
THE HOMOTOPY GROUPS OF tmf AND OF ITS LOCALIZATIONS

A. H.

In this small survey, we present a compilation of the homotopy groups of tmf and of its various
localizations. This work should be thought of as an exercise in “collecting some of the diffuse
knowledge” from my mathematical surroundings.

1. The homotopy of tmf

The spectrum tmf is connective, which means that the ring πn(tmf ) is zero for n < 0. Vaguely
speaking, its homotopy ring π∗(tmf ) is an amalgam of MF∗ = Z[c4, c6, ∆]/(c3

4 − c2
6 − (12)3∆), the

ring of classical modular forms, and the ring π∗(S) of stable homotopy groups of spheres. Namely,
there are ring homomorphisms

(1) π∗(S) −→ π∗(tmf ) −→ MF∗

that we now describe. Both maps are surprisingly close to being isomorphisms (even though π∗(S)
and MF∗ have nothing to do with each other).

The first map (1) is the Hurewitz homomorphism: being a ring spectrum, tmf admits a unit
map from the sphere spectrum S. This induces a map in homotopy π∗(S) → π∗(tmf ), which is
an isomorphism on π0. The only torsion in π∗(tmf ) 2-torsion and 3-torsion, and so its is only at
those primes that tmf resembles the sphere spectrum. The 3-primary part of the Hurewitz image
is 72-periodic and is given by

(2) im
(

π∗(S) → π∗(tmf )
)

(3)
= Z(3) ⊕ α Z/3Z ⊕

⊕

k≥0

∆3k{β, αβ, β2, β3, β4/α, β4}Z/3Z,

where α has degree 3, and β = 〈α, α, α〉 has degree 10. It doesn’t contains all the 3-torsion of
π∗(tmf ) as the classes in dimensions 27 + k ·72 and 75 + k ·72 for k ≥ 0 are not hit by elements
of π∗(S). The 2-torsion of im(π∗(S) → π∗(tmf )) is much more complicated. It exhibits very rich
patterns including two distinct periodicity phenomena. The first one is a periodicity by c4 ∈ π8(tmf )
which corresponds to v4

1 , and the second one is a periodicity by ∆8 ∈ π192(tmf ) which corresponds
to v32

2 .
The second map (1) can be described as the boundary homomorphism of the elliptic spectral

sequence. Under that map, a class in πn(tmf ) maps to a modular form of weight n/2 (and maps
to zero if n is odd). That map is an isomorphism after inverting the primes 2 and 3, which means
that both its kernel and its cokernel are 2- and 3- torsion. The cokernel can be described explicitly

coker
(

πn(tmf ) → MF n
2

)

=



















Z

/

24
gcd(k,24) Z, if n = 24k

(Z/2Z)⌈
n−8

24
⌉ if n ≡ 4 (mod 8)

0 otherwise.

Te first cyclic group is generated by ∆k, while the second group is generated by ∆acb
4c6 for integers a

and b satisfying 24a+8b+12 = n. The kernel agrees with the torsion in π∗(tmf ), and it is much more
complicated since it comes from the stable homotopy groups of spheres. Its 3-primary component
is at most Z/3Z in any given degree. Its two primary component is a direct sum of (Z/2Z)ℓ for
some ℓ (corresponding the v1-periodic elements) with a group isomorphic to Z/2Z, Z/4Z, Z/8Z, or
(Z/2Z)2 (corresponding the v2-periodic elements).
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The picture on the left of this page represents the homotopy
ring of tmf at the prime 2. The vertical direction has no meaning.
Bullets represent Z/2Z’s while squares represent Z(2)’s. A chain
of n bullets connected by vertical lines represent a Z/2nZ.

The bullets are named by the classes in π∗(S) of which they are
the image (η, ν, ε, κ̄, κ, q are standard names), while the squares
are named by their images in MF∗. The slanted lines represent
multiplication by η, ν, ε, κ, and κ̄.

