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Geometric approach to stable homotopy

groups of spheres. I. The Hopf invariant

P.M. Akhmet’ev

dedicated to the memory of Professor M.M. Postnikov

Abstract

A geometric approach to the stable homotopy groups of spheres is
developed in this paper, based on the Pontryagin-Thom construction.
The task of this approach is to obtain an alternative proof of the
Hill-Hopkins-Ravenel theorem [H-H-R] on Kervaire invariants in all
dimensions, except, possibly, a finite number of dimensions. In the
framework of this approach, the Adams theorem on the Hopf invariant
is studied, for all dimensions with the exception of 15, 31, 63. The
new approach is based on the methods of geometric topology.

Introduction

Let πn+m(S
m) be the homotopy groups of spheres. Under the condition

m ≥ n+2 this group is independent ofm and is denoted by Πn. It is called the
stable homotopy group of spheres in dimension n. The problem of calculating
the stable homotopy groups of spheres is one of the main unsolved problems
of topology. A development of the Pontryagin-Thom construction leads to
various applications having important practical significance: an approach
by V.I.Arnol’d to bifurcations of critical points in multiparameter families
of functions [V] chapter 3, section 2.2 and Theorem 1, section 2.4, Lemma
4, approximation of maps by embeddings [Me], and gives many unsolved
geometrical problems [E2].

For the calculation of elements of the stable homotopy groups of spheres,
one frequently studies algebraic invariants which are defined for all dimen-
sions at once (or for some infinite sequence of dimensions). Nevertheless, as
a rule these invariants turn out to be trivial, and are nonzero only in ex-
ceptional cases, see [M1]. As Prof. Peter Landweber noted: “This a very
interesting “philosophy”. Are there examples to illustrate this, apart from
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the Hopf invariant and the Kervaire invariant? There might be one in N.
Minami’s paper [M2].”

A basic invariant is the Hopf invariant, which is defined as follows in the
framework of stable homotopy theory. The Hopf invariant (also called the
stable Hopf invariant), or the Steenrod-Hopf invariant is a homomorphism

h : Π2k−1 → Z/2,

for details see [W],[M-T]. The stable Hopf invariant is studied in this paper.
The following theorem was proved by J.F.Adams in [A].

Theorem. The stable Hopf invariant h : Πn → Z/2, n ≡ 1 (mod 2) is a
trivial homomorphism if and only if n 6= 1, 3, 7.

Remark. The case n = 15 was proved by Toda (cf. [M-T] Ch. 18).

Later Adams and Atiyah offered an alternative approach to the study of
the Hopf invariant, based on results of K-theory and the Bott periodicity
theorem, cf. [A-A]. This approach was also extended in subsequent works.
A simple proof of the theorem of Adams, close to the proof of Adams and
Atiyah, was given by V.M. Buchstaber in [B], section 2.

The definition of the stable Hopf invariant is reformulated in the language
of the cobordism groups of immersions of manifolds [E1, K2, K-S1, K-S2, La].
Using the Pontryagin-Thom theorem in the form of Wells on the represen-
tation of the stable homotopy groups of infinite dimensional real projective
space (which by the Kahn-Priddy theorem surject onto the 2-components of
the stable homotopy groups of spheres), we classify the cobordism of immer-
sions of (in general nonorientable) manifolds in codimension 1. The Hopf
invariant is expressed as a characteristic number of the manifold of double
points of self-intersection of an immersion of a manifold representing the
given element of the stable homotopy group. This is explicitly formulated in
[E1], Lemma 3.1. This lemma is reformulated in the standard way by means
of the Pontryagin-Thom construction for immersions.

The Theorem of Adams admits a simple geometric proof for dimensions
n 6= 2ℓ − 1. In the case n 6≡ 3 (mod 4) a proof, using the elements of
the theory of immersions, was given by A. Szücs in [Sz]. The next case in
complexity arises for n 6= 2ℓ − 1. The proof of Adams’ Theorem under this
assumption was given by Adem [Adem] using algebraic methods. In this
paper the Adem relations on the multiplicative generators of the Steenrod
algebra were used. The theorem of Adem was reproved using geometric
methods in a joint paper of the author and A. Szücs [A-Sz].
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We assume below that n = 2ℓ − 1. Define a positive integer σ = σ(ℓ) by
the formula:

σ =

[

ℓ− 1

2

]

. (1)

In particular, for ℓ = 7, σ = 3. Denote ns = 2s − 1. Assume that s is a
positive integer, then ns is a positive integer.

The following is the main result of Part I.

Main Theorem

Assume that ℓ ≥ 7, therefore n ≥ 127. Let g : M
3n+nσ

4 # Rn be an arbi-
trary smooth immersion of a closed manifold M , dim(M) = 3n+nσ

4
, where the

normal bundle ν(g) to the immersion g is isomorphic to the Whitney sum
of (n−nσ

4
) copies of a line bundle κ over M , ν(g) = (n−nσ

4
). (In particular,

w1(M) = 0, where w1 is the first Stiefel-Whitney class, because the codimen-
sion of the immersion g is even and w1(M) = (n−nσ

4
)w1(κ) = 0), in general

M is nonconnected.) Then the equation 〈w1(κ)
dim(M); [M ]〉 = 0 is valid.

The Main Theorem is deduced from Theorem 12. Theorem 12 is deduced
from Propositions 28, 29; these propositions follow from Lemmas 32 and 32.
The proofs of these lemmas are given in part III [A3].

The proof of the Main Theorem is based on the principle of geometric
control due to M.Hirsh, see Proposition 30. This proposition permits one to
find within a cobordism class of immersions an immersion with additional
properties of self-intersection manifold (see Propositions 28, 29). In this case
we say that the immersion admits a cyclic or quaternionic structure (see
Definitions 19, 20).

We can deduce the following from the Main Theorem by standard argu-
ments.

Main Corollary

Let g : Mn−1
# R

n be an arbitrary smooth immersion of the closed man-
ifold Mn−1, which in general is not assumed to be orientable. Then un-
der the assumption n = 2ℓ − 1, n ≥ 127 (i.e., for ℓ ≥ 7), the equality
〈w1(M)n−1; [M ]〉 = 0 is valid.

Remark. The equivalence of the preceding assertion and the theorem of
Adams (under the restriction ℓ ≥ 4) is proved in [E1,La].
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We mention that in topology there are theorems which are close to the
formulation of the theorem of Adams. As a rule, these theorems are corollar-
ies of Adams’ theorem. Sometimes these theorems can be given alternative
proofs by simpler methods. As S.P. Novikov remarks in his survey [N], a
theorem of this type is the Bott-Milnor Theorem that the tangent n-plane
bundle to the standard sphere Sn is trivial if and only if n = 1, 3 or 7.
This theorem was first proved in the paper [B-M]. An elegant modification
of the known proof was recently given in [F]. One should mention the Baum-
Browder Theorem [B-B] about non-immersion of the standard real projective
space RP2ℓ−1+1 into R2ℓ−1 for ℓ ≥ 4. It would be interesting to discover an el-
ementary geometrical proof of this theorem and to prove the Main Corollary
for ℓ ≥ 4 as a generalization of Baum-Browder Theorem.

We turn our attention to the structure of the paper. In section 1 we recall
the main definitions and constructions of the theory of immersions. The
results of this section are formally new, but are easily obtained by known
methods. In section 2 the Main Theorem is reformulated using the notation
of section 1 (Theorem 12), which represents a basic step in its proof. The
proof of Main Theorem is based on Lemmas 32 and 34. The proof of Lemma
32 is in the part III [A3] of the paper. This part of the paper also contains
the Lemmas 1, for the proof of the Main Theorem in the part II of the paper.

This paper was written for repeated discussions in the seminar on alge-
braic topology under the direction of Professor M.M. Postnikov. The author
is grateful for the discussions to Prof. V.M. Buchstaber, Prof. S.A.Bogatyi,
Prof. A.V. Chernavsky, Prof. V. V. Chernov, Prof. P. J. Eccles, Prof. P.
Landweber, Prof. A.S. Mishenko, Prof. O.Saeki, Prof. E.V. Scepin, Prof.
A.B. Skopenkov, Prof. Yu. P. Soloviev, Prof. V.A. Vassiliev, N. Brodsky,
S.A.Melikhov, R.R.Sadykov and M.B. Skopenkov. Let me mention that Prof.
Peter Landweber has devoted time and care to part 1 of this paper on the
Hopf invariant and part 2 of this paper on the Kervaire invariant. He pointed
out (see [L]) that the approach in an earlier version of this paper is not valid.
The mistake occurs in section 3 of paper [A1]. I am pleased to acknowledge
his effort.

1 Preliminary information

We recall the definition of the cobordism groups of framed immersions in
Euclidean space, which is a special case of a more general construction pre-
sented in the book [K1] on page 55 and in section 10. The connection with
the Pontryagin-Thom construction is explained in [A-E].

Let f :Mn−1
# Rn be a smooth immersion, where the (n−1)-dimensional
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manifold Mn−1 is closed, but in general is nonorientable and nonconnected.
We introduce a relation of cobordism on the space of such immersions. We
say that two immersions f0, f1 are connected by a cobordism, f0 ∼ f1, if there
exists an immersion Φ : (W n, ∂W =Mn−1

0 ∪Mn−1
1 ) # (Rn×[0; 1];Rn×{0, 1})

satisfying the boundary conditions fi = Φ|Mn−1
i

: Mn−1
i # Rn × {i}, i = 0, 1

and, moreover, it is required that the immersion Φ is orthogonal to R×{0, 1}.
The set of cobordism classes of immersions forms an Abelian group with

respect to the operation of disjoint union of immersions. For example, the
trivial element of this group is represented by an empty immersion, the el-
ement that is inverse to a given element represented by an immersion f0 is
represented by the composition S ◦ f0, where S is a mirror symmetry of the
space Rn.

This group is denoted by Immsf(n − 1, 1). Because RP∞ = MO(1), by
the Wales theorem [Wa] (see [E1],[Sz2] for references) this group maps onto
the stable homotopy group of spheres limk→∞ πn+k(S

k).
The immersion f defines an isomorphism of the normal bundle to the

manifold Mn−1 and the orientation line bundle κ, i.e. an isomorphism D(f) :
T (Mn−1)⊕ κ ∼= nε, where ε is the trivial line bundle over Mn−1. In similar
constructions in surgery theory of smooth immersions one requires a stable
isomorphism of the normal bundle of a manifold Mn−1 and the orientation
line bundle κ, i.e. an isomorphism T (Mn−1)⊕κ⊕Nε ∼= (n+N)ε, for N > 0.
Using Hirsch’s Theorem [Hi], it is easy to verify that if two immersions of
f1, f2 determine isomorphisms D(f1), D(f2), that belong to the same class
of stable isomorphisms then the immersions f1, f2 are regularly cobordant
and even regularly concordant (but, generally speaking, may not be regularly
homotopic).

We also require groups Immsf (n − k, k). An element of this group is
represented by a triple (f, κ,Ξ), where f : Mn−k

# Rn is an immersion of a
closed manifold, κ : E(κ) → Mn−k is a line bundle (to shorten notation, we
shall denote the line (one-dimensional) bundle and its characteristic class in
H1(Mn−k;Z/2) by the same symbol), and Ξ is a skew-framing of the normal
bundle of the immersion by means of the line bundle κ, i.e., an isomorphism
of the normal bundle of the immersion f and the bundle kκ. In the case of
odd k, the line bundle κ turns out to be orientable over Mn−k and necessarily
κ = w1(M

n−k).
Two elements of the cobordism group, represented by triples (f1, κ1,Ξ1),

(f2, κ2,Ξ2) are equal if the immersions f1, f2 are cobordant (this definition
is analogous to the previous one for representatives of the group Immsf (n−
1, 1)), where in addition it is required that the immersion of the cobordism
be skew-framed, and that the skew-framing of the cobordism be compatible
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with the given skew-framings on the components of the boundary. We remark
that for k = 1 the new definition of the group Immsf (n−k, k) coincides with
the original definition.

We define a homomorphism

Jsf : Immsf (n− 1, 1) → Immsf(n− k, k),

which is called the homomorphism of transition to codimension k. Consider
a manifold M ′n−1 and an immersion f ′ : M ′n−1

# Rn representing an ele-
ment of the first group, and consider a classifying map κ′ : M ′n−1 → RPa

to a real projective space of large dimension (a = n − 1 suffices), repre-
senting the first Stiefel-Whitney class w1(M

′n−1). Consider the standard
subspace RPa−k+1 ⊂ RPa of codimension (k − 1). Assume that the map-
ping κ′ is transverse along the chosen subspace and define the submanifold
Mn−k ⊂ M ′n−1 as the complete inverse image of this subspace for our map-
ping, Mn−k = κ′−1(RPa−k+1). Define an immersion f : Mn−k

# Rn as the
restriction of the immersion f ′ to the given submanifold. Notice that the
immersion f : Mn−k

# Rn admits a natural skew-framing. In fact, the nor-
mal bundle to the submanifold Mn−k ⊂ M ′n−1 is naturally isomorphic to
the bundle (k − 1)κ, where κ = κ′|M (here and below, when a manifold is
used as a subscript, the superscript indicating the dimension of the manifold
is omitted). The isomorphism Ξ is defined by the standard skew-framing of
the normal bundle to the submanifold RPa−k+1 of the manifold RPa, which is
transported to the submanifold Mn−k ⊂ M ′n−1, since it is assumed that κ′

is transverse regular along RPa−k+1. A further direct summand in the skew-
framing of the normal bundle of the immersion f corresponds to the normal
line bundle of the immersion f ′. This bundle serves as orientation bundle for
M ′n−1, hence its restriction to Mn−k coincides with κ. The homomorphism
Jsf carries the element represented by the immersion f ′ to the element rep-
resented by the triple (f, κ,Ξ). Elementary geometrical considerations, using
only the concept of transversality imply that the homomorphism Jsf is cor-
rectly defined.

