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Geometric approach to stable homotopy
oroups of spheres II. The Kervaire invariant

Petr M. Akhmet’ev *

Abstract

A solution to the Kervaire invariant problem is presented. We intro-
duce the concepts of abelian structure on skew-framed immersions, bi-
cyclic structure on Z/ 23] framed immersions, and quaternionic-cyclic
structure on Z/ 2l framed immersions. Using these concepts, we
prove that for sufficiently large n, n = 2¢—2, an arbitrary skew-framed
immersion in Euclidean n-space R™ has zero Kervaire invariant. Ad-
ditionally, for ¢ > 12 (i.e., for n > 4094) an arbitrary skew-framed
immersion in Euclidean n-space R™ has zero Kervaire invariant if this
skew-framed immersion admits a compression of order 16.

1 Self-intersections of immersions and the Ker-
valre invariant

The Kervaire invariant one problem was for many years an open problem
in algebraic topology. For algebraic approaches to the problem see Snaith
[S], Barratt-Jones-Mahowald [B-J-M] and Cohen-Jones-Mahowald [C-J-M].
Recently, Hill, Hopkins, and Ravenel obtained a solution of this problem
for all dimensions, except n = 126 (see [H-H-R]). We consider an alternative
geometric approach. For a different geometric approach see Carter [C1], [C2].

The proof is based on a paper by P.J. Eccles [E1], identifying the Kervaire
invariant with the number of multiple points of an immersion using the Kahn-
Priddy map MO(1) = P> — S°. Since all Steenrod squares are non-zero in
the mapping cone of this map, an element « € 73, _,MO(1) is detected by
S¢* on aj_; if and only if its image is detected by the secondary operation
coming from S¢¥Sq* (k a power of 2 and n+2 = 2k). By W. Browder’s result
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[B] this gives the geometric interpretation of the Kervaire invariant. Namely,
Peter Eccles showed that the Kervaire invariant can be interpreted as the
parity of the number of (2k — 2)-fold points of a corresponding immersion.
But with our approach we do not directly make use of this.

Using the equivalence of the James-Hopf invariant and the Steenrod-
Hopf invariant this is also equivalent to the stable Hopf invariant j,(«) €
Ty o DaMO(1) having Hurewicz image a7 ,. This element represents the
double point manifold of an immersion corresponding to «. Forgetting the
additional structure on the double point manifold maps ja(«) to an element
B € w5, MO(2) with Hurewicz image aj_,.

If a corresponds to an immersion f then  corresponds to an immersion
g, as in the following paragraph. By dualizing to cohomology and using
the Thom isomorphism one can check that h(3) = ai_, if and only if the
characteristic number (w5™' [N]) = 1 which is our interpretation of the
Kervaire invariant. More detailed information can be found in [A-E]. As far
as I know, there is no explicitly geometric proof of Eccles’ Theorem on the
Kervaire invariant.

Consider a smooth immersion f : M" ' 9 R*, n =2 —2 ¢ > 11in
general position and having codimension 1. We denote by g : N"°2 ¢» R»
the immersion of the manifold of self-intersections.

Definition 1. The Kervaire invariant of the immersion f is defined by the
formula

O (f) = (1 [N"2)), (1)

where ny = wo(N""?) denotes the second normal Stiefel-Whitney class of
the manifold N2,

The Kervaire invariant is an invariant of the regular cobordism class of the
immersion f. Moreover, the Kervaire invariant determines a homomorphism

0% . Imm*(n —1,1) = Z/2, (2)

the cobordism group (and cobordism groups mentioned below) of immersions
is defined in [A1l]. The normal bundle v, of the immersion g : N2 ¢ R"
is a 2-dimensional bundle over N"~2, which is naturally equipped with a
D-framing, where D denotes the dihedral group of order 8. The classifying
map of this bundle (and its corresponding characteristic class) are denoted
by ny : N"? — K(D,1). The pair (g,ny) represents an element of the



cobordism group I'mmP (n — 2,2). The passage from f to (g,ny) gives rise
to a well defined homomorphism

6P Imm® (n —1,1) = ImmP(n - 2,2). (3)

The cobordism group Imm*/(n — k, k) generalizes the cobordism group
Imm*/(n—1,1). The new group is defined as the cobordism group of triples
(f,=, kn), where f : M"F 95 R"™ is an immersion of a compact closed
manifold; moreover there is given a morphism of bundles (a bundle map)
= : vy = kkyr, which is invertible, i.e., which is a fiberwise isomorphism, and
which is called a skew-framing, where vy denotes the normal bundle of the
immersion f and j; is a given line bundle over M" % whose characteristic
class is also denoted by xy, € HY(M"*;7/2). The relation of cobordism on
the set of triples is the standard one (see section 1 of [Al] for more details
for the definition of the cobordism relation).

The group ImmP (n — 2,2) is generalized in the following way. We shall
define cobordism groups ImmP(n — 2k,2k). Each element of the group
ImmP (n—2k, 2k) is represented by a triple (g, ¥, ny), where g : N"~ 2k q» R”
is an immersion, V¥ is a dihedral framing of codimension 2k, i.e., a fixed iso-
morphism = : v, & kny, and where 7y is a 2-dimensional bundle over N"~2
with structure group D, 7 is the universal 2-bundle over K (D, 1). The char-
acteristic mapping of this bundle, and also the corresponding characteristic
Euler class (respectively, the universal characteristic Euler class) will be de-
noted also by ny : N*2¢ — K(D, 1), ny € H*(N"?*;7Z/2) (respectively,
7€ H*(K(D,1);7Z/2)).

The mapping 1y is also called characteristic for the bundle v,, since
vy = knn.

We define the Kervaire homomorphism (2)) (see (Il)) as the composition
of the homomorphism () and a homomorphism

O ImmP(n —2,2) > 7/2, OP(g, W,ny) = (M2 ;IN"2).  (4)

The homomorphism ({]) is called the Kervaire invariant of a D—framed im-
mersion.

The Kervaire homomorphism can be defined in more general situations
by means of a direct generalization of the homomorphisms (2]) and (@):

O Imm¥ (n—k k) - 2/2, O :=0PosP. (5)

OP : Imm®(n—2k,2k) = Z/2.  OP[(g. T.nn)] = (nn? :[N""]). (6)



For £k = 1 the new homomorphism (f]) coincides with the homomorphism
@) already defined; moreover the following diagram, in which the homomor-
phisms J*/ and JP were defined in the first part of the paper [A1] (Proposi-
tion 2), is commutative:
5D D ep
Imm*(n—-1,1) — ImmPn-22) — Z/2
I/ LR ] (7)

5P ep
Imm® (n —k k) — ImmP(n—2k,2k) % 7Z/2.

We shall need to generalize formula ([6]) for immersions with framing of a
more general form. Denote by Z/2!*! the wreath product of 2°~* copies of the
cyclic group Z/2. This group is a subgroup of the orthogonal group O(2571),
and can be defined in the following way:

Transformations in Z/2[s| leave invariant the collection of (s — 1)

sets Ty, YTs_1, ..., Yo of coordinate subspaces. The set of sub-
spaces Y;, 2 < i < s consists of the 27! coordinate subspaces
(Lin(ey,...,e95-i),..., Lin(egs—1_gs—iyq,...,€9-1)), spanned by the or-

thonormal basis vectors. The blocks of basis vectors are disjoint and all
of the same size.

In particular, in this new notation the dihedral group D will be denoted by
7./2. This group is defined as the subgroup of orthogonal transformations
of the plane, carrying the set Ty = {Lin(ey), Lin(es)} of lines into itself.
In this paper we shall make use of the groups Z/2 for 2 < s < 5. By
definition, there is an inclusion Z/21*l € Z/2 ¢ %(2*71), which coincides with
the inclusion of a 2-Sylow subgroup of the symmetric group 3(2%). E.g., the
dihedral group Z/2P is a 2-Sylow subgroup of ¥(4).

Consider an immersion ¢ : N"%2°"" q» R™ in general position and of
codimension £2°7'. We say that the immersion ¢ is Z/2*-framed (with
multiplicity k), if an isomorphism ¥ : v, = kny is given between the normal
bundle v, of the immersion g and the Whitney sum of k copies of a 2°71-
dimensional bundle 7y with structure group Z/2/%.

The bundle 7y is classified by a mapping ny : N**2" — K(Z/21 1).
(The corresponding characteristic class is also denoted by ny.) The charac-
teristic class of the universal 2°~!-dimensional Z/2*-bundle over K (Z/2!!, 1)
is denoted by 7i5. Therefore, ny (7)) = ny. The mapping 7y is also called a
characteristic map for the bundle vy, since vy, = kny.

The set of all possible triples (g, ¥, ny), as described above, generate the
cobordism group Imm®?” (n — k2571 k25=1). In some considerations we use
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an additional index in the notation, connected with the structure group. For
example, a representative of the group Imm?/ 202 (n — 2k, 2k) will sometimes
be denoted by (gpz, ¥z, 7n,) and so on.

The manifold of self-intersections of an arbitrary Z/2*-framed immersion
admits a natural Z/2F°+!-framed immersion. Thus, the manifold of self-
intersections yields a triple (h, A, (1), where h : L"*?° 95 R" is an immersion,
Ay, 2 k(¢ and (2 LR — K(Z/215711) is the classifying map of the
2%-dimensional bundle (;. We therefore obtain a homomorphism

5,%/2[s+1] . Imm®/! (n — k271 k2571 — Imm®%/2 (n — k2° k2%),  (8)

s > 1, assigning to the normal cobordism class [(g, ¥, 7y )] the normal cobor-
dism class [(h, A, ()]

In this formula the positive integer k indicates the multiplicity of the
framing and, for s = 1, k is equal to the codimension of the immersion. In
this case the index Z /2! is replaced by the index sf.

A subgroup 5.1 : Z/28¥) € Z/26F1 is defined as the subgroup of trans-
formations of the subspace Lin(ey,...,es-1) = R¥" C R?"| generated by
the first 2°~! basis vectors {ey,...,ess-1}, and acting as the identity on the
remaining basis vectors.

A subgroup of index 2

i1 1 Z/20 x 2,26 € 7, /20 (9)

is defined as the subgroup of transformations leaving invariant each subspace
in the set Ys.

The subgroup () induces a double covering 7,1 : K(Z/2ExZ /21 1) —
K(7Z/2*1 1). The characteristic mapping ¢z, : L"*?° — K(Z/2571 1) in-
duces a double covering s 1)1, : LP=k2 5 [~k from the covering T[s+1]
over the classifying space. The double covering 7, 1), can be defined ge-
ometrically, namely it coincides with the canonical double covering of the
manifold L"*2° of points of self-intersection of the Z/2[*-framed immersion
(9,9, nn) (see [Al], section 1, formula (3)).

The projection pyy : Z/26 x Z/218) — 7,/2 onto the first factor induces
a mapping pys : K(Z/26 x Z/21,1) — K(Z/21¥,1).

For the manifold of self-intersections (h,A,(;) of an arbitrary Z/2[-
framed immersion (g, ¥, ny), we consider the double covering (y, : Eﬁ,}’ms —
K(Z)21) x 7/21¥1 1) over the classifying mapping (g, which is induced
from the covering m[,11),7. This covering coincides with the canonical dou-
ble covering over the classifying mapping ¢, : L" % — K(Z/2l+1 1),
which is defined by geometric considerations. The characteristic class



(prsy © o) (119 X 719)) € H (L™ 2/2), 79 € HY ' (K(Z/21,1); Z/2) coin-
cides with the characteristic class mp,41),1 0 € L(T[sﬂ])
We define the mapping iy = ifs © - - - 0 43 from the tower:

K(D,1) 25 g(z/28, 1) B . 1 gz 08 1) Y gz /240 1), (10)

There is defined a tower of canonical double coverings

Ly 25 Ly e S L s (1)

This tower of coverings is endowed with characteristic mappings to the dia-
gram ([I0). There is defined a sequence of characteristic classes

éf;],L(ﬂZ]) S H2(Ln M 22),. s Gl n(Tr2) € H¥ (L5 7/2).  (12)

Each element in this sequence is induced from the characteristic class of the
corresponding universal space in (I0]). We denote by

Mot = W[s) © - - 0. Mg+ Lig ™" — L' (13)

the covering defined as the composition of the coverings in the diagram (ITI).
The tower of coverings (I1]) and the sequence of characteristic classes (I2)
are defined not only for a Z/2l*+!- framed immersion which occur as the
parametrization of a manifold of self-intersection of a suitable Z/2*)-framed
immersions, but also for an arbitrary Z/2**!framed immersion.

Definition 2. The Kervaire invariant ©% Jals+1) of an arbitrary 7,201

framed immersion (h, A, (;) is defined by the following formula:

0L (A, ¢1) = (G (o)) 5 L), (14)

where [Lpy] denotes the fundamental class of the covering manifold in the
sequence ([IT]).

n— k25

The invariant just constructed defines a homomorphism @%/ 2
Imm®? (n,n — k2¢-1) — 7/2, which is included in the following commuta-
tive diagram:

72151
Imm2 (n — k2571 k257 s 72

[d+1]
I [ (15)
Z/2[5+1]

Imm®2 (0 — k20, k2°) T Z)2.
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For an arbitrary s > 2 the diagram (I3]) is commutative. For s = 2 this
is proved in [A1l], Lemma 11, for s > 2 the proof is analogous.

In section 2 we define the concept of an I, ;—structure (abelian structure)
on a skew-framed immersion representing an element of the cobordism group
Imm?/(n—k, k). It is proved in Theorem B that under an appropriate dimen-
sional restriction and modulo elements of odd order, an arbitrary cobordism
class of skew-framed immersions admits an I, ;-structure. The hypothesis
of this theorem presupposes the existence of a compression of characteris-
tic classes of skew-framed immersions, see Definition [l The compression
theorem 27 will be proved somewhere else.

Let us define a positive integer o (c.f. (1)[A1]) by the following formula:

o= E} ~1. (16)

In particular, for ¢ = 12, ¢ = 5. In section 3 we formulate the concept of
an I, x I, structure (bicyclic structure) on a Z/2Bframed immersion. In
Corollary 211 it is proved that, under the conditions of Theorem [§ (in this
theorem the natural number n can be taken to be greater or equal to 254 or
greater, if the Compression Theorem for ¢ = 16 is satisfied; this condition
corresponds to the following: the adjoint element in the stable homotopy
group of spheres belongs to the image of the suspension of the order 17, i.e.
is borne on the sphere of the dimension S% ~'8) an arbitrary element of the

group

Im(cf/zm o 5,%/2[2] s Imm® (0 —k, k) — Imm®/*” (n — 4k, 4k)), (17)

n—mey

k:_ 9
16

me =27 —2,0 >5,n> 254 (18)

is represented by a Z/2Pl-framed immersion with bicyclic structure. For
such an immersion the Kervaire invariant can be evaluated in terms of an
I, x I,~characteristic class of the manifold of self-intersections.

In section 4 we formulate the concept of a Q X Z/4-structure
(quaternionic-cyclic structure or briefly quaternionic structure) on a 7,24
framed immersion. In Corollary 26]it is proved that, under the conditions of
Theorem 6, an arbitrary element of the group

Im (07" o 622" o 622" . Imm®f (n — k. k) —
Imm®?" (n — 8k, 8k)) (19)
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is represented by a Z/2[*framed immersion with quaternionic-cyclic struc-
ture. For such an immersion the Kervaire invariant can be evaluated in terms
of a Q x Z/4-characteristic class of the manifold of self-intersections.

The following two diagrams explain the plan of the proof. In the first
diagram the structure groups Z/2!, 2 < s < 5 of parameterizations of self-
intersections of immersions with structure group Z/2*~! are given, as well as
the names of the structures on immersions corresponding to each subgroup:

IbXb C Z/ 2[2] sﬁigﬁe
i 2[3] \l/ lic— Abeli
Bpi 29 ST
. i 4 A (20)
Ja x J“ C Z/2[4] le:’fLycilzj;e
! ifs) & l
5 uaternionic—cyclic
Q X Z/4 - Z/z[ ] . structure -

In the following diagram the natural homomorphisms of cobordism groups
of immersions that will be used are shown, and the Kervaire invariants on
each of these groups are indicated:

7./212] 5/2[2] 7./2[2] 9%/2[2]
Imm2?7(n—2,2) 2= Imm%?"(n—2k,2k) = 7Z/2
1 52/2[3] ! 52/2[3] H
k
5 7,/2[3] 5 62/2[3]
Imm®? (n—4,4) " Imm®?(n— 4k, 4k) s 7/2
[4)
1 §2/21 ! §Z/2 I (21)
X z/214] . ‘ 62 4]
Imm%?"(n —8.8) s Imm%?"(n — 8k, 8k) 2 72
(5]
1572 L& ||
7,2[5] g 7,/215]

Imm®?% (n —16,16) “—  Imm%?" (n — 16k, 16k) ~— 7/2

In view of the commutativity of this diagram, it suffices to show that the
Kervaire invariant defined in the last row of the diagram is zero. This is
proved with the help of the concept of biquaternionic structure.

The structure group of a Z/2°framed immersion that parameterizes the
manifold of self-intersection points of a Z/2/*-framed immersion contains the
subgroup Q x Z/4, the direct product of the quaternion group Q of order 8
and the cyclic group Z/4 of order 4.

The cohomology group H*(Q;Z), fori > 1, (see [At], section 13) contains
a characteristic class of order 8. In the part 1 (see [A1l]) the Hopf invariant of
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a corresponded skew-framed immersion is estimated using this characteristic
class. The Main Theorem (see section 6) is proved analogously.

The author thanks Prof. M. Mahowald (2005), Prof. R. Cohen (2007),
and Prof. P. Landweber for discussions, Prof. A.A. Voronov for an invitation
to lecture at the University of Minnesota (2005), and Prof. V. Chernov for
an invitation to lecture at Dartmouth College (2009). This paper was begun
at the seminar of M.M. Postnikov in 1998. The paper is dedicated to the
memory of Prof. Yu.P. Solov’ev. The compression theorem was proved in
the seminar of A.S. Mishchenko.

2 Geometric control of the manifold of
self-intersections of a skew-framed immersion

In this and the following sections, we shall make use of the cobordism groups
Imme! (n — k, k), Imm%2® (n — 2k, 2k). It is well known that if the first
argument in parentheses, denoting the dimension of the immersed manifold,
is strictly positive, then the indicated group is a finite group.

The dihedral group Z/2P is defined by its presentation:

{a,b|a* = b* = ¢, [a,b] = a*}.

This group is a subgroup of the orthogonal group O(2), namely, the group
of orthogonal transformations of the standard Euclidean plane Lin(eq,es),
preserving the unordered pair of lines generated by a basis of orthogonal
unit vectors {ej, ey}. The element a is represented by a rotation of the plane
through an angle 7. The element b is represented by a reflection of the plane
with respect to the line Iy = Lin(e; + e3), generated by the vector e; + e.

Consider the subgroup I, ; = I x I,CZ /2 of the dihedral group, gen-
erated by the elements {b, ba®}. Notice that this is an elementary 2-group of
rank 2. This is the subgroup of O(2) consisting of transformations preserving
individually each of the lines [, 5 in the directions of the vectors f; = e; +e,,
f, = e; — e, respectively. The cohomology group H'(K (I, x I,,1);Z/2) is
also an elementary 2-group with two generators. We now describe these
generators.

Let us define the cohomology classes

kp € HY(K(Ty x 1, 1);2/2)), #; € HY(K(T, x 1, 1);Z/2)). (22)



We denote by py : I,,; — I the homomorphism, whose kernel consists of
the reflection with respect to the bisector of the second coordinate angle and
the identity. Define x, = pj(t;), where e # t, € HY(K(I,1);Z/2) = Z/2.
Denote by p; : I x I, — I, the homomorphism, whose kernel consists of the
reflection with respect to the bisector of the first coordinate angle and the
identity, or equivalently whose kernel consists of the composition of the cen-
tral symmetry and the symmetry with respect to the second coordinate angle
and the identity. Define r;, = p;(t;), wheree # ¢, € HY(K(1,,1);2/2) = 7./2.

We next define a group I, ; fX[Q] Z and an epimorphism I, ; fxm 7 —
7./21. Consider the automorphism

X[Q] : Ib><i7 - Ib><i7 (23>

determined by the external conjugation of the subgroup I, ; C Z/ 22 by the
element ab € Z/ 22! this element correspond to the reflection with respect to
the line Lin(eq)..

Define the automorphism (the notation is similar)

X372 — 7./21, (24)

by the reflection in the line Lin(e;). It is easy to see that the inclusion
I,.; C Z/2 commutes with (23) and ([@24) such that the corresponding
diagram is commutative.

Define the group

beb/ Z (25)
x[2]

as the factorgroup of the group I, ; * Z (the free product of the groups
I,.; and Z) by the relation zxz~! = xP(x), where z € Z is the standard
generator, z € I, ; is an arbitrary element. The group (23]) is a particular
example of a semi-direct product of groups A x4 B, A =1, ;, B = Z, where
¢ : B — Aut(A) is a homomorphism and the set A x B is equipped with the
operation (ay, by) * (az, ba) — (a1¢p, (ba), b1bs).

The classifying space K(I,.; fxm Z,1) is a skew-product of the stan-
dard circle S' and the space K (I, ;,1), the map K (I, ;,1) — K(I,.;,1),
of the shift in the cyclic covering, associated with the cyclic covering over
K(,.; fx[g] Z,1) is induced by the automorphism x!?. Denote the standard
fibration by

pbxb : K(beb/[

]Z,l) — St (26)
X2
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Take a marked point ptg1 € S'. and define the subspace

K(T1) © KLy [ 21 @0

A2

as the inverse image of the marked point ptg: by the mapping (20)).
Let us consider the homology groups H;(K(I,.; fX[Q] 7,1);7)2),
Hi(K Ly, J 2 Z,1); Z) (below the coefficients Z/2 are omitted).

The standard basis of the group H,;(K(I,; fx[Q] Z,1);Z) is sufficiently
complicated and we do not need its description. The basis of the group
H;(K(L,,;,1); Z) is described by the Kiinneth formula:

0= P Hi(K1,,1);Z) @ Hy,(K(Ty,1); Z) — Hy(K(1,,;,1);Z) (28)
i1+i2=1
— P Tor’(H;, (KL, 1);Z), Hy, (K (1, 1);Z) = 0.
i1+i0=1i—1

The standard basis of the group H;(K (I,.;,1)) is following:
r@y/(rey)+yer),

where © € H;(K(Ty,1)), y € Hi_;(K(T;,1)).

In particular, in the case of odd i the group H;(K (I,,;,1); Z) contains the
fundamental classes of the following submanifolds RP? x pt C RP? x RP* C
K(I,,1) x K(I,,1), pt x RP* € RP* x RP* ¢ K (I,,,1) x K(I,,1). Denote the
corresponding elements by

ty; € Hi(K(bei)v 1);Z), ti),i = Hi(K(beiﬂ 1);Z). (29)

Let us define the analogous homology groups with local coefficients sys-
tem:

KLy [ 2.152/202/2), (30)
(KL [ 2.15212/2). 31

The following epimorphism

pbxi) : beb/[Q] Z— Z’ (32)
X
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is well defined by the formula z xy — y, € I, ;, vy € Z.. The following
epimorphism

IM/ Z— 7172 (33)
A[2]

is defined by the formula p, ; (mod 2).

Let us define the group (31I). Consider the group ring Z[Z/2] = {a + bt},
a,be Z t €7Z/2. The generator t € Z[Z/ 2] is represented by the involution
X[2 K1y f o Z,1) — K(I,; f the restriction of this involution
on the subspace K(beb, 1) C K( bxbfx is the reflection, which is in-

duced by the permutation automorphism Ib x I, — iz} x I,. Consider the
following local System of the coefficients p; : Z/2[Z/2] — Aut(K(1,.j,1) C
L. f ), which identifies the chain (a + bt)o, with a support on a

snnplex o C K bxbfx[g] Z,1) with the chain (at + b)x!?(¢). The group (31
is well defined. The group (30) is defined analogously.

The description of the groups ([B0), (B1)) are sufficiently complicated and
we will not use this description. Let us define a subgroup

DT, i ZI2/2) € HiK (i | Z1):2(2/2) (34)

by the formula:  D;(1,.;;Z[Z/2])) = Im(H;(K(,;,1):Z[Z/2]) —
Hi(K Ly [y Z,1); Z[Z)2])), Where the homomorphism
H{(K(,.;,1);Z]Z)2])) — Hi(K bxbf Z[Z./2]) is induced by
the inclusion of the subgroup @B]) The natural eplmorphlsm

Hi(K (L4, 1); Z[Z/2]) = Di(1,,; Z[Z/2]) (35)

is well defined.

The following natural homomorphism H;(K(I,.;,1);Z)) ® Z[Z/2] —
H;(K(1,.j,1); Z]Z/2]), is an isomorphism by the universal coefficients for-
mula. This calculation do not use the structure of Z[Z/2]-module, and use
the additive isomorphism Z|[Z/2] = Z® 7 and additivity of the functor TorZ.
Analogously, Hy(K (I,,5, 1) Z/2)) & Z/2(7/2] = Hy(K (1,4, 1) Z/2[Z/2)).

The subgroup (34) is generated by the following elements: X + Y,
X,Y € Hi(K(1,.;,1); Z). The following equivalence relation determines the
equivalence of the two representatives: X = XE] (X)t, where the automor-
phism

X2 Hy(K (L, 1); Z) — Hy(K(I,;,1); Z) (36)
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is induced by the automorphism (23]). The automorphism (23]) induces also
the automorphism

N s H(K (L 1) Z(2)2]) — H(K (T, 1): ZIZ)2). (37)

The subgroup

Dilly.ii 2/22/2) € HiK (T, [ Z1:2/202/2) (38)

X

is defined analogously to (B4]). The description of this subgroup is more
simple, because this subgroup is generated by the elements X +tY, X =
r®y,Y =12 ®y', where X?](:U@y) =y .