The top part of the diagram is 192-periodic with polynomial gen-
erator ∆8. We have colored the image of the Hurewitz homomor-
phism [conjectured by Mark Mahowald] as follows: the v1-periodic
classes are in green, and the v2-periodic classes are in pink, red,
and blue, depending on their periodicity. The green classes are
v4
1-periodic in the sphere, and, except for ν, they remain periodic

in tmf via the identification c4 = v4
1 . The v8

2-periodic classes are
pink, the v16

2 -periodic red, and the v32
2 -periodic blue. They remain

periodic in tmf via the identification ∆8 = v32
2 .

The white numbers written in the squares indicate the size of
coker(π∗(tmf ) → MF∗)(2). The Z(2)-algebra π∗(tmf )(2) is finitely
generated, with generators
degree: 1 3 8 8 12 14 20 24 25 27 32 32
name: η ν c4 ε {2c6} κ κ̄ {8∆} {η∆} {2ν∆} q {c4∆}

36 48 51 56 60 72 80 84
{2c6∆} {4∆2} {ν∆2} {c4∆2} {2c6∆2} {8∆3} {c4∆3} {2c6∆3}

96 97 99 104 104 108 110 120
{2∆4} {η∆4} {ν∆4} {ε∆4} {c4∆4} {2c6∆3} {κ∆4} {8∆5}

123 128 128 132 144 147 152 156
{ν∆5} {q∆4} {c4∆5} {2c6∆5} {4∆6} {ν∆6} {c4∆6} {2c6∆6}

168 176 180 192
{8∆7} {c4∆7} {2c6∆7} {∆8}

and numerous relations. Hereafter, we list the multiplication that
are not indicated our chart. On the top line are the generators,
and on the bottom one are the degrees of the classes that support
non-trivial multiplications by those generators:
ε κ κ̄ q

1 1,
26.

1, 2, 8, 14, 15, 21, 22, 26, 98,
22, 32, 33, 34, 39, 46, 104,
110, 111, 116, 117, 118, 128,
129, 130, 135, 136, 142.

1, 3, 8, 14, 20, 21,
25, 27, 28, 34, 97, 99,
104, 110, 117, 118,
123, 124, 130.

{η∆} {2ν∆}

1, 2, 3, 8, 14, 15, 20, 21, 25, 26, 27, 28, 32,
34, 35, 40, 41, 45, 50, 60, 65, 75, 80, 85, 97,
98, 99, 100, 104, 105, 110, 111, 113, 117,
122, 123, 124, 125, 128, 130, 131, 137.

1, 8, 14, 15, 25, 26, 27,
32, 33, 39, 96, 97, 98,
104, 110, 111, 122,
123, 128, 129, 135.

{ν∆2}

1, 2, 3, 6, 8, 9, 14, 15, 17, 51, 54†, 65†, 96, 97,
98, 99, 102, 104, 105, 110, 111, 113, 116.

† : ν{ν∆2} 7→ ν2{ν∆4}.
κ{ν∆2} 7→ νκ{ν∆4}.

All the remaining multiplications are implied by the fact that
π∗(tmf ) → MF∗ is a ring homomorphism.

To finish, we list the only two relations that are not implied by
our chart: {η∆}4 = κ̄5, {2ν∆}2 = κκ̄2.
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The picture of π∗(tmf )(2) from the previous page being rather small, we include here a larger version:
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The homotopy groups of tmf at the prime 3 exhibit similar phenomena than at the prime 2.
The picture on the bottom of this page is an illustration of π∗(tmf )(3). The bullets represent
Z/3Z’s and are named after the elements of π∗(S) that hit them. The squares represent Z’s and are
named after their image in MF∗. The slanted lines represent multiplication by α and β. The top part
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The homotopy groups of tmf at the prime 3
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of the diagram is 72-periodic, with polynomial generator ∆3. We have drawn the image of the
Hurewitz in color: in green is the unique v1-periodic class α, and in red are the v2-periodic classes.

