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Let
f : Mn−1 # Rn,

n = 4k + 2, n ≥ 2 be a smooth generic immersion of a
closed manifold of codimension 1. Let

g : Nn−2 # Rn

be the immersion of the double points intersection of g.

The Kervaire invariant of f is defined by

Θsf (f) = 〈η
n−2

2
N ; [Nn−2]〉,

where ηN = w2(Nn−2) is the second normal
Stiefel-Whitney class of Nn−2.



In particular, if n = 2, Θsf (f) is the parity of the number
of self-intersection points of the curve f on the plane R2.

Let us denote by Immsf (n− 1, 1) the cobordism group of
immersions in the codimension 1 of (non-oriented) closed
(n− 1)–manifold (”sf” stands for skew-framed).



Theorem

The Kervaire invariant is a well-defined homomorphism:

Θsf : Immsf (4k + 1, 1) −→ Z/2.

1. This homomorphism is trivial if 4k+ 2 6= 2l−2, l ≥ 2.

2. For k = 0, 1, 3, 7, 15 the homomorphism Θsf is an
epimorphism.



Part 1 is the Theorem by W. Browder, The Kervaire
invariant of framed manifolds and its generalization,
Ann. of Math., (2) 90 (1969) 157-186. A special case of
this theorem was discovered by M. Kervaire, A manifold
which does not admit any differentiable structure,
Comment. Math. Helv., 34 (1960) 257-270.

Part 2 (in the case k = 7) was proved by M.E. Mahowald
and M.C. Tangora, Some differentials in the Adams
spectral sequence, Topology 6 (1967), 349-369. The case
k = 15 was proved by M. G. Barratt, J. D. S. Jones and
M. E. Mahowald, Relations amongst Toda brackets and
the Kervaire invariant in dimension 62, J.London
Math.Soc. (2) 30 (1984), no. 3, 533-550.



Main Theorem

There exists an integer l0, such that for an arbitrary
l ≥ l0, the Kervaire invariant

Θsf : Immsf (2l − 3, 1) −→ Z/2

is the trivial homomorphism.

The proof of this theorem is based on the approach
proposed by P.J.Eccles Codimension One Immersions
and the Kervaire Invariant One Problem, Math. Proc.
Cambridge Phil. Soc., vol.90 (1981) 483-493.



A commutative diagram that we use to define
dihedral structure of self-intersection manifold of
skew-framed immersions:

Immsf (n− 1, 1)
Jk

sf−→ Immsf (n− k, k)

↓ δZ/2[2] ↓ δkZ/2[2]

ImmZ/2[2]
(n− 2, 2)

Jk

Z/2[2]−→ ImmZ/2[2]
(n− 2k, 2k).



A commutative diagram that we use to define the
Kervaire invariant in the codimension k:

Immsf (n− k, k)
Θk

sf−→ Z/2 skew−framed
immersions

↓ δkZ/2[2] ‖

ImmZ/2[2]
(n− 2k, 2k)

Θk

Z/2[2]−→ Z/2 dihedral
immersions

.



Structure groups of immersions

Let us consider the following collection of (d− 1) sets

Υd,Υd−1, . . . ,Υ2,

where each set consists of proper coordinate subspaces of
R2d−1 .

The set of the subspaces

Υi, 2 ≤ i ≤ d,

(we will use only the case d = 6) consists of 2i−1

coordinate subspaces generated by the basis vectors:

((e1, . . . e2d−i), . . . , (e2d−1−2d−i+1, . . . , e2d−1)).



Let us denote by Z/2[d] the subgroup

Z/2 o Σ2d−1 ⊂ O(2d−1)

under the following condition:

– the transformation

Z/2[d] × R2d−1 → R2d−1

admits the invariant collection of sets

Υd,Υd−1, . . . ,Υ2.

In particular, in the case d = 2 we get that Υ2 contains
only one collection of subspaces and this collection is
((e1), (e2)). Therefore Z/2[2] is a dihedral group.



