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Preface 

We dedicate this book to the memory of J. Frank Adams. His clear 
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sources. Moreover, a number of people have assisted in our work by pro
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we extend our hearty thanks in particular to P. Corazza, K. Edwards, 
J. Greenlees, G. Janelidze, G. Lewis, and S. Schanuel. 

Our work on the book has been supported by the Netherlands Sci
ence Foundation (NWO) and by the Department of Mathematics at the 
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visits to the University of Heidelberg were encouraged by A. Dold and D. 
Puppe. We gratefully note that, from the beginning of our joint project 
in May of 1988, Peter May has made effective arrangements for many 
visits by I.M. to Chicago. We are likewise grateful to M.C. Pedicchio, 
who arranged for our joint visit in 1990 to The University of Trieste, 
where we wrote Chapter VIII. 

Our special thanks go to Walter Carlip, who typed up the entire 
manuscript with verve and understanding, and to Springer-Verlag for 
the smooth production of the resulting book. 

Saunders Mac Lane, Ieke Moerdijk 
Chicago and Utrecht, June 1991 
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Prologue 

A startling aspect of topos theory is that it unifies two seemingly 
wholly distinct mathematical subjects: on the one hand, topology and 
algebraic geometry, and on the other hand, logic and set theory. Indeed, 
a topos can be considered both as a "generalized space" and as a "gen
eralized universe of sets". These different aspects arose independently 
around 1963: with A. Grothendieck in his reformulation of sheaf theory 
for algebraic geometry, with F. W. Lawvere in his search for an axioma
tization of the category of sets and that of "variable" sets, and with Paul 
Cohen in the use of forcing to construct new models of Zermelo-Frrenkel 
set theory. 

The study of cohomology for generalized spaces led Grothendieck 
to define his notion of a topos. The cohomology was to be one with 
variable coefficients-for example, varying under the action of the fun
damental group, as in N. E. Steenrod's work in algebraic topology, or, 
more generally, varying in a sheaf. The notion of a sheaf has its origins 
in the analytic continuation of functions, as initiated in the 19th cen
tury and then formulated rigorously in H. Weyl's famous book on the 
"idea" of the Riemann surface. For several complex variables the study 
of domains of holomorphy and of the Cousin problems gradually led 
H. Cartan and K. Oka in the 1940's to study ideals on a domain. They 
were in effect sheaves; thus Cartan in 1944 spoke of "coherent systems 
of punctual ideals", while in 1949 Oka discussed "ideals with indeter
minate domain". Then shortly after World War II, J. Leray published 
the first general and explicit definition of a sheaf on a space, described 
in terms of the closed sets of that space. H. Cartan, building on the 
ideas of Leray, rephrased the definition of sheaves in terms of open sets 
in his seminars of 1948-49 and 1950-51; in the course of these seminars, 
Lazard introduced the equivalent definition of a sheaf on a space X as 
an etale map into X. The subtle equivalence between these two notions 
is a central motivation of topos theory. 

Roughly speaking, a sheaf A of abelian groups on a topological space 
X is a family of abelian groups Ax, parametrized by the points x E 
X in a suitably "continuous" way. This means in particular that the 
disjoint union U Ax of all these groups is a space, so topologized that 
the projection of this space into X (sending each group Ax to the point 
x) is continuous and also etale, in the sense that the topology on the 
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2 Prologue 

disjoint union is "horizontal" to match the topology of X, while the 
algebra (the abelian group structure of the various Ax) is vertical, along 
each fiber Ax. For each open set U ~ X one can then consider the 
"sections" s over U of the sheaf A: each section is a function which 
selects-again in a suitably continuous way-for each point x E U an 
element s(x) in the corresponding abelian group Ax. Thus, given a 
smaller open set V ~ U, each section 8 over U can be restricted to the 
smaller V. And conversely, the whole section s over U can be recovered 
by collating the restrictions of 8 to each of the smaller open sets Vi in 
some covering U = U Vi. For example, two sections s over V and 8' 

over V' yield a new section s U 8' over V U V', provided 8 coincides with 
8' on the overlap V n V'. Then the sheaf A can be described wholly 
in terms of all these sections s for all open sets U, together with these 
operations of restriction and collation. With this development of the 
notion of sheaf it became possible to define a corresponding cohomology 
of a topological space with sheaf coefficients. 

Then J. P. Serre and others realized that such sheaves could be used 
not only in topology but also in algebraic geometry, and that the con
struction of a sheaf on a space X could proceed from sections s defined 
on objects U which were not necessarily subsets U ~ X, but simply 
mappings U -+ X from some other space U into X. Thus, ideas from 
category theory entered, even though the tradition of Bourbaki pro
scribed the use of such terms. They led Grothendieck to define sheaves 
in a general context, replacing the partially ordered collection of open 
subsets of a space by objects of a category C in which suitable families 
of maps Ui -+ X (for i E J) form "covers" of objects X in C. Then for 
such a "Grothendieck topology" a sheaf became something-indeed be
came a functor-which could be suitably collated over each such cover. 
With this general notion of sheaf, various cohomologies could be for
mulated in a long range attack on the Weil conjectures about solutions 
of polynomial equations. In the early sixties, these remarkably general 
ideas were rapidly developed by A. Grothendieck and his collaborators
J. L. Verdier, M. Artin, M. Giraud, M. Hakim, L. Illusie, and others. 
The results, initially recorded in a semi-secret document, SGA IV, later 
appeared as an expanded "SGA IV" in three volumes of the Springer 
Lecture Notes, for a total of 1623 pages. They were widely influential on 
the whole structure of algebraic geometry and in particular eventually 
led to the solution of the Weyl conjectures by P. Deligne in 1974. 

For Grothendieck, topology became the study of (the cohomology 
of) sheaves, and the sheaves "sited" on a given Grothendieck topology 
formed a topos-subsequently called a Grothendieck topos. Since the 
very notion of sheaf is thus central to topos theory, Chapter II will de
velop properties of sheaves on a topological space, so as to introduce 
the intuition of sheaves, both in terms of fibers pasted together and in 
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terms of sections which can be restricted and collated. The equivalence 
between these two notions will be discussed, as well as the way in which 
a continuous map between spac~s leads to a geometric morphism-a 
suitable pair of adjoint functors between the sheaf categories. Chap
ter III introduces the more general notion of coverings in a category (a 
Grothendieck topology), the resulting "sites", as well as the topos formed 
as the category of all the sheaves of sets on such a site. Furthermore, 
it will be explained how any functor on a site can be transformed, in 
two steps, into a sheaf; this process of "sheafification" provides another 
basic example of a pair of adjoint functors. 

Thus, categories (from 1945) and adjoint functors between them, as 
revealed by D. M. Kan in 1957, form a language indispensable for the 
organization and understanding of our subject. Our categorical prelim
inaries (before Chapter I) may serve to remind the reader of such indis
pensable notions as "pullback", "adjoint functor", etc., while Chapter I 
will inter alia introduce a ubiquitous adjunction which will later provide 
a remarkable wealth of tensor products (Chapter VII). 

Categories, initially a convenient way of formulating exact sequences, 
diagram chasing, and axiomatic homology for topology, acquired inde
pendent life in the work of Ehresmann and his students in France, and 
in the United States in the work of Kan and Mac Lane, and in a group 
around Eilenberg at Columbia, which included in particular Barr, Freyd, 
Gray, Lawvere, Linton, and Tierney. Then in 1963 Lawvere embarked 
on the daring project of a purely categorical foundation of all mathe
matics, beginning with an appropriate axiomatization of the category 
of sets, thus replacing set membership by the composition of functions. 
When Lawvere heard of the properties of Grothendieck topoi, he soon 
observed that such a topos admits basic operations of set theory such 
as the formation of sets Y x of functions (all functions from X to Y) 
and of power sets P(X) (all subsets of X). At about the same time 
M. Tierney saw that Grothendieck's work could lead to an axiomatic 
study of sheaves. Subsequently, Lawvere and Tierney, working together 
at Dalhousie University, discovered an effective axiomatization of cat
egories of sheaves of sets (and, in particular, of the category of sets) 
via an appropriate formulation of set-theoretic properties. Thus they 
defined in an elementary way, free of all set-theoretic assumptions, the 
notion of an "elementary topos". The early definition underwent several 
changes and modifications to yield a final axiomatization of a beautiful 
and amazing simplicity: an elementary topos is a category with finite 
limits, function objects yX (defined as adjoints) for any two objects X 
and Y, and a power object P(X) for each object X; these are required to 
satisfy some simple basic axioms, much like the first-order properties of 
ordinary function sets and power sets in naive set theory. Chapter I will 
begin our exposition by exhibiting the construction of these function 
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objects and power objects in several concrete examples of elementary 
topoi~notably in categories of set-valued functors (presheaves). 

Every Grothendieck topos is an elementary topos, but not con
versely: the axiomatization by Lawvere and Tierney is both elementary 
(first-order logic, with no reference to set theory) and more inclusive 
than Grothendieck's. Nonetheless, many of the basic properties of sets 
and functions, and of sheaf categories, can be developed on the basis 
of the Lawvere-Tierney axioms, as shown in Chapter IV. Furthermore, 
Grothendieck's definition of topology in terms of coverings can be refor
mulated for any elementary topos in terms of "coverings" of subobjects, 
giving rise to a theory of sheaves and sheafification relative to a top os, 
as described in detail (among other things) in Chapter V. 

Lawvere's basic idea, as noted above, was that a topos is a "uni
verse of sets". In Chapter VI, we will take up this idea and compare 
it with some of the developments in set theory. Our first example is 
a topos-theoretic presentation of Cohen's work on the independence of 
the Continuum Hypothesis. The Continuum Hypothesis goes back to 
G. Cantor and can be formulated thus: any infinite subset B ~ R of 
the real line has either the same cardinality as the real line itself, or is 
denumerable (Le., has the cardinality of the set N of natural numbers). 
Godel had already shown in 1938 that the Continuum Hypothesis does 
not contradict the usual (Zermelo-Frrenkel) axioms of set theory, but 
for a long time it was unclear whether or not the Continuum Hypoth
esis follows from these Zermelo-Frrenkel axioms. In 1963, Paul Cohen 
showed that this was not the case; his method was what is now called 
"Cohen forcing". 

Since the cardinality of the set R of reals is the same as that of the 
powerset P(N) of the set of natural numbers, Cohen's problem can be 
phrased as follows: find a set B and injective functions 

N>----t B>----t P(N) (1) 

such that there exists no surjection N --» B, and no surjection B --» P(N); 
thus the cardinality of the set B lies strictly between the cardinality of 
N and that of P(N). To do this, Cohen considered a "universe" of sets 
(a model of set theory) and then expanded this universe by "forcing" 
an altogether new set B of subsets of N into this expanded universe, 
so that in this new universe the cardinality of B is strictly between the 
cardinalities of Nand P(N). This technique of expanding the "universe" 
by forcing was later rephrased by R. Solovay and D. S. Scott in terms of 
Boolean-valued models, where the truth predicate takes values not just 
"true" and "false", but all values in an arbitrary Boolean algebra. 

Shortly after this, Lawvere and Tierney made the remarkable dis
covery that Cohen's forcing technique could be explained in terms of 
topoi: indeed, using exactly Cohen's constructions, one obtains a topos 
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(a category of sheaves), in which there exists a sheaf B which lies strictly 
between the sheaf of natural numbers N and its power sheaf P(N), as 
in (1). Chapter VI will extensively discuss this sheaf-theoretic version 
of Cohen's proof. 

Cohen also used similar methods to show that the Axiom of Choice 
cannot be derived from the usual Zermelo-Frrenkel axioms of set theory. 
More recently, P. Freyd gave an elegant and noticeably simpler sheaf
theoretic proof of this fact. Freyd's construction will be presented in 
Chapter VI. 

Around the same time as Cohen, but evidently independently, the 
logician S. Kripke discovered semantical interpretations, first of modal 
logic and shortly after of intuitionistic logic, which bore a striking sim
ilarity to some aspects of Cohen's forcing technique. Sheaf theory also 
explains the relation between Cohen's forcing and Kripke's models for 
intuitionistic logic. 

Intuitionistic logic, and the mathematics based on it, originated with 
Brouwer's work on the foundations of mathematics, at the beginning of 
this century. He defined real numbers by choice sequences and insisted 
that all proofs be constructive. This meant that he did not allow proof 
by contradiction and hence that he excluded the classical tertium non 
datur (for all p, either p, or not p). His approach was not formal or ax
iomatic, but subsequently Heyting and others introduced formal systems 
of intuitionistic logic, weaker than classical logic. This may suggest that 
intuitionistic mathematics is a proper part of ordinary mathematics, but 
this is not so: for example, in intuitionistic mathematics a suitable de
scription of real numbers R leads to the result that all functions R --> R 
are continuous, as was already shown by Brouwer. 

In a topological space the complement of an open set U is closed but 
not usually open, so among the open sets the "negation" of U should be 
the interior of its complement. This has the consequence that the double 
negation of U is not necessarily equal to U. Thus, as observed first by 
Stone and Tarski, the algebra of open sets is not Boolean, but instead 
follows the rules of the intuitionistic propositional calculus. Since these 
rules were first formulated explicitly by A. Heyting, such an algebra is 
called a Heyting algebra. The "truth values" of any topos constitute 
such a Heyting algebra. The basic properties of these Heyting algebras 
are formulated in Chapter I. 

From this point of view it is not surprising that subobjects in a 
category of sheaves have a negation operator which belongs to a Heyting 
algebra. Moreover, there are quantifier operations on sheaves, defined 
by adjunction, which have exactly the properties of the corresponding 
quantifiers in intuitionistic logic. This leads to the remarkable result, 
foreshadowed by the observation of Stone and Tarski as well as by Scott's 
topological models, that the "intrinsic" logic of a topos is in general 
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intuitionistic. However, there can be particular sheaf categories, such as 
those constructed by Cohen and by Freyd, where the intuitionistic logic 
becomes ordinary (classical) logic. 

Kripke's semantics for intuitionistic logic can also be viewed as a de
scription of truth for the language of a suitable topos. And as a further 
illustration of the way in which topos theory incorporates Brouwer's 
ideas we will present at the end of Chapter VI a particular topos to
gether with its real numbers R in which all functions R -+ R are indeed 
continuous. 

Together with the notion of a topos, there is the notion of a map-
or a "geometric morphism" -between two topoi, defined as a pair of 
adjoint functors having certain additional exactness properties. 

A more familiar example of a pair of adjoint functors as a map comes 
from ring theory. If Rand 8 are commutative rings, consider a left 
R- and right 8-module M. For each left R-module B, the module M 
then yields by "homming" a left 8-module HomR(M, B). In the other 
direction, each left 8-module A yields by tensor product a left R-module 
M 08 A. The "tensor product" functor 

M 08 - : (8 - Mod) -+ (R - Mod) 

between module categories is actually a left adjoint to the Hom-functor 

HomR(M, - ): (R - Mod) -+ (8 - Mod) 

because of the familiar isomorphism (left adjoint on the left) 

between the corresponding Hom-sets. Moreover, when M is flat as an 
8-module (for example, when the ring 8 is a field) the functor M 08 -
preserves kernels and hence exact sequences, so is an "exact" functor. 

For topoi, the definition of geometric morphisms is modeled on the 
case of a continuous map between topological spaces. Indeed, such a 
map j: Y -+ X induces operations in both directions on sheaves. Thus, 
if we regard a sheaf A on the codomain space X as a family Ax of sets 
parametrized by the points x of X, then j induces a family Af(y) of sets 
parametrized by the points y E Y. The resulting sheaf on Y is called 
the "inverse image" of A and denoted by 1* A. On the other hand, a 
sheaf B on Y, regarded as a family of sections s over open sets V of Y, 
yields a new family of sections over open sets U of X by composition 
with j: the sections over such a U are exactly the composites so j where 
s is a section of B over the open set j-l(U) ~ Y. These new sections 
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over open sets in X form a sheaf f*B over the space X called the direct 
image of B. These two operations of inverse and direct image constitute 
a pair of adjoint functors, for which the inverse image f* is left adjoint 
to the direct image f*. Moreover, the left adjoint f* is (left) exact, in 
the sense that it preserves finite limits. 

By definition, a "geometric morphism" f: F ----> E between any two 
topoi E and F is such a pair of adjoint functors 

f*: E ----> F, 

where the left adjoint is required to be left exact. Such geometric mor
phisms arise not only from continuous maps between topological spaces, 
but also in many seemingly quite different contexts, as will be deuon
strated in Chapter VII. This chapter will also show that any geometric 
morphism between (Grothendieck) topoi can be viewed as a Hom-tensor 
adjunction, very similar to the familiar such adjunction for modules as 
just described. For topoi, exactness of the left adjoint (the tensor prod
uct) will again be analyzed in terms of a notion of "flatness". 

In topology, continuous maps lead naturally to the construction of 
classifying spaces. For example, there is a classifying space B for (com
plex) vector bundles. This means that there is a standard ("universal") 
vector bundle E over B such that, for any space X, maps from X into 
B correspond via E to vector bundles on X: the standard bundle E 
over B "pulls back" along any map X ----> B to produce a bundle over 
X, and every vector bundle over X is such a pullback of the standard 
bundle E. There is a similar "classifying space" for cohomology: For 
any integer n ::::: 0 and any abelian group 7r the Eilenberg-Mac Lane 
space K (7r, n) classifies cohomology, in the sense that for any space X 
(homotopy classes of) maps from X into K (7r, n) correspond to elements 
in the (singular) cohomology group Hn(x, 7r). 

In a similar way, many sorts of mathematical structures can be "clas
sified" by a suitable topos. For example, since a topos has products of 
objects, one can readily describe ring-objects in a topos. There is a spe
cial topos R, with a "universal" ring-object R in R, which is a classifying 
topos for ring-objects in topoi. This means that geometric morphisms 
f: E ----> R correspond exactly to ring-objects S in E: the inverse image 
of such a morphism will carry the universal ring R in R to a ring f* (R) 
in C, and any ring-object S in f is of the form f*(R) for a suitable 
geometric morphism f. 

As an introduction to the properties of "classifying topoi", we will 
present this example of the classifying topos R in Chapter VIII. In the 
discussion of this and other examples, the construction of the required 
geometric morphisms makes use of the general Hom-tensor adjunction of 
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Chapter VII. This adjunction makes another appearance in Chapter X, 
which provides a general existence theorem for classifying topoi. It is 
shown that for any mathematical structure, which can be described by 
"geometric" axioms in a suitable language, there is a classifying topos. 
The proof makes use of models of the language in various topoi, and 
relates to earlier uses (in Chapter VI) of formal languages in the context 
of to poi. 

A topos is, in a suitable sense, a generalized space, so should have 
(generalized!) points. Indeed, at a given point x of an ordinary topo
logical space X, one can erect each set A as a sort of "skyscraper" sheaf 
Ax on X concentrated around the point x. The resulting mapping from 
the category of sets into that of sheaves on X is, in fact, the direct im
age of a geometric morphism Sets --+ Sh(X). But an arbitrary topos 
E may not have enough "points" Sets --+ E in this sense. In order to 
develop an adequate comparison between topoi and spaces, it is useful 
to alter the definition of a space by describing a space not in terms of its 
points, but in terms of its open sets. The objects so defined by a lattice 
of open sets are called locales. Since sheaves can be described in terms 
of coverings by open sets, one can construct a topos Sh(X) consisting 
of all the sheaves of sets on such a locale X. Moreover, any "continu
ous" map Y --+ X between locales gives rise to a geometric morphism 
Sh(Y) --+ Sh(X) between such sheaf topoi. 

These locales are introduced in Chapter IX. There we show that 
every (Grothendieck) topos E has an underlying locale Loc(E). More
over, every topos is a "quotient" of the sheaf topos for some locale. 
More explicitly, from any top os E one can construct, by a method of 
Diaconescu, first a locale X, then the topos Sh(X) of sheaves on that 
locale, and finally a geometric morphism Sh(X) --+ E. This morphism 
is both a surjection (like a map onto a space) and open (in a suitable 
sense). Thus, E is indeed a quotient of its "Diaconescu cover" X. 

Those topoi which are "finitely generated" in an appropriate sense 
are said to be coherent. Deligne's theorem in Chapter IX states that each 
coherent topos E has "enough" points. More explicitly, the underlying 
locale Loc(£) is an ordinary topological space, and the Diaconescu cover 
of E can be replaced by an ordinary topological space X which "covers" 
E by way of a surjection from the topos Sh(X) of sheaves onto the 
coherent topos E. 
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At the end of the book, the reader will find an Appendix which 
discusses how various different sites can represent the same topos, and 
an Epilogue which provides some suggestions for further reading on the 
subject, beyond the "First Introduction" which this book is meant to 
provide. 

A reference to III.6.(11) is to equation (11) in section 6 of Chapter 
III, and similarly for theorems. 

One major correction has been made in this second printing. Dr. E. 
Vitale discovered that our proof of Theorem VII.9.1 was incomplete. We 
have provided a different proof, hopefully correct. 



Categorical Preliminaries 

Before embarking on the actual topic of this book, we wish to review 
briefly the basic notions that will be used from category theory. Many 
readers will be familiar with these preliminaries; they should immedi
ately start with Chapter I, referring back to these preliminaries whenever 
necessary. On the other hand, these preliminaries do not present suf
ficiently many examples and are by no means enough to constitute a 
proper introduction to category theory, and the reader who lacks suffi
cient categorical background is advised to first read some of the relevant 
parts of Mac Lane's [CWM-Categories for the Working Mathe
matician, 1971] (or some other such text), perhaps using the following 
pages as a guideline. 

A category C consists of a collection of objects (often denoted by 
capital letters, A, B, C, ... , X, ... ), a collection of morphisms (or maps 
or arrows) (f, g, ... ), and four operations; two of these operations as
sociate with each morphism j of C its domain dom(f) or do(f) and 
its codomain cod(f) or d l (f), respectively, both of which are objects of 

f 
C. One writes j: C ---+ D or C --+ D to indicate that j is a morphism 
of C with domain C and codomain D, and one says that j is a mor
phism jrom C to D. The other two operations are an operation which 
associates with each object C of C a morphism Ie (or ide) of C called 
the identity morphism of C and an operation of composition which as
sociates to any pair (f, g) of morphisms of C such that do (f) = d I (g) 
another morphism jog, their composite. These operations are required 
to satisfy the following axioms: 

(i) do(1c) = C = dl (le), 
(ii) do(f ° g) = do(g), dl(f ° g) = dl(f), 

(iii) IDoj=j, jole=j, 
(iv) (fog)oh=jo(goh). 

In (ii)-(iv), we assume that the compositions make sense; thus, (ii) is 
required to hold for any pair of arrows j and 9 with do(f) = dl(g), 
and (iii) is required to hold for any two objects C and D of C and any 
morphism j from C to D, etc. 

10 
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For example, there is a category Sets whose objects are sets and 
whose morphisms are functions with the usual composition. Similarly, 
topological spaces and continuous maps between them form a category, 
as do groups and homomorphisms, or vector spaces (over R say) and 
linear maps. Any partially ordered set (P,::;) gives rise to a category, 
with the elements of P as objects, and with precisely one morphism from 
p to q iff p ::; q; in other words, the morphisms are pairs (p, q) such that 
p ::; q, and the domain and codomain operations on a pair are given by 
the first and second projections. Thus, the composition operation for P 
is uniquely determined by the transitivity of the order relation ::;. We 
mention in particular the categories 0,1,2, ... coming from the ordered 
sets 0, {O}, {O, 1}, ... of natural numbers with their usual ordering. 

An example of a different nature is obtained from a group G. Such a 
group can be regarded as a category with only one object, call it *, and 
with the elements of the group G as morphisms, where the multiplication 
of the group is used as the composition operation of the corresponding 
category. 

In an arbitrary category C, a morphism f: C -- D in C is called an 
isomorphism if there exists a morphism g: D -- C such that fog = 1D 
and go f = 1e. (This defines 9 uniquely, and 9 is called the inverse of 
f.) If such a morphism f exists, one says that C is isomorphic to D, 
and one writes f: C ~ D and C ~ D. The example of a category coming 
from a group G, as mentioned above, shows that a group is the same 
thing as a category with only one object in which each morphism is an 
isomorphism. 

A morphism f: C -- D is called an epi{morphism) if for any object 
E and any two parallel morphisms g,h: D::4E in C, gf = hf implies 
9 = h; one writes f: C --» D to indicate that f is an epimorphism. 
Dually, f: C -- D is called a mono{morphism) if for any object Band 
any two parallel morphisms g, h: B::4 C in C, fg = fh implies 9 = h; 
in this case, one writes f: C >-+ D. Two monomorphisms f: A>-+ D and 
g: B >-+ D with a common codomain D are called equivalent if there 
exists an isomorphism h: A~B with gh = f. A subobject of D is an 
equivalence class of monomorphisms into D. The collection Subc(D) of 
subobjects of D carries a natural partial order defined by [f] ::; [g] iff 
there is an h: A -- B such that f = gh, where [f] and [g] are the classes 
of f: A >-+ D and g: B >-+ D. 

For Sets (and other familiar categories) this definition matches the 
usual notion of subset (or subspace, etc.). 

If C is a category, we sometimes write Co for its collection of objects 
and C 1 for its collection of morphisms. For two objects C and D, the 
collection of morphisms with domain C and codomain D is denoted by 
one of the following three symbols, 

Homc(C,D), Hom(C,D), C(C, D). 
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In general, we shall not be very explicit about set-theoretical founda
tions, and we shall tacitly assume we are working in some fixed universe 
U of sets. Members of U are then called small sets, whereas a collection 
of members of U which does not itself belong to U will sometimes be 
referred to as a large set. Given such an ambient universe U, a cate
gory C is locally small if for any two objects C and D of C the hom-set 
Home (C, D) is a small set, while C is called small if both Co and C 1 are 
small sets. Of the categories mentioned above, the categories of small 
sets, of small topological spaces, of small vector spaces, and of small 
groups are all locally small but not small. The categories coming from a 
small poset (P, :::;) or a small group G in the universe U are both small. 

Given a category C, one can form a new category COP, called the 
opposite or dual category of C, by taking the same objects but reversing 
the direction of all the morphisms and the order of all compositions. In 
other words, an arrow C --+ D in cop is the same thing as an arrow 
D --+ C in C (see [CWM, p. 33]). 

Given a category C and an object C of C, one can construct the 
comma category or the slice category C/C (read: C over C): objects 
of C / Care morphisms of C with codomain C, and morphisms in C / C 
from one such object f: D --+ C to another g: E --+ C are commutative 
triangles in C 

D _---:.h'----+) E 

\1 
C 

i.e., gh = f. (In [CWM], the notation C 1 C is used instead of C/C; 
cf. [CWM, p. 46].) The composition in C/C is defined from the com
position in C, in the obvious way (paste triangles side by side). 

Categories are compared by using functors. Given two categories 
C and D, a functor from C to D is an operation F which assigns to 
each object C of C an object F(C) of D, and to each morphism f of 
C a morphism F(f) of D, in such a way that F respects the domain 
and codomain as well as the identities and the composition: F(do(f)) = 
do(F(f)), F(d1(f)) = d1(F(f)), F(lc) = IF(c), and also F(f 0 g) = 
F(f) 0 F(g), whenever this makes sense. One writes F: C --+ D or 

C ~ D. For example, there is a functor from the category of topological 
spaces and continuous maps to the category of sets and functions, given 
by sending a space to the "underlying" set of its points. If C is an 
arbitrary category and C is an object of C, then the domain operation 
gives a functor 

F: C/C --+ C 
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sending an object f: D-+ C of C/C to Ff =do(!) and defined in the 
obvious way on morphisms. 

For a category C, there is an identity functor ide: C-+ C, and for 
two functors F: C -+ n and G: n -+ E, one can form a new functor 
G oF: C -+ E by composition. (Ignoring set-theoretic diffi.culties, there 
is thus a "category of categories" . ) 

Let F and G be two functors from a category C to a category n. 
A natural transformation a from F to G, written a: F -+ G, is an 
operation associating with each object C of C a morphism ac: FC -+ 
GC of n, in such a way that, for any morphism f: C' -+ C in C, the 
diagram 

FC' -a-'0"-1-+ GC' 

F(f) 1 lG{f) 
FC ac GC 

commutes, i.e., G(f) o ac' =ac o F(f). The morphism ac is called 
the component of a at C. If every component of a is an isomorphism, 
a is said to be a natural isomorphism. H a: F -+ G and (3: G -+ H are 
two natural transformations between functors C -+ n, one can define a 
composite natural transformation (3 o a by setting 

((3 o a)c = f3a(c) o ac. 

For fixed categories C and n, this yields a new category ne: the objects 
of ne are functors from C to n, while the morphisms of ne are natural 
transformations between such functors. Categories so constructed are 
called functor categories. 

For categories C and n, a functor F: cap -+ n is also called a 
contravariant functor from C ton. In contrast, ordinary functors from 
C to n are sometimes called covariant. Thus, C' t-+ Home(C', C) 
for fixed C yields a contravariant functor from C to Sets, while C t-+ 

Home ( C', C) for fixed C' is the covariant Hom-functor. 
A functor F: C -+ n is called full (respectively faithful) if for any 

two objects C and C' of C, the operation 

Home(C',C)-+ Homo(FC',FC); f t-+ F(f); 

induced by Fis surjective (respectively injective). A functor F: C-+ n 
is called an equivalence of categories if F is full and faithful, and if, 
moreover, any object of n is isomorphic to an object in the image of F. 
For example, if F: C -+ n is a functor such that there exists a functor 
G: n-+ C andnaturalisomorphismsa: FoG~ido and(3: GoF~ide, 
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then F is an equivalence (and G is sometimes called a quasi-inverse 
for F). Conversely, using a sufficiently strong axiom of choice, every 
equivalence F has a quasi-inverse; see [CWM, pp. 91-92]. 

Next, we recall several "universal" constructions. For example, in 
the category Sets of (small) sets and functions between them, there is 
the construction of the cartesian product A x B of two sets A and B. It 
comes together with two projections 71'1: A x B --+ A and 71'2: A x B --+ B. 
Usually, A x B is constructed as the set of all pairs (a, b) with a E A 
and b E B. However, up to isomorphism, the product A x B can also 
be described purely in terms of objects and morphisms in the category 
of sets, as follows. We say that an object X equipped with morphisms 
71'1 : X --+ A and 71'2: X --+ B is a product of A and B if for any other 
object Y and any two maps f: Y --+ A and g: Y --+ B there is a unique 
map h: Y --+ X such that 71'1 0 h = f and 71'2 0 h = g. [This unique map 
is then denoted by (f, g): Y --+ X or sometimes by (f, g) with pointed 
brackets.] This definition makes sense in any category and determines 
the object X (if it exists) to within isomorphism. It is common to denote 
a product of two objects A and B in an arbitrary category, if it exists, 
by A x B. Iteration then yields products of three or more factors. In 
an arbitrary category, the product of two objects mayor may not exist; 
for instance, in the category of topological spaces, the product of two 
spaces always exists, and it may be constructed as the cartesian product 
of the underlying sets, equipped with the familiar product topology. A 
product of an I-indexed family Ai is written IIiAi' For a poset (P, ::;), 
viewed as a category in the way explained above, the product of two 
objects p and q is their infimum (greatest lower bound), which mayor 
may not exist. 

Other special constructions of sets may also be characterized purely 
in categorical terms, i.e., in terms of objects and morphisms. For ex
ample, the singleton set {*} is the set S, unique up to isomorphism, for 
which there is exactly one morphism A --+ S from any other set A into 
S. In an arbitrary category C, an object C with the property that for 
any other object D of C there is one and only one morphism from D to 
C is called a terminal object of C. If it exists, it is, like {*}, unique up 
to isomorphism; it is often denoted by 1 or by 1e if necessary. 

A construction which plays a central role in this book is that of a 
pullback, or fibered product. Given two functions f: B --+ A and g: C --+ 

A between sets, one may construct their fibered product as the set 

B XA C = {(b, c) E B x C I f(b) = g(c)}. 

Thus, B x A C is a subset of the product, and, therefore, comes equipped 
with two projections 71'1: B XA C --+ Band 71'2 : B XA C --+ C which fit 
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into a commutative diagram 

B --,,----+) A; 
f 

15 

(1) 

i.e., f7rl = g7r2. This diagram has the property that given any other set 
X and functions {3: X ----t Band,: X ----t C such that f {3 = g" there is a 
unique function 8: X ----t B XA C with 7r18 = (3 and 7r28 =, [namely, the 
function 8(x) = ({3(x),,(x))]. This property determines the set B XA C 
up to isomorphism. One says that (1) is the "universal" commutative 
square on the data f and g. If A = {*}, B XA C is the product B x C. 

In a general category C, one says that a commutative square 

B --,---+) A 
f 

(2) 

is a pullback (square), or a fibered product, if it has the property just 
described for sets: given any object X of C and morphisms {3: X ----t B 
and ,: X ----t C with f{3 = g" there is a unique 8: X ----t P such that 
p8 = (3 and q8 =,. [This unique map 8 

B --:---+) A 
f 

is usually denoted by ({3,,).] Given f: B ----t A and g: C ----t A, the 
pullback P with its projections p and q is uniquely determined up to 
isomorphism (if it exists at all), and one usually writes B XA C for this 
pullback. If, for given f and g, the pullback (2) exists, one also says 
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that the arrow p is the pullback of 9 along f (and symmetrically that 
q is the pullback of f along g). Notice that p is a monomorphism if 9 
is. One says that monomorphisms are preserved by pullback along an 
arbitrary morphism. Incidentally, the notion of monomorphism can be 
described in terms of pullbacks. A morphism f: B ----+ A in a category C 
is a monomorphism iff the pullback of f along itself is an isomorphism, 
iff the square 

is a pullback. 

B ---:--+1 A 
f 

(3) 

There is an important "pasting-lemma" for pullback squares 
([CWM, p. 72]). Given a commutative diagram of the form 

Q ---tl P ---tl D 

111 (4) 

C ---+1 B ---+1 A 

in an arbitrary category C, the outer rectangle is a pullback if both inner 
squares are pullbacks; and conversely, if the outer rectangle as well as 
the right-hand square are pullbacks, then so is the left-hand square. 

Equalizers also deserve mention. For two parallel arrows f: A ----+ B 
and g: A ----+ B in a category C, the equalizer of f and 9 is a morphism 
e: E ----+ A such that fe = ge and which is universal with this property; 
that is, given any other morphism u: X ----+ A in C such that fu = gu, 
there is a unique v: X ----+ E such that ev = u: 

f 
E e IA====tjB vi/ 9 

X. 

Equalizers need not always exist. However, in the category of sets 
the equalizer of any pair of functions f, g: A =l B exists, and can be 
constructed as the set 

E = {a E A I f(a) = g(a) } 

where e: E ----+ A is set inclusion. 
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To each of the categorical notions of product, terminal object, pull
back, and equalizer, there is a corresponding dual notion, namely, that 
of a coproduct, an initial object, a pushout, and a coequalizer. For exam-

u v 
pIe, a diagram A -t X f- B in a category C is said to be a coproduct 
of A and B if the corresponding diagram A f- X -t B in cop is a 

u v 
product. In other words, A -t X f- B is a coproduct iff for any two 
morphisms j: A --+ Y and g: B --+ Y into another object Y, there is a 
unique morphism h: X --+ Y with hu = j and hv = g. The coproduct 
of A and B, if it exists, is unique up to isomorphism and is denoted by 

u v 
A + B or A II B. The maps A -t A II Band B -t A II B are called the 
coproduct inclusions. For example, the disjoint sum (= disjoint union) 
defines a coproduct in the category of sets. A coproduct of a family Ai 
for i E I is written as IIi Ai . 

Similarly, an object C of C is an initial object of C if it is a termi
nal object in COP. An initial object of C, if it exists, is unique up to 
isomorphism and is usually denoted by O. 

f 9 
Given morphisms A -t B and A -t C in C, a diagram 

C q ) P 

is called a pushout if the corresponding diagram in cop is a pullback. 
The pushout of j and g, if it exists, is unique up to isomorphism and is 
denoted by P = B IIA C. 

c 
Finally, a morphism B -t C in C is said to be a coequalizer of 

a given parallel pair of morphisms j, g: A:::::! B iff the corresponding 
diagram C --+ B:::::! A in cop is an equalizer. 

We now come to the central notion of adjoint functor, discussed at 
length in Chapter IV of [CWM]. Consider two categories A and X and 
two functors between them in opposite directions, say 

F: X --+ A G: A --+ X. (5) 

One says that G is right adjoint to F (and that F is left adjoint to G, 
notation: F --I G) when for any two objects X from X and A from A 
there is a natural bijection between morphisms 

f 
X-tGA 

h 
FX -tA 

(6) 

in the sense that each morphism j, as displayed, uniquely determines 
a morphism h, and conversely. This bijection is to be natural in the 
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following sense: given any morphisms 0:: A -> A' in A and ~: X' -> 

X in X, and corresponding arrows f and h as in (6) the (inevitable) 
composites also correspond under the bijection (6): 

e f Go. 
X' ---t X ---t GA --t GA' 

Fe h a . 
FX' ~ FX ---t A ----> A' 

(7) 

If we write this bijective correspondence as 

(): Homx(X, GA) ~ HomA(FX, A), (8) 

then this naturality condition can be expressed by the equation 

(}(G(o:) 0 f o~) = 0: 0 (}(f) 0 F(~). (9) 

Examples of adjoints abound in mathematics. The reader may find a 
list of examples on pp. 85-86 of [CWMJ, and will encounter numerous 
other examples in the course of this book. 

With an adjunction as above, there are associated certain so-called 
unit and counit morphisms. Given () as in (8), and an object X in X, 
setting A = F X gives a unique map 

7] = 7]x: X -> GFX (10) 

such that ()( 7]x) = I F(X)' This map 7]x is called the unit of the ad
junction (at X). If one takes ~ = lx, A = FX, f = 7], 0: = h, and 
A' = A in (7), the bottom composite is simply h: FX -> A, and it 

1) Gh 
corresponds to the top composite X --+ GFX --+ GA. In short, 7] 

determines the adjunction, since h corresponds to G(h) 07]x under the 
correspondence (6). This means that each f determines uniquely an h 
which makes the following triangle commute: 

X 1) IGFX FX 

~ 
; ; 

(11) IGh Ih 
I I 

v 

GA A. 

One expresses this by saying that 7] = 7]x is universal among arrows from 
X to an object of the form GA. This also implies that when the functor 
G is given, the object F X is uniquely determined up to isomorphism. In 
other words, given a functor G, its left adjoint F (if it exists) is unique 
up to natural isomorphism. Also, given G and a universal arrow from 
each object X to some object of the form GA, the left adjoint must 
exist. The naturality condition (7) [or (9)] also implies that the unit 
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morphisms TJx: X --+ GF X, for varying objects X of X, constitute a 
natural transformation from the identity functor on X to the composite 
functor GF: X --+ X for e(TJx o~) = F(~) = e(GF~ 0 TJx'). 

Dual to the unit of an adjunction is the counit. In the correspondence 
(6), take X = GA and f the identity on GA. The corresponding h is 
written 

E or EA: FGA --+ A. 

This defines a natural transformation from FG to the identity functor 
on A. Its universal property is this: to every h: F X --+ A there exists a 
unique f which makes the following triangle commute: 

X 
I 

fl 
I 

GA 

FX 

Ffl ~ (12) 

FGA lAo 

In other words, E is universal among arrows from an object in the image 
of F to A. As for the unit, this implies that given F, its right adjoint G 
(if it exists) is determined uniquely up to isomorphism. 

In the diagram (12), one may take h to be the identity on A = FX. 
The corresponding map f is then the unit TJx of the adjunction, and we 
obtain a commutative triangle 

(13) 

FGF~F G 

as on the left of (13). Its dual is the right-hand triangle. Conversely, 
two natural transformations E: FG --+ id and TJ: id --+ G F which satisfy 
these two triangular identities (13) serve to makl~ F a left adjoint of G 
[CWM, pp. 80-81]. 

As an example, consider the product category C x C of a given 
category C with itself. (C x C may also be viewed as a functor category 
C2, where 2 is the category with two distinct objects 0 and 1, and 
identity morphisms only.) If the product A x B of any pair of objects 
A and B in C exists, this gives a functor x : C x C --+ C which is right 
adjoint to the diagonal functor C --+ C x C sending A to (A, A). This 
follows immediately from the definition of the product. 

Suppose products exist in C. For a fixed object A of C, one may 
consider the functor 

A x - : C --+ C. (14) 
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If this functor has a right adjoint (necessarily unique up to isomorphism), 
this adjoint is denoted by 

(15) 

In this case A is said to be an exponentiable object of the category C, 
while the value BA of (15) for an object B of C is called the exponential 
of A and B. That ( - )A is right adjoint to A x - means that for any 
objects Band C of C there is a bijective correspondence 

(16) 

natural in Band C. It follows from the various uniqueness properties 
that BA is also a (contravariant!) functor of A (at least on those A 
which are exponentiable), and that (16) is also natural in A. The counit 
of this adjunction A x ( - ) -j ( - )A is a map 

(17) 

with the property that for any map h: A x C -+ B there is a unique f: 
C -+ BA such that EO (1 x f) = h: 

AxC. 

In this special case, the counit map is called the evaluation and denoted 
by e or ev: A X BA -+ B. 

A category C is called cartesian closed if it has finite products (i.e., 
a terminal object and binary products) and if all objects of Care ex
ponentiable. For example, the category of sets is cartesian closed: the 
exponential BA of two sets A and B is simply the set of all functions 
from A to B, and the bijective correspondence (16) is the familiar pro
cess of turning a function f: A x C -+ B of two variables into a function 
of a single variable in C with values in BA. 

We now turn to a brief discussion of limits and colimits. Let C 
be a fixed category. For a small category J (the "indexing category") 
we consider the functor category C J . An object of C J is also called a 
diagram in C of type J. For example, each object C of C determines a 
constant diagram .6.J (C) which has the same value C for all j E J; this 
defines the diagonal functor 

(18) 
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A natural transformation 7r from the constant diagram ~J (C) to some 
other diagram A of C J then consists of maps /j: C ----> Aj , one for each 
"index" j in J, all such that the triangle 

u: j ----> k, (19) 

A(j) ---+) A(k), 
A(u) 

commutes for every arrow u of J. Such a natural transformation is called 
a cone f: C ----> A on the diagram A with vertex C. In particular, a cone 
7r: L ----> A with vertex L is universal to A when to every cone f: C ----> A 
there is a unique map g: C ----> L in C with 7rj 0 9 = /j, for each j of J, 
as in the commutative diagram 

C ----------~---------~L 

~ 71 
A(j) 

A(u) 1 
A(k). 

u: j ----> k. 

This universal cone 7r: L ----> A (or, less accurately, its vertex L = lim A) 
+--J 

is called the limit of the diagram A. If every diagram A in C J has a 
limit in this sense, then the diagonal functor ~J has a right adjoint 

lim: C J ----> C. 
+--J 

(20) 

Indeed the counit of this adjunction is precisely the universal cone, which 
can be viewed as a natural transformation 

For example, if J = 2 = {O,l} is the discrete category with two 
objects 0 and 1 and only identity arrows, then a diagram in C J is just 
a pair of objects of C and a limit of that diagram is just a product 
of these objects. The product is thus a special case of limit. In the 
same way, a terminal object, a pullback, or an equalizer, as discussed 
above, are all special cases of limits (when J is the empty category, or 
the category -+ • +-, or • =4., respectively, where we have indicated 
only the nonidentity morphisms). 
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The dual of the notion of limit is that of colimit. A cocone with 
vertex C on a diagram A: J --) C is a map A --) ~J (C) in the functor 
category C J . The universal co cone on A, if it exists, is called the colimit 
of the diagram A, and its vertex is denoted by lim A. If the colimit of 

----'J 
any diagram of type J in C exists, this gives a functor 

lim: C J --) C 
----'J 

which is left adjoint to the diagonal ~J: C --) C J . 

(21) 

Now suppose G: C --) D is a functor. If J is a small index category, 
G induces a functor GJ : C J --) D J of diagrams in the obvious way. If 
limits of type J exist in C and D, one obtains a square of categories and 
functors 

lim 
f-J 

DJ -----:--:----+) D. 
lim 
f-J 

(22) 

The universal property of limits implies that there is a canonical natural 
transformation 

CtJ: Go lim --) lim oGJ . (23) 
f-J f-J 

One says that G preserves limits (of type J) if CtJ is a natural isomor
phism. A basic property is that G preserves limits of any type if G 
has a left adjoint. Or briefly, right ad joints preserve limits (see [CWM, 
p. 114]). Dually, one defines preservation of colimits. The corresponding 
basic fact is that left adjoints preserve co limits. 

We conclude these preliminaries by mentioning an important fact 
about limits and colimits in functor categories, namely, that these are 
computed pointwise. More precisely, let C and D be categories and con
sider the functor category CD. If J is a small category such that limits 
of type J exist in C, then the same is true in CD, and the evaluation 
functor ( - )D : CD --) C, for any given object D of D, preserves such 
limits. In other words, for a diagram A: J --) CD of type J in CD, one 
obtains a diagram AD: J --) C for each object D of D, by setting 

Adj) = A(j)(D). 

If every such diagram AD has a limit LD = lim AD in C then these 
f-J 

limits fit together to give a functor L: D --) C, which is a limit for the 
diagram A. So for each D in D 

(lim A)(D) ~ lim AD, 
f-J f-J 

(24) 
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where the limit on the left is taken in CD and that on the right in C. 
The corresponding fact for colimits also holds, and gives an isomor

phism 
(lim A)(D) ~ lim AD 
--+J --+J 

(25) 

analogous to (24). For details, we refer the reader to [CWM, p. 112]. 



I 
Categories of Functors 

Many constructions on various mathematical objects depend not just 
on the elements of those objects but also on the morphisms between 
them. Such constructions can thus be effectively formulated in the cor
responding category of objects. A "top os" is a category in which a 
number of the most basic such constructions (product, pullback, expo
nential, characteristic function, ... ) are always possible. With these 
constructions available, many other properties can be efficiently devel
oped. Superficially quite different categories, arising in geometry, topol
ogy, algebraic geometry, group representations, and set theory, all turn 
out to satisfy the axioms defining such a topos. 

1. The Categories at Issue 

Our exposition starts by describing a number of specific categories 
which are topoi, exhibiting in each one several of the basic constructions 
required. These examples will pave the way to the formulation of the 
axioms for a topos. 

In the following list of many such categories the most important 
examples are those numbered (i), (viii), (x), and (xi): sets, functor 
categories (presheaves), sheaves, and group actions. 

Here is the list of examples of topoi: 
(i) Sets, the category of all (small) sets S, T, and functions S --+ T 

between them. 
(ii) Sets x Sets, the category of all pairs of sets, with morphisms 

pairs of functions. 
(iii) Setsn, the category of all n-tuples of sets with morphisms all 

n-tuples of functions. Here n is a fixed natural number. 
(iv) BG, or G-Sets, the category of all representations of a fixed 

group G; where a representation of G consists of a set X together with 
a right action fJ: X x G --+ X of G on X. This action is usually denoted 
simply by a dot, as in fJ(x,g) = x . g; one requires fJ to satisfy the 
identities X· 1 = x and (x . g) . h = x . (gh), for all x E X and g, 
hE G. A morphism between two such representations (X,fJ) and (Y, v) 

24 
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is a function I: X --+ Y which respects the action [in the sense that 
I (x . g) = I (x) . 9 for all x E X and 9 E G). 

(v) BM, or M -Sets, the category of all representations X x M --+ X 
of a fixed monoid M on a variable set X; as in (iv), a morphism of BM 
is a function which respects the action. 

(vi) Sets2 , the category whose objects are all functions a: X --+ X' 
from one set X to a second set X', with the evident arrows (commutative 
squares) between these objects. 

(vii) SetsN , the category whose objects are all sequences X, 

of sets Xn and functions Xn --+ X n+1 , with the evident arrowS X --+ Y. 
It has been suggested (Lawvere) that such a sequence X be considered 
as a "set through time", where each Xn is regarded as the state of the 
variable set X at the (discrete) time n. The exponent N here is the 
linearly ordered set of natural numbers, to be regarded as a category, so 
that a sequence Xn is a functor N --+ Sets. 

(viii) SetsCOP
, where C is a fixed small category and cop its op

posite. This is the usual functor category, with objects all functors 
p : cop --+ Sets and arrows P --+ pI all natural transformations 
(): P --+ pI between such functors. Recall that such a () assigns to 
each object C of C a function ()e: P(C) --+ PI(C), in such a way that 
all diagrams 

pIC Pi!) PID, 

for I: D --+ C an arrow in C, are commutative. Each object P in this 
category is a contravariant set-valued functor on C; in anticipation of 
Example (x) below, such a P is also called a presheal on C. In the 
notation of the French school, 

(1) 

is the category of all presheaves on C. If P is a presheaf on C and 
x E P( C), the value P(f) (x) for an arrow I: D --+ C in C is called the 
restriction of x along I, and is often denoted by I or by a dot: 

P(f)(x) = xiI = x . f. (2) 

Here I is written after x, because the contravariant character of P is 
then expressed for a composite log as X· (f 0 g) = (x· f) . g. 
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Each object C of C gives rise to a presheaf y(C) on C, defined on 
an object D of C by 

y(C)(D) = Home(D,C) 

Q 

and on a morphism D' ---+ D, for u: D -+ C, by 

y(C)(o:): Home(D, C) -+ Home(D' , C) 

y(C)(o:)(u) = u 0 0:; 

(3) 

(4) 

or briefly, y(C) = Homc( -, C) is the contravariant Hom-functor. 
Presheaves which, up to isomorphism, are of this form are called repre
sentable presheaves or representable functors. If f: C1 -+ C2 is a mor
phism in C, there is a natural transformation y(Cd -+ y(C2 ) obtained 
by composition with f. This makes y into a functor 

cop 
y: C -+ Sets , C f---* Home( - , C) (5) 

from C to the contravariant functors on C (hence the exponent COP). 
It is called the Yoneda embedding. The Yoneda embedding is a full 
and faithful functor. This fact is a special case of the so-called Yoneda 
lemma, which asserts for an arbitrary presheaf P on C that there is 
a bijective correspondence between natural transformations y( C) -+ P 
and elements of the set P( C): 

8: Homa(Y(C), P) ~ P(C), (6) 

defined for 0:: y(C) -+ P by 8(0:) = o:c(lc) (see [CWM, p. 61]). 
(ix) Sets/ J, the comma category or slice category, with objects all 

sets over the fixed set J. Here, a set over J is by definition a function 
h: X -+ J from a (variable) set X to J, and with arrows commuting 
triangles as in (8) below. We also think of X (via h) as a set over the 
"base" J. 

(x) Sh(X), the category of all sheaves of sets over a fixed topological 
space X. This important example will be explained in Chapter II below. 

(xi) Let G be a topological group. The category BG of continuous 
G-sets has as objects sets X equipped with a right action J-t: X x G -+ X, 
as in (iv), with the additional requirement that this action be continuous 
when X is equipped with the discrete topology. The morphisms are the 
same as those described in (iv). 

(xii) Simplicial sets: a simplicial object S in a category C is a family 
Sn for n 2:: 0 of objects of C, together with for each n two families of 
morphisms of C 

i = 0, ... ,n 
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(and with n > 0 in the case of di ) which satisfy the identities 

SiSj = Sj+1Si, 

dis j = sj-1di , 

= 1, 

= sjdi - 1 , 

i < j, 
i ~ j, 

i < j, 
i = j and i = j + 1, 

i>j+1. 
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(7) 

In particular, a simplicial object in Sets is called a simplicial set. If 
~n is a "standard" affine n-simplex, a continuous map f: ~n ---. X 
into a topological space X is called a singular simplex for X. Such a 
simplex f has n + 1 faces dd: ~n-l ---. X determined by restricting 
f to the ith face of ~n; also collapsing vertex i to vertex i + 1 gives 
n+ 1 maps ~n+l ---. ~n: composed with f they yield n+ 1 "degenerate" 
singular simplices sd. Taking di to be the ith face and Si to be the 
ith degeneracy makes the collection of all such singular simplices of X 
into a simplicial set---one from which the homology, cohomology, and 
homotopy of X can be computed. For many purposes, the category of 
topological spaces may be replaced by the category of simplicial sets. 

(xiii) FinSets, the category of all finite sets and functions between 
them. 

(xiv) FinSetsCOP
, the category of all functors from C (a fixed finite 

category) to FinSets. 
In this list the decisive types of examples are (i), (viii), and (x): 

Sets, set-valued functors (presheaves), and sheaves. These correspond 
to the major thrusts of our subject, toward the foundation of sets, the 
manipulation of functor categories, and the properties of sheaf coho
mology. As a matter of fact, each of the categories (i)-(vii) above is a 
special case of a functor category SetsCOP -and in each case, the arrows 
of the category in question are precisely the natural transformations of 
functors-for the following choices of the category: 

(i) C is the category 1 with one object and one (identity) arrow. 

(ii) C = 1+1 is the discrete category with two objects (and therefore 
with exactly two arrows, the identity arrows of these objects). 

(iii) C is the discrete category with n objects. 

(iv) C is the group G, regarded as a category with one object, with 
arrows the elements of G, and with composition the product in the group 
G. 

(v) C is the monoid M, regarded in the same way as a one-object 
category. 

(vi) C = 2 is the "arrow category": The category with exactly two 
objects 0 and 1 and one nonidentity arrow 0 ---. 1. 
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(vii) C = N°P is the category whose objects are the natural numbers 
n = 0,1,2, ... , and whose arrows n ---+ m are exactly the pairs (n, m) 
with n 2: m. 

Extending (vi) and (vii), recall that any ordered or preordered set P 
will yield a category P with objects the elements pEP and arrows the 
pairs (p, q) with p ~ q in the given preorder. For example, the ordered 
set R of real numbers yields in this way the functor category SetsR 

whose objects are "sets seen through (real) time" [ef. (vii) above]. 
The comma category described in (ix) is almost a functor category. 

An object of this comma category is an arrow h: X ---+ J of Sets, while 
an arrow f: h ---+ h' between two such objects is an arrow f: X ---+ X' 
of Sets such that the triangular diagram 

X __ .:..f_--+) X' 

~~ (8) 

J 

commutes. Each such object h: X ---+ J over J determines a J-indexed 
family {Hj I j E J} of sets, consisting of the sets 

H j = h-1{j} = {x I x E X and hx =j}, 

and then each arrow f: h ---+ h' as in (8) determines a J-indexed family 
of functions fJ: Hj ---+ Hj, j E J. If we regard the set J here as a 
discrete category (with objects all elements j E J and arrows only the 
identity arrows j ---+ j), then each J-indexed family of sets is just a 
functor H: J ---+ Sets and each J-indexed family of functions fJ is just 
a natural transformation F: H ---+ H' between these functors. In other 
words, the assignments h f-t {Hj }, f f-t {fJ} constitute a functor 

L: Sets/J ---+ SetsJ , 

from the comma category to the functor category. 
Reciprocally, each functor H: J ---+ Sets determines a set h: X ---+ J 

over J, with X the disjoint union (the coproduct) X = IJHj of the sets 
H j for j E J and h the function which sends each x E X into its "index" 
(that j E J with x E H j ). These two reciprocal constructions amount 
to constructing two functors Land M 

Sets/ J ( L ) SetsJ 
M 

(9) 

with both LM and M L naturally isomorphic to the respective identity 
functors. Therefore, these two constructions provide an equivalence of 
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the comma category Sets/ J to the functor category SetsJ . This equiva
lence is not an isomorphism of categories because the composite functor 
M L is not the identity, on account of the choice available in the forma
tion of the disjoint union involved in the construction of M. (That is, 
many different sets over J correspond under L to the same functor on 
J.) 

The category of simplicial sets is also a functor category: 

~op 

SimpSets = Sets , (10) 

where ~ is the category whose objects are all the finite ordered sets 
[n] = {O, 1, ... ,n} and whose morphisms [n] ---t [m] are those maps 
¢: [n] --+ [m] which preserve the order (i.e., i ::; j implies ¢i ::; ¢j). The 
isomorphism (10) 

comes about because the object [n] in ~ can be regarded as the 
ordered set of vertices 0,1, ... ,n of the standard n-simplex ~n with ith 

face spanned by 0,1, ... ,7, ... , n, omitting i. Details may be found in 
many sources, for example in [Mac Lane, Homology 1963, p. 233; see 
also VIII §7]. 

2. Pullbacks 

We will make extensive use of pullbacks. Recall that a pullback for 
I 9 

a diagram X -+ B +- Y in a category C is a commutative square, with 
vertex P, on the edges I and g, as below, which is universal among such 
squares: To any other such commutative square, with vertex Q, on these 
edges, as in (1), 

P 
,1 

9 ' I 

I' -------> Y 

19 
X --/::----+) B, 

Q ---~---> Y 

: 
91 (1) 90 I 

I 

X ---:----t) B 
I 

there is a unique arrow h: Q ---t P with 10 = f' h and go = g' h. As usual, 
this universality characterizes the pullback square (when it exists) up to 
isomorphism; its vertex P is called the fibered product, P = X X B Y of 
X and Y (relative to f and g). 

In Sets, the pullback P in (1) always exists and is (isomorphic to) 
the set of all those ordered pairs (x, y) of elements x EX, Y E Y with 
I x = gy in B. In particular, if Y is a subset of Band g: Y ---t B the 
inclusion, the pullback P is (isomorphic to) the inverse image 1-1 of Y 
in X. If both I and g are inclusions of subsets of B, their pullback P "is" 
the intersection of these subsets. If the set g: Y ---t B over B is regarded 
as a B-indexed set {Gb}, its pullback P along f is the X-indexed set 
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{ G~ } with G~ = G fx; in pictures: over each point x E X put a copy 
G~ of the set given over Ix. Similarly, if 9 is a fiber bundle of some sort, 
g' is (in a suitable category) the familiar induced fiber bundle. 

The pullback exists in any functor category SetsCOP and is con
structed "pointwise" (as pointed out in the preliminaries): If X, Y, and 
B in (1) are functors to Sets, with I and 9 natural transformations, 
then P: cop ---> Sets is that functor which sends each C E C to the set 
PC which is the pullback in Sets of XC ---> BC and YC ---> BC. In 
other words, (X XB Y)(C) ~ X(C) XB(C) Y(C). 

Consider the pullback P of I with itself [I = gin (1)]. In Sets, Pis 
the set of all pairs (x, y) of elements in X with Ix = Iy; in other words, 
P C X x X is the equivalence relation which I induces on its domain X. 
In any category, the pullback P of I with I, when it exists, is a parallel 
pair of arrows P =4 X called the kernel pair of I. In particular, an arrow 
I is monic (= left cancelable) precisely when, up to isomorphism, both 
arrows in its kernel pair are the identity X ---> X. In particular, any 
functor preserving pullbacks preserves monics. 

In any category, a pullback g' of a monic 9 along any arrow is itself 
monic; this may be proved by a simple formal argument. In Sets, it 
is also true that the pullback g' of an epi is always epi (epi = right 
cancelable arrow); this is evident from the description of the pullback in 
Sets by elements, but there is no simple formal (categorical) argument. 
This property does also hold in all Examples (i)-(xiv), but the common 
reason, as we shall see in Chapter IV, is deeper. 

The one-point set {*} may be characterized (up to isomorphism 
again!) as a terminal object in Sets: To every set X, there is a unique 
function X ---> {*}. In the same way, each of our categories (ii)-(xiv) has 
a terminal object, call it 1; for example, the terminal object in SetsCOP 

is the functor whose value at every object C is {*}. 

Pullbacks and terminal objects are limits; specifically, a pullback in 
a category C is a limit of a functor (. -+ • +-- .) ---> C, while a terminal 
object in C is a limit of a (the) functor from the empty category 0 into 
C. Recall that a finite limit in C means a limit of a functor J ---> C 
where J is a finite category. A category C with a terminal object 1 and 
with all pullbacks has all finite limits: It has binary products, since the 
product X x Y can be constructed as the pullback X -+ 1 +-- Y, it 
has products of no factors (the terminal 1), and hence it has all finite 
products. The equalizer e of a pair I, g: X =4 Y can also be constructed 
as a pullback, namely, that of the map (I, g): X ---> Y x Y and the 
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diagonal D.: 
E _=-1 e_=-"g,--e--+I Y 

el 1 ~ 
X--~)Yxy. 

(f,g) 
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This shows that a category with pullbacks and a terminal object has all 
finite limits because these can be constructed from finite products and 
equalizers [CWM, p. 109J. 

All the categories in our list (i)-(xiv) have finite limits: We have seen 
how to construct the terminal object and pullbacks in Sets, so Sets has 
finite limits. Consequently, so does a functor category Sets cop , since 
limits in SetsCOP can be computed pointwise, as just pointed out [ef. also 
(24) of the preliminariesJ. In particular, this takes care of Examples (i)
(ix), and (xii), (xiii), and (xiv). Finite limits in the category of sheaves 
on a topological space X [Example (x) of §lJ will be treated in Chap
ter II. This leaves the Example (xi) of the category BG of continuous 
G-sets, which is not a functor category. But if a: X -+ Band b: Y -+ B 
are maps of continuous G-sets, then their pullback X x B Y in Sets has 
an obvious coordinatewise action by G: 

(x, y) . 9 = (x· g, y. g) 

for x E X and y E Y with a(x) = b(y), and 9 E G. This action is 
continuous if the actions on X and Yare each continuous. So X X B Y 
is again a continuous G-set, and this is easily seen to define the pullback 
in the category BG. Since BG has a terminal object (the one-point set 
with its unique action by G), it follows that BG has all finite limits and 
that these limits can all be constructed as limits of the underlying sets. 
In other words, the "forgetful" functor U: BG -+ Sets which forgets 
the action, U(X, /.1) = X, preserves all finite limits. 

3. Characteristic Functions of Subobjects 

In Sets, a subset SeX may be described in two very different ways: 
As the monic function S >---+ X given by inclusion or as a characteristic 
function <Ps defined as usual for elements x E X by 

¢s(x) = { 
0, 

1, 

XES, 

x tj. S. 

Here we take the values of <Ps in the typical 2-point set {O, 1 }; it is the 
set of "truth values" , where we have chosen ° as the value "true". It is 
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convenient to regard true as the following subobject (the monic arrow) 
from 1 to 2: 

true: 1 = {O} >---+ 2 = {O, I}, o I-t O. (1) 

With this notation, each subset S can evidently be recovered (up to 
equivalence) from its characteristic function ¢s as the pullback of true 
along ¢s: 

S I 1 

ml ltrue (2) 

X '--,fs---> 2. 

In this diagram, S -+ 1 is the unique function from S to the terminal ob
ject (one-point set) 1, and 1 -+ 2 is the fixed monic defined in (1); given 
the monic m, there is a unique ¢ (namely, the characteristic function) 
such that the diagram (2) is a pullback. 

In Section 4, we will see that subobjects in our other typical cate
gories have similar characteristic functions, which take values not in 2, 
but in a suitable object 0 of "truth-values". 

Definition. In a category C with finite limits, a subobject classifier 
is a monic, true: 1 -+ 0, such that to every monic S >---+ X in C there is 
a unique arrow ¢ which, with the given monic, forms a pullback square 

S----+11 

I (3) 

X ---;r--> O. 

In other words, every subobject is uniquely a pullback of a "univer
sal" monic true. 

This property amounts to saying that the subobject functor is rep
resentable (i.e., isomorphic to a Hom-functor). In detail, a subobject 
of an object X in any category C is an equivalence class of monics 
m: S >---+ X to X (d. the preliminaries). By a familiar abuse of language, 
we say that the subobject is S or is m, meaning always the equivalence 
class of m. Then, Subc X is the set of all subobjects of X in the cat
egory C; this set is partially ordered under inclusion. The category C 
is said to be well-powered when Subc X is isomorphic to a small set 
for all X; all of our typical categories are well-powered. Now given an 
arrow f: Y -+ X in C, the pullback of any monic m: S >---+ X along f 
is a monic m' : S' >---+ Y, and the assignment m I-t m' defines a func
tion Subc f: Subc X -+ Subc Y; when C is well-powered, this makes 
Subc : cop -+ Sets a functor to Sets. Briefly, Sub is a functor "by 
pullback" . 
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Proposition 1. A category C with finite limits and small Hom
sets has a subobject classifier if and only if there is an object 0 and an 
isomorphism 

ex: Sube(X) ~ Home(X, 0), 

natural for X E C. When this holds, C is well-powered. 

(4) 

Proof: Given a subobject classifier as in (3), the correspondence 
ex sending the equivalence class of each monic 8 >--+ X to its (unique) 
"characteristic function" ¢: X -+ 0 is a bijection for each X, as required 
for (4). Now Sube(X) is a (contravariant) functor of X by pullback (= 
inverse image); so to prove this bijection natural, we must show that 
pullback along f: Y -+ X in Sube ( - ) corresponds to composition with 
f in Home( -,0). This is immediate by the elementary fact that two 
pullback squares placed side by side, as in 

8 f -------+) 8 -----+) 1 

I I 
Y ---:------+) X -------+) 0, 

f 

yield a pullback (rectangle). Since the Hom-sets are all small, the bijec
tion (4) also proves C well-powered. 

Conversely, suppose that (4) is a bijection, natural in X. This states 
that Sube : cop -+ Sets is naturally isomorphic to Home ( -,0); that 
is, that the functor Sube is representable [ef. §1(5)], with representing
object O. As for any such representation, some subobject to: 0 0 >--+ 0 of 
o corresponds to the identity 1: 0>--+ 0, while each subobject 8>--+ X of 
X corresponds to an arrow ¢ : X -+ O. By naturality of e, the diagram 

Sub(O) Hom(O,O) 0 0 f-i ---+) 1 

Sub(</» 1 1 Hom(</>,O) 1 1 
Sub(X) ~ Hom(X, 0), 81-1 ---t) ¢ 

must commute; this states that 8 = Sub(¢)Oo, and hence that each 
subobject 5 is the pullback of no along a unique "characteristic function" 
¢, as in 

</>' 8 --'-------+) 0 0 

I (5) 

X--</>--t) O. 
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This diagram is like the definition (3) of a subobject classifier, but it 
remains to show that no is actually a terminal object in C. But taking 
S ~ X in (5) to be the identity X ~ X gives a map <//: X ~ no. If 
there were two maps <//, ¢": X ~ no then, since to is monic, both the 
squares 

X )n, X d"2, 
toq,' toq," 

would trivially be pullbacks. Therefore, by the uniqueness of ¢ in (5), 
to¢' = to¢". As to is monic, this gives ¢' = ¢". Hence each object X 
has a unique map ¢': X ~ no, so no is terminal. 

As with any representation of a functor, this result proves that the 
subobject classifier of a category, if it exists, is unique up to an isomor
phism. 

The idea of a "subobject classifier" is modeled on other "classifying" 
ideas in topology. A decisive example is that of the classifying bundle for 
a Lie group G. As we will subsequently indicate, a G-bundle over X is 
a suitable continuous map 7r: E ~ X of spaces for which G acts on the 
right on E in such a way that 7re = 7re' for e and e' in E iff e = e' 9 for a 
unique element 9 in the group G. If G-Bund(X) is the (suitably defined) 
set of all G-bundles over some space X, then pullback of a G-bundle E ~ 
X along a continuous map f: Y ~ X yields a G-bundle over Y, and 
this makes G-Bund a contravariant functor of X (again "by pullback"). 
Then a bundle V ~ B is said to be a universal G-bundle (and B is the 
"classifying space" for G) if every G-bundle E ~ X can be obtained 
from V ~ B by pullback along some X ~ B. For G = Ok the real 
orthogonal group in k variables, there is a famous such classifying bundle 
V. For large n, it is the Stiefel manifold Vn+k+l,k whose points are all 
orthonormal k-frames of vectors VI,"" Vk in Rn+k+l. The orthogonal 
group Ok acts continuously on these frames VI,"" vk in the evident way, 
so that two frames are equivalent under the action of Ok if and only if 
they span the same k-plane. Therefore the projection p: V ~ VI Ok of 
the Stiefel manifold on its quotient by this action is an Ok-bundle, and 
its base space V 10k is precisely the Grassmann manifold Mn+k+l,k of 
all k-planes in Rn+k+I. A standard argument [Steenrod, 1951] shows 
that p is a classifying bundle for principal Ok-bundles over n-complexes 
K, in the sense that any such bundle can be obtained from p by pullback 
along a continuous map f: K ~ V 10k which is unique up to homotopy. 

Classifying bundles have played a major role in topology; we shall 
see that classifying subobjects playa similarly decisive role in category 
theory. Later on in this book, we shall see that the analogous idea of a 
classifying topos is central in our subject. 
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4. Typical Subobject Classifiers 

Each of our typical categories (i)-(xiv) has a subobject classifier. We 
will now explicitly construct these classifiers in order to exemplify the 
general notion. 

The classifier true: 1 --'> 2 for Sets is evidently also a subobject 
classifier for FinSets; indeed, the usual characteristic functions are still 
effective for finite sets. 

In Sets x Sets, an arrow is a pair of functions f: Y --'> X, f': Y' --'> 

X'. The pair of subsets (1 C 2, 1 C 2) is a subobject classifier, and 
the characteristic arrow of any subobject (8 eX, 8 ' c X') is evidently 
just the pair of characteristic functions (¢s: X --'> 2, ¢Sl: X' --'> 2) from 
the category Sets. Thus, there are, in 2 x 2, four "truth-values". The 
corresponding subobject classifier for Setsn has 2n truth-values; as we 
shall see, it is the Boolean algebra of all 2n subsets of n. 

In the category Be = e-Sets of representations of e [Example (iv) 
of §1]' an object is an action X x e --'> X of the fixed group e on some 
set X, and a subobject is just a subset 8 c X closed under this action 
(i.e., s . 9 E 8 whenever s E 8 and gEe). The complement of 8 in X 
is thus also invariant under this action, so we can still use the ordinary 
characteristic function ¢s : X --'> 2 of 8, where the subobject classifier is 
the usual map true: 1 --'> 2, with e acting trivially on both sets 1 and 2. 
Exactly the same argument applies in the case where e is a topological 
group [Example (xi) of §1]. 

For BM [Example (v) of §1]' an object is again a right action X x 
M --'> X of the fixed monoid M on some set X, and a subobject is 
again just a subset 8 c X closed under this action, but the previous 
characteristic function will not do because the complement of 8 need 
not be closed under this action. Instead, we may define a function ¢s 
sending each x E X to the set L of all those C E M with x . C E 8. This 
set L is a "right ideal" of M (a subset of M mapped into itself by the 
right action of M on itself, via right multiplication). Therefore, take 
0= OM to be the set of all right ideals L of M with action 0 x M --'> 0 
defined by L'm = {k E M I m·k E L} for LEO and mE M. Then, the 
function ¢s above is an arrow ¢s: X --'> 0; in particular, it determines 
the given 8 as the inverse image of the right ideal M. Therefore, the 
subobject classifier is the function trueM: 1>---> OM which sends the one 
point of the object 1 to the "maximal" right ideal M E OM. 

In case M is a group G the only right ideals are G and 0, so this 
Oc reduces to the previous set 2 with trivial e-action. In case M is the 
additive monoid of natural numbers, the right ideals are the empty set 
and the sets of numbers larger than some fixed number n. 

For the arrow category 2 and Sets2 , a subset (80 .::...." 8d >--->(Xo .::...." 
Xd is a pair of subsets 8 0 c X o, 8 1 C Xl with aBo C 8 1 , Relative to 
this subset 8 there are three sorts of elements x of Xo: Those x in 8 0 , 
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those x tf. 80 with ax E 8 1 , and those x with ax tf. 8 1 . Define </>ox = 0,1, 
or 2 accordingly. Then, </>0 on 8 0, with the usual characteristic function 
</>1 of 8 1 c Xl, is an arrow </> = (</>0, </>d to the object f2 displayed below, 

X: Xo a ) Xl 

¢1 ¢ol 1¢1 aO = 0, a1 = 0, a2 = 1, 

f2: {0,1,2} a ) {O, I}, 

1 
in Sets2 , and 8 0 ---4 8 1 is the inverse image of ({O} --+ {O}) = 1>-+ f2. 

In brief, this characteristic function </> = (</>0, </>1 ) is that arrow which 
specifies whether "x is in 8" is "true" always, only at 1, or never. One 
may say that </> gives the "time till truth" . 

For SetsN , a subobject of X has the form of a sequence 8 of subsets 

8: 8 0 ) 8 1 ) 8 2 ) 8 3 ... 

I I I I I 
X Xo a ) Xl a ) X 2 a ) x 3 ··· 

with a8k C 8k+l; for example, if X k is constant and each a = 1, this 8 
is a monotone increasing sequence of subsets. For any x E X k we can 
then measure the "time till truth" (the time till inclusion in 8) by the 
function </>k on X k defined as 

</>kX = the least n with anx E 8 k+n, if such exists, 

= 00 otherwise. 

Then </>k: X k ---4 N + {oo}, so the sequence of these maps </>k is an arrow 
to the sequence of sets 

f2: N+{oo}~N+{oo}~N+{oo}---+··· (1) 

where each 7 has 7(0) = 0, 7(n + 1) = n for n =I- 0 and 7(00) = 00. 
Then, f2 E SetsN has 1: {O} ---4 {O} ---4 {O} ---4 ••• as subobject, and the 
given 8 is the pullback of 1 along </>. In brief, "time till truth" provides 
a subobject classifier f2. 

For an arbitrary small category C, a subfunctor of P: cop ---4 Sets 
is defined to be another functor Q: cop ---4 Sets with each QC a sub
set of PC and each Q f: Q D ---4 QC a restriction of P f, for all arrows 
f: C ---4 D of C. The inclusion Q ---4 P is then a monic arrow in 

cop 
the functor category Sets ,so that each subfunctor Q is a subob-
ject. Conversely, all subobjects are given by subfunctors; if a natural 
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transformation e: R >-+ P is monie in the functor category, then each 
function ec: RC -+ PC is an injection (monies, like limits in the func
tor category, are taken pointwise). For each C let QC be the image of 
RC >-+ PC; thus Q is manifestly a subfunctor of P, and the given R is 
equivalent (as a subobject) to Q. 

- cop . . 
For an arbitrary presheaf category C = Sets ,If there IS a sub-

object classifier 0, it must, in particular, classify the subobjects of each 
representable presheaf yC = Home ( - , C): cop -+ Sets. Therefore, 

SUbe(Homc( -, C)) ~ Home (Home( -, C), 0) = Nat(Home( -, C), 0). 

By the Yoneda lemma [see §1(6) above], the set on the right is (up to 
isomorphism) O(C). Thus the subobject classifier 0, if it exists, must 
be the functor 0: cop -+ Sets with object function 

O(C) = Sube(Home( - ,C)) 

= {S I Sa subfunctor of Home( -, C)}, 
(2) 

and with a suitable mapping function. 
To understand this it is customary and useful to use an alterna

tive terminology for subfunctors of a representable functor Hom( - , C). 
Given an object C in the category C, a sieve on C (in French, a "crible" 
on C) is a set S of arrows with codomain C such that 

f E S and the composite fh is defined implies fh E S. 

If we think of the arrows f E S as those paths which are "allowed to 
get through" to C, this definition means that any path to some other 
B followed by an allowed path from B to C is allowed. For example, 
if the category C is a monoid M, a sieve is just a right ideal in M; if 
the category C is a partially ordered set regarded as a category, a sieve 
on C E C is a set S of elements B :s; C such that A :s; B E S implies 
A E S: If B "goes through" the sieve, so does anything smaller: a sieve 
is a "downwards closed" subset. 

Now if Q c Home ( -, C) is a subfunctor, the set 

S = {f I for some object A, f: A -+ C and f E Q(A)} 

is clearly a sieve on C. Conversely, given a sieve S on C, the definition 

Q(A) = { f If: A -+ C and f E S} ~ Home(A, C) 

yields a functor Q: cop -+ Sets which is a subfunctor of the Hom
functor Home( -, C). The passages S to Q and Q to S are reciprocal; 



38 I. Categories of Functors 

hence, we can identify sieves and subfunctors in any locally small cate
gory C. Thus, 

Sieve on C = Subfunctor of Home( -, C). (3) 

Moreover, for any arrow g: B --t C, a subobject Q of the functor 
Homc( -, C) determines a subobject of Homc( -, B) by pullback along 
g, and similarly each sieve S on C determines the following sieve on B: 

S· 9 = {h I go hE S}. 

With this motivation, the proposed subobject classifier 0 for the 
functor category SetsCOP is defined on objects by 

o (C) = { SIS is a sieve on C in C } (4) 

and on arrows g: C' --t C by 

( - ) . g: O(C) --t O(C'), S· 9 = {h I go hE S}. (5) 

For an object C of C, the set t( C) of all arrows into C is a sieve, called 
the maximal sieve on C. These maximal sieves patch together to give a 
morphism (natural transformation ) 

true: 1 --t 0 

cop 
in the pre sheaf category Sets . 

(6) 

To see that (6) defines a sub object classifier in SetsCOP
, consider any 

subfunctor Q of a given functor P: cop --t Sets. Then each morphism 
f: A --t C in C determines a function P(f): P( C) --t P(A) in Sets 
which mayor may not take a given x E P(C) into Q(A) ~ P(A). For a 
given x E P(C) set 

¢o(x) = {f I x· f E Q(dom(f))}, (7) 

where f ranges over all morphisms in C with codomain C. Then ¢c(x) 
is a sieve on C, and ¢: P --t 0 is natural. Moreover, ¢o( x) is the 
maximal sieve t(C) iff x E Q(C), so the given subfunctor Q ~ P is the 
pullback along ¢ of the map "true" defined in (6) above. 

Q -----)011 

I 1 true (8) 

P--",--+IO. 
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This shows that ¢ is indeed a possible characteristic map for the 
subfunctor Q. But this ¢ is also the unique natural transformation 
B: P -> 0 making this diagram into a pullback. Indeed, given x E P( C) 
and f: A -> C, the pullback condition means that x . f E Q(A) iff 
BA(x· f) = trueA; by naturality of B, this is equivalent to Bc(x)-f = trueA 
and this, in turn, by the definition (5), means that f E Bc(x). The ele
ments f of Bc(x) are thus exactly those f with X· f E Q(A), i.e., those 
f E ¢c(x) as defined in (7). Thus, the definition (7) of ¢ is forced 
upon us if (8) is to be a pullback. Hence, we have shown that the mono 
true: 1 >-t 0 defined in (6) provides a subobject classifier for the presheaf 

~ cop 
category C = Sets . 

Intuitively, the sieve ¢c (x) considered in (7) is the set of all those 
paths f to C which translate the element x of P( C) into the subfunctor 
Q. As the set of "paths to truth" , it clearly agrees with the characteristic 
arrows we have already constructed for the special functor categories 
Sets2 , SetsM , and SetsN. 

We have assumed C small because we must. Were C large--say the 
ordered set of all small ordinal numbers~the number of paths to truth 
would not in general be small, hence not an object of Sets. 

The exhibition of subobject classifiers for our typical categories is 
completed by noting, for any set J, that the projection J x 2 -> J is a 
classifier for the category Sets/ J, while in FinSetsCOP with C finite, the 
set O( C) of sieves on C is again finite so provides a suitable subobject 
classifier O. 

Observe, however, that there are many "reasonable" categories with 
no such subobject classifier. The category (FinSets)N provides an im
mediate such example, because in the linearly ordered set N°P, the num
ber of sieves on each object n is infinite. Another example is the category 
Ab of all (small) abelian groups. For, the terminal object 1 in Ab is 
the zero-group, so the group homomorphism true: 1 >-t 0 must send 0 
to 0 E 0, and thus its pullback along any ¢: A -> 0 is the subgroup 
S = Ker ¢ = ¢-l (0) of A. This implies that the proposed subobject clas
sifier must be an abelian group which contains a copy of every quotient 
group A/ S of every group A, an absurdity. 

5. Colirnits 

Each of our typical categories has all finite colimits. To show this it 
suffices (as in the dual case of finite limits discuss sed in §2) to observe 
that each has an initial object 0 and pushouts (or cocartesian squares, 
as they are sometimes called). In Sets, the empty set 0 is an initial 
object because there is for each set X exactly one function 0 -> X; in 
a functor category SetsCOP the constantly empty functor is initial. And 
for a topological group G, the empty set (with its unique action by G) 
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is clearly initial. So all the examples of §1 have initial objects [we leave 
to the next chapter the discussion of sheaves, listed as (x) in §1j. 

Next, we consider pushouts. In Sets or in FinSets the pushout of 
two functions I and 9 with a common domain X, as in the diagram 

X _....::9'-----+1 Z 

Ii 
I 
I 
I , 

v 

Y -------> Q = YllZ/{ I(x) = g(x)}, 

(1) 

is the set Q which is obtained from the disjoint union of Y and Z by 
identifying the elements I(x) and g(x), for all x E X. This quotient 
set has the usual universal property of a pushout. By this universal 
property, if in (1) X, Y, and Z are sets over some fixed set J (as in Ex
ample (ix) of §1), so is their pushout; therefore, this same construction 
yields pushouts in the comma category Sets/ J. And similarly, if I and 
9 in Diagram (1) are maps of G-sets for a group or monoid G [Exam
ples (iv) and (v) of §1]' or maps of continuous G-sets for a topological 
group G [Example (xi)], then the quotient Q can again be equipped with 
an action by G making Q into the pushout in the category of G-sets or 
continuous G-sets. Furthermore, if I and 9 in (1) are natural transfor
mations of functors X, Y, Z: cop -+ Sets, then the pointwise pushouts 
Q(C) for each object C of C form (again) by universality a functor 
Q: cop -+ Sets, which is the pushout in the functor category Sets cop • 

This is a special case of the fact that colimits in functor categories can 
be computed pointwise: If H: J -+ A C for categories J, A, and C, then 
its colimit lim H in the functor category A C is given by 

--+J 

(lim H)(C) = lim H(C) 
--+J --+J 

(C E C), (2) 

where H(C): J -+ A is the functor obtained from H by evaluating at 
the object C of C [ef. (25) of the preliminariesj. This applies also when 
J is finite, as in our Example (xiv). 

This shows that our typical categories have finite colimits. [In fact, 
except for (xiii) and (xiv), they all have arbitrary small colimits, and in 
this sense are cocomplete, but that need not concern us here.] Our typi
cal categories have many other common formal properties. For example, 
each morphism I has an epi-mono factorization 1= m·e. However, these 
other common properties will all be deduced (in Chapter IV) from the 
ones we have previously examined. In the deduction, limits will playa 
much more important role than colimits. 

To conclude this section, we wish to mention a useful fact concerning 
colimits in functor categories: 



5. Colimits 41 

Proposition 1. In a functor category SetsCOP , any object P is the 
colimit of a diagram of representable objects, in a canonical way. 

This proposition asserts, in other words, that given a functor 
P: cop -+ Sets, there is a canonical way of constructing a small "index" 
category J and a diagram A: J -+ C in C of type J, such that P is iso-

morphic to the coli mit lim (y 0 A) of the diagram J ~ C ~ SetsCOP , 
--4J 

obtained by composition with the Yoneda embedding described in (1.5). 
Given P, the index category J which serves to prove the proposition 

is the so-called category of elements of P, denoted by Ic P or, more 
briefly, I P. Its objects are all pairs (C,p) where C is an object of C 
and p is an element p E P(C). Its morphisms (C',p') -+ (C,p) are those 
morphisms u: C' -+ C of C for which pu = p'; in other words, u must 
take the chosen element p in P(C) "back" into p' in P(C'): 

(C',p') -+ (C,p) by u: C' -+ C with pu = p'. (3) 

These morphisms are composed by composing the underlying arrows u 
of C. This category has an evident projection functor 

7rp: l P -+ C, (C,p) f-+ C. (4) 

Colimits over the category of elements can be used to construct a 
pair of adjoint functors which will have many uses, as follows. 

Theorem 2. If A: C -+ E is a functor from a small category C to 
a cocomplete category E, the functor R from E to presheaves given by 

R(E): C f-+ Homs(A(C) , E) (5) 

has a left adjoint L: SetsCOP -+ E defined for each presheaf Pin Sets Cop 

as the colimit 

L(P) = Colim( P --+ C -+ E). J Trp A 
(6) 

In other words, there is a pair of adjoint functors L -1 R, as in 

Cop 
L: Sets ( ) E : R, (7) 

where we place the left adjoint L on the left. 

Proof: A natural transformation T: P -+ R(E) is just a family 
{ TC } indexed by objects C of C for which each TC is a map 

TC: P(C) -+ Homs(A(C),E) 
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of sets which is natural in C, in the sense that the diagram of sets 

P(C) _T--,,-C---+) HomE(A(C),E) 

p(U)l lA (Ur (8) 

P(C') TC I ) Home(A(C'), E) 

commutes for each morphism u: 0' -+ 0 of C. But such a T may also 
be considered as a family of arrows of £ 

{Tc(p): A(C) -+ Ehc,p) (9) 

indexed by objects (C,p) of the category J P of elements of P. In this 
view, the condition (8) then means that the following diagram 

A(C) 

A(.' 1 

Anp(C,p) 

1'· ~~ 
/,(1) TC P 

A(C') = Anp(C',p') 

(10) 

commutes for each arrow u. This visibly means that the arrows TC (p) 
constitute a co cone from the functor Anp to the object E. By the defi
nition of a colimit, each such cocone comes by composing the colimiting 
co cone (to lim) with a unique arrow from the colimit LP to the object 

~ 

E. In other words, there is a bijection 

Nat(P, R(E» ~ HomE(LP, E). (11) 

Since this bijection is clearly natural in P and in E, it asserts that L is 
a left adjoint to R, just as claimed. 

Corollary 3 (= Proposition 1). Every presheaf is a colimit of 
representable presheaves. 

Proof: In the theorem, take £ to be the presheaf category and A 
to be the Yoneda embedding 

cop ......... 

A = y: C ----+ Sets = C = £. 

By the Yoneda lemma the definition (5) of the right adjoint R for any 
E = P is then 

RA(E)(C) = Homa(y(C),E) ~ E(C); 
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this states that RA is isomorphic to the identity functor of C. By the 
uniqueness up to isomorphism of adjoints, its left adjoint L must then 
also be isomorphic to the identity functor, so that the definition (6) of 
L gives for any presheaf P 

P ~ Colim( P ----> C ---t C). J trp Y ~ 
(12) 

One may prove the result directly, by constructing a colimiting cone 
from L(P) in (6), with A = y, to P. 

The Yoneda embedding of C in the presheaf category C is the "uni
versal" way of making C cocomplete, in the sense that every functor 
A from C to a cocomplete category t: factors through y by a unique 
colimit preserving functor from presheaves to t:, as follows. 

Corollary 4. For each functor A: C --t t: from a small category 
C to a cocomplete category t: there exists a colimit preserving functor 
L: SetsCOP --t t: for which the following diagram (with the Yoneda 
embedding y) commutes 

cop L Sets -----> t: 

yI/ (13) 

C. 

The functor L with these properties is unique up to isomorphism, and 
can be defined as in (6) by a colimit. 

Proof: It will suffice to prove that L of (6) makes the diagram (13) 
commute; then L, as a left adjoint, preserves colimits. Moreover, since 
every presheaf P is a colimit of representable presheaves, L is unique up 
to isomorphism, as asserted in the corollary. 

To prove that (13) commutes, note that when P = Hom( -, C) = 
yC is representable the corresponding category of elements J P has a 
terminal object-the element 1: C --t C of P(C). Therefore the colimit 
of the composite A 0 7rp will be just the value of A 0 7rp on the terminal 
object. Hence, 

Ly(G) ~ A7rp(G, Ie) = A(G) 

so the diagram does commute. 

The process C 1-7 C is a functor from Cat, the (large) category of 
all small categories, to Cocomp the ("super large") category of "all" 
cocomplete categories, with morphisms all colimit preserving functors. 
This corollary states in effect that the Yoneda embedding provides uni
versal arrows and so, like universal arrows generally, constitute the units 
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of an adjunction-an adjunction in which C f---+ C is left adjoint to the 
forgetful functor Cocomp ----+ Cat -forget cocompleteness. This sug
gestive formulation stumbles on the fact that co complete categories are 
hardly ever small [CWM, p. 110], so do not become small by forgetting 
the colimits! 