The latter remain periodic in tmf through the identification v9
2 = ∆6 (or maybe v

9/2
2 = ∆3 ?). Once

again, the white numbers in the squares indicate the size of coker(π∗(tmf ) → MF∗)(3). The algebra
π∗(tmf )(3) is a finitely generated, with generators

degree: 3 8 10 12 24 27 32 36 48 56 60 72
name: α c4 β c6 {3∆} {α∆} {c4∆} {c6∆} {3∆2} {c4∆

2} {c6∆
2} {∆3}

and many relations.
It is also worth wile noting that the classes in dimensions 3, 13, 20, 30 (mod 72) support non-

trivial 〈α, α,−〉 Massey products.
When localized at a prime p ≥ 5, the homotopy ring of tmf becomes isomorphic to MF∗.

Since ∆ ∈ MF12 is a Z(p)-linear combination of c3
4 and c2

6, this further simplifies to π∗(tmf )(p) =
Z(p)[c4, c6].

2. Localizations of tmf

The periodic version of tmf goes by the name TMF . It’s homotopy groups are given by

π∗(TMF ) = π∗(tmf )
[

{∆24}−1
]

.

The homotopy groups πn(TMF ) are finitely generated, except for n ≡ 1, 2 (mod 8), in which case
they contain a summand isomorphic to (Z/2Z)∞.

Fix a prime p, and let K(n) denote the nth Morava K-theory at that prime (p is omitted from
the notation). We can then consider the K(n)-localization LK(n)tmf of the spectrum tmf . The
spectrum LK(0)tmf is simply the rationalisation of tmf (and doesn’t depend on p). Its homotopy
ring is therefore given by

π∗(LK(0)tmf ) = π∗(tmf ) ⊗Z Q.

The homotopy groups of LK(1)tmf are easiest to describe at the primes 2 and 3. In those cases,
they are given by

π∗(LK(1)tmf ) =
(

π∗(KO)[j−1]
)

ˆ

p

= π∗(KO)ˆ
p 〈j−1〉

p = 2 or 3.(3)

Here, the notation R〈x〉 refers to powers series
∑∞

k=0 akxk whose coefficients ak ∈ R tend to zero
p-adically as k → ∞. The variable is called j−1 because its inverse corresponds to the j-invariant
of elliptic curves. The reason why (3) is simpler at p = 2 and p = 3 is that at those primes there
is a unique supersingular elliptic curve, and that its j-invariant is equal to zero. For general prime
p ≥ 3, let α1, . . . , αn denote the supersingular j-values. Each element αi is a priori only an element
of Fpn (actually in Fp2), however, their union S := {α1, . . . , αn} is always a scheme defined over Fp.

Let S̃ denote any sheme over Z whose reduction mod p is S. The homotopy groups of LK(1)tmf

are then given by

π∗(LK(1)tmf ) =
(

functions on P1\ S̃
)

ˆ

p

[

b±1
]

, p ≥ 3,

where b is in degree 4.
The homotopy ring of LK(2)tmf is the completion of π∗TMF at the ideal generated by p and by

the Hasse invariant Ep−1:

π∗(LK(2)tmf ) = π∗(TMF )ˆ(p,Ep−1)
, p arbitrary.

The latter is a polynomial in c4 and c6 whose zeroes correspond to the supersingular elliptic curves.
Once again, given the fact that there is a unique supersingular elliptic curve at p = 2 and 3, the
above formula simplifies to

π∗(LK(2)tmf ) = π∗(TMF )ˆ(p,c4)
p = 2, 3.
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For n > 2, the localization LK(n)tmf is trivial, and thus satisfies π∗(LK(n)tmf ) = 0.

3. The Adams spectral sequence

The Adams spectral sequence for tmf is a spectral sequence that converges converges to π∗(tmf )ˆp
for any given prime p. Its E2 page is given by ExtAtmf

p

(Fp, Fp), where Atmf
p is a finite dimensional

E
x
t∗

,∗
A
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)
(F

2
,F

2
)
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Fp-algebra which is a tmf -analog of the Steenrod
algebra.

Atmf
p := homtmf−modules(HFp, HFp).

