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Introduction

The present lecture note consists of two parts. 

Part I contains an exposition of  Quillen's theory [18] of decompositions

of complex cobordism theory localized at a prime p. Quillen's note [18] 

itself consists of two parts: the first part is connected with the  proof 

of universality of the formal  group of complex cobordism, of which detailed 

 expositions are  no available in literatures such as  Adams  [2],  §§1-8,  and 

Quillen [19], so I assumed these materials are  known in the  preserc'L  lecture; 

the second part is the main subiect of our Part  I. The contents have much 

 overlap with [2],  but  our exposition is given along original line of  Quillen . 

so it differs  from the  corresponding treatment of Adams [2] in its  philosophy 

at least. We start with an exposition of Cartier's note  [61 on the theory 

of (typical) curves over formal  groups. This  is done  in  §2 and 3  in  a.  form 

suitable for our purpose and restricting to one-dimensional case  only  In 

 §4 we discuss a typical formal group which is universal for typical  formal 

groups, which turns out to be the formal group of Brown-Peterson cohomology 

(in §5). In §5 we prove Quillen decompositions. In §6 we discuss  generators 

of U*(pt) and BP*(pt) in a form related with formal  group.  I believe 

this section contains  some new results. Finally in §7 we discuss Landweber-

Novikov type operations in Brown-Peterson cohomology.

In Part II we treat typical  folmal groups in (complex) K-theory and



their relation to  Adams idempotent decomposition of  K-theory localized 

at a prime p [1]. The results here were announced in [5].

     These lecture notes came out of my lectures in Kyushu University, 

December 1972, Osaka City University, February and May 1973, and Kyoto 

University, July 1973.  I acknowledge to Professors T.Kudo and H,Toda for 

their organizing my lectures in Kyushu University and Kyoto University, 

particularly to the latter for his arrangement to publish the present

lecture notes as a part of "Lectures in mathematics, Department of Mathematics, 

Kyoto University".



                              Part I 

§1. Formal groups

     1.1. Let R be a commutative ring with unity. By a (one-dimensional 

commutative) formal group, or a group law, we understand a formal power 

series F in two variables over R satisfying 

 (1.1)  F(0, =  X, 

(1.2) F(X, Y) - F(Y, X), 

 (1,3) F(X, F(Y,  Z.))  =  F(F(X, Y),  Z), 

Then F can be expressed as 

 (1.4) F(X, Y) = X + Y  +  XY.F(X,  Y) 

with  P(X,  Y) E  R[[X,  Y]],

     We are mainly interested  3,n formal groups  associated  with  cohomology 

 theories which are complex oriented  in the sense  of  [8],  [19]  (cf., 

In such a case R is graded,  i,e,, R =  X R F satisfies

 (1,5)  dim F(X, Y) = 2 if dim X  = dim  Y  = 2,  i.e,,  if we put

                                 .1  F(X
, Y) a. X1Y'

1,3

then  a..  E  R2(1-i-j)  (cf.,  5.2),  13

 1.2. Let F and F' be formal  groups over  R,  and 11,) a formal power 

series over R in one variable without  _constant  term  satisfying 

(1.6)  lb(F(X, Y))  =  POP(X),  11)(Y)), 

then we call  4) a homomorphism,

1



 F F', 

of formal groups.

    When  ip : F  > F' and : F'  ---> F", then  50  0  t  : F F", 

 where'  .  IP is the composition of formal power series. Thus formal 

groups  over R and their homomorphisms form a category, which will be 

denoted by  y(R). When  II)  F   F' and  t is invertible with respect 

to composition, then 

                                                          -/ .                  ti F'  —* F 

such that 3.1)-lo =  1F and4) o -1=  1F,, where  1F(T) =  1F,  (T) T.

 Thus  t is  an isomorphismin thecategory.v(R,denotedby

 

: F F'.

In particular, when 

 ib(T) = T + higher terms,

we call  4) a strict isomorphism which we denote by  

: F F'.

     We denote the set of all homomorphisms F  --> F' by Hom
R(F, F') 

and put  EndR(F) =  HomR(F, F).

     1.3. Let  8  : R be a homomorphism of commutative rings with 

unity. Let  8, :  R[[X,  Y]]  --->  S[[X, Y]] and  0 *  :  R[[T]]  --->  S[[T]]

 2



be the homomorphisms of rings of formal power series induced by coefficient 

 mape,i.e.,ildande,(LaiT)=Ie(a.)Ti. 

 Since  e, preserves also compositions, we see that, if F  Gobjlr(R), then 

 e,F E  obj(T(S), and if  li  E HomR(F, F'), then  e*Ip  E  Hom5(0,F,  ep) and 

 e,(T  =  *10  e*,„fi, i.e.,  8,  ;y(R)--4-  Y(S) is a covariant  functe-,.

Thus we obtained, roughly speaking, a  functor  7 defined on the

 category of  commutative rings with unity with values  in. a  category  whose

objects are categories of formal groups and morphisms are  covariant  functor 

 (1(e)  =  00. Later we meet often with needs to restrict this functor 

either restricting the domain to a  subcategory or the range, or both.

 1.4.  We recall some  known results without  proof.

A formal group  FU defined over a ring U  is  called.  universal if  for

any ring R and for any formal group  P on  R there exists a  unique 

homomorphism of rings with  unity such that  u.,F, =  F, The

existence of a universal formal group and the structure of the ring U was 

first established by Lazard  [15]. The uniqueness of  (F U) up to 

equivalence follows by the general nature of  "universality". The structure 

theorem of U says:

     [Lazard's Theorem]  U =x'  ...],                                             xl,x2,  4n 

a polynomial ring over integers with countable indeterminates xl,x2, 2' """

We call the ring ofbenefittheForringLazard topologists we



mention that the Lazard ring U can be given  as a graded ring, graded by 

non-positive even dimensions so that  Fu satisfies the condition (1.5). 

In this case dim  xn -2n. Cf., also [2],  §§5 and 7.

 1  5. A formal group Ga given by

 Ga(X, Y) = X Y

is called additive. Such a formal group is defined over any ring R. 

    Let F be a formal group. A strict  isomorphism

k F = G F 
a

is called a logarithm of F. 

 [existence of logarithm]  Let F be a formal group defined over a

 Q-algebra R. There exists a unique logarithm  kF : F  G. 

    For the proofs, cf., [13], [15] and [9], p.69. The existence is

essential, and the uniqueness is easy. 

     Let F be a formal group defined over a ring R and suppose that R

is of characteristic zero,  i.e., every prime is not a zero divisor in R. 

Then  RCROQ  and we can regard F as a formal group over  ROQ by 

extending the domain of  coefficients. Now we have a unique logarithm

              k  : F = G over R Q. 

We often denote as  kF =  logF' and call it the logarithm of F for 

 simplicity.  If we express as

4



then it is

For 

the

known that

topologists 

general case

 logFT

this is 

 follows

 mTk+1 =k 

 k>0

 (k  +  1)  mic  e  R

 familiar by  Mischenko

 by  functoriality  (cf.

 m = 1,  0

 series in 

 E2)

case  F  U and

 5



§2. Modules of curves

     We describe here modules of curves on formal groups according to 

Cartier  [6].

 2.1, Let R  be a commutative ring with unity. The ring of formal 

power  series in one variable  T,  RUT]], is filtered by degrees, i.e.,

 R[[7]] =  RHTL0 I.DRHT]li  7.) ...  DR[rrUnD 

where  R[[T)] {f(T) =  2fiTi R[[T]] :  f0 =  fn_i =  01.

 R[[T]] is complete and Hausdorff with respect to this filtration topology. 

 R[[T]]1 is the submodule of R[[T]] consisting of all power  series without

constant terms. 

    Let FE  obj5e(R). For y,  y' E  R[[T]li we define their sum  y  y,

with respect to F by

(2.1)  (y  Y')(T)  =  F(Y(T),  l'(T)).

Proposition 2.1.  R[[T]], with the sum  +F is an  abelian group.

Proof. By (1.2) and (1.3) it follows the commutativity and associati-

vity. Zero power series 0(T) = 0 is the zero element by (1.1). There 

exists a unique power  series

(2.2)  iF  G  R[111]1 satisfying F(T,  1F(T)) = 0.

Then, for any y E  R[[T]li

 F
-  y  =  o  y

6



is the inverse of  v with respect to the addition  +. 

                                                                             a. e. d.

Put  C =  (R[[T]]1,  +F), the above additive group. We call an element

of  CF a curve over F. Thus  CF is the additive group of curves over F. 

The curve v defined by0(T) = T, plays an important role and will be 

                                      '

called the  identity curve (over  F),

 WP  rpo-navle-  that

 (2.3)  1F  €  EndR(F). 

This is proved by observing that there exists a  unique power series  y(X,  Y)

satisfying F(F(X, Y), y(X, Y)) = 0 and that both  ip(F(X, Y)) and 

 F(1F(X),  1F(Y)) satisfy the property of y(X,

    We embed  HomR(F', F) into CFcanonically. Then we see easily that 

                                                                                               ' HomR"(P.Pisasubgroupofe—And the map  -F

 HomR(F', F) x  C   CF 

is bi-additive. Thus EndR(F) is an additive subgroup of  CF and is a 

ring with composition as multiplication and with  yo as unity (non-

commutative in general). Furthermore CF is a left  End_  (F)-module.

 2.3. There exists a unique homomorphism of additive groups  

[  ]F  7

such that  [  4(1) =  y0. We write [  ]F(n) =  [n]F for any integer n.



We have

(2.4)  11F  yo,  [-11F  ='F and  [0]F =  0, 

(2.5)  [n]F(T) = F(T, [n -  14(T)) =  F(1F(T), [n +  l]F(T)),

Remark that

 F'   CT)= -T + higher terms,

which follows from (1.4) and (2.2). Then we see by (2.5) that 

(2.6) [n]F(T)  = nT + higher terms.

    By (2.3) and (2.5) we see that 

(2.7)  [n], E  End  (F), 

 i.e., the map [  1F:  --->eF factorizes as

 ['F  :  2  ---->EndR(F)(=  CF. 

In fact, the first factor of  [  ]F is a ring homomorphism because 

 [nmiE, =  o [m]F as is easily seen; and the  7'-module structure 

 CF is the same as that given by this ring homomorphism, i.e.,

 (2.7)°  VIF o  = n y, n times of y in  cF.

 2.4, Let d be an integer which is a unit in R. By (2.6) 

is invertible. We define as 

 -1                 [
1/d]F =  [d]F_                              EndR(F). 

                                  8

                                             of

 [d]F



     Suppose that R is a A-algebra, where A is a ring such that 

 ZC  A  Ck. For any  X  EA express  X as a fraction  A  = a/b such 

that (a, b) = 1, then b is a unit in R and we define as 

 -1
 [X]F = [alp,  o  [by E  EndR(F).

This extends the ring homomorphism [  :    EndR(F) to the ring

homomorphism 

 : A  >  EndR(F)

   And we obtain

Proposition  2.2. When R is a A-algebra with  2. ring A such that 

 Z CAC,  then CF is a left A-module by 

                A  °  Y  =  [X]F  Y

for  AEA and  y  E

 2.5. Let F be  a. formal group over a ring R. We  define three kinds

of operators on  CF.

i)  (fah)  (T) = y(aT), a  E  R,

ii)  (w
ny)(T) =  y(Tn), n > 1, 

iii)  (fny)(T)  =  IF  y(Ci  Tl/n), n >  1, 
 1<i<n

where  IF                is the summation in  Cf.F and cl'care n-th roots of                    ° n  1<i‹ n 

unity.  i ny lies in  R[1, in first glance. Since F 

is commutative, each coefficient of  i ny is a symmetric polynomial of

9



            hence a polynomial of elementary symmetric polynomials  a1(0, 

 ...,  c() of  rn. Put

 d/n
 (fny)(T)  =  gd(al((),  an(0)rf-, 

 d  >1 

then  gd(a1(),  anW) is a polynomial of homogeneous degree d with 

deg  ai(0 = i. Now  ;I,  cn are n-th roots of unity, whence

 n-1 =  •  =  () =  0,  an  ()=  (-l)  - •

Thus

g (a (0 ... a (0) = 0 d  1 " n if d 0 (mod  n),

n-1
 gnk(°1(C)' "°'  an")) =  gnk(°' "'' 0, (-1)- ') R, 

and fis a well-defined curve in CF.

  Operators [a] are called homotheties,  v
n are called shifting opera-

tors  and n are called Frobenius operators. Among three kinds of opera-

tors Frobenius operators may be regarded as the most important ones and are 

the only ones defined essentially depending on the formal group F, so we 

write sometimes  as
n  =  fn.F to clarify on what formal group they are

considered.

    We used notations [ ] and  [  ]F to mean entirely different objects 

(with or without suffix  I). I hope there arises no confusion.

Proposition  2.3. Operators [a],  w
n and  fn are  additive.'

Proof follows from routine calculations. 

                           10



Thus  CF is an  operator-module. These operators satisfy certain

universal relations (cf., Proposition 2.9 below).

2.6. Let  F,  G  E  obj  5(R) and  tp  :F-->G in  y(R). We define 

 1P#  ° CF

by  (ptf  -y)  (T) =  (11)o  y)(T). 

     Proposition  2,4.  Ipft is  linear and commutes with operators [a],

 w and  if i.e,,a homomorphism of operator-modules, n n

Proof follows by routine  calculations.

