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Let
f:M"t e R,

n =4k + 2, n > 2 be a smooth generic immersion of a

closed manifold of codimension 1. Let
g:N"? ¢ R"
be the immersion of the double points intersection of g.

The Kervaire invariant of f is defined by

O.7(f) = (ny* :[N"72),

where 1y = wo(N"™"?) is the second normal
Stiefel-Whitney class of N 2.



In particular, if n =2, O,¢(f) is the parity of the number

of self-intersection points of the curve f on the plane R?.

Let us denote by Imm*/(n — 1, 1) the cobordism group of
immersions in the codimension 1 of (non-oriented) closed

(n — 1)—manifold ("sf” stands for skew-framed).



Theorem

The Kervaire invariant is a well-defined homomorphism:
Oy : Imm™ (4k +1,1) — Z/2.
1. This homomorphism is trivial if 4k +2 #£ 2! —2, 1 > 2.

2. For £ =0,1,3,7,15 the homomorphism O, is an

epimorphism.



Part 1 is the Theorem by W. Browder, The Kervaire
wnvariant of framed manaifolds and its generalization,
Ann. of Math., (2) 90 (1969) 157-186. A special case of
this theorem was discovered by M. Kervaire, A manifold

which does not admit any differentiable structure,
Comment. Math. Helv., 34 (1960) 257-270.

Part 2 (in the case k = 7) was proved by M.E. Mahowald
and M.C. Tangora, Some differentials in the Adams
spectral sequence, Topology 6 (1967), 349-369. The case
k = 15 was proved by M. G. Barratt, J. D. S. Jones and
M. E. Mahowald, Relations amongst Toda brackets and

the Kervaire invariant in dimension 62, J.London
Math.Soc. (2) 30 (1984), no. 3, 533-550.



Main Theorem

There exists an integer [y, such that for an arbitrary

[ > [y, the Kervaire invariant
O : Imm (2" —3,1) — Z/2

1s the trivial homomorphism.

The proof of this theorem is based on the approach
proposed by P.J.Eccles Codimension One Immersions

and the Kervaire Invariant One Problem, Math. Proc.
Cambridge Phil. Soc., vol.90 (1981) 483-493.



A commutative diagram that we use to define
dihedral structure of self-intersection manifold of
skew-framed immersions:

Jk

Imm*f(n—1,1) =L Imm® (n — k, k)
L 0z/20 L 07 oo

k
JZ 2[2]

Imm%?(n—2,2) 25 ImmZ2* (n — 2k, 2k).



A commutative diagram that we use to define the

Kervaire invariant in the codimension k:

@k
]mmsf(n — k. k) N AP skew— framed
7 1Mmmersions
k
L0z |
@;/2[2]

Immz/2[2] (n _ Qk’ Qk) e Z/2 dihedral

mmersions




Structure groups of immersions

Let us consider the following collection of (d — 1) sets
Tda Td—l) SR TQ?

where each set consists of proper coordinate subspaces of
R2d_1

The set of the subspaces
Ti) 2 S v S d?

(we will use only the case d = 6) consists of 2/~

coordinate subspaces generated by the basis vectors:

((el, .. eQd—i), Ce ey (@2d—1_2d—i+1, .. 7eQd—l)).



Let us denote by Z/2!9 the subgroup
Z/Q ! 2ga—1 C O(Qd_l)

under the following condition:

— the transformation

724 x R* L R
admits the invariant collection of sets

Tda Td—la R T?-

In particular, in the case d = 2 we get that T contains

only one collection of subspaces and this collection is
((e1), (e2)). Therefore Z /22 is a dihedral group.



Imm%?"(n—2,2)  —  Imm%?"(n — 2k, 2k)

! 52/2[3] l 5Z/2
Imm®Z/2" (n — 4, 4) J%] ImmZ/?* (n — 4k, 4k)

) 52/2[4] l 52/2
ImmZ/" (n — 8, 8) Jg/—Q[;L] ImmZ/?" (n — 8k, 8k)

L 0g/905) Lo s /ol

Imm®?™ (n — 16, 16) A i (n — 16k, 16k)
L dg016) L o) 6 /900
T

Imm®2% (n — 32,32) 2 Imm®/2 (n — 32k, 32K).



Imm?Z/?* (n — 2k, 2k)
L 0%y
Imm®Z/?* (n — 4k, 4k)
L3
ImmZ/?™" (n — 8k, 8k)
| 52/2[5
Imm®Z?™ (n — 16k, 16k)
! 52/2[6

ImmZ/2% (n — 32k, 32k)

O, /26

—>
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Dihedral group

The dihedral group (of the order 8) Z /22 c O(2):
{a,b | a*'=b*=¢e,a,b] = a*}.

Let {f;,f,} be the standard base of the plane R?. The
element a is represented by the rotation through the

angle 5:
J1— o f2 — —f1.

