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after completion for any G-CW complex FE constructed using cells G/H, A S™ for
various proper subgroups H.

Now if ¢ is finite, let V denote the reduced regular representation and let SV
be the union of the representation spheres S*V. For a general compact Lie group
G, we let SV denote the union of the representation spheres SV as V runs over
the indexing spaces V such that V“ = 0 in a complete G-universe U.

Evidently 5oV is contractible if H is a proper subgroup and S0V = G0 Thys
5°V /89 has no G-fixed points and may be constructed using cells G/Hy A S™ for
proper subgroups . Thus, by the inductive hypothesis, Kz (5" /S A EG) =0

after completion, and hence
K5(5%V N EG) =2 K5(5° N EG) = KL (EG)
after completion. But evidently the inclusion
SV = SV A8 — SV A BG

is an equivariant homotopy equivalence (consider the various fixed point sets).
This proves a most convenient reduction: it is enough to prove that K2 (S*V) =0
after completion.

In fact, it is easy to see that K%(S*Y) = 0 after completion. When  is finite,

one just notes that (ignoring lim' problems again)
K (S5®V) = hian(SW) = hin(Kg(SO), AMV)) =0

because A(V') € I. Indeed the inverse limit has the effect of making the element
A(V) invertible, and if IM = M then M} = 0. The argument in the general
compact Lie case is only a little more elaborate.

To make this proof honest, we must address the two important properties that
we used without justification: (a) that completed K-theory takes cofiberings to
exact sequences and (b) that the K-theories of certain infinite complexes are the
inverse limits of the K-theories of their finite subcomplexes. In other words the
points that we skated over were the linked problems of the inexactness of comple-
tion and the nonvanishing of lim' terms.

Now, since R((7) is Noetherian, completion is exact on finitely generated mod-
ules, and the K groups of finite complexes are finitely generated. Accordingly, one
route is to arrange the formalities so as to only discuss finite complexes: this is

the method of pro-groups, as in the original approach of Atiyah. It is elementary
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and widely useful. Instead of considering the single group K (X) we consider the

inverse system of groups K5 (X,) as X, runs over the finite subcomplexes of X.

We do not need to know much about pro-groups. A pro-group is just an inverse
system of Abelian groups. There is a natural way to define morphisms, and the
resulting category is Abelian. The fundamental technical advantage of working
in the category of pro-groups is that, in this category, the inverse limit functor is
exact. For any Abelian group valued functor 2 on G-CW complexes or spectra, we
define the associated pro-group valued functor h by letting h(X) be the inverse
system {h(X,)}, where X, runs over the finite subcomplexes of X.

As long as all K-theory is interpreted as pro-group valued, the argument just
given is honest. The conclusion of the argument is that, for a finite G-CW complex
X, 7: EFGy N X — X induces an isomorphism of /-completed pro-group valued
K-theory. Here the [-completion of a pro-R(G)-module M = {M,} is just the
inverse system {M,/I"M,}. When M is a constant system, such as K%(.S°), this
is just an inverse system of epimorphisms and has zero lim". It follows from the
isomorphism of pro-groups that lim' is also zero for the progroup Kz (EG, A X),
and hence the group KX(EG A X) is the inverse limit of the K-theories of the
skeleta of EG. A X. We may thus simply pass to inverse limits to obtain the
conclusion of Theorem 3.1 as originally stated for ordinary rather than pro- R(G)-

modules.

There is an alternative way to be honest: we could accept the inexactness and
adapt the usual methods for discussing it by derived functors. In fact we shall
later see how to realize the construction of left derived functors of completion
geometrically. This approach leads compellingly to consideration of completions of
Kg-module spectra and to the consideration of homology. We invite the interested
reader to turn to Chapter XXIV (especially Section 7).
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6. The generalization to families

The above statements and proofs for the universal free G-space KG and the
augmentation ideal I carry over with the given proofs to theorems about the
universal .% -free space /. and the ideal

1.7 = () ker{res : R(G) — R(H)}.
He#x
The only difference is that for most families .% there is no reduction of K¢(F.%)
to the nonequivariant K-theory of some other space. Note that, by the injectivity
of (2.1), if .Z includes all cyclic subgroups then [.% = 0.

THEOREM 6.1. For any family .% and any finite G-CW-complex X the projec-

tion map F.# — * induces completion, so that
KMNEZLNX)2 KL(X)) .

In particular

KYEZ,) = R(G)), and KL(EZF,)=0.

Two useful consequences of these generalizations are that K-theory is detected

on finite subgroups and that isomorphisms are detected by cyclic groups.

THEOREM 6.2 (McCLURE). (a) If X is a finite G-CW-complex and = € Kg(X)
restricts to zero in Ky (X) for all finite subgroups H of GG then x = 0.
(b) If f: X — Y is amap of finite G-CW-complexes that induces an isomorphism
Ke(Y) — K¢ (X) for all finite cyclic subgroups C then f*: Kg(Y) — Ka(X)

is also an isomorphism.

Thinking about characters, one might be tempted to believe that finite sub-
groups could be replaced by finite cyclic subgroups in (a), but that is false.
J. F.Adams, J.-P.Haeberly, S.Jackowski and J. P.May. A generalization of the Atiyah-Segal

completion theorem. Topology 27(1988), 1-6.
J.E.McClure. Restriction maps in equivariant K-theory. Topology 25(1986) 399-409.



CHAPTER XV

An introduction to equivariant cobordism

by S. R. Costenoble

1. A review of nonequivariant cobordism

We start with a brief summary of nonequivariant cobordism.

We define a sequence of groups A, A1, A3, ... as follows: We say that two
smooth closed k-dimensional manifolds M, and M, are cobordant if there is a
smooth (k+1)-dimensional manifold W (the cobordism) such that OW = My [T Ms;
this is an equivalence relation, and .4; is the set of cobordism classes of k-
dimensional manifolds. We make this into an abelian group with addition being
disjoint union. The 0 element is the class of the empty manifold §); a manifold is
cobordant to () if it bounds. Every manifold is its own inverse, since M [[ M bounds
M x I. We can make the graded group ./; into a ring by using cartesian product
as multiplication. This ring has been calculated: A, = Z/2[xy | k # 2° —1]. We'll
say more about how we attack this calculation in a moment. This is the unoriented
bordism ring, due to Thom.

Thom also considered the variant in which the manifolds are oriented. In this
case, the cobordism is also required to be oriented, and the boundary 9W is
oriented so that its orientation, together with the inward normal into W, gives
the restriction of the orientation of W to W. The effect is that, if M is a closed
oriented manifold, then (M x I) = MI[(—M) where —M denotes M with its
orientation reversed. This makes —M the negative of M in the resulting oriented
bordism ring Q.. This ring is more complicated than .4, having both a torsion-
free part (calculated by Thom) and a torsion part, consisting entirely of elements

of order 2 (calculated by Milnor and Wall).
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There are many other variants of these rings, including unitary bordism, .,
which uses “stably almost complex” manifolds; M is such a manifold if there is
given an embedding M C R" and a complex structure on the normal bundle to this
embedding. The calculation is %, = Z[z9;]. This and other variants are discussed
in Stong.

These rings are actually coefficient rings of certain homology theories, the bor-
dism theories (there is a nice convention, due to Atiyah, that we use the name
bordism for the homology theory, and the name cobordism for the related coho-
mology theory). If X is a space, we define the group 4;(X) to be the set of
bordism classes of maps M — X, where M is a k-dimensional smooth closed
manifold and the map is continuous. Cobordisms must also map into X, and the
restriction of the map to the boundary must agree with the given maps on the
k-manifolds. Defining the relative groups A4%(X, A) is a little trickier. We consider
maps (M,0M) — (X, A). Such a map is cobordant to (N,0N) — (X, A) if
there exists a triple (W, 0oW, W), where OW = dyW U 1 W, the intersection
OoW N 4 W is the common boundary 9(doW) = d(hW), and dW = MIIN,
together with a map (W,0;W) — (X, A) that restricts to the given maps on
JoW. (This makes the most sense if you draw a picture.) It’s useful to think of
W as having a “corner” at doW N 0;W; otherwise you have to use resmoothings
to get an equivalence relation. It is now a pretty geometric exercise to show that
there is a long exact sequence

s H(A) — (X)) — ALK, A) — A (A) — -

where the “boundary map” is precisely taking the boundary. There are oriented,
unitary, and other variants of this homology theory.

Calculation of these groups is possible largely because we know the representing
spectra for these theories. Let T'O (the Thom prespectrum) be the prespectrum
whose kth space is TO(k), the Thom space of the universal k-plane bundle over
BO(k). It is an inclusion prespectrum and, applying the spectrification functor L
to it, we obtain the Thom spectrum MO. Its homotopy groups are given by

7 (MO) = colimy 716 (T O(q)).

Then AL =2 7. (MO), and in fact MO represents unoriented bordism.

The proof goes like this: Given a k-dimensional manifold M, embed M in some
R7+* with normal bundle ». The unit disk of this bundle is homeomorphic to a
tubular neighborhood N of M in R?t*, and so there is a collapse map ¢ : S9t%F —
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T'v given by collapsing everything outside of N to the basepoint. There is also a
classifying map Tv — TO(q), and the composite

Stk Ty — TO(q)

represents an element of 7(MQO). Applying a similar construction to a cobor-
dism gives a homotopy between the two maps obtained from cobordant manifolds.
This construction, known as the Pontrjagin-Thom construction, describes the map
Ny — T (MO).

The inverse map is constructed as follows: Given a map f : S9* — TO(q),
we may assume that f is transverse to the zero-section. The inverse image
M = f~Y(BO(q)) is then a k-dimensional submanifold of S9** (provided that
we use Grassmannian manifold approximations of classifying spaces), and the nor-
mal bundle to the embedding of M in S?** is the pullback of the universal bundle.
Making a homotopy between two maps transverse provides a cobordism between
the two manifolds obtained from the maps. One can now check that these two
constructions are well-defined and inverse isomorphisms. The analysis of AL(X, A)
is almost identical.

In fact MO is a ring spectrum, and the Thom isomorphism just constructed is
an isomorphism of rings. The product on MO is induced from the maps

TO(j) A TO(k) — TO(j + k)

of Thom complexes arising from the classifying map of the external sum of the jth
and kth universal bundle. This becomes clearer when one thinks in a coordinate-
free way; in fact, it was inspection of Thom spectra that led to the description of
the stable homotopy category that May gave in Chapter XII.

Now MO is a very tractable spectrum. To compute its homotopy we have
available such tools as the Thom isomorphism, the Steenrod algebra (mod 2), and
the Adams spectral sequence for the most sophisticated calculation. (Stong gives
a calculation not using the spectral sequence.) The point is that we now have
something concrete to work with, and adequate tools to do the job. For oriented
bordism, we replace MO with M SO, which is constructed similarly except that
we use the universal oriented bundles over the spaces BSO(k). Here we use the
fact that an orientation of a manifold is equivalent to an orientation of its normal
bundle. Similarly, for unitary bordism we use the spectrum MU, constructed out
of the universal unitary bundles.

The standard general reference is
R. E. Stong. Notes on Cobordism Theory. Princeton University Press. 1968.
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2. Equivariant cobordism and Thom spectra

Now we take a compact Lie group GG and try to generalize everything to the
Gi-equivariant context. This generalization of nonequivariant bordism was first
studied by Conner and Floyd. Using smooth G-manifolds throughout we can cer-
tainly copy the definition of cobordism to obtain the equivariant bordism groups
A% and, for pairs of G-spaces (X, A), the groups #.%(X, A). We shall concen-
trate on unoriented bordism. To define unitary bordism, we consider a unitary
manifold to be a smooth G-manifold M together with an embedding of M in either
Vor Vg R, where V is a complex representation of (G, and a complex structure
on the resulting normal bundle. The notion of an oriented GG-manifold is compli-
cated and still controversial, although for odd order groups it suffices to look at
oriented manifolds with an action of (; the action of G automatically preserves
the orientation.

It is also easy to generalize the Thom spectrum. Let % be a complete G-
universe. In view of the description of the K-theory G-spectra in the previous
chapter, it seems most natural to start with the universal n-plane bundles

a(V): EO(\V|,V& %) — BO(V|,V& %)

for indexing spaces V in 7. Let TOg(V') be the Thom space of n(V). For V C W,
the pullback of #(W') over the inclusion

is the Whitney sum of #(V') and the trivial bundle with fiber W — V. Its Thom

space is YWV TOg(V), and the evident map of bundles induces an inclusion
o: XVTO6(V) — TOa(W).

This construction gives us an inclusion G-prespectrum T'Og. We define the real
Thom G-spectrum to be its spectrification MOy = LTOg. Using complex rep-
resentations throughout, we obtain the complex analogs TUgs and MUg. This
definition is essentially due to tom Dieck.

The interesting thing is that M Og does not represent .4.%. It is easy to define
a map N9 — 75(MOg) = MOY using the Pontrjagin-Thom construction,
but we cannot define an inverse. The problem is the failure of transversality in
the equivariant context. As a simple example of this failure, consider the group
G =17Z/2,let M = * be a one-point G-set (a 0-dimensional manifold), let N = R
with the nontrivial linear action of ¢, and let Y = {0} C N. Let f: M — N
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be the only G-map that can be defined: it takes M to Y. Clearly f cannot be
made transverse to Y, since it is homotopic only to itself. This simple example is
paradigmatic. In general, given manifolds M and ¥ C N and amap f: M — N,
if f fails to be homotopic to a map transverse to Y it is because of the presence in
the normal bundle to Y of a nontrivial representation of (G that cannot be mapped
onto by the representations available in the tangent bundle of M. Wasserman
provided conditions under which we can get transversality. If G is a product of
a torus and a finite group, he gives a sufficient condition for transversality that
amounts to saying that, where needed, we will always have in M a nontrivial
representation mapping onto the nontrivial representation we see in the normal
bundle to Y. Others have given obstruction theories to transversality, for example
Petrie and Waner and myself.

Using Wasserman’s condition, it is possible (for one of his () to construct the
G-spectrum that does represent .4.%. Again, let % be a complete G-universe. We
can construct a G-prespectrum tog with associated G-spectrum mog by letting
V' run through the indexing spaces in our complete universe % as before, but
replacing % by its G-fixed point space % = R* in the bundles we start with.
That is, we start with the G-bundles

EO(|V|,Va& %% — BO(|V|,V & %)

for indexing spaces V in %/. Again, restricting attention to complex representa-
tions, we obtain the complex analogs tug and mug. The fact that there are so
few nontrivial representations present in the bundle EO(|V|,V @& %) allows us
to use Wasserman’s transversality results to show that mog represents .4#.%. The
inclusion % — % induces a map

mog — MOg

that represents the map .4 — MOY that we originally hoped was an isomor-
phism.

On the other hand, there is also a geometric interpretation of MOY. Using
either transversality arguments or a clever argument due to Brocker and Hook
that works for all compact Lie groups, one can show that

MO (X, A) = colimy 4,5y (X, A) x (D(V),5(V))).

Here the maps in the colimit are given by multiplying manifolds by disks of rep-
resentations, smoothing corners as necessary. We interpret this in the simplest
case as follows. A class in MO = colimy %EM(D(V), S(V)) is represented by a
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manifold (M, 9dM) together with a map (M,9M) — (D(V), S(V)). This map is
equivalent in the colimit to (M x D(W),0(M x D(W))) — (D(VaW), S(VaW))
together with the original map crossed with the identity on D(W). We call the
equivalence class of such a manifold over the disk of a representation a stable man-
ifold. Tts (virtual) dimension is dim M — dimV. We can then interpret MOY
as the group of cobordism classes of stable manifolds of dimension k. A similar
interpretation works for MO (X, A).

With this interpretation we can see clearly one of the differences between .4.“
and MOY. If V is a representation of (¢ with no trivial summands, then there is a
stable manifold represented by * — D(V), the inclusion of the origin. This rep-

resents a nontrivial element x(V) € MO, where n = |[V|. This element is called

the Fuler class of V. Tom Dieck showed the nontriviality of these elements and
we’ll give a version of the argument below; note that if V' had a trivial summand,
then * — D(V) would be homotopic to a map into S(V), so that y(V) = 0.
On the other hand, .#.% has no nontrivial elements in negative dimensions, by
definition.

Here is another, related difference: Stable bordism is periodic in a sense. If V' is
any representation of ¢, then, by the definition of MO¢g, MOg(V) = MO«(|V]);
the point is that M Og (V) really depends only on |V|. This gives an equivalence
YYMOg ~X"MOg if n = |V|, or

MOg ~ YV ""MOg.

One way of defining an explicit equivalence is to start by classifying the bundle
V — x and so obtain an associated map of Thom complexes (a Thom class)

SV — TOg(R™) C MOg(R™).

This is adjoint to a map u(V) : S¥=" = ¥>°8V — MOg. Reversing the roles
of V and R", we obtain an analogous map S~V — MOg. It is not hard to
check that these are inverse units in the RO(G)-graded ring MO%. The required
equivalence is the evident composite

Sv_n A MOG — MOG A MOG — MOG
In homology, this gives isomorphisms of MO%-modules
MOS(2VIX) = MO%(2V X)

and

MO (X)= MOZ_ (2 X)
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for all k. This is really a special case of a Thom isomorphism that holds for every
bundle. The Thom class of a bundle ¢ is the element in cobordism represented
by the map of Thom complexes T¢ — TO(|¢]) € MOg(|¢]) induced by the
classifying map of £&. Another consequence of the isomorphisms above is that
MO (X) =2 MO%(X), so that the RO(G)-graded groups that we get are no
different from the groups in integer grading. We can think of this as a periodicity
given by multiplication by the unit (V). It should also be clear that, if |V]| =m
and |W| = n, then the composite isomorphism

MOF(X) = MOE, (2 X) = MO, (59" X)

agrees with the isomorphism MOF (X) = MOZ, .. (EV®" X) associated with the
representation V ¢ W.

We record one further consequence of all this. Consider the inclusion e : S® —
SV where |V| = n. This induces a map

MO, (X) — MOE,,(5VX) = MOF ().

It is easy to see geometrically that this is given by multiplication by the stable
manifold * — D(V), the inclusion of the origin, which represents y(V) € MO®, .
The similar map in cobordism,

MOL(X) = MOE™(XY X) — MOE™(X)

is also given by multiplication by x(V) € MO, as we can see by representing
x(V) by the stable map

SO SV Y MO ~ X" MOg.

T. Brocker and E. C. Hook. Stable equivariant bordism. Math. Z. 129(1972), 269-277.
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3. Computations: the use of families

For computations, we start with the fact that .4.%(X) is a module over ./ (the
nonequivariant bordism ring, which we know) by cartesian product. The question
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is then its structure as a module. We’ll take a look at the main computational
techniques and at some of the simpler known results.

The main computational technique was introduced by Conner and Floyd. Recall
that a family of subgroups of (G is a collection of subgroups closed under conjugacy
and taking of subgroups (in short, under subconjugacy). If .% is such a family,
we define an .%-manifold to be a smooth GG-manifold all of whose isotropy groups
are in .#. If we restrict our attention to closed .#-manifolds and cobordisms
that are also .Z-manifolds, we get the groups 4#.%[.#] of cobordism classes of
manifolds with restricted isotropy. Similarly, we can consider the bordism theory
N E[F)(X, A). Now there is a relative version of this as well. Suppose that
F' C F. An (F, F')-manifold is a manifold (M, dM) where M is an .#-manifold
and OM is an F'-manifold (possibly empty, of course). To define cobordism
of such manifolds, we must resort to manifolds with multipart boundaries, or
manifolds with corners. Precisely, (M,0M) is cobordant to (N,dN) if there is a
manifold (W, oW, & W) such that W is an .#-manifold, ;W is an .%’-manifold,
and oW = M I]N, where as usual W = doW U W and doW N 0, W is the
common boundary of dgW and 9;W. With this definition we can form the relative
bordism groups A “[.%, Z']. Of course, there is also an associated bordism theory,
although to describe the relative groups of that theory requires manifolds with 2-

part boundaries, and cobordisms with 3-part boundaries!