In particular, operators  [a], w and f commute with operations

of Pill(F)oneF'And we obtain         '- 

 Proposition  2.5.  When R is  a  A-algebra  such  that  2C1  A  C.

 then  operators [a]w                  _,.and  f  are  endomorphisms of  Ae-module  ('  1,e,  , 

          ,i.--. (2,_is an operator-A-module,and7,p,.',...-> e,-4)(-..:.-T--1'                                                                                                                                           .,,k,4,_,,                  G
.. I- .

is a homomorphism of  operator-A-modules.

    Now it is clear that  " F  (1),F,  4J4  " is a covaiant  functor 

on  zr(R) with values in the category of operator-modules, We denote this 

functor by  (1(R).

 2.7. Let  e : R  S be a homomorphism of commutative rings with 

unity, and F E obj  y(R).

Proposition 2.6.  e, :  CF CeFis linear and commutes with

11



operators [a], w
nandfnin the sense that e* 0 [a],-..[e(a)] o e* 

 and e* o f n,F=fneFo 8*'0*is a homomorphism of operator- 

                                  * 

  ,

modules. When R is a A- algebra such that  2CA  CQ, then  e,  is  a 

homomorphism of operator-A-  modules.

Proof follows again by routine calculations. 

Remark also the commutativity

 ,b# 

 CF   ;  CG 

 0*  e* 

        (0*0# 

 e*F  '  C'e*G

for e : R and  q)  : F  ---4* G. Thus  e* is a natural homomorphism of 

functors (R)  e (S)  °  e*.

2.8. Let R be a commutative ring with unity and F  Eobjl(R).  -  Put

 en  =  R[[T]]n for n > 1. By definition we see immediately that  en are 

subgroups of CF=C1.Thus we have a filtration ofF• 

•

     (1F= eDe2 2) e n 

 1 

 We say that, for two power series f,g  ER[[T]], f  E g mod deg n  iff 

f - g  E  R[[T]]
ia, i.e., they have the same terms of degree < n.

Lemma  2.7.  Let  (1'  '2  -  CF  Ti  -  Y2 mod  en  111f-  11  7-  Y2

 mod deg n.

Proof. Suppose that  Ti  E 12 mod There exists a curve y'  G  e
n

12



such that  yi  +F  y =  y2. Then

 Y2(T) =  F(Y1(T),  Y'(T)) 

     E  y1(T) +  y?(T) mod deg  n+1 

      E  y/(T) mod deg n.

     The converse will be proved by induction. The case n = 1 is trivial. 

Assume it is true for n  - 1, and suppose  yl  E  y2 mod deg  n, Then 

yl E y7 mod deg n - 1, hence y(') = ylF 17 G 011 _, by assumption_ Now

 y1(T) =  F(y'(T),  12(T)) 

     E  y(T) +  12(T) mod deg n

 n-i an1-T- +  y2(T) mod deg n,

where  y'(T) =  an-1Tn-1 + higher  terms. Since  y_ and  y2 have the same 

terms of degree n  - 1, we conclude that  an-1 = 0 and  y'n

q.  e.

By the above lemma we conclude the following

Proposition 2.8,  OF is complete and Hausdorff with respect to the

above filtration topology.

By definition

 Ea]  (em)C

Thus all three  kin 

filtration topolog

we have

 Cm,  Wn(  Cm)  C

ds of operators are 

y of  CF'

13
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continuous with

 e[m -l/n]4-1'

respect to the



2.9. Let R be a 

Proposition 2.9.

following relations

 commutative 

Among three

 ring 

kinds

with unity and F 

of operators on

E

 CF

obj  y(R) 

  there hold

the

i) 

ii) 

iii) 

iv) 

v) 

vi) 

vii) 

viii)

   In the 

 polynomials 

the formula

 relation 

  of deg

[a] [b]  = 

 Nn V 

 f f  =  f
n m nm

 vn[an]  = 

 fn [a]= [a

ff v  =  n
n n 

 if (n,  m) 

[a] +  [b] 

 tionviii)

degree n

• 

[ab], 

 nm'

 [a]vn,

 ifn'

 id
CF'

 =  1

 n>1 

of th 

  over

                 X + Yn = 

The right hand side of viii) 

 y  E  eF to

 (  Vn[sn(a,  b)]  fn)y 
 n>1

which is a Cauchy series in

then 

 v Fs

is

integers,

a, b  E R, 

n  >  1,  m  > 1, 

n  > 1, m > 1, 

 n> 1,  a  E  R, 

 n> 1,  a  E  R,

 Ell =  vi =

f
n vm = vm

 n(a,b)] ffn.

proposition s

which

 X  d
din 

means an

f= id 1 C
F'

if
n,

 n(X, 

are

Y) are symmetric 

defined recursively by

sd(X,  Y)n/d.

 operator which

 F    v

n
n>1 

  hence
F3

[sn(a, b)]

convergent

sends

 ny' 

to a

each

curve in

curve

 eF by

14



Proposition 2.8.

Proof. Relations i), ii), iii), iv) and v) follow by routine

calculations.

For any  y E  CF, we have 

               f vy [nl oy 
        n n

then by (2.7)' it follows the relation vi). 

    Suppose  (m, n) =  1 and  fcl,  ;a1 be n-th roots of  unity, Then

 "'"  ;-11  {C'1'  °°°'  ; 11' by which follows the relation vii). 

    It remains only the proof of the relation  viii). First we prove the

 relation for  additive group  laws, i.e., suppose F = G
a, an additive formal

group.  Remark that for  -y(T)  =  ciT'  E  Cr we have 
 i>1 a

 [a]y)(T) =  c.aT, a E R,                                    L.,            i
>1 

                   ni
(2.8)(vny)(T)=yciT--, n > 1, 

                           i>1

              (frI ,GY)(T)=11ni1'                                                  n >1 

                                                                                                            , 

        a  i>1 

and the addition in  CG is the ordinary addition of formal power series.
                            a 

Then

 ([a]y +  [b]y)(T) = cn(an+ bn)Tn 
 n>1

= c
n( d  *  sd(a'  b)m)Tn 

 n>1  n=dm 

         c,amd  sd(a,b)mTmd
 d>1  ,m>1

     vd( d cd m sd(a,  b)mTm) 
 d>1  m>1 

      15



=  v
d[sd(a,  b)]( d cdmTm)

 d>1  m>1

= (lvd[sd(a, b)]  fdy)(T), 
 d>1

i.e., the relation is proved for F =  Ga. 

    Next suppose that R is of characteristic zero. Then there exists a

unique logarithm 

            0• F=G over R0a?             -
F .4 a

by  1.5.  2,F4  CE. CG (over  R  ® Q) is a topological isomorphism of
a

                                                                  -1 
operator-modules by Proposition 2.4. Thus Q preserves the relations 

among operators and the relation viii) holds in  CF over  RO Q. Since

coefficients extension  RCROQ embeds  C-.. R into  CF over 

 RC)  Q as operator-module,the relation viii) is true in  eF when R is

of characteristic  zero.

    The Lazard ring U is of characteristic zero (by Lazard's Theorem). 

We consider the universal formal group  Fu over  U0  irt, u] extending 

coefficients domain, where t and u are indeterminates. The relation

viii) is true in  CF over  U  rt, u] by the above arguments. Let 

 U

F be a formal group over an arbitrary ring R. By universality there 

 exists  a  homomorphism  U:11--->R such that  0,Fu = F. Let  a,  b  E R. 

 Extend  e to a homomorphism  0 :  U  0  Z[t, u]  --->  R by  P(t) = a and 

 0(u) = b. Clearly  0,F = F. Now

                                 16



 

:  (fF over U  7{t,  u]    CF

is a homomorphism of operator-modules by Proposition  2.6, and hence 

sends the relation viii) in  CF for the pair (t, u) to the relation
 U

viii) in  CF for the pair (a,  b). Thus the proof is complete.

 2.10. Let F  obj5(R). 

Proposition  21O. Every curve  y over F can be   expressed uniquely

as a  Cauchy

 y = V [c,c•R,(i.e., y(T)=F(c Tn)).    nn-^0n-1,n-1'
 n>1  n>1

Proof. Let

y(T)  =  c0T higher terms.

and put

                                                                   , 

 yi= y- Lcoly0. 

Then by definitions we see easily that  yi  e  C2. Now let

 yi(T)  =  c1T2 + higher terms 

and put

 Y2  =  Y1 -  w2[cl]Y0 

Then we obtain that  y2  e C3. By a recursive construction we obtain

 yn  G  en+i andyn+1=ynF wn+i[cn]yoen+2and so on.Thereby we 

obtain a Cauchy seriesyw [c]vwhich converges toThe 
                               nn1,0

 n>1

17



uniqueness is obvious by construction. q.  e. d.

 2.11. Let F  E  objnr(R), y  C  RUTill and 

 F1(X, Y) =Y-1 °  F(y(X),  Y(Y)).

Then we see easily that  FY  e obj  Y(R) and 

 y  :  FY F.

We call  FY the transpose of F by  y. Since

is natural to regard  y as an (invertible) curve

the transpose of F by  y.

invertible. We put

 €  HomR(FY,

over F when

F) 

 we

 C  CF, it

consider

18



§3. Typical curves and formal groups

     Let I be a set of primes. We use the notation I only to denote 

such a set of primes. The following special cases are the most important: 

I = (p), the set of all primes except p; I = [p], the set consisting of the 

single prime p.

We denote by  7, the following subring of Q:

        1

 I =  ZL  — : q  ij,

Thus = integers localized at the prime p,              (
ID) 

                2' =, the ring consisting of rationals of the form  a/p             [P]

 3.1. Let R  be a commutative ring with unity  and F a formal group 

over R.

 A curve y over F is called I-typical _ iff fay = 0 for all q E I. 

F is called I-typical iff the identity curve  yo over F is  I-typical. 

When I = (p), we call simply  typical in place of  (p)-typical. Typical 

curves or formal groups are usually observed when R is a 2 -algebra_                                            (P)

    Denote by eTF
,, the set of all I-typical curves over F, Clearly 

it is a subgroup of  CF and stable under operators [a], a  E R,  wn and 

f n such that (n,q) = 1 for all q GI by Proposition 2.9. We regard

these operators as allowable operators on  CTF ,I. Then  CTF,I is an

operator-module over allowable operators. 
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When I = (p) we write simply  CTF
,(p)  =F' In this case allowable

operators are generated by [a], a R,  w and  f  . 

     3.2. Suppose R is a  21-algebra and define operators 

 e
q  =  e  eF   s  CF, q  C I,

by e
q(y) =  y  -F (1wqfqy. By Propositions 2.5 and 2.9 we see easily that 

 e  's are idempotents and mutually commutative. Moreover  eyEy mod  .

Thus the product

 (3.1)I = EI ,F =  R e                              q 

is convergent and  well-defined operator on CF. We have also a Cauchy sum

 expansion

(3.2)  E  y = F  (p(n)) 
                     n rel I

for y  EF' where p(n) is the  MObius function and the summation runs

over all natural numbers n of which every prime factor belongs to I (inclu-

ding n = 1).

     Proposition  3.1. El is an idempotent and projects  (4 onto the  sub-

group  CTF ,I.

The proof is  straight-forward if we remark that  f
q eq = 0.

We call the operator  ET Cartier operator over F . In particular the

curve

 (3.3)I  =I 
,F  =IY0
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is I-typical, which we regard as the canonical  1-typical curve over F.

By (3.2) we have

F1(T) = T + higher terms.

Thus

(3.4) EI : FI = F. 

 (cf., 2.11 for definition). By Proposition 2.4  FI# maps I-typical 

curves to I-typical curves and vice-versa. Then, since Fy=E                                                              'I#0-I'

I-typical over F, we obtain 

                                  F_

Proposition 3.2. FIis an I-typical formal group which is strictly

isomorphic to F. 

 T
     We regard F  - as the I-typical formal 

to F.

3.3. Let R be a  2-algebra. Let  N

numbers 1, 2, ..., and put

 N" =  N (k, q) = 

 N' =  N -  N.

First consider a curve

y(T) = Tk 
      k>1

over G
a, the additive group law over R. By

21

 group canonically associated

be the set of  all natural 

1 for all q  ei},

(2.8) we obtain



(e
q,G

 'Y)(T) =

a (k,q)=1

for q E  I. Thus

 (3.5) (EI ,Gay)(T)

Next assume that R is 

Proposition  3.3, Let  9,

 F respectively over  R  Q

 R.(T)

    pk Y
k-1'

 k =  /  Yk-lT
 kJN"

of characteristic

 and  2,T be the

zero and F 

logarithms

E

of

obj 

 F

 Y(R)  .

and

 . Put

 k>1 mk-1T  '

then

Proof.

Then, by the

 RI

By (3.4) 

 9,

uniqueness

(T) = mk_iTk• 
 keNy

 

:  F = G. 
               a

of logarithm we have 

 RI  =Q  °

and

Now by (3.5) 

3.4. Let F

QI  (T)  =

the proof 

 Eobjy(R)

 °  YT) =  YEI
,FY0)(T) 

EI,G(NY0)(T) = (EI,G°(T)' 
aa

follows. 

  and consider  CTF ,I. Since Frobenius

22



operators are linear and continuous, we see easily that  eToperators are linear and continuous, we see easily that  (.]:TF
,I is closed 

 inF* Thus  CTF
,I is complete and Hausdorff with respect to the

induced filtrations  CTFIr)n. 

     Now suppose that R is a  Z1-algebra. 

     Lemma 3.4. Let y  G CF such that 

       _k
 Y(T)= aeT + higher terms, a  0. 