ImmZ/2[2]
(n− 2, 2) −→ ImmZ/2[2]

(n− 2k, 2k)

↓ δZ/2[3] ↓ δkZ/2[3]

ImmZ/2[3]
(n− 4, 4)

Jk

Z/2[3]−→ ImmZ/2[3]
(n− 4k, 4k)

↓ δZ/2[4] ↓ δkZ/2[4]

ImmZ/2[4]
(n− 8, 8)

Jk

Z/2[4]−→ ImmZ/2[4]
(n− 8k, 8k)

↓ δZ/2[5] ↓ δkZ/2[5]

ImmZ/2[5]
(n− 16, 16)

Jk

Z/2[5]−→ ImmZ/2[5]
(n− 16k, 16k)

↓ δZ/2[6] ↓ δkZ/2[6]

ImmZ/2[6]
(n− 32, 32)

Jk

Z/2[6]−→ ImmZ/2[6]
(n− 32k, 32k).



ImmZ/2[2]
(n− 2k, 2k) −→ Z/2

↓ δkZ/2[3] ‖

ImmZ/2[3]
(n− 4k, 4k)

Θk

Z/2[3]−→ Z/2

↓ δkZ/2[4] ‖

ImmZ/2[4]
(n− 8k, 8k)

Θk

Z/2[4]−→ Z/2

↓ δkZ/2[5] ‖

ImmZ/2[5]
(n− 16k, 16k)

Θk

Z/2[5]−→ Z/2

↓ δkZ/2[6] ‖

ImmZ/2[6]
(n− 32k, 32k)

Θk

Z/2[6]−→ Z/2.



Id ⊕ İd ⊂ Z/2[2] Abelian
structure

↓ i[3] ↓

Ia ⊕ İd ⊂ Z/2[3] cyclic−Abelian
structure

↓ i[4] ↓

Ia × İa ⊂ Z/2[4] bicyclic
structure

↓ i[5] ↓

Q× İa ⊂ Z/2[5] quaternionic−cyclic
structure

↓ i[6] ↓

Q× Q̇ ⊂ Z/2[6] biquaternionic
structure

.



Dihedral group

The dihedral group (of the order 8) Z/2[2] ⊂ O(2):

{a, b | a4 = b2 = e, [a, b] = a2}.

Let {f1, f2} be the standard base of the plane R2. The
element a is represented by the rotation through the
angle π

2
:

f1 7→ f2; f2 7→ −f1.

The element b is represented by the permutation of the
base vectors

f1 7→ f2; f2 7→ f1.



Elementary 2-group

The elementary subgroup Id × İd ⊂ Z/2[2] of the rank 2:

{a2, b | a4 = b2 = e, [a2, b] = e}.

This group preserves the vectors f1 + f2, f1 − f2.

Let τ[2] ∈ H2(Z/2[2]; Z/2) be the universal class,
i∗
d×ḋ(τ[2]) ∈ H2(Id × İd; Z/2) is the pull-back of τ[2] under
the inclusion id×ḋ : Id × İd ⊂ Z/2[2].

i∗
d×ḋ(τ[2]) = κdκḋ,

κd ∈ H1(Id × İd; Z/2). pd : Id × Iḋ → Id, κd = p∗d(td),
e 6= td ∈ Id ' Z/2, and κḋ ∈ H1(Id × İd; Z/2) is defined
analogously.



x = [(f,Ξ, κM)] ∈ Immsf (n− k, k),

–f : Mn−k # Rn,

–κM is a line bundle over Mn−k,

–Ξ is a skew-framing of the normal bundle of f , i.e. an
isomorphism Ξ : νf = kκM .

y = δkZ/2[2](x) = (g,Ψ, ηN) ∈ ImmZ[2]

(n− 2k, 2k),

–g : Nn−2k # Rn,

–ηN is a Z/2[2]–bundle over Nn−2k,

–Ψ is a dihedral framing of the normal bundle of f , i.e.
an isomorphism Ψ : νg = kηN .