We now define the manifold of double points of self-intersection of an
immersion f : Mn−k

# Rn in general position, and a canonical 2-sheeted
covering over this manifold. Under the assumption that the immersion f
is in general position, the subset in Rn of points of self-intersection of the
immersion f is denoted by ∆ = ∆(f), dim(∆) = n − 2k. This subset is
defined by the formula

∆ = {x ∈ R
n : ∃x1, x2 ∈Mn−k, x1 6= x2, f(x1) = f(x2) = x}, (2)

We define ∆̄ ⊂Mn−k by the formula ∆̄ = f−1(∆).
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We recall the standard definition of the manifold of points of self-
intersection and the parameterizing immersion, see e.g. [Ada] for details.

Definition of self-intersection manifold

The set N is defined by the formula

N = {[(x1, x2)] ∈ (Mn−k ×Mn−k)/T ′ : x1 6= x2, f(x1) = f(x2)} (3)

(T ′ is the involution permuting the coordinate factors), and its canonical
covering is defined by the formula

N̄ = {(x1, x2) ∈Mn−k ×Mn−k : x1 6= x2, f(x1) = f(x2)}. (4)

Under the assumption that the immersion f is generic, N is a smooth man-
ifold of dimension dim(N) = n − 2k. This manifold is denoted by Nn−2k

and is called the self-intersection manifold of f , the projection of the cover-
ing is denoted by p : N̄n−2k → Nn−2k and is called the canonical 2-sheeted
covering.

The immersion ḡ : N̄n−2k
# Mn−k, parameterizing ∆̄, is defined by the

formula ḡ = p|N̄ . Notice that the parameterizing immersion g : Nn−2k
# R

n

of ∆ in general, is not an immersion in general position. There is a two-
sheeted covering p : N̄n−2k → Nn−2k, for which g ◦p = f ◦ ḡ. This covering is
called the canonical covering over the manifold of points of self-intersection.

Definition 1. Let (f, κ,Ξ) represent an element in the group Immsf (n −
k, k). Let us define the homomorphism:

hk : Immsf (n− k, k) → Z/2,

called the stable Hopf invariant by the following formula:

hk([f, κ,Ξ]) = 〈κn−k; [Mn−k]〉.

The definitions of the stable Hopf invariant (in the sense of Definition
1) for distinct values of k are compatible with one another, and coincide
with the definition used in the introduction. We formulate this as a separate
assertion.

Proposition 2. The homomorphism Jsf : Immsf (n − 1, 1) → Immsf (n −
k, k) preserves the Hopf invariant, i.e. the invariant h1 : Imm

sf (n− 1, 1) →
Z/2 and the invariant hk : Immsf(n−k, k) → Z/2 are related by the formula:

h1 = hk ◦ J
sf . (5)
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Proof of Proposition 2

Let f : Mn−k
# R

n be an immersion with a skew-framing Ξ of its normal
bundle and with characteristic class κ ∈ H1(Mn−k;Z/2), representing an
element of Immsf(n−k, k), which satisfies Jsf([f ′]) = [f, κ,Ξ] for an element
[f ′] ∈ Immsf (n−1, 1), where f and f ′ are related as in the definition of Jsf .
By definition, hk([f, κ,Ξ]) = 〈κn−k; [Mn−k]〉.

On the other hand, Mn−k ⊂M ′n−1 is a cycle dual in the sense of Poincaré
to the cohomology class κ′k−1 ∈ Hk−1(M ′n−1;Z/2). The formula (5) is valid,
since 〈κ′n−1; [M ′n−1]〉 = 〈κn−k; [Mn−k]〉. Proposition 2 is proved.

Let us formulate another (equivalent) definition of the stable Hopf invari-
ant (assuming n− 2k > 0).

Definition 3. Let (f, κ,Ξ) represent an element in the group Immsf (n −
k, k), n − 2k > 0. Let Nn−2k be the manifold of the double points of the
immersion f : Mn−k

# Rn, N̄ be the canonical 2-sheeted cover over N ,
κN̄ ∈ H1(N̄ ;Z/2) be induced from κ ∈ H1(Mn−k;Z/2) by the immersion
ḡ : N̄n−2k

#Mn−k.
Let us define the homomorphism hsfk : Immsf(n − k, k) → Z/2 by the

formula:
hsfk ([f, κ,Ξ]) = 〈κn−2k

N̄
; [N̄n−2k]〉.

The following proposition establishes the equivalence of Definitions 1 and
3.

Proposition 4. Let us assume that the conditions of Definition 3 are satis-
fied. Then we have:

〈κn−2k
N̄

; [N̄n−2k]〉 = 〈κn−k; [Mn−k]〉. (6)

Proof of Proposition 4

Let f : Mn−k
# Rn be an immersion with a skew framing Ξ and with the

characteristic class κ ∈ H1(Mn−k;Z/2); then the triple (f,Ξ, κ) represents
an element in the group Immsf (n−k, k). Let Nn−2k be the manifold of self-
intersection points of the immersion f , g : Nn−2k

# Rn be the parameterizing
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immersion, and N̄n−2k → Nn−2k be the canonical double covering. Consider
the image of the fundamental class ḡ∗([N̄

n−2k]) ∈ Hn−2k(M
n−k;Z/2) by the

immersion ḡ : N̄n−2k
# Mn−k and denote by m ∈ Hk(Mn−k;Z/2) the

cohomology class Poincaré dual to the homology class ḡ∗([N̄
n−2k]). Consider

also the cohomology Euler class of the normal bundle immersion f , which is
denoted by e ∈ Hk(Mn−k;Z/2).

By the Herbert Theorem for the immersion f : Mn−k
# Rn with self-

intersection manifold Nn−2k (see [E-G], Theorem 1.1 the case r = 1 coef-
ficients is Z/2; see also this theorem in the original papers [He], [L-S]) the
following formula is valid:

e +m = 0. (7)

Since the Euler class e of the normal bundle kκ of the immersion
f is equal to κk (line bundles and their corresponding characteristic
cohomology classes are denoted by the same symbols), then the cycle
ḡ∗([N̄ ]) ∈ Hn−2k(M

n−k;Z/2) is Poincaré dual to the cohomology class
κk ∈ Hk(Mn−k;Z/2). Therefore, the formula (6) and Proposition 4 are
proved.

It is more convenient to reformulate Proposition 4 (in a more general form) by
means of the language of commutative diagrams. The desired reformulation
is given in Lemma 7 below. We turn to the relevant definitions.

Let g : Nn−2
# Rn be the immersion of the double self-intersection points

of the immersion f : Mn−1
# Rn of codimension 1. We denote by νN :

E(νN ) → Nn−2 the normal 2-dimensional bundle of the immersion g. (Note
that the disk bundle associated with the vector bundle νN is diffeomorphic
to a regular closed tubular neighborhood of the immersion g.)

In comparison with an arbitrary vector bundle, this bundle carries an
additional structure, namely its structure group as an O(2)-bundle admits a
reduction to a discrete dihedral group which we denote by D. This group
has order 8, and is defined as the group of orthogonal transformations of the
plane which carry the standard pair of coordinate axes into themselves (with
possible change of orientation and order).

In the standard presentation of the group D there are two generators
a, b which are connected by the relations {a4 = b2 = 1, [a, b] = a2}. The
generator a is represented by the rotation of the plane through an angle π

2
,

and the generator b is represented by a reflection with respect to the bisector
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of the first and second coordinate axes. Notice that the element ba (the
product means the rule of composition b ◦ a of transformations in O(2)) is
represented by the reflection with respect to the first coordinate axis.

The structure group of the normal bundle of the manifold of self
intersection points for an immersion f :Mn−k

# Rn, in case k = 1

Let us use the transversality condition for the immersion f : Mn−1
# Rn.

Let Nn−2 be the self-intersection manifold of the immersion f , g : Nn−2
#

Rn be the parameterizing immersion. In the fiber E(νN)x of the normal
bundle νN over the point x ∈ N an unordered pair of axes is fixed. These
axes are formed by the tangents to the curves of intersection of the fiber
E(νN )x with two sheets of immersed manifolds intersecting transversely in
the neighborhoods of this point. By construction, the bundle νN has the
structure group D ⊂ O(2).

Over the space K(D, 1) the universal 2-dimensional D–bundle is defined.
This bundle will be denoted by ψ : E(ψ) → K(D, 1). We say that the
mapping η : N → K(D, 1) is classifying for the bundle νN , if an isomorphism
Ξ : η∗(ψ) ∼= νN is well defined, where η∗(ψ) is the inverse image of the bundle
ψ and νN is the normal bundle of the immersion g. Further a bundle itself
and its classifying map will be denoted the same; in the considered case
we have η ∼= νN . The isomorphism Ξ will be called a D–framing of the
immersion g, and the mapping η will be called the characteristic mapping of
the D–framing Ξ.

Remark. In fact, we have described only part of a more general construction.
The structure group of the s-dimensional normal bundle to the submanifold
Ns of points of self-intersection of multiplicity s of an immersion f admits
a reduction to the structure group Z/2

∫

Σ(s), the wreath product of the
cyclic group Z/2 with the group of permutations of a set of s elements (cf.,
for example, [E1]).

Let a triple (f, κ,Ξ), where f : Mn−k
# Rn is an immersion and Ξ is a

skew–framing of f with the characteristic class κ ∈ H1(M ;Z/2), represent an
element of the group Immsf (n − k, k). We need to generalize the previous
construction for k = 1 and to describe the structure group of the normal
bundle νN to the manifold Nn−2k of self–intersection points of a generic
immersion of an arbitrary codimension k, k ≤ [n

2
].
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Proposition 5. The normal bundle νN , dim(νN) = 2k, of the immersion
g is a direct sum of k copies of a two-plane bundle η over Nn−2k, where
each two-plane bundle has structure group D and is classified by a classifying
mapping η : Nn−2k → K(D, 1) ( an analogous proposition is proved in [Sz2]).

Proof of Proposition 5

Let x ∈ Nn−2k be a point in the manifold of double points. Denote by
x̄1, x̄2 ∈ N̄n−2k

# Mn−k the two preimages of this point under the canonical
covering map by the double covering. The orthogonal complement in the
space Tg(x)(R

n) to the subspace g∗(Tx(N
n−2k)) is the fiber of the normal

bundle E(νN ) of the immersion g over a point x ∈ Nn−2k. This fiber is
represented as a direct sum of two linear spaces, E(νN )x = Ēx,1⊕Ēx,2, where
each subspace Ēx,i ⊂ E(νN)x is a fiber of the normal bundle of the immersion
f at the point x̄i.

Each subspace Ēx,i of the fiber is canonically a direct sum of k ordered
copies of the fiber of a line bundle, since the normal bundle to the immersion f
is equipped with a skew-framing. We group the fibers Ē(κx,j,i), j = 1, . . . , k,
i = 1, 2 with a corresponding index into a two-dimensional subfiber of the
fiber of the normal bundle E(νN )x. As a result, we obtain a decomposition of
the fiber E(νN )x over each point x ∈ Nn−2k into a direct sum of k copies of
a two-dimensional subspace. This construction depends continuously on the
choice of the point x, and can be carried out simultaneously for each point
of the base Nn−2k. As a result, we obtain the required decomposition of the
bundle νN into a direct sum of a number of canonically isomorphic two-plane
bundles. Each two-dimensional summand is classified by a structure map
η : N → K(D, 1), which proves Proposition 5.

Definition 6. We define the cobordism group of immersions ImmD(n −
2k, 2k), assuming n > 2k. Let (g, η,Ψ) be a triple, which determines a D–
framed immersion of codimension 2k. Here g : Nn−2k

# Rn is an immersion
and η : Nn−2k → K(D, 1) is the classifying map of the D–framing Ψ. The
cobordism relation of triples is standard.

Lemma 7. Under the assumption k1 < k, 2k < n, the following commutative
diagram of groups is well defined:

Immsf(n− k1, k1)
Jsf

−→ Immsf(n− k, k)
hsf
k−→ Z/2

↓ δk1 ↓ δk ‖

ImmD(n− 2k1, 2k1)
JD

−→ ImmD(n− 2k, 2k)
hD
k−→ Z/2.

(8)
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Proof of Lemma 7

We define the homomorphisms in the diagram (8). The homomorphism

Immsf (n− k1, k1)
Jsf
−→ Immsf (n− k, k)

is defined exactly was the homomorphism Jsf for the case k = 1.
The homomorphism

ImmD(n− 2k1, 2k1)
JD−→ ImmD(n− 2k, 2k)

is defined analogously to the homomorphism Jsf . Let a triple (g, η,Ψ)
represent an element in the cobordism group ImmD(n − 2k, 2k), where
g : Nn−2k

# Rn is an immersion with a dihedral framing. Take the uni-
versal D–bundle ψ over K(D, 1) and take the pull-back of this bundle by
means of the classifying map η, η∗(ψ). Take a submanifold N ′n−2k1 ⊂ Nn−2k

which represents the Euler class of the bundle (k − k1)η
∗(ψ). The triple

(g′, η′,Ψ′) is well defined, where g′ = g|N ′ and η′ = η|N ′. Let us define the
D-framing Ψ′.

Let us consider the normal bundle νg′ of the immersion g′. This bundle is
decomposed into the Whitney sum of the two bundles: νg′ = νg|N ⊕ νN ′⊂N ,
where νN ′⊂N is the normal bundle of the submanifold N ′n−2k1 ⊂ Nn−2k.
The bundles νN ′⊂N and (k − k1)η

∗(ψ) are isomorphic and this bundle is
equipped with the standard D–framing. The bundle νg|N is also equipped
with the D–framing. Therefore the bundle νg′ is equipped with the dihedral
framing Ψ′ : νg′ ∼= k1η

∗(ψ). The triple (g′, η′,Ψ′) represent the element
JD(g, η,Ψ) ∈ ImmD(n− 2k1, 2k1).

The homomorphism

Immsf (n− k, k)
δk−→ ImmD(n− 2k, 2k)

transforms the cobordism class of a triple (f, κ,Ξ) to the cobordism class of
the triple (g, η,Ψ), where g : Nn−2k

# Rn is the immersion parameterizing
the self-intersection points manifold of the immersion f (it is assumed that
the immersion f intersects itself transversally), Ψ is the D–framing of the
normal bundle of the immersion g, and η is the classifying map of the D–
framing Ψ.