If y is  I-typical, then k  Ey.

Proof. For any q  G I we obtain

 (f y)(T) = a.(1ck...k)Tk/qhigher terms,                                                        -^

where are q-th roots of  1. Since y is  I-typical, we have             .1, 

 ao(ck ...k) 
                               q= O. 

                                          .

If  qlk, then

 k  k
 r  C = q,

which is invertible and contradicts to the assumption. Thus (q, k) = 1. 

                                                                      q. e. d.

Lemma 3.5. Let F  be I-typical. Then, for any  k  E  Ny, a 0 in

R, we have

 vk[a]10  €  CTF  I.

Proof. For any q  E I,  (a, k) = 1. Thus fq  Wkwk fq by
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Proposition 2.9, vii). And

 fk[a]10  =k[aq]fy0 = 0.

                                          q. e. d.

Theorem 3.6. Let R be a  Z  -algebra and F an I-typical formal

group over R. A curve  y over F is I-typical iff it can be expressed 

as

 Y=/FVOck-l]Y0 (or y(T) = 

                                              F 

                                              kEN"(ck_iTk))  kEIN"

with  ck -1E R. The expression is unique.

     Proof. Suppose y is I-typical and express y  as a Cauch series

               rF  Y =v 
                      kLr                         k-1  '0             k

>1

in  eF by Proposition 2.10. Let  cn1 be the first non-zero coefficient

in this expression. Then

             yrn=c_T-1-higher terms, 
                             n-I 

and n  E  NI by Lemma  3.4. Since  vn[cn-1]y0 is I-typical by Lemma 3.5 we

see that

 Y1 =  Y  F  Vn[cn-1]Y0  = 
k>n wk[ck-1]Y0

is I-typical. Now apply the  same argument to and repeat. We see that 

 ck-1 = 0 unless  k  E  1\17' Thus we obtain the desired expression. 

    The converse follows by Lemma  3.5  and  the  completeness  of  CT,..r.

                   24



     The uniqueness 

Proposition 2.10.

of the  expression follows by the uniqueness of

2S



§4. Universal typical formal groups

4.1. Let U be the Lazard ring and  Fu the universal formal group

over U. We regard U as the graded ring by non-positive even dimensions

so that  Fu satisfies the condition (1.5).

     Let I be a set of primes and put  III =  U  21,  FU  I =  F over 

 UI by coefficients extension. By the universality of  F it follows 

immediately the universality of  Fu
,, for formal groups over  71-algebras.

     Now we want to construct an I-typical formal group which is universal 

for I-typical formal groups over  21-algebras (by restricting the range 

of the  functor Y).

    Let R be a  21-algebras and F  E  objy(R). There exists a unique

 homomornhism

 U1 R

of 21-algebras such that 8,Fu, = F. By Proposition 2.6and the definition 

,

of Cartier operators we see that

 *1 ,U  =  cI1F8* 

 whereI
,U denotes the Cartier operator over FUI. (Similar conventions

apply also for other notations).

     Put

 EI ,u(T)  =  (ci,eo)(T)  =(k-iT). 
 IcA_u
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By definitions we see that

 (4.1)  sE  U-2s                                  and E = 1.                                       0 

Since F is  I-typical iff  EI
,Fyo  =  yo, and since

       =  e*61 ,00  =  6I,FY0'

we obtain

 rrupositLon 4.1.  r  15  1-typical  111

 (1,E2,  ...,  En-1,  ...  }  C Ker  e.

4.2. Put U =  U  Q, then 

 U  C:  UIC:  U,

Put

 logu T =  y mkT',m0=  I, 

    1 

                        k>1 

where  logu is the logarithm of  Fu (and of course of

Then

(4.2) U =  Q[m1, m2, ..., mk, ], dim  mk  -

as is well  known.

Put

p = the transpose of Fu
, U,I I  by

      is I-typical by Proposition 3.2. (Hereafter we use /11J
,I

27
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F

 2k,

the

over  U.

letter  p  VI



to 

 be

and

the

and

by 

(4 

by

denote typical (or I-typical) formal groups in  general).

 uI  U1  ---4•UI 

the unique homomorphism of  21-algebras such that

 uI*FU
,I  =U,I

 Uu  ai

homomorphism of U obtained from  uT by coefficient• 

Apply  a,* to the strict isomorphism

log : Fu G
a over U

obtain

 UT,(logu) : pu
,T Ga

the functoriality. Thus

3)  aI*(logU) = log -u-                             P
U,I 

the uniqueness of logarithm. Then, by Proposition 3.3

Proposition  4.2. air)                    'mk-1' = 0 if k  E  Ni 

 mk -1 if  k  11\IT  •

Corollary 4.3.  u1 and  UT are idempotents, 

           Ker  uI = the ideal  (m ;°9,E  IN')

28
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extension.

we obtain



and

 Im  U1  =  p[mk_i : k E  NI, k  X  11.

4.3. Put

U =  2[ml, m2,  ...,  mk,  ].

As is well known 

 U  C  U  C  U

and U is the minimal extension of U  over which  F

to  Ga 

     Since

 logo  0  I
,U  PU,I Ga

we obtain

(4.4) log = log0 F 
            ,U'IU                      1

by the uniqueness of logarithm.

Now we compute

 logo0 (or"U         1
,0T) = J            'gu#,(E._T1))                         i>1'I 

             =  /  G  m-Tij 
                 i>1 j>1 J-1-1-1 
                  =(/mii)Tk, 

               k>1ij=k

On the other hand, by Proposition 3.3 we have

               T= mTk. (4.5) log                               k1 
 PU,I  kaT"

29
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Thus, by  (4.4), comparing the coefficients of  T we see the relations

(4.6)  Ck-1+       ij =k= 0N 
                     m.                     1 1-1for k  Er -  {l},

 1<i<k

(4.7)  mk-1 --  ij =k1-1                      m-3=  0 for k ENr 

                                                       '

 1<i<k

By (4.6), inductively on k, we see that

 (4.8)k -1 = 0 for k  E  N"  {1} 

 '

and

 F11 
(T) =  iTk             CI,U(T)=kONIU0k-1T). (4.9)

By (4.7), again inductively on k we obtain

 (4.10)k-1E  U1 for k  eNi

and

 (4.11)  mk-1 mod decomposables in U  for k

Thus

 (4.12) U =  7[12.-1'  (NI]  k  E  -  {1}3.

4.4. Let  xl, x2,  ..., x
n, ... be a polynomial basis of U, dim xn

= - 2n . Then

U1 =  21{x1, x2,  ...,  x
n,  I.

Observe the inclusion
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 U1  C:  UI =  u C) 2 

For k  E  Ny by (4.11)

 Ck-1  4 0 mod decomposables and mod q 

for all  q I in  UI. The same must be true also in  UI. Hence 

we can  use  GE' as a part of the polynomial basis of  UI

and we obtain

Proposition  4.4.

 UI  2 E  NI]  21[xk-1'  k€  NY -  {1}].

 By Proposition  4,1 we have

     k  E  No  C: Ker  u1.

On the other hand,  putting  xk_T =  ui(xk_T)  for k  Ny -  {l we have 

         =xmod  decomposables  x
k-1k-1Lk-1mk-1

in U with  ck1  O. Thus  ; k  E  N"  -  {l), are algebraically inde-

pendent and  uT maps  2T[xk_T, k  E -  {1}]  isomorphically onto 

k  E  N" -  {1}]. Hence we obtain

Proposition 4.5. i) Ker  uT  =  k E  Ni), 

ii)  UT/Ker  u1  2T[ik_T, k  Ny  -  {i}]  c:  uI, 

iii)  VI  9.€  Wil  2.1[Xk_T, k E  Ny  -
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where  xk -1 =  uI(xk-1).

4.5. Put

(4.13)  BPI =  Im  uI  UI.

Then

 BPI =  2I[xk -1'  k E NI- {1}1  ,v, UI/Ker u                           ----I' 

by Proposition 4.5. SincePUI= uT*Fu we see that all coefficients of 

 pu ,T(X, Y) belong to  BPI, and PU,I determines a formal group

 PBPI e  objY(BPI) 

which extends toPU
,Iby extension of the domain of coefficients 

 BP C  UI.

    Theorem 4.6. pBPIis I-typical and universal for I-typical formal 

                                            , groups over  21-algebras.

Proof. Clearly  u  -BP
,I is I-typical by definition because  PUI is

I-typical. 

Let R be a  7Z1-algebra and p an I-typical formal group over R.

There exists a unique homomorphism  0  :  UT  ---> R such that*FuT = p. 

                    , By Proposition 4.1 Ker  e  2)Ker  uT. Thus  e factorizes to 

                         0  u
               UI  --=->  BP  R.

Since uT,FuT =  pBp
,T, we have 

,
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             eu                      I*-BP
,I =  °I*uI*PU,I  =  e*PU,I  - 

The uniqueness of  9T follows by the uniqueness of  e.

q. e. d.

Thereby we obtained also the following 

Corollary 4.7. Let R be a  21-algebra and  p be an  I-typical

 formal group over  R. The homomorphism  e  :U  ----> R such that  9*Fu =  p 

factorizes to  e  =  01  0  uI'  eI  :  BPI    R such that e u

     4.6. Let I and J be sets of primes such that  I  CJ. Let  T
,,T 

be the canonical  J-typical curve over  pu
,T (over Us). Since  pu,T is

I-typical we have

 I,J  =  EJ,pY0  = II e0 

where  P =  PU
,I° Then

 I,U  °  I,J =  CI,U#(a1 _1eq,pY0)

=  11  e
q  U'

i.e.,

 (4.14) °  I ,J  =

 Since is of course I-typical, we have the homomorphism 

          ()CD7  uIB,JPI2JBPIJ

                                           I,J 
of 2J-algebras such that uIJ*PBPI                                        =pp ,p,T.Using logIinstead of                                                                BP,

33



 log the same arguments as Proposition 4.2 we see that 

                                                   N"  (4,15)I
,J(mk-1)  = 0if k E IN" -                         I J

                    =  mk-1  if k  EIN"  J' 

where  UI
,J is the  4-extension of u1. In particular  uI,J 

idempotent of  BPI C)3j and we can expect a decomposition of

By Proposition 4.2 and (4.15) we see that

(4.16)  uj  = u1  u, 

regarded as the map :  Uj  --->  U. Thus 

(4.17)  Im  uI ,J =  BP  C: BP1                           2  J' 

Next we express as

             E (T)  = y/IBP,Irr, Tk) 
       I,J''k-1  k

EN"

by Theorem 3.6. By (4.4) and (4.14) we see that

 logBp
,  EI,j =  logBP  ;

then by parallel arguments to (4.7) and (4.8) we see that

 q-1  = for  k  E  N"  -  Ill

and

            E, E BPI(1BP       k -1I  J' 

                     +  mk
_i  72. 0 mod decomposables in  BPI

is

 BPI

an

 0  23  '
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for

(4. 

and

 k  E  N" - N".Thus  IJ

18) E  (T) =1-1BP,I  (t  Tk),   I
,J 

                         I                      kEON-N")(J{1}  k-1

by the same arguments as Propositions 4.4 and 4.5 we obtain

Proposition 4.8.

 i) BPI®2J=J[Ek -1r'k E NI-lNJ] ® BP.7' 

ii) Ker  ui ,j  = k  E  Ny
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§5. Quillen decomposition

 5.1. Let h* be a multiplicative cohomology theory defined on 

finite CW-complexes. We assume that the multiplication in h* is 

commutative (in graded sense) and associative, and that the Euler class

eh(L) is defined for any complex line bundle L over a complex X such 

that i) it is natural for bundle maps, ii) eh(L) E h2(X), and iii)  h*(CPn)

is the truncated polynomial algebra over h*(pt) generated by the Euler

                 n+1
class x of the canonical line bundle over CP

n, truncated by x"-.

Then we can define Chern classes and multiplicative Thom classes in h* 

for complex vector bundles. Cf., Dold [8] for details. We call such a 

cohomology theory h* complex oriented by a terminology of Quillen [19].

     In complex  cobordism Thom classes and hence Euler classes for complex 

vector bundles are canonically defined [7]. Hence complex cobordism is 

one of the typical examples of complex oriented cohomology theories. We

denote by  e  (L) the Euler classes of line bundles in complex cobordism.

    We recall the following well-known universality of complex cobordism 

for complex oriented cohomology theories.

     [Universality of complex cobordism] Let h* be a complex oriented  

cohomology theory defined on finite CW-complexes. There exists a unique 

cohomology transformation

 U*  h* 
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which is  i) linear, ii) degree-preserving, iii) multiplicative  (0(1) 1

for 1  e  uo(pt)), and iv) e(eU(L))  =  eh(L) for complex line bundle L.

For proofs we refer to [8],  [19]. 

This universality is actually true also for  complex  oriented h*

defined on  "  arbitrary  "  CW-complexes if we assume h* to be  " additive  " 

 [8].  And we can expect to develop Quillen  decomposition theory for arbitrary 

 CO-complexes. But in that case we need in  certain  places to discuss 

convergences with respect to filtrations by finite  subcomplexes,  To  avoid 

this complexity we shall be content with limiting  our  discussions  only to 

finite  CW-complexes.