Define the homomorphism

AP Hi (K (T4, 1) ZI2/2)) — Hi(K (L5, 1) Z) (39)

by the formula AP(X +Yt) = X + XE](Y). Let us prove that the homomor-
phism (39) is naturally factorized to the homomorphism

A[Q] : Di(beb;Z[Z/Q]) — Hi(K(bebal);Z)v (40)

which we denote the same. This follows from the following observation: the
kernel of the homomorphism (B3]) is generated by elements X — XE] (X)t.
Define the analogously homomorphisms with Z/2—coefficients:

AP : D,(1,, Z/2(Z/2)) - Hi(K (L,1)). (41)
Let us consider the following composition of the homomorphisms:
Hi(K (L, 1); Z) = Hi(K (1,5, 1); Z[Z/2]) — (42)

Di(beb; Z[Z/Q]) - Hi(K(bein 1); Z)v

where the left homomorphism is the natural inclusion, the middle is the ho-
momorphism (35]), the right homomorphism in this composition is ([@0). It
is easy to check that the composition coincides with the identity homomor-
phism.

Let us define the forgetful homomorphism

Z,l);Z[Z/2])—>H,~(K(IbXb/ Z,1);Z).  (43)

12

forgs : Hi(K(beb/m

X

This homomorphism is induced by the forgetful mapping of the local coeffi-
cient system, analogously to the homomorphism A2,

13



Let us consider the homomorphism (B2) and let us consider the
mapping (26]), which is associated with this homomorphism. Assume
9 E Hl(Sl‘ [Z/Q]) is the generator. Take the eclement p} ,(0) €

IL.; f Z[Z/2]) and define the obstruction (44) by the formula

o(x) =2 ﬂpbxb(e). It is easy to check, that X?}(o(x)) = o(x), where the

automorphism XLQ} is defined by the formula (37]).

Consider the subgroup (B4) and the epimorphism (B5]). Take an element
r e Hi(K(1,, f 1);Z/2[Z/2]). Let us describe the total obstruction

o(z) € Dia (L5 Z/2[Z/2]) (44)

for the following inclusion: x € D;(1,.;;Z/2[Z/2]) C

L.; f 0 Z,1);Z/2[Z/2]).  Let us consider the generator 0 €
HI(S1 [Z/Z]) Take the element p* .(0) € H'(K bxbf 1);Z/2[Z/2])
and define the obstruction (44) by the formula o(z ) =zN pbxb(e)

From the definition of the obstruction (44)) is obvious that the value of this
obstruction one can calculate as following: apply to a singular cycle with local
coefficient, which represents a prescribed homology class, the homomorphism
(43), and then intersects the singular cycle of the space K(I,,; fx[g] Z,1) with
the subspace (27]).

Evidently, X?](o(a:)) = o(x), where the automorphism v is given by the

formula (B7).

In the case i = 2s basis elements y € D;_;(I,.;; Z[Z/2]), which satisfies
the equation XE] (y) =y, are the following:

Loy=r,r=tyas 1+, 1, where tgos 1,t;,, | € Hos 1(K(I,.;,1)) are
given by the formula (29]).

2.y = z(i1,d2), where 2(iy,da) = tor(reu,7i,,) + tor(Teiys i),
Qi = 1 (mod?2), 4 + i = 25 — 2, tor(res,ry;) €
Tor?(H;, (K(Iy,1); Z), Hy, (K (1;,1); Z)).  The elements {z(iy,iy)} are in
the kernel of the homomorphism

Di 1Ly Z[Z)2]) = Dioy (L5 Z/2[Z/2]), (45)
given by the homomorphism Z — Z/2 of coefficients.

Elements R, Z(iy,i2) € HQS(K(IbbeX[Q] Z,1);Z|Z/2]), which satisfies
the relation o(R) = r, o(R) = r, o(Z(i1,i2)) = z(i1,i2) are defined the
following way. Each element are given by cycle, which is represented by the

the product of the corresponding 2s — 1-cycle f : Co—1 — K(I,,;,1) with
the circle. The mapping of the cycle into K(I,,; f Z,1) is determined by

the composition of the mapping f x id : Cas_1 X Sl — K(beb, 1) x St with
the standard 2-sheeted covering K(I, ;,1) x S' — K(I,; fX[Q] Z,1).

14



By means of the obstruction (44]) we shall prove the following lemma.

Lemma 3. The group Hos(K bxbf o Z,1); Z[Z]2]) is isomorphic to the
direct sum of the subgroup DQS(beb, [Z/Q]) and the subgroup gener-
ated by the elements R, {Z(i1,i2)}. The elements in the subgroup
DB, iy2s His(K(1,1); Z) @ Hyy (K (L, 1); Z) C Day(Ty x 1, Z[Z/2]), and the
elements R generate the image Im(A) of the homomorphism

A st(K(IbXb/[ Z,1)202/2) > (46)

X

(K (L [ Z.152/202/2),

x[
which 1s induced by the reduction of the local coefficients system modulo 2.

Proof of Lemma [3

Let o €  Hy(K(I [ Z|Z/2]) is not in the subgroup
Dys(I,.;; Z[Z/2]). Then 0( ) (see (@) for i = 2s. Therefore x
as an element in a residue class with respect to the considered subgroup is
expressed by means of the elements R,  Z(i1,is). The subgroup of all values
of the obstruction (44) is a direct factor in Hos(K (I, f w Z,1); Z[Z]2)),
because this obstructions are realized by a linear combmatlon elements
R, {Z(iy,i2)}. The elements Z(iy,i2) belong to Ker(A) and, therefore
these elements are not a generators of Im(A). Lemma [ is proved.

Define the inclusion ig PR A I, CI, x ib = I,..;, as the diagonal inclusion.
The subgroup coincides with the kernel of the homomorphism

wm i P ib — Z/Z, (47)

this homomorphism is given by the formula (z X y) — zy.
Define the epimorphism

ol :be,-,/ 7 — 7.)2 (48)
e

by the formula: ®?(z) = ab, z € Z is the generator (the element ab corre-
sponds to the reflection of the first vector of the standard base with respect
to the standard representation Z C O(2)), the restriction ®[ |1, xi, o

I, xI, Z/Q[2 is the standard inclusion. Therefore ®! ]|1 < {1} I, x I, =

15



I.,CZ/ 20 is the conjugated inclusion by the exterior automorphism in the
subgroup I, x I, = I, CZ/2.
Define
()" (712)) = Ty

where 7,4 € H*(K (L, x L, [ 15 Z),1)), 79 € H*(K(Z?,1).

Definition 4. Let an element y € Imm?%/2® (n — 2k, 2k) be represented by a
7./2Pframed immersion (g, ¥, ny), g : N;;‘b% 9+ R"™. We say that the Z/2/2-
framed immersion (g, U, ny) is an I, ;—immersion (abelian immersion) if the
following two conditions are satisfied.

1. The structure mapping 7y : N:X_;k — K(Z/2P 1) is represented as
the composition of a mapping

Mot N2 = Kl [ 2,1) (49
X
and the mapping @ : bxbf ) — K(Z/2P 1).
2. Consider the submamfold
Nyt C NP2, (50)

which represents the Euler class [ny']% € Hy 161(N,, b%, Z/2) of the bundle

7kny (the considered class is Poincaré dual to the cohomology class ni¥

7k ( \yn—2k : : . :
H™ (N, "1 Z/2)). 1t is required that the restriction of the mapping GIQD on

the submanifold (B0) is given by the composition of the mapping
map : NIt = K (L,1) (51)
with the standard inclusion K(I,.;,1) C K(I,,; fX[Q] 7,1)

Definition 5. Let a skew-framed immersion (f, =, k), f : M" % & R" rep-
resents an element x € Imm® (n — k, k), where n > 16k. Let the Z/212-
framed immersion (g, ¥,ny), g : N 2* 9 R" be the immersion of the
manifold of self-intersections of the immersion f, so g represents the ele-
ment y = 52/2[2]( z) € Imm®? (n — 2k, 2k). We say that the skew-framed
immersion (f, =, k) admits an abelian structure (I, ;-structure) if the self-
intersection manifold N"~2* of the immersion f is decomposed into two com-
ponents (possibly, non-connected):

Nn—Zk Nn 2k U N[n] Zk‘. (52)
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Each component is equipped by a Z/2(framed immersion into R”. The
following two conditions are satisfies:
1. For the characteristic mapping ny|yn-2+ of the Z/2Pframing over
bxb

first component in the formula (52]) is equipped by a reduction into the
subspace K (I, [ 12 Z,1) C K(Z/2,1), defined by the mapping (J). For
the mapping (@9) the property 2 of Definition Ml is satisfied. Namely, the
restriction of the considered mapping on a submanifold N:ﬁwk C N:X_b%,
which is determined by the formula (B0), allows an additional reduction into
the subspace K(I,,;,1) C K(I,,; fx[g] Z,1), given by the formula (&1)).

2. The Z/2Pframed immersion, which is defined by the restriction of
the immersion g on the second component in the formula (52)), has the trivial
Kervaire invariant: the characteristic class (@) for the considered component
is trivial.

Example

Assume a skew-framed immersion (f,Z, kas), f : M™% & R"™, represents an
element z € Imm*/ (n—k, k), n > 16k. Assume that a Z/2!Zframed immer-
sion (g, ¥,nxn), g : N* 2% &5 R" which is the immersion of self-intersection
manifold of f, is a I, ;-immersion in the sense of Definition 4l Then the
skew-framed immersion (f, =, k)s) admits an abelian structure, for which the
second component in the formula (52)) is empty.

The justification of the example

Let us define the map, determined by an abelian structure by the formula
(9). The Conditions 1 and 2 in Definition [ implies the conditions 1 and 2
in Definition B The abelian structure is well defined.

The fundamental class with local coefficients of a framed immersion

Consider a Z /2P -framed immersion (g, ¥, ny), g : N:X’b% %+ R™, and assume
that a mapping (49]), which determines a reduction of the characteristic map-
ping, is well-defined. Assume that the manifold N:X’;k is connected. Assume

that a marked point pt € N;ﬁf%’l is fixed. Assume that the image of the
marked point by the mapping (9) is a point in the subspace (27)). Let us

17



prove that the image of the fundamental class [N;;‘b%; pt] by the mapping
(#9) determines an element

M (N 250D € Hoa(K (L [ Z00ZIZ/). (9
X
Denote by
n—2k—1 n—2k
Ny CN; (54)

the submanifold, which is defined as the regular preimage of the subspace
([@3). The restriction of the reduction mapping on the submanifold (54))
determines a I, ;-reduction of the restriction of the characteristic mapping
1y to this manifold.

Consider the skeleton of the space K(I,,;,1), which is realized as a
0(2)/1,,;-bundle over the Grassman manifold Gro(2,n) of 2-planes in n—
dimensional space. Denote this skeleton by

KK<Ib><b7 1) - K<Ib><bv 1)' (55>
The following free involution
X KK, ;1) — KK, ;, 1), (56)

acts on the space (B3, this involution corresponds to the automorphism (23))
(and denote the same). Let us consider the skeleton of the pair of spaces
([73)) as the cylinder of the involution (55), and denote this cylinder by

KK [ 20)c K, [ 2 57
A2 A2

The involution (56]) induces the involution

Xm : KK(Iij,/[Q]

X

7,1) — KK(bez}/

x|

7,1), (58)
2]

which is extended to the involution on the hole space K(I,,; fX[Q] Z,1).

The universal I,; fX[Q] Z-bundle over the skeleton (57)) is well-defined,
denote this bundle by 7,; Iz Denote the restriction of the bundle 7, ; [ on
the subspace (BA) by 7,.;.

The mapping (49) determines a I, ; fX[Q] Z—reduction of the characteristic
mapping of the framing ¥ and the framing ¥, ; : v, = anXB(Tin)J) is well-
defined.
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Let us visualize this reduction by the following way. The normal bundle
v, of the immersion g is decomposed into the Whitney sum of the k copies of
a 2-dimensional bundle. Let us denote the first term of this decomposition

by Vi, 7 C v The bundle v, I is a twisted Whitney sum of the two line
bundles k,®@kj. These two line bundles k;, x; are permuted by the parallel
transformation over a path [ C N: b%, if the projection of the path by the
mapping (26]) represents a generator in H;(S').

Let us consider an arbitrary cell « of a regular cell decomposition of the

manifold N:;;k. Assume that a path ¢,, which is joins the center of the
cell @ with the marked point pt € N;;‘b% is given. The restriction of the
bundle v, ; f to the cell v is classified by the mapping n,.;(a, ¢q) :
KK, f . A change of ¢, in a residue class of paths with the ﬁxed
ends in the group H 1(S1) determines another mapping 7, ;(c, o), which is
defined by means of the composition of the classified mapping mapping with
the involution (B8)). In the cell complex of the space (57) with Z[Z/2]-1local
coefficients a change of the path, which is attached to the cell «, corresponds
to the change of the base of the corresponding generator by the multiplication
on the element ¢ and the change of the parametrization mapping for the cell
by the involution (58). Therefore, the element (B3) is well-defined.

Let us prove that the image of the fundamental class of the target manifold
by the mapping (51]) determines the element

25 (NN]7) € Dy (L33 Z/2(Z,/2), (59)

which is mapped into the element

nAb,*([nj\ﬂop) € Hmo(K(bein 1)) (60)

by means of the homomorphism (4T]).

Consider the submanifold (B0) and consider the decomposition of this
manifold into connected components:

n—16k — n—16k n—2k
Nnm16 = U;N]" LFC N (61)

On each connected component of the manifold (€Il) let us take a marked
point pt; € N"77 16k Take a path p; on the manifold N" b% from the point pt;
to the point pt. For an arbitrary ¢ the isomorphism of the fiber k, © K; over
the point pt and the fiber over the point pt; is well-defined.

Therefore the following mapping

N, g (pi) 2 N2 = K(T x I, 1), (62)
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is well-defined. The immersed manifold N "7;16]“ is equipped with a framing

W 4. This framing over each component N "n 16k of N "m 16k is totally deter-
mined by the choice of the prescribed coordinate system in the fiber over the
marked point pt; € N "n 16k

At the opposite site, the choice of the coordinate system in the fiber
over pt; is changed by the transformation on the element s(i) € Z/2 from a
residue class of the subgroup I, ; C Z/2/3. For the non-trivial residue class
the transformation is given by the element ab € D \ I;,. Denote the element
nAb,i,*(Pi)(N;fn_i%) € H,, (I,.;), by zi(p;). Let us define the element

X; € Dy, (I, Z/2(2/2)) (63)

is equal to x;(p;) + 0t, if the framing W 4, over the manifold N "n7i6k is agree
with the framing, which is obtained by means of the parallel translation of
the framing U, ; along the path p;, and define Xi; = 0 + X*](ajz) t, if the
considered framings are not agree. The element (59) is well-defined. By the
construction, the element ((59) does not depended on a choice of a path p;
and a reduction W yy.

The following lemma is proved by a straightforward calculation.

Lemma 6. Let us assume that the mapping ([@9) is well defined as in Defi-
nition Bl Then the following two properties are satisfied.

~1. The element (BY), which is constructed by means of the mapping
(BID), has the image with respect to the homomorphism (&), such that the
decomposition of this image over the standard base of the group H,, (K (I, x
I,,1)) contains not more then one non-trivial element, which is determined
by the coefficient of the monomial t; ® t;,;, see. 29), i = 75> = ndk - This
coefficient coincides with the characteristic number @) for the Z/212framed
immersion (g, U, ny).

—2. The element (B3)) belongs to the subgroup [BY)), i = n — 16k.

Proof of Lemma

Let us prove the statement 1 of the lemma in the case m, = 14. The general
case is analogous. Consider the manifold Néé‘k, in the proof we denote this
manifold by N'* for short. The manifold N'* is equipped with the mapping
(51), in the proof we denote this mapping by n : N** — K(I,;, 1) for short.
Consider all characteristic numbers with Z/2—coefficients for the mapping
n, which are induced from the universal characteristic classes (22]) by the
mapping (5I). We will define the induced classes the same.

Because N'* is oriented, non-trivial numbers, possibly, are following:

18 3,11 5,9 7,7 .95 3.1 13
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Let us prove that the characteristic number I{b/{il)?’ is trivial. Consider a
submanifold K* C N', which is dual to the characteristic class yk;°. The
normal bundle vy of the manifold N is isomorphic to the bundle kr, ® kk;,
where £ = 0 (mod 8). The restriction of the bundle vx on the submanifold
K3 is trivial. Therefore, the normal bundle vk of the manifold K3 is stably
equivalent to the bundle x,@®2k;. The characteristic class wy(K?) is trivial, in
particular, (x%; [K®]) = 0. We have (x}; [K®]) = (kpr;°; [N'*]). This proves
that the characteristic number s}’ is trivial. Analogmally, the following
characteristic numbers /@2/@3, /{2/@5 ,%b/@ are trivial.

Let us prove that the characterlstlc number rjk!! is trivial. Take a sub-

b

manifold K7 C N'", which is dual to the characteristic class /@%/{2. the
normal bundle vgx of the manifold K¢ is stably equivalent to the bun-
dle 2, ® 5k;. Because ws(K’) = 0, the characteristic class /@b is triv-
ial. In particular, (rykf;[K™]) = 0. The following equation is satisfied:

</{b/~€ [K™)) = (kjr}h; [N14]>. This proves that the characteristic number

3 113

kiki! is trivial. Analogously, the characteristic number x; &7 is trivial.

6bv10usly, the characteristic number (k] b’[N 1]y coincides with the
characteristic number ([@). The statement 1 of the lemma is proved.

Let us prove the statement 2. Because the manifold N:X’;Gk in the case
o > 5 is oriented. Consider the decomposition of the element (53]) over the
base of the group H,—16k(K (Ly;, [ 12 Z,1); Z/2[Z/2]), using Lemma Bl By
Lemma [34] which is proved in Sectlon 6, the element R is not involved to
the considered expansion. Another case, the mapping n,.; is not satisfied

Condition 2 in Definition Bl The statement 2 is proved. Lemma [@] is proved.

Definition 7. Let [(f,Z, k)] € Imm® (n — k, k), f: M" % ¢ R" Ky €
HY(M"7%:Z/2) be skew-framed by =. We say that the pair (M™% )
admits a compression of order ¢ if the mapping sy, : M™% — RP> can
be represented as a composition x = I o ky, : M™% — RPF=a-1 C RP>,
where I denotes the inclusion. We say that the element [(f, =, k)] admits a
compression of order ¢ if this cobordism class contains a triple (f',Z', kps),
so that the pair (M™%, k) admits a compression of order q.

Theorem 8. Letm, =2°—2, 0 > 5, n > 4m,+6. Assume that the element
o € Imm® (n — 2= n=M2) qdmits a compression of order ¢ = "= — 1 (in

16 ° 16
particular, in the case o = 5, ¢ = 16). Then the element « admits an
I, ;—structure.
Let
d?® :RP"* x RP"F 5 R™ x R" (64)
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be an arbitrary Tgpn—r, Trn—equivariant mapping, which is transversal along
the diagonal Rjj;,, C R" x R" like in the formula (41)[A1]. (We will use only
the case k' = k 4+ ¢+ 1, as in denotations of Theorem [§)

Denote ()~ (Ry,,,)/Tgpn—+ by N = N(d®). Let us call this polyhedron
the polyhedron of (formal) intersection of the equivariant mapping d®.

The polyhedron N, generally speaking, contains a nonempty boundary
ON this boundary is represented by critical points of the mapping d®. De-
note by N, the open polyhedron N \ ON, denote by U(ON), the deleted
regular neighborhood of the boundary 0IN.

Let us assume the following equivariant mapping (64]) and the following

generic PL-mapping
d:RP"F 5 R" (65)
are given.

Definition 9. Let us say that a formal (equivariant) mapping d®, given by
(64)), is holonomic if this mapping is the extension of a mapping

d:RP"% 5 R". (66)

Definition 10. Let a formal (equivariant) mapping (64]) be given. Let us say
that d® admits an abelian structure, if the following condition is satisfied.

— On the open polyhedron N, of formal self-intersection points of d® the
following mapping

Moo (N UON)) = (K (L [ 2D K@) (00

is well-defined. This mapping determines a reduction of the structure map-
ping
770 : (N07 U<6N)O) — (K(Z/2[2]7 1)7 K<Ib><bu 1))7

which satisfies the boundary conditions (about the notion "¢

ping"’ see [Al, formula (48)]).

structure map-

The following lemma is proved in [A3].

Lemma 11. Assume that the following dimensional restriction
n—k=-1 (mod4), kK >7  n=0 (mod?2) (68)

is satisfied. Then there exists a formal (equivariant) mapping d®, which
admits an abelian structure in the sense of Definition [L0L
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Proof of Theorem [

Put k = "5g=. Let the element o be represented by a skew-framed immersion
(f,=,kum), f 1 M™% 9 R". By assumption there exists a compression
Kkhy 1 MR — RP"*=4=1 guch that the composition M™% — RP"~+-e-1 C
K(I4,1) coincides with the mapping sy : M™% — K (Iy,1).

Let us define &’ as the maximal integer, which is less or equal to k+ ¢+ 1,
and such that n — k' = —1 (mod 4). In the case 0 = 5 we get k' = k+q+1,
in the case 0 > 6 we get &' = k +¢ — 1. Because ¢ = %z > 14, for k' > 7 the
both dimensional restrictions (68) are satisfied.

By Lemma [I1] there a formal (equivariant) mapping d®, which admits
an abelian structure in the sense of Definition

Let us construct a skew-framed immersion (f;, =1, x1), for which the im-
mersed Z/2/2-framed self-intersection manifold contains a closed component
N:X’;k , as it is required in the formula (52).

Define the immersion f; : M™% 95 R" using [Corollary 31, Al] as a
result of a C%small regular deformation of the composition d o x : M™% —
RP"—*—a=1 — RP"* — R™ in the prescribed regular homotopy class of the
immersion f : M™% 9= R™. Define a caliber of the deformation d o k + f,
much less then the radius of the regular neighborhood of the polyhedron of
self-intersection points of the mapping d.

Denote by N;;‘b% the self-intersection manifold of the immersion f;. The
following decomposition of the manifold into the union of two manifolds with
boundaries along the common boundary is well defined:

n—2k __ n—2k n—2k
Nowir = Nbxb,N(d(Q)) Up Nyg ™ (69)
In this formula N:jﬁ (@) is a manifold with boundary, which is immersed

into a regular (immersed) neighborhood Un(g) of the polyhedron with the
boundary N(d) of self-intersection points of the mapping d. The manifold
N;;;Zk with boundary is immersed into a regular immersed neighborhood
(denote this immersed neighborhood by U,.,) of self-intersection points of
the mapping d outside of critical points. The common boundary of the

manifolds N:X_;l’i] @@y’ NJ:,?* is a closed manifold of the dimension n — 2k —
1, this manifold is immersed into the boundary J(U,.,) of the immersed
neighborhood U, ..

Denote the Z/2/2framed immersion of the self-intersection (69) by g, ;-
Let us prove that the Z/2Pframing over (G3) is reduced to a framing
(Myscirs Upr) With the structure group I, ; fX[Q] Z.

Myxb

Define a mapping N:X’b% — K(I,.; fxm Z,1), which is determined the
required reduction of the characteristic mapping of the framing. Define on
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the submanifold N % C N °* the mapping ryn,., : Nog? — K(I,, 1)

reg reg
by the composition of the pIOJectlon N]?eg% — RP™* and the inclusion
RP"+ C RP>® = K(I), 1).

The cohomology class x;y, — € H'(Nj,?*:Z/2) is defined as the ori-
entation class of the line bundle P @ KpN,.,, this bundle is the tensor
product of the line bundle, associated with the canonical double covering
p: N2 — N?* and the line bundle with the characteristic class kg,
namely

K/i?,Nr-eg = p ® K/bereg'
The pair of the cohomology classes &, Ny Fb,Nreg determines the required
mapping

Wiy N = Kl 1) € Ky [ 2.1) (10
X

The denotations are agree with the definition of universal characteristic

classes (22).

n—2k :
Let us define on the first component N hN@®) 1 the formula (69) the
mapping

Moxb,N(d(2)) - N:X_gfl]i](d(g)) - K(beb /[2] Z)> 1) (71)
X

as the composition of the projection N: bzlliI(d @) = N(d) and the mapping

Moy N(d?) = K1, ; fx[g] Z),1), which is constructed in Lemma [IT]
Restrictions of the mappings MoxbN(d@)> Do, Nyey 1O the common bound-

aries 8N;L bQIIiI(d(?)) aNfeg% are homotopic, because the mapping 7y :

N(d®) = K(I,y; [,z Z), 1) satisfies the boundary conditions on IN(d®).
Therefore the mapping

i Np > KLy [ 2).1) 7
X

is well defined as the result of the gluing of the two mappings Moxh N(d®)
U 1y Ny, L1€ Mapping ([72) determines a reduction of the characteristic
mapping of the Z /2 framing of the immersion g,_ ;.

Let us comes back to the immersion f, of the manifold (??). Consider the
submanifold My, 8k ¢ M™2* which is defined as the inverse image My, 8k —
(kh,) "L (RP=8k=a=1) of the prOJeCtIVG subspace RP?~8k—¢-1 c Rpn-F-a-1 of
the codimension 7k. Define the immersion fy, : My, 8k q, R" by the restric-
tion of the immersion f, on the submanifold M;;Sk.
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By construction of f, the image of f5, is inside a regular neighborhood
of the image of the submanifold RP"~8%—4=1 < RP"~ "~ by the mapping d.
Because n —8k—q—1=n—2+%e — e ] =21 we get d(RP"3F~771)
is an embedded submanifold.

Denote by Ngf;wk the self-intersection manifold of the immersion f5,.
We have dim(Ny,) = n — 16k = m,. n — 16k = m,. The following inclusion
is well-defined:

N;;lﬁk C Nn72k (73)

a,reg ’

where the manifold N7';2" is determined by the formula (?7).
In particular, a reduction of the classifying mapping ., : Ngf;lﬁ’“ —

K(Z/2% 1) into the subspace K(I,,;,1) C K(Z/2!%,1) is well-defined:
Nava : Nyg ' = K(I,,4,1). (74)
Therefore in the case o > 5 without loss of a generality we may assume
that

n—16k n—2k o
N, NN NG = 0. (75)

The triple (f1,Z1, k1) defines the required skew-framed immersion in the
cobordism class x. Let us define the second component in the formula (52)
as the empty component. The reduction mapping ([74]) (recall that Nz’f;elfk is
re-denoted by N;;;w’“) coincides with the required reduction, which is given
by the formula (5II)/ This proves Property 1 from Definition B Property 2
is analogous.

