functor on $f(\mathrm{R})$ with values in the category of operator-modules. We denote this functor by $Q(R)$.
2.7. Let $\theta: R \longrightarrow S$ be a homomorphism of commutative rings with unity, and $F \in$ obj $\mathscr{X}(\mathrm{R})$.

Proposition 2.6. $\theta_{*}: C_{F} \rightarrow C_{\theta_{*}}$ is linear and commutes with
operators $[a], w_{n}$ and f_{n} in the sense that $\theta_{*} \circ[a]=[\theta(a)] \circ \theta_{*}$ and $\theta_{*} \circ{\underset{\sim}{n, F}}^{f}=f_{n, \theta_{*}}{ }^{\circ} \theta_{*}$, i.e., θ_{*} is a homomorphism of operatormodules. When R is a Λ - algebra such that $\mathbb{Z} \subset \Lambda \subset \mathbb{Q}$, then θ_{*} is a homomorphism of operator- -1 modules.

Proof follows again by routine calculations.

Remark also the commutativity

for $\theta: R \longrightarrow S$ and $\psi: F \longrightarrow G$. Thus θ_{*} is a natural homomorphism of functors $: C(R) \longrightarrow C(S) \circ \theta_{*}$.
2.8. Let R be a commutative ring with unity and $F \in$ obj $\mathcal{F}(R)$. Put $C_{n}=R[[T]]_{n}$ for $n \geq 1$. By definition we see immediately that C_{n} are subgroups of $C_{F}=C_{I}$. Thus we have a filtration of C_{F} :

$$
C_{F}=C_{1} \supset C_{2} \supset \ldots . \supset C_{n} \supset \ldots .
$$

We say that, for two power series $f, g \in R[[T]], f \equiv g \bmod \operatorname{deg} n \quad$ iff $f-g \in R[[T]]_{n}$, i.e., they have the same terms of degree $<n$.

Lemma 2.7. Let $\gamma_{1}, \gamma_{2} \in C_{F} . \quad \gamma_{1} \equiv \gamma_{2} \bmod \quad C_{n}$ iff $\quad \gamma_{1} \equiv \gamma_{2}$ mod deg n.

Proof. Suppose that $\gamma_{1} \equiv \gamma_{2} \bmod C_{n}$. There exists a curve $\gamma^{\prime} \in C_{n}$
such that $\gamma_{1}+{ }^{F} \gamma^{\prime}=\gamma_{2}$. Then

$$
\begin{aligned}
\gamma_{2}(T) & =F\left(\gamma_{1}(T), \gamma^{\prime}(T)\right) \\
& \equiv \gamma_{1}(T)+\gamma^{\prime}(T) \quad \bmod \operatorname{deg} n+1 \\
& \equiv \gamma_{1}(T) \quad \bmod \operatorname{deg} n .
\end{aligned}
$$

The converse will be proved by induction. The case $n=1$ is trivial. Assume it is true for $n-1$, and suppose $\gamma_{1} \equiv \gamma_{2} \bmod \operatorname{deg} n$. Then $\gamma_{1} \equiv \gamma_{2} \bmod \operatorname{deg} n-1$, hence $\gamma_{0}^{\prime}=\gamma_{1}-{ }^{F} \gamma_{2} \in C_{n-1}$ by assumption. Now

$$
\begin{aligned}
\gamma_{1}(T) & =F\left(\gamma^{\prime}(T), \gamma_{2}(T)\right) \\
& \equiv \gamma^{\prime}(T)+\gamma_{2}(T) \quad \bmod \operatorname{deg} n \\
& \equiv a_{n-1} \cdot T^{n-1}+\gamma_{2}(T) \quad \bmod d e g n
\end{aligned}
$$

where $\gamma^{\prime}(T)=a_{n-1} T^{n-1}+$ higher terms. Since γ_{1} and γ_{2} have the same terms of degree $n-1$, we conclude that $a_{n-1}=0$ and $\gamma^{*} \in c_{n}$.
q.e.d.

By the above lemma we conclude the following
Proposition 2.8. C_{F} is complete and Hausdorff with respect to the above filtration topology.

By definition we have

$$
[a]\left(C_{m}\right) \subset C_{m}, \quad v_{n}\left(C_{m}\right) \subset C_{n m}, \quad f_{n}\left(C_{m}\right) \subset C_{[m-1 / n]+1}
$$

Thus all three kinds of operators are continuous with respect to the filtration topology of C_{F}.
2.9. Let R be a commutative ring with unity and $F \in \operatorname{obj} f(R)$.

Proposition 2.9. Among three kinds of operators on C_{F} there hold the following relations.
i) $[a][b]=[a b], \quad a, b \in R$,
ii)

$$
\mathbb{v}_{\mathrm{n}} \mathbb{v}_{\mathrm{m}}=\mathbb{v}_{\mathrm{nm}}, \quad \mathrm{n} \geq 1, \mathrm{~m} \geq 1
$$

iii) $\quad \mathbf{f}_{\mathrm{n}} \mathbf{f}_{\mathrm{m}}=\mathbf{f}_{\mathrm{nm}}, \quad \mathrm{n} \geq 1, \mathrm{~m} \geq 1$,
iv) $\quad v_{n}\left[a^{n}\right]=[a] v_{n}, \quad n \geq 1, a \in R$,
v) $\quad \mathbf{f}_{\mathrm{n}}[\mathrm{a}]=\left[\mathrm{a}^{\mathrm{n}}\right] \mathbf{f}_{\mathrm{n}}, \quad \mathrm{n} \geq 1, \mathrm{a} \in \mathrm{R}$,
vi) $\quad f_{n} v_{n}=n \cdot i d C_{F}, \quad[1]=v_{1}=f_{1}=i d C_{F}$,
vii) \quad if $(n, m)=1$ then $f_{n} \mathbb{N}_{m}=\mathbb{v}_{\mathrm{m}} \mathbb{f}_{\mathrm{n}}$,
viii)

$$
[a]+[b]=\sum_{n \geq 1} v_{n}\left[s_{n}(a, b)\right] f_{n}
$$

In the relation viii) of this proposition $s_{n}(X, Y)$ are symmetric polynomials of degree n over integers, which are defined recursively by the formula

$$
X^{n}+Y^{n}=\sum_{d \mid n} d \cdot s_{d}(X, Y)^{n / d}
$$

The right hand side of viii) means an operator which sends each curve $\gamma \in C_{F}$ to

$$
\left(\sum_{n \geq 1} \mathbb{v}_{n}\left[s_{n}(a, b)\right] f_{n}\right) \gamma=\sum_{n \geq 1}^{F} v_{n}\left[s_{n}(a, b)\right] f_{n} \gamma,
$$

which is a Cauchy series in C_{F}, hence convergent to a curve in C_{F} by

Proposition 2.8 .
Proof. Relations i), ii), iii), iv) and v) follow by routine calculations.

For any $\gamma \in C_{F}$, we have

$$
\mathrm{f}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}} \gamma=[\mathrm{n}]_{\mathrm{F}} \circ \gamma,
$$

then by (2.7)' it follows the relation vi).
Suppose $(m, n)=1$ and $\left\{\zeta_{1}, \ldots, \zeta_{n}\right\}$ be $n-t h$ roots of unity. Then $\left\{\zeta_{1}, \ldots, \zeta_{n}\right\}=\left\{\zeta_{1}^{m}, \ldots, \zeta_{n}^{m}\right\}$, by which follows the relation vii).

It remains only the proof of the relation viii). First we prove the relation for additive group laws, i.e., suppose $F=G_{a}$, an additive formal group. Remark that for $\gamma(T)=\sum_{i \geq 1} c_{i} T^{i} \in C_{G_{a}}$ we have

$$
\begin{array}{rlr}
([a] \gamma)(T) & =\sum_{i \geq 1} c_{i} a^{i^{i} T^{i}}, & a \in R, \\
\left(w_{n} \gamma\right)(T) & =\sum_{i \geq 1} c_{i} T^{n i}, & n \geq 1, \tag{2.8}\\
\left(f_{n, G} \gamma\right)(T) & =n \sum_{i \geq 1} c_{n i} T^{i}, & n \geq 1,
\end{array}
$$

and the addition in C_{G} is the ordinary addition of formal power series. Then

$$
\begin{aligned}
\left([a]_{\gamma}+[b] \gamma\right)(T) & =\sum_{n \geq 1} c_{n}\left(a^{n}+b^{n}\right) T^{n} \\
& =\sum_{n \geq 1} c_{n}\left(\sum_{n=d m}^{d} \cdot s_{d}(a, b)^{m}\right) T^{n} \\
& =\sum_{d \geq 1, m \geq 1} c_{d m} d \cdot s_{d}(a, b)^{m} T^{m d} \\
& =\sum_{d \geq 1} v_{d}\left(\sum_{m \geq 1} d c_{d m} \cdot s_{d}(a, b)^{m} T^{m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{d \geq 1} w_{d}\left[s_{d}(a, b)\right]\left(\sum_{m \geq 1} d c_{d m} T^{m}\right) \\
& =\sum_{d \geq 1}\left(w_{d}\left[s_{d}(a, b)\right] \mathbb{f}_{d} \gamma(T)\right.
\end{aligned}
$$

i.e., the relation is proved for $F=G_{a}$.

Next suppose that R is of characteristic zero. Then there exists a unique logarithm

$$
\ell_{F}: F \underset{\rightarrow}{\cong} G_{a} \quad \text { over } R \otimes \mathbb{Q}
$$

by 1.5. $\ell_{\mathrm{F} \#}: C_{\mathrm{F}} \cong C_{G}($ over $R \otimes \mathbb{O}$) is a topological isomorphism of operator-modules by Proposition 2.4. Thus $l_{F \#}^{-1}$ preserves the relations among operators and the relation viii) holds in C_{F} over $R \otimes \mathbb{Q}$. Since coefficients extension $R \subset R \otimes \mathbb{Q}$ embeds C_{F} over R into C_{F} over $R \otimes Q$ as operator-module, the relation viii) is true in C_{F} when R is of characteristic zero.

The Lazard ring U is of characteristic zero (by Lazard's Theorem). We consider the universal formal group F_{U} over $U \otimes \mathbb{Z}[t, u]$ extending coefficients domain, where t and u are indeterminates. The relation viii) is true in $C_{F_{U}}$ over $U \otimes \mathbb{Z}[t, u]$ by the above arguments. Let F be a formal group over an arbitrary ring R. By universality there exists a homomorphism $\theta: U \longrightarrow R$ such that $\theta_{*} F_{U}=F$. Let $a, b \in R$. Extend θ to a homomorphism $\theta: U \otimes \mathbb{Z}[t, u] \longrightarrow R$ by $\vartheta(t)=a$ and $\theta(\mathrm{u})=\mathrm{b} . \quad$ Clearly $\ddot{\theta}_{*} \mathrm{~F}_{\mathrm{U}}=\mathrm{F} . \quad$ Now

$$
\theta_{*}: C_{F_{U}} \text { over } U \otimes \mathbb{Z}[t, u] \rightarrow C_{F}
$$

is a homomorphism of operator-modules by Proposition 2.6, and hence sends the relation viii) in $C_{F_{U}}$ for the pair (t, u) to the relation viii) in C_{F} for the pair ($\left.a, b\right)$. Thus the proof is complete.

2.10. Let $F \in \operatorname{obj} \mathscr{F}(R)$.

Proposition 2.10. Every curve y over F can be expressed uniquely

as a Cauchy series

$$
\gamma=\sum_{n \geq 1}^{F} \mathbb{N}_{n}\left[c_{n-1}\right] \gamma_{0}, c_{n-1} \in R, \quad\left(\text { i.e. }, \gamma(T)=\sum_{n \geq 1}^{F}\left(c_{n-1} T^{n}\right)\right)
$$

Proof. Let

$$
\gamma(T)=c_{0} T+\text { higher terms }
$$

and put

$$
\gamma_{1}=\gamma{ }^{\mathrm{F}}\left[\mathrm{c}_{0}\right] \gamma_{0}
$$

Then by definitions we see easily that $\gamma_{1} \in C_{2}$. Now let

$$
\gamma_{1}(T)=c_{1} T^{2}+\text { higher terms }
$$

and put

$$
\gamma_{2}=\gamma_{1}-{ }^{F}{ }_{w_{2}}\left[c_{1}\right] \gamma_{0}
$$

Then we obtain that $\gamma_{2} \in C_{3}$. By a recursive construction we obtain $\gamma_{n} \in C_{n+1}$ and $\gamma_{n+1}=\gamma_{n}-{ }^{F} v_{n+1}\left[c_{n}\right] \gamma_{0} \in C_{n+2}$, and so on. Thereby we obtain a Cauchy series $\sum_{n \geq 1} F_{n}\left[c_{n-1}\right] \gamma_{0}$ which converges to γ. The
uniqueness is obvious by construction. que. d.
2.11. Let $\mathrm{F} \in$ obj $\mathcal{F}(\mathrm{R}), \quad \gamma \in \mathrm{R}[[\mathrm{T}]]_{1}$ and invertible. We put

$$
F^{\gamma}(X, Y)=\gamma^{-1} \circ F(\gamma(X), \gamma(Y))
$$

Then we see easily that $F^{\curlyvee} \in$ obj $\mathscr{F}(\mathrm{R})$ and

$$
\gamma: F^{\gamma} \simeq F .
$$

We call F^{Y} the transpose of F by γ. Since $\gamma \in \operatorname{Hom}_{R}\left(F^{\gamma}, F\right) \subset C_{F}$, it is natural to regard γ as an (invertible) curve over F when we consider the transpose of F by γ.
33. Typical curves and formal groups

Let I be a set of primes. We use the notation I only to denote such a set of primes. The following special cases are the most important: $I=(p)$, the set of all primes except $p ; I=[p]$, the set consisting of the single prime p.

We denote by \mathbb{Z}_{T} the following subring of \mathbb{Q} :

$$
\mathbb{Z}_{I}=\mathbb{z}\left[\frac{1}{q}: q \in I\right]
$$

Thus

$$
\begin{aligned}
& \mathbb{Z}_{(p)}=\text { integers localized at the prime } p, \\
& \mathbb{Z}_{[p]}=\text { the ring consisting of rationals of the form } a / p^{k}
\end{aligned}
$$

3.1. Let R be a commutative ring with unity and F a formal group over R.

A curve γ over F is called T-typical iff $f_{q} \gamma=0$ for all $q \in T$. F is called I-typical iff the identity curve γ_{0} over F is I-cypical. When $I=(p)$, we call simply typical in place of (p)-typical. Typical curves or formal groups are usually observed when R is a $\mathbb{Z}_{(p)}$-algebra.

Denote by $C_{F, I}$ the set of all I-typical curves over F. Clearly it is a subgroup of C_{F} and stable under operators $[a], a \in R, \mathbb{N}_{n}$ and f_{n} such that $(n, q)=1$ for all $q \in I$ by Proposition 2.9. We regard these operators as allowable operators on $C_{T} T_{F, I}$. Then C_{F}, I is an operator-module over allowable operators.

When $I=(p)$ we write simply $C T_{F,(p)}=C T_{F}$. In this case allowable operators are generated by $[a], a \in R, \mathbb{N}_{p}$ and f_{p}.
3.2. Suppose R is a \mathbb{Z}_{I}-algebra and define operators

$$
e_{q}=e_{q, F}: C_{F} \longrightarrow C_{F}, \quad q \in I
$$

by $e_{q}(\gamma)=\gamma-F\left(\frac{1}{q}\right) v_{q} q_{q} \gamma$. By Propositions 2.5 and 2.9 we see easily that $e_{q}{ }^{\prime}$ s are idempotents and mutually commutative. Moreover $e_{q} \gamma \equiv \gamma \bmod C_{q}$. Thus the product

$$
\begin{equation*}
\varepsilon_{I}=\varepsilon_{I, F}=\prod_{q \in I} e_{q} \tag{3.1}
\end{equation*}
$$

is convergent and well-defined operator on C_{F}. We have also a Cauchy sum expansion

$$
\begin{equation*}
\left.\varepsilon_{\mathrm{I}} \gamma=\sum_{\mathrm{n}}^{\mathrm{rel} \mathrm{I}} \underset{\mathrm{~F}}{\mathrm{n}}\right) \mathbb{N}_{\mathrm{n}} \mathrm{f}_{\mathrm{n}} \gamma \tag{3.2}
\end{equation*}
$$ for $\gamma \in C_{F}$, where $\mu(n)$ is the Möbius function and the summation runs over all natural numbers n of which every prime factor belongs to I (including $n=1$).

Proposition 3.1. ε_{I} is an idempotent and projects C_{F} onto the subgroup $C^{T}{ }_{F, I}$.

The proof is straight forward if we remark that $\mathbb{f}_{\mathrm{q}} \mathrm{e}_{\mathrm{q}}=0$.
We call the operator ε_{I} Cartier operator over F. In particular the curve

$$
\begin{equation*}
\xi_{I}=\xi_{I, F}=\varepsilon_{I} \gamma_{0} \tag{3.3}
\end{equation*}
$$

is I-typical, which we regard as the canonical I-typical curve over F. By (3.2) we have

$$
\xi_{\mathrm{I}}(\mathrm{~T})=\mathrm{T}+\text { higher terms } .
$$

Thus

$$
\begin{equation*}
\xi_{I}: F^{\xi_{I}} \underset{\sim}{\leftrightarrows} F \tag{3.4}
\end{equation*}
$$

(cf. 2.11 for definition). By Proposition $2.4 \xi_{\text {I\# }}$ maps I-typical curves to I-typical curves and vice-versa. Then, since $\xi_{I \#} \gamma_{0}=\xi_{\mathrm{I}}$, I-typical over F, we obtain

Proposition 3.2. $\mathrm{F}^{\xi_{\mathrm{I}}}$ is an I-typical formal group which is strictly
isomorphic to F.
We regard $F^{\xi_{I}}$ as the I-typical formal group canonically associated to F .
3.3. Let R be a \mathbb{Z}_{I}-algebra. Let \mathbb{N} be the set of all natural numbers $1,2, \ldots$, and put

$$
\begin{aligned}
& \mathbb{N}_{I}^{\prime \prime}=\{k \in \mathbb{N} ;(k, q)=1 \text { for all } q \in I\} \\
& \mathbb{N}_{I}^{\prime}=\mathbb{N}-\mathbb{N}_{I}^{\prime \prime} .
\end{aligned}
$$

First consider a curve

$$
\gamma(T)=\sum_{k \geq 1} \gamma_{k-1} T^{k}
$$

over G_{a}, the additive group law over R. By (2.8) we obtain

$$
\left(e_{q, G_{a}}\right)^{\gamma)(T)}=\sum_{(k, q)=1} \gamma_{k-1} T^{k}
$$

for $q \in I$. Thus

$$
\begin{equation*}
\left(\varepsilon_{I, G_{a}} \gamma\right)(T)=\sum_{k \in \mathbb{N}_{I}^{\prime \prime}} \gamma_{k-1} T^{k} \tag{3,5}
\end{equation*}
$$

Next assume that R is of characteristic zero and $F \in$ obj $\mathcal{F}(R)$.

Proposition 3.3. Let ℓ and l_{I} be the logarithms of F and ${ }_{F}{ }^{\xi_{\mathrm{I}}}$ respectively over $R \otimes Q$. Put

$$
\ell(T)=\sum_{k \geq 1} m_{k-1} T^{k}
$$

then

$$
\ell_{I}(T)=\sum_{k \in \mathbb{N}_{\underline{I}}^{\prime \prime}} m_{k-1} T^{k}
$$

Proof. By (3.4)

$$
\ell \circ \xi_{I}: F^{\xi_{I}} \underset{a}{\cong} .
$$

Then, by the uniqueness of logarithm we have

$$
\ell_{I}=\ell \circ \xi_{I},
$$

and

$$
\begin{aligned}
\ell_{\mathrm{I}}(\mathrm{~T}) & =\ell \cdot \xi_{\mathrm{I}}(\mathrm{~T})=\ell_{\#}\left(\varepsilon_{\mathrm{I}, \mathrm{~F}} \gamma_{0}\right)(\mathrm{T}) \\
& =\varepsilon_{\mathrm{I}, \mathrm{G}_{\mathrm{a}}}\left(\ell_{\# \gamma_{0}}\right)(\mathrm{T})=\left(\varepsilon_{\mathrm{I}, \mathrm{G}_{\mathrm{a}}} \ell\right)(\mathrm{T}) .
\end{aligned}
$$

Now by (3.5) the proof follows.
3.4. Let $F \in \operatorname{obj} \mathscr{Z}(\mathrm{R})$ and consider $C_{\mathrm{F}, \mathrm{I}}$. Since Frobenius
operators are linear and continuous, we see easily that $C_{T_{F, I}}$ is closed in C_{F}. Thus C_{T},I is complete and Hausdorff with respect to the induced filtrations $\mathcal{C} \mathrm{T}_{\mathrm{F}, \mathrm{I}} \cap \mathcal{C}_{\mathrm{n}}$.