We turn to the definition of the homomorphism

ImmD(n− 2k, 2k)
hD
k−→ Z/2,

which will be called the dihedral Hopf invariant. Define the subgroup

Ic ⊂ D, (9)
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generated by the transformations of the plane that preserve the subspace
spanned by each basis vector. The subgroup Ic is an elementary abelian
2-group of rank 2. Define the homomorphism

l : Ic → Z/2, (10)

by sending an element x of Ic to 0 if x fixes the first basis vector, and to 1 if
x sends the first basis vector to its negative.

The subgroup (9) has index 2 and the following 2-sheeted covering:

K(Ic, 1) → K(D, 1), (11)

induced by this subgroup is well defined.
Denote by

N̄n−2k → Nn−2k (12)

the 2-sheeted covering induced by the classifying map η : Nn−2k → K(D, 1)
from the covering (11). The following characteristic class is well defined:

η̄sf = l ◦ η̄Ic : N̄
n−2k → K(Z/2, 1),

where η̄Ic : N̄
n−2k → K(Ic, 1) is the double covering over the classifying map

η : Nn−2k → K(D, 1) induced by the coverings (11), (12) over the target and
the source of the map η respectively.

Let us define the homomorphism ImmD(n − 2k, 2k)
hD
k−→ Z/2 by the

formula:

hDk ([g, η,Ψ]) =
〈

(η̄sf)
n−2k; [N̄n−2k]

〉

. (13)

The diagram (8) is now well defined. Commutativity of the right square
of the diagram follows for k1 = 1 by Proposition 4, and for an arbitrary k1
the proof is similar. Let us prove the commutativity of the left square of the
diagram.

Let us consider the canonical double covering p : N̄n−2k → Nn−2k over
the self-intersection points manifold of g. The manifold N̄n−2k is naturally
immersed into Mn−k: N̄n−2k

# Mn−k. Let us consider the submanifold
M ′n−k1 ⊂ Mn−k, dual to κk−k1. Let us consider the submanifold M ′n−k1 ∩
N̄n−2k ⊂ N̄n−2k, assuming that M ′n−k1 intersects the immersion N̄n−2k

#

Mn−k in a general position. We denote this submanifold of the intersection by
Ñ ′. Obviously, dim(Ñ ′) = n−k−k1 and the codimension of the submanifold
Ñ ′n−k−k1 ⊂ N̄n−2k is equal to k − k1.
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Let us consider the involution T : N̄n−2k → N̄n−2k in the cover-
ing p. Let us consider the manifold T (Ñ ′n−k−k1) and the intersection
T (Ñ ′n−k−k1) ∩ Ñ ′n−k−k1 inside N̄n−2k. Assuming that this intersection is
generic, then T (Ñ ′n−k−k1)∩ Ñ ′n−k−k1 is a smooth closed manifold, let us de-
note this manifold by N̄ ′, dim(N̄ ′) = n−2k1. Moreover, the manifold N̄ ′n−2k1

is equivariant with respect to the involution T ′ = T |N̄ ′n−2k1 . The factor-space
N̄ ′n−2k1/T is well defined, this is smooth closed manifold. Let us denote this
manifold by N ′n−2k1 and the restriction of the canonical double cover over
this manifold by p′ : N̄ ′n−2k1 → N ′n−2k1 .

Note that the manifold N ′n−2k1 is a submanifold in Nn−2k and this sub-
manifold coincides with the self-intersection manifold of the immersion g′.
Let us consider the manifold Nn−2k1

2 ⊂ Nn−2k, this manifold represents
the Euler class of the bundle η∗(ψ). Let us prove that the submanifold
N ′n−2k ⊂ Nn−2k also represents the Euler class of the bundle η∗(ψ). There-
fore we may put Nn−2k1

2 = N ′n−2k1 .
Let us denote the bundle η∗(ψ) by ξ for short. Take the bundle p′∗(η∗(ψ)),

let us denote this bundle by ξ̄, and take the bundle T ∗(p′∗(η∗(ψ)). Obviously,
the bundle ξ̄ decomposes into the Whitney sum of the two k−k1–dimensional
bundles, denoted by ξ̄ = ξ̄+ ⊕ ξ̄−. For the same reason we get T ∗(ξ̄) =
T ∗(ξ̄+) ⊕ T ∗(ξ̄−). Moreover, T ∗(ξ̄+) = ξ̄−, T ∗(ξ̄−) = ξ̄+. The bundle ξ̄+ is
isomorphic to the Whitney sum of k − k1 copies of the line bundle κ|N̄ ′.

The submanifold N̄n−2k1
2 ⊂ N̄n−2k is well defined as the covering space of

p′, restricted to the submanifold Nn−2k1
2 ⊂ Nn−2k in the base of p. This man-

ifold represents the equivariant Euler class of the bundle ξ̄. This submanifold
is well defined as the intersection of the two submanifolds in N̄n−2k, denoted
by N̄n−k−k1

2,+ and N̄n−k−k1
2,− . The submanifold N̄n−k−k1

2,+ ⊂ N̄n−2k represents the

Euler class of the bundle ξ̄+. The submanifold N̄n−k−k1
2,− ⊂ N̄n−2k represents

the Euler class of the bundle ξ̄−. Note that the submanifold N̄n−k−k1
2,− ⊂ N̄n−2k

coincides by definition with Ñ ′n−k−k1. The submanifold N̄n−k−k1
2,− ⊂ N̄n−2k

coincides by definition with T (Ñ ′n−k−k1). Therefore N̄n−2k1
2 coincides with

N̄ ′n−2k1 and Nn−2k1
2 coincides with N ′n−2k1 . The commutativity of the left

square of the diagram is proved. Lemma 7 is proved.

We need an equivalent definition of the dihedral Hopf invariant in the
case of D–framed immersions in the codimension 2k, n − 4k > 0. Consider
the subgroup of the orthogonal group O(4) that transforms the set of vectors
(±e1,±e2,±e3,±e4) of the standard basis into itself, perhaps by changing
the direction of some vectors and, moreover, preserving the non-ordered pair
of 2-dimensional subspaces Lin(e1, e2), Lin(e3, e4) generated by basis vectors
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(e1, e2), (e3, e4). Thus these 2-dimensional subspaces may be preserved or
interchanged. Denote the subgroup of these transformations by Z/2[3]. This
group has order 27. Define the chain of subgroups of index 2:

Ic ×D ⊂ D×D ⊂ Z/2[3]. (14)

The subgroup D × D ⊂ Z/2[3] is defined as the subgroup of transforma-
tions leaving invariant each 2-dimensional subspace Lin(e1, e2), Lin(e3, e4)
spanned by pairs of vectors (e1, e2), (e3, e4). This subgroup is isomorphic to
a direct product of two copies of D, each factor leaving invariant the corre-
sponding 2-dimensional subspace. The subgroup Ic ×D ⊂ D×D is defined
as the subgroup of transformations that leave invariant each linear subspace
Lin(e1), Lin(e2) generated by vectors e1, e2.

Let the triple (g, η,Ψ) represent an element of ImmD(n − 2k, 2k), as-
suming that n − 4k > 0 and that g is an immersion in general position.
Let Ln−4k be the manifold of double self-intersection points of the immersion
g : Nn−2k

# Rn. The following tower of 2-sheeted coverings

L̄n−4k
Ic×D → L̄n−4k

D×D → Ln−4k (15)

is well defined by the following construction. (The covering L̄n−4k
D×D → Ln−4k

was considered above as the canonical covering over self-intersection manifold
of the immersion g and was denoted by L̄n−4k → Ln−4k.) Let us consider
the parameterizing immersion h : Ln−4k

# Rn. The normal bundle of the
immersion h will be denoted by νL. This bundle is classified by a mapping
ζ : Ln−4k → K(Z/2[3], 1).

The chain of subgroups (14) induces a tower of 2-sheeted coverings of
classifying spaces:

K(Ic ×D, 1) ⊂ K(D×D, 1) ⊂ K(Z/2[3], 1) (16)

over the target of the classifying map ζ and the tower of 2-sheeted coverings
(15) over the domain of the mapping ζ . The covering L̄Ic×D → Ln−4k, defined
by the formula (15), will be called the canonical 4-sheeted covering over the
manifold of points of self-intersections of the immersion g.

Define the epimorphism

l[3] : Ic ×D → Id, (17)

by sending an element x of Ic×D to 0 if x fixes the first basis vector, and to
1 if x sends the first basis vector to its negative. This map induces the map
of the classifying spaces:

K(Ic ×D, 1) → K(Id, 1). (18)
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The classifying mapping ζ̄Ic×D : L̄n−4k
Ic×D → K(Ic × D, 1) is well defined as

a result of the transition to a 4-sheeted covering over the mapping ζ and
the classifying map ζ̄sf : L̄n−4k

Ic×D → K(Id, 1) is well defined as a result of the
composition of the classifying map ζ̄Ic×D with the map (18).

Proposition 8. Suppose that a D–framed immersion (g, η,Ψ) represents an
element of ImmD(n− 2k, 2k), the following formula is satisfied:

〈(ζ̄sf)
n−4k; [L̄n−4k

Ic×D]〉 = 〈(η̄sf)
n−2k; [N̄n−2k]〉. (19)

Proof of Proposition 8

Let (g : Nn−2k
# Rn,Ψ, η) be a D–framed immersion, representing an el-

ement of ImmD(n − 2k, 2k) in the image of the homomorphism δk. Let
Ln−4k be the double-points manifold of the immersion g, h : Ln−4k

# Rn

be the parameterizing immersion, and L̄n−4k → Ln−4k be the canonical dou-
ble covering. Consider the image of the fundamental class h̄∗([L̄

n−4k]) ∈
Hn−4k(N

n−2k;Z/2) by means of the immersion h̄ : L̄n−4k
# Nn−2k and let us

denote by m ∈ H2k(Nn−2k;Z/2) the cohomology class that is Poincaré-dual
to the homology class h̄∗([L̄

n−4k]). Consider also the cohomology Euler class
of the normal bundle immersion g, which is denoted by e ∈ H2k(Nn−2k;Z/2).

By the Herbert Theorem (see [E-G], Theorem 1.1, coefficients Z/2)
for immersion g : Nn−2k

# Rn with the self-intersection manifold Ln−4k

the formula e = m given in (7) is valid. Let us consider the classify-
ing map η : Nn−2k → K(D, 1). Let us consider the 2–sheeted cover
K(Ic, 1) → K(D, 1) over the classifying space. Let us induced η the 2-
sheeted covering map over the map η, denoted by η̄sf : N̄n−2k

sf → K(Ic, 1).

(Note that in the case Nn−2k is a self-intersection points manifold of a skew-
framed immersion, the manifold N̄n−2k

sf was considered above and this man-

ifold was called the canonical covering manifold over Nn−2k, this manifold
was denoted by N̄n−2k.)

Let us denote by ē ∈ H2k(N̄n−2k
sf ;Z/2), m̄ ∈ H2k(N̄n−2k

sf ;Z/2) the images
of the cohomology classes e, m, respectively, under the canonical double cover
N̄n−2k

sf → Nn−2k. The Herbert Theorem implies that:

ē = m̄,

in particular, the following formula holds:

〈(η̄sf)
n−4km̄; [N̄n−2k

sf ]〉 = 〈(η̄sf)n−4kē; [N̄n−2k
sf ]〉. (20)

Because η̄sf coincides with ē, the right side of the formula is equal to
〈(η̄sf)

n−2k; [N̄n−2k]〉. Because m̄ is dual to the cohomology class h̄∗[L̄
n−4k
Hc̄

], the
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left side of the formula (20) can be rewritten in the form: 〈η̄sf)
n−4k; [L̄n−2k

Hc̄
]〉.

Because the classifying mappings ζ̄sf : L̄n−4k
Hc̄

→ K(Z/2, 1) and η̄sf |L̄Hc̄
coin-

cide, the left side of the formula (20) is equal to the characteristic number
〈(ζ̄sf)

n−4k; [L̄n−4k
Hc̄

]〉. Proposition 8 is proved.

Let us generalize Proposition 5, Definition 6, and Lemma 7.
Let us assume that the triple (g, η,Ψ), where g : Nn−2k

# Rn is an im-
mersion, Ψ is a D–framing of the normal bundle of the immersion g with
the characteristic class η : Nn−2k → K(D, 1), represents an element in
ImmD(n − 2k, 2k). Let h : Ln−4k

# Rn be an immersion, that gives a
parametrization of the self-intersection manifold of the immersion g.

Proposition 9. The normal 4k–dimensional bundle νL of the immersion
h is isomorphic to the Whitney sum of k copies of a 4-dimensional bundle
ζ over Ln−4k, each 4-dimensional direct summand has the structure group
Z/2[3] and is classified by a classifying mapping ζ : Ln−4k → K(Z/2[3], 1).

Proof of Proposition 9

The proof is omitted, this proof is analogous to the proof of Proposition 5.

Definition 10. We define the cobordism group of immersions ImmZ/2[3](n−
4k, 4k), assuming n > 4k. Let (h, ζ,Λ) be a triple, which determines a Z/2[3]–
framed immersion of codimension 4k. Here h : Ln−4k

# Rn is an immersion
and ζ : Ln−4k → K(Z/2[3], 1) is the characteristic map of the Z/2[3]–framing
Λ. The cobordism relation of triples is standard.

Lemma 11. Under the assumption k1 < k, 4k < n, the following commuta-
tive diagram of groups is well defined:

ImmD(n− 2k1, 2k1)
JD

−→ ImmD(n− 2k, 2k)
hD
k−→ Z/2

↓ δDk1 ↓ δDk ‖

ImmZ/2[3](n− 4k1, 4k1)
JZ/2[3]

−→ ImmZ/2[3](n− 4k, 4k)
h
Z/2[3]

k−→ Z/2.