Apd-unBapuant, onpejgesenbiii upu momormu 7/ 22l ocramennoro
muoroobpasus (69) coBnagaer ¢ Apd-uHBAPHAHTOM MCXOJHOIO JIEMEHTA .
The Arf-invariant, which is defined by the Z/2?framed immersion of the
manifold (69) coincides with the Arf-invariant of the element .

Let us present a sketch of the proof without the assumption that the map-
ping d® is holonomic. Analogously to [Theorem 23, A1], let us generalize the
construction above and let us define a Z/22—framed immersion (g, ;, ¥, n) of
the manifold (69]), which satisfies Conditions 1 and 2, but, probably, which is
not an immersion of a self-intersection of a framed immersion Evidently, there
exists a skew-framed immersion (f, =, k), which represents the element z, for
which an arbitrary Z/ 2Pl framed immersion, in particular, the Z / 2P framed
immersion (g,.;, ¥, 7n), is a closed (probabely, non-connected) component of
the self-intersection manifold of this skew-framed immersion (f, =, k). The
second component in the formula (52) is defined as the last component of the
self-intersection manifold of the skew-framed immersion (f, =, k). Properties
1 and 2 are evident. Theorem [§] is proved.
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3 E, ;-structure of a Z/2%framed immersion
and J, x J,-structure (bicyclic structure) of a
7./2Pframed immersion

We define the group I, as the cyclic subgroup of order 4 in the dihedral group
I, C Z/2P see section 2 of [A1]. We shall now define an analogous subgroup

iy, vy Jax Jo Cc Z/2H, (76)

which is isomorphic to the direct product of the two cyclic groups of the
order 4.

Recall that the group Z/21% is defined in terms of a basis (ey, ..., eg) of
the Euclidean space R®. We denote the generators of the factors of the group
J. xJ, by a and & respectively. We shall describe transformations in Z/2[4,

corresponding to each generator. We introduce a new basis {f},... {3}, by
the formulas le',l = eQi_&;eQi, f2i = eQi_&;eQi, 1= 1, cey 4.

We shall show that the group of transformations J, x J, has invariant
orthogonal (2,2, 2, 2)—dimensional subspaces, which we denote by Ri 4 Ri_,
RZ, . R?h_.

The subspace R2 | = Lin(f, +f5, f3+f7) is generated by the pair of vectors
(fy + f5,f3 + f7). The subspace R2 _ = Lin(f; — f5,f3 — f7) is generated by
the pair of vectors (f; — f5, f5 — f7). The subspace R} | = Lin(f; + £, fs + f)
is generated by the pair of vectors (fy + fy, fs + f3). The subspace Ri— =
Lin(fy — f;, fs — £3) is generated by the pair of vectors (f; — £, f5 — fy).

It is convenient to pass to a new basis

£, + £ f, — f; fy 4+ f, f, — f,

=h;,——— =h_, =hy,—= =hy_, 77
\/5 1,4+ 1, \/5 2,4+ \/5 2, ( )

fr 4+ 1, _ }.11#’ £, - fu _ L fs + £ _ }-12#’ fo — 1 _ }-127_. (78)
V2 V2 V2 V2

The pairs of vectors (hy 1, hs ), (h;_,hy ) are bases for the subspaces
RZ . = Lin(hy 4, hy ), R? = Lin(hy _, hy_) respectively. In addition, the
pairs of vectors (hy i, hy ), (hy_, hy_) are bases for the subspaces RZ , =
Lin(hy 4, hy ), R = Lin(hy _, hy, ) respectively.

The generator a of order 4 is represented by a rotation through angle 7 in
each of the planes Ri e Ri_ and by the central symmetry in the plane Ri_,
(Evidently, the image of the generator a commutes with the presentation of
the generator a see below). The generator @ is represented by a rotation
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through angle 7 in the planes Ri " Rz,f and by the central symmetry in the
plane Ri—- So the subgroup ([76)) is well defined.

Define the subgroup iEb E,. ; CJ,x J.., as the direct product of

XB’Jana :
the diagonal subgroup I, C J, x J, with the elementary subgroup J; C J,, of
the second factor. The subgroup E,_; C J, x J, coincides with the preimage
of the subgroup Z/2 C 7Z/4 with respect to the homomorphism

w1, x 1, = 7/4, (79)
defined by the formula (z x y) — xy.

Remark

The group E,; is isomorphic to the group H,,;, which is defined in [Al,
Section 2|. The corresponding subgroups in Z/2% are distinguished.

Define the subgroup iy
morphism

: 1., C E,.j, as the kernel of the homo-

bcb By

Wl R, —7Z/2, (80)

which is determined by the formula (z X y) — x in terms of the generators
of the ambiance group.

Consider the diagonal subgroup Z /28 ¢ Z /24, this subgroup is gener-
ated by transformations in the direct sum of the subspaces diag(Ri . ]R?L +)s
dmg(RZﬁ,RZﬁ). This subgroup is the transformation group of the unit
vectors, which are collinear to the vectors h; y + f117+, hy | + f127+, h, _ +
f127_, h,  + f127_. This collection of vectors gives the standard base in the
subspace diag(R2 |, R? ) @ diag(RZ _,R% ). The complement to this sub-
space is given by the formula antidiag(R; , ,R? | ) @ antidiag(R; _,R; ). In
this complement the standard base is given analogously.

In the notations above the diagonal subgroup Z/2P ¢ 7Z/2B! is the
transformation group of the unit vectors, which are collinear to the vec-
tors hy | + l.117+ +hy + I.127+, h, _ + I.127_ +hy_ + fl27_. It is easy to check
that the first vector is collinear to the vector e; + e3 + e5 + e; and the second
vector is collinear to the vector e; + e4 + e5 + €.

There is an inclusion ig, , : By, C 7/ 2Bl which is compatible with the

inclusion (7). Moreover, the following diagram is commutative:
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Ib><i7 M) Z/Q[Q}

ibXb7beb J/ Z[g} J/
OBy 2/ (81)
Zbel}vJana \l/ A Z[ } \l/
J, xJ, o 7./21.

Let us define automorphisms

X[g] : beb — beb’ (82)

YT, x T, = T, x T, (83)

of order 2.
Let us also define automorphisms

B z/28 — 7./28, (84)

x4 z/2HW — 7. /2H, (85)

of order 2, which are denoted the same. The automorphism (84) is de-
fined by the permutation of the corresponding basis vectors of the subspace
diag(R? R ) @ diag(R%_, R ) with the indexes a and a.

Define the automorphism (83) such that its restriction to the diagonal
subgroup diag(J,,J,) = I, C E, ; coincides with the identity, and the re-
striction of this automorphism to the subgroup I, ; C E, ; coincides with
the automorphism x!?. Evidently, the automorphism (83) is uniquely well
defined.

The automorphism (83]) is defined by means of the standard bases of
the subspaces diag(R; ,,R; ) @ diag(RZ_, R ), antidiag(R} |, R} ) @

antidiag(R> Ri—) by the permutation of the basis vectors with the indexes

a,—?

a and a.
Recall that the group I,; fX[Q] Z is defined by the formula (25]). Define
the analogous subgroups

By / Z, (86)
13]

(3, % 3.) / oz (87)
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as the semi-direct product of the corresponding groups with involutions with
the group Z.

Namely, define the group (86) as the factorgroup of the group E, ; *Z by
the relations zzz~! = yP¥l(z), where z € Z is the generator, x € E,_; is an
arbitrary element. The classifying space K(E,; fx[g] Z,1) is the semi-direct
product of the standard circle S' and the space K(E,,;,1). The shift map
K(E,;, 1) = K(E,;, 1) of the cyclic cover over K(E,; [ @ Z, 1) is induced
by the automorphism x[*. The definition of the group (87) is analogous.

Let us consider homology groups H;(K(E,; fxm Z7,1)), H;(K((J, x
Ja) fx[‘*] Z,1)). In particular, for an odd * = 4, the second group contains the
elements, which is represented by the fundamental classes of the submani-
folds S%/ix pt C S*/ix S'/i € K(Ja, 1) x K(J,, 1), pt x Si/i C Si/ix S'/i C
K(Jg,1) x K(J4,1), denote the elements by

tai, € Hi(K(Ja,1));  tas € Hz‘(K(ja, 1)). (88)

The homology groups with local coefficients Z[Z/2] are defined analo-

gously to ([B0), (B1), (34)). For example:

Di(3, x 3, ZIZ/2]) € HA(K((3, % 3,) / ZZE), 69
Di(E, 1 Z|Z,2)) € Hi(K(E,_; / Z1)ZiZ/2). (90)

Analogous groups are defined with local Z/2[Z/2]-coefficients:

D3, x 3 Z/202/2) € H(K(G, < 3.) [ zaszpz/), o

X4

DBy Z/202/2) € Hi(K (B | 2,1):2/2(2/2). (92)

X

Analogously to (@0), ([41)) the following homomorphism (isomorphisms)
are well-defined:

AW DT, x J0 2)2|2)2]) — Hi(K(J, x 34, 1)), (93)
AW : D,(B, 5 Z/2(Z/2)) - Hi(K (B, 1)). (94)
The following lemma is analogous to Lemma [3
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Lemma 12. 1. The group Hoo(K((J, x J,) fx[“] Z,1),Z|Z/)2]) (correspond-

ingly, HQS(K(Ein)IX[S] Z,1);Z]Z/2])) contains the direct factor Dog(J, X

Ju;Z[Z)2)) (correspondingly, contains the direct factor Doy(E,, ;5 Z[Z/2]))
-2. The base of the subgroup €D; i —o, Hiy(K(Ja,1);Z) ®

Hi,(K(J4,1);Z) C Dy(Ja x Jo;Z|Z/2]) determines the base of the

subgroup Im(B) N Dos(L,,;; Z/2[Z/2]), where

B:HQS(K((JQXJG)/

, 7.,1): Z|Z.)2]) — HQS(K((Jaxja)/4] 7.,1);7,/2]7./2)])

x!t xt
is the reduction homomorphism of modulo 2.  (Correspondingly, the
base of the subgroup @, ;. _o, Hi,(K(Ly,1);Z) ® Hy(K(Z/2,1);Z) C

Dos (B, Z|Z]2]) (see the homomorphism (80)) determines the base of the
subgroup Im(B) N Doy (I, Z/2]Z/2]),

B: HQS(K(beb/

X

21 Z(Z/2) ~ HaK(E, |
(3] [

X

Z,1):Z/2[Z/2)).
3]

Define the epimorphism

W (T, Ja)/ 7 — 7./4. (95)

4

This epimorphism is defined by the extension of the homomorphism ([79)
from the subgroup J, x J, to the hole group, the generator of the factor Z
is in the kernel of the epimorphism (O]).

Analogous epimorphism

BB, /[3] Z — 7/A. (96)
X

is well defined.
The representation ®1 by the formula (8] is generalized as follows:

ol E”X"/[31 7 — 7.)28, (97)
X
oM (I, x J,) /[4] 7 — 7.)2H, (98)
X
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where the image of the generator of the cyclic group Z in Z/2% (correspond-
ingly, in Z/21) is represented by the automorphism (84) ((85)).

The automorphisms !, i = 2, 3,4, in the images and in the preimages
of the diagram (8T]) correspond with respect to horizontal homomorphisms.
Therefore the following diagram of groups is well defined:

L X2l Z ﬂ Z/Q[z]
Tbx bbE,,; + i3

By Jym Z = Z/2% (99)
B, duxde b iy
(Joxdo) fuZ 25 Z)21.

Definition 13. Let a Z /2B -framed (Z/24-framed) immersion (h, A, (1), h
L% a R™ (b : L"8 45 R™) represent an element z € Imm®/2" (n—4k, 4k)
(z € ImmZ?" (n — 8k, 8k)). We say that this 7./2B framed (Z /2" framed)
immersion is an E, ;-framed (J, x J,framed) immersion if the following
two conditions are satisfied:

1. The structure mapping (;, : L"** — K(Z/2B! 1) (correspondingly,
¢ : L% — K(Z/2" 1)) admits a reduction: this mapping is the composi-
tion of the mapping

CE,,; : Lk K(beb/ 7,1) (100)
A3
(correspondingly,
Cruxg, t L% = K((Ja x Ja)/ Z,1)) (101)
4

and the mapping ®° : K(E,; v 2, 1) = K(7/2B 1) (correspondingly,
the mapping ®4 : K ((J, x J,) fx[4] Z,1) — K(Z/214 1)).

2. The I_nappingifEbXb c L KT, fxm Z,1) (correspondingly,
the mapping ¢y ,j. : L" % — K<bebfx[2] 7,1)), which is defined by means
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of the 2-sheeted (correspondingly, by means of the 4-sheeted) covering over
the mapping (g . : L% — K(E,; 81 Z,1) (correspondingly, over the

bxb

mapping (j .y, @ L% — K((J, x J,) fxl“] Z,1))satisfies Condition 2 of
Definition [El

Let us clarifies Condition 2 in the definition above. Consider a submani-
fold

E:}L{;lﬁk‘ C En—ﬁlk’ (102)

which represents the homology Euler class [nf, . 17 € Hu_161(L"**; Z/2) of
n

the bundle 3kn over L" % where 2n = p*((y), p : L"* — L" % is the
canonical 2-sheeted covering.
(Correspondingly, a submanifold

Eg;w’f c L8k (103)

which represents the Euler class [ny, ,, 17 € H,,_16x(L"®*; Z/2) of the bundle
n

4kn over L' where 4n; = p*(¢), p : L" %% — L" % is the canonical
4-sheeted covering.)

The restriction of the mapping (I00) to the submanifold (I02)) in the reg-
ular Z /22 framed cobordism class has to be represented by the composition
of the mapping

0L e L = K (T 1) (104)

and the standard inclusion K (L., 1) C K(Ly [ 2 Z, 1)

(Correspondingly, the restriction of the mapping (I0T]) on the submanifold
(I03)) in the regular Z/2B)-framed cobordism class has to be presented by the
composition of the mapping

0L Lyt = K (By.1) (105)

n

and the standard inclusion K(E,,;,1) C K(Ey; [ s Z,1).)

Let us investigate the characteristic class [I4] for the cobordism group of
E,. ; framed (correspondingly, J, x J,framed) immersions.
The cohomology group H*(K(E,,; NCT 1);Z/2) (correspondingly,

H3(K((J, x Jo) Jo#>1);Z/2) contains an element g, , (correspondingly,
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Ty.xj,)» Which is defined in by the equation (I06]) (correspondingly, (I07))

below.

Consider the mapping ®F : K(E,_; wo 1) = K(Z/28) 1) (correspond-
ingly, @ : K((J, x J,) fx[“]’ 1) — K(Z/2" 1)) and consider the pull-back
(@BN)*(713)) (correspondingly, (®4)*(7(4))) of the characteristic Euler class
T3 € HY(K(Z/2P,1);Z/2) (correspondingly, Ty € H8(K(Z/2",1);Z/2))
of the universal bundle.

Define
(®P)* (713) = B, € HYK(E,; /xm 7,1);7,)2), (106)
(correspondingly,
O (7)) = 7y 5. € HY(K((Jo x Jo) /><[4] Z,1);Z/2). (107)

In section 1, for a Z/26+1—framed immersion (h, A, (z), together with a
2°—dimensional characteristic class (;, € H? (L" %", 7/ 2) we also considered
a 2-dimensional characteristic class (jg 1 € H2(LF 2k, :72.]2).

For a mapping (g, ; : L% — K(E,; fx[S] Z,1) (correspondingly, for
a mapping (; .. @ L' — K((J, X ja)fx[4] Z,1)) as an analog of the
charz_xcteristic class {"[*2] 1.(712) there serves theﬁcharacteristic clz_xss ng i (Toxi) €
H*(L"*;Z/2), for s = 3 (correspondingly, (i, 4(Taxa) € H*(L"%*;Z/2), for
s =4, in this formula the covering L8k — L8k i5 a 4-sheeted covering).

Define the mapping (g, ; as 2-sheeted covering over the mapping (g, ;
with respeict to the subgroup ST L. fX[Q] Z C bebfxm Z. Define the
mapping (y . j. as 2-sheeted covering over the mapping (j . ;. Wwith respect
to the subgroup iy, gs  Ipxi Jy21 Z C (Ja X Ja) fx[‘” Z

The  characteristic  class E;gb é(TbX ;) (correspondingly, the
class 7; 3. (7‘bX b)) is induced from the uiliversal class 7., €
L.; f 1); Z/2) by the mapping CE L KT, fxm 7),1)

(correspondmgly, by the mapping Cy .j. : L" 8k K<bebfx[2] Z,1), in
this formula the mapping ¢ 3,3, 1s the 4-sheeted covering over the mapping
Cy,xj, )- We need to define dual homology classes and the analogous

formulas to (59).

Let us consider the immersion h : L”_AJC % R™ (correspondingly, the

immersion h : L" 8’; %+ R") as in Deﬁnltlon - Let the mapping

Go L K (B [ 221) (108)

bxb
x A3l
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be given (correspondingly, the mapping
oot L K(@ax 30 [ 21) (109)
X

be given).
Over the target space of the mapping (I08)) the universal 4-dimensional
E,.; fx[g] Z-bundle is well defined. (Correspondingly, Over the target space of

the mapping (I09) the universal 8-dimensional (J, X J ) me Z-bundle is well
defined.) Assume that the manifold L%;A‘f (correspondingly, the manifold

~°% ) is connected, and the mapping (I08)) (correspondingly, the mapping

) is punctured.
Let us define the element

() € Ha sl KBy [

bxbo*
X

Z,1);2/22/2) (110)
3]
(correspondingly, the element

G g, (Laes)) € Mo K(Q@a x 30) [ Z0iz22/) (1)
X
analogously to the formula (63]) for the element (59). Below this element
is defined even for a non-punctured reduction mapping, assuming that the
target manifold is the self-intersection manifold of a connected Z/2/3-framed
(correspondingly, Z/2P)-framed) immersed manifold.

Let us assume that a Z/2Bframed immersion h : L% a5 R" (cor-
respondingly, a Z/24-framed immersion h : L"% q» R") is the immer-
sion of self-intersection manifold of a Z/2%framed immersion (g, 7y, V),
g : N""2 95 R" (correspondingly, of a Z/2®framed immersion (g,ny, ¥),
g: N4 g R™).

Assume that in the manifold N"~%* a closed connected component

N:x_i;% C N™ 2 is marked, comp. with the formula (52)) (correspondingly,

in the manifold N"~* a closed connected component N;LX_;]“ C N ig
marked). Moreover, a punctured mapping

Mo ° N;X;.f'f — K(IM/ 7,1) (112)

N

(correspondingly, a punctured mapping

Mot N > KBy [ 21)) (13)

X
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which determines a reduction of the characteristic mapping of the Z/2[%-
framing (correspondingly, of the Z /21l framing) over the marked component
is given.

Denote by LZ;;R C L"* (correspondingly, by L:;fk C L" %) the com-
ponent of the self-intersection manifold of the immersion g, restricted to
the marked component N, "_2]“ (correspondingly, to the marked component

N 4k). Assume that the manlfold Ly 4k C L™ * is decomposed into 2
subcomponents as in the following formula

n—4k n—4ak n—4k
L= Lo, (114

(correspondingly, the manifold LZ;:'“ C Ln8k

ponents as in the following formula:

is decomposed into 2 subcom-

n— n—_8k n—38k
Lb><b LJaXJa Lb b[4]) (115>

Let us assume that the first component Lg * * in the formula (I14), (cor-
respondingly, to the first component L™ 8’; in the formula (II5])) which

aXda

generally speaking, is non-connected and a reduction mapping (I08) (cor-
respondingly, a reduction mapping (I09)) of the characteristic mapping is
given, we do not assume that the reduction mapping is punctured.

Let us consider the immersion of the canonical 2-sheeted covering

Ln 4k Nn 2k (116)

E, bxb

(correspondingly, the immersion of the canonical 2-sheeted covering

n—8k n—4k
LJaxJa Nbxb (117)

over the self-intersection manifold L’lf:;‘lf (correspondingly, over the self-

intersection manifold L7~ 8’; ).
Denote by

bxb

Mt D o Kl [ 20) (115)
X 2
(correspondingly, by

nJana : L;/a_jkja - K(EbXb/[a] Z’ 1)) (119)
X

the restriction of the mapping (I12)) (correspondingly, the restriction of the
mapping (I13])) on the 2-sheeted covering.
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Assume, that the mapping (II8)) is homotopic to the corresponding 2-
sheeted covering over the mapping([I08]). (Correspondingly, assume, that the
mapping (I19) is homotopic to the corresponding 2-sheeted covering over the
mapping (109).)

The characteristic mapping (I12) (correspondingly, the mapping (I19))
determines the following homology class

e (Le, ) € B Ly [ Zo5Zp2/). (120)

P
b
bxb X[2

which coincides with the transfer to the corresponding 2-sheeted covering of
the element (II0). (Correspondingly the homology class

s ([La,xi)) € Hn8k(K<bel}/[3] 7,1);Z,/2|Z,/2)) (121)

X

is well-defined. This homology class coincides with the transfer to the corre-
sponding 2-sheeted covering of the element (I11]).)

Definition 14. Let (g, ¥, ny) be a Z/21Zframed immersion, g : N" 2 95
R™ which represents an element y € Imm®/2% (n—2k, 2k), assuming n > 16k.
Let (h, A, ¢r) be a Z /2B framed immersion, h : L"~* 9» R™, is an immersion
of self-intersection points of the immersion g, which represents an element
z = 5,%/2[3] (y) € Imm?Z?™ (n — 4k, 4k).

Assume that a closed component N:;b% of the manifold N"~2* is punc-
tured (comp. with the formula (52))). Assume that the self-intersection
manifold LZX’;’“ of the immersion g¢| NP2 is decomposed into two components

like in the formula (I14]).

We say that Z/2C-framed immersion (g,V¥,ny) admits an E, ;-
structure, if on the component N:;I;% a punctured mapping ([12)) is given,
and this mapping determines a reduction of the restriction of the charac-
teristic mapping ny; on the component L%;j‘f a mapping (I08]) is given (we
do not assume that this mapping is punctured), which determines a reduc-
tion of the restriction of the classifying mapping (7, and the canonical double
covering over this reduction mapping is homotopic to the mapping (I12).
Additionally, the following 3 conditions are satisfy.

~1. The Z/2Pframed immersion (g, ¥,ny) satisfies Condition 2 from
Definition [ (recall, that this condition means that the Arf-invariant is cal-
culated using the component N:;I}%)'

—2.  The punctured mapping ([I2]) satisfies Property 2 of Lemma
(recall, that this condition means that the element bez;,*([N:;i,%apt]) €
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Hyoi (K (L, [, Z,1); Z[Z,/2]), which is constructed by the formula (53)
for the mapping (I12)), belongs to the subgroup Dok (I,.; Z/2[Z/2)).
-3. The element

nllyicb,*([l_’bxb]) € Hn—4k(K(Ib><b/[

X

7,1),72/2|Z/2)), (122)
2]

which is defined analogously to the element (I20), but using the both com-
ponents from the formula (I14)),and the element (I20), which is constructed

only for the first component in the formula (I14]) are related in the group
Hy—ai (K Ly, J 2 Z,1); Z,/2[2/2]) by the following equation:

nll)ic(',7*([f’b><b]) = T!( ]lE)O;Xb,*([LEbXE]))’ (123)
where
' oK (B | 2 02/202/2) — (124)

oK (T, [ 2).1:2/22/2)

X
is the transfer homomorphism, which is associated with the right upper in-
clusion of the subgroup 2 in the diagram (@9)), this inclusion is re-denoted

by

T beb/ Z C bel}/ 7 (125)
A2 NE

for short.

Let us express in the framework of Definition [[4] the homology class (£9)
from the homology class (I20)) and the normal Euler class of the immersion.
Define the element

15, (G € Ho, (K (L [ 2).252/202/2), (126)

A2

where the homology class ([(3F]P) € Hma(i%;jf;Z/Q[Z/Z]) is defined
as the result of the intersection of the fundamental class [Lg, ;] €
an4k<E%;j§;Z/2[Z/2]) with the Euler class (¥ € Hle(E%;jf;Z/Q[Z/Q])
of the bundle 3k(;.
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Lemma 15. Assume that a Z,/213 ~framed immersion (g, V,ny) is given, and
this immersion allows E, ; —structure in the sense of Definition[I4l. Then the
following properties are satisfied:

~1. The element ([I26]) belongs to the subgroup [BY), i = m, and this
element is lifted to the subgroup [B4). The image of this element in the group
H,, (K(I,,;,1)) by means of the homomorphism ([&1)) satisfies Property 1 fro
Lemmal@l, analogously to the element (BJ).

~2. The element CILOECWB’*([LEM&]), which is defined by the formula (I10),

belongs to the subgroup Dy _4x(Ey.;;Z/2[Z/2]), which is defined by the for-
mula (O2) for i =n — 4k, and this elements is lifted to the subgroup (Q0I).

~3. The Arf-invariant of the Z/2P framed immersion (g, V,ny) coin-
cides with the Arf-invariant which is calculated by the formula (I4) only for
7./2B)framed immersed component L’lf];jf

Proof of Lemma

Prove Statement 1. Consider the immersion g, ; : N;Lx_b% %+ R™ of the
marked component and apply to this immersion the Herbert Theorem with
the local coefficient system Z/2[Z/2]. (The statement and a proof of this
version of the Herbert Theorem is analogous to the statement and the proof
of the Herbert Theorem with Z/2-coefficients, see [Al], Proposition 8, and
the reference there.) We get that homology class

Ly € Hu-an(N) 25 Z/2(2/2))) (127)

coincides with the homology class [nfvb i)]"p € Hn,4k(N:X’l.)2k;Z/2[Z/2]). By
assumption, the equation (I23)) is satisfied, therefore we have:
Mo (15, ) =m0 (L, ). (128)

bxb

In this formula we re-express the right side using the transfer homomorphism:

1) = r'(Car, +([Lg, 4 ])- (129)

Consider the product of the homology classes in the both sides of the equa-

tion with the cohomology class 7, ; o r*(¢3F) € Hle(N:;b%; Z/2]7,/2]). In

the right side of the equation we have the homology class 7*( fEO; (L, ])N

r*((¢BN3*), which coincides with the homology class r'( fEO: (Le, ;1) 0

(¢BNH3k), namely, with the homology class (I26). In the right side of the

equation we have the homology class né"xcb*([nj\i i)] ). Let us apply the ho-

momorphism (I]) to this homology classes, we get that the class coincides

TIIZ)OXCI;,* ( [TIzkvb .
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with (59). For this class the required property is proved in Lemma[6l State-
ment 1 is proved.