It is convenient to picture the category J P of elements of P in terms 
of its projection 7rp by a diagram 

kP p' -------> P E P(C) 

~pl 
, , 
I I (14) I I 
I I 
~ 

C I Sets, G' u IG. 
p 

(Here the object function of the functor P is a set indexed by the set 
Co of objects of C, and the objects of J P form the corresponding set 
"over" Co, in the sense described in §1: J-indexed sets'" sets over J.) 
In this diagram (14) the inverse image under 7r of an object C of Co is 
the set of all p E P( G), while the projection 7r has the property that 
for each such x E P( C) and each u: C' ----+ G there is a unique pair p', 
u': (G',p') ----+ (C,p) with 7rP' = G', 7r(u') = u. Any functor 7r: E ----+ C 
with this latter property is called a fibration of categories; in geometric 
terminology, given a point p over G each arrow in the base with target 
C lifts uniquely to an arrow "upstairs" with target p. 

A construction similar to (14) may be carried out when Sets is 
replaced by the category Cat of all small categories; it is often called 
the Grothendieck construction, but the case of J P above was first done 
by Yoneda and developed by Mac Lane well before Grothendieck. 

6. Exponentials 

The basic arithmetic operations on numbers and on sets are +, times, 
and exponent. We have already described + and times categorically as 
coproduct and product, respectively; we now consider the exponent Zx. 
In Sets, this ZX is the usual "function set", consisting of all functions 
h: X ----+ Z. It may be described by the familiar bijection 

Hom(Y x X, Z) ----+ Hom(Y, Zx) (1) 

which sends each function f: Y x X ----+ Z of two variables into the 
function f': Y ----+ ZX where, for each y E Y, f'y E ZX is the function 
with (f'y)(x) = fey, x) E Z. This bijection (1) completely determines 
ZX up to isomorphism; for setting Y = 1 yields ZX ~ Hom(l, ZX) ~ 
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Hom(X, Z). The bijection (1) is natural in Y, X, and Z and so states 
that the functor ( - )X is the right adjoint of - x X: Sets ---. Sets. 

Now consider any category C with finite products. Then for each 
object X of C the evident assignment Y f--+ Y X X determines a functor 
- x X: C ---. C, called "product with X". When this functor has 
a right adjoint, written Z f--+ ZX, we say that C has an exponential 
for X; this means that there is a bijection (1) natural in the objects 
Y and Z of C. When this holds for all objects X, it implies, by the 
"parameter theorem" for adjunctions [CWM, p. 100], that (X, Z) f--+ 

ZX is a functor cop x C ---. C called the exponential for the category 
C. 

The existence of the adjunction (1) can be stated in elementary terms 
(i.e., without using Hom-sets). For, set Y = ZX in (1); the identity 
arrow 1: ZX ---. ZX on the right in (1) then corresponds under the 
bijection to an arrow e = ez,x, 

e: ZX x X ---. Z (2) 

called evaluation; in Sets this arrow e is the actual evaluation e(h, x) = 
h( x) of the function h: X ---. Z at the argument x EX. The bijection 
f f--+ l' of (I), by naturality, now becomes the statement that to each 
f: Y x X ---. Z there is a unique 1': Y ---. ZX such that the diagram 

YxX 

flXl: 
I 

v ~ 
ZXxX~Z 

commutes. One also says that e is universal from - x X to Z. Also, e 
is the counit of the adjunction (1); the adjunction can also be described 
in terms of its unit TJ: Y ---. (Y x X)X, as explained in the preliminaries. 

The evaluation e = ez,x of (2) is natural in Z and "dinatural" in 
X. The latter notion applies because the domain of e is a bifunctor in 
X contravariant in the first X and covariant in the second; dinaturality 
means (see [CWM, p. 214]) that for every arrow t: X ---. X' the diagram 

zX' xX l' xl 
I ZX xX 

lxtl le 

Zx' xX' e IZ 

commutes. One also has natural isomorphisms ZxxY ~ (ZY)X and 
Zl ~ Z, with the evident values of the respective evaluations. 
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Recall that a category C is cartesian closed when it has a terminal 
object 1 and a binary product X x Y for any two objects X and Y, as well 
as exponentials yX (with their evaluations, for all objects X and Y). 
For example, the category Sets of all small sets and the category Cat 
of all small categories are both cartesian closed. Also, any product of 
cartesian closed categories is cartesian closed: both finite products and 
exponentials can be computed "termwise" in such a product category. 

In any cartesian closed category, there are natural isomorphisms 

1 X ~ 1, Xl ~ X, (3) 

(Y x Z)x ~ yX x ZX, X(YxZ) ~ (XY)z. (4) 

The last equation of (4) follows from the definition of the exponential 
and the associativity ofthe product; the first of (4) holds because ( _ )X 
has a left adjoint, hence preserves products. 

All our typical categories are cartesian closed. The case of sheaves 
will be discussed in the next chapter. The following proposition takes 
care of most of the other cases. 

Proposition 1. For any small category C, the functor category 
SetseOp is cartesian closed. 

To prove this proposition, recall that the product of two functors P 
and Q: cop -4 Sets is their pointwise product. However, we cannot use 
a "pointwise" exponential QP(C) = Hom(PC, QC) because the right
hand side here is not a functor of C in any reasonable way. 

To find a formula for the exponential, we first assume that an expo
nential QP exists, so that Hom(R x P, Q) ~ Hom(R, QP) for all R. In 
particular, for each representable functor R = Home ( - ,C) = yC, this 
isomorphism composed with the Yoneda isomorphism gives 

QP(C) ~ Homa(Y(C), QP) 

~ Homa(Y(C) x P, Q). 

Now drop the assumption that QP exists, but use this result to define 
QP as the functor 

(5) 

i.e., QP (C) is the set of all natural transformations () from 
Home ( -, C) x P to Q. This clearly defines a functor QP: cop -4 Sets. 

Associate with this definition (5) a putative evaluation map e: QP x 
P -4 Q with components 

ec((),y) = ()c(1C,Y) E Q(C) (6) 
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for C E C, (): Home( -, C) x P -+ Q and y E P(C). It follows that e 
is a natural transformation. Moreover, to every natural transformation 
¢: R x P -+ Q one can find a (unique) ¢/: R -+ QP such that the 
diagram of natural transformations 

RxP 
I 

¢' X 11 
I ~ 

QP x P ---e-+ Q 

(7) 

is commutative. Specifically, for C E C and u E RC, we must de
fine an element ¢'c (u) E QP ( C), that is, a natural transformation 
¢'c(u): Home( -, C) x P -+ Q. We define the components (¢'c(U))D 
for j: D -+ C and x E P(D) in terms of ¢ by 

(¢'c(U))D: Home(D, C) x P(D) -+ Q(D), 

(j, x) f---t ¢D(U' j, x). (8) 

The ¢' so defined is clearly natural in D. Moreover, by the definition 
(6) of the evaluation e, for u E R(C) and y E P(C), 

ec( ¢'c( u), y) = (¢'c( u) )c(1c, y) 
= ¢c(u,y), by (8). 

This means that the triangle (7) commutes, and that this condition 
plus naturality forces our definition of ¢'. Therefore QP is the required 
adjoint and Proposition 1 is proved. 

A somewhat different description of the same exponential appears 
as Exercise 8. The meaning of the formula (5) for the exponential QP is 
also illuminated by the special case in which the category C is a monoid 
or a group (Exercise 5). 

It follows from Proposition 1 that most of our typical categories are 
cartesian closed. [Examples (xiii) and (xiv) of §1 are similar to (i) and 
(viii).] Besides the case of sheaves, which will be discussed in the next 
chapter, this only leaves the case of continuous G-sets for a topological 
group G; a construction of exponentials in this category is outlined in 
Exercise 6. 

A global section 'Y of a functor P: cop -+ Sets is defined to be a 
function 'Y which assigns to each object C of C an element 'Ye E P( C) 
in such a way that the equation 

j:D-+C, (9) 

holds for every arrow j of C. Thus 'Y is just a natural transformation 
T 1 -+ P, where 1 is the constant functor 1 on coP. (The geometric 
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origins of the term "global" will appear in Chapter II below.) The set 
r(p) of all global sections "y of P yields a functor 

r: SetsCOP --+ Sets. 

In the opposite direction, the constant pre sheaf functor ~ assigns to 
each set S the functor ~S with (~S) (C) = S and every (~S) (f) the 
identity. For each Sand P there is a natural isomorphism 

Homa(~S, P) ~ Homsets(S, r P) (10) 

since a natural transformation ~S --+ P simply assigns to each element 
s E S its image, a global section 1 --+ P of P. Therefore, the functor ~ is 
left adjoint to the global sections functor r. This adjunction (where the 
left adjoint ~ is left exact) is a first instance of what will later be called 
a "geometric morphism" (Chapter VII). Also, a natural transformation 
~S --+ P is just a cone from the set S to the functor P to Sets. Hence 
(10) states also that r P is exactly lim P. 

+---
We can now summarize the common properties of our typical cate-

gories. They are categories E with the following properties 

(i) E has all finite limits and colimits, 
(ii) E has exponentials, 

(iii) E has a subobject classifier 1 --+ o. 

A category E with these properties will be called an elementary tapas; 
in brief a topos (plural: topoi). Each topos is, in particular, a cartesian 
closed category. 

7. Propositional Calculus 

The propositional calculus considers "Propositions" p, q, r, ... com
bined under the operations "and", "or", "implies", and "not", often 
written as p II q, P V q, P =? q, and 'p. Alternatively, if P, Q, R, ... are 
subsets of some fixed set U with elements u, each proposition p may be 
replaced by the proposition u E P for some subset Pc U; the proposi
tional connectives above then become operations on subsets; intersection 
II, union V, implication (P =? Q is ,PIIQ), and complement of subsets. 
These four operations satisfy various identities, so that the subsets of 
U under these operations constitute a Boolean algebra. In this way a 
Boolean algebra is the algebraic correlate of the classical propositional 
calculus. If, instead, one takes the intuitionistic propositional calculus, 
as formalized by Heyting, one obtains a different algebraic system on 
the same operations II, V, =?, '; such a system is known as a Heyting 
algebra. The typical model is not the set of all subsets of some set, but 
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the set of all open subsets of some topological space X; in the model, 
the operations /\ and V still correspond to intersection and union, re
spectively, but the other two operations must be reinterpreted (in order 
to give open sets). Thus U ~ V is the largest open set W such that 
W /\ U C V, while -,U is the interior of the complement of U (the largest 
open set disjoint from U). 

We now formulate the exact definitions, beginning with the notion 
of a lattice. A lattice L is a partially ordered set which, considered as a 
category, has all binary products and all binary coproducts. If we write 
x, y, and z for objects of L, then x :s; y if and only if there is a (unique) 
arrow x -+ y, the coproduct of x and y is the least upper bound (or 
sup) x V y and the product is the greatest lower bound (or inf) x /\ y. 
If a lattice L has elements 0 and 1 such that 0 :s; x :s; 1 for all x E L, 
then 0 and 1 are the (unique) initial and terminal objects, respectively, 
of L, considered as a category. Thus a lattice with 0 and 1 is a partially 
ordered set which, considered as a category, has all finite limits and all 
finite colimits. 

A lattice with 0 and 1 can also be defined equationally, as a set with 
two distinguished elements 0 and 1 and two binary operations V and /\, 
both of which are both associative and commutative and which satisfy 
the added identities 

x /\ x = x, x V x = x, 

1/\ x = x, 0 V x = x, (1) 

x /\ (y V x) = x = (x /\ y) V x. 

These equations on the operations 

/\: L x L -+ L, V: L x L -+ L, 0, 1: 1 -+ L 

can be used to define a "lattice object" L in any category C with finite 
products. Here they follow from the above definitions of /\ and V in 
terms of the partial order. And, given these equations, the partial order 
can be recovered because x :s; y holds in L if and only if x = x /\ y (or, 
equivalently, y = x V y). 

A distributive lattice L is a lattice in which the identity 

x /\ (y V z) = (x /\ y) V (x /\ z) (2) 

holds for all x, y, and z. This identity implies the dual distributive law 

x V (y A z) = (x V y) A (x V z). (3) 

For, the right-hand side of (3) expands by (2) and then (1) to give, by 
associativity, 

(x V y) /\ (x V z) = [(x V y) /\ x] V [(x V y) /\ z] 

= x V [(x /\ z) V (y /\ z)] 

= [x V (x /\ z)] V (y /\ z) = x V (y /\ z). 
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A complement for an element x in a lattice L with 0 and 1 is an element 
a E L such that 

x 1\ a = 0, xVa=1. (4) 

In a distributive lattice a complement a, if it exists, is unique. For let b 
be another complement to x. Then 

b = b 1\ 1 = b 1\ (x V a) = (b 1\ x) V (b 1\ a) 

= (x 1\ a) V (b 1\ a) 

= (x V b) 1\ a = a. 

We denote the unique complement a of x, when it exists, by a = --'x. 

A Boolean algebra B is a distributive lattice with 0 and 1 in which 
every element x has a complement --'x; thus, 

x 1\ --,x = 0, x V --,x = 1. (5) 

One may readily verify the additional properties 

--, (x V y) = --,x 1\ --'y, --, (x 1\ y) = (--,x) V (--,y) , ( 6) 

--,--,x = x. (7) 

The identities (6) are called the DeMorgan laws. 
The partially ordered set of all the subsets of a given set is always a 

Boolean algebra. A basic theorem due to M. H. Stone asserts that every 
Boolean algebra is isomorphic to an algebra of some of the subsets of 
some set U. We will use this theorem in Chapter IX. 

8. Heyting Algebras 

A Heyting algebra H (also called a Brouwerian lattice) is a poset 
with all finite products and coproducts which is cartesian closed (as a 
category with products). In other words, a Heyting algebra is a lattice 
with 0 and 1 which has to each pair of elements x, y an exponential 
yX. This exponential is usually written as x :::::? y; by its definition it is 
characterized by the adjunction 

z::::: (x:::::? y) if and only if z 1\ x::::: y. (1) 

In other words, x :::::? y is a least upper bound for all those elements z 
with z 1\ x ::::: y; in particular, then, y ::::: (x :::::? y). Thus, in the usual 
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picture of a partially ordered set, x=? y lies above y, 

x=?y 

• 

• 
xAy 

but only so far above that its intersection with x is still x A y. For 
example, for any topological space X the set Open(X) of all open sets 
in X is a Heyting algebra: It is a lattice (under inclusion) because binary 
unions and intersections of open sets are open, as are the sets 0 and X. 
For two open sets U and V the exponential U =? V can be defined, as 
suggested by (1), as the union U Wi of all those open sets Wi for which 
Wi n U c V. Then, because intersection is distributive over arbitrary 
unions, 

(U Wi) n U = U(Wi n U) c V. 

Therefore, U Wi = (U =? V). 
A similar argument will show that any complete and (infinitely) dis

tributive lattice is a Heyting algebra. Here a lattice is said to be complete 
when, regarded as a category, it has all small limits and small colimits, 
i.e., all small products and coproducts. 

In a Boolean algebra, for all x, y, and z, 

z$.(-,xVy) ifandonlyif zAx$.y. 

Proof, only if: z A x$.( -,x V y) A x $. y A x $. y; if: z = z A 1 = 
z A (-,x V x) = (z A -,x) V (z A x) $. -,x V y. 

Hence a Boolean algebra has exponentials given by 

(x =? y) = -,x V y. 

This is the classical definition of material implication =? (for proposi
tions, p =? q is "not p or q"). Therefore, every Boolean algebra is a 
Heyting algebra. The converse does not hold; for example, the open sets 
in the real line form a Heyting algebra which is not Boolean (because 
the complement of an open set need not be open). 

Now we examine the identities valid in any Heyting algebra. For any 
cartesian closed category with objects X, Y, the unit and the counit of 
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the basic adjunction defining the exponential are natural transforma
tions 

x -+ (X x y)Y, y x X Y -+ X. 

For a Heyting algebra these become the inclusions 

x :::; (y =* (x 1\ y)), yl\(y=*x):::;x. (2) 

The properties 1 x ~ 1 and Xl ~ X of the exponential become 

(x =* 1) = 1, (3) 

Since the functor x =* ( - ) is a right adjoint, it preserves products, so 

(x =* (y 1\ z)) = ((x =* y) 1\ (x =* z)), (4) 

while the associative law for the product of objects implies X YxZ ~ 
(XY)Z which becomes 

((y 1\ z) =* x) = (z =* (y =* x)). (5) 

Also - 1\ Y is a left adjoint, so must preserve coproducts, as in 

((x V z) 1\ y) = ((x 1\ y) V (z 1\ y)). (6) 

This means that the underlying lattice of any Heyting algebra is dis
tributive. 

Intersection in any lattice is commutative. For a Heyting algebra H 
this means that, for all x, y, and z, 

z:::; (x =* y) iff z 1\ x:::; y iff x 1\ z :::; y iff x:::; (z =* y). 

Now - =* y (like any exponential) is a contravariant functor in the 
argument -. Hence, in this display we may regard - =* y on the right 
as a functor from H to HOP and on the left as a functor from HOP to H; 
the equivalence then asserts that the first - =* y is left adjoint to the 
second - =* y. Since any left adjoint preserves coproducts, this means 
that - =* y carries coproducts to products (coproducts in HOP), as in 
the identity 

((x V z) =* y) = ((x =* y) 1\ (z =* y)). (7) 

If one interprets x, y, and z as propositions, with 1\ as "and" and V as 
"or", all the equations (2) through (7) become familiar properties of the 
implication relation =* for propositions. 

In any Heyting algebra we define the negation of x as 

oX = (x =* 0). (8) 
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Thus "not x" means "x implies falsity" or "x implies absurdity". In 
view of the definition of =}, this can be rewritten as 

y :::; -,x iff y 1\ x = O. (9) 

In other words, in a complete lattice -,x is the union of all those y which 
meet x in O. For example, in the case of the Heyting algebra Open(X) of 
all open subsets of a topological space X, the negation -,U is the union 
of all open subsets of X which do not meet U, so is the interior of the 
set-theoretic complement of U; that is, the set-theoretic complement of 
the closure of U. Thus -,-,U is the interior of the closure of U, which 
may be larger than U, as for example when U is a suitable open subset 
of the line or the plane. This example shows that -,-,x need not equal x. 
Moreover, -,x is not necessarily a complement of x; though x 1\ -,x = 0, 
it may not be the case that x V -,x = l. 

Some of the familiar properties of negation still apply, as follows. 

Proposition 1. In any Heyting algebra H, 

x :::; -,-,x, x:::; y implies -,y :::; -,x, 

-,-,(x 1\ y) = -,-,x 1\ -'-'y. 

(10) 

(11) 

(11') 

Proof: Since x 1\ -,x = -,x 1\ x = 0, the first follows by (9). The 
second of (10) states that -,: H -+ HOP is a functor. Explicitly, if x :::; y, 
then x 1\ -'y :::; Y 1\ -'y = 0, so -'y :::; -,x, again by (9). This result and x :::; 
-,-,x gives -,-,-,x :::; -,x, while x :::; -,-,x holds for all x, hence for -,x, and 
so gives -,x :::; -,-,-,x. Hence, (11) holds. Furthermore, two applications 
of (10) to the inequality x 1\ y :::; x yield -,-, (x 1\ y) :::; -,-,x. Similarly, one 
derives -,-,(xl\y) :::; -'-'y; therefore, -,-,(xl\y) :::; -,-,xl\-,-,y. To show the 
converse inequality -,-,x 1\ -'-'y :::; -,-,(x 1\ y) we use the commutativity 
and associativity of the meet 1\, together with (9) and (11), as follows: 

-,-,x 1\ -'-'y :::; -,-,(x 1\ y) iff -,-,x 1\ -'-'y 1\ -,(x 1\ y) = 0 by (9), 

iff -'-'y 1\ -,(x 1\ y) :::; -,-,-,x by (9), 

iff -'-'y 1\ -,(x 1\ y) :::; -,x by (11), 

iff -'-'y 1\ -,(x 1\ y) 1\ x = 0 by (9), 

iff -,(x 1\ y) 1\ x:::; -'-'-'y = -'y by (9) and (11), 

iff -,(x 1\ y) 1\ x 1\ Y = 0 by (9). 

But in any Heyting algebra, the identity -,z 1\ z = 0 holds, as an imme
diate consequence of the definitions (1) and (8). 
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Proposition 2. In a Heyting algebra, if an element x has a com
plement, that complement must be -,x. 

For this reason, -,x is sometimes called the pseudo-complement of x. 

Proof: Suppose that x has a complement a, with x /\ a = 0 and 
x V a = 1. By the first of these equations, a ::; -,x. By the second and 
the distributive law, 

-,x = -,x /\ (x V a) = -,x /\ a; 

hence -,x ::; a. Combining these results, a = -,x, as asserted. 

Boolean algebras can be defined equationally, specifically by the as
sociative and commutative laws and the equations (7.1), (7.2), and (7.5) 
on the operations /\, V, -, and the elements 0 and 1. A corresponding 
result holds, in a more subtle way, for Heyting algebras; this will be used 
later to define Heyting algebra objects. 

Proposition 3. In a Heyting algebra H the implication, =}, satisfies 
the following identities, for all elements x, y, z E H: 

(x=}x)=l, 

x /\ (x =} y) = x /\ y, Y /\ (x =} y) = y, 

x=} (y /\ z) = (x =} y) /\ (x =} z). 

(12) 

(13) 

(14) 

Conversely, in any lattice L with 0 and 1 a binary operation =} satisfying 
these identities must be the implication of a Heyting algebra structure 
on the lattice L. 

Proof: Since y /\ x ::; x for all y, the definition of x =} x shows that 
(12) must hold. By the definition of =} again, x /\ y ::; (x =} y), while, 
by evaluation, x /\ (x =} y) ::; y; hence, the first of (13) holds. By the 
definition of =} once more, y ::; (x =} y), which gives the second of (13), 
while (14) is just (4), the fact that x=}- preserves products. 

The equations (12), (13), and (14) represent familiar properties of 
implication. Also (14) with z = x, when combined with (x =} x) = 1 
from (12), gives 

(x =} (y /\ x)) = x =} y. (15) 

Since (14) states that the operation (x =} -) preserves products, it also 
shows that (x =} -) preserves inequalities, so that 

a::; b implies (x =} a) ::; (x =} b). (16) 

For the converse of the proposition, we must show for any lattice that a 
binary operation =} satisfying equations (12), (13), and (14) necessarily 
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satisfies the definition of an exponential; in other words, that (12), (13), 
and (14) imply 

z:::;(x~y) ifandonlyif zl\x:::;y (17) 

for all x, y, and z. Given the left-hand inequality, the first part of (13) 
yields 

z 1\ x:::; (x ~ y) 1\ x = x 1\ Y :::; y, 

which is the right-hand inequality of (17). Conversely, given that in
equality, one has 

z = z 1\ (x ~ z) :s: x ~ z, 
z:S: [x ~ (z 1\ x)], 

[x ~ (z 1\ x)] :s: (x ~ y), 
z :s: (x ~ y), 

This completes the proof of (17). 

by (13), 

by (15), 

by assumption and (16), 

by transitivity. 

Proposition 4. A Heyting algebra is Boolean if and only if ....,....,x = x 
for all x E H, or, if and only if x V....,x = 1 for all x. 

Proof: Since the complement is unique in a Boolean algebra, x is 
the complement of ....,x, so the equation ....,....,x = x holds there. Conversely, 
in any Heyting algebra, by (8) and (7), 

....,(x Vy) = (x Vy) ~ 0 = (x ~ 0) 1\ (y ~ 0) = (....,x) 1\ (....,y). 

This is one of the DeMorgan laws (7.6). Now if also ....,....,x = x for all x, 
one has by this law 

x V....,x = ....,....,(x V ....,x) = ....,(....,x 1\ ....,....,x) 

= ....,0 

=1. 

Since always x I\....,x = 0, this shows that ""'x is a complement of x, and 
hence that H is indeed Boolean. 

The analogous characterization of Boolean algebras by x V....,x = 1 is 
immediate. The assertion x V ....,x = 1 is the famous "tertium non datur" 
of classical logic, doubted by intuitionists and constructivists. 

As already observed, negation is a functor ....,: H --+ HOP and also 
HOP --+ H. Since x S ""'y iff Y S "",x , this functor is adjoint to itself. 
Thus, a Heyting algebra is Boolean iff this adjunction is an equivalence 
(actually, an isomorphism). 

The relation between Heyting algebras and our typical categories 
discussed in §1-6 lies in the fact that the poset of subobjects of a given 
object in any such typical category is always a Heyting algebra (and 
sometimes a Boolean algebra). Most cases are taken care of by the 
following proposition. 
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-- cop 
Proposition 5. Consider the functor category C = Sets of a 

given small category C. For any object P of is, the partially ordered 
set Suba(P) of subobjects of P is a Heyting algebra. 

Proof: Under pointwise operations, the set Sub(P) of all subfunc
tors of P is a complete lattice, satisfying the infinite distributive law. 
Hence (as for open sets above), it is a Heyting algebra. We list the 
explicit description of the operations 1\, V, 0, 1, =}, and -', and leave 
further verification to the reader. If 8 and T are two given subfunctors 
of P, then their least upper bound 8vT and their greatest lower bound 
8 1\ T may be defined pointwise, as the functors 

(8 V T)(C) = 8(C) U T(C), 

(81\ T)(C) = S(C) n T(C), 

since S(C) and T(C) are both subsets of P(C). The implication S =} T 
is defined for C in C by 

(S =} T)(C) = {x E P(C) I for all f: D -+ C 

in C: if x . f E S(D) then x . f E T(D)} (18) 

(The pointwise definition doesn't work, because it doesn't give a sub
functor.) The largest and smallest subfunctors of P are respectively the 
functor P itself, and the empty functor ° [with o( C) = 0 for all Cj. 
Consequently, negation can be described explicitly for a subfunctor S as 

(-,S)(C) = {x E P(C) I for all f: D -+ C in C, 

X· f ~ S(D)}. 
(19) 

From the description of negation, it is clear that the identity -,SV S = 

P need not hold in general (e.g., take C = 2). 
In the particular case of BG = G - Sets for a group G [Example (iv) 

of §1]' a subobject of a given G-set X is just a subset S of X which is 
closed under the action by G (i.e., xES implies X· 9 E S for all 9 E G 
and x E X). If Sand T are two such subsets closed under the action, 
then so are S U T, S n T, and X - S = -,S. So, in this case, the Heyting 
algebra structure of Sub(X) is just the restriction of the usual structure 
on the power set of X. In particular, SubBc(X) is a Boolean algebra. 
The same reasoning applies to the category BG of continuous G-sets for 
a topological group G. 

A poset P is complete iff every subset of P has an 1. u. b. (a "sup" or 
a join) and a g.1.b. (an "inf" or a meet); actually it suffices to require 
the existence of all 1.u.b.s. Thus P is complete as a poset iff P as a 
category has all limits and all colimits. A complete poset is necessarily 
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a lattice with 0 and 1. We will often have to do with complete Heyting 
algebras (cHa's) and complete Boolean algebras (cBa's); they are, of 
course, Heyting or Boolean algebras which are complete as posets. The 
algebra Open(X) of all open subsets U of a topological space is a cHa 
with the usual sups. However, the inf of a family {Ui liE I} of open 
sets is just the largest open set contained in all the Ui and so is not 
usually the set-theoretic intersection of the sets Ui . 

9. Quantifiers as Adjoints 
Our discussion of the propositional calculus has indicated that the 

basic operations 1\, V, and =} of this calculus can all be described as 
adjoints. We turri now to the more subtle question of interpreting the 
quantifiers of the usual predicate calculus as adjoints, too. 

Consider quantifiers (Vx) and (:3x )~that is, "for all x" and "there ex
ists an x"~as applied to a predicate S(x, y), where x and yare elements 
of sets X and Y, respectively. If we regard S as the subset SeX x Y 
of those pairs (x,y) for which S(x,y) is true, then (Vx)S(x,y) similarly 
denotes a related subset T c Y consisting of all those y with every pair 
(x, y) E S. Writing p: X x Y ---* Y for the usual projection, we will 
denote this subset T, corresponding to (Vx)S(x, y), as VpS; similarly 
:lpS denotes the subset corresponding to (:lx)S(x, y). Now let PY be 
the Boolean algebra of all subsets T c Y and P(X x Y) the Boolean 
algebra of all S. Then PY and P(X x Y) can be viewed as categories, 
while the functions Vp and :3p , since they preserve the inclusion relation 
S C Sf between subsets, are functors 

(1) 

Theorem 1. For the projection p : X x Y --t Y, the functors :lp and 
Vp are respectively left and right ad joints to the functor p*: P(Y) --t 

P(X X Y) which sends each subset T c Y to its inverse image p*T 
under p. 

As usual, the inverse image is p*T = { (x, y) lyE T}; it may also 
be described as the pullback of T>---+ Y along p. 

Proof: For subsets SeX x Y and T c Y one evidently has 

p*T c S if and only if T c "IpS, 

S c p*T if and only if :lpS c T. 

Since p*T c S means exactly that the set Hom(p*T, S) in the category 
P(X x Y) is nonempty (with one element) and so on, these equivalences 
give precisely the asserted adjunctions. 

Much the same argument applies when the projection p is replaced 
by an arbitrary function f. 
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Theorem 2. For any function f: Z -+ Y between sets Z and Y the 
inverse image functor f* : PY -+ P Z between subsets has left and right 
ad joints, 3 f and V f· 

Proof: The left adjoint 3f assigns to each S c Z its image 3f S c Y, 
which may be described with a "there exists" as 

3 f S = {y I there exists a z with f z = y and z E S}. 

The right adjoint V f assigns to each S the set 

V f S = { y I for all z, if f z = y, then z E S}, 

described with a "for all". The proof that these are adjoints, as stated, 
is immediate. The notations 3 f and V f are chosen to match the special 
case of a projection f = p, when these adjoints correspond to ordinary 
quantifiers. 

The result (left adjoint on the left) is the diagram 

(2) 

Y, PY. 

This construction has provided adjoints for the operation f* of pulling 
back a subobject of a set Y. 

More generally, such adjoints exist not just for subsets S of a set Z 
but for arbitrary sets B over a given set Z. Indeed, for each function 
f: Z -+ Y, as in Theorem 2, consider the pullback functor 

f*: SetsjY -+ SetsjZ (3) 

defined for any set A over Y by 

u n2 

f*(A - Y) = A Xy Z ------+ Z. (4) 

If we identify a set A over Y with a Y-indexed family {Ay lyE Y} of 
sets, as in (1.8), the pullback functor (2) corresponds to "reindexing" via 
f: it sends a Y-indexed family {Ay lyE Y} to the Z-indexed family 
{Af(z) I z E Z}. 

Theorem 3. For any function f: Z -+ Y between sets, the pullback 
functor f*: SetsjY -+ SetsjZ has both a left and a right adjoint. 
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Proof: By the equivalences Sets/Y ~ SetsY and Sets/Z = SetsZ , 

we may as well prove that the reindexing functor 

f*: SetsY ---+ SetsZ , f*({Ay lyE Y}) = {Af(z) I Z E Z} 

has both adjoints. The left adjoint is 

defined for a Z-indexed family B = {Bz I z E Z} by 

(L:.f(B))y = L B z, (5) 
f(z)=y 

where L:. denotes the coproduct (disjoint union) of the sets B z . The right 
adjoint 

IIf: SetsZ ---+ SetsY 

is defined by a cartesian product II as 

(IIf(B))y = II Bz· 
f(z)=y 

(6) 

In words, given an indexed set B = {Bz I z E Z}, the indexed set 
L:.f(B) has at index y the coproduct of all the sets Bz for which J(z) = y. 
This set Bz is the "fiber" over z. Dually, IIfB is the product over the 
fibers. As for the proof that L:. f is left adjoint to f*, just observe that 
an indexed family of maps hy: (L:. f B)y ---+ Ay (y E Y) is the same thing 
as an indexed family of maps B z ---+ Af(z) (z E Z). The proof that IIf 
is right adjoint to the pullback f* is similar. 

More generally, suppose C is an arbitrary category with pullbacks. 
Then for each morphism of objects J: B' ---+ B in C, pulling back along 
J induces a functor between the corresponding slice categories 

f*: C / B ---+ C / B' (7) 

(the functor, of course, depends on the particular choice of the pull
backs). C/ B is also called the category of objects over the "base" object 
B, and a functor of the form (7) is also called a change of base functor. 
Theorem 3 is a special case of the following result: 

Theorem 4. Let C be a category with pullbacks, and let B be an 
object ofC. For each f: B' ---+ B, the change of base functor f* : C / B ---+ 

C / B' has a left adjoint; moreover, if C / B is cartesian closed, each such 
f* also has a right adjoint. 
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The left adjoint is given by composition with f. 
With r., the left adjoint and II, the right, the result is 

(8) 

B, CIB. 

We prove the theorem first in the case when B = 1 is the terminal object 
of C, so that C/l is just (isomorphic to) C, while pullback along the 
unique arrow B' -+ 1 is just the functor 

- x B': C -+ C I B', 

sending each object X to the object X x B' -+ B' over B' (by projection). 
Take any object h: Y -+ B' in CIB'. An arrow from this object Y -+ B' 
to X x B' -+ B' in C I B' is then just an arrow from Y to X in C; hence, 
a left adjoint to - x B' is the forgetful functor r.: C I B' -+ C given by 
r.(Y -+ B') = Y. 

On the other hand, an arrow from X x B' -+ B' to h: Y -+ B' in 
C I B' is just an arrow t: X x B' -+ Y in C such that ht is the projection 
X x B' -+ B'. By exponential adjunction, these arrows t correspond 
to those arrows t': X -+ y B ' for which h B ' 0 t' is the composite X -+ 

1 ~ B,B', where j arises by exponential adjunction from the identity 
B' -+ B'. These arrows t' in turn correspond by pullback exactly to the 
arrows til: X -+ fh, where fh is the pullback in the square 

1 I B,B'. 
j 

Therefore, fh, the pullback of hB ' along j, is the desired right adjoint 
to - x B'. 

Note that, if C = Sets, this pullback fh is just the set of those 
functions on B' to Y whose composite with h: Y -+ B' is the identity 
of B'; that is, the set of cross sections of the map h. Hence, in general, 
we might call fh the object of "cross sections" of the arrow h. 

Now return to the general case of any f: B' -+ B. This arrow f is 
also an object (1) in the slice category CIB; moreover, an object over 
(1) is just a commutative square 

X IB 

1 II 
B' ---:--->1 B , 
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and this square is determined by X ----+ B'; that is, by an object in C / B'. 
This correspondence is an isomorphism of slice categories 

(C/B)/(J) ~ C/B', 

and pullback along 1*: C / B ----+ C / B' = (C / B) / (J) is reduced to the 
previous case of an object [that is, the object (J)] in the cartesian closed 
category C / B. This proves Theorem 4. 

From this theorem we can conclude that pullbacks preserve colimits, 
in the following sense. 

Proposition 5. If Band B' are objects in a complete category 
C with pullbacks such that all the categories C, C / B, and C / B' are 
cartesian closed, then pullback along any arrow f: B' ----+ B preserves all 
colimits which exist in C / B. 

Proof: Since pullback is a functor with a right adjoint, by Theo
rem 4, it must, like all left adjoints, preserve colimits. 

When colimits are preserved, as in this case, by pullbacks, we say 
that they are stable under pullback. 

Notice, incidently, for a category C with products, that a cocone 
in the category C / B is a colimit there iff the corresponding co cone in 
C (obtained by forgetting the arrows to B) is a colimit in C. Indeed, 
the forgetful functor U: C / B ----+ C has a right adjoint B*: C ----+ C / B 
(product with B), hence preserves colimits. Conversely, the fact that if 
the co cone yields a colimit in C then it was already a colimit in C / B, 
follows immediately from the universal property of the colimit. 

As a consequence, note also that a map 

G IG' 

~/ 
B 

in C / B is an epi there iff G ----+ G' is an epi in C. Indeed, the square 

0----+1 Of 

1 11 (9) 

G' I G' 

consists of maps over B, and is a pushout in C / B iff it is a pushout in 
C. But (9) is a pushout in either category iff G ----+ G' is an epi there. 
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Exercises 

1. Show that pullbacks of epis are epi for categories of each of the 
types (i)-(ix). 

2. Prove that FinSetsN has no subobject classifier. 
3. For R a ring, prove that the category R - Mod of left R-modules 

has no subobject classifier. 
4. If A --t B is an equivalence of categories, prove that a subobject 

classifier for A yields one for B, and that A cartesian closed 
implies B cartesian closed. 

MOP 
5. (a) In BM = Sets for M a monoid observe that an object 

X is a right action X x M --t X of M on a set X and 
that, Y being another object, Hom(X, Y) is the set of 
equivariant maps e: X --t Y [maps with e(xm) = (ex)m 
for all x EX, m EM]. Prove that the exponent Y x is the 
set Hom(M x X, Y) of equivariant maps e: M x X --t Y, 
where M is the set M with right action by M, with the 
action e f--+ ek of k E M on e defined by (ek) (g, x) = 
e(kg,x). 

(b) For objects X, Y in SetseOP , for G a group, show that the 
exponent Y x can be described as the set of all functions 
f: X --t Y, with the right action of 9 E G on such a 
function defined by (fg)x = [f(xg-1)]g for x E X. 

6. Let G be a topological group and BG the category of continuous 
G-sets. Let GO be the same group G with the discrete topology. 
So BGo = Sets(e6 )OP is a category as considered in the previous 
exercise. Let ic: BG --t BGo be the inclusion functor. 

(a) Prove that a G-set (X,JL: X x G --t X) is in the image of 
ie, i.e., that JL is continuous, iff for each x E X its isotropy 
subgroup 

Ix = {g E G I x . 9 = x} 

is an open subgroup of G. 
(b) Prove that, for a GO-set (X,JL) as above, the set re(X) = 

{x E X I Ix is open} is closed under the action by G, 
and that re defines a functor BGo --t BG which is right 
adjoint to the inclusion functor ie. 

(c) Observe that ie preserves products, and conclude from (b) 
that BG is cartesian closed since BGo is. [Hint: define the 
exponential yX in BG by re(ie(y)iG(X)).] 
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7. In Exercise 6, show that the forgetful functor U: BG -+ Sets 
need not preserve infinite limits. 

8. Consider a small category C. For each object B of C there 
is a functor DB: C / B -+ C defined by taking the domain of 
each arrow to B. Hence, each T: cop -+ Sets yields TB = 
T 0 DOP: (C / B)OP -+ Sets. Define an exponential TS by 

with the evident evaluations eB: TS(B) x S(B) -+ T(B). Show 
that TS with this evaluation e is indeed the exponential in the 

.-... cop 

functor category C = Sets . 
9. Let Q be the (linearly) ordered set of all rational numbers con

sidered as a category, while R + is the set of reals with a symbol 
00 adjoined. In SetsQ , prove that the subobject classifier 0 has 
O(q) = {r IrE R+, r :::::: q}. 

10. Generalize Theorem 2 of Section 9 to presheaf categories. More 
precisely, prove that for a morphism (i.e., a natural transforma
tion) i: Z -+ Y in a = SetsCOP , the pullback functor 

has both a left adjoint :3f and a right adjoint Vf' [Hint: the left 
adjoint can be constructed by taking the pointwise image. De
fine the right adjoint V f on a subfunctor S of Z by V f (S) (C) = 
{y E Y(C) I for all u: D ---t C in C and Z E ZeD), Z E SeD) 
whenever iD(Z) = yu}.] 

11. Prove Proposition 5.1, that every functor P to sets is repre
sentable, by constructing for each P: cop -+ Sets a co equalizer 

u y(C') ~ U y(C) ~ P, 
u CEC 

C'--+C PEP(C) 
pEP(C) 

where U denotes the coproduct and for each object B the maps 
are defined for each v: B -+ C or C' as follows 

EB(C,P; v) = P(v)p, (}B(U,P; v) = (C,p; uv) TB(U,P; v) = (C',pu; v). 

(Hint: For each B, this gives a split co equalizer , as defined in 
[CWM, p. 146].) 



II 
Sheaves of Sets 

This chapter starts with the notion of a sheaf F on a topological 
space X. Such a sheaf is a way of describing a class of functions on X
especially classes of "good" functions, such as the functions on (parts 
of) X which are continuous or which are differentiable. The description 
tells the way in which a function f defined on an open subset U of X 
can be restricted to functions flv on open subsets V c U and then 
can be recovered by piecing together (collating) the restrictions to the 
open subsets Vi of a covering of U. This restriction-collation description 
applies not just to functions, but also to other mathematical structures 
defined "locally" on a space X. 

Alternatively, a sheaf F on X can be described as a rule which 
assigns to each point x of the space a set Fx consisting of the "germs" 
at x of the functions to be considered, as defined in neighborhoods of 
the point x. The sets Fx for all x can then be "pasted" together by a 
suitable topology so as to form a space (or bundle) projected onto X; 
an individual "good" function (for this sheaf) is then a "cross section" 
of the projection of this bundle. Viewed in this way, the sheaf F is a set 
Fx which "varies" (with the point x) over the space X. 

The letter F is often used for a sheaf because in French the word for 
"sheaf" is "faisceau". 

We will show that the category Sh(X) of all sheaves of sets on a 
given space X has all the properties listed in Chapter I for our "typical" 
categories (i.e., for topoi). Much of the subsequent development of the 
properties of topoi from the axioms is motivated by geometrical con
siderations from this case of sheaf theory. This chapter is intended to 
develop some of the sheaf-theoretic intuition behind this development. 

Readers familiar with sheaf theory might wish to skip this chapter; 
they should then note that we emphasize sheaves of sets, and not just 
those of abelian groups or of modules, and that a sheaf is defined here to 
be a suitable contravariant functor on open sets, and not the associated 
(etale) space of the sheaf, as described in §5 below. 

64 
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1. Sheaves 

A topology on a set X serves to define the continuous functions there; 
for example, the continuous functions from the space X to the reals R, 
or from any open set U in X to R. The continuity of each f: U --> R 
can be determined "locally". This means two things: 

(i) If f: U --> R is continuous and V c U is open, then the function 
f restricted to V is continuous, flv: V --> R. 

(ii) If U is covered by open sets Ui, and the functions fi: Ui --> R 
are continuous for all i E I, then there is at most one continuous 
f: U --> R with restrictions flu; = fi for all i; moreover, such 
an f exists if and only if the various given fi "match" on all the 
overlaps Ui n Uj , in the sense that fix = fJ x for all x E Ui n Uj 

and all i, j in I. 

Property (ii) states that continuous functions are uniquely "collat
able". 

Many other structures on a space X are "determined locally" in 
much the same sense. These properties (i) and (ii) can be conveniently 
expressed in terms of the function C which assigns to each open U c X 
the set of all real-valued continuous functions on U, 

C(U) = CU = {f If: U --> R continuous}. (1) 

For V C U, the operation of (i) restricting each f to the subset V, 
written as f 1--+ flv, is a function CU --> CV, while if We V c U are 
three nested open sets, restriction is transitive, in that Ulv)lw = flw. 
These two statements mean that the assignments 

U 1--+ CU, {V C U} 1--+ {CU --> CV by f 1--+ fld 

define a functor c: O(X)OP --> Sets. Here O(X) is the category with 
objects all open subsets U of X and arrows V --> U the inclusions V c U. 
The statement that C is such a functor expresses property (i) above. 

As for property (ii) for an open covering U = U Ui , an I-indexed 
family of functions fi: Ui --> R, i E I, is an element of the prod
uct set I1 CUi, while the assignments {Ii} 1--+ {filu;nuj } and {Ii} 1--+ 

{!jluinuj } define two maps p and q of I-indexed sets to (I x I)-indexed 
sets, as in the diagram 

CU --'"--> II CUi ~ II C(Ui n Uj ). (2) 
i,j 

Then property (ii) above states that the map e given by f 1--+ {flu'} 
is the equalizer of the maps p and q (i.e., is the universal map e with 
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pe = qe). A sheaf will be defined below to be a functor C such that (2) 
is an equalizer for all coverings U = U Ui · 

We have described this particular C as a sheaf of sets; it is actually 
a sheaf of algebras over the field R or a sheaf of R-modules, because 
each set CU is an algebra over R under pointwise sum, product, and 
scalar multiple, while the maps p, q and e of (2) are R-linear morphisms 
of rings. Hence, in this case, the statement that (2) is an equalizer is 
equivalent to the statement that the sequence of R-modules 

o ~ CU -"-----+ II CUi ~ II C(Ui n Uj ) (3) 
i i,j 

is left exact (Le., that e is the kernel of p - q). 
There are many other examples of sheaves on a space X; for example, 

the functor D with each D(U) the set of all functions, continuous or not, 
on U to R, or I(U), the set of all continuous functions on U to the unit 
interval I in R. However, the set B(U) of all bounded functions on U to 
R is a functor of U but not a sheaf, because the collation of functions 
which are bounded may yield an unbounded function. 

For the Euclidean n-space X = R n there are a number of examples 
of sheaves. For U open in R n let C k U be the set of all f: U ----+ R which 
have continuous partial derivatives of all orders up to order k inclusive. 
Then C k is a functor C k : O(X)OP ----+ Sets with values in Sets or in 
R-Mod, and (2) 

with C replaced by C k is again an equalizer because differentiability 
is local. Thus, each C k is a sheaf on R n. This leads to a nested sequence 
of subsheaves on R n : 

C= c ... C C k C C k - 1 C ... C C 1 C CO = C. 

We will regard a sheaf as a functor, that is, as a special kind of a 
presheaf Here a presheaf of sets P on a topological space X is defined 
to be a functor P: O(X)OP ----+ Sets; that is, a presheaf on X is the same 
thing as a presheaf on the category O(X), as defined in §I.l. This means 
that each inclusion V C U of open sets in X determines a function 

P(V c U) : PU ----+ PV, (4) 

which we will often write for each t E PU as t f--t t/v, just as if it were 
restriction of an actual function t. Moreover, (tlv)lw = tlw whenever 
WcVcU. 

Definition. A sheaf of sets F on a topological space X is a functor 
F: O(X)OP ----+ Sets such that each open covering U = Ui Ui , i E I, of 
an open set U of X yields an equalizer diagram 

FU --~--> II FUi ~ II F(Ui n Uj ), 

i,j 
(5) 
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where for t E FU, e(t) = {tlUi liE 1} and for a family ti E FUi, 

p{ti } = {til(uinuj)}' q{td = {tjl(uinuj)}· 

A morphism F --t G of sheaves is a natural transformation of func
tors. Sh(X) will denote the category of all sheaves F of sets on X, with 
these morphisms as arrows; so, by definition, Sh(X) is a full subcate-

- O(X)OP gory of the functor category O(X) = Sets . A separated presheaf 
is a functor F, as above, such that the map e in (5) is injective, (i.e., 
a monic in Sets), though not necessarily the equalizer of p and q. For 
example, the functor B, with each B(U) the bounded real-valued con
tinuous functions on U, is a separated presheaf but not a sheaf. 

Since an arrow into a product is determined by its components (its 
composites with the projections of the product), the maps e, p, and q of 
the diagram (2) are the unique maps which make the diagrams below 

FUi F(UinUjCUi» F(Ui n Uj ) 

/r r 
FU ---~---> II FUi ::::~::::~ II F(Ui n Uj ) (6) 

~i 1 i,j 1 
FUj F(UinUjCUj» F(Ui n Uj ) 

commute for all i, j E 1, where the vertical maps are the (various) pro
jections of the products in question. This categorical description of the 
equalizer diagram means that our definition applies with Sets replaced 
by other suitable categories, and so defines sheaves F: O( X)OP --t C of 
C-objects on a space X, where C is any category with all small products. 
The classically useful cases are sheaves of abelian groups, of rings, and 
of R-modules and R-algebras, for various rings R. Sheaves of modules 
are important as coefficients for the cohomology of a space. 

Note that the definition of a sheaf implies that every sheaf F must 
send the empty set (/) onto a one-point set {*}. For, in any space X the 
empty open set (/) has an empty cover (1 = 0); since a product lli over 
an empty index set 1 is the one-point set {*}, the equalizer (5) becomes 
F(0) --t {*} =4{ *}, so F(0) = {*}, as asserted. 

A subsheaf of a sheaf F on X is defined to be a subfunctor of F 
which is itself a sheaf. The local character of a sheaf is exhibited by the 
following description of a subsheaf: 

Proposition 1. If F is a sheaf on X, then a subfunctor S c F 
is a subsheaf if and only if, for every open set U and every element 
f E FU, and every open covering U = U Ui , one has f E SU if and only 
if flu i E SUi for all i. 
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Proof: The stated condition is clearly necessary for S to be a sheaf. 
Conversely, consider the commutative diagram 

with vertical maps monic and bottom rowan equalizer. The last con
dition of the proposition states precisely that the left-hand square is a 
pullback. It follows by a diagram chase that the top row is an equalizer. 

If f: X --- Y is a continuous map of spaces, then each sheaf F on X 
yields a sheaf f*F on Y defined, for V open in Y, by (f*F)V = F(f-l V); 
that is, f*F is defined as the composite functor 

O(y)OP ~ O(X)OP ~ Sets. 

This sheaf f*F is called the direct image of F under f. The map f* so 
defined is clearly a functor 

f*: Sh(X) --- Sh(Y). 

Also (fg)* = f*g*, so the definition Sh(f) = f* makes Sh a functor on 
the category of all small topological spaces. In particular, if f: X --- Y 
is a homeomorphism, f* gives an isomorphism of categories between 
sheaves on X and sheaves on Y. 

Let U be an open set in the space X. Any sheaf F on X, restricted to 
open subsets of U, is clearly a sheaf Flu on U. In this way, U f---+ Sh(U) 
and U ::> V f---+ (Flu f---+ Flv) define a contravariant functor on O(X). In 
fact, since the notion of a sheaf is "local", this functor is itself almost a 
sheaf: 

Theorem 2. If X = U Wk is an open covering of the space X, and 
if, for each k, Fk is a sheaf of sets on Wk such that 

(7) 

for all indices k and C, then there exists a sheaf F on X, unique up 
to isomorphism, with isomorphisms Flwk ~ Fk for all indices k, which 
match on the equation (7). 

Proof: Write Fki for the sheaf (7) on W k n Wi. If the desired sheaf 
F exists, then for each open U one must have an equalizer 

FU ----- IT Fk(U n Wk) ===t IT Fki(U n W k n Wi). (8) 
k k~ 
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Take this as the definition of each set FU. If U "J V, a comparison 
with the equalizer definition of FV gives a unique map FU ~ FV, 
and, with these maps as the restrictions, F is a functor on O(X)OP, 
so is a presheaf. To prove it a sheaf, consider any covering Ui of U 
and construct the commutative 3 x 3 diagram with first column FU ~ 
I1 FUi:::::l I1 F(UinUj) and with rows the definitions, like (8), of FU and 
FUi . Then all these rows and (Fk being a sheaf) the last two columns are 
equalizers. A simple diagram chase resembling that for the 3 x 3 lemma 
(see [Mac Lane, 1963, Lemma XII.3.3]) then proves that the left-hand 
column is an equalizer, so that F is indeed a sheaf. Uniqueness up to 
isomorphism is evident from the similar uniqueness of the equalizer (8). 

Many explicit sheaves can be constructed from the local pieces Fk , 

according to the instructions contained in the proof of this theorem. A 
more liberal version of Theorem 2 is stated in Exercise 8. 

Another method of constructing sheaves on a space X is given by 
Theorem 3 below. Let B c O(X) be a basis for the topology on X. So 
for any point x E X and any open set U containing x, there is a basic 
open set B E B with x E B cU. Moreover, we shall assume that B is 
closed under finite intersections (but this is not strictly necessary, cf. the 
Appendix, §4). B can be viewed as a full subcategory of O(X), so it 
makes sense to speak of presheaves on B, i.e., functors F: BOP ~ Sets. 
Such a functor F is called a sheaf on B if for any basic open set B E B 
and any open cover B = UiEI Bi of B by basic open sets Bi E B, the 
diagram 

i,j 
(9) 

analogous to (5), is an equalizer diagram. A morphism of sheaves on B 
is a natural transformation; so one obtains a category Sh(B) of sheaves 
on B. Clearly, any sheaf F: O(X)OP ~ Sets on X restricts to a sheaf 
on B, and this process defines a functor r: Sh(X) ~ Sh(B). 

Theorem 3. For a basis B of the topology on a space X, the re
striction functor r: Sh(X) ~ Sh(B) is an equivalence of categories. 

More informally, this theorem says that a sheaf F on X, or a map 
T; F ~ G between sheaves on X, may equivalently be defined by spec
ifying the values F(U), or the components TU, only for basic open sets 
U. This theorem is a special case of a result in the Appendix. We leave 
a direct proof to the reader as Exercise 4. 

2. Sieves and Sheaves 

On any space X, each open set U determines a presheaf Hom( - , U) 
defined, for each open set V, by 
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Hom(V, U) = { ~ if V c U 
(1) 

otherwise, 

where 1 is the one-point set. This presheaf is clearly a sheaf; it is the 
representable presheaf y(U) = Hom( -, U) on the category O(X). Re
call from §I.4 that a sieve S on U in this category is defined to be a 
subfunctor of Hom( - , U). Replacing the sieve S by the set (call it S 
again) of all those V c U with SV = 1, we may also describe a sieve 
on U as a subset S c O(U) of objects such that Va eVE S implies 
Va E S. Each indexed family {Vi cUI i E I} of subsets of U generates 
(= "spans") a sieve S on U; namely, the set S consisting of all those 
open V with V c Vi for some i; in particular, each Va C U determines 
a principal sieve (Va) on U, consisting of all V with V C Va. It is not 
difficult to see that a sieve S on U is principal iff the subfunctor S of 
y(U) is a subsheaf (Exercise 1). A sieve Son U is said to be a covering 
sieve for U when U is the union of all the open sets V in S. 

In the definition of a sheaf, we may replace open coverings by cov
ering sieves, as follows: 

Proposition 1. A presheaf P on X is a sheaf if and only if, for 
every open set U of X and every covering sieve S on U, the inclusion 
is: S ----> yU of functors induces an isomorphism, 

Hom(yU, P) ~ Hom(S, P). (2) 

(Here each Hom is the set of natural transformations.) 

Proof: For any presheaf P on the space X and any covering of an 
open set U by Ui , we can construct the equalizer E in the diagram 

E ~ IT PUi ====t IT P(Ui n Uj ). 

i,j 

Specifically, E consists of those families of elements Xi E PUi with 
xiluinUj = Xjluinuj for all pairs of indices (i,j). Now replace the cover
ing Ui by the corresponding sieve S, consisting of all open sets V with 
V c Ui for some i, and for each V define Xv to be Xi I v. By the as
sumption that the Xi match on intersections Ui n Uj , the Xv so defined 
are independent of the choice of the index i with V CUi' Therefore, 
the equalizer E can be described as the set of those families of elements 
Xv E PV for V E S with xviv i = Xv' whenever V' C V. Now regard 
S as a functor O(X)OP ----> Sets with SV = 1 for those V E Sand 
SV = 0 otherwise. Each element Xv E PV is then a map SV ----> PV, so 
the equalizer E is now described as the set of natural transformations 
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(): S --+ P [where ()v (1) is xv]. Next use the inclusion is: S --+ yU to 
form the diagram 

Hom(S,P) d 
1 II PUi * II P(Ui n Uj) 

u,j"1 
. i,j 

Ie (3) 

Hom(yU,P) 
y IPU, 
~ 

where y is the isomorphism given by the Yoneda lemma, while the maps 
e, p, and q are described as before in (1.2), and the equalizer d is the 
function which sends each natural transformation (): S --+ P to the fam
ily ()u; (1) E PUi of its values, for i E I. 

For this diagram, one verifies that the square in the middle always 
commutes, so that e does, in fact, always factor through the equalizer d 
of p and q. Therefore, P is a sheaf (i.e., e is the equalizer) if and only if, 
for every covering Ui , the left-hand vertical map (is)* is an isomorphism, 
where S is the corresponding covering sieve. 

This proposition has the theoretical advantage of describing sheaves 
wholly in terms of objects (presheaves and sieves) of the category of 
presheaves. It also slightly simplifies some proofs of facts about sheaves. 
Moreover, it will be used as a definition of sheaves in terms of a more 
general notion of covering (Chapter III). 

As said before, the category Sh(X) for the space X is a full subcat
egory of the functor category (the category of pres heaves ) SetsO(X)OP: 

(4) 

We will soon see (§5) that this inclusion functor has a left adjoint. This 
will imply the second part of 

Proposition 2. For any space X the category Sh(X) has all small 
limits, and the inclusion of sheaves in presheaves preserves all these 
limits. 

A direct proof is easy. First consider equalizers. Given two maps 
F =t G of sheaves, take their equalizer E --+ F =t G as presheaves. Now 
for any presheaf P the hom-functor Hom(P, - ) preserves limits (and in 
particular, equalizers). Hence for any covering sieve S on U, the rows 
of the commutative diagram 

Hom(yU, E) ----tl Hom(yU, F) =====4l Hom(yU, G) 

111 
Hom(S, E) ----+1 Hom(S, F) ====::::t~ Hom(S, G) 
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are equalizers in Sets. The vertical maps are those induced by the 
inclusion is: S -+ yU and the diagram commutes (for two squares on the 
right, the square with both upper horizontal arrows or both lower). Since 
F and G are sheaves, the two right-hand vertical maps are isomorphisms. 
Our diagram is now like a map of two left exact sequences of modules, 
and a simple diagram chase, like that used to prove the well-known "five 
lemma" of homological algebra, shows that the left-hand vertical map is 
an isomorphism. Therefore, E is a sheaf; since E -+ F is the equalizer 
in presheaves, it is immediate to verify that it is also the equalizer in 
sheaves. 

This argument has used the second description of sheaves by condi
tion (2); the proof can be given in terms of the original covering descrip
tion by means of a bigger (3 x 3) diagram. Similar arguments produce all 
other small limits in Sh; indeed it is enough [CWM, p. 109] to construct 
all equalizers (as above) and all small products; in particular, an argu
ment like that above shows that the pointwise product of two sheaves 
is a sheaf and that the terminal presheaf 1 is a sheaf. In each case, 
given a diagram in Sh(X), we regard it as a diagram in SetsO(X)OP; we 
take the limiting object in SetsO(X)OP, show that it is actually a sheaf, 
and conclude that this sheaf, with its limiting cone, is also the limit in 
Sh(X). In the terminology of [CWM, p. 108], this amounts to showing 
that the inclusion (4) of sheaves in presheaves creates limits. A similar 
result for a more general case will appear in Proposition 111.4.4. 

Recall that a sub sheaf of a sheaf F was defined in §1 to be a sub
functor of F which is itself a sheaf. 

Corollary 3. A subobject of a sheaf F in the category Sh(X) is 
isomorphic to a subsheaf of F. 

Proof: Let the given subobject be represented by an arbitrary 
monic m: H,......... F in Sh(X). Now in general, m is monic iff m fits into 
a pullback square 

H-"""m.,..----tl F 

in Sh(X) (cf. §1.2). Hence, by Proposition 2, this square is a pullback in 

the category O(X) of presheaves on X. But pullbacks in this category 
are computed pointwise, so m is a pointwise monic map. Hence, each 
set H(U) is isomorphic to a subset S(U) of F(U), so H is isomorphic to 
the subfunctor S of F (and this sub functor is necessarily a sheaf since 
His). 
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Next, observe that open sets are just the subsheaves of 1. 

Proposition 4. For any space X, there is an isomorphism 

O(X) ~ Subsh(x)(1) 

73 

(5) 

of partially ordered sets (in fact, of Heyting algebras); here 1 is the 
constant sheaf 1 = Hom( -, X) as in (1) above. 

Proof: Given any open set W of X, define a functor 8w on open 
sets U by 8w (U) = 1 if U ~ Wand 8w(U) = 0 otherwise. This functor 
is clearly a sheaf, so it defines a subsheaf of 1. Conversely, let 8 be 
a subsheaf of 1 (by the corollary, any 8>--+ 1 can be thus represented). 
Each 8(U) is then either 1 or 0. Since 8 is a functor, 8(U) = 1 for some 
U and V ~ U imply 8(V) = 1. And by the equalizer condition (5) of 
§1, if {Ui liE I} is an open cover of U and 8Ui = 1 for all i, then 
8U = 1. Thus, if we let W = U{ U E O(X) I 8U = 1}, then for all 
open sets U, 8U = 1 iff U ~ W. That is, 8 = 8w . Thus, W f--+ 8w 
is the desired bijection O(X) ~ SUb(1). It is clearly order-preserving, 
hence an isomorphism of partially ordered sets. 

This result shows that the partially ordered set of the open subsets 
of a topological space X can be recovered from the category Sh(X)-as 
the set of all subobjects of the terminal object 1 of Sh(X). In this sense, 
the category of sheaves of sets on a space X determines the topology 
of X. 

3. Sheaves and Manifolds 

The purpose of this section is to give some examples of sheaves arising 
in the context of manifolds. The specific properties of manifolds and the 
related sheaves will not be used at other places in this book, and the 
reader who wishes to do so may skip this section. 

The invariant description of manifolds may be suggested by the case 
of the 2-sphere 8 2 . The sphere is initially described as the subset x 2 + 
y2 + Z2 = 1 in R 3 , but it can also be described intrinsically, without 
reference to the ambient space R3. Omitting the north pole n E 8 2 , the 
stereographic projection is a homeomorphism cjJ: 8 2 - {n} --t R 2 , and 
similarly 'l/J: 8 2 - {s} --t R2 for s, the south pole. We get all of 8 2 by 
taking these two homeomorphic copies 8 2 - { s} and 8 2 - { n} of R 2 and 
pasting them together along the common part 8 2 - { s, n}. Moreover, we 
can test a function on 8 2 for continuity, differentiability, etc., by testing 
it separately on each of these two parts. In this way, using Theorem 1.2, 
we get the sheaf of continuous functions on 8 2 , the sheaf of differentiable 
functions on 8 2 , and hence the various smooth structures on this sphere. 
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This exemplifies the way in which manifolds and functions on them can 
be constructed by pasting together Euclidean pieces. 

A topological n-manifold M is a space which is locally like Rn; this 
suggests that manifolds involve sheaves; they do. Specifically, an n
dimensional manifold M (see [Dold, Chapter VIII]) is a second count
able Hausdorff space such that each point q E M has an open neighbor
hood V homeomorphic to an open set W c Rn. Such a homeomorphism 
¢: V ---- W eRn is called a chart for M; moreover, a function is contin
uous on V c M when its composite with ¢-l is continous on We Rn; 
in this way, the chart determines the sheaf Cv of continuous functions 
on V as the direct image Cv = (¢ -1) * Cw. In particular, the n coordi
nate projections R n ---- R, restricted to Wand composed with ¢, yield 
n coordinate functions Xl, ... , Xn: V ---- R called the local coordinates 
for the chart ¢. Conversely, these n functions determine the chart, as 
that continuous map V ---- R n which has the components Xi: V ---- R. 
(This map to R n is then restricted to its image W in R n.) 

An atlas for M is an indexed set {¢i: Vi ---- Wi} of charts such that 
the domains Vi cover M. Any such atlas determines M as a topological 
space. Two charts ¢i and ¢j of an atlas may "overlap" on the set Vi n Vj, 
as in the diagram 

Wi Vi Vi Wj 

CI ¢i CI) ¢>j [) 

I' ¢>ij 1 ¢>j i ·1 
The chart ¢i gives by composition with inclusion Vi n Vj c Vi ---

Wi a homeomorphism ¢ij: Vi n Vj ~ Wij from the overlap to some 
open set Wij C Wi eRn, and ¢j gives a (different) homeomorphism 
¢ji: Vi n Vj ~ Wji to a different open set Wji C Wj of R n. Thus, 
for each ordered pair of indices (i,j) we have a composite "transition" 
function 

i, j E I (1) 

mapping one open set of R n into another one, homeomorphic ally. 

Pictorially, M may be obtained by taking all the open sets Wi of R n 

and pasting the Wij c Wi to Wji c Wj together by the "transition" 
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functions (1). Formally, consider the diagram 

UVinVj~UVi~M, (2) 
i,j i 

where Ui designates the coproduct (disjoint union) in Top, 'Y sends 
each point x E Vi to the same x E M, while a (or fJ) sends each point 
Xij in Vi n Vj to the same Xij in Vi (or Vj). It is immediate to prove 
that M is the coequalizer of a and fJ in this diagram in the category 
Top of topological spaces. The parallel to the definition of sheaves is 
immediate. 

Smooth manifolds are treated similarly. Take "smooth" to mean C k 

(i.e., with k continuous derivatives) for some k, possibly k = 00. Then 
for each open set W in R n there is the set Ck(W) of all smooth functions 
W --+ R and hence the sheaf ctv of all smooth functions to R defined 
on open subsets of W. For two open sets Wand W' in R n a function 
1l1: W --+ W' is said to be smooth iff every composite go1l1 with a smooth 
real-valued function g: W' --+ R is smooth; it is sufficient to require 
that all the composites Xi 0 111 with one of the coordinate functions Xi, 
i = 1, ... , n are smooth. For the corresponding sheaves this means that 
every f: W~ --+ R smooth on an open subset W~ of W' has a composite 
f 0 (1l1Iwo ) smooth on Wo = 1l1-1 W~. In other words, composition with 111 
gives a map ctv, --+ 111 * (ctv) of sheaves on W'. A smooth n-dimensional 
manifold is now defined to be a topological n-manifold M with an atlas 
such that all the transition functions rPjirPi/ of (1) are smooth. This 
definition is not "invariant" because there are many choices of an atlas 
for M; however, each smooth atlas can be enlarged to a maximal such 
smooth atlas, and this maximal atlas is invariant. 

The homeomorphism rPi serves to transfer "smooth" on Wi eRn to 
"smooth" on Vi C M; this gives the sheaf Cf of all smooth functions 
on (open subsets of ) Vi, The required smoothness conditions on the 
transition functions insure that the sheaves Cf and CJ agree when re
stricted to the overlap Vi n Vj. Therefore, just as in Theorem 1.2, the 
sheaves Cf can be collated to give the sheaf C k of all smooth functions 
on (open subsets of) M. It is a subsheaf of the sheaf C of continuous 
functions, moreover, its restriction to each Vi is the sheaf Cf. Thus, 
each smooth manifold carries a structure sheaf, its sheaf C k of smooth 
functions. Like C k on R n, it is not just a sheaf of sets, but a sheaf of 
R-algebras (in particular, a sheaf of rings). 

A smooth n-manifold M can now be redefined as a second countable 
Hausdorff space together with a subsheaf 8 = 8 M of the sheaf CM of 
continuous functions on M with the property that each point p E M 
has an open neighborhood V and n functions Xl, ... ,Xn E 8V such that 
the map rP: V --+ R n with components the Xj is a homeomorphism to 
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an open set W c R n , and such that this homeomorphism carries the 
sheaf Ck in W isomorphically onto Siv [i.e., so that f is smooth on V, 
meaning f E S(V), if and only if fcfJ- 1 is smooth on W]. This sheaf
theoretic definition of a manifold has the advantage that it is invariant 
and that it exhibits directly the smooth structure in terms of all the 
smooth functions (on all open subsets). 

If M and N are smooth manifolds, a smooth map h: M ---+ N is a 
continuous map such that f smooth on an open subset V of N implies 
fh smooth on h-1V C M. In other words, the map CN ---+ h*(CM) 
of sheaves on N given by composition with h sends the subsheaf SN 
into h* (S M ). We write Homck (M, N) for the set of all such smooth 
h: M ---+ N; with these hom-sets, the set of all smooth manifolds is 
a category. Any open subset of a smooth manifold is again a smooth 
manifold, and the coequalizer diagram (2) can be reinterpreted as a 
co equalizer diagram in the category of all smooth manifolds. For fixed 
M and N, the assignment 

U f---+ Homck(U,N), U open in M, 

is a pre sheaf on M which is actually a sheaf because the smoothness of 
h: U ---+ N can be tested on the individual sets of any open covering of 
U. It is called the sheaf (of germs) of smooth maps of M to N. 

Many other basic constructions used in the geometry of manifolds 
lead to sheaves. An example is the tangent bundle for a Coo manifold. 
It may be constructed from the tangent vectors to "paths" in M. At 
each point q E M we consider simultaneously the smooth functions 
f: V ---+ R defined in some open neighborhood of q and the smooth 
paths h: R ---+ V in that neighborhood which pass through q, with 
h(O) = q. Then fh: R ---+ R is smooth, so has at 0 ERa first derivative 
d(fh)/dtlt=o. Consider the resulting pairing 

(3) 

and define the equivalences f == l' at q to mean that (f, h)q = (f', h)q 
for all h, and h == h' at q to mean that (f, h)q = (f, h')q for all f. The 
resulting equivalence classes of functions f form a real vector space Tq 
(under addition and scalar multiples of functions). An element of this 
space Tq = TqM is called a cotangent vector at the point q; in particular, 
each function f determines such a vector dqf. The equivalence classes 
of paths h are called tangent vectors T at q, so that each smooth path h 
through q has a tangent vector at q, say Th. By the pairing (3) above, 
each tangent vector T determines a linear map 
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In this way, the set Tq of all tangent vectors at q is isomorphic to the 
set of all linear maps Tq --t R; that is, to the dual of the vector space 
Tq. As the (linear) dual of a vector space, the tangent space Tq is thus 
itself a vector space. By (3) and the Leibniz rule for the derivative of a 
product, the map L = Lor satisfies a corresponding product rule 

L(fg) = (fq)Lg + (gq)Lf (4) 

for all f, g E SUo A tangent vector at q can be defined to be a suitable 
linear map L with this property; we have not followed the custom of 
using this definition because we prefer the above treatment in which 
tangent and cotangent vectors enter in an even-handed way. 

In local coordinates Xl, ... ,Xn (and with the usual local coordinate 
t on R) the familiar formula for the derivative of a composite function 
expresses the pairing (3) as 

where the partial derivatives are evaluated at q and at t = O. Each 
cotangent vector dqf at q thus has n (real) coordinates (of /aXi)q. This 
gives n coordinate functions, written 0/ aXl, ... , 0/ axn , for every cotan
gent space Tq with q E V, and n dual coordinates dXl,"" dXn for every 
tangent space Tq; both spaces are n-dimensional and the formula above 
is essentially the usual one for the differential df. 

The picture is completed by putting all the tangent spaces together in 
one bundle; thus the tangent bundle T M is the disjoint union llq TqM in 
the category of sets of all the tangent spaces, together with the projection 
p: T M --t M sending each tangent vector to the point q at which that 
vector is defined. The tangent bundle as a set is locally a product 
because over the open base V of a smooth chart rP: V --t W eRn, 
the function rP induces a bijection rPl: p-l V ~ W x Rn. If Xl, ... , Xn 
are local coordinates for V, one then has (XIP, ... , xnp, dXl,"" dxn ) as 
2n local coordinates on P -1 V. Take the open sets on T M necessary 
to make all such local coordinates continuous; these charts make T M 
a topological 2n-manifold. If "smooth" means Coo, then choosing the 
¢1 as the smooth charts makes TM a Coo-manifold and p: TM --t M 
smooth. Moreover, each "fiber" p-l{q} of the smooth projection map p 
is a vector space TqM (i.e., the tangent space at q). With this structure, 
p: T M --t M is a vector bundle in the sense defined in §4 below. 

With this notion of tangent bundles, one has a direct definition of 
"vector fields". A vector field X on an open set U of the smooth manifold 
M is a smooth map X: U --t T M such that the composite pX is the 
identity (more exactly, is the inclusion U eM). Such a map X is also 
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called a cross section over U of the bundle p: T M ----* M. This definition 
agrees with the intuitive idea that a vector field attaches to each point 
q E M a tangent vector Xq at q, in such a way that this vector "varies 
smoothly" with q. The study of vector fields is a notable branch of 
topology, as witness the famous theorem that there is no nonvanishing 
continuous vector field on 8 2 and the famous calculation of the exact 
number of linearly independent vector fields on 8 n for all n [Adams, 
1962]. The function sending each U to the set FU of all vector fields on 
U is a sheaf on M, the sheaf of vector fields on M. It is a subsheaf of 
the sheaf of all smooth maps M ----* T M. 

The cotangent bundle T* M is another smooth manifold, constructed 
in the corresponding way from the cotangent spaces Tq M. A differential 
I-form w on an open set U in M is again defined as a cross section: A 
smooth map w: U ----* T* M such that the composite U ----* T* M ----* M 
is the identity. These form a sheaf of differential I-forms on M. Each 
smooth f: M ----* R determines a particular I-form df, defined as that 
function which sends each q to the congruence class dqf (as defined 
above) of f in Tq M. If in this construction each cotangent space Tq M 
is replaced by its pth exterior power, one obtains the bundle and the 
sheaf of differential p-forms. Similarly, tensor products of TqM and 
TqM yield sheaves of tensors on M. 

Other types of manifolds may be treated similarly, the most impor
tant being the case of complex analytic manifolds. Let e be the field 
of complex numbers. If U is open in en, a function h: U ----* e is holo
morphic on U when it has a convergent power series expansion in some 
neighborhood of each point of U. Thus, h holomorphic on U and V c U 
implies that hl v is holomorphic on V. Moreover the notion "holomor
phic" is local: h is holomorphic on U if and only if it is holomorphic on 
every set Ui of some open covering of U. These properties define a sheaf 
Hon en 

HU = {h: U ----* e I h holomorphic}. 

It is clearly a sheaf of rings (and of e-algebras). 
Starting from this, one defines a complex analytic n-manifold M: A 

real 2n-manifold with an atlas cPi: Ui ----* Wi c en for i E I for which 
all the transition functions are holomorphic. Each such manifold carries 
then as structure sheaf the sheaf of holomorphic functions. This case 
differs from that of smooth manifolds chiefly because two holomorphic 
functions h, k: D ----* e on a connected open set D of the complex plane 
equal on some open subset of D are equal on all of D. 

Both smooth and complex analytic manifolds are examples of ringed 
spaces. A ringed space X is a topological space equipped with a fixed 
sheaf R of rings, called the structure sheaf A morphism f: (X, R) ----* 

(X', R') of ringed spaces is a continuous map f: X ----* X' together with 
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a homomorphism 0:: R' -+ f*(R) of sheaves of rings (see §7). (In the 
examples above, 0: was given by composition with f.) These spaces 
with these morphisms form a category, useful in treating "manifolds 
with singularities". In this way, additional structure on a space is often 
presented in terms of a "structure" sheaf on that space. 

4. Bundles 

For any space X, a continuous map p: Y -+ X is called a space over 
X or a bundle over X. Put differently, these bundles are the objects of 
the slice category Top / X, while an arrow f: p -+ p' of this category is 
a continuous map f: Y -+ Y' with p' f = p. A cross-section of a bundle 
p: Y -+ X is a continuous map s: X -+ Y with ps = 1; that is, it is an 
arrow from the identity X -+ X to Y -+ X in the category Top/X. For 
each x EX, the inverse image p -1 X is called the fiber of Y over x. It 
is convenient to think of a bundle as the indexed family of fibers p-1x , 
one for each point x E X, "glued together" by the topology of Y. 

If U is an open subset of the base space X of a bundle p: Y -+ X, 
then p restricts to a map Pu: p-1U -+ U which is a bundle over U; 
moreover, the square diagram 

U----+) X 

with horizontal arrows the inclusions, is a pullback diagram in Top. A 
cross-section s of the bundle Pu, also called a cross-section of the bundle 
paver U, is a continuous map s: U -+ Y such that the composite ps is 
the inclusion i: U -+ X. Let 

r pU = { sis: U -+ Y and ps = i: U eX} 

denote the set of all such cross-sections over U. If V <:;;; U, one has a 
restriction operation r pU -+ r p V, so r p( - ) defines a functor O(X)OP -+ 

Sets. Also, one may test "locally" whether or not a given function s on 
U is a cross-section. Hence, r p is a sheaf of sets on X, called the sheaf 
of cross-sections of the bundle p (one often writes ry for r p). In this 
way, every bundle over X leads to a sheaf on X. Also, each map p -+ p' 
of bundles over X induces a map r p -+ r p' of sheaves on X, so r is a 
functor from bundles to sheaves. In the next section, we will see that 
every sheaf on X can be so regarded as a sheaf of cross-sections of some 
bundle. In the present section we will simply exhibit some examples of 
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bundles and their sheaves of cross-sections: sheaves over discrete spaces, 
vector bundles, principal bundles, associated bundles, and etale bundles. 

First, a discrete example: Let F be a sheaf on a space X which is 
discrete (every subset of X is open). Then each one-point set {x} is 
open, so F determines a function I: X ---> Sets by I x = F ( { x } ). Any 
open subset U is covered by the sets {x} for x E U, so 

FU -------+ II F({x}) ~ 1 
xEU 

is an equalizer, and therefore FU = TIxEu Ix. The space 

Y=Ulx~X 
xEX 

with the discrete topology, and the projection p sending each W E Ix to 
x E X, is then a (discrete) bundle over X with fibers Ix. Moreover, FU 
is the set of cross-sections of p over U eX. Any function I: X ---> Sets 
determines a discrete bundle over X in this way, and a sheaf of cross
sections. [One obtains an equivalence of categories Sh(X) ~ Sets/X, 
which is nothing but the familiar equivalence from §I.1(9).] 

If X is any topological space and L is any real vector space, regarded 
as a topological space, and if X x L has the usual product topology, the 
projection X x L ---> X is a bundle over X, called a product vector 
bundle. A cross-section is just a continuous map X ---> L. A (real) 
vector bundle Y over X is defined to be a bundle p: Y ---> X which is 
"locally" a product bundle of vector spaces in the sense that 

(i) For each x E X, the fiber p-1x is a real vector space. 
(ii) Each point x E X has an open neighborhood V for which there 

is a real vector space L and an isomorphism ¢ in Top/V, linear 
on each fiber, as in 

(1) 

X:J V====v. 

For a smooth manifold M, the tangent, cotangent, differential form, 
and tensor bundles are all real vector bundles in this sense, with isomor
phisms (1) given by local coordinates. 

In a vector bundle Y ---> X, the vector space operations of addition 
and scalar multiple are continuous. For the scalar multiple, this simply 
means that the map RxY ---> Y given by (r, y) ---> ry, the scalar multiple 
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by r ERin the fiber, is continuous. For the operation of addition, more 
must be said because the sum Yl + Y2 is defined only for two points Yl 
and Y2 on the same fiber. To say this, construct the pullback Y Xx Y 
of p over p in Top 

Y xxY 1 Y Y X X Y --+'-----+1 Y 

1 """~ lp 1 lp (2) 

Y -----,p,-----rl x, X x. 

Its points are precisely the pairs (Yl, Y2) with PYl = PY2; that is, the 
pairs which can be summed. It is a space over X, as indicated by 
the dotted arrow, while vector addition is, as displayed at the right, a 
function +: Y x X Y --> Y of spaces over X. Because of the isomorphisms 
(1), it follows that this function + is continuous, i.e., defines an arrow 
in the category Top / X. 

Let G be a topological group. A (continuous) right action of such a 
group G on a space Y (a G-space) is a continuous map a: Y x G --> Y 
with the usual (associative and unit) properties. Two points y, Y' in Y 
are equivalent in Y (under the action of G) when Y' = yg for some 9 E G; 
the quotient space Y / G is the set of equivalence classes (or orbits) of 
points of Y, with the quotient topology. The function p sending each Y 
to its orbit gives a bundle p: Y --> Y/G = B. Let Y XB Y denote the 
pullback of p over p. Now Y x G has two maps to Y, by projection and 
by the given action. These two maps combined as ()( y, g) = (y, yg) 
yield a continuous map () to a pullback, as in 

Y x G --=(}--tl Y X B Y ----rl Y 

1 lp (3) 

Y -----,p:----rl B. 

Then p is called a principal G-bundle (and the action of G on Y is called 
a principal action) when () is a homeomorphism Y x G ~ Y XB Y. The 
condition that () is a bijection can be split into two: First, yg = yh 
for g, h E G implies 9 = h; we say that G acts freely. Second, for 
a pair of points y, y' in the same fiber of Y there exists an element 
9 E G with yg = y'; we say that G acts transitively on the fibers; then 
each fiber is homeomorphic to G. For example, the Stiefel manifold is 
a principal Ok-bundle for the orthogonal group Ok, with base space the 
Grassmann manifold. For further examples we refer to [Husemoller] 
and [Steenrod]. 

From a principal bundle with fiber G one can construct another 
bundle with fiber any given G-space F, as follows. Let b: G x F --> F be 
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a continuous left action of the group G on a space F. Given a principal 
G-bundle p: Y -+ B as above, form in Top the coequalizer e as in the 
diagram 

axl 
Y x G x F =====+~ Y x F _-,,-e---tl Y 09c F 

lxb Pil (4) 

Y ---,p,----+l B. 

Thus e identifies in Y x F all pairs (yg, I) = (y, gl) for y E U, 9 E G, 
f E F; its codomain is written Y 09c F to suggest the analogy with a 
tensor product Y 09R F of (right and left) modules over a ring R. Here 
PI is the projection of Y x F on its first factor Y, so that the composite 
PPI also co equalizes a x 1 and 1 x b in the diagram. Therefore, there 
exists a unique continuous map p': Y 09c F -+ B which make the square 
in (4) commute, and the fiber of the bundle p' is G 09c F ~ F. This 
bundle p' is called the bundle with fiber F associated to the principal 
bundle p. We refrain from developing further properties. 

Another type of bundle is a "covering". A covering map p: X -+ X 
is a continuous map between topological spaces such that each x E X has 
an open neighborhood U, with x E U C X, for which p- l U is a disjoint 
union of open sets Ui , each of which is mapped homeomorphic ally onto 
U by p. Thus a covering map is a local homeomorphism in a strong 
sense. For example the 1-sphere SI (circle) has, for each n > 0, an n
fold covering by itself, where p: SI -+ SI is e27ri() f-+ e27rin(), so winds the 
first circle n times around the second one; the real line covers the circle 
by p: R -+ SI, t f-+ e27rit ; in this case any open connected U C SI, not all 
of SI, has p- l U the union of denumerably many copies of U. Similarly, 
the plane R x R covers the torus SI x SI. A covering X is said to be 
universal if X is simply connected. A connected space X has a universal 
covering X -+ X provided X is locally simply connected in the large (to 
each point x E X there is a neighborhood U such that any closed path 
in U contracts in X to a point). All other connected coverings X can 
be obtained as quotients of the universal one; see [Massey]. 

The consideration of holomorphic functions H of one complex vari
able also leads to a bundle and to the notion of a Riemann surface. A 
function h holomorphic in an open set U of the complex plane C deter
mines at each point a E U a series h(z) = 2:~=o cn(z - a)n, convergent 
in some circular disc Iz - al < r about a; moreover this power series 
in turn determines the whole function h. Now form a space R whose 
points are the pairs (a, 2: cn(z - a)n) consisting of a point a E C and 
a power series (with complex coefficients cn) converging in some non
trivial circular disc about a. Let II: R -+ C map this pair to a E C. 
Topologize R by taking the following basis of open sets N: To each point 
(a, h = 2:: cn(z - a)n) of R and to each disc Iz - al < r about a in which 
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the power series converges, let the corresponding neighborhood N con
sist of the points (b, I:C~(z - b)n) for b in the disc and I: c~ (z - b)n the 
power series expansion of the function h at z = b, i.e., the same function 
h, expanded at b. Then II: R --+ C is continuous, and a (continuous) 
cross-section k of II over an open set U C C assigns to each b E U 
a power series (and hence a holomorphic function) converging in some 
circle about b. Moreover, the topology on R insures that these power 
series "fit" together at nearby points; hence the above cross-section k is 
exactly a function holomorphic on the domain U. In other words, holo
morphic functions are exactly continuous cross-sections k, and k can be 
described as the "analytic continuation" of the power series h above. 
Actually, we should enlarge the complex plane C to the Riemann sphere 
by adding the usual one point at 00, and enlarge R correspondingly to 
R+, adding over infinity the power series I: cn / zn convergent for Izl > r, 
for some r. Then the Riemann surface of a holomorphic function k, as 
above, is just the (largest) path-connected component of R+ containing 
the set k(U). Then R+ --+ {C, oo} is a space which puts together all 
Riemann surfaces. As we will see in the next sections, the consideration 
of this space over {C, oo} is equivalent to the considerations of the sheaf 
of holomorphic functions on {C, 00 }. This is the sense in which analytic 
continuation and Riemann surfaces provide an early example of sheaves. 

5. Sheaves and Cross-Sections 

The proof that every sheaf is a sheaf of cross-sections of a suitable 
bundle depends on the idea of a "germ" of a function. Two holomorphic 
functions h, k: U --+ C are said to have the same "germ" at a point 
a E U if their power series expansions around a are the same; this 
implies that hand k agree on some neighborhood of a. In other cases, 
convergent power series expansions may not exist, but one may still 
say that two continuous (real-valued, say) functions f and 9 have the 
same "germ" at a point x if they agree in some open neighborhood of x; 
thus germxf = germxg implies fx = gx, but not necessarily conversely. 
More generally, consider any presheaf P: O(X)OP --+ Sets on a space 
X, a point x, two open neighborhoods U and V of x, and two elements 
s E PU, t E PV. We say that sand t have the same germ at x when 
there is some open set W C Un V with x E Wand slw = tlw E PW. 
This relation "has the same germ at x" is an equivalence relation, and 
the equivalence class of anyone such s is called the germ of s at x, in 
symbols germxs. Let 

Px = {germxs I s E PU, x E U open in X } (1) 

be the set of all germs at x. Then, letting pex ) be the restriction of the 
functor P: O(X)OP --+ Sets to open neighborhoods of x, the functions 
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germx : PU -+ Px form a cone on p(x) as on the right of the figure below 
[because germxs = germx(slw) whenever x EWe U and s E PU]. 
Also, if { TU: PU -+ L }xEU on the left below is any other cone over p(x), 
the definition of "same germ" implies that there is a unique function 
t: Px -+ L, 

PU 

1 
PW 

(/~ 
with to germx = T. This just states in detail that the set Px of germs 
is the colimit and germx the colimiting cone of the functor P restricted 
to open neighborhoods of x: 

Px = lim pu. 
----+ 
xEU 

(2) 

This statement summarizes the definition of "germ". The set Px of all 
germs at x is usually called the stalk of P at x. Moreover, any morphism 
h: P -+ Q of presheaves (any natural transformation of functors) induces 
at each point x E X a unique function hx: Px -+ Q x such that the 
diagram 

PU __ h,,-u---tl QU 

germ x 1 1 germx (3) 

commutes for any open set U with x E U. It follows that P f---+ Px , 

h f---+ hx is a functor SetsO(X)OP -+ Sets, "take the germ at x". 
Now combine the various sets Px of germs in the disjoint union Ap 

(over x EX), 

Ap = U Px = {all germxs I x EX,s E PU}, (4) 
x 

and define p: Ap -+ X as the function sending each germxs to the point 
x where it is taken. Then each s E PU determines a function s by 

s: U -+ Ap , x E U; (5) 
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moreover, s is a section of p. In this way, each element s of the original 
presheaf can be replaced by an actual function s to the set Ap of germs. 
Topologize this set Ap by taking as a base of open sets all the image sets 
s(U) cAp; thus an open set in Ap is a union of images of the sections 
s. This topology makes both p and every function s continuous. If 
s E PU and t E PV determine sections sand i which agree at some 
point x E U n V, then the definition of germ shows that the set of all 
those points y E un V where sy = iy is an open set W C Un V, such 
that s I w = i I w. This proves that each s is continuous; it is trivially an 
open map and an injection. Hence s: U ---> S(U) is a homeomorphism. 
Finally, if h: P ---> Q is a natural transformation between presheaves, the 
disjoint union of the functions hx: Px ---> Qx of (3) is a map Ap ---> AQ 
of bundles, readily shown continuous. Thus P f-+ Ap is a functor from 
presheaves to bundles. 

The bundle p: Ap ---> X so constructed is a local homeomorphism, 
in the sense that each point of Ap has an open neighborhood which is 
mapped by p homeomorphic ally onto an open subset of X. Specifically, 
each point germxs has the open neighborhood SU, and p restricted to 
SU has s: U ---> sU as a two-sided inverse, hence is a homeomorphism 
to U. 