(21)

Proof of Lemma 11

Let us define the homomorphisms in the diagram (21). The homomorphism
hDk is given by the characteristic number in the right side of the formula (13).

The homomorphism h
Z/2[3]

k is defined by means of the characteristic number
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in the left side of the formula (19). The commutativity of the right square
of the diagram is proved in Proposition 8.

We define the further homomorphisms in the diagram (21). The homo-
morphism

ImmZ/2[3](n− 4k1, 4k1)
JZ/2[3]

−→ ImmZ/2[3](n− 4k, 4k)

is defined exactly was the homomorphism JD in the bottom row of the dia-
gram (8). Namely, let a triple (h, ζ,Λ) represent an element in the cobordism

group ImmZ/3[3](n − 4k, 4k), where h : Ln−4k
# R

n is an immersion with
Z/2[3]–framing Λ. Take the universal Z/2[3]–bundle ψ[3] over K(Z/2[3], 1) and
take the pull-back of this bundle by means of the classifying map ζ , ζ∗(ψ[3]).
Take a submanifold L′n−4k ⊂ Ln−4k1 which represents the Euler class of the
bundle (k − k1)η

∗(ψ[3]). The triple (h′, ζ ′,Λ′) is well defined, where h′ = h|L′

и ζ ′ = ζ |L′. Let us define the Z/2[3]-framing Λ′.
Let us consider the normal bundle νh′ of the immersion h′. This bundle

decomposes into the Whitney sum of the two bundles: νh′ = νh|L ⊕ νL′⊂L,
where νL′⊂L is the normal bundle of the submanifold L′n−2k1 ⊂ Ln−2k. The
bundles νL′⊂L and (k−k1)ζ

∗(ψ[3]) are isomorphic and this bundle is equipped
with the standard Z/2[3]–framing. The bundle νh|L is also equipped with the
Z/2[3]–framing. Therefore the bundle νh|L is equipped with the dihedral
framing Λ′ : νh′

∼= k1ζ
∗(ψ[3]). The triple (h′, ζ ′,Λ′) represent the element

JZ/2[3](h, ζ,Λ) ∈ ImmZ/2[3](n− 4k1, 4k1).
The homomorphism

ImmD(n− 2k, 2k)
δDk−→ ImmZ/2[3](n− 4k, 4k)

transforms the cobordism class of a triple (g, η,Ψ) to the cobordism class of
the triple (h, ζ,Λ), where h : Ln−4k

# Rn is the immersion parameterizing
the self-intersection points manifold of the immersion g (it is assumed that
the immersion g intersects itself transversely), Λ is the Z/2[3]–framing of the
normal bundle of the immersion h, and ζ is the classifying mapping of the
Z/2[3]–framing Λ.

The commutativity of the left square in the diagram (21) is proved analo-
gously with the commutativity of the left square in the diagram (8). Lemma
11 is proved.

2 Proof of the main theorem

We reformulate the Main Theorem (σ(n) is defined by the formula (1)),
taking into account the notation of the previous section.
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Theorem 12. For ℓ ≥ 7 the homomorphism hsf
2ℓ−2−nσ

: Immsf (3 · 2ℓ−2 +

nσ−4, 2
ℓ−2 − 1− nσ−4) → Z/2, given by the equivalent Definitions 1 and 3 is

trivial.

Remark 13. In the cases ℓ = 4 and ℓ = 5 the proof by means of the
considered approach is unknown, because of the dimensional restriction in
Lemmas 32, 34, in the case ℓ = 6 because of the dimensional restrictions in
Lemma 34. For a possible approach in the cases n = 15, n = 31 and n = 63
see a remark in the Introduction of the part III [A3].

Consider the homomorphism Jsf : Immsf(n − 1, 1) → Immsf (3 · 2ℓ−2 +
nσ−4, 2

ℓ−2 − 1 − nσ−4). According to Proposition 2, hsf1 = hsf
2ℓ−2−nσ−1

◦ Jsf .

Let an element of the group Immsf (n−1, 1) be represented by an immersion
f :Mn−1

# Rn, w1(M) = κ. The value hsfk (Jsf(f)), where k = 2ℓ−2−nσ−1,
coincides with the characteristic number 〈κn−1; [Mn−1]〉. Applying Theorem
12, we conclude the proof of the Main Theorem.

For the proof of Theorem 12 we shall need the fundamental Definitions
18, 20, whose formulation will require some preparation.

Definition of the subgroups Id ⊂ Ia ⊂ D, Ib ⊂ D

We denote by Ia ⊂ D the cyclic subgroup of order 4 and index 2, containing
the nontrivial elements a, a2, a3 ∈ D (i.e., generated by the plane rotation
which exchanges the coordinate axes). We denote by Id ⊂ Ia the subgroup
of index 2 with nontrivial elements a2. We denote by Ib ⊂ D the subgroup of
index 2 with nontrivial elements a2, ab, a3b (i.e., generated by the reflections
with respect to the bisectors of the coordinate axes).

The following inclusion homomorphisms of subgroups are well defined:
id,a : Id ⊂ Ia, id,b : Id ⊂ Ib. When the image coincides with the entire group
D the corresponding index for the inclusion homomorphism will be omitted:
id : Id ⊂ D, ia : Ia ⊂ D, ib : Ib ⊂ D.

Definition of the subgroup iQ : Q ⊂ Z/2[3]

Let Q be the quaternion group of order 8. This group has presentation
{i, j,k | ij = k = −ji, jk = i = −kj,ki = j = −ik, i2 = j2 = k2 = −1}.
There is a standard representation χ : Q → O(4). The representation χ (a
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matrix acts to the left on a vector) carries the unit quaternions i, j,k to the
matrices









0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0









, (22)









0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0









, (23)









0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0









. (24)

These matrices give the action of left multiplication by i, j, and k on the
standard basis for the quaternions. This representation χ defines the sub-
group iQ : Q ⊂ Z/2[3] ⊂ O(4).

Definition of the subgroups Id ⊂ Ia ⊂ Q

Denote by iId,Q : Id ⊂ Q the central subgroup of the quaternion group, which
is also the center of the whole group Z/2[3].

Denote by iIa,Q : Ia ⊂ Q the subgroup of the quaternion group generated
by the quaternion i.

The following inclusions are well defined: iId : Id ⊂ Z/2[3], iQ : Q ⊂
Z/2[3].

Definition 14. We say that a classifying map η : Nn−2k → K(D, 1) is cyclic
if it can be factored as a composition of a map µa : N

n−2k → K(Ia, 1) and the
inclusion ia : K(Ia, 1) ⊂ K(D, 1). We say that the mapping µa determines a
reduction of the classifying mapping η.

Definition 15. We say that a classifying map ζ : Ln−4k → K(Z/2[3], 1) is
quaternionic if it can be factored as a composition of a map λ : Ln−4k →
K(Q, 1) and the inclusion iQ : K(Q, 1) ⊂ K(Z/2[3], 1). We also say that the
mapping λ determines a reduction of the classifying mapping ζ .
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We shall later require the construction of the Eilenberg-Mac Lane spaces
K(Ia, 1), K(Q, 1) and a description of the finite dimensional skeletа of these
spaces, which we now recall.

Consider the infinite dimensional sphere S∞ (a contractible space), which
it is convenient to define as a direct limit of an infinite sequence of inclusions
of standard spheres of odd dimension,

S∞ = lim
−→

(S1 ⊂ S3 ⊂ · · · ⊂ S2j−1 ⊂ S2j+1 ⊂ · · · ).

Here S2n−1 is defined by the formula S2j−1 = {(z1, . . . , zj) ∈ Cj , |z1|
2+

· · ·+ |zj|
2 = 1}. Let i(z1, . . . , zj) = (iz1, . . . , izj).

Then the space S2j−1/i, which is called the (2j−1)-dimensional lens space
over Z/4, is the (2j−1)–dimensional skeleton of the spaceK(Ia, 1). The space
S∞/i itself is the Eilenberg-Mac Lane space K(Ia, 1). The cohomology ring
of this space is well-known, see e.g. [A-M].

Let us define the Eilenberg-Mac Lane spaceK(Q, 1). Consider the infinite
dimensional sphere S∞, which now it is convenient to define as a direct limit
of an infinite sequence of inclusions of standard spheres of dimensions 4j+3:

S∞ = lim
−→

(S3 ⊂ S7 ⊂ · · · ⊂ S4j−1 ⊂ S4j+3 ⊂ · · · ).

A coordinate action Q×(C2)j → (C2)j is defined on each direct summand
H = C2 in accordance with the formulas (22), (23), (24). Thus, the space
S4j−1/Q is a (4j−1)-dimensional skeleton of the space S∞/Q and this space
is called the (4j − 1)-dimensional lens space over Q. The space S∞/Q itself
is the Eilenberg-Mac Lane space K(Q, 1). The cohomology ring of this space
is well known, see [At] section 13.

Definition of the characteristic number hµa,k

Let us assume n > 4k and let us assume that on the manifold Nn−2k of
self-intersection points of a skew-framed immersion there is defined a map
µa : N

n−2k → K(Ia, 1). Define the characteristic value hµa,k by the formula:

hµa,k = 〈ēgµ̄
∗

ax; [N̄
n−2k
a ]〉, (25)

where µ̄a : N̄n−2k
a → K(Id, 1) is a double cover over the map µa : Nn−2k

a →
K(Ia, 1), induced by the cover K(Id, 1) → K(Ia, 1), x ∈ Hn−4k(K(Id, 1);Z/2)
is the generator, ēg ∈ Hk(N̄n−2k

a ;Z/2) is the image of the Euler class eg ∈
Hk(Nn−2k;Z/2) of the immersion g by means of the covering pa : N̄n−2k

a →
Nn−2k, ēg = p∗a(eg), and [N̄n−2k

a ] is the fundamental class of the manifold
N̄n−2k

a . (The manifold N̄n−2k
a coincides with the canonical 2-sheeted covering
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N̄n−2k, if and only if the classifying mapping η : Nn−2k → K(D, 1) is cyclic,
see Definition 14.)

Let us assume that k ≡ 0 (mod 2). Then the characteristic number (25)
is the reduction modulo 2 of the following characteristic number, denoted the
same, determined modulo 4:

〈egµ
∗

ax; [N
n−2k]〉, (26)

where x ∈ Hn−4k(K(Ia, 1);Z/4) is the generator, eg ∈ Hk(Nn−2k;Z/4) is the
Euler class of the co-oriented immersion g with coefficients modulo 4, [Nn−2k]
is the fundamental class of the oriented manifold Nn−2k with coefficients
modulo 4.

Definition of the characteristic number hλ,k

Let us assume n > 4k and let us assume that on the manifold Ln−4k of
self-intersection points of a D-framed immersion there is defined a map λ :
Ln−4k → K(Q, 1). Define the characteristic value hkλ by the formula:

hλ,k = 〈λ̄∗y; [L̄Id]〉, (27)

where y ∈ Hn−4k(K(Id, 1);Z/2) is a generator,

λ̄Id : L̄n−4k
Id

→ K(Id, 1) (28)

is a 4-sheeted cover over the map λ : Ln−4k → K(Q, 1), induced by the
cover K(Id, 1) → K(Q, 1), and [L̄Id ] is the fundamental class of the manifold
L̄n−4k
Id

. (The manifold L̄n−4k
Id

coincides with the canonical 4-sheeted covering

L̄n−4k
Ic×D, if and only if the classifying mapping ζ : Ln−4k → K(Z/2[3], 1) is

quaternionic, see Definition 15.)
Let us assume that k ≡ 0 (mod 2). Then the characteristic number (27)

is the reduction modulo 2 of the following characteristic number, denoted the
same, determined modulo 4:

〈λ̄∗y; [L̄]〉, (29)

where y ∈ Hn−4k(K(Ia, 1);Z/4) is the generator, [L̄] is the fundamental class
of the oriented manifold L̄n−4k (the manifold L̄n−4k is the canonical 2-sheeted
covering over the manifold Ln−4k) with coefficients modulo 4.

Lemma 16. For an arbitrary skew-framed immersion (f :Mn−k
# Rn, κ,Ξ)

with self-intersection manifold Nn−2k for which the classifying mapping η of
the normal bundle is cyclic, the following equality is satisfied:

hsfk (f, κ,Ξ) = hµa,k,

where the characteristic value on the right side is calculated for a mapping
µa, satisfying the condition η = ia ◦ µa, ia : K(Ia, 1) ⊂ K(D, 1).
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Proof of Lemma 16

Consider the double cover µ̄a : N̄n−2k
a → K(Id, 1) over the mapping

µa : Nn−2k → K(Ia, 1), induced by the double cover K(Id, 1) → K(Ia, 1)
over the target space of the map. Since the structure mapping η is cyclic,
the manifold N̄n−2k

a coincides with the canonical 2-sheeted cover N̄n−2k

over the self-intersections manifold Nn−2k of the immersion f , the class
ēg ∈ H2k(Nn−2k;Z/2) coincides with the class η̄2ksf , η̄sf ∈ H1(N̄n−2k;Z/2).
The proof of the lemma follows from Lemma 7 since the mappings µ̄a and η̄
coincide and the characteristic number hµa,k is computed as in the right side
of the equation (13).

Lemma 17. For an arbitrary D-framed immersion (g : Nn−2k
# Rn, η,Ψ)

with a self-intersection manifold Ln−4k, for which the classifying mapping ζ
of the normal bundle is quaternionic, the following equality is satisfied:

hsfk (g, η,Ψ) = hλ,k,

where the characteristic value on the right side is calculated by the formula
(27) for a mapping λ, satisfying the condition ζ = ia ◦ λ, ia : K(Q, 1) ⊂
K(Z/2[3], 1).