Now suppose that R is a \mathbb{Z}_{I}-algebra.
Lemma 3.4. Let $\gamma \in C_{F}$ such that

$$
y(T)=a \cdot T^{k}+\text { higher terms }, \quad a \neq 0
$$

If γ is I-typical, then $k \in \mathbb{N}_{I}^{\prime \prime}$.
Proof. For any $q \in I$ we obtain

$$
\left(\mathrm{f}_{\mathrm{q}} \gamma\right)(\mathrm{T})=\mathrm{a} \cdot\left(\zeta_{1}^{\mathrm{k}}+\ldots+\zeta_{\mathrm{q}}^{\mathrm{k}}\right) \mathrm{T}^{k / q}+\text { higher terms },
$$

where $\zeta_{1}, \ldots . \zeta_{q}$ are q-th roots of 1 . Since γ is I-typical, we have

$$
a \cdot\left(\zeta_{1}^{k}+\ldots+\zeta_{q}^{k}\right)=0
$$

If q / k, then

$$
\zeta_{1}^{k}+\ldots+\zeta_{q}^{k}=q
$$

which is invertible and contradicts to the assumption. Thus $(q, k)=1$.
q.e.d.

Lemma 3.5. Let F be I-typical. Then, for any $k \in \mathbb{N}_{I}^{\prime \prime}, a \neq 0$ in R, we have

$$
\mathbb{v}_{\mathrm{k}}[\mathrm{a}] \gamma_{0} \in \mathcal{C T}_{\mathrm{F}, \mathrm{I}}
$$

Proof. For any $q \in I,(q, k)=1$. Thus $q_{q} v_{k}=w_{k} q_{q}$ by

Proposition 2.9, vii). And

$$
\mathbb{f}_{q} \mathbb{V}_{k}[a] \gamma_{0}=\mathbb{N}_{k}\left[a^{q}\right] \mathbf{f}_{q} \gamma_{0}=0
$$

$$
q \cdot e . d
$$

Theorem 3.6. Let R be a \mathbb{Z}_{I} algebra and F an I-typical formal group over R. A curve γ over F is I-typical iff it can be expressed
as

$$
\gamma=\sum_{k \in \mathbb{N}_{I}^{\prime \prime}}^{F} \mathbb{v}_{k}\left[c_{k-1}\right] \gamma_{0} \quad\left(\text { or } \quad \gamma(T)=\sum_{k \in \mathbb{N}_{I}^{\prime \prime}}^{F}\left(c_{k-1} T^{k}\right)\right)
$$

with $c_{k-1} \in R$. The expression is unique.
Proof. Suppose γ is I-typical and express γ as a Cauch series

$$
\gamma=\sum_{k \geq 1}^{F} \mathbb{N}_{k}\left[c_{k-1}\right] \gamma_{0}
$$

in C_{F} by Proposition 2.10 . Let c_{n-1} be the first non-zero coefficient in this expression. Then

$$
\gamma(T)=c_{n-1} T^{n}+\text { higher terms }
$$

and $n \in \mathbb{N}_{I}^{\prime \prime}$ by Lemma 3.4. Since $\nabla_{n}\left[c_{n-1}\right] \gamma_{0}$ is I-typical by Lemma 3.5 we see that

$$
\gamma_{1}=\gamma-{ }^{F} \mathbb{N}_{n}\left[c_{n-1}\right] \gamma_{0}=\sum_{k>n}^{F} N_{k}\left[c_{k-1}\right] \gamma_{0}
$$

is I-typical. Now apply the same argument to γ_{1} and repeat. We see that $c_{k-1}=0$ unless $k \in \mathbb{N}_{I}{ }^{w}$. Thus we obtain the desired expression.

The converse follows by Lemma 3.5 and the completeness of C_{T}, I.

The uniqueness of the expression follows by the uniqueness of Proposition 2.10.
§4. Universal typical formal groups
4.1. Let U be the Lazard ring and F_{U} the universal formal group over U. We regard U as the graded ring by non-positive even dimensions so that F_{U} satisfies the condition (1.5).

Let I be a set of primes and put $U_{I}=U \otimes \mathbb{Z}_{I}, F_{U, I}=F_{U}$ over U_{I} by coefficients extension. By the universality of F_{U} it follows immediately the universality of $F_{U, I}$ for formal groups over \mathbb{Z}_{I}-algebras.

Now we want to construct an I-typical formal group which is universal for I-typical formal groups over \mathbb{Z}_{I}-algebras (by restricting the range of the functor y).

Let R be a \mathbb{Z}_{H}-algebras and $F \in$ obj $\mathcal{H}(R)$. There exists a unique homomorphism

$$
\theta: U_{I} \longrightarrow R
$$

of \mathbb{Z}_{I}-algebras such that $\theta_{*} F_{U, I}=F$. By Proposition 2.6 and the definition of Cartier operators we see that

$$
\theta_{*} \varepsilon_{I, U}=\varepsilon_{I, F} \theta_{*}
$$

where $\varepsilon_{I, U}$ denotes the Cartier operator over $F_{U, I}$. (Similar conventions apply also for other notations).

Put

$$
\xi_{\mathrm{I}, \mathrm{U}}(\mathrm{~T})=\left(\varepsilon_{\mathrm{I}, \mathrm{U}^{\gamma} 0}\right)(\mathrm{T})=\sum_{\mathrm{k}>1}^{\mathrm{F}_{\mathrm{U}}}\left(\xi_{\mathrm{k}-1} \mathrm{~T}^{\mathrm{k}}\right) .
$$

By definitions we see that

$$
\begin{equation*}
\xi_{S} \in U^{-2 s} \quad \text { and } \quad \xi_{0}=1 \tag{4.1}
\end{equation*}
$$

Since F is I-typical iff $\varepsilon_{I, F} \gamma_{0}=\gamma_{0}$, and since

$$
{ }_{*} \xi_{\mathrm{I}, \mathrm{U}}=\theta_{\star} \varepsilon_{\mathrm{I}, \mathrm{U}} \gamma_{0}=\varepsilon_{\mathrm{I}, \mathrm{~F}} \gamma_{0}
$$

we obtain

Proposition 4.1. F is I-typical iff

$$
\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{n-1}, \ldots\right\} \subset \operatorname{Kex} \theta
$$

4.2. Put $\tilde{U}=U \otimes Q$, then

$$
\mathrm{U} \subset \mathrm{U}_{\mathrm{I}} \subset \tilde{\mathrm{U}}
$$

Put

$$
\log _{U} T=\sum_{k \geq 1} m_{k-1} T^{k}, \quad m_{0}=1
$$

where $\log _{U}$ is the logarithm of F_{U} (and of course of $F_{U, I}$) over U.
Then

$$
\begin{equation*}
\tilde{u}=\mathbb{Q}\left[m_{1}, m_{2}, \ldots, m_{k}, \ldots\right], \quad \operatorname{dim} m_{k}=-2 k \tag{4.2}
\end{equation*}
$$

as is well known.
put

$$
\mu_{U, I}=\text { the transpose of } F_{U, I} \text { by } \xi_{I, U}{ }^{\circ}
$$

$\mu_{U, I}$ is I-typical by Proposition 3.2. (Hereafter we use the letter " μ "
to denote typical (or I-typical) formal groups in general). Let

$$
u_{I}: U_{I} \longrightarrow U_{I}
$$

be the unique homomorphism of \mathbb{Z}_{I}-algebras such that

$$
u_{I *}{ }^{F} U_{U, I}=\mu_{U, I}
$$

and

$$
\tilde{\mathrm{u}}_{\mathrm{I}}: \tilde{\mathrm{U}} \longrightarrow \tilde{\mathrm{U}}
$$

the homomorphism of \tilde{U} obtained from u_{I} by coefficient extension.
Apply $\tilde{\mathrm{u}}_{\mathrm{I}}$ * to the strict isomorphism

$$
\log _{U}: F_{U} \cong G_{a} \quad \text { over } \tilde{U}
$$

and obtain

$$
\tilde{\mathrm{u}}_{\mathrm{I} *}\left(\log _{U}\right): \mu_{\mathrm{U}, \mathrm{I}} \underset{\rightarrow}{\cong} \mathrm{G}_{\mathrm{a}}
$$

by the functoriality. Thus

$$
\begin{equation*}
\tilde{\mathrm{u}}_{\mathrm{I}^{*}}\left(\log _{\mathrm{U}}\right)=\log _{\mu_{U, I}} \tag{4.3}
\end{equation*}
$$

by the uniqueness of logarithm. Then, by Proposition 3.3 we obtain

$$
\text { Proposition 4.2. } \quad \begin{aligned}
\tilde{u}_{I}\left(m_{k-1}\right) & =0 \quad \text { if } \quad k \in \mathbb{N}_{I}^{\prime} \\
& =m_{k-1} \quad \text { if } \quad k \in \mathbb{N}_{I}^{\prime \prime}
\end{aligned}
$$

Corollary 4.3. u_{I} and $\tilde{\mathrm{u}}_{\mathrm{I}}$ are idempotents,

$$
\text { Ker } \tilde{u}_{I}=\text { the ideal }\left(m_{\ell-1} ; \ell \in \mathbb{N}_{I}^{\prime}\right)
$$

$$
\operatorname{Im} \widetilde{u}_{\mathrm{I}}=\mathbb{Q}\left[\mathrm{m}_{\mathrm{k}-1}: k \in \mathbb{N}_{\mathrm{I}}^{\mathrm{I}}, \quad \mathrm{k} \neq 1\right] .
$$

4.3. Put

$$
\hat{U}=\mathbb{Z}\left[m_{1}, m_{2}, \ldots, m_{k}, \ldots\right] .
$$

As is well known

$$
\tilde{U} \subset \hat{U} \subset \tilde{U}
$$

and \hat{U} is the minimal extension of U over which F_{U} becomes isomorphic to G_{a}.

Since

$$
\log _{U} \circ \xi_{\mathrm{I}, \mathrm{U}}: \mu_{\mathrm{U}, \mathrm{I}} \cong \mathrm{G}_{\mathrm{a}}
$$

we obtain

$$
\begin{equation*}
\log _{\mu_{U, I}}=\log _{U} \circ \xi_{I, U} \tag{4.4}
\end{equation*}
$$

by the uniqueness of logarithm.

Now we compute

$$
\begin{aligned}
\log _{U} \circ \xi_{I, U}(T) & \left.=\log _{U \#}\left(\sum_{i \geq 1}^{F} U_{\left(\xi_{i-1}\right.} T^{i}\right)\right) \\
& =\sum_{i \geq 1} \sum_{j \geq 1} m_{j-1} \xi_{i-1}^{j} T^{i j} \\
& =\sum_{k \geq 1}\left(\sum_{i j=k} m_{j-1} \xi_{i-1}^{j}\right) T^{k} .
\end{aligned}
$$

On the other hand, by Proposition 3.3 we have

$$
\begin{equation*}
\log _{\mu_{U, I}} T=\sum_{k \in \mathbb{N}_{I}^{\prime \prime}} m_{k-I} T^{k} \tag{4.5}
\end{equation*}
$$

Thus, by (4.4), comparing the coefficients of T^{k} we see the relations
(4.6) $\quad \xi_{k-1}+\sum_{\substack{i j=k \\ l<i<k}} m_{j-1} \xi_{i-1}^{j}=0 \quad$ for $k \in \mathbb{N}_{I}^{\prime}-\{1\}$,

$$
\begin{equation*}
m_{k-1}+\xi_{k-1}+\sum_{\substack{i j=k \\ 1<i<k}} m_{j-1} \xi_{i-1}^{j}=0 \quad \text { for } \quad k \in \mathbb{N}_{I}^{\prime} \tag{4.7}
\end{equation*}
$$

By (4.6), inductively on k, we see that
(4.8)

$$
\xi_{k-1}=0 \quad \text { for } \quad k \in \mathbb{N}_{I}^{\prime \prime}-\{1\}
$$

and
(4.9)

$$
\xi_{I, U}(T)=\sum_{k \in \mathbb{N}_{\mathrm{I}}}^{\mathrm{F}_{\mathrm{U}}}\left(\xi_{1\}}\left(\xi_{\mathrm{k}-1} \mathrm{~T}^{\mathrm{k}}\right)\right.
$$

By (4.7), again inductively on k we obtain

$$
\begin{equation*}
\xi_{k-1} \in \hat{U} \cap U_{I} \quad \text { for } \quad k \in \mathbb{N}_{I} \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi_{k-1} \equiv-m_{k-1} \quad \bmod \text { decomposables in } \hat{U} \text { for } k \in \mathbb{N}_{\mathrm{I}}^{\prime} \tag{4.11}
\end{equation*}
$$

Thus
(4.12) $\quad \hat{U}=\mathbb{Z}\left[\xi_{\ell-1}, \ell \in \mathbb{N}_{\dot{I}}^{\prime}\right] \otimes \mathbb{Z}\left[m_{k-1}, k \in \mathbb{N}_{I}^{\prime \prime}-\{1\}\right]$.
4.4. Let $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ be a polynomial basis of U, $\operatorname{dim} x_{n}$ $=-2 n$. Then

$$
\mathrm{U}_{\mathrm{I}}=\mathrm{z}_{\mathrm{I}}\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}, \ldots\right]
$$

Observe the inclusion

$$
\mathrm{U}_{\mathrm{I}} \quad \subset \quad \hat{\mathrm{U}}_{\mathrm{I}}=\hat{\mathrm{u}} \otimes \mathbb{Z}_{\mathrm{I}} .
$$

For $k \in \mathbb{N}_{\mathrm{I}}^{\prime}$ by (4.11)

$$
\xi_{\mathrm{k}-1} \not \equiv 0 \quad \bmod \text { decomposables and } \bmod \mathrm{q}
$$

for all $\mathrm{q} \notin \mathrm{I}$ in $\hat{\mathrm{U}}_{\mathrm{I}}$. The same must be true also in U_{I}. Hence we can use $\xi_{\ell-1}, \ell \in \mathbb{N}_{\mathrm{I}}$, as a part of the polynomial basis of U_{I} and we obtain

Proposition 4.4.

$$
\mathrm{U}_{\mathrm{I}}=\mathbb{Z}_{\mathrm{I}}\left[\xi_{\ell-1}, \ell \in \mathbb{N}_{\mathrm{I}}^{\ell}\right] \otimes \mathbb{Z}_{\mathrm{I}}\left[x_{\mathrm{k}-1}, k \in \mathbb{N}_{\mathrm{I}}^{\prime \prime}-\{1\}\right] .
$$

By Proposition 4.1 we have

$$
\left\{\xi_{\mathrm{k}-\mathrm{I}}, \mathrm{k} \in \mathbb{N}_{\mathrm{I}}\right\} \quad \subset \quad \operatorname{Ker} \mathrm{u}_{\mathrm{I}}
$$

On the other hand, putting $\bar{x}_{k-1}=u_{T}\left(x_{k-1}\right)$ for $k \in \mathbb{N}_{I}-\{1\}$ we have

$$
x_{k-1} \equiv \bar{x}_{k-1} \equiv c_{k-1} m_{k-1} \text { mod decomposabies }
$$

in \tilde{U} with $c_{k-1} \neq 0$. Thus $\bar{x}_{k-1}, k \in \mathbb{N}_{\bar{I}}^{\prime \prime}-\{1\}$, are algebraically independent and u_{I} maps $\mathbb{Z}_{I}\left[x_{k-1}, k \in \mathbb{N}_{I}^{\prime \prime}-\{1\}\right]$ isomorphically onto $\mathbb{Z}_{I}\left[\bar{x}_{k-1}\right]$ $\left.k \in \mathbb{N}_{I}^{\prime \prime}-\{1\}\right]$. Hence we obtain

Proposition 4.5. i) $\operatorname{Ker} u_{I}=\left(\xi_{\ell-1}, \ell \in \mathbb{N}_{I}^{\prime}\right)$,
ii) $\mathrm{U}_{\mathrm{I}} / \operatorname{Ker} \mathrm{u}_{\mathrm{I}} \cong \mathbb{Z}_{\mathrm{I}}\left[\overline{\mathrm{x}}_{\mathrm{k}-1}, \mathrm{k} \in \mathbb{N}_{\mathrm{I}}^{\prime}-\{1\}\right] \subset \mathrm{U}_{\mathrm{I}}$,
iii) $u_{I}=\mathbb{Z}_{\mathrm{I}}\left[\xi_{\ell-1}, \ell \in \mathbb{N}_{\mathrm{I}}^{\prime}\right] \otimes \mathbb{Z}_{\mathrm{I}}\left[\bar{x}_{k-1}, k \in \mathbb{N}_{\mathrm{I}}^{\prime \prime}-\{1\}\right]$,
where $\bar{x}_{k-1}=u_{I}\left(x_{k-1}\right)$.
4.5. Put

$$
\begin{equation*}
\mathrm{BP}_{\mathrm{I}}=\operatorname{Im} \mathrm{u}_{\mathrm{I}} \subset \mathrm{U}_{\mathrm{I}} . \tag{4.13}
\end{equation*}
$$

Then

$$
\mathrm{BP}_{\mathrm{I}}=\mathbb{Z}_{\mathrm{I}}\left[\overline{\mathrm{x}}_{\mathrm{k}-1}, k \in \mathbb{N}_{\mathrm{I}}^{1}-\{1\}\right] \cong \mathrm{U}_{\mathrm{I}} / \operatorname{Ker} \mathrm{u}_{\mathrm{I}} .
$$

by Proposition 4.5. Since $\mu_{U, I}=u_{I *} F_{U}$ we see that all coefficients of $\mu_{U, I}(X, Y)$ belong to $B P_{I}$, and $H_{U, I}$ determines a formal group

$$
\mu_{\mathrm{BP}, \mathrm{I}} \in \operatorname{obj} \mathscr{F}\left(\mathrm{BP}_{\mathrm{I}}\right)
$$

which extends to $\mu_{U, I}$ by extension of the domain of coefficients $\mathrm{BP}_{\mathrm{I}} \subset \mathrm{U}_{\mathrm{I}}$.

Theorem 4.6. $\mu_{B P}, I$ is I-typical and universal for I-typical formal groups over \mathbb{Z}_{I}-algebras.

Proof. Clearly $\mu_{B P, I}$ is I-typical by definition because $\mu_{U, I}$ is I-typical.

Let R be a \mathbb{Z}_{I}-algebra and μ an I-typical formal group over R. There exists a unique homomorphism $\theta: \mathrm{U}_{\mathrm{I}} \longrightarrow \mathrm{R}$ such that $\theta_{*} \mathrm{~F}_{\mathrm{U}, \mathrm{I}}=\mu$. By Proposition 4.1 Ker θ つ $\operatorname{Ker} u_{\mathrm{I}}$. Thus θ factorizes to

$$
\mathrm{U}_{\mathrm{I}} \xrightarrow{\mathrm{u}_{\mathrm{I}}} \mathrm{BP}_{\mathrm{I}} \xrightarrow{\theta_{\mathrm{I}}} \mathrm{R} .
$$

Since $u_{I *} F_{U, I}=\mu_{B P, I}$, we have

$$
{ }^{\theta} \mathrm{I}^{* \mu} \mathrm{BP}_{\mathrm{BP}, \mathrm{I}}=\theta_{\mathrm{I} *} \mathrm{u}_{\mathrm{I}} * \mathrm{~F}_{\mathrm{U}, \mathrm{I}}=\theta_{*} \mathrm{~F}_{\mathrm{U}, \mathrm{I}}=\mu .
$$

The uniqueness of θ_{I} follows by the uniqueness of θ.
q.e. d.

Thereby we obtained also the following
Corollary 4.7. Let R be a \mathbb{Z}_{I}-algebra and μ be an I-typical
formal group over R. The homomorphism $\theta: U \longrightarrow R$ such that $\theta_{*} F_{U}=\mu$ $\underline{\text { factorizes to }} \theta=\theta_{I} \circ u_{I}, \theta_{I}: B P_{I} \longrightarrow R$ such that $\theta_{I * \mu_{B P}, I=\mu .}$
4.6. Let I and J be sets of primes such that $I \subset J$. Let $\xi_{I, J}$ be the canonical J-typical curve over $\mu_{U, I}$ (over U_{J}). Since $\mu_{U, I}$ is I-typical we have

$$
\xi_{I, J}=\varepsilon_{J, \mu} \gamma_{0}=\underset{q \in J-I}{ } e_{q, \mu} \gamma_{0}
$$

where $\mu=\mu_{U, I}$. Then

$$
\begin{aligned}
\xi_{I, U} \circ \xi_{I, J} & =\xi_{I, U \#}\left(\prod_{q \in J-I} e_{q, \mu} \gamma_{0}\right) \\
& =\prod_{q \in J-I} e_{q, U} \xi_{I, U},
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\xi_{I, U} \circ \xi_{I, J}=\xi_{J, U} \tag{4.14}
\end{equation*}
$$

Since $\xi_{I, J}$ is of course I-typical, we have the homomorphism

$$
\mathrm{u}_{\mathrm{I}, \mathrm{~J}}: \mathrm{BP}_{\mathrm{I}} \otimes \mathbb{Z}_{\mathrm{J}} \longrightarrow \mathrm{BP}_{\mathrm{I}} \otimes \mathbb{Z}_{\mathrm{J}}
$$

of \mathbb{Z}_{J}-algebras such that $u_{I, J * \mu_{B P, I}}=\frac{\xi_{B}}{\mu_{B P, J}}$. Using $\log _{B P, I}$ instead of
$\log _{U}$, by the same arguments as Proposition 4.2 we see that

$$
\begin{array}{rlrl}
\tilde{u}_{I, J}\left(m_{k-1}\right) & =0 & \text { if } & \tag{4.15}\\
& =m_{k-1} \in \mathbb{N}_{\mathrm{I}}^{\prime}-\mathbb{N}_{J}^{\prime \prime} \\
& \text { if } & k \in \mathbb{N}_{J}^{\prime \prime},
\end{array}
$$

where $\tilde{u}_{I, J}$ is the Q-extension of $u_{I, J}$. In particular $u_{I, J}$ is an idempotent of $\mathrm{BP}_{\mathrm{I}} \otimes \mathbb{Z}_{J}$ and we can expect a decomposition of $\mathrm{BP}_{\mathrm{I}} \otimes \mathbb{Z}_{J}$. By Proposition 4.2 and (4.15) we see that

$$
\begin{equation*}
u_{J}=u_{I, J} \circ u_{I} \tag{4.16}
\end{equation*}
$$

regarded as the map : $U_{J} \longrightarrow U_{J}$. Thus
(4.17) $\quad \mathrm{Im}_{\mathrm{I}, \mathrm{J}}=\mathrm{BP}_{\mathrm{J}} \subset \mathrm{BP}_{\mathrm{I}} \otimes \mathbb{Z}_{\mathrm{J}}$.