The space Ap of such a bundle is usually not Hausdorff. For example, 
let P be the sheaf of continuous real-valued functions on the real line 
R, and compare the two functions 9 with gx = 0 for all x and I with 
Ix = x 2 for x 2: 0 and Ix = 0 for x < O. Then at the origin 0, 
germol -=I- germog because I and 9 differ in every neighborhood of 0, 
but germd = germtg if t < 0, so that every neighborhood of germol 
must intersect every neighborhood of germog-namely, in one of these 
points germd. In the special case of a sheaf H of holomorphic functions 
of a complex variable, germxl = germxg implies that I and 9 agree on 
an open set V containing x, hence on any connected open set containing 
V; from this it follows that the space AH is Hausdorff. 

N ow consider for a given presheaf P the sheaf rAp of sections of the 
bundle Ap ---> X. For each open subset U of X, there is a function 

TJU: PU ---> rAp(U), TJU(s) = s. 

The process of restricting s to an open subset of U clearly matches the 
TJ'S, so TJ is a natural transformation of functors 

TJ: p--->roAp . (6) 

Theorem 1. If the presheaf P is a sheaf, then TJ is an isomorphism, 
P~ rAp. 

In other words, every sheaf is a sheaf of cross-sections. 
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The proof uses both parts of the condition (ii) on collation of ele
ments in the definition (§1) of a sheaf. 

First we show that TJu is an injection; that is, that 

B = i implies s = t, s, t E FU. (7) 

For B = i means that germ",s = germ",t for each x E U, so there is, 
for each x, an open set V", C U with slvx = tlvx. These open sets 
V", cover U, so that the given elements sand t have the same image 
in PU ---t TI", PV",. By the first part of the condition (ii) on collation, 
s = t. 

Next let h: U ---t Ap be any cross-section of the bundle of germs over 
some open set U. Then for each point x E U there is an open set U", 
and an element s'" E PU", such that 

Now h is continuous and B",U", is by definition an open subset of the 
bundle Ap , so there must be an open set V", C U with x E V", C Ux and 
hV", C BxU",; that is, with h = B", on Vx. Thus, we have a covering of 
the open set U by open sets V", and an element s",lvx in each PV",. On 
each pairwise intersection V", n Vy, the functions Bx and By agree with 
h and hence with each other. This means that germzsx = germzsy for 
z in Vx n VY ' so that sxlvxnvy = sylvxnvy by (7) above. The family of 
elements Sx thus has the same image under both of the standard maps 
IT PVx ~ IT P(Vx n Vy). Therefore, by the second part of the collation 
conditions (ii) there exists an s in PU with slvx = Sx. Then at each x, 
h(x) = germxsx = germxs, so h = B; the arbitrary cross-section is thus 
in the image of TJ. This proves that TJ is an isomorphism. 

Theorem 2. For any presbeaf P, tbe corresponding morpbism 
TJ: P ---t rAp of presbeaves in (6) is universal from P to sbeaves. 

This means that if F is a sheaf and e: P ---t F is any map of 
presheaves, there is a unique map u: rAp ---t F of sheaves such that 
u 0 TJ = e: 

(8) 

Proof: Since TJ: F ---t rAp is an isomorphism by Theorem 1, one 
may define a map u: rAp ---t F of sheaves as u = TJ- 1rA(1, so that in 
the following diagram (9), 
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(9) 
F ---'rJ:---+) r AF 

the bottom triangle commutes. Since ry is natural, the outer square 
of (9) also commutes; so aory = B as required since ry: F --+ rAF is 
an isomorphism. It remains to prove that a is unique. We state this 
separately as a lemma. 

Lemma 3. Let P be a presheaf on X, and let a, T: rAp --+ F be 
two maps into a sheaf Fan X. If 0'0 ry = TOry: P --+ F, then a = T. 

Proof: Consider an open set U and a section hEr Ap(U). If x E U, 
then there exist a neighborhood Vx of x and an element Sx E P(Vx) 
such that h( x) = germx (sx); and, as in the proof of Theorem 1, we can 
choose Vx so small that hl vx = Sx = ryvJsx). Thus, a(h)lvx = a(hlvJ = 

ary(sx) = Try(Sx) = T(hlvJ = T(h)lvx' Since these sets Vx (for x E U) 
form a cover of U and F is a sheaf, it follows that a(h) = T(h). But h 
was an arbitrary section of Ap , so we proved that 0'= T. 

Notice that in the proof of Lemma 3, we have used only that F is a 
separated presheaf, not necessarily a sheaf. 

Corollary 4. For any topological space X, t~category Sh(X) of 

sheaves of sets on X is reflective in the category O(X) of presheaves on 
X. 

Proof: Here reflective means that the inclusion functor 

Sh(X) )---t SetsO(X)OP = O(X) 

has a left adjoint. But Theorem 2 asserts precisely that the composition 
r 0 A is such a left adjoint, with the universal map ry as the unit of this 
adjunction. 

The left adjoint functor 

r A: SetsO(X)OP --+ Sh(X) 

is known as the associated sheaf functor, or the sheafification functor. It 
carries each presheaf P on X to the "best approximation" rAp of P by 
a sheaf. 

This associated sheaf functor is left exact, in the sense that it pre
serves all finite limits. Indeed, both of the functors r and A used to 
define it are left exact (Exercise 6). 
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6. Sheaves as Etale Spaces 

The construction of sheaves as sheaves of cross-sections of a bundle 
suggests that a sheaf F on X can effectively be replaced by the corre
sponding bundle p: AF -+ X. We have seen that this bundle is always 
a local homeomorphism; conversely, any such bundle (called an "etale" 
bundle) can be reinterpreted as a sheaf. 

A bundle p: E -+ X is said to be elale (or elale over X) when p 

is a local homeomorphism in the following sense: To each e E E there 
is an open set V, with e EVe E, such that pV is open in X and 
plv is a homeomorphism V -+ pV. Thus the vicinity of the fiber over 
each x E X in case X = R2 can be pictured as a serving of shishkebab: 
Through each point of the fiber there is a horizontal open disc on which 
the projection p is a homeomorphism to a disc in R2. The discs at 
different points of the fiber (pieces of lamb or onion, say) may come in 
very different sizes. All these servings over different points x E X are 
'jlued together" by the topology of E. In particular, a covering space 
X -+ X is etale, and in this case all the discs on anyone fiber can be 
taken of the same size. As we will see, there are many etale maps which 
are not coverings. On the other hand, a projection X x R -+ X of a 
product with the reals can never be an etale map, because no product 
neighborhood is projected homeomorphically into X. For much the same 
reason, a nontrivial vector bundle is evidently never etale. 

If p: E -+ X is etale and U c X is open, the pullback Eu -+ U as 
in 

Eu -------+) E 

1 ip (1) 

is also etale over U. A section of E will always mean a section s of 
Eu for some open U; that is, a continuous s: U -+ E such that the 
composite ps is the inclusion U eX. 

Contemplation of the definition of "etale" yields the proof of 

Proposition 1. For p: E -+ X etale, both p and any sections of 
p are open maps (carry open sets to open sets). Through every point 
e E E there is at least one section s: U -+ E, and the images sU of all 
sections form a base for the topology of E. If sand t are two sections, 
the set W = {x I sx = tx} of points where they are both defined and 
agree is open in X. 

Now bundles over X and presheaves on X may be compared as 
follows. 
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Theorem 2. For any space X there is a pair of adjoint functors 

Top/X =BundX ( : ) SetsO(x)"p; (2) 

here r assigns to each bundle p: Y -+ X the sheaf of all cross-sections 
of Y, while its left adjoint A assigns to each presheaf P the bundle of 
germs of P. There are natural transformations 

'f/P: P -+ rAP, Ey: Ary -+ Y, (3) 

for P a presheaf and Y a bundle which are unit and counit making A in 
(2) a left adjoint for r. If P is a sheaf, 'f/p is an isomorphism, while ifY 
is eta1e, Ey is an isomorphism. 

Proof: The natural transformation 'f/p has already been constructed 
in §5, in the inevitable way, sending each s E PU to the corresponding 
cross-section i;: U -+ Ap . 

For Ey we also use the inevitable construction. Given a bundle Y -+ 

X, each point of the corresponding etale bundle Ary has the form SX 
for some point x E X and some actual cross-section s: U -+ Y of the 
given bundle. The "inevitable" definition of E is 

EY(SX) = sx E Y, xE U, s E ryu. (4) 

This definition is independent of the choice of s, for if some other section 
t: V -+ Y has the same germ, SX = tx at x, then s = t on some 
neighborhood of x, so sx = tx. Similarly, one verifies the continuity of 
Ey: Ary -+ Y; it is therefore a map of bundles. It is also natural in Y. 

The space Ary is in general much bigger than Y; for example, a 
vector bundle over X is by no means etale over X (two cross-sections of 
Y may intersect at just one point). However, when Y is etale over X, Ey 

is an isomorphism, as we may prove by constructing an inverse By. To 
each point y of Y with py = x there is an open neighborhood U of x in 
X and a cross-section s: U -+ Y passing through y, so with sx = y. We 
define Byy = SX E ArY, and verify readily that this is independent of 
the choice of the cross-section s and that By: Y -+ Ary is continuous. 
It is manifestly a 2-sided inverse for Ey of (4). 

Next we observe that 'f/ and E have the property that both composites 

7)r r€ A7) €A 
r ---+ rAr --; r, A ---+ ArA --; A (5) 

are identities. For example, given a bundle Y over X and a cross-section 
s E ryu, the first composite in (5) sends s first to S E r AryU and 
thence, via E, back to s. Similarly the second composite is germxs f-+ 
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germxs f-t SX = germxs, for x E X and s a cross-section over some open 
neighborhood of x. 

From these two identities on TJ and f it follows formally that f is 
left adjoint to A; indeed, these are the two "triangular identities" for an 
adjunction, which show that TJ and f are respectively the unit and the 
counit of an adjunction. This completes the proof of the theorem. 

Let Etale X be the full subcategory of the category Bund X = 
Top / X consisting of etale bundles. 

Corollary 3. The functors f and A from Theorem 2 restrict to an 
equivalence of categories 

Sh(X) ( ) Etale X. (6) 

Moreover, Sh(X) is a reflective subcategory of SetsO(X)OP (as already 
asserted in Corollary 5.4), and Etale X is a coreflective subcategory of 
BundX. 

The second part of the corollary states that the inclusion functor 
Sh(X) >---+ SetsO(X)OP has a left adjoint, and that the inclusion functor 
Etale X >---+ Bund X has a right adjoint. 

The proof of the corollary from Theorem 2 is an easy purely formal 
exercise, which may be formulated as the following condition that an 
adjunction restricts to an equivalence of suitable subcategories. 

Lemma 4. Consider an adjunction (left adjoint on the left) 

A:P~8:f. (7) 

which satisfies the following two conditions on unit TJ and counit f: 

B E 8 implies that 'T/r B: f B -+ f Af B is an isomorphism, (8) 

PEP implies that fA?: Af AP -+ AP is an isomorphism. (9) 

Let Po be the full subcategory ofP with objects P all those isomorphic 
to some fB, while 8 0 is that full subcategory of 8 with objects those 
B isomorphic to some AP. Then A and f restrict to an equivalence of 
these subcategories, as in the top row of the diagram 

Ao: Po ( ) 8 0 : fo 

il lj (10) 

A: p( )8: f 

moreover, Po is reflective in P and 8 0 is coreflective in 8. 
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Proof: The hypotheses (8) and (9) show that the unit and counit, 
when restricted to Po and 8 0 , do satisfy the triangular identities and 
are isomorphisms, so give the asserted equivalence of Po to 8 0 , Now let 
i: Po -t P and j: 8 0 -t 8 be the inclusions of the full subcategories, as 
in (10). Since the image of A is in 8 0 , it restricts to a functor A': P -t 80 

with jA' = A, and the original adjunction restricts to an adjunction 

A': P~80: rj. 

Therefore, composing this last adjunction with the equivalence in the 
top row of (10) makes roA' left adjoint to rjAo, where jAo = Ai and 
r Ai S:! i by the hypothesis (8). In other words, roA' is left adjoint 
to the inclusion i: Po -t Pj this means that Po is indeed a reflective 
subcategory of P (which by definition means that the inclusion Po >--+ P 
has a left adjoint). An analogous proof shows that 8 0 is coreflective in 
8. 

This lemma applies in our case, first, because cross sections of any 
bundle B give a sheaf rB, while Tip is an isomorphism for any sheaf F, 
as required in (8), and, second, any presheaf P determines a bundle AP 
which is etale, while by Theorem 2 fB is an isomorphism whenever the 
bundle B is etale, as required by (9) above. 

There is a different, more conceptual, way to construct the bundle
presheaf adjunction of Theorem 2. Each open set U of a topological 
space X immediately gives an inclusion U>--+ X and hence a functor 
A: Open X -t Top / X, as in the diagram 

O(X)OP R Sets <------- Top/ X (U >--+ X) 

,1/ /. 
O(X) U 

Then each bundle p: Y -t X determines a presheaf R(p), with 

R(p)(U) = Hom(A(U),p: Y -t X) = HOmTopjX(U -t X, Y -t X). 

But R(p)(U) is then exactly the set of cross sections of p over U, so 
R(p) = r(p) is the cross-section functor. The Theorem 1.5.2 then states 
that this functor has a left adjoint A', described there as a colimit. 
Since the left adjoint is unique up to equivalence, this left adjoint A', 
constructed here using colimits of bundles, must be isomorphic to the 
left adjoint A constructed using germs as in Theorem 2 above. 

As a consequence of the equivalence of sheaves on X and etale bun
dles over X, every sheaf can be viewed as a sheaf of cross-sections. 
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Indeed, for each sheaf F consider the associated etale bundle AF ~ X 
over X; after replacing each set FU by the isomorphic set of sections 
of AF over U, we can assume that each element s E FU is an actual 
section s: U ~ AF of the bundle, and for W c U that the restriction 
map FU ~ FW is the actual restriction of a section. In the notation 
above, this amounts to identifying each s with s, so that sx = germxs 
for every x in the domain of s. 

Corollary 5. Given sheaves F and G over X, a morphism h: F ~ 
G of sheaves may be described in anyone of the following three equiva
lent ways: 

(a) as a natural transformation h: F ~ G of functors; 
(b) as a continuous map h: AF ~ AG of spaces (bundles) over X; 
(c) as a family hx: Fx ~ Gx offunctions, on the respective fibers over 

each x E X, such that, for each open set U and each s E FU, the 
function x f--+ hx (sx) is continuous U ~ AG. 

Condition (c) can be reformulated as follows: As a map h: AF ~ AG 
of sets over the set X such that each composite h 0 s is continuous on U. 

Proof: We already have the equivalence of the descriptions (a) and 
(b). Given the hu: FU ~ GU natural in U, determine the functions 
hx: Fx ~ Gx as in the diagram (5.3). Since sx = germxs for s E FU 
and x E U, the diagram (5.3), with P, Q there replaced by F, G, yields 

therefore, for x E U, the function x f--+ hxsx is hus E GU, hence is 
continuous. Conversely, the family of hx satisfying these continuity con
ditions determine hu and, by disjoint union over the fibers, the map 
h: AF ~ AG of bundles. 

This last point of view, of sheaf maps h: F ~ G in terms of stalk 
maps hx: Fx ~ Gx, is convenient, for example, when one describes epis 
and monos in the category of sheaves. 

Proposition 6. A map h: F ~ G of sheaves on a space X is an 
epimorphism (respectively, a monomorphism) in the category Sh(X) iff 
for each point x E X the map of stalks hx: Fx ~ Gx is a surjection 
(respectively, an injection) of sets. 

One possible proof of this proposition makes use of a construction, 
related to the stalk-functor at a given point x, 

Stalkx : Sh(X) ~ Sets, 

F f--+ Fx = limF(U), 
----
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where in the colimit U ranges over all open neighborhoods of the point 
x EX. Consider for each set A the "skyscraper sheaf" concentrated at x, 
denoted by Sky x(A). This sheaf is defined, as a functor O(X)OP ----> Sets, 
by 

SkYx(A)(U) = I xE .' {
A'f U 

1 otherwIse, 
(11) 

where 1 denotes some fixed one-element set. For an inclusion U :2 V of 
open sets, the restriction map SkYx(A)(U) ----> SkYx(A)(V) is the evident 
one: the identity A ----> A if x E V (and hence x E U), and the unique 
map into 1 if x tf- V. 

Lemma 7. For each point x EX, the stalk functor 
Stalkx : Sh(X) ----> Sets is left adjoint to the sky-scraper sheaf functor 
Sky x : Sets ----> Sh(X). 

Proof: Given a set A and a sheaf F, the bijective correspondence 
between set functions ¢: Fx ----> A and sheaf maps h: F ----> Sky x (A) is 
described as follows. From a function ¢: Fx ----> A define the sheaf map 
h: F ----> Sky x (A) by components 

hu: F(U) ----> SkYx(A)(U); 

if x tf- U then there is one such function F(U) ----> Skyx(U) = 1, and if 
x E U then for any element s E F (U), define hu (s) = ¢(germx (s)) E 
A = SkYx(A)(U). Conversely, a sheaf map h: F ----> SkYx(A) induces 
a set-map ¢: Fx ----> A: elements of Fx are of the form germx(s) where 
s E F(U) for some open neighborhood of x, and the function ¢: Fx ----> A 
sends this element germx(s) to hu(s) E A = SkYx(A)(U). One readily 
verifies that these constructions, of h from ¢ and conversely, are well
defined, mutually inverse, and natural in F and A. 

Proof of Proposition 6: (<¢=) Suppose h: F ----> G is a map of 
sheaves such that each stalk map is a surjection. To see that h is epi, 
consider sheaf maps k and e: G ----> H such that kh = eh. Then at each 
point x E X, the stalk maps have kx 0 hx = (k 0 h)x = (e 0 h)x = ex 0 hx, 
hence kx = ex since hx is surjective. But k and e are determined by 
their effect on stalks, by Corollary 5. Hence, k = e. In exactly the same 
way, it follows from Corollary 5 that h is mono if each stalk map hx is 
injective. 

( =?) For the converse, consider first the case of epis. If h: F ----> G is 
an epimorphism in the sheaf category, then each stalk map hx: Fx ----> Gx 
is an epi in sets; i.e., a surjection. Indeed, the stalk functor has a right 
adjoint by the lemma, hence preserves colimits. But then it must also 
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preserve epis, since in general a map h is epi iff the corresponding square 

• _...:.h"----+J • 

. =. 
is a pushout. 

N ow consider the case of monos. If h is a mono in the sheaf category, 
then 

F=F 

1\ lh 
F ----,---+J G 

h 

is a pullback. Since pullbacks of sheaves are computed "pointwise" (see 
Proposition 2.2), it follows for each open set U <::;; X that the square 

F(U) 

\I 
F(U) hu J G(U) 

is a pullback of sets. Therefore, hu is injective. Now suppose germx(s) 
and germx(t) are two elements of Fx represented by S E F(U) and 
t E F(V), such that hx(germx(s)) = hx(germx(t)). By definition of hx, 
this means that 

Hence, for some smaller neighborhood W <::;; Un V, we have hu(s)lw = 
hv(t)lw. Thus, by naturality of h, 

hw(slw) = hu(s)lw = hv(t)lw = hw(tlw). 

Since hw is injective, it follows that slw = tlw; hence germx(s) 
germx(t). Thus, hx: Fx -> Gx is an injective function. 

Since the category of sheaves is equivalent to that of etale spaces, 
many authors define a sheaf of sets on X to be a space E -> X etale in 
X (for example [Swan]). For these authors, what we call the sheaf F of 
continuous functions on (open sets of ) X becomes the sheaf of germs of 
continuous functions, and similarly for other sheaves, such as the sheaf 
of germs of differential forms-and every sheaf is described as a sheaf 
of germs of .... We have chosen to define sheaves as (special) functors 
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because we will also consider non-topological cases where the etale space 
is not available and sheaves consequently must be defined as functors. 

7. Sheaves with Algebraic Structure 
For homology and cohomology groups in algebraic topology and al

gebraic geometry, the "coefficient" groups must often be taken locally; 
that is, should be sheaves of groups. This is one of the basic reasons for 
considering sheaves. We have already seen examples of sheaves of groups 
and of rings; we now show how such sheaves can be defined systemat
ically, by diagrams, starting with sheaves of sets. An abelian group is 
a set A with a binary operation (addition), a unary operation (additive 
inverse), and a nullary operation (zero, considered as a function defined 
on A 0 = 1 = {*}) as in 

(x, Y I f---+ X + y, X f---+ -x, * f---+ 0, 
(1) a v u 

A X A ~ A, A ~ A, 1 ~ A, 

and satisfying certain identities: Associative and commutative laws for 
a, v a left inverse for a, and u a left zero. Each of these identities can 
be written as a commuting diagram involving the arrows a, v and u of 
(1) [CWM, pp. 2-5]. In any category C with finite products (and hence 
with a terminal object 1), we can thus define an abelian group object of 
C to be an object A together with the three arrows (1), for which the 
indicated diagrams all commute. The abelian group objects in C form 
the objects of a category Ab(C), with arrows f: A --7 A' those arrows 
of C which commute with the three "structure maps" a, v, and u of (1). 
An abelian group object in Sets is then exactly an (ordinary) abelian 
group. This observation about abelian groups applies also to groups, to 
rings, to modules, etc., in C; that is, to any algebraic structure defined 
by one or more n-ary operations satisfying specified identities. 

These diagrammatic formulations will apply to define sheaves of 
abelian groups. A presheaf P of abelian groups on a space X is de
fined to be an abelian group object in Sets()(xtp

• Since the product 
P x P in any functor category SetsCOP is the product in Sets, taken 
pointwise, the operation of addition a for such a P is a transforma
tion aU: PU x PU --7 PU, natural for U E O(X). The same holds 
for the other operations, so each set PU is an abelian group. Thus, 
a presheaf of abelian groups on X may also be described as a functor 
P: O(X)OP --7 Ab, where Ab is the category of all small abelian groups 
(abelian group objects in Sets). Similarly, a sheaf of abelian groups 
is an abelian group object in Sh(X); or equivalently, it is a functor 
F: O(X)OP --7 Ab such that the composite with the forgetful functor 
Ab --7 Sets is a sheaf of sets. 
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A bundle of abelian groups over the space X is defined by the same 
diagrams; it is an abelian group object Y in the category Bund X of 
spaces over X. Now in this category the product of a bundle p: Y -+ X 
with itself is just the pullback of p with p in Top: 

Y xxY I Y 

1 ip 
Y --""'p---tl x; 

it is the subspace of Y x Y consisting of all those pairs (y, y' ) of points of 
Y which lie in a common fiber of p. Therefore, the operation of addition 
in the group object Y is just an addition in each fiber p-1x. A bundle 
of abelian groups can also be described as a bundle p: Y -+ X of spaces 
in which each fiber p-1x is an abelian group in such a way that the 
resulting operations of addition +: Y x x Y -+ Y and inverse Y -+ Y 
are continuous maps (of bundles over X), as in (4.2) for vector bundles. 

Note also that the product of two bundles, both etale over X, is 
itself etale over X, because the pullback of two local homeomorphisms 
is a local homeomorphism (see Lemma 1 of §9 below). 

For categories C and V, any functor A: C -+ V which preserves finite 
products will carry any abelian group object in C to another such in V; 
it thus induces a functor AbC -+ AbV. Now, since the product bundle 
Y x x Y' is a pullback in Top, a cross-section of the product bundle 
is just a pair of cross-sections, one of Y and one of Y'. Therefore, the 
cross-section functor r: Bund X -+ SetsO(X)OP preserves products. So 
does its left adjoint A: SetsO(X)OP -+ Bund X; indeed, each fiber for 
AP at x E X is given by a colimit (5.2) taken over the subcategory of 
O(X)DP which consists of all open U containing x. Now given sets U 
and V in this subcategory, their intersection U n V is also there, with 
arrows U -+ un V and V -+ U n V. This means that the subcategory is 
"filtered" , and filtered colimits are known [CWM, pp. 211-212] to com
mute with finite limits, in particular with binary products; this shows 
that A preserves products (see also Exercise 6). For these reasons the 
adjointness Theorem 6.2 and its corollaries apply also to abelian group 
objects, giving a pair of adjoint functors 

Ab(Bund) ~ Ab(SetsO(X)OP), 
A 

and similarly for bundles of rings or of real or complex vector spaces. 
In particular, the inclusion Ab(Sh(X)) -+ Ab(SetsO(X)OP) is reflec
tive (has a left adjoint, called "sheafification" for presheaves of abelian 
groups). 
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Over each sheaf of rings there will be sheaves of modules. Specifically, 
let R be a sheaf of rings on a space X (i.e., X is a ringed space with 
structure sheaf R). Thus, R is a ring object in Sh(X), so there can be 
left R-module objects in ShX; they are the sheaves A ofleft R-modules. 
In other words, they are sheaves A of sets, such that each A(U) is an 
R(U)-module and such that each restriction V C U induces a morphism 
of the R(U)-module A(U) to the R(V)-module A(V). 

We leave the reader to formulate the description of the corresponding 
etale spaces. 

8. Sheaves are Typical 

For any space X, we now observe that the category She X) of sheaves 
of sets on X is a topos, i.e., it has all the properties discussed for our 
"typical" categories in Chapter I. We have already seen in Proposi
tion 2.2 that Sh(X) has all finite limits; and that the product of two 
sheaves is in fact their product as presheaves. This suggests that the 
exponential for presheaves [i.e., for functors on O(X)OP] can also be used 
for sheaves; that this is so is an immediate consequence of 

Proposition 1. If F is a sheaf and P a presheaf of sets on the space 
X, then the (presheaf) exponential F P is a sheaf. 

Proof: Both F and P are functors O(X)OP ----+ Sets, and the expo
nent was defined, in §1.5, to be the functor F P with 

F P (U) = Hom(y(U) x P, F) (1) 

for all open U, where Hom is the hom-set of the functor category 
SetsO(X)OP, while y(U) is the representable presheaf determined by U. 
Thus y(U)(V) is 1 or empty according as V c U or not; therefore the 
natural transformations in F P (U) need really be defined only for open 
sets V cU. In other words, 

FP(U) ~ Hom(Pl u , Flu) (2) 

where Hom refers to the category of presheaves on U, and where Plu 
and Flu are the functors P and F restricted to O(U)Op. Moreover, 
F P (U) is a functor of U in the evident way: if V c U then each natural 
transformation 0:: Plu ----+ Flu restricts to o:lv: Pl v ----+ Flv. Thus F P is 
that presheaf whose values on each open set U are the maps Plu ----+ Flu 
of presheaves on U. It is routine to verify that F P so defined is a sheaf: 
given a covering U = Ui Ui and natural transformations Ti: Plu, ----+ Flu, 
for all i, one can collate these Ti to T: Plu ----+ Flu by collating their 
values (which are collatable, because they lie in the sheaf F). We leave 
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the details to the reader, with the remark that a later more general 
method will allow a more conceptual proof (see Proposition III.6.1 and 
Lemma V.2.l). 

In particular, when P = G and F are sheaves, so is the (presheaf) 
exponential FG. It is often called the "internal hom", the "sheaf-valued 
hom" , or the "sheaf of germs of morphisms G -+ F" , and is then written 

Hom(G,F) = FG. 

Finally, we introduce a particular presheaf n on X by taking nu to 
be the set of all open subsets of U, 

nu = {W I W c U, W open in X }, (3) 

for every open set U in X. It is a functor of U by intersection: If V c U, 
then W f-+ W n V is the induced map of nu to nv. 

Theorem 2. For any topological space X, the presheaf n defined 
in (3) is a sheaf on X, and is a subobject classifier for Sh(X). 

Proof: To show n a sheaf, consider any open covering of U by open 
sets Ui . Then given open sets Vi C Ui for all i with Vi n Uj = Vj n Ui c 
Ui n Uj for all i and j, there is clearly a unique open set V, namely, the 
union of the Vi, with V n Ui = Vi for all i. This verifies the equalizer 
condition which states that n is a sheaf. 

Now consider a subobject S C F of a sheaf F. We may assume 
(Corollary 2.3) that S is a subsheaf of F so each S(D) is a subset of F(D). 
As the corresponding characteristic natural transformation cp: F -+ n, 
we propose the function 

CPu: FU -+ nu, 

which sends each x E FU to the union W of all those open subsets Wi 
of U for which xlwi E SWi . Since S is a subsheaf, it is immediate that 
xlw E SW. It is also clear that CPu so defined is natural in U. Next 
consider the pullback of true along CPu 

P -------> 1 PU ------- > 1 

i ltrue 

i 

1 I I 
I I 

v v 

F 
4> 

)n, FU 
4>u 

)nu, 

where "true" is the map which for each U sends the point of 1 to the 
maximum element U E nu. The pullback is taken pointwise, at each 
open set U, and produces PU as the subset of FU consisting of those 
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x E FU with ¢ux = U; in other words, the pullback P is exactly the 
given sub sheaf S. Moreover, if S is the pullback of true along any other 
arrow 'ljJ: F --+ n one readily shows that 'ljJ must be ¢, so ¢ is unique, 
and n with the map true: 1 --+ n is therefore a subobject classifier. 

Note the resemblance to the characteristic functions used for 
presheaves (i.e., for the functor category) in §I.4. There, given a sub
functor SeT, the characteristic function gave all the "paths to truth"; 
here, by the definition of ¢ above, it gives the "shortest path" W C U 
to truth. 

Finally, Sh(X) has all small colimits. Indeed, the sheafification 

L: SetsO(X)OP --+ Sh( X) 

is left adjoint to the inclusion functor, so L must preserve colimits. More
over (§5), if F is a sheaf, LF ~ F. Hence, given two sheaves F and G, 
their coproduct F II G as presheaves (their pointwise disjoint union) 
yields a sheaf L(F II G) which is their coproduct 

F ~ LF -> L(F II G) ~ LG ~ G 

as sheaves. Co equalizers and other colimits are treated similarly. Thus 
we have shown that Sh(X) has finite limits and colimits, exponentials 
(Proposition 1) and a subobject classifier (Theorem 2) and hence is an 
elementary topos (§I.6). 

The category Etale X of all spaces etale over X is equivalent (§6) 
to the category Sh(X), hence also has all the listed properties of our 
typical categories; i.e., Etale X is also an elementary topos. 

9. Inverse Image Sheaf 

A continuous map of spaces, f: X --+ Y, will induce functors in 
both directions, forward and backward, on the associated categories of 
sheaves. In §1 we have already observed that each sheaf F on X yields 
an induced sheaf f*F on Y, defined for each open set Von Y by 

This f*F was called the direct image of F under f, while f* is a functor 
f*: Sh(X) --+ Sh(Y). In the other direction, each bundle E --+ Y, pulled 
back along f, yields a bundle 1* E --+ X over X, and 1* is a functor 
1*: Bund Y --+ BundX. Moreover, 

Lemma 1. If f: X --+ Y is continuous and p: E --+ Y is etale over 
Y, then 1* E --+ X is etale over X. 
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Proof: In the pullback f* E, consider any point (x, e) consisting of 
a pair of points x E X and e E E with fx = pe. Since pis etale, there 
is an open neighborhood U of e in E mapped homeomorphic ally by p 
onto an open set pU in X. Then f-l(pU) x U is an open neighborhood 
of (x, e) in the product X x E, so its intersection with the pullback is 
an open neighborhood of ( x, e) there and is mapped homeomorphically 
onto f-l(pU) in X. Thus f* E is etale, as desired. 

By this lemma, each continuous f: X ~ Y gives a functor Sh(Y) --7 

Sh(X) via the equivalence of Corollary 6.3, namely, as the composition 

Sh(Y) ~EtaleY ~EtaleX ~Sh(X). (1) 

We denote this composition again by 

f*: Sh(Y) ~ Sh(X). 

For a sheaf G on Y, the value f* (G) E She X) of this functor is called 
the inverse image of G (under f). It is determined, in terms of its etale 
bundle, by the pullback square in the diagram 

A(j*G) ------t) AG 

1 lp (2) 

X --f=-----+) Y. 

For any open set U C X, a section t E (j*G)(U) of the inverse image 
sheaf can thus be described, by the definition of a pullback, as a contin
uous map t': U ~ AG such that pt' = flu: U ~ Y. In other words, a 
section t corresponds to a lifting t' to AG of the map flu: U ~ Y, in 
the sense that the diagram 

AG 

t f /1 / p 
/ 

,/ 

commutes. In particular, for each open set V <;;;; Y and each s E G(V), 
we obtain a section s: V ~ AG as in (5) of §5, and hence by composition 
a map t' as above and therefore, by the pullback (2), a section 

(3) 
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More precisely, by the pullback diagram (2), a point of A(f*G) is of the 
form (x, germf(x) (s)), where x E X and germf(x)(s) E (AG)f(x) is the 
germ of some S E G(V) for some open neighborhood V <;;;; Y of f(x). 
Writing points of A(f*G) as such pairs, we can write the section ts of 
(3) explicitly as 

ts(x) = (x, germf(x) (s)), (4) 

Notice that since Af*G -+ X is etale, the image of each such section 
ts: f-1(V) -+ A(f*G) is open. Moreover, these images, for all open V c 
Y and all S E G(V), cover Af*G, as is clear from (4) since every point 
of Af*G has the form (x, germf(x) (s)) for some x and s. Consequently, 
for any topological space T whatsoever, a function k: Af*G -+ T is 
continuous iff k 0 ts: f- 1 (V) -+ T is continuous, for every V and s as 
above; in other words, continuous = continuous on each section. We 
shall use this observation in the proof of the following theorem. This 
theorem is used to replace continuous maps between spaces by adjoint 
pairs of functors between their sheaf categories. 

Theorem 2. If f: X -+ Y is a continuous map, then the functor 
f*, sending each sheaf G on Y to its inverse image on X, is left adjoint 
to the direct image functor f*: 

Sh(X) ~ Sh(Y), 
f. 

Proof: Let F be a sheaf on X and G a sheaf on Y. We shall 
prove the desired isomorphism Sh(X)(f*G,F) ~ Sh(Y)(G,f*F) in the 
following intermediate steps, reminiscent of the three descriptions in 
Corollary 6.5 of maps of sheaves: 

Sh(X)(f*G, F) ~ Etx(Af*G, AF) 

~ K(Af*G, AF) 

~ Sh(Y)(G, f*fAF) ~ Sh(Y)(G, f*Ft 

Here, Etx(Af*G, AF) is the set of maps of etale bundles over X, as in §4, 
and K is still to be defined. It will be clear from the construction that all 
these isomorphisms are natural in F and G. Now the first isomorphism 
in this sequence comes from the equivalence between sheaves and etale 
bundles, as in Corollary 6.3, and the last isomorphism comes about by 

composition with the inverse of f*(1]): f*F -=: f*(fAF); indeed, the unit 
1]: F -+ f AF is an isomorphism because F is a sheaf, see Theorem 6.2. 
For the other two isomorphisms we first define K(Af*G, AF) as the 
functions continuous on sections; more formally, K is the set of functions 
k: Af*G -+ AF of sets over X with the property that, for any open V C 
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Y and any S E G(V), the composition k 0 ts: rl(V) ---t Af*G ---t AF 
is continuous. Now Etx(Af*G, AF) ~ K(Af*G, AF), by the remark 
immediately preceding the statement of the theorem. 

It remains to show that there is a natural isomorphism 

K(Af*G, AF) ~ Sh(Y)(G, f*(fAF)). (5) 

From left to right, given k: Af*G ---t AF in K(Af*G,AF), define 
Tk: G ---t f* (f AF) as follows: for an open set V, the component 
(Tk)V: G(V) ---t f*(rAF)(V) = (rAF)(f-lV) sends any element s ~ 
G(V) to the composite 

(Tk)V(S) = k 0 ts: rl(V) ~ AG ~ AF. 
Notice that (Tk) V (s) is indeed continuous, by the definition of K. 
Conversely, from right to left in (5), given a natural transformation 
T: G ---t f*(fAF), define a function kT: Af*G ---t AF as follows. As ex
plained below (3), a point of Af*G has the general form (x, germf(x) (s)), 
where S E G(V) for some open set V ~ Y containing f(x). We define 

kT(x, germf(x) (s)) = TV(S)(X). (6) 
It is easily seen that this is well-defined, i.e., it does not depend on the 
element S E G(V) chosen to represent the germ, germf(x)(s) E (AG)f(x)' 
Also, if V is open in Y and S E G(V), then by (4) above, 

(kT 0 ts)(x) = kT (x, germf(x) (s) 

= TV(S)(X); 
(7) 

so kT ots = TV(S) is a continuous map f-I(V) ---t AF. Therefore kT thus 
defined is indeed in the set K(Af*G, AF). It remains to be shown that 
these operations 

K(Af*G,AF) ~ Sh(Y)(G,f*(fAF)) 
kT+-l T 

are mutually inverse. But given a natural transformation T: G ---t 

f*(fAF), we have for any open V ~ Y and any S E G(V), 

T(kr)(S) = kT 0 ts 

= N(S) 

(by definition) 

(by (7)); 

and given a function k: Af*G ---t AF in K, we have for any point 
(x, germf(x) (s)) E Af*G that 

kh ) (x, germf(x) (8» = Tk( 8) (x) 

= (k 0 ts)(X) 

= k(ts(x)) 

= k(x, germf(x) (8)) 

(by definition) 

(by definition) 

(by (4»). 

Thus k f-> Tk and T f-> kT are indeed mutually inverse, so the proof of 
the theorem is complete. 
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Proposition 3. Let f: X ----t Y be a continuous map of spaces. The 
inverse image functor f*: Sh(Y) ----t Sh(X) preserves all finite limits. 

Proof: By the definition (1) of f* as a pullback via the equiv
alence of Corollary 6.3, it suffices to show that the pullback functor 
f*: Etale Y ----t Etale X preserves finite limits. But this pullback func
tor f* is the restriction of the pullback functor on bundles, as indicated 
in the commutative diagram 

BundY 
j* 

) BundX 

il Ii 
EtaleY 

j* 
) EtaleX. 

And f*: Bund Y ----t BundX preserves (finite) limits since it has a left 
adjoint ~ f = "compose with f" [cf. Theorem 1.9.4]. Thus, it remains 
to prove that Etale X c Bund X is closed under finite limits, i.e., that 
the inclusion functor i preserves finite limits. If E ----t X and E' ----t X 
are both etale over X, their pullback E x x E' in Top is their product 
in Bund X; moreover, by Lemma 1 this pullback E x x E' ----t X is etale 
in X, and hence it is also the product of E and E' in Etale X. If also 
f, g: E ----t E' are maps of bundles, an easy topological argument shows 
that their equalizer (in Top and thus in Bund X) is also etale in X, so 
is their equalizer in Etale X. Thus, the inclusion functor i on the right 
above preserves binary products, equalizers, and terminal objects, hence 
preserves all finite limits (is left exact), as was to be shown. 

This section, in summary, has proved that each direct image functor 
f*: Sh(X) ----t Sh(Y) has a left exact left adjoint. Here, f* is constructed 
"functorially", but its left adjoint has been constructed topologically 
(via etale spaces). This left adjoint can also be constructed by Kan 
extensions; see Chapter VII §5.(6). 

Exercises 

1. Show that a sieve S on U in the category O(X) is principal iff 
the corresponding sub functor S c lu ~ Hom( - ,U) is a sheaf. 

2. A sieve Son U in O(X) may be regarded as a full subcategory 
of O(X). Prove that a presheaf P on X is a sheaf iff for every 
covering sieve S on an open set U of X one has PU = lim PV. 

+---VES 

3. An action G x X ~ X of a group G on a space X is said to be 
proper if for every point x E X there exists a neighborhood Ux 
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of x with the property that g. Ux n Ux i=- 0 implies g = 1 for all 
g E G. Prove that if G acts properly on X, the quotient map 
1r: X ---. X / G to the space X / G of orbits is a covering. 

4. Prove Theorem 3 of § 1. [Hint: define a quasi-inverse s: Sh( B) ---. 
Sh(X) for r as follows. Given a sheaf F on B, and an open set 
U eX, consider the cover {Bi liE I} of U by all basic open 
sets Bi E B which are contained in U. Define s(F)(U) by the 
equalizer 

s(F)(U) -----+ II F(Bi) ====t II F(Bi n B j ).] 

iEI i,j 

5. A sheaf F on a locally connected space X is locally constant if 
each point x E X has a basis of open neighborhoods Nx such that 
whenever U, V E Nx with U c V, the restriction FV ---. FU is a 
bijection. Prove that F is locally constant iff the associated etale 
space over X is a covering. 

6. Prove that both the functors f and A of §5 and hence also the 
associated sheaf functor are left exact (i.e., preserve all finite lim
its ). 

7. For any set T, the constant presheafT on a space X has T(U) = T 
for all open sets U in X, with all restriction maps the identity. 
Show, using germs, that the associated etale space is the projec
tion p: X x T ---. X of the product, where T has the discrete topol
ogy; conclude that the associated sheaf is the "constant" sheaf 
i::lT , for which i::lT(V) is the set of all locally constant functions 
V ---. T. Prove also that this defines a functor i::l: Sets ---. Sh(X) 
which is left adjoint to the global sections functor Sh(X) ---. Sets, 
F f-+ fF(X). 

8. (Sheaves are "collatable" up to isomorphism, cf. [Serre, 1955, 
Proposition 4].) Let X have an open cover by sets Wk, and 
suppose for each index k that Fk is a sheaf on Wk, for each j 
and k that (}jk: Fjlcwjnwk) ~ Fklcwjnwk) is an isomorphism of 
sheaves, and for each i, j, k that (}ik = (}jk 0 (}ij wherever defined. 
Then prove (by reducing the situation to that in Theorem 1.2) 
that there is a sheaf F on X and isomorphisms 1>k: Flwk ---. Fk 
such that 1>j = (}ij1>i wherever defined. Prove also that F and the 
(Pk are unique up to isomorphism. 

9. Let f: X ---. Y be an etale map. Show that 1*: Sh(Y) ---. Sh(X) 
has a left adjoint. Give an example of a map f: X ---. Y such 
that 1*: Sh(Y) ---. Sh(X) cannot possibly have a left adjoint. 

10. (a) Prove that a map p: Y ---. X of topological spaces is etale 
iff both p and the diagonal Y ---. Y x x Yare open maps. 
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(b) Prove that in a commutative diagram of continuous maps 

Y f ) z 

~/ 
x 

where p and q are etale, f must also be etale. 

11. Show that the category of sheaves of abelian groups on a space 
X does not have a subobject classifier. 



III 
Grothendieck Topologies 
and Sheaves 

1. Generalized Neighborhoods 

The notion of a sheaf, presented as in Chapter II in terms of cov
erings, restrictions, and collation, can be defined and used (e.g., for 
cohomology) not just on the usual topological spaces but also on more 
general "topologies". This section is meant to provide some informal 
background and motivation for the development of these general topo
logical ideas. 

In the usual definition of a topological space and of a sheaf on that 
space, as discussed in the previous chapter, one uses the open neighbor
hoods U of a point in a space X; such neighborhoods are topological 
maps U ~ X which are monic. For algebraic geometry it turned out 
that it was important to replace monomorphisms by more general maps 
y ~ X; these will appear in the definition below of a Grothendieck topol
ogy. There were at least two motivations for this replacement, arising 
in the context of fibrations, and in that of Galois theory. 

For algebraic groups, Serre observed that some mappings p: W ~ X 
which ought to be fiber bundles (in the topological sense) were not such. 
The topological definition required that each point x of the base X have 
a neighborhood U over which the bundle becomes trivial; that is, such 
that the pullback bundle W Xx U over U is trivial. This did not apply in 
Serre's examples, but he discovered that by taking a suitable unramified 
covering U' ~ U, the pullback W Xx U' did turn out to be trivial. This 
suggested to Grothendieck the idea of replacing inclusions U >--+ X by 
more general maps U' ~ X, in defining the "open covers" of X. 

A similar generalization was suggested by Grothendieck's discovery 
(around 1961, in [SGA 1]) of the analogy between the Galois groups of 
a field and the fundamental group of a topological space, as follows. 

On the one hand, consider a finite normal extension N ::) K of 
a field K (of characteristic 0, to avoid complications with inseparable 
extensions). This extension is a monomorphism m: K ~ N in the 
category of fields (where every morphism is, in fact, mono), and the 
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Galois group G of N over K consists of the field automorphisms a: N --+ 

N with am = m; i.e., of those a which leave fixed all elements of the 
base field K. The fundamental theorem of Galois theory states that 
subgroups S <;;; G of the Galois group correspond in a one-to-one fashion 
to intermediate fields L with K c LeN, that is, to factorizations 
K --+ L --+ N of the given mono m; given a subgroup H c G, the 
corresponding intermediate field consists precisely of the elements of N 
fixed under all automorphisms in the given subgroup. 

On the other hand, consider topological spaces X, Y which are arc
wise connected and locally arcwise connected. A covering space Y of X is 
then an epimorphism p: Y --+ X in the category of these spaces such that 
each point x of X has a neighborhood U for which each arc-component 
of p-1U is mapped by p homeomorphic ally to U (see Chapter II, §4); 
more formally, the pullback Y x x U is a coproduct 

YxxU=UIIUIIU .. · 

of copies of U. The covering group G of p then consists of the covering 
transformations: those homeomorphisms a: Y --+ Y such that pa = 
p: Y --+ X. Now suppose that Y is simply connected or, more generally, 
that a: Y --+ X is a regular covering. [For y E Y, the image under a 

of the fundamental group 71'l(Y,Y) is a normal subgroup of 71'l(X,ay).] 
Then, exactly as in the Galois theory, the subgroups S of G correspond 
one-to-one to the factorizations Y --+ Y' --+ X of p, where Y' is defined as 
the quotient of Y obtained by identifying two points Yl and Y2 precisely 
when aYl = Y2 for some a E S. 

This analogy clearly involves a dualization: spaces over X are epi
morphisms to X, while extensions of a field K are monomorphisms from 
K. In the category of spaces Y --+ X, the product is given by the pull
back Y x x y' --+ X, while the disjoint union provides the coproduct 
Y II y' --+ X. The category of fields does not have duals of both these 
operations, but they are present if we embed fields in the larger cate
gory of commutative rings. (Henceforth, all rings are commutative, with 
identity element, and all ring homomorphisms preserve the identity.) For 
two rings Rand S, the tensor product R 0 S with the injections 

i j 
R --> R0S ~ S, r f---+ r01, S f---+ 10s, 

is the coproduct, while for any indexed family of rings Ri the cartesian 
product, I1 Ri with termwise ring operations, is the categorical product. 
Similarly, one may consider algebras A over a field K, defined to be rings 
A equipped with a ring homomorphism K --+ A. The category of such 
K-algebras has coproducts A 0K B and products A x B. 

But now the parallel between geometry and algebra seems to fail. 
The definition of a covering space Y --+ X states that for every point 
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x EX, there is a neighborhood U (an open monomorphism U ----+ X) 
such that the pullback Y Xx U ----+ U is a coproduct of copies of U. 
Similarly, any field extension K ----+ L has a splitting field K ----+ N with 
N normal. The fact that N splits L means that the tensor product (the 
coproduct) L ®K N is a direct product of copies of N; in elementary 
terms, if L is given, say, as the field L = K(O) generated by a root 0 of 
an irreducible polynomial f(x) of degree m in K[x], a normal extension 
N which splits L will contain all the roots 01, ... ,Om of the polynomial, 
so that L ®K N ~ N[x]j(x - Od ... (x - Om) is just the product of m 
copies of N. 

The difference here is that a covering space is "split" over a neighbor
hood U, which is a monomorphism U ----+ X, while a field is split not by 
the dual (an epimorphism), but by a more general map K ----+ N. It was 
this observation that led Grothendieck to think that..th.e neighborhoods 
U in topological spaces could effectively be replaced by maps G ----+ X 
which are not necessarily monic. Then a covering by open sets would be 
replaced by a new-style "covering" by a family of such maps. 

This can be done in any category C with pullbacks. For an object 
G of C, consider indexed families 

5 = { fi: Gi ----+ G liE I} 

of maps to G, and suppose that for each object G of C we have a set 

K(G) = {5, 5', 5", ... } 

of certain such families, called the coverings of G under the rule K. Then 
for these coverings we can repeat the usual topological definition of a 
sheaf. As presheaves on C, we simply take the functors P: cop ----+ Sets. 
The classical definition of a sheaf on a topological space then required 
that for each open cover {Ui liE I} of some U, every family of elements 
{Xi E P(Ui ) liE I} which matched on the intersections Ui n Uj for all 
i and j could be fitted together as a unique element x E P(U). We can 
repeat this definition for any covering 5 of an object G, replacing the 
intersection Ui n Uj by the pullback Gi Xc Gj , as in the diagram 

Gi Ii I G, 
which yields for a given presheaf P a corresponding diagram of sets 

P(Gi Xc Gj ) (P(h ij ) P(Gj ) 

P(Vij)1 IP(fj) 

P(Gi ) ( P(f;) P(G). 
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It will be convenient to write Xfi E P(Ci ) for the result P(fi)(X) of the 
action of fi on an element x of P(C), as in Chapter I, §4. Then the 
matching condition for a sheaf reads: if {Xi E P( Ci ) liE I} is a family 
of elements which match, in the sense that XiVij = Xjhij for all i and j, 
then the family determines a unique element x E P( C) such that 

for all i E I. 

This amounts to the familiar requirement that the following arrow e is 
an equalizer in the diagram 

P(C) ~ II P(Ci) =====t II P(Ci Xc Cj), 
i,j 

where e(x) = (Xfi: i E 1), and the maps on the right are respectively 
(Xi: i E 1) f---t (XiVij: i,j E Ix 1) and (Xi: i E 1) f---t (xjhij : i,j E I x 1). 

Now to be able to develop a theory of sheaves in such generality, one 
needs some conditions on the rule K which assigns covering families to 
objects of C. It is, in fact, possible to develop the theory, even in the 
extreme case when C does not have pullbacks, by replacing the indexed 
families S by the sieves which they generate. This will be done in the 
next section. 

2. Grothendieck Topologies 

As motivated in the preceding section, we will now introduce a gen
eral notion of a category equipped with covering families. Let C be a 

cop 
small category, and let Sets be the corresponding functor category. 
As in Chapter I we write 

y: C --+ Sets 
Cop 

for the Yoneda embedding: y(C) = C( -, C). Recall from Chapter I, 
§4, that a sieve S on C is simply a subobject S C;;; y(C) in SetsCoP

• 

Alternatively, S may be given as a family of morphisms in C, all with 
codomain C, such that 

fES ==} fogES 

whenever this composition makes sense; in other words, S is a right 
ideal. If S is a sieve on C and h: D --+ C is any arrow to C, then 

h*(S) = {g I cod(g) = D, hg E S} (1) 

is a sieve on D. 
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Definition 1. A (Grothendieck) topology on a category C is a func
tion J which assigns to each object C of C a collection J(C) of sieves 
on C, in such a way that 

(i) the maximal sieve tc = {f I cod(f) = C} is in J( C); 
(ii) (stability axiom) if S E J(C), then h*(S) E J(D) for any arrow 

h:D-rC; 
(iii) (transitivity axiom) if S E J( C) and R is any sieve on C such 

that h*(R) E J(D) for all h: D -r C in S, then R E J(C). 

It follows at once that for S E J(C) any larger sieve Ron C (i.e., 
any R ;:2 S) is also a member of J(C). Indeed, take any h: D -r C 
with h E S. Then ID E h*(S), so h*(S) is the maximal sieve on D. 
Since h*(S) s;:; h*(R), h*(R) must also be the maximal sieve on D, so 
h*(R) E J(D). This holds for all h E S, so it follows by the transitivity 
axiom that R E J(C). 

With this observation, the transitivity axiom has the following con
sequence: 

(iii') If S E J (C) and if for each f: D j -r C in S there is a sieve 
Rj E J(Dj), then the set of all composites fog, with f E Sand 
9 E Rj , is in J(C). 

A site will mean a pair (C, J) consisting of a small category C and 
a Grothendieck topology J on C. If S E J(C), one says that S is a 
covering sieve, or that S covers C (or, if necessary, that S J -covers C). 

We will also say that a sieve S on C covers an arrow f: D -r C 
if f* (S) covers D. (So S covers C iff S covers the identity arrow on 
C.) In this language, the axioms for a Grothendieck topology can be 
formulated as follows (arrow form): 

(ia) if S is a sieve on C and f E S, then S covers f; 
(iia) (stability) if S covers an arrow f: D -r C, it also covers the 

composition fog, for any arrow g: E -r D; 
(iiia) (transitivity) if S covers an arrow f: D -r C, and R is a sieve on 

C which covers all arrows of S, then R covers f. 

The original conditions (i)-(iii) for a Grothendieck topology eas
ily follow from these arrow conditions (ia)-(iiia), by considering the 
identity arrow on C. Conversely, one readily derives the latter con
ditions from (i)-(iii). For example, consider (iiia): Suppose S covers 
an arrow f: D -r C, and R covers all arrows in S. By definition, 
this means that f*(S) E J(D) and h*(R) E J(domh) for all h E S. 
Thus, for an arrow g: E -r D in f* (S), we have f 9 E S and hence 
g* f*(R) = (fg)*(R) E J(E). Since this holds for all such g, the transi
tivity axiom (iii) implies that f*(R) E J(D); i.e., R covers f. 
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, Note that it follows from the axioms that any two covers have a 
common refinement; in fact one has 

(iv) if R, 8 E J(G), then R n 8 E J(G); 

or in arrow form: 

(iva) if Rand 8 both cover g: D ----t G, then R n 8 covers g. 

Indeed, if I: D ----t G is any element of R, then I*(Rn8) = 1*(8) E J(D) 
by (ii), and therefore R n 8 E J(G) by (iii). This proves (iv); (iva) is 
equally easy. 

A topological space with the usual notion of a cover provides an 
example of a site: The partially ordered set VeX) of open subsets of X 
can be viewed as a category in the usual way (with exactly one arrow 
U ----t V iff U <;;; V), so that a sieve on U is simply a family 8 of open 
subsets of U with the property that V' <;;; V E 8 implies V' E 8. Then 
specify that 8 covers U iff U is contained in the union of the open sets 
in 8. It is easy to check that this "open cover" definition satisfies the 
axioms for a Grothendieck topology (cf. Exercise 1). In this case an 
arrow I to an object G (i.e., to U) is just an open subset W <;;; U, and 
the sieve 8 on U covers the arrow W <;;; U iff W is contained in the 
union of the open sets in 8. This motivates the "arrow form" above of 
the axioms for a Grothendieck topology. 

In the case of an ordinary topological space, one usually describes 
an open cover of U as just a family {Ui liE I} of open subsets of U 
with union U Ui = U; such a family is not necessarily a sieve, but it 
does generate a sieve-namely, the collection of all those open V <;;; U 
with V <;;; Ui for some Ui . (Informally, V goes through the sieve if it fits 
through one of the holes Ui of the sieve.) It will be convenient to define 
this way of generating a covering sieve in the more general context of 
an arbitrary category with pullbacks, in terms of a so-called basis for 
a Grothendieck topology. (For a similar definition of a basis in case C 
does not have pullbacks, see Exercise 3.) 

Definition 2. A basis (for a Grothendieck topology) on a category 
C with pullbacks is a function K which assigns to each object G a 
collection K(G) consisting of families of morphisms with codomain G, 
such that 

(i') if I: G' ----t G is an isomorphism, then {I: G' ----t G} E K(G); 
(ii') if {k Gi ----t G liE I} E K(G), then for any morphism g: D ----t 

G, the family of pullbacks {7l'2: Gi Xc D ----t D liE I} is in 
K(D); 

(iii') if { Ii: Gi ----t G liE I} E K ( G), and if for each i E I one has 
a family {gij: Dij ----t Gi I j E Ii} E K(Gi ), then the family of 
composites {Ii 0 gij: Dij ----t G liE I,j E Ii} is in K(G). 
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Condition (ii') is again called the stability axiom, and (iii') the tran
sitivity axiom. The pair (C, K) is also called a site and the elements R 
of the set K (C) are called covering families or covers for this site. 

Warning. In the sequel, we will often loosely refer to a topology on 
a category, even where it is clear from the context that we really mean 
a basis for a topology. 

Let us note that, because of (i') above, a topology J is not a basis 
[although (ii') and (iii') are satisfied by J]. However, if K is a basis on 
C, then K generates a topology J by 

8 E J(C) -¢=} :3R E K(C) R ~ 8; (2) 

i.e., a sieve is a J-cover iff it contains a K-cover. It is easy to check 
that this indeed defines a Grothendieck topology J from a basis K. For 
instance, let us verify that the stability axiom holds: if 8 E J( C) and 
g: D ---> C is any morphism, choose R ~ 8 with R E K(C) as in (2), and 
let T E K(D) be the K-cover of D obtained as in (ii') above, by pulling 
back R along g; that is, T consists of all those morphisms h which fit 
into a pullback diagram 

D -----:g:-----'» C 

for some fER. Then T ~ g*(8), so g*(8) E J(D) by (2). 
Notice also that if J is a given topology on C, there is a maximal 

basis K which generates J, given by 

R E K(C) -¢=} (R) E J(C), (3) 

where 
(R)={foglfER, domf=codg} (4) 

is the sieve generated by the family R. [Given a Grothendieck topology 
J, one often loosely says that a family R = {fi: Ci ---> C liE I} covers 
C if (R) E J(C).] 

Condition (iv) above, on intersections of covers, does not hold in as 
simple a form for bases. Say that a family { Ii: Ci ---> C liE I} refines 
another one {gj: Dj ---> C I j E I' } if every fi factors through some gj. 
Then the analog of (iv) for a basis is: 

(iv') for any two covers R, P E K(C), there exists a common refine
ment in K(C). 
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The assertion (iv') follows from (iv) and the correspondence between 
bases and topologies: if J is the Grothendieck topology on C generated 
by K, then (R), (P) E J(C), hence by (iv), (R) n (P) E J(C). By (2) 
this means that there is aTE K(C) with T ~ (R) n (P). But T ~ (R) 
means that T refines R. Also T refines P, so (iv') is proved. 

Let us look at some additional elementary examples. 
(a) If C is any category, the trivial topology on C is the one in which 

the only sieve covering an object C is the maximal sieve te. Clearly, 
this topology is the smallest (coarsest) among all topologies on C. 

(b) Let T be a small category of topological spaces, which is closed 
under finite limits and under taking open subspaces. (For example, T 
might be a category of separable Hausdorff spaces.) Define a basis K 
on T by {Ii: Yi -+ X liE I} E K(X) iff each Yi is an open subspace 
of X with Ii the corresponding embedding, while UiEI Yi = X. We will 
refer to this basis, or to the corresponding Grothendieck topology, as 
the open cover topology on the category T of spaces. 

It should be observed that to define this open cover topology, we do 
not really need all pullbacks in T to exist; for the stability axiom (ii') 
above we really need only pullback diagrams of the form 

Y --:----+) X 
f 

where U ~ X is an open subspace. Thus, for instance, on the category 
M of (separable) smooth manifolds M, one can still define the open 
cover topology J, by taking S E J(M) iff there is an open cover {Ui } 

of M such that all the embeddings Ui )--of M are in the sieve S. (Never
theless, arbitrary pullbacks do not exist in the category M, for example 
intersections of certain submanifolds.) 

The purpose of these open cover topologies is to put all the sites 
O(X) for topological spaces X together in one big site, so as to provide 
a convenient context in which to consider sheaves which are defined not 
just on one given space X, but on each of the spaces from a large cate
gory of spaces. A typical example is the sheaf of real-valued continuous 
functions discussed in §II.l; see also §VI.9. 

(c) A bigger (that is, a finer) Grothendieck topology on the cate
gory T above is the one generated by the basis K', defined by taking 
{Ii: Yi -+ X liE I} E K' (X) iff I: 11 Yi -+ X is an open surjection. 
Here 11 Yi is the disjoint sum (coproduct) of the spaces Yi, and I is the 
map induced on the coproduct by the different Ii- For the proof that 
this K' is a basis, use the fact that in a pullback diagram of topological 
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spaces 

Z--f-------;) X, 

q is an open surjection whenever pis. 
(d) Complete Heyting algebras. Recall from §I.8 that a Heyting 

algebra is a distributive lattice A equipped with an implication operator 
=>, satisfying 

a '5: (b => c) iff al\b'5:c (5) 

for all a, b, c E A. A complete Heyting algebra (cHa) is a Heyting 
algebra which is complete as a lattice; i.e., sups and infs of arbitrary 
families of elements exist. If A is a cHa, and {ai liE I} and bare 
elements of A, then one has the identity (the infinite distributive law) 

(6) 
iEI iEI 

This follows from the property (5) of implication, for if c E A is any 
other element one has 

for all i 

iff ai '5: (b => c) for all i 

iff V ai '5: (b => c) 
iEI 

iff b 1\ V ai '5: c. 
iEI 

Conversely, it is not difficult to prove (Exercise 17) that if A is a lattice 
in which arbitrary sups exist and satisfy the identity (6), then A has the 
structure of a cHa in which => is defined by 

V{a I al\b '5: c}. (7) 

Now let A be a cHa, and regard A as a category in the usual way (so 
that there is exactly one arrow a -+ b iff a '5: b). Then A can be equipped 
with a basis for a Grothendieck topology K, given by 

{ai liE I} E K(c) iff V ai = c. 
iEI 

(8) 
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(On the left-hand side, we identify an element ai ::; c with the corre
sponding morphism ai ---> c.) The identity (6) is precisely the stability 
condition (ii') of Definition 2 above. 

A sieve S on an element c of A is just a subset S of elements b ::; c 
such that a ::; b E S implies a E S. In the topology J with basis 
K as in (8) above, a sieve S on c covers c iff c = V S, i.e., c is the 
sup of the elements in S. Hence, this topology is often called the sup 
topology. In the special case where A is the algebra of all open subsets 
of a topological "~'l,ce X, this is exactly the usual open cover topology. 
In this sense sheaves on a cHa (to be discussed in the next section, and 
in Chapter IX) generalize the usual sheaves on a topological space as 
discussed in Chapter II. 

(e) The dense topology. If P is a partially ordered set and if 
pEP, a subset D <:;;; { q E P I q ::; p} is said to be dense below p if for 
any r ::; p there is a q ::; r with qED; in other words, for the portion 
of P below p, the dense set D gets below any element whatever. (This 
notion of dense subsets is used by logicians in relation to forcing; the 
corresponding sheaves yield models of set theory which violate axioms 
such as the continuum hypothesis, cf. Chapter VI below.) The dense 
sieves form a topology J on P by 

J(p) = {D I q ::; p for all qED, and D is a sieve dense below p}. 

[Actually covering families D E J(p) should consist of arrows q ---> p, 
but we again identify these with elements q such that q ::; p.] It is easy 
to see that J satisfies the conditions of Definition 1. 

The dense topology can in fact be defined for an arbitrary category 
C: for a sieve S, let 

S E J (C) iff for any f: D ---> C there is a g: E ---> D 

such that fg E S. 
(9) 

Then J becomes a topology on C. For reasons which will become clear 
in Chapter VI, one also refers to the dense topology as the -,-,-topology. 

(f) The atomic topology. Let C be a category, and define J by 

S E J (C) iff the sieve S is nonempty. 

For J to satisfy the stability axiom in this case we must assume that 
any two morphisms f: D ---> C and g: E ---> C with a common codomain 
C can be completed to a commutative square 

• -------) D 

I 
I 
I 

v 
11 

E----?) C 
9 

(10) 
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-a condition much weaker than the existence of pullbacks. Indeed, J 
as defined above is a topology iff C satisfies this condition (10). 

A particularly interesting case which we will consider in this chap
ter is that where C is the opposite category of the category I of finite 
sets and injective functions; see §9 below. Notice also that the atomic 
topology is a special case of the dense topology. 

The final example of a topology in this list will be described in the 
next section. 

3. The Zariski Site 

Algebraic geometry is naturally concerned with functions which are 
rational or algebraic. We will now explain how they can best be handled 
by using sheaves on a suitably constructed site. The Zariski site will be 
defined on a category of algebras over an arbitrary commutative ring k, 
but we will begin with the classical case where k is the field C of complex 
numbers; then cn is the usual n-dimensional complex affine space. 

Given a polynomial f(XI, X2) in two variables Xl and X2 and with 
complex coefficients, its locus is the algebraic curve which consists of 
all those points (Zl, Z2) in the complex plane C 2 with f(ZI, Z2) = O. 
Similarly, an algebraic curve in three dimensions may be described as the 
locus of a suitable pair of polynomial equations in three variables. More 
generally, m polynomials h, ... , fm in the polynomial ring C[XI"'" xnl 
have as a locus the set 

V(h,···,fm) = 
{(ZI"",Zn)ECnlfi(ZI"",Zn)=O, i=I, ... ,m}. (1) 

Such a locus is called a complex affine variety. Any such variety V 
determines an ideal in C [Xl, ... , xn], namely, the ideal of all those poly
nomials which vanish at every point of V. Conversely, given an ideal J 
in the polynomial ring C [Xl, ... , xn], the corresponding variety is 

Evidently, the ideal J = (h, ... ,fm) generated in C[xI, ... ,xnl by the 
polynomials h,··., fm has V(I) = V(h,···, fm). 

Different ideals may well generate the same variety. Thus, every 
ideal I determines another ideal 

Vi = {f I for some positive integer r, rEI} (3) 

called the radical of I. Clearly V(J) = V( VI). The famous Hilbert Null
stellensatz states that different radical ideals in C[XI"'" xnl generate 
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different affine varieties; in other words, ,jj #- v0 implies V(I) #- V(J). 
The maximal ideals in e[XI, ... , xnl are the ideals (Xl - al, ... , Xn - an) 
determined by n complex numbers al, ... , an; the corresponding variety 
is the point with coordinates al, ... , an; it is clearly a minimal algebraic 
variety. Any prime ideal P (an ideal P such that Ig E P implies I E P 
or 9 E P) is a radical ideal; that is, P = n. The corresponding affine 
variety V(P) is irreducible, in the sense that it is not the union of a finite 
number of smaller affine varieties. It can be shown that every radical 
ideal (i.e., every ideal which is equal to its own radical) can be repre
sented uniquely as the intersection of a finite number of prime ideals. 
This corresponds to the statement that any complex affine variety can 
be written uniquely as a finite union of irreducible such varieties. 

The relevant functions on an algebraic variety are those given by 
rational functions of the coordinates. On the ordinary cartesian plane 
with coordinates X, y such a rational function I(x,y)/g(x,y) is not de
fined in the whole plane, but only where the denominator g(x, y) is not 
zero, hence only in the complement of the algebraic curve defined by 
g(x, y) = o. In higher dimensions, such functions are correspondingly 
defined on the complement of some variety V(I). Hence, it is natural to 
consider such complements as if they were open sets in a topology. They 
are, of course, open sets in the standard topology of en. But one may 
also introduce a different topology on the set en by decreeing that the 
closed sets are exactly the varieties V(I) for all ideals I; the usual axioms 
for a topology then hold. One may also describe this topology by say
ing that the complements of irreducible varieties (determined by prime 
ideals P) form a subbasis for the open sets. Thus there are many fewer 
open sets than in the usual Euclidean topology on en. One calls this 
new smaller topology the Zariski topology on en. The locus of a single 
polynomial I(XI, ... , xn) = 0 is called an algebraic hypersurface (i.e., a 
variety of dimension n - 1). Clearly the complements of hypersurfaces 
form a subbasis for the Zariski topology. In terms of this subbasis, one 
can describe a simple open covering of en: take t polynomials /1, ... , It 
such that the identity /1 + ... + It = 1 holds. The corresponding t 
hypersurfaces then have no common point, so the complements of these 
hypersurfaces form an open cover of en in the Zariski topology. The 
Zariski topology on en also restricts to give a Zariski topology on any 
affine variety V in en. 

Associated with the Zariski topology there is a standard structure 
sheaf To define it consider the field F = e(XI, ... , xn) of all formal 
rational functions h = 1/ g, where I and 9 are polynomials in the inde
terminates Xl, ... ,Xn with complex coefficients and 9 is not identically 
zero. Such a formal function 1/ 9 is not actually defined at every point of 
en but these formal rational functions will yield a sheaf for the Zariski 
top~logy, as follows. One says that a rational function h is defined at 
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a point Q = (al,"" an) of en if there is a Zariski open set W con
taining the point Q, such that h can be written as a quotient h = f / 9 
in which the polynomial 9 does not vanish at any point of W; this of 
course means that the formal rational function h yields an actual func
tion W ----+ e defined everywhere in the Zariski open set W. Now let U 
be any Zariski open set, and define O(U) to be the set of all rational 
functions h which are defined (in the above sense) at every point Q of 
U. [For convenience, when U is empty we take 0(0) to be the set with 
one point, which we regard as if it were the unique rational function 
defined over the empty set.] The set O(U) is clearly a ring; indeed, for 
U -=I- 0, it is a subring of the field F. Moreover, an inclusion U' <;;; U 
of Zariski open sets evidently gives a homomorphism O(U) ----+ O(U') of 
rings [restrict each h E O(U) to points of U']. Thus, 0 is a presheaf of 
rings for the Zariski topology of en. One can prove that it is actually 
a sheaf, because rational functions can be patched together where they 
match. It is the desired structure sheaf. Moreover, the stalk of this 
sheaf at a point p of en consists of the germs of those rational func
tions defined in some (Zariski) open neighborhood of p. This stalk is a 
ring with a unique maximal proper ideal-the ideal of all those germs 
which vanish at the point p. Such a ring, with a unique maximal ideal, 
is customarily called a "local ring". Thus, algebraic geometry naturally 
leads to sheaves with such stalks. Thus, the Zariski topology on en, or 
on an affine variety V <;;; en as described above, is an ordinary topology 
(rather than a Grothendieck topology). It gives rise to a Grothendieck 
topology on the partially ordered set of Zariski open subsets of V, with 
covers given by the usual covering families, as explained in the previous 
section. 

More generally, one may consider the category of all affine varieties 
V <;;; en (for various n :::: 0); a morphism ¢: V ----+ W in this category 
between two such varieties V = V(I) <;;; en and W = W(I') <;;; em is the 
function given by an m-tuple ¢ = (hI"'" hm ) of rational functions of 
Xl, ... ,Xn with the property that each hi is defined at every point of V 
and such that (hI, ... , hm ), viewed as a function V ----+ em, maps V into 
W. We can equip this category of complex affine varieties with the open 
cover topology, which is the Grothendieck topology given by covering 
families of Zariski open sets; it is a special case of the construction in §2, 
Example (b). We should add that this makes sense because the category 
of complex affine varieties is closed under taking limits and under taking 
Zariski open subspaces. It is easiest to see the latter in a special case. 
If V is an affine plane curve, say the locus of g(x, y) = 0, while U is a 
Zariski open set in V, of the form U = V - V (1), for another polynomial 
f, then U is isomorphic to the variety W in three-space which is the 
locus of g(x,y) = 0 and zf(x,y) = 1 (draw a figure). Much the same 
construction applies in general, as the reader may verify. 
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This elementary description is just the starting point for the use of 
sheaves in algebraic geometry. First, the ideas of algebraic geometry ap
ply to varieties defined over fields different from the complex numbers, 
and even to fields of characteristic p. Moreover, the study of diophan
tine equations with integral coefficients leads to "arithmetic" algebraic 
geometry over rings such as Z or rings of algebraic integers. These ideas 
combine to motivate the definition of the Zariski site for an arbitrary 
commutative ring k. 

For this construction, we will need to construct certain "fractions" 
from a commutative ring A (always with the identity element). For each 
a E A, one may form a ring A[a- l ] of quotients, consisting of all frac
tions b/an for b E A and n a natural number, where these fractions are 
equated, added, and multiplied by the usual rules. Then b 1-+ b/1 is a 
ring homomorphism A -+ A[a- l ] which is universal among homomor
phisms from A into rings in which a becomes invertible. One may also 
set A[a- l ] = A[x]/(ax-1). (Note incidentally that if a is nilpotent, then 
the ring A[a- l ] is the zero ring.) We will also use the corresponding con
struction starting from a prime ideal P in A, giving a homomorphism 
A -+ Ap universal with the property that all a E A which are not in P 
become invertible in Ap. 

For an arbitrary commutative ring k one can still define algebraic 
varieties in the n-dimensional affine "space" kn. Given an ideal I in the 
polynomial ring k[XI, ... , Xn], the corresponding variety V(I) consists of 
all the points (al, ... , an) E kn with ai E k such that f(al, ... , an) = 0 
for every f in I. However, there is no analog of the Hilbert Nullstel
lensatz, so there are not "enough" points to distinguish varieties which 
"ought" to be different. Therefore, one works not with the varieties 
themselves, but with the associated quotient rings k[XI, ... , xnl/ I. So 
one defines a finitely presented ("fp") k-algebra A to be one of the form 
A = k[XI, ... , xm]/(h, ... ,fm) where the fj for j = 1, ... , m are poly
nomials in the indeterminates Xi with coefficients in the ring k. Let 
(k - Alg)fp denote the category of all these algebras. One can observe 
that a morphism of such f. p. algebras will induce a map in the op
posite direction on the corresponding varieties. Hence, we will use the 
opposite of this category. Observe also that a ring in this category may 
have nilpotent elements; such elements are used for deformations. They 
provide a way of distinguishing, say, the "variety" defined by X - Y = 0 
from that given by (x - y)2 = O! 

Now our objects are not sets of points but algebras, so we cannot 
use functions defined on points, but must use sheaves defined on this 
category. Instead of open covers, we will imitate the open covers of en 
by the complements of hypersurfaces as described at (3) above. Thus a 
"cover" of a k-algebra A will be determined by a finite list of elements 
aI, ... , an of A, to imitate the hypersurfaces given by setting ai = 0, and 
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such that the identity element 1 of A is contained in the ideal (al,"" an) 
generated by the ai. This is to reflect the intention that the "hypersur
faces" have no common point, so that these "complements" can cover 
en. This means that we do not define a classical topology but rather a 
base for a (G rothendieck) topology on the category (k - Alg) fp op . 

A cover of an algebra A for the intended basis is the dual, i.e., the 
opposite, of a finite family of the form (up to isomorphism) 

{A-+A[ai l ]li=l, ... ,n}, (4) 

where each A[ail] is a ring of quotients, as described above, where the 
maps A -+ A[ail] are the canonical (universal) homomorphisms, and 
where 1 is in the ideal (al,"" an) of A. [Notice that if A is a finitely 
presented k-algebra, then so is A[ail], since the latter is isomorphic to 
A[X]j(xai -1).] 

This definition of a basis for a Grothendieck topology does satisfy the 
axioms for a basis given in §2, Definition 2. Clearly, the dual of the iden
tity map A -+ A is a one-element covering family. The stability condi
tion (ii') is satisfied, as follows: Pullbacks in ((k-Alg)fp)OP exist, because 
they correspond to tensor products in (k - Alg)fp' Thus, if aI, ... ,an are 
elements of A with 1 E (al,"" an), while h: A -+ B is an algebra homo
morphism, then 1 E (h(al),"" h(an)) and B 0A(A[ai l ]) S:! B[h(ai)-l]; 
i.e., the diagram of algebras 

is a pushout. 
To prove the transitivity condition (iii') for a basis, suppose we have 

the dual of a cover (4), and for each index i another dual of a cover 

(5) 

where Cij is an element of A [ai 1] and 1 E (Cil, ... , Cini)' an ideal in 
A [ai 1]. Now each Cij has the form bij / ar;'i j , for some integer mij and 
some element bij of the original algebra A. Therefore inverting Cij in 
A[ail] amounts exactly to inverting bij , and we may write these dual 
covers (5) as 
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where 1 E (bil , ... , binJ as an ideal in A[ail Multiplying away the 
denominators which are powers of ai gives a natural number ki such 
that 

as an ideal in A. Since 1 E (al,"" an) in A, say 1 = I: diai, one can 
choose k > n· max:(ki ) so that 

and the latter ideal is contained in the ideal of A generated by all the 
aibij. Thus, the family of composites A --t A[ai] --t A[aibij] is the dual 
of a cover, as required for transitivity. 

Much like the sheaf 0 discussed above, there is a canonical structure 
sheaf on the Zariski site (see §4), which is again a sheaf of local rings; 
this aspect of the Zariski site will be discussed in Chapter VIII, §6, on 
classifying topoi. 

This example of the Zariski site indicates why the notion of a 
Grothendieck topology became essential for algebraic geometry. The 
reader may wish to consult many other such examples, such as those 
arising from the use of schemes and of the etale topology in algebraic 
geometry. 

4. Sheaves on a Site 
Sheaves on a site can be defined in much the same way as sheaves 

on a topological space. 
Let C be a small category and J a Grothendieck topology on C. A 

presheaf, as before, is simply a functor 

P: cop --t Sets; 

the category of all such functors and their natural transformations has 
been discussed in Chapter 1. If P is such a presheaf and the sieve S is 
a cover of an object C of C, a matching family for S of elements of P 
is a function which assigns to each element f: D --t C of S an element 
xf E P(D), in such a way that 

for all g: E --t Din C. (1) 

Here, fg is again an element of S, because S is a sieve, while xf . 9 
stands for P(9)(xf )-just as in Chapter 1. An amalgamation of such a 
matching family is a single element x E P( C) with 

X· f = xf for all f E S. (2) 
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Then P is a sheaf (for J) precisely then, when every matching family 
for any cover of any object of C has a unique amalgamation. 

A sieve S on C is the same thing as a subfunctor of yC = 
Hom( -, C); so a matching family f f-+ xf for f E S is the same thing 
as a natural transformation S ----+ P. Thus, a presheaf P is a sheaf iff, for 
all covering sieves S of objects C, any natural transformation f: S ----+ P 
has a unique extension to yC, as in the diagram 

yC. 

In other words, P is a sheaf iff for every covering sieve S on C the 
inclusion S ----+ yC induces an isomorphism [like II.2(2)] Hom(S, P) ~ 
Hom(yC,P). 

This definition can be expressed diagrammatically, just as in the case 
of topological spaces, by requiring that for each object C of C and each 
cover S E J (C) the diagram 

P(C) ~ II P(domf) =? II P(domg) 
fES f,g fES, (3) 

domf=codg 

is an equalizer of sets; here e is the map e(x) = {x· J}f = {P(J)(x)}f, 
the second product ranges over all composable pairs f, 9 with f E S 
(hence also fg E S), the map p comes from composition in C, and a 
comes from the action by C on P~so if x = {xf }fES in TIfEs P(domf), 

a(x)f,g = xf . g. (4) 

If (3) is an equalizer for a particular cover S, i.e., if every family 
for this cover S has a unique amalgamation, we say that P satisfies the 
sheaf condition with respect to the cover S. 

Now, let K be a basis for a topology on a category C with pullbacks, 
and write J for the topology generated by K [as in (2) of §2]. The sheaves 
for J can then be described purely in terms of the basis K, as follows. 
If R = {Ii: Ci ----+ C liE I} is a K-cover of an object C, a family of 
elements Xi E P(Ci) (i E 1) is said to be matching for R iff 

for all i, j E I, (5) 

where 71'1 and 71'2 are the projections from the pullback, as in 
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) OJ 

lfi (6) 

)0. 

An amalgamation for {Xi} is an X E P(O) with the property that X· fi = 
Xi for all i E I. 

Proposition 1. Let P be a presheaf on C. Then P is a sheaf for 
J iff for any cover { fi: Oi ....... 0 liE I} in the basis K, any matching 
family {Xi h has a unique amalgamation. 

Before giving the proof, we note that Proposition 1 can also be ex
pressed by an equalizer diagram: 

Proposition 1 [bis]. A presheaf P on C is a sheaf for J iff for any 
cover { fi: Oi ....... 0 liE I} E K (0) in the basis, the diagram 

(7) 

is an equalizer. Here e(x) = {x· fih, and Pl({Xi})i,j = Xi' 1ftj, while 
P2 ( {Xi} )i,j = X )"1fTj' where 1ftj and 1fTj are the projections of the pullback 
(6). 

Proof: We leave it to the reader to verify that this second state
ment is just a reformulation of Proposition 1 above, and prove the first 
formulation. 

( :::::}) Suppose P is a sheaf for J, and let R = { fi: Oi ....... 0 liE I} E 
K (0) be a cover in the basis K. Let {Xi h be a matching family for this 
cover. Now consider the sieve 

k fi 
S = (R) = {g: D ~ 0 I 9 = D ~ Oi -+ 0, some i and k} 

generated by R [ef. (2.4)], and define a matching family {Y9}gES by 

Yg = Xi . h, 

where h is any map such that 9 = fi 0 h for some i. This does not 
depend on the choice of i and h, for if fi 0 h = 9 = fJ 0 k, then using the 
universal property of the pullback square (6), there is a map C to the 
pullback with 1ftj 0 C = hand 1fTj 0 C = k; so 



124 III. Grothendieck Topologies and Sheaves 

(the middle one of these three equalities holds because {Xi} is matching 
for R). Thus, there is a unique Y E P(G) with Y . g = Yg for all g E (R) 
because P is a sheaf for J. In particular Y . fi = YJ; = Xi, so Y is also 
an amalgamation for {Xi}' Moreover, an amalgamation for {XdiEI is 
unique, for if Y' is another one with y'. fi = Xi, then for any g E S = (R), 
say g = fi 0 h, we have Y' . g = (y' . fi) . h = Xi . h = Yg, so Y' is also an 
amalgamation for the cover (R), and therefore y' = y. 

( {:::) Suppose S E J (G) is a cover of G, so that there is an R E K (G) 
contained in S [ef. (2.2)], and let {Yg I g E S} be a matching family for 
S. Then clearly the subfamily {Yf I fER} is also matching [in the 
sense for a basis, cf. (5) and (6)], so there is a unique Y E P(G) with 
y. f = Yf for all fER. It remains to show that y. g = Yg for all g E S. 
To this end, take g E S, and consider for fER all the pullback squares 

D xcG' 
Pf,g I G' 

~f,g 1 if 

D 
9 

IG. 

Then {7rf,g If E R} E K(D) by the stability axiom for the basis, and 
moreover for any fER, 

(y . g) . 7r f,g = (y . 1) . PJ,g 

= Yf . Pf,g 

= YfoPf,g 

= Ygo~f,g 

(by the square) 

(since fER) 

(since {Yg I g E S} is matching) 

(by the square) 

Now if f": Gil ....... G is also in R, pullback of 7r f,g along 7r f",g shows that 
Y . g . 7r f,g matches y . g . 7r f" ,g' Since R' = {7r f,g I fER} is a cover 
in K and the family {y . g . 7r f,g I fER} matching on R' has a unique 
amalgamation, we must have y' g = Yg, and the proof is complete. 

We have already seen many examples of sheaves in Chapter II, in 
the case where C = O(X) is the category of open subsets of a topo
logical space, equipped with the open cover topology. For instance, if 
Y is any other space, the continuous Y-valued functions from open sets 
in X constitute a sheaf on X ~because matching continuous functions 
can be pieced together. This observation has a more general form, for 
any topological site T equipped with the open cover topology, as in §2, 
Example (b). In this case, for every Y, the representable presheaf 

y(Y) = T( - , Y): ToP ....... Sets 
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is, in fact, a sheaf (y: T>--+ Sets TOP is the Yoneda embedding) because 
if {Ui liE I} is an open cover of a space T in T, then any family 
of functions {ai: Ui ----t Y} which agree on intersections Ui n Uj clearly 
patch together to give a uniquely defined function a: T ----t Y. 

For a differentiable manifold, the sheaf of germs of smooth functions 
plays a central role. Analogously, for algebraic geometry, one has the 
structure sheaf 0 on the Zariski site over a commutative ring k. Here the 
category is the category A which is the dual of the category (k - Alg)fp 
of finitely presented k-algebras A, with their homomorphisms, while the 
Grothendieck topology is described by the basis in which the coverings 
of an algebra A are the duals of those families of the form 

{A ----t A[ai1] I i = 1, ... ,n } (8) 

for which the ideal (a1,"" an) of A contains l. 
The forgetful functor 0: (k - Alg)fp ----t Sets which sends each al

gebra A to its underlying set A defines a presheaf on A. (It can also 
be described as a presheaf of commutative rings.) We claim that this 
presheaf 0 is actually a sheaf; it is called the structure sheaf for the 
Zariski site. To prove this, it is enough (by Proposition 1 [bis] above) to 
show for each cover (8) that the diagram 

A ~ II A[ai 1] ====4 II A[(aiaj)-l] 
i,j 

(9) 

is an equalizer of sets (and hence of rings). Indeed, one has the isomor
phism 

in (k - Alg)fp which means that A[ (aiaj) -1] is the pullback over A of 
A[ai 1] and A[a;-l] in the opposite category. To see that (9) is indeed 

an equalizer, consider any elements Xi E A[ai1 ], i = 1, ... ,n, such that 
Xi = Xj in A[(aiaj)-l] for all indices i and j. We may set Xi = yi/ai 
for some Yi E A and all i, for m sufficiently large; then Xi = Xj in 
A[(aiaj)-l] means that 

(10) 

for some sufficiently large k > O. Now 1 E (a1,"" an) in A; by raising 
the corresponding equation to the power n( m + k) we may write 1 = 
I: tia~+k for suitable ti · Let X = I: tiYia~. Then 

m+k _ "'"' t. . k m+k aj X - ~ .y.ai aj 
i 

by (10) 
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Therefore, in A[ajl] one has x = ajYj/aj+k = Yj/aj = Xj' This shows 
that x is an amalgamation for the xl's. 

It remains to prove that this amalgamation is unique, i.e., that the 
map e: A -+ TIA[a;l] of (9) is mono. To this end, suppose e(x) = 0 
for some x E A; in other words, that x = 0 in A[a;l] for each i. Then 
for a sufficiently large m, we have aix = 0 in A for each i. But since 
1 E (al,"" an), one can write 1 = 2: siai, and hence x = 2: siaix = 0 
in A. Thus, e is mono, and the proof that 0 is a sheaf is complete. 

It can be shown that 0 is a local k-algebra object in the category 
of sheaves on the Zariski site and that 0 is the universal such object in 
some appropriate sense, to be treated in Chapter VIII, §6. 

Notice that 0 is, in fact, isomorphic to the representable presheaf 
Hom(k[x], - ) corresponding to the k-algebra k[x]; so this example of a 
sheaf on the Za.riski site is similar to the preceding example concerning 
the site T. It can be proved that for any finitely presented k-algebra, 
the corresponding representable presheaf is a sheaf on the Zariski site 
(Exercise 7 ( a) ) . 

More generally, if J is a (basis for a) topology on a category C such 
that all representable presheaves on C are sheaves, we will call the topol
ogy J subcanonical. The canonical topology is the largest subcanonical 
topology on C. 

The topology on T given by open surjections [§2, Example (c)] is 
subcanonical: indeed, if {fi: Yi -+ X} is a basic cover so that the 
induced map f: li Yi -+ X is an open surjection, then a matching 
family of continuous functions gi: Yi -+ Z into some other space clearly 
amalgamate to a unique function g: X -+ Z such that go Ii = gi for all i; 
however, the point is to show that g is continuous. Now for an open set 
U ~ Z, g-I(U) = ff-lg-l(U) since f is surjective; so since f is open, 
it is enough to show that f-lg-I(U) is open in liYi. But for each 
summand lj ~ liYi, we have f-lg-I(U) n lj = fj-lg-I(U) = gjl(U), 

and this is an open set since gj is continuous. Since f-lg-I(U) n lj is 
open for each j, it follows that f-lg-I(U) is open. 

Let us consider the atomic topology on a category C as in §2, Exam
ple (f). Here sheaves can be described in the following simple fashion. 
(See also Exercise 13.) 

Lemma 2. A presheaf P is a sheaf for the atomic topology on C 
iff for any morphism f: D -+ C and any Y E P(D), if y. g = y. h for all 
diagrams 

E~D~C 
h 

with fg = fh, then Y = X· f for a unique x E P(C). 

Because of this fact, one sometimes says informally that "every mor
phism f is a cover" in the atomic topology. 
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Proof: (*) Suppose y E P(D) has the property that y. 9 = y. h 
for all g, h with fg = fh. Consider the sieve S = (I) = {t I t = 
f 0 k for some k } generated by f, and define a matching family {XdtES 

for S by Xt = y. k where t = f 0 k. This does not depend on the choice of 
k, by the hypothesis on y. Since P is a sheaf, there is a unique x E P(C) 
with x . t = Xt for all t E S; in particular x . f = y. Since any other x' 
with x' . f = y would satisfy x' . t = Xt for all t E S, x is also the unique 
one with X· f = y. 