12

From a homotopy theoretic point of view it’s interesting to notice that .4, [.7]
NG (EZF), since a manifold over F.# must be an .Z-manifold, and any

manifold has a unique homotopy class of maps into £.%. Similarly, 4.9[.Z](X)

*

Y

12

N9(X x EZ), and so on. For the purposes of computation, it is usually more
fruitful to think in terms of manifolds with restricted isotropy, however. Notice
that this gives us an easy way to define MOS[.F]: it is MOS(E.%). We can also
interpret this in terms of stable manifolds with restricted isotropy.

As a first illustration of the use of families, we give the promised proof of the

nontriviality of Euler classes.

LEMMA 3.1. Let (¢ be a compact Lie group and V be a representation of ¢
without trivial summands. Then x(V) # 0 in MO% | where n = |V].

—n?

PrOOF. Let &/ be the family of all subgroups, and let & be the family of
proper subgroups. Consider the map MOS — MO%[/, %7]. We claim that the
image of (V) is invertible in MO%[«7, 2] (which is nonzero), so that x (V) # 0.
Thinking in terms of stable manifolds, x(V) = [+ — D(V)]. Its inverse is
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D(V) — «, which lives in the group MO%[</, 2] because dD(V) = S(V) has
no fixed points. It’s slightly tricky to show that the product, which is represented
by D(V) — « — D(V'), is cobordant to the identity D(V) — D(V), as we
have to change the interpretation of the boundary S(V') of the source from being
the “Z-manifold part” to being the “maps into S(V) part”. However, a little
cleverness with D(V') x I does the trick. O

Returning to our general discussion of the use of families, note that, for a pair
of families (.#, . F'), there is a long exact sequence

= MTF — NET] — NEF T — MG —

Y

where the boundary map is given by taking boundaries. (This is of course the
same as the long exact sequence associated with the pair of spaces (E.#, E.Z").)
We would like to use this exact sequence to calculate .#.¢ inductively. To set
this up a little more systematically, suppose that we have a sequence .y C % C
Fy C -+ of families of subgroups whose union is the family of all subgroups.
If we can calculate 4,%[.%] and each relative term A,%[.%,, %, 1], we may be
able to calculate every .4,[.%,] and ultimately .4#,%. We can also introduce the
machinery of spectral sequences here: The long exact sequences give us an exact
couple

L/V*G[g;p—l] /I/*G[ﬂp]

\ /

J‘/*G[ggpv gzp—l]

and hence a spectral sequence with ) = %G[ﬂp, Z,_1) that converges to ..

This would all be academic if not for the fact that .4,“[.%,,.%, 1] is often com-
putable. Let us start off with the base of the induction: A4 %[{e},0] = A4.%[{e}].
This is the bordism group of free closed G-manifolds. Now, if M is a free G-
manifold, then M/G is also a manifold, of dimension dim M — dim GG. There is a
unique homotopy class of G-maps M — EG, which passes to quotients to give
a map M/G — BG. Moreover, given the map M/G — BG we can recover the
original manifold M, since it is the pullback in the following diagram:

M ——FEG

-

M/G — BG.
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This applies equally well to manifolds with or without boundary, so it applies to
cobordisms as well. This establishes the isomorphism

M e}] & M—ama( BG).

Now the bordism of a classifying space may or may not be easy to compute, but
at least this is a nonequivariant problem.

The inductive step can also be reduced to a nonequivariant calculation. Sup-
pose that G is finite or Abelian for convenience. We say that .# and .#’ are
adjacent if F = ZF' U (H) for a single conjugacy class of subgroups (H), and
it suffices to restrict attention to such an adjacent pair. Suppose that (M,0M)
is an (., .Z')-manifold. Let M7 denote the set of points in M with isotropy
groups in (H); M) lies in the interior of M, since M is an .%#’-manifold, and
M) = UKE(H)MK is a union of closed submanifolds of M. Moreover, these sub-
manifolds are pairwise disjoint, since (H) is maximal in .%. Therefore M) is a
closed G-invariant submanifold in the interior of M, isomorphic to G xyg M*.
(Here is where it is convenient to have G finite or Abelian.) Thus M) has a
G-invariant closed tubular neighborhood in M, call it N. Here is the key step:
(M,0M) is cobordant to (N,0N) as an (.#,.%"')-manifold. The cobordism is pro-
vided by M x I with corners smoothed (this is easiest to see in a picture).

As usual, let WH = NH/H. Now (N,0N) is determined by the free W H-
manifold M and the N H-vector bundle over it which is its normal bundle. Since
W H acts freely on the base, each fiber is a representation of H with no trivial
summands and decomposes into a sum of multiples of irreducible representations.
This also decomposes the whole bundle: Suppose that the nontrivial irreducible
representations of H are Vi, V5, .... Then v = @v;, where each fiber of each v; is
a sum of copies of V;. Clearly v; is completely determined by the free W H-bundle
Homeg(Vi, v;), which has fibers F* where F is one of R, C, or H, depending on V;.
Notice, however, that the N H-action on v induces certain isomorphisms among
the v;: If V; and V} are conjugate representations under the action of NH, then v,
and v; must be isomorphic.

The upshot of all of this is that .4,“[.%,.%"] is isomorphic to the group ob-
tained in the following way. Suppose that the dimension of V; is d; and that
Homeg(Vi, Vi) = F;, where F; = R, C, or H. Consider free W H-manifolds M,
together with a sequence of W H-bundles &, &, --- over M, one for each V;,
the group of & being O(F;,n;) (i.e., O(n;), U(n;), or Sp(n;)). If V; and V; are

conjugate under the action of NH, then we insist that ¢ and ¢; be isomorphic.



4. SPECIAL CASES: ODD ORDER GROUPS AND 7Z/2 193

The dimension of (M;&,&,,--+) is dim M + 3 n,d;; that is, this should equal k.
Now define (M;&,&,,--+) to be cobordant to (N;(y, (a, -+ ) if there exists some
(W3 61,05, --) such that dW = M I N and the restriction of §; to W is & 11 ¢;.

It should be reasonably clear from this description that we have an isomorphism

NOF, T2 Y /@WH(EWHX(XZ»BO(E,M)))
ity midi=k

where W H acts on x; BO(F;, n;) via its permutation of the representations of H.
One more step and this becomes a nonequivariant problem: We take the quotient
by W H, which we can do because the argument EWH x (x;BO(F;,n;)) is free
(this being just like the case .4,%[{e}] above). This gives

dim WH+j+)  nidi=k

Notice that, it G is Abelian or if W H acts trivially on the representations of H
for some other reason, then the argument is BWH x (x;BO(F;,n;))).

P. E. Conner and E. E. Floyd. Differentiable periodic maps. Academic Press, Inc. 1964.

4. Special cases: odd order groups and 7Z/2

It G is a finite group of odd order, then the differentials in the spectral sequence
for A% all vanish, and 4% is the direct sum over (H) of the groups displayed in
(3.2). This is actually a consequence of a very general splitting result that will be
explained in XVII§6. The point is that .4 is a Z/2-vector space and, away from
the order of the group, the Burnside ring A(G') splits as a direct sum of copies of
Z[1/|G]], one for each conjugacy class of subgroups of GG. This induces splittings in
all modules over the Burnside ring, including all RO(()-graded homology theories
(that is, those homology theories represented by spectra indexed on complete
universes). The moral of the story is that, away from the order of the group,
equivariant topology generally reduces to nonequivariant topology.

This observation can also be used to show that the spectra mog and MOg split
as products of Filenberg-MaclLane spectra, just as in the nonequivariant case.
Remember that this depends on GG having odd order.

Conner and Floyd computed the additive structure of JKZ/Z, and Alexander
computed its multiplicative structure. There is a split short exact sequence

0 — N — Bocnch Nion(BO(n)) — Noo1(BZ[2) — 0,
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which is part of the long exact sequence of the pair ({Z/2,e},{e}). The first map
is given by restriction to Z/2-fixed points and the normal bundles to these. The
second map is given by taking the unit sphere of a bundle, then taking the quotient
by the antipodal map (a free Z/2-action) and classifying the resulting Z/2-bundle.
This map is the only nontrivial differential in the spectral sequence. Now

Bo<n<kNion(BO(N)) = AN[x1, 29, -],

where z; € A5_1(BO(1)) is the class of the canonical line bundle over RP*~1. On
the other hand,
N(BZ[2) =2 N Aro,r,72,- -+ }

is the free .#;-module generated by {r.}, where r is the class of RP* — BZ/2.
The splitting is the obvious one: it sends r; to zx41. In fact, the =y all live in the
summand A.(BZ/2) = A4.(BO(1)), and the splitting is simply the inclusion of this
summand. Tt follows that 4.2 is a free module over Ny, and one can write down
explicit generators. Alexander writes down explicit multiplicative generators.

A similar calculation can be done for MOZ/*. The short exact sequence is then

0 — MO — @, M_u(BO) — Moy (BL/2) — 0,

where now k and n range over the integers, positive and negative, and the sum in
the middle is infinite. In fact,

DrHNamn(BO) = a7t 21,25, ],

where the x; are the images of the elements of the same name from the geometric
case. Here 7! is the image of v, where L is the nontrivial irreducible represen-
tation of Z/2.

It is natural to ask whether or not moy/, and MOy, are products of Eilenberg-
MacLane Z/2-spectra, as in the case of odd order groups. I showed that the answer
turns out to be no.

J. C. Alexander. The bordism ring of manifolds with involution. Proc. Amer. Math. Soc.
31(1972), 536-542.

P. E. Conner and E. E. Floyd. Differentiable periodic maps. Academic Press, Inc. 1964.

S. Costenoble. The structure of some equivariant Thom spectra. Trans. Amer. Math. Soc.

315(1989), 231-254.



CHAPTER XVI

Spectra and G-spectra; change of groups; duality

In this and the following three chapters, we return to the development of features
of the equivariant stable homotopy category. The basic reference is [LMS], and

specific citations are given at the ends of sections.

1. Fixed point spectra and orbit spectra

Much of the most interesting work in equivariant algebraic topology involves the
connection between equivariant constructions and nonequivariant topics of current
interest. We here explain the basic facts concerning the relationships between
Gi-spectra and spectra and between equivariant and nonequivariant cohomology
theories.

We restrict attention to a complete G-universe U and we write RO(() for
RO(G;U). Given the details of the previous chapter, we shall be more informal
about the RO(G)-grading from now on. In particular, we shall allow ourselves to
write F2(X) for o € RO((), ignoring the fact that, for rigor, we must first fix
a presentation of « as a formal difference V& W. We write 5S¢ instead of Svew
and, for G-spectra X and F, we write

(1.1) ES(X) =[5 EAXa
and
(1.2) BLX)=[ST"AX,FElg =[S F(X, E)s.

To relate this to nonequivariant theories, let ¢ : UY — U be the inclusion of
the fixed point universe. Recall that we have the forgetful functor

i GSU — GrUY

195
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obtained by forgetting the indexing G-spaces with non-trivial G-action. The “un-
derlying nonequivariant spectrum” of F is ¢*E with its action by G ignored. Recall
too that ¢* has a left adjoint

i GLUY — GFU

that builds in non-trivial representations. Explicitly, for a naive G-prespectrum
D and an indexing G-space V,

(L.D)(V)= DV ASY-"",

For a naive G-spectrum D, . = Li, D, as usual. These change of universe
functors play a subtle and critical role in relating equivariant and nonequivariant
phenomena. Since, with G-actions ignored, the universes are isomorphic, the
following result is intuitively obvious.

LEMMA 1.3. For D € G.2U%, the unit G-map n : D — *i,.D of the (i.,7)
adjunction is a nonequivariant equivalence. For F € (.U, the counit G-map
g: 10" F — F is a nonequivariant equivalence.

We define the fixed point spectrum DY of a naive G-spectrum D by passing
to fixed points spacewise, DY(V) = (DV)“. This functor is right adjoint to the
forgetful functor from naive G-spectra to spectra:

(1.4) GZUC, D)= 2UC,D% for C € FU% and D€ GFUC.

It is essential that G act trivially on the universe to obtain well-defined structural
homeomorphisms on D%, For £ € G.#U, we define E“ = (+*F)“. Composing

the (i.,1*)-adjunction with (1.4), we obtain
(1.5) GFUGC,E)= 2U%C,EY) for C € YU and D€ GFU".
The sphere G-spectra G/H, A S™ in G.ZU are obtained by applying 7. to the

corresponding sphere G-spectra in G.U%. When we restrict (1.1) and (1.2) to
integer gradings and take H = (7, we see that (1.5) implies

(1.6) EY9X) 2 m,((E A X))
and
(1.7) EL(X) 21 (F(X, E)Y).

As in the second isomorphism, naive G-spectra D represent Z-graded cohomol-
ogy theories on naive G-spectra or on G-spaces. In contrast, as we have already
noted in XIII§3, we cannot represent interesting homology theories on G-spaces
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X in the form 7.((D A X)) for a naive G-spectrum D: here smash products
commute with fixed points, hence such theories vanish on X/X%. For genuine
Gi-spectra, there is a well-behaved natural map

(1.8) E°N(ENY — (ENEC,

but, even when E’ is replaced by a G-space, it is not an equivalence. In Section
3, we shall define a different G-fixed point functor that does commute with smash
products.

Orbit spectra D /G of naive G-spectra are constructed by first passing to orbits
spacewise on the prespectrum level and then applying the functor L from prespec-
tra to spectra. Here (¥ X)/G = X>(X/G). The orbit functor is left adjoint to
the forgetful functor to spectra:

(1.9) LUYD/G,C) = GLUYD,C) for C € £U% and D€ GFU".

For a genuine G-spectrum £, it is tempting to define /G to be L((¢*F)/G), but
this appears to be an entirely useless construction. For free actions, we will shortly
give a substitute.

[LMS, especially 1§3]

2. Split G-spectra and free GG-spectra

The calculation of the equivariant cohomology of free GG-spectra in terms of the
nonequivariant cohomology of orbit spectra is fundamental to the passage back
and forth between equivariant and nonequivariant phenomena. This requires the
subtle and important notion of a “split G-spectrum”.

DEFINITION 2.1. A naive G-spectrum D is said to be split if there is a nonequi-
variant map of spectra ¢ : D — D% whose composite with the inclusion of D% in
D is homotopic to the identity map. A genuine G-spectrum F is said to be split
if «*F is split.

The K-theory G-spectra K¢g and KOg are split. Intuitively, the splitting is ob-
tained by giving nonequivariant bundles trivial G-action. The cobordism spectra
MOQOg and MUg are also split. The Eilenberg-MaclLane G-spectrum HM associ-
ated to a Mackey functor M is split if and only if the canonical map M(G/G) —
M(G/e) is a split epimorphism; this implies that G acts trivially on M(G/e),
which is usually not the case. The suspension G-spectrum XX of a G-space X
is split if and only if X is stably a retract up to homotopy of X, which again is
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usually not the case. In particular, however, the sphere G-spectrum S = %59 is
split. The following consequence of Lemma 1.3 gives more examples.

LEMMA 2.2. If D € G.#U% is split, then ¢, D € G.#U is also split.

The notion of a split G-spectrum is defined in nonequivariant terms, but it
admits the following equivariant interpretation.

LEMMA 2.3. If F is a G-spectrum with underlying nonequivariant spectrum D,
then £ is split if and only if there is a map of G-spectra ¢.D — FE that is a
nonequivariant equivalence.

Recall that a based G-space is said to be free if it is free away from its G-
fixed basepoint. A G-spectrum, either naive or genuine, is said to be free if it is
equivalent to a G-CW spectrum built up out of free cells Gy A C'S™. The functors
¥ .7 — GFUY and i, : GFUY — G.FU carry free G-spaces to free
naive (G-spectra and free naive G-spectra to free G-spectra. In all three categories,
X is homotopy equivalent to a free object if and only if the canonical G-map
EGL AN X — X is an equivalence. A free G-spectrum F is equivalent to ¢, D for
a free naive G-spectrum D, unique up to equivalence; the orbit spectrum D/G is
the substitute for £/G that we alluded to above. A useful mnemonic slogan is
that “free G-spectra live in the trivial universe”. Note, however, that we cannot
take D = i*E: this is not a free G-spectrum. For example, ¥*°G, € G.2U% clearly
satisfies (XG4 )% = *, but we shall see later that 7,.%°°G, which is the genuine
suspension G-spectrum NG, € G.U, satisfies (*X°G, )% = S.

THEOREM 2.4. If E is a split G-spectrum and X is a free naive G-spectrum,
then there are natural isomorphisms

ES(1.X) 2 E,(2*"9X)/G)  and  EL(i.X) = E"(X/G),

where Ad(() is the adjoint representation of (G and F, and E* denote the theories
represented by the underlying nonequivariant spectrum of E.

The cohomology isomorphism holds by inductive reduction to the case X = Gy
and use of Lemma 2.3. The homology isomorphism is quite subtle and depends
on a dimension-shifting transfer isomorphism that we shall say more about later.
This result is an essential starting point for the approach to generalized Tate
cohomology theory that we shall present later.

In analogy with (1.8), there is a well-behaved natural map

(2.5) V(XYY — (87 X)),
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but it is not an equivalence.
[LMS, especially T1.1.8, I1.2.8, I1.2.12, T1.8.4]
3. Geometric fixed point spectra
There is a “geometric fixed-point functor”
o IV — SUC

that enjoys the properties

(3.1) Y(XY) ~ 99 (N> X)
and
(3.2) PY(E) A BT (L) ~ O (ENE).

To construct it, recall the definition of £.Z for a family .# from V.2.8 and set
(3.3) OE = (ENEP)°,

where 2 is the family of all proper subgroups of i. Here E A E.2 is H-trivial for
all H € &

The name “geometric fixed point spectrum” comes from an equivalent descrip-
tion of the functor ®“. There is an intuitive “spacewise G-fixed point functor”
®“ from G-prespectra indexed on U to prespectra indexed on U%. To be precise
about this, we index G-prespectra on an indexing sequence {V;}, so that V; C V11
and U = UV, and index prespectra on the indexing sequence {VZG} Here we
use indexing sequences to avoid ambiguities resulting from the fact that different
indexing spaces in U can have the same G-fixed point space. For a G-prespectrum
D = {DV;}, the prespectrum ®“D is given by (®“D)(V;) = (DV;)“, with struc-
tural maps ZViil_ViG(DVZ»)G — (DViy1)“ obtained from those of D by passage to
G-fixed points. We are interested in homotopical properties of this construction,
and when applying it to spectra regarded as prespectra, we must first apply the
cylinder functor K and CW approximation functor I' discussed in XI1§9. The re-
lationship between the resulting construction and the spectrum-level construction
(3.3) is as follows. Remember that ¢ denotes the forgetful functor from spectra to
prespectra and L denotes its left adjoint.

THEOREM 3.4. For Y-cofibrant G-prespectra D, there is a natural weak equiv-
alence of spectra

LD — LOCD.
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For GG-CW spectra E, there is a natural weak equivalence of spectra
O“F — LO“KT(E.

It is not hard to deduce the isomorphisms (3.1) and (3.2) from this prespectrum
level description of ®¢.

[LMS, 11§9]

4. Change of groups and the Wirthmauller isomorphism

In the previous sections, we discussed the relationship between G-spectra and
e-spectra, where we write e both for the identity element and the trivial subgroup
of G. We must consider other subgroups and quotient groups of G. First, consider
a subgroup H. Since any representation of NH extends to a representation of G
and since a W H-representation is just an H-fixed N H-representation, the H-fixed
point space U of our given complete G-universe U is a complete W H-universe.

We define
(4.1) B =@e)H, . U" CU.

This gives a functor G.7U — (W H).ZU*. Of course, we can also define F'! as
a spectrum in .#U%. The forgetful functor associated to the inclusion UY — U#
carries the first version of F¥ to the second, and we use the same notation for
both. For D € (NH).UH  the orbit spectrum D/H is also a W H-spectrum.

Exactly as on the space level in 1§1, we have induced and coinduced G-spectra
generated by an H-spectrum D € H.#U. These are denoted by

G[XHD and FH[G,D)

The “twisted” notation X is used because there is a little twist in the definitions
to take account of the action of GG on indexing spaces. As on the space level, these
functors are left and right adjoint to the forgetful functor G.U — H.U: for
D e HZU and F € GXU, we have

(4.2) GAUGxy D,E)= HZU(D, E)
and
(4.3) HZU(E, D)= GXU(E, FylG, D)).