Next we express $\xi_{\mathrm{I}, \mathrm{J}}$ as

$$
\xi_{\mathrm{I}, \mathrm{~J}}(\mathrm{~T})=\sum_{\mathrm{k} \in \mathbb{N}_{\mathrm{I}}^{\prime \prime}}^{\mu_{\mathrm{BP}}, \mathrm{I}}\left(\xi_{\mathrm{k}-\mathrm{I}}^{\prime} \mathrm{T}^{\mathrm{k}}\right)
$$

by Theorem 3.6. By (4.4) and (4.14) we see that

$$
\log _{\mathrm{BP}}^{\mathrm{I}}{ }^{\circ} \circ \xi_{\mathrm{I}, \mathrm{~J}}=\log _{\mathrm{BP}}^{J} \text {; }
$$

then by parallel arguments to (4.7) and (4.8) we see that

$$
\xi_{k-1}^{\prime}=0 \quad \text { for } \quad k \in N_{J}^{\prime}-\{1\}
$$

and

$$
\begin{aligned}
& \xi_{k-1}^{\prime} \in \hat{\mathrm{BP}}_{\mathrm{I}} \cap \mathrm{BP}_{\mathrm{I}} \otimes \mathbb{Z}_{J} \\
& \xi_{\mathrm{k}-1}^{\prime}+\mathrm{m}_{\mathrm{k}-1} \equiv 0 \text { mod decomposables in } \hat{\mathrm{BP}}_{\mathrm{I}}
\end{aligned}
$$

for $k \in \mathbb{N}_{I}^{\prime \prime}-\mathbb{N}_{J}^{\prime}$. Thus

$$
\begin{equation*}
\xi_{I, J}(T)=\sum_{k \in\left(\mathbb{N}_{I}^{\prime \prime}-N_{J}^{\prime}\right) \cup[1\}^{\prime}}^{\mathrm{BP}_{\mathrm{k}}, I}\left(\xi_{1}^{\prime} \mathrm{T}^{k}\right) \tag{4.18}
\end{equation*}
$$

and by the same arguments as Propositions 4.4 and 4.5 we obtain

Proposition 4.8.
i) $\quad B_{I} \otimes \mathbb{Z}_{J}=\mathbb{Z}_{J}\left[\xi_{k-1}^{\prime}, k \in \mathbb{N}_{I}^{\prime \prime}-\mathbb{N}_{J}^{9]}\right] \otimes P_{J}$,
ii) \quad Ker $u_{\mathbb{I}, J}=\left(\xi_{k-1}^{q}, k \in \mathbb{N}_{I}^{\prime \prime}-\mathbb{N}_{J}^{\prime \prime}\right)$ 。

§5. Quillen decomposition

5.1. Let h^{*} be a multiplicative cohomology theory defined on finite CW-complexes. We assume that the multiplication in h^{*} is commutative (in graded sense) and associative, and that the Euler class $e^{h}(L)$ is defined for any complex line bundle L over a complex X such that i) it is natural for bundle maps, ii) $e^{h}(L) \in h^{2}(X)$, and iii) $h^{*}\left(C P_{n}\right)$ is the truncated polynomial algebra over $h^{*}(p t)$ generated by the Euler class x of the canonical line bundle over $C P{ }_{n}$, truncated by x^{n+1}. Then we can define Chern classes and multiplicative Thom classes in h * for complex vector bundles. Cf., Dold [8] for details. We call such a cohomology theory h^{*} complex oriented by a terminology of Quillen [19].

In complex cobordism Thom classes and hence Euler classes for complex vector bundles are canonically defined [7]. Hence complex cobordism is one of the typical examples of complex oriented cohomology theories. We denote by $e^{U}(L)$ the Euler classes of line bundles in complex cobordism.

We recall the following well-known universality of complex cobordism for complex oriented cohomology theories.

$$
\text { [Universality of complex cobordism] Let } h * \text { be a complex oriented }
$$ cohomology theory defined on finite CW-complexes. There exists a unique cohomology transformation

$$
\theta: U^{*} \longrightarrow h^{*}
$$

which is i) 1inear, ii) degree-preserving, iii) multiplicative $(\theta(1)=1$ for $\left.l \in U^{0}(p t)\right)$, and iv) $\theta\left(e^{U}(L)\right)=e^{h}(L)$ for complex line bundle L. For proofs we refer to [8], [19].

This universality is actually true also for complex oriented h^{*} defined on "arbitraxy" CW-complexes if we assume h^{*} to be "additive " [8]. And we can expect to develop Quillen decomposition theory for arbitrary CW-complexes. But in that case we need in certain places to discuss convergences with respect to filtrations by finite subcomplexes. To avoid this complexity we shall be content with limiting our discussions only to finite CW-complexes.
5.2. Let h^{*} be a complex oriented cohomology theory. For complex line bundles L_{1} and L_{2} we have

$$
e^{h}\left(L_{1} \otimes L_{2}\right)=\sum a_{i j} e^{h}\left(L_{1}\right)^{i} e^{h}\left(L_{2}\right)^{j}
$$

with $a_{i j} \in h^{2(1-i-j)}(\mathrm{pt})$. By naturality the coefficients $a_{i j}$ do not depend on the choices of L_{1} and L_{2} and we have a well-determined formal power series

$$
F_{h}(X, Y)=\sum a_{i j} X^{i} Y^{j}
$$

of two variables over $h^{*}(\mathrm{pt})$. By commutativity and associativity of tensor products, and naturality of Euler classes, we see that F_{h} satisfies (1.1), (1.2) and (1.3), i.e., is a formal group. Moreover F_{h} satisfies
the condition (1.5) by our choice of dimension of Euler classes.

Of course this formal group F_{h} depends on the complex orientation of h^{*} (i.e., the choice of Euler classes). So that we may have several formal groups associated with the same cohomology theory h^{*} depending on various choices of Euler classes.

Here we recall that Quillen identified $U^{*}(p t)$ with the Lazard ring U, whereby he identified the formal group of complex cobordism with the universal formal group F_{U}, i.e., we have

$$
e^{\mathrm{U}}\left(\mathrm{~L}_{1} \otimes \mathrm{~L}_{2}\right)=\mathrm{F}_{\mathrm{U}}\left(\mathrm{e}^{\mathrm{U}}\left(\mathrm{~L}_{1}\right), e^{\mathrm{U}}\left(\mathrm{~L}_{2}\right)\right)
$$

for complex line bundles L_{1} and L_{2}. Cf., [18], [19] and [2], §8.
Now let h^{*} be complex oriented and

$$
\theta: U^{*} \longrightarrow h^{*}
$$

the unique cohomology transformation by the universality of complex cobordism. Since θ is linear, multiplicative and preserves Euler classes we see readily that

$$
\begin{equation*}
\theta(p t) * F_{U}=F_{h} \tag{5.1}
\end{equation*}
$$

5.3. Let I be a set of primes. The assignment

$$
(X, A) \longmapsto U^{*}(X, A)_{I}=U^{*}(X, A) \otimes \mathbb{z}_{I}
$$

is a multiplicative cohomology, denoted by $\mathrm{U}^{*}()_{\mathrm{I}}$.

Using the power series $\xi_{I, U}$ we define

$$
\xi_{I, U}^{-1}\left(e^{U}(L)\right) \in U^{2}(X){ }_{I}
$$

as Euler class of a line bundle L over X for $U^{*}()_{I}$. Thus $U^{*}()_{I}$ is complex oriented. Since

$$
\xi_{I, U}^{-1}\left(e^{U}\left(L_{1} \otimes L_{2}\right)\right)=\mu_{U, I}\left(\xi_{I, U}^{-1}\left(e^{U}\left(L_{1}\right)\right), \xi_{I, U}^{-1}\left(e^{U}\left(L_{2}\right)\right)\right)
$$

the corresponding formal group is $\mu_{U_{,}}$.
By the universality of complex cobordism we have a cohomology transformation

$$
U^{*} \longrightarrow U^{*}()_{I}
$$

which sends $e^{U}(L)$ to $\xi_{I, U}^{-1}\left(e^{U}(L)\right)$. Extending this \mathbb{Z}_{I}-Inearly we obtain the cohomology transformation

$$
\begin{equation*}
\bar{E}_{I}: U^{*}()_{I} \longrightarrow U^{*}()_{I} \tag{5.2}
\end{equation*}
$$

which is Z_{I}-linear, degree-preserving, maltiplicative and $\bar{\xi}_{I}\left(e^{U}(L)\right)=$ $\xi_{I, U}^{-1}\left(e^{U}(L)\right)$. Then

$$
\bar{\xi}_{I}(p t)_{*} F_{U, I}=\mu_{U, I}
$$

by (5.1), i.e.,

$$
\begin{equation*}
\bar{\xi}_{I}(p t)=u_{I}: U^{*}(p t)_{I} \longrightarrow U^{*}(p t)_{I} \tag{5,3}
\end{equation*}
$$

In particular $\bar{\xi}_{I}(p t)$ is an idempotent of $U^{*}(p t) I$ by Corollary 4.3.
5.4. We want to show that $\bar{\xi}_{\mathrm{I}}$ is an idempotent of the cohomology theory $U^{*}()_{I}$. To this end we use Landweber-Novikov operations [14], [17] in a modified form.

Let $\mathbb{t}=\left(t_{1}, t_{2}, \ldots, t_{n}, \ldots\right)$ be a sequence of indeterminates
t_{n} with dim $t_{n}=-2 n$. For each finite $C W-p a i r(X, A)$ we put

$$
U^{*}(X, A)[t]=U^{*}(X, A) \otimes \mathbb{Z}\left[t_{1}, t_{2}, \ldots, t_{n}, \ldots\right]
$$

Obviously $U^{*}()[t]$ is a multiplicative cohomology theory.

Put

$$
\begin{equation*}
\phi_{4}(T)=\sum_{k \geq 1}^{F}\left(t_{k-1} T^{k}\right), \quad t_{0}=1 \tag{5.4}
\end{equation*}
$$

and assign

$$
\phi_{\mathrm{U}}^{-1}\left(\mathrm{e}^{\mathrm{U}}(\mathrm{~L})\right) \in \mathrm{U}^{2}(\mathrm{X})[\mathrm{U}]
$$

as Euler class of a line bundle L over X. Thus $U^{*}()$ [$]$ is complex oriented and its formal group is $F_{U} \phi_{\mathbb{*}}$. Then by the universality of complex cobordism we have a cohomology transformation

$$
\tilde{s}_{4}: U^{*} \rightarrow U^{*}()[\mathbb{U}]
$$

which is linear, degree-preserving, multiplicative and

$$
\begin{equation*}
\tilde{s}_{4}\left(e^{U}(L)\right)=\phi_{4}^{-1}\left(e^{U}(L)\right) \tag{5.5}
\end{equation*}
$$

for a line bundle

> L. And

$$
\begin{equation*}
\tilde{s}_{\mathbb{U}}(p t)_{*} F_{U}=F_{U}^{\phi_{\mathbb{U}}} \tag{5.6}
\end{equation*}
$$

This is parallel to Quillen's presentation [19] of Landweber-Novikov operations but not the same. After certain polynomial changes of indeterminates over $U^{*}(p t)$ our $\tilde{s}_{\#}$ could be identified with Quillen's s_{*}.

Put

$$
\tilde{s}_{1 p}(x)=\sum_{\alpha} \tilde{s}_{\alpha}(x) 4^{\alpha}
$$

for any $x \in U^{*}(X)$, where $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \ldots\right)$ is a seauence of non-negative integers such that all α_{n} but finite are zero, and t^{α} denotes the monomial

$$
4^{\alpha}=t_{1}^{\alpha_{1}} t_{2}^{\alpha_{2}} \ldots t_{n}^{\alpha_{n}} \ldots
$$

Then we get linear cohomology operations

$$
\widetilde{S}_{\alpha}: U^{*} \longrightarrow U^{*}
$$

of degree $2|\alpha|$ for each sequence α, where $|\alpha|=\sum n \cdot \alpha_{n}$. These are our modified Landweber-Novikov operations and can be expressed as Iinear combinations of Landweber-Novikov operations over U*(pt).

By the property of $s_{\mathbb{*}}$ it follows that

$$
\begin{align*}
& \widetilde{s}_{0}=\text { id, } \quad \frac{\text { where }}{} 0=(0,0, \ldots, 0, \ldots), \tag{5.7}\\
& {\underset{s}{\alpha}}(x, y)=\sum_{\beta+\gamma=\alpha} s_{\beta}(x) \cdot \widetilde{s}_{\gamma}(y) \tag{5.8}
\end{align*}
$$

for internal and external multiplications.
5.5. Let

$$
\rho: U^{*}()[屯] \longrightarrow U^{*}()_{I}
$$

be a cohomology transformation defined by $\rho\left(t_{j}\right)=\xi_{j}, j \geq 1$, and $\rho(x)=x$ for $x \in U^{*}(X)$, where ξ_{j} are coefficients of $\xi_{I, U}(T)$ in the expression (4.9), whence $\xi_{k-1}=0$ if $k \subset \mathbb{N}_{I}$ and $k \neq 1$.

Clearly ρ is linear, degree preserving and multiplicative, and $\rho \circ \tilde{s}_{H}$ sends $e^{U}(L)$ to $\xi_{I, U}^{-1}\left(e^{U}(L)\right)$. Hence, by the uniqueness of cohomology transformation obtained by the universality of complex cobordism we see that

$$
\begin{equation*}
\bar{\xi}_{\mathrm{I}}=\rho 0 \tilde{\mathrm{~s}}_{\mathrm{H}} \tag{5.9}
\end{equation*}
$$

Theorem 5.1. $\bar{\xi}_{\mathrm{I}}$ is an idempotent of $U^{*}()_{I}$.
Proof. By (5.3) and Proposition 4.5 it follows that

$$
\bar{\xi}_{I}\left(\xi^{\alpha}\right)=0 \quad \text { if } \alpha \neq 0
$$

where $\xi^{\alpha}=\xi_{1}^{\alpha_{1}} \xi_{2}^{\alpha_{2}} \ldots$. Now for any $x \in U^{*}(X, A) I$ we have

$$
\bar{\xi}_{I}(x)=\sum_{\alpha} s_{\alpha}(x) \xi^{\alpha}
$$

by (5.9). Then

$$
\begin{aligned}
\bar{\xi}_{\mathrm{I}}\left(\bar{\xi}_{\mathrm{I}}(x)\right) & =\sum_{\alpha} \bar{\xi}_{\mathrm{I}}\left(s_{\alpha}(x)\right) \cdot \bar{\xi}_{\mathrm{I}}\left(\xi^{\alpha}\right) \\
& =\bar{\xi}_{\mathrm{I}}\left(\bar{S}_{0}(x)\right)=\bar{\xi}_{\mathrm{I}}(x),
\end{aligned}
$$

i.e., $\bar{\xi}_{\mathrm{I}}$ is an idempotent.

Corollary 5.2. There holdsnatural stable direct sum decomposition

$$
\mathrm{U}^{*}(\mathrm{X}, \mathrm{~A})_{\mathrm{I}}=\operatorname{Im} \bar{\xi}_{\mathrm{I}}(\mathrm{X}, \mathrm{~A}) \oplus \operatorname{Ker} \bar{\xi}_{\mathrm{I}}(\mathrm{X}, \mathrm{~A})
$$

For any $x \in \operatorname{Ker} \bar{\xi}_{I}(x, A)$ we have

$$
x+\sum_{\alpha \neq 0} \tilde{s}_{\alpha}(x) \xi^{\alpha}=\bar{\xi}_{\mathrm{I}}(x)=0,
$$

i.e.,

$$
x=-\sum_{\alpha \neq 0} \widetilde{s}_{\alpha}(x) \xi^{\alpha}
$$

and we obtain
Corollary 5.3. $\operatorname{Ker} \bar{\xi}_{\mathrm{I}}(\mathrm{X}, \mathrm{A})=\left(\operatorname{Ker} \bar{\xi}_{\mathrm{I}}(\mathrm{pt})\right) \cdot \mathrm{U}^{*}(\mathrm{X}, \mathrm{A})_{\mathrm{I}}$.
5.6. Put
(5.10)

$$
B P_{\mathrm{I}}^{*}(\mathrm{X}, \mathrm{~A})=\operatorname{Im} \bar{\xi}_{\mathrm{I}}(\mathrm{X}, \mathrm{~A})
$$

for any finite CW-pair (X, A). By (5.3) and (4.13)

$$
B P_{\mathrm{I}}^{*}(\mathrm{pt})=\mathrm{BP} \mathrm{I}_{\mathrm{I}},
$$

and by Corollary 5.2 the assignment

$$
(X, A) \longmapsto B P_{\mathrm{I}}^{*}(X, A)
$$

is a cohomology theory. Moreover it is multiplicative because $\bar{\xi}_{I}$ is multiplicative, that is,

Proposition 5.4. BP* is a multiplicative cohomology theory such that $B P_{I}^{*}(p t)=B P_{I},{ }^{\text {a }} \mathbb{Z}_{I}$-algebra.

By definition (5.10) we have canonical cohomology transformations
(5.11) $\quad \pi_{I}: U^{*}()_{I} \longrightarrow B P_{I}^{*}$, natural surjection,
(5.12) ${ }^{\mathrm{i}_{\mathrm{I}}}: \mathrm{BP}_{\mathrm{I}}^{*} \longrightarrow \mathrm{U}^{*}()_{\mathrm{I}}$, natural injection,
such that

$$
\begin{equation*}
{ }^{i_{I}} \circ \pi_{I}=\bar{\xi}_{I} \tag{5.13}
\end{equation*}
$$

Using coefficients $\xi_{\ell-1}$ of $\xi_{I, U}(T)$ in the expression (4.9) we put

$$
V_{I}^{*}(X, A)=\mathbb{Z}_{I}\left[\xi_{\ell-1}, \ell \in \mathbb{N}_{I}^{\prime}\right] \otimes B P_{I}^{*}(X, \cdot A)^{-}
$$

for finite CW-pairs (X, A). Then V_{I}^{*} is a multiplicative cohomology theory. Define

$$
\Theta_{I}: \bar{V}_{I}^{*} \longrightarrow U^{*}()_{I}
$$

by $\Theta_{I}\left(\xi^{\alpha} \otimes x\right)=\xi^{\alpha} \cdot i_{I}(x)$ for $x \in B P_{I}^{*}(X, A)$. As is easily seen Θ_{I} is a linear multiplicative cohomology transformation, and $\Theta_{I}(p t)$ is an isomorphism by Proposition 4.5. Hence θ_{I} is an isomorphism of cohomology theories by the comparison theorem of cohomology theories over finite CW-pairs. Thus

Theorem 5.5. ${ }^{i}$ I induces the natural isomorphism

$$
\mathrm{U}^{*}()_{\mathrm{I}} \cong \mathbb{Z}_{\mathrm{I}}\left[\xi_{\ell-1}, \ell \in \mathbb{N}_{\mathrm{I}}^{\prime}\right] \otimes \mathrm{BP}_{\mathrm{I}}^{*}
$$

of cohomology theories.
5.7. Let p be a specified prime and put
(5.14)

$$
\mathrm{BP}^{*}=\mathrm{BP}^{*}(\mathrm{p})
$$

for $I=(p)$. This is called Brown-Peterson cohomology theory.