(<¢=) Let S be a covering sieve of C, i.e., any nonempty sieve, and 
let {x f } f E S be a matching family of elements of P. Fix fo E S. Clearly, 
fog = foh implies x fa . 9 = x fa . h, so we find a unique x E P( C) with 
X· fo = xfo· It remains to show that xf = X· f for all f E S. So choose 
f E S, and consider some commutative square 

A --::----t) C 
f 

[such a square must exist in C, for otherwise the atomic topology cannot 
be defined; see §2, Example (f)]. Let y = xfo . v = X· fov E P(D). If 
g, h: E -. D are two morphisms with ug = uh, then fovg = fovh, so 
yg = yh. Thus, by hypothesis, there is a unique z E P(A) with z· u = y. 
But x f for f E S is a matching family, so x f and x . f both satisfy this 
requirement; so xf = X· f. 

Let us return to the general context of a site (C, J). The sheaves on 
(C, J) form a category, where the maps are the natural transformations, 
i.e., maps of presheaves. So the category of sheaves, for which we write 

cop 
Sh(C, J), is a full subcategory of the functor category Sets , 

Sh (C, J) >---t Sets cop. (11) 

Definition 3. A Grathendieck tapas is a category which is equiva
lent to the category Sh(C, J) of sheaves on some site (C, J). 

Given such a topos, it is not always obvious how to find such a site 
(C, J). For instance, the category BG of continuous G-sets [Chapter I, 
§1, Example (xi)] is a Grothendieck topos, and we will construct a site 
for it in §9 below. In the appendix we will prove Giraud's theorem, 
which will enable us to recognize Grothendieck topoi more easily. We 
also remark that given a Grothendieck topos g, a site (C, J) such that 
9 ~ Sh(C, J) is by no means unique [cf. Chapter II, Exercise 4, and §9, 
Theorem 2, below]. 
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To conclude this section, we prove that limits of sheaves are sheaves. 
Recall that if 1 ----+ SetsCOP , i f---+ Pi, is a diagram of presheaves (1 any 

cop d . . . 
small category), the inverse limit in Sets is compute pomtwlse, l.e., 

(12) 

where on the right one just takes a limit of sets. 
Cop 

Proposition 4. Let (C, J) be a site, and let 1 ----+ Sets be a 
diagram of presheaves Pi. If all Pi are sheaves then so is ~ Pi. 

Proof: Let P = lim Pi be the limit in the category SetsCOP of 
~ 

presheaves, so P(C) = limPi(C). If S is a cover of an object C, then 
~ 

by assumption we have an equalizer 

Pi(C) ----+ II Pi(domf) ~ II Pi (dom g) 
fEB ~g 

of the form (3). Since limits commute with limits ([CWMJ, p. 227), 
taking the inverse limit of all these equalizers again gives an equalizer 
of the form (3), 

P(C) ----+ II P(domf) ~ II P(domg), 
fEB 

so P is a sheaf. 

5. The Associated Sheaf Functor 

In this section, C is a small category, and J is a Grothendieck topol
ogy on C. As in §4, Sh(C, J) denotes the full subcategory of SetsCOP 

consisting of J-sheaves. Our aim is to prove the following result, which 
extends a basic result on sheaves for topological spaces (Chapter II). 

Theorem 1. The inclusion functor i: Sh( C, J) >--t SetsCOP has a 
left adjoint 

cop 
a: Sets ----+ Sh(C, J), 

called the associated sheaf functor. Moreover, this functor a commutes 
with finite limits. 

This last sentence of the theorem makes sense, because inverse limits 
exist in Sh(C, J), see Proposition 4.4. 

Let P be a presheaf on C, i.e., a functor cop ----+ Sets. The con
struction of a(P) proceeds in two steps: first we will construct a new 
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presheaf P+, which is not yet necessarily a sheaf, but is halfway there. 
Call a presheaf P separated if a matching family can have at most one 
amalgamation. In other words, P is separated if for any x, Y E P(C) 
and any cover S E J(C), X· f = y. f for all f E S implies x = y (here 
C is an arbitrary object of the category C). So separated presheaves 
satisfy the uniqueness condition occurring in the definition of a sheaf, 
but not necessarily the existence condition. We will show that for any 
presheaf P, the newly constructed presheaf p+ is separated, and that 
p+ is a sheaf if P itself is already separated. Then a(P) is obtained by 
applying this plus-construction twice, as 

To understand the definition of P+, notice that if P were to be a 
sheaf, then for any cover R of an object C of C, a matching family 
(xf)fER of elements of P should actually represent a unique element 
of P(C). Moreover, still assuming P to be a sheaf, if S E J(C) is a 
refinement of R, i.e., S S;;; R, then the subfamily (xf)fES, which is a 
matching family for the cover S, actually represents exactly the same 
element of P(C). 

Given an arbitrary presheaf P, we might therefore try to define a 
new presheaf p+ by 

P+(C) = lim Match(R, P), 
-REJ(C) 

(1) 

where Match(R, P) denotes the set of matching families for the cover R 
of C, and the colimit is taken over all covering sieves of C, ordered by 
reverse inclusion. In other words, an element of p+ (C) is an equivalence 
class of matching families 

x={xflf:D-+CER}, xfEP(D), and xf·k=xfk, (2) 

for all k: E -+ D, where two such families x = {x f I fER} and 
y = {Yg I g E S} are equivalent when there is a common refinement 
T S;;; R n S with T E J(C) such that xf = Yf for all f in T. 

The so-defined p+ has the structure of a presheaf, where the restric
tion map p+ (C) -+ p+ (C') for a morphism h: C' -+ C in C is given 
by 

{X f I fER} . h = {xhfl I l' E h* R}; (3) 

observe that this is well-defined on equivalence classes. This construction 
P 1-+ p+ is a functor of P, because each map cjJ: P -+ Q of presheaves 
(i.e., each natural transformation cjJ) induces in the evident way a map 
cjJ+: p+ -+ Q+. Moreover, there is a canonical map of presheaves 

'T}: P -+ p+ 
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defined for each x E P(C) as the equivalence class of the matching family 

1]0( x) = {x . I I I E tc }, (4) 

where tc is the maximal sieve on C, as in §2. 
As an illustration, let us look at some instances of the plus

construction for pres heaves on a topological space X (with the open 
cover topology). Take for example the presheaf B, where each B(U), for 
U open in X, is the set of all bounded continuous functions I: U ---4 R. 
In general, B need not be a sheaf because if X has an open subset 
U which is not compact, there may be an infinite open cover of U on 
which a matching family, bounded on each set in the cover, may com
bine to give an unbounded continuous function. But consider the sheaf 
C where C(U) is the set of all continuous functions U ---4 R; it is a sheaf 
and there is an evident map B+ (U) ---4 C(U) because each matching 
family of bounded functions Ii: Ui ---4 R on a cover Ui of U combine 
to give a uniquely determined continuous function I: U ---4 R; equiv
alent matching families give the same f. Conversely, every continuous 
I: U ---4 R arises in this way from a matching family of bounded func
tions In: Un ---4 R, where Un consists of all x E U with I/(x)1 < n, and 
In is the restriction of I to Un. Hence, in this case one application of 
the plus-construction turns the presheaf B into its associated sheaf C. 

However, one application of the plus-construction will not always 
suffice. For consider any set S with more than one element, and the 
corresponding constant presheaf P on the space X, given by P(U) = 
S for every open set U, with all restriction maps the identity of S. 
Then P+(U) = S if U -=I- 0, while P+(0) = 1 (for the empty cover, 
there is exactly one family, the empty one). Thus, p+ is not a sheaf 
because if U1 and U2 are disjoint open sets of X, then S1 E P+(Ud and 
S2 E P+(U2) must have as a restriction to P+(0) the unique element 
of P+(0), so {S1' S2} is a matching family for the cover {U1, U2 } of 
U1 U U2 . However, if S1 and S2 are different elements of S, they clearly 
cannot have an amalgamation in P+. But, consider P++. An element 
of P++(U) is an (equivalence class of) sets of elements Si E P(Ui) for 
some open cover {Ui } of U, which match (Si = Sj) whenever the overlap 
Ui n Uj is nonempty. Thus these elements Si E S piece together to give a 
function s: U ---4 S with the property that every point of U has an open 
neighborhood (e.g., some Ui ) on which the function S is constant. In 
other words, P++(U) is the set of all locally constant functions s: U ---4 

S. The p++ so described is evidently a sheaf; indeed, it is the associated 
sheaf of the constant presheaf P, as already constructed in Chapter II, 
Exercise 7. 

In general, the plus-construction p+ has unique amalgamations only 
for matching families of elements coming from P, so one might imagine 
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that one would need to apply the construction some transfinite number 
of times to turn the presheaf P into a sheaf. But, as we will show, it 
suffices to apply it only twice, as in the last example above. 

As a first elementary property we need the following. 

Lemma 2. (i) A presheaf P is separated iff 1]: P -+ p+ is a 
monomorphism. (ii) A presheaf P is a sheaf iff 1]: P -+ p+ is an iso
morphism. 

Proof: This is immediate from the definitions. For (i), take x and 
Y E P(C), for some object C of C. Then 1](x) = 1](Y) means that 
X· f = Y . f for all f in some covering sieve S. This implies that x = Y 
precisely when P is separated. The proof of (ii) is equally obvious. 

Lemma 3. If F is a sheaf and P is a presheaf, then any map 
¢ : P -+ F of presheaves factors uniquely through 1] as ¢ = ¢ 0 1]: 

(5) 

Proof: An element of p+ (C) is represented by a matching family 
{ x f I fER} of P for some cover R of C. Then for any h: D -+ C 
in R the definition (4) of 1] shows that 1]D(Xh) = {Xh . k IkE tD }; on 
the other hand, {xf If E R}· h = {Xhf' If' E h*R}. But h*R is 
the maximal sieve t D since hER; so since {x f I fER} matches, one 
obtains an equality 

1]D(Xh) = {xf I fER} . h, for h: D -+ C in R. 

Therefore, if the described map ¢ in (5) were to exist, ¢( {x f I fER}) 
must be the unique element Y E F( C) with 

for all hER. But such a (unique) y E F(C) indeed exists because F is 
a sheaf and {4>(Xh) I hER} is a matching family of F. 

Lemma 4. For any presheaf P, p+ is a separated presheaf. 

Proof: To show p+ separated, we consider two elements x, y E 
p+ (C) with x . h = y . h for all h in some cover Q of C; we must show 
that x = y. Now represent x and y as matching families x = {x f I 
fER} and y = {Yg I 9 E S} for covers Rand S E J(C). The 
equality x . h = y . h for h: D -+ C in Q means that there is some cover 
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Th ~ h*(R) n h*(S) of D such that Xht = Yht for all t E T h. But by the 
transitivity axiom on covers, the family 

T = {ht I hE Q, t E Th} 

is still a cover of C, and T ~ R n S; therefore x = y as elements of 
P+(C). 

Lemma 5. If P is a separated presheaf, then p+ is a sheaf. 

Proof: To show p+ a sheaf, we must amalgamate any matching 
family of elements of P+; such a matching family is given by a cover 
R E J(C) and elements {xf 11 E R} which match; here Xj E P+(D) 
when 1: D -+ C. Now each x f is itself given as the equivalence class of 
a matching family for P, 

Xf = {xf,g I 9 E Sf }, g: E -+ D, Xf,g E P(E) (6) 

for some cover Sf E J(D). Also, the requirement that the xf match for 
1: D -+ C means that for any morphism h: D' -+ D one has xf·h = Xfh 
as elements of P+(D' ). Using the definition (3) of "- . h", this means 
that there is an equivalence of families 

and this equivalence, in turn, means that there is a cover Tf,h ~ h * (S j ) n 
Sfh of D' such that 

Xf,hgll = Xfoh,gll for all g" E Tf,h. (7) 

Now let Q be the sieve {1 0 9 I 1 E R,g E Sf}. Here both Rand 
Sf are covers, so by the transitivity axiom Q covers C. Then define a 
family y E P+ (C) for this cover Q by setting 

Yfog = Xf,g· (8) 

We must show that this definition is independent of the choice of the 
factorization of 1 0 g. So suppose 19 = 1'g' for morphisms 1, l' E R 
and 9 E Sf, g' E Sf" Then if k E Tf,g n T!',g' one has 

Xf,g . k = Xf,gk 

= Xfog,k 

= Xf'og',k 

= Xj',g'k 

= Xf',g' . k 

(since x f is a matching family) 

[by (7)] 

(by assumption) 

[again by (7)] 

(since Xj' is also matching). 
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Since P is separated, by assumption, and since Tf,g n Tf' ,g' is a cover 
of D', we conclude that Xf,g = Xfl,gl. So Y is well-defined by (8). Then 
because the xf are matching families, it follows that y = {Yh I h E Q} 
is a matching family; hence an element of p+ (C). 

Finally we claim that this element y is an amalgamation of the given 
matching family {xf I fER}. For this we must prove for each f: D ---+ 

C in R that 

y. f = {Yfah I hE f*Q} and xf = {xf,g I 9 E Sf} 

represent the same element of P+(D). This indeed holds since Sf ~ 

f*(Q) by the definition of Q and for any 9 E Sf, Yfag = Xf,g by the very 
definition (8) of y. This proves the existence of an amalgamation. But 
since p+ is separated by Lemma 4, this amalgamation is unique. This 
completes the proof that p+ is a sheaf. 

With these lemmas we now deduce Theorem 1 above. Take the 
associated sheaf functor a to be a(P) = (P+)+. This defines a functor 
of the presheaf P and yields a sheaf by Lemmas 4 and 5. The map 
defined in (4) gives a composite map 

p~p+~p++ (9) 

from P to the sheaf a(P). By two applications of Lemma 3, this compos
ite is universal among maps of the presheaf P to a sheaf F. Therefore, 
a is the required left adjoint to the inclusion of sheaves in presheaves, 
and the composite (9) is the unit of the adjunction. 

Note that if P is already separated only one step is needed in (9), 
while if P is a sheaf the unit (9) is an isomorphism, by Lemma 2. In 
other words, 

Corollary 6. The composite, inclusion followed by associated sheaf, 

aoi: Sh(C,J) ---+ Sh(C,J), 

is naturally isomorphic to the identity functor. 

Notice that this is also a consequence of the general fact that the 
right adjoint i (as the inclusion of presheaves in sheaves) is full and 
faithful (see [CWM, p. 88]). 

It remains to show that the associated sheaf functor a preserves finite 
limits, as stated in Theorem 1. For this it is enough to show that the 
plus-construction P r--+ p+ preserves finite limits. First we observe that 
for a fixed object C in C and a fixed covering sieve R E J( C), the functor 
P r--+ Matchc(R, P) from presheaves P to Sets does preserve all limits; 
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cop . d 
in other words, for any functor P: I -t Sets from an III ex category 
I to presheaves one has 

(10) 

Indeed, as stated for the diagram below (4.2), we have for any presheaf 
P a natural isomorphism 

Matchc(R, P) ~ Homsetscop (R, P). 

But clearly the functor Hom(R, - ) preserve limits. 
Finally, P+ (C) is defined in (1) as the colimit of Match over all 

covers of C, ordered by reverse inclusion. This partial order is filtering 
(any two covers have a common refinement, their intersection). A well
known result ([CWM, p. 211]; see also VII.6, Corollary 5) asserts that 
filtered colimits commute with finite limits. Therefore, P f-* P+ does 
preserve finite limits, as was to be shown. 

6. First Properties of the Category of Sheaves 

In this section and the next, we will derive some basic properties of 
the category of sheaves on a site (C, J). In particular, we will see that 
the category of sheaves enjoys all the properties of our typical categories 
discussed in the preceding chapters; or to put it more briefly, that the 
category of sheaves on a site is an elementary topos (d. §I.6). 

So from now on, we consider a fixed small category C equipped with 
a Grothendieck topology J, and we write 

Sh(C, J) ( i ) SetsCOP 

a 
(1) 

for the adjoint pair provided by the sheafification process described in 
the previous section. 

We recall from (24) of the Preliminaries that arbitrary (small) limits 
. . S cop d h h eXIst III ets ,an t at t ey are computed pointwise; one may express 

this by the formula 

(limPi)(C) = limPi(C); 
f-- f--

(2) 

here the left-hand limit is taken in SetsCOP
, while the right-hand one 

is in Sets. In §4, Proposition 4, we proved that Sh(C, J) c SetsCOP is 
closed under limits. So Sh(C, J) has all small limits, and these limits 
are manifestly preserved by the inclusion functor i; this also follows from 
the fact that i has a left adjoint. 
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In particular, the empty limit-which is the terminal object 1 E 
cop 

Sets defined by l(C) = {O} for all C-is a sheaf. The corresponding 
Hom-functor (for F a sheaf) 

r: Sh(C, J) --+ Sets, r(F) = Hom(l, F) (3) 

[Hom in the category Sh(C, J)] is called the global sections functor. Re
call from §I.6 that the global sections functor on presheaves 

r: SetsCOP --+ Sets 

has a left adjoint ~ defined for each set S and each object C of C by 

~(S)(C) = S; 

thus, for a set S, ~(S) is the constant presheaf on C with value S. It 
now follows from Theorem 5.1 that r: Sh(C, J) --+ Sets also has a left 
adjoint, namely, the composite a 0 ~: Sets --+ Sh(C, J). In the sequel, 
we will often abuse the notation and, instead of a 0 ~, just write ~ for 
this left adjoint: 

~: Sets --+ Sh(C, J), (4) 

calling ~(S) the constant sheaf associated to S. (See Exercise 14 for 
some examples.) 

A map ¢: F --+ G of sheaves is (by definition) just a map from F to 
G as presheaves. Because of the adjunction i -I a of Theorem 5.1, ¢ is 
a monomorphism of sheaves iff it is a monomorphism of presheaves. In 
other words, the inclusion i both preserves and reflects monomorphisms. 
But a mono of presheaves is just a map which is a pointwise injection, 
so 

¢: F --+ G is mono in Sh(C, J) iff 

¢o: F( C) --+ G( C) is an injection for all C E C. 
(5) 

The analogous statement for epis holds for presheaves; i.e., ¢: P --+ Q is 
epi in Sets Cop iff each P( C) --+ Q( C) is surjective. However, the similar 
statement concerning epis for sheaves fails (cf. Corollary 7.5, below). 

Another consequence of the adjunction of Theorem 5.1 is that all 
small colimits exist in Sh(C, J). The recipe for their computation is 
simply this: first compute the colimit in the category of presheaves, 
and then take the associated sheaf of the resulting presheaf, using the 
principle that left adjoints preserve colimits. Thus, for sheaves Fj , 

(6) 

where the coli mit on the left is taken in Sh(C, J) and the one on the right 
in SetsCoP • Recall that co limits of presheaves are computed pointwise, 

so there is a formula 

(lim Pi) (C) = lim Pi ( C), 
---+ ---+ 

(7) 
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analogous to the formula (2) above for limits. 
Our next purpose is to show that Sh(C, J) has exponentials. Let us 

remark first that if exponentials in Sh(C, J) were to exist, then they are 
necessarily constructed in the same way as are exponentials of presheaves 
(cf. §1.6). Or more precisely, if F and G are sheaves and the exponential 
GF exists in Sh(C, J) then 

(8) 

This follows from the Yoneda lemma and the following sequence of bi
jective correspondences, natural in an arbitrary presheaf P E Sets coP: 

a(P) -+GF 

a(P) x F-+G 

a(P x i(F)) --+ G 

P x i(F) -7 i(G) 

P --+ i(G)i(F). 

These follow from the adjunction a --I i, together with the fact that 
a 0 i ~ id and a preserves products (Corollary 5.6 and Theorem 5.1), so 
that a(P) x F ~ a(P) x ai(F) ~ a(P x i(F)). 

Proposition 1. Let P, FE SetsCOP be presheaves. IfF is a sheaf, 
then so is the (presheaf) exponential F P . 

Proof: Recall from (1.6.(5)) that the elements of the presheaf ex
ponential F P (0) are the natural transformations T: y( 0) x P --+ F, 
where y denotes the Yoneda embedding C --+ SetsCoP . Thus, T assigns 
to any morphism g: D --+ 0 and any element x E P(D) an element 
T(g,X) E F(D). Naturality of T means that for each h: E --+ D one has 

T(gh, xh) = T(g, x)h. (9) 

The fact that F P is a functor of 0 is expressed, for any arrow f: 0' --+ 0, 
by 

(T· f)(g',x) = T(fg',X), (g': D --+ 0', x E P(D)). (10) 

First we show that the presheaf F P thus described is separated, if 
F is separated. Suppose T and a are two such natural transformations, 
while S E J(O) is some cover of 0 such that T·f = a·f for all f: 0' --+ 0 
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in S. This means that T(fg',x) = rr(fg',x) for all g' and x as in (10); 
in particular (take g' = 1) that 

T(f, x) = rr(f, x) (11) 

for all f: C' -t C in the cover S and all x E P(C'). Now let k: C' -t C 
be any arrow to C while x E P(C'). Then for every g' E k*(S) (i.e., for 
kg' E S) one has 

T(k, x) . g' = T(kg', xg') 

= rr(kg', xg') 

= rr(k, x) . g' 

[naturality of T, (9)] 

[by (11)] 

(naturality of rr). 

Then since k* S is a cover of C' and F is assumed to be separated, 
it follows that T(k, x) = rr(k, x). Since k and x were arbitrary, one 
concludes that T = rr. This shows that F P is a separated presheaf if F 
is. 

To prove that this exponential F P is a sheaf if F is, we now need only 
show that amalgamations of matching families of elements of F P exist, 
since the uniqueness of any amalgamation follows from the fact that 
F P is separated. So suppose that S E J( C) is a cover and that for all 
f: D -t C in S we are given a natural transformation Tf: y(D) xP -t F; 
moreover, suppose that these Tf form a matching family. The latter 
means that Tfg = Tf . 9 for every morphism g: E -t D and hence, by 
the definition (10) of T . g, that 

Tfg(h,x) = (Tf' g)(h,x) = Tf(gh,x) (12) 

for all h: E' -t E and all x E P(E'). To find an amalgamation of the 
family { T f: f E S} we will first construct from the cover S a natural 
transformation T': y( C) x P -t F+ so that, for all f: D -t C in S, the 
diagram of functors and natural transformations 

y(D) x P _T--,--f-;) F 

y(f) Xli 1 ryF (13) 

y( C) X P ----,T'-» F+ 

commutes. Since F is a sheaf, the map T)F on the right is an isomorphism; 
therefore, any such T' provides an amalgamation (T)F) -lOT' of the given 

family { T f: f E S}. 
To define T~ at an object B of C, we must define T'(k, x) for any 

k: B -t C and any element x E P(B); we can set 

T'(k,x) = {Tkh(1,x, h) I hE k*S}, (14) 
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provided that the right-hand side is an element of F+(B); that is, is a 
matching family of elements of F for the cover k* (S) of B. To check this, 
choose h E k* S and consider any morphism m for which the composite 
hm is defined; then 

Tkh(l, x . h) . m = Tkh(m, x· hm) 

= Tkhm(l,x· hm), 

(naturality of Tkh) 

[by (12)], 

so the right-hand side of (14) does match for the cover k* S, and it is 
clear that T' thus defined is a natural transformation y( C) x P ---'> F+. 

Moreover, the diagram (13) of functors for the T' as defined in (14) 
commutes. For consider any f: D ---'> C in S, so that 1* S = tD-the 
maximal sieve on D. Then for any element (k, x) in y(D) x P, where 
k: B ---'> D and x E PCB), say, one has 

(T' 0 (y(f) x 1))(k,x) = T'(fk,x) = {Tjkh(l,x· h) I h} 

by the definition (14) of T', where h ranges over (fk)* S = k* 1* S = tB, 
the maximal sieve on B. On the other hand, by the definition §5(4) of 
'T} and by (12), 

'T}FTj(k,x) = 'T}F(Tjk(l,x)) = {Tjkh(l,x. h) I hE tB}; 

so the results agree. This shows that (13) commutes, and thus completes 
the proof of the proposition. 

As an example, let A be a complete Heyting algebra [§2, Exam
ple (d)], while F and G are sheaves on A. If a E A, then the ideal 1 (a) 
generated by a is the set {b E A I b :s: a}. Considered as a category, 
this ideal has a Grothendieck topology inherited from A, in which "cov
ers are sups". Moreover, F and G restrict to sheaves Fla and Gla on 
l(a). The exponential GF is the sheaf on A with elements the natural 
transformations 

T: Hom(-,a) X F---'> G. 

Since Hom(b, a) = 0 unless b :s: a, in which case it is the one-element set, 
such a T is the same thing as a family of functions Tb: F(b) ---'> G(b), one 
for each b :s: a, and natural in b. In other words, G F is the sheaf with 

GF(a) = Hom(Fla,Gla), (15) 

where Hom is the set of morphisms (natural transformations) in the 
category of sheaves on l(a). [Note also that l(a) is in fact itself a cHa; 
see Exercise 17.] Observe that this formula (15) agrees with the one 
(II.8.2) for sheaves on a topological space. 



6. First Properties of the Category of Sheaves 139 

As another example, let T be the topological site considered in either 
example (b) or (c) of §2. Then any topological space X (not necessarily 
one in T) represents a sheaf p(X) on T, namely, 

p(X) = Cts( - ,X), 

where "Cts" denotes the set of continuous functions. In case X is lo
cally compact while Y is another space, the function space Y x can be 
given the usual compact-open topology. With this topology, there is an 
obvious natural transformation 

which is often an isomorphism (e.g., when X has an open cover by 
elements from T; see Exercise 18 for details). 

To conclude this section, we briefly consider the Yoneda embedding 
in the context of sheaves. If the topology on C is sub canonical, every 
representable presheaf is a sheaf, so the Yoneda embedding y: C -> 

SetsCOP factors through the inclusion Sh(C, J) >--> SetsCoP
• However, 

even if J is not sub canonical, we can compose y with the associated 
sheaf functor a to give a canonical functor 

ay: C -> Sh(C, J), (16) 

which however need not be full and faithful. For any sheaf F on 
(C, J), regarded as a presheaf iF, the Yoneda lemma states that 
F( C) ~ Hom(y( C), iF). By the adjunction of Theorem 5.1, this gives 

F(C) ~ HomSh(c,J) (ay(C) , F). (17) 

Every presheaf is a colimit of representables (Proposition 1.5.1). 
Consequently, any sheaf F, regarded as a presheaf iF, has the form 
i(F) ~ lim y(Ck) for some diagram of objects Ck in C. Therefore, 

--+k 
since a as a left adjoint preserves colimits, 

This implies in particular that the set of all the sheaves ay( C) for C E C 
generate the category Sh(C, J). (Recall from [CWM, p. 123] that a 
collection {G~} of objects of a category A is said to generate A iff for 
any parallel pair of morphisms I, g: A -> B in A one has I = g iff 
It = gt for all maps t: Gt:, -> A with Gt:, any object from the collection 

{Gd·) 
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7. Subobject Classifiers for Sites 
Perhaps the most important property shared by our typical cate

gories from Chapter I is the existence in each such category of a sub
object classifier n. We will now show that there is such a subobject 
classifier for sheaves on a site. First recall (§II.8) that for sheaves on 
a topological space with the usual open cover topology, the subobject 
classifier n was the sheaf n on X defined by 

n (U) = {V I V is open and V c U}. 

If here we replace each open set V by the corresponding principal sieve 
!(V) = {V'I V' <:;;; V}, then n becomes 

n(u) = {S I S is a principal sieve on U}. (1) 

Now to assert that a sieve S is principal is to assert that it is closed 
under arbitrary unions of its elements; i.e., that for all open W <:;;; U, 

S covers W ===} W E S. (2) 

It is this property of sieves (to be called "s is closed") that we will 
generalize to any site. 

Consider an arbitrary site (C, J). For a sieve M on an object C and 
an arrow I: D ---7 C, recall that I E M iff f* M is the maximal sieve on 
D, and (§2) that "M covers f" means that f* M E J(D). Now define: 
A sieve M on C is closed (for J) iff for all arrows I: D ---7 C in C, 

M covers I ===} IE M; (3) 

or, equivalently, iff for all arrows I: D ---7 C, 

{h : E ---7 D I Ih E M} covers D ===} I E M. (4) 

Indeed, the condition on the left-hand side of (4) states that f* M covers 
D, i.e., M covers f. (Note: the terminology "closed" is unfortunately 
now standard in this usage, and was perhaps suggested by the general 
idea of a closure operator; it has, however, no intuitive connection with 
the basic notion of a closed set in point-set topology.) 

The property of being closed is stable under pullback, in the sense 
that for any sieve M on C and any morphism h: B ---7 C, 

M is closed ===} h* M is closed. (5) 

Indeed, suppose h*(M) covers a given morphism I: D ---7 B. By def
inition, this means that M covers the composite hI; hence since M is 
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closed, hi E M, or I E h* M. Thus, h*(M) is closed. This means that 
the definition 

o( C) = the set of closed sieves on C (6) 

yields a functor 0: cop --t Sets, for which the restriction DC --t DB 
along any h: B --t C is given by 

M·h=h*M, (7) 

for any closed sieve M on C. 
From any given sieve S on an object C, one may construct a related 

sieve 8 on C as follows: 

8 = {h I h has codomain C, and S covers h}. (8) 

Notice that 8 is indeed a sieve [ef. the stability condition (iia) of §2]. 
This sieve 8 is closed. For suppose 8 covers g. By definition of 8, 
the sieve S covers all arrows in 8. Hence, by the "arrow form" of the 
transitivity condition [(iiia) of §2]' S covers g. Thus, 9 E 8. 

It is obvious that 8 is the smallest closed sieve on C which contains 
S. Consequently, 8 is called the closure of S. This closure operation is 
natural, in the sense that for any arrow g: D --t C, 

g*(S) = g*(8). (9) 

Indeed, g*(S) S;; g*(8) and the latter is closed by (5), so g*(S) S;; g*(8). 
Conversely, if I E g* (8) for some morphism I: B --t D, then 9 I E 8, 
i.e., S covers gl, or equivalently g*(S) covers I. Thus, I E g*(S). 

Lemma 1. The presheaf 0 of (6) is a sheaf. 

Proof: We first show that the presheaf 0 is separated. So suppose 
M, N E o(C) are two closed sieves on C, while S is a cover of C such 
that g* M = g* N for any 9 E S. Then MnS = NnS. Take any IE M. 
Then M covers I, and S covers I since S covers C, so M n S covers I· 
But M n S = N n SeN, so N covers I, and therefore lEN since N 
is closed. This shows M S;; N. Repeating the argument with M and N 
interchanged gives M = N. Thus, 0 is indeed separated. 

It remains to show that matching families have amalgamations in o. 
Let S E J(C) be a cover, and let Mf E o(D), for IE S with I: D --t C, 

form a matching family of closed sieves, so that 

(10) 
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for all f E S and all 9 composable with f. Consider the sieve 

(11) 

This M need not be closed (why?), but we claim that its closure M is 
the required amalgamation of the Mf. First, it follows from (10) that 

f*(M) = Mf (12) 

for any f E S. Indeed, it is clear that Mf ~ f*(M). And conversely, if 
u E f*(M), i.e., fu E M, then for some I' E Sand 9 E Mfl, fu = f'g. 
Thus, Mfu = Mflg, or by (10), u*(Mf) = g*(Mf'). But 9 E Mfl, so 
g*(Mf ) is the maximal sieve; hence so is u* M f , i.e., u EMf. Now (12) 
and (9) give f*(M) = Mf = Mf, since Mf is closed. This shows that 
M is an amalgamation for the Mf, (f E S), and completes the proof 
that n is a sheaf. 

Lemma 2. Let F be a sheaf on C, and let A c F be a subpresheaf 
of F. Then A is a sheaf iff for all C E C, x E F(C) and all covers S of 
C, it holds that x E A(C) whenever X· f E A(D) for all f: D ----t C in S. 

Proof: This is immediate, for the condition on A simply states that 
the amalgamation of a matching family of elements of A, which neces
sarily exists as a uniquely determined element of F, actually lies again 
in A. 

Observe that the maximal sieve on C, tc = {f I f has codomain C} 
is obviously closed, and that for any morphism g: D ----t C in C, we have 
g* (tc) = t D. Thus, C 1-+ tc defines a natural transformation 

true: 1 ----t n. (13) 

Proposition 3. The sheaf n of all closed sieves, together with the 
map true of (13), is a subobject classifier for the category Sh(C, J). 

Proof: Let F be a sheaf on C, and let A c F be a subsheaf. We 
propose a "characteristic function" XA: F ----t n for A, defined in the 
same way as for presheaves: 

(XA)c(X) = {f: D ----t C I X· f E A(D) }, 

where C E C and x E F(C). By Lemma 2 above for x . g, (XA)c(X) is 
a closed sieve on C. Moreover for any g: B ----t C in C, we have 

iff X· g. f E A 

iff gf E (XA)c(X) 

iff f E g*((XA)c(X)), 
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SO XA is a natural transformation [ef. (7) above]. 
We verify now that the square of sheaves 

A )1 

1 ltrue 

F XA )0 

is a pullback. Since limits in Sh(C, J) are computed as limits in SetsCOP , 

i.e., pointwise, this square is a pullback precisely when, for all C E C 
and all x E F(C), x E A(C) iff (XA)c(X) = te, and this is indeed 
the case as is clear from the definition of XA. This last equivalence 
also shows that X is unique, for Ie E (XA)c(X) iff x E A(C) implies 
by naturality of XA that for any f: D -t C in C, f E (XA)c(X) iff 
ID E !*(XA)c(X) = (XA)D(X' j), iff x . f E A(D). 

Corollary 4. Every Grothendieck tapas is an elementary tapas. 

Conversely, however, an elementary topos need not be a 
Grothendieck topos. In the Appendix, we will see that the following 
additional properties distinguish the Grothendieck topoi among the el
ementary ones: The existence of a set of generators, and the existence 
of all small coproducts. 

As an application, let us characterize epimorphisms of sheaves. 

Corollary 5. A morphism 1>: F -t G of sheaves is an epimorphism 
in the Grothendieck tapas Sh(C, J) iff for each object C of C and each 
element y E G (C), there is a cover S of C such that for all f: D -t C 
in S the element y. f is in the image of 1>D: F(D) -t G(D). 

The conclusion is often phrased "1> is locally surjective" . 

Proof: First suppose that 1> is locally surjective and that 0:, 13: G -t 

H are maps of sheaves with 0:1> = 131>. For any object C of C and any 
y E G ( C), pick a cover S as in the statement of the corollary. Then 
clearly for every f E S one has o:(y. j) = f3(y. j), or o:(y) . f = f3(y). f. 
Since H is a sheaf and S a cover, o:(y) = f3(y). 

Conversely, given an epi 1>: F -t G, define a presheaf A ~ G by 

A(C) = 
{ Y E G (C) I :3 a cover S of C \If: B -t C in S: y . f E Im( 1> B) }. 

By Lemma 2, A is a subsheaf of G. Let XA: G -t 0 be its characteristic 
map. Then 1>e takes F(C) into A(C), so the square 

G-c:-:X-A-) 0 
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commutes. Thus, ¢ epi implies that XA coincides with the composite 
true 

G ~ 1 ~ 0, so A = G and the corollary follows. 

In exactly the same way, we can derive a slightly stronger version of 
Corollary 5. Suppose P and Q are presheaves on C, while ¢: P ----+ Q is 
a natural transformation. It still makes sense to define ¢ to be locally 
surjective for the topology J iff the conclusion of Corollary 5 is satisfied. 
As before, a: SetsCOP ----+ Sh(C, J) denotes the associated sheaf functor. 

Corollary 6. For given ¢: P ----+ Q, the map a(¢): aP ----+ aQ is an 
epimorphism in Sh(C, J) iff ¢ is locally surjective. 

Proof: (<¢=) Let 0:, f3: aQ ----+ F be maps into a sheaf F, such that 
0: 0 a( ¢) = f3 0 a( ¢). Then by the naturality of rJ: P ----+ aP, one also has 
0: 0 rJ 0 ¢ = f3 0 rJ 0 ¢: P ----+ F. This implies that O:rJ = f3rJ in the case ¢ is 
locally surjective, by exactly the same argument as in Corollary 5. By 
the universality of rJ, we conclude that 0: = f3. 

( =?) Define a subpresheaf A <;;; Q as in the proof of Corollary 5. 
Write O(p) for the subobject classifier of SetsCOP

, and 0 for that of 
Sh(C, J). So O(p) (G) is the set of sieves on G, while O(G) <;;; O(p)(G) is 
the set of closed sieves on G, for any object G of C. Let XA: Q ----+ O(p) 
be the classifying map for A <;;; Q; so for G E C and Y E Q(G), 

(XA)c(Y) = {I: D ----+ G I y. I E A(D)}, 

as in §I.8. It follows readily from the definition of A that (XA)c(Y) is 
always a closed sieve. SO XA factors through i: 0>----+ O(p). Since 0 is a 
sheaf, XA = iXA 0 rJQ for a unique XA: aQ ----+ O. Now clearly XA 0 ¢ 
factors through true: 1 ----+ 0; hence, by universality and naturality of rJ, 
so does XA 0 a( ¢): aP ----+ O. But a( ¢) is epi; hence, XA factors through 
true. Then so does XA; hence, A = Q, i.e., ¢ is locally surjective. 

As a special case, we observe that the Grothendieck topology J on 
C can be recovered from the category Sh(C, J) of sheaves, together with 
the functor ay: C ----+ Sh(C, J). (Recall that a family {Ii: Gi ----+ G} is 
said to cover G if the sieve it generates is a covering sieve.) 

Corollary 7. A family { Ii: Gi ----+ G} covers G iff the induced map 

is an epimorphism in She G, J). 

Proof: By construction of coproducts in Sh(C, J), the coproduct 
U aye Gi ) is the associated sheaf of U(p) y( Gi ), where U(p) denotes the 
(pointwise) coproduct in the presheaf category SetsCoP

• The statement 
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easily follows by applying the previous corollary to the case where ¢ is 
the map Il(p) y(Ci ) -> y(C). 

This result will be used in the "semantics" to be considered in §VI. 7. 

8. Subsheaves 

Let (C, J) be a fixed site and Sh(C, J) the associated Grothendieck 
topos, as in the previous section. For each J-sheaf E on C, let SUb(E) 
be the set of subobjects A of E in Sh(C, J). Thus, each A E Sub(E) 
can uniquely be represented by a functor 

A: cop -> Sets, 

such that (i) for each object C of C, the set inclusion A( C) <;;:; E( C) 
holds, (ii) for each morphism C' -> C the restriction A(C) -> A(C') 
agrees with that of E, and (iii) for each object C of C, each cover S of 
C, and each e E E(C) one has 

e· f E A(D) for every f: D -> C in S implies e E A(C) (1) 

(cf. Lemma 7.2). 
The subobjects of E are partially ordered in the usual way, which in 

this case can be expressed as 

A~B iff A(C) <;;:; B(C), for all C E C, (2) 

for A, B E Sub(E) as above. Clearly, E itself satisfies condition (1), so 
this poset Sub(E) has a largest element. Moreover, if A and Bare sub
functors of E which satisfy (1), then so does their pointwise intersection 
A/\B: 

(A /\ B)(C) = A(C) n B(C); (3) 

this defines the meet of A and B in Sub(E). In fact, this applies to any 
family of subobjects {Ai} of E: the infimum /\i Ai exists in Sub(E), 
and can be described pointwise; i.e., 

(4) 

It follows that Sub(E) is a complete lattice, since as always suprema can 
be described in terms of infima by Vi Ai = /\{ B I Ai <;;:; B for all i}. In 
the present case of Sh(C, J), suprema can also be described explicitly 
by the equivalence, for any C E C and any e E E(C): 

e E (V Ai)(C) iff {f: D -> C Ie· f E Ai(D) for some i} E J(C), (5) 
i 
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where {AJ is any family of subobjects of E. To see this, first no
tice that the right-hand side of (5) describes a subfunctor of E; for if 
S = {f: D -- 0 Ie· f E Ai (D) for some i} covers 0, then for any 
morphism g: 0' __ 0, the sieve g* (S) covers 0'. But g* (S) = { h: D --
0' I (e· g) . h E Ai (D), for some i }, so e . g again satisfies the right-hand 
side of (5). That this indeed defines the sup of the Ai is now clear, be
cause the subfunctor of E defined by the right-hand side of (5) evidently 
satisfies condition (1) above (by the transitivity axiom for Grothendieck 
topologies) and is the smallest such containing all the Ai· 

Proposition 1. For any sheaf E on a site (C, J), the lattice Sub(E) 
of all subsheaves of E is a complete Heyting algebra. 

Proof: We have just noticed that sups and infs exist, so it suffices 
to prove the distributive law: that for a family of sub objects {AJ and 
another subobject B, 

(6) 

holds [see §2, Example (d)]. Here the inclusion :2 always holds. To 
prove the inclusion <:;;;, take e E E(O) for any object 0 E C. Suppose 
that e E B ( 0), and moreover that e E Vi Ai, so that the sieve S = 
{f: D -- 0 Ie· f E Ai(D) for some i} covers 0 [ef. (5) above]. Then 
for f E S, e· f E (B 1\ Ai)(D) for some i by (3), so clearly the same 
cover S shows that e E (Vi B 1\ Ai)(O), by (5). 

The complete distributive lattice SUb(E) is thus Heyting, and so has 
an implication operator. We claim that this operator =? on Sub(E) can 
be explicitly described by 

e E (A =? B)(O) 

iff for all f: D -- 0, e· f E A(D) implies e· f E B(D), (7) 

for any two given A, B E Sub(E), any 0 E C and any e E E(O). To 
prove (7), we temporarily interpret (7) as defining (A =? B)(O) <:;;; E(O) 
for each 0 E C. Then this A =? B is clearly a sub functor of E [ef. (ii) 
above], and by the stability axiom for Grothendieck topologies it follows 
that A=? B also satisfies condition (1). Thus A =? B as defined by (7) 
is indeed a subobject of E. To prove that it describes the implication 
operation in Sub(E), it now suffices to verify that A=? B as defined by 
(7) enjoys the property 

u <:;;; (A =? B) iff U 1\ A <:;;; B for all U E Sub(E), (8) 

which characterises the implication in a Heyting algebra (ef. §I.8). It is 
clear that (8) follows from (7). 
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Any morphism </>: E ----+ F of sheaves induces a functor on the corre
sponding partially ordered sets of subsheaves, 

</>-1: Sub(F) ----+ Sub(E) (9) 

by pullback: for B <;;; F and GEe, that is, by 

iff </>c(e) E B(G) (10) 

for all e E E(G). Clearly </>-1 is order-preserving, i.e., is indeed a functor 
of partially ordered sets. We claim that </>-1 has both a left and a right 
adjoint. The left adjoint, which is usually written as 

:lq,: Sub(E) ----+ Sub(F), (11) 

should, by the definition of adjoints for posets, satisfy 

:lq,(A) <;;; B (12) 

For A <;;; E, define a proposed :lq,(A) by setting, for GEe and y E E( G), 

Y E :lq,(A)(G) 

iff {f: D ----+ G l:la E A(D)'</>D(a) = y. f} is a cover of G. (13) 

(Note the existential quantifier :la.) In other words, we define :lq,(A) by 
taking the pointwise image of each composite A( G) >--+ E( G) ----+ F( G), 
and then closing off under (1). Leaving the straightforward details to the 
reader, we remark that this :lq,(A) <;;; F is a subfunctor by the stability 
axiom for Grothendieck topologies, and in fact is a sub sheaf [ef. (1)] by 
the transitivity axiom. To prove that (12) holds, consider any sub sheaf 
B <;;; F. Suppose that :lq,(A) <;;; B. Then for any GEe and a E A(G), 
one has </>cCa) E :lq,(A)(G) <;;; B(G); that is, a E </>c/(B) = </>-1 (B)(G). 
Thus, A <;;; </>-1 (B). Conversely, suppose A <;;; </>-1 (B), and consider any 
GEe and y E :lq,(A)(G). By the definition (13), the latter means that 
there exists a cover S of G such that for each f: D ----+ Gin S, y. f is in the 
image of </>D: A(D) ----+ F(D). But by assumptioll A(D) <;;; </>r/(B(D)), 
so the image of </>D is contained in B(D). Therefore y. f E B(D) for 
each f E S. Since B is a subsheaf, this implies that y E B( G). This 
shows that :lq,(A) <;;; B, and completes the proof of (12). 

Next, we construct for </>: E ----+ F the right adjoint of </>, usually 
denoted by 

Vq,: Sub(E) ----+ Sub(F). 

For A <;;; E, and y E F(C) for an object C of C, one might try the 
definition 

Y E V;P(A) (G) iff for all x E E(G), </>cCx) = y implies x E A(e) 
(14) 



148 III. Grothendieck Topologies and Sheaves 

[that is, ¢c/(Y) ~ A(O)]. This is in effect exactly the definition of the 
universal quantifer V ¢ for subsets of a set, as presented in Theorem 1.9.2. 
However, the proposed definition (14) does not give a presheaf. Hence we 
"stabilize" under the action of C on F, and so define V ¢ (A) by 

Y E V¢(A)(O) iff for all f: D -+ 0, y . f E V1, ( A ) ( D) 

iff for all f: D -+ 0, ¢r/ (y . f) ~ A(D). 
(15) 

Then for any arrow g: 0' -+ 0, y E V ¢ (A)( 0) clearly implies y . 9 E 

V¢(A)(O'), so (15) does define a sub functor of F. 
Now we show that this subfunctor is actually a subsheaf. To this end, 

consider some y E F(O) and a cover 3 of 0 such that y. 9 E V¢(A)(O') 
for all g: 0' -+ 0 in 3. We must show that y E V¢(A)(O), i.e., that 
for all f: D -+ 0, ¢r/(Y' f) <:;; A(D). So suppose y. f = ¢D(X) for 
some x E E(D). Now /*(3) is a cover of D, and if h: 0' -+ D is 
any arrow in /*(3), then fh E 3 so y . (fh) E V¢(A)(O'). Thus, since 
¢E(X' h) = y. (fh), we have x . h E A(O'). Since this holds for all 
hE /*(3) and A is a subsheaf of E, we conclude that x E A(D). This 
proves that ¢r/(Y' f) <:;; A(D), as was to be shown. 

Next, we prove that V ¢ as defined by (15) is indeed right adjoint to 
¢-l; i.e., that for any subsheaves A <:;; E and B <:;; F, 

iff B <:;; V¢(A). (16) 

In one direction, suppose ¢-l(B) <:;; A, and consider any 0 E C 
and b E B( 0). Let f: D -+ 0 be a morphism in C and let x E E(D) 
be such that ¢D(X) = b· f. Then ¢D(X) E B(D), so x E A(D) since 
¢-l(B) ~ A. Thus, bE V¢(A)(O). The converse implication in (16) is 
even easier. 

We have now proved the following. 

Proposition 2. For any morphism of sheaves ¢: E -+ F on a site, 
the pullback functor ¢-l: Sub (F) -+ SUb(E) has both a left and a right 
adjoint: 

Sub(E) (¢-' Sub(F), 
'if," 

----t 

We emphasize that it is not only the existence of these adjoints, but 
also their explicit description as given by (13) and (15), which will be of 
importance later on. 

The adjoints of Proposition 2 are natural in the sense expressed in 
Exercise 15. 

To conclude this section, let us briefly consider some examples. Let A 
be a complete Heyting algebra, with its natural Grothendieck topology 
[§2, Example (d)], and consider the topos Sh(A). A sub sheaf of the 
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terminal object 1 is a functor S: AOP -- Sets such that S(a) ~ {O} for 
every a E A, and, moreover, such that a = Vai implies that 

if 0 E S(ai) for all i then 0 E S(a) 

[ef. (1) above]. So S is completely determined by the element s = V{ a I 
o E S(a)} of A, and we find that s ....... S gives 

A ~ SUb(I). (17) 

This shows that any complete Heyting algebra can be realized as a sub
object lattice in a Grothendieck topos. 

Before discussing the next example, consider for a moment an arbi
trary site (C, J). If E is a sheaf on C, the minimal element 0 E Sub(E) 
is not necessarily the empty functor because this functor need not be a 
sheaf. This happens because it may be that an object C of C has an 
empty cover; i.e., 0 E J(C). Now when 0 is a cover of C, a matching 
family of elements of E for the empty cover is by definition a function 
on the empty set; there is only one such function, and it is obviously 
matching. However, in the empty functor cop -- Sets, there is no el
ement to be an amalgamation so this functor is not a sheaf. However, 
for a given sheaf Eon Sh(C, J), 0 E J(C) implies, by the existence of 
a unique amalgamation, that there is exactly one element x E E(C); so 
the subfunctor 0 defined by 

O(C) = {x E E(C)}, 

= 0, 
o E J(C) 

o ~ J(C) 
(18) 

is a sheaf, and is clearly the smallest subsheaf of E (see also Exercise 13). 
Now consider any subsheaf B of a given sheaf E. By definition, its 

"pseudo-complement" (i.e., its negation) --,B is the largest subsheaf U 
of E with U 1\ B = 0; i.e., with 0 as in (18), 

--,B = V { U E Sub(E) I U 1\ B = 0 } 

=B=*O 

[ef. §I.8, (8) and (9)]. From (7) and (18), we see that --,B can be explicitly 
described by the equivalence, for any C E C and x E E( C), 

x E --,B(C) iff for any f: D -- C, X· f E B(D) implies that 0 E J(D). 
(19) 

Now consider as a special case the dense topology of §2, Example (e). 
The empty family can never be dense, so 0 is, in fact, the empty functor 
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in this case. Thus, if B is a subsheaf of a sheaf E, the subsheaf -,B can 
simply be described for any object G of C by 

-,B(G) = {x E E(G) I for no f: D ----+ G, X· f E B(D)}. (20) 

Now let x E E(G) be any element of E, and write 

Sx = {f: D ----+ G I X· f E B(D) or x . f E -,B(D) }. 

Then Sx is dense below G, for if g: G' ----+ G is any morphism, then 
either some restriction of X· 9 ends up in B [say (x· g) . hE B(G") for 
some h: Gil ----+ G'], in which case gh E Sx, or none does (in which case 
9 E Sx). This shows that 

BV ---,B =E, (21) 

so Sub (E) is, in fact, a complete Boolean algebra. 
Finally, consider the case of the atomic topology J on a category C, 

as in §2, Example (f). The atomic topology is a special case of the dense 
topology, so again Sub(E) is a complete Boolean algebra for any sheaf 
Eon C. Let x E E(G) be some element of a fixed sheaf E. We wish 
to show that there exists a smallest subsheaf AcE with x E A(G). 
Clearly, such an A must contain all restrictions of Xi i.e., 

x . f E A(D) for all f: D ----+ G. 

Therefore, since every nonempty sieve is a cover, property (1) from the 
beginning of this section gives 

f 9 
Y E A(D) if there are morphisms G f- E ---. D in C with y. 9 = X· f. 

(22) 
But taking (22) as a definition of A, for a fixed element x E E(G), one 
can easily show that A is, in fact, a subsheaf of E (using the property 
expressed by (10) of §2). This subsheaf A is therefore an atom of Sub(E)i 
i.e., it contains no smaller nonzero subsheaf. The argument above shows 
that any B E Sub(E) with B -I- 0 contains such an atom A. This proves 
that Sub (E) is in fact an atomic complete Boolean algebra. (This latter 
property actually characterizes the atomic topology.) 

9. Continuous Group Actions 

We consider the category BG of continuous G-sets, where G is a 
topological group. Recall from §I.1 that the objects of BG are sets X 
equipped with a right G-action 

XxG---.X (1) 
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which is continuous when X is given the discrete topology, and that the 
morphisms of BG are functions which preserve this action. We write 

Homc(X,Y) 

for the set of morphisms X ----; Y in BG. 
If G acts on X and x EX, the isotropy subgroup of x, 

Ix = {g E G I X· g = x}, (2) 

is open for each x precisely when the action map (1) is continuous, as is 
easily verified (see the exercises of Chapter I). 

To show that BG is a Grothendieck topos, we will explicitly con
struct a site for BG. Let S( G) be the full subcategory of BG whose 
objects are right G-sets of the form 

G/U, 

where U is an open subgroup of G (if U is open, then the quotient 
topology on G /U is discrete). So the elements of G /U are right cosets 
U x (x E G), while G acts on the right on each coset by 

(Ux) . g = Uxg. 

The isotropy subgroups are the conjugates of U: lux = {g I Uxg = 
<I> 

Ux} = X-lUX. A morphism G/U -----> G/V in S(G) has to preserve the 
action, i.e., ¢(Uxg) = ¢(Ux)g, so ¢ is completely determined by what it 
does on the coset U = Ue (e being the unit of G). On the other hand, 
if a is any element of G we may try to define a morphism 

¢: G/U ----; G/V 

in BG by the formula ¢(U x) = Vax. This is well-defined on cosets if 
Ux = Uy implies Vax = Vay, or equivalently, if U ~ a-IVa. Putting 
these observations together, we conclude that morphisms G/U ----; G/V 
in S( G) correspond to co sets Va with the property that U ~ a-I Va. 
If U ~ a -1 Va for a particular a E G, the corresponding morphism of 

S(G) is denoted by G/U -: G/V. In this notation, composition in S(G) 
corresponds to multiplication in G. 

Notice that all morphisms in S(G) are epimorphisms in BG. This 
suggests that we equip S(G) with the atomic topology, i.e., the topology 
in which every nonempty sieve is a cover, as in §2, Example (f). This 
satisfies condition (10) there, and so is indeed a Grothendieck topology, 
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b a 
for given two morphisms GjW ---+ GjV f- GjU, we may complete them 
to a commutative square 

G j 0 ----=a:.--_1 --+) G j U 

b- 11 1 a 

GjW -b----t) GjV 

by choosing an open subgroup 0 small enough for the indicated maps 
to be well-defined, i.e., 0 ~ aUa-1 n bWb-1 . 

There is a canonical functor 

¢>: BG ---; SetsS(C)OP, ¢>(X) = Homc( - ,X) (3) 

induced by the inclusion S(G) >---+ BG. Note that 

¢>(X)(GjU) = Homc(GjU, X) 

~XU, (4) 

where XU = {x E X I 'rig E U(xg = x) } is not an exponential, but is 
the set of U-fixed points, as usual. In terms of these fixed point sets, 

a (- )·a 
¢>(X) sends a morphism G jV ---+ G jU to the function XU ______ Xv; 
the action by a indeed maps XU into XV because I x .a = a-l Ixa, so 
if x E Xu, i.e., U ~ Ix, then I x.a 2 a-lUa 2 V by definition of the 
morphisms in S(G); i.e., X· a E Xv. 

1> 
Theorem 1. For any topological group G, the functor BG ---+ 

SetsS(C)OP induces an equivalence of categories 

BG ~ Sh(S(G)), 

where on the right the sheaves are taken with respect to the atomic 
topology. 

Proof: Define a functor 

by setting, for a presheaf F on S (G), 

1jJ(F) = lim F(GjU), ----tu (5) 

where the colimit is taken over all open subgroups U of G, partially 
ordered by inclusion. So the elements of 1jJ(F) are equivalence classes 
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[x, U] where x E F(GjU), and [x, Uj = [y, V] whenever there is an open 
subgroup W <;;; Un V such that x and y have the same image under the 

e e 
maps F(GjW ---> GjU) and F(GjW ---> GjV), with e the unit element 
of G. The group G acts on the set 'l/J(F) by 

[x, Uj· 9 = [y, g-lU g], 

9 
where y = F ( G j 9 -1 U 9 ---> G j U) (x) . This action is indeed continuous 
since clearly [x, Uj·g = [x, Uj if 9 E U, and is well-defined on equivalence 
classes. Also 'l/J is a functor; for if T: F ----+ F' is a morphism of presheaves 
in SetsS(G)OP, that is, a natural transformation, then the components of 
T induce a map 'l/J(T) on the colimit (5) in the obvious way: 

'l/J(T) [x, Uj = [TGjU(X), Uj. 

Note that if X is a continuous G-set, then X = Uu XU since all 
isotropy subgroups are open, and since XU ~ ¢(X)(GjU) by (4), this 
means precisely that there is a natural isomorphism 

'l/J 0 ¢ ~ Id. 

On the other hand, we just noticed that the isotropy subgroup of [x, U] E 
'l/J(F) contains U, so that [x, U] E 'l/J(F)U and we obtain, by (4), a map 

a(F)u = au: F(GjU) ----+ 'l/J(F)u = ¢'l/J(F)(GjU) 

au(x) = [x, u], x E F(GjU), 

for each open subgroup U. This in fact defines a natural transformation 
a a 

F ----> ¢'l/J(F); for if GjU ---> GjV is a morphism in S(G), commutativity 
for a E G of the diagram 

F(GjU) -"------t au ) 'l/J(F)u 

F(a)1 I ( -).a 

F(G jV) ---,---+ av ) 'l/J(F)v 

simply means that for y E F(GjV), au(F(a)(y)) = [F(a)(y), Uj defines 

the same element of 'l/J(F) as [F(Gja- 1 Va ~ GjV)(y), a-1 Va], and this 
follows from the commutativity of 

GjU 
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[recall that U <;;; a-1Va by definition of the morphisms in S(G)]. The 
definition a = aF: F -+ cj>'ljJ(F) is also natural in F, as is easily checked. 

To complete the proof, we show that a is an isomorphism in the case 
where F is a sheaf for the atomic topology. If F is a sheaf, all maps 
F(GjU) -+ F(GjV) coming from V <;;; U involved in the colimit (5) are 
monos, so that the canonical maps (the a above with larger codomain) 

au: F(GjU) -+ lim F(GjV) = 'ljJ(F) 
--+v 

are also monomorphisms. The image of au is contained in 'ljJ(F)U, as 
already observed, so we are done if we prove that every element of'ljJ(F)U 
occurs in the image of au. Pick any [x, V] E 'ljJ(F)u. We may choose 
V small enough so that V <;;; U. We claim that x E F(GjV) defines 

e 
a matching "family" for the singleton cover GjV -+ GjU, i.e., that 
whenever 

GjW~GjV~GjU 
b 

(6) 

commutes, F(a)(x) = F(b)(x) E F(GjW). Since F is a sheaf, F sends 
a-I 

GjaWa-1 -----.. GjW to a mono, so by precomposing with this map we 
may without loss assume that a = e in (6). Commutivity of (6) then 
means that bE U (and that W <;;; V and W <;;; b-1Vb). But x E'ljJ(F)U, 
so 

b 
[F(Gjb-1Vb -+ GjV)(x), b-1Vb] = [x, V] 

in 'ljJ(F). This means that for a sufficiently small W' <;;; V n b-1 Vb, we 
b e 

have F(GjW' -+ GjV)(x) = F(GjW' -+ GjV)(x). Choosing W' <;;; W 
e 

and using the fact that F( G jW' -+ G jW) is mono, we conclude that 
b e 

F(GjW -+ GjV)(x) = F(GjW -+ GjV)(x). This shows that x is a 
matching family, as claimed. Therefore, there is a unique y E F( G jU) 

e 
with F(GjV -+ GjU)(y) = x since F is a sheaf. But then [x, V] = 
[y, U] = au(y). Thus, [x, V] is in the image of au, and the proof is 
complete. 

As a variant, we state 

Theorem 2. Let G be a topological group, and let U be a coiinal 
system of open subgroups (in the sense that any open subgroup contains 
a member ofU). Then there is an equivalence of categories 

BG ~ Sh(Su(G)), 

where Su(G) is the full subcategory of S(G) whose objects are of the 
form GjU with U E U, equipped with the atomic topology. 
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Proof: The proof of this result is completely analogous to that of 
Theorem 1, as we leave for the reader to check. Theorem 2 can also be 
derived from Theorem 1 by using the "comparison lemma" , to be proved 
in the Appendix. 

As an example, let us consider the topological group G = Aut(N) 
of all automorphisms of the set N of natural numbers, with the product 
topology inherited from n:o N = NN. Let U(K) = {o: E Aut(N) I 
o:(i) = i for i E K}, where K is a finite subset of N, and let U be the 
collection of all U(K)'s. This U is a cofinal system of open subgroups 
of Aut(N). We claim that there is a 1-1 correspondence between mor
phisms G j U (K) ---+ G j U (L) in Su (G) and monomorphisms L,......... K. For 
suppose 0:: G jU(K) ---+ G jU(L) represents a morphism in Su( G), where 
0: E Aut(N). Then U(K) ~ o:-IU(L)o:, or o:U(K)o:-1 ~ U(L). This 
means that 0:¢0:-1 fixes L for any automorphism ¢ which fixes K, and 
this is equivalent to the condition that o:-I(L) ~ K. 

We may thus define a contravariant functor from Su (G) to the cat
egory I of finite subsets K of Nand monomorphisms between them, by 

sending GjU(K) to K and GjU(K) ~ GjU(L) to 0:- 1 : L,.........K. This 
functor is well-defined, for 

U(L)o: = U(L)(3 ~ 0:(3-1 E U(L) 

~ \Ix E L, 0:(3-1(x) = X 

~ \Ix E L, (3-1 (x) = o:-I(X), 

i.e., 0:-1 and (3-1 define the same morphism L,......... K. This also shows 
that this functor Su(G) ---+ lOP is faithful. It is also full since clearly any 
monomorphism L,......... K can be extended to an isomorphism N ---+ N. 
Therefore, we have an equivalence of categories 

and from Theorem 2 one obtains: 

Corollary 3. The category B Aut(N) is equivalent to the category 
of sheaves on the category JOP for the atomic topology, where I is the 
category of all injective functions between finite subsets of N. 

The topos B Aut(N) ~ Sh(JOP) of Corollary 3 is often called the 
Schanuel topos. For another description of it, see Exercise 13. 

Exercises 

1. Let X be a topological space. For a sieve S on an open subset 
U of X define S covers U iff U is the union of the sets in S. 
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Prove that this defines a Grothendieck topology on the partially 
ordered set O(X) of all open subsets of X. 

2. As alternative properties for a Grothendieck topology, consider: 

(iii*) (Weak Transitivity) If S E J(C) and T c S is any sieve 
on C such that T covers all arrows in S, then T E J ( C). 

(iv) (Intersection) If Sand T are sieves on C, then S n T E 

J(C) iff S E J(C) and T E J(C). 
(v) (Inclusion) If SeT are sieves on C, then S E J(C) 

implies T E J(C). 

Show that the axioms for a Grothendieck topology may be taken 
to be (i), (ii) (of §2) together with (iii*) and (iv), or (i), (ii), (iii*) 
and (v). 

3. (Bases for a Grothendieck topology on a category without pull
backs.) Let C be an arbitrary small category. Define a ba
sis for a Grothendieck topology on C to be a function K as 
in §2, Definition 2, except that (ii') is replaced by: (ii") If 

9 
{Ii: Ci --+ C liE I} E K( C), then for any morphism D ---> C, 
there exists a cover {h j : Dj --+ D I j E I'} E K(D) such that 
for each j, 9 0 h j factors through some Ii. 

(a) Check that (2) (of §2) still defines a Grothendieck topology 
on C. 

(b) State and prove the analogue of Proposition 4.1, for this 
definition of a basis on an arbitrary category C. 

(c) Show that Lemma 4.2 is a special case of the statement of 
part (b). 

4. Let T be as in §2, Example (b), with the open cover topology 
given by the basis K as defined there. Define K' by {Ii: Yi --+ X I 
i E I} E K' (X) iff each Ii is etale (i.e., a local homeomorphism; 
cf. §II.6), and moreover X = Ui li(Yi). Show that K and K' 
generate the same topology J on T. 

5. (a) Let T be as in §2, Example (b). Define K" by {Ii: Yi --+ 

X liE I} E K"(C) iff X = U I(Yi). Show that K" is 
a basis for a Grothendieck topology on T. Assume that 
1 E T and that all constant maps 1 --+ T E T are in T. 
Prove that the category of K" -sheaves on T is equivalent 
to the category of sets. 

(b) Let T be as in (a), and assume that the empty set does 
not belong to T. Prove that the topology generated by 
K" coincides with the dense topology on T. 
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6. Let C be a small category. 

(a) Check that if {Ja}a is a family of Grothendieck topologies 
on C, then nJa [defined by (nJa)(C) = nJa(C)] is 
again one. 

It follows from (a) that, given any collection of sieves Sa on 
Ca (for a in some index set A), there is a smallest Grothendieck 
topology making these sieves into covers. As an example consider: 

(b) Let M be a category of manifolds, as in §2, Example (b). 
Prove that the open cover topology on M is the small
est one with the property that (i) the sieve generated by 
{( -1,00)"""'" R, (-00,1),........ R} covers R; and (ii) the sieve 
generated by {( -n, n) ,........ R In> O} covers R. 

7. (a) Show that the Zariski site (§3) is subcanonical. 
(b) Characterize the posets for which the dense topology is 

sub canonical [§2, Example (e)]. 

8. Let C be a small category, and let P: cop ----- Sets be a presheaf 
on C. Recall from §5 of Chapter I that the category Ie P of 
elements of P has as objects the pairs (x, C) with x E P( C), and 
as morphisms (x,C) ----- (x',C') the morphisms f: C ----- C' in C 
with the property that x' . f = x. 

(a) Prove that there is an equivalence of categories 

cop (J. Plop 
Sets IP ~ Sets c 

(b) Suppose that J is a topology on C, and that P: cop ----

Sets is a J-sheaf. Describe a topology J' on Ie P such 
that the equivalence of (a) restricts to an equivalence 

Sh(C, J)IP ~ Sh(L P, J'). 

9. Let C be a small category, and let J be a Grothendieck topol
ogy on C. Let Sh(C, J)DoP be the category of functors DOP ----

Sh(C, J) and natural transformations between them, for some 
given small category D. Show that Sh(C, J)DoP is a Grothendieck 
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topos, by exhibiting an equivalence of categories Sh(C x D, J') ~ 
Sh(C, J)DoP for some suitable topology J'. 

10. Let X be a topological space, and let G be a (discrete) group 
acting on X by a continuous map G x X -+ X, (g, x) t-t g. x. An 
etale G-space over X is an etale map p: E -+ X (as in Chapter II, 
§6), where E is equipped with an action G x E -+ E by G such 
that p is compatible with the two actions on E and on X. 

( a) Use the correspondence between etale spaces and sheaves 
of §II.6 to show that the category of etale G-spaces is a 
Grothendieck topos, by explicitly describing a site. 

(b) Prove that if the action of G on X is proper, then the 
category of etale G-spaces is equivalent to the category 
Sh(X/G) of sheaves on the orbit space X/G, where X/G 
is equipped with the quotient topology. (Recall that an 
action by G on X is called proper if for each point x E X 
there is a neighborhood Ux of x with the property that for 
any 9 E G, if g. Ux n Ux i- 0 then 9 = e.) 

11. Let J be a Grothendieck topology on a small category C. 

(a) Give an example to show that a: SetsCOP -+ Sh(C, J) 
does not always preserve arbitrary limits. 

(b) Show that ay: C -+ Sh(C,J) preserves all limits which 
exist in C, if J is sub canonical. (What if J isn't?) 

( c) Show that ay: C -+ Sh ( C, J) preserves all exponentials 
which exist in C, if J is sub canonical. 

(d) Give examples which illustrate that ay: C -+ Sh(C, J) can 
be full, but not faithful, faithful but not full, or neither full 
nor faithful. 

12. Let J be a Grothendieck topology on a small category C. Define a 
presheaf 0: cop -+ Sets by setting O( C) = {O} if 0 E J( C), and 
O( C) = 0 otherwise. Prove that 0 is a sheaf on C, and that it is 
the initial object of Sh(C, J). Prove that for any E E Sh(C, J), 
the unique map 0 -+ E is mono. Show that 0 is isomorphic to 
the bottom element of the subobject lattice Sub(E) defined in 
(8.18). 

13. Let I be the category of finite sets and monomorphisms. Show 
that a functor P: I -+ Sets is a sheaf for the atomic topology on 
lOP iff 

(i) P sends every morphism of I to a monomorphism, and 
(ii) P preserves pullbacks. 
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14. Let X be a topological space. Recall that for a set S, D.(S) E 
Sh(X) is the associated sheaf of the constant presheaf O(X)OP ~ 
Sets with value S [ef. (4) of §6]. 

(a) Show that D.(S) is the sheaf of continuous S-valued func
tions on X, where S is given the discrete topology. 

(b) Show that if X is locally connected, then D. has a left 
adjoint 7ro: Sh(X) ~ Sets. [Hint: What is D.(S) as an 
etale space over X?] 

( c) Show that if X is locally connected, then the functor 
D.: Sets ~ Sh(X) commutes with exponentials (meaning 
that for any two sets Sand T, the canonical morphism 
D.(TS) ~ D.(T)~(S) of sheaves on X is an isomorphism). 

(d) If you are courageous, prove the converse of (c). 

15. [The Beck-Chevalley condition; see also §IV.9.] Let J be a 
Grothendieck topology on e. Let 

Y x x Z __ 7r-=-2 --+l Z 

7rll 1 ~ 
Y-----+lX 

1> 

be a pullback square in Sh(e, J). Using the explicit description 
of the functors occurring in Proposition 8.2 as given in the text, 
verify that 

'Ij!-1 031> = 37r2 0 7r11: Sub(Y) ~ Sub(Z). 

Deduce that 4>-1 0 'V~ = 'V7r1 0 7r21: Sub(Z) ~ Sub(Y). 
16. Let 4>: X ~ Y be a morphism of sheaves on (e, J), as in the 

preceding exercise. In the following, you can either work out 
the explicit descriptions, or use abstract categorical arguments 
to deduce (b) from (a) and (a) from Exercise 15. 

(a) Show that for any two subsheaves A S;;; X and B S;;; Y, 

(b) Show that 4>-1: Sub(Y) ~ Sub(X) commutes with the 
implication operator::::} [ef. (7) of §8]. 

17. (a) [ef. §2, Example (d)] Let A be a complete lattice satisfying 
the identity (6) of §2 (the infinite distributive law). Check 
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that A has the structure of a complete Heyting algebra [by 
(7) of§2]. 

(b) Show that if A is a complete Heyting algebra, then so is 
{b E A I a ::; b ::; al }, for any two fixed a,a' E A with a::; a' . 

(c) Check that 0: AOP -+ Sets, O(a) = {b E A I b::; a} is a 
sheaf on A (for the usual topology as in §2), and that it is 
the subobject classifier for Sh(A). 

18. Let T be a full small subcategory of the category of topological 
spaces, closed under taking open subspaces, and containing the 
one-point space. Consider the open cover topology. In §6 [below 
(15)], we defined a map p(Y X) -+ p(y)p(X) of sheaves on T, for 
any two topological spaces Y and X, with X locally compact. 
Prove that this map is an isomorphism if (i) X E T, or (ii) X has 
an open cover by spaces in T, or (iii) X is a metrizable space and 
T contains the subspace {O} U {lin I n E N - {O}} of R. Give 
an example to show that p(yX) -+ p(y)p(X) need not always be 
an isomorphism. 



IV 
First Properties of 
Elementary Topoi 

In this chapter we present elementary conditions (or axioms) that 
make a category £ a tapas, and then develop from these conditions and in 
a suitable order certain other basic properties. Most of these properties 
have already been seen to hold for our typical categories discussed in 
Chapter I, and for the categories of sheaves on a space (Chapter II) or 
on a site (Chapter III). 

The definition of elementary tapas to be given here will be slightly 
different from (but of course equivalent to) the one mentioned in §I.6. 
Specifically, besides the existence of finite limits, the axioms require the 
existence of a subobject classifier 0 and, for each object B, a power ob
ject P B-identical to the exponential OB. From these it can be proved 
that arbitrary exponentials AB exist (§2), as well as finite colimits (§4). 

One of the fundamental persistence properties is that if £ is a tapas 
and B is an object of £, then the slice category £ / B is again a tapas just 
as in the familiar case when [; = Sets [§I.l, Example (ix)]. Moreover, 
for a morphism B' -+ B of [;, the change-of-base functor £ / B -+ £ / B' 
preserves all tapas structure (§7). 

In §8 it will be shown that if B is an object of a tapas £, the partially 
ordered set Sub£ B has the structure of a Heyting algebra, natural in 
B. It then follows by the Yoneda principle that the subobject classifier 
0, as well as each power object PB, have the structure of an internal 
Heyting algebra. 

1. Definition of a Topos 

The typical categories examined in Chapters I and II all satisfy the 
following description of an elementary topos (for short, we say just topos, 
plural topoi). 

Definition. A tapas £ is a category with all finite limits, equipped 
with an object 0, with a function P which assigns to each object B of £ 
an object P B of £, and, for each object A of £, with two isomorphisms, 
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each natural in A 

IV. First Properties of Elementary Topoi 

Sub£ A ~ Homt:{A, n), 
Homt:{B x A,n) ~ Homt:{A,PB). 

(1) 

(2) 

In other words, the functors Sub£ and Home(B x -, n), the latter 
for each object B of f, are required to be representable. In the first case, 
the representing object n is the subobject classifier, as already described 
in §I.4, while in the second case P B may be called the power object of 
B; moreover, the function P can be extended to a functor P: fOP ----> f 
in exactly one way so that (2) becomes natural in B (as well as in A), 
see (7) below. Equivalently, the natural isomorphism (2) states that 
P B is the exponential nB , as described in §I.6; therefore, any category 
which satisfies (1) and has all exponentials will, in particular, have all 
power objects. Hence, all the typical categories discussed in Chapter I 
are topoi. Also, the category Sh(X) of sheaves on a topological space X 
is a topos, as is the category Sh(C, J) of sheaves on a site. We emphasize 
that at first sight the axioms for a topos just given seem weaker than 
those of §I.6. However, it will be shown in the course of this chapter 
that the two sets of axioms are actually equivalent. 

Notice that the two natural isomorphisms (1) and (2) may be com
bined in a single isomorphism 

Subt:{B x A) ~ Hom£(A,PB), (3) 

natural in A. With B = 1, this implies (1) with n = PI, and hence 
also (2). In other words, we could define a topos as a category with 
finite limits equipped with a single operation P satisfying (3). 

In this definition of a topos, we have referred to "sets" of the form 
Subt:{A) or Hom.dA, B). In effect we have assumed that f is a locally 
small category, so that these objects are indeed small sets. However, 
topos theory may serve as a foundation of mathematics, alternative to 
set theory. (We mentioned this in the introduction, and will go into 
it in more detail in Chapter VI, below.) For this reason it should be 
emphasized that the axioms for a topos (and in fact any other use of 
"Sub" or "Hom" in this chapter) can be reformulated in an elementary 
way. This provides a first-order theory of topoi, using no set theory. 

The method of this reformulation is the usual one, that of replacing 
an adjunction by the universal property of its counit. In this case, this 
amounts to setting A = n in (1), A = PB in (2), and taking the image 
under the stated isomorphisms of the identity map in the hom-set on 
the right. This leads to the following version of the definition of a topos 
in a form free of any reference to hom-sets or other sets. 
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Definition (Elementary Form). A tapas is a category £ with 

(i) A pullback for every diagram X ----. B r-- Y; 
(ii) A terminal object 1; 
(iii) An object n and a monic arrow true: 1>---+ n such that for any 

monic m: S >---+ B there is a unique arrow 1;: B -4 n in £ for which 
the following square is a pullback: 

(iv) 

S -----» 1 

ml (4) 

B q, ) n. 
In this case we write 1; = char S or 1; = char m, and call 1; the 
characteristic map of m (sometimes called the classifying map of 
my. 
To each object B an object P B and an arrow EB: B x P B -4 n 
such that for every arrow f: B x A -4 n there is a unique arrow 
g: A -4 P B for which the following diagram commutes: 

A B x A _----"-1_--+) n 

II 
; ; 

91 lX9 1 
1 1 

-:.. v 

(5) 

PB BxPB --::-E-B~) n. 

Given (iv), the natural isomorphism (2) is the correspondence f f-+ 9 
with inverse given explicitly as 

9 f-+ f = EB(l x g); (6) 

we call 9 the P-tmnspose of f and f = 9 the P-tmnspose of g. Note 
in particular that the "counit" EB is the P-transpose of the identity 
1: P B -4 P B. Moreover P, construed as a functor cop -4 £, sends each 
arrow h: B ----+ C to that arrow Ph: PC ----+ PB which makes (2) natural 
in B; that is, to the unique arrow Ph with 

EB(l x Ph) = Ec(h x 1): B x PC ----+ n. (7) 

Thus Ph is by definition the arrow which makes the following diagram 
commute: 

CxPC 

~ ~ 
BxPC n 

lX~ ~ 
BxPB. 
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This is often expressed by saying that the map EB is dinatural in B 
[CWM, p. 214]. By fitting two such diagrams together, it also follows 
that P(hk) = P(k)P(h) whenever the composite h 0 k is defined. Thus, 
P: £, --'t £, is a contravariant functor. 

For an arrow h: B --'t C, the map Ph: PC --'t P B is really the 
pullback operation in disguise. By this, we mean the following: consider 
a map 9: A --'t PC and its composition Ph 09: A --'t P B with Ph. If the 
P-transpose g: C x A --'t n of 9 is the characteristic map of a subobject 
U ~ C x A (so that the right-hand square below is a pullback), then the 

P-transpose (PJ;;; g): B x A --'t n of Ph 0 9 is the characteristic map of 
the pullback (h x 1)-l(U) ~ B x A of U along h x 1: 

(h x 1)-lU ) U ) 1 

1 p.b. I p.b. It rue (8) 

9 
B x A ---:---:---'» C x A --;::---+) n. 

hxl 

Indeed, by definition [see (6)], 9 = Ec o(lc x g), and (P(h) 09)/\ 
EB o(IB x (Ph 0 g)). But 

EB o(IB x (Ph 0 g)) = EB o(IB x Ph) 0 (IB x g) 

= Eco(h x Ipc) 0 (IB x g) 

= Eco(lc x g) 0 (h x lA) 

= go (h x lA), 

[by (7)] 

and this last map is indeed the characteristic map for the subobject 
(h x 1)-l(U) of B x A, as in the pullback diagram (8). 

An arrow b: X --'t B may be considered as a sort of "generalized 
element" of B-more specifically, a (generalized) element defined "over" 
X. The elements defined over the terminal object 1 are called the global 
elements of B. If £, = Sets, they correspond exactly to the actual 
elements of the set B. [The phrase "global element" comes from sheaf 
theory: the global elements of a sheaf F on a space X are precisely 
the global sections, i.e., those defined on the entire space X, of the 
corresponding etale space AF --'t X. This is because the terminal object 
1 of the topos Sh(X) is the sheaf corresponding to the etale space 

1 
X --'t X.] 

For example, by the universal property of the projections of a prod
uct A x B, two generalized elements defined over X determine a gener
alized element (a, b) of the product, as in the diagram 

A+-(---A X B----+) B. 
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In Sets, this element is the ordered pair (a, b). 
On the other hand, an arrow e: B -+ 0 may be considered to be a 

predicate for B, or a property of generalized elements of B. For instance, 
the predicate "true of B" is 

(9) 

where! =!B is the unique arrow from B to the terminal object 1. In 
this language, the statement that (4) is a pullback diagram reads: An 
"element" b: X -+ B factors through (is in) the subobject S r-+ B if 
and only if (char S)b = truex; intuitively, char S is that predicate for B 
which is true for exactly those generalized elements of B which lie in S. 
Also, the uniqueness of c/J in (4) states that two predicates of B are equal 
if and only if they are true of the same (generalized) elements. (This is 
an extensionality principle.) 

For each object A ~ A x 1, the isomorphisms (1) and (2) yield 

SubE A ~ HomdA, 0) ~ Homd1, P A). (10) 

Thus, without reference to an underlying category of sets, a subobject 
of A has the corresponding three descriptions, 

m: Sr-+A, c/J:A-+O, s: 1-+ PA, (11) 

as an equivalence class of monies to A, as a predicate of A, and as a 
global element of the power object P A. When m, c/J, and s correspond 
by (11), we write 

S = {a I c/J}, c/J = char S, s = 'c/J', (12) 

and call S the extension of the predicate c/J, c/J the characteristic function 
of Sand s the name of c/J (or of S). If s = 'c/J' and b: X -+ B is any 
element, then by (5) the following diagram commutes 

X b )B 1> )0 

III III IEB 
X x 1 bxl 

) B xl 
lxs 

)BxPB, 

where the first two vertical maps are the canonical isomorphisms. Thus, 

EB(b x s) = truexxl if and only if c/Jb = truex, s = 'c/J', 

(and hence, if and only if b is an element of the subobject named by 
s). In this way, E B is the membership predicate for B, in the sense that 
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EB(b x s) is true exactly when b is a member of (the subobject named 
by) s. 

For each object B, the diagonal map /j.B: B -t B x B is that arrow 
whose composite with each of the two projections B x B -t B is the 
identity of B. This /j.B is monic, so we may form the diagram 

B !B ) 1 

~B 1 Itrue 

B x B ------- 1 n 
f5B 

(13) 

(2) :J): 

B ---------1 PB 
OB ' 

where bB = char /j.B is the unique map which makes the square a pull
back, while the map {-}B in the bottom line is its P-transpose, via (2). 
For generalized elements b, b': X -t B and the corresponding arrow 
(b, b'): X -t B x B one thus has bB( b, b') = truex if and only if b = b'. 
Thus, bB (the "Kronecker delta") is the predicate of equality for B. Also, 
by the description (5) applied to the transpose {-}B of bB, 

EB( b, {'}Bb') = EB(1 x {-}B)( b, b') = bB( b, b'); 
therefore EB( b, {-}Bb') = truex if and only if b = b', and so {'}Bb' is 
that subobject of B whose only X-based element is b'. Thus, if the topos 
E is Sets, {.} B: B -t P B sends each b' E B to the usual singleton set 
{b'}; accordingly, we call {.} B the singleton arrow for B. 

These observations motivate the following 

Lemma 1. For all objects B in a tapas, {-} B is monic. 

Proof: Suppose that {'}Bb = {·}Bb'. Then by the definition of 
{-}B, bB(1 X b) = bB(1 x b'). Now in the diagram 

X __ -=-b_---+l B ---''------+) 1 

(b,l)l ~Bl Itrue 

BxX lxb 
both squares are pullbacks, the first by inspection and the second by the 
definition of bB. Therefore, the rectangle is a pullback, so (b, 1) and (by 
the same diagram for b') (b', 1) are pullbacks of the same map. Thus, 
( b, 1) and (b', 1) represent the same subobject of B xX, so there is 
an isomorphism h: X -t X with (b,l) = (b',l)h, so that b = b'h and 
1 = h, whence b = b', which proves that {-} B is monic. 

Since {.} B is monic, it has a characteristic function 

aB = char{-}B: PB -t n. (14) 

Intuitively, this aB is the predicate "is a singleton" . 
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Proposition 2. In a tapas, every monic arrow is an equalizer and 
every arrow both monic and epi is an isomorphism. 

Proof: The definition (4) of a subobject classifier states that any 
monic m: S >-? B is the equalizer of trueB [see (9)] and char m. Now if 
a monic e, as the equalizer e of any two parallel arrows f and g, is also 
epi, fe = ge implies f = g; but the equalizer of f and f can only be an 
isomorphism, so e is such, as asserted. 

Any category in which (as in a topos) monic plus epi implies iso is 
said to be balanced-but recall that many familiar categories, such as 
the category of rings, or of topological spaces, are not balanced. 

2. The Construction of Exponentials 
We next prove 

Theorem 1. Every tapas has exponentials. 

In other words, the axioms of a tapas, including the existence of the 
particular exponentials P B = OB, are enough to construct all exponen
tials C B , so that every tapas is cartesian closed. This means that we 
could have defined a tapas as a cartesian closed category with equalizers 
and a subobject classifier. 

The proof of this theorem is achieved by translating into topos 
language one of the descriptions of the exponential CB good in the 
particular topos £ = Sets. There, CB is just the set of all func
tions f: B --; C; moreover, a function f can be given by its graph 
G f = { (lb, b) I b E B} C C x B. Conversely, we can test whether a 
subset SeC x B is the graph of some function f. If so, the value 
f(b) for each element b can be described by saying that the subset 
(C x {b}) n SeC x B, projected onto C, is the singleton set {f(b)}. So 
call this projection v(b, S) and write 

v(b, S) = { c I \ c, b) E S} E PC, 
u(S) = {b I v(b, S) is a singleton} E P B; 

then S is a graph iff every v(b, S) is a singleton; that is, iff u(S) is 
B, regarded as an element of PB. Now B as a subobject B C B has 
characteristic function the predicate trueB: B --; 1 --; 0, and hence has 
the name 

r trueB'" 
1 ) PB, 

which is the P-transpose of B x 1 --; B --; 1 --; O. This name is B, here 
regarded as an element of P B. 

This whole description of a graph can be written in any topos in 
the following diagrams, where for simplicity of notation the product 
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C x B x P is taken to be associative, i.e., the associativity isomorphism 
C x (B x P) 3:! (C x B) x P is replaced by the identity: 

EexB n C x B x P( C x B) l H, 

B x P(C x B) v lPC 
ae In, 

(1) 

P(C x B) u lPB 
A 

Irtrue B' 
I 

ml 

: 
c B l1. 

Here v is defined as the P-transpose of the arrow ECxB of the first 
line, where (5c is the predicate "is a singleton" as in (1.14), while u is 
defined as the P-transpose of the composite arrow (5CV of the second 
line. Finally, the object C B and the arrow m are defined by taking the 
bottom square to be a pullback, of r true B' along u. Since r true B' 
has domain 1, it must be monic, and hence so is its pullback m. Thus, 
the intended exponential C B is indeed a subobject of the power object 
P(C x B). 

For this exponential we also need a corresponding evaluation map 
e: B X C B ---t C, sometimes written as ev: C B x B ---t C. In Sets, the 
value feb) of a function f at the argument b can be described in terms 
of the graph G f of f as that element c whose singleton is v(b, G f). The 
same idea gives e in any topos from the diagram 

e ---------------------------------------------

lxm 
l B x P( C x B) _":::'V~l PC ( {-} C 

1xul ael 1 (2) 

B x 1 ------tl B x P B ----->l n +-( --- 1 
1 xrtrue B'1 EB true 

I J 
where the left-hand square is Bx(definition of C B ), the middle square 
is the definition of v from u via the inverse-transpose formula (1.6), the 
right-hand square is the definition (1.14) of (5c from "singleton", and 
the bottom distorted square is the definition of rtrueB' from trueB. 
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Because the right-hand square is a pullback and the diagram commutes, 
there must exist a unique map [shown dotted at the top in (2) 1 

e: B x C B --+ C. 

To complete the proof that C B is the exponential, we must show that 
the map e is universal from B x - ; that is, that to each f: B x A --+ C 
there is a unique g: A --+ CB with f = e(l x g). Indeed, if there is such 
a map g, then the definition of e in (2) above gives 

{-}ef = {-}ee(l x g) = v(l x mg): B x A --+ PC. (3) 

Now {-}e is the P-transpose of Dc and v is the transpose of E, so the 
P-transpose of this equation reads 

Do(l x f) = EexB(l x 1 x mg): C x B x A --+ O. (4) 

This equation shows that mg = h is uniquely determined by f; since m 
is monic, this means that g is unique if it exists. 

Now reverse this argument, starting with f: B x A --+ C. The arrow 
De(1 x f) has a P-transpose h: A --+ P(C x B) which means, by the 
formula (1.5) for the transpose, that it can be written 

80(1 x f) = EexB(l x 1 x h): ex B x A --+ 0, 

much as in (4). Transposing both sides to B x A --+ PC and using the 
definitions of {-}e and v as transposes gives 

{·}of = v(l x h): B x A --+ PC, 

as in (3). Composition with !Je yields 

truee of = !Jev(l x h): B x A --+ O. 

On the left, truee of = trueBxA = trueB op for p: B x A --+ B, while on 
the right the transpose of !JeV by definition is u. Hence, transposing both 
sides and writing !A for the unique arrow A --+ 1, we obtain rtrueB "'o!A = 
uh. This, by (1), states that h must factor through the pullback C B to 
give by (3) the desired arrow g, as in the diagram 

A -,;-+ P(C x B) --u~1 PB. 
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This completes the proof of Theorem 1. 
For objects A and B of a topos [, the exponential BA is often called 

the "internal Hom-set" [and is sometimes denoted by Homf(A, B)]. It 
has an operation of "internal composition" 

(5) 

which can be defined as the transpose of successive evaluations: 

lxev ) CB X B _-,::e~v--4) C. 