Definition of Abelian structure

A skew-framed immersion

(f,Ξ, κM)

admits an Abelian structure if there exists a map

ηd×ḋ,N : Nn−2k → K(Id×İd, 1) (Eilenberg-Mac Lain space),

satisfying the following condition:

〈η
n−2k

2
N ; [Nn−2k]〉 = Θk

Z/2[2](y) = 〈η15k
N η

n−32k
2

d×ḋ ; [N ]〉.

ηd×ḋ = η∗
d×ḋ,N(i∗

d×ḋ(τ[2])) ∈ H2(Nn−2k; Z/2), [N ] is the
fundamental class of Nn−2k, ηN ∈ H2(Nn−2k; Z/2) is the
characteristic class of Z/2[2]–framing.



Definition of a Desuspension

A skew-framed cobordism class

x = [(f,Ξ, κM)] ∈ Immsf (n− k, k)

admits a desuspension of order q, if this class is
represented by a triple, such that

κM = I ◦ κ(q),

κ(q) : Mn−k → RPn−k−q−1, I : RPn−k−q−1 ⊂ RP∞.



Desuspension theorem

For an arbitrary q there exists an integer l0 = l0(q), such
that an arbitrary element x ∈ Immsf (2l − 3, 1), l ≥ l0,
admits a desuspension of order q.



Abelian structure immersion theorem

Let q be an arbitrary integer divisible by 16, and let
n = 2l − 2 with l is sufficiently large. Put

k = k(q) =
n+ 2

32
− q

16
.

Let us assume that x ∈ Immsf (n− k, k) admits a
desuspension of order q. Then the class x is represented
by a triple (f,Ξ, κM), such that this skew-framed
immersion admits an Abelian structure.



Cyclic group

The cyclic index 2 subgroup of the order 4:

Ia = {a | a4 = e} ⊂ Z/2[2].

Bicyclic group

The bicyclic index 211 subgroup of the order 16:

Ia × İa ⊂ Z/2[2] × Z/2[2] ⊂ Z/2[4].



The universal cohomology class of the bicyclic
group

There exists τ[4] ∈ H8(Z/2[4]; Z/2) (the universal class),
i∗a×ȧ(τ[4]) ∈ H8(Ia × İa; Z/2) is the pull-back of τ[4] under
the inclusion ia×ȧ : Ia × İa ⊂ Z/2[4].

i∗a×ȧ(τ[4]) = η2
aη

2
ȧ,

ηa, ηȧ ∈ H2(Ia × İa; Z/2). Here ηa, ηȧ are defined similar
to κa, κȧ.



x ∈ Immsf (n− k, k),

y = δZ/2[2](x) ∈ ImmZ/2[2]

(n− 2k, 2k),

z = δZ/2[3] ◦ δZ/2[2] ∈ ImmZ/2[3]

(n− 4k, 4k),

u = δZ[4] ◦ δZ[3] ◦ δZ[2](x)

u = [(h,Λ, ζL)] ∈ ImmZ/2[4]

(n− 8k, 8k),

–h : Ln−8k # Rn,

–ζL is a Z/2[4]–bundle over Ln−8k,

–Λ is a an 8–dimensional Z/4[4]-framing of the normal
bundle of h, i.e. an isomorphism Λ : νh ' kζL.



Definition of bicyclic structure

A Z/2[3]–immersion

[(g′,Ψ′, ηN ′)] = δZ/2[3] ◦ δZ/2[2](x) ∈ ImmZ/2[3]

(n− 4k, 4k)

admits a bicyclic structure if there exists a map

ζa×ȧ,L : Ln−8k → K(Ia×İa, 1) (Eilenberg-Mac Lain space),

satisfying the following equation:

Θk
Z/2[3](z) = 〈π∗

d×ḋ,a×ȧ,L(ζL)3kζ̄
n−32k

2

d×ḋ,L ; [L̄d×ḋ]〉.

Here the cohomology class ζ̄d×ḋ,L is defined by means of
ζa×ȧ,L.