In this case the isomorphism of Theorem 5.5 takes the form

$$
\begin{equation*}
U^{*}()_{(p)}=\mathbb{Z}_{(p)}\left[\xi_{l-1} ; \ell \neq p^{s}\right] \otimes B P^{*} \tag{5.15}
\end{equation*}
$$

This is the Quillen decomposition of complex cobordism localized at the prime p.
5.8. Let I be a set of primes and put

$$
\begin{equation*}
e^{B P, I}(L)=\pi_{I}\left(e^{U}(L)\right) \tag{5.16}
\end{equation*}
$$

for a line bundle L. By the decomposition Theorem 5.5 we see easily that $e^{B P, I}(L)$ satisfies the required properties of Euler classes. Hence BP* is complex oriented. By definition of $\bar{\xi}_{\mathrm{I}}$ and (5.13) we have

$$
\begin{equation*}
i_{I}\left(e^{B P, I}(L)\right)=\xi_{I}^{-I}\left(e^{U}(L)\right) \tag{5,17}
\end{equation*}
$$

Then, by $(5.1),(5.3)$ and the definition of $\mu_{B P}, I$ we obtain
Theorem 5.6. $\mathrm{BP}_{\mathrm{I}}^{*}$ is complex oriented and its associated fomal group
is $\mu_{B P, I}$.
5.9. Our next purpose is to give a decomposition of BP* $\left(\mathbb{Z} \mathbb{Z}_{J}\right.$ into $B P{ }_{J}^{*}(I C J)$ which extends the decomposition of Proposition 4.8 to cohomology theory. For this purpose we start with introducing LandweberNovikov type operations in $B P_{\text {. }}$.

Let I be a set of primes and

$$
t_{I}=\left\{t_{k-1} ; k \in \mathbb{N}_{I}^{\prime \prime}-\{1\}\right\}
$$

the subsequence of \mathbb{t}. We consider multiplicative cohomology

$$
\mathrm{BP}_{\mathrm{I}}^{*}()\left[\mathrm{t}_{\mathrm{I}}\right]=\mathrm{BP}_{\mathrm{I}}^{*}() \otimes \mathbb{Z}\left[t_{\mathrm{k}-1} ; \mathrm{k} \in \mathbb{N}_{\mathrm{I}}^{\prime}-\{1\}\right] .
$$

Putting

$$
\begin{equation*}
\phi_{\|, I}(T)=\sum_{k \in N_{I}^{\prime \prime}}^{\mu_{B P}, I}\left(t_{k-1} T^{k}\right), \quad t_{0}=1 \tag{5.18}
\end{equation*}
$$

we assign

$$
\phi_{\mathbf{t}, \mathrm{I}}^{-1}\left(\mathrm{e}^{\mathrm{BP}, \mathrm{I}}(\mathrm{~L})\right) \in \mathrm{BP}_{\mathrm{I}}^{2}(\mathrm{X})\left[\mathrm{t}_{\mathrm{I}}\right]
$$

as Euler class of a line bundle L over X. Thus $\mathrm{BP}_{\mathrm{I}}^{*}()\left[\mathbb{t}_{\mathrm{I}}\right]$ is complex oriented and its associated formal group is $\begin{gathered}\phi_{\mathbb{t}}, I \\ \mu_{B P}, I\end{gathered}$. By the universality of complex cobordism we have a cohomology transformation

$$
\tilde{s}_{t, I}: U^{*} \longrightarrow B P_{I}^{*}()\left[t_{I}\right]
$$

which is linear, degree-preserving, multiplicative and

$$
\tilde{s}_{\mathbb{1}, I}\left(e^{U}(L)\right)=\phi_{\mathbb{U}, I}^{-1}\left(e^{B P, I}(L)\right)
$$

for a line bundle L. Then

$$
\check{s}_{\mathbb{U}, \mathrm{I}}(\mathrm{pt})_{*} \mathrm{~F}_{\mathrm{U}}=\hat{\mu}_{\mathrm{BP}, \mathrm{I}} .
$$

Here we remark that $\mu_{B P, I}$ is I-typical and $\phi_{\mathbb{t}, I}$ is an I-typical curve over $\mu_{B P, I}$ (extending the domain of coefficients to $B P_{I} \otimes \mathbb{Z}\left[\mathbb{t}_{\mathrm{I}}\right]$) by Theorem 3.6. Thus $\psi_{\mathrm{BP}, \mathrm{I}}$ is I-typical. Then, by Proposition 4.1

$$
\left\{\xi_{\mathrm{k}-1}, k \in \mathbb{N}_{\mathrm{I}}^{1}\right\} \subset \operatorname{Ker} \tilde{s}_{\mathbb{H}, \mathrm{I}}(\mathrm{pt})
$$

(extending $\tilde{s}_{\mathbb{H}, \mathrm{I}}$ over U_{T}^{*} by \mathbb{Z}_{I}-1inearity), where $\xi_{\mathrm{k}-1}$ are coefficients
of $\xi_{\mathrm{I}, \mathrm{U}}(\mathrm{T})$ in expression (4.9). Now by Corollary 5.3 we have a factorization of $\tilde{S}_{H, I}$:

By construction it is clear that $r_{1, I}$ is a linear cohomology transformation which is degree-preserving, multiplicative and

$$
\begin{equation*}
x_{t, I}\left(e^{B P, I}(L)\right)=\phi_{L}^{-1} I\left(e^{B P, I}(L)\right) \tag{5,20}
\end{equation*}
$$

for a line bundle L. Then

$$
\mathrm{r}_{\mathrm{t}, \mathrm{I}}(\mathrm{pt})_{*} \mu_{\mathrm{B} P, I}=\quad \begin{gather*}
\phi_{\mathrm{t}}, \mathrm{I} \tag{5.21}\\
\mathrm{BP}^{2}, I
\end{gather*}
$$

If we take the coefficients of monomials (of f_{I}) in r, I we get Landweber-Novikov type operations in BP*. We discuss their properties for $I=(p)$ later in 57.
5.10. Let I and J be sets of primes such that $I \subset J$. Take the canonical J-typical curve $\xi_{I, J}$ over $\mu_{P B, I}$ (over $B P_{I} \otimes \mathbb{Z}_{J}$), Let ξ_{k-1}^{q}, $k \in \mathbb{N}_{I}^{\prime \prime}$, be the coefficients of $\xi_{I, J}(T)$ in expression (4.18) and define cohomology transfornation

$$
\rho^{\prime}: B P_{I}^{*}()[t] \longrightarrow B P_{I}^{*}() \otimes \mathbb{Z}_{J}
$$

by $\rho^{\prime}\left(t_{k-1}\right)=\xi_{k-1}^{\prime}, k \in \mathbb{N}_{I}^{\prime \prime}$, and $\rho^{\prime}(x)=x$ for $x \in B P_{I}^{*}(X)$. Put

$$
\begin{equation*}
\bar{\xi}_{\mathrm{I}, \mathrm{~J}}=\rho^{\prime} \circ \widetilde{s}_{\mathbb{H}, \mathrm{I}}: B P_{\mathrm{I}}() \otimes \mathbb{Z}_{J} \longrightarrow B P_{\mathrm{I}}() \otimes \mathbb{Z}_{J} \tag{5.22}
\end{equation*}
$$

This is a linear cohomology transformation which is degree-preserving, multiplicative and

$$
\bar{\xi}_{I, J}\left(e^{B P, I}(L)\right)=\xi_{I, J}^{-1}\left(e^{B P, I}(L)\right)
$$

Thus
(5.23) $\bar{\xi}_{\mathrm{I}, \mathrm{J}}(\mathrm{pt}) * \mu_{\mathrm{BP}, \mathrm{I}}={\xi_{\mathrm{BP}, \mathrm{I}}}_{\mathrm{E}, \mathrm{J}}=\mu_{\mathrm{BP}, \mathrm{J}}{ }^{\circ}$

Therefore

$$
\begin{equation*}
\bar{\xi}_{I, J}(p t)=u_{I, J}: \quad{ }^{B P_{I}} \otimes \mathbf{Z}_{J} \longrightarrow \mathrm{BP}_{I} \otimes \mathbb{Z}_{J} \tag{5.24}
\end{equation*}
$$

In particulax $\bar{\xi}_{I, J}(\mathrm{pt})$ is an idempotent of $\mathrm{BP}_{\mathrm{I}} \otimes \mathbb{Z}_{J}$. Now by a paraIlel argument to Theorem 5.1 we obtain

Proposition $5.7 . \bar{\xi}_{I, J}$ is an idempotent of $B P_{I}^{*}() \otimes \mathbb{Z} J$.

Corollary 5.8. i) $\quad \operatorname{Im} \bar{\xi}_{\mathrm{I}, \mathcal{J}}=\mathrm{BP} \mathrm{J}_{\mathrm{J}}$.
ii) $\quad \operatorname{Ker} \bar{\xi}_{I, J}(X, A)=\left(\operatorname{Ker} \bar{\xi}_{I, J}(p t)\right) \cdot B P P_{I}^{*}(X, A) \otimes \mathbb{Z}_{J}$.
iii) $\quad B P_{I}^{*}() \otimes \mathbb{Z}_{J}=\mathbb{Z}_{J}\left[\xi_{k-1}^{\prime}, k \in \mathbb{N}_{I}^{\prime \prime}-\mathbb{N}_{J}^{\prime \prime}\right] \otimes P_{J}^{*}$.

In particular, when $p \mathrm{~F}$ and $J=(\mathrm{p})$ we have the decomposition

$$
\text { (5.25) } \quad B P_{I}^{*}() \otimes \mathbb{Z}_{(p)}=\mathbb{Z}_{(p)}^{\left[\xi_{k-1}^{\prime}, k \in \mathbb{N}_{I}^{\prime \prime}, k \neq p^{s}\right] \otimes B P^{*}, ~}
$$

which we call the Quillen decomposition of BP* localized at the prime p.
5.11. Let $\Omega^{*}()$ be the oriented cobordism theory. Here we consider the Quillen decomposition of $\Omega^{*}()_{[2]}=\Omega^{*}() \otimes \mathbb{Z}\left[\frac{1}{2}\right]$. Let

$$
S: U U^{*}() \longrightarrow \Omega^{*}()
$$

be the forgetful functor of complex structures. Clearly S is a multiplicative cohomology transformation.

In $\Omega^{*}()$ Euler classes are canonically defined for real oxiented vector bundles. Every complex line bundle L determines canonically an oriented 2 -plane bundle $\Psi_{\mathbb{R}}$. We define

$$
e^{S O}(L)=\Omega^{*}-\text { Euler class of } \mathbb{R}^{\circ}
$$

Thus $\Omega^{*}()$ is complex oriented. We denote its associated formal group by E_{SO}. We see easily that

$$
S(p \hat{C})_{*} F_{U}=F_{S O^{\circ}}
$$

Remark that, if we change the orientation of a real oriented vector bundle, then Ω^{*}-Euler class changes to its negative. Thus

$$
e^{S O}(\bar{L})=-e^{S O}(\mathbb{L})
$$

and

$$
F_{S O}(-T, T)=0 .
$$

Now we have

$$
\left(\mathbb{f}_{2, S O} \gamma_{0}\right)(T)=F_{S O}\left(-T^{1 / 2}, T^{1 / 2}\right)=0,
$$

i. e.,

Proposition 5.9. F_{SO} is [2]-typical.

Next we observe the cohomology transformation

$$
S_{[2]}=S \otimes \mathbb{Z}_{[2]}: U^{*}()_{[2]} \longrightarrow \Omega^{*}()_{[2]^{\circ}}
$$

By Propositions 4.1 and 5.9 we see that

$$
\operatorname{Ker} S_{[2]}(p t) \supset \operatorname{Ker} \bar{\xi}_{[2]}(p t)
$$

Then, by Corollary 5.3 and multiplicativity of $S_{[2]}$ we see that

$$
\operatorname{Ker} S_{[2]}(X, A) \supset \operatorname{Ker} \bar{\xi}_{[2]}(X, A)
$$

for any (X, A), i. e., $S_{[2]}$ factorizes to

By Proposition 4.5 we know that $K e r \pi_{[2]}(\mathrm{pt})$ is the ideal generated by all elements of dimensions $\equiv 2(\bmod 4)$. But $\operatorname{Ker} S_{[2]}(p t)$ is also the same by Stong [21]. p.178. Thus $\Phi(p t)$ is injective. On the other hand $S_{[2]}(p t)$ is surjective by [21], p.180. Hence $\Phi(p t)$ is isomorphic and by the comparison theorem of cohomology theories we obtain

Theorem 5.10. The forgetful functor S of complex structures induces an isomorphism

$$
\Phi: \quad B P^{*}[2] \quad \cong \Omega^{*}()_{[2]}
$$

of cohomology theories.

Let p be an odd prime. By Quillen decomposition (5.25) we obtain the following decomposition of $\Omega^{*}()_{(p)}$:

§6. Generators of $\mathrm{U}^{*}(\mathrm{pt})$ and $\mathrm{BP*}(\mathrm{pt})$
6.1. Let p be a prime. Putting

$$
\begin{equation*}
\left(f_{p, U} \gamma_{0}\right)(T)=\sum_{n>1}^{F} U_{p}\left(v_{p n-1}^{(p)} T^{n}\right) \tag{6.1}
\end{equation*}
$$

we see that $v_{s}=v_{S}^{(p)} \in U^{-2 s}$ by definitions. Compute $\log _{U} \mathbb{G}_{\mathrm{p}, \mathrm{U}} \gamma_{0}$ in two ways :

$$
\begin{aligned}
\left(\log _{U}{ }^{\frac{q}{2}}, U_{0} Y_{0}\right)(T) & =\log _{U \#}\left(\sum_{n>1}^{F}\left(v_{p n-1} T^{n}\right)\right) \\
& =\sum_{i>1} \sum_{j>1} m_{j-1} v_{p i-1}^{j} T^{i j} \\
& =\sum_{n \geq 1}\left(\sum_{i j=n} m_{j-1} v_{p i-1}^{j}\right) T^{n}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\log _{\mathrm{U}}^{\mathrm{I}} \mathrm{p}, \mathrm{U} \mathrm{Y}_{0}\right)(T) & =\left(\mathrm{P}_{\mathrm{p}, \mathrm{G}_{\mathrm{a}}} \log _{\mathrm{U}}\right)(\mathrm{T}) \\
& =\mathrm{p} \cdot \sum_{\mathrm{n} \geq 1} m_{\mathrm{pn}-1} T^{n}
\end{aligned}
$$

(cf., (2.8)). Then compare the coefficients of T^{n}, and we obtain
(6.2)

$$
p \cdot m_{p n-1}=\sum_{i j=n} m_{j-1} v_{p i-1}^{j}=v_{p n-1}^{(p)}+\sum_{\substack{i j=n \\ 1 \leq i<n}} m_{j-1} v_{p i-1}^{j}
$$

for $a 11 n \geq 1$.
Let s_{n} denote the Chern number corresponding to the power sum $\sum t_{i}^{n}$. Remark that

$$
s_{n}: U^{-2 n}(p t) \otimes \mathbb{Q} \longrightarrow \mathbb{Q}
$$

is a linear map such that

$$
s_{n}(\text { decomposable element })=0
$$

By Mischenko series we have

$$
\mathrm{m}_{\mathrm{k}-1}=\frac{\left[\mathrm{CP}_{\mathrm{k}-1}\right]}{\mathrm{k}}
$$

Thus

$$
s_{k-1}\left(m_{k-1}\right)=1
$$

for all $k>1$. Now apply $s_{p n-1}$ to (6.2) we obtain

$$
\begin{equation*}
s_{p n-1}\left(v_{p n-1}^{(p)}\right)=p . \tag{6.3}
\end{equation*}
$$

By a well known theorem of Minox, if a sequence $\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$
of elements of $U^{*}(p t)$, dim $x_{n}=-2 n$, satisfies

$$
\begin{equation*}
s_{n}\left(x_{n}\right)=p \quad \text { if } n=p^{s}-1 \text { for some prime } p, \tag{6.4}
\end{equation*}
$$

$$
=I \text { otherwise, }
$$

then it is a polynomial basis of $U^{*}(p t)$. Such a sequence is called a Milnor basis of $U^{*}(p t)$. Then (6.3) shows that
(6.5) $\left\{\frac{v_{p-1}^{(p)}, \frac{v}{(p)}}{p^{2}-1}, \ldots, \frac{v^{(p)}}{p^{k} \ldots 1}, \ldots\right\}$ forms a part of a Minor basis.

Let k be an integer >1 which is not a prime power. Let p and q be different prime factors of k. Since $s_{k-1}\left(v_{k-1}^{(p)}\right)=p$ and $s_{k-1}\left(v_{k-1}^{(q)}\right)$ $=q$ we find integers a and b such that

$$
s_{k-1}\left(a v_{k-1}^{(p)}+b v_{k-1}^{(q)}\right)=1
$$

Thus for each dimension $-2 n$ we can find an element x_{n} satisfying (6.4) as a linear combination of our elements $v_{n}^{(p)}{ }^{\prime} s$, and we obtain

Proposition 6.1. The elements $v_{p n-1}^{(p)}$ defined by (6.1), for all $n \geq 1$ and all primes p, generate $U^{*}(p t)$.
6.2. Let p be a fixed prime. In (6.2) we put $n=p^{k-1}$, then

$$
\begin{equation*}
\left.p \cdot m_{p-1}^{k-1}=v_{p^{k}-1}^{(p)}+\sum_{i=1}^{k-1} m_{p^{k-i}-1}^{\left(v p^{i}-1\right.}\right)^{p^{k-i}} \quad \text { for all } k \geq 1 \tag{6.6}
\end{equation*}
$$

Apply $\tilde{u}_{(p)}$ on both sides of (6.6). By Proposition 4.2 we have

$$
\begin{equation*}
\left.p \cdot m_{p^{k}-1}=\frac{-(p)}{p^{k}-1}+\sum_{i=1}^{k-1} m_{p}^{k-i}-1 p_{p^{i}-1}^{(\bar{v})}\right)^{p^{k-i}} \quad \text { for all } k \geq 1 \tag{6.7}
\end{equation*}
$$

where $\frac{\bar{v}(p)}{p^{i}-1}=u(p)\binom{(p)}{p^{i}-1}$. Comparing the two recursive formulas (6.6) and (6.7) we obtain

$$
\begin{equation*}
\left.u_{(p)}^{(v} p^{(p)}\right)=v_{p^{k}-1}^{(p)} \quad \text { for all } k \geq 1 \tag{6.8}
\end{equation*}
$$

Now by Proposition 4.5, (6.5) and (6.8) we obtain

Apply $\pi(p) *$ to both sides of (6.1) and obtain

$$
\left({ }_{p, B P} \gamma_{0}\right)(T)=\sum_{n>1}^{\mu_{B P}}\left(\bar{v}_{p n-1}^{(p)} T^{n}\right)
$$

where $\bar{v}_{p n-1}^{(p)}=\pi(p)\left(v_{p n-1}^{(p)}\right)$. Since $f_{p, B P} \gamma_{0}$ is a typical curve over $\mu_{B P}$ we see by Theorem 3.6 that

$$
\begin{equation*}
u_{(p)}\left(v_{p n-J}^{(p)}\right)=0 \quad \text { for } n \neq p^{\ell} \tag{6.9}
\end{equation*}
$$

and using (6.8) we obtain
Theorem 6.3. $\quad\left(\mathbb{f}_{\mathrm{p}, \mathrm{BP}} \gamma_{0}\right)(\mathrm{T})=\sum_{i>1}^{\mu_{B P}}\left(\mathrm{v}_{\mathrm{p}^{i}-1}^{(\mathrm{p})} \mathrm{T}^{\mathrm{p}} \mathrm{i}^{\mathrm{i}+1}\right)$,
where the coefficients axe the polymomial basis of $B^{P *}(p t)$ of Theorem 6.2.