The element b is represented by the permutation of the

base vectors

fi—=fa far fr



Elementary 2-group

The elementary subgroup I; x I; C 7./2'% of the rank 2:
{a®>,b | a*=b"=¢,[a*b] =e}.

This group preserves the vectors f; + 5, f; — 15.

Let 119 € H2(Z/2"%;7Z/2) be the universal class,
i (1) € H?(Ig % I Z./ 2) is the pull-back of 779 under
the inclusion 7, : I; x 15 C Z/2[2].

* K

0 i(Ti21) = Kakg,

Kq € Hl(Id X Id,Z/Q) D4 - Id X Id — Id, Kd :p;;(td),
e#tg€ly~7/2 and k; € H (Iy x 14;7Z/2) is defined

analogously.



v =[(f,Z, ku)] € Imm* (n — k, k),
—f . Mn_k Y Rna
—ks s a line bundle over M"™*,

—= is a skew-framing of the normal bundle of f, i.e. an

Isomorphism = : vy = kK.

y = 05 o () = (9, W, ) € Tmm™" (n — 2k, 2k),
—q : Nn—2k Q- Rn)
—ny is a Z/22-bundle over N"2k,

—\ is a dihedral framing of the normal bundle of f, i.e.

an isomorphism ¥ : v, = kny.



Definition of Abelian structure

A skew-framed immersion

(faEy/{M)

admits an Abelian structure if there exists a map
Naxd N - NP2k K(Idxid, 1) (Eilenberg-Mac Lain space),

satisfying the following condition:

n—22k

(a5 [N = O o (y) = iy, 25 [N)).

Naxd = My n (e (T21)) € HA(N"72%,Z/2), [N] is the
fundamental class of N" 2% ny € H?(N"2%:7Z/2) is the

characteristic class of Z/2!?framing.




Definition of a Desuspension

A skew-framed cobordism class
= [(f,Z, kn)] € Imm* (n — k, k)

admits a desuspension of order ¢, if this class is

represented by a triple, such that
ki = 10K,

K(q) M=+ - RPrF-a=l [ . RPrF9-1 C RP>.



Desuspension theorem

For an arbitrary g there exists an integer [y = ly(q), such
that an arbitrary element x € Imm?3/ (2" — 3,1), | > I,

admits a desuspension of order g.



Abelian structure immersion theorem

Let ¢ be an arbitrary integer divisible by 16, and let
n = 2! — 2 with [ is sufficiently large. Put

n -+ 2 q
k=HMa) ==~ "5

Let us assume that z € Imm?*/(n — k, k) admits a
desuspension of order g. Then the class x is represented
by a triple (f, =, kas), such that this skew-framed

immersion admits an Abelian structure.



Cyclic group

The cyclic index 2 subgroup of the order 4:

I,={a | a*=¢€} CcZ/2"

Bicyclic group

The bicyclic index 2! subgroup of the order 16:

I, xI,cz/28 x7/2% c 7/214



The universal cohomology class of the bicyclic

group

There exists Ty € H(Z/2";7Z/2) (the universal class),
i o (Ta)) € H3(I, x 1,;7Z/2) is the pull-back of 74 under
the inclusion iy : I, x I, € Z /214,

* 3K

i e (Tla) = Mo,

Na,Na € H*(I, X ia; 7./2). Here n,, n, are defined similar

to Ky, K-



r € Imm® (n —k, k),
Y = 0z/921(T) € Imm®* (n — 2k, 2k),
2 = 0y913 © 0z /9121 € Imm®/?” (n — 4k, 4k),
U = Oz © Oz © Oy (T)
= [(h,A, ()] € Imm®/?" (n — 8k, 8k),
—h : L"8F o R™,
—(r is a Z /2" -bundle over L" 8,

~A is a an 8-dimensional Z/4“-framing of the normal

bundle of h, i.e. an isomorphism A : v, ~ k(.



Definition of bicyclic structure

A 7/2Bl-immersion

(90 )] = Oz © Oz () € Tmm™™ (n — 4k, 4F)
admits a bicyclic structure if there exists a map
Caxal L8k K(Iaxia, 1) (Eilenberg-Mac Lain space),

satistying the following equation:

_n—32k _

Here the cohomology class ¢ ixd.z 18 defined by means of

gaxa,L-



In the previous formula:
L8 is the double-point Z/2*-manifold of ¢’

[L,. ] is the fundamental class of the corresponding

4-sheeted cover

: . Tn—8k n—8k
TrdXd,aXd . ded — L y

induced from the 4-sheeted cover of Eilenberg-Maclain
spaces K (I x I4,1) — K(I, x I,,1) by the map
Caxar, : L% — K(I, x I, 1)