Again, as on the space level, for £ € G.#U we have
(4.4) GurxgE=Z(G/H)y NE
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and
(4.5) FylG,E)= F(G/H., E).
As promised earlier, we can now deduce as in (1.6) that

(4.6) 7H(E) = [G/Hy A S™, Elg 2 [S™, Elg & m.(BY).

n

In cohomology, the isomorphism (4.2) gives
(4.7) EiL(G wxy D)= E5 (D).

We shall not go into detail, but we can interpret this in terms of RO(G) and RO(H)
graded theories via the evident functor ZO(G) — ZO(H). The isomorphism
(4.3) does not have such a convenient interpretation as it stands. However, there
is a fundamental change of groups result — called the Wirthmiiller isomorphism
— which in its most conceptual form is given by a calculation of the functor
Fy[G, D). It leads to the following homological complement of (4.7). Let L(H)
be the tangent H-representation at the identity coset of G/H. Then

(4.8) ES(G xy D)= EA (M D),

THEOREM 4.9 (GENERALIZED WIRTHMULLER ISOMORPHISM). For H-spectra
D, there is a natural equivalence of GG-spectra

FylG, 2" DYy — Gy D.
Therefore, for G-spectra E,
[E,SEH) D)y = [E,G g D).
The last isomorphism complements the isomorphism from (4.2):
(4.10) (G xy D, Ele =D, Ely.

We deduce (4.8) by replacing F in (4.9) by a sphere, replacing D by E A D, and
using the generalization

G[XH(D/\E)g(G[XHD)/\E

of (4.4).

[LMS, 11§§2-4]
K. Wirthmiiller. Equivariant homology and duality. Manuscripta Math. 11(1974), 373-390.
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5. Quotient groups and the Adams isomorphism

Let N be a normal subgroup of &G with quotient group J. In practice, one is
often thinking of a quotient map NH — W H rather than G — J. There is an
analog of the Wirthmiiller isomorphism — called the Adams isomorphism — that
compares orbit and fixed-point spectra. It involves the change of universe functors
associated to the inclusion 7 : UY —— U and requires restriction to N-free G-
spectra. We note first that the fixed point and orbit functors G.#UYN — J#UN
are right and left adjoint to the evident pullback functor from J-spectra to G-
spectra: for D € J.ZUN and £ € G.UN,

(5.1) GZUN(D,E) =2 J7UN(D,EY)
and
(5.2) JSUN(E/N,D) = GsUN(E, D).

Here we suppress notation for the pullback functor J.ZUN — G.#UN. An N-
free G-spectrum FE indexed on U is equivalent to 2. for an N-free GG-spectrum
D indexed on UV, and D is unique up to equivalence. Thus our slogan that “free
Gi-spectra live in the trivial universe” generalizes to the slogan that “N-free G-
spectra live in the N-fixed universe”. This gives force to the following version
of (5.2). It compares maps of J-spectra indexed on UY with maps of G-spectra
indexed on U.

THEOREM 5.3. Let J = G/N. For N-free G-spectra E indexed on UN and
J-spectra D indexed on UV,

[E/N, D)y = [i.F,i.Dla.

The conjugation action of G on N gives rise to an action of G on the tangent
space of N at e; we call this representation Ad(N), or Ad(N;G). The following
result complements the previous one, but is very much deeper. When N = G it is
the heart of the proof of the homology isomorphism of Theorem 2.4. We shall later
describe the dimension-shifting transfer that is the basic ingredient in its proof.

THEOREM 5.4 (GENERALIZED ADAMS ISOMORPHISM). Let J = G//N. For N-
free G-spectra I € G.ZUYN, there is a natural equivalence of J-spectra

E/N — (544N N,
Therefore, for D € J.ZUN,
(D, E/N; = [i,D, 44N _E]g.
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This result is another of the essential starting points for the approach to gener-
alized Tate cohomology that we will present later. The last two results cry out for
general homological and cohomological interpretations, like those of Theorem 2.4.
Looking back at Lemma 2.3, we see that what is needed for this are analogs of the
underlying nonequivariant spectrum and of the characterization of split G-spectra
that make sense for quotient groups JJ. What is so special about the trivial group
is just that it is naturally both a subgroup and a quotient group of G.

The language of families is helpful here. Let .# be a family. We say that a G-
spectrum F is .Z-free, or is an .# -spectrum, if F is equivalent to a G-CW spectrum
all of whose cells are of orbit type in .%. Thus free G-spectra are {e}-free. We say
that a map f: D — E is an .Z-equivalence if ff : DH — E" is an equivalence
for all H € % or, equivalently by the Whitehead theorem, if f is an H-equivalence
for all H € Z.

Returning to our normal subgroup N, let #(N) = #(N; () be the family of
subgroups of (¢ that intersect N in the trivial group. Thus an .#(N)-spectrum
is an N-free G-spectrum. We have seen these tfamilies before, in our study of
equivariant bundles. We can now state precise generalizations of Lemma 2.3 and
Theorem 2.4. Fix spectra

DecJsUN and E e GSU.

LEMMA 5.5. A G-map ¢ : 1.D — FE is an .Z (N )-equivalence if and only if the
composite of the adjoint D — (:*E)Y of ¢ and the inclusion (:*E)Y — *F is

an .Z (N )-equivalence.

THEOREM 5.6. Assume given an .% (N )-equivalence i,D) — FE. For any N-free
G-spectrum X € G.UN,

EG (24N, X)) = D/(X/N) and E%(i.X) = D5(X/N).

Given F, when do we have an appropriate DI' We often have theories that are
defined on the category of all compact Lie groups, or on a suitable sub-category.
When such theories satisfy appropriate naturality axioms, the theory F; associated
to J will necessarily bear the appropriate relationship to the theory Eg associated
to GG. We shall not go into detail here. One assumes that the homomorphisms
a: H — (G in one’s category induce maps of H-spectra &, : a*Eg — FEy in a
functorial way, where some bookkeeping with universes is needed to make sense
of o*, and one assumes that &, is an H-equivalence if « is an inclusion. For each
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H € F(N), the quotient map ¢ : G — J restricts to an isomorphism from H to
its image K. If the five visible maps,

HcG, KcJ, ¢q:G—J ¢q:H— K, and ¢': K — H,

are in one’s category, one can deduce that &, : ¢*F; = t.F; — FEg is an F(N)-
equivalence. This is not too surprising in view of Lemma 2.3, but it is a bit subtle:

Lis not in the cat-

there are examples where all axioms are satisfied, except that ¢~
egory, and the conclusion fails because ¢, is not an H-equivalence. However, this
does work for equivariant K -theory and the stable forms of equivariant cobordism,
generalizing the arguments used to prove that these theories split. For K-theory,
the Bott isomorphisms are suitably natural, by the specification of the Bott el-
ements in terms of exterior powers. For cobordism, we shall explain in XXV§5
that MO¢g and MUy arise from functors, called “global .#, functors with smash
product”, that are defined on all compact Lie groups and their representations
and take values in spaces with group actions. All theories with such a concrete

geometric source are defined with suitable naturality on all compact Lie groups

G.

J. F. Adams. Prerequisites (on equivariant theory) for Carlsson’s lecture. Springer Lecture Notes
in Mathematics Vol. 1051, 1984, 483-532.
[LMS, 11§§8-9]

6. The construction of G/N-spectra from G-spectra

A different line of thought leads to a construction of J-spectra from G-spectra,
J = G/N, that is a direct generalization of the geometric fixed point construction
®“E. The appropriate analog of & is the family .#[N] of those subgroups of
(G that do not contain N. Note that this is a family since N is normal. For a
spectrum F in G.¥U, we define

(6.1) ONE = (EAEZ[N)Y.

We have the expected generalizations of (3.1) and (3.2): for a G-space X,
(6.2) Y (X)) ~ dN(E7X)

and, for G-spectra £ and F’,

(6.3) ON(EYAN DN (E) ~ ON(E A K.

We can define ®7F for a not necessarily normal subgroup H by regarding
E as an N H-spectrum. Although the Whitehead theorem appears naturally as a
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statement about homotopy groups and thus about the genuine fixed point functors
characterized by the standard adjunctions, it is worth observing that it implies a
version in terms of these ®-fixed point spectra.

THEOREM 6.4. A map f: E — E’ of G-spectra is an equivalence if and only
if each @ f . ®H |7 — ®H F' is a nonequivariant equivalence.

Note that, for any family .# and any G-spectra £ and E’,
[EANEFL ENEF)q=0
since F.Z only has cells of orbit type G/H a~nd E.Z is H-contractible for such H.
Therefore the canonical G-map £ — E A E.% induces an isomorphism
(6.5) [EAEZ E'NEZF)q 2 |E,E' NEZ).

In the case of Z[N], E — FE A E.Z[N] is an equivalence if and only if E is
concentrated over N, in the sense that £ is H-contractible if H does not contain V.
Maps into such G-spectra determine and are determined by the J-maps obtained
by passage to ®"V-fixed point spectra. In fact, the stable category of J-spectra is
equivalent to the full subcategory of the stable category of G-spectra consisting of
the G-spectra concentrated over N.

THEOREM 6.6. For J-spectra D € J.ZUV and G-spectra E € G.#U concen-
trated over NV, there is a natural isomorphism

(D, EN); = [i.D A EZ[N], Ee.
For J-spectra D and D', the functor ¢.(-) A E.Z[N] induces a natural isomorphism
[D,D'); = [i,D A EZ[N],i.D A EZ[N]]e.

For general G-spectra E and E’, the functor ®"(-) induces a natural isomorphism

[®NE, ONE'; = [E, E' A EZ[N]|q.

PROOF. The first isomorphism is a consequence of (5.1) and (6.5). The other

two isomorphisms follow once one shows that the unit

D — (i,D AN EZ[N)N = oV (i.D)
and counit

(1.ENYNEZ[N] — E

of the adjunction are equivalences. One proves this by use of a spacewise N-fixed
point functor, also denoted ®V, from G-prespectra to J-prespectra. This functor is
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defined exactly as was the spacewise GG-fixed point functor in Section 3. It satisfies
®N(;.D) = D, and it commutes with smash products. The following generalization
of Theorem 3.4, which shows that the prespectrum level functor ®V induces a
functor equivalent to ®V on the spectrum level, leads to the conclusion. [

THEOREM 6.7. For Y-cofibrant G-prespectra D, there is a natural weak equiv-
alence of J-spectra

ONLD — LOVD.

For G-CW spectra E, there is a natural weak equivalence of J-spectra
ONE — LONKT(E.

As an illuminating example of the use of RO(G)-grading to allow calculational
descriptions invisible to the Z-graded part of a theory, we record how to compute
the cohomology theory represented by ®V(E) in terms of the cohomology theory
represented by F. This uses the Euler classes of representations, which appear
ubiquitously in equivariant theory. For a representation V, we define e(V) €
EL(S%) to be the image of 1 € E2(SY) = EX(SY) under e, where ¢ : S© — SV
sends the basepoint to the point at oo and the non-basepoint to 0.

PROPOSITION 6.8. Let E be a ring G-spectrum. For a finite J-CW spectrum
X, (@Y E)%5(X) is the localization of £%(X) obtained by inverting the Euler classes
of all representations V such that V¥ = {0}.

PROOF. By (6.3), ®"(F) inherits a ring structure from E. In interpreting the
grading, we regard representations of J as representations of G by pullback. A
check of fixed points, using the cofibrations S(V) — B(V) — SV, shows that we
obtain a model for £.Z[N] by taking the colimit of the spaces SV as V ranges over
the representations of G such that V~ 2 {0}. This leads to a colimit description
of (®V E)5(X) that coincides algebraically with the cited localization. [

With motivation from the last few results, the unfortunate alternative notation
E; = ®Y(Eg) was used in [LMS] and elsewhere. This is a red herring from the
point of view of Theorem 5.6, and it is ambiguous on two accounts. First, the
J-spectrum ®V(Eg) depends vitally on the extension J = /N and not just on
the group J. Second, in classical examples, the spectrum “F;” will generally not
agree with the preassigned spectrum with the same notation. For example, the
subquotient J-spectrum “K;” associated to the K-theory G-spectrum K¢ is not
the K-theory J-spectrum K ;. However, if S¢ is the sphere G-spectrum, then the
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subquotient J-spectrum S is the sphere J-spectrum. We shall see that this easy
fact plays a key conceptual role in Carlsson’s proof of the Segal conjecture.

[LMS, 11§9]

7. Spanier-Whitehead duality

We can develop abstract duality theory in any symmetric monoidal category,
such as hG.¥ for our fixed complete G-universe U/. While the elegant approach is
to start from the abstract context, we shall specialize to h(G.% from the start since
we wish to emphasize equivariant phenomena. Define the dual of a G-spectrum

X to be DX = F(X,5). There is a natural map

(7.1) v: F(X.YY)NZ — F(X,Y AN Z).
Using the unit isomorphism, it specializes to

(7.2) v:(DX)ANX — F(X,X).

The adjoint of the unit isomorphism S A X — X gives a natural map : 5 —
F(X,X). We say that X is “strongly dualizable” if there is a coevaluation map
n:S — X A(DX) such that the following diagram commutes, where ~ is the
commutativity isomorphism.

(7.3) nl lw
F(X,X) ~—— (DX) A X

It is a categorical implication of the definition that the map v of (7.1) is an
isomorphism if either X or Z is strongly dualizable, and there are various other
such formal consequences, such as X =2 DD(X) when X is strongly dualizable. In
particular, if X is strongly dualizable, then the map v of (3.2) is an isomorphism.
Conversely, if the map v of (7.2) is an isomorphism, then X is strongly dualizable
since the coevaluation map 7 can and must be defined to be the composite yv~'n
in (7.3). Note that we have an evaluation map ¢ : DX A X — S for any X.

THEOREM 7.4. A G-CW spectrum is strongly dualizable if and only if it is
equivalent to a wedge summand of a finite G-CW spectrum.

PROOF. The evaluation map of X induces a natural map

(%) ex Y, ZNDX|lg — [YANX, Z]c
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via ex(f) = (IdAe)(f A 1d), and X is strongly dualizable if and only if ey is
an isomorphism for all Y and Z. The Wirthmiller isomorphism implies that
D(S*G/H,) is equivalent to G x g S~ and diagram chases show that it also
implies that 4 is an isomorphism. Actually, this duality on orbits is the heart of
the Wirthmuiller isomorphism, and we shall explain it in direct geometric terms in
the next section. If X is strongly dualizable, then so is XX. The cofiber of a map
between strongly dualizable G-spectra is strongly dualizable since both sides of (*)
turn cofibrations in X into long exact sequences. By induction on the number of
cells, a finite G-CW spectrum is strongly dualizable, and it is formal that a wedge
summand of a strongly dualizable G-spectrum is strongly dualizable. For the
converse, which was conjectured in [LMS] and proven by Greenlees (unpublished),
let X be a strongly dualizable G-CW spectrum with coevaluation map 5. Then 75
factors through AA DX for some finite subcomplex A of X, the following diagram
commutes, and its bottom composite is the identity:

Id Ae

ANDX)AX 2225 An g2

|

Therefore X is a retract up to homotopy and thus a wedge summand up to ho-
motopy of A. [

In contrast to the nonequivariant case, wedge summands of finite G-CW spectra
need not be equivalent to finite G-CW spectra.

COROLLARY 7.5 (SPANIER-WHITEHEAD DUALITY). If X is a wedge summand
of a finite G-CW spectrum and F is any G-spectrum, then

v:DXNE — F(X,FE)
is an isomorphism in AG.7. Therefore, for any representation a,
EY(DX) = Ez°(X).

So far, we have concentrated on the naturally given dual DX. However, it is
important to identify the homotopy types of duals concretely, as we did in the case
of orbits. There are a number of equivalent criteria. The most basic one goes as
follows. Suppose given G-spectra X and Y and maps

e YANX — S5 and n: 55— XAY
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such that the composites

~ nAld Id Ae ~
XESAX—XAVYAX—XAXZEX

and

1d .
VY AS 2y axay 2Myasgay

are the respective identity maps. Then the adjoint ¢ : ¥ — DX of ¢ is an
equivalence and X is strongly dualizable with coevaluation map (Id Aé&)n. It is
important to note that the maps n and ¢ that display the duality are not unique
— much of the literature on duality is quite sloppy.

This criterion admits a homological interpretation, but we will not go into that
here. It entails a reinterpretation in terms of the slant products relating homol-
ogy and cohomology that we defined in XIII§5, and it works in the same way
equivariantly as nonequivariantly.

[LMS, 111§§1-3]

8. V-duality of G-spaces and Atiyah duality

There is a concrete space level version of the duality criterion just given. To
describe it, let X and Y be G-spaces and let V' be a representation of (G. Suppose
given G-maps

e:YANX — S and n:5" — XAY

such that the following diagrams are stably homotopy commutative, where o :

SV — SV is the sign map, o(v) = —v, and the v are transpositions.
nAld Id A
SYAX —=XAY AKX and YASY  —YAXAY
\ lld/\s wl ls/\ld
-
1% 1% )
XAS SYANY — = ST AY.

On application of the functor XiF, we find that X*X and XY are strongly
dualizable and dual to one another by our spectrum level criterion.

For reasonable X and Y, say finite G-CW complexes, or, more generally, com-
pact G-ENR’s (ENR = Euclidean neighborhood retract), we can use the space
level equivariant suspension and Whitehead theorems to prove that a pair of G-
maps (¢,n) displays a V-duality between X and Y, as above, if and only if the
fixed point pair (e¥,5) displays an n(H)-duality between X and Y# for each
H C G, where n(H) = dim(V1).
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It X is a compact G-ENR, then X embeds as a retract of an open set of a
Gi-representation V. One can use elementary space level methods to construct an
explicit V-duality between X and the unreduced mapping cone VUC(V —X). For
a (i-cofibration A — X, there is a relative version that constructs a V-duality
between X U CA and (V — A) U C(V — X). The argument specializes to give
an equivariant version of the Atiyah duality theorem, via precise duality maps.
Recall that the Thom complex of a vector bundle is obtained by fiberwise one-
point compactification followed by identification of the points at infinity. When
the base space is compact, this is just the one-point compactification of the total
space.

THEOREM 8.1 (ATIYAH DUALITY). If M is a smooth closed G-manifold em-
bedded in a representation V' with normal bundle v, then M, is V-dual to the
Thom complex Tv. If M is a smooth compact G-manifold with boundary oM,
V =V'&R, and (M,0M) is properly embedded in (V' x [0,00), V' x {0}) with
normal bundles v' of M in V' and v of M in V., then M/OM is V-dual to Tv,
M, is V-dual to Tv/TV', and the cofibration sequence

TV — Tv — Tv/Tv' — XTV'
is V-dual to the cofibration sequence

We display the duality maps explicitly in the closed case. By the equivariant
tubular neighborhood theorem, we may extend the embedding of M in V to an
embedding of the normal bundle v and apply the Pontrjagin-Thom construction
to obtain a map ¢ : SV — T'v. The diagonal map of the total space of v induces
the Thom diagonal A : Tv — M, ATv. The map n is just A ot. The map ¢ is
equally explicit but a bit more complicated to describe. Let s : M — v be the
zero section. The composite of A: M — M x M and s xId: M x M — v x M
is an embedding with trivial normal bundle. The Pontrjagin-Thom construction
givesamapt: TvAMy — My ASY. Let £ : My — S° collapse all of M to the
non-basepoint. The map ¢ is just (£ A Id) ot. This explicit construction implies
that the maps ¢ : M, — S% and ¢ : S¥ — T'v are dual to one another.

Let us specialize this discussion to orbits G/H (compare 1X.3.4). Recall that
L = L(H) is the tangent H-representation at the identity coset of GG/H. We have

T=Gxyg L(H) and Tt =G4 Ay SLH)
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If G/H is embedded in V' with normal bundle v, then v & 7 is the trivial bundle
G/H x V. Let W be the orthogonal complement to L(H) in the fiber over the
identity coset, so that V = L & W as an H-space. Since G/H, is V-dual to Tv,
YG/Hy is dual to XTv. Since SW A S~V ~ S~L as H-spectra, we find that
Z(‘)/OTZ/ ~ G Xy S-L.