Remark. i) Our polynomial basis of $\mathrm{BP*}(\mathrm{pt})$ of Theorem 6.2 satisfies the recursive formula (6.6) which is the same as the corresponding formula of Hazewinkel [12]. Hence our generators are the same as those of Hazewinkel. In case $p=2$ a similar recursive formula is obtained also by Liulevicius [16].
ii) By our method it is already clear that the generators $\left\{\begin{array}{c}(\mathrm{p}) \\ p^{k}-1\end{array}\right\}$ of $B P^{*}(p t)$ are integrable, i.e., elements of $U^{*}(p t)$. This fact was observed also by Alexander [4].
6.3. Let p be a fixed prime and q be another prime. Since ${ }^{f} q_{, B P} Y_{0}=0$, applying $\pi_{(p)}(p t)_{*}$ to $f_{q, U Y_{0}}$ expressed in the form (6.1), we see that

$$
\begin{equation*}
u_{(p)}\left(v_{q n-1}^{(q)}\right)=0 \tag{6.10}
\end{equation*}
$$

for all $n \geq 1 . \operatorname{By}(6.8),(6.9),(6.10)$ and Proposition 6.1 we see
 i.e., U is stable under the idempotent ${ }^{u}(p)$ and by restriction ${ }^{u}(p)$ determines an idempotent of U.
6.4. Let p be a prime and put

$$
\begin{equation*}
\left.[p]_{U}(T)=\sum_{n>1}^{F} U_{\left(w_{n-1}\right.}(p) T^{n}\right) \tag{6.11}
\end{equation*}
$$

Then $w_{n-1}=w_{n-1}^{(p)} \in U^{-2(n-1)}$ and $w_{0}=p$. Now compute $\log _{0} \circ[p]_{0}$ and obtain

$$
\begin{aligned}
p \cdot m_{n-1} & =\sum_{i j=n} m_{j-1} w_{i-1}^{j} \\
& =p^{n} m_{n-1}+w_{n-1}+\sum_{\substack{i j=n \\
1<i<n}} m_{j-1} w_{i-1}^{j}
\end{aligned}
$$

In particular we obtain

$$
\begin{equation*}
\underset{p^{k}-1}{(p)}=\left(p-p^{p^{k}}\right) m p^{k}-1-\sum_{i=1}^{k-1} m p^{k-i}-1 p^{w^{p}-1} \tag{6.12}
\end{equation*}
$$

for $k \geq 1$. Then we see that

$$
\left.\mathrm{s}_{\mathrm{p}^{k}-1}\left(\mathrm{w} \mathrm{p}^{\mathrm{k}-1}\right)=\mathrm{p}\right)-\mathrm{p}^{p^{k}}
$$

hence $\left\{w_{p-1}^{(p)}, \frac{w}{p}(p), \ldots, w_{p}^{(p)}, \ldots\right\}$ forms a part of a polynomial basis of $U^{*}(p t)(p)$. On the other hand applying $u_{(p)}$ to (6.12) we obtain

$$
u_{(p)} \underset{p^{k}-1}{(w)}=\underset{p^{k}-1}{(p)}
$$

Again apply $\pi(p)^{*}$ to $[p]_{U}$ and remark that $[p]_{B P}$ is a typical curve. Thus we obtain

Theorem 6.5. Putting

$$
\left.[p]_{B P}(T)=\sum_{k>0}^{\mu}{ }_{\mathrm{BP}}^{(\mathrm{w}} \underset{\mathrm{p}^{k}-1}{(\mathrm{p})} \mathrm{T}^{p^{k}}\right), \quad \mathrm{w}_{0}^{(\mathrm{p})}=\mathrm{p},
$$

we obtain

$$
\mathrm{BP} *(\mathrm{pt})=\mathbb{Z}_{(\mathrm{p})}^{\left[\mathrm{w}_{\mathrm{p}-1}^{(\mathrm{p})}, \frac{\mathrm{w}^{(p)}}{\mathrm{p}^{2}-1}, \ldots, \mathrm{w}_{\mathrm{p}}^{(\mathrm{p})}, \ldots\right] .}
$$

These generators are also integrable.
67. Operations in Brown-Peterson cohomology.
7.1. Fix a prime p. In 5.9 we defined the cohomology transformation

$$
\begin{equation*}
\mathrm{r}_{\mathrm{t}}=\mathrm{r}_{\mathrm{t},(\mathrm{p})}: \mathrm{BP} * \longrightarrow \mathrm{BP*}()[\mathrm{t}(\mathrm{p})] \tag{7.1}
\end{equation*}
$$

which is $\mathbb{Z}_{(p)}$-1inear, degree preserving, multiplicative and

$$
\begin{equation*}
x_{t}\left(e^{B P}(L)\right)=\phi_{4}^{-1},(p)\left(e^{B P}(L)\right), \tag{7.2}
\end{equation*}
$$

where ${ }^{t}(p)=\left(t_{1}, t_{2}, \ldots, t_{n}, \ldots\right)$ is a sequence of indeteminates with dim $t_{k}=-2\left(p^{k}-1\right)\left(w e\right.$ replace here the letter $t_{p}{ }_{k-1}$ by t_{k} for simpli..
 Euler class of a line bundle L over X.

Put

$$
r_{d}(x)=\sum_{\alpha} r_{\alpha}(x) \hat{d}_{(p)}^{\alpha} \quad x \in B P *(X, A)
$$

where $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ is a sequence of non-negative integers such that all α_{k} but a finite are zero and

$$
{ }_{(p)}^{\alpha}=t_{1}^{\alpha_{t}} 1_{2}^{\alpha_{2}} \ldots t_{k}^{\alpha} \ldots
$$

is a monomial of τ_{k} 's. Then we get linear stable operations
(7.3) $\mathrm{r}_{\alpha}: \mathrm{BP} *() \longrightarrow \mathrm{BP}^{*}()$
with
(7.4)

$$
\operatorname{deg} r_{\alpha}=2 \sum_{i} \alpha_{i}\left(p^{i}-1\right)
$$

for each sequence $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$. These are Landweber-Novikov type
operations in Brown-Peterson cohomology, and we call them Quillen operations.

After identifying

$$
B P *()\left[{ }_{(p)}\right]=(B P \wedge B P) *()
$$

by making use of Brown-Peterson spectrum, we can see that every operation in BP^{*} can be expressed uniquely as an infinite sum

$$
\sum_{\alpha} u_{\alpha} \mathbf{r}_{\alpha}, \quad u_{\alpha} \in B P^{*}(p t)
$$

as in [2], [14], [17]. But we will not discuss this point here, but rather we observe certain properties of these Quillen operations.

First of all it is clear by definition and properties of $r_{\text {a }}$ that

$$
\begin{equation*}
\mathrm{r}_{0}=\mathrm{id}, \quad 0=(0,0, \ldots, 0, \ldots) \tag{7.5}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{\alpha}(x \cdot y)=\sum_{\beta+\gamma=\alpha} r_{\beta}(x) \cdot r_{\gamma}(y) \tag{7.6}
\end{equation*}
$$

for internal and external multiplications.
7.2. Putting $\mu=\mu_{B P}$ and $\mu^{\prime}=\mu^{\phi_{t},(p)}$, we have

$$
\begin{equation*}
r_{\mathbb{4}}(p t)_{*} \mu_{B P}=\mu^{\prime}, \tag{7.7}
\end{equation*}
$$

(cf., (5.21)). Let

$$
\log _{\mu}: \mu \underset{a}{\approx} G_{a} \text { and } \log _{\mu^{\prime}} ; \mu^{\prime} \underset{\rightarrow}{\cong} G_{a}
$$

logarithms over \mathbb{Q}-extensions. Then

$$
\begin{equation*}
r_{t}(p t)_{*} \log _{\mu}=\log _{\mu^{\prime}} \tag{7.8}
\end{equation*}
$$

by functionality and the uniqueness of logarithm. On the other hand, since $\phi_{*,(p)}: \mu^{\prime} \underset{\rightarrow}{\approx} \mu$, by the uniqueness of logarithm we obtain

$$
\begin{equation*}
\log _{\mu^{\prime}}=\log _{\mu} \circ \phi_{\frac{1}{2},(p)} \tag{7.9}
\end{equation*}
$$

We compute $\log _{\mu}$, in two ways by (7.8) and (7.9):
since

$$
\begin{equation*}
\log _{\mu} T=\sum_{k>0} m_{p^{k}} T^{p^{k}} \tag{7.10}
\end{equation*}
$$

by Proposition 3.3, where m_{k-1} is the coefficient of T^{k} in $\log _{\mathrm{f}} \mathrm{T}$, we see by (7.8) that

$$
\log _{\mu} T=\sum_{k \geq 0} r_{t}(p t)\left(m_{p^{k}-1}\right) T^{p^{k}} ;
$$

on the other hand by (7.9) we see that

$$
\begin{aligned}
\log _{\mu}, T & =\log _{\mu \#}\left(\phi_{t},(p)(T)\right) \\
& =\sum_{j>0} \log _{\mu}\left(t_{j} T^{p^{j}}\right) \\
& =\sum_{k>0}\left(\sum_{h=0}^{k} m p^{h}-1 t^{t^{h}-h}\right) T^{p^{k}}
\end{aligned}
$$

Comparing the coefficients of T^{p} we obtain

$$
\begin{equation*}
r_{t}(p t)\left(m_{p^{n}-1}\right)=\sum_{n=0}^{n} m_{p^{h-1}} t_{n-h}^{p^{h}} \tag{7.11}
\end{equation*}
$$

after extending $r_{4}(p t)$ over $B P^{*}(p t) \otimes Q$ by \mathbb{Q}-linearity.

$$
\text { Since } m_{p^{h}-1}=\frac{\left[C P_{p} h-1\right]}{p^{h}} \text { we obtain }
$$

Theorem 7.1 (Theorem 5, (iii) of [18]).

$$
r_{t}(p t)\left(\left[C P p_{p^{n}-1}\right]\right)=\sum_{h=0}^{n} p^{n-h}\left[C P p_{-1}^{h}\right] t_{n-h}^{p^{h}}
$$

This theorem describes the actions of r_{α} on $B P *(p t)$ at least theoretically.
7.3. I feel it is bettex to formulate a general theorem of which the operation r_{4} is obtained by a specialization.

Theorem 7.2. Let h^{*} be a complex-oriented cohomology theory such that $h^{*}(p t)$ is a ${ }^{Z}(p)$-algebra and its associated formal group is typical. Then there exists a unique cohomology transformation

$$
{ }^{\theta}(\mathrm{p}): \mathrm{BP}^{*} \longrightarrow \mathrm{~h}^{*}
$$

which is $\mathbb{Z}_{(p)}$-1inear, degree-preserving, multiplicative and

$$
\theta_{(p)}\left(e^{B P}(L)\right)=e^{h}(L)
$$

for a complex line bundle L. It results also

$$
{ }_{(p)}(p t)_{*} \mu_{B P}=\mu_{h},
$$

the typical formal group of h^{*}.
Thus we may say that $\mathrm{BP} *$ is universal for cohomology theories with typical formal groups. ${ }^{\theta}(p)$ can be obtained by factorizing the unique cohomology transformation

$$
\theta: \mathrm{U}^{*} \longrightarrow \mathrm{~h}^{*}
$$

which follows by the universality of complex bordism. Our necessary arguments for the proof are quite parallel to those in 5.9 to establish r_{1}, so I will omit them.
7.4. Next we discuss compositions $x_{\alpha}^{\circ}{ }^{\circ}$ ra $_{\beta}$ of quilen operations.

Consider the diagram
where ${ }_{s}(p)=\left(s_{1}, s_{2}, \ldots, s_{k}, \ldots\right)$ winother sequence of indererminetes such that dim $s_{2}=-2\left(p^{2}-1\right)$ and $x_{2}\left(\otimes 1\right.$ is an extenston of $x_{s}: B P()$ $\cdots B P *()[s(p)] \operatorname{such}$ that $\left(r_{s} \otimes 1\right)\left(t_{j}\right)=t_{j}=j=2$.

The composition $r_{\$} \otimes 1$ o r_{1} is a cohomology transformation which is linear, degree-preserving and multiplicative. Moreover, putting $H_{s}=$ $\mu_{\$,(p)}^{\phi_{\$}}$ and $\psi_{e},(p)(T)=\sum_{i \geq 0}^{\mu_{g}^{i}}\left(t_{i} T^{p^{i}}\right)$, we have

$$
\begin{equation*}
\left(r_{s}\left(\otimes 1 \circ r_{t}\right)\left(e^{B P}(L)\right)=\psi_{\hat{e}}^{-1}(p)^{\left(\phi_{s,}^{-1}(p)\right.}\left(e^{B P}(L)\right)\right) \tag{7.12}
\end{equation*}
$$

for a line bundle L. This formula can be seen as follows: remark that

$$
r_{\$}(p t)_{*} \mu=\mu_{\$}^{q}
$$

by (7.7). Then

$$
\begin{gathered}
\left(r_{\Phi} \otimes 1 \circ r_{t}\right)\left(e^{B P}(L)\right)=\left(x_{\$} \otimes 1\right)\left(\phi_{t}^{-1}(p)\left(e^{B P}(L)\right)\right) \\
=\left(r_{s}(p t)_{*} \phi_{t},(p)^{-1}\left(\phi_{s,(p)}^{-1}\left(e^{B P}(L)\right)\right)\right.
\end{gathered}
$$

and

$$
\begin{gathered}
\left(r_{\$}(p t) * \phi_{t},(p)(T)=r_{s}(p t) * \sum_{j \geq 0}^{\mu}\left(t_{j} T^{p^{j}}\right)\right. \\
=\sum_{j>0}^{\mu_{\$}^{j}}\left(t_{j} T^{p^{j}}\right)=\psi_{t,(p)}(T)
\end{gathered}
$$

We give complex-orientation of the cohomology theory $B P *[s(p), ~(p)]$ by assigning $\left(\phi_{\$,}(p) \quad \psi_{\mathrm{t},(\mathrm{p})}\right)^{-1}\left(e^{B P}(L)\right)$ as Euler class of a line bundle L. Then the associated formal group $\mu^{\prime \prime}$ is the transpose of $\mu_{\$}^{\prime}$ by $\psi_{1,(p)}$. Now $\psi_{\text {e, }}(\mathrm{p})$ is a typical curve over $\mu_{\$}^{\prime}$. Hence $\mu^{\prime \prime}$ is typical. Hence

$$
\mathrm{r}_{\$} \otimes 1 \circ \mathrm{r}_{1}: \mathrm{BP} *() \longrightarrow \mathrm{BP} *()[s(\mathrm{p}), \mathbb{(\mathrm { p })}]^{(}
$$

is the unique cohomology transformation of Theorem 7.2.

By our construction it is clear that

$$
\begin{equation*}
\left(x_{\$}(x) \circ r_{i}\right)(x)=\sum_{\alpha, \beta} r_{\beta}\left(r_{\alpha}(x)\right) \hbar_{\phi}^{\alpha}{ }_{\phi}^{\beta}, \tag{7.13}
\end{equation*}
$$

where ψ^{α} and ${ }_{\beta} \beta$ are monomials of $\left(t_{1}, t_{2}, \ldots\right)$ and $\left(s_{1}, s_{2}, \ldots\right)$.
7.5. Remark that $\phi_{s,(p)}{ }^{\circ} \psi_{\#,(p)}$ is a typical curve over μ, the extension of $\mu_{B P}$ over $B P^{*}(p t)[\$(p), 4(p)]$. Hence we have a unique expression

$$
\begin{equation*}
\left(\phi_{\$,(p)} \circ \psi_{\hat{L},(p)}\right)(T)=\sum_{j \geq 0}^{\mu}\left(u_{j} T^{p^{j}}\right), \quad u_{0}=1 \tag{7.14}
\end{equation*}
$$

where $u_{j}=u_{j}\left(s_{1}, \ldots, s_{j}, t_{l}, \ldots, t_{j}\right)$ are polynomials of $s_{1}, \ldots, s_{j}, t_{1}$, \ldots, t_{j} over $B P *(p t)$ such that $\operatorname{dim}_{j}=-2\left(p^{j}-1\right)$.

We want to obtain these polynomials if: possible. Since

$$
=\sum_{j \geq 0}^{\mu} \sum_{i \geq 0}^{\mu}\left(s_{i} t_{j}^{p_{j}^{i}} T^{p^{i+j}}\right),
$$

applying $\log _{\mu^{\#}}$ on both sides of (7.14) we obtain

$$
\sum_{i, j, \ell} m_{p^{\ell}-1} s_{i}^{p_{i}^{\ell}} t_{j}^{p_{j}^{i+\ell}{ }_{T} p^{i+j+\ell}}=\sum_{k, \ell}{ }_{m} p^{\ell}-1 . u_{k}^{p^{\ell} T^{\ell+k}} .
$$

Comparing the coefficients of $T^{P^{n}}$ we obtain

$$
\sum_{\ell=0}^{n} m p^{\ell}-1 \quad i+j=n-l=s^{p_{i}^{\ell}} t_{j}^{p^{i+l}}=\sum_{l=0}^{n} m_{p^{\ell}-1} u_{n-l}^{p^{\ell}} .
$$

or, since the terms of $l=n$ of both sides are the same $\frac{p^{n}-1}{}=$ we see that

$$
\begin{equation*}
\sum_{2=0}^{n-1} m p^{2}-1 \quad \sum_{i+j=n-2} s_{i}^{p_{i}^{2}} t_{j}^{p_{j}^{i+2}}=\sum_{l=0}^{n-1} m^{2}-1 u^{p^{\ell}-l} \tag{7.15}
\end{equation*}
$$

This is a recursive formula to detemine u_{n} over (-extensions. Multiplying p^{n} to both sides of (7.15) we obtain

This is a recursive formula over $\mathrm{BP} *(\mathrm{pt})$.
By (7.16) we see easily that u_{j} is a polynomial of $s_{1}, \ldots, s_{j}, t_{1}$, $\ldots t_{j}$. But it seems to be very difficult to write these polynomials completely.
7.6. Let ${ }^{n}(p)=\left(u_{1}, u_{2}, \ldots, u_{k}, \ldots\right)$ be a sequence of indeterminates such that $\operatorname{dim} u_{j}=-2\left(p^{j}-1\right)$, and
be a cohomology transfoxmation such that $\lambda(x)=x$ for $x \in B P *(X)$ and $\lambda\left(u_{j}\right)=u_{j}\left(s_{1}, \ldots, s_{j}, t_{1}, \ldots, t_{j}\right)$, the polynomials determined by (7.16),
λ is linear, degree-preserving and multiplicative ; and by (7.14) we see that both $\lambda \circ r_{u}$ and $r_{s} \otimes 1 \circ r_{t}$ send $e^{B P}(L)$ to $e^{\mu^{\prime \prime}}(L)$. Thus, by the uniqueness of Theorem 7.2 we obtain

$$
\lambda \circ r_{n}=r_{s} \otimes 1 \circ r_{t},
$$

or

$$
\begin{equation*}
\sum_{\alpha, \beta} r_{\beta}\left(r_{\alpha}(x)\right) \not{ }^{\alpha}(p) s^{\beta}(p)=\sum_{\gamma} r_{\gamma}(x) u_{(p)}^{\gamma}, \tag{7.17}
\end{equation*}
$$

for $x \in B P^{*}(X)$, where $u=\left(u_{1}\left(s_{1}, t_{1}\right), u_{2}\left(s_{1}, s_{2}, t_{1}, t_{2}\right), \ldots, u_{j}\left(s_{1}, \ldots\right.\right.$ $\left., s_{j}, t_{1}, \ldots, t_{j}\right), \ldots$) is the sequence of polynomiais determined by (7. 16). If we write monomials $\mathfrak{i n}_{(p)}^{\gamma}$ as polynomials

$$
\begin{equation*}
\mathbf{u}_{(p)}^{\gamma}=\sum a_{\alpha, \beta}^{\gamma} t_{(p)}^{\alpha} s^{\beta}(p) \tag{7.18}
\end{equation*}
$$

over $B P *(p t)$, then we get

$$
\begin{equation*}
r_{\beta} \circ r_{\alpha}=\sum_{\gamma} a_{\alpha, \beta}^{\gamma} r_{\gamma}, \tag{7.19}
\end{equation*}
$$

the formulas to express compositions $r_{\beta} \circ r_{\alpha}$ as linear combinations of r_{γ} over $B P^{*}(p t)$ (Theoren 5, (iv) of [18]).

Part II

§8. Typical formal groups in complex K-theory
8.1. Let K be the complex K-functor over finite CW-complexes.

For any complex vector bundle E we use

$$
e^{K}(E)=\lambda_{-1}(E)=\sum_{i}(-1)^{i} \lambda^{i}(E)
$$

as its K-theoretic Euler class. Thus

$$
e^{K}(L)=1-L
$$

for a line bundle L. Then

$$
e^{K}\left(L_{1} \otimes L_{2}\right)=e^{K}\left(L_{1}\right)+e^{K}\left(L_{2}\right)-e^{\mathbb{K}}\left(L_{1}\right) e e^{K}\left(L_{2}\right)
$$

for line bundies L_{1} and L_{2}, i.e.s the associated foxmal group F_{K} of K-functor is given by

$$
\begin{equation*}
F_{K}(X, Y)=X+Y-X Y=1-(1-X)(1-Y) \tag{8.1}
\end{equation*}
$$

n fold multiplication with respect to F_{K} is defined by

$$
F_{K}\left(X_{1}, \ldots, X_{n}\right)=F_{K}\left(X_{1}, F_{K}\left(X_{2}, \ldots, X_{n}\right)\right)
$$

recursively. Then

$$
\begin{equation*}
F_{K}\left(X_{1}, \ldots, X_{n}\right)=1-\left(1-X_{1}\right) \ldots\left(1-X_{n}\right) \tag{8.2}
\end{equation*}
$$

Thus

$$
[n]_{K}(T)=1-(1-T)^{n}
$$

for any positive integer n. More generally, over any ring Λ such that $2 \subset \Lambda \subset 0$,

$$
\begin{equation*}
[a]_{K}(T)=1-(1-T)^{a} \tag{8.3}
\end{equation*}
$$

for any $a \in \Lambda$, where

$$
(1-T)^{a}=1-a \cdot T+\frac{a(a-1)}{2} T^{2}-\ldots+(-1)^{k}\binom{a}{k} T^{k}+\ldots
$$

(cf., 2.4).
The Frobenius operator $f_{n, K}, n \geq 1$, applied to the identity curve γ_{0}, is computed as follows.

$$
\begin{aligned}
\left(\mathbb{f}_{\mathrm{n}, K^{\gamma} 0}\right)(\mathrm{T}) & =(-1)^{\mathrm{n}-1}\left(\zeta_{1} \mathrm{~T}^{1 / \mathrm{n}}\right) \ldots\left(\zeta_{\mathrm{n}} \mathrm{~T}^{1 / \mathrm{n}}\right) \\
& =\mathrm{T}
\end{aligned}
$$

where $\zeta_{1}, \ldots, \zeta_{n}$ are $n-t h$ roots of 1, i.e.,

$$
\begin{equation*}
\mathbb{f}_{\mathrm{n}, \mathrm{~K}} \gamma_{0}=\gamma_{0} \tag{8.4}
\end{equation*}
$$

for any $n \geq 1$.