     5.2. Let h* be a complex oriented cohomology theory. For complex 

line bundles  L.  and Li we have
 1 2

eh(L.0L2) = y a..  eh(L )i eh2 -                        (L)i 
                      z-

witha.ih2(1-1-j)(pt). By naturality the coefficients a.. do not 

depend on the choices of  L1 and L2 and we have a well-determined

formal power series

 Fh(X, Y) =Xa. X1Y3 
              ij

of two variables over  h*(pt). By  commutativity and associativity of

tensor products, and naturality of Euler classes, we see that Fh satisfies 

(1.1), (1.2) and (1.3), i.e., is a formal group. Moreover Fh satisfies 
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the condition (1.5) by our choice of dimension of Euler classes.

Of course this formal group Fh depends on the complex orientation

 of h*(i.e., the choice of Euler classes). So that we may have several 

formal groups associated with the same  cohomology theory h* depending

on various choices of Euler  classes.

    Here we recall that Quillen identified U*(pt) with the Lazard ring 

U, whereby he identified the formal group of complex cobordism with the 

universal formal group  Fu, i.e., we have

 eU(1.1  0  L2) =  Fu(e  (Li),  e  (L2)) 

for complex line bundles  Li and L2.  Cf.,  [181,  [19] and  [2], §8.

Now let h* be complex oriented and 

 0 :  U*

the unique cohomology transformation by the universality of complex 

cobordism. Since 0 is linear,  multiplicative and preserves Euler classes 

we see readily that

(5.1)  A(pt),  Fu =  Fh.

5.3. Let I be a set of primes. The assignment 

              (X, A)  1-4•U*(X,  A)1 =  U*(X, A)  Zi

is a multiplicative cohomology, denoted by U*(  )i.
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Using the power series EI
,u we define 

            -1  
(eU(L)) E  U2(X)I                 I ,U

as Euler class of a line bundle L over X for U*(  )1. Thus U*(  ),

is complex oriented. Since

    -1 U -1 u -1 U 

            I,U(e (Li0 L2)) = PU,I(CI u(e (Li)), CIu(e (L2))) 

the corresponding formal group is 11U
,I"

     By the universality of complex cobordism we have a  cohomology 

transformation

 U*)1.

                       1
U which sends  e (L) to(eU(L)). Extending this7-lineary we                                I,

obtain the cohomology transformation

 (5.2)  ET  U*(  )I  )I 

which is  71-linear,  degree-preserving, multiplicative and  yeU(0) 

E-1 (eU(L)). Then  I ,U

 YPt.)*Fu,'  =  Pu,'

by (5.1), i.e., 

(5.3)  1(pt)  uI  U*(pt)1 

In particular  C1(pt) is an idempotent of  U*(pt)1 by Corollary 4.3
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     5.4. We want to show  thatI is an idempotent of the cohomology 

theory U*(  )I. To this end we use Landweber-Novikov operations [14], [17]

in a modified form.

     Let  ii = (t1,t2,tn') be a sequence of indeterminates 

 tn with  dim  t =  -2n. For each finite CW-pair (X, A) we put

U*(X,  A)[t] = U*(X, A)  02[tI, t2,  t n,  ].

Obviously U*(  )[t] is a multiplicative cohomology theory.

Put

 U  I
(5.4)  ,cit(T)  =  (tk _/T),  t0 = 1, 

 k>1

and assign

 1 
cbt(eU(L))  E U2(X)  [t]

as Euler class of a line bundle L over X. Thus  U*(  )[t] is complex

(1)-tt
oriented and its formal group is  Fu". Then by the universality of

complex  cobordism we have a  cohomology transformation

 gt  :  u*  IP(  )  [-a]

which is linear, degree-preserving, multiplicative and

                            1 (5.5)  gt(eU(L))  =(1)
1(eU(L))

for a line bundle L.  And

                            Cbt (
5.6)  gt(pt)*Fu = FUt.
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    This is parallel to Quillen's presentation  [19] of Landweber-Novikov 

operations but not the same. After certain polynomial changes of 

indeterminates over U*(pt)  ourt could be identified with  Quillen's 

 st,

Put

 t(x) =rt(X)ta 
 a

                                          A1'                                            ,i for any x G U*(X), wherea=C,..., a
n,)is a sequence of                                                                              -- 

non-negative integers such that all  a
n but finite  are zero,  anda

denotes the monomial

  a a. a 
to= t11 t22  t

Then we get linear  cohomology operations 

                          -8": U* ___e U* 
                        a

of degree  21a1 for each sequence  a, where =  7n.a  . These are our 

modified Landweber-Novikov operations and can be expressed as linear 

combinations of  Landweber-Novikov operations over  U*CptL

    By the property of  "gt it follows that 

 (5.7)o = id, where  0 = (0, 0,  ..., 0, ), 

 (5.8)(x, y)  =  (x)  •  (v)  
13+Y=a

for internal and external multiplications.
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5.5. Let

p  : U*(  )It]  U*(  ),

be a cohomology transformation defined by  p(t)  = j > 1, and 

p(x) = x for x  EFU*(X), where are coefficients of  IU(T) in the 

 expression (4.9), whence  g = 0 if k  C  Ny and k 1.

Clearly p is linear, degree preserving and multiplicative, and

                    -1 U 
 p 0galsends eu(L) to E1 ,u(e (L)). Hence, by the uniqueness of

cohomology  transformation obtained by the universality of complex cobordism

we see that

 (5.9) =  P  °

Theorem 5.1. 7-- is an  idempotent of  U*(  )I'                 "I

Proof.  By (5.3) and  Proposition 4.5 it follows that

 YC(1) =  0 if a 0,

     a ala2 whereE= E
l E2 . Now for any x  E, U*(X, A)1 we have 

 Yx) =  ga(x)Ca
a

by  (5.9). Then

 VYx)) =  (ga(x))  •  Yet)
 a

                     =  
I(Yx)) = 

 i.e., is an idempotent.
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Corollary 5.2. 

For any  x  E  Ker

i.e., 

and we obtain

 Corollary 5 

 5.6. Put

 (5.10) 

for any finite 

and by Corollary 

is a cohomology 

 multiplicative,

     Proposition  5. 

 BP(pt) =  BPI,  a  71

By definition

There  holds  natural  stable direct  SUM decomposition

 (X,  A)1 =  Im  yX, A)  ED Ker  ET(X,  A). 

 er  1(X, A) we have

x  ga(x)ex=1(x) = 0, 
    et0

             — 

         L S vn.jc,     40 a

.3, Ker  El(X, A)  = (Ker  i(pt)) U*(X,  A),, 

 BP*(X, A) =  ImI(X, A)

CW-pair  (X,  A). By  (5.3) and  (4.13) 

 BP(pt) =  BP1,

 5,2 the assignment

(X, A)  1---*  BPT(X, A)

theory. Moreover it is multiplicative  because

that is,

 4.  RP* a multiplicative cohomology theory
 I 

-algebra. 

(5.10) we

is

 such that

have canonical
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(5.11)  71 : U*(  )1  BPI, natural surjection, 

 (5.12) i1I: BPU*( )I' natural  injection,

such that

 (5.13)0Tr= E          III

Using coefficients  Ezl of  EI
,u(T) in the expression (4.9) we put 

 TX, A)  =  2I[Ek_/,  32  Ely  OBITX,-  AT

for finite CW-pairs (X, A). Then  VI is a multiplicative cohomology

theory. Define

 0T  :  VI  -->  if

by 0I(EotC)x)  = Eai1(x) for x  eBP*(X, A). As is easily seen  01 

is a linear multiplicative cohomology transformation, and  01(pt) is an 

isomorphism by Proposition 4.5. Hence  01 is an isomorphism of  cohomology

theories by the comparison theorem of cohomology theories over finite

CW-pairs. Thus

     Theorem  5.5.  i1 induces the natural  isomorphism 

 U*(  ) _̀'4  eiNi]  O  BPI

of cohomology theories.

     5.7. Let p be a specified prime and put

(5.14) BP* =  BP*  (P)
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isp --BP I°

5.9. Our next

into  BP* (I C J) which

cohomology theory. For 

Novikov type operations

Let I  be  a  set of

 t = {t

for I =  (p). This is called  Brown-Peterson. cohomology  theory.

In this case the isomorphism of Theorem  5.5 takes the form

(5.15) U*( ) = [E; kps]  OBP*.  (F) (F)Z-1

This is the Quillen decomposition of complex cobordism localized at the 

prime p.

5.8. Let I be a set of primes  and put

(5.16)  eBPI(L) =  7T(eU(L))

for a line bundle L. By the  decomposition Theorem 5.5 we see easily that

 eBP,IIL) satisfies the required properties of Euler  classes, Hence  BP*

is complex oriented, By definition of  El.  and  (5.13) we have 

            BP.-1  (5
.17) iI(e,I0,)) "' EreU(L)), 

                                                        ' 

 Then, by  (5.1), (5,3) and the definition  of  p.Bp
s, we  obtain

Theorem  5.6.  BP; is complex  oriented and its associated formal group

purpose  is to give a decomposition of  BP;( )  zj

extends the decomposition of Proposition 4.8 to

this purpose we start  with  introducing  Landweber-

in  BP.

of primes and 

            •  

 k-1'kEN"-  {1}}
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the subsequence of  t. We consider multiplicative  cohomology

 BIT =  BPI( )  07[tk _i; k  G  Ny  -  {1)].

Putting

(5.18)  cpt  ,  I(T)  =  11BP,  I  (tk-lTk)  ,  t0 = 1,  kENI!
                    I 

we assign

      -1BP ,I2         qb
ti(e(L))BPI(X)[ti] 

as Euler class of a line bundle L over X. Thus  BPI(  )[t1] is complex

oriented and its associated  formal group is  u  BP
,I' By the universality

of complex cobordism we have a cohomology transformation

gt1. U*  > BP( )[1,I] 

                   ' 

            BPI(

which is linear, degree-preserving, multiplicative and 

                                              - 

 (L))  =Cbt1I(eBP,I(L))

for a line bundle L. Then

 gt
,I(pt)*Fu  = 

Here we remark that  pBPI is  I-typical and1Iis an I-typical

curve over uBPI(extending the domain of coefficients to  BPI2[1,]) 
                      -

, 

by Theorem 3.6. ThusPBP
,Iis I-typical. Then, by Proposition 4.1

               k  GtNi}  C Ker  gt
,i(pt) 

(extending  gtI over  UT by  21-linearity), where  r                                                                are coefficients
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of  EI
,U(T) in expression  (4.9). Now by Corollary 5.3 we have a factori-

zation of g  :             t
,I

    7 r        11
,I            U*( )>BP*( ) > BP*( )ft] .    1111 

(5.19)  1 A

 

L  

 t,I

By construction it is clear that  r, is a linear  cohomology trans-

formation which is degree-preserving, multiplicative and

             BPI-1 BP,I (5.20) rt
,I(e,(L))=cbti(e(L))

for a line bundle L. Then

                                    qbt,I  (5 .71)  r  .(pt)* P0p
,1=

    If we take the coefficients of monomials (of  tI) in  rtI we get 

Landweber-Novikov type operations in  BPI.  We discuss their properties

for I = (p) later in  §7,

 5.10. Let I and J be sets of primes such that  IC J. Take the

canonical J-typical curve over u (over  BPI  02j). Let                                                 -PB
,I 

k  EEN7, be the coefficients of  T.J(T) in expression (4.18) and define

cohomology transformation

 p'  :  BPI( ) [t]    BP*( ) 0  7 

by  p'(tk _i) = k  etn, and  p'(X) x for x  EBPI(X). Put 

 (5.22)  P o31t ,I  B11( )  2J )  -1J•
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This is a linear cohomology transformation which is degree-preserving, mul-

tiplicative and

 TI ,J(eBP)I(L))  _  -11.j.(eBP,I(L)).

Thus

                         EI ,J (5.23)  1
,(Pt)  BP,T  =  PBP,I =  PBP,J°

Therefore

(5.24)  TI ,j(pt)u1BPI()  7j  >  BPI  02j.

In particular  TI
,j(pt) is an idempotent of  BPI  02j. Now by a  para-

ilei argument to Theorem 5.1 we obtain

Proposition 5.7.  T is an idempotent of  BPI( )  Zj. 

Corollary 5.8. i) Im = 

ii) Ker  TI
,j(X,A)  = (Ker  TI,J(Pt))  .BPI(X,A)  (D  2j. 

iii)  BPI( )  =  2j[qK..1, k  E  Ny -  N3]  e  BPI.

In particular, when p I and J = (p) we have the decomposition

 (5.25)  BP*( ) 2 = 2(10),k E1N"k  ps]  ® BP*,              (P) k-1 

which we call the Quillen decomposition of  BPI localized at the prime p.

5.11. Let  C2*( ) be the oriented cobordism theory. Here we consider

                            „ the Quillen decomposition of Q*( )[2] = Q*( )Q9 ZY. Let
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          S U*( ) p*( ) 

be the forgetful functor of complex structures. Clearly S is a  multipli-

cative cohomology transformation.

     In  S-2*( ) Euler classes are canonically defined for real oriented 

vector  bundles. Every complex line bundle L determines canonically  an 

oriented  2-plane bundle  LIR. We define

 0 
eS*-Euler class of  LIR.

Thus  p*( ) is complex oriented. We denote its associated  formal group 

by  FSE. We see easily that 

 SCpt)*Fu =  F50°

     Remark that, if we change the orientation of a real oriented vector 

bundle, then  0*-Euler class changes to its  negative.  Thus

00 
eS(-17)=eS (L)

and

FSO( T,T)= O. 