In the previous formula:

– Ln−8k is the double-point Z/2[4]–manifold of g′

– [L̄d×ḋ] is the fundamental class of the corresponding
4-sheeted cover

πd×ḋ,a×ȧ : L̄n−8k

d×ḋ → Ln−8k,

induced from the 4-sheeted cover of Eilenberg-Maclain
spaces K(Id × İd, 1)→ K(Ia × İa, 1) by the map
ζa×ȧ,L : Ln−8k → K(Ia × İa, 1)

– ζ̄d×ḋ,L ∈ H2(L̄n−8k

d×ḋ ; Z/2) is the universal cohomological

Id × İd-class, constructed by means of the map ζQ×Q̇,L



– ζL ∈ H8(Ln−8k; Z/2) is the top characteristic class of
the Z/2[4]– framing and it is the pull-back of the
universal class τ[4] ∈ H8(Z/2[4]; Z/2) under the classifying
map Ln−8k → K(Z/2[4], 1) of the corresponded
Z/2[4]–bundle previously denoted by ζL.

– π∗
d×ḋ,a×ȧ,L(ζL) ∈ H8(L̄n−8k

d×ḋ ; Z/2) is the pull-back of the
class ζL under the 4-sheeted cover

πd×ḋ,a×ȧ : L̄n−8k

d×ḋ → Ln−8k.



Bicyclic structure immersion Theorem

Let us assume that x ∈ Immsf (n− k, k), k = n−2s+2
32

,
s ≥ 6, admits a desuspension of the order q = 2s−2

2
. Then

the class

z = δkZ[3] ◦ δk[2](x) ∈ ImmZ/2[3]

(n− 4k, 4k)

is represented by a triple (h,Λ, ζL), such that this
skew-framed immersion admits an Abelian structure.



Quaternionic group

The quaternionic group of the order 8:

Q = {i, j,k | ij = k = −ji, jk = i = −kj,ki = j = −ik,

i2 = j2 = k2 = −1}.

This is an index 16 subgroup Q ⊂ Z/2[3]. The standard
representation χ+ : Q→ Z/2[3] transforms the
quaternions i, j,k into the following matrices:



i =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 ,



j =


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 ,



k =


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

 .



Biquaternionic group

The biquaternionic index 257–subgroup of the order 64:

Q×Q ⊂ Z/2[3] × Z/2[3] ⊂ Z/2[6].



The universal cohomology class of the
biquaternionic group

There exists τ[6] ∈ H32(Z/2[6]; Z/2) (the universal class),
i∗
Q×Q̇

(τ[6]) ∈ H32(Q× Q̇; Z/2) is the pull-back of τ[6]

under the inclusion iQ×Q̇ : Q× Q̇ ⊂ Z/2[6].

i∗
Q×Q̇

(τ[6]) = ζ4
Qζ

4
Q̇
,

ζQ, ζQ̇ ∈ H4(Q× Q̇; Z/2). Here ζQ, ζQ̇ are defined similar
to ηa, ηȧ.



x ∈ Immsf (n− k, k),

y = δZ/2[2](x) ∈ ImmZ/2[2]

(n− 2k, 2k),

z = δZ/2[3] ◦ δZ/2[2] ∈ ImmZ/2[3]

(n− 4k, 4k),

u = δZ[4] ◦ δZ[3] ◦ δZ[2](x) ∈ ImmZ/2[3]

(n− 4k, 4k),

v = δZ[5] ◦ δZ[4] ◦ δZ[3] ◦ δZ[2](x) ∈ ImmZ/2[4]

(n− 8k, 8k),

w = δZ[6]◦δZ[5]◦δZ[4]◦δZ[3]◦δZ[2](x) ∈ ImmZ/2[5]

(n−16k, 16k).



Definition of biquaternionic structure

A Z/2[5]–immersion [(h′,Λ′, ζL′)] =

δZ/2[5] ◦ δZ/2[4] ◦ δZ/2[3] ◦ δZ/2[2](x) ∈ ImmZ/2[5]

(n− 16k, 16k)

admits a biquaternionic structure if there exists a map

ωQ×Q̇,K : Kn−32k → K(Q×Q̇, 1) (Eilenberg-Mac Lain space),

satisfying the following equation:

Θk
Z/2[5](w) = 〈ω̄

n−32k
2

d×ḋ,K ; [K̄d×ḋ]〉.