Over Q the logarithm

$$
\log _{\mathrm{K}}: \mathrm{F}_{\mathrm{K}} \underset{\rightarrow}{\leftrightarrows} \mathrm{G}
$$

is described by

$$
\begin{equation*}
\log _{K} T=-\log (1-T)=\sum_{n \geq 1} \frac{1}{n} T^{n} \tag{8.5}
\end{equation*}
$$

where \log is the usual natural logarithm.
8.2. Let p be a fixed prime. Over ${ }^{\mathbb{Z}}(p)=K(p t)(p)$ the canonical typical curve $\xi_{\mathrm{K}}=\xi_{\mathrm{K},(\mathrm{p})}$ can be computed by (8.2), (8.3) and (8.4), and we obtain

$$
\begin{align*}
\xi_{K}(T)=\left(\varepsilon_{K} \gamma_{0}\right)(T) & =\sum_{(m, p)=1}^{F_{K}}\left(1-\left(1-T^{m}\right)^{\left.\frac{\mu(m)}{m}\right)}\right. \tag{8.6}\\
& =1-P(1-T)
\end{align*}
$$

where $u(m)$ is the Mobius function and

$$
\begin{equation*}
P(1-T)=\prod_{(m, p)=1}\left(1-T^{m}\right)^{\frac{\mu(m)}{m}} \tag{8,7}
\end{equation*}
$$

is the Artin-Hasse series. (Cf., [10].)
Let $\mu_{K}=F_{K}^{\xi_{K}}$, the typical fommal group canonically associated to F_{K}. Then
(8.8)

$$
\log _{\mu_{\mathrm{K}}}=\log _{\mathrm{K}} \circ \xi_{\mathrm{K}}
$$

over D, and by Proposition 3.3 and (8.5) we have

$$
\begin{equation*}
\log _{\mu_{K}} T=\sum_{k \geq 0} \frac{1}{p^{k}} T^{p^{k}}=L(1-T) \tag{8.9}
\end{equation*}
$$

using a notation $\mathrm{L}(1-\mathrm{T})$ of Hasse [10]. Now

$$
\begin{aligned}
\log _{\mu_{K}} \mathrm{~T} & =\log _{\mathrm{K}}\left(\xi_{\mathrm{K}}(\mathrm{~T})\right) & & \text { by }(8.8) \\
& =-\log \left(1-\xi_{\mathrm{K}}(\mathrm{~T})\right) & & \text { by }(8.5) \\
& =-\log P(1-\mathrm{T}) & & \text { by }(8.6)
\end{aligned}
$$

Thus

$$
\begin{equation*}
\mathrm{L}(1-T)=-\log P(1-T) \tag{8.10}
\end{equation*}
$$

by (8.9). This was observed also in [10].
8.3. Next we observe formal groups of periodic K-cohomology $K^{*}()$. Its coefficient object is $K^{*}(p t)=\mathbb{Z}\left[u, u^{-1}\right]$, where $u \in K^{-2}(p t)$ is the Bott periodic element. To make K^{*} complex oriented we define K^{*}-Euler class of a line bundle L over X by

$$
e^{K^{*}}(L)=u^{-1} \cdot e^{K}(L) \in K^{2}(X)
$$

Then its associated formal group is

$$
\mathrm{F}_{\mathrm{K}^{*}}=\mathrm{F}_{\mathrm{K}}^{[\mathrm{u}] \gamma_{0}}
$$

i.e.,
(8.1)* $\quad F_{K^{*}}(X, Y)=X+Y-u \cdot X Y=u^{-1}(1-(1-u X)(1-u Y))$.

Thus n fold multiplication with respect to $F_{K *}$ is (8.2)* $F_{K^{*}}\left(X_{1}, \ldots, X_{n}\right)=u^{-1}\left(1-\left(1-u X_{1}\right) \ldots\left(1-u X_{n}\right)\right)$
and
$(8.3) * \quad[a]_{K *}(T)=u^{-1}\left(1-(1-u T)^{a}\right)$
for any $a \in \Lambda$ over $K^{*}(p t) \otimes \Lambda$, where $z \subset \Lambda \subset Q$.
The Frobenius operator $f_{n, K^{*}}, \mathrm{n} \geq 1$, applied to the identity curve γ_{0},
is
(8.4)*

$$
\mathbb{f}_{\mathrm{n}, \mathrm{~K} *} \gamma_{0}=\left[\mathrm{u}^{\mathrm{n}-1}\right] \gamma_{0}
$$

Finally, over $K^{*}(\mathrm{pt}) \otimes \mathbb{Q}$ the logarithm

$$
\log _{\mathrm{K}^{*}}: \mathrm{F}_{\mathrm{K}^{*}} \underset{\mathrm{a}}{\cong} \mathrm{G}_{\mathrm{a}}
$$

is described by
$(8.5) * \quad \log _{K *} T=-u^{-1} \cdot \log (1-u \cdot T)=\sum_{n>1} \frac{u^{n-1}}{n} \cdot T^{n}$.
8.4. Let p be a fixed prime. Over $K^{*}(p t)(p)=k^{*}(p t) Q Z_{(p)}$ the canonical typical curve $\xi_{K^{*}}$ can be computed by $(8.2) *,(8.3) *$ and (8.4) * and we obtain
$(8.6) * \quad \xi_{\mathrm{K}^{*}}(T)=\left(\varepsilon_{\mathrm{K}^{*} Y_{0}}\right)(T)=u^{-1}(1-P(1-u T))$.
Let $\mu_{K^{*}}=F_{K^{*}} \xi_{K^{*}}$, the typical formal group canonically assoctated to
$\mathbb{F}_{\mathbb{K}^{*}}$. Then
$(8.8) * \quad \log _{\mu_{K^{*}}}=\log _{\mathrm{K}^{*}} 0 \xi_{\mathbb{K}^{*}}$
over $K^{*}(p t) \otimes$, and by Proposition 3.3 and (8.5)* we have
$\left.(8.9) * \quad \log _{\mu_{K^{*}}} T=u^{-1} L(1-u)^{2}\right)=\sum_{k>0} \frac{u^{p^{k}-1}}{p^{k}} \mathrm{~T}^{k}$.
§9. Adams decompositions and typical formal groups
9.1. Let p be a fixed prime. Adams [1] and Sullivan [22] gave a decomposition of complex K-theory localized at p into $p-1$ factors. Since Adams' decomposition is more explicit we shall observe his decomposition. Let $K()_{(p)}=K() \otimes \mathbb{Z}_{(p)}$. Adams $[1]$ gave linear idempotents of this functor

$$
\mathrm{E}_{\mathrm{s}}: \mathrm{K}()_{(p)} \longrightarrow \mathrm{K}()_{(p)}
$$

for each $s \in \mathbb{Z}$ by

$$
\begin{equation*}
E_{s}(L)=\frac{1}{p-1} \sum_{m=1}^{p-1} \omega^{-m s}\left(1-e^{K}(L)\right)^{\omega^{m}} \tag{9.1}
\end{equation*}
$$

for a line bundle L where ω is a primitive ($p-1$) -th root of 1 as a p-adic integer. Even though $\omega \in \hat{\mathbb{Z}}_{p}$ all coefficients of $E_{S}(L)$ (as a power series of $\left.e^{K}(L)\right)$ lie actually in $\mathbb{Z}_{(p)}$ so that (9.1) is a welldefined formula. The formula (9.1) determines $\mathbb{Z}_{(p)}$-1inear natural ransformations E_{s} completely by splitting principle.

Following [1] we 1ist basic properties of E_{s} quickly.

$$
\begin{equation*}
E_{s}=E_{s^{\prime}} \quad \text { if } \quad s \equiv s^{\prime} \quad \bmod p-1 \tag{9.2}
\end{equation*}
$$

Thus these natural transformations are defined actually for elements $\alpha=$ $\{s\} \in \mathbb{Z} /(p-1) \mathbb{Z} . \quad$ Then

$$
\begin{align*}
E_{\alpha}^{2}=E_{\alpha} & \text { (idempotent) } \tag{9.3}\\
E_{\alpha} B_{B}=0 & \underline{\text { if } \quad \alpha \neq \beta \text { in } \mathbb{Z} /(p-1) \mathbb{Z},} \tag{9.4}
\end{align*}
$$

$$
\begin{equation*}
\alpha \sum_{\alpha \in \mathbb{Z} /(p-1) \mathbb{Z}}^{E_{\alpha}=1 .} \tag{9.5}
\end{equation*}
$$

By (9.3), (9.4) and (9.5) we have a natural decomposition

$$
\begin{equation*}
K()_{(p)}=E_{0} K()_{(p)} \oplus E_{1} K()_{(p)} \oplus \ldots \oplus E_{p-2} K()_{(p)} \tag{9.6}
\end{equation*}
$$

of the functor $K()^{(p)}$ as a direct sum. Next

$$
\begin{equation*}
E_{\alpha}(x y)=\sum_{\beta+\gamma=\alpha} E_{\beta}(x) E_{\gamma}(y) \tag{9.7}
\end{equation*}
$$

for internal and external multiplications. In particular we see that, it $x \in E_{\beta} K(X)(p)$ and $y \in E_{\gamma} K(X)(p)$, then $x y \in E_{\beta+\gamma} K(X)(p)$, and
(9.8) $E_{0} K()(p)$ is a multiplicative functor.
Q.2. Let L_{1} be a line bundle over S^{2}. Since $e^{K}\left(I_{1}\right)^{2}=0$, we have

$$
\begin{aligned}
\mathbb{E}_{1}\left(L_{1}\right) & =\frac{1}{p-1} \sum_{m=1}^{p-1} \omega^{-m}\left(1-e^{k}\left(L_{1}\right)\right)^{\omega^{m}} \\
& =\frac{1}{p-1} \sum_{m=1}^{p-1} \omega^{-m}\left(1-\omega^{m} e^{K}\left(L_{1}\right)\right) \\
& =\frac{1}{p-1}\left(\sum_{m=1}^{p-1} \omega^{-m}\right)-e^{K}\left(L_{1}\right) \\
& =-e^{k}\left(L_{1}\right)
\end{aligned}
$$

Here we used the fact that

$$
\sum_{m=1}^{p-1} \omega^{m s}=\left\{\begin{array}{cc}
0 & \text { if } \\
s \not \equiv 0 & \bmod p-1 \\
p-1 & \text { if } s \equiv 0 \bmod p-1
\end{array}\right.
$$

which will be used later freely. In particular

$$
E_{1}(1)=0
$$

Thus

$$
E_{1}\left(e^{K}\left(L_{1}\right)\right)=e^{K}\left(L_{1}\right) .
$$

Since $\tilde{K}\left(S^{2}\right)(p)$ is generated by $e^{K}\left(L_{1}\right)$ (by choosing L_{1} as the canonical Iine bundle) we see that

$$
E_{1} \tilde{K}\left(S^{2}\right)(p)=\tilde{K}\left(S^{2}\right)(p)
$$

$$
\begin{equation*}
E_{\alpha}^{\tilde{K}\left(S^{2}\right)}(p)=0 \quad \text { if } \quad \alpha \neq 1 \quad \text { in } \quad Z /(p-1) Z \tag{9.9}
\end{equation*}
$$

Apply (9.7) to the smash product $S^{2} \wedge \ldots \wedge S^{2}=S^{2 n}$ and obtain

$$
\begin{equation*}
E_{n} \tilde{K}\left(S^{2 n}\right)(p)=\tilde{K}\left(S^{2 n}\right)(p)^{\prime} \tag{9.10}
\end{equation*}
$$

$$
E_{s} \tilde{K}\left(S^{2 n}\right)(p)=0 \quad \text { if } \quad s \not \equiv n \quad \bmod p-1
$$

Let $\dot{\phi}: \tilde{K}(X) \cong \tilde{K}\left(S^{2} \wedge X\right)$ be the Bott isomorphism. By (9.7) and (9.9) we have the commutativity

and
ϕ induces an isomorphism

$$
\begin{equation*}
\phi_{\alpha}: E_{\alpha}^{\tilde{K}(X)}(p) \quad \underset{\sim}{\leftrightarrows} E_{\alpha+1} \tilde{K}\left(S^{2} \wedge X\right)(p) \tag{9.11}
\end{equation*}
$$

for each $\alpha \in \mathbb{Z} /(p-1) \mathbb{Z}$.
9.3. From the above idempotents we define linear idempotents

$$
E_{S}^{*}: K^{*}()(p) \longrightarrow K^{*}()(p)
$$

of K-cohomology localized at p for each $s \in \mathbb{Z}$. Define

$$
\mathrm{E}_{\mathrm{s}}^{2 i}: K^{2 i}()(p) \longrightarrow K^{2 i}()_{(p)}
$$

by requirement that the following diagram

commutes, where β is the Bott periodicity, i.e., the multiplication with $u \in K^{-2}(p t)$. Define

$$
E_{s}^{2 i+1}: k^{2 i+1}()(p) \longrightarrow K^{2 i+1}()(p)
$$

by requirement that the following diagram

$$
\begin{aligned}
& K^{2 i+1}(X)_{(p)}=\tilde{K}^{2 i+1}(X)(p) \quad \sigma \tilde{K}^{2 i+2}\left(S^{1} \wedge X\right)(p) \\
& \downarrow E_{S}^{2 i+1} \| E_{S}^{2 i+2} \\
& K^{2 i+1}(X)(p)=\tilde{K}^{2 i+1}(X)(p) \longrightarrow \tilde{K}^{2 i+2}\left(S^{1} \wedge X\right)(p)
\end{aligned}
$$

commutes, where σ is the suspension isomorphism. Then by (9.11) we see that $E_{S}^{*}=\left\{E_{S}^{i}, i \in \mathbb{Z}\right\}$ commutes with suspensions and is a well-defined $\mathbb{Z}_{(p)}{ }^{-1 \text { inear, degree-preserving idempotents of the cohomology theory }}$ $K^{*}()_{(p)}$

Basic properties of these idempotent follow by the corresponding properties of E_{s} 's. First of all
(9.2)*
$E_{S}^{*}=E_{S}^{*}$,
if $s \equiv s^{\prime} \quad \bmod p-1$.

Thus these idempotent are defined actually for elements $\alpha=\{s\} \in \mathbb{Z} /(p-1) \mathbb{Z}$. Then, by (9.3), (9.4) and (9.5) we obtain
$(9.3) *$

$$
\left(\mathrm{E}_{\alpha}^{*}\right)^{2}=\mathrm{E}_{\alpha}^{*}
$$

(9.4)*

$$
E_{\alpha}^{*} E_{\beta}^{*}=0
$$

if $\alpha \neq \beta$ in $\quad \mathbb{Z} /(p-1) \mathbb{Z}$,
(9.5)*

$$
\sum_{\alpha \in \mathbb{Z} /(p-1) \mathbb{Z}} E_{\alpha}^{*}=1
$$

Thus we have a natural decomposition
(9.6)*
$K^{*}()_{(p)}=E_{0}^{*} K^{*}()$
(P)
$\oplus \mathrm{E}_{1}^{*} K *()$
(p)
$\oplus \ldots$
${ }^{(+)} \mathrm{E}_{\mathrm{p}-2^{*}}^{\mathrm{K}}()_{(\mathrm{p})}$
of the cohomology $K^{*}()_{(p)}$ as a direct sum and each direct factor $E_{\alpha}^{*} K^{*}$
() (p) itself is a cohomology theory.
Next by (9.7) and the definition of E_{α}^{*} we obtain

$$
(9.7)^{*}
$$

$$
E_{\alpha}^{*}(x y)=\sum_{\beta+\gamma=\alpha} E_{\beta}^{*}(x) E_{\gamma}^{*}(y)
$$

for internal and external multiplications. In particular we see that, if $x \in E_{\beta}^{*} K^{*}(X)(p)$ and $y \in E_{\gamma}^{* K^{*}(X)}(p)$, then $x y \in E_{\beta+\gamma}^{*} K^{*}(X)(p)$, and (9.8)* $\mathrm{E}_{0}^{*} \mathrm{~K} *()$ (p) is a multiplicative cohomology theory.

> 9.4. Put

$$
\begin{equation*}
G^{*}()=E_{0}^{\star K^{\star}()}(p) . \tag{9.12}
\end{equation*}
$$

This is a multiplicative cohomology theory inheriting its multiplicative structure from $K^{*}()$. By definitions we see that

$$
\begin{equation*}
G^{*}(p t)=\mathbb{Z}_{(p)}\left[u_{1}, u_{1}^{-1}\right], \quad u_{1}=u^{p-1} \tag{9.13}
\end{equation*}
$$

i.e., $G^{*}()$ is a periodic cohomology theory of period $2(p-1)$ with u_{1} as the periodicity element.

We give complex orientation of $K^{*}()_{(\mathrm{p})}$ by assigning $\xi_{\mathrm{K}^{*}}^{-1}\left(\mathrm{e}^{\mathrm{K}^{*}}(\mathrm{~L})\right)$ as Euler class of a line bundle L. Then its associated fomal group is the typical group law $\mu_{K^{*}}$. We denote as

$$
e^{\mu_{K^{*}}}(L)=\xi_{K^{*}}^{-1}\left(e^{K^{*}}(L)\right)
$$

Theorem 9.1.

$$
e^{\mu_{K}^{*}}(\mathrm{~L}) \in G^{2}(X)
$$

for any line bundle L over X.

Proof. Using the notations of [10] we put

$$
1-\tau=P(1-T) \quad \text { and } \quad 1-T=Q(1-\tau)
$$

Then

$$
\tau=\xi_{K}(T)
$$

by (8.6). As is well known

$$
\begin{equation*}
(1-\tau)^{\omega^{m}}=P\left(1-\omega^{m_{r}}\right) \tag{9.14}
\end{equation*}
$$

where ω is the primitive $(p-1)$-th root of 1 in $\hat{\mathbb{Z}}_{p}$ and $m \in \mathbb{Z}$, which can be seen by taking $-\log$ of both sides and by easy computaions.

Putting

$$
\xi_{K}(T)=\sum_{j \geq 0} \xi_{j}^{K_{\mathrm{T}} \mathrm{~T}^{j+1}},
$$

we obtain

$$
\left.(1-\tau)^{\omega}=1-\sum_{j \geq 0} \xi_{j}^{k}(\omega)^{m_{T}}\right)^{j+1}
$$

by (9.14) and (8.6). Now compute, for $s \in \mathbb{Z}$,

$$
\begin{aligned}
& \frac{1}{p-1} \sum_{m=1}^{p-1} \omega^{-m s}(1-\tau)^{\omega m} \\
&=\frac{1}{p-1}\left(\sum_{m=1}^{p-1} \omega^{-m s}-\sum_{j>0} \xi_{j}^{K}\left(\sum_{m=1}^{p-1} \omega^{m(j+1-s)}\right) T^{j+1}\right) \\
&= \begin{cases}1-\sum_{p-1 \mid j+1} \xi_{j}^{K_{T} j+1} & \text { if } s \equiv 0 \text { mod } p-1 \\
- & \text { if } s \neq 0 \text { mod } p-1\end{cases}
\end{aligned}
$$

Putting $\tau=e^{K}(L)$, by (9.1) we obtain

$$
\begin{align*}
& E_{0}(L)=1-\sum_{k \geq 1} \xi_{k(p-1)-1}^{K}\left(e^{\mu_{K}}(L)\right)^{k(p-1)} \tag{9.15}\\
& E_{s}(L)=-\sum_{k \geq 0} \xi_{k(p-1)+s-1}^{K}\left(e^{\mu_{K}}(L)\right)^{k(p-1)+s}
\end{align*}
$$

for $1 \leq s \leq p-2$. (Remark that $e^{\mu_{K}}(L)=\xi_{K}^{-1}\left(e^{K}(L)\right)$.)
Put

$$
\xi_{\mathrm{K}^{*}}(\mathrm{~T})=\sum_{\mathrm{j} \geq 0} \xi_{\mathrm{j}}^{\mathrm{K}^{*} \mathrm{~T}^{\mathrm{j}+1},}
$$

then by (8.6) and (8.6)* we see that

$$
\xi_{j}^{K^{*}}=\xi_{j}^{K} \cdot u^{j}
$$

for $j \geq 0$. Since $e^{K^{*}}(L)=u^{-1} \cdot e^{K}(L)$ for a line bundle L over X, we have

$$
e^{\mu_{K^{*}}}(L)=\xi_{K^{*}}^{-1}\left(e^{K^{*}}(L)\right)=u^{-1} e^{\mu_{K}}(L)
$$

Now put

$$
A(L)=\sum_{k \geq 0} \xi_{k(p-1)}^{K^{*}}\left(e^{K_{K^{*}}}(L)\right)^{k(p-1)+1}
$$

Then

$$
\begin{aligned}
A(L) & =u^{-1} \cdot \sum_{K \geq 0}^{K} \xi_{k(p-1)^{k}\left(e^{M}(u)\right)^{k(p-u)+1}} \\
& =u^{-1} \cdot E_{1}(L)
\end{aligned}
$$

by (9.15). Hence by definition we see that

$$
A(L) \in E_{0}^{2} K^{2}(X)(P)=G^{2}(X)
$$

Remark that $A(L)$ is an invertible power series of $e^{\mu / \mathrm{K}}(\mathrm{L})$: and all possible non-zero coefficients are

$$
\xi_{k(p-1)}^{K^{*}}=\xi_{k(p-1)}^{K} \cdot\left(u^{p-1}\right)^{k} \in G^{*}(p t)
$$

Thus $e^{\mu_{K}}(L)$ can be solved as a powex series of $A(L)$ with coefficients in $G^{*}(\mathrm{pt})$. Hence

$$
e^{\mu_{K}^{*}}(L) \in G^{2}(X), \quad q \cdot e \cdot d
$$

9.5. The above theorem implies that all coefficienes of $\mu_{K^{*}}(X, Y)$ lie in $G^{*}(p t)$ and $\mu_{K^{*}}$ determines a tpical formal group $\mu_{G^{*}}$ over
$G^{*}(p t)$ by restricting the domain of coefficients to $G^{*}(p t)$. The corresponding complex orientation of $G^{*}()$ is given by assigning

$$
e^{G^{*}}(L)=e^{\mu_{K *}^{*}}(L) \in G^{2}(X)
$$

as Euler class of a line bundle L over X. Its logarithm

$$
\log _{\mu_{G^{*}}}: \mu_{G^{*}} \stackrel{G}{\leftrightarrows} G_{a}
$$

over $G^{*}(p t) \otimes \mathbb{Q}$ is given by

$$
\begin{equation*}
\log _{\mu_{G^{*}}} T=\sum_{k \geq 0} \frac{1}{p^{k}} u_{1}^{1+p+\ldots+p^{k-1}} \cdot T^{p^{k}} \tag{9.16}
\end{equation*}
$$

(Cf., (8.9)*).