 •

Now we have

(f2 ,SOY0)(T) =  FSO( T112 T2) = 0,

 i. e.,

Proposition 5.9.  Fs() is [2]-typical.
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Next we observe the cohomology transformation

S[2] =  S  02[2]  :  U*(  )[2]   )  Se(  )  .  [2]

By Propositions 4.1 and 5.9 we see that

           Ker  S[2](pt)  D Ker  E[2](pt). 

Then, by Corollary 5.3 and multiplicativity of S[2] we

         Ker  S[2](X, A) D Ker E [2](X,A) 

for any (X,A),  i. e.,  S[2] factorizes to

           Tr1.2]  
 )> BP*S1*(  )   [2][2]

 S [2]

By Proposition 4.5 we know that Ker  17[2](pt) is the i 

elements of dimensions  E 2 (mod 4). But Ker  S[2](pt)

Stong [21], p.178. Thus  (1)(pt) is injective. On the  oth 

is surjective by [21], p.180. Hence  (1)(pt) is isomorphic 

rison theorem of cohomology theories we  obtain

   Theorem 5.10. The forgetful functor S of complex   structures 

 isomorphism 

 

°  "12]  =-1 Q*(  )1-21

of cohomology  theories.
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see that

 [2] 

deal generated by all

is also the same by

 other hand  S[2](pt)

and by the  compa-

ctures induces an



the 

 (5.

Let p be an  odd prime.

following decomposition of

26)  C-2*(  ) `1, 2  IE  (
p) (p)

By Quillen

 0*(  )(p)

 k-1' k odd

decomposition

and k ps]

(5.25) we

®  BP*,

obtain

 SI



§6. Generators of U*(pt) and BP*(pt)

6.1. Let p be a prime. Putting

(6.1) (f Y )(T)=/-(v(P)Tn)           p,U 0pn-1 

we see that v = v(p) E U-2s             s sby definitions. Computelogufp
,uy0in two

ways  :

 F11 
_n

(log f )(T)  = log ( u(v T"))   U p ,U 0 U# pn-1                        n>1 

                      m. vjTij 
                            3-1pi-1  i>1 j>1 

                   (1m.1vj. -1)Tn                              3-p1                  n>1ij=n

and

 (loguffp ,uya)(T) =  (fp,G  logu)(T) 

 a 

           = p. mTn, 

                    n>1pn-1

 (cf.,(2.8)), Then compare the coefficients of  Tn, and we obtain 

 y    (62) pmm. v.v(P) ym. v.  ,.
pn-1  ij=n  3-1  p1-1  pn-1  ij=n 3-1 p1-1

                                          1<i<n 

for all  n  >  1.

Let  sn denote the  Lhern number  corresponding to the power sum  It".

Remark that 

                             -2n
 s n : U--(pt) Q  -->  Q

is a linear map such that

 s n(decomposable element) = 0.
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By Mischenko series we have 

 [CPk_i]
 mk -1

Thus

sk -1On) = 1

for all k > 1. Now apply                             s
pn-1to  (6,2) we obtain

 (A:4)r(r')                                          .N;r                       s
pn-1'pn-1'

 By a well known theorem of  Milnpr, if a sequence  {  x,  x...,  x„/

of elements of U*(pt), dim x
n = - 2n, satisfies 

 sn(xn)  = p if n  =  p' - 1 for  some prime  p,

 (6.4) 

 = 1 otherwise

then it is a polynomial basis of  U*(pt). Such a sequence is called a 

Milnor basis of  U*(pt), Then (6.3) shows that 

 (6,5) {'JP)v(P)v(p),...J.forms a part of a Milnor basis. 
        p-1'2  pk-1                 P-1

     Let k be an integer > 1 which is not a prime  power. Let p and q 

               CP) (q)  be different prime factors of k . Since sk _1(vi,1) = p and sk../(vki) 

= q we find integers a and b such that

 sk -1( av(P)+ bvCcI))=  1.      k-1 k-1-

    Thus for each  dimension - 2n we can find an element  xn satisfying 

 (6.4) as a linear combination of our elements  v(p)'s, and we obtain
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 (p)     Proposition 6.1. The elements vpn -1.defined by  (6.1), for all n > 1 

and all primes  p; generate U*(pt). 

    6.2. Let p  be a fixed prime. In (6.2) we put n =  pk-1, then

 k-1  k_i

 (6.6)  P.mk =vm /                                     .(v                     k -i1                                      (P).lP          ()for all k > 1. 
            p -1 p -1  i=1 p -1 p  -1 

Apply  d(
p) on both sides of (6.6). By Proposition 4.2 we have

 k-1  k-i

(6.7)  P.mk =vk                                        .‘7.(p)  ) .                                                         for all k > 1, 
              p  -1 p-1 i=1 pk-i-1  pi-1 

where 17(

PP)= u(P)(v(P)). Comparing the two recursive formulas (6.6) and      -1P-1

(6.7) we obtain

(6.8) u(v(P) ) = v(P) for all k > 1.               (P)
pk-1 pk-1

Now by Proposition 4.5, (6.5) and  (6.8) we obtain

(p)  ..(p) (p)Theorem 6.2.BP*(pt) =7(p)[v;:1, ITT  ,  ..., vT , ...]. 
 P  -1  p  -1 

Apply 7(
P)*to both sides of (6.1) and obtain 

                       PRPrn)n 
      (fY)(T) ' /-6\r)T"), 

    p,BP0pn-1                          n>1

where )7n -p)1 = 7(P)(vPm)1). Since fp ,BP y is a typical curve over11BP  p-0

we see by Theorem 3.6 that

(6.9) u(13)(v (PP) Pm-1) =  0 for  n  pt,

and using (6.8) we obtain

                                            i+1 

Theorem 6.3.(f
p,BP  YO)(T)  = 11-1BP(v(pi)Tp), 

                           i>1  n  -1

where the  coefficients are the polynomial basis of BP*(pt) of Theorem  6.2,
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     Remark. i) Our  polynomial basis of BP*(pt)  of Theorem  6.2 

satisfies the recursive formula  (6.6)  which is the same as the corresponding 

formula of Hazewinkel [12]. Hence our generators are the same as those 

of  Hazewinkel. In case p 2 a similar recursive formula is obtained 

also by  Liulevicius  [16].

                                                 (13) ii) By our method it is already clear that the generators -57 
k) 
                                                                                     p'-1

 of  BP*(pt) are integrable,  i.e,, elements of U*(pt). This  fact was 

observed also by Alexander  [4],

     6.3. Let p be a fixed prime and q be another prime. Since 

 Ig
iuyo  =  0, applying 7r(Pt) * to fq,uyo expressed in the form

 (6,1), we see that

(6.10) u(q) )  =  o                         (p) qn-1

for all n > 1. By  (6.8),  (6.9), (6.10) and Proposition  6.1 we see

    Proposition 6.4 (Integrity of u).u(U)=, > 1](7 U;                     (
p)(P)  P  -1 

i.e.,  U is  stable  under the idempotent  u(p) and by  restriction  u(p)

determines an idempotent of  U.

 6.4. Let p be a prime and put

(6.11)  [P]u(T)  /FU(wrnn)'
 n>1 

             (p) -2(n-1) Then  w
n-1 = wn1 E U and w0= p. Now compute  log00[p]0and

obtain
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 =m.w.  P'm
n-13-11-1          ij =n 

    =nm +w +        r 
n-1 n-1 ..

 13=n 

 1<i<n

In particular we obtain 

 k  k-1

(6.12) W (p) 
             pk-1 = (PPP)mpk-1 illm

for k > 1. Then we see that 

 k

              s (wk )  =  p  - pp 

             pk(P)                      -1 p  -1 

hence {w(P) w(P)w(P)..} forms 
       pI', kp-1 ,°  P  -1 

of U*(pt)(p).On the other hand applying u

ur
T),N(P)  ) (P) 

 k 

                 P -1

Again apply  7(
p)* to [piand remark that                       11

Thus we obtain

Theorem 6.5. Putting

 [P]Bp(T) =  B1)(1„.,(1))  TPk  k  _
 k>0  p--1

we obtain

           (  BP*(pt) = 2
(p)[wpp)w(P)-l'p2-1

These generators are also  integrable.

 _1
w 3. 

 1 j  -  1
 m

k-i
     P 

 k-iwi 
p-1p-1

a part of a

 (P)to (6.

 rP1Bp

 polynomial basis 

12) we obtain

is a

(P) w
0 =  p,

 •1 , • • 

1

 (P) 
k 
 P  -

 

,  .

typical curve.
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 §7, Operations in Brown-Peterson  cohomology.

 7.1. Fix a prime p. In 5.9 we defined the cohomology transformation

(7.1)rtr(P):BP*  BP*( )rt                t,                                   (P) 

which is 2(
P)-linear,degree-preserving,  multiplicative and

 BP  , BP
 (7.2)  rl(e  (L)) = 4)tp)(e--(L)), 

where  t =  (t1'  t2'  t n'  ...) is a sequence of indeterminates with  (P)

dim  tk  =  -  2  (pk  1)  (we replace here the letter t  k _ by t. for simpli-                                                                                                                 %,
                        k 

city),(1),(T) =  Yp p(t TP ) with t,= 1, and e(L)  G 2P2(X),  BP*- 
                   k>0 

Euler class of a line bundle L over  X.

Put

 r  (x)  =  ra(x)  t(p), 

        a

x  E  BP*(X,  A),

where a =  (al'  a2,  ...) is a sequence of non-negative integers such that 

all ak but a finite are zero and

a a.
a-1-2  -k it t t 

...t (p) 1 2k

is a monomial of  tk's. Then we get linear stable  operations 

(7.3) ra : BP*( )    BP*(  )

with

(7.4) deg ra = 2  ai(pi - 1)

for each sequence a = (a1,a7, •..). These are Landweber-Novikov type
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operations in Brown-Peterson cohomology, and we call them 

    After identifying

BP*( )[-It(
P)] = (BP A BP)*( )

by making use of  Brown-Peterson spectrum, we  can see that 

in BP* can be expressed uniquely as an infinite sum

 u r ,u E BP*(pt), 
a a aa

as in  [2], [14],  [17]. But we will not discuss this point 

we observe certain properties of these Quillen operations.

    First of all it is clear by definition and properties 

(7.5)  r,  id, 0 = (0, 0,

and U 

(7.6)  ra(x.y) =  r  (x).r  (y) 
 g+yr.a

for internal and external multiplications.

7.2. Putting  p  =  pm, and p' =  p.11,(p) we have

(7.7) rt(pt)* prip =  p',

(cf., (5.21)). Let

 log
1_1  :  p Gaandlogu,;p'Ga,

logarithms over  (0-extensions. Then
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(7.8) r (pt) log = log        t * 111

by functionality and the uniqueness of logarithm. On the other

 4,(p) p' p, by the uniqueness of logarithm we  obtain 

(7.9)  log, = log a q)                       P , (P)

We compute log
y, in two ways by (7.8) and (7.9)

 Since 

 k

(7.10) logyT. Ymk  Tr 
                          k>0  p  -1

  k
by Proposition  3,3, where  mk _i is the  coefficient of  'F

we see by (7.8) that

 k

 log,  ,T  X rt(pt)(m
p-1                  k)TP         k>0

on the other hand by  (7.9) we see that

 log  T  = log 4(4)  „(T)) 
          P t,01

. X log (t.TP  ) 
  j>0 1-1

 k h k

 X(1  mh  q_h)TP 
 k>0 h=0p-1

Comparing the coefficients of  TP   n  we obtain

 n  h

(7.11)  rt(pt)(m n)  =Xmhtn_h 
 p  -1  h=0  p  -1

after extending  r(pt) over BP*(pt)  0Q by  Q-linearity. 

 [CP  

hh-1]          P    Since mwe obtain
 P  -1 
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Theorem 7.1 (Theorem  5,(iii) of  [18]).

 rt(pt)([CP  ]) = pn-h[CP ]tP 
                                             ph-1-h.  P  -1  h=0 

This theorem describes the actions of  ra on BP*(pt) at least

theoretically.

     7.3.  I feel it is better to formulate a general theorem of which 

operation  rt is obtained by a specialization.

Theorem  7.2, Let  h* be a complex-oriented cohomology theory such

the

that 

Then

 h*(pt) is a  2 

there exists a

 (P)
-algebra and its  associated formal group is typical.

 unique  cohomology transformation

which is  z  (
p)

 e 

 -linear

      B (
P)BP* 

   , degree-preserving,

h*

 multi licative and

 for  a complex line bundle 

the typical formal

    Thus we may say that 

 typical  formal  groups  e ..(
p) 

cohomology transformation

 e  :

0(1))(eBP(L)) = eh(L)

L. It results also

e (P)(Pt)* Pgp =1111'

group of h*.

BP* is universal 

   can be obtained

 U* h*

for 

by

cohomology 

factorizing

theories with 

the unique
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which follows by the universality of complex  bordism. Our necessary argu-

ments for the proof are quite parallel to those in  5.9 to establish  rt,

so I will omit them.

7.4. Next we  'discuss-compositions r  o  r of  Quillen.  operations 

 a

Consider the diagram

   rt  r  (5-) 
BP*(  ) BPk(l1t.i Rp*s  f  1            (

P) VP)  )1);))-

where $c
p) =  (si,  s7, sk, is another sequence of indeterminates 

 such  that dim  s  =  (pi  -  fl  and  r_  0 1  is  an  extensiao  of  r, 

 --->  TiP)*j)1sIsuch that(r _® f)(t,) = t.,               (P)- J

    The composition  r  0  rt is a  cohonology  transformation  which is 

linear, degree-preserving and multiplicative.  Moreover,  putting  11'  .