Proof of Lemma 17

Define the 2-sheeted covering

λ̄Ia : L̄n−4k
Ia

→ K(Ia, 1) (30)

over the mapping λ : Ln−4k → K(Q, 1), induced by the 2-sheeted cover
K(Ia, 1) → K(Q, 1) over the target space of the map. Let us consider the
4-sheeted covering λ̄Id : L̄n−4k

Id
→ K(Id, 1) over the mapping λ : Ln−4k →

K(Q, 1), defined by the formula (28), over the target space of the map.
Since the structure mapping ζ is quaternionic, the manifold L̄n−4k

Id
coin-

cides with the canonical 4-sheeted covering L̄n−4k over the self-intersections
manifold Ln−4k of the immersion g. The proof of the lemma follows from
Proposition 8, since the mappings λ̄ and ζ̄ coincide and the characteristic
number hkλ is computed as in the left side of the equation (19).

Definition 18. Let Nn−2k be the manifold of double self-intersection points
of a skew-framed immersion (f, κ,Ξ), where the immersion f :Mn−k

# Rn is
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assumed to be in general position. We say that this skew-framed immersion
admits a cyclic structure, if a marked component (possibly, non-connected)
component Nn−2k

a ⊂ Nn−2k is fixed, and a mapping mapping µa : Nn−2k
a →

K(Ia, 1) is defined. The following conditions are satisfied:
–1. The mapping µa determines a reduction of the restriction of the clas-

sifying mapping η to the component Nn−2k
a , to a mapping into the subspace

K(Ia, 1) ⊂ K(D, 1) (see Definition 14 about the notion "‘reduction"’).
–2 The following equation is satisfied:

hµa,k = hsfk (f,Ξ, κ), (31)

where the characteristic number in the left side of the formula is given by
(25) and on the right side is given by Definition 3.

Example 19. Lemma 16 implies that if a classifying map η is cyclic, the
cyclic structure can be defined by the mapping µa : N

n−2k → K(Ia, 1), where
ia ◦ µa = η, ia : K(Ia, 1) ⊂ K(D, 1).

Let us define the subgroup Hb ⊂ Z/2[3] as a product of the subgroup Ia ⊂
Q ⊂ Z/2[3] and an elementary subgroup, with the only non-trivial element t
given by the transformation transposing each pair of the corresponding basis
vectors e1 = 1 and e3 = j and the pair of the basis vectors e2 = i and e4 = k,
preserving their direction. It is easy to verify that the group Hb has the order
8 and this group is isomorphic to Z/4×Z/2. The groups Hb and Q contains
the common index 2 subgroup: Ia ⊂ Hb, Ia ⊂ Q.

Definition 20. Let (g,Ψ, η) be a D-framed immersion, where the immersion
g : Nn−2k

# R
n is assumed to be in a general position with self-intersection

manifold denoted by Ln−4k. Assume that the manifold Nn−2k contains a
marked component Nn−2k

a ⊂ Nn−2k, with self-intersection manifold Ln−4k
a ⊂

Ln−4k.
Let the component Nn−2k

a be equipped with a mapping µa : Nn−2k
a →

K(Ia, 1), which is determined a reduction of the restriction of the classifying
mapping η to the component Nn−2k

a (see property 1 in Definition (18)).
Assume that the manifold Ln−4k

a is the disjoint union of the two closed
submanifolds: Ln−4k

a = Ln−4k
Q ∪ Ln−4k

Hb
. Moreover, there exists a pair of

mappings (µa, λ), where µa : Nn−2k
a → K(Ia, 1), λ = λQ ∪ λHb

: Ln−4k
Q ∪

Ln−4k
Hb

→ K(Q, 1) ∪ K(Hb, 1). Define the manifold L̄n−4k
Q ∪ L̄n−4k

Hb
and its

mapping

λ̄ = λ̄Q ∪ λ̄Hb
: L̄n−4k

Q ∪ L̄n−4k
Hb

→ K(Ia, 1) ∪K(Ia, 1), (32)
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as the 2-sheeted covering mapping over the disjoint union of the mappings
λQ : Ln−4k

Q → K(Q, 1), λHb
: Ln−4k

Hb
→ K(Hb, 1) which is induced from 2-

sheeted coverings K(Ia, 1) → K(Q, 1), K(Ia, 1) → K(Hb, 1) over the target
space of the mapping λ. We say that this D-framed immersion (g,Ψ, η)
admits a quaternionic structure if the following two conditions are satisfied:

–1. The manifold L̄n−4k
Q ∪L̄n−4k

Hb
is diffeomorphic to the canonical 2-sheeted

covering manifold L̄n−4k over the self-intersection manifold of the immersion
g, and the mapping

(Id ∪ Id) ◦ λ̄ : L̄n−4k
Q ∪ L̄n−4k

Hb
→ K(Ia, 1) ∪K(Ia, 1) → K(Ia, 1) → K(Ia, 1),(33)

where Id ∪ Id : K(Ia, 1) ∪ K(Ia, 1) → K(Ia, 1) is the identity map over
each component, coincides with the restriction of the mapping µa to the
submanifold L̄n−4k

# Nn−2k.
–2. The following equation is satisfied:

hµa,k = hDk (g, η,Ξ), (34)

where the characteristic number in the left side of the formula is given by (25)
and on the right side is given by the formula (13). (comp. with condition 2
from Definition 18).

Example 21. Let us assume that the classifying map ζ is quaternionic. The
quaternionic structure is defined by the mappings µa : Nn−2k → K(Ia, 1),
λ : Ln−4k → K(Q, 1) ⊂ K(Z/2[3], 1), where iIa ◦ µa = η, iIa : K(Ia, 1) ⊂
K(D, 1), iQ ◦ λ = ζ , iQ : K(Q, 1) ⊂ K(Z/2[3], 1).

Lemma 22. Assume that a pair (µa, λ) determines a quaternionic structure
for a D–framed immersion (g, η,Ψ). Then the characteristic number hλ,k,
determined by the formula (27), coincides with the characteristic number
hkµa

, given by the formula (25).

Proof of Lemma 22

The proof is analogous to the proof of Proposition 8.

Corollary 23. Assume that a pair (µa, λ) determines a quaternionic struc-
ture for a D–framed immersion (g, η,Ψ). Then

hµa,k = 〈ēgµ̄
∗

ax; [N̄
n−2k
a ]〉 = hλ,k(LQ) + hλ,k(LHb

), (35)

where the terms in the right side are defined by the formula (27) for each
corresponding component of the manifold Ln−4k.

25



We need to reformulate the notion of a cyclic structure and of a
quaternionic structure without the assumption that the corresponding maps
f : Mn−k → R

n and g : Nn−2k → R
n are immersions. We formulate

the necessary definition in minimal generality, under the assumption that
Mn−k = RPn−k, Nn−2k = Sn−2k/i.

Let

d : RPn−k → R
n (36)

be an arbitrary PL-mapping. Consider the two-point configuration space

(RPn−k × RPn−k \∆RPn−k)/T ′, (37)

which is called the “deleted square” of the space RPn−k. This space is obtained
as the quotient of the direct product without the diagonal by the involution
T ′ : RPn−k × RPn−k → RPn−k × RPn−k, exchanging the coordinates. This
space is an open manifold. It is convenient to define an analogous space,
which is a manifold with boundary.

Define the space Γ̄ as a spherical blow-up of the space RPn−k×RPn−k\Σdiag

in the neighborhood of the diagonal. The spherical blow-up is a manifold
with boundary, which is defined as a result of compactification of the open
manifold RPn−k×RPn−k\Σdiag by the fiberwise glue-in of the fibers of the unit
sphere bundle STΣdiag of the tangent bundle TΣdiag in the neighborhood of
zero–sections of the normal bundle of the diagonal Σdiag ⊂ RPn−k × RPn−k.
The following natural inclusions are well defined:

RPn−k × RPn−k \ Σdiag ⊂ Γ̄,

STΣdiag ⊂ Γ̄.

On the space Γ̄ the free involution T̄ ′ : Γ̄0 → Γ̄, which is an extension of the
involution T ′ is well defined.

The quotient Γ̄/T̄ ′ is denoted by Γ, and the corresponding double covering
by

pΓ : Γ̄/T̄ ′ → Γ.

The space Γ is a manifold with boundary and it is called the resolution space
of the configuration space (37). The projection p∂Γ : ∂Γ → RPn−k is well
defined, and is called a resolution of the diagonal.

For an arbitrary mapping (36) the space of self-intersection points of the
mapping d is defined by the formula:

N(d) = Cl{([x, y]) ∈ int(Γ) : y 6= x, d(y) = d(x)}. (38)
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By Porteous’ Theorem [Por] under the assumption that the map d is
generic smooth, the space N is a manifold with boundary of dimension n−2k.
In the case when d is a generic PL-mapping, the space N is a polyhedron,
the interior of this polyhedron

N◦ = {([x, y]) ∈ int(Γ) : y 6= x, d(y) = d(x)}. (39)

is an open PL–manifold.
This polyhedron is called the polyhedron of self-intersection points of the

mapping d. The formula (38) defines an embedding:

iN : (N, ∂N) ⊂ (Γ, ∂Γ).

The boundary ∂N of this polyhedron N is called the resolution manifold
of critical points of the map d. The map p∂Γ ◦ i∂N|∂N : ∂N ⊂ ∂Γ̄ → RPn−k

is called the resolution map of singularities of the map d, we denote this
mapping by resd : ∂N → RPn−k. There is a canonical double covering

pN : N̄ → N, (40)

ramified over the boundary ∂N (above this boundary the cover is a diffeo-
morphism). The following diagram is commutative:

iN̄ : (N̄, ∂N) ⊂ (Γ̄, ∂Γ)

↓ pN ↓ pΓ

iN : (N, ∂N) ⊂ (Γ, ∂Γ).

Formal (equivariant) mapping with holonomic self-intersection

Denote by TRPn−k , TRn the standard involutions on the spaces RPn−k×RPn−k,
R

n × R
n, which permutes the coordinates. Let

d(2) : RPn−k × RPn−k → R
n × R

n (41)

be an arbitrary TRPn−k , TRn–equivariant mapping, which is transversal along
the diagonal of the source space. Denote (d(2))−1(Rn

diag)/TRPn−k by N =

N(d(2)), let us call this polyhedron a self-intersection (formal) polyhedron of
the mapping d(2). In the case the formal mapping d(2) is the extension of a
mapping (36), the polyhedron N(d(2)) coincides with the polyhedron, denoted
by the formula (38). The formula (39), (40) are applied for polyhedral of
formal self-intersection. We need to define an intermediate notion between
the formal mapping (41) and the extension of a mapping (36).
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Definition 24. Let us assume that the polyhedron N◦ contains a closed sub-
polyhedron, which is denoted by Na ⊂ N◦, the complement is a polyhedron,
possibly, with open components, which is denoted by Nb◦ ⊂ N◦. Therefore
we have:

Na ∪Nb◦ = N◦. (42)

For an arbitrary point x = (x1, x2) ∈ Na, x1 6= x2, let us denote by U(x)
a neighborhood of x, which is a Cartesian product of two neighborhoods
x1 ∈ V (x1) ⊂ RPn−k and x2 ∈ V (x2) ⊂ RPn−k.

Let us call that an equivariant mapping d(2), which is determined by the
formula (41), has a holonomic (formal) self-intersection along Na, if for an
arbitrary point x = (x1, x2) ∈ N̄a the mapping d(2) in a small neighborhood
U(x) = V (x1) × V (x2) of x is a Cartesian product of the two mappings
f1 : V (x1) → Rn and f2 : V (x2) → Rn, d(2) = f1× f2, d

(2) = f1× f2. Equiva-
lently, if for a regular neighborhood N̄a ⊂ V (N̄a) ⊂ (RPn−k)2 there exists an
immersion d : V (N̄a) # Rn, for which the formal extension coincides with
the restriction of the equivariant mapping d(2) on V (N̄a)/TRPn−k×RPn−k .

Remark

Definition (24) is generalized for non-closed Na, even if the closure of this
polyhedron contains critical points of the formal mapping d(2), see [Definition
9, A2].

Example

Let us assume that the equivariant mapping (41) is the formal extension
of an immersion (36). Then the formal mapping (d(2), d) has a holonomic
self-intersection along the self-intersection manifold.

Structural map ηN◦ : N(d)◦ → K(D, 1)

Define the mapping

ηΓ : Γ → K(D, 1), (43)

which we shall call the structure mapping of the “deleted square”. Note that
the inclusion Γ̄ ⊂ RPn−k × RPn−k induces an isomorphism of fundamental
groups, since the codimension of the diagonal ∆RPn−k ⊂ RPn−k × RPn−k is
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equal to n− k and satisfies the inequality n− k ≥ 3. Therefore, the equality
is satisfied:

π1(Γ̄) = H1(Γ̄;Z/2) = Z/2⊕ Z/2. (44)

Consider the induced automorphism T ′

ast : H1(Γ̄;Z/2) → H1(Γ̄;Z/2).
Note that this automorphism is not the identity. Fix an isomorphism of the
groups H1(Γ̄;Z/2) and Ic, which maps the generator of the first (respectively
second) factor of H1(Γ̄; Z/2), see (44), into the generator ab ∈ Ic ⊂ D

(respectively, ba ∈ Ic ⊂ D), which in the standard representation of the
group D is defined by the reflection with respect to the second (respectively,
the first) coordinate axis.

It is easy to verify that the automorphism of the conjugation with respect
to the subgroup Ic ⊂ D by means of the element b ∈ D \ Ic (in this formula
the element b can be chosen arbitrarily), defined by the formula x 7→ bxb−1,
corresponds to the automorphism T ′

∗
. The fundamental group π1(Γ) is a

quadratic extension of π1(Γ̄) by means of the element b, and this extension
is uniquely defined up to isomorphism by the automorphism T ′

∗
. Therefore

π1(Γ) ≃ D, and hence the mapping ηΓ : Γ → K(D, 1) is well defined.
It is easy to verify that the mapping ηΓ|∂Γ takes values in the subspace

K(Ib×ḃ, 1) ⊂ K(D, 1). The mapping ηΓ, which is defined by the formula (43),
induces the mapping

ηN◦ : (N◦, U(∂N)◦) → (K(D, 1), K(Ib×ḃ, 1)), (45)

which we call the structure mapping. (The notion of the structure mapping is
analogous to the notion of the classifying mapping for D–framed immersion.)