C_d.xd, L €H 2(1_)3;2’“; Z./2) is the universal cohomological
I; x I;-class, constructed by means of the map CQX O.L



— (1, € H3(L"8*:7Z/2) is the top characteristic class of
the Z /2%~ framing and it is the pull-back of the
universal class 7y € H3(Z/2;7Z/2) under the classifying
map L" % — K(Z/24 1) of the corresponded

7./24 bundle previously denoted by (r.

g (Cr) € H3(L" % 7/2) is the pull-back of the

7Td><d,a><c‘z,,L dxd ’
class (7, under the 4-sheeted cover

, . Tn—8k n—8k
Taxd,axa * ded — L :



Bicyclic structure immersion Theorem

Let us assume that © € Imm*/ (n — k, k), k = 2=—=*2,

s > 6, admits a desuspension of the order q = 282_ 2 Then

the class
2 =0 0 5{“2] (x) € Imm®?° (n — 4k, 4k)

is represented by a triple (h, A, (1), such that this

skew-framed immersion admits an Abelian structure.



Quaternionic group

The quaternionic group of the order &:
Q={ijk | ij=k=-jijk=i=—kj ki=j=—ik,
i’ =j* =k = —1}.

This is an index 16 subgroup Q C Z/2?. The standard
representation y : Q — Z/213 transforms the

quaternions 1, j, k into the following matrices:



0O 0 0 -1




0 0

0




o = O O




Biquaternionic group

257

The biquaternionic index 2°‘—subgroup of the order 64:

QxQczZ/2B xz/2B ¢ 7/21



The universal cohomology class of the

biquaternionic group

There exists 7 € H**(Z/2%;7Z/2) (the universal class),
Z'*QXQ(T[es]) € H**(Q x Q; Z/2) is the pull-back of 7y
under the inclusion lox0 Q X Q C Z/2[6]

QXQ( ) CQCQa

(Q: G € H*(Q x Q: 7./2). Here (q, (g are defined similar
to Nas Ne-



r € Imm® (n —k, k),
Y = 0z/9121(T) € Imm®/%” (n — 2k, 2k),
2 = 0g913 © 0z /9121 € ImmZ/?" (n — 4k, 4k),
U = Oy © gz © Oy () € Imm®/2” (n — 4k, 4k),
v = Oyi5) © Oga) © Oy3) © Ogizy () € Imm2/?" (n — 8k, 8k),

w = (52[6]O5Z[5]O5Z[4]O5Z[3]O5Z[2] (:E) S Immz/2[5] (n—16k, 16k).



Definition of biquaternionic structure

A 7/2b)-immersion [(h', A, ()] =

07,2051 © 07,9141 © 07,913 © 07921 () € Imm®/2” (n — 16k, 16k)
admits a biquaternionic structure if there exists a map
WaxQ.K - K" 3% . K(QxQ,1) (Eilenberg-Mac Lain spac

satistying the following equation:

n—32k

62/2 5]( ) < dxiiK’ [dedb'
Here the cohomology class w,, ; ;- 1s defined by means ot

YQxQ,K



In the previous formula:

K" 3% is the double-point Z /26 -manifold of A’
(K, ] is the fundamental class of the 16-sheeted

cover
T i axd Rg;;;zk K3,
induced from the 16-sheeted cover of Eilenberg-Mac Lain
spaces K (I x Iz,1) — K(Q x Q, 1) by the map
WaxQ.K - K32k  K(Q x Q,1)
Wavix € H 2([_(;;3% ;7,/2) is the universal cohomology

I; x I-class, constructed by means of the map wq, q -



Biquaternionic structure immersion theorem

Let k =2=2%2 s> 6, (¢ = £52), ¢ be an integer

divisible by 16, and let n = 2' — 2 with [ sufficiently large.

Put
n—+ 2 q

32 16

Let us assume that © € Imm?*/(n — k, k) admits a

k= k(q) =

desuspension of the order ¢ = 282_ 2 Then the class
w = 8%s) 0 68, 0 6y © 08, (x) € Imm®/” (n — 16k, 16k)
is represented by a triple (h’ ,\', (1) such that this triple

admits a biquaternionic structure.



Biquaternionic Kervaire Invariant Theorem

Assume that w € Imm?2/2” (n — 16k, 16k), n = 2! — 2,
k=0 (mod 64), k > 0, n — 32k > 0 admits a
biquaternionic structure. Then ©y 9 (w) = 0.

As a corollary we get

Main Theorem

There exists an integer [y, such that for an arbitrary

[ >y, the Kervaire invariant
O : Imm* (2" —3,1) — Z/2

is the trivial homomorphism.



Proof of Biquaternionic Theorem

Let w € Imm?%/?™ (n — 16k, 16k),
w = |(e,Q,wk)],
S™ =32k he the double point manifold of the immersion e,
wQ X W SP32%k L K(Q,1) x K(Q, 1)

be the biquaternionic map.