(t - (-1 11,!
1.!*$'(1)) and tp. )(T) = (t ), we have                                ',VP/ i>0

 BP(7.12)  (r® 1  0  r1)  (e  =  (to  (cbs:  (I))e  (L)))

for a line bundle L. This formula can be seen as follows  :  remark that

 r(pt)1-1  =  11'

by (7.7). Then

 BP  ,..„    _1   PD
 (rs 1  °  rt)  (e  (14)  =  (rs  h)  1)  ((i)t:  (ID)  (e  (L))) 

                                                     _1   _1  BP. __ = (r
s(pt)*(10,t,(p)) -(0(p)(e--(L))),

and 
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                                                      T-13 
(ypt)*(1:111,0:0)(T) = r(Pt) * IP(t.Tr )                        j>0 

         11; ni 
      = (t.Tr ) = (T). 

 i>0  3 t  (P)

We give  complex-orientation of the  cohomology theory  BP*[
.3(p),  t(p)]

 _1  RP

by assigning (cp (
p) 0„) -(e--(L)) as Euler class of a line bundle           $,1,T) 

L. Then the associated formal group p" is the transpose of  p' by  tpt
,(p)' 

Now  't(
p) is a typical curve over  p'. Hence  p" is typical. Hence

 r  01  0  rt  BP*( )   BP*(  )[$ ,it]                                        (
P) (13)

is the  unique cohomology transformation of Theorem 7.2.

By our construction it is clear that

 (7.13)  (r(:)10y(x) =  y r (r (x))  la  sS, 
                               13 a  a ,13 

where  to and  $13 are monomials of (t1'2t,' ...) and(si,s2, ...).

 7.5. Remark that q 0tp is a typical curve over p, the 
                      ,(10) 1,(P) 

extension of p BPover BP*(pt)[s(
p)(p)1.Hence we have a unique

expression

(7.14)             (0(lbS
,(P) t,(P))(T) =1-10(uTr ), uo = 1,

where  U. =  ui(si,...,si,  tl,  ...,t.) are polynomials of  sj,  t
l, 

     t. over BP*(pt) such that dim u.  = -  2(pi - 1).

We want to obtain these  polynomials if possible . Since  

'P
$,(P)  (p)  (T)  =$,(P)#(4)4,(P)(T))
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1  1+J
= V-1(s.tP  TP  ), 

 j>0  i>0 1 3

applying logy on both sides of (7.14) we obtain 

 k  1+9.  i+1+9,  9.  ki-k
 in  sP  t1  TP =  in  uP  TP 

 1,3,9. p  -1  p2-1  k

 fl

Comparing the coefficients of  TP we obtain

      yir,sP t• =2TO 

 

.,i 3 
 Z=0 p2-111P11-2'  2=0 pk-1 i+j=n-2 

or, since the terms of  t = n of both sides are the same  m'                                                                        .we seethat                                                  n ' 
                                                                  P -11

 n-1  5,  i+k  n-1  •  32.

 (7,15) 7 mY.tP.xmuP     ,,01j11-2, 
 R=0 p'-1 i-i-j=n-2t=0 pZ-1 

This is a recursive formula to determine un over Q-extensions. Multiply-

ing  p71 to both  sides of  (7.15) we obtain

 n-1  2  :1+2  n-1
                        n-P _ 

 (7.16)  2 p LLP t? = p 
           p2-. i+j=n-k 2=0 p  2=0nJ

 This is a recursive formula over  BP*(pt).

 By(7.1qweseeeasilythat.u.is a polynomial of  s„  5.,  t, 

 tl. But it seems to be very difficult to write these polynomials

completely.

    7.6. Let1(p)1,                        = (u.u2' •''u ...) be a sequence of indetermi-   11k 

natessuchthatdimu.=-  2(p3 - 1),  and

 B.1)*(  )  [111(
p)]  BP*(  )[$),  It(p)]

be a cohomology transformation such that X(x) = x for x  E  BP*(X) and 

                     5.,t1,t.), the polynomials determined by  (7.16). 
  31jj   3
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X is linear, degree-preserving and multiplicative ; and by  (7.14) we see

                       send. that bothX oand r
se 1  0 rtsenaeBP(L) to  e" (L). Thus, by

the uniqueness of Theorem 7.2 we obtain

 Xor =  r®1  ort,

 Or

(7.17)  r(r(x))  1(p)  s(p) =  rI(x)P)' 

for x E BP*(X), where  u = (u(st)u(ss2,t1,t).u(s                         1"1'1'2l'2'1'2'°j' 

 si, tl, tj), ...) is the sequence of polynomials determined by (7. 

 16).  If we  write  mon-mi-ls-Yaspolynomials                    .(p)yy 

(7.18) uY = aY ta  SS  (P) a ,  (P)  (P)

over BP*(pt), then we get

(7.19) ror =laY r 
   s a

 Y

the formulas to express compositions  r o r
a as linear combinations of 

 r over BP*(pt) (Theorem 5, (iv) of [18]).

                              64



                             Part  II 

§8. Typical formal groups in complex K-theory

     8.1. Let K be the complex K-functor over finite CW-complexes. 

For any complex vector bundle E we use

                      r eK(E) =  X1(E)  = 2_(-1) A  (E)
 1

as its K-theoretic Euler class. Thus

eK(L) = 1 L

for a line bundle L. Then 

  0Kr„,K,L,  e (Li,?.9L2) = e,L1)eK(12) -1,,-2,,

for line bundles L1 and  L2, i.e., the associated formal group FK of

K-functor is given by

 (8.1)  FK(X, Y) = X  + Y - XY = 1 - (1 -  X)(1  Y).

n fold multiplication with respect to FK is defined by 

              FK(XI...X n) = FK(XFK(X2'....X)) 

                                                                                                                                                                                      '

recursively. Then

(8.2)  FK(Xi,  •Xn)  = 1 - (1 -  X1)  ... (1 -  Xn).

Thus

 [niK(T) = 1 - (1 -  T)n 
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for any positive integer  n. More generally, over any ring  A such that 

 7C  AC  Q,

(8.3) [a]K(T) = 1 - (1  - T)a

for any a  € A, where

       a 
(1 - T)=-- a.T +a(al)k a k                         T2-+ (-1) (k)T +.„                    2

(cf., 2.4).

The Frobenius operator  f
n,K n > 1, applied to the identity curve

 yo, is computed as  follows. 

                 n-1l/nl/n               (ff
n,e0)(T) = (-1)(r,.1T)(cnT

 =T,

where  cl, are n-th roots of 1, i.e., 

(8.4)  f  v  n ,KI0  YO

for any n >  I.

Over Q the logarithm 

       logKFKG
a

is described by

(8.5)  logK  T = -  log(1 -  T) = Tu, 
                                        n>ln

where log is the usual natural logarithm .
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     8.2. Let p be a fixed prime. Over 2 = K(pt)(
P)the canonical              (P) 

typical curve E.,K = IK,(.12,) can be computed by (8.2), (8.3) and (8.4),

and we obtain

 p               41 011)

(8.6)  CK(T) =  (se0)(T) = (1 - (1  - Tm) m  ) 
 (11,P)=1

                                    = 1 -  P(1  -  T) , 

where  u(m) is the  Vbius function and

 41(m) 

 (8.7) P(1 T)  =  14 (1 -  Tin)
 (m,P)=1 

is the Artin-Hasse  series.  (Cf.,  [101.)

     Let  pK  =  FK—, the typical  formal  grour canonically associated to 

 FK. Then 

(8.8) log = log  o           P
K K 'K

over  p,  and by Proposition 3,3 and  (8.5)  we  have

 1  pk  (8
.9) log T = T= L(1  T) 

 PK  k>0 

using a notation  L(1 T) of Hasse  [10]. Now

log T =  logK(CK(T)) by (8.8) 
  PK

= - log (1  -  EK(T)) by  (8.5)

= - log  P(1 - T) by (8.6).

Thus 

(8.10)  L(1 - T) = - log P(i -  T)
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by (8.9). This was observed also in [10].

 8.3. Next we observe formal groups of periodic K-cohomology K*(  ). 

Its coefficient object is K*(pt) =  2[u,  u-1], where u  E  K-2(pt) is the 

Bott periodic element. To make K* complex oriented we define  K*-Euler 

class of a line bundle L over X by

 eK*(L) = u-1.eK(L) E K2(X). 

Then its associated formal group is

 [u] yo 
 F=

 K*  K  '

i.e.,

(8.1)* FK*(X, Y) = XrY -  u•XY = u-1(1 - (1 - uX)(1 - uY)). 

Thus n fold multiplication with respect to FK* is

(8.2)* FK*(Xl,  Xn) =  u-1(1 - (1 - uX1)...(1 - uXn)) 

and

 (8.3)*  [a]K*(T) =  u-1(1 - (1 -  uT)a) 

for any a E A over  K*(pt)Q'  A, where  Z  C  A  C:q. 

    The Frobenius operator  f
n  K*, n > 1, applied to the identity curve  yo, 

is

                           [un'll (8.4)*fn,K* YO =Lu  YO'

Finally, over K*(pt)  op the logarithm
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 log  Ga 

is described by

 u n 

 (8.5)*  logK* T = u .log(1 -  uT) 
 n>1

 8.iL Let p he a  fixed  prime. Over  K*(pt)(p)  K*(pt)ez(p) the

canonical typical curve  CK* can be  computed by  (8.2)*,  (8.3)* and  (8.4)*

 and we obtain

 (8.6)* C.K*(T)=(EKy0)(T) u(i P(1- uT)). 

                  *

 p 'K* 
     Let PK* = F.K. ,the typical formal group canonically assoc:-.to 

'7 '
K*'Then 

 (8A)* logP
K* logo 

over K*(pt) Q, and by Proposition  3.3  and  (8.5)* we have

                                p -1 k 
 (8.9)* log1 .1K*T u-1L(1— uT)                                   k                                k>0 

p
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§9. Adams decompositions and typical formal groups

    9.1. Let p be a fixed prime. Adams  [1] and Sullivan [22] gave a 

decomposition of complex K-theory localized at p into  p-1 factors. Since 

Adams' decomposition is more explicit we shall observe his decomposition.

Let K( ) = K( ) 0 Adams [11 gave linear idempotents of this  (
P) CP)

functor

E K( )K( )     (P)(P) 

S

for each s  E Y. by

 p-1                                           -1715 
(9.1) Es(L) =7w(1- eK(L))wm 

 m=l  

for a line bundle  L, where  co  is a  primitive  (p-1)-th  root  of 1 as a

 p-adic integer. Even though w E  2 all coefficients of  Es(L) (as a

power series of  eK(L)) lie actually in  2(p) so that (9.1) is a well-

defined  formula. The formula (9.1) determines 2 ()_linear natural trans- 

formations  Es completely by splitting principle.

    Following [1] we list basic properties of  Es quickly. 

(9.2)  Es =  Es' if s  E s' mod  p-1.

 Thus  these  natural  transformations  are  defined  actually  for  elements Inus  Lnese  natural  transrurmatluns  are  uerinea  actualiy  rur  elements  a  = 

 {s}  e  2/(p-1)2.  Then

(9.3) E2 = F (idempotent), 
          a a 

(9.4)  E E=0if a in 2/(P-1)2,                      '13
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(9.5) E  =  1. 
                a E 2/(p-1)2 a

By (9.3), (9.4) and (9.5) we have a natural decomposition

(9.6) K( )= EK( )EDEK( ) e® E K(        (P)0(P)1(p)p-2

of the functor K( ) as a direct sum. Next               (
P)

(9.7)  Ea(xy)  . E (x)E (y)                                  y

for internal and external  multiplications. In particular we see

x  EEK(X)and  y  E E K(X) then xyEEK(X).and  (
P)Y(0'(0' 

 (9,8) E0K(  )(p) is a multiplicative functor.

      K 2 9.2. Let L be a line bundle over S-.Since e(L)=  -11 

                   1  P-1                                             in         E1(I,1)  =
p-1 w(1 el(CL1))w  m=l

   

1   P-1 
       1 to-m(1 - wmeK(1.)) 

 P-1

 P-I                 K    ( e(L1) 
        m=1 

= eK(1,
1)

Here we used the fact that 

       _ I  0  if s 0 mod p-1

m=1 p-1ms     w 
 p  -  1  if  s  E  0  mod  p-1,

which will be used later freely. In particular 

 E1(1) = 0.
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 (ID)

 that

 we have



 Thus

 E1(eK(L1)) = eK(L1). 