Prove Statement 2. In the case 0 > 5 the codimension of Z/ 2Bl framed
immersed manifold L%;jf is even, therefore the considered manifold is ori-
ented and its fundamental class belongs to the homology group with integer
coefficients.

The transfer homomorphism

r Hn—4k(beb/[3

X

L2222~ Hoalg |

X

Z; Z./2]7/2])
2]

with Z/2[Z/2]-coefficients is a monomorphism. This follows from the follow-
ing fact: the element R, which is described in Lemma [3], belongs to the image
of the transfer homomorphism. Therefore it is sufficient to prove that the
element (I20)) belongs to the subgroup (B8], i = n — 4k. Using the equation
(I23) it is sufficient to prove that the element (122) belongs to the considered
group. The homology class (I22]) is expressed from the homology class (53).
By Property 1 from Definition (I4]) the homology class (53]) belongs to the
subgroup (B8], i = n — 2k. Statement 2 is proved.

Statement 3 follows from Statement 2 above, and the property of the
homology class (53),which is formulated in Statement 1 of Lemma[6 Lemma
is proved.

Definition 16. Let (g, ¥,ny) be a Z/2P-framed immersion, g : N"~% o
R", which represents an element y € Imm?/2* (n—4k, 4k), assuming n > 16k.
Let (h, A, ¢r) be a Z /24 framed immersion, h : L"~% 9» R™, is an immersion
of self-intersection points of the immersion ¢, which represents an element
z = 5,%/2[4] (y) € ImmZ/?" (n — 8k, 8k).

Assume that a component N:;i;lk of the manifold N"=* is marked and
punctured. Assume that the self-intersection manifold LZ;fk of the immer-
sion ¢ NPt is decomposed into two components, like in the formula (IT5]).

We will say that the Z /2B framed immersion (g, ¥, ny) admits an J, x
J «—structure, if on the component N:X’l-:lk a punctured mapping (I13)) is well-
defined, and this mapping determines a reduction of the restriction of the
characteristic mapping 7y; on the component Lg;fﬁa a mapping (I09) is
given (we do not assume that this mapping is punctured), which determines
a reduction of the restriction of the classifying mapping (;, and the canonical
double covering over this reduction mapping is homotopic to the mapping

(I13). Additionally, the following 3 conditions are satisfy.
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—1. The mapping (I18) satisfies Condition 3 from Lemma [I5] (recall, that

this condition means that the Arf-invariant is calculated using the component
n—4k
bxb )

—2. The mapping ([I8)) satisfies Condition 2 from Lemma [T5

—3. The element

nlly(;cb *([I_’bxb]) € Hn—Sk(K(beb /[3] Z? 1)7 Z/z[Z/Q])a (130)
X
which is defined analogously to the element (I21]), but using the both com-

ponents from the formula (I15),and the element (I21]), which is constructed
only for the first component in the formula (II5) are related in the group

H,_sp:(K(E,; f 1);Z/2[Z/2]) by the following relation:
ng‘;mL; ) = (¢ s (Lyns) (131)
where
s Hy g (K (T4 X Ja)/ 7),1),Z/)2[Z/)2]) — (132)
4

oK (B, [ Z)15Z/22/2)

X131
is the transfer homomorphism, which is associated with the right middle
inclusion of the subgroup 2 in the Diagram (Q9)), which is re-denoted by

r:EbX,-,/ ZC (Jaxja)/ Z (133)
x[3) x4

for short.

Lemma 17. Assume a Z/2Pframed immersion (g,V,ny) is given, which
admits an J, x J,—structure in the sense of DefinitionI8. The following two
properties are satisfied:

~1. In the group H,,, bxbf Z,1);Z)2[Z/2]) the element (I21)) is

l oc

b><b,*
elements by the homomorphism ([O4) for i = m, are equal in the group

Hy, (K(bei)’ 1)).
~2. The Arf-invariant of the Z/2Pframed immersion (g, V,ny) coin-
cides with the Arf-invariant, which is calculated by the formula ([{I4]), using

only the component L" 81;

equal to the element n ([an i)]"p). In particular, the images of these
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Proof of Lemma [I7

The proof is analogous to the proof of Lemma [15

Example 18. Let the Z/22framed (correspondingly, Z/2-framed) im-
mersion (g,nn, ¥, ), g : N*2¢ 95 R" (correspondingly, g : N"* ¢ R?)
be represented an element y € Imm?Z/2” (n — 2k,2k) (correspondingly, an
element y € Imm?%?" (n — 4k, 4k)), n > 16k. Assume that the considered
immersion is a I, ;-framed immersion (correspondingly, is a E, ;-framed
immersion) in the sense of Definition [ (correspondingly, in the sense of
Definition Let a Z/2B)framed (correspondingly, a Z/2/*-framed) im-
mersion (h,(p,A), h : L"* 9 R" (correspondingly, h : L" 8 o R")

be represented the element z = 5,%/ 20 (y) € ImmZ?™ (n — 4k, 4k) (corre-

spondingly, z = 5,%/2[4] (y) € Imm%?" (n — 8k, 8k)) and be the immersion

of the self-intersection manifold of the immersion (g,7ny, ¥). Assume that
the immersion (h,(r,A) is a E,,;-framed immersion (correspondingly, is a
J, x J,~framed immersion) in the sense of Definition [[3l Then the Z/ piCi
framed (correspondingly, the Z/2P)-framed) immersion (g, ¥,ny) admits a
E, ; structure (correspondingly, a J, x ja—structure), which is defined by
the reduction mapping (g, , (correspondingly, by (j_, j.) of the characteristic
mapping ¢, (comp. with Example 19 in [A1]).

Justification of the example

The example is obvious.

The following theorems are analogs of Theorem [

Lemma 19. Assume that the Z./212framed immersion (g, ¥, ny) represents
an element y € Imm®/2? (n — 5=, 25"), n > 254, see (I8), and a reduc-
tion of the characteristic mapping ny by the mapping (I12) is given, such that
Conditions 1,2, from Definition [[4] are satisfied. Then the element 5,%/2[3] (v)
in the group Imm2/2% (n — "=, m=2) is represented by a 7./2B) framed
immersion (h, A, (), which admits a B, ;-structure of the Z /2 ~framed im-

mersion (g, V,ny) in the sense of Definition [14l

Lemma 20. Assume that the Z/2 ~framed immersion (g, ¥, ny) represents

Z/28 (p — npe nte ) n > 254, see (I8), and a reduction

an element z € I'mm 1
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of the characteristic mapping ny by the mapping (I13)) is given, such that
Conditions 1,2, from Definition [18 are satisfied.

[4] . ;
Then the element 5,%/24 (z) in the group Imm®/2" (n — "=t 0o s

represented by a Z./2W framed immersion (h, A, (1), which admits a J, x J,—
structure of the Z/2B)framed immersion (g, ¥, ny) in the sense of Definition
116l

Corollary 21. Assume that the assumptions and the dimensional restriction
of Theorem8 is satisfied. Then the element 5,%/2[4] 055/2[3] 05,%/2[2] (o), which is
defined by means of the composition of the homomorphisms [8), k = "=, is
represented by a Z./2Y~framed immersion (h, A\, (1), which admits a bicyclic
structure (J, x J,-structure) in the sense of Definition I8

Moreover, the projection of the element

loc k
gJanav*([CLJaxja

7)€ Ho (K. x 30) [ Zyzp2z/2) (30

A4

into the direct factor (@I)), i = m,, after the expansion over the standard

base, involves not more then the only basic element t,; ® t;,;, see. (88),
Mg n—16k

i = e = === The coefficient at this basic element coincides with the Arf-

invariant B)), which is calculated for the 7./2P)—framed immersion (g, ny, ¥).

Proof of Corollary 2]

By Theorem [§ without loss of a generality, we may assume that the element

y= 5,%/2[2] (z) € Imm®?* (n— nme n-mz) ig represented by a Z/2(—framed
immersion (g, ny, V), such that the self-intersection manifold of this immer-
sion contains a closed marked component N:X_fk , like in the formula (52)),
and the mapping (49) on this marked component is well-defined. Then the
both conditions in Lemma [6] are satisfied, therefore Conditions 1 and 2 from
Definition [14] are satisfied.

By Lemma we may assume that the element y is represented by a

Z/ 2P framed immersion, which admits a E, ;structure. An immersion,

. (3] .
which represents the element z = 55/23 (y) contains a marked component

N :X_;k . By Lemma20 a J, x J,—structure of an immersion, which is represent
the element z is well-defined. Properties 1 and 2 in Definition [16] follow from
Lemma [T5]

Let us consider the image of the element (I34]) from the group
Hp, (K(JgxJ,) fxl‘” Z,1);7/2[Z/2]) by the composition of the following two
transfers:

Ha (K(L,x 1)) [ Z.152/202/2) -
% 4
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Ho, (K(Ly [ 2.152/22/2)

X

which are induced by the inclusions (I33]), (I25]). Properties 1 from Lemmas
M5, 07 imply that the image of the element (I34]) coincides to the element
(B9) from the subgroup

Do, (s 2/202/2) € Ho (K (Y, | Z),15Z/202/2).

X

The image by the composition of the two transfers of the projection of the
element (I34) onto the subgroup ([@1l), i = m,, is also coincides with (B3]).

Properties of the expansion of the element (B9]) are given by Lemma [0]
Statement 1. We get the required properties for the element (I34]). Corollary
211 is proved.

4 QX Z/4-structure (quaternionic-cyclic struc-
ture) on Z/2—framed immersion

Let us recall the definition of the quaternion subgroup Q C Z/2B!, which
contains the subgroup I, C Q, see [A1], section 2, formulas (22),(23),(24).
Let us define subgroups:

iJaxja,sz/4 0 PP Ja C QxZ/4, (135)
iqxz/: QX L[4 C Z/Z[E’], (136)
13,x3uxz/2 * Ja X J.x7/2c7/28), (137)

Define the subgroup (I35)). Define the epimorphism on the subgroup J, x
J, — Z/4 C Q by the formula (z x y) — xy. The kernel of this epimorphism
coincides with the antidiagonal subgroup I, = antidiag(J, x J o) CJa X J.,
this subgroup a the direct factor. This factor is mapped onto the subgroup
Z/4 by the formula (z x z7') ~ z. The complement of this factor is the
subgroup J, € J, x J,. The subgroup (I37) is well defined.

To define the subgroups ([I36), (I37) consider the basis
(hy4,hyy by hy_ by, hy  h;_ hy, ) in the space RS, determined

by (D), (78).
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We define an analogous basis of R, This basis consists of 16 vectors,
this set of the basis vectors is divided two subsets:

hL*,**, h2,*7**; (138)

hl,*,**y 1.12,*,**- (139>

where the symbols *, xx independently takes the values +, —.

Let us define the subgroup (I36]). The representation iqyz/4 is given such
that the generator j of the factor Q C Q x Z/4 acts in each 4-dimensional
subspace

diag(Lin(hy s Do s, Dy i Do), (140)

Lin<h1,*,**7 h2,*,**7 hl,*,f**a h2,*,7**))7

diag<Lin<h1,7*,**7 h2,7*,**7 hl,,*,,**, h2,7*,7**>7 (141>

Lin(hl,—*,**a h2,—*7**7 hl,—*,—**7 h2,—*,—**))7

antidiag(Lin(hy . oo, Do o Dy Do), (142)

Lin(hl,*7**7 h2,*7**7 hl,*7—**a h2,*,—**))7

antidiag(Lin(hy —w, Do o, By i Do i i), (143)

Lin(l‘ll,,*,**, 1.12,7*,**7 1.11,7*,7**7 1.12,7*,7**»

by the standard transformations, given by the matrix (23), [Al].

Let us note that each 4-dimensional space, described above, corresponds
to one of the two subspaces Ri*, or to one of the two subspaces Ri*, the defi-
nition of this subspaces is given below the formulas (7)), (8). The generator
i € Q is represented in the direct sum of the two copies of the corresponding
spaces, according to the representation of the generator of the group J, given

by the matrix (23) [A1]. The generator of the second factor Z/4 C Q x Z/4
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i € Q is represented in the direct sum of the two copies of the correspond-
ing spaces, according to the representation of the generator of the subgroup
I, = antidiag(l, x 1a) C I, x I,. The representation (136)) is well defined.

Let us define the representation (I37) as follows. The factor J, x J, C
Jo x Ju x ZJ2 is represented in each 4-dimensional subspace ([40)-(I43) by
the formula ([76), this formula is applied in each subspace with the prescribed
basis. The factor Z/2 C J, x J, X Z/2 is represented:

—in 8-dimensional subspace, the direct sum of the subspaces (140), (142)
by the identity;

—in 8-dimensional subspace, the direct sum of the subspaces (I41), (I43)
by the central symmetry;

the representation (I37) is well-defined.

We define an order 4 automorphism ° of the subgroup Q x Z/4. The
restriction of this automorphism to the subgroup (I35) coincides with the
automorphism y[¥. The extension of the automorphism x!¥ on the subgroup
to the automorphism y[® on the group is defined by the identity on the
generator j. It is easy to verify that the automorphism described above is
uniquely well defined.

Consider the homomorphism

Pq: QxZ/4—Q, (144)

which is the projection on the first factor. The kernel of the homomorphism
pq coincides with the image of the antidiagonal subgroup I, C J, x J, by
the inclusion (I3H). Evidently, the following equation is satisfied:

(5]

X" o pq = pq- (145)

Analogously, define the automorphism (involution) P! of the group
Jo x Jo X Z/2 (we denote this new automorphism the same). Define the
homomorphism

Prjaxzya i Vo X Jo X Z)2 — 7J4 < Z,/2 (146)

with the kernel I, € J, x J, x Z/2. Evidently, the following equation is

satisfied: X[5] O P7/4x2/2 = PL/AXZ/2-
Define the following groups

(Q x Z/4) / . Z, (147)
(Jox I, xZ/2) /[ | Z, (148)

45



as semi-direct products of the corresponding groups with automorphisms and
the cyclic group Z. (see the analogous definitions (25), (86l), (87)).
Let us define the epimorphism

Wbl (Q x Z/4)/ 7 — Q, (149)
NG
the restriction of this epimorphism on the subgroup (I35) coincides with
the epimorphism (I44)). It is sufficient to use the formula (I45), define z €
Ker(pq), where z € Z is the generator.
Evidently, the following epimorphism

Wb (T, x T, x Z/Q)/ 7 —7/Ax17)2, (150)

NG

is well-defined, we denote this epimorphism the same way like the epimor-
phism (I49)).

Define the automorphism (involution) of the group Z/2P! which is also
denoted by x°l. In the standard basis of the subspaces (I40)-(I43) the auto-
morphism x” is given by the same formulas as the automorphism ¥, each
of this space is an invariant space of x[°/. From the definition it is easy to

verify that x°! commutes with (I36)), (I37).

Moreover, the following homomorphisms are well defined:

ol (Q x Z/4)/ 7 — 7,)2P, (151)

NG

bl (I, x I, x Z/Q)/

x|

7 — 7,)2. (152)
5]

These homomorphisms are analogous to the homomorphism (O8)) and are in-
cluded into the following commutative diagrams (I53]), (I54), (see the anal-

ogous diagram (&1))):

. [4] [4]
Foxd) fwz 257z /o
I3.xda,Qxz/a ¥ ifs) 4 (153)
5
@xZ/4) [ 42 5 7,21,

In this diagram the left vertical homomorphism

Z'Ja><Ja,('.,2><Z/4 : (Ja X Ja) /[

X

4]Z—>(Q><Z/4)/ 7

A5
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is induced by the homomorphism (I37), the right vertical homomorphism
i) : Z/2% x Z,/2W < 7,/2P

is defined by the formula ().

(Jo x Ja) S Z ol <l 7.)2W x 7,/214
Z.Ja><.']a,Ja><.']a><Z/2 \J Z.[5} ! (154)
. 5
Fox3ux2/2) [ 2 25 7,/2),

In this diagram the left vertical homomorphism

iJax.']a,Jax.']axZ/Q : (Ja X Ja)/

x|

Z—>(JaxjaxZ/2)/ 7
4]

N

is induced by the inclusion of the factor.
The following definition is analogous to Definition [[3] (cf Definition 15 of
[A1]).

Definition 22. Let a Z/2Pl-framed immersion (h, A, (), h : L"71% q» R"
represent an element z € Imm?%/2™ (n — 16k, 16k). We say that this Z /21
framed immersion is an Q x Z/4—framed immersion if the following two
conditions are satisfied.

~1. The structure mapping ¢ : L" 6% — K(Z/20) 1) is represented as
a composition of a mapping (qxz/ : L" % — K((Q x Z/4) fx[5] Z),1) and
the mapping ®° : K((Q x Z/4) fx[5] 7),1) — K(Z/2P,1), this mapping is
induced by the homomorphism (I51]).

~2. The mapping (qxz/4 : L" ' — K(I,; fX[Q] Z,1), which is defined as
the 8-sheeted covering over the mapping ¢; : L"* — K(Z/2P 1), which
(by Condition 1) satisfies Condition 1 of Definition [ satisfies also Condition
2 of Definition @l

The cohomology group H'®(K((Q x Z/4) me 7,1);7/2) contains an el-
ement Tqxz/4, this element is defined by the following equation (I55). Con-
sider the mapping ®P° : K((Q x Z/4) fx[5] Z),1) — K(Z/2P) 1) and take the
pull-back (®F)*(75)) of the Euler class 75 € H'(K(Z/2P)),1);Z/2) of the
universal bundle. Define

(@P)*(75)) = Tz € H'(K((Q x Z/4)/ 2),1); Z/2). (155)

151
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Let us assume that the manifold L" 6% is the self-intersection manifold
of a Z/2"-framed immersion (h, A, (), and the immersion of this manifold
into R" is a Z/2C-framed immersion which is a Q x Z/4framed immersion.

The mapping fbxb is defined as the 8-sheeted Covering over the mapping

(1 with respect to the subgroup iIb Qs bxbf (Q x J )fX[5] Z.

Over the preimage of this mapping, i.e. over the manifold L" 6% the cor-
responding 8-sheeted covering py.,;, g, 18 well-defined. Let us re-denote the

characteristic class (.7 by (. € HQ(L" 10k, 7./2).

Quaternionic-cyclic structure

Let a Z/2¥-framed immersion (g, V¥, ny), g : N* %% 95 R" represent an
clement y € Imm®2" (n — 8k, 8k), assuming n > 16k. Additionally, let us
assume that there exists a mapping

i N K((ux 30 [ 2).0), (156)
A4

Let a Z/20 framed immersion (h, A, (), h : L"'% s R", is the self-
intersection manifold of the restriction of the immersion g on the component
N a8k (denote this restriction by guxs. Note that the following equation
n — 16k = m,, where m, is defined by the equation (I]]), is satisfied.

Let us assume that the manifold L% is represented by the following
disjoint union of two components:

n—16k n—16k n—16k
Laxa LQXz/4 Y LIaxiaxZ/Q' (157)

Let as assume that the following mapping

A= Caxz/a U izt Lot UL 35 wa = (158)

K(@xz/ |

NG

Z),1)UK((J, x I, x Z/2)/ Z),1).
A[5]
is well-defined.
The following definition is analogous to Definition 20 from [A1].

Definition 23. Let a Z /2% framed immersion (g, ¥, ny), equipped with a
punctured mapping (I56) of a marked component N7, fk C N™ 8 which is
defined the reduction of the characteristic mapping 7y x be glven. Assume
that the Arf-invariant for (g, V,ny) is totally determined by means of the

marked component.
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Let us say that a Z/2!4framed immersion (g, ¥, ny), admits a Q x Z/4—
structure if, respectively to the formula (I57)), the mapping (I58) is well-
defined, moreover, the pair of mappings (7,xq, A) satisfies the following con-
ditions:

~1. The pair of mappings (7axa,n,(qxz/4) are related by the following
commutative diagram:

T Mo n— Naxa .
Laxa,QxZ/4 + N 8 — K((Ja X Ja) fx[4] Z)? 1)
Taxa,QxZ/4 + 13,xJuaxz/a + (159)
Mo CQX
LQXZ/4 =2 K((Q X Z/4) fx[5] Z)71)7

where the right vertical mapping Taxa,qQxz/4 : EZLX”&,QMM — Lg;?ﬂ is the
canonical 2-sheeted covering over the component of self-intersection mani-
fold of the immersion g,y in the formula ([I57), the left vertical mapping is
induced by the corresponding subgroup.

—2. The pair of mappings (Maxa, (L ) are related by the following

JaxJax2/2
commutative diagram:
Fme _— N3gxJg,N :
Laxa,JaxjaxZ/2 = N o — K«Ja X Ja) fX[4] Z)? 1)
Taxa,JoxJaxZ/2 1 iJaxJa,JaxJaxZﬂ + (160)
Mo CJaxjaxZ/Q .
JaxjaxZ/Z — K<<Ja X Ja X Z/Q) fX[5] Z)? 1>7

: : . . Tn—16k n—16k
where the left vertical mapping 7, ; 5.« j.xz/2 : Laxa,JaxjaxZ/2 Toxdoxz/2

is the canonical 2-sheeted covering over the component of the self-intersection
manifold of the immersion g,y in the formula (I57), the left vertical mapping
is induced by the corresponding subgroup.

Example 24. Let a Z /2% framed immersion (g, ¥, ny), g : N" 7% 9 R" be
represented an element y € Imm?/ 24 (n — 8k, 8k) and be an J, x J,framed
immersion, (see Definition [[3]), where n > 16k.

Let a Z/2Pframed immersion (h, A, (z), h : L 6% 9 R”, which is the
immersion of the self-intersection manifold of (g, ¥,ny) be represented the
element z = 0%/2%k(y) € Imm®%/2"™ (n—16k, 16k) and be an Q x Z/4—framed
immersion (see Definition 22)). Assume that the restriction of the reduction
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mapping of (; and the the restriction of the mapping 7,«, to the canonical
2-sheeted covering L™ %% of L"16% are homotopic.

Then the Z /24 -framed immersion (g, ny, ¥), which is equipped with the
mapping 7,xq, admits an Q x Z/4-structure, given by the reduction CQxz/4
of the classifying mapping (5. The manifold in the decomposition (I57)
contains the empty second component (cf Example 21 of [Al].

Justification of the example

Consider the manifold L™ of self-intersection points of the immersion g,
given by the formula (I57), and define the decomposition of this manifold
such that L™ coincides with the first component Lg;z /4 i.e. the second

Mo

component L7 . /2 is empty. The commutativity of the diagram (I59)

follows from the diagram (I53]) and from the definition 2], the diagram (I60)
is represented by the empty manifold.

The following theorem is analogous to Lemmas [19]

Theorem 25. Assume that the dimensional restriction isn = 2¢—2, £ > 11,
o > 5 (in Theorem B is required { > 8). Assume that a Z/2"-framed

immersion (g, V,ny) represents an element y € Imm?Z/2" (n — "5pe, i5te),
and a mapping ([I09), which determines a (J, x J,) fx[‘” Z—reduction of the

characteristic mapping ny s given.
(5]
Then the element 5,%/2 (y) in the group Imm®/2? (n — "5, 2502 ) s

represented by a 7./20)—framed immersion (h, (z, A) and using this immersion
a Q x Z/4-structure of the Z./2¥ —framed immersion (g,nxn, V) is defined.

The following corollary is analogous to the Corollary 211

Corollary 26. Assume that the hypotheses of Theorem [8 hold under the
stronger dimensional restrictions from Theorem 3. Then for an arbitrary x
the element

5%/2[51 . 55/2[4] o 5]%/2[31 o 5]%/2[2] (z), (161)

defined by the composition of homomorphisms ), k = "55=, is represented
by a Z./2P) framed immersion (h, A, (1) and using this immersion a Q< Z /4~

[4] (3] (2] .
structure of the element 55/24 o 5,%/2 7o 5,%/2 i (x) is defined.
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With respect to the decomposition (IBT) the following homology classes
are well-defined:

o (Lavaeerd) € o (K(Tax 30) [ 20152720272, (162)

14

o (Langiuenl) € o (K(Ua x 30) [ 2)1520202/2). (169)

X
The projection of the element (I62)) to the factor [89) by the homomorphism
@3)) is expended over the standard basis. This expansion contains not more
then one nontrivial element, which is defined by the coefficient of the mono-
mial to; @ ts,, see. BF), i = e = "_ka. This coefficient coincides with the
characteristic number (B), which is calculated for the Z./212 —framed immer-

sion (g, ¥, nx). The element (IG3) is trivial.

Proof of Corollary

Let us consider the immersion g,«;, which is defined as the restriction of the
immersion g on the marked component N ¥ ¢ N"~% (Recall, that for the
marked component a reduction of the characteristic mapping is given, and
the Arf-invariant of the cobordism class = is determined by the cobordism
class of the marked component.) Let us apply to the immersion g,y the
Herbert’s theorem with Z/2[Z/2]-local coefficients system, see the analogous
construction in the proof of Lemma T8

From this theorem we get that the sum of the homology classes (I62]),
([I63) is equal to the homology class (I34). In Corollary 2] the required
property for the class (I34) is proved. It is sufficiently to prove that the
homology class ([[GJ)) is trivial. Consider the projection J, x i Z]2 — Jo X
J ., which is induced the projection (J, x J, x Z/2) f Z — (JaxJ, f  Z

Consider the corresponding mapping

p:K((Jgx I, x Z/2)/

g 7,1) — K((J, x Ja)/ 71).

4

The element (IG3) is obtained from the element

pe o €Ly, sspuzpl) € Ho (K(Ta x 32) [ 2)152/202/2). (10

by means of the composition with the canonical 2-sheeted covering. Therefore
the element (I63)) is trivial. Corollary 26]is proved.
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5 Solution of the Kervaire invariant problem

In this section we prove the following result.

Main Theorem

There exists a natural number [y such that for an arbitrary integer ¢ > [
the Kervaire invariant defined by formula () is trivial. (Recall, n = 2¢ — 2,
¢ > 12, m, = 2° — 2, where o is defined by the equation (I6). We may put
my = 30, 0 = 5) Assume that an element z € Imm*/(n — 1,1) admits a
compression of the order m, + 2, then ©*/(z) = 0.