Recall that n — 32k = dim(S) > 14. Let ¢ : T C Sn—32*
be a closed submanifold dual to the cohomology class

n—32k—14

(wsiqus.g) = € H' IS0 Z)2),

where ws.q = w5 (CQ);We.q = wa(CQ) e H*(S"32%.7,/2).



The following (non-standard) representation
X— : Q — Z/2P transforms the quaternions i, j, k into

the following matrices:

[0 10 0 )
| 100 o0
o001 |

\ 0 01 0 |



[0 0
0 0
~1 0

\ 0 -1

o O O =




[0 0 0 1)

0O 0 —1 0

\ -1 0 0 0




Let us define the vector bundles (., (_ be over S*°/Q,.
The bundle (. is defined by means of the representation
X+. The bundle (_ is defined by means of the

representation y_.

The bundle ¢, admits a complex structure. Note that

c1(Cy) = 0, because the restriction of the bundle (; over
S3/Q C S¥/Q is the trivial complex bundle and
H?*(SY*/Q;Z) — H?*(S°/Q;Z) is an isomorphism.



Therefore,
p1(2¢4) = c1(2¢4) — 2¢2(2¢4) =
4ci(Cr) — 4ea(Cy) = 4¢q € HY(K(Q,1);2).
By the analogical computation:

p1(2¢,) = ACe € HYK(Q,1):7).



The bundle (_ admits a complex structure. Note that

c1(¢_) = 0 by analogical calculations. Therefore,
(e @) =G+ D) —20(C B () =

ci(Cs) +ei(C) +2e1(C)en(C) = 2ea(Ch) — 262(¢-) = 0,
because the Euler classes e((y) € H*(S"/Q;7Z)
e((_) € H*(S"/Q;Z) are opposite: e((;) = —e({).



The normal bundle v 1s stably isomorphic to the bundle

I+ B léT,+, where [ is an integer, [ = 2 (mod 4).

The bundle (74 1s the 4-dimensional vector bundle over
T defined as

(4 = W?P,Q(Q),
wr,q = wqlr : T — K(Q,1).
The bundle éT,+ is the 4-dimensional vector bundle over
T defined as
Cr4 = W;Q(Q),

wTyQ — wQ\T : T14 — K(Q, 1).



Put —T'* to be T with the opposite orientation. The

normal bundle v_ is stably isomorphic to the bundle
(I —1)_p s ®Cor ® I 74 (we will put after [ = 2 for
the shortness).

The bundle (_r is the 4-dimensional vector bundle
defined as

C—r4 = wiT,Q(C—F):
W_rTQ — CUQ‘_T . —T14 — K(Q7 1)

The bundle (_r _ is the 4-dimensional vector bundle
defined as

(-1~ = wirqlC-).



The bundle (_r is the 4-dimensional vector bundle
defined as

é—T,—i— — wiT,Q (C—l—) )

W_rq =W_ral-r: —T" = K(Q,1).



Let us assume that ©/5(w) = 1.. Then the
decomposition of the cycle wggq . (|7]) in the standard
base of H14(Q @ Q: 7)) involves the element u; ® vy,
where u; € H7(K(Q,1);Z) = 7Z/8,

vy € H7(K(Q,1);Z) = Z/8 are the generators,
H:(K(Q,1);Z)® H/(K(Q,1);Z) C Hiu(K(Q x Q,1);7Z).



Let
F=idU—id:THYy-T" = 74

be the standard degree 0 map. Let us consider the

following homology class:

R = (wqug © F)u(pr () + [pr (v-2))) €

Hio(K(Q x Qy 1);Z),

where the upper index ”"op” stands for Poincaré dual.



Let us prove that X involves the element 4us ® v; €
Hy(K(Q,1):2) @ Hy(K(Q,1):Z) € Hio(K(Q % Q,1); Z).
Without loss of the generality we may assume that
Waeqs[T]) = ur @ vr + vuzg @ v1y + ..., where z is an
arbitrary integer. (For all last terms in this formula the
characteristic class N does not involve the element us ® v~
by the dimension reason). Under this assumption by the

computation above we get:
F.(lp1(vp)|P) = dus @ vy + daus Quy + -+ - €

H3(K(Q,1);Z) ® H7(K(Q,1); Z) C Hio(K(Q x Q,1); Z),
F.([p1(v_r)|??) = dzus @ v7 + . . ..



Therefore the first (normal) Pontrjagin class satisfy the

equation:

07 duz @vr+- -+ = (Waxq 0 F)([p1 (V)| + 1 (v-1)]™)).

In particular, F'is not cobordant to zero. But the
mapping F' is cobordant to zero by definition.
Contradiction. Therefore Oy /5(w) = 0.