Also, it is easy to verify that the homotopy class of the composition
U(∂N)◦

ηN◦−→ K(Ib×ḃ, 1)
pb−→ K(Id, 1), where the map K(Ib×ḃ, 1)

pb−→ K(Id, 1)

is induced by the homomorphism Ib×ḃ → Id with the kernel Ib, ∂N(d)
η

−→

K(Ib, 1)
pb−→ K(Id, 1) is extended to a map on ∂N and this extension coincides

to the map κ◦resd : ∂N(d) → RPn−k → K(Id, 1), which is the composition of
the resolution map resd : ∂N(d) → RPn−k and the embedding of the skeleton
RPn−k ⊂ K(Id, 1) in the classifying space.

Assume that the following mapping

µa : Na → K(Ia, 1) (46)

determines the reduction of the restriction of the structure mapping (45) to
the marked component in the formula (42).

The following characteristic number

〈µ∗

a(t); [Na]〉, (47)
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is well defined, where t ∈ Hn−2k(K(Ia, 1);Z/2) is the generic cohomology
class [Na] is the fundamental class of the polyhedron Na (this polyhedron is
a PL-manifold).

Definition 25. Cyclic structure of a formal mapping (d(2), d) with
holonomic self-intersection along Na The mapping (46) is called the
cyclic structure of the equivariant mapping with holonomic self-intersection
along the polyhedron Na, if the characteristic number (47) satisfies the fol-
lowing equation:

〈µ∗

a(t); [Na]〉 = 1. (48)

Let (N, ∂N) be the polyhedron (with boundary) of a formal self-
intersection of the formal (equivariant) mapping (41), which contains a
closed component Na ⊂ N, and assume that along this component the self-
intersection is holonomic. Suppose given a map µa : Na → K(Ia, 1) like in
Definition . We need a criterion to verify that the mapping µa satisfies the
equation (47).

Consider the double covering

pa : N̄a → Na, (49)

induced from the universal double cover

K(Id, 1) → K(Ia, 1) (50)

by the mapping µa : Na → K(Ia, 1). Denote by µ̄a : N̄a → K(Id, 1) the map-
ping double covering over the mapping µa. Obviously, because the structure
mapping η : Na → K(D, 1) is cyclic, the covering (52) coincides with the
canonical 2-sheeted covering, which is determined by the formula (40).

The following homology class

µ̄a∗([N̄a]) ∈ Hn−2k(K(Id, 1)) (51)

is well defined as the image of the fundamental homology class [Na] by the
mapping µ̄a.

Let us consider the canonical 2-sheeted covering over the polyhedron N,
which is, probably, branched over the boundary:

p : N̄ → N. (52)
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The total space of this covering is a closed polyhedron N̄ of the dimension n−
2k. This polyhedron is decomposed into the union of the two subpolyhedra:
N̄ = N̄a∪N̄b, this decomposition corresponds with the decomposition in the
formula (42).

Consider the mapping pIc,Id ◦ η̄ : N̄b → K(Ic, 1) → K(Id, 1), where the
mapping pIc,Id : K(Ic, 1) → K(Id, 1) is induced by the epimorphism Ic → Id,
with the kernel, generated by the element ab ∈ Ic. Denote the restriction of
this mapping to the component N̄b by η̄b : N̄b → K(Id, 1).

Lemma 26. Let a mapping µa : Na → K(Ia, 1) be given. The condition (47)
is a corollary of the following two conditions.

–1. The restriction of the structure mapping η◦ to the component Na is
cyclic and the mapping µa determines the reduction of the structure mapping
to a mapping into the subspace K(Ia, 1) ⊂ K(D, 1).

–2. The homology class

η̄b∗([N̄b]) ∈ Hn−2k(K(Id, 1);Z/2)

is trivial.

Proof of Lemma 26

Let us consider a sketch of the proof. The homology class η̄∗([N̄]) ∈
Hn−2k(K(Id, 1);Z/2) is the generator, because the fundamental class of the
subpolyhedron N̄ ⊂ RPn−k is dual to the (normal) characteristic class of the
dimension 2k, which is the generator in Hn−2k(RP

n−k), because n = 2ℓ − 1.
Lemma 26 is proved.

Let c : Sn−2k/i → Rn be a PL–mapping in a general position.
Consider the configuration space

((Sn−2k/i× Sn−2k/i) \∆Sn−2k)/T ′, (53)

which is called the “deleted square” of the lens space Sn−2k/i. This space
is obtained as the quotient of the direct product without the diagonal by
the involution T ′ : Sn−2k/i × Sn−2k/i → Sn−2k/i × Sn−2k/i, exchanging the
coordinates. This space is an open manifold. It is convenient to define an
analogous space, which is a manifold with boundary.

Define the space Γ̄1 as a spherical blow-up of the space (Sn−2k/i ×
Sn−2k/i) \∆Sn−2k in the neighborhood of the diagonal. The spherical blow-
up is a manifold with boundary, which is defined as a result of compact-
ification of the open manifold (Sn−2k/i × Sn−2k/i) \ Σdiag by the fiberwise
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glue-in of the fibers of the spherization STΣdiag of the tangent bundle TΣdiag

in the neighborhood of zero–sections of the normal bundle of the diagonal
Σdiag ⊂ Sn−2k/i×Sn−2k/i. The following natural inclusions are well defined:

Sn−2k × Sn−2k \ Σdiag ⊂ Γ̄1,

STΣdiag ⊂ Γ̄1.

On the space Γ̄1 the free involution

T̄ ′ : Γ̄1 → Γ̄1 (54)

which is an extension of an involution T ′ is well defined.
The quotient Γ̄1/T̄

′ is denoted by Γ1, and the corresponding double cov-
ering by

pΓ1 : Γ̄1/T̄
′ → Γ1.

The space Γ1 is a manifold with boundary and it is called the resolution space
of the configuration space (53). The projection p∂Γ1 : ∂Γ1 → Sn−2k/i is well
defined, this map is called a resolution of the diagonal.

For an arbitrary mapping c : Sn−2k/i → Rn the polyhedron L(c) of self-
intersection points of the mapping c is defined by the formula:

L(c) = Cl{([x, y]) ∈ int(Γ1) : y 6= x, c(y) = c(x)}. (55)

By Porteous’ Theorem [Por] under the assumption that the map c is
smooth and generic, the polyhedron L(c) is a manifold with boundary of
dimension n − 4k. This polyhedron is denoted by Ln−4k(c) and called the
polyhedron of self-intersection of the map c. This formula (55) defines an
embedding of polyhedra into manifold:

iL(c) : (L
n−4k(c), ∂Ln−4k(c)) ⊂ (Γ1, ∂Γ1).

The boundary ∂Ln−4k(c) of the manifold Ln−4k(c) is called the resolu-
tion manifold of critical points of the map c. The map p∂Γ1 ◦ i∂L(c)|∂L(c) :
∂Ln−4k(c) ⊂ ∂Γ̄1 → Sn−2k is called the resolution map of singularities of the
map c, we denote this mapping by resc : ∂L(c) → Sn−2k/i.

Consider the canonical double covering

pL(c) : L̄(c)
n−4k → L(c)n−4k, (56)

ramified over the boundary ∂L(c)n−4k (over this boundary the cover is a
diffeomorphism). The next diagram is commutative:

iL̄(c) : (L̄
n−4k(c), ∂Ln−4k(c)) ⊂ (Γ̄1, ∂Γ1)

↓ pL(c) ↓ pΓ1

iL(c) : (L
n−4k(c), ∂Ln−4k(c)) ⊂ (Γ1, ∂Γ1).
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Definition of the subgroup H ⊂ Z/2[3]

Consider the space R
4 with the basis (e1, e2, e3, e4). The basis vectors are

conveniently identified with the basic unit quaternions (1, i, j,k), which some-
times will be used to simplify the formulas for some transformations. Define
the subgroup

H ⊂ Z/2[3] (57)

as a subgroup of transformations, of the following two types:
– in each plane Lin(e1 = 1, e2 = i), Lin(e3 = j, e4 = k) may be (mutually

independent) transformations by the multiplication with the quaternion i.
The subgroup of all such transformations is denoted by Hc, this subgroup is
isomorphic to Z/4× Z/4.

- the transformation exchanging each pair of the corresponding basis vec-
tors e1 = 1 and e3 = j and the pair of the basis vectors e2 = i and e4 = k,
preserving their direction. Denote this transformation by

t ∈ H \Hc. (58)

It is easy to verify that the group itself is H, has order 32, and is a
subgroup H ⊂ Z/2[3] of index 4.

Definition of the subgroup Hb×ḃ ⊂ H and the monomorphism iIa,H :
Ia ⊂ H

Define the inclusion iIa,H : Ia ⊂ H, which translates the generator of the
group Ia into the operator of multiplication by the quaternion i, acting si-
multaneously in each plane Lin(e1 = 1, e2 = i), Lin(e3 = j, e4 = k). Define
the subgroup Hb×ḃ ⊂ H as the product of the subgroup iIa,H : Ia ⊂ H and
the subgroup generated by the generator t ∈ H. It is easy to verify that
the group Hb×ḃ is of the order 8 and this group is isomorphic to Z/4× Z/2.
The subgroup Ia ⊂ Hb×ḃ is of the index 2. The inclusion homomorphism
iIa,Hb×ḃ

: Ia ⊂ Hb×ḃ of the subgroup and the projection pHb×ḃ,Ia
: Hb×ḃ → Ia

are defined, such that the composition Ia
iIa,H

b×ḃ
−→ Hb×ḃ

pHa,Ia
−→ Ia is the identity.

Structure map ζ◦ : L◦(c) → K(H, 1)

Define the map ζΓ1 : Γ1 → K(H, 1), which we call the structure mapping of
the “deleted square”. Note that the inclusion Γ̄1 ⊂ Sn−2k/i×Sn−2k/i induces
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an isomorphism of fundamental groups, since the codimension of the diagonal
∆Sn−2k/i ⊂ Sn−2k/i× Sn−2k/i satisfies the inequality n− 2k ≥ 3. Therefore,
the following equality is satisfied:

π1(Γ̄1) = H1(Γ̄1;Z/4) = Z/4× Z/4. (59)

Consider the induced automorphism T̄ ′

∗
: H1(Γ̄1;Z/2) → H1(Γ̄1;Z/2), in-

duced by the involution (54). Note that this automorphism is not the iden-
tity and permutes the factors. Fix an isomorphism of the groups H1(Γ̄1;Z/2)
and Hc, which maps the generator of the first (respectively second) factor
of H1(Γ̄1;Z/2), see (59), into the generator, defined by the multiplication by
the quaternion i in the plane Lin(1, i) (respectively, in the plane Lin(j,k))
and is the identity on the complement.

It is easy to verify that the automorphism of the conjugation with respect
to the subgroup Hc ⊂ H by means of the element t ∈ H \ Hc, (in this
formula the element t is given by the equation (58)), defined by the formula
x 7→ txt−1, corresponds to conjugation by means of the automorphism T̄ ′

∗
.

The fundamental group π1(Γ1) is a quadratic extension of π1(Γ̄1) by means
of the element t, and this extension is uniquely defined up to isomorphism
by the automorphism T ′

∗
. Therefore π1(Γ1) ≃ H, and hence the mapping

ζΓ1 : Γ1 → K(H, 1) is well defined.
It is easy to verify that the mapping ζΓ1|∂Γ1 takes values in the sub-

space K(Hb×ḃ, 1) ⊂ K(H, 1). The mapping ζΓ1 induces the map ζ◦ :
(L◦(c), U(∂L(c))◦) → (K(H, 1), K(Hb×ḃ, 1)), which we call the structure
map. (In the considered case the notion of the structure mapping is anal-
ogous to the notion of the classifying mapping for Z/2[3]–framed immer-
sion.) Also, it is easy to verify that the homotopy class of the composition

U(∂L(c)◦)
ζ◦
−→ K(Hb×ḃ, 1)

pH
b×ḃ

,Ia

−→ K(Ia, 1) is extended to ∂L(c) and coin-
cides with the characteristic map η ◦ resc : ∂L(c) → Sn−2k/i → K(Ia, 1),
which is the composition of the resolution map resc : ∂L(c) → Sn−2k/i and
the embedding of the skeleton Sn−2k/i ⊂ K(Ia, 1) in the classifying space.

Definition 27. Quaternionic structure for a mapping c : Sn−2k/i →
Rn with singularities

Let c : Sn−2k/i → Rn be a map in general position, having critical points,
where k ≡ 0 (mod 2). Let L(c)◦ be the polyhedron of double self-intersection
points of the map c with the boundary ∂L(c).

Let us assume that the polyhedron L(c)◦ is the disjoint union of the two
components

L(c)◦ = LQ ∪ LHb×ḃ◦
, (60)
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where the polyhedron LQ is closed, and the polyhedron LHb×ḃ◦
, generally

speaking, contains a regular neighborhood of the boundary U(∂LHb×ḃ
)◦ =

U(∂L(c))◦.
We say that this map c admits a (relative) quaternionic structure, if the

structure map ζ◦ : (L(c)◦, U(∂L(c))◦) → (K(H, 1), K(Hb×ḃ, 1)) is given by
the composition:

λL(c) : LQ ∪ LHb×ḃ◦

λLQ
∪λH

b×ḃ
◦

−→ K(Q, 1) ∪K(Hb×ḃ, 1) (61)

iQ,H∪iH
b×ḃ

,H

−→ K(H, 1) ∪K(H, 1)
Id∪Id
−→ K(H, 1).

Proposition 28. If k ≡ 0 (mod 4), k ≥ 10, an arbitrary element of
Immsf (n − k, k) is represented by a skew-framed immersion (f, κ,Ξ), ad-
mitting a cyclic structure in the sense of Definition 18.

Proposition 29. If n = 4k + nσ, n ≥ 127, an arbitrary element of the
group ImmD(n−2k, 2k), in the image of the homomorphism δk : Immsf(n−
k, k) → ImmD(n−2k, 2k), is represented by a D–framed immersion (g, η,Ψ),
admitting a quaternionic structure in the sense of Definition 20.