Remark

The Main Theorem could be proved under weaker dimensional assumption
then n > 4094 by the considered approach. See a remark in the Introduction
of the part IT1 [A3| of the paper.

Theorem 27. Compression Theorem For an arbitrary positive integer d
there exists a positive integer £ = £(d) such that for an arbitrary element in
the 2-component of the cobordism group [mmsf(Zl/ —3,1), assuming l' > ¢,
admits a compression of the order (d — 1) ( see Definition[d).

Remark

The proof of Theorem is presented in Section 7. By the Pontryagin-
Thom construction (in the form by Welles) the cobordism group I'mm?/ (2! —
3,1) is isomorphic to the stable homotopy group Iy _o(K(Z/2,1)). The
space Q(K(Z/2,1)) is 2-primary. This implies that the cobordism group
Imm*¥ (2! — 3,1) has no odd torsions. From Theorem 2T an explicit sub-
exponential estimation of the dimension 2° — 2, ¢ > Iy = ly(d), for which an
arbitrary element in I'mm?®/ (2! — 3,1) admits a d — 1-compression, could be
possible. Prof. D. Ravenel in [R] gave an explicit formula for ly(d) for small

d.

To prove the Main Theorem is sufficiently to prove that the residue class
in the cobordism group Imm?/ (2" — 3,1) which is determined by the non-
trivial Arf-invariant, is the empty, or, contains an element z, which admits
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a compression of the order 16. The condition of a compression of the order
¢, 3¢ < 2" — 2 of an element z is equivalent to the following condition: the
adjoined element y € Il,v_» to the element x admits a ¢ + 1-desuspension
in the unstable domain, i.e. the stable homotopy class y is represented with
sphere-of-origin 2! — 2 — ¢q. Accordingly to the result [R-S], if the group II;s
contains an element with Kervaire-invariant 1, it will have a representative
with sphere-of-origin 116.

Proof of Main Theorem from Corollary

The proof is analogous to the proof of Proposition 29 [Al]. Compute a
positive integer k from the equation n — 16k = m,, k > 7, k = 0 (mod 2),
this is possible if the condition ¢ > 9 is satisfied. By Theorem (23] we have
¢ > 12. Consider a triple (f : M™* 95 R" k,Z), representing the given
element x € Imm?® (n — k, k).

Consider the element 52/2” 5,%/2[3] o 5,%/2[2] (z) € Imm%? (n — 8k, 8k),
see the formula (I67]), represented by a Z/24framed immersion (g, ny, ¥).

Denote by L" %% the self-intersection manifold of the immersion g. By
Corollary 26 we may assume that the triple (g, 7y, V) admits a Q x Z/4—
structure (see Definition 23)).

Let us assume that the classifying mapping 7y satisfies the condition of
Example 24l This means that the following equalities are satisfied:

NN = 'LJaxJa,Z/Z[‘H O Naxas

(L= iQxz/4,2/215) © CQxz/4-
Let us prove the Theorem under this assumption.

Let us denote by N"~85~2 ¢ N"8k the submanifold, representing the Eu-
ler class of the vector bundle n¥, . (1), where by 1, denotes a 2-dimensional
vector bundle over the classifying space K((J, x J,) fx[“] Z,1), given by the
formula

Yy = (WM)*(TPZM), (165)

where 17/, is the universal 2-bundle over K(Z/4,1), the mapping w¥ is
induced by the homomorphism ([@5]). Because the classifying map 7 admits a
Jo x Jg-reduction, the submanifold N"~2~2 ¢ N2 is co-oriented (we do
not use that k is even).

Let us denote by § : N* 82 g5 R" the restriction of the immersion
g to the submanifold N" 82 ¢ N"8% assuming that the immersion § is
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generic. The normal bundle of the immersion ¢ is the Whitney sum v, @
V3., where v, denotes the normal bundle of the immersion g, restricted to
Nn=88=2 < N~ (this bundle has the structure group (J, x Jo) [, Z, this

group determines a reduction the structure group of Z/24 framing W), by
77y, is denoted the normal bundle of the submanifold N*~8-2 ¢ N8 (this
bundle is an (w!)*(Z/4)-bundle).

Let us denote by L™ 165~4 the self-intersection manifold of the immersion
G. The manifold L~ '6~4 ig a submanifold of the manifold L»—16k [n—16k—4 —
L% The immersion hhl; : L* 105 ~% o5 R™ is well-defined.

The normal bundle of this immersion £ is isomorphic to the Whitney
sum v, @ g, where by v, is denoted the restriction of the normal bundle of
the immersion A over the submanifold L1~ ¢ L"~16% by 5 denotes the
normal bundle of the submanifold L7 16k—4 < [n—16k

Let us repeat the proof of Lemma 7 [Al] (the commutativity of the
left square of the diagram (8) of [Al]). This arguments proves that the
submanifold L»~16k—4 < [n=16k represents the Euler class of the bun-
dle ((quz/a) (VQxz/a), where ¥qxz/s is the SO(4)-bundle over K((Q x
Z]4) fx[5] Z,1), given by the representation (23) — (25) of [A1]) as follows:

VQxz/a = (W[S})*WQ% (166)
the mapping

Wb K(Q x Z/4)/

X[

Z,1) - K(Q,1)
5]

corresponds to the epimorphism (I49). '

Consider 2-sheeted covering p,.; qxj, @ K((Ja X J“)fx[“] Z,1) —
K((Q x J,) fx[5] Z,1) over the universal space and denote the bundle
prd7Q><Z/4<wQ><Z/4) by wbxz/4, where the bundle tqxz/4 is defined by the

formula (I66).

For the universal bundle wbx 7/ the following formula is satisfied:

@Z)é;zxzm =ty @Y,

where the bundle v, (this bundle is given by the formula (I65)) admits a lift
Y4 v to a complex U(1)-bundle, the bundle ¢_ is an SO(2)-bundle, obtained
from 14 7 by means of the complex conjugation and forgetting the complex
structure. The bundles v, , ©_ satisfy the equation: e(¢;) = —e(v_).

Let us denote by m € H*(N"=8:7[7Z/2]) the cohomology class, with
local coefficient system (this cohomology class is defined analogously to the
homology class (53)), which is dual to the fundamental class of the oriented
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submanifold L"~1* ¢ N"=8 in the oriented manifold N"~®*. Let us denote
by e, € H'"*(N"=8% 7Z[Z/2]) the Euler class of the normal bundle v, of
the immersion g. By the analog of the Herbert theorem for the immersion
g : N8 a5 R"™ with the self-intersection manifold L"1%* (an analogous
theorem was formulated in Theorem 1.1 of [E-G|, the case » = 1, but only
with integer coefficients) the following formula is satisfied:

eg+m =0, (167)

where the both cohomology classes in this formula are defined by means of
the Z[Z/2]-local coefficients system.

Let us denote by m e H'WF4(N"=8% 7Z[7/2]) the cohomology class,
dual to the fundamental class of the oriented submanifold L7 16%—4 <
N7=8k=2 < N8 in the oriented manifold N" 8% Let us denote by
e; € H'OF=4(N"=8%. 7[7Z/2]) the cohomology class, dual to the Euler class of
the normal bundle 4 of the immersion § on the submanifold N"~8¢ ¢ N7—8k,

By the analog of the Herbert theorem for the immersion § : N8 o5 R"
with the self-intersection manifold L" 1%~ the following formula is satisfied:

ez +1m =0, (168)

where the both the cohomology classes in this formula are also defined by
means of the Z[Z/2]-local coefficients system.

Because A = 1,4, we may use the equation: X*(@baxzm) = Mrva(V4) @
nta(¥-). The following equation is satisfied:

m=m:- e(and(d}-l—)) . e(and(¢—))’

where the right side is the product of the three cohomology classes: m and
the two Euler classes of the corresponding bundles. The following equation
is satisfied: e; = e, - €2(nf (V).

The equation (IG8)) can be rewritten in the following form:

eg € (Maxa(V4)) + €5 (i (Vs)) - e(nfa(¥-))) = 0. (169)

Then we may take into account (IG7) and the equation e(n; ; (¢-)) =
—e(ny i (14)). Let us rewrite the previous formula as follows:

2¢y - € (Mxa(ty)) = 0. (170)

Let us prove that the equation (I70) implies that the expansion of the
expression (I62) with respect to the standard base does not involves the
generator t,; @ lg;, see (BY), i = %= = 2= [@). The homology class
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[N] N e, is equal to the homology class [L], therefore from the expression
() follows that the homology class 27m,xe «([L]) in the group H,,, , (K (J, %
Jo) [ Z,1); Z[Z/2)) is trivial.

The homology class 7,x4..([L]) is calculated by the formula

naxa,*([L]) = naxd,*([L]) N (w[4]7*[7—])27 (171)

where w!¥ is defined by the formula (@), and where 7 € H*(K(Z/4,1);Z) is
the generator.

Let us consider the expansion of the homology class (I71l) over the stan-
dard basis of the group H,,, (K((J, x J,) Sy Z); Z[Z/2]), using Lemma

All basis elements of the subgroup D(J, x Jo;Z[Z/2]) C H,,, (K((J, X
Ja) fx[‘*] Z7);7Z[Z]2]) (elements of this subgroups are detected by means of
the monomomorphism (03))) except, probably, the elements ta,me 14 @lg,mo_y
and to,me 4 ®t; me g are involved with even coefficients.

In the expansion of the element (I71]) over the standard basis the elements
to,me @ tome g, tgme 4 @t me are involved with coefficients of the same
parity as the parity of the corresponding coefficients in the expansion of
the homology class (I62)). By the formula (I70) we get that all this two
coefficients are even.

By Corollary 26] the characteristic number (@) is trivial. The theorem in
the particular case is proved.

Let us prove the theorem in a general case. Let us consider the pair
of mappings (Naxa, \), where ngua @ N 5% = K((J, x j“)fxl‘” Z,1), A =

axa
CQXZ/4 U CJQXJGXZ/2 : Lg:<12674 U L.T]L;i?z - K((Q X Z/4) fx[5] Z, 1) U K((Ja X
Jo X Z/2) fxm Z,1) and 16k = Lg_xlgﬁl U LrJLa_i?[]ZXZ/Z’ where these two

mappings are determined by the quaternionic structure of the Z /44 framed
immersion (g, ny, V).

Let us consider the manifold Lg;lz?ﬂ U L;;Xlilz 22" defined by the formula

(I57), and the manifolds I_/g_xlzﬁﬂ U E;‘;j’;axz P which are the canonical 2-
n—16k

sheeted covering manifolds over the components of L .

The formula (I67)) is satisfied, where the cohomology class m (this class
is dual to the fundamental class [L,x4] of the submanifold L”; ;Gk C N, fk)
decomposes into the following sum:

m = MmqQxz/4 + mJaxjaxZ/27 (172)

correspondingly to the type of the components of the self-intersection mani-
fold.
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Let us consider the submanifold N*—8k—2 ¢ Nn—8k, representing the Euler
class of the bundle 1} (¢¥1). The following immersion § : N"=8~2 q» R
is well defined by the restriction of the immersion g,xs; to the submanifold

N7=86=2  N"=8k Tt us denote by L6~ the self-intersection manifold

of the immersion g.

The following inclusion L"~'0%=* < L 1% ig well-defined. In particu-

lar, the manifold L"~ 1654 ig representing by the union of the following two

components: L' 16k—4 — Eg;lgj 1y E;La’;ffx’z 1o From Lemma 34 of [A1] we

will prove the following. The submanifold L% 165~% < L*=16% represents the

QXZ/4 QXxZ/4
Euler class of the burzdle Caxzya(Vaxzys)-
The submanifold Lln;fﬁjz 1 C Lln;fiix 2/2 represents the Euler class of the

bundle ¢; _; XZ/Q(@ZJIG «iaxiz/2) Where ¥y g .7 is the universal 4-bundle over

the space K ((I, x I, x Z/2) fX[5] Z,1). (comp. with an analogous definition
in the proof of Theorem 12 [A1]).

The cohomology class m is well-defined as in the formula (I68]), moreover
the following formula is satisfied:

m = mQXZ/4 + mJaxjaxZ/27 (173)

where the terms in the right side of the formula are defined as the homology

classes, dual to the fundamental classes [Lqxz/4], [I’Iaxiax 7o) of the canonical
coverings over the corresponding component.

The following formula determines a relation between the cohomology
classes mqxz/4 and Mmqxz/4:

mQxz/4 = MQxz/4 ° e(ﬁjaxja(¢+)) : e(ﬁjaxja(db))-

The following formula determines a relation between the cohomology classes

My, x3,x2/2 and My, xJ,xz/2°

~ 2
My, xioxz/2 = My, xJoxz/2 " € (U;axja(¢+))-

To prove the last formula we use the following formula:

EJGXJGXZ/2(w,!]anaX2/2) = Noxa (V4 B V).

In this formula the mapping 7,xs is the restriction of the corresponding

mapping to the immersed submanifold TN o Nnesk2 o sk

axa

(I /2 18 the pull-back of the universal SO(4)-bundle over K((J, %

J, x 7./2) S5 Z,1) to the 2-sheeted covering K((J, X J.) JowZ,1). Ob-

viously, the bundle 1/{!] is the Whitney sum of two copies of the

a><.L><Z/2
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pull-back of the universal SO(2)-bundles over K(Z/4,1) by the mapping
K((J, x Ja) wa Z,1) = K(Z/A x Z/2,1) — K(Z/4,1).
The analog of the formula (I69) is the following:

€g - 62(77;><d(1/}+)) —Mqoxj, * ez(nZXd<w+))+ (174)

My, x3,xz/2" 62(77;><d<1/}+>) = 0.

Let us multiply both sides of the formula (I'73) by the cohomology class
e*(nf ;i (1)) and take the sum with the opposite sign with (I74), we get:

2maxz/a - €05 4, (W) = 0. (175)

This is an analog of the formula (I70).

Let us prove that the Kervaire invariant of the Z/24-framed immersion
(g, W, n) is trivial. The expansion of the element (I62) over the standard basis
does not involved the monomial t,; ® t;,, cm. (B8), ¢ = e = "‘ka. The
proof is analogous to the previous case using Corollary [26] and the formula

(I79) instead of the formula (I70).

The Main Theorem is proved.

6 Proof of Lemmas [19, 20l and Theorem

We shall prove first Lemmas [I9 and 200 Let us define the positive integer m,,
by the formula (I8]) (in this section to simplify the calculation of dimensions
we assume that ¢ > 6 All the constructions are well-defined in the case
o=0>5).

Let us denote by ZZ; _ ; the direct product of the two standard lens
spaces (mod 4), namely

ZZy 5. =S" s 0 ix SR AL (176)
Obviously,
7 o
o > dim(27, ;) = me +18 > .

On the space ZZj , ;. the standard involution 4 ZZy 5. = 225, i,
is given by the formula x(z x y) = (y x z).
Let us define a polyhedron (a submanifold with singularities)

Xoxa C ZZy 3. (177)
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Let us consider the following family: {X;, j=0,..., jmae} of submaniflods
ZZJa ><Ja: B

Xo=S" i x ST/,

n—

X, =S5 i x SYi,

n—

— Mo _ 89 /e 1 .
Xj — Sn s =19 8]/1 % SS]+7/1’

QT n—n"ma g .
Xjaw =S5 /ix S 8 /1,

where

™+ my + 16
Amax = . 178
J ol (178)

The dimension of each submanifold in the family is equal to n— === +16
and the codimension in ZZ; | ; is equal to n — *== + 2. Let us define an
embedding

X; CZZy 3.

as the product of the two standard inclusions. Obviously, we get X[‘H(ng) =
ijaz *j * .

The subpolyhedron X,y; = U;Z&x X; C ZZy 3, 1s well defined. This
subpolyhedron is invariant with respect to the involution y[¥. The restriction
of the involution y[¥ on the subpolyhedron X,y; denote the same.

Let us consider the following sequence of the index 2 subgroups, as in the

Diagram (81):

bxb,E

L, —S$'E,; "My, % 3, (179)

Let us define the following tower of 2-sheeted covers, associated with the

sequence ([I79):
2%, — 278, . — 27y .- (180)

The bottom space of the tower (I80) is the standard skeleton of the
Eilenberg-Mac Lane space: ZZ; 5 C K(Jq, 1) x K(J4,1). The tower of
2-sheeted coverings

K<Ib><i77 1) - K<Eb><iw 1) — K(Ja X jaa 1)7

associated with the sequence (ITJ) is well-defined. This tower determines
the tower (I80) by means of the inclusion ZZ; | ; C K(Jg, 1) x K(Jq,1) =
K(J, x Jg,1).
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Let us define the following tower of 2-sheeted covers:
Xpsh — X,;Xj, — Xaxa- (181)

The bottom space of the tower (II]) is the subspace of the bottom space of
the tower (I80), the inclusion is given by the inclusion X,xq C 22 J.xJ, See
(IT7). The tower (IRI) is defined as the restriction of the tower (I80) over
this subspace of the bottom.

Let us describe the top polyhedron of the tower (I&T]), which is a subpoly-
hedron X, ; C ZZy, , explicitly. Let us define the family { Xo, Xo, ..., Xj,,. }

of the standard submanifolds in ZZy . = RP"~ ) ) RPEHY by the
following formulas:
Xo=RP" ="« RPTCRP" "5 T x RP" S (182)
Xj — RP™™ =T 49—8j X Rp8j+7 c RP™ =T 49 < RP"~ n=ne +97 o
X;,.. = RPT x RP" "5+ ¢ RPn"57F9 5 RP 75740,

In this formula j,., is defined by the formula (I78). The subpolyhedron
Xy C 2 ZIM) is defined as the union of the standard submanifolds in this
family. The description of the subpolyhedron X éX ; C ZZg, ; is obvious and
omitted.

On the space Z Zg, (correspondingly, Z Zbel}) the standard involution
is well-defined

X Zzg,  — 278, , (183)
(correspondingly,
XP:zzy - 27, ) (184)

by the formula xPl(z x y) = (y x 2) (correspondingly, (2 x y) = (y x x)).
The subpolyhedron X, ; C ZZy, ; is invariant with respect to the involution
x4, The restriction of the involution ¥ on X ;) is denoted the same.

Let us define the submanifold YYg, , C ZZg, ; by the following formula:

n—meg

YYg = (RP" « 1 x RP"™

bxb

n—

Vit

RP™~ "5 < RPTSH) i€ 27, .
Let us define the family of the standard submanifolds in YYg, , =
(RP=2549  Rpr—2pes) .

n—meg

Yo = (RP" 37 x RPT) /i € (RP"™ "4 7+9) x RP" 479 /i ... (185)
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n—

Y} _ (an— & +9-8j « RP8j+7)/i C (R'Pn—"fin" +9 > an_n730 +9)/i, o

Y}émm — (RP'? % an—n_ino +9)/i C (an—n_gn” +9 % an—n_gn” +9)i,
where
3n+m, + 8
= 186

In the formula (I85) the action of the generator i € Z/4 is defined as the
diagonal action, which is the standard on the factors.
Define the polyhedron

Y CYYs, (187)

as the union of the submanifold of the family {Y}}.

The polyhedron Y, ; is equipped with the involutions Bl The definition
of the involutions is standard.

The maps (I88), ([I8Y) correspond to the inclusions of the subgroups in
([I79) and are commuted with the corresponded restrictions of maps in the
tower of cover (I8T]).

Let us denote the cylinder of the involution x[? on Xooi by X, oi fX[Q] St

The following natural inclusion is well defined:

nx :Xbxb/ St cK(IM/ 7),1). (188)
X2l X2l

The space Y, ; fx[g] St and the standard inclusion

Ny - Y;;xb/ Sl - K(beb/ Z, 1)- (189)
X3l X3!

are defined analogously.
Let us define a polyhedron Jy. For an arbitrary 7 = 0,2,..., Jmaz,
where jne. is given by the formula (I78), let us define the polyhedron

J; = S5 78HT x S8+ The spheres (the factors of this Cartesian prod-
uct) S"E T8 G847 g ve-denoted by J;1, Jjo correspondingly. Using

this notation we have:

Jj = Jj71 X Jj72.

The standard inclusion iy, : Jj1 x Jj2 C S5 2 x S5 is well-
defined, each factor embeds in the sphere-image as the standard subsphere.
The union [ ;25" Im(iz;) of the images of these inclusions will be denoted by

Jx C 85T 85, (190)
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The polyhedron Jx is well-defined.
Let us define a polyhedron (a manifold with singularities) .Jy-, this poly-
hedron is a subpolyhedron on the polyhedron Jx:

iJYJX . Jy C Jx. (191)

For an arbitrary j =0,..., 4/ .., where j/ s given by the formula (I8d)), let
us define the polyhedron J; = 5™~ 57819 % §89+T The spheres (the factors

n—mg

of this Cartesian product) S™~ 1 —8i+9 88+ are re-denoted by J2j1, Joj2
correspondingly. Using this notation we have again the formula (?7).

The standard inclusion iy, : Jj1 x Jj2 C SEEHY % T g well-
defined, each factor embeds in the sphere-image as the standard subsphere.

The union U?i‘a’” Im(i;;) of the images of these inclusions will be denoted by

n—mg n—mg

Jy CJx €8s 19 x S5 The polyhedron .Jy is well-defined.
Define the standard 4-sheeted covering with ramification

chdxd : Xb><5 — JX (192)
the standard 2-sheeted covering with ramification
SOY})XB : }/bxl') — Jy. (193)

Consider the I, ;—covering X, ; — X, ;. The total space X, ; is the
union of products of pairs of spheres, each product is the 4-sheeted covering
over the corresponding pair of the projective spaces in the formula (I82).
Define the standard 16-sheeted covering with ramification X, ; — Jx. This
covering over each product of a pair of spheres is defined as the Cartesian
product of joins of the corresponding cyclic J, u J,—coverings over S'. The
I, ;-action on X, ; is commuted with the covering with ramification, con-
structed above. Therefore the covering (I92)) is well defined by factorization
of the considered caverning with ramification with respect to considered ac-
tion. The definition (I93)) is analogous.

The polyhedra Jx and Jy are equipped by involutions x ., X.,, which
are defined analogously to the involution x!#, ¥, The cylinders of this in-
volutions are well defined, denote those cylinders by Jy fx St Jx fx S1. The
covering with ramification (I92)) commutes with the action of the involutions
XJx, X2 Therefore the following covering with ramification

ex Xy [ St — JX/Sl, (194)
x1Z X

is well defined, this covering admits a 4-sheeted factor, which is denoted by
Cx.
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The covering with ramification

cy YM/ St — JY/Sl, (195)
X X

is defined analogously to (I94]). This covering admits a natural 2-sheeted
factor, which is denoted by ¢y

Lemma 28. There exists an embedding
iy st (x / SYx D c D" x St x DY ¢ D" x D' c R"(196)
X

where D* is the standard i-dimensional disk (of a small radius) D" x ST C
D19 4s the standard embedded solid torus.

Proof of Lemma

Let us define the collection of j,.. + 1 standard coordinate subspaces of
dimension Wr% + 6 in the Euclidean space R" '3, each coordinate space
in the collection contains the origin. Let us consider the Euclidean space
R?=*7+20 and let us fix the Cartesian product structure R*~ =10 x
R “5"+10 Tnside the first factor of this Cartesian product let us take
the collection of j’”%l coordinate subspaces Va;, 7 = 0,. .., Jmae, dim(V;) =
87 + 8. The space V; is the standard coordinate codimension 2 subspace in
the space Vj4, the space V.. coincides with the first factor of the Cartesian

product. Inside the second factor of this Cartesian product let us take the
collection of jm%l coordinate subspaces

W2j7 j:0727"'7jmax7

dim(W;) = n — "=« 410 — 8;. The space Wj, is the standard coordinate
subspace in the space W; of the codimension 8, the space Wy coincides with
the second factor of the Cartesian product.

Let us consider the following collection of subspaces:

n—

5= +10 « R"™ e +10}’ (197)

{‘/j X Wj c R

dim(V; x W;) = m% + 18, which contain the origin. Let us consider the
subspace U = U?Z‘gf Vix W;, U C R™7 420 i this formula the union is
taken over the spaces of the collection (I97).

Take a one-parametric family of orthogonal projections m(t)
——

n—

s 20 5 R0 ¢ e S which satisfies the following

5o +10 % R

condition.
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~1. The following equation 7 (¢ + 180°) = I,ntidiag © T(t) is satisfied, where
t € SV, Lintidiag : RV 5 - T10 x Ri=752F10  Rro57o 410 o Rr—572+10 g
an orthogonal mapping, which is the identity on the diagonal and is antipodal
on the antidiagonal.

—2. The kernel Ker(m) of the projections 7(¢) for each ¢ is a linear sub-
space, which is denoted by L(t) ¢ R*“F=+10 x R*=*5=+10 dim(L(t)) =
dntme 4 96. In the family of projections with the boundary condition 7(t)
the space L(t) for an arbitrary t intersects each subspace V; x W; of the
collection (I97) only at the origin.

Evidently, the family of projections 7(¢), with the required properties ex-
ists. For example, we may take first 7(0) as an embedding on the antidiagonal
and is the identity on the diagonal. Because the dimension of the diagonal
is even, this condition determines a family (), which satisfies Condition 1.
Then take a small alteration of the family, keeping the boundary condition.

By the general position argument in the case o > 5 the following equality
is satisfied: dim(V; x W;)+dim(L(t)) = 2tme 4184 30dMa 4 96 < (Todme 4
10) — 1. Therefore there exists a family m(¢), which is satisfies Condition 2
for each t.

Let us denote the constructed family of embeddings by iy (¢) : U € R*™H.
Let us denote the family of embeddings of the standard unite disk, which is
associated with the family iy (t) by ig(¢) : U(t) € D" 3. In this formula by
U(t) is defined the union of the image of the standard unite disk with the
center at the origin, which is associated with the union U(t) of the vector
spaces of the collection (I97) for the prescribed value of the parameter t.
By the involution Innsgiae the induced involution Inusidgiag @ U(0) — U(0) is
well-defined.

Consider the embedding i : S! x D*~* ¢ R*!0, Take the composition
of the one-parameter family of embeddings i (t), t € [0,180°], with the one-
parameter family i, this composition determines an embedding, denoted by
ig(t), t € [0,180°).