 -  2 
Since K(S ) is generated by  eK(L ) (by choosing 11   (P) 1Since K(S") is generated by  e-(L ) (by choosing L1 as the canonical   (P) 1 

line bundle) we see that

E1K(S2)(
P)= K(S2) ,  (P)

(9.9)

 K(S2     )= 0ifa 1in7/(p-1)Z. E  a

Apply (9.7) to the smash product S2 A... A S2= s2nand obtain 

         E
nK(S2n)(P)=K(S)   (P)'

(9.10)

 E K(S2n = 0                 if s n mod  p-1. 
 ^,1"

Let  cp  : K(X)  K(S-  A X) be the Bott isomorphism. By (9.7) and

(9.9) we have the  commutativity

and 

(9. 

for

11)

each 

 9.3

 K  (X) 

induces an

 (Pa

 a  E  7/(p-1)7 

 . From the  ab

 E 
 a

     (1)  
(p)

 isomorphism

 

: EK(X)=  a  (p)

 above  idempotents 

             72

 S2 K(

(SE,K 
 a+i

definewe

 04+1 

A X)  (P) 

2  A  X) 
_ (P) 

linear idempotents



 E*  :  K*( )  > K*( )  (
p)  (p) 

of K-cohomology localized at p for each s  2. Define

2i E
sK21( ) > K21()       (P)'(P)

by requirement that the  following diagram

K' (X)    > K(X)  (p)  (I))

 E-
   S

2i K  (X) K(X) 
  (P)(P-1

 commutes. where  13 is the  Bott  periodicity,  i.e., the  multiplication  with 

 u  E  K-2(pt). Define 

              E21.+1                    K21+1()  > K2i+1()  (
P)  (P)

by requirement that the following diagram

          -2i +1 (X)   
>2i+21 K2i+1(X)=K K (S  A  X)  (

P)  (P)  (P)

     21+1  E21+2      E
s 

7-14-1(X) =  K-2i+1 (X)K6.- K-------(/ \X)  (
p)  (p)  (p)

commutes, where a is the suspension isomorphism. Then by  (9.11) we see 

    

. •  -

that  E* =  {E,  1  E  2} commutes with suspensions  and is a  well-defined

2(
P)-linear, degree-preserving idempotents of the cohomology theory

 K*(  )  (
P) 
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     Basic properties of these idempotents follow by the corresponding 

properties of Es's. First of all 

 (9.2)* E* = E*'if sEs' mod  p-1. 
    s — 

Thus these idempotents are defined actually for elements a  =  {s}E  2/(p-1)2. 

Then, by (9.3), (9.4) and  (9.5) we obtain

 (9.3)*  (E*)2 =  E*  ,
a a

 (9.4)* E*  E* = 0  if a iB                  a  13 

 (9.5)*  X E* = 1. 
 aE2/(P-l)2 a

Thus we have a natural decomposition

 (9.6)*  K*( ) =  E*K*( )ED E*K*( )ED ...EDE*K*( )  (p)  0(p)  1 (1D) p-2  (P) 

of the cohomology K*( ) as a direct sum and each direct factor E*K*   (
P) a 

(  )  (p) itself is a cohomology theory.

Next by (9.7) and the definition of E* we obtain

 (9.7)* E*(xy) =  E*(x)E*(y)   a  y

for internal and external multiplications. In particular we see that, if

x E  E*K*(X)Cand yE  E*K*  (X) then xy E  E* K*(X) and 
.  (3+Y  (Pr 

 (9.8)*  E*K*( ) is a  multiplicative cohomology theory.  0 (p)

     9.4. Put

(9.12)  G*( ) =  E*K*(  )  (p).
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This is a multiplicative  cohomology theory inheriting its multiplicative 

structure from K*( ). By definitions we see that

(9.13) G*(pt) = 2 [u1,u]'u1=uP-1,           (p)1 

i.e., G*( ) is a periodic  cohomology theory of period  2(p-1) with  ill

as the periodicity  element,

                                     by assigningE(1,(eK*(L)) We give complex orientation of  K*(  )( n)

as Euler class of a line bundle L. Then its associated formal group is 

the typical group law  1JK*. We denote as

 e-PK*=CK*(e (L)). 

 7 

           -1 K*

    Theorem  9,1, e(L) E  G-(X) 

                                  - for any line bundle L over X.

 Proof, Using the notations of  [10] we put 

             1  -  T  =  P(1  -  T) and 1  -  T  =  Q(1  -  T),

Then

 T =  El((T)

by (8.6). As is well known 

 in

(9.14) (1 -  T)w  P(1 -  wmT), 

where w is the primitive (p-1)-th root of 1 in 7where w is the primitive (p-1)-th root of 1 in 7 and  m€  2, 

which can be seen by taking -log of both sides and by easy computaions.
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Putting 

                 = 7 j+1,               CK(T) = 
 j>0 

we obtain 

                  (1 - T)wm =  1  -  (wmT)i-E1 
                             j>0

by (9.14) and (8.6). Now compute, for  sE  2, 

 p-1
----wm(1 -  T)w 

 P-1     m=1

                       KP-1        1)-1
w-ms-  P-1 

m=1  j>0 J m=1 

 1-
1rKTj+1 

   1 - 
p-1jj+1 

1 

                      _K-i+1 

       p-1 0+1-s -

Putting T = eK(L),by (9.1) we obtain 

                                 PK k(p-1) 
 E0(L)  = 1 - 1(,,  k>1'17)-'/(e (L))-

 (9.15) 

 Es(L) =  _ EK PK k r  k0k(p-1)+s_i(e (L)))+s 

     - . •

for  1 < s < p-2. (Remark that e  -(L) =  (e(L)).) 

    Put 

                           K*j+1              E
v(T) = j() T ,

then by (8.6) and (8.6)* we see that 

            K* K j                  . C..0

wm(j+1-s)

if s E 

if s  t

 )T

 0 

 0

j+1 ) 

mod 

mod

 p-1 

 p-i.
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                     K*  „ f
or j > 0. Since e  (L) = u.eK(L) for a  line bundle L

have

 K*  -1  K*  -1 '`.k. 
e  (L) = (L))=u.e (L).

Now put

A(L)  YE; 1, (e'-'1(*(L))k CP-1)+1 
 k>0  (P--)

Then

                                       -y1(in-7 A(L) = u,,Ce(L)) 
            k;r1  K(P-Jef

=  u .E,111) 

                           ,

by  (9,15). Hence by definition we  see that

        ,2 A(L) Gc"K(X)  G2(X) .      0  (
p)

 

. K* 
Remark that A(L) is an invertible  power series of e (L),

ble  non-zero coefficients are

            k* E
,F(uP ) E G  (pt),  K(p -) 'KtP1)

Thus ePK*(L) can be solved as a power series of A(L) with

in  G*(pt). Hence 

 PK*  2 _
            e (L)  E  (  (X),  e.  d. 

9.5. The above theorem implies that all  c.oefficients of

lie in G*(pt) and  pv determines a  tynical formal group

77

over X, we

 and all  possi-

coefficients

 PK*(X' Y) 

 PG* over



G*(pt) by restricting the domain of coefficients to G*(pt). The corres-

ponding complex orientation of G*( ) is given by assigning

G*K*  = e/IK*(L) E G2 e(X)

as Euler class of a line bundle L over X. Its logarithm

log  : 11 Ga 
  PG*

over G*(pt)  ()Q is given by

(9.16) log T v 1 ul+p+,..+pk-1.Tpk                     L k 1                     11
G*  k>0 p 

(Cf., (8.9)*).

Identifying by periodic isomorphisms in G*( ) we obtain a  multipli-

cative cohomology  G-( ) graded in  2/2(p-1)2. (Remark that the difference

# .
of notations from the usual convention in K-theory !) G- is complex  orien-

ted by assigning

 e(L) = eG*(L)

as Euler classes. Its associated formal group is a  typical formal group

 1.1G over  G (pt) =  2(p) with 

                       1 pk 
(9.16') log T = 1 -T- T  . 

 1-1G  k>0  p

     9.6. By the universality of complex cobordism (cf., 5.1) we have a 

unique cohomology transformation
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(9.17) td  :  U*    K* 

which is linear, degree-preserving, multiplicative and

(9.18) td(eU(L)) = eK*(L)

for a line bundle L. This is essentially the same as the  td-map of  Conner-

Floyd [7], and we have 

(9.19)  td(x2)  =  Td(x2n)eun

for  x2n e  U-2n(pt), where  Td(x2n) denotes the Todd genus of the weakly 

complex manifold representing  x2n. Remark the difference of signs from

the corresponding formula of  [7" This point is adjusted by a choice of 

 Bott-neriodicity element u (among  ±u).

By  (9.18) we see that

 td(pt)*Fu FK* and  td(Pt)*u(
p)  Elc*,(p)

after localized at a prime p. Hence

 (9.20)  td(eBP(L)) =  ePK*(L) =  e8(L)

for a line bundle L. This implies that

           td(BP*(X))  C G*(X) 

(cf., Theorem 7.2). And we obtain

Theorem 9.2. By restricting td to BP*( ) we obtain a cohomology 
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 ttansfortation

 td BP*( )   G*( ) 

which is  2(
1)iheat;  degtee.LEreserVitg;  '  multiplicative-and

   _ BP
td (e —  (L)) =  e(L)

 for a  line  bundle L.

 80



 §10. Coefficients of curves

     Practically we need some calculus of coefficients of 

some ideals. Here we collect some propositions necessary 

purposes.

10.1. Let R be a commutative ring with unity and

R. Let f(T) =  XfiTi and  g(T) =  7LgiTi be formal power

We say that

 f  E  0  mod  I 

iff f.E I for all i > 0, and

 fag  mod  I

 iff  f  -  g  E  0 mod I. 

     Lemma 10.1. Let f,  f', g and  g' be formal power

R. If f  a f' mod I and g  a g' mod I, then  

                  f + g  a  f' + g'  mod  I, f g  E  f'g'

and, when g and g' are without constant terms, 

 fogEf 0 g' mod I.

Proof follows by routine arguments. 

Let F  be a formal group over R. 

Lemma 10.2.  Let  yi,  yl,  y2 and  y be curves over
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                        curves modulo 

                       for these 

                     I an  ideal of 

                        series over R.

 series        over

mod I

F. If



 yl  E  yi mod I and  y2 E  y2 mod I, then  

             F_, 
 yl + y2=yl+F  y2 mod I.

Proof follows by definition and the above Lemma.

Proposition 10.3. Let  (yl,  y2,  ...  1  and  {yi,

 Canchv  sequences  in  C such that
   F

 yi  E  yi mod I

for all i > 1, then

  F 
yiF,  mod  I. 

 i>11i>1

     Proof. By the above Lemma the congruence is true 

 partial sums. Since every coefficient of  infinite sums 

a coefficient of suitable finite sum,the Proposition is

    Lemma  10,4. Let  yl and  y9 be curves over F 

mod I  and  12  7 0 mod I, then 

                                 _ 

 yl +Fy2=  yl +  y2 mod I2.

Proof. By (1.4) 

            F(X, Y) = X Y  XYF(X, Y).

Thus

 (Y1 +F  Y2)(T) =  yl  (T)  12(T)

} be

for every finite

can be found as 

true.

such that  yi  E 0

 11(T).,(2(T)F(y1(T),  Y2(T))
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Proposition 10.5. Let

 such that

 yi  E 0

for all i >  1, then

 P 
 L

 i>1 

 Proof. The congruence

 Lemmas  10.1•and  10,4, whence 

    Corollary  10.6. Let y

Express  as 

 y(T)

then

 ckE  I

for all k > 0, and 

 y(T) E

     In particular, when R 

group over R and y is a

 k

y(T) =  1-1(ckTP ), if  y 
 k>0

E  yi(T) +

 {Y1'

 Y201

 } Y2'

mod2.

q. e

be a Canchy

 

• d. 

sequence in

mod I

 2
 Yi  Y2  4-  4-  yn  .•, mod  I-.

is true for every finite partial sums by

true for infinite  sums, 

be a curve over F such that y  1-  0

F

 L 
>1

 (ck -1

c0T +

is a

typical 

0 mod

9J

k
r

c1T2

    -algebra,  (
P) 

 curve over

I, then  ck  E
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 ck -1Tk  ... mod

 p is a typical 

 p, expressing  y

I for all k > 0

mod

 I2.

formal 

as

and



 k

 Y(T)  E  c0T +  CiTP + +  CkTP + ... mod  F.

10.2. Let R, I, F be as above. 

Lemma 10.7. Let y be a curve over F such that y E 0 mod I.

 Then

 ([c]  Y0  +F  y)(T)  E cT +9Y(cT, 0)  y(T) mod  I2

for c  E R, where  y is the identity curve over R.

Proof.  ([c]yo  +F  y)(T) = F(cT,  y(T))

=  V  a..(cT)ly(T)3  13 

 7 cTa n1(cT)11 •  1(T) mod  I2
 n>0  — 

E cT +  EcT, 0)  •  y(T) mod  I2.

q. e. d.

Next suppose R is of characteristic zero. Differentiating the

relation

 logFF(X, Y) =  logFX +  logFY

with respect to Y, we obtain

 Y-(T, 0)  .  log' T = 1,

where  log' is the derivative of  logF. This shows firstly that  log' 

is a power series defined over R, i.e., if we put

                             k k+1 (10.1)logFT =17 17f T' n0= 1,  k>1
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then all  nkE R,  and secondly that all coefficients of  E.  3Y 

integral polynomials of coefficients nk of  log.

     Proposition  10.8. Let R be  Of  characteristic  zero,  and 

of  R containing  an  coefficients  n, of  positive degrees of 

 y beacdrVe  over  FAnd expresSing asy(T)=  yF(ek_i T  ) 

that c, eI  for   all k > 0, Men         K

 y(T)  E  c0T + c1T +„,+ck -1T+ mod2

Proof. Put

      ,17:k.   (T) ='(c, T  ), 
 k>I

then  y,  7 0 mod I  and by  Proposition  10,5

 y1(T)EciT2+ + „,  mod  12,

Now by  Lemma  10.7

 Y(T) '  (ic0lY0 +  Y/)(T) 

    E c0T +0) y1(T) modI2.  3Y 0

By the remark above the proposition we have 

               2I-(c
0T, 0) - 1 0 mod  I.          M'

Thus 

    7 
 y(T)  E c0T +  y1(T) mod  I- 

     E  c0T + c1T2+ + ck -1Tk+...mod2.
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0) are

 I an ideal

 '')7'  Let

 suppose



q. e. d.