Propositions 28, 29 are based on the application of the following principle
of density of the subspace of immersions in the space of continuous maps
equipped with the compact-open topology, see [Hi, Theorem 5.10].

Proposition 30. Let f0 : M # R (we will use the case R = Rn) be a
smooth immersion between manifolds, where the manifold M is compact, the
manifold R is equipped with the metric dist and dim(M) < dim(R). Let
g : M → R be a continuous mapping homotopic to the immersion f0. Then
∀ε > 0 there exists an immersion f : M # R, regularly homotopic to the
immersion f0, for which dist(g; f)C0 < ε in the space of maps with the induced
metric.

We need the following corollary of Proposition 30.
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Corollary 31. Let (f ′, κ,Ξ′) be an arbitrary skew-framed immersion, f ′ :
Mn−k

# Rn, representing an element [(f ′, κ,Ξ′)] ∈ Immsf (n− k, k) and let
f1 :M

n−k → R
n be an arbitrary continuous mapping. Then for an arbitrary

(arbitrarily small) ε > 0 there is a skew-framed immersion (f, κ,Ξ), where
f : Mn−k

# Rn is an immersion of the same manifold, which is regular
homotopic to the immersion f1 (in particular, (f, κ,Ξ) represents the same
element [(f ′, κ,Ξ′)] ∈ Immsf (n− k, k)) and satisfying

dist(f1; f) < ε. (62)

Proof of Corollary 31

By Proposition 30 there exists an immersion f , regularly homotopic to f ′, for
which the condition (62) is satisfied. A regular homotopy of a skew-framed
immersion continues by a regular homotopy in the class of skew-framed
immersions. Therefore f is a skew-framed and the elements [(f ′, κ,Ξ′)],
[(f, κ,Ξ)] are equal. Corollary 31 is proved.

Lemma 32.

Assuming the dimensional restriction

k ≥ 10, n− k ≡ −1 (mod 8), (63)

in particular for

n = 2ℓ − 1, ℓ ≥ 7, n− 4k = 7, (64)

there exists an equivariant generic mapping d(2), which admits a cyclic struc-
ture in the sense of Definition 2.

The proof of Proposition 28 by means of Lemma 32

Let us consider the equivariant mapping d(2) : RPn−k × RPn−k → Rn × Rn,
constructed in Lemma 32. Let us consider the closed marked component Na

of the polyhedron of (formal) self-intersection of the formal mapping d(2),
along which the mapping d(2) is holonomic. Consider the canonical 2-sheeted
covering N̄a → Na. The holonomic condition determines an immersion ϕN̄a

:
N̄a # RPn−k.

Denote by ϕUNa
: UNa # RPn−k an immersed regular neighborhood, for

which the immersion ϕN̄a
is an immersion of the central PL-submanifold.
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Denote by U(N̄a) ⊂ RPn−k the image of the neighborhood UNa by the im-
mersion ϕUNa

. By the construction the following immersion UNa # U(N̄a)
is well-defined, denote this immersion by ϕUNa

. Because of the holonomic

condition, the following mapping θ : UNa → Rn is well-defined. The self-
intersection polyhedron of the mapping θ contains a closed component, which
is PL-homeomorphic to the polyhedron Na.

Let us consider an arbitrary element of the group Immsf (n−k, k), this ele-
ment is represented by an immersion f0 :M

n−k
0 # Rn, equipped with a skew-

framing (κ0,Ξ0). Let us consider the characteristic class κ0 :M
n−k
0 → RPn−k

of this skew-framing. By dimensional reason, without loss of a generality,
the image of κ0 is inside the standard skeleton RPn−k ⊂ K(Id, 1).

Consider an open domain U(N̄a) ⊂ RPn−k and denote the inverse image
κ−1
0 (U(N̄a)) of this domain by VMn−k ⊂ Mn−k

0 . The restriction of the
mapping κ0 VM

n−k → U(N̄a) is well-defined, let us call this restriction a
projection.

Define an open manifold WMn−k, an immersion WMn−k
# VMn−k and

a projection πWM : WMn−k → UNa, such that the following commutative
diagram is well defined.

WMn−k
# VMn−k

↓ ↓
UNa # U(N̄a).

(65)

In this diagram the horizontal rows are immersions and vertical rows are
projections.

Take ε > 0, which is much smaller then the radius of the regular neigh-
borhood UNa of the polyhedron N̄a. By Proposition 30 there exists a self-
transversal immersion α1 :WMn−k

# Rn, which is ε–closed to the mapping
θ ◦ κ0 ◦ πWM : WMn−k → Rn. Let us consider the self-intersection manifold
of the immersion α1. This manifold contains a closed component, which is
inside ε–regular neighborhood of the immersed polyhedron Na. Denote this
component by WNn−2k

a . The manifold WNn−2k
a is a D–framed immersed

manifold in a codimension k, because the considered manifold is defined as
regular self-intersection of a skew-framed immersion in the codimension k.
Denote the constructed D–framed immersion by (gWNa, ηWNa,ΨWNa).

Define a projection

pWNa : WNn−2k
a → Na. (66)

The following mapping

µa :WNn−2k
a → K(Ia, 1) (67)
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is well-defined as the induced mapping from Na to WNn−2k
a by the projection

(66), the new mapping is denoted the same.

Lemma 33. Let x ∈ Immsf (n − k, k) be an arbitrary element, y ∈
ImmD(n−2k, 2k) be an arbitrary element, represented by the triple (g, η,Ξ).
Then there exists a triple (f, κ,Ψ), f : Mn−k

# Rn, which represents the
element x, for which the immersion f is self-transversal and the immer-
sion of the self-intersection maniflod of f , which is represented an element
δDk (f, κ,Ψ), contains a closed component, such that the immersion of this
component coincides with the D–framed immersion (g, η,Ξ) up to regular
homotopy. Moreover, if the characteristic mapping η is cyclic in the sense
of Definition 14, the canonical covering mapping η̄ : N̄n−2k → K(Id, 1) is
induced from the mapping κ by means of the immersion N̄n−2k

# Mn−k.

Proof of Lemma 33

Let us re-denote the D-framed immersion (g, η,Ξ) by (g, η,Ξ)+. Define the
manifold with boundary Mn−k

+ as the total space of the 1-disk bundle, which
is associated with the line bundle κ|N̄n−2k

+
over N̄n−2k

+ . Define an immersion

f+ : Mn−k
+ # Rn, which is self-intersects along N̄n−2k

+ , and for which N̄n−2k
+

is a closed component of the self-intersection manifold.
Denote the mirror copy of the D-framed immersion (g, η,Ξ)+ by

(g, η,Ξ)−. The self-intersection manifold of the mirror immersion f− :
Mn−k

− # R
n, contains the closed component N̄n−2k

− .
Let us proved that the immersion f+ ∪ f− is extended to an immersion

f0 of a closed manifold Mn−k. Define Mn−k as the result of the gluing of the
cylinder ∂M̄n−k × [+1,−1] to the boundaries ∂(Mn−k

+ ) and ∂(Mn−k
− ) along

the upper and the lower components. Evidently, there exists an immersion
f0, for which the restriction over the component Mn−k

+ coincides to f+. (For
example, we may first construct a fiberwise monomorphism of the tangent
bundle T (Mn−k) into the trivial bundle T (Rn)) such that the restriction of
this fiberwise monomorphism on Mn−k

+ coincides to f+, then by the main
theorem of [Hi] the required self-transversal immersion f0 is well-defined).

The immersion f0 is a skew-framed immersion and this immersion self-
intersects along a D–framed immersion, which contains a closed component
(g, η,Ξ)+. Define (f, κ,Ψ) = (f0, κ0,Ψ0)∪(f1,Ψ1, κ1), such that (f, κ,Ψ) rep-
resents the given element x ∈ Immsf(n− k, k). The skew-framed immersion
(f,Ψ, κ) is required. Lemma 33 is proved.

In the statement of Lemma 33 take the triple (g, η,Ξ) =
(gWNa, ηWNa,ΨWNa). In the skew-framed regular cobordism class of
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[(f0, κ0,Ψ0)] there exists a skew-framed immersion (f1, κ1,Ψ1), for which
the self-intersection manifold (g1, η1,Ξ1), g1 : Nn−2k

1 # Rn contains the
component (gWNa, ηWNa,ΨWNa), WNa ⊂ Nn−2k

1 . Define the mapping
µa : WNn−2k

a → K(Ia, 1) on the marked component WNn−2k
a ⊂ Nn−2k

1

as the mapping (67). Let us prove that the mapping µa determines a cyclic
structure for the skew-framed immersion (f1, κ1,Ψ1). For this it is sufficient
to check the equation (34).

The Hopf invariant h(f0, κ0,Ξ0) coincides with the degree modulo 2 of
the mapping κ0. By a geometrical argument the degree of the mapping κ0
coincides with the degree of the mapping (66). Therefore the right side of the
equation (34) coincides the degree of the mapping (66). Because the mapping
µa is cyclic, the characteristic class in the left side of the formula (34), which
is defined by the formula (25), using the formula (48), also coincides with
the degree of the mapping (66). Proposition 28 is proved.

Lemma 34. Let us assume that n = 4k + nσ, n ≥ 127. Then there exists
a generic mapping : Sn−2k/i → Rn with singularities that admits a quater-
nionic structure in the sense of Definition 27.

The proof of Lemma 34 is simpler than the proof of Lemma 32 because
of dimensional restriction. The proof is analogous to the proof of Lemma 4
in [Akh].

The proof of Proposition 29 from Proposition 28 and Lemma 34

Consider a skew-framed immersion (f, κ,Ξ), so that δk([(f, κ,Ξ)]) = [(g1 :
Nn−2k

# Rn, η,Ψ)] is an element of the group ImmD(n − 2k, 2k). By
Proposition 28, without loss of generality we can assume that the immer-
sion f : Mn−k

# Rn admits a cyclic structure in the sense of Definition 18.
Denote by g′ : Nn−2k

a # Rn the restriction of the immersion g to the marked
component of the self-intersection manifold Nn−2k of the immersion f , and
by µa : Nn−2k

a → K(Ia, 1) the mapping on the marked component, which
determines a cyclic structure for the immersion f .

Consider the map c : Sn−2k/i → Rn, constructed in Lemma 34. Con-
sider an immersion ga : Nn−2k

a # Rn, defined by Proposition 30 as a C0–
approximation of the composition c ◦ µa : Nn−2k

a → Sn−2k/i → R
n in the

regular homotopy class of g′.
Analogously to the construction of the map µa in the Proposition 28, we

conclude that a quaternionic structure of the D-framed immersion [(g, η,Ψ)]
is well defined. Proposition 29 is proved.
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Proof of Theorem 12

Let us take a positive integer k under the condition n−4k = nσ, k ≥ 8, this is
possible if n ≥ 127. Let the triple [(g : Nn−2k

# Rn, η,Ψ)] represent the given
element in the cobordism group ImmD(n− 2k, 2k). Let us denote by Ln−4k

a

the self-intersection manifold of the immersion ga, which is the restriction of
g on the marked component Nn−2k

a ⊂ Nn−2k. Let us consider a skew-framed
immersion (f, κ,Ξ), such that δsfk ([(f, κ,Ξ)]) = [(g : Nn−2k

# Rn, η,Ψ)]. By
Proposition 29 we may assume that the triple [(g, η,Ψ)] admits a quaternionic
structure in the sense of Definition 20.

In the first step let us assume that the classifying map η of the D–framed
immersion is cyclic in the sense of Definition 14. This means that for the
marked component the following equation is satisfied:

η = ia ◦ µa,

where µa : Nn−2k
a → K(Ia, 1), N

n−2k
a = Nn−2k and ia : K(Ia, 1) → K(D, 1)

is the natural map induced by the inclusion of the subgroup.
Let us also assume that the classifying map ζ of the Z/2[3]–framed im-

mersion δDk (g, η,Ψ) = (h, ζ,Λ) is quaternionic in the sense of Definition 15.
This means that Ln−4k = Ln−4k

Q and the following equation is satisfied:

ζ = iQ,Z/2[3] ◦ λQ, (68)

where λQ : Ln−4k
Q → K(Q, 1), Ln−4k

Q = Ln−4k, and iQ,Z/2[3] : K(Q, 1) →

K(Z/2[3], 1) is the natural map, induced by the inclusion of the subgroup
(see Example 21). Let us prove the theorem in this case.

Let us consider the classifying mapping η : Nn−2k → K(D, 1). Let us
denote by Ñn−2k−2 ⊂ Nn−2k the submanifold, representing the Euler class of
the vector bundle η∗(ψD), where by ψD is denoted the universal 2-dimensional
vector bundle over the classifying space K(D, 1). Because the classifying map
η is cyclic, the submanifold Ñn−2k−2 ⊂ Nn−2k is co-oriented, moreover we
have

η∗(ψD) = µ∗

a(ψ+),

where by ψ+ we denote the 2-dimensional universal SO(2)–bundle over
K(Ia, 1).

Let us denote by g̃ : Ñn−2k−2
# Rn the restriction of the immersion g on

the submanifold Ñn−2k−2 ⊂ Nn−2k, assuming that the immersion g̃ is generic.
The immersion g̃ is a D–framed immersion by Ψ̃, the classifying map η̃ of
this D–framed immersion is the restriction of η to the submanifold, this map
is cyclic. The triple (g̃, η̃, Ψ̃) is constructed from the triple (g, η,Ψ) by means
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of the transfer homomorphism JD in the bottom row of the diagram (8) (in
this diagram k1 is changed to k, k is changed to k + 1).

Let us denote by L̃n−4k−4 the self-intersection manifold of the immersion
g̃. The manifold L̃n−4k−4 is a submanifold of the manifold Ln−4k, L̃n−4k−4 ⊂
Ln−4k. The parameterized immersion h̃ : L̃n−4k−4

# Rn is well defined,
this immersion is a Z/2[3]–framed immersion by means of Λ̃, the classifying
map ζ̃ of this Z/2[3]–framed immersion is quaternionic. The triple (h̃, ζ̃, Λ̃)

is defined from the triple (h, ζ,Λ) by means of the homomorphism JZ/2[3] in
the bottom row of the diagram (21) (in this diagram k1 is changed to k, k is
changed to k + 1).