Identifying by periodic isomorphisms in $G^{*}()$ we obtain a multiplicative cohomology $G^{\#}()$ graded in $\mathbb{Z} / 2(p-1) \mathbb{Z}$. (Remark that the difference of notations from the usual convention in K-theory !) $G^{\#}$ is complex oriented by assigning

$$
e^{G}(L)=e^{G^{*}}(L)
$$

as Euler classes. Its associated formal group is a typical formal group μ_{G} over $G^{\#}(p t)=\mathbb{Z}_{(p)}$ with

$$
\log _{\mu_{G}} T=\sum_{k \geq 0} \frac{1}{p^{k}} T^{p^{k}}
$$

9.6. By the universality of complex cobordism (cf., 5.1) we have a unique cohomology transformation

$$
\begin{equation*}
\mathrm{td}: \mathrm{U}^{*} \longrightarrow \mathrm{~K}^{*} \tag{9.17}
\end{equation*}
$$

which is linear, degree-preserving, multiplicative and

$$
\begin{equation*}
\operatorname{td}\left(e^{U}(L)\right)=e^{K^{*}}(L) \tag{9.18}
\end{equation*}
$$

for a line bundle L. This is essentially the same as the td-map of ConnerFloyd [7], and we have

$$
\begin{equation*}
\operatorname{td}\left(x_{2 n}\right)=\operatorname{Td}\left(x_{2 n}\right) \cdot u^{n} \tag{9.19}
\end{equation*}
$$

for $x_{2 n} \in U^{-2 n}(p t)$, where $\operatorname{Td}\left(x_{2 n}\right)$ denotes the Todd genus of the weakly complex manifold representing $x_{2 n}$. Remark the difference of signs from the corresponding formula of [7]. This point is adjusted by a choice of Bott-periodicity element u (among $\pm u$).

By (9.18) we see that

$$
\operatorname{td}(p t){ }_{*} F_{U}=F_{K^{*}} \quad \text { and } \quad t d(p t)_{*} \xi_{U,(p)}=\xi_{K^{*},(p)}
$$

after localized at a prime p. Hence

$$
\begin{equation*}
\operatorname{td}\left(e^{B P}(L)\right)=e^{\mu_{K^{*}}}(L)=e^{G^{*}}(L) \tag{9.20}
\end{equation*}
$$

for a line bundle L. This implies that

$$
\operatorname{td}\left(\mathrm{BP}^{*}(\mathrm{X})\right) \subset \mathrm{G}^{*}(\mathrm{X})
$$

(cf., Theorem 7.2). And we obtain
Theorem 9.2. By restricting td to $B P *()$ we obtain a cohomology
transformation

$$
\overline{\mathrm{Id}}: B P^{*}() \longrightarrow G^{*}()
$$

which is $\mathbb{Z}_{(p)}$-linear; degree-preserving, multiplicative and

$$
\overline{t d}\left(e^{B P}(L)\right)=e^{G^{*}}(L)
$$

for a line bundle L.
§10. Coefficients of curves

Practically we need some calculus of coefficients of curves modulo some ideals. Here we collect some propositions necessary for these purposes.
10.1. Let R be a commutative ring with unity and I an ideal of R. Let $f(T)=\sum F_{i} T^{i}$ and $g(T)=\sum g_{i} T^{i}$ be formal power series over R. We say that

$$
f \equiv 0 \quad \bmod I
$$

iff $f_{i} \in I$ for all $i \geq 0$, and

$$
f \equiv g \quad \bmod I
$$

iff $f-g \equiv 0 \quad \bmod I$.

Lemma 10.1. Let f, f^{\prime}, g and g^{\prime} be formal power series over
R. If $f \equiv f^{\prime} \bmod I$ and $g \equiv g^{\prime} \bmod I$, then

$$
f+g \equiv f^{\prime}+g^{\prime} \quad \bmod I, \quad f g \equiv f^{\prime} g^{\prime} \quad \bmod I
$$

and, when g and g^{\prime} are without constant terms,

$$
f \circ g \equiv f^{\prime} \circ g^{\prime} \quad \bmod I
$$

Proof follows by routine arguments.

Let F be a formal group over R.

Lemma 10.2. Let $\gamma_{1}, \gamma_{1}^{\prime}, \gamma_{2}$ and γ_{2}^{\prime} be curves over F If
$\gamma_{1} \equiv \gamma_{1}^{\prime \bmod I \text { and } \gamma_{2} \equiv \gamma_{2}^{\prime} \bmod I \text {, then }, ~(1)}$

$$
\gamma_{1}+{ }^{F} \gamma_{2} \equiv \gamma_{1}^{\prime}+{ }^{F} \gamma_{2}^{\prime} \quad \bmod I .
$$

Proof follows by definition and the above Lemma.
Proposition 10.3. Let $\left\{\gamma_{1}, \gamma_{2}, \ldots\right\}$ and $\left\{\gamma_{1}^{\prime}, \gamma_{2}^{\prime}, \ldots\right\}$ be Canchy sequences in C_{F} such that

$$
\gamma_{i} \equiv \gamma_{i}^{\prime} \quad \bmod I
$$

for all $\mathrm{i} \geq 1$, then

$$
\sum_{i \geq 1}^{F} \gamma_{i} \equiv \sum_{i \geq 1}^{F} \gamma_{i}^{\prime} \quad \bmod I
$$

Proof. By the above Lemma the congruence is true for every finite partial sums. Since every coefficient of infinite sums can be found as a coefficient of suitable finite sum, the Proposition is true.

Lemma 10.4. Let γ_{1} and γ_{2} be curves over F such that $\gamma_{1} \equiv 0$ $\bmod I$ and $\gamma_{2} \equiv 0 \bmod I$, then

$$
\gamma_{1}+{ }^{F} \gamma_{2} \equiv \gamma_{1}+\gamma_{2} \quad \bmod I^{2}
$$

Proof. By (1.4)

$$
F(X, Y)=X+Y+X Y \bar{F}(X, Y) .
$$

Thus

$$
\left(\gamma_{1}+{ }^{\mathrm{F}} \gamma_{2}\right)(\mathrm{T})=\gamma_{1}(\mathrm{~T})+\gamma_{2}(\mathrm{~T})+\gamma_{1}(\mathrm{~T}) \gamma_{2}(\mathrm{~T}) \overline{\mathrm{F}}\left(\gamma_{1}(\mathrm{~T}), \gamma_{2}(\mathrm{~T})\right)
$$

$$
\equiv \gamma_{1}(\mathrm{~T})+\gamma_{2}(\mathrm{~T}) \quad \bmod \mathrm{I}^{2}
$$

q.e. d.

Proposition 10.5. Let $\left\{\gamma_{1}, \gamma_{2}, \ldots\right\}$ be a Canchy sequence in C_{F} such that

$$
\gamma_{i} \equiv 0 \quad \bmod I
$$

for $a 11 \quad i \geq 1$, then

$$
\sum_{i \geq 1}^{F} Y_{i} \equiv Y_{1}+\gamma_{2}+\ldots+Y_{n}+\ldots \bmod I^{2}
$$

Proof. The congruence is true for every finite partial sums by

Lenmas 10.1 and 10.4 , whence true for infinite sums.

Corollary 10.6. Let γ be a curve over F such that $\gamma \equiv 0 \bmod T$.

Express as

$$
Y(T)=\sum_{k \geq 1}^{F}\left(c_{k-1} T^{k}\right)
$$

then

$$
c_{k} \in I
$$

for all $k \geq 0$, and

$$
\gamma(T) \equiv c_{0} T+c_{1} T^{2}+\ldots+c_{k-1} T^{k}+\ldots \bmod I^{2}
$$

 group over R and γ is a rypical curve over μ, expressing γ as $\gamma(T)=\sum_{k \geq 0}^{\mu}\left(c_{k} T^{k}\right)$, if $\gamma \equiv 0 \bmod I$, then $c_{k} \in I$ for all $k \geq 0$ and

$$
\gamma(\mathrm{T}) \equiv \mathrm{c}_{0} \mathrm{~T}+\mathrm{c}_{1} \mathrm{~T}^{\mathrm{p}}+\ldots+\mathrm{c}_{k} \mathrm{~T}^{\mathrm{p}}+\ldots \bmod \mathrm{I}^{2} .
$$

10.2. Let R, I, F be as above.

Lemma 10.7. Let γ be a curve over F such that $\gamma \equiv 0 \bmod I$.
Then

$$
\left([c] \gamma_{0}+F \gamma\right)(T) \equiv c T+\frac{\partial F}{\partial \bar{Y}}(c T, 0) \cdot \gamma(T) \bmod I^{2}
$$

for $c \in R$, where γ_{0} is the identity curve over R.
Proof. $\quad\left([\mathrm{c}] \gamma_{0}+\mathrm{F} \gamma\right)(\mathrm{T})=F(\mathrm{cT}, \gamma(\mathrm{T}))$
$=\sum a_{i j}(c T)^{i} \gamma(T)^{j}$
$\equiv \mathrm{cT}+\sum_{\mathrm{n}>0} \mathrm{a}_{\mathrm{n} 1}(\mathrm{cT})^{\mathrm{n}} \cdot \gamma(\mathrm{T}) \quad \bmod \mathrm{I}^{2}$
$\equiv c T+\frac{\partial \bar{F}}{\partial}(c T, 0) \cdot \gamma(T) \quad \bmod I^{2}$.
q. e. d.

Next suppose R is of characteristic zero. Differentiating the relation

$$
\log _{F} F(X, Y)=\log _{F} X+\log _{F} Y
$$

with respect to Y, we obtain

$$
\frac{\partial F}{\partial Y}(T, 0) \cdot \log _{F}^{\prime} T=1
$$

where $\log _{\mathrm{F}}$ is the derivative of $\log _{\mathrm{F}}$. This shows firstly that $\log _{\mathrm{F}}^{\prime}$ is a power series defined over R, i.e., if we put

$$
\begin{equation*}
\log _{F} T=\sum_{k \geq 1} \frac{n_{k}}{k+1} T^{k+1}, \quad n_{0}=1 \tag{10.1}
\end{equation*}
$$

then all $n_{k} \in R$, and secondly that all coefficients of $\frac{\partial F}{\partial Y}(T, 0)$ are integral polynomials of coefficients n_{k} of $\log _{\frac{1}{f}}$.

Proposition 10.8. Let \mathbb{R} be of characteristic zero, and I an ideal of R containing all coefficients n_{k} of posittve degrees of \log. Let γ be a curve over F, and expressing as $\gamma(T)=\sum_{k \geq 1}^{F}\left(c_{k-1} T^{k}\right)$, suppose that $c_{k} \in I$ for all $k>0$. Then

$$
Y(\mathrm{~T}) \equiv c_{0} \mathrm{~T}+c_{1} \mathrm{~T}^{2}+\ldots+c_{\mathrm{K} \cdot-1} \mathrm{~T}^{\mathrm{k}}+\ldots \bmod \mathrm{I}^{2}
$$

Proof. Put

$$
\gamma_{1}(T)=\sum_{k=1}^{F}\left(c_{k-1} T^{k}\right),
$$

then $\gamma_{1} \equiv 0 \bmod I$ and by Proposition 10.5

$$
\gamma_{1}(\mathrm{~T}) \equiv c_{1} \mathrm{~T}^{2}+\ldots+c_{k-1} \mathrm{~T}^{k}+\ldots \bmod \mathrm{I}^{2}
$$

Now by Lemma 10.7

$$
\begin{aligned}
\gamma(T) & =\left(\left[c_{0}\right] \gamma_{0}+{ }^{F} \gamma_{1}\right)(T) \\
& \equiv c_{0} T+\frac{\partial F}{\partial Y}\left(c_{0} T, 0\right) \cdot \gamma_{1}(T) \bmod \mathbb{I}^{2}
\end{aligned}
$$

By the remark above the proposition we have

$$
\frac{\partial F}{\partial Y}\left(c_{0} T, 0\right)-I \equiv 0 \bmod I
$$

Thus

$$
\begin{aligned}
\gamma(\mathrm{T}) & \equiv c_{0} \mathrm{~T}+\gamma_{1}(\mathrm{~T}) \bmod \mathrm{I}^{2} \\
& \equiv c_{0} \mathrm{~T}+c_{1} T^{2}+\ldots+c_{k-1} T^{k}+\ldots \bmod \mathrm{I}^{2}
\end{aligned}
$$

> q.e. d.
10.3. Let R be a $\mathbb{Z}_{(p)}$-algebra and μ a typical formal group over R. Let $t=\left(t_{1}, t_{2}, \ldots\right)$ be a sequence of indeterminates and put

$$
\phi_{\mathbb{H}}(T)=\sum_{k \geq 0}^{\mu}\left(t_{k} T^{p^{k}}\right), \quad t_{0}=1
$$

which is a typical curve over μ (extending the domain of coefficients to $R[t]=R\left[t_{1}, t_{2}, \ldots\right]$.

$$
\mu^{\prime}=\mu^{\phi_{t}}
$$

is a typical formal group over $R[t]$. Since

$$
\phi_{4}^{-1}: \mu \cong \mu '
$$

and μ is typical, ϕ_{t}^{-1} is a typical curve over μ^{\prime}. Put

$$
\phi_{t}^{-1}(T)=\sum_{k \geq 0}^{\mu^{\prime}}\left(s_{k} T^{p^{k}}\right), \quad s_{0}=1,
$$

then $s_{j}=s_{j}\left(t_{1}, t_{2} \ldots\right) \in R[t]$. Here we put $\mathbb{t}=0=(0, \ldots, 0, \ldots)$,
then $\phi_{0}=\gamma_{0}$ so $\phi_{0}^{-1}=\gamma_{0}$ and

$$
s_{j}(0, \ldots, 0, \ldots)=0 \quad \text { for } j>0
$$

i.e.,

$$
\begin{equation*}
s_{j} \in I=\left(t_{1}, t_{2}, \ldots\right) \quad \text { for all } j>0 \tag{10.2}
\end{equation*}
$$

Proposition 10.9. Under the above situation let $I=\left(t_{1}, t_{2}, \ldots\right)$,
the ideal generated by t_{1}, t_{2}, \ldots, in $R[世]$ Then

$$
s_{k}+t_{k} \equiv 0 \bmod I^{2}
$$

for all $k>0$.

$$
\text { Proof. } \quad \begin{aligned}
T & =\phi_{t} \circ \phi_{\mathbb{U}}^{-1}(T) \\
& =\phi_{\mathbb{t}}\left(\sum_{j>0}^{\mu^{\prime}} s_{j} T^{p^{j}}\right) \\
& =\sum_{i>0, j>0}\left(t_{i} s_{j} p^{i} T^{p^{j+j}}\right) \\
& =T+{ }^{\mu} \quad \sum_{i+j>0}^{\mu}\left(t_{i} s_{j} p_{j}^{j} T^{i+j}\right) .
\end{aligned}
$$

Thus

$$
\sum_{i+j>0}^{\mu}\left(t_{i} s_{j}^{p^{i}} T^{p^{i+j}}\right)=0 .
$$

Then, by Proposition 10.5

$$
\begin{aligned}
0=\sum_{i+j>0} \mu_{i}\left(t_{i} s_{j}^{p_{T}} p^{i+j}\right) & \equiv \sum_{i+j>0} t_{i} s_{j}^{p_{j}^{i}} p^{i+j} \bmod I^{2} \\
& \equiv \sum_{k>0}\left(t_{k}+s_{k}\right) T^{p^{k}} \bmod I^{2} .
\end{aligned}
$$

Hence

$$
t_{k}+s_{k} \equiv 0 \quad \bmod I^{2}
$$

for all $k>0$.
§11. Stong-Hattori Theorem
In this section we prove Stong-Hattori Theorem [11], [20] in oux version based on formal group materials.
11.1. Here we put $\mu=\mu_{\mathrm{G}^{*}}$. Let $t=\left(t_{1}, t_{2}, \ldots\right)$ be a sequence of indeterminates with $\operatorname{dim} t_{j}=-2\left(p^{j}-1\right)$, and put

$$
\phi_{\widehat{⿺}}(T)=\sum_{j \geq 0}^{\mu}\left(\mathrm{t}_{j} \mathrm{~T}^{\mathrm{p}}\right), \quad \mathrm{t}_{0}=1
$$

$\phi_{\text {a }}$ is a typical curve over μ by extending the domain of coefficients to $G^{*}(p t)[t]=G^{*}(p t)\left[t_{1}, t_{2}, \ldots\right]$.

$$
\mu^{i}=\mu^{\phi_{t}}
$$

is a typical formal group over $G^{*}(p t)[4]$. We give the complex orientation of the cohomology theory $G^{*}()[i]$ by assigning $\phi_{\mathbb{i}}^{-1}\left(e^{G^{*}}(L)\right)$ as Euler class of a line bundle L. Then its associated formal group is the typical μ^{\prime}. Hence by Theorem 7.2 there exists a unique multiplicative cohomology transformation

$$
\mathrm{h}: \mathrm{BP*}() \longrightarrow \mathrm{G}^{*}()[\mathrm{t}]
$$

such that

$$
h\left(e^{B P}(L)\right)=\phi_{\mathbb{t}}^{-1}\left(e^{G^{*}}(L)\right)
$$

for a line bundle L, and

$$
\begin{equation*}
h(p t)_{*} \mu_{\mathrm{BP}}=\mu^{\prime} . \tag{11.1}
\end{equation*}
$$

Put

$$
\bar{h}=h(p t)
$$

for simplicity. By a standard argument (cf., [2]) we can identify with the Boardman map

$$
\pi_{*}(B P) \rightarrow \pi_{*}(G \wedge B P)
$$

and the Stong-Hattori map

$$
\pi_{*}(\mathrm{MU}) \longrightarrow \pi_{*}(\mathrm{~K} \wedge \mathrm{MU})
$$

decomposes as direct sum of copies of \bar{h} after localized at the prine p. Thus we can state Stong-Hatcori Theorem in our version as

Theorem II.1.

$$
\bar{h}=h(\mathrm{pt}): \mathrm{BP}^{*}(\mathrm{pt}) \longrightarrow \mathrm{G}^{*}(\mathrm{pt})[\mathrm{t}] \text { is a } \operatorname{split}
$$

monomorphism.

Stong-Hattori Theorem in this form is proved also in [3] by a different method.
11.2. Before going into the proof of Theorem 11.1 we compute some materials of $\mu . \log _{\mu}$ is already given in (9.16).