[LMS, T11§§3-5]

9. Poincaré duality

Returning to general smooth GG-manifolds, we can deduce an equivariant version
of the Poincaré duality theorem by combining Spanier-Whitehead duality, Atiyah
duality, and the Thom isomorphism.

DEFINITION 9.1. Let £ be a ring G-spectrum and let £ be an n-plane G-bundle
over a (G-space X. An F-orientation of ¢ is an element p € E&(T¢) for some
a € RO(G) of virtual dimension n such that, for each inclusion ¢ : G/H — X,

the restriction of u to the Thom complex of the pullback ¢*¢ is a generator of the
free E7(SY)-module EX(T*E).

Here :*¢ has the form G xy W for some representation W of H and T?*¢ =
Gy A SY has cohomology E5(Ti*¢) = B3 (SY) = E37(S°). Thus the definition
makes sense, but it is limited in scope. It X is G-connected, then there is an
obvious preferred choice for a, namely the fiber representation V' at any fixed
point of X: each W will then be isomorphic to V regarded as a representation of
H. In general, however, there is no preferred choice for a and the existence of an
orientation implies restrictions on the coefficients E3;(.5°): there must be units in
degree a —w € RO(H). If o # w, this forces a certain amount of periodicity in the
theory. There is a great deal of further work, largely unpublished, by Costenoble,
Waner, Kriz, and myself in the area of orientation theory and Poincaré duality,
but the full story is not yet in place. Where it applies, the present definition does
have the expected consequences.

THEOREM 9.2 (THOM ISOMORPHISM). Let ¢ € EZ(T¢) be an orientation of
the G-vector bundle ¢ over X. Then

Up: EG(Xy) — E&T(T¢)

is an isomorphism for all 3.
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There is also a relative version. Specializing to oriented manifolds, we obtain
the Poincaré duality theorem as an immediate consequence. Observe first that,
for bundles ¢ and 7 over X, the diagonal map of X induces a canonical map

T @) — T(Exn) =TEAT.
There results a pairing
(%) EG(T¢) @ Eg(Tn) — EZ(T(E ® n)).

We say that a smooth compact G-manifold M is E-oriented if its tangent bundle
T is oriented, say via g € E&(T7). In view of our discussion above, this makes
most sense when M is a V-manifold and we take a to be V. If M has boundary,
the smooth boundary collar theorem shows that the normal bundle of M in M
is trivial, and we deduce that an orientation of M determines an orientation dpu
of M in degree a — 1 such that, under the pairing (*), the product of du and the
canonical orientation ¢« € EL(X(IM), ) of the normal bundle is the restriction of p
to T'(r|0M). Similarly, if M is embedded in V, then u determines an orientation
w of the normal bundle v such that the product of g and w is the canonical
orientation of the trivial bundle in E& (XY M,).

DEFINITION 9.3 (POINCARE DUALITY). If M is a closed E-oriented smooth G-
manifold with orientation g € F&(T7), then the composite

D : EL(My) — EL ™ (Tv) — ES_ (M)

of the Thom and Spanier-Whitehead duality isomorphisms is the Poincaré duality
isomorphism; the element [M] = D(1) in EY(M) is called the fundamental class
associated to the orientation. If M is a compact F-oriented smooth GG-manifold
with boundary, then the analogous composites

D : EL(My) — B (Tv) — ES_ (M, 0M)

and
D : BA(M,0M) — E& =Y (Tv, T(v|oM)) — ES_4(M)

are called the relative Poincaré duality isomorphisms. With the Poincaré duality
isomorphism for M, they specify an isomorphism from the cohomology long exact
sequence to the homology long exact sequence of (M,0M). Here the element
[M] = D(1) in ES(M,0M) is called the fundamental class associated to the

orientation.
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One can check that these isomorphisms are given by capping with the funda-
mental class, as one would expect.

S. R. Costenoble, J. P. May, and S. Waner. Equivariant orientation theory. Preprint.

S. R. Costenoble and S. Waner. Equivariant Poincaré duality. Michigan Math. J. 39(1992).
[LMS, T11§6]
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CHAPTER XVII

The Burnside ring

The basic references are tom Dieck and [LMS]; some specific citations will be given.

[tD] T. tom Dieck. Transformation groups and representation theory. Springer Lecture Notes in

Mathematics. Vol. 766. 1979.

1. Generalized Euler characteristics and transfer maps

There are general categorical notions of Euler characteristic and trace maps
that encompass a variety of phenomena in both algebra and topology. We again
specialize directly to the stable category hG.%. Let X be a strongly dualizable
G-spectrum with coevaluation map n : S — X A DX and define the “Euler
characteristic” x(X) to be the composite

(1.1) Y(X):S—>XADX —=DXAX >3

For a G-space X, we write y(X) = y(X¥*X}); for a based G-space X, we write
X(X) = x(¥X). We shall shortly define the Burnside ring A(G') in terms of these
Euler characteristics, and we shall see that it is isomorphic to 75 (.5), the zeroth
stable homotopy group of G-spheres. Thus, via the unit isomorphism S A E ~ F,
A(G) acts on all G-spectra F and thus on all homotopy, homology, and cohomology
groups of all G-spectra. Its algebraic analysis is central to a variety of calculations
in equivariant stable homotopy theory.

Before getting to this, we give a closely related conceptual version of transfer
maps. Assume given a diagonal map A : X — X A X. We are thinking of X as
Y F, for, say, a compact G-ENR F. We define the “transfer map” 7 = 7(X) :

215
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S — X to be the following composite:

(1.2)
78— XADX —=DXAX S DXAXAX S GAX ~ X,

We shall later call these “pretransfer maps”. When applied fiberwise in a suit-
able fashion, they will give rise to the transfer maps of bundles, which provide
a crucial calculational device in both nonequivariant and equivariant cohomology
theory.

These simple conceptual definitions lead to easy proofs of the basic properties of
these fundamentally important maps. For example, to specify the relation between
them, assume given amap £ = £(X) : X — S such that (Id Af)oA: X — XAS
is the unit isomophism. We are thinking of ¢, where ¢ : Fy — S is the evident
collapse map. In the bundle context, the following immediate consequence of the
definitions will determine the behavior of the composite of projection and transfer.

(1.3) The composite £(X)o7(X): S — S isequal to x(X).

There are many other obvious properties with useful consequences.

Before getting to more of these, we assure the reader that if M is a smooth closed
G-manifold embedded in a representation V', then application of the functor g7
to the explicit geometric transfer map

T(M): SV — ¥V M,

constructed in IX.3.1 does in fact give the same map as the transfer 7 : 5 —
S A My of (1.2). By (1.3), it follows that the Fuler characteristic y(M) above is
obtained by applying X3 to the Euler characteristic y(M) : SV — SV of 1X.3.2.
One way to see this is to work out the description of the transfer map 7 of (1.2) in
the homotopical context of duality for G-ENR’s and then specialize to manifolds
as in XVI§S.

We shall return later to transfer maps, but we restrict attention to Euler char-
acteristics here. We note first that, via a little Lie group theory, (1.5) leads to a
calculation of the nonequivariant Euler characteristics y((G/H)") for subgroups
H and K. The key point is that, since L(H ) is the tangent space at the identity
element of WH, WH is infinite if and only if L(H) contains a trivial representa-
tion, in which case e : S© — ST is null homotopic as an H-map.

LEMMA 1.4. If WH is infinite, then y(G/H) = 0 and x((G/H)¥) = 0 for all
K. If WH is finite and G/H embeds in V, then the degree of f : Ve, gvE
is the cardinality of the finite set (G/H)¥ for each K such that WK is finite.
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This gains force from the next few results, which show how to compute y(X)
in terms of the y(G/H) for any strongly dualizable X.

LEMMA 1.5. Let X and Y be strongly dualizable G-spectra.

(i) x(X) = x(Y)if X is G-equivalent to Y.

(ii) () is the trivial map and yx(.5) is the identity map.
(i) X (X VYY) = x(X) 4+ x (V) and x (X AY) = x(X)x(Y).
(iv) x(E"X) = (=1)"x(X).

A direct cofibration sequence argument from the definition of y(X) gives the
following much more substantial additivity relation.

THEOREM 1.6. For a G-map f: X — Y, x(Cf) = x(Y) — x(X).

By induction on the number of cells, this gives the promised calculation of x(X)

in terms of the x(G/H).

THEOREM 1.7. Let X be a finite G-CW spectrum, and let v(H,n) be the num-
ber of n-cells of orbit type G/H in X. Then

ZZ IX(G/H).

Taking G to be the trivial group, we see from this formula that the Euler
characteristic defined by (1.1) specializes to the classical nonequivariant Euler
characteristic. The formula is written in terms of a chosen cell decomposition. On
the space level, there is a canonical formula for y(X) for any compact G-ENR X,
namely

(1.8) ZX X(G/H).

Here Xz = {z[(G.) = (H)} and X( (/) is the sum of the “internal Euler
Characterlstlcs X(M) = x(M) — x(OM) of the path components M of X(y); M
is the closure of M in X/G and M = M — M.

Define a homomorphism dy : 7§(S) — Z by letting
(1.9) dy(x) = deg(f7), where f: SV — SV represents .

In view of XVL.6.2, ®7 S is a nonequivariant sphere spectrum, and we can write
this more conceptually as

(1.10) dy(x) = deg(® ().
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For a compact G-ENR X, we can deduce from (1.10) and standard properties of
nonequivariant Fuler characteristics that

(1.11) dir(x(X)) = x(X").
Similarly, for a finite G-CW spectrum X, we can deduce that
(1.12) dir(x(X)) = x(®"X).

Note that nothing like this can be true for the genuine fixed points of G-spectra:
XH is virtually never a finite CW-spectrum.

Formula (1.11) shows how the equivariant Euler characteristics of compact G-
ENR’s determine the nonequivariant FEuler characteristics of their fixed point
spaces. Conversely, by the following obstruction theoretic observation, the equiv-
ariant Euler characteristic is determined by nonequivariant Euler characteristics
on fixed point spaces.

PROPOSITION 1.13. Let V be a complex representation of G and let f and f’
be G-maps SV — SV. Then f ~ f' if and only if deg(f) = deg(f’H) for all H
such that W H is finite. Therefore, for compact G-ENR’s X and Y, y(X) = y(Y)
if and only if x(XH) = x(Y!) for all such H.

The integers (X)) as H varies are restricted by congruences. For example, for
a finite p-group, we saw in our study of Smith theory that x(X%) = y(X) mod p.
More general congruences can be derived by use of the Bott isomorphism in equiv-
ariant K -theory.

PrROPOSITION 1.14. Let V' be a complex representation of (¢ and let f be a
G-map SV — SV. If WH is finite, then

SIINH : NHNNKu(K/H)deg(f*) =0 mod |WH|,

where the sum runs over the H-conjugacy classes of groups K such that H C K C
NH and K/H is cyclic and where p(K/H) is the number of generators of K/H.
Therefore, for a compact G-ENR X,

SIINH: NHNNKp(K/H)x(X") =0 mod |[WH|.

Observe that this is really a result about the W H-maps f¥ and is thus a result
about finite group actions.

[tD, 5.1-5.4]
[LMS, 111§§7-8 and V§1]
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2. The Burnside ring A((¥) and the zero stem =§(5)

For a finite group G, the Burnside ring A((G) is the Grothendieck ring associated
to the set of isomorphism classes of finite G-sets, with sum and product given by
the disjoint union and Cartesian product of G-sets. There are ring homomorphisms
¢ : A(G) — 7Z that send a finite G-set S to the cardinality of S*. The product
over conjugacy classes (H) gives a monomorphism ¢ : A(G) — C(G), where
C(G) is the product of a copy of Z for each (H). The image of ¢ is precisely the
subring of tuples (ng) of integers that satisfy the congruences

SINH: NHNNK)pu(K/H)ng =0 mod |WH]|.

It is an insight of Segal that A(() is isomorphic to 7§(9).

The generalization of this insight to compact Lie groups is due to tom Dieck.
We define A(G') to be the set of equivalence classes of compact G-ENR’s under
the equivalence relation X ~ Y if y(X) = y(Y) in 7§ (S5). Disjoint union and
Cartesian product give a sum and product that make A(G) into a ring; Cartesian
product with a compact ENR K with trivial action and x(K) = —1 gives additive
inverses. We can define A(G') equally well in terms of finite G-CW complexes or
finite G-CW spectra. However defined, the results of the previous section imply
that, additively, A(G) is the free Abelian group with a basis element [G//H] for
each conjugacy class (H) such that W H is finite. It is immediate that taking Euler
characteristics specifies a monomorphism of rings x : A(G) — 7§(S). We define

o =dgox:AlG) — Z.

Then, by (1.11), éx([X]) = x(XH) for a compact G-ENR X.

To define the appropriate version of C'((G) for compact Lie groups (¢ we need
a little topological algebra. We let 4G be the set of closed subgroups of GG and
Z (G be the subset of those H such that W H is finite. Let I'G and ®G be the
sets of conjugacy classes of subgroups in €G and .# G, respectively. The set I'G
is countable. The set ®G is finite if and only if WT' acts trivially on the maximal
torus T'. The set of orders of the finite groups |WG/WyG| has a finite bound.

There is a Hausdorff metric on 4G that measures the distance between sub-
groups, and #G is a closed subspace of €G. The conjugation action of G is
continuous. With the orbit space topology, I'G and ®G are totally disconnected
compact metric spaces. Recall that “totally disconnected” means that every sin-
gleton set {a} is a component: the non-empty connected subspaces are points. It
follows that ®G' has a neighborhood basis consisting of open and closed subsets
S. Such a set is specified by a characteristic map ¢ : ®G — S that send points
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in S to 1 and points not in S to —1. The proofs of many statements about A(G)
combine use of characteristic functions with compactness arguments.

Give Z the discrete topology and define C'(G) to be the ring of continuous (=
locally constant) functions @G — Z. Since ®G is compact, such a function
takes finitely many values. The degree function d(f) : ®G — Z specified by
d(f)(H) = deg(f7) for a G-map f : S — SV is continuous, hence there results a
ring homomorphism d : 7§ () — (&), and we define ¢ = dy : A(G) — C(G).

Thus we have the following commutative diagram of rings:

A(G) k 75 (S)
N A
C(G).

THEOREM 2.1. The homomorphism y is an isomorphism. The homomorphisms

¢ and d are monomorphisms. For H € ®G, there is a unique element vy € C(G)
such that |W H|yg = ¢([G//H]), and C(() is the free Abelian group generated by
these elements v7. A map v : &G — Z is in the image of ¢ if and only if, for
each H € G,

SINH: NHNNK)u(K/H)vg =0 mod |WH,|.

Moreover, there is an integer ¢ such that ¢(C(G)/A(G)) =0, and ¢ = |G| if G is
finite.

The index of summation is that specified in Proposition 1.14, which shows that
only maps v that satisfy the congruences can be in the image of ¢. We know
by Proposition 1.13 that d and therefore ¢ is a monomorphism. It is not hard
to prove the rest by inductive integrality arguments starting from rational linear
combinations, provided that one knows a priori that the rationalization of ¢ is an
isomorphism; we shall say something about why this is true shortly.

[tD, 5.5-5.6]
[LMS, V§2]

3. Prime ideals of the Burnside ring

Calculational understanding of the equivariant stable category depends on un-
derstanding of the algebraic properties of A((). For example, suppose given an
idempotent e € A(G). Then eA(() is the localization of A(G) at the ideal gen-
erated by e. For a G-spectrum X, define eX to be the telescope of iterates of
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e: X — X. Then

Visibly, the canonical map X — eX V (1 — €)X induces an isomorphism of
homotopy groups and is thus an equivalence. Therefore splittings of A(G) in
terms of sums of orthogonal idempotents determine splittings of the entire stable
category hG.7.

The first thing to say about A(() is that it is Noetherian if and only if the set
O is finite. For this reason, A(() is a much less familiar kind of ring for general
compact Lie groups than it is for finite groups.

To understand the structure of any commutative ring A, one must understand
its spectrum Spec(A) of prime ideals. In the case of A((), it is clear that every
prime ideal pulls back from a prime ideal of C((). We define

(3.1) q(H,p) = {al¢r(a) = 0 mod p},

where pis a prime or p = 0. Although these are defined for all H, they are redun-
dant when W H is infinite. There are further redundancies. We shall be precise
about this since the basic sources — [tD] and [LMS] — require supplementation
from a later note by Bauer and myself. The only proper inclusions of prime ideals
are of the form ¢(H,0) C ¢(H,p), hence A(G) has Krull dimension one. For a

given prime ideal ¢, we wish to describe {H|q = ¢(H,p)}. This is easy if p = 0.

PROPOSITION 3.2. Let ¢ = ¢(H,0) for a subgroup H of G.

(i) If H < J and J/T is a torus, then ¢ = ¢(.J,0).
(ii) There is a unique conjugacy class (/) in ®G such that ¢ = ¢(K,0); up to
conjugation, H <t K and K/H is a torus.
(iii) If H € ®G and J € &G, then ¢(H,0) = ¢(J,0) if and only if (H) = (J).

Fix a prime p. We say that a group G is “p-perfect” if it has no non-trivial
quotient p-groups. For H C G, let H', be the maximal p-perfect subgroup of H;
explicitly, H’, is the inverse image in H of the maximal p-perfect subgroup of the
finite group H/Hy. Then define H, C N H’, to be the inverse image of a maximal
torus in WH',; H, is again p-perfect, but now W H, is finite. This last fact is
crucial; it will lead to some interesting new results further on.

THEOREM 3.3. Let ¢ = q(H, p) for a subgroup H of (G and a prime p.

(i) If H < J and J/T is an extension of a torus by a finite p-group, then
qg=q(J,p); it H € ®G and |[WH| =0 mod p, then there exists J € &G
such that H < J and J/H is a finite p-group.
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i1) There is a unique conjugacy class (K) in ®G such that ¢ = ¢(K,p) and
g
W K| is prime to p; if H € ®G and H is p-perfect, then, up to conjugation
p p; pp ) , Up Jug )
H < K and K/H is a finite p-group.
i) K, = K',, and K, is the unique normal p-perfect subgroup of K whose
p p p g
quotient is a finite p-group.
iv) K, is maximal in {J|q(J,p) = ¢ and J is p — perfect}, and this property
P
characterizes K, up to conjugacy.
(v) (Hp) = (K}), hence q(H,p) = ¢(J,p) if and only if (H,) = (J,).
vi) If H C K, and H is p-perfect, then HT = K,, where T is the identit
P p-p ” P y
component of the center of K.

It is natural to let H? denote the subgroup K of part (ii). If i is finite, we con-
clude that ¢(.J,p) = ¢ if and only if (H,) < (J) < (H?). For general compact Lie
groups, the situation is more complicated and the following seemingly innocuous,
but non-trivial, corollary of the theorem was left as an open question in [LMS].

COROLLARY 3.4. If H C J C K and ¢(H,p) = q(K,p), then ¢(J,p) = ¢(K, p).

S. Bauer and J. P. May. Maximal ideals in the Burnside ring of a compact Lie group. Proc.
Amer. Math. Soc. 102(1988), 684-686.

[tD, 5.7]

[LMS, V§3]

4. Idempotent elements of the Burnside ring

One reason that understanding the prime ideal spectrum of a commutative
ring A is so important is the close relationship that it bears to idempotents. A
decomposition of the identity element of A as a sum of othogonal idempotents
determines and is determined by a partition of Spec(A) as a disjoint union of
non-empty open subsets. In particular, Spec(A) is connected if and only if 0
and 1 are the only idempotents of A. This motivates us to compute the set
7 Spec(A(G)) of components of A(G); we topologize this set as a quotient space
of Spec(A(()). However, there is a key subtlety here that was missed in [LMS]:
while the components of any space are closed, they need not be open (unless the
space is locally connected). In particular, since 7 Spec(A(G)) is not discrete, the
components of Spec(A(()) need not be open, and they therefore do not determine
idempotents in general.