At the prime 2, the natural map Atmf
2 → A ≡ A2

to the Steenrod algebra is injective. Its image is the
subalgebra A(2) ⊂ A generated by Sq1, Sq2 and
Sq4. That algebra is of dimention 64 over F2, and
defined by the relations

Sq1Sq1 = 0, Sq2Sq2 = Sq1Sq2Sq1,
Sq1Sq4 + Sq4Sq1 + Sq2Sq1Sq2 = 0, and
Sq4Sq4 + Sq2Sq2Sq4 + Sq2Sq4Sq2 = 0.

By the change of rings theorem, the Adams spectral
sequence for tmf can then be identified with the
classical Adams spectral sequence

E2 = ExtA
(

H∗(tmf ), F2

)

= ExtA

(

A//A(2), F2

)

⇒ π∗(tmf )ˆ2.

The bigraded ring ExtA(2)(F2, F2) is generated by
the classes:

(4)

bidegree: (0,1) (1,1) (3,1) (8,4) (8,3) (12,3) (14,4)
name: h0 h1 h2 w1 c0 α d0

(15,3) (17,4) (20,4) (25,5) (32,7) (48,8)
β e0 g γ δ w2

subject to the following complete set of relations:

h0h1 = 0, h1h2 = 0, h2
0h2 = h3

1, h0h
2
2 = 0, h3

2 = 0,
h0c0 = 0, h2

1c0 = 0, h2c0 = 0, c2
0 = 0, c0d0 = 0,

c0e0 = 0, c0g = 0, c0α = h2
0g, c0β = 0, h2

0d0 = h2
2w1,

h1d0 = h2
0β, h2d0 = h0e0, d2

0 = w1g, d0g = e2
0,

h0αd0 = h2βw1, α2d0 = β2w1, βd0 = αe0, h1e0 =
h2

2α, h2e0 = h0g, βe0 = αg, h1g = h2
2β, h2g = 0,

e0g = αγ, g2 = βγ, h1α = 0, h1β = 0, h2α = h0β,
h0β

2 = 0, h2β
2 = 0, α4 = h4

0w2 + g2w1, h0γ =
0, h2

1γ = h2α
2, h2γ = 0, c0γ = h1δ, d0γ = α2β,

e0γ = αβ2, gγ = β3, γ2 = h2
1w2 + β2g, h0δ = h0αg,

h2
1δ = h0d0g, h2δ = 0, c0δ = 0, d0δ = 0, e0δ = 0,

gδ = 0, αδ = 0, βδ = 0 γδ = h1c0w2, δ2 = 0.

The charts on the previous page only go until half
the periodicity. Therefore, we have also included
in the picture of the E∞ page the most important
differential in dimensions ≥ 96.

At the prime 3, the map from Atmf
3 to the

Steenrod algebra is no longer injective. Indeed,

the algebra Atmf
3 is 24 dimensional, while its

image in the Steenrod algebra is the 12 dmensional
subalgerba generated by β and P1. Naming its
generators by their image in A3, the following

relations define Atmf
3 :

β2 = 0, (P1)3 = 0,
β P1β P1 + P1β P1β = β (P1)2β.
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Note that the relation β(P1)2 + P1β P1 + (P1)2β = 0 holds in A3, but not in Atmf
3 .

The Adams spectral sequence ExtAtmf
3

(F3, F3) ⇒ π∗(tmf )ˆ3.

At primes p > 3, the algebra Atmf
p is an exterior algebra on generators in degrees 1, 9, and 13.

The ring ExtAtmf
p

(Fp, Fp) a polynomial algebra on classes in bidegrees (0, 1), (8, 1), and (12, 1) and

the Adams spectal sequence for tmf collapses.

The Adams spectral sequence for tmf at a prime p > 3.

It is interesting to note that regardless of the prime, the algebra Atmf
p has its top dimensional

class in degree 23. Below, we picture the algebras Atmf
p for the primes 2 and 3:

1

Sq1

Sq2

Sq3 Sq4

Sq5
Sq6

Sq7

•1

• P1

•

•

•

•

•

•

•β

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

−1

−1
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