The connection of internal composition m with "external" composition 
is as follows. Given arrows f: A ----> Band g: B ----> C, one can (by 
the isomorphisms A ~ 1 x A and B ~ 1 x B) transpose these ar
rows to get global elements of the exponential objects 1: 1 ----> BA and 
g: 1 ----> CB . Then m 0 (g, iJ: 1 ----> CA is precisely the transpose of the 
ordinary composition go f: A ----> C. Similarly, generalized elements can 
be composed using the map m of (5): Given such generalized elements 
f: X ----> BA and g: X ----> C B , one obtains their composition as a gener
alized element of C A, simply by composing (g, f): X ----> cB X BA with 
m: C B x BA ----> CA. The transpose of this map m 0 (g, f): X ----> CA is 
the (external) composite 

X x A (7rl>!'» X x B _-=9_' --4) C, 

where l' and g' are the transposed maps of f and g. 
If [ and [' are topoi, a logical morphism T: [ ----> [' is a functor 

which preserves, up to isomorphisms, all the structures required to define 
a topos; specifically, it preserves all finite limits, the subobject classifier 
and the exponential, each up to isomorphism. 

Recall that T preserves all finite limits when, for every limiting cone 
K: C ----> F for a functor F: J ----> [ from a finite category J, the compos
ite cone T K: TC ----> T F is a limiting cone for T F. Since all finite limits 
can be constructed from pullbacks and a terminal object, it is enough to 
require that T carry each pullback diagram in [ into a pullback diagram 
in [' and that T carry the terminal object in [ into a terminal object 
in ['. 

p q 
Specifically, if X ~ X x Y ---+ Yare the projections of a given 

product diagram in [, preservation of the product means that 

TX~T(XxY)~TY 

is a product diagram in [I; in case a product diagram for T X x TY is 
already at hand in [I, this means that there is a unique (or "canonical") 
isomorphism T(X x Y) ~ TX x TY preserving the projections. 
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Similarly, to say that T preserves the subobject classifier true: 1 >-+ 0 
of £: means that T( true): T1 -+ TO is a subobject classifier for £:'. Also, 
to say that T preserves exponentials means that for any two objects B, 
C of £: with exponential CB and evaluation e, the object T(CB ) is an 
exponential in £:', with evaluation map 

where the first isomorphism is that arising because T already is known 
to preserve products. In view of the construction just completed for 
exponentials in terms of power-sets, it is sufficient to assume instead 
that T preserves power-sets: For each object B of £: with power-set P B 
and "membership" relation EB: B x PB -+ 0 as in (iv) of §1, the image 
T P B is a power-set for T B, with corresponding membership relation 

TB x TPB ~ T(B x PB) TEB) TO. 

3. Direct Image 

The direct image of a subset S' c B' under a map k: B' -+ B of sets 
is described with an existential quantifier as {b I :3b' E S', k(b') = b }. 
A corresponding construction of the direct image under an arrow k in a 
topos will be given in §6. For the present we treat only a monic k. For 
each monic k: B' >-+ B in a topos £:, we now describe an arrow 

:3 k : PB' -+ PB (1) 

which will correspond to the intuitive idea "direct image (of a subobject 
of B') under k". We will first do this in purely elementary form. The 
construction is contained in the diagram 

U -------+) 1 === 1 

truel 

B' x P B' ----+) 0 EB , 

kX11 

true 

P B' ----:::;-----+) P B. 
3k 

(2) 
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Starting from EB', take the upper (small) square to be a pullback; this 
gives the object U and the monic UB' (to be considered as the member
ship relation on B'). Then construct ek = char((k x l)uBI) so that 
the large square is a pullback, and finally define 3k at the bottom 
to be the P-transpose of this map ek. In the topos Sets, U is then 
{ (b', 8') I b' E 8' c B'}, so ek(b,8') is true when b = kb' for some 
b' E 8' and then 3k 5' is the set of all such elements b; that is, the direct 
image of 5' under k. The same fact may be stated in any topos by 
describing the action of 3k on the names of characteristic functions in 
the following way 

m k 
Proposition 1. For manics 5>-+B'>-+B in a tapas, 

3k 'charm' = 'charkm': 1-> PB. (3) 

In other words, 3k carries the name of any subobject m of B' to the 
name of its image km. 

It will suffice to prove the transposed equality 

ek(l x 'charm') = char(km): B x 1---+ n (4) 

(we identify B with B x 1 by the canonical isomorphism). To do this we 
show that both of these predicates characterize the same subobject of 
B. So we will construct the pullback of true along the left-hand arrow 
of (4) by adding a left-hand side to the diagram (2), as in 

______ 'E ______ > U -----+) 1 1 

lUB I 1 
x x 1 ~ B' x 1 ~--=-----+) B' x P B' -=-----+) n 

uX kX1l lxccharm' lkxl EB' 

true (5) 

B x 1 1 h ) B X PB' ----:;:----» n. 
xrc arm' ek 

The large rectangle on the right is a pullback, by the definition of ek in 
(2), while the small square bottom left is a pullback for formal reasons. 
Through the middle the composite is 

EBI(l x 'charm') = charm: B' = B' x 1 --+ n (6) 

by the definition of 'char m' as the transpose of char m. But (char m) 0 

m = trues; since U is a pullback, this means that we can insert the 
top left-hand square with 8 x 1 and an arrow w to make the top left 
square commute. We now claim that the top rectangle, composed of 



3. Direct Image 173 

two squares, is a pullback. This means that any arrow u: X ~ B' 
with EB' (1 x r char m ..,)( u xI) = true x must factor uniquely through m. 
Using (6) again, u satisfies (charm)u = truex. In turn, this means that 
u factors through m as u = mu', and as displayed top left. Since the 
rectangle is now shown to be a pullback, so is the square top left. The 
big square must now be a pullback, and this means that the subobject 
of B characterized by the left-hand map in (4) is S x 1 >---> B' x 1 >---> B x 1; 
but this is the same as the subobject S >---> B' >---> B characterized by the 
right-hand side of (4), as was to be shown. 

This direct image :lk for power objects P B' has an analog k! for 
Sub B'. The pullback of a composite is trivially a composite of pullbacks, 
as for the pullback squares in the diagram 

(7) 

O----.,.g---+) B 

in any topos £. Now suppose in this diagram that both k and k' are 
monic. The composite k 0 k', regarded as a subobject of B, is then the 
usual "direct image" of the subobject k' under k. Let 

k!: Sube B' --+ Sube B 

denote this direct image operation. The diagram (7) above also exhibits 
the pullback operation Sube(g): SUbe(B) --+ Sube(O) and yields the 
equation 

(Sube(g))k!k' = (Sube(g))(k 0 k') = mm' = m!m' = m!(Subg')k'; 

in words, the pullback along 9 of the direct image under k is the direct 
image under m of the pullback along g'. This asserts that if k is monic in 
the pullback square gm = kg' of (7) above, then the following diagram 

is commutative 

SubB' Sub g' ) Sub 0' 

k!l 1m! (8) 

SubB Subg 
) SubO 
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in the category of sets. This conclusion is the "external" Beck-Chevalley 
condition for sets of subobjects. 

Now the corresponding conclusion will hold internally-that is, for 
the internal power-set objects P B as opposed to the "external" ones 
Sub&(B). This result, the "internal" Beck-Chevalley condition, will be 
useful in the construction in §4 below of colimits in £. 

Proposition 2 (The Beck-Chevalley Condition for 3). If m is the 
pullback of a monic k along an arbitrary arrow 9 in a topos £, as in the 
square left below, then the right-hand square below will commute 

g ' C'--=---+ l B' 

mI Ik 
lB, C ---,g=--.... 

PB' 
Pg' lPC' 

3k1 13= 
(9) 

PB 
Pg 

lPC. 

Proof: The desired equality Pg 0 3k = 3m 0 Pg' will follow from the 
equality ek (g xl) = em (1 x Pg') of their transposes, or from the equality 
of the subobjects characterized by those transposes, as in the diagrams 

? -------------> UB' l 1 

I UB'i I 
I , 

C' X PB' 
g'xl 

l B' X PB' 

mX11 kX11 
CxPB' 

gxl 
lBxPB' 

ek 
l fl, 

(10) 

? -------------> Uc, l 1 

I uc'l I 
I 

C' X PB' lxPg' l C' X PC' 

mX11 mX11 
C X PB' 

lxPg' 
l C x PC' e", l fl. 

In the upper diagram, the left-hand square is obtained by applying - x 
P B' to the pullback square of (9); in the lower diagram, the left-hand 
square is formally a pullback. Both vertical rectangles are pullbacks. 
It remains to fill in the top left small pullback squares. But EB is 
"dinatural" ([CWM, p. 214], and (1.7)) in its argument B, meaning 
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simply that the diamond 

B' X PB' 

g';Y ~' 
C' X PB' n 

1X~ ~, 
C' X PC' 

always commutes. This in turn means that true: 1 -+ n pulled back 
along either the top or the bottom composite of the diamond gives the 
same result. Pulled back first along EB' or Ec' it gives U B' or U C', as in 
(10) above; hence the two missing top left vertices of the two diagrams 
of (10) above will be the same. This proves the proposition. 

Corollary 3. If k: B' ~ B is a monomorphism, then the composite 

PB'~PB~PB' 

is the identity. 

Proof: For any monomorphism k, the square 

B' --:---+; B 
k 

(11) 

is a pullback; moreover, 31 = 1 and PI = 1, hence the Beck-Chevalley 
condition (9) gives the result. 

We would like to emphasize that, in this section, we have constructed 
the map 3k : P B' -+ P B for a monomorphism k: B' ~ B by purely 
elementary means; this is an illustration of the fact that it is perfectly 
possible to develop the elementary theory of a topos in a way that does 
not depend on an ambient set theory. 

If, on the contrary, one implicitly assumes that the topos £, is lo
cally small (or one works with some appropriate comprehension princi
ple), the map (1) can also be constructed using the functors Sub and 
Hom, as follows. Suppose we are given a monomorphism k: B' -+ B. 
Then for any object X of £', k induces by composition, as in (7), 
an operation (k xI),: Sube(B' x X) -+ Sube(B x X). Hence, by 
the natural isomorphisms (1) and (2) of §1, we obtain an operation 
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Imk: Home(X,PB') -+ Hom£(X,PB), again natural in X, such that 
the diagram 

Hom£(X,PB') --~---+) Sub£(B' x X) 

Imkl l(kXl)! (12) 

Home(X,PB) --;:-c~--t) Sube(B x X) 

commutes. By the Yoneda lemma, the latter operation must be induced 
via composition by a uniquely determined map PB' -+ PB, which we 
call 3k • To recover an explicit description of this map P B' -+ P B, 
we apply Imk for X = PB' to the identity. But IPB': PB' -+ PB' 
corresponds to the subobject of B' x X = B' x P B' obtained by pullback 
along EB' : B' x P B' -+ n, which is precisely UB' : U>-> B' x P B' of (2) 
above. Chasing further around (12) will then show that this definition 
of 3k : P B' -+ P B agrees with the earlier one. 

This illustrates the way in which set-theoretic arguments, using the 
sets Sub and Hom, can by Yoneda be translated back into elementary 
language. Later on, in (9.9), we will construct a direct image map 
P B' -+ P B for any morphism k: B' -+ B (not necessarily monic), and 
prove a Beck-Chevalley condition in that generality. 

4. Monads and Beck's Theorem 

By definition, a top os has all finite limits. In the next section, we 
will prove that it also has finite colimits. The argument requires some 
background concerning monads, which we will review in this section. A 
more detailed presentation can be found in [CWM, pp. 133-151J. The 
reader willing to assume that all his topoi (like those in Chapter I) have 
finite colimits may skip this section and the next-but only at the cost 
of missing an elegant pair of theorems. 

A monad (or triple) in a category C consists of an endofunctor 
T: C -+ C and two natural transformations p,: T2 -+ T and T/: I -+ T, 
where I is the identity functor, such that the following diagrams of func
tors and natural transformations commute 

(1) 

T. 

These are exactly analogous to the diagrammatic definition of a monoid 
T in the category of sets. The first diagram expresses the "associative" 
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law for the "multiplication" p" and the second the "identity" law for the 
"unit" 'T} of the monad. 

An arbitrary pair of adjoint functors 

F-1G (2) 

with unit 'T}: Ie ---> GF and counit to: FG ---> IA determines a monad 
(T, 'T}, p,) in C with T = GF, 'T} = 'T}, and 

P,e = G€pe: GFGFC ---> GFC = TC (C E C). 

Next we introduce algebras for a monad T in a way which directly 
generalizes the (left) actions of a monoid. Thus, if the monoid M (in 
Sets) has multiplication 1/: M x M ---> M and unit e: 1 ---> M, a left 
action of M on a set Y is a map h: M x Y ---> Y such that the diagrams 

MxMxY lxh 

vX1l and 

M x Y ---::h---+> Y, Y 

both commute. In particular, any set X determines the set F X = M x X 
with the action h = 1/ xl: M x M x X ---> M x X, called the "free" 
action. If BM is the category of all left actions by M on sets, then this 
functor F: Sets ---> BM has an evident adjoint (the forgetful functor) 
and so defines a monad (T,'T},p,) on Sets, with TX = M x X. 

More generally, given any monad (T, 'T}, p,) on a category C, we imi
tate the above definition of an action by constructing the category C T of 
T-algebras. Its objects are pairs (C, h: TC ---> C), where C is an object 
of C and h is a morphism such that 

Th I TC 

lh 
TC ----,----+1 C 

h 

and (3) 

C 

commute; a morphism f: (C,h) ---> (C',h') of T-algebras is a map 
f: C ---> C' in C such that h' 0 T f = f 0 h. There is an obvious forgetful 
functor 

(C, h) 1----+ C, 

which has a left adjoint FT: C ---> C T sending an object C to the cor
responding "free algebra" FTC = (TC, P,e: T 2C ---> TC). With the 
evident unit 'T}T and counit €T, this adjunction determines a monad on 
C, which is precisely the monad (T, 'T}, p,) we started out with. 
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Given a functor G: A ....... C with a left adjoint F: C ....... A, we may 
thus construct a monad (T, Tj, J-L) on C and a diagram of categories and 
functors 

(4) 

where the so-called comparison functor K is defined by 

KA = (GA,GEA: GFGA ....... GA), AEA. (5) 

Thus, K 0 F = FT and GT 0 K = G. 
A functor G: A ....... C is said to be monadic if G has a left adjoint 

F and this comparison functor K is an equivalence of categories. (The 
definition in [CWM, p. 139], is more restrictive, requiring that K be an 
isomorphism of categories.) 

Proposition 1. A monadic functor creates all limits. 

Proof: Let G: A ....... C be monadic. Then by definition, G is the 
forgetful functor GT : C T ....... C, up to an equivalence of categories A ~ 
CT. It thus suffices to show that such a forgetful functor GT : C T ....... C 
creates limits (cf. Exercise 2 of [CWM, p. 138]). By the definition 
of "creates" ([CWM, p. 108]) this means that we have to prove the 
following: given a functor H: J ....... C T and a limiting cone T: C ....... 
GT 0 H in C for its composite with GT , there exists a unique object A 
in C T with a cone a: A ....... H which is mapped by GT to the original 
cone T; moreover, this cone a is a limiting cone. Now T consists of 
suitable arrows Tj: C ....... GT H j (for each object j E J), while each H j is 
a T-algebra, say Hj = (Cj , hj : TCj ....... Cj). Thus, GT H j = Cj. Because 
T is a limiting cone in C, there is a unique arrow h: TC ....... C such that 
the diagrams 

for j E J all commute. One verifies readily that (C, h) is indeed a 
T-algebra, while this diagram states that each Tj is a morphism of T
algebras. Hence the Tj: (C, h) ....... (Cj , hj ) = H j do form a cone a in the 
category C T , the unique cone with GT a = T. It is easy to verify that 
this cone a is indeed a limiting cone in C T , as required. 
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This proposition includes the familiar fact [CWM, p. 108] that the 
forgetful functor from groups to Sets, and similar forgetful functors from 
categories of algebras, do create all limits. It also shows that a monadic 
functor G: A -+ C to a complete category C has a complete domain A. 

The following version of Beck's theorem gives conditions on a functor 
G which ensure that G is monadic. To state the theorem, we need the 
notion of a reflexive pair: it is a pair of arrows s, t: A =l B in a category 
A such that there exists an arrow i: B -+ A with si = IB = ti. For 
example, in Set:- ~ach binary relation ReS x S on a set S determines a 
pair of arrows R =l S, and the relation is reflexive, in the standard sense 
for sets, if and only if this is a reflexive pair in the sense above. 

Theorem 2. Let G: A -+ C be a functor with a left adjoint, T the 
corresponding monad in C, and K: A -+ C T the resulting comparison 
functor, all as in (4). 

(i) If A has coequalizers of all reflexive pairs, K has a left adjoint L. 
(ii) If, in addition, G preserves these coequalizers, the unit of this 

adjunction is an isomorphism feT ~ K 0 L. 
(iii) If, in addition to (i) and (ii), G reflects isomorphisms, then the 

counit of this adjunction is also an isomorphism L 0 K ~ fA. 

Consequently, G is monadic in this case. 

Recall that G is said to reflect isomorphisms if, for each arrow t of 
A, t is an isomorphism whenever Gt is. 

Proof: (This is Exercise 3 of [CWM, p. 151] and we only give an 
outline.) 

(i) The left adjoint L is constructed as follows: given aT-algebra 
(C, h: G FC -+ C) where F is the left adjoint of G and T = G F, take 
L( C, h) to be the co equalizer 

FGFC~FC~L(C,h) <FC 
(6) 

in A, where f is the counit of F -i G; this coequalizer exists because the 
pair (Fh,fFC) is reflexive, as witnessed by Fryc: FC -+ FGFC. One 
then proves L left adjoint to K. 

(ii) If (C, h) is an algebra, the top row of the diagram below is a split 
coequalizer ([CWM], (4) on p. 148), and the unit A of the adjunction 
L -i K is the unique dotted arrow filling in (7): 

GFGFC 
GFh 

~GFC 
h )C 

II 

G<FC 

II 
; 
IA (7) 
1 

GFGFC 
GFh 

~GFC ) GL(C, h). 
G<FC Ge 
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Indeed, GL(C, h) is the underlying object of the algebra KL(C, h), and 
one can check that .x defines an algebra map (C, h) ---- K L( C, h). But 
if G preserves the coequalizer, both rows of (7) are coequalizers, so .x is 
an isomorphism. 

(iii) For an object A of A, LKA fits into a co equalizer (8), 

FGFGA ~ FGA )) LKA 
€FGA 

~:t<A 
€A I 

v 

(8) 

A 

and the counit of the adjunction L -1 K is the unique factorization 
/'\:A: LKA ---- A as indicated in (8). But 

GFG€A G 
GFGFGA ~ GFGA €A) GA 

G€FGA 

is a split co equalizer , so if G preserves the coequalizer (8) defining LK A, 
then G/'\:A is an isomorphism, and hence so is /'\:A if we assume that G 
reflects isomorphisms. 

To summarize, we have: 

Corollary 3. If the category A has coequalizers of all reflexive 
pairs, while the functor G: A ---- C has a left adjoint, reflects isomor
phisms and preserves coequalizers of reflexive pairs, then G is monadic. 

In this proof and the corollary, "reflexive pair" may be replaced 
throughout by "parallel pair" f, g: A:::::+ B in A such that G f, Gg fit 
into a split co equalizer in C 

GA <_h_J GB <-----) Q. 

5. The Construction of Colimits 

We can now show that every topos E has all finite colimits-in par
ticular, has an initial object 0, sums (= coproducts), coequalizers, and 
pushouts. The proof uses both finite limits and the fact that the power
set functor P is its "own" left adjoint, and so defines a monad in E. 

Theorem 1. The functor P: EOP ---- E has a left adjoint; namely, 
pOP: E ____ EOP. 

Proof: Recall first that each category C determines its "opposite" 
category cop (same objects and arrows reversed), while each functor 
T: C ____ D determines an opposite functor TOP: cop ____ DOP (with the 
same object and arrow functions). Thus in particular the power-set 
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functor P: cop ---.., £ yields also the functor pOP, which is the "same" 
functor, but considered as acting on £, not on £oP. The asserted ad
junction follows because the product is commutative according to the 
familiar canonical isomorphism ,: A x B ~ B x A; this yields the fol
lowing sequence of natural isomorphisms of hom-sets: 

£(A, P B) ~ £(B x A, 0) ~ £(B, P A) = £OP(PA, B). (1) 

The result expressed in (1) is often formulated as "P is adjoint to 
itself on the right". Generally, functors S: cop ---.., D and T: DOP ---.., C 
are said to be adjoint on the right when there is a natural isomorphism 

D(B, SA) ~ C(A, TB), A E C, BED. 

Theorem 2. In the adjunction of pop to P, the unit 'T}: I ---.., P pop 

is for each object A of £ that arrow 'T}A: A ---.., P pop A such that 

EpA(1 x 'T}A) = EA T PA x A ---.., 0, (2) 

where I is the canonical map interchanging the factors P A and A. The 
co unit fB: pop PB ---.., B for Bin cOP is ('T}B)OP. 

Proof: Just apply the usual calculation of the unit of an adjunction, 
by setting B = PA and following the identity arrow of PA through (1), 
using the formula (1.6) for the transpose. Both the triangular identities 
for the adjunction come down to the identity 

P'T}A 0 'T}PA = 1PA. 

In Sets, the definition (2) for a E A and SeA reads: S E 'T}Aa 
if and only if a E S; in other words, a and S are simply interchanged 
in the membership relation. The unit is thus the mapping of A to its 
double power-set given as 

'T}Aa={SlaEScA}EPPA. (3) 

This is related to the "Stone duality" for sets. 

Theorem 3. The power-set functor P: cOP ---.., £ is monadic. 

Proof: First, P is faithful. To each arrow h: B ---.., A in £ we 
construct first a monic (1, h) : B ---.., B x A, next the characteristic map 
of this monic, and finally the P-transpose of that map, all as in the 
following diagram, where the squares are pullbacks: 

B h )A >1 

(l,h)l ~Al 1 
(4) 

A -----t) P A --P-h---+I P B. 
OA 
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Hence Ph = Pk for arrows h, k: B ---+ A implies that Ph 0 {-}A = 
P k 0 {-} A and hence that h = k. Thus P is faithful. (This argument 
amounts to checking the effect of Ph on singletons.) 

Now we apply Beck's theorem as stated in the previous section. First 
note that eop has coequalizers of reflexive pairs because they are just 
equalizers in e, and e has equalizers of all pairs. Next, because P is 
faithful, it must reflect both monics and epis. But, by Proposition 1.2, 
an arrow is an isomorphism if and only if it is both monic and epi. Hence 
P reflects isomorphisms. Finally, consider a coequalizer in eop of some 
reflexive pair; this means that we have in e an equalizer diagram 

(5) 

and an arrow d: A ---+ B with dh = dk = IB (a "coreflexive pair" in e). 
We wish to prove that 

PA~PB~PC 
Pk 

is a co equalizer (in e). But the commutative square 

B----+) A 
k 

(6) 

in e is a pullback. For, if f, 1': D ---+ B have hf = k1', then dhf = dk1' 
so that f = f'; since 9 is the equalizer in (5), there is a unique 8: D ---+ C 
with f = g8 = f'· Now 9 is monic and (by virtue of d) so are hand k. 
Proposition 3.2 and Corollary 3.3 (the Beck-Chevalley condition) then 
imply that the following diagrams commute: 

PA Pk ) PB, PC, PA. 

An easy calculation from these three equations shows that (6) is a co
equalizer; in more technical language, these equations for the two arrows 
:3h , :39 , P A f--- P B f--- PC backwards in (6) make (6) a "split fork" in 
the terminology of [CWM, p. 145], hence a co equalizer. Therefore P 
preserves co equalizers of reflexive pairs, and hence is monadic, by The
orem 4.2. 

Corollary 4. A topos e has all finite colimits. 
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Proof: Let T = P pop be the monad defined in £ by the power-set 
functor, and £T the corresponding category of T-algebras. The forgetful 
functor £T --> £ creates limits. If J is any finite index category, £ has 
all Jop-limits (all limits of functors on JOp to c). Therefore £T also 
has all Jop-limits. But, since P is monadic, cOp is equivalent to £T, 
and equivalences of categories preserve all limits. Therefore cOP has all 
Jop-limits, so £ has all J-colimits. This proves Corollary 4. 

By following through the steps of the proof above one can obtain 
a direct description of each particular colimit in £. We will not use 
this direct description, but its formulation will illuminate the argument. 
Thus given H: JOp --> £oP, form the composite PH: JOp --> £ and take 
its limit t in £, with limiting cone T: t --> PH. With the counit fH in 
£oP, there will be in £ a unique arrow h to the limit so that the diagram 

____ 'l: ____ , t 

iT 
PPOPPH __ -4) PH 

P€H 

(in £) 

commutes. Now apply pop here and form the diagram 

first choosing £ as the coequalizer (in cOP) of the pair displayed in the 
top row, then noting that the two composite natural transformations in 
the bottom row are equal and that both squares on the left commute, 
so that there must exist a unique cone a, given by the vertical arrow at 
the right, making the right-hand square commute. The assertion then 
is that a OP : HOP --> £ is the colimiting co cone for HOP: J --> £. 

The proof that this is indeed a colimit is a direct translation of the 
proof of Theorem 3 and its corollary above. This translation would in
volve exactly the steps above without explicit mention of the T-algebras 
which we have used; in fact, however, the h constructed above does make 
t into aT-algebra ( t, h), while £ is the value L( t, h) of the left adjoint to 
the comparison functor, and all the pertinent properties of such algebras 
reappear in the translated proof. The diagrams above may be made to 
look simpler by putting the second diagram into £ (reversing the arrows) 
and writing P for pop everywhere, as is the usual custom. 

For example, to get the coequalizer of f, g: b --> a in £, first take the 
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equalizer T of P f and Pg as in the right-hand column of the diagram 

use its property as an equalizer to construct the arrow h in the top row 
above, and then form another equalizer f as the top row in the diagram 

f -------> Pt 
,Pt 

I p 3t 

PTI 
Ph 

IP3T 
1 

0"1 

! 

a 'a ) p 2 a I p 4 a 

ina n n 
b ) P 2b 

P2,b 
I P 4 b. 

'b ,P2b 

N ow use the equalizing property of f to construct a as in the left-hand 
column. This arrow a is then the desired coequalizer of f and g. 

The construction of the initial object 0 in E is briefer: Take the 
terminal object 1 of E; there is a unique arrow!: p 2 1 --+ 1, and 0 is the 
equalizer 

,PI 3 o -----> PI ====+ P l. 
P! 

The reader may wish to convince himself that for E = Sets this con-
struction really does produce the empty set! [Use the description (3) 
for E.] 

6. Factorization and Images 

In the category Sets, every function can be written as a surjection 
followed by an injection; i.e., as an epimorphism followed by a monomor
phism. Because we now have finite colimits in any topos, we can prove 
that this factorization holds in any topos: Every arrow factors as an epi 
followed by a monic. 

Call a monic m the image of the arrow f if f factors through m, say 
as f = me for some e, and if, whenever f factors through a monic h, 
so does m. This says in effect that m is the smallest subobject (of the 
codomain of f) through which f can factor. 



6. Factorization and Images 185 

Proposition 1. In a tapas, every arrow f has an image m and 
factors as f = me, with e epi. 

Proof: Given f: A ----+ B, construct the following commutative dia
gram in stages 

f 
l x 

A ---e---> M ---iit---> B le 

II II 

y 
; (1) 
IU 
I 

v 

A 
9 

IN 
h 

lB 
8 

:=====:~ e. 
t 

First, take the cokernel pair x, y of f; this is a pair of arrows x, y from B 
to some object, universal with the property xf = yf. Hence, it can be 
obtained as a finite colimit; indeed, it can be described as the pushout 
of f with f. Let m, with domain M, be the equalizer of this pair x, 
y. Then xm = ym and m is monic; since xf = yf, the original f must 
factor through the equalizer m as f = me for some arrow e as displayed 
in the top row above. 

Now take any other factorization f = hg with h monic, as displayed 
in the second row of the diagram. By Proposition 1.1 for a topos, the 
monic h is an equalizer, say the equalizer of the two arrows sand t 
as displayed in the second row of the diagram. Then sh = th and, 
therefore, sf = tf; because x, y is the cokernel pair of f, there must 
be a (unique) arrow u, as displayed vertically, with s = ux and t = uy. 
Therefore, sm = uxm = uym = tm, so that m must indeed factor 
through the equalizer h of sand t. This proves that m is the image of 
f, as asserted in the proposition; it remains to show that e is epi. First 
observe that when this image m is an isomorphism, f must be epi, for 
m is the equalizer of x and y, so m an isomorphism implies x = y, so 
that the cokernel pair of f is x, x and f is therefore epi, as claimed. 

Now return to the factorization f = me and take the image m' of 
the first factor e, so that f is a composite 

A --.:--> M' __ 17!:.' __ > M -_,,!!_-> B. 

This means that f factors through the monic mm'; therefore so does its 
image m, say as m = mm'v for some v. This implies that 1 = m'v, so 
the monic m' is an isomorphism. As observed just above (in case of f) 
this means that e is epi, and the proof is complete. 

This factorization is functorial, in the usual sense: 

Proposition 2. If f = me and f' = m' e' with m, m' monic and e, 
e' epi, then each map of the arrow f to the arrow f' extends to a unique 
map ofm, e to m', e'. 
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Proof: A map of the arrow j to the arrow f' is a pair of arrows 
r, t which make the resulting square on j and f' commute, as in the 
diagram on the left below. Given such a pair of arrows and the two e-m 
factorizations, we must construct a unique arrow s from m to m' which 
makes both squares in the diagram on the right below commute: 

f lB A e lO m lB 

j, "] · / / ], 
~ 

A' l B', A' l 0' ) B'. 
f' e' m' 

Suppose first that e and m are the maps found in Proposition 1, so that 
m is the image of j. Take the pullback P oft along m', as sketched at the 
right; here P --+ B is the pullback of a monic m', hence is monic. By the 
commutativity of the left-hand square and the definition of a pullback, 
f must factor through P --+ B. Therefore, by the minimal property of 
the image, m must also factor through P --+ B, which implies that tm 
factors through 0' via an arrow s, as tm = m's, as shown. Because m' 
is monic, this arrow s is unique with this property. For the same reason, 
se = e'r, so the left-hand square of the rectangle above also commutes. 

In particular, given a second factorization j = e'm' of the same 
arrow j, this argument, with r = t = 1, yields a unique arrow s which 
is both monic, because m's = m, and epi, because se = e', hence an 
isomorphism. This states that the factorization j = me, which we 
constructed, is unique "up to isomorphism", so the construction of s 
above applies to any epi-monic factorization of f. 

Proposition 3. For each object A in a topos the partially ordered 
set Sub A of subobjects of A is a lattice. Moreover, for each arrow 
k: A --+ B, pullback along k is a morphism k-1 : SubB --+ SubA of 
partially ordered sets, i.e., a functor; this functor k-1 has as left adjoint 
the functor 3k which sends each subobject S of A to its image in B 
under k. 

Actually, the lattice Sub A is a Heyting algebra, as we will show in 
Theorem 8.1 after we have studied slice categories in §7. 

Proof: Given two subobjects S>-> A and T >-> A we can form their 
intersection as their greatest lower bound (g.l. b.) in Sub A simply by 
taking the pullback, as on the left below. 

SnT----1l T S+T< T 

j j l~M~] 
S---~)A, S-----+)A. 
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To get their union or least upper bound (1. u. b.) in Sub A we first form 
the coproduct (sum) S + T in the topos, as in the right-hand square 
above; by the definition of a coproduct, the monics S>-+ A and T>-+ A 
then determine uniquely an arrow S + T ---- A which need not be monic, 
but which by Proposition 1 has an image M as displayed. This M >-+ A 
is then a subobject of A which clearly contains both given subobjects S 
and T. The minimal property defining the image M then readily shows 
that M is a least upper bound of Sand T in SubA, so M = S U T. 
Therefore, Sub A is a lattice (actually, a lattice with zero 0>-+ A and one 
A ---- A; the former is monic by Corollary 7.5 below). 

N ext consider k: A ---- B. Since the pullback of a monic T >-+ B 
along k is necessarily a monic S ---- A, and since pullback clearly carries 
inclusions of subobjects to inclusions, it is a morphism k-1 of partially 
ordered sets. 

To construct the left adjoint ::ik of k-1 , recall that for the topos 
Sets there was such a left adjoint sending each subobject S of A into 
its image under k (Theorem 1.9.2). Since we have images at hand, the 
same construction can be carried out in any topos: For each subobject 
u: S >-+ A, its image under k is the image of the composite arrow ku, 
hence a subobject of B written as m: ::ikS>-+ B, with ku = me for some 
epi e. Put this, any subobject v: T>-+ B and its pullback k-1T all in 
the diagram 

e 

1 
S . __ L __ > k-1T ) T < ___ L __ ::ikS 

ul 1 vI 1= 
A A k 

)B B' , 

the outer rectangle is commutative and the middle square is a pullback. 
From this we read off a correspondence 

as follows. Any map 9 of subobjects of B, as shown, has vg = m and 
hence vge = me = ku; since k-1T is a pullback, this determines a 
unique f which makes the diagram commute. Conversely, each map 
f: S ____ k-1T of subobjects of A yields by the diagram a factorization of 
ku through the monic v; since m is the image of ku, it too must factor 
through this monic v, say as m = vg for some g, necessarily unique. 
This shows that the correspondence 9 f---t f above is a bijection-hence 
an adjunction, exactly as for t: = Sets. 
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This completes the proof of Proposition 3. In case k: A -+ B is 
monic, this left adjoint 3k is exactly the direct image k! introduced 
below (3.7). In particular, for such a monic k, 

k-13k = 1: Sub A -+ SubA. 

Since for k: A -+ B, the pullback functor 

k- 1 : SubB -+ Sub A 

has a left adjoint 3k , it follows that k-1 preserves finite limits. In par
ticular, 

k-1(S n T) = k-1(S) n k-1(T) 

for any two subobjects S, T of B. In other words, k- 1 : SubB -+ Sub A 
is a homomorphism of "meet-semilattices". Another way of expressing 
this is by saying that the meet operation n: Sub(B) xSub(B) -+ Sub(B) 
is natural in B. Under the isomorphism Hom(B, fl) ~ Sub(B), again 
natural in B, we thus obtain an operation /\B making the following 
diagram commute: 

Sub(B) x Sub(B) n ) Sub(B) 

III 
Hom(B, fl) x Hom(B, fl) (2) 

III 
Hom(B,fl x fl) 

I\B 
) Hom(B, fl). 

This operation /\B is again natural in B, so by the Yoneda lemma (take 
B = fl x fl and apply /\B to the identity) /\B comes from a uniquely 
determined map 

/\: fl x fl -+ fl, (3) 

via composition. In other words, if the subobjects Sand T of B have 
characteristic maps sand t: B -+ fl, then S n T has characteristic map 

(s,t) 1\ 
B -----> fl x fl -+ fl, written briefly as s 1\ t. One calls /\ in (3) the 
internal meet operation; it makes (fl, /\, true: 1 -+ fl) into an internal 
meet semilattice object in the topos. (We'll come back to this in §8 
below.) 

Similarly, for a fixed object B, the meet operation n: Sub(B x X) x 
Sub(B x X) -+ Sub(B x X) is natural in X, so under Sub(B x X) ~ 
Hom(X, P B) one obtains an operation 

I\x 
Hom(X,PB x PB) ~ Hom(X,PB) x Hom(X,PB) -----+ Hom(X,PB), 
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again natural in X. By Yoneda again, this corresponds to a map 

1\: PB x PB -+ PB, (4) 

which is the "internal meet" on P B. This internal meet is also natural 
in B, in the sense that for any k: A -+ B, the diagram 

PBx P B -~/\'----+l P B 

PkXPkl lpk (5) 

P A x P A --:-/\--+l P A 

commutes (Exercise 8). 
Since any object has a unique arrow to the terminal object 1, an 

object S of £ is a subobject of 1 precisely when the unique map S -+ 1 
is monic. Call an object U open in £ whenever U -+ 1 is monic. In 
case £ = Sh(Y) for some topological space Y, the open objects are 
those sheaves which correspond exactly to the open subsets of Y (see 
Proposition II.2.4). 

Proposition 4. In a tapas £ the lattice Sub 1, regarded as a cate
gory, is equivalent to the full subcategory Open(£) of all open objects 
of £. An object U is open in £ if and only if there is for each object X 
at most one arrow X -+ U. 

As for the last sentence, there is for each X exactly one arrow X -+ 1. 
Hence if U -+ 1 is monic, there can be at most one arrow X -+ U, while 
if an object U has this property for all X, the unique arrow U -+ 1 is 
necessarily monic. 

A subobject of 1 is an equivalence class of monics; choosing one monic 
in each equivalence class yields a functor Sub(l) -+ Open(£) which is 
clearly an equivalence of categories; in fact SUb(l) is just the skeleton 
[CWM, p. 91] of the category Open(£). 

Similarly, for any object B of £ a subobject S,....... B is just an open 
object in the slice category £ / B so that the inclusion 

Sub(B) -+ Open(£ / B) 

(which depends on a choice of a representative of each equivalence class 
of monics S,....... B) is an equivalence of categories which makes SUb(B) a 

full subcategory of £ / B. 

Proposition 5. For any object B in a tapas £, the inclusion 
i: Sub(B) -+ £ / B has a left adjoint a which sends each f: A -+ B 

to its image. 
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Proof: For each object f: A --t B of the slice category £ / B take 
(j f to be the image m: M >-+ B, regarded as a subobject of B. By 
Proposition 1, whenever f factors through a monic h: G' --t B, so does 
m. This states exactly that HOmejB(f, h) ~ HOmSub(B)(m, h), hence 
that (j defined by (j f = m is the required left adjoint to the inclusion i. 

7. The Slice Category as a Topos 
For a fixed set B, regarded as a discrete category, there is an equiv

alence of categories (§1.1.9) 

SetsB ~ Sets/B. 

An object of the functor category on the left is a B-indexed family 
{Xb I b E B} of sets; the equivalence replaces this family by the function 
f: X = II Xb --t B from the disjoint union of the sets Xb· Since the 
functor category is a topos, so is the slice category of sets over B. This 
last result holds when Sets is replaced by any topos as in the following 
basic theorem: 

Theorem 1. For any object B in a tapas £, the slice category £ / B 
of objects over B is also a tapas. 

Proof: Given two objects i: X --t Band g: Y --t B over B, the 
equalizer of two arrows X :::; Y in £ / B is clearly just the equalizer in £, 
equipped with the evident map to B, while the product of f and 9 in 
[; / B is just the pullback 

XxBY ---~---> Y 
; 

if (1) q, , 

X 
9 

IB 

in [; with projections p and q on its factors in £ / B. The terminal object 
in [; / B is the identity 1: B --t B. Since a subobject of X --t B in £ / B 
is (essentially) just a subobject of X in £, the subobject classifier n in £ 
yields at once a subobject classifier n x B --t B, with arrow the second 
projection, in £ / B. Hence [; / B has all finite limits and a subobject 
classifier, so it remains only to prove that it has power objects-and, 
therefore, exponentials, by Theorem 2.1. 

Given two objects f: C --t Band g: D --t B in £ / B, we wish to 
construct an object PBi, the power-object of i, so that for the hom
sets HomB in £ / B one has a bijection 

(2) 
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which is natural in 0 and D. To this end, consider the fiber product 
o x B D as a subobject of 0 x D in £, and compute its characteristic 
map ¢: 0 x D -+ 0 by the following commutative diagram in £: 

OXBD )B )1 

1 (i) l~B (ii) ltrue 

OxD 
Ixg 

)BxB )0 

II II 

6B 

II (iii) 

Ox D ~ 0 x B IXl, B x B lxq B x PB EB )0 (3) 

II ,XII (iv) lEG 

OxB 
lx{·} , C X PB "PI' C XIiC 

(v) 

OxD lxw 
)OXPO. 

Here the top left rectangle, numbered (i), is just an expression of the 
definition of 0 XB D as the pullback of 0 --+ B +- D, while the top 
right rectangle (ii) is a pullback by the definition of the Kronecker delta 
8B as the characteristic function of the diagonal D..B. Thus the whole 
top rectangle is a pullback, so the characteristic map ¢ sought is the 
composite ¢ = 8 B (J X g). The rest of the (commutative) diagram simply 
calculates this map to be 

Ec(l x w): 0 x D -+ 0, wherew=Pfo{·}Bog: D-+PO. (4) 

Indeed, the flat rectangle (iii) at the right is just the definition (1.13) 
of { . h as the P-transpose of 8B , the square (iv) on the right is the 
definition (1.7) of the action of the functor P on an arrow f (E is dinat
ural), and the region (v) lower left exhibits the formula (4) above which 
defines w. 

With this w we now analyse the left-hand hom-set in the desired 
bijection (2): 

HomB(O XB D,O x B) ~ Home:(O XB D,O) 

~ Sube:(O XB D) 
~ {S I S E Sube:(O x D) and S cO XB D}; 

here each subobject S of 0 x D can be interpreted as an arrow (char
acteristic map) h in the lattice Home:( 0 x D, 0). Using the intersection 
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operator of that lattice [see (2) and (3) of §6 above] the characteristic 
map (4) gives a further bijection 

~ {h I h: C x D -+ nand h/\ Ec(1 x w) = h}; 

the P-transpose to the lattice Hom£(D, PC) then gives 

~ {k I k: D -+ PC and k /\ w = k }. 

Here we express the intersection operation by the intersection arrow 
/\: PC x PC -+ PC [see (4) of §6] and use the definition w = PI{' }Bg 
of (4) to write 

k/\w = /\ 0 (k, PI 0 { . lB 0 g) = /\ 0 (1 x P I{ . } B) 0 (k, g) = to (k, g), 

where t = /\ 0(1 x PI{' }B) as in the square displayed below. Thus 
we have a further bijection to the set of those arrows k such that 
t( k, g) = p( k, g); i.e., such that (k, g) equalizes the top parallel pair in 
the commutative diagram, with p the first projection, 

D (k,g) ) PC x B p 
lPC 

i /" 11X {'}B IA I / (5) /e 
I / 

v / 
/ 

PBI PCxPB lxPf ) PC x PC. 

Therefore, we define the object PBI with the arrow e as shown to be 
the equalizer of p and t in this diagram. If we regard PBI as an object 
over B (via e and projection on B) this finally gives a bijection 

In other words, PBI -+ B is the desired power object for I: C -+ B in 
[; / B, so that [; / B is indeed a topos, as required. This completes the 
proof of Theorem l. 

In the topos [; = Sets, an element of the set PB I described here is 
just a pair S, b with SeC, bE Band S C f-l{b}; in other words, it is 
just a subset S of one of the fibers of f: C -+ B. More to the point, in 
[; / B a global element of PBf -+ B is a map to this object from B -+ B; 
such a map sends each bE B into a set S(b) in the fiber f-l{b} over b; 
it thus describes a subset T C PBI in terms of its fibers S(b). 

Now consider any arrow k: B -+ A in a topos E. Pullback along k 
then turns each object I: X -+ A of E / A into an object f' of E / B: 

X' -------> X 

j': 
if (6) 

I 
v 

B 
k 

)A 
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and so defines a change-oj-base functor (or, pullback functor) 

k*: [IA ---+ [lB. 

193 

Theorem 2. For any k: B ---+ A in a topos [, the change-of-base 
functor k*: [I A ---+ [I B has both a left adjoint ~k' given by composition 
with k, and a right adjoint Ilk. Moreover k* preserves the subobject 
classifier and exponentials, and hence is a logical morphism. 

Here, as in §2, a logical morphism L: [ ---+ :F between topoi is a func
tor which preserves finite limits, subobject classifiers, and exponentials. 
(As always, "preserves" means "preserves up to isomorphism".) 

Proof: Since the topos [IBis now known to have exponentials, 
we can apply Theorem 1.9.4, valid for cartesian closed categories, to 
conclude that k* has both adjoints, as stated. Since it has a left adjoint, 
it must preserve all existing limits, in particular all finite limits. Clearly 
k* also carries the subobject classifier A x n ---+ A of [I A to that of [lB. 
To show that k* is a logical morphism (and hence that it preserves all 
topos concepts) it remains only to prove that it preserves exponentials. 
For objects g, J in [I A, this means that there is a natural isomorphism 

f 

k*((Y!... A)CX---+A») 9:' [k*(Y ---+ AW"CX-->A). 

If we write l' for the pullback k* j, just as in (6) above, this isomorphism 
amounts to the commutativity up to isomorphism of the functors k* and 
( )1 displayed in the following square 

Now each functor k* or ( )1 [respectively ( )/'] has a left adjoint 
~k or X XA - (respectively X' XB -). By the uniqueness (up to 
isomorphism) of left adjoints, it will therefore suffice to prove that the 
square of left adjoints here commutes up to isomorphism. But for an 
arbitrary (Y' ---+ B) in [I B, this isomorphism 

follows at once from the definition of ~k as composition with k and the 
definition of the pullbacks involved. 

From this proposition, we can deduce for any topos several conve
nient properties which are evidently true in the topos [ = Sets. 
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Proposition 3. In a tapas, the pullback of an epi is epi. 

Proof: An arrow e: X ---t A is epi if and only if the square 

is a pushout in E or, equivalently in E/A; cf. the remarks after I.9.(9). 
Since the operation k* of pullback along k: B ---t A has a right adjoint, 
it preserves all colimits; in particular, all pushouts; hence, it preserves 
epis. 

Proposition 4. In a tapas E, any arrow k: A ---t 0 is an isomor
phism. 

Because of this property, one also says that 0 is a "strict" initial 
object. 

Proof: In a slice category E / B, the unique arrow 0 ---t B is clearly 
the initial object, while the identity 1: B ---t B is the final (i.e., terminal) 
object. In E /0 the identity 10: 0 ---t 0 is, therefore, both initial and final. 
Since pullback along the given k : A ---t 0 has both adjoints, the pullback 
g of 10 along k must thus be both initial and final in E / A. This means 
that we can write g as an arrow from 0 and find an isomorphism t as in 
the following diagrams: 

A----+) 0, 
k 

A----+) A. 

Thus 9 = t is an isomorphism, so kg = 1 makes k = C 1 also an isomor
phism, and the proposition is proved. 

Corollary 5. Every arrow 0 ---t B from 0 in a tapas E is monic. 

Proof: If there are two arrows hI, h2: X ---t 0 , they are both 
isomorphisms, so their inverses h1 - 1 and h2 -1 must both be the unique 
arrow 0 ---t X, so hI = h2 and 0 ---t B is monic. 

It follows that 0 ---t B is the minimal subobject of B for any object 
B in E. 

In set theory, the coproduct of two sets is often described as their 
"disjoint union". Here is the analogous statement for a general topos: 
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Proposition 6. If Sand T are disjoint subobjects of B (i.e., if 
S n T ~ 0) then the join S U T in B is also their coproduct S + T. 

Proof: Let h: S >---+ Band k: T >---+ B be the inclusions of the given 
two subobjects. Their coproduct S + T in [ is also their coproduct 
in [lB. The pullback functor k*: [I B -+ [IT is a left adjoint, hence 
preserves the coproduct (h,k): S+T -+ B in [lB. Now the pullback 
k* k is the identity, while the hypothesis of disjointness means that the 
pullback k* h is O. Hence, the pullback of S + T -+ B along k is the 
identity T -+ T: 

i2 
I S+T 

1 (h,k) 

k 
lB. T----+ 

Symmetrically, this means that the pullback along (h, k) turns kinta 
the inclusion i 2 : T>---+ S + T of the coproduct; by the same argument it 
turns h into the first inclusion i 1 : S >---+ S + T. Since the pullback functor 
(h, k)* preserves coproducts, the pullback of S + T -+ B along itself is 
the identity 

S+T---+I S+T 

1 1 
S+T----+I B. 

This in turn means that S + T -+ B is mono; hence, S + T is a subobject 
of B. So, by the definition of the join S U T below Proposition 6.3, the 
join is S + T, q.e.d. 

We note that this proof uses essentially the presence of adjoints to 
pullback. As a converse to Proposition 6 we also remark that any two 
objects Sand T of a topos [ are disjoint subobjects of their coproduct 
S + T in [ (see Corollary 10.5 below). 

In §IX.6 we need the following infinite version of this result: 

Proposition 6 [bis]. Consider a family mi: Si >---+ B of pairwise dis
joint subobjects of B. If their coproduct U Si exists, the induced map 
m: U Si -+ B is again mono, and so represents the supremum of the 

subobjects Si· 
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Proof: For each pair of indices i, j, the meet Si n Sj appears as the 
pullback 

Si n Sj> l Sj 

I 1mj 

Si> mi 
lB. 

Since pulling back along a fixed mi preserves coproducts, this yields 
another pullback diagram 

U Si nSj l USj 
jEI jEI 

1 1m 
Si mi 

lB. 

Next, pulling back along m also preserves coproducts, so the preceding 
pullbacks summed over all i provide yet another pullback 

UUSinSj l USj 
iEI jEI jEI 

1 1m 
USi m lB. 
iEI 

But, by assumption SinSj = 0 for distinct indices i and j, while SinSi = 
Si. Therefore, the last pullback is really 

USk 
id 

l USj 
kEI jEI 

idl 1m 
USi m lB. 
iEI 

This pullback implies that m is mono, as required. 

Proposition 7. In a tapas, if f: X ~ Y and g: W ~ Z are epi
morphisms, then so is f x g: X X W ~ Y x Z. 
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Proof: The map f x 9 can be written as the composite of the maps 
f xl: X x W --+ Y x Wand 1 x g: Y x W --+ Y x Z. By Proposition 3, 
these maps are epi since the following two squares are pullbacks 

X X W __ 7I"-=..1_) X Y X W __ 7I"=-2--» W 

IXll 11 1Xgl 19 

Y x W ---=71"'--1 ----» Y, Y x Z --:::71":::-2 ----» Z. 

Thus, their composite f x 9 is epi. 

Recall that the kernel pair of a map f: A --+ B is the pair of projec
tions to A from the pullback of f along itself, as in 

Theorem 8. In a topos, every epimorphism is the coequalizer of its 
kernel pair. 

Proof: Fix a top os E. To begin with, let A be any object of E, and 
consider the coequalizer Q of the projections of A x A, as in 

71"1 q 
A x A ====t A -----+ Q. 

71"2 

We claim that the unique map Q --+ 1 is monic. Indeed, consider two 
diagrams 

i = 1,2. 

A --q-----+) Q 

Now 7r~ (q X q) = q7rl = q7r2 = 7r&(q x q), and q x q is epi by Proposition 7 
above, so 7r~ = 7r&. Consequently, if f and g: X --+ Q are two maps from 
an arbitrary object X into Q, then f = 7r~U,g; = 7r&U,g; = g. It 
follows that Q --+ 1 is monic, as claimed. 

Now suppose in addition that A --+ 1 is epi. Then Q --+ 1 must be 
epi as well, so Q ~ 1 and it follows that 

71"1 
A x A ====t A -----+ 1 

71"2 

is a coequalizer diagram. 
If f: C --+ B is an arbitrary epimorphism in E, then we can apply 

the preceding argument to the object A = (f: C --+ B) of the topos 
E / B. That f is epi now means that A --+ 1 is epi in E / B. Hence, as just 
shown, A x A::::t A --+ 1 is a co equalizer in E / B. But this simply means 
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that C x B C =4 C ----t B is a coequalizer in [;. Thus f is the coequalizer 
of its kernel pair, and the theorem is proved. 

8. Lattice and Heyting Algebra Objects in a Topos 

Let C be a category with finite limits. A lattice object, or an internal 
lattice, in C is an object L of C together with two arrows 

A: Lx L ----t L, v: Lx L ----t L, (1) 

called meet and join, which render commutative the diagrams which 
express the identities used in the equational definition of a lattice (§I. 7): 
associative, commutative and idempotent laws for both A and V plus 
the absorption law 

xA(YVx) = x = (xAY)Vx. (2) 

For example, the absorption law is expressed by the commutative dia-
gram 

L +-( ------'-1\'------- LxL 

PI IIXV 

oxl l L x L x L lLxLxL (3) IXT 
1l\XI 

L+-(-----~V~----- LxL 

in which p is the projection ofthe product on its first factor, {j: L ----t Lx L 
is the diagonal, and T: Lx L ----t Lx L is the twist map interchanging the 
factors of the product; we have written the diagram as if the product 
were associative; that is, we have omitted from the middle of the diagram 
the canonical isomorphism Lx (L xL) ~ (L xL) x L. The upper rectangle 
in (3) corresponds to the left-hand side of the equation in (2), and the 
lower rectangle to the right-hand one. 

Moreover, such a lattice object L has a zero and a one (or a bottom 
element 1- and a top element T) when there are arrows 

T: I----t L, 1-: 1 ----t L (4) 

from the terminal object 1 of C which satisfy the appropriate identities 

xV1- = x, xAT=x, 



8. Lattice and Heyting Algebra Objects in a Topos 199 

that is, which make both composites 

L ~ LxI ~ Lx L ~ L, 

L~Lxl~LxL~L 

the identity. 
Furthermore, L is called a Heyting algebra object in C or an in

ternal H eyting algebra, if there exists an additional binary operation 
=?: L x L --+ L ("implication") satisfying the diagrammatic version of 
the identities of Proposition 1.8.3. 

If L is an internal lattice, one may define the corresponding partial 
order relation on L, according to the familiar formula which expresses 
the order relation by an equation: 

x :::; y iff x/\y = x. 

Thus, we define a subobject :::;L of L x L as the equalizer 

<L ~LxL=bL. 
- 7rl 

(5) 

The fact that (L,:::;d is an internal partial order (or internal poset) can 
be expressed by appropriate diagrammatic versions of the usual reflex
ivity, transitivity, and antisymmetry laws. To say that :::;L is reflexive 
means that the diagonal factors through :::;L, as in 

(6) 

Define the subobject ?.L >-t L x L as the one represented by the com

posite:::;L :"'L xL-=" Lx L [with T as in (3)]. Then the antisymmetry 
of :::;L can be expressed by saying that the intersection :::;L n ?.L of 
subobjects is contained in the diagonal, as in the pullback 

:::;L n ?.L ) ) :::;L 

I 
, 

"- I, "-

"~L (7) 

~ 
?"L) ) Lx L. 
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Finally, transitivity of -5.L can be expressed by saying that the subobject 

('7rleV, '7r2eu): C>---+ L x L factors through -5.L ,.:, L x L, where C is 
defined as the following pullback, with projections u and v: 

C ________ ~u ________ ~ ) -5.L 

Ie 
v LxL (8) 

1~1 
71"2 

) L. -5. L )-> --e,,----+) L X L ----=------+ 

[So if the ambient category C is Sets, then C is simply the set of triples 
(x,y,z) with x -5. y and y -5. z, while u(x,y,z) = (y,z) and v(x,y,z) = 
(x,y).] 

In terms of the internal relation -5.L on any internal lattice L of a 
topos £ one can now define an internal Heyting algebra of £ to be an 
internal lattice of £ with an additional binary operation::::}: L x L ---+ L 
such that the two subobjects P and Q of L x L x L defined by the two 
pullback squares below are equivalent subobjects: 

P -----------> -5.L < ----------- Q 
I 
I 
I 

v 

I 
I 
I 

v 

Lx L x L AXl) Lx L ( lx::::} Lx L x L. 

This equivalence is a diagrammatic formulation of the definition of im
plication by a /\ b -5. c iff a -5. (b ::::} c). This second definition of an 
internal Heyting algebra object is equivalent to the previous definition 
in terms of identities on ::::}; the proof of this equivalence applies the 
Yoneda processes to the related functorial structures in the hom-sets 
Hom(X, L). The proof uses essentially the fact that the relation -5. is 
defined by equations, as in (5); for details, see Exercise 4. 

A homomorphism of lattices (or of Heyting algebra objects) L ---+ L' 
in £ is an arrow f: L ---+ L' of £ which commutes with all the operations 
involved; i.e., the diagram 

1 T ) L ( A LxL 

II 11 lixi (9) 

1 
T 

) L' ( 
A 

L' xL' 

commutes and similarly with T replaced by .1 and /\ by V (or by ::::}). 
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Now recall that for an object A of a topos E, the set of subobjects 
1 

Sube(A) has the structure of a lattice (in Sets), with 0>---+ A and A ---+ A 
as bottom and top, and with meet and join as described in Proposi
tion 6.3 above. In fact, Sube(A) is a Heyting algebra. The reason is 
simply that the exponential UV of two open objects U>---+ 1 and V>---+ 1 
is again open, i.e., UV ---+ 1 is monic, as is obvious from the universal 
property of the exponential. So the lattice Sube(l) has exponentials, 
hence is a Heyting algebra. Since for an arbitrary object A of a topos E, 
Sube(A) ~ Sube/A(l), it follows that Sube(A) is also a Heyting algebra, 
with as implication operator the exponential in E I A. 

Suppose k: A ---+ B is a morphism in E, and consider the commuta
tive square 

(10) 

EIB --k-:-' --+l EIA 

where iA: Sube(A) ---+ E IBis the obvious inclusion (which identifies 
subobjects of A in E with subobjects of 1 in E I A). Since k* preserves 
exponentials, sums, and epimorphisms (Theorem 7.2), it follows from 
the description of the lattice structure of SUbe(B) and Sube(A) just 
given that k-1 is a homomorphism of Heyting algebras. In other words, 
we have proven: 

Theorem 1 (External). For any object A in a topos E, the poset 
Sub A of subobjects of A has the structure of a Heyting algebra. This 
structure is natural in A in the sense that the pullback along any mor
phism k: A ---+ B induces a map k- 1 of Heyting algebras as in (10). 

There is a corresponding "internal" result: 

Theorem 1 (Internal). For any object A in a topos E, the power 
object PAis an internal Heyting algebra. (In particular, so is the sub
object classifier 0 = Pl.) Moreover, this structure is natural in A, 
in the sense that, for a morphism k: A ---+ B in E, the induced map 
Pk: P B ---+ PAis a homomorphism of internal Heyting algebras. For 
each X in E the internal structure on PA makes Hom(X, P A) an exter
nal Heyting algebra so that the canonical isomorphism 

Sube(A X X) ~ Home(X,PA) 

is an isomorphism of external Heyting algebras. 

Proof: We have already indicated part of the proof in §6 [see (3) 
and (4) of that section], where we defined a meet, 

1\: PAx P A ---+ P A, 
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in such a way that for any X E C, the meet operation on Homc:(X, PA) 
induced by composition corresponds to meet in the lattice Sube(A x X) 
under the canonical isomorphism SUbc:(A x X) ~ Home(X, PA). The 
other operations can be defined in exactly the same way. For example, 
for each X in C, Subc: (A x X) has an implication operation ~: Subt: (A x 
X) x Sube(A x X) -+ Sube(A x X), which is natural in X, as pointed 
out just before the statement of Theorem 1. Hence, there is a unique 
operation ~ x, again natural in X, such that 

Sube(A x X) x Sube(A x X) -~~~--+) Sube(A x X) 

\\1 

Home(X,PA) x Home(X,PA) (11) 

\\1 

Home(X, PA x PA) ==>x l Home(X, PA) 

commutes. By naturality of ~ x in X, the latter operation must then 
be induced-via composition-by a uniquely determined map ~: PAx 
PA -+ PA (this is an application of the Yoneda lemma). 

Top and bottom objects T and -1 are treated similarly. The fact 
that Pk: P B -+ PAis a homomorphism of Heyting algebras follows 
from the naturality of the Heyting algebra structure on Subt:(A), by 
commutativity of the diagram 

Subt:(B x X) ---C--+l Home(X,PB) 

(kX1l-11 lHomdx,Pkl (12) 

Subt:(A x X) l Home(X,PA). 

Indeed, since (k x 1)-1 is a homomorphism of Heyting algebras, so is 
Homc:(X, Pk) for each X in C. But then Pk must be a homomorphism of 
internal Heyting algebras, as follows easily by unwinding the definitions. 
This proves Theorem 1. 

Note especially that the proof uses the definition of internal Heyting 
algebras by the operation ~ and not that by the binary relation "5.£. 

To conclude this section, let us remark that the internal Heyting 
algebra structure on 0 is by definition the unique one such that 

Sube(X) ~ Home(X, 0) (13) 

is an isomorphism of Heyting algebras. So for two subobjects Sand T 

f X . h h .. d"'" (s,t) o WIt c aractenstIc maps s an t: X -+ ~~, the composite X ----+ 
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=> n X n ---- n, denoted briefly by s :::} t: X --> n, is the characteristic 
map for 8 :::} T. And similarly, s 1\ t, s V t are characteristic maps for 
8 1\ T, 8 V T, respectively. Moreover, if 8 E Sube(X) is a subobject 
of X classified by 0": X --> n, then -,8 E Sube(X) is classified by the 

a ~ 

composition X -> n -> n. [Note that the "-," on -,8 is an operation 
in the Heyting algebra Sube(X), while the "-," in X --> n --> n is the 
operation of the internal Heyting algebra structure of n.] 

The top and bottom elements of the Heyting algebra Sube(l) are 

the subobjects 1 -+ 1 and 0>---+ 1, respectively. Under the isomorphism 
SUbe (l) s=: Home(l, n), as in (13), these correspond to the top and 
bottom elements "true" and "false" of the Heyting algebra Home(l, n), 
so that 

1 0---+) 1 

II and 1 Itrue (14) 

1 -t:-ru-e-+) n, 1 false) n, 
are both pullbacks (the first trivially so, the second by definition of 
"false"). In any Heyting algebra, the negation interchanges the top and 
bottom elements, as in 

-,0 = 1, -,1 = o. 

When one transposes these identities along the isomorphism Sube(l) s=: 
Home(l, n), one obtains commutative diagrams 

1 false ) n 1 true ) n 

~l~ ~l~ (15) 

n n. 

Notice that, in fact, the square 

1 id )1 

false 1 Itrue (16) 

n )n 

is a pullback. Indeed, in order to verify this, take any object T in £ 
and an arrow 0": T --> n such that -, 0 0" = true 0 !, where !: T --> 1 
is the unique arrow into the terminal object. If 8>---+ T is the subob~ect 
classified by 0": T --> n, then by the identity -,00" = true o!, the subobJect 

( -,8) >---+ T is the maximal subobject T -:. T of T. But then 0 = 81\-,8 = 
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S 1\ T = S, so that the given arrow u: T -t 0 in fact classifies the 
subobject 0>---+ T. But in the diagram 

10 0----+ 1 1 

1 1 Itrue 

1 1 T----+ 
false 

10. 

the outer rectangle is a pullback because the square on the right is a 
pullback by the definition of "false", while the square on the left is 
evidently a pullback. Thus, false o! also classifies 0>---+ T, and hence 
u = false o!. This shows that (16) is a pullback. We will use this result 
in §VLl. 

9. The Beck-Chevalley Condition 

Throughout this section, we work with a fixed elementary topos E. 
Let f: B -t A be a morphism in E. In Proposition 6.3 we proved 

that f- 1 : Sub(A) -t Sub(B) has a left adjoint 3j: Sub(B) -t Sub(A). 
Recall that for a subobject U>---+ B of B, 3j (U) >---+ A is the subobject 
of A determined by factoring the composite U >---+ B -t A as an epi 
followed by a mono: U --* 3j U >---+ A, so that 3j U is the f-image of U. 
In Theorem 8.1 (external), we observed that f- 1 : Sub (A) -t Sub(B) is 
a homomorphism of Heyting algebras. In particular, 

(1) 

for any two subobjects U and V of A. Hence, for an arbitrary subobject 
WofB, 

3f (W)/\U::::; V iff 3j (W) ::::; (U => V) (cf. def =» 
iff W ::::; f-l(U => V) (by 3j -1 f-l) 

iff W ::::; rl(U) => f-l(V) [by (1)] 

iff W /\f-l(U) ::::; f-l(V) (by def =» 
iff 3j (W /\f-l(U)) ::::; V (by 3 j -1 r 1 ) . 

Since this holds for any V E Sub(A), one obtains the so-called Frobenius 
identity, or projection formula for f: B -t A, WeB and U c A: 

(2) 

(For a related argument, see Exercise 2.) 
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Now suppose we are given a pullback diagram 

(3) 

C --9,---------';) A. 

Consider a subobject U>---> B, as well as the induced subobject p-l (U) = 
C XA U>--->C XA B. To compute ~fU, one factors U>--->B ----+ A as an 
epi followed by a mono, as U --!+ ~fU >---> A. Since pulling back along 9 
preserves mono's as well as epi's (cf. Theorem 7.2, Proposition 7.3), it 
follows that p-l(U) ----+ 9-I~fU ----+ C is again an epi-mono factorization. 
This may be pictured as in the following diagram, in which the front, 
back, bottom, and top faces are all pullbacks 

U 

C X A B ---+-----+ B 

~ 
C 9 

A. 

In other words, 3qp-l(U) = 9-I~f(U), Thus we have proved 

Proposition 1. For a pullback square (3), the diagram 
-1 p 

Sub(C XA B) :=( ==::::;:) Sub(B) 

q-l H 3 q 3
p 

3, n r1 

3 9 

Sub(C) ( ) Sub(A) 
9- 1 

satisfies the Beck-Chevalley condition: for any subobject U of B, 
g-13 f U = 3qp- 1U. 

(4) 

By symmetry, the identity ~pq-l V = f-139 V for subobjects V of C 

holds as well. 
We now wish to derive an "internal" version of the existence of the 

left adjoint ~f for f- 1 . Let (P,~J and (P',~/) be internal partially 
ordered objects in £ (§8), and let 

p-Lpl 
~ 
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be order-preserving maps in E (i.e., the composition :S >--t P X 

P ~ P' x P' factors through :S' >--t P' X P', and similarly for 'l/J). 
We say that ¢ is internally left adjoint to 'l/J if (¢'l/J, I p ' ) and (l p , 'l/J¢) 
factor through :S' and :S, respectively: 

[These are just the diagrammatic versions of the conditions familiar in 
the case E = Sets: ¢ is left adjoint to 'l/J when ¢'l/J(p') :S p' for all p' E P' 
and p :S 'l/J¢(p) for all PEP, since these inclusions give respectively the 
counit and the unit for the adjunction and the triangular identities then 
follow formally.] 

The internal adjunction between ¢ and 'l/J may also be expressed as 
follows: for any object X of E, Homt:(X, P) is a partially ordered set 
when for f, g: X -+ P one sets 

f :S 9 iff (J, g): X -+ P x P factors through :S >--t P X P, 

and similarly for Home(X, P'). Then ¢ is internally left adjoint to 
'l/J as above iff for each object X of E, the order-preserving map 
¢*: Home(X, P) -+ Home(X, P') induced by ¢ via composition is left 
adjoint to the similarly induced map 'l/J*: 

Home(X,P) ( <P. I Home(X,P'), ¢* -1 'l/J*. 
,po 

Theorem 2. Let f: A -+ B be a map in E. Then Pf: PB -+ PA 
has an internal left adjoint :3 t= P A -+ P B. Moreover, the internal 
projection formula (2) holds, i.e., the diagram 

PAx P B ____ 3=___, X_I __ ---ll PBx P B 

Ixp'1 1A (5) 

P A x P A ---» P A -----=~----7) P B 
A 3, 

commutes. And the internal Beck-Chevalley condition holds, i.e., for 
any pullback square of the form (3) above, the square 

P(C XA B) ( Pp 
PB 

3·1 13, (6) 

commutes. 
pc( 

Pg 
PA 
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Proof: The proof is just a matter of observing that the correspond
ing external statements hold in a natural way. More precisely, consider 
for an object X of £ the external left adjoint :lUX1) as in 

3(f x 1) 

Sube(A x X) I ) Sube(B x X). 
UX1)-1 

(7) 

Clearly (J x 1)-1 is natural in X, but so is :lUX1)' i.e., for any h: Y --t X 
the square 

Sube(A x X) 

(1Xh)-11 

Subt:(A x Y) 

3(fx1) ) Sube(B x X) 

1 (1xh)-1 

3 ) Sube(B x Y) 
(f xl) 

commutes. [This is a special case of the Beck-Chevalley condition of 
Proposition 1, applied to the pullback square 

AxX 
fx1 )BxX 

I I 
AxY 

fx1 
)BxY.] 

Consequently, the unique maps (:If)x and (P f)x obtained from the 
natural isomorphism Sub( - x?) ~ Hom(?, P - ) as in 

3(f x 1) 

Sube(A x X) I ) Sube(B x X) 

II~ Ux1)-l II~ 
(3f)x 

Homt:(X,PA) I ) Home(X,PB) 
(Pf)x 

(8) 

are again natural in X. Hence by the Yoneda lemma, they must be 
induced by uniquely determined maps 

3, 
PA~PB. 

Pf 

(9) 

(This gives the same P f as defined before.) Since (7) is an adjunction, 
so is (:l f)X -1 (P f)x for every X. Therefore, as explained above, :l f is 
an internal left adjoint for P f. 
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The internal Beck-Chevalley condition is derived in a similar way, 
by observing that the corresponding external condition holds, natural in 
a parameter object X. More explicitly, for any object X, we take the 
product of the pullback (3) with X and obtain a pullback 

(C XA B) x X 
pxl 

QXll 

C x X ---:-----+J A x X 
gxl 

(10) 

The external Beck-Chevalley condition (Proposition 1) for this square 
says that for any subobject U of B x X, 

(g x I)- 13(fx1)(U) = 3(qXl)(P x I)-l(U). 

Passing to hom-sets via Sub(A x X) ~ HomdX, PA), as in (8), this 
means that for any u: X -+ PB, Pg 0 3f 0 u = (Pg)x(3j)x(u) = 
(3 v ) x (Pp) x (u) = 3q 0 Pp 0 u. Commutation of (6) in the theorem thus 
follows by taking u to be the identity on P B. 

The proof of the internal projection formula is analogous, and is left 
as Exercise 9. 

Summarizing, given j: A -+ B we now have adjoint functors (with 
aA and iA defined as in Proposition 6.5 and Ef , composition with j, as 
in Theorem 7.2): 

f- 1 

SubdA) =:1 ::':;==~J SubdB) 

aA UiA 3
f aB UiB 

r 
E / A !=( ==~===;J E / B 

~f 

3 -1 j-l f , 

a -1 i, (11) 

and by construction, f*iB = iAj-l and aBEf = 3f aA. Moreover, when 
A and B are replaced by A x X and B x X, these adjunctions hold 
naturally in the parameter object X, and therefore one also obtains 
internal adjoints P A += P B, as in Theorem 2. 

Now recall that f*: E / B -+ E / A also has a right adjoint II f (cf. The
orem 7.2). Since a right adjoint functor automatically preserves the ter
minal object as well as monomorphisms, IIf restricts to sub objects of 
the terminal object. In other words 

Proposition 3. For j: A -+ B in E, the functor j-l: Sub B -+ 

Sub A has a right adjoint V f' such that 

(12) 

commutes. 
E / A --::;rr:-f ---+J E / B 
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Special cases of the existence of this right adjoint have already been 
considered in §1.9 (quantifiers as adjoints) and §III.8.(16). 

Notice that these right adjoints satisfy again a version of the Beck
Chevalley condition: for a pullback (3), the diagram 

Sub(C XA B) 
Vp 

-~-+) Sub(B) 

q_1j jr1 (13) 

Sub(C) -.....,-:----*) Sub( A) 
Vg 

commutes. Indeed, commutativity of (13) is equivalent to commutativity 
of the diagram obtained by replacing all arrows in (13) by their left 
adjoints. The diagram thus obtained commutes by the Beck-Chevalley 
condition of Proposition 1 above. 

As for the left adjoints :3 f' one can deduce an internal version of 
the preceding proposition, by observing that it holds naturally in a pa
rameter object X. To see this, fix f: A -+ B and consider a map of 
parameter objects h: Y -+ X. Then the square 

Sub(A x X) 

(lXh l - 11 
Sub(A x Y) 

VUX1) ) Sub(B x X) 

1 (lxhl- 1 

V ) Sub(B x Y) 
Ux 1) 

commutes, as a special case of the Beck-Chevalley condition (13) above. 
Consequently, the map (V f) x, defined by requiring the square 

Sub(A x X) ) Sub(B x X) 

II~ II~ 
Hom(X,PA) (Vnx) Hom(X,PB) 

to commute, is natural in X. Hence it comes from a unique map 
Vr PA -+ PB, by composition. Analogous to Theorem 2, one thus 
has: 

Proposition 4. For any f: A -+ B in £, the map P f: P B -+ P A 
has an internal right adjoint V f: P A -+ P B . 

As before one can deduce an internal version of the Beck-Chevalley , 
condition (13). We leave the proof as Exercise 9. 
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10. Injective Objects 

In any category C, an object K is said to be injective when for 
every monomorphism m: S >-> B in C every f: S -+ K can be extended 
to g: B -+ K with gm = f, as in the diagram 

(1) 

Equivalently, this states that for each monomorphism m: S>-> B the 
induced map 

m *: Home( B, K) -+ Home( S, K) (2) 

is onto. In homological algebra, the injective objects in categories of 
modules playa special role; since every module M can be embedded in 
an injective module, repeated embeddings give an injective resolution (a 
long exact sequence) from M. From these resolutions one may calculate 
the derived functors of M. 

Proposition 1. In any topos £, the subobject classifier 0 is injec
tive. 

Proof: Any arrow j: S -+ 0 (a "property" of S), as on the left in 
(1), is the characteristic function of some subobject T>-> S of S. But this 
T is also a subobject T>-> S>-> B of B and as such has a characteristic 
function g: B -+ O. This means that the right-hand square in the 
diagram 

T T ) 1 

1 1 ltrue 

s: m )B 
9 

)0 

is a pullback. Since m is monic, the left-hand square, and therefore the 
whole rectangle, is also a pullback. Thus, the composite gm must be 
the characteristic function of T>-> S; i.e., must equal the given arrow j, 
as gm = j. This gives the factorization required in (1). 

Corollary 2. For any object C in a topos, PC is injective. 
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Proof: For each S ~ B, the definition of P yields the commutative 
diagram 

Hom(B,PC) ----t) Hom(8, PC) 

II~ II~ 
Hom(C x B,o') ---t) Hom(C x 8,0,). 

By the Proposition, the bottom map is onto; hence so is the top map. 

Corollary 3. Any object C in a tapas has a monomorphism to an 
injective object. 

Proof: By Corollary 2, with Lemma 1.1, the singleton map 
{.}c: C -+ PC is such. 

This property is reminiscent of the fact that over any ring, modules 
may be embedded in injective modules. 

Corollary 4. In a tapas, the pushout of a monic along an arbitrary 
map is again a monic. Moreover, pushout squares of this form are also 
pullback squares. 

m f 
Proof: Given a diagram B +-- 8 --t C with m monic, one may form 

the pushout Q (by Corollary 5.4), and also embed C in an injective, by 
Corollary 3, above. This yields a diagram 

(3) 

Since PC is injective, {'}e 0 f extends to B, to give a map g: B -+ PC 
making the outer square commute, as shown. Since Q is the pushout, 
there is a unique h: Q -+ PC with {'}e = hm' and hI' = g. Since 
{'}e = hm' is monic, so is m'. This proves the first part of the Corollary. 

For the second part, we must show that the square with vertex Q is 
also a pullback. It suffices to prove that the outer (distorted) square with 
vertex PC is a pullback. To this end, we use the special way in which 
the extension 9 can be chosen, according to the proof of Propot'ition 1 
and Corollary 3 above. Indeed, {'}e: C -+ PC is the transpose of the 
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classifier C x C -t n of the diagonal map 8: C -t C xC, by construction. 
So {'}e 0 f: 8 -t PC corresponds under Hom(8, PC) ~ Sub(C x 8) to 
the subobject of C x 8 obtained by pulling back 8 along 1 x f: C x 8 -t 

C X C. But 

Cx8 ICXC 
1xj 

(f,1) 
is a pullback. So {'}e 0 f corresponds to the subobject 8 --t C X 8 of 
C x 8. The map g: B -t PC then can be chosen to correspond to the 
subobject of C x B represented by the composite 

8~Cx8~CxB. 
u v 

Now suppose we are given X -----+ B and X -----+ C such that {'}e ov = 
gou. Under Hom(X, PC) ~ Sub(C x X), the map {-lo ov corresponds 
to (v, 1): X >---+ C x 8 (just as in the case of f: 8 -t C just considered), 
while 9 0 u corresponds to the pullback along 1 x u of the subobject 
(f, m) corresponding to g; i.e., to V as in the pullback 

V -----------) 8 

i 1 (f,m) 

C x X 1xu I C x B. 

But if {-}e 0 v = go u, then V>---+C x X and (v, 1): X -t C X X must 
be the same subobjects, so X factors through 8 as in 

----------~----------) 
X ~ V 18 

(~ 1 l(f,m) 

C x X -l'--x-u--+1 C x B. 

Then mw = u and fw = v, and w is unique with this property since 
m is monic. This proves that the outer square of (3) is a pullback, as 
required for the corollary. 

i j 
Corollary 5. Let X -----+ X + Y f- Y be a coproduct diagram in a 

topos. Then the maps i and j are monomorphisms, and the square 

o IY 

1 1j 

X IX+Y 

is a pullback (so that X and Yare disjoint subobjects of X + Y). 
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Proof: The square is obviously a pushout. Since the maps 0 -+ X 
and 0 -+ Yare monomorphisms by Corollary 7.5, the result follows from 
the preceding corollary. 

Corollary 6. For any family of monomorphisms mi: Si -+ Bi for 
i E I in a tapas, their sum (coproduct) m: II Si -+ II Bi , when it exists, 
is again mono. 

Proof: By Corollary 5 and the associativity of the (infinite) coprod
uct, each of the coproduct inclusions Vi: Bi -+ II Bi is mono. Thus, we 
may consider Sj as a subobject of B = II Bi by composing the two maps 

Moreover, coproducts in a topos are disjoint, by Corollary 5, so for 
distinct indices i and j the sUbobjects Bi and Bj of B are disjoint. A 
fortiori, the smaller subobjects Si and Sj are then also disjoint. By 
Proposition 7.6 [bis] their sum II Si -+ B = II Bi is mono, as claimed. 

Exercises 

1. For a category E, let M(E) be the category with objects the mon
ics of E and arrows the pullback squares of such monies. Prove 
that a subobject classifier for E is the same thing as a terminal 
object in M(E). 

2. If F: C -+ D is left adjoint to G: D -+ C, while both C and Dare 
cartesian closed, show that the unit and counit of the adjunction 
yield a canonical map F(C x GD) -+ F(C) x D, while the fact 
that G preserves products yields by evaluation a canonical map 
G(DE) x G(E) -+ G(D). Use the Yoneda lemma to prove that 
the first canonical map is iso iff the second is. 

3. Give a detailed proof of Theorem 4.2 (Beck's theorem). 
4. Prove that the two definitions of an internal Heyting algebra, as 

given in §8, are indeed equivalent. 
5. In any cartesian closed category C, prove that the internal com

position C B x BA -+ CA defined in §2 is associative. Also show 
that for a given object C, CC is a monoid object in C with a 
two-sided unit e: 1 -+ CC which is the transpose of the identity 
C -+ C. If, in addition, C has pullbacks, construct the object 
Aut( C) of automorphisms of a given object C of C, and prove 
that Aut(C) is a group object in C. 

6. Let E be a topos and f: A -+ B a map in E. 

(a) Prove that f: A -+ B is epi iff P f: P B -+ PAis mono. 
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(b) For a map u: X ---+ A, the graph Gu of u is by definition 
the subobject Gu E Sub(X x A) represented by the mono 
(1, u): X ---+ X x A. Check that if v: X ---+ A is another 
map such that Gu = Gv as subobjects of X x A, then 
u = v. Also check that =hxf: Sub(X x A) ---+ Sub(X x B) 
sends Gu to Gfou· 

(c) Using (b), prove that f: A ---+ B is mono iff:3 f : PA ---+ PB 
is mono. 

7. Prove that for a topos £', the power object P f of an object f: Y ---+ 

X of £' / X can be constructed as the following pullback 

Pf----------------------~)X 

1 i{·} 

X x PY {.}x3 f ) P(X) X P(X) -v~) P(X). 

8. Check the naturality of 1\ as asserted in (4) and (5) of §6. 

9. (a) For a given map f: A ---+ B, state and prove an internal 
version (involving :3 f: P A ---+ P Band P f: P B ---+ P A) of 
the projection formula (2) of §9. 

(b) For a given pullback square of the form (3) of §9, state and 
prove an internal version of the Beck-Chevalley condition 
(13) of §9. 

10. If Sand Tare subobjects of some object E of a topos £', show 
that the square of inclusion maps 

S n T»-----+) S 

I I 
T)-) -------)) S U T 

is both a pushout and a pullback. (Hint: Use Theorem 7.8.) 
11. In a topos, a subobject S >--7 L x L is a "binary relation object" 

on L. From it construct for each object X a subobject Rx of 
Hom(X, L xL) which is functorial in X and such that t: X ---+ 

Lx L is in Rx iff Im(t) c S. Investigate the converse. (Can one 
reconstruct S from a functorial Rx 7) 

12. (a) Let C be a locally small category with all finite products. 
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If L is a lattice object in C, show that for each object X 
of C the hom-set Hom(X, L) is a lattice in Sets, and that 
Hom( - , L) is a contravariant functor to the category of 
all small lattices. 

(b) If L is an object of C such that each Hom(X, L) is a lattice 
in such a way that Hom( - , L) is a contravariant functor to 
the category of all small lattices, show that L has a (suit
ably) unique corresponding structure as a lattice object in 
C. 

13. Generalize the previous exercise from lattices to universal alge
bras. 

14. Let E be a topos, and A an object of E. An equivalence rela
tion on A is a monomorphism (p, q): R --+ A x A such that R is 
reflexive, symmetric, and transitive (expressed by the appropri
ate diagrams). One also says that the pair p, q: R =l A "is" an 
equivalence relation. 

(a) Let f: A --+ B be a map in E. Prove that the kernel pair 
A x B A =l A of f is an equivalence relation on A. (The 
purpose of the rest of this exercise is to show the converse; 
see also the Appendix, §4.) 

(b) Prove that if p, q: R =l A is the kernel pair of some map 
A --+ B, then it is also the kernel pair of the coequalizer of 
p and q. 

(c) Let R be an equivalence relation on A. Show, using sym
metry and transitivity, that (p x l)-l(R) = (q x l)-l(R); 
i.e., that the pullbacks of (p, q): R>--+ A x A along p x I, 
respectively along q xl: R x A --+ A x A, are isomorphic 
as subobjects of R x A. 

(d) Let r: A --+ OA be the transpose of the characteristic map 
r: A x A --+ 0 of R>--+A x A. Deduce from (c) that rp = 
rq: R --+ OA. 

(e) Prove that the square 

which commutes by (d), is a pullback (use the symmetry 
of R). 

(f) Wrap up by the statement that every equivalence relation 
is the kernel pair of its coequalizer. 
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15. Let £ be a topos. Recall that an object P of [; is projective if 
the functor [;(P, - ): [; ----+ Sets preserves epis; that is, if for any 
epi e: Y ----+ X in [; and any f: P ----+ X, there exists a g: P ----+ Y 
with eg = f. A category [; is said to have enough projectives if 
for any object X of [; there is an epi P ----+ X with P projective. 

(a) Show that an object P of [; is projective iff every epi 
q: X""'*P has a section (i.e., an s: P ----+ X with qs = 1). 

(b) Show that a retract of a projective object is projective, and 
that the coproduct (if it exists) of a collection of projective 
objects is again projective. 

cop 

(c) Show that in case [; is a presheaf topos (£ = Sets for 
some small category C), then an object P of £ is projec
tive iff P is a retract of a sum of representables. (Hence 
presheaf topoi have enough projectives.) 

(d) Show that if B is a complete Boolean algebra, then every 
object of the topos Sh(B) of sheaves on B is projective. 

(e) Let X be a TI -space (points are closed). Show that if 
the terminal object 1 is projective in the topos Sh(X) of 
sheaves on X, then X has a basis consisting of clop en 
sets (here clop en means closed and open). Conclude that 
if Sh(X) has enough projectives, then X has a basis of 
clopen sets. (What about the converse?) 

(f) Show that 1 is projective in Sh(X) iff every open cover of 
X has a refinement by pairwise disjoint open sets. Show 
that 1 is projective in the topos Sh(NN) of sheaves on the 
Baire space NN. 

16. Let £ be a topos. An object P of £ is called internally projective 
if ( - )P: £ ----+ £ preserves epis. 

(a) Show that the following three conditions on an object P 
are equivalent: 

(i) P is internally projective; 
(ii) The right adjoint IIp : £ / P ----+ £ preserves epimor

phisms; 
(iii) for any T in £, any epi Y -» X in £ and any map 

T x P ----+ X, there exists an epi e: T' ""'* T and a 
commuting square 

T'xP IY 

eXIl 1 
TxP IX. 
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(b) Prove that for any morphism f: A -+ B in [, the change
of-base functor f*: [I B -+ [I A sends internally projec
tive objects of [I A to internally projective objects of [lB. 
Also prove that in case f is epi, an object P -+ A is inter
nally projective in [IA whenever its image f*(P -+ A) is 
internally projective in [lB. 

(c) In this part, assume that the terminal object 1 E [ is 
projective. Show that an internally projective object of [ 
is projective. Is the converse also true? Show that every 
object of [ is projective iff every object of [ is internally 
projective. 

(d) Give an example of a top os for which every object is in
ternally projective, but not every object is projective. 

(e) Let X be a Tl topological space. Show that if every object 
of Sh(X) is internally projective, then X is discrete. [Hint: 
for a given point x of X, consider the projection of the 
constant sheaf t1(Z/2) to the skyscraper sheaf Sky x (Z/2) 
with stalk Z/2 at x and stalk {O} elsewhere; see §II.6.] 



V 
Basic Constructions of Topoi 

In this chapter we present some basic ways to construct new topoi 
from old ones. 

First we consider the construction of sheaves for a topology, gener
alizing the results of Chapter III. More specifically, for an elementary 
topos [, we introduce the notion of a Lawvere-Tierney topology jon [. 
This will include "point-set" topologies and the notion of a Grothendieck 
topology. Indeed, if [ is the topos SetsCOP of presheaves on a given 
small category C, then a Lawvere-Tierney topology on the topos [ cor
responds to a unique Grothendieck topology on the category C. We 
then proceed to define the category Shj [ of sheaves for such a Lawvere
Tierney topology j, show that Shj [ is a topos, and prove the existence 
of an associated sheaf functor. Such associated sheaf functors were con
structed earlier via bundles (Chapter II) and via the plus-construction 
(Chapter III). The method to be developed here is different from these 
two. 

The second construction concerns comonads. A comonad on a cate
gory [ is given by a functor G: [ -+ [ and two natural transformations 
b: G -+ Idt: and f: G -+ G2 , satisfying the identities dual to those for 
a monad [ef. IV.4(l)]. Dual to the notion of algebra for a monad one 
has the notion of coalgebra for a comonad. We prove that if G is a 
comonad on a topos [ such that G: [ -+ [ preserves finite limits, then 
the category of coalgebras for G is again a topos. 

As special cases of this last result, one obtains generalizations of the 
familiar constructions of the topos BG of G-sets for a group G and of 

cop 

the topos Sets of presheaves on a small category C. Indeed, one can 
replace the category Sets by an arbitrary elementary topos [, and show 
that for a group object Gin [, the objects of [ equipped with an action 
by G form a topos; and similarly, if C is a "category object" in [, then 
the category of objects of [ equipped with the structure of a presheaf 
on C (suitably defined) form a topos. 

Finally, we consider colimits. One can show that the colimit of a 
filtered diagram of topoi and logical morphisms between them is again a 
topos. In other words, the category of topoi and logical morphisms has 

218 
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filtered colimits. We will treat just a special case, the filter-quotient con
struction, which generalizes the construction of ultraproducts familiar 
in model theory. 