Here the cohomology class ω̄d×ḋ,K is defined by means of
ωQ×Q̇,K .



In the previous formula:

– Kn−32k is the double-point Z/2[6]–manifold of h′

– [K̄d×ḋ] is the fundamental class of the 16-sheeted
cover

πd×ḋ,Q×Q̇ : K̄n−32k

d×ḋ → Kn−32k,

induced from the 16-sheeted cover of Eilenberg-Mac Lain
spaces K(Id × İd, 1)→ K(Q× Q̇, 1) by the map
ωQ×Q̇,K : Kn−32k → K(Q× Q̇, 1)

– ω̄d×ḋ,K ∈ H2(K̄n−32k

d×ḋ ; Z/2) is the universal cohomology

Id × İd-class, constructed by means of the map ωQ×Q̇,K .



Biquaternionic structure immersion theorem

Let k = n−2s+2
32

, s ≥ 6, (q = 2s−2
2

), q be an integer
divisible by 16, and let n = 2l − 2 with l sufficiently large.
Put

k = k(q) =
n+ 2

32
− q

16
.

Let us assume that x ∈ Immsf (n− k, k) admits a
desuspension of the order q = 2s−2

2
. Then the class

w = δkZ[5] ◦ δkZ[4]
◦ δkZ[3] ◦ δkZ[2]

(x) ∈ ImmZ/2[5]
(n− 16k, 16k)

is represented by a triple (h′,Λ′, ζL′) such that this triple
admits a biquaternionic structure.



Biquaternionic Kervaire Invariant Theorem

Assume that w ∈ ImmZ/2[5]
(n− 16k, 16k), n = 2l − 2,

k ∼= 0 (mod 64), k > 0, n− 32k > 0 admits a
biquaternionic structure. Then ΘZ/2[5](w) = 0.

As a corollary we get

Main Theorem

There exists an integer l0, such that for an arbitrary
l ≥ l0, the Kervaire invariant

Θsf : Immsf (2l − 3, 1) −→ Z/2

is the trivial homomorphism.



Proof of Biquaternionic Theorem

Let w ∈ ImmZ/2[5]
(n− 16k, 16k),

w = [(e,Ω, ωK)],

Sn−32k be the double point manifold of the immersion e,

ωQ × ωQ̇ : Sn−32k → K(Q, 1)×K(Q̇, 1)

be the biquaternionic map.

Recall that n− 32k = dim(S) ≥ 14. Let iT : T 14 ⊂ Sn−32k

be a closed submanifold dual to the cohomology class

(ωS;QωS;Q̇)
n−32k−14

8 ∈ Hn−32k−14(Sn−32k; Z/2),

where ωS;Q = ω∗Q(ζQ);ωS;Q̇ = ω∗
Q̇

(ζQ̇) ∈ H4(Sn−32k; Z/2).



The following (non-standard) representation
χ− : Q→ Z/2[3] transforms the quaternions i, j,k into
the following matrices:

i =


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 ,



j =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 ,



k =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 .



Let us define the vector bundles ζ+, ζ− be over S15/Qa.
The bundle ζ+ is defined by means of the representation
χ+. The bundle ζ− is defined by means of the
representation χ−.

The bundle ζ+ admits a complex structure. Note that
c1(ζ+) = 0, because the restriction of the bundle ζ+ over
S3/Q ⊂ S15/Q is the trivial complex bundle and
H2(S15/Q; Z)→ H2(S3/Q; Z) is an isomorphism.



Therefore,

p1(2ζ+) = c2
1(2ζ+)− 2c2(2ζ+) =

4c2
1(ζ+)− 4c2(ζ+) = 4ζQ ∈ H4(K(Q, 1); Z).

By the analogical computation:

p1(2ζ̇+) = 4ζQ̇ ∈ H
4(K(Q̇, 1); Z).