The required embedding (196)) is defined by the composition

iy = (ip x idgwo) o (izy x idpw) : (Jx / SH x DY ¢
X

(U/ SH x DY c R 19 x R = R™,
jantidiag

In this formula iy, 7 @ Jx fx stcUf; S1 is the embedding, which is

antidiag

constructed by means of the collection of the standard embeddings: {Z;; x
Zio CV; x W}, idpo : D' € RY is the standard embedding, idgio : R C
R!'9 is the standard diffeomorphism. Lemma 28 is proved.
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An E, ;—structure for a formal mapping dg?)

Let us consider an arbitrary equivariant generic PL-mapping

a9 (X, [ SH? =R xR" (198)

X2
Such a (equivariant) mapping let us called a formal mapping.
Let us define an (open) polyhedron of a (formal) self-intersection of the

mapping dg?) as the quotient of the inverse image of the diagonal diag(R™ x
R™) C R"xR"™ without points on the diagonal of the origin space. Denote this

polyhedron by N® = N(Q)(dg?))o. The closure N® of the polyhedron N
contains boundary, this boundary will be denoted by ONE?)) (an analogous
construction is in [A1l], the formula (44)).

In the case the mapping (I98)) is defined by the extension of a PL-mapping

dx : X, [ S'—=R", (199)
x[2

the polyhedron N coincides with the polyhedron N(dy) of self-intersection
of the mapping dx. In this case the boundary d(CI(N®)) coincides with the
polyhedron of critical points of the mapping dx.

Consider the subpolyhedron

Xb><i7 - Xbxb/ Sl? (200)
x[2

which is defined as the fiber over the marked point of the fibration
Xy fx St — S The restriction of the equivariant mapping (I98)) to the
subpolyhedron (200) denote by

dy : X2, —R" x R". (201)

The self-intersection polyhedron of the formal mapping d[f(] denote by N2 =
NE(d), c NO(dP)..

Suppose the polyhedron Ng2) contains a marked closed component, which
is denoted by

NG NP, (202)
Then the polyhedron N2 also contains a marked closed, which is denoted
by

NE o NP @@, (203)

bxb
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The following inclusion
NE N

bxb Eyi
is well-defined.
The structure mapping

G : NP — K(2/29,1),

which is analogous to the structure mapping ([Al], formula (43) is well-
defined. Let us consider the restriction of the structure mapping (., on the
marked component of the self-intersection polyhedron:

C:NY o K(z28 ).

bxb
Assume that this mapping admits a reduction, given by a mapping

2
Ce, , [ Nijxb — K(beb/[

X

Z,1). (204)
3]

In this case the restriction of the structure mapping
N [3]
(: Nbeb — K(Z/2"',1)
on the marked component (203)) admits a reduction by the mapping

Ce,; N = K(B,;,1). (205)

bxb

Generic homology classes

Let us formulate a homological condition. Let (si,s2) be an an arbitrary
pair of integers satisfying the following conditions: s; = 1 (mod 2), so = 1
(mod 2), 51 + s = n — "=

For an arbitrary pair (sp,ss), described below, we shall construct a
manifold X(s1,s2) = RP* x RP*? and consider the embedding ix(s, s,) :
X (s1,80) C Xy € X3 J, S*, which is defined as the extension of the em-
bedding X (s1, s2) C X, j, which is the Cartesian product of the two standard
coordinate inclusions

By the construction for each pair (si, s2) the following inclusion

nx,
X (s150) 0 X(51,82) C Xpojy — K(bei)/[Q] Z,1) (206)
X
is well-defined.

66



Additionally, define the manifold RP*~“=*~1 x S, which we denote by
X and define the embeddings

ix. t Xoo C X, / St (207)
21
. 1 Xy
ix.. : Xoo C Xpj ) St KT, ) Z,1). (208)
X X

Consider the standard 2-sheeted covering px, .xs1 @ X X St —
Xy [y S*, for which the embedded circle pt x ' C X, ;, x S* is mapped to
the circle px, ; xs1 (ptx S1), the image of this circle by the standard projection
X fx S1 — St is projected as the standard 2-sheeted covering S' — S*.

—Mg __

Define the embedding RP* "5 ~1 x S! ¢ X, x St as the product of the

standard embedding RP"~ "% “~! C X, _; on the first factor with the identity

mapping S' — S'. Define the mapping ix_ : RP"™ s ~~'x St — X, fx St
as the composition of this embedding with the projection px  ..s1. The em-
bedding (207)) is well-defined.

Analogously to the case of framing immersions (see Definition of the ho-
mology class (B3))) let us prove that the images of the fundamental classes
by means of the mappings (200), ([207) determine the following homology
classes

{[X (515 82)] = ix(s1,00)x [ X (51, 82)],  [Xoo] = ixo v 1 [Xoo] € (209)

Hyope (X | SHZ/22/2),
X
Consider the following compositions:

{iJX fx 510 iX(Sl,Sg) : X(Sl,SQ) — Xb><b C Xb><b ) Sl — Sl X Dn—l C Rn},
X

{iJXf g1 01x_ $ Xoo — Xbxi) N Xbxb/ St 5 9l prt - Rn}
X x12!

Assume that the formal mapping (207]) is the formal extension of a map-
ping deXb f st In this case the image of the polyhedron Jx fx St by this
mapping is a immersed framed manifold with singularities. This observation
allow to define the elements (209) analogously to the regular case. For a
formal mapping (207]) this construction is analogous.
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The homology class

[Xoo] € H, o (K(beb/m 7,1):2,/27,/2)

is not in the subgroup (B8], the last classes of the collection (209]) belong to
this subgroup. The collection (209) corresponds to the standard basis of the
subgroup

t(H, (K (L5, |

X2

215 2(2/2) > H(K (L [ 2.152/22/2)

X

which is described in Lemma

Assuming that the formal mapping (201) is holonomic. In this case
each manifold X (s, s2) determines the polyhedron of the self-intersection
of the mapping deXb f st © ix(s1,52)- 1N a general case the analogous poly-

hedron of the is well-defined, denote this polyhedron by NX(si,s9)s =
NX(s1,59)(d?),. By the construction the following inclusion is well-defined:

NX(s1,52)o C N(dD).. (210)
Define the closed subpolyhedron

NX(s1,82)m, ,; C N][EQ} 5 NX(s1,82)E, ;, C NX(s1,52)0 (211)

bxb

by the intersection of the polyhedron (2I0)) with the component (203]).
The restriction (. ;| Nx(s;,50)s . Of the structure mapping (205]) to the sub-
bxb

polyhedron (211]) denote by
(B, ; NX(s1,52)  NX(51,82), , = K(E;,1). (212)
Consider the fundamental class
[INX(s1,52)E, ;] € Haim(vx)(NX (81, 52)E, ;)

where dim(NX (s, s2)) = n — *="=.

The manifold X (sq, s2) is oriented and the codimension of the formal

(2]

mapping d X(s1,52) is even. Therefore the following collection of the homology
classes is well-defined:

{C*E ([NX(Sl,Sz)E ])6 (213)

ImD, _n-me (Byy; Z[Z/2]) = D, _n-me (Ey 3 Z/2(Z/2))}.
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The transfer homomorphism

2 Dy ne (B ZIZ/2) = D, ome (L5 Z[Z/2)), (214)

n

which is associated with the double covering K(I,.; [ 22, 1) —
K(E,.; fx[g] Z,1) is well-defined. The collection of permanent homology

classes (modulo 2)
Gy e ((INX (51, 52)m,,,]) € Dyy_nmme (5 2/2[2/2])} (215)

is well-defined.

Define an extra collection of homology classes of the group
D, n-mo (L,.j;Z/2[Z/2]). Let us consider the polyhedron (2I0), generally

speaki;g, with a boundary. The standard compactification NX(sy,sy) of
the canonical 2-sheeted covering N X (sy, s3) over NX (s, s5) is well-defined.
The polyhedron NX(s;,s,) contains the following closed subpolyhedron
NX(s1,82),,; as a marked component. The polyhedron NX (sy, sq) itself,
is not closed, is equipped with the natural embedding into the polyhedron
X(Sl, 82) C Xb><5'

Consider the mapping

bxbr*

nXbxi; : Xb><i) — K<Ib><l'77 1)7 (216)

which is defined by means of the mapping (I88). The induced mapping
X, ;| cF%(s1,55) determines the permanent homology class

Moo (CNX (51,52)]) € Daaim(vxy (Lyyi; Z/2[Z/2]). (217)

It is easy to calculate dim(NX)) = n — *="=. Obviously, the homology
class (2I7)) is defined as the reduction modulo 2 of the corresponding integer
homology class.
The following equation for each pair (s1, s2) is well defined:
Mo [CNX (51,52)]) = (. (INX (51,58, ,]). (218)

bxb?

This equation determines the identity of the two homology classes (217)) and
(215) in the group Daimnx) (L, ;Z/2(Z/2]).

Definition 29. Let us say that the formal mapping dg?) (198) admits an
E, ; structure, if there exists a mapping (204), which determines a reduc-
tion of the restriction of the structure mapping on the marked component.
Moreover, the restriction (203]) of the mapping (204)) is elated with the map-

ping (I8Y) by the family of equations (2Ig)).
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Proposition 30. There exists a formal mapping (I98), for which the poly-
hedron of the formal self-intersection contains a closed component (202 along
which the self-intersection is holonomic. An E, ;-structure in the sense of
Definition 29 is well-defined, which is given by the mapping (205]).

The sketch of the proof of Proposition B0 is in [A3,Section 7].

An J, x J,—structure for a formal mapping dg)

Definition of a J, x J, structure is analogous to Definition (29) of an E, ;-
structure. In this definition polyhedra are replaced by and their factors, and
structure mappings are replaced corresponding quadratic extension.

Definition 31. Let us say that a formal mapping
4 (be,-,/ $1?2 - R" x R” (219)
X131

with holonomic self-intersection along a closed marked component

N NO@P), (220)

admits an J, x J,—structure, if there exists a mapping

2 .
Craxas : Nylg, = Ko x Jas 1), (221)

which determine a reduction of the restriction of the structure mapping on
the marked component, and which is related with the mapping (I89) by the
following family of equations:

My ([CNY (51, 2)]) = (5. 5. (INY (51, 82) 5, 5,])-

Proposition 32. There exists a formal mapping 2I9), for which the
polyhedron of formal self-intersection contains a closed marked component
@20). Additionally, a J, x J,—structure in the sense of Definition Bl is well-

defined by the mapping (221]).
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Construction of Z/2?—framed immersion, which admits
an E, ;—structure, proof of Lemmas 19 and

Let us prove Lemma I3 Let y = [(g,7x, V)] be given, where g is a Z /22
framed immersion, g : N*" "5~ 9 R*, ny : N* "5 — K(ZP,1) is the
characteristic class of the Z /212 framing W.

By the condition of the lemma there exists a mapping

n—meg

i : NP s K (1) / [

X

z,1), (222)
2]

which determines a reduction of the characteristic mapping 7. This map-
ping satisfies the Conditions 1 and 2 of Definition {4l The mapping n,.;
determines (up to a homotopy) the mapping

n—mg

Mosix © N — Xbxb/[ ] St (223)
X 2
because the polyhedron X, ; [ 5 S* is a subspace of the Eilenberg-Mac Lane
space K (I, ; fX[Q] Z,1), and this subspace contains the standard skeleton of
the dimension n — *="= + 1 = dim(N) + 1.
Analogously to [Theorem 23,A1] let us define a Z/2/2-framed immersion

(9, %, ny), which is determined in the group Imm?%/?2™ (n — Lfhe R—tha) the

given element y. Additionally, the manifold N"~2* contains a closed marked

component N:X’;k C N2 and the self-intersection manifold L:x_b 4

of the restriction immersion g,.; = g|yn-2x, contains a closed component
bxb

Ly ~_which is the first component in the formula ([I14).

bxb
By geometrical arguments a natural projection

n—4k (2)
Lbei) - Nbel}

, (224)

n — 4k = n — == is well-defined.

Define the mapping (I08]), which is required in Definition [[4 Consider
the mapping (204]), which is constructed in Proposition and define the
mapping (I08]) by the composition of the mapping (224 with (204)).

The following Lemma is analogous to Lemma 33 in [A1].

Lemma 33. Assume v € Imml?(n — 2k, 2k) be an arbitrary element, which
is represented by a triple (¢',nn/,Z'). (We will use the assumption that the
characteristic mapping ny admits an 1, ; fx[2] Z—reduction, given a mapping
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M) Let y € ImmbBl(n — 4k, 4k) be an arbitrary element, which is rep-
resented by a triple (h,(p, ). Then there exists another triple (g,nn,Z),
g : N" 28 95 R"™, which represents an element x, for which the immer-
sion g is self-transversal. The self-intersection manifold of g, is an Z/2P-
immersed manifold, represented the element §'°) (x), contains a closed compo-
nent L™~ . Moreover, the characteristic mapping C;, admits an B, ; NG Z—
reduction by a mapping Cg, ;, for which the canonical 2-sheeted covering

mapping Cg, .« L' — K (i [, Z,1) is induced from the mapping 1y
by the immersion L' q» N2k,

By construction the immersion g|y yn»-2x, and therefore, the immersion
(??) is a Z/2/@-framed immersion, and its characteristic mapping admits
al; fX[Q] Z-reduction. Let us apply Lemma and construct a Z/212-
framed immersion (g,7ny, V), for which the characteristic mapping admits
an I, ; fxm Z — reduction, and for which the ZPl-framed immersion of the
self-intersects manifold contains a closed component (224)), for which the
mapping (I08)) determines an E,,;-reduction of the characteristic mapping.

Let us check that the immersion (g,ny,¥) admits an E,_;-structure.
Let us check Condition 3 in Definition IT[I4l The proof of this condition is
analogous to the calculation of the degree of the mapping k¢ in the proof of
[Proposition 28, Al].

Let us decompose the image of the fundamental class of the manifold
N:X_;k by the mapping ([223) over the basic homology classes (209). The
homology class [X.] is not required, because of Property 2 of Definition [[4l

Each homology class (209) satisfies the equation (2I]). Therefore the
image of the fundamental class by the mapping ([223) also satisfies by the
same relation (I23)). The Condition 3 from Definition [[4]is proved.

Condition 1 follows by construction, because the manifold N"~2* contains
the only component N:;b%' Let us proof Condition 2 from Definition 14l

Consider the restriction of the mapping (I88) on the subpolyhedron X,
which is defined by the formula (207). Consider the mapping

iX(sl,sg) : Xoo — K<beb/[

Z7 1)7
x12
which is defined by the formula (206]). Consider the image of the homology

class

(oo ((@ampa )] € Ho (K (T |

Z1):Z/2Z/2),  (225)
X2
where by Wn=ma is denoted the normal Stiefel-Whitney class of the manifold

n—meg

X of the dimension “=
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Lemma 34. The homology class [223) is not in the subgroup
Diny (Lyyii Z)2[Z/2]) C Hiny (K (L, [\ Z),1); Z/2[Z/2]), in particular, this
homology class in non-trivial.

Proof of Lemma [34]

Let us prove that the total obstruction (44]) for the homology class (225])
is non-trivial. Apply to the considered homology class the forgetful homo-
morphism (@3] and consider this homology class with local coefficients as an
integer homology class.

Let us calculate the homology class (225]). At the firs step let us calculate
the homology class

(@Wn=pa)")? € Hp, (RP"—"=~1 % SV, 72/2(2/2)). (226)

A direct calculation shows (in this calculation the inequality o > 5 is used:
the integer “="¢ is divided by 4), that the cohomology class Wn-ma €

n—mg

H* == (RP" "5~ x S':7Z/2) is the generic class of the first factor. There-
fore, the cohomology class (wnfgno- )7 is also the generic class of the first fac-

tor. Consider the homology class (220) and let us divide this class by the 1-
dimensional cohomology class, which is induced from the generic cohomology
class H'(S'; Z) by the standard projection X, — K ((I, x L) fxm Z) — St
Consider the image of this class by the mapping ix(s, s,). This image coin-
cides with the class (29)) for i = m, — 1 and is non-trivial. Lemma [34] is
proved.

The last step of the proof of Lemma [[9. The proof of Property 2
in Lemma

Let us assume that the homology class (II0) is not in the subgroup (@2),
it = n — 4k. This means that the image of the fundamental class of the
manifold N:;I;% by the mapping (223) is decomposed over the basis of this
homology group, such that the basic class [X] is not involved. Then by
Lemma[34], Property 2 of Definition [I4lis not satisfied. Statement 2 of Lemma
is proved. Lemma [19 is proved.

The proof of Lemma 20] is analogous.

Proof of Theorem

Let us start to prove Theorem Let us define the space
ZZy i, =S

n+ n+

2T ST (227)
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(The space (I76]) is not used below). Obviously, dim(ZZ; i ) = n+m,+2 >
n.
Let us define a family {Z;,...,Z

imas |, Of standard submanifolds in the
manifold Z ZIaxiav where

n+mys+4
mar — T | & 228
J My + 2 (228)
by the following formula:
Zy=S8"T e 8 i ST /i SR L (229)

Zj = SR U] [ GUSTNITL € g TR i gL
n

mg ,, _n-—mg . —_n—Mg . —n
D = 87 [ x S IH Y € Sn T

In the formulas j,, is defined by the formula (228]). The subpolyhedron

24

Zaxa C 221 . (230)

is defined as the union of the standard submanifolds of the family (229).
Obviously, dim(Z,.;) = %
The standard involution

X272y g — 27y, (231)

e P

id defined analogously to the involution (I84]), (I83). The subpolyhedron
([230)) is invariant with respect to the involution (23T]).

Let us consider the standard cell decomposition of the space K (I, x
I,,1) = K(I,,1) x K(I,,1), this decomposition is defined as the Cartesian
product of the standard cell decompositions of the factors.

The following standard inclusion is well defined

Zava C K(Jy x Jg,1). (232)

The skeleton (232) is invariant with respect to the involution (23T]).
Therefore the inclusion

Zm/ St c Zm/ Stc K((I, x ia)/ 7,1), (233)
x4l x4 x4

which is an analog of the inclusions (I88)), (I89) is well defined.
Let us define a polyhedron Jz, this polyhedron is the analog of the poly-

hedron Jx, see (I90). Let us denote by J.Jj, the space of join of jya + 1
copies of the standard lens spaces S°2" /i. Let us denote by JJi, the space
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of join of jmas + 1 copies of the standard lens spaces S /i. In this formulas

Jmae is defined by (228]).
Define a subpolyhedron Jz ; C JJi, X JJj by the formula

JZv] = JJQJ X JJIa,j? 1 S Z S ,jma:m

where JJi, ; C JJi, is the subjoin with the coordinates 0 < i < jpr — J,
JN,: C JJi, is the subjoin with the coordinates 1 < ¢ < j. Define a
subpolyhedron Jz; C JJq x JJg by the formula

JJZ,j = JJQJ' X JJQJ, 1< < jma:m

where JJq; C JJq is the subjoin with the coordinates 0 < i < jpap — J,
JJQJ C JJQ is the subjoin with the coordinates 1 <1 < j.
Let us define J; by the formula:

jmax
Jz = Jz; € JJq x Jh,. (234)

j=1
Let us define J; by the formula:

Jz =\UmseJy, C Jy, x JJj . (235)

j=1

On the polyhedra Z; . ; , J7 a free involutions are well defined. The both
involutions are denoted by Tq, the involutions corresponds to the quadratic
extension (I35]). The polyhedron (234) is invariant with respect to the invo-
lution Tq, the inclusion of the factorpolyhedra denote by

(J2)/Tq = UrseJz;/Tq C JJi, [Tq x JJ;, | Tq. (236)

The following standard 4-sheeted covering with ramification is well de-

fined:
¢z Laxa — Jz, (237)

This covering is factorized to 1-sheeted covering with ramification ¢z. The
covering (237) is defined by the composition of the 2-sheeted covering with
ramification

ZaxalTq — (Jz)/Tq (238)

and the standard 2-sheeted covering Z,.; — Zyxa/Tq. The covering ([237) is
invariant with respect to the standard involution, which corresponds to the
involution (231]), this involution is not re-denoted.
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The following embeddings S /Q C R™ !, % /i ¢ R™ ! are well
defined. This embeddings in the case o = 5 was constructed by Hirsch [Hi]
(see also [Ro]). The join of the several copies of the considered embeddings
determines the following embedding:

Jyz; C RmoUmeat2)=2, (239)
The following lemma is the analog of Lemma 28

Lemma 35. There exists an embedding
iy, : JZ/81 cD"?xS'cR*"! Cc R (240)
X

Denote by Zosa C Zavs the inclusion of the standard skeleton of di-
mension n — “="=. Let us consider a generic PL-mapping d; : Zoxa —
D1 x ST C R™. Let us assume that the mapping d is generic. Let us con-
sider a polyhedron of self-intersection of the map d; and let us denote this
polyhedron by N(dz). Obviously, dim(N(d;)) = m,. In particular, in the
case n = 2" we get dim(N(d;)) = 30. The polyhedron N(d) contains the
subpolyhedron of critical points of the mapping d;. This polyhedron is called
the boundary of the polyhedron N(d;) and is denoted by ON(d;) C N(d3).
Hence, the standard inclusion ON(d ;) C Zaxa is well-defined. Because of the
upper row of the diagram (I53)), the inclusion of the subgroup a x @ C Z/ 2]
is well-defined.

The following mapping called the structure mapping is well defined:

(v, * (N(d3), ON(dz)) = (K(Z/29,1), K((I, % 1,) /

Z,1)), (241)
4

the restriction of this mapping to the boundary of the polyhedron of self-
intersection of the mapping d; is the composition of the standard inclusion
ON(d;) — K(I, x I,) and the mapping 232). The space K(I, x I,,1)
is equipped with a mapping (this mapping is an inclusion in the homo-
topy category) into K (Z/2%, 1), this mapping is defined by the composition
of the mapping K (I, x I,,1) ¢ K(Z/2%,1) and the diagonal embedding
K(Z/2W 1) x K(Z/2",1) c K(z/2P,1).

Definition 36. Let us say that the mapping d; admits Q x Z/4-structure,
if for the mapping (241]) the following conditions are satisfied.
—1. The polyhedron N(d) is decomposed into two components:

N(dZ) = NQXZ/4 U NlaxiaxZ/27 (242)
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where the boundary ON(d;) is contained in the component NI, x I, x Z/2.

—2. The restriction of the mapping (241]) to the component Nqyz/4 admits
a reduction to a mapping into the subspace K((Q x Z/4) fx[5l Z,1) i.e. this
restriction is given by the following composition:

Coxz/a * Noxz/a — K(Q x Z/4) /[ | Z,1) — K(Z/2" 1),
X 5
where the mapping of the classifying spaces K((Q x Z/4) fx[5] 7,1) —
K(Z/2P1 1) is induced by the homomorphism (I36).
3. The restriction of the mapping (241)) to the component Ny i .7, is
given by the following composition:

CIQXLXZ/2 : (NIaxiaxZ/%aNIaxiaxZﬂ)

— (K((I, x I, x Z/Q)/

X[

Z.K(L Ia>/ z.1),

A4

where the mapping of the classifying spaces K (I, xI,xZ/2,1) — K(Z/2% 1)
is induced by the homomorphism (I37).

The following lemma is analogous to Lemmas [30, B2l The proof of this
lemma is analogous to the proof of Lemma 33 of [Al], see part IIT of the

paper.
Lemma 37. There exists a mapping d; : Zaxa — D" 1% S* C R™, admitting
(a relative) Q X Z/A—structure (see Definition (34) ).

The mapping dy is defined as a generic alteration of the following com-
position:

Zaxa Sl C Zaxd/ Sl i> JZ/S1 JCZ Dn72 X Sl C Rnil - Rn7(243)
x4 x4 X

where ¢z Zuxa fx[“] St — Jy fx St is the J-sheeted covering with ramifi-

cation, defined by means of the covering (Z37), Zaxa fx[‘” S C Zuva fx[‘ﬂ St
Jz; C Jz is the standard embedding, determined by means of the inclusion
@32), iy : J; € D"% x St C R" is the inclusion, constructed in Lemma [35.

Proof of Theorem

Consider the mapping (I56]), which is determined a reduction of the restric-
tion of the characteristic mapping ny on the marked component. Without
loss of the generality, we may assume that the image of the map 7, is con-
tained in the subspace Z,xq S ST C K((Ja x J,) Juw Z,1). Let us define
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n+mg

an Z/2W-immersion g,xq : N,.2 9 R”, which is in the regular homotopy

class of the immersion g| nimo , and the self-intersection of this immersion

axa

satisfies the required conditions from Definition 23|

MNaxa

Let us consider the composition Nﬁ — Zaxd fx[“] St % R™. Let us
consider a C%—small alteration of this composition into an immersion g; in the
regular homotopy class of the immersion g. Let us denote the self-intersection
manifold of the immersion ¢; by L.'?,. The caliber of the deformation above
is chosen so small that the manifold L], is decomposed into two disjoint
components as in the formula (I58]).

The component Lg‘;z /4 is contained in a small regular neighborhood of
the image of the first component Nqxz/4 from the decomposition ([242). The
component LE"X fx2/2 is represented as the union of the two submanifolds
with boundaries along the common boundary. The first of the manifolds with
boundary is immersed into a small regular neighborhood of the image of the
second components Ny .y .7, from the decomposition ([242). The second
manifold with boundary in immersed into a small neighborhood of regular
values of the mapping d;. The common boundary is immersed into a small
regular neighborhood of critical values of the map d;. Therefore, for the
manifold L), the formula (I57) is satisfied and the induced mapping (I58))
is well-defined.

The immersion g, is a Z/ 2[4 framed immersion in the prescribed cobor-
dism class of the restriction of the triple (g, 7y, V) on the marked component.

By this condition the pair of mappings (I56]), (I58]) is well-defined, the map-
n+mg .

ping Naxe : Novi — K((Jo x Jo) fx[‘*] Z,1), corresponds to the mapping

(A = Caxz/1U (5,3, x7/2> and the Conditions 1 and 2 from Definition 23] are

satisfied. Theorem [25]is proved.

7 Compression Theorem

Let us prove the Compression Theorem 271

Remark

A sketch of an alternative proof of the Compression Theorem 27] was proposed
by D. Ravenel, see [R].