1. Lawvere-Tierney Topologies 

To define sheaves on a topological space X, what "matters" is "what 
gets covered". Thus, if 0 is any collection of open sets Ui of X for i E I, 
what matters is the collection, call it j (0), of all those open sets covered 
by the Ui . Then j of everything is everything and j(j(O)) = j(O), 
while for intersections one has j(Ol n O2 ) ~ j(Ol) n j(02)-and this 
inclusion is an equality in case both 0 1 and O2 are sieves. Moreover, 
if the collection 0 is actually a sieve S on some open set U of X, then 
j(O) is also a sieve and 0 = S is exactly an element S E n(U), where 
n is the subobject classifier for the topos of all presheaves on X. Thus, 
j becomes a map j: n --+ n. These observations may motivate the 
following general definition of a "topology" on a topos. 

Let E be a topos, and let n be its subobject-classifier. A Lawve'T"e
Tierney topology (or briefly a topology) on E is a map j: n --+ n in E 
with the following three properties 

(a) j 0 true = true; (b) j 0 j = j; (c) jol\=l\o(jxj); 

1 true) n 

~lj 
(1) 

n X n ---,/\,----t) n. 

Since the subobject classifier can be interpreted as a collection of truth 
values, one may regard the morphism j as a kind of modal operator on 
these truth values. Of course, j: n --+ n determines and is determined 
by the subobject J >-> n which it classifies, as in the pullback diagram 

) 1 J----+ 

I Itrue (2) 

j 
)n, n----+ 

and the definition (1) of a topology can also be phrased in terms of the 
subobject J. 

The intent of such an operator j may be illustrated in the case of the 
topos E = SetsO(X)OP of presheaves on a topological space X. ~ecall 
[§I.4(4)] that the subobject classifier n of this functor category IS the 
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functor sending each open set U into the set O(U) of all sieves 8 on 
U, where a sieve S on U is a set of open subsets V of U such that 
W <;;; V E 8 implies W E S. Recall also that each open subset V <;;; U 
determines a principal sieve V, consisting of all open W <;;; V, aEd that 
trueu: 1 ----+ O(U) is the map that picks out the maximal sieve U on U. 
Now define J by 

J(U) = {S I 8 is a sieve on U and S covers U}, (3) 

where "8 covers U" means that U = U{ V I V E 8}. Consider W c U. 
Since the intersection 8 n W, defined by 8 n W = {V n W I V E 8}, 
covers W if S covers U, it follows that J is a sub functor of 0. The 
corresponding classifying function j: 0 ----+ 0 is then given, for any sieve 
8 on an open set U, by 

ju(8) = { W I W is open in U and S n W covers W}; 

in other words, ju(8) is the principal sieve V, where V = U{ W I W E 

8}. Thus ju(S) specifies exactly the largest subset V of U covered by 
the sieve S. Let us verify that the map j: 0 ----+ 0 thus defined is a 
Lawvere-Tierney topology. The second property of the definition (1) is 
obvious, and the first is just ju(U) = U. As for the third, consider 
two sieves 8 and T on U. Then W E ju(8) n ju(T) means that W is 
both a union W = Ui Vi of sets Vi E 8 and a union W = U Vj of sets 
Vj E T; this implies that W = U(Vi n Vj), so W E ju(S n T). Thus, 
ju(8) n ju(T) <;;; ju(8 n T). The reverse inclusion also clearly holds, so 
that ju(8) n ju(T) = ju(8 n T), as required for (l)(c). 

The operator j serves to specify what each sieve covers. We recall 
that sheaves on a topological space can be defined in terms of coverings 
by sieves (II.2.2). It will turn out that sheaves can be similarly defined 
within any topos with a Lawvere-Tierney topology. 

The operator j also determines a unary operator A f-t A, called "clo
sure" , on the subobjects A >-t E of each object E, by the correspondence 

Hom(E, 0) --~----+) Sub(E) 3 A 

Hom(l,j) 1 1 I (4) 

Hom(E, 0) -----:-~.,..---+) Sub (E) 3A. 
In other words, given A E Sub(E), its j-closure A is that subobject of 
E with characteristic function j (char A), as in the diagram 

A ) 1 

lr --'1 ' l':~-- 'm, 
(5) 

E=E ) 0----+ 0 
char A j , 
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with both squares pullbacks from true. In other words, 

char(A) = j char(A). (5') 

This operation is "natural" in E, in the usual sense that for any map 
I: E ----> F in [, and any subobject B of F one has (since I-I is defined 
by pullback) 

(6) 

Proposition 1. For any topos [" an arrow j: 0 ----> 0 determines 
by (5') an operator on the subobjects of each object E of [, 

A 1-+ A, SUb(E) ----> SUb(E), (7) 

which is natural in E E [,. Moreover, j is a Lawvere-Tierney topology 
if and only if this operator has, for all A, B E Sub(E), the properties 

AcA, AnB = AnB; (8) 

we then say that A 1-+ A is a closure operator. Conversely, an operator 
defined on all Sub(E) that is natural in E and has the properties (8) 
always arises in this way from a unique Lawvere-Tierney topology j. 

Proof: This is an example of the transfer of an algebraic structure 
(given by j and 1\) on an object 0 in [, to the corresponding functorial 
structure on the hom-sets Hom(E, 0) ~ Sub(E). The last two identities 
of (8) are the immediate translations of the last two identities (1) on 
a topology. As for the first identity, j(true) = true, its translation 
uses the fact that any subobject is a pullback of true: 1 ----> O. Thus, 
j(true) = true implies in (5) above that the right-hand trapezoid, with 
the dotted top, is commutative. Since the outer rectangle is a pullback, 
this gives a map A ----> A and hence A c A, as in the first of (8). 
Conversely, this property A c A applied to the maximal subobject 1 ----> 1 
of 1, with characteristic function true: 1 ----> 0, gives j (true) = true, as 
required. 

The inclusion A c A may also be written as an equation A n A = A. 
Therefore, a Lawvere-Tierney topology j on E can be described by the 
three properties of (1) with the first replaced by the equation 

1 = 1\(1 x j)~: 0 ~ 0 x 0 ~ 0 x 0 ~ 0, (9) 

where ~ is the diagonal map for O. 
We call A the closure of A >----+ E, and we say that A is dense in E 

when A = E, and that it is closed when A = A. 
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The reader should be warned that the closure operators of the kind 
defined here have nothing to do with closed subsets in a topological 
space. Indeed, in the example given above of a Lawvere-Tierney topol
ogy on the topos of presheaves on a topological space X, closed subsets 
of X play no role whatsoever. Moreover, taking the closure of a subset 
of a topological space is an operation which commutes with unions, not 
with intersections as in (8). 

These topologies j include the Grothendieck topologies: 

Theorem 2. Every Grotbendieck topology J on a small category C 
determines a Lawvere-Tierney topology j on tbe presbeaf tapas SetsCOP 

• 

Proof: Recall that the subobject classifier n for the presheaf topos 
is the functor n( C) = {S I S is a sieve on C }, and that a Grothendieck 
topology J assigns to each object C of C a set J(C) of "covering" sieves 
with specified properties. So given a Grothendieck J, define j: n ---+ n 
in terms of the description (§III.2) of when a sieve S covers an arrow g 

by 

jc(S) = {g I S covers g: D ---+ C} 

= {g I g*(S) E J(domg)}. 
(10) 

Then for any f: C' ---+ C this definition gives je l (f* S) = 1* je (S) for any 
sieve S on C, so j is indeed a natural transformation j: n ---+ n. Since the 
maximal sieve te (all arrows to C) always covers, we have je(te) = te, 
so j 0 true = true. For sieves Sand T on C, SeT clearly implies 
jc(S) C je(T); hence, for any Sand T, jc(S n T) ~ jc(S) n je(T). 
The converse inclusion also holds, by III.2(iva). Hence the je defined 
by (10) satisfies (l)(c). Finally, jc(S) ~ jcje(S) for any sieve S on C, 
since je is order-preserving and S C jc(S). Conversely, if g E jcjc(S), 
then je(S) covers g. But for each h E jc(S) one has that S covers h. 
Hence, by the transitivity property of a Grothendieck topology, S covers 
g, i.e., g E je(S). Thus j satisfies (l)(b). 

This proves Theorem 2. It follows by Proposition 1 that any 
Grothendieck topology J also gives a natural closure operator (which 
is explicitly described in Exercise 3). 

Conversely, we will show in §4 that every Lawvere-Tierney topology 
j on a presheaf topos arises in this way from a Grothendieck topology. 
But the fascinating fact remains that there are other Lawvere-Tierney 
topologies on other topoi. For example, every topos E has a negation 
operator -,: n ---+ n. The properties of -, developed in §IV.8 show that 
double negation -,-,: n ---+ n is actually a Lawvere-Tierney topology. 
This will be applied to the independence of the Continuum Hypothesis 
in Chapter VI. 
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2. Sheaves 

The definition (and the properties) of sheaves on a topological space 
X can now be extended to define a sheaf for a Lawvere-Tierney topology. 
To do this recall that both a presheaf P on X and a sieve S on an open 
subset U of X are functors O(X)OP ---> Sets, i.e., objects of the topos 
SetsO(X)OP. In particular, S is a subfunctor of the representable functor 
y(U) = Homo(x) ( - ,U) via the inclusion 

i: S>---7y(U). (1) 

Proposition II.2.1 shows that a presheaf P is a sheaf iff the induced map 

i*: Hom(y(U), P) ---> Hom(S, P) 

is an isomorphism for every covering sieve on U; that is, for every sieve S 
such that the corresponding subobject S of (1) is dense. This definition 
of a sheaf, like that in Chapter III, §4, will translate to an arbitrary 
Lawvere-Tierney topology. 

Let j be a Lawvere-Tierney topology on a top os E, with a corre
sponding closure operator (1 as in Theorem 1.1. Recall that for any 
object E of E, a subobject A of E is called "dense" if 11 = E. One also 
says that A >---7 E is a dense monomorphism. 

Definition. An object F of E is called a sheaf (for the Lawvere
Tierney topology j, or a j-sheaf), if for every dense monomorphism 
m: A >---7 E in E, composition with m induces an isomorphism 

m *: Home( E, F) ...:: Home( A, F). (2) 

In other words, a map from a dense subobject of E into a sheaf can 
be uniquely extended to a map on all of E: 

A --t F (a sheaf) 
~ 

denseI///(/ (3) 

E. 

More generally, one also defines an object G to be separated if for 
each dense A >---7 E, 

Home(E, G) ---> HomE (A, G) (4) 

is a monomorphism; i.e., the extension as in (3) with F replaced by G 
need not exist, but if it exists, it is unique. 

We write Shj E (or sometimes Ej ) and Sepj E for the full subcate
gories of E given by the sheaves and by the separated objects, respec
tively. (In §4 we will show that the definition of a sheaf as just given 
generalizes the notion of a sheaf for a Grothendieck topology.) 
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Lemma 1. Both subcategories Shj e and Sepj e of e are closed 
under all finite limits, as well as under exponentiation with an arbitrary 
object from e. 

Proof: The terminal object 1 of E is clearly a sheaf, hence is also 
separated; it is thus the terminal object in both Shj e and Sepj e. If 
G:::::t H are two arrows in e between objects G and H which are separated 
(or are sheaves), we claim that their equalizer C in e is also separated 
(or a sheaf, respectively). For given any dense m: A >---t E we may form 
the commutative diagram 

Hom(E, C) ----+1 Hom(E, G) ====:::tl Hom(E, H) 

mol lmo lmo (5) 

Hom(A, C) ----+1 Hom(A, G) ===:::::tl Hom(A, H); 

since C is an equalizer in e, both rows are equalizer diagrams in Sets. 
The assumptions for G and H mean that the two right-hand vertical 
maps m* are injections or bijections, respectively. A simple diagram 
chase then shows that the left-hand vertical map m* is an injection 
or bijection, respectively, as required. A similar argument shows that 
the product in e of two separated objects (or of two sheaves) is itself 
separated (or a sheaf). Therefore, the categories Shj e and Sepj E above 
both have all finite limits (and the inclusions in e preserve limits). A 
similar argument shows that the inclusions preserve any limit present 
in E. 

As for exponents, if G is separated or a sheaf, then so is the exponent 
GB for any object B of e, in virtue of the commutative diagram 

Hom(E, GB ) _---'m=o_--+I Hom(A, GB ) 

~1 1~ (6) 

Hom(E x B, G) ( )01 Hom(A x B, G). 
lxm 

The argument for this conclusion uses the fact that m dense implies 
1 x m: A x B -t E x B dense, because closure is natural under the 
projection 7[': E x B -t E, which has 7['-l(A) = A x B, as in (1.6). 
Hence, the exponent GB given in e serves also as an exponent in the 
subcategories Sepj e and Shj e. 

The arrows j, 1: 0 -t 0 in E have an equalizer OJ, 

(7) 

Since j is idempotent, by the condition (l)(b) of §l, the universal prop
erty of this equalizer shows that there is a unique map r: 0 -t OJ with 
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mr = j. Therefore, mrm = jm = m; since m is mono, this gives 
rm = 1. In other words, OJ is a retract of 0 and 

(8) 

is the epi-mono factorization of j-so that OJ is the image of j. Since 
o is injective (Proposition IV.1O.1) and since a retract of an injective 
object is injective, it follows that OJ is injective. Since j 0 true = true, 
the latter factors through OJ as truej: 1 ---+ OJ. 

If a subobject A of E is characterized by a: E ---+ 0, then by (1.b) its 
closure A is characterized by j 0 a. Hence A is closed in E iff j 0 a = a, 
or, iff a factors through OJ >---+ O. In other words: 

Lemma 2. The object OJ classifies closed subobjects, in the sense 
that, for each object E of c, there is a bijection (natural in E) 

(9) 

here Cl SUbe(E) is the lattice of closed subobjects of E. 

In the special case of the topos c of presheaves of sets on an ordinary 
topological space X, the subobject classifier 0 of E had for O(U) the 
set of all sieves S on the open set U of X, while the operator j for the 
topology sends each sieve S into the principal sieve given by the union of 
all the open sets W with W E S. In this case the image OJ(U) of j thus 
consists exactly of all principal sieves on U; in other words, of all open 
subsets of U. In our treatment of sheaves on a space, we already saw in 
II.8(3) that this functor OJ was indeed a sheaf, and was, moreover, the 
subobject classifier for the category of sheaves on X. This will also be 
the case for any j. 

Similarly, we wish to show for any Lawvere-Tierney topology j that 
OJ with truej: 1 ---+ OJ is a subobject classifier for Shj c. This will 
involve two things; namely, a proof that OJ is a sheaf and, for a subobject 
A of a sheaf E, a proof that A is closed iff A is a sheaf. This first fact, 
that OJ is a sheaf, is an immediate consequence of (9), the definition of 
a sheaf, and the next lemma. 

Lemma 3. Let m: A >---+ E be dense. Then the inverse image map 

m-1 : C1Sube(E) ---+ C1Sube(A) 

is an isomorphism. 

Proof: Define a proposed inverse ml: Cl Sube(A) ---+ Cl Sube(E) 
to m- 1 by setting m1U = ::lm(U) for any closed subobject U of A; in 
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other words m1 U is to be the closure of the image of U under m. Then 

for U >---+ A closed in A, 

for m-1:3m = 1 because m is mono, cf. Corollary IV.3.3. Since U is 
closed, this gives m-1m1(U) = U. For the opposite composite, with 
V>---+E closed in E, m1m-1(V) = :3m m-1(V). But m-1V is VnA, so 

-1 -- - -
m1 m (V) = V n A = V n A = V, 

the last equality because V is closed in E and A is dense there. Thus, 
m1 is a two-sided inverse for m-1, q.e.d. 

Lemma 4. If m: A ~ E is a subobject of a sheaf E, then A is 
closed in E iff A is also a sheaf. 

Proof: (.;=) If A is a sheaf, consider the solid arrows in the following 
diagram: 

A)>--m---)I E. 

Since d is dense, the map 1 can be extended over all of A to give a 
unique r: A ~ A with rd = 1. Since E is a sheaf and d is dense, 
mrd = m = md implies by uniqueness that mr = m. Therefore, r is 
mono, both triangles commute, and r must be an isomorphism. 

('*) Suppose A is closed in E, and consider an arbitrary dense in
clusion d: D >---+ B and a map f: D ~ A. Since E is a sheaf, there is a 
unique g: B ~ E with gd = mf: 

B --g=----11 E. 

Therefore, since closure is natural, B = D ::::; g-l(A) = g-l(A) = 
g-l(A), i.e., 9 factors through m. This gives a unique h with hd = f, 
which shows that A is a sheaf. 



3. The Associated Sheaf Functor 227 

Theorem 5. Let [ be a tapas, and j a Lawvere-Tierney topology 
on [. Then Shj [ is again a tapas, and the inclusion functor Shj [ >---+ [ 

is left exact and preserves exponentials. 

Proof: Since [ has all finite limits and exponentials, so does Shj [ 

by Lemma 1, and these operations are preserved by the inclusion 
Shj [ >---+ [. Moreover the object OJ of [ is a sheaf by Lemmas 2 and 3, 
and it classifies subobjects in Shj [ by Lemmas 2 and 4. 

3. The Associated Sheaf Functor 

The purpose of this section is to prove the following result. 

Theorem 1. Let j be a Lawvere-Tierney topology on a topos [. 
The inclusion functor has a left adjoint a: [ -- Shj [; moreover, this 
functor a is left exact. 

The functor a of Theorem 1 is called the associated sheaf functor, or 
the sheafification functor; its value a(E) at a particular object E of [ is 
called the sheaf associated to E, or the sheafification of E. 

We have already seen several instances of Theorem 1. In Chapter II, 
we constructed for each topological space X a left adjoint to the inclusion 
Sh(X) >---+ SetsO(X)OP (cf. II.5), using etale spaces over X. And in §III.5, 
we have constructed a left adjoint to the inclusion Sh(C, J) >---+ SetsCOP 

for an arbitrary site (C, J), by means of Grothendieck's "++ construc
tion". To prove Theorem 1, however, we shall use a quite different 
method. 

As a preparation for the proof, we need to take a closer look at sepa
rated objects. In the statement of the following lemmas, recall that the 
singleton map {'}c: C -- PC is the map corresponding to the subobject 
Do = Doc E Sub( C x C) represented by the diagonal. If f: A -- C is 
a map in [, the graph GU) is the subobject of Ax C represented by 
the mono (1,1): A -- A x C. We assume chosen a fixed topos [, and a 
Lawvere-Tierney topology j on [. A first evident result is 

Lemma 2. Let B >---+ C be monic. If C is separated, then so is B. 

Lemma 3. For any object C of [, the following are equivalent: 

(i) C is separated; 
(ii) the diagonal Doc E Sub(C x C) is a closed subobject ofC x C; 

(iii) jC 0 {.}o = {-}o, as in the commutative diagram 
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(iv) for any f: A ---? C, the graph of f is a closed subobject of Ax C. 

Proof: (i) =} (ii) Assume C separated. Consider ~,.......~,....... C x C. 
Since C is separated and since the projections 7fl and 7f2: C x C ---? C 
coincide on ~, they coincide on ~. But ~,....... C x C is the equalizer of 
7fl and 7f2, so ~ :::; ~. Thus, ~ is closed, as required in (ii). 

(ii) <=} (iii) The diagonal ~ is closed in C x C iff its characteristic 
map l5e: C x C ---? n satisfies j 0 l5e = l5e . By taking the exponential 
transpose C ---? ne of both l5e and j 0 l5e , this is equivalent to the 
requirement that je 0 {.}c = {·}e. 

(ii) =} (iv) The graph G(f) of a morphism f: A ---? C is a pullback 
of ~, as in 

AxC 
JXl 

1 
G (f) -----0\) ~, 

so G(f) is closed if ~ is, because by (1.6) pullbacks commute with 
closures. 

(iv) =} (i) Let m: A,....... B be a dense inclusion, and let f, g: B ---? C 
be maps with fm = gm. Consider for f the pullback diagram 

AxC) mxl ) B xC Jxl )CX C 

1 1 1 
G(fm)) ) G(f) )~. 

Here A x C ---? B x C is dense, since it is the pullback of A ---? B along 
the projection B x C ---? B. Viewing G(fm) as a subobject of B x C, 
we see that G(fm) is therefore dense in G(f), so G(fm) = G(f) since 
G(f) is closed. Thus fm = gm implies that G(f) = G(g). But any 
map can always be recovered from its graph, so f = 9 and therefore C 
is separated. This completes the proof of Lemma 3. 
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For any object E of £ we next construct a certain epimorphism 

(1) 

into a separated object E'. To do this recall [from 2.8] that there is 
a retraction r: !l -> !lj and take E' to be the image of the composite 
rE 0 {-}E, as in 

E 
{.}E 

) !lE 

OE 1 lrE (2) 

E') ) !ljE, 

where {.} E is the singleton map. Since !lj is both a sheaf and injective, 
so is the exponential !lj E. Its subobject E' is therefore separated, by 
Lemma 2. Now j has the epi-mono factorization j = mr of (2.8). If E 
is already separated, Lemma 3, part(iii) shows that jE 0 {·}E = {·le; 
then this map as well as rE 0 {·}E is already mono, so E' = E. Because 
any subobject of a sheaf is necessarily separated, this proves 

Proposition 4. An object E of a tapas £ is separated iff it can be 
embedded in an injective sheaf (here !ljE). 

The kernel pair of an arrow t: E -> W is usually defined as a univer
sal pair of arrows f, g: B -> E with tf = tg; here we regard it instead 
as a monic (f, g): B -> E x E. In other words, the kernel pair of t is 
the pullback of the diagonal ~ W along txt, as in 

B ------+) ~ W 

kernel pair-> 1 p. b. 1 
E x E txt) W x W. 

Now the kernel pair of a monic t is just the diagonal ~: E -> E x E, a 
subobject of Ex E. The following lemma states that the map eE: E -> 

E' of (1) above is as close to being a monic as it possibly can be. 

Lemma 5. For any object E of £ there is an epimorphism eE to a 
separated object E' such that the kernel pair of e E: E -> E' is precisely 
the closure ~ of the diagonal ~ <:;; E x E. 

Proof: By the diagram (2) with E' an image, the kernel pair of eE 

is the same as that of rE 0 {.} E: E -> !lj E. To see that this kernel pair 
is contained in ~, consider two maps f, g: B -> E with rE 0 {.} E 0 f = 
rE 0 {.} EO g. Transposing the first and composing with m to get j = mr 
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gives the bottom row in the following pullback diagram, where G(f) is 
the graph of f: 

B __ ..:...f_--+) E ------) 1 

G(f)=(I,f) 1 1.6. 1 
B x E fXl) Ex E {j ) 0 j ) O. 

By the definition of the closure (multiply the characteristic function by 
j) the bottom row is the characteristic function of the closure G(f). 
The given equality thus means that G(f) = G(g). Since the graph (1, f) 
factors through G(f), it must then factor through G(g) as in the triangle 
below. But G(g) is the pullback of .6. along 9 x 1, so the square below 
commutes and (g,1) = (g x 1)(1,1) must factor through .6., as in the 
diagram 

B _-,--(1.:..:'/....:..)--+) B x E _..::..9_x _1 --+) E x E 

I I 
This proves that the kernel pair of E -;; E' is contained in .6.. 

For the converse, it suffices to show that 

.6.~E--.tLOE ~OB 
no J 

(3) 

commutes. But Of is a sheaf, and clearly the two maps in (3) agree 
on the dense subobject .6. of .6.. Therefore (3) commutes. This proves 
Lemma 5. 

Since, in a topos, epimorphisms are co equalizers of their kernel pairs, 
as stated in Theorem IV.7.8, it follows that 

.6. ====:; E ~ E' (4) 

is a coequalizer. 

Corollary 6. Any map BE: E -;; E' as in Lemma 5 is universal for 
maps from E into separated objects. (And therefore E f--> E' defines a 
left adjoint to the inclusion Sepj £ >--+ £.) 

Proof: Let f: E --+ S be a map from E into a separated object S. 
f -

Then 7rl, 7r2: .6.:::::l E ---- S commutes, hence so does 7rl, 7r2: .6.:::::l E --+ S. 
By the coequalizer (4), f thus factors uniquely through E -;; E'. 

Corollary 7. The inclusion functor Shj £ >--+ Sepj £ has a left ad
joint. 
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Proof: Let E E £ be separated. By Proposition 4 above, there is a 
monomorphism m: E >----> F into a sheaf F. Let E be its closure. Then 
E is a sheaf by Lemma 2.4. Moreover, E ---+ E is dense, hence by 2.(3) 
is universal among maps from E into sheaves. 

Combining the preceding two corollaries, we have proved the first 
part of Theorem 1, namely, that Shj £ >----> £ has a left adjoint, given in 
two steps as follows. Take any map ()E: E ---+ E' as in Lemma 5 and 
embed E' in an injective sheaf IE; the composite E ---+ IE then has 
minimal kernel pair. Indeed, any map iE: E ---+ IE with minimal kernel 
pair arises in this way from some such ()E with E' = im(iE)' Hence the 
following rule for constructing the adjoint: 

Given E, take any iE: E ---+ IE with IE an injective sheaf and with 
minimal kernel pair Do c E x E. Form the image iE(E) and its closure 
iE(E) in the lattice of subobjects of IE. This closure is the associated 
sheaf a(E) and the composite E ---+ a(E) is the unit of the adjunction, 
all as in 

-======+ iE DoE l E lIE 

l~I 
iE(E)>-) ----+l iE(E) = a(E). 

For example, let us compute a(E) where u: E ---+ A is a subobject 
of A and a(A) has been computed from some iA: A ---+ IA. This means 
that DoA is the kernel pair of iA, so that the right-hand rectangle below 
is a pullback. But (u xu) -1 DoA = DoE, since u is mono and closure is 
natural in A (Proposition 1.1), so the left-hand square is also a pullback 

DoE lDoA l DoIA 

1 1 1 (5) 

ExE lAxA 
uxu 

. . l IA X IA. 
tA X2A 

Therefore the whole rectangle is a pullback, which means that DoE is the 
kernel pair of iA 0 U, so that a(E) may be computed from IA via iA 0 u. 
It follows that the associated sheaf functor preserves monos. 

We shall now prove that this sheafification functor a preserves all 
finite limits: 

(a) a preserves the terminal object, because the terminal object is a 
sheaf already. 

(b) Let E and F be objects of £, and let IE, IF be as above. Then 
lEX IF can be used as lEx F in the construction of a( E x F); since closure 
commutes with products, it is then clear that a(E) x a(F) ~ a(E x F); 
so a preserves products (as usual, with their projections). 
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(c) Finally, to show that a preserves equalizers, consider a diagram 

E~A~B, 
9 

which is an equalizer in c. Let a(A) and a(B) be computed by IA and 
IB as above. It follows that f and 9 can be extended to 1', g': IA ~ IB 
[first to maps 1 and 9 on iA(A) since A ~ iA(A) is the universal map to 
the associated sheaf, then to IA by the injectivity of IB], as displayed in 
the two squares on the right of the diagram below. To compute a(E), 
we can by (5) take the embedding E >--> A ~ lA, i.e., IE = lA, and 
construct the following diagram from the given equalizer u: 

E> u lA 
f 

lB 

\ ryA 1 9 

lryB 

7 
iE=iAOU iAU(E» l iA(A) l iB(B) (6) 

/ I 
9 

I 
f' 

IA IA lIB. 
g' 

Let x: X ~ iA(A) be the equalizer of 1 and g. It is enough to show 
that X s;:; iAU(E) as subobjects of IA [or of iA(A)J. Construct the two 
pullbacks D and then Y displayed on the left below, while E an equalizer 
of f and 9 makes the right-hand square a pullback: 

Y> y lA 

1 1 Y 
y lA (f,g) 

lBxB , 

""~~ I I D> d 
l iA(A) p.b. ryA , 

I I E l tlB. 

x> x l iA(A) 

Then, by the choice of x, "lAY equalizes 1 and g. Therefore by (6), 
(jy,gy) factors through the kernel pair of B ~ I B , which is tlB . So 
y factors through E >--> A as indicated on the right of the preceding di
agrams. Thus, "lAY(Y) :::; "lA(E) :::; "lA(E) = iAU(E); or equivalently, 
since Y ~ D as a pullback is epi, x(D) :::; iAU(E). But then since D is 
dense in X, also X :::; iAU(E), as was to be shown. 
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This proves that a: [ --+ Shj [ is left exact, and so completes the 
proof of Theorem 1. 

For later use in §VIII.8, we state the following simple consequence 
of Theorem 1. Informally, it says that to describe the subobject lattice 
Subsh j s(aE) , it is not necessary to compute the sheafification aE of an 
object E of [. 

Corollary 8. Let E be an object of [. The associated sheaf functor 
induces an isomorphism 

between closed subobjects of E and subsheaves of aE. 

Proof: Since OJ is the subobject classifier of Shj [ and a is left 
adjoint to the inclusion, we have 

The corollary then follows by Lemma 2.2 (on objects classified by OJ). 

4. Lawvere-Tierney Subsumes Grothendieck 

This section will develop its title by showing that the definition of 
a sheaf for a Grothendieck topology J is actually a special case of the 
definition of a "sheaf" for a Lawvere-Tierney topology j. This means 
in particular that the sheafification process just constructed for such a 
j gives an alternative construction of sheafification for a Grothendieck 
topology. First we establish a converse to Theorem 1.2, asserting that 
every J is a j. 

Theorem 1. IfC is a small category, the Grothendieck topologies J 
on C correspond exactly to Lawvere-Tierney topologies on the presheaf 

cop 
topos Sets . 

Proof: Recall that the subobject classifier 0 of SetsCOP is the func
tor with 0(0) the set of all sieves S on 0, while the action of a map 
f: 0' --+ 0 on 0 is given by 

f*: 0(0) --+ 0(0'), f* (S) = {g I f 9 E S}. (1) 

. coP. 
Now any Lawvere-Tierney topology J: 0 --+ 0 on Sets clasSIfies the 
subobject J>---> 0 defined as in (1.2) by 

S E J(O) iff je(S) = te, (2) 
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where te is the maximal sieve on C. Notice first that since j commutes 
with meets, as in §1.1(c), it must be order-preserving, so S E J(C) and 
SeT imply that T E J(C). We claim that this J is a Grothendieck 
topology, i.e., that J (C) is a set of "covering" sieves for such a topology. 
First, the property je 0 truee = truee implies that te E J(C): the 
maximal sieve covers. Next, since je is natural, each map f: C' -+ C 
in C gives je,(j*S) = f*(jeS) for any sieve S on C; in particular, S E 

J(C) implies that f*(S) E J(C'), so this J satisfies the stability axiom 
for a Grothendieck topology. Finally to examine the transitivity axiom, 
consider a covering sieve S E J (C) and another sieve T on C such that 
g*(T) E J(domg) for all 9 E S. We need to show that T E J(C); i.e., 
that jc(T) = te; for this it will be enough to show that jcJc(T) = te· 
But for 9 E S with g: D -+ C one has g*(jeT) = jD(g*T) = tD, 
so ID E g*(jeT), which means that 9 E jeT for all 9 E S. Thus, 
S ~ jc(T) and, hence, te = jc(S) ~ jcJc(T). 

Conversely, Theorem 1.2 shows that each Grothendieck J determines 
a Lawvere-Tierney j. One may check that these constructions j f-+ J 
and J I-t j are mutually inverse. This proves the theorem. 

Theorem 2. Let C be a small category and j a Lawvere-Tierney 
topology on SetsCOP

, while J is the corresponding Grothendieck topol
ogyon C, as above. Then a presheaf P E SetsCOP is a sheaf for j, in 
the sense of §2, iff P is a J -sheaf, as defined in Chapter III. 

Proof: First consider a presheaf P which is a j-sheaf. Then for each 
object C in C and each S E J(C) for the corresponding J one has 

Hom(S,P) ~ Hom(yC,P) ~ P(C), (3) 

the first isomorphism, because P is a sheaf and S E J( C) means by (2) 
that S >-+ y( C) is dense, while the second isomorphism is by the Yoneda 
lemma. As is explained below §I11.4(2), (3) expresses the fact that Pis 
a J-sheaf in the sense of a Grothendieck topology. 

Conversely, suppose that P is a J-sheaf in the sense of Grothendieck, 
while A >-+ E is some dense subfunctor of a presheaf E on C. To show 
that P is a j-sheaf as defined in (2.2) we must extend any map (J: A -+ P 
to a unique T: E -+ P. Now the definition of the closure A and the 
construction of J from j in (2) shows for each e E E(C) that 

e E A(C) iff j(char A)e = truee iff (char A)e E J(C). (4) 

But by the definition 1.4(7) of the characteristic function of A>-+ E this 
holds iff the sieve 

(chareA)e = {f: D -+ C Ie· f E A(D)} (5) 
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is in J(C); i.e., is a covering of C. But the given 0' yields a matching 
family {O'D(e . f) If: D ----> C E (chare A)e} for this cover. Since P 
is a (Grothendieck) sheaf, this means that there is a unique element 
p E P(C) with p. f = O'D(e· f) for each f E (chare A)e. If one defines 
Te (e) to be this element p one has the desired natural transformation 
T: E ----> P extending 0'; this T, like p, is unique. Hence the J-sheaf P is 
a j-sheaf. This completes the proof of Theorem 2. 

Note that (4) and (5) together state that the closure operator corre
sponding to the Grothendieck topology J is given by 

eEA(C) iffCiscoveredby{!:D---->Cle·!EA(D)}, (6) 

for A ~ E, C E C and e E E(C) as above. This property will be used 
in §VIII.8 to discuss "open" geometric morphisms. 

5. Internal Versus External 

There are two ways of "working" in a topos £. On the one hand, 
one can consider £ as a mathematical object which satisfies the axioms 
stated in IV.l, and then draw conclusions from the axioms. Since these 
axioms make assertions just about "all" objects and "all" arrows of £ 
(i.e., statements in the first-order predicate calculus) they do not involve 
any set-theoretic assumptions; they can thus be viewed as (part of) an 
independent description of a category £ as a universe of discourse. For 
a particular such topos £ one may then wish to consider additional 
axioms; for instance, the requirement that the topos be Boolean (i.e., 
that its "natural" Heyting algebra object n be a Boolean algebra object). 
Properties of a topos or of several topoi formulated in this way and 
theorems so proved from the axioms are said to be "internal". There 
is also a more restricted notion of "internal", involving the so-called 
Mitchell-Benabou language (Chapter VI). 

On the other hand, one can think of a topos £ as an object formed 
within set theory, as a set of objects and a set of arrows for which 
composition (etc.) is defined so as to satisfy the category and topos 
axioms. On these sets one can then make all the familiar constructions 
of hom-sets, limits, adjoints, and the like. Developments in this style 
are called "external"; they fall under the familiar mathematical pattern 
of carrying out "all" mathematics within set theory. 

Some examples of the external/internal contrast are already at hand. 
The external hom-set Hom(A, B) has the exponential object BA as its 
internal analog; for each there is a composition map 

Hom(B, C) x Hom(A, B) ----> Hom(A, C), 

C B x BA ----> CA, 

(1) 

(2) 



236 V. Basic Constructions of Topoi 

the latter defined in the expected way [IV.2.(5)] as the transpose of the 
composite of the two evaluation maps 

(3) 

Similarly, for subobjects of any object A of £ there is an external lat
tice Sub(A), the set of all subobjects of A, to be contrasted with the 
internal lattice object P A. In Chapter IV, we developed these lattices 
together, but all the cited properties of the lattice object P A can be 
derived without any mention of Sub (A) or of any other set. Recall also 
from Chapter IV that the Beck-Chevalley condition has both an external 
form-for Sub(A)-and an internal one, for PA. 

Also, a map 1: A ---t B yields by pullback both external and internal 
maps 

1-1 : Sub(B) ---t Sub(A), P 1: P B ---t P A; 

both have left adjoints :J f (Proposition IV.6.3 and Theorem IV.9.2) as 
well as right adjoints V f (Propositions IV.9.3 and IV.9.4); the notation 
chosen does not distinguish the external V f from the internal one. 

A set-based topos (i.e., one formed within a conventional set theory) 
must by definition satisfy all the axioms for a topos. Hence both the 
"internal" and the "external" constructions apply to such a topos. But 
when a topos is regarded as a possible foundation for mathematics, as 
in Chapter VI, only the internal concepts apply. 

In ordinary category theory, there is a related contrast between set
based definitions and diagrammatic ones. Thus a product A x B may 
be described by giving a bijection of sets 

Hom(X, A x B) ~ Hom(X, A) x Hom(X, B), 

natural in X or equivalently by the usual universal property of the pro
jections. Many other notions ("monomorphism", "projective object", 
etc.) have equivalent pairs of definitions. 

In the category of sets a one-point set is a terminal object 1, so that 
an arrow x: 1 ---t A corresponds exactly to an element of the set A; 
namely, the image of the one point of 1. In any category with a terminal 
object 1 an arrow x: 1 ---t A is called (as for sheaves) a global element 
of A. In Sets, two parallel arrows 1, g: A =4 B are equal iff 1 x = gx 
for every global element x of A. This need not be the case in many 
other topoi; when it is true, one says that the topos is well-pointed. This 
can be put more vividly: when a topos is well-pointed, a diagram there 
with two "legs" starting at an object A is commutative iff it commutes 
for every global element of A. In a general topos global elements are 
not "enough" -for example they are not enough to test diagrams for 
commutativity. Thus an arrow x: X ---t A from any object X is called a 
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generalized element of A or an X-based element or an element defined 
over X. The use of such generalized elements in a topos E supports the 
intention that working in a topos is like working with sets. 

For example, consider the "internal" composition defined in (3). 
With generalized X-based elements 

this formula can be written in the familiar way as 

(g 0 1) 0 a = 9 0 (f 0 a), (4) 

where f 0 a, "evaluate f at a", is just the composite e( f, a;, while e is 
evaluation and (f, a ;: X ---+ BA X A is the usual map to the product 
with components f and a. In other words, the same formula (4) with 
(generalized) elements defines both the internal composite go f and the 
usual external composition gf. 

The formula (4) in generalized elements defined over X is natural in 
X ~as are all appropriate formulas in generalized elements. Because of 
this, to define a map ¢: D ---+ E it is enough to propose a "composite" 
¢ox: X ---+ E defined for all X-based elements x of D which is natural in 
the object X. The formula for ¢ 0 x then (for example) gives ¢ directly 
by taking X = D and x = ID, and by naturality the "composite" is 
then an actual composite. 

6. Group Actions 

Let E be a category with finite products. Recall that a group object 
(that is, an internal group) in E is an object G of E equipped with three 
arrows e: 1 ---+ G (the unit), m: G x G ---+ G (the product), and i: G ---+ G 
(the inverse) such that the usual axioms for a group~as expressed by 
diagrams~hold. It follows that composition with e, m, and i gives 
each hom-set Hom,dX, G) the structure of a group, natural in X, in 
the obvious way. Conversely, a group structure on Hom£(X, G) for each 
object X of E, natural in X gives G the structure of an internal group, 
by a standard application of the Yoneda lemma. 

If morphisms f, g: X ---+ G are regarded as generalized elements 
of the group G (defined over X), one can multiply such generalized 
elements to get a composite 

or an inverse 

fg =mo (I,g;: X ---+ G x G ---+ G, 

f i 
f- 1 = i 0 f: X ----* G ----* G. 
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A (left) action of G on an object A of [is a morphism fL = fLA: G x A -T 

A such that both diagrams 

A 

GxGxA 
IXI" 

mXIl 

GXA-------.lA 
I" 

(1) 

commute. One can express this equivalently by the familiar identities 

f· (g. a) = (f. g) . a, e·a =a, (2) 

where f and g: X -T G are now generalized elements of G (defined over 
any X in E), and a: X -T A is a generalized element of A; then 9 . a 

stands for the composition 

X~GxA~A 

! e 
and e in (2) is interpreted as the generalized element X -----+ 1 -----+ G. 

As before, giving an action by G on A in [ is equivalent to giving for 
each X in E an action of the group Home(X, G) on the set Home(X, A), 
natural in X. 

If G acts on two objects A and A' by fL and fL', say, a G-map from 
A to A' is a morphism ¢: A -T A' in [ such that the diagram 

IX.p ) G x A' 

11"' 
(3) 

.p lA' A-----,--------. 

commutes. With generalized elements, this is the familiar equation 

¢(g. a) = g. ¢(a) 

for all X in [ and all a: X -T A, g: X -T G. In this way, one obtains a 
category EG of objects of E equipped with a left G-action, or briefly of 
G-objects of E. 

Just as for a group in Sets, the case of right actions can be treated 
in exactly the same way. Let GOp be the same group but with the 
multiplication taken in the reverse order, so that the product is mOP = 
mOT, where T: G x G -T G x G is the twist map. Then the category 
[GoP of left Gop-objects in E is equivalent to the category of objects A 
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from £ equipped with a right G-action A X G ---+ A. For the sake of 
definiteness, this section will use just left actions. 

The forgetful functor 

U(A,p,) = A, (4) 

has a left adjoint F, which sends an object E of £ to the "free" G-object 
(G x E, m xI: G x G x E ---+ G x E). In particular, U preserves limits. 
In fact, it is not difficult to show that U is monadic (cf. §IV.4). Define 
a monad (T,p"v) on £ by TE = G x E and 

P,E = m xI: G x G x E ---+ G x E, 
exl 

VE = e xI: E ~ 1 x E --> G x E. 

Then a T-algebra for this monad is exactly the same thing as a left G
object, and F ---1 U is the familiar adjunction between the category £T 
of T-algebras and the "underlying" category £. 

In Chapter I, we observed that the category of G-sets forms a topos. 
The following result shows that this remains true when Sets is replaced 
by an arbitrary topos. 

Theorem L IfG is an internal group in a tapas £, then the category 
£G of G-objects from £ is again a topos. 

Proof: First, £G has all finite limits, and these are created by the 
forgetful functor U: £G ---+ £ (Proposition IV .4.1). For example, if G 
acts on objects A and B from £, then it acts on their product A x B by 
the familiar rule 

9 . ( a, b) = (g . a, 9 . b). (5) 

When g, a, and b in this equation are interpreted as generalized elements 
g: X ---+ G and a, b: X ---+ A, then the equation (5) indeed defines an 
action G x (A x B) ---+ A x B. 

Next we construct the exponential C B of two given G-objects Band 
C. Start with the exponential C B in £. In the case where £ = Sets, an 
element t E C B is a function t: B ---+ C, and the action of an element 
9 E G on this t is defined "by conjugation" [ef. Exercise I.5(b)], as 

(g. t)(b) = g. (t(g-l . b)). (6) 

But taking g: X ---+ G, t: X ---+ C B and b: X ---+ B to be generalized 
elements defined over some object X of £, formula (6) defines a map 
G x C B X B ---+ C in £, and, hence, by transposition a map 

(7) 
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The straightforward proof that this map (7) is a valid action in Sets 
translates (via generalized elements) to a proof of the same result in £. 
The proof that ( )B is then right adjoint to - x B is now done with 
generalized elements, copying the usual bijection HomG(A x B, C) ~ 
HomG(A, CB ) for Sets. 

Finally, let us show how to construct a subobject classifier for £G. 
For this, take the subobject classifier true: 1 ----+ n in £ and give both 1 
and n the trivial G-action. Then true: 1 ----+ n is a G-map, and we claim 
that this mono is the subobject classifier in £G. First observe that for 
any object (E,I-£) E £G, the following triangle commutes, where e is the 
isomorphism e ( g, e) = (g, 9 . e) (generalized elements) 

GxE () )GxE 

~~ (8) 

E. 

Now consider a mono m: D >--+ E in £G; since U in (4) is a right adjoint, 
this m is also a mono in £, so it has a classifying map X there. Consider 
the commutative diagram 

G x D ---'(}'----+) G x D ___ 11:::..2 --+) D ---~) 1 

G x E ---:----+) G x E --=---+) E ---:-:---+) n. 
() 11:2 X 

The left-hand square has both horizontal maps isomorphisms, so is a 
pullback in £. So are both other squares, while 7r2e = I-£E by (8) above. 
Hence in £ both X7r2 and XI-£E are characteristic maps for the mono 
1 x m: G x D >--+ G x E. Therefore they are equal. With generalized 
elements, this means that x(e) = X(g . e); in other words X is a G-map 
into the object n taken with the trivial G-action. Therefore X is the 
desired characteristic map of the G-subobject D>--+ E; its uniqueness is 
immediate. This completes the proof that £G is a topos when £ is. 

7. Category Actions 

Let £ be a category with pullbacks. We shall describe the notion 
of a category object, or internal category, in £. Just as an ordinary 
small category consists of a set of objects and a set of morphisms, so 
an internal category C in £ consists of two objects of £-an "object 
of objects" Co and an "object of morphisms" C l , together with four 
arrows of £, an arrow m for composition, as in (3), and three arrows 

(1) 
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for domain do, codomain d l , and identities e; with the first two, one de
fines the object C 2 of "compos able pairs" of morphisms as the pullback 

(2) 

C I -------+) Co· 
do 

Indeed, a generalized element h: X -> C I xeo C I is thus just a pair of 
such elements f, g: X -> C I with dof = dIg, that is, "a composable 
pair". One now requires, in addition to the morphisms in (1), a fourth 
morphism in £ 

(3) 

to represent composition of composable pairs. The axioms for an internal 
category then require, besides the usual identities doe = d l e = 1 and 
dom = do7r2' dIm = dl7rl, commutativity of the following two diagrams 
which express the associative law and the unit law for composition: 

C I xeo C I xeo C I 
lxm ) C I xeo C I 

mXl1 1m 

C I Xeo C 1 m ) c I , 

(4) 

These conditions (1)-(4) thus constitute a "diagrammatic" form of the 
standard definition of a category. If C = (CI , Co, e, do, d l , m) and D 
are two such internal categories, then an internal functor F: C -> D is 
defined to be a pair of morphisms Fo: Co -> Do and F1 : C 1 -> DI in £ 
making the obvious four squares (with e, do, d l , m) commute. With the 
evident composition of such functors one has a category Cat( £) with the 
internal categories in £ as objects, and internal functors as morphisms. 

The definition above ensures that for an internal category C in £ the 
Hom-sets Home(X, Co) and Home(X, C I ) for each object X of £ form 
the collections of objects and morphisms of an ordinary ("external") 
category Home(X, C) in Sets and this construction is "natural" in X. 
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Similarly, if F: C ---+ D is an internal functor, then the pair of functions 
Home(X, Fo) and Home(X, Fd form the object and morphism parts of 
an ordinary functor Home(X, C) ---+ Home(X, D). Furthermore, given 
two internal functors F and G: C ---+ D, one may readily define an 
internal natural transformation as a suitable arrow e: Co ---+ Dl in E. 

This definition includes several familiar cases. Thus a category 
object in E for which Co is the terminal object is the same thing 
as a monoid object in E; and a category object C in E for which 
(do, dd: C l ---+ Co X Co is monic is the same thing as a preordered 
object in E. 

Each internal category C determines in an evident wayan oppo
site internal category coP. This provides for the description of internal 
"contravariant" functors. 

In ordinary category theory, the functors F: C ---+ D between two 
small categories play a role quite different from functors from C into 
the ambient category-the category of sets. A functor of the latter sort 
consists as usual of an "object function" Co ---+ Sets and an "arrow 
function" C l ---+ Functions, suitably related. In this description, we 
now wish to replace Sets by any category E with pullbacks, and C by 
an internal category (again called C) in E. However, we have no such 
thing as an object function Co ---+ E-arrows to "the universe" are not 
provided for us! In order to get a suitable "internal" description of such 
functors to the universe E, we first reformulate the usual case where 
the universe is Sets. There an object function Fo: Co ---+ Sets can be 
viewed as a Co-indexed family of sets, one for each A E Co. Just as in 
the treatment of indexed sets [§1.1(8)], this Co-indexed family can be 
replaced by a single object over Co, 

Jr: F ---+ Co, 

where F = 11 Fo(A) is the disjoint sum of all the sets FoA, and 
AECo 

Jr is the obvious projection. Each set FoA can then be recovered (up 
to isomorphism) from Jr as the fiber Jr-l(A). Similarly, for the arrow 
function, each arrow f: A ---+ B in C gives a map FoA ---+ FoB of sets, 
written for a E FoA as a f--' f . a. All these maps, one for each f E C l , 

can be described in terms of Jr: F ---+ Co as one single map specifying 
the action of any f on any a as 

J.L(f,a) = f· a, 

where C l xCo F ---+ F is the pullback of Jr along do: C l ---+ Co. 
By writing down the appropriate diagrams, the preceding description 

of a functor to Sets can be easily generalized to the case of an internal 
category C = (C l , Co, e, do, d l , m) in a category E with pullbacks. A 
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(left) C-object in £, (also called an "internal diagram" on C) is an object 
7r: F --+ Co over Co equipped with an action 

(5) 
of Con F, where for this pullback do: C l --+ Co is used to make C l an 
object over Co· Here the following diagrams are required to commute: 

C l xCo F !" )F 
C, xc, F ~' 1:" F ~, 1 l~ 

C l d, ) co, F, 

(6) 
IX!" 

C 1 X Co F -------:!"-:------t) F. 

(The second and third express the unit and associativity laws for the 
action.) 

In terms of generalized elements, this can be expressed as follows: a 
generalized element of C l x Co F over X is simply a pair of maps f: X --+ 

C l , a: X --+ F such that 7ra = dof; write f . a for the composition 
/1' (f, a). Then the commutativity of the three diagrams (6) above can 
be expressed by the familiar identities 

7r(f . a) = dd, 

e(7ra) . a = a, 

9 . (f . a) = (g 0 f) . a, 

for all a: X --+ F and f, g: X --+ C l with dof = 7ra, dd = dog; here 
go f = m( g, f) is the composite of the generaliz~d elements 9 and f. 

If F = (F, 7r, /1) and G = (G, 7r', /1') are two such left C-objects in £', a 
morphism of C-objects from F to G is simply a morphism ¢: F --+ Gin £, 

which preserves the structure involved. In terms of generalized elements, 
this means that the usual identities 7r(a) = 7r'(¢(a)) and ¢(f·a) = f·¢(a) 
are required to hold, for all generalized elements a of F and f of C l (such 
that f· a makes sense, i.e., dof = 7ra). In terms of diagrams, it means 
that 

Co 

lx¢ 

F ---------+) G 
¢ 

(7) 
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are required to commute. In this way, we obtain the category [c of all 
the left C-objects in [. 

If [ = Sets, this clearly is just the familiar category of functors from 
C to Sets (up to equivalence of categories). In the special case when 
C is a group G in [ (i.e., Co = 1 and there is an inverse C 1 -+ C 1), 

then [c is the category [G of G-objects, as considered in the previous 

section. 
As in the case of groups, one might also wish to consider the category 

of right C-objects of [, for an internal category C in [. These are objects 
7l': F -+ Co with an action f-L: F xCo C 1 -+ F on the right (the pullback 
F xCo C 1 is now along d1 : C 1 -+ Co), defined in the obvious way. In 
the case where [ = Sets, a right C-object is (up to isomorphism) the 
same thing as a pre sheaf on C (by identifying Co-indexed collections of 
sets with sets over Co, as above). In general, there is an equivalence 
between the category of right C-objects in [ and left COP-objects in [. 
Therefore, we may and shall restrict our attention to left C-actions. 

There is an obvious forgetful functor U: [c -+ [ICo, sending a left 
C-object (F, 7l', f.L) to the object 7l': F -+ Co over Co. Eventually, our 
aim is to prove the following theorem. However, we shall take a rather 
roundabout route, and only achieve this goal at the end of §8. 

Theorem 1. Let [ be a tapas. Then for any internal category C 
in [, the category [c of left C-objects is again a tapas. Moreover, the 
forgetful functor [c -+ [I CO has both a left and a right adjoint. 

By taking cop instead of C, this theorem also states that the cate
gory of internal presheaves is a topos, generalizing the result of §I.6 for 
functor categories from Sets to an arbitrary topos [. 

To get an idea of what the left and right adjoint mentioned in The
orem 1 might be, let us consider some simple examples. 

As a first case, let G be a group in Sets, and consider the forgetful 
functor 

U: SetsG -+ Sets 

which sends a left G-set (A, W G x A -+ A) to its "underlying set" A. 
This functor has a well-known left adjoint F, sending each set X to the 
product G x X with the usual "free" action m xl: G x G x X -+ G x X 
defined as in §6( 4). But the functor U also has a right adjoint R, sending 
a set Y to the set yG of all functions from G to y, with left G-action 
G x yG -+ yG defined, for any 9 E G and ¢ E yG, by 

(g. ¢)(h) = ¢(hg) (all h E G). (8) 

Since gl(g2¢) = (glg2)¢, this is indeed a left G-action. That R is right 
adjoint to U can be seen explicitly by the bijective correspondence, for 
a G-set A and a set y, 

Hom(A, Y) S:' HomG(A, yG) 
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which sends an arbitrary function h: A -+ Y to the G-map h: A -+ yG 
defined by h(a)(g) = h(ga). [Its inverse sends a G-map u: A -+ yG to 
the function u: A -+ Y given by u(a) = u(a)(e), where e is the unit of 
G.] 

It is not difficult to generalize this construction of the right adjoint 
to the context of §6, and thus to show that U: [;G -+ [; has a right 
adjoint for an internal group G in an arbitrary topos [; (Exercise 7). 

Next consider the case of a category C in Sets, with the forgetful 
functor 

(9) 

which sends a functor F: C -+ Sets to its "object-part" Fo: Co -+ Sets. 
[Recall that SetsCO is equivalent to Sets/Co, so that (9) is a spe
cial instance of the forgetful functor U in Theorem 1 above.] The 
left adjoint for (9) is constructed much as in the case of groups. 
Given a function X: Co -+ Sets, i.e., a Co-indexed family of sets, 
let F = Fx: C -+ Sets be the functor defined by F( G) = {(g, x) I 
9 E C I , dIg = G, and x E X(dog)}; for f: G -+ G', the corresponding 
function F(f): F(G) -+ F(G') is given by the formula F(f)(g,x) = 
(f 0 g, x). We leave it to the reader to check that X I---> Fx is the left 
adjoint of U. (A more abstract description ofthe left adjoint F occurs in 
the proof of Theorem 2 below.) To define the right adjoint R, suppose 
we already know that R exists. Then for Y: Co -+ Sets, R(Y) is a 
functor while the Yoneda lemma and the adjunction U -1 R give 

R(Y) (G) ~ HomSetsC (C (G, - ), R(Y)) 

~ Homsets/co(U(C(G, - )), Y). 
(10) 

But then, we can drop the assumption of the existence of R, and use the 
second line of (10) as a definition of R. To prove that the functor R thus 
defined is indeed left adjoint to U, consider any functor X E Setsc . We 
wish to show that 

Homsetsc(X, R(Y)) ~ Homsets/co (U(X), Y). (11) 

For X a representable functor, i.e., X = C(G, - ) for some G E Co, this 
follows from the Yoneda lemma and the definition (10) of R. But any 
functor X E SetsC is a colimit ofrepresentables (Proposition 1.5.1), and 
U dearly preserves colimits. So (11) holds for general X. 

Now recall (§IV.4) that for a monoid M in Sets the forgetful functor 
BM -+ Sets from the category of left M-actions is monadic, and that 
the category of algebras for the resulting monad in Sets is equivalent to 
(actually is isomorphic to) the category BM. Exactly the same result 
holds when the monad M in Sets is replaced by an internal category 
C in a topos. The proof is essentially the same, except that arguments 
with elements are now replaced by diagrams. To begin with, consider 
an arbitrary category [; with pullbacks. 
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Theorem 2. For a category object C in a category [ with pullbacks, 
the forgetful functor U: [c ---7 [jCo has a left adjoint L, and U is 
monadic; that is,the category [c of left C-objects is equivalent to 
(actually, isomorphic to) the category of algebras for the monad T = U L 
on [jCo (cf. §IV.4). Moreover, if [ is a topos, then the functor U has a 
right adjoint. 

Proof: The forgetful functor U: [c ---7 [jCo assigns to each C
object (F,7r,J.t) as in (5) and (6) the map 7r: F ---7 Co, considered as an 
object of the slice category [jCo. Conversely, given an object k: X ---7 

Co of this slice category we first form the pullback 

C 1 --~--+) Co 
do 

and from this the object d1 0 p: C 1 xCo X ---7 C 1 ---7 Co in [jCo, with 
the composition m of C giving the action as the map m xl, as in the 
diagram 

(This is just like the construction in §6 of the free action of a group G 
on the object G x A.) The rules for an action [as given in (6) above] are 
readily verified; therefore, the assignment 

L(h: X ---7 Co) = (do 0 p: C 1 xCo X ---7 C 1 ---7 Co, m x 1) (12) 

defines a functor L: [jCo ---7 [c. It is left adjoint to the forgetful 
functor U. Explicitly, for k: X ---7 Co in [j Co and Y = (Y, 7r, J.t) in [c, 
the correspondence 

Hom£c(LX, Y) ~ Hom£jco(X, UY) 

is described as follows: from left to right, a given map of C-objects 

a: LX = C 1 xCo X ---7 Y is sent to the composite X ~ Co xCo X ~ 
Q 

C 1 xCo X ---+ Y; from right to left, a map (3: X ---7 Y of objects over 
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I x i3 I-' 
Co is sent to the C-map C I xCo X ---., C I xCo Y -+ Y. These 
correspondences are indeed mutually inverse. 

Moreover, the corresponding composite T = U L sends X --4 Co to 
C 1 X Co X --4 Co, with the evident "multiplication" operation p,: T2 --4 T 
given by the composition m of C I , and the "unit" rJ: I --4 T given by the 
identities map Co --4 C I of C. With these two natural transformations, 
T is a monad: the unit and associativity laws for T correspond exactly 
to these laws for C [ef. (4) above]. An algebra for this monad is thus 
a suitable map T(X --4 Co) --4 (X --4 Co) over [jCo, and from the 
definition of T it is easily seen that this is exactly the same as an action 
by C on X --4 Co. Consequently, the category [c of left C-objects is 
precisely the category ([ j Co) T of algebras for this monad. 

Finally, suppose [ is a topos. The composite functor T = U L can 
then be written using (12) as a different composite of functors between 
slice categories, to wit a change of base followed by a composition ~, 

d~ ~dl 
[jCo --+ [jC I --+ [jCo, 

(X --4 Co) f--+ (C I xCo X --4 Cd f--+ (C I XCo X --4 Co). 

By Theorem IV.7.2 for a topos, each of the two functors ~dl and do has 
a right adjoint, and hence so does their composite T, as asserted in the 
theorem. 

8. The Topos of Coalgebras 

Another important construction of topoi uses the coalgebras for a 
comonad. We have already (§IV.4) considered monads in a category C. 
The dual notion is that of a comonad (or cotriple), which consists of an 
endofunctor G: C --4 C and two natural transformations {j: G --4 GoG 
("comultiplication") and t: G --4 I ("counit"), where I is the identity 
functor on C, such that the following diagrams commute for each object 
C ofC: 

(1) 

As for monads, if a functor F: B --4 C has a right adjoint R: C --4 B 
with unit rJ: I --4 RF and counit t: F R --4 I, the composite endofunctor 
G = FR, with {j = FrJR: FR --4 FRFR and E form a comonad on C. 
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Theorem 1 (Eilenberg-Moore, first part). IfT: A -4 A has a 
right adjoint C and T is also a monad for the natural transformations 

and (2) 

then its right adjoint is a comonad for the (unique) natural transforma-
tions 

and (3) 

determined by the requirement that they make the following diagram 
commute, for all objects A and B of A: 

1 : A(A,B) A(A, B) 

ryAI IEB' 
0: A(TA,B) A(A,CB) (4) 

~Al lbB• 

02 : A(T2 A,B) ~ A(A,c2B), 

where rJ'A = A(7]A, B), etc., and 0 is the natural isomorphism given by 
the adjunction. 

For example, a monoid M in Sets determines the familiar monad T 
with T(X) = M x X for X a set. This functor T has a right adjoint C 
sending a set Y to C(Y) = Hom(M, Y). This functor C is a comonad 
with comultiplication the evident map 

Hom(M, Y) -4 Hom(M x M, Y) = Hom(M, Hom(M, Y)). 

Proof: First notice that, by the Yoneda lemma, the commutativity 
of (4) for all A and B in A determines EB and 8B uniquely, and makes 
them natural in B. One may consider this uniquely determined 8 B as a 
sort of "adjoint" natural transformation to fJA, etc. The commutative 
diagram 

A(TA,B) ____ -c(}~ ___ ---'» A(A,CB) 

~1 0B ' 

A(T2 A,B) --"-(}--+) A(TA,CB) --"-(}--+) A(A,C2B) 

~~A 1 1 (bB). 1 (GbB). 

A(T3 A,B) )A(TA,C2B) (} )A(A,C3B) 
(}2 
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shows that J-LA 0 J-LTA has such an adjoint GOB 0 DB; in this diagram the 
top rectangle and the lower left-hand square present the definition of DB, 
while the lower right-hand square commutes by naturality of e. A similar 
diagram shows that J-LA OTJ-LA has adjoint DGB ODB. The associative law 
for J-L (the equality of the left composites in these two diagrams) then 
gives, with Yoneda, the equality of the right composites; that is, the 
"coassociative" law for the comonad: 

(5) 

Exactly comparable diagrams, using the definition of EB, yield the other 
equation required for a comonad 

EGB ODB = 1 = GEB ODB: GB ---7 GB. (6) 

This completes the proof. 

A dual argument will show that a comonad structure on G will yield 
a monad structure on its left adjoint T. 

Now recall that a T-algebra for the monad T consists of an object 
A and an arrow h: T A ---7 A such that 

1 = h 0 TJA: A ---7 T A ---7 A, h 0 Th = h 0 J-LA: T2 A ---7 A (7) 

(see §IV.4). The category AT of all such T-algebras has a forgetful func
tor U: AT ---7 A, sending a T-algebra (A, h) to the object A; moreover, 
this functor U has a left adjoint F, sending an object X of A to the 
"free T-algebra" FA = (T A, J-LA: T2 A ---7 T A). 

Dually, for a comonad (G, 0, E) on A, a G-coalgebra is an object B 
of A, equipped with a "structure map" k: B ---7 G B such that 

1 = EB 0 k: B ---7 GB ---7 B, (8) 

With the obvious notion of morphism, this gives a category Ac of all G
coalgebras. Again, there is a forgetful functor V: Ac ---7 A, V(B, k) = 
B; this time, V has a right adjoint R, which sends an object X of A 
to the corresponding "cofree coalgebra" (GX, Ox: GX ---7 G2 X). The 
theorem above now continues as follows: 

Theorem 2 (Eilenberg-Moore, continued). Under the hy
potheses of Theorem 1, there is an isomorphism L from T-algebras to 
G-coalgebras, which commutes with the respective forgetful functors, as 

in the diagram 

(9) 
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Again take the example of a monoid M in Sets with the associated 
monad Twith T(X) = MxY and comonad G with G(Y) = Hom(M, Y). 
A left action of the monoid M on a set X can be represented as the 
structure map h: T(X) --+ X of a T-algebra or by its transpose X --+ 

Hom( M, X), which is the structure map for the G-coalgebra X. 

Proof: Let L send the T-algebra (A,h: TA --+ A) to its transposed 
(A,k: A --+ GA) under the adjunction isomorphism B: A(TA,A) ~ 
A(A, GA). Clearly, this commutes with the underlying functors U and 
V. As for the identities defining algebras and coalgebras, the two com
muting diagrams in (10) below (left arrows together, right arrows to
gether) show that the associative law holds for h iff the corresponding 
coassociative law holds for its transposed k: 

A(A,A) A(A,A) 

h·l lk • 

A(TA,A) _-,,-(J---+I A(A,GA) (10) 

I"A li (Th)* °A' li (Gk). 

A(T2 A, A) (J2 I A(A, G2 A). 

The argument for the other identity is similar. Clearly, L is an isomor
phism. 

Corollary 3. If (T, 'TI, J-L) is a monad on the category A while G is 
a right adjoint to the functor T: A --t A, then the forgetful functor 
U: AT --+ A has both a left and a right adjoint. 

Proof: Since by (9) we can identify the forgetful functors U and V, 
the known right adjoint R for V serves also as a right adjoint for U. In 
terms ofT-algebras (apply the functor L-1), this right adjoint sends an 
object A to the algebra 

(GA,TGA~TG2A~GA), (11) 

where E': TG --+ I is the counit of the given adjunction. (Indeed, without 
using coalgebras one can verify directly that this T-algebra TGA --+ GA 
provides a right adjoint to the forgetful functor U from T-algebras.) Note 
also that the comonad on A, obtained from the adjunction between U 
and its right adjoint, is exactly the original comonad (G, 8, E). 

Notice that the two adjoints for U (which by Theorem 2 is also the 
C-object forgetful functor) whose existence was asserted in Theorem 7.1 
have now been proved to exist, by Theorem 7.2 and Corollary 3 above. 
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We now intend to show that the algebras for a monad in a topos 
C will-under suitable hypotheses-themselves form a topos; curiously 
enough, we must first prove the corresponding result for coalgebras, as 
follows. 

Theorem 4. If (G, 8, E) is a comonad on a topos c for which the 
functor G is left exact, then the category cG of coalgebras for the 
comonad (G, 8, E) is itself a topos. 

Proof: First we observe that the category cG of coalgebras has finite 
limits. For any functor G, the projections of the product A x B on its 
factors induce a map 

cjJ = cjJA,B: G(A x B) --. GA x GB, (12) 

natural in the objects A and B. The hypothesis that G is left exact, 
i.e., preserves finite limits, simply means that this map cjJ (and similar 
maps for all other finite limits) is an isomorphism. It follows readily that 
for any two coalgebras (A, s) and (B, t), one may construct the product 
coalgebra by providing the product A x B with the structure map 

A x B ~ GA x GB ~ G(A x B). (13) 

The case of other finite limits (terminal object and equalizers suffice) is 
treated similarly. 

Next we construct exponentials in cG, using the given exponentials 
in c. To this end, consider coalgebras (A, s), (B, t), and (C, u) and the 
right adjoint R: C --. cG which sends each A to the cofree coalgebra 
GA --. G2 A. By the given adjunctions there are isomorphisms 

Homs(A x B,C) 9:! Homs(A,CB) 9:! HomeG((A,s),R(CB)), (14) 

sending f: A x B --. C into l' and then f", where 

f" = Gf' 0 s, f = eo (i' xI), (15) 

and e: C B x B --. C is the evaluation map for the exponential in C. We 
hope to get a corresponding transpose for the following set [with ¢-l as 
in (13)]: 

HomeG((A x B,cjJ-l(S x t)), (C,u)) 

= {f: A x B --. C, a coalgebra map }. (16) 

Now a map f: Ax B --. C is a coalgebra map when the following diagram 
in C commutes: 

AxB 
8xi I GA x GB 

1>-' I G(A x B) 

11 lGI (17) 

C IGC. 
u 
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We wish to translate this condition into a condition On the maps l' and 
f" of (15) above. To do this, we will take the exponential transpose 
(in f) of each leg of the diagram (17). First observe, by (15), that the 
top leg of (17) becomes the top row and then the bottom row of the 
commutative diagram 

A x B~GA x B 1Xt) GA x GB~G(A x B) ~GC 

II lGI'X1 1 lGU'X1) II 
A x B --,,----+ G(CB) X B ---+1 t G(CB) x GB --? G(CB x B) ---+G GC. I x 1 x 1>- e 

(18) 

Now, denote the exponential transpose of the last factor G(e) 0 q;-1 
by 

(19) 

By naturality of transposition, the top leg of (17), i.e., the bottom row 
of (18), now has as exponential transpose 

On the other hand, the bottom leg of (17) has as transpose 

(21) 

We wish to describe those i: A x B ---+ C (i.e., those 1': A ---+ C B ) which 
make these maps in f equal. To do this, we transpose each of these maps 
[(20) and (21)] along the adjunction between f and fG. If (D, k) is any 
coalgebra, this adjunction sends an arrow h: V(D,k) = D ---+ X in f to 
h# = Ghok in fG and in particular sends l' to i" = GI' 08. Therefore 
the first map (20) is transposed to the composite G (( GC) t) 0 G p. G f" 0 8. 

But i" is a coalgebra map, so Gi" 0 8 = 8e B 0 i". The transpose of (20) 
is thus the map 

I" 6 G 
A ---7 G(CB) -+ G(G(CB)) ----.!... 

G((GC)GB) G((Ge)') G((GC)B), (22) 

while the second one (21) becomes the map 

(23) 
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These last two maps are maps of coalgebras; and in these composites (22) 
and (23), all the objects except the initial object A are cofree coalgebras 
(with structure map some appropriate component of 8, as for any cofree 
coalgebra); while all morphisms, except for the initial J", are maps of 
such cofree algebras. Hence to make (17) commute we are looking for 
those maps J" which equalize these two arrows in cG: 

G(uB ) 
) G((GC)B) 

1 G((GC)t) (24) 

G(p) ) G((GC)GB). 

But we already know that the category cG has finite limits, and hence, 
in particular, has equalizers. Therefore, the equalizer in cG of these two 
arrows, which exists and depends just on the two coalgebras (B, t) and 
( C, u), is the desired exponential in cG 

Finally, we construct the subobject classifier in the category cG. 
First, two little lemmas: 

Lemma 5. If (A, 8) is a G-coalgebra and m: D >--> A is a subobject 
of A in C, then there is at most one map d: D -+ G D for which 8m = 
(Gm )d; in particular, there is at most one coalgebra structure on D for 
which m is a morphism of coalgebras. 

Proof: The hypothesis gives a commutative diagram 

(25) 

A --,8:;------+) GA. 

But G is left exact, so preserves monomorphisms. So Gm is again monic, 
and a map d as in (25), if it exists at all, is unique. If d is a co algebra 
structure map, the commutativity of (25) states that m is a morphism 
of coalgebras. 

Lemma 6. If in the commutative diagram (25), m is mono and 
(A, 8) is a coalgebra, then (D, d) is also a coalgebra and the square is a 

pullback in C. 
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Proof: Consider the diagram 

D~ 
d ;2GD 

A 8 )GA 

d 81 IGS Gd (26) 

GA ) G2 A 

a;Y 
OA 

~m 
GD 

OD 
) G2D. 

The inside square commutes because A is a coalgebra. The bottom 
trapezoid commutes because 8 is natural. The other three trapezoids 
commute by the given commutativity of (25). Since m, and hence Gm 
and G2m, are mono, the outside square of (26) commutes, showing the 
coassociative law for d. The counit law follows from the diagram 

D _....::d,---+) G D _-:€D===-----+) D 

m1 lGm 1m (27) 

A ---;:-----+) G A --€A--+) A. 

Here both squares commute, and the bottom composite then is the iden
tity because (A, s) is a coalgebra. Since m is mono, the top composite 
is also the identity. Moreover, from this diagram it follows easily that 
the left-hand square is a pullback, as asserted. 

To construct the desired subobject classifier in cG, start with the 
subobject classifier true: 1 >--+ n in C, and construct first in c the classi
fying map r: Gn --+ n of the mono G(true): Gl >--+ Gn. Now consider 
any sub-coalgebra m: (D,d)>--+(A,s) in cG, and denote by h: A --+ n 
the classifying map of m: D >--+ A in C. In the commutative diagram 
(with ! any unique map to 1) 

D d )GD G(!) 
) Gl ) 1 

ml IGm 1 Gtrue Itrue (28) 

A )GA 
Gh 

)Gn 
T 

) n, 
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the right-hand square is a pullback by definition of T, the middle is a 
pullback since h classifies m: D >--> A and G preserves pullbacks, and the 
left-hand square is a pullback by the last lemma above. So the entire 
rectangle is a pullback, and therefore T 0 Gh 0 s is also a characteristic 
map for m, i.e., 

h = T 0 Gh 0 s: A -+ O. 

But (A, s) is a coalgebra so Gsos = 8A os, while 8 is natural. Therefore, 

Gh 0 s = GT 0 G2 h 0 Gs 0 s = GT 0 800 Gh 0 s, 

so that the map Gh 0 s of coalgebras factors through the equalizer-call 
it Oo-in Eo of 1 and GT 0 80, as displayed in 

Orotin 
0 0 _-,e'---tl GO l GO, 

1 
(29) 

where GO stands for the cofree coalgebra on O. This factorization 
holds for any coalgebra (A, s) and any subcoalgebra D. But trivially, 

~ 

the object 1 with unique structure map 1 ---+ G1 is a G-coalgebra, 
and 1 >--> 1 is a sub-G-coalgebra with characteristic map true: 1 -+ 0 
in E. Therefore, as a special case of this factorization, we have that 
G(true): 1 ~ G1 -+ GO also factors through this equalizer e, say as 
G(true) = eo to: 

(30) 

as in the right-hand square in (31) below. Also the map Gh 0 s of coal
gebras factors through 0 0 by a map k as in (31), while the rectangle, 
obtained by composing the two left-hand squares in (28), gives the com
mutative diagram 

D I 1 I G1 

mI ltc 10 true 
(31) 

A k 100 e 
I GO. 

I J 
Ohos 

Moreover, since the original rectangle [= the top rectangle in (31)] is 
a pullback, as is the right-hand square, so is the left-hand square in 
(31). We claim that this makes to: 1 -+ 0 0 a subobject classifier for 
the category Eo of coalgebras. For this, it remains only to show the 
uniqueness of the classifying map k. So suppose 4>: A -+ 0 0 is any 
other map of coalgebras for which the left-hand square in (31), with 
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k replaced by ¢, is a pullback in fa. Since e is monic, to prove that 
¢ = k, it is enough to show that e¢ = Gh 0 S, as maps of coalgebras. 
Transposing along the adjunction U: £a ~ £: R, this is equivalent to 

in f. But 

h = En 0 e 0 ¢ 

En 0 e 0 ¢ = En 0 GT 0 8n 0 e¢ 

= T 0 Ean 0 8n 0 e¢ 

= Te¢ 

[by (29)] 

(naturality of E) 

[unit law (1)]. 

Now consider the commutative diagram in £: 

D ----+1 1 ----+1 G1 ---'-'---+1 1 

mIl tc 1 a true 1 
A --¢-:---+I na >-: -e~-+I Gn ---'T=---+I n. 

(32) 

The left-hand square is a pullback since ¢ classifies m in £a and the 
forgetful functor fa --+ £ preserves pullbacks (by the construction of 
limits in fa, as in the beginning of the proof), the middle square is 
trivially a pullback (any square with an iso on top and a mono on the 
bottom is), and the right-hand square is a pullback by definition of T. SO 
the entire rectangle is a pullback in £, and, therefore, Te¢ must be equal 

to the classifying map h for D::" A. This proves (32) and so completes 
the proof that £a is a top os. 

Combining this result with the previous isomorphism between T
algebras and G-coalgebras (Theorem 2), we obtain: 

Corollary 7. If (T, 1], f.L) is a monad on a tapas £ and T has a right 
adjoint, then the category fT of T -algebras is again a tapas. 

In particular, if C is an internal category in a topos f, the category 
fC of left C-objects is isomorphic by Theorem 7.2 to the category £T 
of T-algebras for a monad T = U F, where U and hence U F has a right 
adjoint. Hence, by the last corollary, £c is a topos. So, finally, we have 
also completed the proof of Theorem 7.1. 

9. The Filter-Quotient Construction 

In a given topos £ the Heyting algebra Sub 1 may be "too large"; one 
might want it to consist instead of just two elements 0 and 1, in which 
case £ is said to be "two-valued". Now a too-large Boolean algebra B can 
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be collapsed by dividing it by an ideal or even by a maximal (prime) ideal 
m; the quotient Blm is then a two-element Boolean algebra. Instead of 
using ideals one may use the dual objects, the filters. The corresponding 
reduction will apply not just to Sub 1 in £, but to the whole topos; it 
provides a "filter-quotient" construction. This will be needed in the next 
chapter for the reduction of certain models of set theory. 

We first consider the case of Heyting algebras. A homomorphism 
(J: H ----+ K of Heyting algebras Hand K is a function which preserves 
all the operations involved (0,1, A, V, and =». For any such homomor
phism (J the inverse image (J-l(l) of the top element of the codomain K 
is a fllter U in H; that is, a subset U c H such that 

lEU, O~U 

v 2: u E U implies v E U, 

u, v E U implies u A v E U. 

Conversely, we will prove 

(1) 

(2) 
(3) 

Proposition 1. For any filter U in a Heyting algebra H tbere is an 
epimorpbism (J: H ----+ K onto a Heyting algebra K witb (J-l(l) = U. 
Tbe Heyting algebra K is uniquely determined up to isomorpbism by H 
and tbis property. 

Proof: We first consider the case of a principal filter U = iu, given 
by some element u E H as the set {u' I u' 2: u}. An equivalence relation 
== on H is then defined by requiring that a == b iff a A u = b A u. Let 
au be the resulting equivalence class of an element a E H, and define a 
partial order of these equivalence classes by 

au ::; bu iff a Au::; b A u. 

On the resulting poset HI u of these equivalence classes, meet and join 
are then given by the formulas 

so the poset HI u is a lattice with evident top and bottom elements 1 
and O. Moreover, there is an implication operation defined by 

This has the requisite property (it is right adjoint to A) because auAbu ::; 
eu iff a A b Au::; e A u in H iff a A b Au::; e, that is, a Au::; (b => e) Au 
and hence au ::; (bu => eu)' Thus we have constructed a Heyting algebra 
Hlu and an epimorphism H ----+ Hlu with the given filter iu as inverse 
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image of 1. Moreover, if w :::; v :::; u are elements of H, there are evident 
homomorphisms 

Puv: H/u -+ H/v, Pvw: H/v -+ H/w (4) 

with composite Puw: H/u -+ H/w. 
The epimorphism (): H -+ H / u can also be described without using 

equivalence classes by taking H/u to be the "down-segment" lu consist
ing of all a E H with a :::; u, with partial order, meet and join induced 
from H, while () is given by ()(a) = a 1\ u. 

Now consider an arbitrary filter U on H and define a congruence 
relation on H by 

a == b (mod U) iff there exists u E U with a 1\ u = b 1\ u. (5) 

The set H /U of equivalence classes is then exactly the colimit 

H/U = lim H/u 
--4uEU 

(6) 

of the homomorphisms (4), and H/U is a Heyting algebra when the 
operations on the equivalence classes are defined in the familiar way, so 
that H /U is the colimit (6) in the category of Heyting algebras. Thus, 
an element of H/U is an element of some H/u; elements au of H/u and 
bv of H/v are equal in H/U iff there is a w :::; u 1\ v with Puwa = Pvwb, 
and the Heyting algebra operations on au and bv are performed in such 
H/w. Thus, for example, bu =} Cv is [b =} c]w for w as above. This 
construction proves the proposition, and indicates why the standard way 
of constructing an algebra of equivalence classes can here be formulated 
in terms of a direct limit of Heyting algebras. 

Next, consider the corresponding construction in a topos £ for a filter 
U of open objects (i.e., of subobjects of 1 E E); here "filter" is defined 
exactly as in (1), (2), and (3) above. In the previous construction for 
Heyting algebras, the maximal element of each H/u was u; correspond
ingly, we wish to construct from £ and each U >--t 1 a topos with U itself 
as the terminal object; this requirement suggests the usual slice category 
£ /U, where 1: U -+ U is indeed the terminal object. 

For each U in the filter U this slice category £ /U is also a topos, by 
Theorem IV.7.1, while pullback along an inclusion i: V -+ U of open 
objects yields a logical morphism £ /U -+ £ IV. The desired "filter
quotient" of £ over U should then be constructed as the direct limit 
£00 = lim£/U. However, for two successive inclusions i and j: W -+ V 

--4 

of open objects the composite of the corresponding chosen pullbacks, 

i* j* 
£ /U --4 £ /V ----+ £ /W, (7) 



9. The Filter-Quotient Construction 259 

is at best just isomorphic to the choice of the pullback (ji)* of the com
posite. In other words, the assignments U f--+ [/U, i f--+ i* is a functor 
only "up to isomorphism" , and so the usual construction of a colimit of 
the maps (7) does not apply directly. Under such circumstances, it is 
possible to construct a "weak" colimit of functors "up to isomorphism"; 
instead we will replace each slice topos [/U by a smaller but equivalent 
subcategory [/ /U for which the pullbacks like (7) can be canonically so 
defined that the composite (7) holds "on the nose". 

For this purpose, it is convenient to assume that the given topos 
[ is equipped with a canonical choice of products X x Y with their 
projections, for all pairs of objects X and Y in [. (For example, there 
is available such choice of products in the category Sets and hence in 
related functor categories.) We can then take the desired category [/ /U 
to be that full subcategory of the slice category [/U which consists of all 
those objects of [/U of the form of a second projection 71'2: X x U ---+ U 
for such a canonical product. Actually, it will be easier to regard the 
objects of [/ /U as just the objects X of the original [. 

Thus, take [/ /U to be the category with objects the objects X of [ 
and with morphisms from X to Y the morphisms f: X x U ---+ Y x U 
over U in [ (that is, morphisms commuting with the projections to 
U). There is then an equivalence of categories 8: [/ /U ---+ [/U sending 
X to 71'2: X x U ---+ U and each arrow f to itself. The reverse map 
¢>: [/U ---+ [/ /U is given by 

X 9 ) Y X x U (911'1,11'2) ) Y x U 

~/ ~/ (8) 

U U. 

Indeed, the evident natural transformations ¢>8 ~ 1 and 8¢> ~ 1 are 
natural isomorphisms. The proof uses the fact that any two maps h, 
k: Y ---+ U are necessarily equal, since U >-+ 1 is mono and 1 is termi
nal in [. Because of this equivalence of categories [/ /U ~ [/U the 
former category, like the latter slice category, is a topos and 8, ¢> as 
equivalences preserve the topos structure up to isomorphism, so are log
ical morphisms. By the stated property of arrows to U, each morphism 
f: X x U ---+ Y x U over U in [/ /U is completely determined by its first 
projection 71'd: X X U ---+ Y. 

Now if i: V ---+ U is an inclusion (of subobjects of 1 in the filter U) 
there are induced maps a = 1 x (i, 1) and (J = 1 X 71'2 

XxV~XxUxV~XxV (9) 

Since a map to V (or to U) from anyone object is unique, it follows 
readily that (Ja = 1 and a(J = 1. Therefore any map f: X ---+ Y in 
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£IIU, that is, a map f: X x U ~ Y x U over U in £, will determine a 
unique map 

a Jxl (3 
flV = Puv f: X X V -t X X U X V -----+ Y X U X V -t Y X V (10) 

which is a map Puv f: X ~ Y in £1 IV, also written above as flV· One 
calculates immediately that Puv is a functor £1 IU ~ £1 IV. Moreover, 
Puv is a logical functor because under the equivalence of £ IU with 
£ I IU the functor Puv corresponds to the pullback functor i* : £ IU ~ 
£IV, which is logical by Theorem IV.7.2. More is true; by (8) and the 
choice of objects X in £ IIU, the finite limits, exponents, and subobject 
classifiers there are identical with those in £, and hence are preserved 
on the nose by £ ~ £1 IU and by Puv, which is thus a strict logical 
functor. Furthermore, puv f may be described as that map h: X X 

V ~ Y X V over V for which 7rIh = 7rd(1 X i): X x V ~ Y. From 
this characterization of Puv one concludes that the composite inclusion 
We V c U gives 

Puw = pvw 0 Puv: £1 IU ~ £1 IV ~ £IIW. (11) 

Thus, these logical morphisms Puv also compose "on the nose", as de
sired. Because of this one can construct the usual colimit of these cate
gories as the category 

£00 = lim £IIU. ---+u 
(12) 

The successive functors (11) are the identity on objects X, so the 
objects of £00 can be again taken to be the objects X of £. To complete 
the desired coli mit category, one then takes each hom-set Homoo(X, Y) 
there to be just the ordinary colimit (in the category Sets) of the sets 
HomE/ /u(X, Y). This colimit is calculated, as usual in Sets, by tak
ing the disjoint union of all the hom-sets, with elements written as 
(U, fu: X x U ~ Y x U) and then factoring out by the equivalence 
relation == defined for U, V E U by 

(U,fu) == (V,fv) iff ful W = fvlW 

for some W c Un V in U. Write [f] = [fu] for the equivalence class so 
defined for any such (U, fu). For successive morphisms fu: X x U ~ 
Y x U and gv: Y x V ~ Z x V over U and V a composite class is then 
defined by choosing some W c un V in U (always possible since U is a 
filter) and then setting 

[g] 0 If] = [(gIW) 0 UIW)]. (13) 

It follows that the resulting class is independent of the choice of 
W c U n V and that £00 with these classes as morphisms is a category 
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with the same objects X as the category [. Moreover, PUIX)(J) = [f] is 
a functor 

PUIX): [/ /u ~ [IX) (14) 

and PVIX)PUV = PUIX). This completes the description of the colimit. 

Theorem 2. IfU is a filter of subobjects of 1 in a topos [, then 
the filter-quotient [IX) (or [ /U) constructed from [ and U by the colimit 
(12) is a topos. For each object U ofU the map 

PUIX): [/ /U ~ [IX) (15) 

is a logical morphism of topoi; in particular, for U = 1, [ ~ [IX) is 
logica1. 

Proof: For each structure required in a top os we will construct the 
corresponding structure in [IX) and show that the map PUIX) of (15) pre
serves that structure. 

To form a product X x Y in [IX) we first observe that in [/ /U the 
product X x Y is given by the diagram 

X x U ( 7r13 XxYxU 7r23 ) Y X U 

1 1 1 
U U====U. 

For each V C U this maps by puv to the corresponding product diagram 
in [/ /V and so yields in [IX) a diagram of equivalence classes 

X~XxY~y. (16) 

To show that these projections have the required universal property, 
consider in [IX) any pair 

of maps to X and Y. They are both realized in some [/ /U by maps 

XxU~ZxU~YxU 

and determine there a unique h: Z x U ~ X x Y x U with 7r13 h = j, 
7r23 h = g. Then [7rd[h] = [f] and [7r23][h] = [g] for the diagram (16); a 
corresponding argument shows that this equivalence class [h] is unique 
with these components, as required for the universality of the product 

(16). 
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The construction of equalizers is similar. Given I, 9 in some [I IU 
we construct their equalizer there in the form 

f 
ExU~XxU===::::tYxU. 

9 

For any V c U, since puv is logical, it follows that elV is the equalizer 
of IIV and glV. Thus, [J][e] = [g][e] in [00; one also has that any 
[h]: Z --+ X in £00 with [I] [h] = [g] [h] factors at some suitable stage V 
through elV and hence factors (and indeed uniquely) through [e]. Then 
[e] is the equalizer in £00. 

Similarly, each Puv for V c U preserves exponentials in the sense 
that it carries each evaluation map in [I IU 

eu: X Y x Y --+ X 

into the corresponding ev for [I IV. SO, given objects X and Y of £00' 

let (XY)oo be the object X Y and set, for some U in U, 

eoo = leu]: x Y x Y --+ x. 

Since Puv is logical, this map will equal [ev] for any V c U. Its univer
sal property follows readily; thus Pu 00 preserves exponentials and their 
evaluation maps. 

Before constructing the subobject classifier in [00 we first discuss 
monomorphisms there. 

Lemma 3. If I = Iu: X x U --+ Y x U is an arrow of £1 IU, the 
equivalence class [J]: X --+ Y in [00 is mono there iff there is some 
V C U for which I IV: X x V --+ Y x V is mono in [. 

Proof: For each V c U we may construct the kernel pair of f I V as 
the pullback (over V) 

q )XxV 

lflY 
XxV 

flY 
)YxV; 

as always, flV is mono iff P = q in this kernel pair. Now the functors 
PVoo and Puv preserve pullbacks, so IIV mono for some V implies [J] 
monic in [00. Conversely, if the equivalence class [I] is mono, then one 
must have lP] = [q] in [00 and hence, for some V c u, plV = qlV, 
so that f IV is indeed already mono in some category [I IV. In other 
words, f is eventually mono, as stated in the lemma. 
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The subobject classifier n and the attached "universal" mono true = 
t: 1 -+ n in £ will yield a universal mono t x 1: 1 x U -+ n x U over U in 
£ I IU, since £ -+ £1 IU is logical. Then, given some mono [J]: X -+ Y 
in £= there is by the lemma a suitable stage U at which 1 x U is a mono 
in £1 IU and hence has a classifying map x: y X U -+ n x U over U 
there. The equivalence class [X]: Y -+ n is then a classifying map for 
[1] in £= for the universal mono t x 1. Thus the projection £ I IV -+ £= 
preserves the subobject classifier n "on the nose" . 