The bundle ζ− admits a complex structure. Note that
c1(ζ−) = 0 by analogical calculations. Therefore,

p1(ζ+ ⊕ ζ−) = c2
1(ζ+ ⊕ ζ−)− 2c2(ζ+ ⊕ ζ−) =

c2
1(ζ+) + c2

1(ζ−) + 2c1(ζ+)c1(ζ−)− 2c2(ζ+)− 2c2(ζ−) = 0,

because the Euler classes e(ζ+) ∈ H4(S15/Q; Z)

e(ζ−) ∈ H4(S15/Q; Z) are opposite: e(ζ+) = −e(ζ−).



The normal bundle νT is stably isomorphic to the bundle
lζT,+ ⊕ lζ̇T,+, where l is an integer, l = 2 (mod 4).

The bundle ζT,+ is the 4-dimensional vector bundle over
T defined as

ζT,+ = ω∗T,Q(ζ+),

ωT,Q = ωQ|T : T 14 → K(Q, 1).

The bundle ζ̇T,+ is the 4-dimensional vector bundle over
T defined as

ζ̇T,+ = ω∗
T,Q̇

(ζ+),

ωT,Q̇ = ωQ̇|T : T 14 → K(Q̇, 1).



Put −T 14 to be T 14 with the opposite orientation. The
normal bundle ν−T is stably isomorphic to the bundle
(l − 1)ζ−T,+ ⊕ ζ−T,− ⊕ lζ̇−T,+ (we will put after l = 2 for
the shortness).

The bundle ζ−T,+ is the 4-dimensional vector bundle
defined as

ζ−T,+ = ω∗−T,Q(ζ+),

ω−T,Q = ωQ|−T : −T 14 → K(Q, 1).

The bundle ζ−T,− is the 4-dimensional vector bundle
defined as

ζ−T,− = ω∗−T,Q(ζ−).



The bundle ζ−T,+ is the 4-dimensional vector bundle
defined as

ζ̇−T,+ = ω∗−T,Q̇(ζ+),

ω−T,Q̇ = ω−T,Q̇|−T : −T 14 → K(Q̇, 1).



Let us assume that ΘZ/5(w) = 1.. Then the
decomposition of the cycle ωQ⊕Q̇,∗([T ]) in the standard
base of H14(Q⊕ Q̇; Z) involves the element u7 ⊗ v7,
where u7 ∈ H7(K(Q, 1); Z) = Z/8,
v7 ∈ H7(K(Q̇, 1); Z) = Z/8 are the generators,
H7(K(Q, 1); Z)⊗H7(K(Q̇, 1); Z) ⊂ H14(K(Q× Q̇, 1); Z).



Let
F = id ∪ −id : T 14 ∪ −T 14 → T 14

be the standard degree 0 map. Let us consider the
following homology class:

ℵ = (ωQ×Q̇ ◦ F )∗([p1(νT )]op + [p1(ν−T )]op]) ∈

H10(K(Q× Q̇, 1); Z),

where the upper index ”op” stands for Poincaré dual.



Let us prove that ℵ involves the element 4u3 ⊗ v7 ∈
H3(K(Q, 1); Z)⊗H7(K(Q̇, 1); Z) ⊂ H10(K(Q× Q̇, 1); Z).
Without loss of the generality we may assume that
ωQ⊕Q̇,∗([T ]) = u7 ⊗ v7 + xu3 ⊗ v11 + . . . , where x is an
arbitrary integer. (For all last terms in this formula the
characteristic class ℵ does not involve the element u3 ⊗ v7

by the dimension reason). Under this assumption by the
computation above we get:

F∗([p1(νT )]op) = 4u3 ⊗ v7 + 4xu3 ⊗ v7 + · · · ∈

H3(K(Q, 1); Z)⊗H7(K(Q̇, 1); Z) ⊂ H10(K(Q× Q̇, 1); Z),

F∗([p1(ν−T )]op) = 4xu3 ⊗ v7 + . . . .



Therefore the first (normal) Pontrjagin class satisfy the
equation:

0 6= 4u3⊗v7 + · · · = (ωQ×Q̇ ◦F )∗([p1(νT )]op+ [p1(ν−T )]op]).

In particular, F is not cobordant to zero. But the
mapping F is cobordant to zero by definition.
Contradiction. Therefore ΘZ/5(w) = 0.