By Lemma 11 the submanifold L̃n−4k−4 ⊂ Ln−4k represents the Euler
class of the bundle ζ∗(ψ[3]). This submanifold is the source manifold of a
Z/2[3]-immersion, representing the image of the left bottom horizontal ho-
momorphism in the diagram (21) (in the diagram k1 = k, k = k + 1).

Let us consider the canonical 2-sheeted covering p̃ : ¯̃L4k−4 → L̃n−4k.

The submanifold ¯̃L4k−4 ⊂ L̄n−4k represents the Euler class of the bundle
p̃∗(ζ∗(ψ[3])). This vector bundle is naturally isomorphic to the vector bundle
ζ̄∗(ψ!

[3]), where ζ̄ : L̄n−4k → K(Hc, 1) is the canonical 2-sheeted covering over

the classifying map ζ (Hc
∼= D × D), ψ!

[3] is the pull-back of the universal

vector bundle ψ[3] over K(Z/2[3], 1) by means of the covering K(Hc, 1) →
K(Z/2[3], 1).

Because the classifying map ζ is quaternionic, the submanifold L̃n−4k−4 ⊂
Ln−4k is co-oriented and represents the homological Euler class of the SO(4)–
bundle λ∗(ψQ), and moreover for the corresponding O(4)–bundles ζ̄∗(ψHc) =
λ̄∗(ψ!

Q), where:
–ψQ is the universal SO(4)–vector bundle over the classifying space

K(Q, 1). This bundle is given by the quaternionic-conjugated representa-
tion with respect to the representation (22) -(24). The bundle ψQ, as a
O(4)–bundle, is defined by the formula: ψQ = i∗a(ψ[3]), ψ

!
Q = i∗Ia,Q(ψQ).

– ψHc is the universal O(4)–bundle over K(Hc, 1) (Hc
∼= D×D).

–λ̄ : L̄n−4k → K(Ia, 1) is the 2-sheeted covering over the classify-
ing mapping λ : Ln−4k → K(Q, 1), induced by the 2-sheeted covering
K(Ia, 1) → K(Q, 1) over the target space of the map λ.

For the universal SO(4)–bundle ψ!
Q the following formula is satisfied:

ψ!
Q = ψ+ ⊕ ψ−,

where the bundle ψ+ admits a lift ψU
+ to a complex U(1)–bundle, the bundle

ψ− is a SO(2)–bundle, obtained from ψU
+ by means of the complex conjuga-

tion and forgetting the complex structure. The bundles ψ+, ψ− satisfy the
equation: e(ψ+) = −e(ψ−), and the Euler class e(ψ+) of the bundle ψ+ is
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equal to the generator t ∈ H2(K(Ia, 1);Z) in the standard basis, the Euler
class e(ψ−) of the bundle ψ− is equal to −t and is opposite to the generator
t of the standard basis.

Let us denote by m ∈ H4k(Nn−2k;Z) the cohomology class, dual to the
fundamental class of the oriented submanifold L̄n−4k ⊂ Nn−2k in the oriented
manifold Nn−2k. Let us denote by eg ∈ H4k(Nn−2k;Z) the Euler class of
the immersion g (this is the top class of the normal bundle νg). By the
Herbert theorem for the immersion g : Nn−2k

# R
n with the self-intersection

manifold Ln−4k (see [E-G], Theorem 1.1 the case r = 1, the coefficients is Z)
the following formula are satisfied:

eg +m = 0. (69)

Let us denote by m̃ ∈ H4k−4(Nn−2k;Z) the cohomology class, dual to the

fundamental class of the oriented submanifold L̃
n−4k−4

⊂ Ñn−2k−2 ⊂ Nn−2k

in the oriented manifold Nn−2k. Let us denote by eg̃ ∈ H4k−4(Nn−2k;Z)
the cohomology class, dual to the image of the homology Euler class of the
immersion g̃ by the inclusion Ñn−2k−2 ⊂ Nn−2k. By the Herbert theorem
for the immersion g̃ : Nn−2k

# Rn with the self-intersection manifold L̃n−4k

(see. [E-G], Theorem 1.1 the case r = 1, the coefficients is Z) the following
formula are satisfied:

eg̃ + m̃ = 0. (70)

Because λ̄ = µa, we may use the equation: λ̄∗(ψ!
Q) = µ∗

a(ψ+) ⊕ µ∗

a(ψ−).
The following equation are satisfied: m̃ = me(µ∗

a(ψ+))e(µ
∗

a(ψ−)), where the
right side is the product of the three cohomology classes: m and the two Euler
classes of the corresponding bundles. The following equation are satisfied:
eg̃ = ege

2(µ∗

a(ψ+)). The equation (70) can be rewritten in the following form:

ege
2(µ∗

a(ψ+)) +me(µ∗

a(ψ+))e(µ
∗

a(ψ−)) = 0. (71)

Then we may take into account (69) and the equation e(µ∗

a(ψ−)) =
−e(µ∗

a(ψ+)). Let us rewrite the previous formula as follows:

2ege
2(µ∗

a(ψ+)) = 0. (72)

Because of the equation eg = e(µ∗

a(ψ+))
k, we obtain:

2ek+2(µ∗

a(ψ+)) = 0. (73)

Let us recall that dim(L) = n− 4k = nσ ≥ 7 and dim(L̃) = nσ − 4 ≥ 3.
The formula for the Hopf invariant for D-framed immersion (g, η,Ψ) using
(26) is the following:

hDk ((g, η,Ψ)) = 〈ek+2(µ∗

a(ψ+))µ
∗

a(τn−4k−4); [N
n−2k]〉 (mod 2), (74)
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where τn−4k−4 ∈ Hn−4k−4(K(Ia, 1);Z/4) is the generic class modulo 4, the co-
homology class e(µ∗

a(ψ+)) is modulo 4, and the fundamental class [Nn−2k] of
the oriented manifoldNn−2k is modulo 4. The condition hDk ((g, η,Ψ)) = 1 im-
plies the following condition: the cohomology class ek+2(µ∗

a(ψ+)) is of order 4.
This contradicts the formula (73). Therefore, hsfk (f, κ,Ξ) = hDk ((g, η,Ψ)) = 0
and the theorem in the particular case is proved.

Let us prove the theorem in the general case. Let us consider the pair of
mappings (µa, λ), where µa : Nn−2k

a → K(Ia, 1), N
n−2k
a ⊂ Nn−2k, λ = λQ ∪

λHb×ḃ
: Ln−4k

Q ∪Ln−4k
Hb×ḃ

→ K(Q, 1)∪K(Hb×ḃ, 1), where Ln−4k
a = Ln−4k

Q ∪Ln−4k
Hb×ḃ

,

Ln−4k
a ⊂ Ln−4k, these two mappings determine the quaternionic structure of

the D–framed immersion (g, η,Ψ) in the sense of Definition 20.
Let us consider the manifold L̄n−4k

a = L̄n−4k
Q ∪ L̄n−4k

Hb×ḃ
, defined by the

formula (32). The manifold L̄n−4k
a is the canonical 2-sheeted covering over

the manifold Ln−4k
a .

The formula (69) is valid, and additionally the cohomology class m (this
class is dual to the fundamental class [L̄a] of the submanifold L̄n−4k

a ⊂ Nn−2k
a )

decomposes into the following sum:

m = mQ +mHb×ḃ
, (75)

corresponding to the type of the components Ln−4k
Q , Ln−4k

Hb×ḃ
of the self-

intersection manifold (see the formula (35)).
Let us consider the submanifold Ñn−2k−2

a ⊂ Nn−2k
a , representing the Euler

class of the bundle µ∗

a(ψ
+). The following immersion g̃a : Ñn−2k−2

a # Rn

is well defined by the restriction of the immersion ga to the submanifold
Ñn−2k−2

a ⊂ Nn−2k
a . Let us denote by L̃n−4k−4

a the self-intersection manifold of
the immersion g̃a (compare with the corresponding definition of the previous
step).

The inclusion L̃n−2k−4
a ⊂ Ln−2k

a is well defined. In particular, the man-
ifold L̃n−4k−4

a is represented by the union of the following two components:
L̃n−4k−4
a = L̃n−4k−4

Q ∪ L̃n−4k−4
Hb×ḃ

.

Lemma 35. The co-oriented submanifold L̃n−2k−4
Q ⊂ Ln−2k

Q represents the
Euler class of the SO(4)–bundle λ∗Q(ψQ).

The submanifold L̃n−2k−4
Hb×ḃ

⊂ Ln−2k
Hb×ḃ

represents the Euler class of the

SO(4)–bundle λ∗Hb×ḃ
(ψHb×ḃ

), where ψHb×ḃ
is the universal SO(4)–bundle over

the space K(Hb×ḃ, 1). The corresponding O(4)–bundle is standardly defined

as the inverse image of the bundle ψZ/2[3] over K(Z/2[3], 1) by means of the

inclusion K(Hb×ḃ, 1) ⊂ K(Z/2[3], 1).
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Proof of Lemma 35

The proof follows from the arguments above in the proof of commutativity
of the left squares of the diagrams (8) and (21).

The bundle ψHb×ḃ
is isomorphic to the Whitney sum of the two 2-

bundles: ψHb×ḃ
= p∗Hb×ḃ,Ia

(ψIa) ⊕ p∗Hb×ḃ,Ia
(ψIa) ⊗ lZ/2, where p∗Hb×ḃ,Ia

(ψIa)

is the 2-dimensional bundle, defined as the pull-back of the canonical 2-
dimensional bundle ψ+ over K(Ia, 1) by means of the natural mapping
pHb×ḃ,Ia

: K(Hb×ḃ, 1) → K(Ia, 1), induced by the homomorphism pHb×ḃ,Ia
:

Hb×ḃ → Ia, lZ/2 is a line bundle, defined as the inverse image of the canon-
ical line bundle over K(Z/2, 1) by means of the projection K(Hb×ḃ, 1) →
K(Z/2, 1), this projection corresponds to the epimorphism Hb×ḃ → Z/2 with
the kernel Ia ⊂ Hb×ḃ.

By analogous arguments the class m̃ is well defined as in the formula (70),
moreover, the following formula is satisfied:

m̃ = m̃Q + m̃Hb×ḃ
, (76)

where the terms in the right side of the formula are defined as the cohomol-

ogy classes, dual to the fundamental classes [ ¯̃LQ], [
¯̃LHb×ḃ

] of the canonical
coverings over the corresponding component.

The formula relating mQ and m̃Q is the following: m̃Q =
mQe(µ

∗

a(ψ+))e(µ
∗

a(ψ−)). The formula relating mHb×ḃ
and m̃Hb×ḃ

is the follow-

ing: m̃Hb×ḃ
= mHb×ḃ

e2(µ∗

a(ψ+)). To prove the last equation we use the follow-

ing fact: the bundle i∗Ia,Hb×ḃ
(ψHb×ḃ

), where the mapping iIa,Hb×ḃ
: K(Ia, 1) →

K(Hb×ḃ, 1) corresponds to the index 2 subgroup iIa,Hb×ḃ
: Ia ⊂ Hb×ḃ, is

isomorphic to the bundle ψ+ ⊕ ψ+.
The analog of the formula (71) is the following:

ege
2(µ∗

a(ψ+))−mQe
2(µ∗

a(ψ+)) +mHb×ḃ
e2(µ∗

a(ψ+)) = 0. (77)

Let us multiply both sides of the formula (75) by the cohomology class
e2(µ∗

a(ψ+)) and take the sum with the opposite sign with (77), we get:

2mQe
2(µ∗

a(ψ+)) = 0. (78)

This is an analog of the formula (72).
Let us prove that the Hopf invariant of the D–framed immersion (g, η,Ψ)

is trivial. By Corollary 23 the Hopf invariant is given by the formula (35).
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Let us prove that the each term in this formula is equal to zero. The first
term hλ(LQ), according to (29), is calculated as the reduction modulo 2 of
the following characteristic number modulo 4:

hλ(LQ) = 〈mQµ
∗

a(x); [N
n−2k
a ]〉,

where x ∈ Hn−4k(Ia;Z/4) is the generator. Analogously, the second term
hλ(LHb×ḃ

) is the reduction modulo 2 of the following number modulo 4:

hλ(LHb×ḃ
) = 〈mHb×ḃ

µ∗

a(x); [N
n−2k
a ]〉.

Note that x = τ 2y, where τ ∈ H2(K(Ia, 1);Z/4), y ∈
Hn−4k−4(K(Ia, 1);Z/4) are the generators. We have µa(τ) = e(µa(ψ

+)),
because τ is the Euler class of the bundle ψ+. Therefore, from (78) we get

hλ(LQ) = 0,

because mQe
2(µ∗

a(ψ+)) = mQ(µ
∗

a(τ))
2 = mQµ

∗

a(x).
To calculate the second term hλ(LHb×ḃ

) it is sufficient to note that

〈mHb×ḃ
µ∗

a(x); [N
n−2k
a ]〉 = 〈µ∗

a(x); [L̄
n−4k
Hb×ḃ

]〉 = 〈p∗((λHb×ḃ
)∗(x′)); [L̄n−4k

Hb×ḃ
]〉 = 0,

where p : L̄n−4k
Hb×ḃ

→ Ln−4k
Hb×ḃ

– is the 2-sheeted covering, corresponding to the

subgroup iIa,Hb×ḃ
, x′ ∈ Hn−4k(K(Hb×ḃ, 1);Z/4) is a cohomology class, such

that i∗Ia,Hb×ḃ
(x′) = x, [L̄n−4k

Hb×ḃ
] is the fundamental class of the total manifold

of the canonical 2-sheeted covering p.
Theorem 12 is proved.

Remark 36. A straightforward generalization of Theorem 12 for mappings
with singularities c : Sn−2k/i → Rn, which admits a (relative) quaternionic
structure in the sense of Definition 27 is not possible.
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