This concludes the proof that £= = lim £ I IU is a topos, for any filter 
---+ 

U of subobjects of 1 in £. One may show that the corresponding Heyting 
algebra Sub 1 in the topos £= is indeed constructed as in Lemma 1 from 
the filter U in Sub 1. 

Exercises 

1. Let j be a Lawvere-Tierney topology on a topos £, with associ
ated object J as in §1. Show that J classifies dense subobjects, 
i.e., there is an isomorphism of posets D Sub(X) ~ Hom(X, J), 
natural in X E £ [where D Sub(X) is the poset of dense subob
jects of X]. Also prove that D Sub(X) is a lattice. Is it a Heyting 
algebra? 

2. Consider Lawvere-Tierney topologies on a fixed topos £. 

(a) The set of topologies has a natural partial order inherited 
from the internal partial order on n; so for topologies j, 
k: n -+ n, define j :s; k iff j = j /\ k (where j /\ k is 

(j,k) 1\ 

the composite n ~ n x n ~ n). Prove that j :s; k 
iff k 0 j = k. Describe the partial order in terms of the 
corresponding closure operators, and also in terms of the 
corresponding dense subobjects. 

(b) For a fixed topology j, show that topologies on Shj £ cor
respond exactly to topologies k on £ such that k ~ j. 

(c) Let C be a small category. A Grothendieck topology K on 
C is said to be finer than another one J iff K (C) ~ J ( C) 
for all C E C. Conclude that Lawvere-Tierney topologies 
on Sh(C, J) are the same thing as Grothendieck topologies 
on C which are finer than J. 

3. Let J be a Grothendieck topology on a small category C, 
and let j be the corresponding Lawvere-Tierney topology on 
C (cf. Theorem 1.2), with associated closure operator (-) 
(Proposition 1.1). Check that for a subpresheaf_A of a given 
presheaf P its closure A is described simply by A( C) = {x E 
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P( C) I the set of all arrows f: D --+ C such that x . f E 

A(D) form a J-cover of C}. 
4. Consider, for a topology j on a topos £, the subcategories Shj £ ~ 

Sepj E ~ E. First prove that the left adjoint E --+ Sepj E of 
Corollary 3.6 is left exact. Next, prove that if Sepj E is also a 
topos, then it must coincide with Shj E. (Hint: prove that the 
subobject classifier of Sepj £ must be a sheaf.) 

5. Let j be a Lawvere-Tierney topology on an elementary topos 
£, with a corresponding natural closure operator on sub object 
lattices A 1-+ A, and with an associated sheaf functor a: E --+ 

Shj £ left adjoint to the inclusion i: Shj £ --+ £. 

(a) Prove that if u: A --+ B is a j-dense mono in E, then so is 
1 xu: E x A --+ E x B, for any object E of E. 

(b) Deduce from (a) that an object E of E is a j-sheaf iff for 
any j-dense mono u: A --+ B, the map EU: EB --+ EA is 
an isomorphism. 

(c) Prove that for objects E and F of £, if F is a j-sheaf, then 
the unit TJ: E --+ ia( E) = a( E) induces an isomorphism 

Fia(E) ~ FE. 

(d) Prove that for any object E of £ and any subobject A E 

Sub(E), the closure A can be constructed as the pullback: 

A )aA 

I 1 
E --=7]=----+) aE. 

6. Let C be a topological group, and let C 15 be the same group with 
the discrete topology. 

(a) Describe a comonad on Sets such that the category BC15 

of right G15-sets is exactly the category of coalgebras for 
this comonad. 

(b) Describe a comonad on the category BG15 such that the 
category of coalgebras is exactly the category BG of con
tinuous G-sets; conclude that BG is a topos. 

(c) By "composing", describe BG directly as a category of 
coalgebras for a comonad on Sets. 

7. Let G be a group object in a topos E. Prove directly that 
U: EG --+ E has a right adjoint [ef. §7 (8)]. 
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8. Prove that for a family £i (i E I) of topoi, the product category 
I1iEI £i is again a topos, and that the projection functors 7rj : 

I1i £i -+ £j are logical morphisms. 
9. [Art in Glueing a la Wraith (1974)] Let ¢: £ -+ F be a func

tor. Recall that the comma category F /¢ has as objects pairs 
(X,a: Y -+ ¢X), where X E £, Y E F, and as morphisms pairs 
of morphisms which give commutative squares [CWM, p. 47]. 

(a) Suppose that £ and F have finite products, and that ¢ 
preserves them. Show that F / ¢ is the category of coalge
bras for the comonad on £ x F, which has the underlying 
functor G: £ x F -+ £ x F, G(X, Y) = (X, Y x ¢X). 

(b) Conclude that if £ and Fare topoi and G is left exact, then 
F / ¢ is again a topos. Prove that the projection F / ¢ -+ £ 
is logical. 

( c) Consider the special case were F = Sets and ¢ is the 
global sections functor r = Hom(l, - ): £ -+ Sets. Prove 
that if £ = Sh(X) for a topological space X, then Sets/r 
is again a topos of sheaves on a space X, by giving an 
explicit description of the space X. 

10. (Ultraproducts of Topoi) Let I be a set, and let {£i liE I} 
be an I-indexed family of topoi, and let U be a filter of subsets 
of I (so lEU; U ;;:2 V E U =? U E U; U, V E U =? 

U n V E U). Define the reduced product I1u £i as follows: the 
objects are the same as those of the product I1iEI £i, i.e., are 

sequences E = (Ei)i where Ei E £i; the morphisms f: E -+ F 
are equivalence classes of sequences f = (fi: Ei -+ Fi)iEU for 
some U E U, where we identify such an f with the restricted 
sequence (fj I j E V), for any V E U with V <::;; U. Use Exercise 8 
and the filter power construction to prove that I1u £i is equivalent 
to the filter-quotient I1 £Jil (for a suitable filter il of subobjects 
of 1 in I1 £i), and hence is a topos. 

11. (Internal Colimits) Let C be an internal category in a topos £, 
and let D.: £ -+ £c be the functor which sends an object E 
of £ to the trivial left C-object (Co x E, C 1 xCo (Co x E) ~ 

C 1 X E ~ E). Prove that D. has both a left and a right adjoint. 
[Hint: the left adjoint "~" sends a C-object (X, 7r, J-L) to the 

coequalizer of J-L and 7r2: C 1 xCo X::::4 X; this is easy. The right 
adjoint is hard: recall that Co: £ -+ £ / Co has a right adjoint 
IIco ' For a C-object (X,7r,J-L), define the required right adjoint 

7r a C 
as the equalizer of IIc (X -+ C o)::::4 Xl, where the transpose 

a (3 
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dl X I € 

of a is the composite C I xCo IIco(X) ~ Co x IIco(X) -----+ X, 
E being the counit of Co -1 IIco; and the transpose of f3 is the 

(11'1,do11'1,11'2) IXE 
composite C I x IIco(X) ) C I xCo Co x IIco(X) -> 

i-' 
C I xCo X -----+ X.] 



VI 
Topoi and Logic 

Topos theory involves both geometry, especially sheaf theory, and 
logic, especially set theory. This chapter will develop some of the con
nections with set theory and illustrate how geometric constructions such 
as sheafification are deeply involved in independence proofs for the ax
ioms of set theory. 

After presenting some special properties of topoi which are enjoyed 
by the category of sets, we turn in Section 2 to the famous proof by 
Paul Cohen that the continuum hypothesis (CH) is independent of the 
usual (Zermelo-Frrenkel, ZF) axioms of set theory. We shall present a 
perspicuous proof of this independence result, by considering the topos of 
sheaves for the dense topology on the partially ordered set P of Cohen's 
"forcing conditions". This proof replaces the sets of the given model of 
ZF by presheaves on the poset P, which has been carefully chosen to help 
force a given big set B between the new (presheaf) natural numbers N 
and its new power set. The resulting top os is an intuitionistic model of 
set theory; it is then sheafified to make it Boolean and finally divided by 
a maximal filter (to make it "two-valued"). A combinatorial condition 
(§3) is needed to insure that this process does not collapse two different 
cardinal numbers- A related and even simpler construction, due to Peter 
Freyd, will subsequently be shown to establish the independence of the 
axiom of choice (AC). 

We present these independence proofs in a way which uses neither 
the formal languages nor the "forcing definitions" from logic. However, 
these ingredients are implicitly there. In Section 5, we will associate with 
each elementary topos a set-theoretic language, its so-called Mitchell
Benabou language. This language strongly supports the intuitive idea 
that topoi are "generalized universes" of sets; to construct objects in 
a topos, one can use not only familiar operations like finite limits and 
exponentials, but also the set-formation process {x I ¢(x)}, where ¢ 
is a formula in the language of a topos. The truth of sentences of the 
language can be described in terms of a convenient "forcing" notation, 
the so-called Kripke-Joyal semantics. This forcing relation for arbitrary 
topoi generalizes Cohen's forcing technique and explains the connection 

267 
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of our top os-theoretic proof to Cohen's original proof of the indepen
dence of CH. 

In general, the logic governing truth in a topos is not the usual 
(classical) logic, but intuitionistic logic. Thus, an arbitrary topos can be 
viewed as an intuitionistic universe of sets. We shall give one illustration 
of the interesting phenomena that this gives rise to: a topos in which 
every function from the reals to itself is continuous. 

There is an axiomatic presentation of the category of sets-an el
ementary topos which is Boolean, well-pointed, satisfies the axiom of 
choice, and has a natural numbers object. This can serve as a founda
tion of mathematics, different from the usual foundation by set theory. 
In a final section, we investigate the relation between such a foundation 
and the usual set-theoretic one, and prove that the categorical founda
tion is equivalent (more precisely, equiconsistent) with a weak version of 
Zermelo set theory. 

1. The Topos of Sets 

In the first chapters of this book, we have suggested the point of 
view of a topos as a generalized category of sets. For example, we 
considered the topos SetsN of "sets through time", the topos Sh(X) of 
sets continuously parametrized by a space X, or the topos Sets cop of 
sets parametrized by a small category C, etc., etc. 

An arbitrary elementary topos E can (to some extent) be viewed as 
a "universe of sets": the "sets" are the objects of the topos, on which 
many set-theoretic operations can be performed. For instance, given 
sets (objects of E) X and Y, one can construct the set yX of functions 
from X to Y and the power set P X, both as objects of E. In Section 5 
below, we will even show that for set-theoretical formulas ¢(x) one can 
construct in E an object {x I ¢(x)}. Nonetheless, among all elementary 
topoi the topos of classical sets has many special properties. It is our 
purpose in this section to investigate some of these properties, and see 
which other topoi of presheaves or of sheaves enjoy these properties. 
In many cases, the properties involved resemble familiar axioms of set 
theory. 

The axioms of set theory include an axiom of infinity, to exclude the 
model given by the category of all finite sets. This axiom is ordinarily 
formulated as the existence of some specific infinite set, usually the set 
of natural numbers. 

For an arbitrary topos E, the axiom of infinity states that there is 
an object N (or explicitly, if necessary: Nt:) of E with arrows 

(1) 
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such that for any object X of E with arrows x and f, as below, there is 
a unique arrow h which makes the following diagram commute: 

1 _-,°"--+1 N _-,8,,--+ IN 

II 
I 
Ih 
I 

v 

; 
Ih 
I 

IX. 1 ---::---+1 X -~--+ 
x f 

(2) 

The object N is then called a natural numbers object (n.n.o.) for E. For 
such an n.n.o. N, the definition states that the diagram (1) is universal 
among diagrams of the form 1 -+ X -+ X. It readily follows that N 
(together with the arrows 0: 1 -+ Nand s: N -+ N) is unique up to 
isomorphism. We can thus speak of the natural numbers object of a 
topos E, if there is one. 

In Sets, the usual set of all natural numbers N = {O, 1, 2, ... } has 
the required universal property for an n.n.o. as in (2), where the arrow 
0: 1 -+ N sends the one element of 1 to 0 E N, while s: N -+ N is the 
usual successor function n 1-+ n + 1. Given a set X, an element x EX, 
and a function f: X -+ X, the arrow h uniquely provided by (2) thus 
satisfies 

h(O) = x, h(n + 1) = f(h(n)). (3) 

In other words, h is defined from x and f by recursion, or as one often 
says, "by induction". This simple form of definition by recursion implies 
most of the other (more general) forms of recursion, as for example 
recursion with a parameter, as used in the recursive definition of addition 
and multiplication for N (cf. Exercise 1). 

Suppose a topos E has a natural numbers object N. Let F be another 
topos such that there are adjoint functors 

'L' ~ C' * --1 (4) 
J f----;;;"-- c.-, 9 9 * , 

9 

with the additional property that g* preserves the terminal object: 
g* (1) ~ 1. (This is, e.g., the case if g* and g* come from a geomet
ric morphism g: F -+ E, as in the next chapter.) It then easily follows 
that the diagram 

1 ~ g*(l) ~ g*(N) ~ g*(N) (5) 

provides a natural numbers object for the topos F: one simply applies 
the (naturality of the) adjunction Hom:F(g*N, X) ~ Homs(N, g*X). 

This simple observation implies that many of the topoi considered 
before have an n.n.o. For example, if C is a small category then from 

the adjoint pair 

cop r 
Sets +====' Sets, 

~ 

~--1r, (6) 
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cop 
of §I.6, it follows that the presheaf topos Sets has an n.n.o., because 
Sets has one: the n.n.o. of SetsCOP is the constant presheaf Ll(N) with 
value N. 

Moreover, if [; is an elementary topos with an n.n.o. N, while j is 
a Lawvere-Tierney topology on [;, then the topos Shj [; has an n.n.o., 
namely, the sheafification a(N) of N; this follows from the adjoint pair 
inclusion-sheafification 

(7) 

considered in §V.3. 
Combining the case of SetsCOP and that of a Lawvere-Tierney topol

ogy, one concludes that any Grothendieck topos Sh(C, J) has a natu
ral numbers object, viz., the associated sheaf aLl(N) of the constant 
presheaf Ll(N): cop ---.. Sets with value N. Notice that since both 

cop cop 
Ll: Sets ---.. Sets and a: Sets ---.. Sh(C, J) preserve arbitrary co-
products, we have in Sh(C, J) an isomorphism 

aLl(N) ~ U 1, (8) 
nEN 

arising from the isomorphism N ~ llnEN 1 in Sets. In other words, the 
n.n.o. in any Grothendieck topos is constructed by taking a countable 
coproduct of copies of the terminal object. 

Another property of the topos of sets is that it is a Boolean topos. In 
general, a top os [; is said to be Boolean iff the internal Heyting algebra 
O-the subobject classifier of [;-is an internal Boolean algebra. Here 
are some equivalent conditions: 

Proposition 1. For a topos [;, the following conditions are equiva-
lent: 

(i) [; is Boolean; 
(ii) the negation operator....,: 0 ---.. 0 satisfles ....,...., = id; 

(iii) for every object E of [;, the Heyting algebra SUb(E) is in fact a 
Boolean algebra; 

(iv) for every subobject S >---> E in [; one has ....,S V S = E; 
(v) the maps true: 1 ---.. 0 and false = ...., 0 true: 1 ---.. 0 induce an 

isomorphism 1 + 1 ~ O. 

Proof: Recall from IV.8(13) that the internal Heyting algebra struc
ture on 0 corresponds to the external Heyting algebra structure on the 
set Sub&(E) of subobjects of any given object E of [;, through the iso
morphism 

Hom&(E, 0) ~ SUb&(E), (9) 

natural in E. This Sube (E) is Boolean for each E iff 0 is Boolean; 
i.e., (i) is equivalent to (iii). For any Heyting algebra, the condition 
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" = id is equivalent to being Boolean, by Proposition 1.8.4; so (i) is 
equivalent to (ii). Furthermore, (iv) states that complements exist in 
SUbe(E), for each E, hence is equivalent to (iii) (cf. Proposition 1.8.2). 
Finally, (v) states that 1+1 is a subobject classifier, with as the universal 
subobject true the first coproduct inclusion true = il: 1 -* 1 + 1. So 
if this is the case then clearly" = id, since under the isomorphism 

(true, false): 1 + 1 ~ 0, the map ': 0 -* 0 corresponds to the twist 
map tw: 1 + 1 -* 1 + 1, which interchanges the summands, as in the 
diagram 

1 + 1 (true,false\ 0 

twl 1~ 
1 + 1 ) 0 

(true,false) , 

commutative by IV.8(15). On the other hand, (v) is implied by (iv). 
Indeed, the subobjects (true: 1 -* 0) and (false: 1 -* 0) of 0 have in
tersection 0, by the second pullback in IV.8(14), so their join is their co
product (cf. Proposition IV.7.6). But by the pullback diagram IV.8(16), 
(false: 1 -* 0) = ,(true: 1 -* 0) in the Heyting algebra Sube(O), so, 
as a special case of (iv), this join is 0, which gives the condition (v). 

This completes the proof of the proposition. 

We now wish to use sheafification to turn a given topos into a 
Boolean one. 

Consider a Lawvere-Tierney topology j on a topos E, with corre
sponding natural closure operator 5 f--t 5 on subobjects, as in §V.1. If 
an object F of E is a j-sheaf (that is, F E Ej ), then by Lemma V.2.4, 
the subobjects of Fin Ej are exactly the closed subobjects of Fin E, as 
m 

Subej (F) =C1Sube (F) <----; Sube (F) (10) 

[here, as in §V.2, C1Sube(F) is the set of closed subobjects 5 ~ F; 
i.e., those 5 with 5 = 5l. We wish to compare the Heyting algebra 
structures of Sube(F) and of Subej (F). Let us write 0, 1, A, V, =}, ' 

for the operations of Sube(F), and OJ, I j , Aj, Vj, =}j, 'j for those of 
Subej (F). 

Lemma 2. For any j-sheaf F, the following identities hold in 
Subej (F) (for any closed subobjects 5 and T of F): 

(i) Ij = 1, 5 Aj T = 5 A T, 
(ii) OJ = 0,5 Vj T = 5 V T, 
(iii) 5 =}j T = (5 =} T), 
(iv) 'j5 = (5 =} 0). 
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In other words, this lemma says that finite meets are computed in 
Sub£j (F) as they are in Sub,<;(F), finite sups are computed in Sub£j (F) 
by first computing them in Sub,<;(F) and then taking the closure, etc. 

id 
Proof: (i) The maximal subobject 1 = (F ---f F) of F is closed, as 

is the intersection 8 A T of two closed subobjects, so (i) is clear. The 
identity (ii) is clear too, since if 0 is the smallest subobject of F then 
clearly 0 is the smallest closed subobject of F, and 8 V T is the smallest 
closed subobject containing both 8 and T. For (iii), we first show that 
8 =? T is closed. But for any subobject W of F, if W ::; 8 =? T 
then W A 8 ::; T, hence W A 8 ::; T. But W A 8 = WAS while 
8 and T are closed, so W A 8 ::; T is equivalent to W A 8 ::; T, or 
W ::; 8 =? T. In other words, W ::; 8 =? T implies W ::; 8 =? T for 
any subobject W. Thus 8 =? T is closed. By definition, 8 =?j T is 
the unique closed subobject of F with the property that for any closed 
subobject R, there is an equivalence R ::; 8 =?j T iff RAj 8 ::; T. But 
8 =? T is closed, and by Part (i) Aj = A so 8 =? T has this property. 
Thus (8 =?j T) = (8 =? T), as asserted. Finally (iv) follows from (ii), 
(iii), and the identity ,8 = (8 =? 0), valid in any Heyting algebra [in 
particular, in Sub£j(F), so that 'j8 = (8 =?j OJ)]. 

Theorem 3. In any topos £, the operator ": n --+ n of double 
negation is a Lawvere-Tierney topology, and the resulting category £~~ 
of ,,-sheaves is a Boolean topos. 

Proof: The three basic properties of negation in a Heyting alge
bra (Proposition I.8.1) at once give the following properties of double 
negation for any subobjects 8 and T of E in £, 

This means that 

": Sub,<;(E) --+ Sub,<;(E), 

(11) 
(12) 

(13) 

is a closure operator. By the basic result about "change-of-base", 
each arrow f: E --+ E' in £ gives a morphism of Heyting algebras 
1*: Sub(E') --+ Sub(E) (Theorem IV.8.1, external form), so in particu
lar a morphism which commutes with '. Therefore the closure operator 
(13) given by" is natural, and hence ": n --+ n is a Lawvere-Tierney 
topology. 

To prove that the topos £~~ of ,,-sheaves is Boolean, we need to 
show that the identity ,,8 = 8 holds for any subsheaf 8 of a ,,-sheaf 
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E (cf. Proposition 1 above). That 8 is a subsheaf of E means that 8 is 
a -,-,-closed subobject of E, i.e., by assumption 

in SubdE). (14) 

We need to prove that a similar identity -,-,8 = 8 holds in Sub£~~ (E) 
(but where -,-,8 now refers to the double negation in £~~!). First note 
that in Subc(E), as in any Heyting algebra, the identities -,0 = 1 and 
-,1 = 0 hold, hence -,-,0 = o. Thus by parts (ii)-(iv) of Lemma 2, 
the negation in the Heyting algebra Sub£~~ (E) is simply the restriction 
of the negation in the bigger Heyting algebra Subc(E). But then the 
assumption (14) gives the desired conclusion -,-,8 = 8 in Sub£~~ (E). 

For the case of a presheaf topos, the effect of double negation can be 
stated explicitly as follows. 

Lemma 4. For any subobject A>---> E in Sets cop and any object C 
in C 

(-,-,A)(C) = {x I x E E(C) and for all f: B -+ C there 

exists a g: D -+ Bin C with X· f· 9 E A(D)}. (15) 

Proof: For -,A, the explicit description is 

(-,A)(C) = {x I x E E(C) and for all f: B -+ C, X· f ~ A(B)}, (16) 

as stated in I.8(19)-or as may be proved directly by showing that 
the subobject described by (16)satisfies the definition of negation. For
mula (15) of the lemma follows by applying (16) twice. 

Cop 
Corollary 5. For any presheaf topos Sets the dense topology 

coincides with the double negation topology. 

Proof: First recall from V.4(6) that for any Grothendieck topology 
Jon C, the corresponding natural closure operator on subobject lattices 
can be described directly in terms of J, as follows: if E is a presheaf on 
C and A ~ E is any subpresheaf, then for all objects C E C and all 

x E E(C) 

x E A(C) iff the sieve {f: B -+ C I X· f E A(B)} covers C. (17) 

But recall (III.2.9) that the dense Grothendieck topology J on C has 
the property that a sieve 8 on C covers in this topology iff for every 
arrow D -+ C in C there exists an arrow B -+ D in C such that the 
composite B -+ C belongs to 8. Thus, for the dense topology (17) gives 

x E A(C) iff for every f: B -+ C in C there exists a g: D -+ B 

in C with X· f . 9 E A(D). 
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But this is exactly the description of -,-,A given in (15) above. 

For this reason, the dense topology is also called the double negation 
topology. 

In III.8(21) we proved that for any sheaf F for the dense topology on 
a small category C the lattice Sub(F) of subsheaves of F is a Boolean 

cop • 

algebra. This gives a second proof that Sh~~(Sets ) IS Boolean. 
Another property of the category of sets is that there are only two 

sub objects of the terminal object 1, namely, 1 itself and the empty set 
(= the initial object). In general, a topos E is called two-valued if 0 
and 1 are the only subobjects of the terminal object 1 of E. Because 
of the isomorphism Hom(l, 0) ~ Sube(l), this can be expressed also by 
stating that the subobject classifier 0 of E has only two global sections; 
in other words, there are only two global "truth-values". 

Although (v) of Proposition 1 might suggest this, being two-valued 
has nothing to do with being Boolean; two-valued means that there 
are only two global truth-values, whereas condition (v) of Proposition 1 
states that from an internal point of view 1 + 1 is the truth-value object. 
For example, if I is a set with at least two elements, then the slice 
category Setsj I is Boolean but not two-valued. 

A different example is the presheaf topos SetsMOP for a monoid M. 
Here the subobject classifier 0 = OM, as explained in §I.4, is just the 
set OM of all right ideals R in M, with the action of J E M on a right 
ideal R defined by R . J = { hEM I J hER}. Thus an arrow 1 ~ 0 is 
given by a right ideal R with every R· J = R. But if such an R contains 
any J, R· J is all of M, so there are only two arrows 1 ~ 0, sending 1 
to ¢ or M. This shows that this topos SetsMOP is two-valued. However, 
it is Boolean only if M is a group, as stated in Exercise 2 below. 

An arbitrary Boolean topos E may be turned into a two-valued topos 
by the filter-quotient construction of §V.9. One uses Zorn's lemma to 
find a maximal proper filter of subobjects of 1, and then applies the 
following proposition (see also Exercises 4 and 6). 

Proposition 6. Let E be a Boolean topos, and let U be a maximal 
filter of subobjects of 1 in E. Then the filter-quotient topos E jU is 
two-valued (and again Boolean). 

Proof: Since the canonical functor E ~ E jU is logical, it is clear 
[e.g., from (v) of Proposition 1] that EjU is Boolean if E is. Since U 
is a maximal filter any two subobjects U, Vel in E have (see also 
Lemma IX.10.1) 

U V V E U iff U E U or V E U. 

In particular, for any subobject U c 1, either U E U or -,U E U. Now 
suppose 1 ~ 0 is a morphism in E jU. By the description in §V.9, this 
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morphism can be represented by an arrow 1 x U ---+ 0 x U over U and 
hence by an arrow f: U ---+ 0 from some sub object U E U, while for any 
smaller U' c U with U' E U, the restriction of f to U' still represents 
the given morphism 1 ---+ O. Let V CUbe the subobject of U classified 
by f in £. Then V E U or -V E U; hence V E U or (U n -,v) E U. But 

. true 
f classIfies V, so the restriction of f to V is V ----> 1 ----> 0, while 

. . fu~ 
the restnctlOn of f to (U n --,V) is un --,V -----+ 1 -----+ O. Thus, the 
only morphisms 1 ---+ 0 in £ /U are the two represented in £ by true and 
false: 1 ---+ O. Thls proves that £ /U is two-valued. 

A next property which (according to the authors) the category Sets 
enjoys is the axiom of choice. This axiom can be expressed in many 
equivalent ways. The most familiar version asserts that the product 
fliEI Xi of a collection of nonempty sets Xi is again nonempty; or, 
alternatively, that any surjection p: X --# I of sets has a section s: I ---+ 

X, so ps = 1. [To pass from one version to the other, let Xi = p-l(i), 
X=UXd 

An arbitrary topos £ is said to satisfy the axiom of choice (AC) if 
every epimorphism X --# I in £ has a section. From the point of view 
of "the internal logic" of a topos, a weaker property is more relevant, 
however. Say that a topos £ satisfies the internal axiom of choice (lAC) 
if for any object E of £, the functor 

(_)E:£---+£, 

given by exponentiation with E, preserves epimorphisms. Notice that 
if p : X --# I is a morphism in £ with a section s: I ---+ X, then for any 
E E £ the map pE: XE ---+ IE again has a section sE: IE ---+ XE. Thus, 
a topos satisfying (AC) also satisfies (lAC). The converse is not true 
(d. Exercise 5). R. Diaconescu has shown that a topos which satisfies 
(lAC) is necessarily Boolean (Exercise 16). We shall come back to (the 
failure of) lAC in §4 below and to its relation with the internal logic in 

§5 and §6. 
In the category of sets, each function with domain the set A is com

pletely determined by its effect upon the elements x of that set A; in 
other words, f i- g: A ---+ B implies that there is an element x: 1 ---+ A 
for which fx i- gx. This amounts to asserting that the one-point set 
1 is a generator of Sets; we recall here that a family Q of objects of a 
category C is said to generate C iff f i- g: A ---+ B in C implies that 
fu i- gu for some arrow u: G ---+ A from an object G in the family Q. In 
general, a topos £ is called well-pointed if the terminal object 1 generates 
£; to exclude the trivial example for which £ is the category with only 
one object and one arrow, we will always assume that a well-pointed 
topos is also nondegenerate; i.e., 0 '-F- 1. Notice that a nondebenerate 
topos is well-pointed iff the functor Homc(l, - ): £ ---+ Sets is faithful. 
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There is also a related important property of a topos E, viz., that 
the family of all subobjects of 1 generates E. This property will be 
extensively discussed in Chapter IX. 

One has the following relations between the properties just men
tioned. 

Proposition 7. A well-pointed tapas E is both two-valued and 
Boolean. 

Proof: First observe that any nonzero object U (i.e., an object U 
not isomorphic to the initial object) in E must have a "global section", 
that is, an arrow 1 --+ U. For U has at least two different subobjects, U 
and 0, hence two different characteristic maps U =i n. Since E is well
pointed, there must be an arrow 1 --+ U distinguishing these two maps 
U=in. 

Now suppose m: U'r---* 1 is a subobject of 1 in E. If U -I- 0, then there 
is a morphism s: 1 --+ U as we just showed, so ms = 1, msm = m and 
hence U'r---* 1 must be an isomorphism. Thus E is two-valued. 

Next, we prove that E is Boolean. To this end, take a subobject 
8'r---* E of an object E of E; we shall show that 8 V -,8 = E [ef. Propo
sition l(iv)]. Suppose to the contrary that 8 V -,8 -I- E. The two 
characteristic maps E =i n for the different subobjects 8 V -,8 and E 
can be distinguished by a map x: 1 --+ E since E is well-pointed. In 
other words, there is a map x: 1 --+ E which does not factor through 
8 V -,8. But consider the pullback 

I I 
L>-------=x---+) E. 

Since E is two-valued, V is either 0 or 1. If V = 1, then x does factor 
through 8 V -,8, contradicting its choice. If V = 0 then, a fortiori, the 
meet in Sub(E) of x: 1 'r---* E and 8 'r---* E is 0, so x factors through -,8, 
again contradicting the choice of x. Thus, 8 V -,8 = E. 

Proposition 8. Let E be a tapas which is generated by subobjects 
of 1, and moreover has the property that for each object E, Sub(E) is a 
complete Boolean algebra. Then E satisfies the axiom of choice. 

Proof: Let p: X --+ I be an epimorphism in E. By completeness 
of Sub(I), we can apply Zorn's lemma and find a maximal subobject 
m: M 'r---* I such that p has a section s: M --+ X, i.e., ps = m. Suppose 
M -I- I. Since Sub(I) is Boolean, M has a complement -,M which is 
nonzero because M -I- I. Hence, since subobjects of 1 generate E, there 
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is a nonzero V S;;; 1 in £ and a map t: V --+ ....,M. Consider the pullback 

X': lX 

pll lp 
V: l....,M: l I. 

Since p is epi so is pi, and therefore X' =I- 0 since V =I- O. Again since 
subobjects of 1 generate, there is a nonzero object WeI and a map 
r: W --+ X'. Then p'r: W --+ V so W S;;; V. Moreover, 

tlW: W ~ t(W) S;;; I 

is an isomorphism [epi because t(W) is by definition the image of W, 
mono because WeI]. But M n t(W) = 0, so their supremum as a 
subobject of I is their coproduct, and s: M --+ X and re l : t(W) --+ X' 
patch together to form a section M U t(W) --+ X. Since t(W) =I- 0, this 
contradicts the assumed maximality of M. 

Corollary 9. Let P be a partially ordered set. Then the topos 
Sh(P, ....,....,) of sheaves for the dense topology satisfies the axiom of choice. 

Proof: By Corollary 5, Sh(P, ....,....,) is Boolean. Being a Grothendieck 
topos, it has complete subobject lattices (d. Proposition III.8.1). So the 
corollary follows by the preceding result, provided it can be shown that 
Sh(P, ....,....,) is generated by subobjects of 1. Let a: SetsPOP --+ Sh(P, ....,....,) 
be the usual associated sheaf functor. At the end of §III.6, we observed 
for elements p of P that the associated sheaves ay(p) of representable 
presheaves y(p) = P( - ,p) generate Sh(P, ....,....,). But for any PEP, the 
map P( - ,p) --+ 1 in SetsPOP is obviously mono. By left-exactness of 
a, the map ay(p) --+ 1 must then be mono in Sh(P, ""''''''), i.e., ay(p) is 
a subobject of 1 for any p in the poset P, and these sheaves generate 
Sh(P, ....,....,). The result thus follows from Proposition 8. 

2. The Cohen Topos 

Cantor's diagonal argument shows that the real numbers are not 
denumerable. Now if we write N for the set of natural numbers, the 
real numbers can be identified (at least as far as their cardinality is 
concerned) with subsets of N, i.e., with elements of the power-set PN. 
Thus the diagonal argument shows that there is no bijection N --+ PN, 
so that the strict inequality N < PN holds for the corresponding cardi
nal numbers. 

Cantor's continuum hypothesis then asserts that there is no (infinite) 
cardinal number between Nand PNi in other words, that every infinite 
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set of real numbers is either denumerable or has the same cardinality as 
the set of all reals. Paul Cohen devised the method of forcing so as to 
violate this hypothesis. In a nutshell, his method is as follows. Starting 
with a suitable model S of set theory, take in S some set B larger than 
PN (e.g., the set B = P PN, which is strictly larger than PN, again 
according to the diagonal argument). Then construct a new model S' 
of set theory in which there is a monomorphism 

g:B,........PN. (1) 

This will (almost, see below) mean that N < gB < PN holds for the 
corresponding cardinal numbers in S'. Since PN = 2N , one may replace 
the desired function 9 of (1) by its transpose 

j:BxN---'>2, (2) 

where j(b, n) = 0 or 1 accordingly as n E g(b) or n rf- g(b). Thus giving 
j really amounts to giving the graph in B x N of a many-valued function 
from B to N, consisting of all those pairs (b, n) with n E g(b). In order 
that 9 be a monomorphism one must require that, for band b' E B, 

b -I- b' implies j(b,n) -I- j(b',n) for some n. (3) 

In the given model S of set theory there is (according to the diagonal 
argument) no such function j. There are, however, finite approximations 
to j. Such a finite approximation will then consist of a finite subset 
Fp <;;; B x N and a function p: Fp -+ 2. One calls such (Fp, p) a condition 
p. In other words, a condition consists of two disjoint lists (bi , ni) and 
(Cj, mj) of elements of B x N (i = 1, ... , k,j = 1, ... , C), with k, £ finite 
and 

These conditions constitute a poset P, with partial order defined by 

q ::; p iff Fq ;;2 Fp and q restricted to Fp coincides with p. (4) 

Thus if q ::; p, then q is a closer approximation than p to the function 
j, i.e., q gives more information about j, and one usually says that the 
condition q is an "extension" of p. (In set-theoretic treatments, such a 
poset P is often called a "notion of forcing" , and the elements of Pare 
called forcing conditions. The relation to forcing will be explained in 
§§6, 7 below.) 

Now start with the topos Sets of classical sets, and consider this 
Cohen poset P equipped with the dense topology. The Cohen topos is 
by definition the corresponding category of double negation sheaves 

Sh(P, -.-.). (5) 
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As we saw at the end of the previous section, the Cohen topos is a 
Boolean topos (in which the subobjects of 1 generate) satisfying the 
axiom of choice. 

The purpose of this section and the next is to prove that in the Cohen 
topos Sh(P, -'-'), there exists an object K together with monomorphisms 

(6) 

where N is the natural numbers object of Sh(P, -,-,) and 0 is the subob
ject classifier; moreover, in Sh(P, -,-,) there is no epimorphism N -* K, 
nor is there an epimorphisms K -* ON. In other words we will prove: 

Theorem 1. There exists a Boolean topos satisfying the axiom of 
choice, in which the continuum hypothesis fails. 

We recall that K. Godel had used "constructible" sets to provide 
a model of Zermelo-Framkel (ZF) set theory in which the continuum 
hypothesis holds. 

Before we embark on the proof of Theorem 1, we should make a few 
remarks (some of which are addressed mainly to readers familiar with 
the theory of models of set theory). First of all, the topos-theoretic 
argument that we will present has essentially the same mathematical 
content as the original proof by Cohen that the continuum hypothesis 
is independent of the usual Zermelo-Frrenkel axioms of set theory. A 
Boolean Grothendieck topos~such as the Cohen topos Sh(P, -'-')~is a 
perfectly good "universe of sets" in which to do classical mathematics, 
but it is not exactly a model of ZF. However, it is not difficult to obtain 
a model of ZF from such a top os, by mimicking the construction of 
the cumulative hierarchy V"' defined for ordinal numbers 0: as Vo = 
0, ... , V,,+l = P(V,,), etc., inside the topos. (This is worked out in 
[Fourman, 1980].) The relation to Cohen's forcing method will also 
become more apparent in Sections 6 and 7 below, where we will develop 
a "forcing semantics" for an arbitrary topos. In addition, we should 
mention that, in our argument, the category Sets can be replaced by 
any elementary Boolean topos S which has an n.n.o. and satisfies the 
axiom of choice (for example, S can be a countable model of ZFC). It 
follows that the category Sh~~ (SpoP) of sheaves for the Lawvere-Tierney 
topology -,-, on the elementary topos Spop is a topos (by Theorems V.2.5 
and V.4.1), which is Boolean and satisfies the internal axiom of choice 
(or the external axiom of choice if S is well-pointed), and in which the 
continuum hypothesis fails. Finally, we remark that by using a filter
quotient construction, one can obtain a stronger version of Theorem 1: 
there exists a two-valued Boolean topos satisfying the axiom of choice 
but not the continuum hypothesis (see Exercise 7). 
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Let us now start our analysis of the Cohen topos, towards the proof 
of Theorem 1. We shall be mainly concerned with two kinds of sheaves, 
the representable ones and the "constant" ones. 

Lemma 2. For any p in the Cohen poset P, the representable 
presheaf y(p) E SetsPOP is a sheaf for the dense topology. 

The fact that y(p) is a sheaf will be used essentially in §3. 

Proof: Suppose that D is a sieve on q E P, so that d ~ q for all 
d E D. Suppose also that D covers q in the dense topology; then for 
r ~ q in P there is ad ED with d ~ r. Let {Xd IdE D} be a matching 
family of elements of y(p), so that Xd E y(p)(d) = Homp(d,p). Since P 
is a poset, this matching family shows that 

d~p for all d ED, (7) 

and to show that an amalgamation in y(p)(q) exists-necessarily unique 
since P is a poset-it clearly suffices to show that q ~ p. Suppose to 
the contrary that q does not extend p. Then there is a pair (b, n) in the 
domain Fp of p for which either q(b, n) =f. p(b, n) or q(b, n) is undefined. 
Let q': Fq U {(b, n)} ~ 2 be the condition obtained from q by adding 
a value at (b,n) different from p(b,n), if necessary. Then q' ~ q, so 
by density of D there is a d ~ q' with d ED. Then d 1:. p since 
d(b, n) =f. p(b, n), contradicting (7). 

Our next step is the construction in the Cohen topos Sh(P, -,-,) of 
something like the desired map B x N ~ 2 of (2); in other words, of 
a subobject of B x N. Actually we first build up a subobject A of the 
constant functor t1B x t1N = t1(B x N) in the category SetsPOP of 
presheaves, i.e., a subfunctor A c t1(B x N). The definition of A comes 
directly from the Cohen poset P: for any pEP, 

A(p) = { (b, n) I p(b, n) = o}. (8) 

Thus, A(p) is a subset of B x N, while if q ~ p in P then A(q) contains 
A(p). So A: pop ~ Sets is indeed a subfunctor of the constant functor 
t1(B x N). 

Lemma 3. The functor A is a closed subobject of t1(B x N) with 
respect to the dense topology; in other words, 

-,-,A = A in Sub(t1(B x N)). 

Proof: Choose PEP, b E B, and n EN. As stated in § 1 (below 
(17) there), one has (b,n) E -,-,A(p) iff for all q ~ p there exists an 
r ~ q with (b, n) E A(r), i.e., r(b, n) = O. Now if (b, n) 1- A(p), then 
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either p(b, n) = 1, in which case r(b, n) = 1 also for any r ::; p, so 
(b, n) tI. -,-,A(p); or else p(b, n) is undefined, and in this case we can 
choose q ::; p with q(b, n) = 1. Then r(b, n) = 1 for any r ::; q, so again 
(b, n) tI. -,-,A(p). This shows -,-,A ::; A. The reverse inclusion is obvious 
(and holds for any closure operator derived from a topology). 

Let us write ° for the subobject classifier of SetsPOP
, and 0" for 

that of Sh(P, -,-,). Then 0" is defined to be the equalizer of the identity 
and -,-,: ° =:::t 0, and Lemma 3 then states that the characteristic map 
tlB x tlN -7 ° of the subobject A factors through 0", say as 

f: tlB x tlN ----t 0". (9) 

The transpose of this map f is a map of presheaves 

(10) 

Lemma 4. The map 9 is a monomorphism in SetsPoP
• 

Proof: Since 9 is a map of presheaves, where monos are tested point
wise, it is enough to prove for each condition p that gp: tl(B)(p) -7 

(O~-SN))(p) is a mono of sets. To this end, we make the map gp more 
explicit. First, tl(B)(p) is the set B itself, while by the construc

tion of the exponential (O~-SN)) (p) is the set of natural transformations 
y(p) x tl(N) -7 0" ~ 0. For b E B, 

gp(b): y(p) X tlN -7 0" 

is the natural transformation given, for q ::; p and n E tl(N)(q) = N, 
according to the definition (8) of A by 

9p(b)(q,n)={rEPlr::;q, r(b,n)=O}. (lOa) 

Now suppose that band c are different elements of B. Since conditions 
such as p are finite, neither p(b, no) nor p(c, no) is defined for no E N 
chosen sufficiently large. Hence one can construct a condition r ::; p with 
r(b, no) = 0 and r(c, no) = 1. Then r E 9p(b)(p, no) but r tI. 9p (c) (p, no)· 
So 9p(b) i- 9p(C), and the lemma is proved. 

Recall that the inclusion of sheaves into presheaves has a left adjoint, 
the associated sheaf functor a, as in 

~ pop a ( ) Sets ---+ Sets ---+ Sh P, -,-, . (11) 

In this section and the next, we will write S for the sheaf atl(S) corre

sponding to a set S. 
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Corollary 5. The associated sheaf functor sends the map 9 of (10) 
to a monomorphism 

in the Cohen topos. 

Proof: The associated sheaf functor a is left exact, hence preserves 
monos; so it sends the presheaf monomorphism 9 to a monomorphism 
of sheaves 

m = a(g): all.(B) -+ a(n~iN)). 

By definition, all.B = Band all.N = N, so it remains to show that 
a(n~iN)) ~ n~~(N). But for an arbitrary presheaf X, there are natural 
bijections, where Hom denotes maps of presheaves and Homsh maps of 
sheaves, 

Hom(X, n~iN)) ~ Hom(ll.(N) x X, n~~) 

(since n~~ is a sheaf:) ~ Homsh(a(ll.(N) x X), n~~) 

(a is left exact:) ~ Homsh(all.(N) x aX, n~~) 

~ Hom (aX na~(N)) Sh ,~~ 

(n~~(N) is a sheaf:) ~ Hom(X, n~~(N)). 

Then applying the Yoneda lemma in both directions gives maps which 

by naturality show that the sheaves n~iN) and n~~ are isomorphic. 
[This argument of course applies more generally, cf. Exercise 5( c) of 
Chapter V.] 

The natural numbers object N of Sets gives a new natural num
bers object N of the Cohen topos Sh(P, -'-'), while n~~ ~ 1 + 1 = '2 
[ef. Proposition 1.1(v)] is the subobject classifier of Sh(P, -,-,). Thus, 

n~~ ~ P(N) is the "power-set" ofthe natural numbers in Sh(P, -,-,). So 
our construction using the poset P and its corresponding presheaf A has 
"forced" the given large set B--or more exactly, the corresponding sheaf 

B-to be inside the new power-set n~~, by way of the monomorphism 
m just described. Since also N>---> B in Sets, we thus have 

(12) 

in Sh(P, -,-,). However, for all we know now the inclusions in (12)may 
not give strict inequalities of cardinal numbers: perhaps B has become 
countable in Sh(P, -'-'), or of the same cardinality as P(N)! 

To prove that the continuum hypothesis fails in Sh(P, -,-,) we will 
now prove that the strict cardinal inequalities N < 2N < B in Sets will 
give strict cardinal inequalities 

(13) 
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between the corresponding sheaves in the Cohen topos. This will occupy 
the next section. Once this has been achieved, the proof of Theorem 1 
will be complete, since from (12)and (13)we obtain strict cardinal in
equalities 

(14) 

in Sh(P, -,-,). The sheaf B has disappeared from the result (14); its only 

task was to force the "real power-set" 2i'i in Sh(P, -,-,) to become very 

large--much larger than the "fake power-set" 2N coming from the power
set 2N of the topos Sets. It is this fake power-set and not necessarily B 
which violates the continuum hypothesis. 

In set theory, this method of Cohen has been used to establish many 
other independence results (for example, for the Souslin hypothesis on 
the real line, or to find a model of set theory in which every subset 
of the reals is Lebesgue measurable). In each such case, one uses a 
partially ordered set P of conditions chosen to fit the circumstances; 
these posets P are called "notions of forcing". The usual presentations 
have a somewhat different intuitive description, in that the role of the 
ultrafilter (in our case, used for the filter quotient) is emphasized; thus, 
for the Cohen P above, one constructs a generic filter G c P so that 
each pair (b, n) is in the domain of at least one pin G and so that any 
two bl , b2 with bl i= b2 are separated by some p, with p(bl , n) i= p(b2 , n) 
for some n. The union of these (b, n) E G then essentially provides the 
desired f*: B x N ~ 2. In this view, the role of the "generic" set is 
emphasized; one speaks of a model of set theory generated by this generic 
set. This view does not appear so strongly in our presentation, which 
is more directly motivated by an alternative formulation in terms of 
"Boolean-valued" models of set theory, discovered by Scott and Solovay, 
not presented by them, but explained for example in a book by J. L. Bell. 
(A Boolean-valued model is one in which the validity of set-theoretic 
formulas is given by truth values lying in some large Boolean algebra
in our presentation, the Boolean algebra n~~.) 

Nevertheless, it is our clear understanding that the ultimate mathe
matical content of all these methods (generic sets, Boolean-valued mod
els, and double-negation sheaves) is essentially the same. Indeed, a 
reading of the original paper by Paul Cohen clearly reveals the role 
there of double-negation. And sheafification has a wraith-like presence 
in Cohen's paper. 

Perhaps a full understanding makes use of all three approaches-
generic sets, sheaves, Boolean-valued models! 

Let us summarize the sheaf-theoretic argument. In a given category 
of sets we have the set N of natural numbers, its power set 2N and 
a still larger set B, so there is no mono g: B ~ 2N. Introd uce the 
poset P whose elements are "finite states of knowledge" about such a 
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(nonexisting) mono g. Thus each pEP specifies for each of a finite 
number of elements b E B a finite subset gp(b) eN and a disjoint finite 
subset g' (b), consisting of those elements already "known" not to be 
in g(b). p A subsequent state q :S p in the partial order P is one with 
(perhaps) larger sets gq, g~. Now treat these states of knowledge as if 
they were open sets in some "space" and specify that a sieve S on q 
will "cover" q in the corresponding (dense) topology iff for all r :S q, 
there is s :S r with s E S. Among the functors H: P -; Sets we 
distinguish those which are sheaves for these coverings. In particular, 
each p determines such a functor y(p) = Hom( - ,p) which is a sheaf, 
as proved from density by the way we can construct "con~itions" s :S q. 
Then we shift from sets B to presheaves 6.B to sheaves B, as in 

(B, N, 2) f--> (6.B, 6.N, 0) f--> (B, N, O~~), 

where the new truth values form the sheaf O~~ with each O~~(p) the set 
of all covering sieves on p. By the definition of the poset P (so defined 
for this very purpose) we can "mimic" the desired mono 9 by a map of 
presheaves 

gp: (6.B)(p) -; O~N(p) = Nat(y(p) x 6.N,O) 

in accord with the definition of the exponential objects in any functor 
category. Moreover, the description of this gp is such that the values 
of these natural transformations actually lie in the subobject classifier 
for sheaves. But the process of sheafification is left exact, so preserves 
monomorphisms and thus produces a mono, 

as stated in Corollary 3. This does indeed give the desired result, because 
y(p) is a sheaf and because, Sh(P) being Boolean, the passage S f--> S 
from sets to sheaves actually preserves cardinalities (proper monos stay 
proper )-as follows in the next section from a special countable chain 
condition (the Souslin property) of the Cohen poset P. 

In brief, sheaves for the dense topology on the poset of finite states 
of knowledge about the desired impossible monomorphism form the new 
model of sets in which that mono is really there. 

3. The Preservation of Cardinal Inequalities 

In this section we will define, for any two objects X and Y in a topos 
£, an object Epi(X, Y) S;; yX, called the "object of epimorphisms" from 
X to Y. This object has the property that Epi(X, Y) ~ 0 implies that 
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there is no epimorphism X -+ Y. Then we define for objects X and Y 
of [, 

X < Y iff there is a monomorphism X -+ Y, and Epi(X, Y) ~ O. 
(1) 

In the topos of sets, Epi(X, Y) is the set of epimorphisms, so X < Y 
means that the cardinality of X is strictly less than that of Y. For the 
Cohen topos Sh(P, -'-'), we will also prove for infinite sets Sand T with 
corresponding sheaves Sand T (as in §2) that 

Epi(S, T) ~ 0 (in Sets) implies Epi(S, T) ~ O. (2) 

Since the functor":' = a~: Sets -+ Sh(P, -'-'), which sends a set S to the 
sheaf S, is left exact, and hence preserves monos, this also means that 

S < T implies S < T. (3) 

Now in Sets we had the object N of natural numbers and we had also 
chosen a large set B with 

N < 2N < B (in Sets). (4) 

By (3) above and (12) of §2, this gives 

-- - --m --
N < 2N < B>---->P(N) (5) 

in the Cohen topos, where m is the monomorphism of Corollary 2.5. It 
follows by Lemma 5 with m: Z >----> Y below that 

(6) 

which is exactly what was needed to complete the proof of Theorem 2.1. 
Let us fix objects X and Y in a topos [ and define the object 

Epi(X, Y) of epimorphisms from X to Y. For a "parameter object" 
E of [, we first define an operation 

imE: [(E, yX) -+ [(E, nY ), (7) 

as follows. Given f: E -+ Y x, let lEx X -+ Y be its transpose, and 
let ImE(f) be the image of the map ('TrI' f): E x X -+ E x Y, as in the 
diagram 

E x X ___ -----.:.(---'71'1:.,::,1:...:) ___ -+1 E x Y 

~/ (8) 

ImE(f). 

Thus, ImE(f) is a subobject of ExY, and we define imE(f): E -+ nY to 
be the transpose of the characteristic map E x Y -+ n of this subobject 

ImE(f)· 
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Lemma 1. The map imE: £(E, yX) -> £(E, OY) is natural in E. 

Proof: Let a: E' -> E be an arbitrary map of £. We need to show 
that for an f: E -> Y x, the identity imE' (f 0 a) = imE (f) 0 a holds. 

Now fa = j(a x 1): E' x X -> Y; thus, the diagram 

E'xX 
axX )ExX 

(7rdj?)) 1 1 (7rl,j) (9) 

E' x Y 
aXY 

)ExY 

is easily seen to be a pullback. Therefore 1mE' (f a) is the pullback of 
ImE(f) along a x Y, because epi-mono factorizations are stable under 
pullback, cf. Theorem 1V.7.2. But, as indicated in the diagram below, 
pulling back subobjects along a x Y: E' x Y -> E x Y corresponds to 
composition of characteristic maps with a x Y, and the latter corresponds 
to composition with a under the exponential adjunction: 

Sub£(E x Y) Hom£(E x Y,O) 

(axy)-ll 1 (axY)* (10) 

Sub£(E' x Y) ~ Home(E' x Y,O) ~ ( , Y = Hom£ E ,0 ). 

This proves the lemma. 

By the Yoneda lemma, we conclude that the above natural transfor-
mation 

is induced via composition by a uniquely determined map 

im: yX -> OY. (11) 

true 
Now let ty: 1 -> OY be the transpose of 1 x Y ~ 1 ~ 0, and 
define Epi(X, Y) as the pullback of ty along im, 

Epi(X, Y) ----+) 1 

I lt y 

YX---__+)oy. 
im 

(12) 

Intuitively, Epi(X, Y) has thus been constructed as the object of those 
functions from X to Y whose image is all of Y. (There is also a more 
"elementary" description, which doesn't use Hom-sets, cf. Exercise 8.) 
More formally, Epi(X, Y) "classifies" parameterized epimorphisms in the 
following sense: 
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Lemma 2. For any object E of E, a morphism f: E -+ Y x factors 
through the subobject Epi(X, Y) >---+ yX iff (7rl'!): E x X -+ E x Y is 
an epi in E. 

Proof: By the pullback (12), such a map f factors through 

Epi(X,Y) iff imof = imE(f) is the map E ---+ 1 ~ nY . Taking 
the exponential transpose, this means by the definition of imE that the 

true 
characteristic map of ImE(f) >---+ Ex Y is the map E x Y ---+ 1 ---+ n. 
This, by (8)in turn, means that (7rl'!): E x X -+ E x Y is epi. 

This result includes the desired property of Epi: 

Corollary 3. In a nondegenerate topos, Epi(X, Y) = 0 implies that 
there is no epimorphism X -+ Y. 

Proof: Any g: X -+ Y can be expressed, via X ~ 1 x X, as a 
transpose g = ! of some f: 1 -+ Y x. If g is epi, the lemma with E = 1 
shows that f must factor through Epi(X, Y) by some map E = 1 -+ 

Epi(X, Y). But Epi(X, Y) = 0, while by Proposition IV.7.4 any arrow 
to 0 in a topos is an isomorphism, hence 1 ~ O. But 1 ~ 0, since the 
topos is not degenerate. 

One has to be somewhat careful with the functorality of Epi(X, Y). 
However, the following two lemmas suffice to deduce (6) from (5) above. 

Lemma 4. Let p: Y -+ Z be an epimorphism in E. Then the 
induced map pX : yX -+ ZX restricts to a map Epi(X, Y) -+ Epi(X, Z). 

Proof: By the natural correspondence expressed by Lemma 2, it 
suffices to prove for an arbitrary arrOw f: E -+ Y x in E that if 

(7rl'!): E x X -+ Ex Y is epi, then so is (7rl' (pXa I)): E xX -+ Ex Z. 

But (7rl' (pXa I)) = (E x p) 0 (7rl' !); so this follows from the fact that 
the product E x p is epi if p is, as one may prove by exponential trans
position (cf. Proposition IV.7.7). 

Lemma 5. In a Boolean topos, let X be an object, m: Z -+ Y a 
mono and Zo: 1 -+ Z a global section of Z. If Epi(X, Z) ~ 0 then also 
Epi(X, Y) ~ O. 

Proof: Since E is Boolean we may write Y = Z+Z', where Z' = -,Z 
is the complement of Z in the Boolean algebra of sub objects of Y. Then 
id: Z -+ Z and Z' -+ 1 -+ Z patch together on the coproduct to a map 
r: Y = Z + Z' -+ Z with rm = id. Thus r is epi, and by Lemma 4, r 
induces a map Epi(X, Y) -+ Epi(X, Z), so the result follows since in a 
topos any arrow to 0 is an isomorphism (Proposition IV.7.4). 

In particular, Lemma 5 implies that from Epi(2N, B) ~ 0 it follows 

that Epi(2N,21'l) ~ 0, so (6) indeed follows from (5). To complete the 
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proof of Theorem 2.1, it thus remains to show that (2) holds. This uses 
a special combinatorial property of the Cohen poset P. 

Recall that a topological space T is said to have the Souslin property 
if any family of pairwise disjoint (nonempty) open subsets is at most 
countable. Similarly, for an object X of a topos E, we say that X 
has the Sou8lin property if any family A of sub objects of X which are 
pairwise disjoint, i.e., for U, V E A, 

U 1\ V = 0 in Sub(X) whenever U -=I- V, 

is at most countable. [One also says that the Heyting algebra Sub(X) 
satisfies the countable chain condition.] A Grothendieck topos E is said 
to have the Sou8lin property if it is generated (cf. §1) by objects having 
the Souslin property. 

For a Grothendieck topos E, we write S f-+ S for the functor Sets --+ 

E which is left adjoint to the global sections functor, as discussed earlier 
in this chapter at (2.11). So if (C, J) is a site for E, i.e., if E ~ Sh(C, J), 
then S is the associated sheaf of the constant presheaf t1S: cop --+ Sets 
with value S. 

Proposition 6. Let E be a Grothendieck topos. If E has the Souslin 
property, then for any two infinite sets Sand T, Epi(S, T) ~ 0 in Sets 
implies Epi(S, T) ~ 0 in E. 

Proof: Suppose to the contrary that Epi( S, T) ¥- 0 for such infinite 
Sand T. This means that Epi(S, T) has at least two subobjects, hence 
at least two different arrows to n. By our assumption on the generators 
of E, this means that there is a nonzero object X of E with the Souslin 
property and for which there is a morphism f: X --+ Epi(S, T). By 
Lemma 2, f corresponds to an epimorphism 

over X in E. For two elements 8 E Sand t E T, consider the corre
sponding arrows s: 1 --+ Sand t: 1 --+ T in E, and use these arrows and 
9 to construct the following pullback diagram in E: 

Us,t) ) Pt h )) X x 1 ~ X 

I I llxt 
X ~ X X 1) 

IX"? 
)XxS 

9 
)) X x T. 

Let W be the set {(8, t) E S x T I Us,t -=I- O}. We claim that for any 
given t E T, there is at least one 8 E S such that (8, t) E W. To see this, 
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note first that S ~ ilsES 1 in Sets, so S ~ ilsES 1 in £, and hence, 
since X x ( - ) preserves coproducts [being left adjoint to exponentiation 
( - )X], there is an isomorphism 

u (X x 1) ~ X x S. 
sES 

Since pulling back along Pt ----> X x S preserves coproducts (by Theo
rem IV. 7.2), this yields 

Furthermore, the map h: Pt ----> X is epi since 9 is (by Proposi
tion IV.7.3), so Pt is nonzero since X is. Since Pt is the coproduct 
of the Us,t as just shown, at least one of the Us,t must be nonzero. This 
proves that for any given t E T there is at least one 8 E S with Us,t =f. 0, 
as claimed above. In other words, 7r2: W ----> T is a surjection of sets. 

On the other hand, the vertical arrows Us,t)---> X in the preceding 
diagram represent each Us,t as a subobject of X, and for distinct t and 
t' one has Us,t 1\ Us,tf = O. Indeed the square 

o ) 1 

1 lt' 
1 ) T 

is a pullback in sets if t =f. t'; therefore since both functors~: Sets ----> £ 
and X x ( - ): £ ----> £ preserve pullbacks as well as colimits (and hence 
preserve zero), the subobjects 1 x t: X x 1 ----> X x T and 1 x P: X x 1 ----> 

X x T are disjoint. But then so are their pullbacks Us,t and Us,t f. 
Since X has the Souslin property, it follows that for any given 8 

the set Ws = {t E T I (8, t) E W} is at most countable. Now S is 
infinite, so this implies that the cardinality of the set W = USES WS 
equals the cardinality of S. Thus, there is a bijection of sets S ~ W, 
which when composed with 7r2: W ---» T gives a surjection of sets S ---» T, 
contradicting the hypothesis. 

The following result now completes the argument. 

Lemma 7. Tbe Caben tapas bas tbe Sauslin property. 

Proof: The representable objects y(p) for pEP generate the Cohen 
topos Sh(P, •• ), by Lemma 2.2. These are all subobjects of 1, so since 
the Souslin property is obviously inherited by subobjects, it suffices to 
show that 1 E Sh(P, •• ) has the Souslin property. To this end, let 
{Ui liE I} be a family of nonzero subobjects of 1 such that Ui n Uj = 0 
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whenever i -:f j. We have to show that this family is countable. Since 
the objects of the form y(p) generate, we can pick for each index i some 
Pi E P such that Y(Pi) ::; Ui . Then Y(Pi) /\Y(pj) ::; Ui nUj = 0 if i -:f j; so 
there is no rEP with r ::; Pi and r ::; Pj, i.e., Pi and Pj are incompatible 
conditions in P. (A set A c P consists of incompatible conditions if 
P -:f q in A implies that there is no r in P with r ::; P and r ::; q.) Thus, 
Lemma 7 will follow when we prove the following fundamental property 
ofP. 

Lemma 8. On the Cohen poset P, any set of incompatible condi
tions is necessarily countable. 

(One also says that P satisfies the "countable chain condition" be
cause it means that any "antichain" in P is countable!) 

Proof: Given a set A of incompatible conditions, let An be the set 
of those conditions P in A for which the domain Fp of P consists of 
exactly n elements. Then it clearly suffices to show that each An is a 
countable set. This will be done by induction on n. For n = 0 there is 
nothing to prove. So suppose we have proved that any set of mutually 
incompatible conditions, each of n - 1 elements, is a countable set. To 
prove that An must thus be countable also, write An = Um An,m, where 
An,m = {p E An I :3b E B such that p(b, m) is defined}. It is then 
enough to show that each An,m is countable. Pick for each P E An,m a 
bp E B such that p(bp , m) is defined, and write, for i = 0, 1, 

An,m,i = {p E An I p(bp,m) = i}. 

Since for any m and i, the elements of An,m,i are pairwise incompatible, 
so is the set of their restrictions, written pi ... , 

Rn,m,i = {p I Fp - {(bp, m)} : P E An,m,i}' 

This is a set of conditions on n - 1 elements, hence a countable set, by 
the induction hypothesis. Therefore An,m,i is countable, and hence so is 
An,m = An,m,o U An,m,l' This completes the proof. 

The argument in this section can also be profitably understood in 
reverse order. First, by the above combinatorial argument, the Cohen 
poset satisfies the countable chain condition (CCC). The elements P of 
this poset provide generators y(p) = Hom( - ,p) for the presheaf and 
sheaf categories, and thereby suffice to prove that the latter category has 
the Souslin property, a direct reflection of CCC on subobject lattices. 
In turn, this property, viewed as a restriction of the "size" of P, suffices 
to establish the required preservation of cardinal inequalities. 
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4. The Axiom of Choice 

In this section we will construct another top os of double-negation 
sheaves 

(1) 

which shows that the axiom of choice is independent of the other axioms 
of set theory. The site A for this construction was found by Peter Freyd; 
it gives the following result. 

Theorem 1. There exists a two-valued Boolean Grothendieck tapas 
F with a natural numbers object N which has a sequence of objects 
Fa, Fl , F2 , ... such that 

(i) for each natural number n, the unique map Fn -+ 1 is epi, 
(ii) the product TIm Fm exists and is the initial object 0, 

(iii) each Fn is a subobject of P(N). 

Observe first that the topos F of (1), like any Grothendieck topos, 
indeed has a natural numbers object N. As noted in §1, this object 
can be constructed as the countable coproduct of copies of the terminal 
object: 

(2) 

The objects Fn of Fare nonempty by condition (i) of the Theorem, 
but have zero product by condition (ii). This violates a familiar version 
of the external axiom of choice (AG). Now it is relatively easy to find a 
Boolean topos [; in which AC fails, but much harder to find such a topos 
in which the internal axiom of choice (lAC) fails. But it is this axiom 
lAC which we wish to violate, to demonstrate the "independence" of 
the axiom of choice, since lAC for a topos F expresses the fact that the 
axiom of choice holds "in the internal logic" of the topos F, as will be 
explained in §6 below. 

The infinite product TIm Fm used in Theorem 1 is to be constructed 
as follows: The unique maps Fm -+ 1, one for each natural number m, 
combine, by the definition of the coproduct, to give a map 

p: U Fm -+ U 1 ~ N (3) 
mEN nEN 

to the natural numbers object N of (2). Now construct the pullback P 
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in 

P k ) (U Fnl~ 

I 
nEN 

lp~ (4) 

1 )NN 
id 

where id is the transpose of the identity map N ----+ N. Then for any 
object X of F, the universal property of this pullback square implies that 
there is a natural bijective correspondence between maps f: X ----+ P in 
F and maps (transposes of kf) 

g: N xX ----+ U Fn (5) 
nEN 

such that po 9 = 71"1 : N x X ----+ N. But 

nEN n n 

so 9 is given simply by a sequence of maps gn: X ----+ Un Fn , while the 
identity po 9 = 71"1 above implies that gn sends X into the summand Fn 
of this coproduct. Applied with f: X ----+ P replaced by the identity map 
1: P ----+ P, this gives a sequence hn : P ----+ Fn, and by naturality hnf = 
gn. In short, a map f: X ----+ P or 9 as in (5) is uniquely determined 
by a sequence of maps gn: X ----+ Fn with hnf = gn. Therefore P is the 
infinite product TIn Fn with the maps hn : P ----+ Fn as the projections. 

Now by (i) of the theorem-which of course still has to be proved
each map Fn ----+ 1 is epi. Therefore so is the map p: Um Fm ----+ Un 1 ~ 
N, as a coproduct of tpis. Thus (ii) of the theorem, when proved, 

implies that the map p~ occurring in the diagram (4) cannot be epi, 
since its pullback along id is 2 ~ P ----+ 1, which of course is not epi. In 

other words, the functor ( )N does not preserve epis, and therefore, the 
internal axiom of choice fails in F. 

To transfer this result to the usual set-theoretic axioms, recall that 
the discussion in §2 of the continuum hypothesis mentioned that any 
Boolean Grothendieck topos F gives a model of Zermelo--F'rrenkel set 
theory, constructed by mimicking within F the standard formulation 
of the cumulative hierarchy. In this connection, it is important that 
the objects Fn used above are "small", as expressed by part (iii) of 
the theorem, so that they will lie inside the cumulative hierarchy so 



4. The Axiom of Choice 293 

constructed. (Incidentally, in the case at hand, the objects Fn for n ~ 0 
generate the whole topos F, so it follows that any object of F lies within 
this cumulative hierarchy.) 

We will find the following description useful. 

Lemma 2. In a presheaf category SetsCOP
, a subobject A r--t 0 is 

dense for the ,,-topology iff A meets every nonzero subobject B of 0 
(in other words, iff B -# 0 implies B n A -# 0). 

More briefly: Dense means meets everything which is nonzero. 

Proof: Suppose first that the subobject A is dense for the "
topology; i.e., that "A = O. Every subobject B of 0 then has 
B c "A; hence, by the definition of negation, B n ,A = O. Since 
B -# 0 one cannot then have B c ,A, hence, by the definition of nega
tion again, B n A -# O. 

For the converse, recall that A n ,A = 0 in any Heyting algebra. 
Thus, if a subobject A meets every nonzero subobject, it follows that 
,A must be 0 and hence that "A = 0, so A is indeed " dense. 

This proof also applies to any Heyting algebra, to show that "x = 1 
iff Y -# 0 implies y 1\ x -# O. 

We now prove Theorem 1. As a site for this topos F of (1), take the 
category A with objects all the finite sets of the form 

n={O,l, ... ,n}, 

while a morphism f: n -+ m in A is any function from {O, 1, ... , n} to 
{O,l, ... ,m} with n ~ m and f(i) = i for all i:S; m. In other words, 
A is the category of all nonzero finite (von Neumann) ordinals and the 
retractions of one ordinal to another smaller one. The following two 
simple properties of the category A will be crucial: 

(A) HomA(n, m) -# 0 iff n ~ m; 
(B) if two maps f, g: n -+ m of A fit into a commuting square of A 

p h )n 

kl 19 

n 
f 

)m, 

then f = g. 

N ow let H n = HomA ( - , n) be the representable functor given by 
n, and consider its sheafification 
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where a is the usual sheafification functor 

AOP 
a: Sets -* Sh,,(A) = F. 

We will prove that the sheaf category F is two-valued and that this se
quence Fn of objects in F satisfies the conditions (i)-(iii) of the theorem. 

To state that F is two-valued means that the only subobjects of 1 in 
F are the inevitable subjects 0 and 1. Indeed, in the presheaf category 
SetsA oP, a subfunctor of 1 which is nonzero (and so equal to 1) at some 
integer n must also be nonzero at each m ~ n, because there is in A an 
arrow from m to n. Hence the subfunctors of 1 in presheaves are the 
empty functor 0 and the functors Un (n = 0, 1, ... ) given by Un(m) = 0 
if m < nand Un(m) = 1 if m ~ n. Now since Un n Um ;;2 Um+n, every 
Un meets every other Um; i.e., every Un is dense. But by V.2.4, the 
only dense subobject of 1 which is a sheaf is 1 itself, so that among the 
Un, the presheaf 1 = Uo is the only sheaf. Thus 0 and 1 are the only 
subobjects of 1 in F, and F is indeed 2-valued. 

For the sheaf determined by a set S we adopt the notation of the 
previous sections and so write S ....... S for the composition of the functors 

6 AOP a 
Sets -----7 Sets ---+ Sh" (A) = F. 

Since sheafification is left exact and a left adjoint it preserves terminal 
objects and coproducts; hence 

2 = 1 + 1, (6) 

where 2 = {O, I} is a two-element set. Moreover, since :F is Boolean, 
its subobject classifier n is 1 + 1 (see Proposition 1.1), so, writing N for 
the natural numbers object of F [ef. (2)], we have 

peN) ~ 2N ~ IT 2. (7) 
nEN 

Lemma 3. The subobject classifier n = 2 is an injective presheaf. 

Proof: Recall from (8) in §V.2 that for any topos £, and any topol
ogy j on £, the object nj is a retract of the subobject classifier n for £', 
hence is injective in £, since n is (§IV.lO). The statement of the lemma 
is a special case, when £, = SetsAOP and j is the -----topology. 

Next we show that there is for each m a monomorphism Fm -* peN), 
as required for (iii) of the theorem. So consider any two distinct maps 
f =1= g: n -* m in A and the induced maps 

f* = Hom( - ,1), g* = Hom( - ,g): Hn -* Hm = Hom( - ,m). 
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Since f =I- g, property (B) above of the category A states that the images 
f* and g* are disjoint subfunctors of Hmo Each of them has a map to the 
terminal object. Since they are disjoint, their coproduct is their join, by 
Proposition IV. 7.6, so this gives a map 

But 2 is an injective presheaf, so the map on this subobject extends to a 
map t j,g: Hm --+ 2; by its construction, this map gives different images 
for the two elements f and g of Hm = Hom( -, m). Now for any fixed n 
and m there are only a finite number of such pairs (f, g) with f =I- g, and 
there are only a denumerable number of finite ordinals n. Therefore, all 
these maps tj,g combine to give a monomorphism 

Hm>--> II 2 = P(N) 
iEN 

of presheaves. But the product IT 2 is a sheaf, so the -.-.-closure of 
this subobject Hm is its sheafification Fm C P(N). Thus we have 
monomorphisms 

Hm >--> Fm >--> P(N) 

where the first is dense, as required for condition (iii) of the theorem. 
Part (i) of the theorem now follows easily. Since Hom( - ,n) = 

Hn >--> Fn is a mono and Hn is not empty, Fn is not the initial object 0 
of F. Thus, if we factor Fn --+ 1 as an epi Fn --# Vn followed by a mono 
Vn >--> 1, the image Vn cannot be O. Since F is two-valued, this image 
must then be the terminal object 1 of F; in other words Fn --+ 1 is epi, 
as required for Part (i) of the theorem. 

Finally, we prove Part (ii), that the infinite product P = ITm Fm 
constructed in (4) is O. If not, there is some n with P(n) =I- 0, and 
the projection P --+ Fm then implies that Fm(n) =I- 0 for all m; we 
will show to the contrary that Fn+l(n) = 0 for all n. Otherwise, there 
would be an element of Fn+l(n) and hence by the Yoneda lemma a 
natural transformation u: Hom( - ,n) --+ Fn +1 . Now pull back the 
dense inclusion (sheafification) TJ: Hom( - ,n + 1) --+ Fn +1 along u to 
obtain a dense subobject Q of Hom( -, n), as in the diagram 

U 
I 

) Hom( -, n + 1) Q 

I lry (8) 

Hom( - ,n) u ) Fn +1 · 
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Here Q -=f- 0, since by Lemma 2 the zero-object can never be dense. 
Because Q -=f- 0 there is some natural number m with Q( m) C 

Hom(m, n) nonzero; choose in Q(m) such a g: m -> n and let its im
age u'g in (8) be h: m -; n + 1. Therefore, m 2': n + 1. Now by the 
description of the category A there are maps f, f': m + 1 -> m in A 
sending m + 1 to n + 1 and to g( n + 1) :::; n, respectively. It follows that 
9 0 f = 9 0 1'. Therefore, 

hf = u'(g) 0 f 

= u'(gf) 

= u'(gf') 

= u'(g) 0 l' 
= hI' 

(by definition of h), 

(by the naturality of u'), 

(again by naturality), 

(by definition of h). 

But hf(m+ 1) = h(n+ 1) = n+ 1 since n+ 1:::; m, while hf'(m+ 1) = 
h(g(n + 1)) = g(n + 1) :::; n. Thus hf -=f- hI', a contradiction. 

This shows that there are no maps Hom( -, n) -; Fn+l' as asserted. 
The proof of Theorem 1 is now complete. 

5. The Mitchell-Benabou Language 

Ordinary mathematical statements and theorems can be formu
lated with precision in the symbolism of the standard first-order logic. 
This symbolism starts with constants 0, 1,2, ... ,a, b, c, ... and variables 
x, y, Z, ... combined by the appropriate primitive operations so as to 
give terms such as x 2 or y + z. These terms enter into primitive re
lations <, =, ... to yield formulas such as x < y or x + y = Z; then 
formulas are combined by propositional connectives ("and", "or", "not" 
and "implies", written as II, V, ...." =}) and by quantifiers (\ix, for all x 
and 3x, there exists an x) to yield more complicated formulas. In the 
language of real numbers (or of natural numbers) such a formula might 
be 

(\ix)((3y)(x < y) II (x < 0 V x 2': 0)). 

Alternatively, there are formulas in other languages such as the language 
of elementary geometry or that of set theory. It is by no means necessary 
or usual to explicitly state all theorems of interest in such a formal way. 
But there are at least four objectives for occasional such formulations, 
as follows: 

(1) They provide a precise way of stating theorems. 
(2) They allow for a meticulous formulation of the rules of proof of 

that domain, by stating all the "rules of inference" which allow 
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in succession the deduction of (true) theorems from the axioms 
for the domain. 

(3) They may serve to describe an object of the domain-a set, an 
integer, a real number-as the "set of all so and so's" thus, in the 
language of natural numbers, {x I x 2 > 2 } is a description of the 
upper half of a well known Dedekind cut. 

(4) They make possible a "semantics" which provides a description 
of when a formula is "true" (that is, universally valid). Such a se
mantics may specify what the formula "means" in terms of some 
domain of objects assumed to be at hand. Thus the formulas of 
Boolean algebra have an interpretation in terms of the subsets 
A, B, C, ... of some assumed universe; the rules of the seman
tics involved will state, for example, that x E (A n B) iff x E 

A and x E B, and so on. For Heyting algebras there is a corre
sponding semantics in terms of open subsets of a given topological 
space. 

These various purposes are interrelated. For example, the rules of 
inference in (2) are said to be "sound" when they yield semantically 
valid theorems from valid axioms; they are "complete" when they yield 
all such theorems. These notions are essential for basic results such as 
the famous Godel completeness and incompleteness theorems. 

In such languages it is a common custom to use different lists of 
letters for variable elements of different sorts or types. Thus one uses 
m, n, ... for elements of the the set N of natural numbers, x and y for real 
variables, z and w for complex variables, f and 9 for functions, and so on. 
For a topos £ we will follow much the same procedure, by regarding the 
objects X, Y, . .. of £ as the "sorts" or "types" and introducing a stock of 
variables for each type. We thus propose to describe a "language" (called 
the Mitchell-Benabou language) for £; at the end of this section we will 
give a description of validity for the formulas of this language [point 
(4) above]. As for point (2), we will observe that the rules of inference 
appropriate to a general topos are precisely the standard rules for the 
first-order intuitionistic predicate calculus. This striking observation 
shows that these rules are supported by the geometrical aspects of sheaf 
topoi. 

Finally, as in point (3), we will show that formulas ¢(x) in a variable 
x of the Mitchell-Benabou language can be used to specify objects of £ 
by expressions of the form 

{x I ¢(x)} (1) 

-in the fashion common in set theory. This shows how a topos be
haves like a "universe of sets". By using such expressions one can, for 
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example, mimic the usual set-theoretic constructions of the integers, ra
tionals, reals, and complex numbers and so construct in any topos with 
a natural numbers object the objects of integers, rationals, reals, ... 
(see §8 below). In §6 we will show how the work of Beth and Kripke 
in constructing a semantics for intuitionistic and modal logics can also 
provide a semantics for the Mitchell-Benabou language of a topos E. In 
practice, this means that one can perform many set-theoretic construc
tions in a topos and define objects of E as in (1); however, in establishing 
properties of these objects within the language of the topos, one should 
use only constructive and explicit arguments. 

Let us now specify the (Mitchell-Benabou) language of a given topos 
E. The types of this language are the objects of E. We will describe the 
terms (expressions) of the language by recursion, beginning with the 
variables. For each type X there are to be variables x, x' , .. , of type X; 
each such variable has as its interpretation the identity arrow 1: X ----> X. 
More generally, a term a of type X will involve in its construction certain 
(free) variables y, z, w, ... , perhaps some of them repeated. We list them 
in order of first occurrence, dropping any repeated variable, as y, z, w. 
If the respective types are Y, Z, W, then the product object Y x Z x W 
in E may be called the source (or domain of definition) of the term a, 
while the interpretation of a is to be an arrow 

a: Y x Z x W---->X 

of E. (In the event that a contains, say, two different variables y, y' of 
the same type Y, its source will involve a corresponding binary product 
Y x Y.) For simplicity, our notation will not distinguish between a term 
a (which is a linguistic object) and its interpretation (which is an arrow 
in the topos E). 

Here are the inductive clauses which simultaneously define the terms 
of the language and their interpretation: 

• Each variable x of type X is a term of type X; its interpretation 
is the identity x = 1: X ----> X. 

• Terms a and T of types X and Y, interpreted by a: U ----> X and 
T: V ----> Y, yield a term (a, T) of type X x Y; its interpretation 
is 

( ap, Tq ): W ----> X x Y, 

where the source W has evident projections p: W ----> U and 
q: W ----> V. Here the notation ( , ) is used ambiguously, 
both for the new term and for the familiar map into the product 
XxY. 

• Terms a: U ----> X and T: V ----> X of the same type X yield a 
term a = T of type 0, interpreted by 

(a = T): W (ap,Tq) X x X __ DX-'C---f) 0, 
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where Wand (ap, Tq) are as in the previous case, while 8x is 
the usual characteristic map of the diagonal Do: X >-+ X x X. 

• An arrow f: X -+ Y of £ and a term a: U -+ X of type X to
gether yield a term f oa of type Y, with its obvious interpretation 
as an actual composite 

foa:U~X~Y, 

• Terms B: V -+ yX and a: U -+ X of types yX and X yield a 
term B(a) of type Y interpreted by 

B(a): W --+ yX x X ~ Y, (2) 

where e is the evaluation and the map from W is (Bq, ap), much 
as above. 

• Terms a: U -+ X and T: V -+ nX yield a term a E T of type n, 
interpreted as 

a E T: W (Up,Tq)) X x OX _~e,,-----+) n. 

• A variable x of type X and a term a: X x U -+ Z yield >'xa, a 
term of type Z x, interpreted by the transpose of a, 

Here (but only here) we have used the notation from the >.
calculus for exponential transposition. (Notice that in the term 
>'xa, the variable x no longer occurs "free"; and, accordingly, the 
factor X has disappeared from the source of .Axa.) 

Terms 1;, 'ljJ, ... of type n will also be called formulas of the language. 
To such formulas we can apply the usual logical connectives 1\, V,::::},-', 

as well as the quantifiers, to get composite terms, also of type n. In 
principle, this has already been defined: the meet 1\: n x n -+ n given by 
the internal Heyting algebra structure of n [see IV.6(3)] gives for terms 

/\ 
1;: U -+ nand 'ljJ: V -+ n a new term 1\ 0 ( 1;, 'ljJ ): W -+ n x n ---> n, 
by the clauses above. As usual, we will denote this term more briefly as 
1;1\'ljJ. The same procedure applies to the other propositional connectives. 
Thus 

/\ ) n, 

v ) n, 

=>- ) n, 

1; V 'ljJ: W (¢p,,pq)) n x n --'---. 

1;::::} 'ljJ: W (¢p,,pq\ n x n -=---. 

-,1;: W ----'¢-~) n ------.:--+ ) n. 
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Next we interpret the quantifiers: suppose ¢(x, y) is a formula containing 
a free variable x of type X, and others y, ... which together give a source 
X x Y E & as above. Then ¢(x, y) is interpreted by an arrow X x Y ----7 0 
of &. The familiar logical formalism yields a formula 

'Vx¢(x, y) (3) 

which no longer contains the variable x as a free variable, hence should 
be interpreted by an arrow Y ----7 O. This can be done as follows: consider 
the unique map p: X ----7 1, the induced map P(p): PI ----7 PX, and its 
internal adjoints 

OX = P X (P(p) PI = 0, 
:lp 

as in §IV.9 Theorem 2 and Proposition 4. Now the formula ¢(x, y) gives 
a term AX¢(X,y): Y ----7 OX = PX, and hence aterm'VpoAx¢(X,y): Y----7 
O. We simply regard 'Vx¢(x, y) as shorthand for 'Vp 0 (AX¢(X, y)). Exis
tential formulas 3x¢(x, y) can be treated in exactly the same way. [As 
usual, we will often make the type of the quantified variable explicit, 
and write 'Vx E X ¢(x, y), 3x E X ¢(x, y) for 'Vx¢(x, y), 3x¢(x, y). Here, 
read x E X as "x has type X".] 

If ¢(x, y) is a formula with free variables x, y, we write {(x, y) I 
¢(x, y)} or {(x, y) E X x Y I ¢(x, y)} for the subobject classified by its 
interpretation; this means that this subobject is the corner of a pullback 
diagram 

{(x, y) I ¢(x, y)} -----+1 1 

I 1 true 

X x Y ---,-,-----:--tl O. 
¢(x,y) 

(4) 

With this convention, we can write the usual expressions such as {x I 
¢(x)} to denote subobjects of a given object X, just "as if" the object X 
of the topos & had elements x. In other words, {x I ¢(x)} is a notation 
for the "extension" of the formula ¢( x) in the topos &. 

The interpretation of the quantifiers 'Vx and ::lx, as explained above, 
can alternatively be described as follows. Write 7r: X x Y ----7 Y for 
the projection, and consider the (external!) adjoints to 7r- 1 : Sub(Y) ----7 

Sub (X x Y): 

'V7'O : Sub(X x U) ----7 Sub(U), ::l7'O: Sub(X x U) ----7 Sub(U). (5) 

Then the subobject {(x, y) E X x Y I ¢(x, y)} E Sub(X x Y) yields 
subobjects 'V7'O ( {(x, y) E X x Y I ¢(x, y) }) and 31r ( {(x, y) E X x Y I 
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¢( x, y) }) of Y, and it follows from the definitions that these are precisely 
the subobjects of Y corresponding to the formulas "Ix E X ¢(x, y) and 
::Jx E X ¢(x, y). In other words, these subobjects are given as in (4) by 
pullbacks 

V7r ( { (x, y) I ¢(x, y)}) ) 1 ( ::J 7r ({ (x,y) I ¢(x,y)}) 

I It rue I (6) 

Y 
'dx¢(x,y) 

) n ( 
~x¢(x,y) 

y. 

Next, we describe truth (more modestly, we usually say "validity"). 
A formula ¢( x, y) of the language of a topos is said to be universally 
valid in E if the arrow ¢(x, y): X x Y ---t n which interprets this formula 
factors through true: 1 ---t n; briefly, the formula is true. In other words, 
¢(x, y) is universally valid in E iff the subobject 

{(x, y) I ¢(x, y)} >--? X X Y 

is in fact the largest subobject X x Y itself. If ¢ is a formula without free 
variables, its interpretation is an arrow from the empty product 1 into n. 
Then ¢ is valid iff ¢: 1 ---t n coincides with the arrow true: 1 ---t n. Then 
one also says that ¢ holds in E, or ¢ is true in E, etc. Also, a formula 
¢(x, y) with free variables x, y of types X and Y is universally valid in 
E iff the universally quantified formula VxVy¢(x, y), whose source is 1, 
is valid in E. 

As stated at the beginning of this section, this language can con
veniently be used to describe various objects of E. For example, the 
"object of epimorphisms", 

Epi(X, Y) >--? yX, 

constructed in §3 for given objects X and Y of a topos E, can be de
scribed by the expected formula, involving variables x, y, f of types X, 
Y, yX: 

Epi(X, Y) = {f E yX IVy E Y::Jx E X f(x) = y}. (7) 

More explicitly, we claim that the subobject of Y x defined in this section 
via the language of E coincides with the subobject Epi(X, Y) defined in 
purely categorical terms. Similarly, exploiting the definition of validity 
just given, the language of E can be used to express properties of a topos 
E. For example, E is Boolean iff the formula 

Vp(p V -,p) (8) 



302 VI. Topoi and Logic 

holds in [, where p is a variable of type !1-the "type of truth-values" . 
And [ satisfies the internal axiom of choice (lAC), that is 

( _ )E : [ -+ [ preserves epis (9) 

for all objects E of [, iff the expected formula (for arbitrary objects X 
and Y of [) 

"If E yX (Vy E Y3x E X f(x) = y * 
3g E XYVy E Y f(g(y)) = y) (10) 

holds in [. 
In principle, it is possible to prove the equality of the two Epi(X, Y) 

subobjects above and at (7), as well as the equivalence of (8) and 
Booleanness, as well as that of (9) and (10), by unwinding the defini
tions. Although straightforward, such unwindings often become lengthy 
and cumbersome. Therefore we propose to postpone the proofs of (7), 
the equivalence between (9) and (10), and the equivalence between (8) 
and Booleanness, and first develop a convenient notation for the seman
tics suitable for a topos-the so-called Kripke-Joyal semantics. 

To end this section, we make some general remarks about the prop
erties of truth. The customary method of deriving new valid formulas 
from given ones can be carried out just as for "ordinary" mathematical 
proofs, using the variables as if they were actual elements, provided that 
the derivation is explicitly constructive. For a general topos, one cannot 
use indirect proofs (reductio ad absurdum) since the rule of the excluded 
middle (¢ V -,¢) need not be valid, nor can one use the axiom of choice. 
More technically, this means that the derivation is to follow the rules of 
the intuitionistic predicate calculus. The details, including a specifica
tion of the rules of this calculus, can be found in [Boileau, Joyal] or in 
[Lambek, Scott]. For our presentation we do not need these rules, but 
only the semantics. 

6. Kripke-Joyal Semantics 

Semantics, in our usage, will turn a formula of some formal language 
into a statement in ordinary (naive) language. Thus, the connective V 
means "or". Stated more carefully, this concerns two formulas ¢( x) and 
'lj;(x) in a free variable x and says for an element a that 

a E {x I ¢(x) V 'lj;(x)} means ¢(a) or'lj;(a) 

-and similarly for other connectives and quantifiers. 
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The corresponding rules for a topos £ must be more careful. First, 
the variable x must have some object X of £ as its type. Second, the 
"element" a must be a generalized element a: U --+ X with some domain 
U. And third (here intuitionism enters!), the "V" must be documented 
by giving an object V where 1>(a) holds and W for 'l/J(a) , such that V + W 
gives all of U [rule (ii) below]. Thus, for a generalized element a: U --+ X 
of an object X in a topos £, there are "semantical" rules which specify 
when this generalized element a belongs to a "subset" (a subobject of 
X) described as {x 1 1>( x) }. Here, 1>( x) is a formula of the language of 
£ in one free variable x of type X. These rules depend on the way the 
formula 1>(x) is built up from connectives and quantifiers. These rules 
are usually formulated in terms of a relation "U forces 1>(a)", defined in 
(1) below and written 

U 1f-1>(a). 

Here, 1>(a) denotes the result of formally replacing all the (free) occur
rences of x in the formula 1> by a. [Instead of U If- 1>(0:) one also writes 
more explicitly U 1f-1>(x)[a] or U 1f-1>(x)[a/x].] 