Let M™% be a closed manifold of dimension (n — k), ¢ : M™% 95 R™ be
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an immersion of this manifold into R™ in the codimension k, =, is a skew-
framing of the immersion ¢ with the characteristic class k), of this skew-
framing. Additionally, let us assume that the manifold M"* is equipped
with the family of 1-dimensional cohomology classes modulo 2:

Aj:{/‘flz‘}, K eHl(Mvz/z)a OS'LSja Ko = Kp- (244)

This collection of cohomology classes is represented by the collection of clas-
sifying maps:

A]':{Hi:Mnik_)Rpoo}7 i:O717"'7j7 Ko = KpM- (245>

Definition 38. The cobordism group of immersions I'mm?®/i4i(n — k; k) is
represented by triples (¢, Zp, A;), where:

—@p : M™% &5 R"is an immersion of a closed (n — k)-dimensional mani-
fold into Euclidean space,

— =) is skew-framing of the immersion ¢,

—A; is a collection of cohomology classes, described in (2435]).

The cobordism relation of triples is the standard.

Remark

In the case j = 0 the cobordism group Imm*/s(n — k; k) coincides with the
cobordism group Imm?/(n — k; k) of skew-framed immersions.

A natural homomorphism

ka;Aj cImmA A (n —1,1) = Imm*5 % (n — k, k) (246)

S

is defined as follows. Let us assume that the triple (o, Zas,, A;(Mp)) repre-
sents an element in the cobordism group Imm*f4i(n —1,1). Let us consider
the following triple (i, Zas, A;(M)), where the immersion ¢ : M™% 45 R”
define as follows. The manifold M"~* is a submanifold in the manifold M} ",
the fundamental class of this submanifold represents the homological Euler
class of the bundle (k — 1)kyy,, the immersion ¢ is defined as the restriction
of the immersion ¢y on M"~*. The skew-framing =j; of the immersion ¢ is
defined by the standard construction like in the case j = 0, the collection
A;(M) of cohomology classes is the restriction of the collection A;(M) on
the submanifold M™% c My~

Let us generalize Definition [l for the cobordism group Imm*/4i(n—k, k).

79



Definition 39. Let [(p, =/, Aj)] € Imm*/4i (n—k, k). We shall say that the
element [(y, Ep, A;)] admits a compression of the order g, if in its cobordism
=/

class there exists a triple (¢, Z),, A%)], such that the pair (M™% ky) admits
a compression of the order ¢ is the sense of the Definition [7l

Let us define the transfer homomorphism
r;- cImm T (n — kL k) — Immsf;Aj‘l(n —k, k) (247)

with respect to the cohomology class r;.
Let # € Imm*/4i(n — k,k) be an element represented by a triple
(¢, Enm, Aj). Let us define the 2-sheeted cover

pj: Mnik — ]\4”71g

as the regular cover with the characteristic class wi(p;) = k; ® K €
HY(M"=*;7/2). (We will denote below by p; the linear bundle over M™%
with the characteristic class wy(p;) and also the characteristic class w;(p;)
itself.)

Let us define a skew-framing =;,. Let us consider the immersion ¢ :
M"™* 6 R". Let us denote the immersion ¢ o p; by ¢. Let us denote the
normal bundle of the immersion ¢ by vy,. Let us denote the normal bundle
of the immersion ¢ o p; by vy;. Let us define the skew-framing =, of the
immersion ¢ o p; by the formula = = p3(Zn).

Let us define the collection of the cohomology classes Aj_l by the following
formula:

~

Aj,lz{/%j:pjo,‘ij, j:O,,j—l}
We will define

~

() = (¢, Zpp, Aja))-

Example 40. In the case j = 0 the transfer homomorphism (247) is given
by the following formula:

ro : Imm® (n — k, k) — Imm/"(n — k, k)
The properties of this homomorphism was considered in [A-E|.

Let us consider the homomorphism, given by the composition of the (j; —
j1) transfer homomorphisms:

T, - Immt T2 (0 — k k) — Imm*i4n (n—Fk,k), Jo>ji1. (248)
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In the case j; = 0, the homomorphism (248]) will be denoted by
i s Imm®f A (n — k k) — Imm™ (n — k, k). (249)

Let us describe the homomorphism (248) explicitly. Let us assume that
an element x € Imm*/i2(n — k, k) is given by a triple (¢, =2y, A;,). Let us
consider the the following subcollection {kj,41,...,kj,} of the last (jo — j1)
cohomology classes of the collection Aj,. Let us define the 272771—sheeted

cover p : M7=k — Mk, given by the following collection of the cohomology
classes:

{I‘ijﬁ.l ® Koy ..oy ’L{jz ® K,Q}.
The immersion ¢ : M™% 95 R" is given by the following composition:

A

p=@op.

The normal bundle of the immersion ¢ is equipped with the skew-framing
p*(Em) = Z5;. The collection of cohomology classes

A ={ko=kKoop,...Rj, =Kj, op}
is well-defined by the classifying maps.

The cobordism class of the triple (¢, EM’Ajl) determines the element
!

L TS T (x)

Proposition 41. For an arbitrary even positive integer k, k = 0(mod2),
2! — 2 =n >k > 0, there exists a positive integer ¢ = 1(k), such that the
total transfer homomorphism 249) for jo = j:

Trop = ITmm®4% (n — k, k) — Imm*! (n — k, k) (250)
is trivial.

Proof of the Proposition (4]

Let us start with the following lemma.

Lemma 42. The cobordism group Imm®/i4i(n — k. k) is a finite 2-group if
n—k>0.
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Proof of Lemma

The cobordism group Imm?*/ (n —k, k) by the Pontrjagin-Thom construction
is the stable homotopy group IT,,_x(Py_1), where P,_; = RP>® /RP*~! see f.ex.
|A-E]. By the standard arguments the cobordism group I'mm*/4i(n — k, k)
is a stable homotopy group IT, 4(Py—1 x [[/_; RP%°)). The space P, i x
5:1 RP2°) is a space of the 2-homotopy type. The Lemma [2]is proved.
Let us define the following sequence of positive integers s, _, ..., s1, where
the indexes decrease from (n — k) to 1:

Spr = ord(I,—g),  Sp_g_1=ord(Il,_x_1), ..., s =ordl).

In this formula we denote by ord(1l;) the logarithm of the maximal order of
an element in the 2-component of the i-th stable homotopy group of spheres.
Then let us define ¥(i) = Z;‘:—f s; and let us define the required integer by
the following formula:

Y =19(1) +o, (251)

where o = ord(Imm*/#+® (n — k, k)) (see Lemma [@2). Therefore we have
B> (1) 2 9(2) 2 > pln— k)

Let 2 € Imm*(n — k,k) be an element represented by a triple
(¢, Enm, Ay). Let us consider the element
Tp1)+1,..., w(ﬂf)a (252)
represented by a triple (¢, =7, A¢,w(1)), given by the transfer homomorphism
with respect to the subcollection {ky)+1, ..., ky} of the cohomology classes
in the collection Ay (M) (the last o classes in the collection A). Let us
prove that the element (252) admits a compression of the order 0, see the
Definition [39. o

Let us denote the product RPg® x [T/ RP>(j) by X(jo) and let us
consider the map

gt M™F = X (s), (253)

were s = 1, defined as the direct product of the classifying maps of the
collection Ay_y1) of cohomology classes (the classes my1y 4+ 1,..., Ky are
omitted). Let us denote again the space X (¢(1)) by X for short.

Let us consider a natural filtration

s Xtk o k) oo XD c X (254)
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This filtration is the direct product of the two standard coordinate filtrations.
Each stratum X® \ X0+ § =1 .. .n — k is an union of open cells of the
codimension i. Fach cell is determined by the corresponded multi-index
p= (m,... ,m¢(n,k)), my + -+ Mym—k) = &, m; > 0, each coordinate of
the multi-index shows the codimension of the skeleton of the corresponded
coordinate projective space that contains the given cell.

Let us assume that the map A is in a general position with respect to the
filtration (254). Let us denote by L° C M"* a 0-dimensional submanifold
in M™%, defined as the inverse image of the stratum X n=F of this filtration.

Let us consider the triple (¢, =y, Aiﬂ o 1)) Let us prove that this triple is

cobordant to a triple (¢', =, Aiﬂ—w(l)) such that the mapping \ : M'"* —
X, constructed by means of the collection of the cohomology classes A,
satisfies the following property:

ATHX (R =, (255)

By the assumption k is even. Therefore, because n is even, the manifold
M™% is oriented. Let us consider an arbitrary choose the orientation of
each cell in X%\ X(=k+1) et us denote by lk(y) the integer coefficient
of self-intersection of the image A\(M"~*) with the oriented cell of a multi-
index p. Let us denote analogically by lk(ft) the integer coefficient of self-
intersection of the image )\(M n—k) with the oriented cell of a multi-index pu.
Obviously, the collection of the integer {lk(f)} is obtain from the collection
of the corresponded integers {lk(x)} by the multiplication on 2¢~%(1),

Let Aipu) be the subcollection of A, consists of the first ¢/(1) cohomology

classes. By the construction, the exponent of the group Imm?*/i4+® (n—k, k)
is equal to 2¢~¥() . Therefore the disjoint union of the 2¥~*() copies of the
triple (p, 2, A;b(l)) determines the trivial element in the cobordism group
Imm5Aem (n — k, k).

Let us consider the triple (27)(—¢, —Eu, Aj;y). This triple is define as
the disjoin union of 27 = ¢ — (1) copies of the triple (—p, —=Ens, A))) (the
orientation of M" * is changed and the immersion ¢ and the skew-framing
=y are changed to the opposite). The collection of the coefficients for the

triple (27)(—p, —=Eum, A}q)) will be denoted by {lk(27(—x))}. Obviously,
{Ih(27(=p))} = =27{lk(p)}-

Let us consider the triple (¢, =/, A;b(l))’ defined as the disjoint union of
the triple (M"_i“, Eu Apy) with theAtriple (2")E—<p, —ZM, A;p(l)). The new
triple (¢', Z5/, Ay (1)) and the triple (M™% =, Ayqy) represent the common

element in the cobordism group [ mm*/ ?AW)(k,n —Ak). The mapping N
M'™ — X, constructed by means of the collection Agp(l) of the cohomology
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classes is well-defined. The collection of the intersection coefficients, defined
for the mapping X’ will be denoted by Ik’ (). Obviously for an arbitrary
multi-index p we have [k (1) = 0.

A normal surgery of the triple (¢, =/, flgp(l)) to a triple (@", =y, 12122(1))
by 1-handles is defined such that the the map A" defined by means of the
collection /Ali;(l)) of cohomology classes satisfy the condition (253]):

5\//71<X(n7k)) = 0.

This gives the first step of the proof.

Let us describe the next steps of the proof. Let us denote the triple
(@",EMN,A%(I)) by (¢, Zwm, Apy) again. The map A : M™% — X, con-
structed by means of the collection Ay1) of cohomology classes satisfy the
condition (2553]). Let us consider the triple (¢, =, Aw(l)), given by the fol-

lowing element
!

Trparinrmo (P 205 Au)

-----

in the cobordism group Imm*/4v@ (n — k, k).
Let us define the space X (¢(2)) by the Cartesian product of infinite—

dimensional projective spaces with indexes (0, 1,...,%(2)):
i=1(2)
X(4(2)) =RPg x [ RP=()).
j=1

The standard coordinate inclusion

iy - X(¥(2)) € X (4(1)) (256)

is well-defined. The space X (1(2)) is equipped with the following standard
stratification:

e CXY($(2)) CXTH(2) € C X (9(2)). (257)

The inclusion (256]) is agree with the stratifications (254)), (257)) of the origin
and the target spaces. R
The collection Ay of cohomology classes determines the map A :

M™% — X(1(2)). The condition (255) implies the following analogical
condition:

AT (2))) = 0. (258)

Let us denote by L' ¢ M™* a 1-dimensional submanifold in M™* given by
the following formula:

~

£Y = 3 XD ()

84



The restriction of the cohomology classes of the collection /ALW) on the sub-
manifold L' is trivial. In particular, the submanifold L' is framed.

The components of the manifold L' are equipped with the collection of
the multi-indexes corresponded to the top cells of the space X" *~1(¢)(2)).
A fixed multi-index determines a disjoint collection of 2°' copies of 1-
dimensional framed manifold (probably, non-connected) and the copies are
pairwise diffeomorphic as a framed manifolds.

A framed 2-dimensional manifold K2 with a framed boundary 3([% 3 =
(L") is well-defined. This framed manifold determines the body of a handle
for the normal surgery of the triple (¢, =y, Aw(Q)) to a triple (¢', =y, Aip@))

such that the collection A;ﬂ@) of cohomology classes determines the map
N M™E = X (9(2),

satisfied the condition (258]).

The next steps of the proof are analogical to the step 1. The parameter ¢
denoted the dimension of the obstruction is changed from 2 up to n — k. In
cach step the analogical condition to the conditions (255]), (258)) is considered.
At the last step of the proof we have a framed manifold (M"~* =,,), equipped
with a collection Aw(n—k) of the trivial cohomological classes. The framed
manifold represented by ¥ (n — k) disjoint copies of the framed manifold
(M™% =Z)) is a framed boundary (and therefore a skew-framed boundary).
The Proposition E1] is proved.

Let us describe an algebraic obstruction for the compression of the given
order.

Lemma 43. An arbitrary element x € Imm*/4i(n — k, k) admits a com-
pression of the order i, i < n — k, if and only if the element

Jf}(x) c Imm* 4 (n — k' k)
(i <n—k <n-—k)admits a compression of the same order i.

Theorem 44. For an arbitrary element x € Imm®/i4i(n — k, k) the total
obstruction for a compression of an order q¢ (0 < q < n — k) is given by the
element J{p 5 (x) € Imm?i4i(q,n — q).

To prove Lemma and Theorem [44] let us formulate an auxiliary
lemma. Let as assume that a triple (p,=Z), A;) represents an element
x € Imm®4i(n — k k). Let us additionally assume that this element
admits a compression of the order (i — 1). This means that in the triple
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(p,Zm, Aj) can be taken in its cobordism class such that the characteristic
class k), € HY (M™%, 7/2) of the skew-framing =), is given by the following
composition:

kar s MR — RPETE C RP,

i < n— k. We shall denote the map M™% — RP"*~¢ described above again
by K.
Let us consider the manifold Q' ¢ M™%, given by the formula:

Q' = kil (pt), pt € RO, (259)

The manifold is equipped with the natural framing ¥, because the restric-
tion of the skew-framing =,; over the submanifold Q* C M™% is a framing.

Moreover, the restriction of cohomology classes of the collection A; over
the submanifold Q° C M"™* determines the collection A;(Q) of cohomology
classes on Q'. Note that the class kg in the collection Ag is the trivial class.
The immersion g : Q" & R" is defined as the restriction of the immersion
¢ over the submanifold Q" C M"*. A triple (¢g, Vg, 4;(Q)) determines an
element Ji; o () =y € Imm®/4i (i,n — ).

Lemma 45. The element x = (@, 2y, Apr)] € ImmsH4i (n—k, k), which ad-
mits a compression of the order (i—1), admits a compression of the order i if
and only if the element ij;Aj (z) =y = [(vg,Zq, A;(Q))] € Imm/4i (i, n—i)
18 trivial.

Proof of Lemma

At the first step let us prove that if y = 0 then z admits a compression
of the order i. Let us consider a skew-framed in the codimension (n — i)
(i+1)—dimensional manifold (P!, =p) with boundary P! = @, equipped
with the collection A;(P) of cohomology classes, such that the restriction of
the skew-framing =p over the boundary @° is a framing coincided with the
framing Wy and the restriction of the collection A;(P) over the boundary Q'
coincides with the collection A;(Q).

Let us describe a normal surgery of the skew-framed manifold (M™%, =)
into a skew-framed manifold (7% Z7). Let us construct a manifold with
boundary called the body of a handle. Let us consider the manifold P!
and let us denote the (n — i)-dimensional normal bundle over P! by vp.
The normal bundle vp is equipped with the skew-framing Zp, i.e. the bundle
map (an isomorphism on each fiber)

vp — (n —i)kp (260)
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is well-defined. Let us denote by Up the disk bundle over P spanned by the
first (k — ¢) factor in the Whitney sum (260). The manifold Up is a skew-
framed manifold in the codimension (n — k) manifold with boundary will be
called the body of a handle.

The boundary OUp of the body of the handle contains a submanifold
Q' x D" %= the total space of the disk bundle over the manifold Q. Let
us consider the Cartesian product M™% x I of the manifold M"* and the
unite segment I = [0,1]. A second copy of the manifold Q° x D" %~ is
embedded into the submanifold M™% x {1} C (M™% x I), this is a regular
neighborhood of the submanifold Q% x {1} € M™% x {1}. Let us define the
manifold 7"~ * by the following formula:

"% = & (M™% x I) Ugir pnri Up), (261)

where by 01 is denoted the "upper" component of the cobordism i.e. the
component that contains the last part OUp \ (Q° x D"~*~%) of the boundary
of the body Up.

After the standard operation called "smoothing the corners" the PL—
manifold 7% becomes a smooth closed smooth manifold. The immersion
o : T"% 95 R™ (this immersion is well-defined up to a regular homotopy),
the skew framing Z¢ with the characteristic class kp (i.e. the bundle fiberwise
isomorphism vy — krp) are well-defined. The manifold 7" * is equipped
with the collection A;(T’) of the collection of characteristic classes, each class
in the collection is determined by the gluing of the corresponded classes
of the two components in the decomposition (261I]). The class ko(T") of the
collection A;(T) coincides with the characteristic class rp of the skew-framing
Zr. The triple (¢, 27, A;(T)) determines an element in the cobordism group
Imm*54i (n—k, k) and by the construction [(¢, Zar, A;)] = [(or, =1, A;(T))].

Let us prove that the element [(¢7, 21, A;(T))] admits a compression of
the order . We will prove that the characteristic class kp is represented by
a classifying map kp : %% — RP"*=i-1 ¢ RP>. Take a positive integer b
big enough and let us consider sy, : M™% — RP?, such that

iy (PR =

Qi C Mnfk’ I&Pb*?%i’k‘i’i C pr'

Let us consider the mapping g : P! — RP*"++i the restriction of this
mapping to the component of the boundary dP*! = Q' coincides with the
map K |gi. Let us consider the "thickening" h : Up — RP? of the map g,
this map h is defined by the standard extension of the map ¢ to the body of
the handle Up.
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The map ¢’ : M" *Ugiy pn-r—:Up — RP?, ¢'|iy, = ¢ is well-defined and the
restriction ¢'|pn—kcpm-ry, does not meet the submanifold RP*~"~#+¢ c RP®.
The space RP? \ RP*™"~**i ig retracted to the its subspace RP"~ %=1 by
a deformation, the required compression of the map kr of the order i is
constructed. We have proved that the element x admits a compression of the
order 7.

Let us prove the inverse statement: assume that the element x =
[(¢,Zm,A;)] admits a compression of the order 4, then the triple
(00, Vg, 4;(Q))), Q' is given by the equation (259) determines the trivial
element in the cobordism group Imm*/4i(i,n —i).

Let (ow,Zw, A;(W)) be a triple, where W™ **! is a manifold with
boundary, W™+l = Mk U M*; (ow,Zw) is a skew-framed immer-
sion of the manifold W into R™ x I; A;(W) is a collection of characteristic
classes. Moreover, the triple (pw, Zw, A;(W)) determines a cobordism be-
tween the triples (¢, Zar, A;(M)) and (par, ZEnr, A;(M')), where the pair
(M™% k) (the cohomology class k- is the characteristic class of the skew-
framing =), and this class is included into the collection A;(M’)) admits a
compression of the order i, i.e. the classifying map ky; = Ky |y is given by
the following composition:

Ky s MR RPPRFT C RP™.

Let us consider the standard submanifold RP*~"~*+i  RP?, this subman-
ifold intersects the submanifold RP"~*~% C RP® at a point pt € RP"*=1\
RP"*==1 and does not intersect the standard submanifold RP"~*=~1
RP"k~¢ The image Im(ry(M" %)) is in the submanifold RP"~ %~ C RP?,
the image Im(ryr(M™ %)) is in the submanifold RP?—#~i-1 ¢ Rpr—k~i,

Let us denote by P! the submanifold £/~ (RP*~"***+) (we assume that
is transversal along the submanifold RP*~"**+¢  RP?). By the construction
OP™ = Q. Let us define a skew-framing Zp in the codimension (n — i) as
the direct sum of a skew-framing of the submanifold P+t ¢ W%+l and the
skew-framing Zyy, restricted to the submanifold P! c Wn=k+1,

The restriction of the skew-framing Zy on W *+! = Q"% coincides
with the skew-framing W¢ with the trivial characteristic class kg (i.e. the
skew-framing W, is the framing). The restriction of the collection A;(P) of
cohomology classes on W™ 1 = Q"= coincides with the collection A;(Q).
This proves that the triple (¢, Vg, Ag), is a boundary. Lemma5lis proved.

Proof of Theorem [44

Let us assume that a compression of the order (i — 1), i < ¢ for an el-
ement x € Imm®4i(n — k k), v = [(¢,Zm, Ax)] is well-defined. By
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Lemma M5 the obstruction to a compression of the order i of the element
x € Imm*/ 4 (n—k, k) represented by the same triple (¢, 2y, Apr), coincides
with the obstruction of a compression of the same order i for the element
J,j,f (r) € Imm*/i4i(n — k', k'). Therefore, by induction over i, the total ob-
struction for a compression of the order ¢ for the element x is trivial if and
only if the total obstruction for a compression of the order ¢ for the element
JiI () is trivial. Theorem Bl is proved.

To prove the Compression Theorem the following construction by
U.Koshorke of the total obstruction for a homotopy of a bundle map into
a bundle monomorphism on each fiber of the bundles (see [K]|) is required.

Let « — Q9, § — Q? be a pair of the vector bundles over the smooth
manifold Q¢ (we do not assume that the manifold Q7 is closed) dim(a) = a,
dim(f) = b, dim(Q?) = ¢, 2(b—a+1) < q. Let u:a — ( be a generic
vector bundle morphism. let us denote by ¥ C (¢ a submanifold, given by
the formula:

Y ={z e QYKer(u, : oy = B) # 0}. (262)

This manifold ¥ is the singular manifold of the bundle morphism u. Note
that under the presented dimensional restrictions, for a generic vector bundle
morphism u we have rk(u) > a — 1.The codimension of the submanifold
YCQYisequal tob—a+ 1.

Let us describe the normal bundle of the submanifold (262)), this bundle
will be denoted by vs. Let us denote by A : E(A) — ¥ the linear subbundle,
determined as the subbundle of kernels of the morphism w over the singular
submanifold ¥ C Q7. Therefore, the inclusion of the bundles over ¥ ¢ : A C «
is well-defined. Let us denote by A, the bundle over ¥, this bundle is the
orthogonal complement to the subbundle €(\) C «. A natural vector-bundle
morphism over 3 (isomorphism of fibers) v : A, C (3 is well-defined. Let us
define the bundle Ag over ¥ as the orthogonal complement to the subbundle
v(A,) in the bundle als. The normal bundle v(X) is determined by the
following formula:

V(S) = A® Ag. (263)

If the manifold Q¢ has a boundary 0@ and the vector bundles morphism
u is the morphism of the bundles over the manifold with boundary, then the
singular submanifold 0¥ C 0@ of the restriction u|gq is a boundary of the
submanifold > C @9 with the normal bundle, given by the same formula

263).
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In the paper [K] (in this paper there is a reference to the previous papers
by the same author) a cobordism group of embeddings of of manifolds in Q4
(in this construction the manifold Q7 is closed) of codimension b—a+ 1 with
an additional structure of the normal bundle, given by the equation (263)
is defined. For an arbitrary generic vector bundle morphism u : & — [ an
element in this cobordism group is well-defined. This element is the total
obstruction of a homotopy of the vector bundle morphism v to a fiberwise
monomorphism.

Let 0 : E(0) — RP?*~1 be a vector bundle, dim () = n+1—2F, 2% < n4-2
over the standard projective space, isomorphic to the following Whitney sum:
U = (n+1—2%)kgp, where kgp is the canonical line bundle over RP2" -1, Let
us denote the Whitney sum 2@ s by v, dim(v) = (n — 2% +2). The standard
projection 7 : v — I with the kernel « is well-defined. The bundle vgp in the
case

b(2%) <n+2 (264)

(the positive integer b(r), 7 = 2* is equal to the corresponded power of 2, see
[A-E]) is isomorphic to the normal bundle of the projective space RP2" 1.

Let us define an admissible s—family of sections (singularities in the family
of sections are possible) of the bundle Ugp.

Definition of an admissible family of sections of the bundle g

We shall say that a generic s—family of sections

12}:{12}17---777@8}7 12}:56_>79RP

of the bundle Igp is admissible, if there exists a regular s—family

w:{wla'-'ad)s}v 1/’355—”/[&13

~

of sections of the bundle vgp satisfied the condition: 7o = 1.

Lemma 46. Let us assume that s < n+2—21 Lk — 1 and n = -2
(mod 22k), n > 0. Then the bundle Dgp has an admissible s-family of sections.

Proof of Lemma

By the Davis table the projective space RP2*~! is immersable into the Eu-

clidean space R2"H k-1 (this is not the lowest possible dimension of the
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target Euclidean space of immersions). By the equation (264]), and because
b(k) < 2F forn = 92" the bundle vgp is the normal bundle over the projective
space RP?"~1. Therefore the bundle vgp admits a generic regular s—family of
section, denoted by . The projection 1/3 = m o1 of this regular family is the
admissible s—family of sections of the bundle gp. Lemma [46] is proved.

Let us consider an admissible generic s—family of sections @/A) of the bundle
Urp. Let us denote by X C RP2" 1 the singular manifold of the family ’(/A) This
denotation corresponds to ([262), if we take o = se, f§ = 0, u = 1. In the
following lemma we will describe the normal bundle vs, of the submanifold
S C RPZ L

Lemma 47. Let us assume that
s=n+2-2"M k-1 k>2 (265)

where n = 22° — 2. Then the singular submanifold ¥ C RP¥'~ of an ad-
missible s—family of sections of the vector-bundle vgp is a smooth submani-
fold of dimension k, the normal bundle vs, is equipped with a skew-framing
Ey 1 (28 — 1 — k) = vs, the characteristic class k= of this skew-framing
coincides with the restriction K,RP|EC]RP2]9_1.