A compact Lie group (' is perfect if it is equal to the closure of its commutator
subgroup. It is solvable if it is an extension of a torus by a finite solvable group.
Let Z2G denote the subspace of €'G consisting of the perfect subgroups and let
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IIG be its orbit space of conjugacy classes; IIG is countable, but it is usually not
finite unless (' is finite.

Any compact Lie group GG has a minimal normal subgroup G, such that G/G,
is solvable, and G, is perfect. Passage from ' to G, is a continuous function
CG — G, PG s a closed subspace of €G, and 11G is a closed subspace of I'G
and is thus a totally disconnected compact metric space. There is a finite normal
sequence connecting G, to (G each of whose subquotients is either a torus or a
cyclic group of prime order. Via the results above, this implies that, for a given
H, all prime ideals ¢(H, p) are in the same component of Spec(A(()) as H,. This
leads to the following result.

PROPOSITION 4.1. Define 8 : I[IGG — =7 Spec(A(G)) by letting B(L) be the

component that contains ¢(L,0). Then  is a homeomorphism.

In particular, G is solvable if and only if A(G) contains no non-trivial idempo-
tents. For example, the Feit-Thompson theorem that an odd order finite group GG
is solvable is equivalent to the statement that A((7) has no non-trivial idempotents.
(Several people have tried to use this fact as the starting point of a topological
proof of the Feit-Thompson theorem, but without success.)

A key point in the proof, and in the proofs of the rest of the results of this
section, is that, for a subring R of Q, the function

q: ®G x Spec(R) — Spec(A(G) @ R)
is a continuous closed surjection. This is deduced from the fact that
q: G x Spec(R) — Spec(C(G) @ R)

is a homeomorphism. In turn, the latter holds by an argument that depends solely
on the fact that ®G is a totally disconnected compact Hausdorff space.

It L is a perfect subgroup of & that is not a limit of perfect subgroups, then
the component of (L) in Spec(A(G) is open and L determines an idempotent ey,
in A(G). Even when (i is finite, it is non-trivial to write ey, in the standard basis
{[G/H]|(H) € &G}, and such a formula has not yet been worked out for general
compact Lie groups. Nevertheless one can prove the following theorem. Observe
that the trivial subgroup of GG is perfect; we here denote it by 1.

THEOREM 4.2. Let L be a perfect subgroup of G that is not a limit of perfect
subgroups. Then there is an idempotent e;, = € in A(() that is characterized by

dpler)=1if (H,) = (L) and ¢p(er) =0if (H,) # (L).
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Restriction from G to N L and passage to L-fixed points induce ring isomorphisms
eTA(G) — e FA(NL) — e " A(WL).

[tD, 5.11]
[LMS, V§4]

5. Localizations of the Burnside ring

Let A(G), denote the localization of A(G) at a prime p and let A(G)o denote
the rationalization of A(G). We shall describe these localizations and the local-
izations of A(() at its prime ideals ¢(H,p). We shall also explain the analysis of
idempotents in A((),, which is parallel to the analysis of idempotents in A(G)
just given but, in the full generality of compact Lie groups, is less well understood.

We begin with A(G')o. Let Zy denote Z regarded as an A(G))-module via ¢p :
A(G) — Z.

PROPOSITION 5.1. Let (H) € @G.
(i) The localization of A(G) at ¢(H,0) is the canonical homomorphism

A(G) — (A(G)/q(H,0))o = Q.

(ii) ¢m : A(G) — Zp induces an isomorphism of localizations at ¢(H,0).
(iii) ¢ : A(G) — C(G) induces an isomorphism of rationalizations.

COROLLARY 5.2. Rationalization A(G) — A(G)g = C(G)g is the inclusion of
A(G) in its total quotient ring, and ¢ : A(G) — C((G) is the inclusion of A(G)

in its integral closure in C'(G)o.

Here (i) makes essential use of the compactness of ®G, and (i) implies (ii). To
prove (iii) — which we needed to prove Theorem 2.1 — we can now exploit the fact
that a map of rings is an isomorphism if it induces a homeomorphism on passage
to Spec and an isomorphism upon localization at corresponding prime ideals. If GG
is finite, then A(()g is just a finite product of copies of Q. For general compact Lie
groups (i, A(G)o is a type of ring unfamiliar to topologists but familiar in other
branches of mathematics under the name of an “absolutely flat” or “von Neumann
regular” ring. One characterization of such a commutative ring is that all of its
modules are flat; another, obviously satisfied by A(G)o, is that the localization
of A at any maximal ideal P is A/P. For any such ring A, Spec(A) is a totally
disconnected compact Hausdorff space, and an ideal is finitely generated it and
only if it is generated by a single idempotent element.

PROPOSITION 5.3. Let p be a prime and let (H) € ®G.
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(i) The localization of A(G) at ¢(H,p) is the canonical homomorphism
AG) — (AG)/T(H, )y
here I(H,p) = Ng(J,0), where the intersection runs over
(G H,p) ={(J)|(J) € ®G and ¢(J,p) = q(H,p)}.
(ii) The ring homomorphism

H¢J . A(G) — HZJ
is a monomorphism, where the product runs over (J) € ®(G; H, p).

The following statement only appears in the literature for finite groups. The
general case relies on the full strength of Theorem 3.3, and the line of proof is the
same as that of Theorem 3.6. The essential point is the analog of Proposition 3.5,
and the essential point for this is the following assertion, which is trivially true for
finite groups but has not yet been investigated for general compact Lie groups.

CONIJECTURE 5.4. The function 4G — €'G that sends H to H, is continuous.

THEOREM 5.5. Let L be a p-perfect subgroup of & that is maximal in the set
of p-perfect subgroups H such that ¢(H,p) = ¢(L,p) and is not a limit of such
p-perfect subgroups. If Conjecture 3.10 holds, then there is an idempotent e, = ¢

in A(G), that is characterized by
¢r(er) =11t (Hy) = (L) and ¢p(er) = 0if (Hy) # (L).
Restriction from G to N L and passage to L-fixed points induce ring isomorphisms
eTA(G), — Y PA(NL), — e"FA(WL),.

Moreover, ¢¥ A(G), is isomorphic to the localization of A(G) at ¢(L,p). If G is
finite, then

A(G), = (1_[) egA(G)p-

Taking L to be any group in ®G that is not a limit of groups in ® L and taking
Hy to be H, we see that the statement is true when p = 0. Of course, in the general
compact Lie case, A((), is no longer the product of the ¢¥ A(G),. However, it
seems possible that, by suitable arguments to handle limit groups L, A(G'), can
be described sheaf theoretically in terms of these localizations. The point is that
A(G), has the unusual property that it is isomorphic to the ring of global sections
of its structural sheaf over its maximal ideal spectrum. (Any commutative ring A
is isomorphic to the ring of global sections of its structural sheaf over Spec(A).)
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[tD, 7.8]
[LMS, V§5]

6. Localization of equivariant homology and cohomology

The results of the previous section imply algebraic decomposition and reduction
theorems for the calculation of equivariant homology and cohomology theories.
We shall go into some detail since, in the compact Lie case, the results of [LMS]
require clarification. When (' is finite, we shall obtain a natural reduction of the
computation of homology and cohomology theories localized at a prime p to their
calculation in terms of appropriate associated theories for subquotient p-groups of
(. Tt is interesting that although the proof of this reduction makes heavy use of
idempotents of A((G),, there is no reference to A(() in the description that one
finally ends up with. We shall use this reduction in our proof of the generalized
Segal conjecture.

Recall the geometric fixed point functors ®# from XVI§§3,6. In view of (1.12),
it should seem natural that this and not the genuine fixed point functor on G-
spectra appears in the following results.

THEOREM 6.1. Let L be a perfect subgroup of G that is not a limit of perfect
subgroups. For G-spectra X and Y, there are natural isomorphisms

[X, ng]G — [X, egLY]NL — [07X, €¥VL(I)HY]WL-

We prefer to state the homological consequences in terms of G-spaces, but it
applies just as well to ®-fixed points of G-spectra.

COROLLARY 6.2. Let £ be a G-spectrum and X be a G-space. For o € RO((),
let B = r§a € RO(NL) and v = ¥ € RO(WL). Then there are natural

isomorphisms

el ES(X) — ef "ENM(X) — e PEV (X L)
and

T E(X) — et PEny (X) — e PER (X L),

where ENY and E%; denote the theories that are represented by FE regarded as

an N L-spectrum and EY% and Ej,; denote the theories that are represented by
L E.

Write X, for the localization of a G-spectrum at a prime p. It can be constructed
as the telescope of countably many iterates of p: X — X, and its properties are
as one would expect from the G-space level.
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THEOREM 6.3. Let L be a p-perfect subgroup of (¢ that is maximal in the set of
p-perfect subgroups H of G such that ¢(H,p) = ¢(L,p) and is not a limit of such
p-perfect subgroups. If G is finite, or if Conjecture 3.10 holds, then, for G-spectra
X and Y, there are natural isomorphisms

[X.efVole — [X,ep "Volnp — [07X, e "My Jyy.
When p = 0, the statement holds for L € ®G if L is not a limit of groups in ®G.

Here ®(Y,) ~ (®Y"),. We again state the homological version only for G-
spaces, although it also applies to GG-spectra and ®-fixed points. There is a further
isomorphism here that does not come from Theorem 4.3. We shall discuss it after
stating the corollary.

COROLLARY 6.4. Let E be a G-spectrum and X be a G-space. With L as in
Theorem 4.3, let VL be a p-Sylow subgroup of the finite group W L. For o €
RO(G), let B =710 € RO(NL), v =3¢ ROWL), and § = ri'}'y € RO(VL).

Then there are natural isomorphisms

€L ES(X)y — ep "EFHX), — e PEFH(X L), — EE(XE)
and, assuming that X is a finite G-CW complex,

T EHX)y — e PER(X), — e PER (X L), — By (XP),

where ENL and E%; denote the theories represented by E regarded as an N L-
spectrum, EVL and Ejy; denote the theories represented by ®'FE, and EY% and
E}; denote the theories represented by @ I regarded as a V L-spectrum. There-
fore, it (G is finite, then
ES(X), =[] BYH(x )
()
and, if X is a finite G-CW complex,

LX), = [T By (X
()
When p = 0, the statement holds with V' L taken as the trivial group.

The ideas in XIII§1 are needed to be precise about the grading. Of course,
there is no problem of interpretation for the Z-graded part of the theories. For
finite groups, this gives the promised calculation of the localization of equivariant
homology and cohomology theories at p in terms of homology and cohomology
theories that are associated to subquotient p-groups; in the case of rationalization,
a better result will be described later. For general compact Lie groups, such a
calculation may follow from the fact that one can reconstruct any module over
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A(G), as the module of global sections of its structural sheaf over the maximal
ideal spectrum of A((G),. Intuitively, the idea is that the space of maximal ideals
should carry the relevant Lie group theory; theories associated to subquotient
p-groups should carry the algebraic topology.

We must still explain the “inv” notation and the final isomorphisms that appear
in the corollary. These come from a typical application of the general concept of
induction in the context of Mackey functors. We shall say more about this later,
but we prefer to explain the idea without formalism here.

Let GG be a finite group with p-Sylow subgroup K. We are thinking of WL
and VL. For G-spectra X and Y, we define ([X, Y];"')m” to be the equalizer (=

difference kernel) of the maps
[G/K4y ANX,Y]S — [GKy NG/KL A XY

induced by the two projections G/K AN G/Ky — G/K,. Here we are using the
notational convention
[X,Y]% = [X,Y]q.

For a G-spectrum F, we define E*K(X);m by replacing X by sphere spectra and
replacing Y by E'A X. We define - (X);™ by replacing X by its smash product
with sphere spectra and replacing Y by E. The final isomorphisms of Corollary
3.4 are special cases of the following result; there we must restrict to finite X in
cohomology because it is only for finite X that localized spectra represent algebraic
localizations of cohomology groups.

PROPOSITION 6.5. If (¢ is a finite group with p-Sylow subgroup K, then, for
any G-spectra X and Y, the projection G/K; A X — X induces an isomorphism

Actually, the relevant induction argument works to prove more generally that
the analogous map
G K nu
[X7 Y]q([&",p) - ([X7 Y]qx(f(,p))
is an isomorphism, where (¢ is a compact Lie group and (K) € ®G. The idea is
that we have a complex

0 — [X,V]¢ 2 [G/K, A X, Y] 5 [GIK, AGIK, A X, Y]S5

where d" is the alternating sum of the evident projection maps. When localized
at ¢(K,p), this complex acquires the contracting homotopy that is specified by
s" = [G/K] 't*. Here, for any X, 7 means

TAId: X Z2SANX — (G/K); N X,
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where 7 : S — (G// K )4 is the transfer map discussed in Section 1. It is immediate
from (1.3) that the composite of 7 and the projection ¢ : G/K; — S is the Euler
characteristic x(G/K) : S — S. This implies that 7%£* is multiplication by
[G//K]. The essential point is that [G//K] becomes a unit in A(G)yxp). In the
context of the proposition, the localization of [ X, Y]® at ¢(K, p) is the same as its
localization at p.

[tD, Ch 7]
[LMS, V§6]
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CHAPTER XVIII

Transfer maps in equivariant bundle theory

The basic reference is [LMS]; specific citations are given at the ends of sections.

1. The transfer and a dimension-shifting variant

Transfer maps provide one of the main calculational tools in equivariant stable
homotopy theory. We have given a first definition in XVII§1. We shall here refer
to the “transfer map” there as a pretransfer. It will provide the map of fibers
for the transfer maps of bundles, in a sense that we now make precise. We place
ourselves in the context of VII§1, where we considered equivariant bundle theory.

Thus we assume given an extension of compact Lie groups
l—H—T—G—1.

Fix a complete [-universe U/ and note that U is a complete G-universe. Let
Y be a Il-free I-spectrum indexed on U and let B = Y/II. We are thinking of
Y as X* X, for a [I-free I'-space X, but it changes nothing to work with spectra.
In fact, this has some advantages. For example, relative bundles can be treated
in terms of spectrum level cofibers, obviating complications that would arise if we
restricted to spaces. Fix a compact I'"ENR F'. We could take F' to be a spectrum
as well, but we desist.

We have the orbit spectrum £ = Y Ag £y, which we think of as the total G-
spectrum of a G-bundle with base G-spectrum B. Write 7 : £ — B for the map
induced by the projection Fy — S°. Since F'is a compact G-ENR, we have the
stable pretransfer I'-map 7(F) : S® — I, of XVII§I; we have omitted notation
for the suspension I'-spectrum functor, and we shall continue to do so, but it is

essential to remember that 7(F') is a map of genuine I'-spectra indexed on U. As

231
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we discussed in XVI§5, II-free [-spectra live in the II-trivial [-universe U, On

maps, this gives that the inclusion 7 : U — U induces an isomorphism
et [YSY A Fyr — [6Y, (Y A F)e 2 [0Y, 0 A Fir.
DEFINITION 1.1. Let 7: Y — Y A Fy be the I"map indexed on U" such that
(7)) = IdAT(F) 1 .Y — 0.Y A FL.
Define the transfer
r=7(r):B=Y/ll — Y AuF,=F

to be the map of G-spectra indexed on U that is obtained from 7 by passage to

orbits over II.

When G = e, this gives the nonequivariant transfer; specialization to this case
results in no significant simplification. Note that there is no finiteness condition
on the base spectrum B.

The definition admits many variants. When we describe its properties, we shall
often use implicitly that it does not require a complete I'-universe, only a universe
into which F' can be embedded, so that duality applies.

We can apply the same construction to maps other than 7(F'). We illustrate
this by constructing the map that gives the generalized Adams isomorphism of
XVI.5.4. Since the construction is a little intricate and will not be used in the rest
of the chapter, the reader may prefer to skip ahead. The cited Adams isomorphism

is a natural equivalence of G/N-spectra
E/N — (544N N,

where N is a normal subgroup of G and E is an N-free GG-spectrum indexed on the
fixed points of a complete G-universe. By adjunction, such a map is determined

by a “dimension-shifting transter G-map”
L (E[/N) — 544N, g,
We proceed to construct this map.

CONSTRUCTION 1.2. Let N be a normal subgroup of GG and write II for N
considered together with its conjugation action ¢ by . Let ' be the semi-direct
product GG x. II. We then have the quotient map ¢ : I' — G. We also have
a twisted quotient map 6 : I' — G, 0(g,n) = gn, that restricts to the identity
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IT — N. Let X be an N-free GG-space and let §* X denote X regarded as a ['-space

via 6; then 6* X is II-free. It is easy to check that we have G-homeomorphisms
XZ0Xxg N and X/GZ60°X xqpt.

This tells us how to view X as a ll-free I'-space, placing us in the context of
Definition 1.1. Here, however, we really need the spectrum level generalization.
Let £ be an N-free GG-spectrum indexed on (UH)N, where U is a complete I'-
universe. Let ¢ : (UH)N —— U be the inclusion and let Y = i,0*F. Then Y

is a Il-free I-spectrum indexed on UY, and there are natural isomorphisms of

Gi-spectra
WEZ2Y An Ny and . (F/N) =2 Y/IL
The relevant “pretransfer” in the present context is a map
t: S — Z_Ad(N)N_|_

of I'-spectra indexed on U. The tangent bundle of N = I'/G is the trivial bun-
dle N x Ad(N), where I' acts on Ad(N) by pullback along . Embed N in a
[-representation V and let W be the resulting representation V — Ad(N) of T.
Embedding a normal tube and taking the Pontrjagin-Thom construction, we ob-

tain a I'-map
SV—>F+/\G5W2N+/\SW.

We obtain the pretransfer ¢ by applying the suspension spectrum functor and
then desuspending by V. We are now in a position to apply the construction of
Definition 1.1. Letting j denote the inclusion of UM in U to avoid confusion with

7, observe that
J (Y ASTAING) 2 G (2T (Y A N)).

Thus, smashing Y with ¢, pulling back to the universe U, and passing to orbits

over II, we obtain the desired transfer map
L(E/N) 2 Y/ — 24" (y Ag Ny ) =2 240N B,

[LMS, 11§7 and IV§3]
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2. Basic properties of transfer maps

Now return to the context of Definition 1.1. While we shall not go into detail, the
transfer can be axiomatized by the basic properties that we list in the following
omnibus theorem. They are all derived from corresponding statements about
pretransfer maps. By far the most substantial of these properties is (v), which is
proven by a fairly elaborate exercise in diagram chasing of cofiber sequences in the

context of Spanier-Whitehead duality.

THEOREM 2.1. The transfer satisfies the following properties.

(i) Naturality. The transfer is natural with respect to maps f: Y — Y’ of
[I-free I'-spectra.
(ii) Stability. For a representation V of (i regarded by pullback as a represen-

tation of I', ¥V 7 coincides with the transfer
T SY(Y/I) = (YY) — (8VY) An Fy 2 SY(Y A Fy).
(iii) Normalization. With F' = pt, the transfer associated to the identity map
is the identity map.

(iv) Fiber invariance. The following diagram commutes for an equivalence ¢ :

I — F' of compact I"ENR's:

Y An Y Ap Py

Id Ad

(v) Additivity on fibers. Let F be the pushout of a I'-cofibration Fy — F
and a Imap Fy — F,, where the F} are compact I"ENR’s. Let 7 be
the transfer associated to Y Aqg (Fk)-l— — Y/II and let j; : Y A (Fk)-l— —
Y An Fy be induced by the canonical map Fp — F. Then

T =171+ J2T2 — JoTo-
(vi) Change of groups. Assume given an inclusion of extensions

1 C) A H 1

L

1 II r G 1.
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Then the following diagram commutes for a O-free A-spectrum Y indexed

on UM regarded as a A-universe:

Id xr

G[XH(Y/@) G[XH(Y/\@F_|_)

| -

(F XA Y)/H?(F XA Y) AT F+?(F XA (Y/\F+))/H

1R

Modulo a fair amount of extra bookkeeping to make sense of it, part (vi) remains
true if we require only the homomorphism H — (' in our given map of extensions
to be an inclusion. There is also a change of groups property that holds for a
map of extensions in which @ —— 1II is the identity but the other two maps
are unrestricted. Such properties are useful and important, but we shall not go
into more detail here. Rather, we single out a particular example of the kind of
information that they imply. Let H C G and consider the bundles

G/H — pt and BH = FEG xy (G/H) — BG
and the collapse maps ¢ : EGy — S®and ¢ : EH, — S°.