We compute $[\mathrm{p}]_{\mu}$:

$$
\begin{aligned}
& \log _{\mu}[p]_{\mu}(T)=p \cdot \log _{\mu} T \\
& =p T+\sum_{k>0} \frac{1}{p^{k}} u_{1}^{1+p+\ldots+p^{k}} \mathrm{~T}^{k+1} \\
& =p T+\sum_{k \geq 0} \frac{1}{p^{k}} u_{1}^{1+p+\ldots+p^{k-1}}\left(u_{1} T^{p}\right)^{p^{k}}
\end{aligned}
$$

$$
=\log _{\mu}\left(\exp _{\mu}(\mathrm{pT})\right)+\log _{\mu}\left(u_{1} \mathrm{~T}^{\mathrm{P}}\right)
$$

where $\exp _{\mu}=\log _{\mu}^{-1}$. Hence

$$
\begin{equation*}
[p]_{\mu}(T)=\exp _{\mu}(p T)+{ }^{\mu}\left(u_{1} T^{p}\right) \tag{11.2}
\end{equation*}
$$

Since

$$
\exp _{\mu}: G_{a} \xlongequal{\wedge} \quad \text { over } G^{*}(p t) \otimes \mathbb{Q}
$$

and G_{a} is additive, whence typical, we see that $\exp _{\mu}$ is a typical curve over μ (over $G^{*}(p t) \otimes \mathbb{Q}$). Put

$$
\exp _{\mu} T=\sum_{i \geq 0}^{\mu}\left(e_{i} T^{p^{i}}\right), \quad e_{0}=1
$$

with dim $e_{i}=-2\left(p^{i}-1\right)$. Then

$$
\begin{aligned}
T & =\log _{\mu}\left(\exp _{\mu} T\right) \\
& =\log _{\mu \#}\left(\sum_{i \geq 0}^{\mu}\left(e_{i} T^{p^{i}}\right)\right) \\
& =\sum_{i>0} \sum_{j \geq 0} \frac{1}{p^{i}} u_{1}^{1+p+\ldots+p^{j-1} e_{i}^{p^{j}} T^{p^{i+j}}}
\end{aligned}
$$

Therefore

$$
\sum_{j=0}^{k} \frac{1}{p^{j}} u_{1}^{1+p+\ldots+p^{j-1}} e_{k-j}^{p^{j}}=0
$$

for all $k>0$. Or, multiplying ${ }_{p} p^{k}$ to this formula we obtain

$$
\begin{equation*}
\sum_{j=0}^{k} \frac{1}{p^{j}} u_{1}^{1+p+\ldots+p^{j-1}}\left(p^{p^{k-j}} e_{k-j}\right)^{p^{j}}=0 \quad \text { for } k>0 \tag{11.3}
\end{equation*}
$$

Lemma 11.2. $\quad p^{p^{k}} e_{k} \in p \cdot G^{*}(p t) \quad$ for a11 $k \geq 0$.

Proof. For $k=0$: since $e_{0}=1$ we have

$$
p^{p^{0}} e_{0}=p \in p \cdot G^{*}(p t)
$$

We prove the Lemma by induction on k. Assume it is proved until $k-1$. Then by (11.3)

$$
-p^{p^{k}} e_{k}=\sum_{j=1}^{k} \frac{1}{p^{j}} u_{1}^{1+p+\ldots+p^{j-1}\left(p^{p^{k-j}} e_{k-j}\right)^{p^{j}}}
$$

Here

$$
p^{p^{k-j}} e_{k-j} \in p \cdot G^{*}(p t)
$$

for $1 \leq j \leq k$ by induction hypothesis. Then, since $j<p^{j}$ for
$1 \leq j \leq k$ we have

$$
\frac{1}{p^{j}}\left(p^{p-j} e_{k-j}\right)^{p^{j} \in p \cdot G^{*}(p t)}
$$

for $1 \leq j \leq k$. Hence

$$
-p^{p^{k}} e_{k} \in p \cdot G^{*}(p t)
$$

$$
q \cdot e \cdot d .
$$

Now

$$
\exp _{\mu}(p T)=\sum_{k \geq 0}^{\mu}\left(p^{p^{k}} e_{k} T^{p^{k}}\right)
$$

Then by Proposition 10.5 and the above Lemma, putting $I=p \cdot G^{*}(p t)$ we obtain

Lemma 11.3. $\exp _{\mu}\left(\mathrm{pT}^{\mathrm{T}}\right)$ is a power series over $\mathrm{G}^{*}(\mathrm{pt})$ and

$$
\exp _{\mu}(p T) \equiv 0 \quad \bmod p \cdot G^{*}(p t)
$$

Corollary 11. A. $[\mathrm{p}]_{\mu}(\mathrm{T}) \equiv \mathrm{u}_{1} \mathrm{~T}^{\mathrm{p}} \bmod \mathrm{p} \cdot \mathrm{G}^{*}(\mathrm{pt})$.

This follows by Lemma $10.2,(11.2)$ and Lemma 11.3.
11.3. We compute $f_{p, \mu} \gamma_{0}$:

$$
\begin{aligned}
\xi_{\mathrm{K}^{*}}\left(f_{\mathrm{p}, \mu_{\mathrm{K}^{*}}} \gamma_{0}\right) & ={\underset{\mathrm{p}, \mathrm{~K}^{*}}{ }\left(\xi_{\mathrm{K}^{*}}\right)} \\
& ={ }_{\mathrm{f}, \mathrm{~K}^{*} \varepsilon_{\mathrm{K}^{*} \gamma_{0}}=\varepsilon_{\mathrm{K}^{*}} f_{\mathrm{p}, \mathrm{~K}^{*} \gamma_{0}}} \\
& =\varepsilon_{\mathrm{K}^{*}}\left(\left[\mathrm{u}^{\mathrm{p}-1}\right] \gamma_{0}\right) \quad \text { by } \quad(8.4)^{*} \\
& =\left[\mathrm{u}^{\mathrm{p}-1}\right] \varepsilon_{\mathrm{K}^{*}} \gamma_{0} \quad \text { by Proposition } 2.9 \\
& =\left[\mathrm{u}^{\mathrm{p}-1}\right] \xi_{\mathrm{K}^{* \#}} \gamma_{0} \\
& =\xi_{K_{* \#}}\left[\mathrm{u}^{\mathrm{p}-1}\right] \gamma_{0} \quad \text { by Proposition } 2.4 .
\end{aligned}
$$

Since $\xi_{K^{*} \#}: C_{\mu_{K^{*}}} \cong C_{\mathrm{F}^{*}}$, an isomorphism, we obtain

$$
\tilde{f}_{\mathrm{p}, \mu_{K^{*}}}{ }^{\circ} \gamma_{0}=\left[u^{p-1}\right] \gamma_{0}
$$

Hence

$$
\begin{equation*}
f_{p, \mu} \gamma_{0}=\left[u_{1}\right] \gamma_{0} \tag{11.4}
\end{equation*}
$$

Then we compute $f_{p, \mu}\left(t_{j} T^{p^{j}}\right)$:
for $j=0$, since $\tau_{0}=1$ we have

$$
\begin{aligned}
\mathbb{f}_{\mathrm{p}, \mu}\left(\mathrm{t}_{0} \mathrm{~T}\right) & =\left(\mathbb{f}_{\mathrm{p}, \mu} \gamma_{0}\right)(\mathrm{T}) \\
& =\mathrm{u}_{1} \mathrm{~T} \quad \text { by }(11.4) ;
\end{aligned}
$$

for $\mathrm{j}>0$,

$$
\begin{aligned}
\mathbb{f}_{p, \mu}\left(t_{j} T^{p^{j}}\right) & =\left(\mathbb{f}_{p, \mu^{N}}^{N_{p}^{\mathbb{N}}}{ }_{p}^{j-1}\left[t_{j}\right] \gamma_{0}\right)(T) \\
& =[p]_{\mu}\left(\mathbb{N}{ }_{p}^{j-1}\left[t_{j}\right] \gamma_{0}\right)(T) \quad \text { by Proposition } 2.9
\end{aligned}
$$

$$
\begin{aligned}
& =[p]_{\mu}\left(t_{j} T^{p^{j-1}}\right) \\
& \equiv u_{1} t_{j}^{p} T^{j} \quad \bmod \quad p \cdot G^{*}(p t)[\mathbb{t}]
\end{aligned}
$$

by Corollary 11．4．Thus we obtained

Lemma 11．5．i）$\quad \int_{p, \mu}\left(t_{0} T\right)=u_{1} T$ ，
ii）$\quad f_{p, \mu}\left(t_{j} T^{p^{j}}\right) \equiv u_{1} t_{j}^{p_{T} T^{j}} \quad \bmod \quad p \cdot G^{*}(p t)[t]$
for $j .>0$ ．
11．4．Proof of Theorem 11．1．Put

$$
\bar{v}_{i}=\bar{h}\left(v_{p^{i}-1}^{(p)}\right)
$$

6．2）．Then by Theorem 6.3 we obtain
（11．5）

$$
\left(\mathbb{f}_{p, \mu^{\prime} \gamma_{0}}\right)(T)=\bar{h}_{*}\left(f_{p, B p^{\prime}}\right)(T)=\sum_{i \geq 1}^{\mu^{\prime}}\left(\bar{v}_{i} T^{p^{i-1}}\right) .
$$

Since $\phi_{\psi}: \mu^{\prime} \cong \mu$ ，we have

$$
\begin{aligned}
& \phi_{甘} \circ\left(f_{p, \mu^{\prime} \gamma_{0}}\right)=\phi_{\text {并 }}\left(f_{p, \mu^{\prime} \gamma_{0}}\right) \\
& =f_{p, \mu}\left(\phi_{\mathbb{4} \# Y_{0}}\right) \\
& =f_{p, \mu} \phi_{t}
\end{aligned}
$$

Thus
（11．6） $\begin{aligned}\left(f_{p, \mu}, \gamma_{0}\right)(T) & =\phi_{\#}^{-1}\left(\sum_{j \geq 0}^{\mu} \mathbb{f}_{p, \mu}\left(t_{j} \mathrm{~T}^{\mathrm{P}^{j}}\right)\right) \\ & \equiv \phi_{t}^{-1}\left(\sum_{j \geq 0}^{\mu}\left(u_{1} t_{j}^{p_{j} \mathrm{P}^{j}}\right)\right) \bmod \quad \mathrm{p} \cdot \mathrm{G}^{*}(\mathrm{pt})[t]\end{aligned}$
by Lemma 10.1, Proposition 10.3 and Lemma 11.5. Comparing the lowest terms (deg 1) of both sides of (11.6) we obtain
(11.7) $\bar{v}_{1} \equiv u_{1} \quad \bmod \quad \mathrm{p} \cdot \mathrm{G}^{*}(\mathrm{pt})[t]$.

Put

$$
\phi_{\mathbb{1}}^{-1}(\mathrm{~T})=\sum_{j \geq 0}^{\mu^{\prime}}\left(s_{j} \mathrm{~T}^{p^{j}}\right), \quad s_{0}=1
$$

as in 10.3, and put

$$
I=\left(t_{1}, t_{2}, \ldots\right)
$$

the ideal generated by t_{1}, t_{2}, \ldots in $G^{*}(p t)[t]$. Then

$$
s_{j}+t_{j} \equiv 0 \quad \bmod \quad I^{2}
$$

for $j>0$ by Proposition 10.9 . Hence we can use s_{1}, s_{2}, \ldots as a polynomial basis of $G^{*}(\mathrm{pt})[\mathrm{t}]$, i.e.,

$$
G^{*}(p t)[t]=G^{*}(p t)\left[s_{1}, s_{2}, \ldots\right]
$$

By (11.6), using Lemma 10.1 and Proposition 10.3 , we obtain

$$
\left({ }_{p, \mu}, \gamma_{0}\right)(T) \equiv \sum_{j \geq 0}^{\mu^{\prime}}\left(u_{1}^{p^{j}} s_{j} T^{p^{j}}\right) \quad \bmod \quad p \cdot G^{*}(p t)[\mathbb{t}]+I^{2}
$$

whence by (11.5) we see that

$$
\begin{equation*}
\bar{v}_{j} \equiv u_{1}^{p^{j-1}} s_{j-1} \quad \bmod \quad p \cdot G^{*}(p t)[甘]+I^{2} \tag{11.8}
\end{equation*}
$$

for $j>1$.

To prove Theorem 11.1 , it is sufficient to prove that "h mod p " is
injective. Since u_{1} is invertible we can use $\left\{u_{1}^{p^{j}} s_{j}, j \geq 1\right\}$ as a polynomial basis of $\mathrm{G}^{*}(\mathrm{pt})[\mathrm{t}]$. Then by (11.8)

$$
G^{*}(p t)[t] \otimes F_{p}=G^{*}(p t)\left[\bar{v}_{2}, \bar{v}_{3}, \ldots\right] \otimes F_{p},
$$

where $F_{p}=\mathbb{Z} / \mathrm{p} \cdot \mathbb{Z}$, which contains $\mathrm{F}_{\mathrm{p}}\left[\mathrm{u}_{1}, \bar{v}_{2}, \bar{v}_{3}, \ldots\right]$ as a subalgebra. Finally by (11.7) we see that $\bar{v}_{1}, \bar{v}_{2}, \ldots$ are algebraically independent over F_{p}. Therefore $" \bar{h} \bmod p$ " is injective.

§12. Conner-Floyd Theorem

Conner-Floyd [7] proved the natural isomorphism

$$
U^{*}(X) \otimes U^{*}(p t)^{\mathbb{Z}}=K^{*}(X)
$$

regarding both sides as \mathbb{Z}_{2}-graded. Here we shall see a corresponding relation holds between BP^{*} and G^{*}.
12.1. Here we write the polynomial basis $\frac{v^{(p)}}{p^{k}-1}$ of $B P *(p t)$ (Theorem 6.2) by v_{k} for simplicity. Compute $\mathrm{Td}\left(\mathrm{v}_{\mathrm{k}}\right)$ by the recursive formula (6.6). Remarking that

$$
\operatorname{Td}\left(\mathrm{m}_{\mathrm{p}-1}\right)=\frac{1}{\mathrm{p}^{\mathrm{k}}},
$$

by an induction on k we obtain
(12.1)

$$
\operatorname{Td}\left(v_{1}\right)=1
$$

$$
\operatorname{Td}\left(v_{k}\right)=0 \quad \text { for } \quad k>1
$$

12.2. Using notations of 9.4 we map a line bundle L over X to

$$
1-\sum_{k \geq 1} \xi_{k(p-1)-1}^{K} v_{1}^{k}\left(e^{B P}(L)\right)^{k(p-1)} \in B P^{0}(X)
$$

where we regard as $\xi_{j-1}^{K} \in \mathbb{Z}_{(p)}$. By splitting principle this extends to a naturai map

$$
X^{\prime}: K(X) \longrightarrow B P^{0}(X)
$$

For a line bundle L we have

$$
\begin{aligned}
\operatorname{td} \circ \chi^{\prime}(L) & =1-\sum_{k \geq 1} \xi_{k(p-1)-1}^{K} u_{1}^{k}\left(e^{\mu_{K}^{*}}(L)\right)^{k(p-1)} \\
& =1-\sum_{k \geq 1} \xi_{k(p-1)-1}^{K} u^{k(p-1)}\left(u^{-1} e^{\mu_{K}}(L)\right)^{k(p-1)} \\
& =1-\sum_{k \geq 1} \xi_{k(p-1)-1}^{K} e^{\mu_{K}(L)^{k(p-1)}} \\
& =E_{0}(L)
\end{aligned}
$$

by (9.15). Thus
(12.2)

$$
\operatorname{td} \circ x^{\prime}=E_{0^{\circ}}
$$

Remark that

$$
G^{0}(X)=E_{0} K(X) \subset K(X)
$$

and define

$$
X^{0}:{ }_{G}{ }^{0}(X) \longrightarrow \mathrm{BP}^{0}(X)
$$

by a restriction of X^{\prime}. Since E_{0} is an idempotent, by (12.2) we see that

$$
\overparen{\mathrm{td}} \circ x^{0}=1
$$

For negative integers s such that $-2(p-1)<s<0$ we define

$$
X^{s}: G^{s}(X) \longrightarrow B P^{s}(X)
$$

by requiring they commute with suspensions and $\chi^{0} \cdot x^{5}$ is uniquely defined by this requirement. Since td also commutes with suspensions we see that

$$
\begin{equation*}
\widetilde{\mathrm{td}} \circ x^{s}=1 \tag{12.3}
\end{equation*}
$$

for $-2(p-1)<s \leq 0$.
12.3. Make $B P^{*} Z / 2(\mathrm{p}-1) Z Z$-graded by

$$
\mathrm{BP}^{\alpha}(\mathrm{X})=\sum_{\mathrm{s} \equiv \alpha} \sum_{\bmod 2(\mathrm{p}-1)} \mathrm{BP}^{\mathrm{s}}(\mathrm{X})
$$

for $\alpha \in \mathbb{Z} / 2(p-1) \mathbb{Z}$. We denote this cohomology by $B P^{\# \#}$. Then td induces multiplicative cohomology transformation

$$
\widetilde{\mathrm{ta}}^{\#}: \mathrm{BP}^{\#}() \longrightarrow \mathrm{G}^{\#}()
$$

such that

$$
\widetilde{\mathrm{td}}^{\#}(\mathrm{pt})=\mathrm{Td}: \mathrm{BP}^{\#}(\mathrm{pt}) \longrightarrow \mathbb{Z}_{(\mathrm{p})} .
$$

Thus $\mathbb{Z}_{(p)}$ is a $B P^{\# \#}(p t)$-module. Now we can state
Theorem 12.1. There exists natural isomorphism

$$
B P^{\#}(X) \otimes B P^{\#}(p t){ }^{\mathbb{Z}}(\mathrm{p})=G^{\#}(X)
$$

For the proof of this theorem the most basic thing is the existence of natural degree-preserving map

$$
X^{\#}: G^{\#}(X) \longrightarrow \mathrm{BP}^{\#}(\mathrm{X})
$$

such that

$$
\begin{equation*}
\widetilde{\mathrm{ta}}^{\#} \circ x^{\#}=1 \tag{12.4}
\end{equation*}
$$

This is defined by $\chi^{\#}=\left\{\chi^{s}:-2(p-1)<s \leq 0\right\}$ and proved by (12.3).
The rest of the proof is completely parallel to the proof of [7], Theorem (10.1), p.60. The proof is devided into three steps as in [7].

At each step Quillen decomposition and the use of corresponding facts of complex cobordism are helpful. Details are left to readers.

References

1. J.F.Adams, Lectures on generalized cohomology, Lecture Notes in Mathematics 99, 1969, 1-138, Springer-Verlag.
2. J.F.Adams, Quillen's work on formal groups and complex cobordism, University of Chicago, 1970.
3. J.F.Adams and A.Liulevicius, The Hurewicz homomorphism for $M U$ and BP, J. London Math. Soc., (2) 5(1972), 539-545.
4. J.C.Alexander, On Liulevicius' and Hazewinkel's generators for $\pi_{*}(B P)$, Technical report, University of Maryland.
5. S.Araki, A typical formal group in K-theory, Proc. Japan Acad., $49(1973), 477-482$.
6. P.Cartier, Modules associés à un groupe formel commutatif. Courbes typiques, C. R. Acad. Sci., Paris, 265 (1967), 129-132.
7. P.Conner and E.Floyd, The relation of cobordism to K-theories, Lecture Notes in Mathematics 28, 1966, Springer-Verlag.
8. A.Dold, Chern classes in general cohomology, Symposia Mathematica, Intsituto Nazionale de alta mathematica, vol.V(1970), 385-410.
9. A.Frơhlich, Formal groups, Lecture Notes in Mathematics 74, 1968, Springer-Verlag.
10. H.Hasse, Die Gruppe der p^{n}-primären Zahlen für einen Primteiler von p, Jour. f. Reine u. Angew. Math., 176(1936), 174-183.
11. A.Hattori, Integral characteristic numbers for weakly almost complex manifolds, Topology $5(1966), 259-280$.
12. M.Hazewinkel, Constructing formal groups I. Over $Z_{(p)}{ }^{-a l g e b r a s, ~}$ Preprint, Econometric Institute, Netherlands school of Economics, 1971.
13. T.Honda, Formal groups and Zeta-functions, Osaka J. Math., 5 (1968) , 199-213.
14. P.S.Landweber, Cobordism operations and Hopf algebras, Trans. Amer. Math. Soc., 129(1967), 94-110.
15. M.Lazard, Sur les groupes de Lie formels à un paramètre, Buil. Soc. Math. France, $83(1955), 251-274$.
16. A.Liulevicius, On the algebra $\mathrm{BP}_{*}(\mathrm{BP})$, Lecture Notes in Mathematics 249, 1972, 47-52, Springer-Verlag.
17. S.P.Novikov, The method of algebraic topology from the viewpoint of cobordism theories, Izv, Akad. Nauk SSSR, t. 31 (1967): p. 855 (Translations: Mathematics of the USSR-Izvestija, 1(1967), 827-913).
18. D.Quillen, On the formal group laws of unoriented and complex cobordism theory, Bull. Amer, Math. Soc., 75 (1969), 1293-1298.
19. D.Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math., 7(1971), 29-56.
20. R.E.Stong, Relations among characteristic numbers I, Topology $4(1965), 267-281$.
21. R.E.Stong, Notes on cobordism theory, Princeton University Press, 1968.
22. D.Sullivan, Geometric Topology, Part I, Localization, Periodicity and Galois symmetry, M. I. T., 1970.