Proof of Lemma 47

Let us describe the normal bundle vy, by means of Koschorke’s Theorem.
Moreover, let us define a skew-framing of this bundle. Let us denote by
A C se the subbundle of the kernels of the family 1 over the submanifold .
By the assumption the the family ’(/A) is admissible, therefore:

A = ks, (266)

where by ks, the vector bundle kgp|s, is denoted. Let us denote the orthogonal
complement to Ky C se over X by s¢ — ky. Let us denote the orthogonal

~

complement to ¥ (se — Kky) in the bundle Zgp|y; by A. By the construction:
(se — Kky) B Ky = se. (267)
Let us prove that the bundle vy, satisfies the equation:
vs=n+2-2"—k—1)ks. (268)

By the Koschorke Theorem the following isomorphism of vector bundles
is well-defined:
A X Ky = Us.
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This equation is equivalent to the equation:
(se) ® ky = vs @ Ky.

This proves the equation (268). The isomorphism (268) defines a skew-
framing =y, of the bundle vy, with the characteristic class ky. The Lemma
41 is proved.

Remark

Because the restriction of the normal bundle vgp over ¥ is isomorph to the
trivial bundle by the canonical isomorphism, the skew-framing =y deter-
mines the skew-framing of the normal bundle (in the Euclidean space) of the
manifold >.

Let us consider an element
x € Imm®4i(2F — 2. n — 28 +2) n=—2(mod2"),

given by the cobordism class of a triple (¢, Zx, A;(M)). Put m = 2F — 2.
Let us consider the vector bundle v — RP?*~!| dim(v) = n —m. The normal
bundle vy, of the manifold M™ is given by the formula:

Let us consider the map

J
Aar o M™ — RPF < T RP, (269)
i=1
see (253), constructed by means of the collection A;. Let us consider the
standard projection m : RP*" =1 x [J/_, RP>® — RP?*~! on the factor RP?*~!.
The composition 7y 0 Ay : M™ — RP2*~1 coincides with the map k.
Let us define the subbundle 2y, C vy of the codimension 1 (i.e. of the
dimension dim(2y;) = n + 1 — 2%) by the formula:

Let us define a family of sections &3y = {&1,...,&}, s = n+3 — 281 4k
of the bundle #,,;. This collection is the pull-back image of an admissible
collection of sections ¢ = {41, ...1,} of the bundle 7y, by the map . Let
us denote by

Nt c Mmm (270)
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the submanifold of singular sections. It is not hard to prove that
dim(N*71) = (k — 1). The manifold N*7! is equipped with the collec-
tion A;j(N) of cohomology classes, a class of A;(N) is defined as the re-
striction of the corresponded class of the collection A, over the submanifold
N*=1'c M™. The class ry|x in the collection 4;(N) is denoted by rx. Let
us denote the immersion ¢|y by @y.

Let us denote by vy the normal bundle of the immersed (embedded by the
general position arguments) manifold ¢ (N*71) in the Euclidean space R™.
The normal bundle vy is isomorph to the Whitney sum vy = vy|n @ Unewr,
where by vycas is denoted the normal bundle of the submanifold N~ ¢ M™
inside the manifold M™.

By Lemma 47l and by the transversality of the map xj; along the subman-
ifold ¥ ¢ RP?" 1, the bundle Unca is equipped with the skew-framing =xncs
with the characteristic class ky. The bundle vy/|y is also equipped with a
skew-framing with the same characteristic class (see an analogical Remark
after Lemma [47]). This gives a skew-framing =y of the immersion ¢y of codi-
mension (n — k + 1). Let us denote by A;(IV) the collection of cohomology
classes from the group H*(N*~1;7Z/2), this collection is the restriction of the
collection A; over the submanifold N*~! ¢ M™.

Lemma 48. The triple (on,=n,A;(N)) determines an element x,_; €
Imm?®4i (k—1,n—k+1), this element is the total obstruction of a compres-
sion of the order (k — 1) for the element x € Imms54i (28 — 2, n — 2k 4 2).

Proof of Lemma (4§

Let us consider the submanifold Sk c RP2 L of singularities of the family of
sections 1, let us re-denote this manifold by . This manifold is equipped
by the following natural stratification (a filtration):

pcxlc.--cei el crp? L, (271)

The submanifold ¥;, dim(%;) = k — i in ([271)) is defined as the singu-
lar submanifold of the subfamily of the first (s — ) sections in . By the
straightforward calculations follows that the fundamental class [¥2;] of the
corresponded submanifold in the filtration in the group Hj_;(RP2"~1;Z/2)
represents the only generator of this group: this homology class is dual to
the characteristic class w0, 1_ok_jppi(n + 1 — 2%)kgp of the bundle gp.

Without loss of the generality we assume that the map ky, : M™ —
RP2"~1 is transversal along the stratification [27T)). Let us denote the inverse
image of the stratification (271]) by

N} CNl,C---CN™tcMmm (272)
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The top manifold N¥~! of the filtration (272) coincides with manifold N*~1,
defined above.

Let us prove the lemma by the induction over the parameter ¢, ¢ =
0,...,k—1. Let us assume that the image of the map xy, : M™ — RP?*~1isin
the standard projective subspace RP?* =2~ ¢ RP?"~!. In this case Ni~! = §.
By the standard argument we may assume that the stratum X! . intersects
in the general position the standard submanifold RPZ" =1~ of the complemen-
tary dimension at the only point. (The index of self-intersection of this two
submanifolds in the manifold RP2"~! is odd and well-defined modulo 2.)

The framed manifold N} . , is the regular preimage of the marked point
by the map k) (the image of this map is in the submanifold Rsz_Q_i).
Let us denote an element represented by the cobordism class of the triple
(ONw i 1s 2Ny s Aj(Np—i—1)) in the cobordism group Imm?*/i4i(i,n — i) by
x;. By Lemma (7 the condition x; = 0, 1 < k — 2 is satisfied if and only if
there exists a normal cobordism of the map kj; to the map kpy : M'™ —
RP2*~2~i  RP?". Therefore a compression of the order i +1, i +1 < k—1 of
an element x is well defined. If we put + + 1 = k — 1 we have a compression
of the order (k — 1). Lemma (8] is proved.

The following Proposition is the main in the proof of Theorem 271

Proposition 49. Let n = —2(mod(2)), n > 2¥, x € Imms54i(2F —2,n —
2% +2) be an arbitrary element in the kernel of the homomorphism (279)
(in this formula b(k) = 2%). Let x4y € Imm*Ai(k — 1,n — k + 1) be
the total obstruction for a compression of the order (k — 1) of the element
x. Then the element xp_1 is in the image of the transfer homomorphism,
i.e. there exists an element yi_1 € Imm* A1 (k —1,n —k + 1), for which
7i41(Yp—1) = Tp—1. Assuming k — 1 is even, the element y,_y is in the kernel
of the homomorphism [279) (where we assume that b(k) =k +1)

Proof of Proposition

Let us assume that the cobordism class of the element x is given by a triple
(on, ZEnr, Aj(M)), where @y @ M™ 9 R”™ is an immersion, dim(M™) =
m = 28 — 2. Because codim(pyr) is odd, M™ is oriented. Assume that
[(par, Zar, Aj(M))] is in the kernel of (279) (in this formula b(k) = 2*). (This
assumption is satisfied for j = 0, because characteristic numbers for M™ are
trivial.)
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Let us consider the normal bundle vy, = (n— 2%+ 2)k); over the manifold
M™ and the subbundle 7, C vy of the codimension 1, Dy = (n— 2%+ 1)k,
Let us prove that there exists a regular s—family of sections ¥ of the bundle
Dai, 8 =n+ 24k — 2k

Let us denote by D(kjs) a manifold with boundary, the total space of
the disk bundle, associated with line bundle x,;. The vector bundle v, is
lifted to the vector bundle over D(rk,,) (we will denote this lift again by /).
By the R.Cohen theorem [C] there exists an immersion D(ky;) 4 R2' 2%
because dim(D (k) = 28 —1 and a(2* —1) = k. The proof of the statement
is in Theorem B0l

Equivalently, the bundle 7); admits an s—family of regular sections. The
tautological lift, denoted by ), of the regular s—family é of the bundle 7y, to
a regular s—family of sections of the bundle 7, is defined.

Let us consider the admissible s—family of sections ¥ of the bundle 7.
This family of sections is defined as the pull-back of admissible s—family of
sections of the bundle Igp, see Lemma A regular s—family of sections 1
of the bundle v,; is defined as the lift of the admissible s—family ’(/A)

Let us consider the manifold M™ x I and let us define the bundle v/
by the formula vy« = p3;(var), where py @ M™ x I — M is the stan-
dard projection on the second factor. Let us define the bundle 7y;.; by
the formula 7y;«; = pi;(Par). Let us consider a generic s—family of sections
X = {x1,...xs} of the bundle vy;«; with the following boundaries condi-
tions:

X =v¢ over M™ x {1}, (273)

X =& over M™ x{0}. (274)

Let us denote by V¥~1 C M™ x I the singular subset of the family X. By
the general position argument this subset is a closed submanifold in M™ x I,
because over the boundary O(M™ x I') the family X is regular. Let us denote
by )

X{)Aﬁ, .- -7)23}

the projection of the s—family X into the s—family of sections of the vector
bundle 7y ;. The s—family X satisfies the following boundary conditions:

A

X =14 over M™x {1}, (275)

X =¢ over M™x{0}. (276)
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Let us denote by K* ¢ M™ x I the subset of singular sections of the
s—family X. This subset K* is a k-dimensional manifold with boundary.
The only component of the boundary dK* is a submanifold of M™ x {1}),
this component coincides with the submanifold N*=* c M™ x {1} of the
singularities of the admissible family v, see (270).

By Lemma [T, the triple (¢n, =y, Ay) is well-defined. Here o = ¢|n,
En is the skew-framing of this immersion, A;(N) is the restriction of the
collection A; on N*=' € M™ x {1}. The triple (¢n, =y, Ax) represents the
total obstruction xy,_; € Imm*/4i(k —1,n — k +1) for a compression of the
order (k — 1) of the element x = [(@, Zpr, Kar)]-

Let us use the formula (263]) to calculate the normal bundle of the sub-
manifold K* ¢ M™ x I and of the line normal bundle of the submanifold
VEL C KF,

Let us denote by X the line bundle over V*~1 of kernels of the s—family of
sections X. Let us prove that the normal bundle vy -y« of the submanifold
VE=1 © M™ x [ is given by the formula:

Wermxi =€D(m—k+1)A, m=2"-2 (277)

The restriction of the normal bundle vy;«;|y over the submanifold VE1 s
isomorph to the bundle (n+2—2%)k )7, and therefore, because b(k—1) < 2%,
is isomorph to the trivial bundle:

(n+2—2kpr = (n 42— 2F)e. (278)

This isomorphism is canonical, i.e. does not depends of M™ and of V*~1.
Let us define the vector bundle A as the orthogonal complement to the line
subbundle A in the trivial bundle of linear combinations of the base sec-
tions. The bundle A represents the stable vector bundle —A. Therefore the
orthogonal complement of the subbundle Z(A) in the vector bundle vy«
is the subbundle in the vector bundle vy|y isomorph to the vector bundle
A @ (28 — k — 1)e. By the Koschorke Theorem, the normal bundle of the
submanifold V*~1 ¢ M2 =2 x I is isomorph to the vector bundle:

Wweuxi =A@ AB (2" —k—1)e)=e (2" —k -1\

This vector bundle vy -7 also represents the stable normal bundle of the
manifold V*~! because of the equation (278). The formula (277) is proved.

The restriction of the immersion ¢ x Id|y is regular homotopic to an
immersion ¢y : V¥ 5 R™ x {1}. By the computation the normal bundle
of the immersion ¢y is equipped with a skew-framing, denoted by =i,. The
collection of cohomology classes A;(V) is defined by the formula A;(V) =
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A;(M xI)|y, where A;(M x I) is induced from the given collection A;(M) of
cohomology classes on M™ by the projection py;. Let us define the collection
of cohomology classes A;1(V) by the addition to the collection A;(V') the
last cohomology class kj11 = A® karxr. The triple yp_1 = (v, Zv, 4;11(V))
determines an element in the cobordism group I'mm?®/i4i+1(k —1,n —k+1).

Let us denote by Uy C K* a small closed regular neighborhood of the
submanifold V*~! ¢ K*  The line bundle of kernels of the family X of
sections over the submanifold (with boundary) Uy C M™ x I is isomorph
to the line bundle py; . \(\), where py, v : Uy — V' is the projection of the
neighborhood on the central submanifold. Let us denote the line bundle
Pir, v (A) by \. The orthogonal complement to the subbundle ) in the vector
bundle of the linear combinations of the base sections over Uy, will be denote
again by A.

Let us consider the subbundle X (f\) in the vector bundle y;«;. By
the analogical calculations, using the canonical isomorphisms of the vector
bundles over Uy: (28"1)\ = (2871)ky, = (287 1)e, the orthogonal complement
in px; of the subbundle X (A), denoted by —X(A), is isomorph to the
bundle A @ (2871 — k — 1)e @ (27! — 1)kys. By the Koschorke Theorem, the
stable isomorphism class of the normal bundle vy, cpr«; of the submanifold
Uy C M™ x [ is given by the formula:

Voycmxi = (k= 1A @ (—rkpy @ A).
In particular, from this calculation follows that the line normal bundle of
the submanifold V*~! ¢ K* is isomorph to the line bundle A ® x ;.
Let us denote AUy by @Q*'. The space Q¥ ! is a closed manifold,
dim(Q*') = k — 1. The normal bundle vgcpx; of the submanifold
Q%' c M™ x I is given by the formula;

VQcMxI = eP (m— k+ 1)/<JM

The restriction of the immersion ¢ x id : M™ x I & R™ x I to the sub-
manifold Q¥~! € M™ x I is regular homotopic to a skew-framed immersion
o+ Q"1 5 R™ x {1} of the codimension (n — k + 1) with the sklew-
framing, denoted by EQ, and with the characteristic class of this skew-framing
io = Karxrlo- The manifold Q¥ is equipped by the collection A;(Q) of co-
homology classes, A;(Q) = A;(M x I)|gcarxr- The triple (g, Z0, 4;(Q))
determines an element in the cobordism group Imm*/i(k —1,n — k + 1).
The manifold K*\ Uy has the boundary consists of the two components:
O(K*\ Uy) = Q"' U K" . The restriction of the immersion ¢ X Id| )
is regular homotopic to an immersion ¢ : K* a» R" x I with the following
the boundary conditions: ¢x|Q = pg : Q¥ ! & R™ x {1}, px|N = ¢y :
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N1t g5 R™ x {0}. The immersion ¢ is a skew-framed immersion with
a skew-framing Zx and with the characteristic class kKx = Kaxr|x of this
skew-framing. The manifold K* is equipped by the collection of cohomology
classes A;(K) = A;(M x I)|kcmxi-

The triple zx_1 = (¢n, En, Aj(N)) determines an element in the cobor-
dism group Imm*f4i(k —1,n — k + 1). The element x;_, is the total ob-
struction to a compression of the element x = [(p, En, A;)] of the order
(k —1). The element [(pq,Z0, A;(Q))] is the image by the transfer homo-
morphism 75, of the element yx_1 = [(¢v,Zv, 4;41(V))]. The elements
i1 = [(pn, En, A5 (V)] and 754 (ye1) = [(0q, Eq, A;(Q))] are equal. The
cobordism between the elements x;_; and r;- +1(Yk+1) is given by the triple
(v, Ex, Ay (K)).

Assume that k£ — 1 is even. Let us prove that y,_; is in the kernel of
@79) (in this formula we assume that b(k) = k + 1). The construction
of yr_1 from x is generalized for the image of x by ([279) (in this formula
b(k) = 2%). Because z is in the kernel of ([279), yx_ is also in the kernel of
[279). Proposition 9 is proved.

Proof of the Compression Theorem

Let us define a positive integer ¢ = 1¢(q), by the formula (251]) for n — k =
g — 1. By Proposition [l the total transfer homomorphism (250), which is
defined on the group Imm*/4(d—1,n—d+1) is the trivial homomorphism.
Let us define a positive integer [(d) = expy(exp,...expy(d) -+ + 1), where
the number of the iterations of the function exp,(z + 1) = 2°*1 is equal to v
and the initial value is x = d — 1.

Let I’ be an arbitrary power of 2, I’ > [(d). Let us define n = I’ — 2. Let
us prove that an arbitrary element in Imm*/(n — 1,1) admits a compression
of the order d — 1.

Let us define ng = {(d) — 2, by the assumption ng < n. Let us define the
following sequence of v integers: 2ny; = loga(ng+2)—2, 2ny = logs(ng+2)—2,
ooy 2ny = loga(ny—1 + 2) — 2. All this integers are positive and n, = d — 1.

Let g € Imm*/ (ng,n — ng) be the image an arbitrary element x €
Imm®(n —1,1) by J* : Imm®/(n — 1,1) — Imm?*/(ng, n — ng). Denote by
41 the total obstruction of a compression of the order d — 1 for the element
x. The element x4_; coincides with the total obstruction of a compression of
the order (d — 1) for the element x,,.

Let us consider the total obstruction z,, € Imms? (n1,n — ng) of the
retraction of the order n; for the element z,,. The element z,, is in the
kernel of the homomorphism (279)) (in this formula we put b(k) — 2 = ny is
even), because characteristic classes of M™ are trivial). By Proposition 9]
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there exists an element y,,, € Imm?*/{*1}(n;, n — n;), such that the image of
the element y,,, by the transfer homomorphism is equal to x,,.

Let us consider the total obstruction y,, € Imm?! #1(ng,n — ng) of a
compression of the order ny for an element y,,. By the Proposition 49 there
exists an element z,, € Imm*/*152(ny n —ny) such that the element ry(2,,)
is the total obstruction of a compression of the order n, for the element y,,.
The element ryo(2n,) = 71 072(2n,) = JiI (25,) = @y, is the total obstruction
for a compression of the order ns of the element x,,. The same element z,,
is the total obstruction for a compression of the order (ny) for the initial
element x.

By the induction we prove that the total obstruction of a compression
of the order (d — 1) for the element x is in the image of the total transfer
homomorphism of the multiplicity 1, i.e. this total obstruction is equal to
Tt (2), 2 € Imm®i4v (d—1,n—d+1). By Proposition Elwe have 7 (z) = 0.
Therefore, 41 = 0. The Compression Theorem 27 is proved.

In the proof of Proposition 49 we used the following fact. Denote b =
b(k) = 2%¢. Assume that n = 2! — 2, 1 > b(k).

Theorem 50. Let a cobordism class x € Imm*/ A (b(k) — 2,n — b(k) + 2)
is represented by a skew-framed immersion (f @ M'®)=2 au R" =),
dim (MY *®)=2) = b(k) — 2, where the manifold M*"®~2 is equipped with a map-
ping ([269). Assume that the element x belongs to the kernel of the forgetful
homomorphism

Imm* T4 (b(k) — 2,n — b(k) +2) = Qo HRPOO (279)

Then in the reqular cobordism class |x] there exists an element for which the
manifold M*®) admits an immersion into the Euclidean space R**®)=3=F with,
a non-degenerate skew cross section given by a linear bundle k.

Remark

Theorem (0l is a corollary of the R.Cohen’s Immersion Theorem [C].

The main step of the proof of Theorem [50] is the following lemma.
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Lemma 51. Let (N7,Zy), j = 0,....k — 1, be a framed (in particular,
oriented) manifold, equipped with a mapping

AN:NJ—>11[RP§°.

=1

Let us assume that the Hurewicz image

(An)«([N)) € Hy(] [ RP; Z) (280)

i=1

with integer coefficients is trivial.  Then there exists a skew-boundary
(WE Uy, Aw) in codimension b(k) — 1, OWE) = N1 Uy |ope = Ey,
Aw |OW = N¥ = Ay, where

At WE = RPg x [ RS,

i=1

and ky = w1 (V) coincides with the projection of the mapping A\w on the
factor RPg°.

A sketch of the proof of Lemma [5]]

To prove Lemma [51]let us consider the Atiyah—Hirzebruch spectral sequence
for the cobordism group of framed immersions of the dimensions 0, ..., k—1
(the stable homotopy group) of the space [[_, RP°. Let us consider the
Atiyah—Hirzebruch spectral sequence for cobordism groups of skew-framed
immersions of dimensions 0, ..., k—1 in the codimension b(k)—1 of the space
RP3° x []i—, RP°. There is a natural mapping of the first spectral sequence
to the second spectral sequence. By the main result of [A-E| all higher
coeflicients in E5-terms of the kernel are trivial. Therefore the kernel of £
therm is totally described by the Hurewicz image (280) of a cobordism class
of a corresponding mapping of a framed manifold. This Hurewicz image is
trivial by the assumption. Therefore an arbitrary framed manifold (N*,Zy)
is a skew-framed boundary in codimension b(k) — 1. Lemma Lemma [B51] is
proved.
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A sketch of the proof of Theorem

By the assumption the normal bundle v, is isomorphic to the Whitney sum
Cb(k)kps, where ryy is the given line bundle over M*®)=2 p(k) = 2% C
in a positive integer. Let us calculate the Koschorke construction to prove
that the normal bundle Cb(k)ry, of M**)=2 admits a regular skew-section
Ky @ ke ® (C —1)b(k)e. The construction is given by the induction over the
index 7 =0,...,k.

The bundle v, admits a regular family of 2k+(C'—1)b(k) sections. Denote
by I C vy the orthogonal complement to the subbundle (C'—1)b(k)e C vay,
which consists of the first (C' — 1)b(k) sections of the given family. At a
j-th step of the induction j = 0,...,k, let us assume that there exists a
morphism (this morphism could be tot a fiberwise isomorphism) p; of the
bundle (2k —j+1)e @ ks into the subbundle I C vy, such that the following
conditions are satisfied:

~1. Denote by p; the restriction of the morphism p; on the subbundle
(J+De®rym C (2k— 75+ 1)e ® ky. It is required that p; is regular (a
fiberwise isomorphism).

—2. Denote by p; the restriction of the morphism p; at the subbundle
(2k —j+1)e C (2k — j + 1)e @ kp. It is required that p; is regular.

Let us prove the base of the induction j = 0. Consider the manifold
MY®)=2 as a manifold with the prescribed orientation, equipped with the
collection A, of cohomology classes. This manifold determines an element
in the cobordism group Qyu)—2([1;_, RP;°), which is given by the image of
the element = by the homomorphism 2. The obstruction of the existence
of a regular morphism py for such a manifold is well-defined and is trivial,
because x belongs to the kernel of (279). An extension of the morphism g
to a morphism pgy, which satisfies the condition -2, is well defined.

Let us prove the step j +— j+1 of the induction. Consider the morphism p;
and denote the restriction of this morphism on the subbundle (j+2)e @k C
(2k — j + 1)e © kar by pj (one more section then in the family p3). The
morphism (2, generally speaking, is not regular. Denote by N7+! C Mb®*)=2
the singular submanifold. The conditions —1 and —2 imply that the restriction
of the cohomology class ky; on N/*! is trivial and that Ny is a framed
submanifold in M*®=2 and, therefore, a framed manifold. Let us prove
that this framed manifold satisfies conditions of Lemma [G1]

Let us prove that the Hurewicz image (280) is trivial. There are the two
cases:

—a. j is even;

—b. 7 is odd.

Let us consider the case a. Take the collection of section pji9, which is
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restricted to the subbundle (j + 3)e @ ks C (2k — j + 1)e @ Ky, denote this
restriction by p5° (two extra sections with respect to pj). Denote the singular
manifold of the morphism p3° by K/*2. Evidently, wy(K7?) = ka|x. The
local fundamental class of the manifold manifold K72, equipped by the
restriction of the collection A,, determines an element y in H; 5(RP§° x
[T;_, RPg°; Z™), where the coefficients are integers and twisted with respect
to the cohomology class k);. Because the element x belongs to the kernel of
[@279), y = 0. Therefore the homology class [K/"?] N ky; = [L/1!], which is
considered as an element in the group H;1(RP3° x [[i_, RP:°; Z) is trivial.
This proves that the statement in the case —a.

Let us consider the case b. Take the collection of section pj, which con-
tains a regular subfamily p;. Because the restriction ry, on the manifold N7*!
is trivial, the tensor product of the morphism p} and the line bundle ry/ is
well defined as the morphism with the same singular manifold. In particular,
p§ @k determines a morphism of the bundle (C'—1)b(k)ka @ (j + 1)k ®e
into the bundle I ® k,;, which is the orthogonal complement of the subbun-
dle (C — 1)b(k)ky C Cb(k)e. Because j + 1 is even, and because z is in
the kernel of [279), N7™! determines the element is the kernel of (280). This
proves that the statement in the case —b.

The obstruction of the existence of a regular morphism p;; with the
trivial kernel over the singular manifold is given by a cobordism class of a
mapping Ay : NV — [[;_, RP> of a framed j-dimensional manifold, which
is considered as a skew-framed manifold in codimension b(k) — 1 with local
twisted coefficients system, associated with ry, (note that rys|ys+1 is trivial,
but in the regular cobordism class this property is not assumed).

Therefore, there exists p;1, which satisfies the condition 1. Let us prove
that there exists p;;1, which satisfies the both conditions ~1 and 2. By the
construction a homotopy of the morphism p? into the morphism p;;; has
singularities with the trivial kernels. Evidently, there exists a homotopy p;
into g of the bundle (2k — j + 1)e, which has singularities with the trivial
kernels, and the restriction of 5} on the subbundle (j 4 1)e coincides with
the restriction p;;; on the considered subbundle. Therefore there exists a
morphism p’;, of the bundle (2k — j + 1)e @ ks (one more sections then in
pj+1), for which the condition -1 is satisfies, and instead of the condition —2
the following condition is satisfied: the restriction of p’ , on the subbundle
(2k —j+1)e C (2k — j+ 1)e @ ks has the trivial kernel. By general position
arguments the restriction p ; on the trivial line bundle is regular. Let us
restrict p,; on the subbundle (2k — j)e C (2k — j + 1)e @ kps. There exists
a small generic deformation p’,|k—j = pj41, for which the family p; i, is
regular. This proves the condition 2. The induction is well-defined.

By the last step of the induction, there exists a regular section pj_;.
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Theorem [0l is proved.
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