10.3. Let R be a 2 )-algebra and p a typical formal group (P

over R. Let  t  = (t1,t2,) be a sequence of indeterminates and

put 

 k

 Ot(T) =  IV (tkTP ), t0=1, 
                       k>0 

which is a typical curve over p (extending the domain of coefficients 

to R[t] =  R[t1, t2,  ]).

 4).1 
 p  =ii

is a typical formal group over  R[t], Since 

          ;11            0  :  V  Vi

and p is typical, Ott' is a typical curve over  p'. Put

 Ic

 01(T)  =  I  p'(skTP  ),  s0 =  1, 
 k>0 

then s.  = s.(t1,t2)  E R[t]. Here we put t = 0 = (0,0, ), 

                             -1 
then (00 =  yo so 00 =  yo and

                   0, ) = 0 for  j > 0,

 i.e.,

(10.2) sj EI= (t1, t2,) for all j >  O.

    Proposition  10.9. Under the above situation let I = (t1, t2,  ),

 86



the ideal generated by t
 1'

+ tk

 t  2  '

mod I
 -
_=_  0

  in 

 _2

 R[1]  .

 Sk

Then

for

Thus

Then

all k >  0. 

 Proof.  T

 , by Proposition

Hence

for all k > 0.                   14).t

 o q) t(T) 

q)10( P's.TP 
   j>0

 1  (tisk' 
 i>0,j>0 

 T+  y  P(t
 i+j>0

 J

 i+j
 T1'  )

 TP
 1J

          I  1+3 
   P(t .sl?  TP ) 0. 

i+j>0 1 3

 10.5 

 i  i+j
0  y 11(tisi?  TP ) 

   i+j>0

tk + s =0   k
       1 

mod 1

 1+J

 )

 t

i+j>0

  (tk 
 k>0

 

.  s 
 1

1  1+1  ,

 TP

 k

sk)
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 gll. Stong-Hattori Theorem

    In this section we prove Stong-Hattori Theorem [11], [20] in our 

version based on formal group materials.

 Mi. Here we put  p =  pG*. Let  4  = (t1, t2, ) be a sequence 

of indeterminates with  dim  t,  -2(pj -  I), and put

 qbt(T) = (t.T1Y), t0 = 1. 
                    j>0 

 cpt is a typical curve over p by extending the domain of coefficients to 

 G*(pt)[4]  =  G*(pt)[tl, t2,  ]. 

 (Ibtt
 P. =  P

is a typical  formal group over  G*(pt)[4]. We give the complex orientation

                                                -1 G* 
of the cohomology theory G*()[t] by assigning cpt (e (L)) as Euler

class of a line bundle L. Then its associated formal group is the typical 

p'. Hence by Theorem 7.2 there exists a unique multiplicative cohomology

transformation

h :  BP*( )  G*(  )[1]

such that

h(eBP(L))  =-1(eG*(L))

for a line bundle L, and

(11.1)  h(pt)*pBp =  p'.
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Put 

 h h(pt)

for simplicity. By a standard argument (cf., [2]) we can identify h 

with the Boardman map

 r(BP)  ---->  7*(G  ABP), 

 and the Stong-Hattori map

 7T,(K  A  MU) 

decomposes as direct sum of copies of  E after localized at the  prime 

p. Thus we can state Stong-Hattori Theorem in our  version  as

    Theorem  11.1. h h(pt) BP*(pt)   *G*(pt)[1] 

monomorphism.

Stong-Hattori Theorem in this form is proved also in [3] by a different

 method.

11.2. Before going into the proof of Theorem  11.1 we  compute  some

 materials of  p, log is already given in (9.16). 
 V

We compute [pi 

 log
u[p]p(T) = p  logpT

                      k k+1 
     r  1   =  pT +Tpu

l  k
>0  p 

 k-1
=  pT +  1 1+P+...+P- 

k -(u1TP)P 
       —u- 

  1       k>0 
p 
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= log (exp (pT)) + log (u 
1T),   P P

where exp =
        P 

(11.2)

Since

and G 

curve

with

    is  - 
a 

over p

dim  e. 
 i

 Therefore

for 

 (11.

log
-1 

 u 

 [p]

    exp 

 additive

all k > 0 

3)

Lemma  11 

Proof.

(over 

 exp

-2(pi

 T

 k

 j=0 

 . 

 Or

 k

 j=0 

 r  k

Hence

 (T)  exp  (pT)  +11  (u1TP)

 .2. 

 FOT

 

: G
apover  G*(pt)  ®  Q 

p 

 whence typical, we see that  exp
v is a typical

 G*(pt)®Q  ). Put

T=  (e.TP  ),  e0  =  1' p 
i>0

- 1) .  men

log (exp T) 
 P V

 log  (  (e.TP  )) 
   p#  •  i>0

                  j -1 j ,i+j 
     --uePTr          T.u

l i>0 j>0 p

          j-1 j  1 l+p+ ...+P eP0   u 
_j 1 k-j

P" 
k 

 , multiplying  pP to this formula we obtain

j-11 l+p+...+p'(
pp-ek -j.)r= 0 for k > 0. 

                                  nJ 

   U 

j1

 k

 pP  ekE p  • G*(pt) for all k >  0.

= 0 : since  e  1 we have
 U 
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 0 

 pP  e0  =pEp•  G*(pt).

We prove the Lemma by induction on k. Assume it is proved until k 

Then by  (11.3)

                           -1 k-j 
      ek =            ,1l+p+.,.+Pj(pP ek) 

     j1- P--7-       iul=1

Here

 ki

 pp  e,  E p  G*(pt)

for 1 < j < k by induction  hypothesis. Then, since j < p3 for

1 < j < k we have

       k-i         •'
=
k_j)P-E p0G*(pt)

for 1 < j < k. Hence 

 k
 pP  ek  E p  G*(pt),

q.  e.  d.

Now 

               k k

 exp (pT) =  111 (pP ekTP) 

                                                                                            ° 

          k>0

Then by Proposition 10.5 and the above Lemma, putting I = p  G*(pt) 

obtain

Lemma 11.3.  exp  (pT) is a power series over G*(pt) and

exp (pT)  E 0 mod p •  G*(pt).   11

 Corollary 11.4.  [p]
p(T)  E  ulTP mod p G*(pt).
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This follows by Lemma 10.2, (11.2) and Lemma 11.3.

11.3. We compute  fp
,11y0

 i(*#(1rp,p1(*)(0)  =  fp,K*(K*) 

              =ftY=e *f*Y               p ,K*K*0Kp,K0

=  cl
(*(11P-11)(0) by (8.4)* 

 1uP-licK*Y0 by Proposition 2.9 

=luP-11E
K*ItY0 

      P1 =
K*#{uI10 by Proposition 2.4.

Since /(,,tt  :  e eF, an isomorphism, we obtain 
 UK* K* 

                                                    -1 , 

                                 = 

                  u0[1113iY0'                        K*

Hence

(11.4) f y,= [11140' 
                  P,11u

Then we compute f
p,,,l(tiTP-)  :

for j = 0, since  t0  = 1 we have 

              f (t0T) = (f0)(T)                         y)(T) 
                             p,p 

                    = u1T by (11.4);

for j > 0,

f (t.TP-) = (f w w ft.]y )(T) 
13,1-1 J P,11 P j-1 J 0 

 =  [Pi  (w It •1Y )  (T) by Proposition                   j -1 3 0
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 j-1
= fp] (t . .T13-  ) 

    P J

= u
1tic?TP  

by Corollary 11.4. Thus we obtained

Lemma 11.5. i) f
11u(t,T) =  u1T,              P,

        r1 , 1 ii) ff (
t.Tr ) 

     11),-0 J i mod p

for  j>  0. 

 11.4. Proof of Theorem  11.1. Put

 = 171-(v (r.9  ) 
 1  

p-1

for i > 1, where  v(P)  's are the polynomial 

 p-1

 6.2L Then by Theorem 6.3 we obtain

 (11.5) (ff ,y )(T) =y)(T)=X1-11 
       P,110 p,BP 0                                         i>1 

Since  cp,  u'  u  u, we have

 (i)t o  (ffp
,piY0)  =  (1)1,4(fp,,Y0) 

           f (q) ) 
                 p,p ## 0 

 =f (1) .                   t

Thus

                       1 
(11.6) (fy)(T)=cl)tt(1f (t.TP)) 

                        j 

       13,1-ii0>0 P'P 3

7  cl);1(  (u1qTP')) 
 j>0
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 p-G*(pt)[t]mod

 (pt)  [I]

ofbasis

 i-1

 TP

mod

 BP*  (pt) (

 p.G*(pt),[t]

 Theorem



by  Lemma 10.1, Proposition 10.3  and Lemma  11,5. Comparing the lowest 

(deg 1) of both sides of (11.6) we obtain 

 (11.7)=u1mod p-G*(pt)ft].  1-

Put

                n3 
 t  CF) = (s.Tr ), s0                                 = 1,                      j>0

as in  10.3, and put 

                     I  = (t1, t2,  ...),

the ideal generated by  tl, t2, ... in  G*(pt)[t]. Then

s.  t.  E  0 mod 3 
3

for j > 0 by Proposition  10.9. Hence we can use s,                                    1s2, as a

nomial basis of G*(pt)[t], i.e., 

 G*(pt)  [t] =  G*(pt)  [si, s2,  ...1.

By (11.6), using Lemma 10.1 and Proposition 10.3, we obtain

              fl, n3  n3 (11
1y0)(T)Es.Tr) mod  p.G*(pt)[t] + I2, 13,11 1 3             j>0

whence by (11.5) we see that 

 j-1
(11.8)U- 13"              V.=S.1                                 mod p.G*(pt)[t] +12         31 -

for j > 1.

To prove Theorem 11.1, it is sufficient to prove that  "h mod  p" 
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 poly,-

is



injective. Since u, is invertible we can use fuljjs,j 11 as a 

                                                       polynomial basis of  G*(pt)It]. Then by (11.8)

 G*  (pt)  fa] 0  F =  G*(pt)  [v2, v3,  .1  OF, 

where  F = a/p•a, which contains  F
p[u1,  v2  v3, ...] as a subalgebra. 

Finally by (11.7) we see that vi, v2,  ... are algebraically independent 

over  F,. Therefore  "  h mod  p" is injective.
 r
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§12. Conner-Floyd Theorem

Conner-Floyd  [7] proved the  natural  isomorphism

 U*(X)  C)  u*  (
pt)  7 =  K*(X)

regarding both sides as  22-graded. Here we shall see a corresponding

relation holds between BP* and G*.

    12.1. Here we write the polynomial basis v(k) of BP*(pt)(Theorem 

                                                     p -1 

6.2) by  vk for simplicity. Compute Td(vk) by the recursive formula

(6.6). Remarking that 

 1 Td(m  k  ) =  , 
 p  -1 p

by an induction on k we obtain 

            Td(v1) = 1

(12.1)

 Td(vk) = 0 for k >  1.

12.2. Using notations of 9.4 we map a line bundle L over X to

 1k( -1)-1               vk1(eBP(L))k(p-1)E BP0(X) 

   - 

 k>1P

 where  ye regard as V‘  E.By splitting principle this extends to a                  j -I Z(P)

 naturai map

 x'  :  K(X)  BP°(X).

For a line bundle L we have 
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by 

(12

and

by

by 

by

(12 

for

td o  x'(L) = 1 - y rK u(ePK*(L))k(p-1)      =1 
                k1k(p-1)-1 

                           k(p-1)(u-1ePK(L))k(p-1)            =1-yk,1,/1.1 
         k>1J- 

                                k(p-1)            =1-y c.f.1,1 e (L) 
               k1`P- 

          E(L)             0

(9.15). Thus 

 .2) td  o v'  =E

Remark that

 Go(X) =  EoK(X)  C K(X)

define

0      G0(X)  >  BP0(X) 
X

a restriction of  x'. Since  E0 is an idempotent, by (12.2) we see that 

               0             --t'd  0 x =  1.

For negative integers s such that  -  2(p-1) < s < 0 we define

 xS  Gs(x)  Bps(x)

 (1
requiring they commute with suspensions  and  x  x is  uniquely defined

this requirement. Since also commutes with suspensions we see that 

.3)  0  xs = 1

-  2(p-1) < s < 0. 
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 12.3. Make BP*  '/2(p-1)'-graded by 

     BPa(X)  y  BPS(X)
sEa mod  2(p-1)

for  a  67/2(p-1)2. We denote this cohomology by BP#.

multiplicative cohomology transformation

   __#_#
td:BP-( )G°.(  )

such that 

                                                 --#
 td  (pt) = Td :BP-(pt)  -->(

p)' 

Thus  2'CI)) is a  BP  (pt)-module. Now we can state

Theorem 12.1. There exists natural isomorphism 

   (TazOC) • BP#00--Bp#(
pt)'(p)G

    For the proof of this theorem the most basic 

of natural degree-preserving map

 x  :  G#(x)   >  BP(X)

such that

            --# # 
(12.4) td 0 x = 1.

This is defined by  x# =  fxs : -  2(p-1) <  s <  0}

    The rest of the proof is completely parallel 

Theorem (10.1), p.60. The proof is devided into

98

Then td induces

thing is the existence

and proved by (12.3).

to the proof of [7], 

three steps as in [7].



At 

of

each step Quillen 

complex cobordism

decomposition and the use 

are helpful. Details are

of corresponding 

left to readers.

facts
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