PROPOSITION 2.2. Let F be a split G-spectrum. Then the following diagram
commutes:

Bj(8%) —=> Bj(EH,) — E*(BH,)

EG(8%) —= EG(EGL) —= E*(BGY).

Here E* is the theory represented by the underlying nonequivariant spectrum
of E. For example, if F represents complex equivariant K-theory, then the trans-
fer map on the left is induction R(H) — R(() and the transfer map on the
right is the nonequivariant one. The horizontal maps become isomorphisms upon

completion at augmentation ideals, by the Atiyah-Segal completion theorem.

[LMS, TV§§3-4]

3. Smash products and Euler characteristics

The transfer commutes with smash products, and a special case of this implies a

basic formula in terms of Euler characteristics for the evaluation of the composite
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£ort for a G-bundle £. The commutation with smash products takes several forms.

For an external form, we assume given extensions,
]l —I;, — I, — G, — 1

and complete I';-universes U; for ¢ = 1 and ¢+ = 2.

THEOREM 3.1. The following diagram of (Gy x (3)-spectra indexed on the uni-
verse (U™ @ (Uy)™2 commutes for II;-free T;-spectra Y; and finite I';-spaces Fi:
(Y2/TLy) = (Yy A, Fiy) A (Y2 A, Fay)

| -

(Y1 AYy) /(I x TDo) —— (Y1 A Y2) Ay, (F1 X F2),

(Y1/ILy)

1R

When G = Gy = (5, we can use change of groups to internalize this result.
Modulo a certain amount of detail to make sense of things, we see in this case
that the diagram of the previous theorem can be interpreted as a commutative
diagram of G-spectra. Either specializing this result or just inspecting definitions,
we obtain the following useful observation. We revert to the notations of Definition

1.1, so that U is a ['-complete universe.

COROLLARY 3.2. Let Y be a II-free I'-spectrum indexed on U™, F' be a compact
[-ENR, and F be a G-spectrum indexed on U™. Then the following diagram

commutes:

(YAE)/TT—— (Y ANE)An Fy

. lg

(Y/IH A E — (Y An FL)NE.

In the presence of suitable diagonal maps, this leads to homological formulas
involving cup and cap products. While more general results are valid and useful,
we shall restrict attention to the case of a given space-level bundle. Here the

previous corollary and diagram chases give the following result.

COROLLARY 3.3. Let X be a Il-free I'-space and F' be a compact ["ENR. Then

the following diagram commutes, where we have written A for various maps in-
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duced from the diagonal maps of X and F'

(X/ln)+ L (Xt Py (X/ln)+
(X/M) 4 A (X/H)4 A (X/M)4 A (X/H)4

T/\idl lid/\ﬂ'

(X B) e A (X g s (X B A (X X ) — o (XM A (X 1)

Retaining the hypotheses of the corollary and constructing cup and cap products
as in XIII§5, we easily deduce the following formulas relating the maps induced
on homology and cohomology by the maps A, 7, and ¢ displayed in its diagram.

PRrOPOSITION 3.4. The following formulas hold, where F is a ring G-spectrum.

(1) 7(w)Uy =7 (wU(y)) for we LE(X xgF) and y € Eg&(Y/1)

(i) 2UT*(z) =7 () Uz) for o € EL(X/II) and z € EL(Y An Fy)

(i) yN7 () =&(n(y)Nw) for y € LE(Y/II) and w € E5(X xp F)

(iv) m(y)Né(z) =n(yne) for y e EEY/U) and = € E5(X/II)

Define the Euler characteristic of the bundle ¢ : X x FF' — X to be

(3.5) X(§) = 77(1) € Eg(X/I).
Taking w = 1 in the first equation above, we obtain the following conclusion.

COROLLARY 3.6. The composite

* & * T *
B (X)) — Eg(X xn 1)y — E5(X/11y)
is multiplication by x(§).

In many applications of the transfer, one wants to use this by proving that y(¢)
is a unit and deducing that EZ(X/I1y) is a direct summand of F5(X X F)4.
When x(&) is or is not a unit is not thoroughly understood. The strategy for
studying the problem is to relate y(¢) to the Euler characteristic

X(F) =& (7(F)) € mp(9).

We need a bit of language in order to state the basic result along these lines.
If X/l =G/H, then X =1T'/A for some A such that ANII = e. The composite

A C T' — G maps A isomorphically onto H. Inverting this isomorphism, we
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obtain a homomorphism o : H = A C I'. For a general II-free I'-space X and an
orbit G/H C X/II, the pullback bundle over GG/ H gives rise to such a homomor-
phism « : H — T', which we call the fiber representation of X at G/H. Write
o* F for F regarded as an H-space by pullback along a.

THEOREM 3.7. Let X be a Il-free ['-space and F' be a I-space. Let B = X/II
and consider the bundle ¢ : X xq F' — B. For a ring G-spectrum F, the Euler
characteristic x(¢) € E&(By) is a unit if any of the following conditions hold.

(i) x(«*F) € E%(S) is a unit for each fiber representation o : H — T of X.

(ii) B is G-connected with basepoint * and y(a*F') € EZ(S) is a unit, where

«a : G — Fis the fiber representation of X at x.
(iii) B is G-free and the nonequivariant Euler characteristic y(F') € E(S) is a

unit.

Nonequivariantly, with G = e, the connectivity hypothesis of (ii) is inconsequen-
tial, but it is a serious limitation in the equivariant case and one must in general

fall back on (i). The following implication is frequently used.

THEOREM 3.8. If G is a finite p-group and £ : Y — B is a finite (G-cover whose
fiber F' has cardinality prime to p, then the composite map
0B, LYY, —S.yep,
become an equivalence upon localization at p.

[LMS, TV§5]

4. The double coset formula and its applications

This section summarizes results of Feshback that are generalized and given sim-
pler proofs in [LMS]. Basically, they are consequences of the additivity on fibers of
transfer maps. That result leads to decomposition theorems for the computation
of the transfer associated to any stable bundle ¢ : Y Ay Fy — Y/II, and we state

these first. Since we must keep track of varying orbits, we write
EAT): Y An(T/A); — YT

for the stable bundle associated to a Il-free I'-spectrum Y and the I'-space I'/A,

and we write 7(A, ") for the associated transfer map.
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THEOREM 4.1. Let F' be a finite I-CW complex and let
Ji: /A, CT/A; x D™ — F

be the composite of the inclusion of an orbit and the ¢th characteristic map for

some enumeration of the cells of F'. Then, for any Il-free I'-spectrum Y,
T = Z(—l)”"jﬂ(/\i,r) Y/l — Y A Fy.

There is a more invariant decomposition that applies to a general compact I'-
ENR F'. For A C T, we let F'(®) be the subspace of points whose isotropy groups are
conjugate to A. A path component M of the orbit space F™ /T is called an orbit
type component of F//I'. If M is the closure of M in F/T and OM = M — M, we

defined the (nonequivariant) internal Euler characteristic x(M) to be the reduced
Euler characteristic of the based space M /OM.

THEOREM 4.2. Let F' be a compact I'"ENR and let
vM:T/ACMCF

be the inclusion of an orbit in the orbit type component M. Then, for any Il-free

I'-spectrum Y,

7= X(M)jur(A,T): Y/Il — Y Ap Fy.
M

While it is possible to deduce a double coset formula in something close to our
full generality, we shall simplify the bookkeeping by restricting to the case when
I' = G'x1I, which is the case of greatest importance in the applications. Recall that
a principal (G, 1I)-bundle is the same thing as a [I-free (G x II)-space and let Y be
a [l-free (G x IT)-spectrum indexed on U, where U is a complete (G x IT)-universe.
For a subgroup A of II, we have the stable (G, 1I)-bundle

EAID) :Y/A=2Y A (IT/A)y — Y/T
with associated transfer map (A, II).

THEOREM 4.3 (DOUBLE COSET FORMULA). Let A and @ be subgroups of 11
and let A\I[/® be the double coset space regarded as the space of orbits under A
of II/®. Let {m} be a set of representatives in II for the orbit type component
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manifolds M of A\II/® and let x(M) be the internal Euler characteristic of M in
A\II/®. Then, for any Il-free (G x II)-spectrum Y, the composite

Y/A —S Y/ > Y/
is the sum over M of y(M) times the composite
Y/A 7= Y/O" A — = V™ T Y/,

Here ®™ = m®m™" and ¢,, is induced by the left [I-map I1/®™ — II/® given
by right multiplication by m. In symbols,

(@, INEA D) =3 (M) ¢ 0 (@™ N A, M) 0 7(®™ N A, A).

PRrROOF. The composite
AJO"NA S T1/0m™ "> 11/

is a homeomorphism onto the double coset A m ®. Modulo a little diagram chasing
and the use of change of groups, the conclusion follows directly from the previous
theorem applied to (A, II). O

If ® has finite index in II, then M is the point Am ® and x(M) = 1. Here the
formula is of the same form as the classical double coset formula in the cohomology
of groups. Observe that the formula depends only on the structure of the fibers
and has the same form equivariantly as in the nonequivariant case ¢ = e (which
is the case originally proven by Feshback, at least over compact base spaces).

The theorem is most commonly used for the study of classifying spaces, with
Y = ¥*FE(G,I1);. Here E(G,1I1)/® is a classifying G-space for principal (G, ®)-

bundles and the result takes the following form.
COROLLARY 4.4. The composite
Y% B(GA)y — 2% B(G ), —— Y% B(G, @)

is the sum over M of y(M) times the composite

Y% B(GyA)y ——= S¥B(G, 8™ N A), —— 9% B(G, 0™), "= % B(G, D).
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Of course, the formula is very complicated in general. However, many terms
simplify or disappear in special cases. For example, if the group W® = N® /11 is
infinite, then the transfer 7(®,1II) is trivial. This observation and a little book-
keeping, lead to the following examples where the formula reduces to something

manageable.

COROLLARY 4.5. Let Y be any [I-free (G x II)-spectrum.

(i) If N is the normalizer of a maximal torus T in II, then
F(N,IDE(T, ) = E(T, NY : YT — Y/N.
(ii) If T'is a maximal torus in II, then
(T, INE(T, ) =D ey : YT — YT,

where the sum ranges over a set of coset representatives for the Weyl group
W =WT of 1I.

(iii) If A is normal and of finite index in II, then
T(AIDEATD) =D eyt Y/A — Y/A,
where the sum runs over a set of coset representatives for 11/A.

Typically, the double coset formula is applied to the computation of £ (Y/II)
in terms of F5L(Y/®) for a subgroup ®. Here it is used in combination with the
Euler characteristic formula of Corollary 3.6 and the unit criteria of Theorem 3.7.

We need a definition to state the conclusions.
DEFINITION 4.6. An element € E&(Y/®) is said to be stable if
EPNO", d)(x)=E(P NI, 0) ¢ (x)

for all m € 1. Let E%(Y/®)° denote the set of stable elements and observe that
Im &(®, 1) C EL(Y/®)° since £(®, 1) o ¢,, = £(P™, ).

The double coset and Fuler characteristic formulas have the following direct

implication.

THEOREM 4.7. Let X be a [l-free (G'x1I)-space and let E be a ring G-spectrum.
Let ® C IT and consider & = £(®, 1), If y(¢) € EZ(X/I1) is a unit, then

& BG(X/My) — E5(X/®4)°

is an isomorphism.
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Unfortunately, only the first criterion of Theorem 3.7 applies to equivariant
classifying spaces, and more work needs to be done on this. However, we have the
following application of its last two criteria, and the nonequivariant case GG = e

gives considerable information about nonequivariant characteristic classes.

THEOREM 4.8. Let X be a [l-free (G'x1I)-space and let E be a ring G-spectrum.
Assume further that X/II is either G-connected with trivial fiber representation
G — II at any fixed point or G-free.

(i) If N is the normalizer of a maximal torus in I, then
€1 BG(X/M) — EG(X/Ny)®

is an isomorphism.
(ii) If N(p) is the inverse image in the normalizer of a maximal torus T of a
p-Sylow subgroup of the Weyl group W = WT and FE is p-local, then

& By(X/1y) — E5(X/N(p)4)®

is an isomorphism.

(iii) If 7" is a maximal torus in Il and F is local away from the order of the Weyl

group W = WT, then
& BG(X /M) — E5G(X/Ty )"

is an isomorphism.

(iv) If @ is normal and of finite index in Il and F is local away from |II/®|, then
£ EG(X/L) — E5(X/04)®
is an isomorphism.

It is essential here that we are looking at theories represented by local spectra
and not at theories obtained by algebraically localizing theories represented by
general spectra. The point is that if F' is the localization of a spectrum £ at a
set of primes T, then FZ(X) is usually not isomorphic to EZ(X) @ Zg unless X
is a finite G-CW complex. The proof of the unit criteria makes use of the wedge
axiom, which is not satisfied by the algebraically localized theories.

M. Feshbach. The transfer and compact Lie groups. Trans. Amer. Math. Soc. 251(1979),

139-169.
[LMS, TV§6]
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5. Transitivity of the transfer

While a transitivity relation can be formulated and proven in our original general
context of extensions of compact Lie groups, we shall content ourselves with its
statement in the classical context of products GG x II. We suppose given compact
Lie groups G, 11, and @ and a complete (G x II x ®)-universe U’. Then U = (U")®
is a complete (G x II)-universe and UM = (U/)*® is a complete G-universe.

We shall consider transitivity for stable bundles that are built up from bundles
of fibers. Let P be a ®-free finite (Il x ®)-CW complex with orbit space K = P/®
and let J be any finite -CW complex. Let F' = P x¢ J. The resulting bundle
( : F — K is to be our bundle of fibers. Here I and K are finite II-CW
complexes and ( is a (II, ®)-bundle with fiber J. By pullback, we may regard (
as a (G x II, ®)-bundle. With these hypotheses, we have a transitivity relation for
pretransfers that leads to a transitivity relation for stable G-bundles. It is proven
by using additivity and naturality to reduce to the case when P is an orbit and

then using a change of groups argument.

THEOREM 5.1. The following diagram of (G x Il x ®)-spectra commutes:

S
7(K) \\\\zii)

SR SR,

T

THEOREM 5.2. Let Y be a Il-free (G x II)-spectrum indexed on U™, Observe
that the G-map id A : D A Fy — D Anp Ky is a stable (G, I1 x ®)-bundle with

fiber J and consider the following commutative diagram of stable G-bundles:

idAm¢

Y An Y An Ky

Y/11.

The following diagram of G-spectra commutes:

Y/I

e
)

Y An Ky Y An

r(d Ap¢
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The special case P = II is of particular interest. It gives transitivity for the

diagram of transfers associated to the commutative diagram

Y A (I xg J)y —=Y Ao Jy

| |

Y/~ Y0,

[LMS, TV§7]



CHAPTER XIX

Stable homotopy and Mackey functors

1. The splitting of equivariant stable homotopy groups

One can reprove the isomorphism A(G) & 7§(S) by means of the following

important splitting theorem for the stable homotopy groups of GG-spaces in terms
of nonequivariant stable homotopy groups. When (' is finite, we shall see that this
result provides a bridge connecting the equivariant and non-equivariant versions
of the Segal conjecture. Recall that Ad((') denotes the adjoint representation of
(G. Remember that our homology theories, including 7., are understood to be
reduced.

THEOREM 1.1. For based G-spaces Y, there is a natural isomorphism
)2 N m(EWH Ay SAMTIDY ),
(H)erG

Observe that the sum ranges over all conjugacy classes, not just the conjugacy
classes (H) € ®G. However, WH is finite if and only if AW H) = 0, and
EW H, Ay SAWHYH ig connected if Ad(W H) # 0.

COROLLARY 1.2. For based G-spaces Y, there is a natural isomorphism

o (V) = ( )Z: Ho(W H;mo(YT)).

With Y = S° this is consistent with the statement that A(G) is Z-free on the
basis {[G/H]|(H) € ®G}. We shall come back to this point in the discussion of
Mackey functors in Section 3. Theorem 1.1 implies a description of the G-fixed
point spectra of equivariant suspension spectra.

245
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THEOREM 1.3. For based G-spaces Y, there is a natural equivalence
(2°Y)9 ~ )/ S(EWH, Ay SOy
(H)erG

Here the suspension spectrum functors are ¥*° : G.7 — G.U on the left and
¥ 1T — .ZU% on the right, where U is a fixed complete G-universe. Actually,

the most efficient proof seems to be to first write down an explicit map
0=> 0n:> m(EWH, Ay SMVIDYHY s 26(Y)

of homology theories in Y and use it to prove Theorem 1.1 and then write down

an explicit map
= &y \/S¥(EWH, Ay HSAUTHYH) (Y@

of spectra and prove by a diagram chase that the map induced on homotopy groups
by the wedge summand &5 is the same as the map induced by the summand 6.
We shall first write down these maps and then say a little about the proofs.

Since the definitions of our maps proceed one H at a time, we abbreviate nota-
tion by writing:

N=NH, W=WH, E=EWH, and A= AdWH).

We let L be the tangent N-representation at the identity coset of G/N. A Lie
theoretic argument shows that (G/N) is a single point, and this implies that
L = {0}. Now 0y is defined by the following commutative diagram:

T (Ey Ay 2AYH) — W (Ey AYH) NS EL AY))

eHl lw

RI(Y) i 7Gx By AY)) = 78(G A (By AY)).

Here « is an instance of the Adams isomorphism of XVI1.5.4, w is an instance of the
Wirthmiller isomorphism of XVI1.4.9, (. is induced by a canonical isomorphism of

G-spectra, p : (G xy E); — S is the collapse map, and A is the composite of
W

*

the map 7! — 7 obtained by regarding W-maps as H-fixed N-maps and the

map induced by the inclusion of fixed point spaces
EyANYP = (5B + AV ) — SH(ELAY).

Why is the sum 6 of the 8y an isomorphismI’ Clearly € is a map of homology
theories in Y. Recall the spaces E(#', .7 ) defined in V.4.6 for inclusions of families
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F C F'. For a homology theory E. on G-spaces (or G-spectra), we define the
associated homology theory concentrated between .# and .#’ by

E|F, 7).(X) = E.(X N E(F', F)).

We say that (F',.%) is an adjacent pair if F' — .% consists of a single conjugacy
class of subgroups. One can check, using an easy transfinite induction argument
in the compact Lie case, that a map of homology theories is an isomorphism if the
associated maps of homology theories concentrated between adjacent families are
all isomorphisms.

Returning to 8, consider an adjacent pair of families with .#'—.% = (H). We find
easily that FW.J, A E(F',.7) is W.J-contractible unless (H) = (J). Therefore,
when we concentrate our theories between .% and .%’, all of the summands of the
domain of # vanish except the domain of #y. It remains to prove that Ay is an
isomorphism when Y is replaced by Y AE(.Z', #). We claim that each of the maps
in the diagram defining 5 is then an isomorphism, and three of the five are always
isomorphisms. It is easy to see that (G xx E)¥ = EM which is a contractible
space. Since FE(.Z', . #)7 is contractible unless (J) = (H), the Whitehead theorem
implies that p A Id is a G-homotopy equivalence.

It only remains to consider A. Passage to H-fixed points on representative maps
gives a homomorphism

¢ aN(SHELANY NE(F L F)) — 7 (B ANYE AN B(F F)H)

such that ¢o A = Id. It suffices to show that ¢ is an isomorphism. As an N-space,
E(F', F)is E(Z'|N,Z|N). While (.Z'|N,.Z|N) need not be an adjacent pair,
F'|N — F|N is the disjoint union of N-conjugacy classes (K'), where the K are
G-conjugate to H. It follows that E(.Z'|N,.Z#|N) is N-equivalent to a wedge of
spaces E(&7, &), where each (&7, &) is an adjacent pair with &’ —& = (K) for some
such K. However, it is easy to see that E; A E(&”, &) is N-contractible unless
the N-conjugacy classes (H) and (K') are equal. Thus only the wedge summand
E(&", &) with & — & = (H) contributes to the source and target of ¢. Here
(H) = {H} since H is normal in N. A check of fixed points shows that E(&”, &)
is W-equivalent to F,.

We now claim more generally that

67NV A E(E,6)) — 7V (VT A (6, 6)T) =2V (Y A Ey)
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is an isomorphism for any N-CW complex Y. Writing out both sides as colimits
of space level homotopy classes of maps, we see that it suffices to check that

6 [ X, Y NE(E, )y — [XT, YA B w

is a bijection for any N-CW complex X. By easy cofibration sequence arguments,
we may assume that all isotropy groups of X (except at its basepoint) are in
& — & = {H}. This uses the fact that the set Xg of points of X with isotropy
group not in & is a subcomplex: we first show that X can be replaced by X/Xg,
which has isotropy groups in ”, and we then show that this new X can be replaced
by X, which has isotropy groups in &’ — &. Under this assumption, X = X
and the conclusion is obvious.
Retaining our abbreviated notations, we next describe the map

Ei 2 B°(Ey Aw XYY — (27)9.

This is a map of spectra indexed on U%, and it suffices to describe its adjoint map
of G-spectra indexed on U:

€ - B2(Ey Aw SAYH) — ny,

Here we regard £ Ay LAY H as a G-trivial G-space, and the relevant suspension
spectrum functor is X* : G.7 — G.ZU on both left and right. Suppressing
notation for ¥, implicitly using certain commutation relations between ¥* and
other functors, and abbreviating notation by setting Z = E, Aw X4Y !, we define
£5 to be the composite displayed in the following commutative diagram:

Z i G/Ny A Z = Gy An Z

tH lld/w
Y pAId (G X NE)"' ANY ¢ G‘|‘ AN (E-I- A Y) <T G-I— AN (E_|_ A YH)

On the top line, 7 is the transfer stable G-map S° — G/N, of IX.3.4 (or
XVIIL.1.2). At the right, 7 : Ey Aw S4YH — E, A Y is the stable N-map
obtained by applying ¢, : W.2U" — N.2U, ¢ : UY — U, to the dimension-
shifting transfer W-map of XVIII.1.2 that is at the heart of the Adams isomor-
phism that appears in the definition of 8. A diagram chase shows that the map
on homotopy groups induced by g coincides with 8, and the wedge sum of the
&y is therefore an equivalence.

T. tom Dieck. Orbittypen und aquivariante Homologie. I. Arch. Math. 23(1972), 307-317.
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T. tom Dieck. Orbittypen und aquivariante Homologie. IT. Arch. Math. 26(1975), 650-662.
[LMS, V§§10-11]

2. Generalizations of the splitting theorems

We here formulate generalizations of Theorems 1.1 and 1.3 that are important
in the study of generalized versions of the Segal conjecture. The essential ideas
are the same as those just sketched, but transfer maps of bundles enter into the
picture and the bookkeeping needed to define the relevant maps and prove that
the relevant diagrams commute is quite complicated. We place ourselves in the
context in which we studied generalized equivariant bundles in VII§1. Thus let
IT be a normal subgroup of a compact Lie group I' with quotient group G. Let
E(II;T) be the universal (II; I')-bundle of VII.2.1. Let Ad(II;T") denote the adjoint
representation of I' derived from II; it is the tangent space of 11 at e with the action
of I' induced by the conjugation action of I' on 1. We regard G-spaces as ['-spaces
by pullback. For based I'-spaces X and Y, we write

(XY}, = 227X, 2%Y]p
for integers n. With these notations, we have the following results.

THEOREM 2.1. Let X be a based G-space and Y be a based I'-space. Assume
either that X is a finite G-CW complex or that II is finite. Then {X, Y}l is
naturally isomorphic to the direct sum over the I'-conjugacy classes of subgroups

A of II of the groups
{2, E(WiA; WrA ) Ay SAOTRAWEDy A in /Wit

Here the quotient homomorphism I' — G induces an inclusion of WrA/WpA
in (¢ and so fixes an action of this group on X. Of course, when (' is finite, the
adjoint representations in the theorem are all zero. If we set II = I' (and rename it
(), then the theorem reduces to a mild generalization of Theorem 1.1. When II is
finite, the specified sum satisfies the wedge axiom. In general, the sum is infinite
and we must restrict to finite G-CW complexes X.

THEOREM 2.2. For based I'-spaces Y, there is a natural equivalence of GG-spectra
from (Z*°Y)! to the wedge over the T'-conjugacy classes of subgroups A of II of
the suspension spectra of the G-spaces

Gy AWpA/WiA (E(WHAa WFA)+ Awr A ZAd(WHA;WFA)YA)‘
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Here the suspension spectrum functor applied to Y is X : ' — ['¥U and
that applied to the wedge summands is ¥ : G.7 — G.ZU" | where U is a
complete I'-universe.

[LMS, V§§10-11]

3. Equivalent definitions of Mackey functors

In IX84, we defined a Mackey functor to be an additive contravariant functor
B — /b, and we have observed that the Burnside category ¢ is just the full
subcategory of the stable category whose objects are the orbit spectra ¥*G/H .,
but with objects denoted G/H. This is the appropriate definition of a Mackey
functor for general compact Lie groups, but we show here that it is equivalent to
an older, and purely algebraic, definition when ' is finite. We first describe the
maps in HAg. As observed in [X§4, their composition is hard to describe in general.
However, for finite groups G, there is a conceptual algebraic description. In fact,
in this case there is an extensive literature on the algebraic theory of Mackey
functors, and we shall say just enough to be able to explain the important idea of
induction theorems in the next section.

When we specialize the diagram-chasing needed for the proofs in Section 1 to

the calculation of 7§'(Y'), we arrive at the following simple conclusion. Recall
Corollary 1.2.

PROPOSITION 3.1. For any based G-space Y, 7§(Y) is the free Abelian group
generated by the following composites, where (H) runs over ®G and y runs over
a representative point in Y of each non-basepoint component of Y /W H:

§ T NG H, sy
here 7 is the transfer and § : G/ Hy — Y is the based GG-map such that g(e H) = y.

There is a useful conceptual reformulation of this calculation. Since we are

interested in orbits G/ H, we switch to unbased G-spaces.
COROLLARY 3.2. Let X be an unbased G-space. For H C (G, the group
o (X4) = [B%G/Hy, X% X4 o

is isomorphic to the free Abelian group generated by the equivalence classes of
diagrams of space level G-maps

GIH <2 G/K X,
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where K C H and Wy K is finite. Here (¢, x) is equivalent to (¢',x’) if there
is a G-homeomorphism ¢ : /K — G/K' such that the following diagram is
GG-homotopy commutative:

G/K

G/K'

We are thinking of ¢ as the corresponding transfer map X*G/H, — Y*G/K,,
namely G <y (7), where 7 : S® — ¥ H/K is the transfer H-map.

This result specializes to give a good description of the maps of Z¢. In principle,
their composition can be described in terms of a double coset formula, but this is
quite hard to compute with in general. However, when (' is finite, it admits an
attractive conceptual reformulation.

To see this, let Be; be the category whose objects are the finite G-sets and
whose morphisms are the stable G-maps X; — Y,. That is, up to an abbreviated
notation for objects, B is the full subcategory of the stable category whose objects
are the X* X for finite G-sets X. Clearly A embeds as a full subcategory of ,@G,
and every object of B is a disjoint union of objects of A;. We easily find that
maps in P can be described as equivalence classes [¢, y] of pairs (¢, x), exactly
as in the previous corollary, but now the composite of maps

VWX and X<y Y-y

can be specified as the equivalence class of the diagram
P
w Y
NN
V X Z,

where the top square is a pullback. This gives a complete description of B
in purely algebraic terms, with disjoint unions thought of as direct sums. It is
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important, and obvious, that this category is abstractly self-dual. Moreover, the
duality isomorphism is given topologically by Spanier-Whitehead duality on orbits.

Since an additive functor necessarily preserves any finite direct sums in its do-
main, it is clear that an additive contravariant functor Zs — /b determines
and is determined by an additive contravariant functor Be — /b, In turn, as
a matter of algebra, an additive contravariant functor B —> 'b determines
and is determined by a Mackey functor in the classical algebraic sense. Precisely,
such a Mackey functor M consists of a contravariant functor M™* and a covariant
functor M, from finite G-sets to Abelian groups. These functors have the same
object function, denoted M, and M converts disjoint unions to direct sums. Writ-
ing M*a = o and M,a = a., it is required that a* o 8, = 6. o v* for pullback

P X
’Yl la
Y /.

For an additive contravariant functor M : %s — /b, the maps M[¢,1] and
MI1, ] specify the covariant and contravariant parts ¢* and y. of the correspond-

diagrams of finite G-sets

§
_—

_
8

ing algebraic Mackey functor, and conversely.

[LMS, V§9]

4. Induction theorems

Assuming that G is finite, and working with the algebraic notion of a Mackey
functor just defined, we now consider the problem of computing M (%), where
« = (/G in terms of the M(G//H) for proper subgroups H. For a finite G-set X,
let X™ be the product of n copies of X and let 7r; : X"t — X" be the projection
that omits the ¢th variable. We then have the chain complex

Y

(*) 0 — M(%) — M(X) — M(X?) — -

where the differential d* : M(X") — M(X"*!) is the alternating sum of the
maps (7;)%, 0 < 7 < n. Let M(X)™ be the kernel of d', namely the equalizer
of (mo)* and (71)*. We are interested in determining when the resulting map
M(*) — M(X)™ is an isomorphism. Of course, this will surely hold if the
sequence (*) is exact. We have already seen an instance of this kind of argument

in XVII§6.
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When is (*) exact]’ Let My be the Mackey functor that sends a finite G-set Y’
to M(X xY), and similarly for maps. The projections 7 : X x ¥ — Y induce
a map of Mackey functors 8% : M — My. We say that M is “X-injective” if X
is a split monomorphism. If 8% is split by ¢ : Mx — M, so that 1) o 0x = Id,

then the homomorphisms
P(X™): M(X x X™) — M(X™)

specify a contracting homotopy for (*). Therefore (*) is exact if M is X-injective.

When is M X-injectivel' To obtain a good criterion, we must first specify
the notion of a pairing u : L x M — N of Mackey functors. This consists of
maps p : L(X) @ M(X) — N(X) for finite G-sets X such that the evident
covariant and contravariant functoriality diagrams and the following Frobenius

diagram commute for a G-map f: X — Y.

fx@ld

L(X)® M(Y) L(Y)@ M(Y)

Id®f*l lu

L(X) ® M(X) —= N(X) N(Y).

*

A Green functor is a Mackey functor R together with a pairing p that makes each
R(X) a commutative and associative unital ring, the maps f* being required to
preserve units and thus to be ring homomorphisms. The notion of a module M
over a Green functor R is defined in the evident way. With these notions, one can

prove the following very useful general fact.

PrOPOSITION 4.1. If R is a Green functor and the projection X — * induces

an epimorphism R(X) — R(x), then every R-module M is X-injective. Therefore
M(*) = M(X)™ for every R-module M.

For a Green functor R, there is a unique minimal set {(H)} of conjugacy classes
of subgroups of G such that R(IJG/H) — R(%) is an epimorphism; this set
is called the “defect set” of R. By an “induction theorem”, we understand an
identification of the defect set of a Green functor. For example, the complex
representation rings R(H) are the values on GG/H of a Green functor R, and the
“Brauer induction theorem” states that the set of products P x € of a p-group P
and a cyclic group C'in G contains a defect set of B. We will shortly give another
example, one that we will use later to reduce the generalized Segal conjecture to

the case of finite p-groups.
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We must first explain the relationship of Burnside rings to Mackey functors.
For a finite G-set X, we have a Grothendieck ring A(X) of isomorphism classes
of G-sets over X. The multiplication is obtained by pulling Cartesian products
back along the diagonal of the base G-set X. When X = %, this is the Burnside
ring A(G). More generally, a G-set o : T — G/H over G/H determines and
is determined by the H-set a~!(eH), and it follows that A(G/H) = A(H). A
G-map f: X — Y determines f*: A(Y) — A(X) by pullback along f, and it
determines f. : A(X) — A(Y) by composition with f. In more down to earth
terms, if f: G/H — G/K is the G-map induced by an inclusion H C K, then
f* i A(K) — A(H) sends a K-set to the same set regarded as an H-set and
fe t A(H) — A(K) sends an H-set X to the K-set K x g X; we call f, induction.
This gives the Burnside Green functor A.

Any Mackey functor M is an A-module via the pairings

A(X) @ M(X) — M(X)

that send @« @ m, a : Y — X, to a.a™(m). Therefore, by pullback along the
ring map A(G) = A(x) — A(X), each M(X) is an A(G)-module. Any Green
functor R has a unit map of Green functors n : A — R that sends o : ¥ — X
to a.a*(1). Thus we see that the Burnside Green functor plays a universal role.

Observe that we can localize Mackey functors termwise at any multiplicative
subset S of A(G). We can complete Mackey functors that are termwise finitely
A(G)-generated at any ideal I C A((G). We wish to establish an induction theorem
applicable to such localized and completed Mackey functors. This amounts to
determination of the defect set of S™'Aj.

It is useful to use a little commutative algebra. The following observation is
standard algebra, but its relevance to the present question was noticed in work of
Adams, Haeberly, Jackowski, and myself and its extension by Haeberly. We shall
state it for pro-modules — which are just inverse systems of modules — but only
actual modules need be considered at the moment. Its pro-module version will be
used in the proof of the generalized Segal conjecture in XX§§2. 3. Localizations of
completions of pro-modules M = {M,} are understood to be inverse systems

STIM; = {S™'M,/I" M,}.

LEMMA 4.2. Let M be a pro-finitely generated module over a commutative ring
A, let S be a multiplicative subset of A, and let I be an ideal of A. Then S™1M;j
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is pro-zero if and only if (Sp)~'Mp is pro-zero for every prime ideal P such that
PnNS=0and P DI, where Sp is the multiplicative subset A — P.

For a primeideal P of A(G), we let K(P) be a maximal element of the set{ H|P =
q(H,p)}. We have discussed these subgroups in XVII§3.

LEMMA 4.3. {(K(P))} is the defect set of the Green functor (Sp)~"A.

PRrROOF. Essentially this result was observed, in less fancy language, at the end
of XVII§6. The subgroup K = K(P) is characterized by P = ¢(K, p) and |W K| #
0 mod p. (We allow p =0.) The composite

A(G) — A(K) — A(G)

of restriction and induction is multiplication by [G/K]. Since this element of A(()
maps to a unit in A(G)y ), the displayed composite becomes an isomorphism
upon localization at ¢(K,p). O

PROPOSITION 4.4. Let S be a multiplicative subset of A(G) and let [ be an
ideal of A(G). Then the defect set of the Green functor S™'A;j is

{(K(P)IPNS=0 and P D I}.
PROOF. The statement means that the sum of transfer maps
Y STTA(K(P)); — STTA(G);
is an epimorphism, and Lemmas 4.2 and 4.3 imply that its cokernel is zero. [

The starting point for arguments like this was the following result of McClure
and myself, which is the special case when S = {1} and [ is the augmentation

ideal (alias ¢(e,0)). If P = q(e,p), then K(P) is a p-Sylow subgroup of G.

COROLLARY 4.5. If I is the augmentation ideal of A(G'), then the defect set of
the Green functor A7 is the set of p-Sylow subgroups of G.

This will be applied in conjunction with the following observation.

LEMMA 4.6. Let M be a Mackey functor over a finite p-group G and let 7* :
M(*x) — M(G) be induced by the projection ¢ — . Then the p-adic and

I-adic topologies coincide on Ker(7*).
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PROOF. Since multiplication by [G] is the composite 7.7*, [G]Ker(#x*) = 0.
Since [G] — |G| € I, |G| Ker(x*) C [ Ker(x*). If H # e, then ¢y ([G/K] — |G/K])
is divisible by p because G/ K — (G/K ) is a disjoint union of non-trivial H-orbits.
Therefore ¢(I) C pC(G). Let |G| = p™. Since |G|C(G) C ¢(A(G)), we see that
S(I"1) C péd(I) and thus 1"t C pI. The conclusion follows. [

A. Dress. Induction and structure theorems for orthogonal representations of finite groups.
Annals of Math. 102(1975), 291-325.

J.-P. Haeberly. Some remarks on the Segal and Sullivan conjectures. Amer. J. Math. 110(1988),
833-847.

J. P. May and J. E. McClure. A reduction of the Segal conjecture. Canadian Math. Soc.
Conference Proceedings Vol. 2, part 2, 1982, 209-222.

5. Splittings of rational GG-spectra for finite groups

We here analyze the rational equivariant stable category for finite groups G. The
essential point is that any rational G-spectrum splits as a product of Eilenberg-

MacLane G-spectra K(M,n) =X"HM.

THEOREM 5.1. Let G be finite. Then, for rational G-spectra X, there is a
natural equivalence X — [] K(x,,(X),n).

There is something to prove here since the counterexamples of Triantafillou dis-
cussed in [11§3 show that, unless (G is cyclic of prime power order, the conclusion is
false for naive Gi-spectra. A counterexample of Haeberly shows that the conclusion
is also false for genuine G-spectra when (' is the circle group, the rationalization
of KUg furnishing a counterexample. Greenlees has recently studied what does
happen for general compact Lie groups.

The proof of Theorem 5.1 depends on two facts, one algebraic and one topolog-

ical. We assume that (& is finite in the rest of this section.

PROPOSITION 5.2. In the Abelian category of rational Mackey functors, all ob-

jects are projective and injective.

The analog for coefficient systems is false, and so is the analog for compact Lie
groups. The following result is easy for finite groups and false for compact Lie

groups.

PROPOSITION 5.3. For H C G and n # 0, 7,,(G/Hy) @ Q = 0.
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Let .# = _# denote the Abelian category of Mackey functors over . For
G-spectra X and Y, there is an evident natural map

0:[X,Y]e — [[Hom.4(z,(X),z,(Y)).

Let Y be rational. By the previous result and the Yoneda lemma, # is an isomor-
phism when X = ¥*G/H, for any H. Throwing in suspensions, we can extend 6
to a graded map

0:Y4(X)=[X,Y]§=[E7"X,Y]e — [[ Hom.4(x,(X7°X), m,(Y)).

It is still an isomorphism when X is an orbit. Of course, we obtain the same groups
if we replace X and the Mackey functors z,,(¥79.X) by their rationalizations. Since
the Mackey functors z,, (V') are injective, the right hand side is a cohomology theory
on G-spectra X. Clearly § is a map of cohomology theories and this already
proves the following result. With Y = [[ K(x,(X),n), Theorem 5.1 is an easy

consequence.
THEOREM 5.4. If YV is rational, then 8 is a natural isomorphism.

This classifies rational G-spectra, and we next classify maps between them.
Recall that ¢ @Q : A(G)®Q — C(G)@Q is an isomorphism and that C'(G) 2 Q
is the product of a copy of Q for each conjugacy class (H). There results a complete
set of orthogonal idempotents ey = ¢% in A(G) @ Q. Multiplication by the eg
induces splittings of A(G) ® Q-modules, rational Mackey functors, and rational
Gi-spectra, and we have the commutation relation

. (egX) X eyrm, (X).

In all three settings, there are no non-zero maps ey X — e;Y unless H is conju-
gate to J. This gives refinements of Theorems 5.1 and 5.4.

THEOREM 5.5. For rational G-spectra X, there are natural equivalences
X ~\egX =[] K(epzm,(X),n).
THEOREM 5.6. For rational G-spectra X and Y, there are natural isomorphisms
[(X,Y]e 2 [enX.enY]e 2> [[Hom 4(enr, (X), enm,(Y)).
Moreover, if V,, y(X) = (eyz, (X))(G/H) C 7,(X*), then
Hom 4(epx, (X),enm,(Y)) = Homwu (Vg (X), Vou(Y)).



258 XIX. STABLE HOMOTOPY AND MACKEY FUNCTORS

Thus the computation of maps between rational G-spectra reduces to the com-
putation of maps between functorially associated modules over subquotient groups.
The last statement of the theorem is a special case of the following algebraic result.

THEOREM 5.7. For rational Mackey functors M and N, there are natural iso-
morphisms

HOIH/[(GHM, GHN) = HOIHWH(VH(M), VH(N)),
where Vi (M) is the Q[W H]-module (eg M )(G/H) C M(G/H).

The proof of Proposition 5.2 is based on the following consequence of the fact
that Vi (V) is a projective and injective Q[W H]-module.

LEMMA 5.8. If the conclusion of Theorem 5.7 holds for all N and for a given M
and H, then ey M is projective; if the conclusion holds for all M and for a given
N and H, then ey N is injective.

Now let .#p be the category of rational Mackey functors over (. Let 2[G] be
the category of Q[G]-modules. Fix H C (. Then there are functors

Uy : My — ZIWH] and Fy: 2IWH| — .
Explicitly,
UsM = M(G/H) and (FgV)(G/K) = (QG/K)T e V)",

These functors are both left and right adjoint to each other if we replace .#g by its
full subcategory .#/ H of those Mackey functors M such that M(G//J) = 0 for all
proper subconjugates J of H. Since (FgV)(G/K) = 0 unless H is subconjugate
to K, FgV isin .4y/H.

PrROOFS OF PROPOSITION 5.2 AND THEOREM 5.7. One easily proves both of
these results when M = FV by use of the adjunctions and idempotents. Even in-
tegrally, every Mackey functor M is built up by successive extensions from Mackey
functors of the form FyV. Rationally, the extensions split by the projectivity of
the FgV. Therefore any rational Mackey functor M is a direct sum of Mackey
functors of the form FyV for varying H and V. [

J. P. C. Greenlees. Some remarks on projective Mackey functors. Journal Pure and Applied
Algebra 81(1992), 17-38.

J. P. C. Greenlees. Rational Mackey functors for compact Lie groups. Preprint, 1993.

J. P. C. Greenlees and J. P. May. Some remarks on the structure of Mackey functors. Proc.

Amer. Math. Soc. 115(1992), 237-243.
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J. P. C. Greenlees and J. P. May. Generalized Tate cohomology, Appendix A. Memoirs Amer.
Math. Soc. No 543. 1995.
J.-P. Haeberly. For G = S there is no Chern character. Contemp. Math. 36 (1985), 113-118.
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CHAPTER XX

The Segal conjecture

1. The statement in terms of completions of GG-spectra

There are many ways to think about the Segal conjecture and its generalizations.
Historically, the original source of the conjecture was just the obvious analogy be-
tween K -theory and stable cohomotopy. According to the Atiyah-Segal completion
theorem, the K-theory of the classifying space of a compact Lie group G is isomor-
phic to the completion of the representation ring R(() at its augmentation ideal.
Here R(G) is K&(5°), and K(S°) = K'(BG4) = 0. The Burnside ring A(G) is
72(5%), and it is natural to guess that the stable cohomotopy of B is isomorphic
to the completion of 7% (S%) at the augmentation ideal I of A(G). This guess is
the Segal conjecture. It is not true for compact Lie groups in general, but it turns
out to be correct for finite groups G. We shall restrict ourselves to finite groups
throughout our discussion. A survey of what is known about the Segal conjecture
for compact Lie groups has been given by Lee and Minami.

Here we are thinking about Z-graded theories, and that is the right way to
think about the proof. However, one can also think about the result in purely
equivariant terms, and the conclusion then improves to a result about G-spectra
and thus about RO(G)-graded cohomology theories. To see this, let’s at first
generalize and consider any G-spectrum kg. We have the projection FG, — S°,

and it induces a G-map
(11) [ kG = F(So,kg) — F(EG+,kg)

We think of ¢ as a kind of geometric completion of k¢.
It is natural to think about such completions more generally. Let .% be a family
of subgroups of G. We have the projection £.%, — 5°, and we have the induced

261



262 XX. THE SEGAL CONJECTURE
G-map
(12) [ kG = F(SO, kg) — F(Egﬂ_, kg)

We think of ¢ as the geometric completion of kg at 7.
We want to compare this with an algebraic completion. The family .# deter-
mines an ideal 1.7 of A(G), namely

(1.3) 1.7 = [ Ker(A(G) — A(H)).
HeZF
Just as [ = [{e} = q(e,0), by definition, it turns out algebraically that
(1.4) 1.7 = () q(H,0).
HeZF

Since A(G) plays the same role in equivariant theory that Z plays in nonequiv-
ariant theory, it is natural to introduce completions of G-spectra at ideals of the
Burnside ring. This is quite easy to do. For an element a of A(G), define Sg[a™?],
the localization of the sphere G-spectrum Sg at «, to be the telescope of countably
many iterates of a: S¢ — S¢. Then let K(«) be the fiber of the canonical map
S¢ — Sgla™']. For an ideal I generated by a set {ay,--- ,a,}, define

(1.5) K(I)=K(ag) N N K(ay).

It turns out that, up to equivalence, K (/) is independent of the choice of gener-
ators of I. Now define

(1.6) (ka)1 = F(K(I), ka).

By construction, K (/) comes with a canonical map ¢ : K(/) — S¢, and there
results a map

(1.7) v ke — (ka)i

We call v the completion of kg at the ideal I. For those who know about such
things, we remark that completion at [ is just Bousfield localization at K (7). We
shall later use “brave new algebra” to generalize this construction.

Now specialize to [ = [.% for a family .#. For a € I.#%, o : S¢ — Sg is null
homotopic as an H-map for any H € .Z#. Therefore Sg[a™!] is H-contractible,
K(1.%)is H-equivalent to S¢, and the cofiber of ( is H-contractible. This implies
that there is a unique G-map

(1.8) £ SVEF, — K(I.F)
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over Sg. There results a canonical map of G-spectra
(1.9) & F(K(I7),kG) — F(EF, ka).

We view this as a comparison map relating the algebraic to the geometric comple-
tion of kg at Z.
One can ask for which G-spectra kg the map £* is an equivalence. We can now

state what I find to be the most beautiful version of the Segal conjecture. Recall

that D(E) = F(FE, Sq).
THEOREM 1.10. For every family .#, the map
£ (Sa)is = DIK(LF)) — D(EF,)
is an equivalence of G-spectra.

Parenthetically, one can also pass to smash products rather than function spec-
tra from the map &, obtaining

(111) f* : kG A Egz_|_ — kG A [X’(]gﬂ_)

One can ask for which G-spectra kg this map is an equivalence. A standard
argument shows that £* is an equivalence if kg is a ring spectrum and &, is an
equivalence. Once we introduce Tate theory, we will be able to give a remarkable
partial converse. The point to make here is that ¢, is an equivalence for K, as we
shall explain in XXIV§7, but is certainly not an equivalence for Sg. That would
be incompatible with the splitting of (Sg)“ in XIX§l. Our original analogy will
only take us so far.

J. F. Adams, J.-P. Haeberly, S. Jackowski, and J. P. May. A generalization of the Segal conjec-
ture. Topology 27(1988), 7-21.

J. P. C. Greenlees and J. P. May. Completions of G-spectra at ideals of the Burnside ring.
Adams memorial symposium on algebraic topology, Vol. 2. London Math. Soc. Lecture Note
Series 176, 1992, 145-178.

C.-N. Lee and N. Minami. Segal’s Burnside ring conjecture for compact Lie groups. in Algebraic
topology and its applications. MSRI Publications # 27. Springer-Verlag. 1994, 133-161.

2. A calculational reformulation

What does Theorem 1.10 say calculationallyl’ To give an answer, we go back
to our algebraic completions. The [-adic completion functor is neither left nor
right exact in general, and it has left derived functors Lf. Because A(G) has Krull
dimension one, these vanish for ¢+ > 1. In precise analogy with the calculation
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of the homotopy groups of p-adic completions of spaces, we find that, for any
G-spectrum X, there is a natural short exact sequence

(2.1) 0 — Li(z,—1(X)) — m,(X7) — Lo(z, (X)) — 0,

where we apply our derived functors to Mackey functors termwise. Thinking co-
homologically, for any G-spectra X and kg, there are natural short exact seqences

(22) 0 — LUK (X)) — ((he) (X)) — L (RE(X)) — 0.

As a matter of algebra, the L! admit the following descriptions, which closely
parallels the algebra we summarized when we discussed completions at p in I1§4.

Abbreviate A = A(G') and consider an A-module M. Then we have the following

natural short exact sequences.

(2.3) 0 — lim' Tor(A/I", M) — LY(M) — M; — 0.

(2.4) 0 — lim' Torj (A/I", M) — LI(M) — lim Tor{"(A/I", M) — 0.

There is interesting algebra in the passage from the topological definition of
completion to the algebraic interpretation (2.1). Briefly, there are “local homol-
ogy groups” HI(M) analogous to Grothendieck’s local cohomology groups. Our
topological construction mimics the algebraic definition of the H}(M), and, as
a matter of algebra, LI(M) = HI(M). This leads to alternative procedures for
calculation, but begins to take us far from the Segal conjecture. We shall return
to the relevant algebra in Chapter XXIV.

The last two formulas show that, if M is finitely generated, then LL(M) =2 M;
and LI(M) = 0. When a G-spectrum kg is bounded below and of finite type, in
the sense that each of its homotopy groups is finitely generated, we can construct
a model for (kg); and study its properties by induction up a Postnikov tower,
exactly as we studied p-completion in 11§5. As there, we find that a map from
ke to an “I-complete spectrum” that induces [-adic completion on all homotopy
groups is equivalent to the I-completion of k. Moreover, a sufficient condition
for a bounded below spectrum to be I-complete is that its homotopy groups are
finitely generated modules over A(G);.

We deduce from XIX.1.1 that Sg is of finite type. Thus the [-adic completions
of its homotopy groups are bounded below and of finite type over A(G)7. A little
diagram chase now shows that the following theorem will imply Theorem 1.10.
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THEOREM 2.5. The map ¢ : S¢ — D(F.#,) induces an isomorphism
T.(56)17 — m(D(EFL)).

There is an immediate problem here. A priori, we do not know anything about
the homotopy groups of D(E.%, ), which, on the face of it, need be neither bounded
below nor of finite type. There is a lim' exact sequence for their calculation in
terms of the duals of the skeleta of E.Z,. To prove that the lim' terms vanish, and
to make sure that we are always working with finitely generated A(G)-modules, we
work with pro-groups and only pass to actual inverse limits at the very end. We
have already said nearly all that we need to say about this in XIV§5. Recall that,
for any Abelian group valued functor 2 on G-CW complexes or spectra, we define
the associated pro-group valued functor h by letting h(X) be the inverse system
{h(X,)}, where X, runs over the finite subcomplexes of X. Our functors take
values in finitely generated A(G))-modules. For an ideal I in A(G') and such a pro-
module M = {M,}, M7 is the inverse system {M,/I"M,}. For a multiplicative
subset S, ST'M = {S™'M,}.

We define pro-Mackey functors just as we defined Mackey functors, but changing
the target category from groups to pro-groups. Now Theorem 2.5 will follow from
its pro-Mackey functor version.

THEOREM 2.6. The map ¢ : S¢ — D(F.#,) induces an isomorphism

The point is that the pro-groups on the left certainly satisty the Mittag-Leffler
condition guaranteeing the vanishing of lim' terms, hence the lim" terms for the
calculation of m,(D(FE.Z,)) vanish and we obtain the isomorphism of Theorem 2.5
on passage to limits. We now go back to something we omitted: making sense
of the induced map in Theorem 2.6. For a finite G-CW complex X such that
XH is empty for H ¢ #, we find by induction on the number of cells and the
very definition of I.% that z,(D(X})) is annihilated by some power of I.%. This
implies that the canonical pro-map

7.(D(Xy)) — m(D(Xy))17

is an isomorphism. Applying this to the finite subcomplexes of E.%, we see that
the right side in Theorem 2.6 is [.%-adically complete. Thus the displayed map
makes sense.
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3. A generalization and the reduction to p-groups

Now we change our point of view once more, thinking about individual pro-
homotopy groups rather than Mackey functors. Using a little algebra to check
that the ideal in A(H) generated by the image of I.% under restriction has the
same radical as [(.#|H), we see that the Hth term of the map in Theorem 2.6 is

75 (S 1z — m(E(F|H)y).

We may as well proceed by induction on the order of &7, so that we may assume
this map to be an isomorphism for all proper subgroups. In any case, Theorem
2.6 can be restated as follows.

THEOREM 3.1. The map F.% — # induces an isomorphism
re (i — mEF).

Now E.% —— x* is obviously an example of an .%-equivalence, that is, a map
that induces an equivalence on H-fixed points for H € .%#. We are really proving

an invariance theorem:
P . ‘ . . . . [ n
An F-equivalence f: X — Y induces an isomorphism 7 (f)72.

We can place this in a more general framework. Given a set J# of subgroups
of GG, closed under conjugacy, we say that a cohomology theory is .7-invariant
if it carries .#-equivalences to isomorphisms. We say that a G-space X is J7-
contractible if X# is contractible for € 2. By an immediate cofiber sequence
argument, a theory is .7-invariant if and only if it vanishes on .%-contractible
spaces. It is not difficult to show that, for any cohomology theory h*, there is a
unique minimal class 77 such that A* is J7-invariant: determination of this class
gives a best possible invariance theorem for ~A*. Given an ideal I and a collection
€, we can try to obtain such a theorem for the theory = (-);.

Answers to such questions in the context of localizations rather than completions
have a long history and demonstrated value, but there one usually assumes that

A 1s closed under passage to larger rather than smaller subgroups. For such a
“cofamily” 7, we have the -fixed point subcomplex X7 = {z|G, € J};
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the inclusion 7 : X#* —— X is an J#-equivalence. A cohomology theory is J#-
invariant if and only it carries all such inclusions ¢ to isomorphisms.

It seems eminently reasonable to ask about localizations and completions to-
gether. We can now state the following generalization of Theorem 3.1. Define the
support of a prime ideal P in A(() to be the conjugacy class (L) such that P is in
the image of Spec(A(L)) but is not in the image of Spec(A(K)) for any subgroup
K of L. We know what the supports are: (H) for ¢(H,0) and (H,) for ¢(H, p).

THEOREM 3.2. For any multiplicative subset S and ideal I, the cohomology
theory S™'my,(+)7 is . -invariant, where

A = J{Supp(P)[PNS=0 and P DI}

With S = () and I = I.%, Theorem 3.1 follows once one checks that the resulting
A is contained in .Z. In fact it equals .# since the primes that contain /.# are
all of the ¢(H,p) with H € .#, and this allows p = 0. It looks as if we have made
our work harder with this generalization but in fact, precisely because we have
introduced localization, which we have already studied in some detail, the general
theorem quickly reduces to a very special case.

In fact, by XIX.4.2, it is enough to show that (Sp)™'ws(X)p = 0 if X7 is
contractible for L € Supp(P), where Sp = A — P. By XVIL5.5, there is an
idempotent ¢¥ € A(G), such that (Sp)~tA(G) = ¥ A(G),. Remembering that
the ®-fixed point functor satisfies ®7 Sy = Sy, we see that, for any finite G-CW

complex X, XVII.6.4 specializes to give the chain of isomorphisms
G _n NL_n WL __n L n Lyinv
ermi(X)p — ep TN (X)p — & "mppp(X7)p — mpp(X7))

where V' L is a p-Sylow subgroup of W L. The transfer argument used to prove the
P
75 (X1),. Passing to pro-modules, we conclude that (Sp)™'w5(X)p is a direct

last isomorphism gives further that 7%, (X%)" is naturally a direct summand in
summand in &}, (X1),. Therefore Theorem 3.2 is implied by the following special

case.

THEOREM 3.3. The theory =f(+), is e-invariant for any finite p-group . That
is, it vanishes on nonequivariantly contractible G-spaces.

This is Carlsson’s theorem, and we will discuss its proof in the next section. In
the case of the augmentation ideal there is a shortcut to the reduction to p-groups
and p-adic completion: it is immediate from XIX.4.5 and XIX.4.6. Let us say a



268 XX. THE SEGAL CONJECTURE

word about the nonequivariant interpretation of the Segal conjecture in this case.
Since Sg is a split G-spectrum, we can conclude that

(3.4) T5(59); 2 na(EGL) = 75 (BGY ).

Of course, the cohomotopy groups on the left lie in non-positive degrees and are

just the homotopy groups reindexed. By XIX.1.1,

(3.5) & (S%) = (Z)m(BWhu).

The left side is a ring, but virtually nothing seems to be known about the mul-
tiplicative structure on the right. Nor is much known about the A(G)-module

structure. Of course, the last problem disappears upon completion in the case of

p-groups, by XIX.4.6.

J. F. Adams, J.-P. Haeberly, S. Jackowski, and J. P. May. A generalization of the Segal conjec-
ture. Topology 27(1988), 7-21.

4. The proof of the Segal conjecture for finite p-groups

There are two basic strategies. One is to use (3.5) and a nonequivariant in-
terpretation of the completion map to reduce to a nonequivariant problem. For
elementary p-groups, the ideas that we discussed in the context of the Sullivan
conjecture can equally well be used to prove the Segal conjecture, and Lannes has
an unpublished nonequivariant argument that handles general p-groups.

The other is to use equivariant techniques, which is the method used by Carls-
son. Historically, Lin first proved the Segal conjecture for Z/2, Gunawardena for
Z/p, p odd, and Adams, Gunawardena, and Miller for general elementary Abelian
p-groups, all using nonequivariant techniques and the Adams spectral sequence.
Carlsson’s theorem reduced the case of general finite p-groups to the case of ele-
mentary Abelian p-groups. His ideas also led to a substantial simplification of the
proof in the elementary Abelian case, as was first observed by Caruso, Priddy, and
myself. For this reason, the full original proot of Adams, Gunawardena, and Miller
was never published. Since I have nothing to add to the exposition that Caruso,
Priddy, and I gave, which includes complete details of a variant of Carlsson’s proof
of the reduction to elementary Abelian p-groups, I will give an outline that may
gain clarity by the subtraction of most of the technical details.
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We assume throughout that G is a finite p-group. We begin with a general
G-spectrum kg, and we will work with the bitheory

EL(X5Y) = kS (X))

on spaces X and Y. It can be defined as the cohomology of X with coefficients in
the spectrum Y A kg. The following easy first reduction of Carlsson is a key step.
It holds for both represented and pro-group valued theories. Let &2 be the family
of proper subgroups of G.

LEMMA 4.1. Assume that k}; is e-invariant for all H € Z7. Then kf is e-
invariant if and only if k% (E.22) = 0.

PROOF. Let X be e-contractible. We must show that k% (X) = 0 if ké(E,@) =
0. Write Y = EZ. Then Y% = S° and Y is H-contractible for H € 2. Let
7Z =Y/5°. We have the cofiber sequence

X— XAY —- XAZ

We claim that k(W AY) = 0 for any G-CW complex W and that k5L(XAZ) =0
for any G-CW complex Z such that Z¢ = x. The first claim holds by hypothesis
on orbit types GG/G and holds trivially on orbit types G/H with H € 2. The
second claim holds on orbits by the induction hypothesis. The general cases of
both claims follow. []

The cofiber sequence EG, — S° — EG gives rise to a long exact sequence
(4.2) — kL(Y; BEGy) — kL(Y) — EL(Y; EG) 2, WY BGL) — .

The EG terms carry the singular part of the problem; the EG terms carry the
free part.

Let us agree once and for all that all of our theories are to be understood as
pro-group valued and completed at p, since that is the form of the theorem we
need to prove. We must show that #5(Y) = 0. However, studying more general
theories allows a punch line in the elementary Abelian case: there the map ¢ in
(4.2) is proven to be an isomorphism by comparison with a theory for which the
analogue of the Segal conjecture holds trivially.

For a normal subgroup K of H with quotient group J write kj ;- = kj for the
theory represented by ®(kj), where ky denotes kg regarded as an H-spectrum.
We pointed out the ambiguity of the notation k% at the end of XVI§6, but we
also observed there that the notation 7% is correct and unambiguous. As we shall