For any generalized element a: U --+ X with its image 1m a E 

Sub(X) one defines 

U 1f-1>(a) iff Ima S {x 11>(x)}. (1) 

In other words, U If- 1>(a) iff a factors through {x 1 1>(x)}, as in the 
diagram 

{x 11>(x)} 1 1 

/ I It rue / 
/ 

, / 

(2) 

U a lX 
¢(x) 

lO. 

For formulas such as 1>(x, y) or 1>(x, y, z) in additional free vari
ables, one defines forcing in a similar way; thus, for generalized ele
ments a: U --+ X and {3: U --+ Y, we will say that U forces 1>( a, {3) 
[i.e., U forces 1>(x, y) where x and yare interpreted by a and {3], in 
notation U If- 1>(a, {3), iff the map (a, {3): U --+ X x Y factors through 
{(x, y) 11>(x, y)} >---+ X X Y. The extreme case is that in which 1> does 
not contain any free variables at all. Then for an object U of £, one 
has U If- 1> iff the unique map U --+ 1 factors through the subobject 
{ . 11> } >---+ 1 classified by 1>: 1 --+ 0 (indeed, as a term of the language, 1> 
has the empty product 1 as its source, hence is interpreted by an arrow 
1>: 1 --+ 0). In particular, this means for such a variable-free 1> that 

1 If- 1> iff 1> = true: 1 --+ n. 
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As another example, consider two arrows a, f3: U ----+ X. Then the 
formula a = f3: U ----+ X is by definition interpreted as 

U (a,{3)1 X X X ~ 0, 

where fjx, the Kronecker delta for X, is the characteristic function of 
the diagonal ~: X ----+ X x X. Thus U II-- a = f3 means by (2) above that 
(a, (3) factors through ~; in other words, that 

U II-- a = f3 iff a = f3: U ----+ x. (3) 

The following two properties of the forcing relation follow easily from 
the definition: 

Monotonicity: If U II-- ¢(a), then, for any arrow f: U' ----+ U in £, also 
U' II-- ¢(a 0 f). 

Local character: If f: U' ----+ U is epi and U' II-- ¢(a 0 f), then also 
U II-- ¢(a). 

Here a: U ----+ X is a generalized element and ¢( x) is a formula with the 
free variable x of type X. Of course, monotonicity and local character 
also hold for formulas with more than one free variable (or with no free 
variables). As to the proofs of monotonicity and local character: the 
first is obvious. For the second, consider the two pullback squares 

Q ---)+11 P ---+1 {x I ¢(x)} 

In 1m I 
U'------»IIU X f ---::::01.---+1 • 

By assumption, af factors through {x I ¢(x)}; since Q is a pullback, 
this implies that the mono n: Q ----+ U' has a section s: U' ----+ Q with 
ns = 1. Thus n is also epi, hence iso. It follows that f 0 n is epi, and 
hence so is m. Thus the mono m is an iso, which means that a factors 
through {x I ¢(x)}. 

The behavior of the forcing relation II-- with respect to logical con
nectives and quantifiers is summarized by the following theorem. (For 
convenience, this is formulated for formulas with just one free variable 
x of type X. But see the remark below the proof of Theorem 1.) 

Theorem 1. If a: U ----+ X is a generalized element of X while ¢( x ) 
and 'I/J(x) are formulas with a free variable x of type X, then 

(i) U II-- ¢(a) !\ 'I/J(a) iff U II-- ¢(a) and U II-- 'I/J(a); 
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(ii) U II- ¢(a) V'!/J(a) iff there are arrows p: V ---> U and q: W ---> U 
such that p + q: V + W --» U is epi, while both V II- ¢(ap) and 
W II- ¢(aq); 

(iii) U II- ¢(a) :::;. '!/J(a) iff for any arrow p: V ---> U such that V II
¢(ap), also V II- '!/J(ap); 

(iv) U II- -,¢(a) iff whenever p: V ---> U is such that V II- ¢(ap), then 
V~O. 

For the quantifiers, consider a formula ¢(x, y) with an additional free 
variable y of type Y. Then 

(v) U II- "3y¢(a, y) iff there exist an epi p: V --» U and a generalized 
element (3: V ---> Y such that V II- ¢( ap, (3); 

(vi) U II- Vy¢(a, y) iff for every object V, for every arrow p: V ---> U 
and every generalized element (3: V ---> Y one has V II- ¢( ap, (3). 

For the universal quantifier, one also has 

(vi') U II- Vy¢(a,y) iffU x Y II- ¢(a7fl,7f2)' 

This last clause strengthens (vi), replacing the arbitrary object V by 
the product U x Y and the arbitrary (3 by the projection 7f2: U x Y ---> Y; 
for this reason 7f2 may be called a "generic" element of type Y. 

Observe that clause (vi) here establishes a relation between forcing 
and "truth". Indeed, a formula ¢(x, y) was said to be universally valid 
iff the interpretation 

(Vx)(Vy)¢(x, y): 1 ---> n 
is the arrow true: 1 ---> n. Hence, by the observation above about the 
meaning of forcing for formulas with no free variables, one has 

(vii) ¢(x, y) is universally valid iff 111- (Vx) (Vy)¢(x, y). 

Note also that the clause (ii) embodies the intuitionistic rule for disjunc
tion. 

Proof of Theorem: The first rule (i), that for /I., is a straightfor
ward one: If the arrows ¢(x) and '!/J(x): X ---> n, respectively, classify 
the subobjects {x I ¢(x)} >--+ X and {x I '!/J(x) } >--+ X then (by definition 
of /I.: n x n ---> n) their meet, 

{x I ¢(x)} /I. {x I '!/J(x)}, 

in the lattice Sub(X) of subobjects, is classified by /I. 0 (¢(x), '!/J(x)) = 
(¢(x) /I. '!/J(x)). In other words, there is a pullback 

{x I ¢(x) /I. '!/J(x) })~----» {x I ¢(x) } 

I I 
{x I '!/J(x )})>-------+l x, 
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which by the definition (2) makes the equivalence (i) obvious. 
The other clauses follow in a similar way from the correspondence 

between V,::::}: n x n -+ nand ....,: n -+ n and the Heyting algebra 
operations in Sub(X). For example, for (ii), if ¢(x) and 'ljJ(x) classify 
{x I ¢(x)} >-+ X and {x I 'ljJ(x)} >-+ X, respectively, as before, then 

v 
¢(x) V'ljJ(x) = V( ¢(x), 'ljJ(x)): X -+ n x n ---+ n classifies the supremum 
of the two subobjects {x I ¢(x)} and {x I 'ljJ(x)}. This supremum is 
constructed (as in §IV.6) by factoring r: {x I ¢(x)} + {x I 'ljJ(x)} -+ X 
as an epi s followed by a mono, as in the diagram (5) below. Now 
suppose a: U -+ X factors through {x I ¢(x) V 'ljJ(x)} via the map f3 
displayed in (5). Let p: V -+ U and q: W -+ U be the pullbacks of 
{x I ¢(x)} and {x I 'ljJ(x)} along a: U -+ X: 

V --------+) {x I ¢( x )} 

pi I 
{x I 'ljJ(x)}+-( -- W 

I qi (4) 

U --a,.-----+) X, X+-( --a-- U. 

Now pullbacks preserve coproducts (§IV.7), so V + W is the pullback of 
s along a, as in the diagram (5) . Hence p + q: V + W -+ U is epi, since 
pullbacks preserve epis (Proposition IV.7.3). 

V+W ) {x I ¢(x)} + {x I 'ljJ(x)} 

p+ql 18 

U f3 ) {x I ¢(x) V'ljJ(x)} (5) 

II I 
U a )X 

Moreover, ap and aq evidently factor through {x I ¢(x)} respectively 
{x I 'ljJ(x) } as in (4), so V If- ¢(ap) and W If- 'ljJ(aq). This proves one 
direction in (ii). 

Conversely, suppose there are maps p: V -+ U and q: W -+ U such 
that V + W -+ U is epi and V If- ¢(ap) and W If- 'ljJ(aq). This means that 
there are two commutative squares as in (4) (but no longer necessarily 
pullbacks), which together give a commuting square, with r the right
hand composite of (5): 

V + W _"1'----+) {x I ¢(x)} + {x I 'ljJ(x)} 

p+ql lr (6) 

U ----a----'» X. 
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Since p + q is epi, it now follows that the image of a is that of the 
composite r"(. Hence the image of a, and therefore a itself, factors 
through the image {x I ¢(x) V 'lj;(x)} of the right-hand arrow r, as 
displayed in (5). 

Next we prove the rule (iii) for implication. First assume that U If
¢(a) => 'lj;(a) and take any p: V ---. U such that ap factors through 
{x I ¢(x)}. Since it also (like a) factors through {x I ¢(x) => 'lj;(x)}, it 
follows that it factors through {x I 'lj;(x)}, by the law (b => c) II b :S c, 
valid for objects hand c in any Heyting algebra. 

Conversely, let M be the image of a: U ---. X and pull {x I ¢( x) } ---. 
X back along the factorization of a, as in the diagram 

V -----+t» M n {x I ¢(x)}:>----+) {x I ¢(x)} 

pi I I 
U -----+-») M>-: ---------.) x. 

a 

This determines an object V and a map p: V ---. U such that V If- ¢(ap). 
By hypothesis, we then have V If- 'lj;(ap). But by the diagram, ap has 
image M n {x I ¢(x)}; so by the definition offorcing 

Mn {x I ¢(x)}:S {x I 'lj;(x)}. 

By the definition of implication =>, this gives M :S {x I ¢(x) => 'lj;(x) }. 
Hence, again by the definition of forcing, U If- ¢(a) => 'lj;(a) since M is 
the image of a. 

Leaving the result for the remaining connective -, to the reader, we 
turn to the quantifiers and consider first the clause (v) for the existential 
quantifier. Now 3y¢ . .. is shorthand for 3p 0 >..y¢ . .. so by the defini
tion of 3p (Proposition IV.6.3), the object {x I 3y¢(x, y)} fits into a 
commutative square 

{(x, y) I ¢(x, y)}>--: --+) X X Y 

1 lWI (7) 

{x 13y¢(x,y) }: ) X. 

For the implication from left to right in (v), suppose that a: ~ J ---. X 
is such that U If- 3y¢(a, y); this means that by definition a factors 
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through {x I 3y¢(x, y) } as in the bottom row of the following diagram, 
with 3y¢(x, y) as described by the square (7): 

V _n_n_> {(x, y) I ¢(x, y) }> lXXY 
7r2 lY 

pl 1 17rl 
(8) 

U l {x 13y¢(x,y) }, lX 
II II 

U a lX. 

Now take the pullback of the middle vertical epi, as on the left above. 
Since pullbacks of epis are epi, this gives an epi p: V ~ U. The com
posite map to the factor X is ap, while that to Y, via the projection 7r2, 
is some generalized element (3: V ~ Y. Together they provide a factor
ization of (ap,(3) through {(x,y) I ¢(x,y)} and so by the definition of 
forcing give V If- ¢(ap, (3), as required for (v). 

For the converse, suppose we are given an epi p: V -» U and an 
element (3: V ~ Y such that V If- ¢( ap, fJ); that is, such that (ap, (3) 
factors through { (x, y) I ¢(x, y)}. With (7), this gives a commutative 
square 

(ap,[3 ) 
l 

V l {(x, y) I ¢(x, y)} lX xY 

'1 
1 (9) 

{xI3y¢(x,y)} 

I 
U a lX. 

Since p is epi, it follows that the image of a is contained in that of 
the composite ap and hence, by the commutativity of this diagram, in 
{x I 3y¢(x, y)}. Thus, a factors through this subobject, so one has 
U If- 3y¢(a, y). 

Finally, we consider the case of the universal quantifier. First notice 
that (the two right-hand sides of) (vi) and (vi') are equivalent. Indeed, 
for these right-hand sides, (vi') is a special case of (vi), where V = U x Y 
while p and (3 are the projections; so (vi) implies (vi'). Conversely, 
suppose that U x Y If- ¢(a7rl,7r2), i.e., that a xl: U x Y ~ X x Y 
factors through {(x,y) I ¢(x,y)}. Then for any p: V ~ U and (3: V ~ 
Y, one has (ap, (3) = (a xl) 0 (p, (3 ); hence, (ap, (3) factors through 
{(x, y) I ¢(x, y) } since a x 1 does. 
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It thus suffices to prove the equivalence (vi'). Now, by definition 
§5(6), {x I \/y¢(x,y)} = Vrr { (x,y) I ¢(x,y)}, where 7r: X x Y ---> X is 
the projection, and 

Vir: Sub(X x Y) ---> Sub(X) 

is right adjoint to pulling back along 7r. By this adjointness, one has for 
any subobject A>---+X that A:S {x I \/y¢(x,y)} iff A x Y :S {(x,y) I 
¢( x, y) }. N ow for any generalized element a: U ---> X, with image 
lma, in the sense of §IV.6, the product a x 1y is the pullback of a along 
7r: X x Y ---> X and pullback in a top os preserves epis and monos. Hence, 
the image of a x 1 is the product lma x Y, while by the definition (1) 
of forcing 

UI'r\/y¢(a,y) iff Ima:S {x I\/y¢(x,y)} 

and, by the adjunction above, iff Ima x Y :S {(x,y) I ¢(x,y)} which 
by (1) again means that U x Y l'r ¢(a7rl,7r2). This proves (vi') and so 
completes the proof of Theorem l. 

Formulas with more (or fewer) free variables satisfy clauses similar 
to those stated in Theorem 1, as we have already noted. For example, 
if y is the only free variable in the formula ¢(y), then clauses (vi') and 
(vi) for any object U in E become 

U l'r (\/y)¢(y) iff U x Y l'r ¢(7r2) 

iff for any p: V ---> U and {3: V ---> Y, V l'r ¢((3). 

There are also mixed forms: for example, if ¢(x) and 'IjJ(x, y) have free 
variables as indicated, while a: U ---> X and (3: U ---> Yare generalized 
elements, then 

U l'r ¢(a) II 'IjJ(a, (3) iff U l'r ¢(a) and U l'r 'IjJ(a, (3). 

This is a typical example of the general pattern of such "mixed" cases. 
The rules of the Kripke-Joyal semantics, applied in succession, serve 

to translate "forcing" statements about E into ordinary assertions about 
E. Thus, for example, consider for objects X, Y in E a formula ¢(x,y) 
in the language of E, where x and yare variables of type X and Y, 
respectively, while a: V ---> X and {3: V ---> Yare generalized elements. 
Then the rules of Theorem 1 applied in succession to the various logical 
connectives used in ¢ replace the forcing statement 

V l'r ¢( a, (3) 

by a statement about V, a, {3, etc., in the ordinary external language 
used to discuss E. Since the formulas of E are built up via the logical 
connectives from "primitive" formulas involving = and membership, the 
rules of Theorem 1 are of course to be supplemented by two rules for 
these cases as follows. 
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Proposition 2. IE u(x) and T(X) are terms of type Y in the free 
variable x of type X, while a: U -+ X is a generalized element of type 
X in £, and u' and T' are the interpretations of u and T as arrows, then 

U II- u(a) = T(a) iff u'a = T'a: U -+ Y. 

This is proved as for (3) above. 
A corresponding proof, using the membership relation 

My,........,Y x nY, 

defined as that subobject with characteristic map lOy: Y x nY -+ n, will 
yield the evident rule: 

Proposition 3. IEu(x) of type Y and T(X) of type nY are terms of 
the language of £ in a free variable x of type X, while u' and T' are the 
corresponding interpretations as arrows and a: U -+ X is a generalized 
element, then 

U II- u(a) E T(a) iff (u'(a), T'(a)): U -+ Y x nY 

factors through My ,........, Y x nY . 

To illustrate the use of forcing, let us return to the formulas discussed 
at the end of the previous section, beginning with the description of the 
object of epis by the intuitively plausible formula (7) of §5: 

Epi(X, Y) = {f E yX I 'Vy E Y:lx E X f(x) = y}. (10) 

Now the definition of this object Epi(X, Y) as given in §3 means, by 
Lemma 3.2 there, that an arrow a: U -+ Y x of £ factors through the 
subobject Epi(X, y),........, yX iff 

(7fl,a): U x X -+ U x Y is epi in £, (11) 

where a: U x X -+ Y is the transpose of a. On the other hand, the 
definition (2) of forcing states that this a factors through the right-hand 
side of (10) iff 

U II- 'Vy:lxa(x) = y. (12) 

Thus, we must show (11) equivalent to (12). Let us unwind (12) by the 
rules of Theorem 1. By rule (vi') it becomes 

and thence, by rule (v) for the existential quantifier, that for some epi 
p: V -+ U x Y and some f3: V -+ X 

(13) 
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Now, by the interpretation (3) for forcing of an equality, this means that 
the two maps on the right of (13) are equal. Since the left-hand map 
involves terms of the form B({3) with B = O-:7rIP, it is interpreted as in 
§5(2) by an evaluation e( O-:7rIP, (3). Thus the equality in (13) means that 
the diagram 

v ( 7rlp,(3 ) 
I UxX axl IYX xX 

pl le 

UxY 7r2 )Y 

commutes, and hence, by the formula a = e(o-: x 1) for the transpose of 
0-:, that 

(14) 

UxY 

commutes. But the existence of such P and {3 making (14) commute 
implies that (7rI, a): U x X --+ U x Y is epi as in (11). Conversely, if the 
latter map is epi, one may choose V = U x X and P = (7rI, a), (3 = 7r2· 

For this choice, (14) commutes, so U II- 'vIy3xo-:(x) = y as in (12). This 
proves (11) and (12) equivalent. 

As a second example, we prove for a topos £ that 

£ is Boolean iff 'vip En (p V -,p) holds in £, (15) 

as asserted in §5(8). Here p is a variable of type n. To prove (15), we 
unwind the right-hand side. Since p is a free variable (hence, a term) 
of type n, p is also a formula of type n containing one free variable (p 
itself), so p defines a subobject 

{plp}>-+n (16) 

[this is of the usual form {x I ¢(x)}, but x = P = ¢(x)!]. The interpre
tation of p is the identity n --+ n, so since {p I p} is by definition the 
pullback 

{plp}----411 

I It rue 

n --i-d---» n, 
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true 
we see that {p I p} >--+ n is the subobject 1 ------t n. Consequently, for 
any arrow a: U _ n (a generalized element of type n) corresponding 
to a subobject A>--+ U, we have by the definition (2) of forcing, 

true 
U I f- a iff a factors through 1 ------t n 

iff A = U. 

Now suppose that Vp E n(p V -,p) holds in £. This means that 1 If
Vp E n(p V -,p). But by (vi) of Theorem 1, this is equivalent to: for all 
U and all a: U _ n, U If- a V -,a. Thus, by (ii) of Theorem 1, there 
are q: V - U and r: W - U such that V + W - U is epi, V If- aq, 
and W If- -,(ar). Let a classify the subobject A>--+ U. Then V If- aq 
iff q-l (A) = V iff q(V) ::::: A, where q(V) is the image of q as in the 
factorization 

V II q(V) 

~I 
U. 

On the other hand, by clause (iv) of Theorem 1, W If- -,(ar) iff whenever 
some s: W' - W has the property that W' If- ars, then W' ~ 0; 
that is, whenever rs factors through A, then W' ~ O. This means 
that r-1(A) ~ 0, so that r(W) ::::: -,A where r(W) is the image of r 
[defined just as for q(V)]. But q + r: V + W - U is epi, so U = 
q(V) V r(W) ::::: A V -,A. This shows that the subobject A>--+ U has a 
complement, namely, -,A. Since U and a are arbitrary, we conclude that 
£ is Boolean [ef. Proposition 1.1(iii)]. This proves the implication from 
right to left in (15). The other direction is similar but easier, and left to 
the reader as Exercise 9. 

As a final example, consider the formula for a topos £ which states 
that every epi in £ has a cross section s, as in 

Vf E YX[(Vy3xf(x) = y) =} 3s E XYVyfs(y) = y]. (17) 

We will prove that this formula is valid in £ iff £ satisfies the internal 
axiom of choice (lAC); in other words, the validity of (17) is equivalent 
to the property that for any epimorphism X - Y in £ and any object 
E of £, the induced morphism X E _ yE is again epi. 

In one direction, suppose that £ does satisfy lAC. We need to show 
that (17) is valid in £; or, equivalently, that 1 If- (17). By Theorem 1, 
parts (vi) and (iii), the latter means that for any object U of £ and any 
a: U_yX 

U If- Vy3xa(x) = y implies U If- 3s E XYVy E Yas(y) = y. (18) 
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Of course, a(x) here is to be interpreted as in §5(2) by evaluation as 
e( (a, x )), while on the right the composite in as(y) is also read as an 
(iterated) evaluation. So take such U and a with the property that 
U II- \ly3xa(x) = y. We have just shown, in (11) and (12), that this 
means that (7rl' a): U x X -+ U x Y is epi. Now we wish to construct 
for s in (18) a map from Y, say in (U x X)Y. But by lAC, the induced 
map (U x X)Y -+ (U x y)Y is epi, and hence so is its pullback r along 
the transposed 1: U -+ (U x y)Y of the identity, as in the diagram 

p q 
I (U X X)Y 11"2 Y 

IXY 

rl 1 ~ Y (11"1,0) (19) 

U 
"1 

I (U X y)Y. 

The transposed diagram (with projections 0"2 and 7r2 added) 

~ 

YI <72 PxY 
q 

IUXX 11"2 
IX 

rX11 1 (11"1,;-) (20) 

UxY I U x Y. 

is also commutative. Let (3 be the composite 7r,r 0 q: P -+ (U x X)Y -+ 

X Y , as in the top row of (19). Then the commutativity of (20) and the 
naturality of transposition gives 

(21) 

But the definition of the transposed via evaluation gives 

fj = e((3 x 1) = e( (3,0"2) = (3(?"2): P x Y -+ X, (22) 

where the evaluation e( (3, 0"2) is the interpretation of the term (3(0"2) 
much as in (13) above or in §5(2). Hence, composing both legs of (20) 
with the projection U x Y -+ Y gives 0"2: P x Y -+ Y as 0"2 = aq = 
e(a x l)q and hence, by (21), 

0"2 = e(a x 1)( r,fj) = e(ar x 1)( 1,fj) = e( ar,fj). 

The evaluation at the end is again the interpretation §5(2) of the term 
(ar) ((3 (0"2) ). Thus, for the generalized element 0"2: P x Y -+ Y we have 

P x Y II- (ar)((3(0"2)) = 0"2· 
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Hence, by rule (vi') with ar: P ----+ yX and f3: P ----+ XY, 

P II- (Vy)(ar)(f3(y)) = y. 

Since r: P ----+ U is epi we conclude by the clause (v) for the existential 
quantifier in Theorem 1 that 

U II- 38 E X YVya(8(y)) = y. 

This shows that (17) is valid in E whenever E satisfies lAC. If the patient 
reader examines this proof again, it will appear that the argument has 
indeed been aimed at this end. 

Conversely, suppose that (17) is valid in E; that is, that (18) above 
holds for all objects U and generalized elements a: U ----+ yX in E. 
We shall then prove that E satisfies the internal axiom of choice; i.e., 
that for every epimorphism "y: X ----+ Y and every object U the map 
"yu : XU ----+ yU is again epi. So consider the composite 

a: yU -----+ 1 ~ yX, 

where 9: 1 ----+ yX is the transpose of the given "y. Then the transpose 
of a is 

(23) 

and so ( 1Tl, Ii): yU x X ----+ yU x y is just 1 x "y, hence is epi. Therefore, 
by Lemma 3.2, a factors through the object of epis, Epi(X, Y) >--> Y x. 
As we have just shown, in (10) above, this means that 

yU II- Vy E Y3x E X a(x) = y. 

Now apply (18) above with U there replaced by yU. This yields 

yU II- 38 E XYVy E Ya(8(Y)) = y. (24) 

Unwinding the assertion (24) by clause (v) of Theorem 1 gives an epi 
p: V ----+ yU and some generalized element a: V ----+ X Y such that 

V II- Vy E Y (ap)(a(y)) = y. (25) 

Now apply clause (vi) of Theorem 1 using the maps 1Tl: V x U ----+ V and 
j): V x U ----+ y. This gives 

(26) 

Here, the "evaluation" (a1Td (j)) is computed as the composite e( a1Tl, j)), 
call it 

e = e(a1Tl,j)): V xU (11"1,;» V x y ~XY x Y ~X, 
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while the evaluation (ap7rl) (0) is similarly computed as e( ap7rl, 0 ), or 

V x U ~ (V x U) x X P7r1 X\ yU x X ~ yX x X ~ y. 

But, by (23), e(a x 1) = a = /,7r2, so this whole composite is just /,0 and 
(26) with P = e(p x 1) makes the diagram 

V x U _.....:0,---+) X 

PX1l l~ 
yU x U --:---t) Y e 

commutative. The transpose of this diagram is p = /,u8: V --+ yU; since 
p here is epi, so is /'u. Thus r epi implies any /,U epi. This is lAC, as 
desired. 

7. Sheaf Semantics 
The Kripke-Joyal semantics of the previous section takes a more 

explicit form when it is applied to a Grothendieck topos; that is, to a 
topos £ of sheaves for a site (e, J)-a category e with a Grothendieck 
topology J. Recall that there are functors 

e ~ SetsCOP 
( ~ ) Sh(e, J) = £; (1) 

" where a is the associated sheaf functor, i is the inclusion, and y is the 
Yoneda embedding. The essence of the corresponding semantics is that 
the Yoneda lemma allows us to use for a sheaf X only those generalized 
elements of X in £ which are of the form a: aye C) --+ X for some 
object C of e. Since a is left adjoint to the inclusion, such a generalized 
element a of X in £ is uniquely determined by the map aT!: yC --+ X, 
where T!: yC --+ ayC is the universal map of the presheaf yC into a 
sheaf, as in §III.5. Furthermore, by the Yoneda lemma such a morphism 
aT!: yC --+ X corresponds to a unique element of the set X (C): 

X(C) ~ Hom(yC,iX) ~ HomeCayC, X). (2) 

In formulating the Kripke-Joyal semantics, we will thus use for a sheaf 
X only the elements a E X(C) for various objects C E e, and view such 
elements as generalized elements ay (C) --+ X in £, by the isomorphisms 
of (2). 

Let ¢( x) be a formula in the language of the topos £, with a free 
variable x of type X. As in the previous section, we will define a forcing 
relation "c II- ¢(a)", where C is an object of the site e and a E X(C): 

C II- ¢(a) iff (i) a E {x I ¢(x) }(C), 

iff (ii) a: yC --+ X factors through {x I ¢(x)} >---' X, 

iff (iii) a: ayC --+ X factors through {x I ¢(x)} >---' X. 
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Here {x I ¢( x) } >--+ X is the subobject of X in t: defined from ¢( x) as 
in §5. In clause (i), we regard {x I ¢(x) } as a subsheaf of X, so that 
for each C E C, the set {x I ¢(x) }(C) is a subset of the set X(C). In 
clause (ii), we have identified a E X(C) with an arrow a: yC ----t X, via 
the Yoneda lemma; in (iii), we still write a for the corresponding map 
ayC ----t X, as in (2). 

Since {x I ¢(x)} is a subsheaf, it is closed under restrictions; that is, 
if I: D ----t C is a morphism of C and a E X (C), then a E {x I ¢( x) }( C) 
implies that a· I E {x I ¢(x) }(D) ~ X(D). In the forcing notation, 
this gives the monotonicity property (analogous to the one stated at the 
start of §6): 

Monotonicity: If C If- ¢(a) and I: D ----t C then D If- ¢(a· f). 

Similarly, the local character property takes the following form: 

Local character: If { Ii: C i ----t C} is a cover in the topology J such 
that Ci If- ¢(a· Ii) for all i, then C If- ¢(a). 

Notice that this local character property of the forcing relation is simply 
a reformulation of (1) in §III.8, applied to the subsheaf {x I ¢(x)} of 
X. (Alternatively, one may derive local character as stated here from 
the local character property of §6, by using Corollary III.7.7.) 

The Kripke-Joyal semantics may now be restated in the following 
form. (Again, similar clauses of course hold for formulas with more free 
variables. ) 

Theorem 1. For a Grothendieck topology Jon C, let X be a sheaf 
on C, while ¢(x), 'IjJ(x) are formulas in the language of the tapas t: = 
Sh(C, J) of sheaves on C and x is a free variable oftype X; let a E X(C). 
Then 

(i) C If- ¢(a) 1\ 'IjJ(a) iffC If- ¢(a) and C If- 'IjJ(a); 
(ii) C If- ¢(a) V'IjJ(a) iff there is a covering {Ii: Ci ----t C} such that 

for each index i, either Ci If- ¢(a/i) or Ci If- 'IjJ(ali); 
(iii) C If- ¢(a) =} 'IjJ(a) iff for all I: D ----t C, D If- ¢(af) implies 

D If- 'IjJ(af); 
(iv) C If- -,¢(a) iff for all I: D ----t C in C, if D If- ¢(af) then the 

empty family is a cover of D. 

Moreover, if ¢(x, y) is a formula with free variables x of type X and y 
of type Y, then for a E X(C), 

(v) C If- 3y¢(a, y) iff there are a covering {Ii: Ci ----t C} of C and 
elements f3i E Y(Ci ) such that Ci If- ¢(ali,f3i) for each index i; 

(vi) C If- Vy¢(a,y) iff for all I: D ----t C in C and all 13 E Y(D), one 
has D If- ¢(a/, 13). 
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Remark 2. In general, there is no analogue of 6.1(vi'). But when 
C has products and the type Y of the variable y is representable, say as 
Y = ay(B) where B is an object of C, then 

(vi') C If- Vy¢(o:, y) iff C x B If- ¢(O:7rl' 7r2); 

here 7r2 E ay(B)(C x B) is the element corresponding to the projection 
C x B ~ B. Under the hypotheses, the equivalence of (vi) and (vi') 
follows exactly as in §6. 

Remark 3. As before, iterated application of these clauses will 
translate forcing statements such as C If- ¢( 0:, /3, 8) into "ordinary" state
ments about the topos E = Sh(C, J). This again will use the evident 
clauses translating equality and set membership much as in Proposi
tion 2 or 3 of §6. 

Proof of Theorem: To prove the theorem, one can proceed in two 
ways. One way is to rewrite C If- ¢(o:) as 0: E {x I ¢(x) }(C), and 
then to use the explicit description of the Heyting algebra structure 
and of the quantifiers, as given in §III.8. Indeed, (i) of the theorem is 
simply a rewrite of §III.8(3), (ii) of III.8(5) (for a binary supremum), 
(iii) of III.8(7), and (iv) is III.8(19). As for the quantifiers, clause (v) 
corresponds to III.8(13) and (vi) to III.8(15) [for the special case in which 
the map ¢: E ~ F ofIII.8(13), (15) is the projection XxY ~ Xl. This 
completes one proof of the theorem. 

The other proof explains the relation of this theorem to Theorem 6.1; 
one can rewrite C If- ¢(o:) as "0:: ay(C) ~ X factors through {x I 
¢(x)}", that is, as ay(C) If- ¢(o:) in the sense of §6. The clauses of 
the theorem then easily follow from those of Theorem 6.1, using the 
properties of monotonicity and local character as stated in §6, together 
with the following familiar properties of the category of sheaves: First, 
the objects of E which are of the form ay( C) for some C E C generate 
E (see §III.6); that is, for every sheaf X there is an epimorphic family 
of the form 

In particular, if Y and Z are subsheaves of X, then Y ~ Z iff for any 
object C E C any arrow I: ay(C) ~ X, which factors through Y also 
factors through Z. Finally, one uses that a family {Ii: C i ~ C} covers 
in C iff the corresponding family of sheaf maps {ay( Ci ) ~ ay( C) } is 
an epimorphic family (Corollary III.7.7). 

Let us consider the special case where E is a pre sheaf topos SetsCoP
• 

This category of presheaves is the category of sheaves on C for the trivial 
Grothendieck topology, in which a sieve S on C covers iff the identity 
map Ie lies in S. In this case, clauses (i), (iii), and (vi) of Theorem 1 
remain unchanged, but the others can be simplified as follows: 
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(ii') C If- ¢(a) V 'Ij;(a) iff C If- ¢(a) or C If- 'Ij;(a); 
(iv/) C If- -,¢(a) iff for no f: D --* C, D If- ¢(af); 
(v') C If- 3y¢(a, y) iff there exists a (3 E Y(C) such that C If- ¢(a, (3). 

The "semantics" defined by (i), (ii'), (iii), (iv/), (v'), and (vi) is precisely 
the semantics described by S. A. Kripke in his celebrated Semantic Anal
ysis of Intuitionistic Logic [Kripke, 1965]. (For Kripke's purposes it was 
sufficient to consider the case where C is a poset.) This explains the use 
of his name in the title of §6, while the insight that a similar "semantics" 
can be defined for any topos is due chiefly to A. Joyal. 

In §2, we considered the Cohen topos Sh(P, -'-'), where P is a poset 
equipped with the double negation topology. In view of the definition 
of a cover in the case of a poset, the clauses (i)~(vi) of Theorem 1 can 
be rewritten in this case as follows [where p, q, and r denote elements 
of the poset P and a E X(p)]: 

(i) p If- ¢(a) /\ 'Ij;(a) iff p If- ¢(a) and p If- 'Ij;(a) , 
(ii) p If- ¢(a) V'Ij;(a) iff for any q :::; p there is an r :::; q for which either 

r If- ¢(a· r) or r If- 'Ij;(a· r), 
(iii) p If- ¢(a) =} 'Ij;(a) iff for any q :::; p such that q If- ¢(a . q), also 

q If- 'Ij;(a· q), 
(iv) p If- -,¢(a) iff for no q:::; p, q If- ¢(a· q), 
(v) p If- 3y¢(a, y) iff for any q :::; p there are r :::; q and (3 E Y(r) such 

that r If- ¢(a· r,(3), 
(vi) p If- Vy¢(a, y) iff for any q :::; p and any (3 E Y(q), q If- ¢(a· q, (3). 

These clauses form (a standard variant of) Cohen's original forcing defi
nition. Thus Cohen's forcing technique is a method to describe truth in 
the topos Sh(P, -,-,). Given this correspondence, our proof of the inde
pendence of the continuum hypothesis is really a translation of Cohen's 
original argument-a translation in which the explicit use of a notion of 
forcing is avoided by working directly in the topos. 

8. Real Numbers in a Topos 

A topos of sheaves resembles the topos of sets and so, like Sets, 
will have a ring of "real numbers". Now an ordinary real is a suitable 
kind of set-say a Dedekind cut in the rationals Q. Hence the Mitchell~ 
Benabou language can be used to lift the definition of a Dedekind cut to 
the sheaf category, so as to describe certain sheaves as "real numbers" 
(i.e., Dedekind cuts) there. For a suitable topos, one can then prove 
a famous theorem of L. E. J. Brouwer concerning these real numbers: 
Every function from these reals to these reals is continuous. This will 
be demonstrated in the next section. 

In the present section, we will primarily investigate Dedekind reals in 
a topos of the form Sh(X)-sheaves of sets on some topological space X. 
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For such a topos Sh(X) the functor f: Sh(X) -+ Sets of Chapter II, 
which sends each sheaf E to its set f E of global sections, has a left 
adjoint 6.: Sets -+ Sh( X). For each set S, the corresponding constant 
presheaf is the functor sending each open set U of X to the same set 
S; so the corresponding etale space 6.S is the projection X x S -+ X. 
Therefore, for each open set U of X, 6.(S)(U) is the set of continuous 
functions from U to the discrete space S; that is, the set of locally 
constant functions U -+ S. (See Exercise II.7; see also Exercise III.15.) 
Although a locally constant function need not be constant, the sheaf 
6.(S) is called the constant sheaf corresponding to the set S. 

There is a natural numbers object N x in the topos Sh(X); as ob
served in §1 it is simply the constant sheaf corresponding to the ordinary 
set N of natural numbers: 

Nx = 6.(N). (1) 

The ordinary sets Z of integers and Q of rationals similarly yield the 
constant sheaves Zx = 6.(Z) and Qx = 6.(Q). Notice that Zx is a 
sheaf of rings, while Qx is a sheaf of fields (cf. §II.7). Moreover, Zx and 
Qx are linearly ordered by the obvious subsheaves "<" of Zx x Zx and 
Qx x Qx, respectively. 

Starting from the natural numbers object N x in sheaves, there is 
also a more categorical way of defining the object of integers and that 
of rationals in Sh(X). One proceeds by imitating one of the usual set
theoretic definitions of the sets Z and Q in terms of the natural numbers 
N. For example, one may use 

Z = {(n,m) I n,m E N}/ "", 

where rv is the equivalence relation for which (n, m) rv (n', m') iff n + 
m' = n' + m. Thus the set Z is constructed from N as the coequalizer 

(11"la,11"2 b) 
E ~ N x N --+») Z (in Sets), 

(11"2 a ,11" l b) 
(2) 

where E is the equivalence relation given by the pullback 

(3) 

N x N --+:--------+) N. 
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[Thus, E is the set of those 4-tuples (n,m',n',m) for which n + m' = 
n' + m, while the maps a and b send such a tuple to (n, m') and (n', m), 
respectively.] 

But this definition makes sense in any elementary topos £. with a 
natural numbers object Nt:! Thus, we define the object Zt: of integers 
in such a topos £. as the following co equalizer in £., like that in (2): 

E ====4 Nt: x Nt: --» Zt: (in £), (4) 

where E is defined by a pullback in £. just like (3). 
One can now easily prove that Zt: is a ring object in the category 

£. (Exercise 13). In the case of a topos £. = Sh(X) of sheaves on a 
space X, this construction results in the constant sheaf ~(Z) on X 
corresponding to the set of integers considered above; that is, there is 
a bijection ZSh(X) ~ ~(Z). This is an immediate consequence of the 
following lemma. 

Lemma 1. For any space X, the functor~: Sets ----> Sh(X) pre
serves colimits and finite limits. 

Proof: The functor ~ has a right adjoint r, so ~ preserves colimits. 
On the other hand, since limits in the presheaf category SetsO(X)OP are 
constructed "pointwise", it is clear that the functor Sets ----> SetsO(X)OP, 

which sends a set to the corresponding constant presheaf preserves finite 
limits. But ~: Sets ----> Sh(X) is the composition of this functor with the 
associated sheaf functor, and the latter is left exact (see Exercise II.6). 

The object Qt: of rationals can be defined in a similar fashion in 
any topos £. with a natural numbers object Nt:. For example, one can 
imitate the set-theoretic definition of the set Q as the quotient {(n, m) I 
n E Z,m E N}/ "', where (n,m) '" (n',m') if n(m' + 1) = n'(m + 1). 
[So the pair (n, m) represents the rational n/(m + 1).] One thus defines 
the object Qt: of rationals in a topos £. as the co equalizer 

(71"1 U,7I"2V) 

F ~ Zt: X Nt: ------l+)) Qt:, 
(71"1 V,7I"2U) 

(5) 

where F and the maps u and v are defined by the pullback 

F U ) Zt: X Nt: 

vi Im(lxs) (6) 

Zt: x Nt: 
m(l xs) 

) Zt:. 
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Here s is the successor Nc; --+ Nc;, m: Zc; x Zc; --+ Zc; is the multiplication 
of Zc;, and Nc; is viewed as a sub object of Zc; via the monomorphism 

~ id xO N Nc; ~ Nc; x 1 ~ c; x Nc; ---+7 Zc; 

[the last epi being that of (4)]. 
This general construction need not detain us any longer here (but see 

Exercise 13). For the purposes of this section we wish only to observe 
that, by Lemma 1 again, this construction of the object Qc; of rationals 
yields the constant sheaf Qx = il,(Q) in case £, is the topos of sheaves 
on a space X. 

More interesting is the construction of the object Rc; of real numbers 
in a topos £, with a natural numbers object Nc;. Here, we make essential 
use of the Mitchell-Benabou language, as well as of the power-object 
operation P: £,op --+ £,. 

If the ordered set R of reals is given, each real number x "cuts" 
Q c R into the two disjoint subsets Land U described as follows: 

L = {q E Q I q < x}, U = {q E Q I x < q}. (7) 

Without using R, the subsets have the following properties: (a) Each 
is nonempty; (b) L is downward closed but has no largest element; and 
(c) dual properties hold for U, while Land U together compose all of 
Q except perhaps for x in case the real number x is rational. Finally, a 
Dedekind cut is a pair of disjoint subsets (L, U) of the set of rationals, 
satisfying the following conditions: 

(i) 3qEQ(qEL), 3rEQ(rEU); 
(ii) \/q,r E Q(q < rl\r E L =? q E L), 

\/q, r E Q (r < q 1\ r E U =? q E U); 
(iii) \/q E Q (q E L =} 3r E Q (r E L 1\ q < r)), (8) 

\/q E Q (q E U =} 3r E Q (r E U 1\ r < q)); 
(iv) \/q,r E Q(q < r =} (q E LVr E U)); 
(v) L n U = 0. 

But this definition of the reals makes sense in any topos £, with a natural 
number object Nc;! Indeed, defining the order relation < on Qc; as a 
subobject of Qc; x Qc; in the obvious way (cf. Exercise13), the Mitchell
Benabou language allows us to construct an object Rc; of £, as 

Rc; = {(L, U) E P(Qc;) x P(Qc;) I (L, U) is a Dedekind cut}; (9) 

here, "(L, U) is a Dedekind cut" stands for the conjunction of the for
mulas (i)-(v) in (8) above, rewritten in the language of £, (thus, the 
quantifiers 3q E Q, etc., are replaced by 3q E Qc;, etc.). 
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One can show that for an arbitrary topos E (with a natural numbers 
object), the object Re defined by (9) is a local ring object in E. However, 
rather than going into such general matters, we prefer to calculate a 
special case here, namely that of the topos Sh(X) of sheaves on a space 
X. In this topos, the natural numbers, integers and rationals are simply 
interpreted as above as the corresponding constant sheaves. However, 
the object RSh(x) , abbreviated as Rx , does have the following direct 
description: 

Theorem 2. The object Rx of Dedekind reals in the tapas Sh(X) 
on a topological space X is (isomorphic to) the sheaf C of continuous 
real-valued functions on the space X defined on the open sets W of X 
by 

Rx(W) ~ C(W) = {f: W ----> R I f is continuous}. 

The proof uses forcing and sheaf semantics. By (9) above, a section 
of Rx over an open set W C X is a section over W of the subsheaf 
Rx C P( Qx) x P( Qx), that is, a pair (L, U) of elements of P( Qx )(W) 
such that the five clauses (i)-(v) of (8) hold. Now each clause is a 
formula with no free variables, so it holds when it is forced by W. Thus 
condition (8) on (L, U) in the forcing language becomes 

(i) W If- 3q E Qx (q E L) 1\ 3r E Qx (r E U); 
(ii) W If-'Vq,r E Qx (q < rl\r E L =* q E L) 

I\(r < q 1\ r E U =* q E U); 
(iii) W If- 'Vq E Qx (q E L =* 3r E Qx (r E L 1\ q < r)) 

1\ (q E U =* 3r E Q x (r E U 1\ r < q)); 
(iv) W If- 'Vq, r E Qx (q < r =* (q E Lv r E U)); 
(v) W If- 'Vq E Qx -,(q E L 1\ q E U). 

Now Qx is the constant sheaf corresponding to the set Q of rationals. 
Also L, as an element of P( Q x) (W), can be regarded as a map of sheaves 
y(W) ----> P(Qx) (by the Yoneda lemma), and hence L can be identified 
with a subsheaf of QxIW, according to the correspondence 

y(W) ~P(Qx) = n(Qx) 

y(W) x Qx -----;) n 

a subsheaf of (y(W) x Qx) = QxlW 

(and similarly for U). Now we can apply the sheaf semantics described 
in Theorem 7.1. For example "q E L" with L a subsheaf of QxIW, as 
above with Qx = ll(Q) a constant sheaf, becomes "q: W ----> Q is a 
locally constant function with q E L(W)". Thus W If- 3q E Qx (Q E L) 
by clause (v) for the existential quantifiers in Theorem 7.1 becomes 
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"there is an open cover {Wi} of W such that for each i there is a locally 
constant function qi: Wi ~ Q with qi E L(Wd'. In this way, each of the 
conditions (i)-(v) above can be translated by Theorem 7.1 to become 
the following conditions (i')-(v') on the subsheaves Land U. 

(i') There is an open cover {Wi} of W such that for each i there are 
locally constant functions qi, ri: Wi ~ Q with qi E L(Wi) and 
ri E U(Wi). 

(ii') For all locally constant functions q, r: W' ~ Q defined on some 
open set W' ~ W: if q(x) < r(x) for all x E W' and r E L(W') 
then q E L(W'); and if r(x) < q(x) for all x E W' while r E 
U(W') then q E U(W'). 

(iii') For all locally constant functions q : W' ~ Q on some open 
subset W' ~ W, if q E L(W') [respectively q E U(W')], then 
there are an open cover {WI} of W' and locally constant functions 
ri: W[ ~ Q such that ri(x) > q(x) for all x E Wi and ri E L(Wi ) 
[respectively ri(x) < q(x) for all x E W[ and ri E U(Wf)l. 

(iv') For any two locally constant functions q, r: W' ~ Q on an open 
subset W' ~ W such that q(x) < r(x) for all x E W' there exists 
an open cover {WI} of W' such that, for each index i, either 
qlW[ E L(Wf) or rlW[ E U(Wf). 

(v') For any locally constant function q: W' ~ Q on a nonempty open 
subset W' ~ W, not both q E L(W') and q E U(W'). 

Let us write q for the constant function on X with value q, where q 
is any rational number. Now consider for a point x E W the following 
disjoint sets of rationals: 

Lx = {q E Q I :J open V ~ W: x E V and ij1V E L(V) }, 

Ux = { r E Q I :J open V ~ W: x E V and 1lV E U(V) }. 

It readily follows from (i')-(v') above that Lx and Ux form a Dedekind 
cut in the category of sets; i.e., that Lx and Ux satisfy the five conditions 
in (8) above. Since there is a unique real number sup Lx = inf Ux which 
corresponds to this cut (Lx, Ux ), we can define a function 

/L,u: W~R 

by /L,u(x) = sup Lx; in other words, for rationals q, r E Q, 

q < /L,u(x) < r iff q E Lx and r E Ux · (10) 

It follows from (10) that the function /L,u: W ~ R is continuous. 
Indeed, if (q, r) is a rational interval and x E fL,~(q, r), then by (10) and 
the definition of Lx and Ux , there are neighborhoods V and V' of x such 
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that ilJV E L(V) and PJV' E U(V'). But then for any point y E V n V', 
we have again by (10) that y E fL,~(q, r). Thus V n V' ~ fL,~(q, r). 
This shows that fL~(q, r) is an open subset of W. Since the rational 
intervals form a basis for the topology of R, it follows that !L,u: W ~ R 
is continuous. 

Conversely, suppose we start with a given continuous function 
f: W ~ R. We may then define subsheaves Lf and Uf of QxlW 
by setting for W' ~ Wand p E Qx(W') (that is, p is a locally constant 
function from W' into the rationals): 

P E Lf(W') iff \Ix E W', 
P E Uf(W') iff \Ix E W', 

p(x) < f(x) } 
p(x) > f(x) . 

(11) 

This pair of subsheaves (Lf' Uf ) satisfies (i')-(v') above: Indeed, (i') 
holds since we can cover W by the open sets Wn = {x E W I -n < 
f(x) < n}, where n E N. Then -nlWn E Lf(Wn) and nlWn E Uf(Wn). 
That (ii') holds is clear from the definition of L f and Ufo To prove (iii'), 
take any open W' ~ Wand any q E Lf(W'). Then if x is a point of W', 
we have q(x) < f(x). So by continuity of f and density of the rationals 
in the reals, there is a neighborhood Vx of x and a rational rx such that 
q(y) < rx < f(y) for all y E Vx· Thus, fxJVx E Lf(Vx). Since the sets 
Vx cover W', this shows one half of (iii'). The other half (concerning 
U f rather than L f) is proved similarly. For (iv'), if q, r: W' ~ Q 
are locally constant functions with q(x) < r(x) for all x E W', then 
WI = {x I f(x) < r(x)} and W2 = {x I q(x) < f(x)} cover W', while 
qlWI E Lf(WI ) and rlW2 E Uf(W2 ). So (iv') holds. Finally (v') holds 
trivially. By the equivalence between (i')-(v') and (i)-(v) above, it now 
follows that (Lf,Uf) is an element of Rx(W). 

It is, finally, a straightforward matter of spelling out the definitions 
to conclude that the operations thus defined, 

Rx (W) ( ) C(W) 
(L,U) ~ !L,u 

(Lf' Uf )f--if, 

are mutually inverse. Since these operations are, moreover, natural in 
the open set W ~ X, one obtains an isomorphism of sheaves Rx ~ C, 
and the theorem is proved. 

For the identification of the reals in some topoi other than those of 
the form Sh(X), see Theorem 9.2 below, and Exercise 14. 

9. Brouwer's Theorem: All Functions are Continuous 

Around 1924 L. E. J. Brouwer "proved" that all functions defined on 
(a closed interval of ) the real numbers and with real numbers as values 
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are continuous! Of course, classically this theorem is false. But Brouwer 
worked with an intuitionistic view of all mathematics. He considered real 
numbers as constructed by the method of Cauchy sequences of rational 
numbers. These sequences were "free choice sequences" -so that at any 
given moment the working mathematician has only incomplete informa
tion on the sequence. According to Brouwer, these sequences satisfied 
certain "self-evident" principles-comparable in status (for Brouwer) to 
the principle of induction for natural numbers. From these principles, 
he was able to show that whenever a function from say the interval [0, 1] 
to the reals R is well-defined, it has to be continuous. 

Now topoi are "generalized" universes of sets, and the logic of such 
universes is in general intuitionistic (the logic is classical precisely when 
the topos is Boolean). Therefore, it is natural to ask whether there are 
perhaps topoi which resemble Brouwer's world to such an extent that 
all functions from reals to reals are continuous. This question can be 
made more precise, using the Mitchell-Benabou language: given a topos 
E with natural numbers object NE, we have seen in the previous section 
how to construct the object RE of reals in E. We say that "all functions 
from RE to itself are continuous" in E if the following formula of the 
Mitchell-Benabou language is valid in E (the formula is the usual E-8 
description of continuity): 

Vf E RERt: VE E RE (E > 0 =} Vx E RE:J8 E RE (8 > 0/\ } 
Vy E RE (x - 8 < y < x + 8 =} f(x) - E < fey) < f(x) + E))) . 

(1) 
Here RERt: is the exponential in the topos E. Thus, our question is: 
are there topoi such that (1) is valid in £? In this section we will 
provide a positive answer to this question: there do indeed exist many 
topoi in which (1) is valid. For example, one such topos is the so
called "gros top os" T = Sh(T) of sheaves on the site T of topological 
spaces, equipped with the open cover topology (see §III.2). In a nutshell, 
the reason is the following. For this topos T, one can prove a result 
analogous to Theorem 8.2: if Ry denotes the object of Dedekind reals 
in the topos T and X is an element ofthe site T, then Ry(X) is precisely 
the set of all continuous functions from X to the ordinary real line R 
(cf. Theorem 9.2 below). But R is also an object of the site T, so now the 
object Ry of Dedekind reals has become representable in T! Continuity 
of all functions then follows, essentially by the Yoneda lemma. 

Let us turn to the details. From now on T denotes a fixed small 
full subcategory of the category of topological spaces, with the following 
properties: 

(i) T is closed under finite limits; } 
(ii) if X E T and U is an open subspace of X, then U E T; 
(iii) the real line R is an object of T. 
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The Grothendieck topology on T is given by the open covers; in other 
words, a basis for this topology is formed by the families of the form 

where {Ui } is an open cover of X and each Ii is the embedding of Ui in 
X. We wish to prove that (1) is valid in the topos 

T = Sh(T) 

of sheaves on T. 
First, we consider some special sheaves on T. If A is a fixed topo

logical space, the functor 

C( - , A): TOP --+ Sets, (2) 

which sends an object X E T to the set of continuous functions X --+ A, 
is a sheaf on T. All the sheaves on T which we shall consider are of this 
simple form (2). 

As for any Grothendieck topos, there are adjoint functors 

r: T = Sh(T) ( ) Sets : ~. (3) 

Here, r is the global sections functor; since the one-point space 1 is an 
object of T [ef. (i) above], one has for any sheaf E on T that r(E) = 
E(1). The functor ~ is also easily described explicitly, much as for a 
topos Sh(X) of sheaves on a single space X: 

Lemma 1. For any set S, ~(S): TOP --+ Sets is (isomorphic to) 
the sheaf C ( - ,S) of continuous functions into the discrete space S. 

Proof: One might proceed by showing that two applications of the 
plus-construction of §III.5 transform the constant presheaf TOP --+ Sets 
with value S into the sheaf C( - ,S). Alternatively, it is not difficult to 
prove directly that the functor Sets --+ Sh(T), defined by S ~ C( - ,S), 
is left adjoint to r. Indeed, for a set S and a sheaf E on T there is a 
bijective correspondence 

¢: C ( - , S) --+ E 
(4) 

7/J: S ----+ r(E) 

as follows. Given a natural transformation ¢: C( -, S) --+ E, let 7/J be 
the component ¢1: S = C(1, S) --+ E(1) = r(E). And given 7/J, we 
construct a natural transformation ¢: C( - ,S) --+ E by choosing for 
each space X E T the component 

¢x: C(X, S) --+ E(X) 
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described as follows. For a E C(X, S) (-that is, a a continuous function 
X -+ S-) the sets Us = a- 1 (s) (for s E S) form an open cover of X. 
For each s E S, 'ljJ(s) E E(l) restricts via E(l) -+ E(Us ) to an element 

Since the sets Us are pairwise disjoint, these elements automatically form 
a matching family, hence can be patched together to a unique element 
<l>x(a) E E(X). This is summarized by the following display: 

X <-( ------", Us ------t) 1 

E(X) ---+) E(Us ) +--( --E(l) 

<l>x(a) f-I ----+) 'ljJ(s) . Us ( 1'ljJ(S) 

(in T) 

(restrictions of E) 

(definition of <1». 

It is readily verified that <l>x: C(X, S) -+ E(X) is natural in X, and 
that this indeed describes a bijective correspondence as required in (4). 

The topos T = Sh(T) has a natural numbers object NT. As in any 
Grothendieck topos, we have NT = ~(N) (as in §l). So by the preceding 
lemma, the sheaf NT can be described as 

NT = C( -,N). (5) 

Now Lemma 1 of §8 is obviously still true when we replace Sh(X) by an 
arbitrary Grothendieck topos of sheaves on some site--the same proof 
still works. It follows as in §8 that the objects ZT and QT of integers and 
rationals in our topos T are similarly given by the sheaves of continuous 
functions into the discrete spaces Z and Q. In particular, 

QT(X) = {f: X -+ Q I f is continuous 

(for the discrete topology on Q) } (6) 

= { f: X -+ Q I f is locally constant}. 

We now prove the analogue of Theorem 8.2 for the topos T. 

Theorem 2. For the topos T = Sh(T), the object of Dedekind reals 
RT is isomorphic to the sheaf C = C( -, R) of continuous real-valued 
functions, with 

C(X) = {f: X -+ R I f is continuous} (for X E T). 

Notice that R is an object of T, and therefore that C is the repre
sentable sheaf y(R) = T( -, R). 
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Proof: The proof of this result is very similar to that of Theo
rem 8.2. For an object W of the site T, an element of RT(W) again con
sists of a pair (L, U), where Land U are disjoint elements of P(QT)(W) 
which satisfy the five clauses (i)-(v). As in the proof of Theorem 8.2, 
the Yoneda lemma shows that L E P( QT ) (W) corresponds to a map 
y(W) = T( -, W) --+ P(QT); or if we write P(QT) = nQT and take the 
exponential transpose, L corresponds to a subsheaf of T( -, W) X QT. 
Exactly the same applies to U. We will, therefore, identify Land U with 
subsheaves of T( -, W) X QT' Thus, L consists of pairs (a,p) where 
a: Y --+ W is a map from some space Y in T and q: Y --+ Q is locally 
constant [ef. (6)]. To say that this set L is a subsheaf means, first that 
(a, p) E L implies (a(3, p(3) E L for any map (3: Z --+ Y in T, and second 
that if (aIVi,pIVi) E L for each Vi in some open cover {Vi} of Y, then 
(a,p) E L. The same applies to U. 

Now to say that (L, U) E (P( QT) X P( QT) )(W) lies in the subobject 
RT >---> P( QT) X P( QT) of Dedekind cuts means that the conditions (i)
(v) from the proof of 8.2 hold (where Qx is replaced by QT and where 
"w II- ... " now refers to the sheaf semantics for the site T). Since QT 
is the constant sheaf D,(Q) on T and the covers of W in T are given by 
ordinary covers by open subsets Wi <;::; W, clauses (i)-(v) are equivalent 
to the conditions (i')-(v') as stated there. [Except that in (ii'), (iii'), 
and (v'), the phrase "all open W' <;::; W" has to be replaced by "all 
maps W' --+ W in T for any object W' of T".] The equivalence between 
(i)-(v) and the slightly modified (i')-(v') is again a matter of spelling 
out the sheaf semantics. Thus, as before, we can associate with the cut 
(L, U) a continuous function 

h,u: W --+ R 

defined by setting for x E Wand q, T E Q: 

q < h,u(x) < T iff for some open V <;::; W with x E V, 

(V >--+ W, q) ELand (V >--+ W, r) E u. 
(As before, q and r stand for the constant functions V --+ Q with values 
q and T.) 

Conversely, given a continuous function f: W --+ R, one defines 
subsheaves L f and Uf of T( -, W) X QT by setting for a continuous 
map a: Y --+ W in T and a locally constant function p: Y --+ Q, 

(a,p) ELf 

(a,p) E Uf 

iff p(y) < fa(y) for all y E Y, 

iff p(y) > fa(y) for all y E Y. 

If we now identify these subsheaves of T( -, W) X QT with elements of 
P(QT)(W) as before, the pair (Lf,Uf) defines an element of RT(W). 
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Furthermore, as in Theorem 8.2, describing the Dedekind reals, the 
bijective correspondence 

f f---> (Lt, Ut ): C(W) -+ RT(W), 

(L, U) f---> !L,u: RT(W) -+ C(W) 

is natural in Wand gives an isomorphism C ~ RT as asserted in the 
theorem. 

We can now prove that "Brouwer's Theorem" holds in the topos T 
of sheaves on T. 

Theorem 3. In the tapas T = Sh(T), all functions from RT to 
RT are continuous, in the precise sense that the sentence (1) of the 
Mitchell~Benabou language (with T for £) is valid in T. 

Before embarking on the proof of this theorem, let us consider some 
of the expressions occurring in the Mitchell~Benabou sentence (1), de
scribing continuity, for the special case where E = T. By Theorem 2, 
RT is the sheaf of continuous real-valued functions. For an element 
g: Y ---+ R of RT(Y), where YET, one has 

Y If- g > 0 iff g(y) > 0 for all y E Y (7) 

by the expected definition of the order on RT. The object RTRT is the 
exponential in the topos. Thus, by the Yoneda lemma, for any object 
Y of T, an element F of RTRT (Y) is given by a natural transformation 
T( - , Y) ---+ RTRT , or equivalently, via exponential transposition, by a 
natural transformation (still denoted by F) 

F: T( -, Y) X RT ---+ RT. (8) 

By Theorem 2, RT is the representable sheaf T( -, R); also byassump
tion T is closed under products so T( -, Y) X RT ~ T( -, Y x R). By 
the Yoneda lemma again it has to follow that an F as in (8) corresponds 
to a uniquely determined arrow Y x R ---+ R in T, i.e., to a continuous 
map f: Y x R ---+ R. The natural transformation F and the map f 
determine each other for each Z in T by 

f = FYxR(7rl,7r2), (9) 

Fz(a,g) = f 0 (a,g) for a: Z ---+ Y and g: Z ---+ R in T. (10) 

Proof of Theorem 3: As before, let 1 be the terminal object in 
the site T. Then the sentence (1) describing continuity is valid in T iff 
(1) is forced at this terminal object 1, (cf. §6). And by clauses (vi) and 
(iii) for sheaf semantics (Theorem 7.1), this is the case iff for any object 
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X of T, any F E RTRT (X) and any E E RT(X) such that X If- E > 0, 
one has 

X If- Vx E RT :J8 E RT (8) O!\ Vy E RT ( ... », (11) 

where ( ... ) is as in (1) but with F substituted in place of f. So let us fix 
such X, F, and E with X If- E > O. Then F corresponds to a continuous 
map f: X x R ----> R as in (9) and (10) above, while E: X ----> R is an 
everywhere positive continuous function [ef. (7)]. We shall now prove 
(11). 

Recall first from the Remark (vi') following the statement of Theo
rem 7.1 that for any formula ¢(x) whatsoever 

X If- Vx E RT ¢(x) iff X x R If- ¢(7r2), 

where 7r2 E RT(X x R) is the second projection X x R ----> R. So to 
prove (11), it suffices to show (12): 

X x R If- :J8 E RT (8 > 0 !\ Vy E RT (7r2 - 8 < y < 7r2 + 8 =}} (12) 
(F(7r2) - E7rl < F(y) < F(7r2) + E7rl»). 

To this end, consider the given f: X x R ----> Rand E: X ----> R. Since 
E: X ----> R is continuous and E(X) > 0 for all points x E X, the continuity 
of f implies for any x E X and any t E R that there is a neighborhood 
Vx <:;;; X of x and a real number 8 > 0 (depending on x and E) such that 
for any Z E Vx and any s in the interval (t - 8, t + 8) one has 

1 1 
f(z,s) E (f(x,t) - 2E(z),f(x,t) + 2E(z». (13) 

We claim that it follows from (13) that 

1 1 1 1 
Vx x (t - 28, t + 28) If- (Vy E RT (7r2 - 28 < y < 7r2 + 28) =} 

F(7r2) - E7rl < F(y) < F(7r2) + E7rl)' (14) 

Since the open sets Vx x (t - ~8, t + ~8) form a cover of X x R, it would 
follow from (14) by the "local character" of forcing (as stated in §7) that 
(12) holds. So a proof of (14) would indeed complete the proof of the 
theorem. 

In order to prove (14) from the continuity condition (13), take any 
arrow 13: Y ----> Vx x (t - ~8, t + ~8) in T from any space Y, and consider 
an element 9 E RT(Y)' that is, a continuous function g: Y ----> R, with 
the property that 

1 1 
Y If- (7r2 0 13) - - 8 < 9 < (7r2 0 j3) + - 8. 

2 2 
(15) 
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This means that for any point ( E Y, 

(16) 

Because of the codomain of {3 we have I 71"2 {3( () - tl < ~o, so Ig( () - tl < 0 
for any ( E Y. Therefore, by (13) 

(17) 

On \he oth;r hand, the given codomain of {3 means that {3( () E Vx x 
(t - 20, t + 20), so that, again by (13), 1!{3(() - !(x, t)1 < ~f7r1{3((), and 
hence with (17) 

1!{3(() - !(71"1{3((), g(())1 < f7r1{3((). (18) 

But! 0 {3: Y ---+ R is precisely FY(7I"1 0 (3,71"2 0 (3), by (10), while! 0 
(7I"1{3,g) = FY (7I"1{3, g). So (18) means exactly that 

Y II- [(F 0 7I"1(3) (71"2{3) - (f7r1{3) < (F 07l"1 (3)(g) 

< (F 0 (71"1{3)) (71"2{3) + (E7I"1{3)], (19) 

where the composite F 0 7I"1{3 denotes the restriction of F along 
RTRr (71"1{3): RTRr (X) ---+ RTRr (Y). Since this holds for all {3 and 
9 which satisfy (15), we conclude that (14) holds, as was to be shown. 
This proves Theorem 3. 

10. Topos-Theoretic and Set-Theoretic Foundations 

As we have repeatedly suggested before, topos theory (more pre
cisely, the first-order theory of elementary topoi) can serve as a foun
dation of mathematics, alternative to the common foundation by fa
miliar axiomatizations of the membership relation, as in the axioms of 
Zermelo-Framkel set theory. A general elementary top os is much like 
a set-theoretic universe, but "its internal logic" is intuitionistic. To get 
a universe more suitable for classical mathematics, one would at least 
need a Boolean topos. Moreover, in the category of sets, as formulated 
in the Zermelo-Framkel axioms (possibly including the axiom of choice), 
there is no distinction between "global and local existence": these sets 
form a well-pointed topos (see §1). 

In this section, we will briefly investigate the foundation of mathe
matics as based on the axioms for a well-pointed (and hence Boolean) 
topos. From this point of view, the notion of a "function"-an arrow in 
the well-pointed topos-is the basic concept, rather than the notion of 
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set-membership, and the Mitchell-BEmabou language allows for conve
nient manipulation of replicas of membership. 

The resulting topos theory does not have the full strength of the 
conventional Zermelo--F'rcenkel set theory. Instead, it is to be compared 
to a weaker version of set theory in which the comprehension axiom is 
used only for those formulas in which all quantifiers are "restricted"
that is, for formulas ¢(x) in the standard set-theoretical language in 
which every quantifier has the form "lc/x E b" or "3x E e", for suitable 
sets b or c. Specifically, we will show that the axioms for a well-pointed 
topos with a natural numbers object and with the axiom of choice are 
equiconsistent with RZC: restricted Zermelo set theory with the axiom 
of choice, sometimes called "bounded Zermelo". 

The axioms for RZC are formulated with only the usual primitive 
relations E for membership and = for equality. They are: 

Extensionality: x = y iff, for all t, t E x iff t E y. 
Null Set: There exists a set 0 with x tf- 0 for all x. 
Pair: For all x and y there exists z with t E z iff t = x or t = y. 
Union: For all x there exists a set u with t E u iff there is some y with 

t EyE x. 
Power-set: For all x there exists v with t E v iff t ~ x. 
Foundation: For all x i= 0 there exists ayE x with y n x = 0. 
Restricted Comprehension: For every set b and every formula ¢(x) 

in which all quantifiers are restricted, there exists a set u with 
x E u iff ¢(x) and x E b. 

Axiom of Infinity: There exists a set N such that 0 E N and x E N 
implies x U {x} E N. 

Axiom of Choice: Any of the usual formulations; for example, if x is 
a set with y i= 0 for all y Ex, then there exists a function f on x 
with f(y) E Y for all y E x. 

Our equiconsistency proof will proceed by showing that from each 
model S of RZC one can construct a well-pointed topos E (more pre
cisely, a model of the first-order theory WPT of well-pointed topoi) with 
choice and a natural numbers object-and conversely, for each such well
pointed topos E a model of RZC. We shall informally describe these con
structions by means of the English language. However, without going 
into the details, we mention that this informal argument can be given 
within the language of elementary arithmetic. This means that each 
construction can be formalized within arithmetic in a purely syntactic 
way; that is, as a translation of the language of RZC into that of WPT, 
or vice versa. 

The first of the constructions is that which builds a well-pointed 
topos E from a model S of set theory; this is just the familiar construction 
of the category of all sets of S; it uses only the axioms of RZC. The rest 
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of this section is concerned with the second construction: that of an 
RZC model from a well-pointed topos. 

First we record some properties of points (that is, of arrows 1 --+ X, 
i.e., global elements of X) in a well-pointed topos. 

Proposition 1. In a well-pointed topos t:: 

(i) If A and Bare subobjects of X then A :s; B iff every global 
element p: 1 --+ X of X which factors through A also factors 
through B. 

(ii) If X i= 0, then the unique map f: X --+ 1 splits. 
(iii) A map 0:: X --+ Y is epi iff for every p: 1 --+ Y there is a q: 1 --+ X 

with o:q = p. 
(iv) If 0:: X --+ Y and B :s; Y while every q: 1 --+ X has o:q factoring 

through B, then 0: itself factors through B. 

Proof: In (i), if A :s; B fails in Sub(X), then An B is a proper 
subobject of A. Thus, the characteristic functions h: X --+ 0 of A and 
k: X --+ 0 of An B differ. Since 1 is a generator of t: there is therefore a 
point p: 1 --+ X with hp i= kp: 1 --+ O. But in a well-pointed topos t:, by 
Proposition 1.7, there are only two maps 1 --+ 0; namely, the maps true 
and false. If hp = true, then p factors through A and thus by hypothesis 
through B. Therefore p factors through the pullback An B so that kp 
is also true: 1 --+ 0 and kp = hp, a contradiction. Otherwise, hp = false 
and, therefore, kp = true, so p factors through An B and, therefore, 
through A, another contradiction. The converse of (i) is immediate. 

For (ii), consider the coproduct inclusions 7]1, 7]2: X --+ X + X of X 
in the coproduct. If 7]1 = 7]2, their pullback is trivially X, but coproducts 
are disjoint, so X = 0, against the hypothesis. Otherwise, 7]1 i= 7]2, so 
since 1 generates, there is p: 1 --+ X with 7]lP i= 7]2P; then fp: 1 --+ 1 
must be the identity map to the terminal object 1, so p is the desired 
splitting of f. 

In (iii), if a is epi and p: 1 --+ Y, their pullback Q gives an epi t: Q --+ 

1. If Q = 0, then t is also mono, so ° ~ 1, a contradiction, because t: is 
nondegenerate. Hence, t splits by (ii), giving a map h: 1 --+ Q and thus 
(draw a diagram) a map q: 1 --+ X with p = aq. Conversely, suppose a 
is not epi. There are then arrows f, g: Y --+ Z with fa = ga but f i= g. 
Since 1 generates, there is a p: 1 --+ Y with fp i= gpo But by hypothesis 
there is then a q: 1 --+ X with aq = p so f aq i= gaq, contradicting 
fa = gao 

For (iv), let A be the image of a; we need only prove that A :s; B in 
Sub(Y). To apply condition (i), consider any global element p: 1 --+ Y 
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which factors through A 

1 
--/~l -- " q --" p -- " -- " -- " 

... --- .k,/ 

0:: X ---» A>-> ---';) Y 

as above. Then by (iii) p also factors through X as p = o:q for some 
global element q of X. The hypothesis of (iv) then states that o:q = p 

factors through B. Thus, by (i) A :S B, as required. 

With the results from Proposition 1, consider now the Kripke-Joyal 
semantics for a well-pointed topos E. Let </>(y) be a formula of the 
Mitchell-Benabou language of E with a free variable y of type Y, defining 
a subobject {y I </>(y) } of Y, while 0:: X ---+ Y is a generalized element 
of Y. By the definition of forcing, X II- </>(0:) iff 0: factors through {y I 
</>(y)}. By (iv) above this holds iff every o:q factors through {y I </>(y)}. 
In other words 

X II- </>(0:) iff for all q: 1 ---+ X, 111- </>(o:q). (1) 

This states that every forcing condition for truth at an object X of E can 
be completely described by forcing at the terminal object 1 of E. Thus, 
the previous inductive clauses of Theorem 6.1 reduce to the following 
statements about global elements 0:: 1 ---+ Y and {3: 1 ---+ Y: 

111-</>(0:) 1\ 'ljJ(0:) 

111-</>(0:) V'ljJ(o:) 

111-</>(0:) '* 'ljJ(0:) 
Ilh</>(o:) 

111-:Jy</>(o:,y) 

1 I I-Vy</> (0: , y) 

iff 111- </>(0:) and 111- 'ljJ(0:) , 

iff 111- </>(0:) or 111- 'ljJ(0:) , 
iff when 111- </>(0:) then also 111- 'ljJ(0:) , 

iff not 111- </>(0:), 

iff for some {3: 1---+ Y, 111- </>(0:,{3), 

iff for every {3: 1 ---+ Y, 1 II- </>(0:, {3). 

These are just the familiar semantic rules for the standard interpretation 
of the classical logical connectives! In other words, in a well-pointed 
topos, generalized elements are not needed to describe truth, because 
global elements suffice-and suffice in the familiar way! 

We now construct a model S of RZC from a well-pointed topos with 
natural numbers object and choice. This construction depends on the 
idea of picturing a set x as a tree: x is the root of the tree; on the first 
level are the members of x, joined to x; next above there are the members 
of the members y of x, each joined to its y; and so on, to include thus 
all the elements in the "transitive closure" of x. (Recall that a set t is 
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said to be transitive iff y E x E t implies yEt; the replacement axiom 
of Zermelo-Frrenkel set theory-which we do not assume--implies that 
every set is contained in a transitive set.) Here is a picture of a set x as 
a tree. 

Elements of Xl • • • • • • 

\11 \11 
Elements of x 

x •. 

Within our elementary topos £, we proceed to describe the sort of 
tree here intended, making liberal use of the Mitchell-Benabou language 
to describe subobjects. 

A tree in £ is an object T of £ with a binary relation R >--+ TxT, 
written in the language as x :s; y for x, y in T. [As usual, x < y stands 
for x :s; y 1\ -,(x = y), etc.] The axioms for a tree are: 

(i) Poset: R defines a (reflexive) partial order :s; on T. 
(ii) Root: There exists 0 E T such that 0 :s; t for all t E T. 

(iii) Tree Property: For all t E T, the subset It = {x I x :s; t} is 
linearly ordered by (the restriction of) the relation :s; of T. (The 
set It is often called the downward closure of t.) 

(iv) Well-founded Down: For all S S;;; T with S i= 0, there exists a 
yES such that one never has y > z for z E S (thus, y is minimal 
in S with respect to :s;). 

(v) Well-founded Up: For all S S;;; T, if S i= 0 then there exists a 
w E S such that one never has z > w for z E S (thus w is maximal 
in S; this requirement is closely related to the usual set-theoretic 
axiom of foundation, as in the formulation of RZC above). 

(vi) Rigid: The only automorphism 0:: T ---+ T is the identity. 

Here a morphism f3: T ---+ T' of trees is a map T ---+ T' in £ which 
preserves the root 0 as well as the relation :s; (so an isomorphism T ---+ T' 
of trees is a morphism with a two-sided inverse, and an automorphism 
of T is an isomorphism of T to itself). 

We have stated the axioms for a tree T in an informal way, as if 
T were a set with actual elements t. Fortunately, they agree with the 
formal interpretation in the Mitchell-Benabou language of £ when each 
"element" t E T is read as a global element t: 1 ---+ T. For example, 
Axiom (ii) holds in £ if the formula 3s'v't(s :s; t) of the language of £ 
holds in £, where sand t are variables of type T; in other words, if 
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1 If-- :3s\it(s :::; t). As explained above, if E is a well-pointed topos, this 
simply means that there is an arrow, call it 0: 1 --+ T, such that for any 
other such arrow a: 1 --+ T, the pair (0, a): 1 --+ TxT factors through 
the subobject R>-+ TxT defining the order relation on T. [Axiom (i) 
implies that the arrow 0: 1 --+ T with this property is unique.] Similarly, 
for example, Axiom (iv) should be interpreted as requiring the validity 
in E of the formula 

\is(:3t(t E S) =} :3y(y E S /\ \iz E S-.(y > z))), 

where S is a variable of type P(T) and t, y, and z are variables of 
type T. Again, if E is well-pointed we can use the simplified forcing 
definition as explained above, and show that this formula is valid iff for 
every subobject S >-+ T (corresponding to a global element 1 --+ PT), if 
S =F 0 (the initial object of E), then there exists a y: 1 --+ S such that 
for all z: 1 --+ S we have that if (z, y): 1 --+ TxT factors through R, 
then y = z. Validity of the other axioms for a tree T in a well-pointed 
topos E can similarly be restated in terms of "global elements" ~and the 
statement is exactly the usual "naive" meaning of the axioms. 

In discussing trees (in the above sense) in E, we call a global element 
t: 1 --+ T in E a node of T. Each such node determines a subtree (the 
upward closure) 

It = {x It:::; x}, 

called a branch of T; such a branch again satisfies the axioms, if T does. 
We also say that a node t covers a node s iff t < s and there is no node u 
of T with t < u < s. The nodes of T covered by the root are called points 
of T; in the model S to be constructed, the points are the elements of the 
set that T is meant to represent, as described below. In the Mitchell
Benabou language, we can define a corresponding subobject P ~ T of 
the points of T by the formula P = {t E T I \is E T(s < t ~ s = O)}; 
the arrows 1 --+ P are then precisely the points of T. From Axioms (iii) 
and (iv) above it readily follows that for every node t =F 0 of T there is a 
unique point p: 1 --+ T with 0 < P :::; t; one might call P the "ancestor" 
of the node t; for this we write P = At, with A for ancestor. 

We shall occasionally use "floppy" trees, which satisfy all the listed 
axioms except rigidity. However, the rigidity axiom is necessary if a tree 
is to be interpreted as the "set" of its points p. (Indeed, if a floppy tree 
has distinct points PI and P2 such that IPI and IP2 are isomorphic, then 
PI and P2 would represent the same set, which would be counted twice 
as an element of the set represented by T. However, the isomorphism 
IPI ~ IP2 can be extended to a nontrivial automorphism of T, which 
interchanges PI and P2; so this situation is excluded for rigid trees T.) 
This extension of IPI ~ IP2 to an automorphism is included in the 
following: 
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Lemma 2. A tree F is floppy iff there exists a node t of F covering 
two distinct nodes x and y and such that the upward closure j x, as a 
tree, is isomorphic to jy. 

Proof: The following informal sketch can readily be translated into 
a rigorous proof by means of the Mitchell~Benabou language. When 
there is such a pair of nodes x and y in F, there is clearly an automor
phism 0:: F ---7 F carrying jx to jy by the given isomorphism and jy 
back to jx, but leaving all other nodes fixed. Conversely, if 0:: F ---7 F 
is an automorphism different from the identity, pick a "lowest pair" 
of distinct nodes x and y with o:(x) = y (such a pair exists, by well
foundedness down.) Then jx ~ jy; moreover, xi- 0, so x is covered by 
a node t which must be fixed by 0:, since x was lowest. 

With these preliminaries, we now construct from [ a model of RZC. 
Let S be the collection of isomorphism classes of such rigid trees in [. 
(Alternatively, S is the collection of all such trees, but with the equality 
predicate Tl = T2 interpreted as "Tl is isomorphic to T2".) We shall 
prove that S is a model of the theory RZC, where the membership 
relation E is interpreted as 

Tl E T2 iff there is an isomorphism Tl ~ jp for some point p of T2. 

(By rigidity and Lemma 1, the point p is unique.) We now verify the ax
ioms of RZC; again, we use informal language, and usually avoid writing 
down expressions in the Mitchell~Benabou language. (The passage from 
informal description to a proof using this language is straightforward, 
because forcing for a well-pointed topos has, as listed above, just the 
standard semantic interpretation.) 
Extensionality. This amounts to proving the validity in [ of the for
mula in the Mitchell~Benabou language for [ which expresses, for trees 
T and T', that there is an isomorphism from T to T' iff for any point 
p of T there is a point p' of T' with jp ~ jp', and also for any point 
p' of T' there is a point p of T with jp ~ jp'. The "only if" direction 
is clear, because any isomorphism of trees 0:: T ---7 T' sends points p of 
T to points o:(p) of T' with jp ~ jo: (p). Conversely, suppose for every 
point p of T that the tree jp is isomorphic to a tree j p' for some point p' 
of T'. This p' is unique, by rigidity, so this gives a morphism f: p f--7 p' 
in [ from the object of points of T to that of points of T', such that jp 
is isomorphic to jp' by some isomorphism O:p: jp ~ jp'. Similarly, in
terchanging T and T', we find a morphism 9 from points of T' to points 
of T for which there is for each p' an isomorphism (3p': jp' ~ jg (p'). 
By rigidity, f and 9 are mutually inverse, as are O:p and (3f(p) for each 

p. Then one obtains an isomorphism B: T":" T' by B(t) = f(t) if t is a 
point of T, while B(t) = O:p(t) if p is the ancestor of the node t of T. 
Null Set. The null set 0 is realized by the tree which consists only of 

the root o. 
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Pair. The existence of the (unordered) pair {x, y} of two sets x and y 
is witnessed by the construction on trees which, given two trees Tl and 
T2 , puts them next to each other and adds a new root; as in the figure 

o •. 
Union. To form the union of a set represented by a tree T, one simply 
deletes from T all its points and retains the partial order :::; restricted to 
the remaining nodes. The newly resulting tree will satisfy all the axioms 
except possibly rigidity. By Lemma 1 and rigidity of T, rigidity of the 
new tree can only fail for nodes t and t' in the second layer of T, i.e., 
in the first layer (points) of the tree proposed to represent the union
and rigidity only fails if it ~ it'. So use this to define an equivalence 
relation on the nodes in the second layer (nodes covered by points of T), 
choose one t in each such equivalence class and take U T to be the tree 
consisting of all it for the chosen t, plus the root of the original tree T. 
For example, if T represents a set of the form { {x, y}, {x} }, where x 
and yare represented by Tl and T2, then U T is the tree as pictured 
below: 

• • • 
~/ / 

• • 
~/ 
o • 

The Given Tree T 

Tl T2 Tl Tl T2 

""/ ""/ ""/ ""/ ""/ 
• • • • • 

~I/ ~/ 
O. o • 

The Nonrigid Intermediate Tree The Tree UT 
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Power-Set. The "power-set" Pow(T) of a (rigid) tree T may be con
structed from T as follows: Pow(T) has a root 0; above it, it has a point 
8 for each subset 8 of the set P of points of T; above such a point 8 
of Pow(T), it has a second layer consisting of those points p of T which 
belong to the subset 8; and after that, the tree grows upwards above 
each such p just as it does in T above that p. For example, draw the 
picture when P has just two elements. 

This intuitive description can easily be made into a construction of 
an object in the topos [;: let PeT be the object of points of T, and 
P(P) = oP its power object. Then form the object B of [; defined by 

B = { (t, 8) I t -=I 0 in T,8 <:: P, and At E 8}; 

here At is the ancestor of T; i.e., the unique point of T below or identical 
to t. Now let Pow(T) be the coproduct in [; 

Pow(T) = B + P(P) + 1, 

with "elements" (t, 8) E B, 8 E P(P), and 0 E 1; define a partial order 
here by taking 0 as the (new) root, and 

(t1,8d::; (t2,82) 

8::; (h,8d 
8 1 ::; 82 

0::;8 

iff 81 = 82 and t1 ::; t2 in T, 

iff 8 1 = 8, 

iff 8 1 = 8 2 , 

all 8. 

One readily proves that any tree T1 representing a "subset" of T is 
realized as a point of Pow(T). Indeed, if T1 represents a subset of T (so 
that R E T1 implies RET for all trees R), then by definition of the 
membership relation among trees, for any point P1 of T1 , the tree jp 1 

has an isomorphic copy jp for a unique point p of T. Let 8 be the set of 
all such points of T. Then 8, viewed as a point of Pow(T) , realizes the 
tree T1, in the sense that T1 is isomorphic to the subtree j 8 of Pow(T). 

Routine arguments show that Pow(T) so defined satisfies all the first 
five axioms for a tree. As for the axiom of rigidity, we apply Lemma 2 to 
the subtrees ofPow(T) of the form jO = all ofPow(T), j8 where 8 <:: P 
is a point of Pow(T), and T (t, 8) where At is in 8. In order to apply 
Lemma 1, suppose there are distinct nodes 6 and 6 in Pow(T), both 
covered by a node (, such that j~ 1 and j~ 2 are isomorphic. Clearly ~i 
cannot be of the form 8 i , since T( 8d ~ T( 8 2 ) implies that 8 1 = 82 , 

by rigidity of T. If 6 = (h, 8 1 ) and 6 = (t2' 8 2 ), then since 6 and 6 
are both covered by the node ( above, we have 8 1 = 8 2 , and ri[idity of 
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T would imply tl = t2' The other cases (such as 6 = 8, 6 = (t, 8')) 
are immediately excluded since 6 and 6 are assumed to be covered by 
a common node. 
Foundation. Let T be a tree satisfying (i)-(iv), representing a 
nonempty set x. We wish to show that the set x has the property 
that :3y (y E x and y n x = 0). In terms of the tree for x, this means 
that there exists a point p in T such that for no node t of T covered by 
p, can one have it ~ iq for some point q of T. Let 8 be the following 
set of nodes of T: 

8 = {t I :3 point q of T: it ~ i q }. 

Clearly 8 contains all the points of T -in particular, 8 is nonempty 
since we assume that T represents a nonempty set. By (iv), there is a 
maximal node m in 8. Let r be the point of T for which there is an 

isomorphism a: ir --+ im. If no node t E T which is covered by r 
belongs to 8, then r represents a set which is disjoint from x, and we 
are done. Otherwise there exists a node t, covered by r, and a point s of 

T for which there is an isomorphism (3: is --+ it, as suggested in the 
following figure: 

• • • 
""II 

• • a(t) 

\ I ""-'" 
m • ......,0: • • • 

''''''' "',\11 
"-9', • • t • • • 

",~ / ",P\II ..r .s 
~ I ___________ 

0 •. 

Then the composite a 0 (3 is an isomorphism with is ~ it ~ ia (t). 
Thus, the node a(t) is one of the elements of 8, while the existence of 
the isomorphism a shows that t > r whence a(t) > m, so that m is not 
the maximal node in 8, a contradiction. 
Comprehension. Suppose ¢(x, y) is a set-theoretical formula with free 
variables x and y, with all quantifiers restricted. We view y as a parame
ter, and wish to show that the comprehension principle for ¢(x, y) holds 
in the context of trees. Thus for any set s we want the set 

r = {x E s I ¢(x, y)}. 
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More explicitly we wish to show that for given trees Sand T there exists 
a tree R such that the set-theoretical formula '<Ix E S (¢(x, T) {::} x E R) 
holds. This formula, as well as ¢(x, y) itself, is built up from E and = 
using the logical connectives and restricted quantifiers. We can therefore 
spell out the definition of membership E and equality = among trees in 
terms of points and isomorphisms of trees as above, and rewrite ¢(x, T) 
as a formula ¢J(x, T) of the Mitchell-Benabou language of the topos c, 
where in ¢J( x, T) the variable x ranges over the points of the given tree S. 
(To make this translation into the Mitchell-Benabou language possible, 
we indeed need to assume that ¢ has only restricted quantifiers since 
these are the only quantifiers available in the Mitchell-Benabou lan
guage: each bound variable has a given type.) For example, if ¢(x, y) is 
of the form '<Iu E y3v E U ( ... ) and the parameter y is interpreted as (the 
set represented by) the tree T, then ¢J(x, T) will be the formal Mitchell
Benabou version of '<Ip(p is a point of T =} 3n(p covers n 1\ ( ... ))). Here 
P and n are variables in ¢J corresponding to the variables U and v in ¢, 
whose type is the object Nodes(T) in C of nodes ofT. (It is then possible 
to give a formal definition, by induction on the construction of ¢, of this 
translation ¢ f-+ ¢J from set-theoretical language into the language of c.) 

Now write P for the object of points of S. Then, as shown in §5, 
there is a well-defined object 

R = {p E P I ¢J( T ( p), S) } 

of C. This object R can be viewed as a point of the tree Pow ( S) described 
above, while T ( R) [as a subtree of Pow(S)] represents a set r witnessing 
the set-theoretical formula 

'<Ix E S(¢(x,y) ~ x E r), 

where the parameter sets sand yare interpreted by the given trees S 
and T. 
Axiom of Infinity. We need to construct, in our given well-pointed 
topos C, a tree T representing a set N such that 0 E N and x E N 
implies x U {x} EN. In terms of the tree T this means, first that there 
exists a point Po of T with the property that IPo consists of Po only 
(Le., IPo represents the empty set), and second that for any point P of 
T there exists a point q of T for which Iq ~ (tp)+. Here ( )+ is the 
operation on trees corresponding to the set-theoretic successor operation 
x f-+ x U {x}; that is, for a tree R, the tree R+ is obtained by letting a 
new additional copy of R grow out of the root: 

• R • 
""/ 

• R. • 

""~ R+: • 
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The standard (minimal) example of such a set N is "the" set of natural 
numbers, where the numbers are defined as sets themselves, by 0 = 0 
and n + 1 = n U {n}. In this model, each natural number is itself the 
set of all smaller natural numbers: n = {m E N I m < n}. The tree 
T representing this set N has a root; above the root it has a point n 
corresponding to each natural number n; above such a node n it has the 
elements of n, i.e., natural numbers less than n, etc. Thus each node of 
T is labeled with a natural number n and the path to this node from 
its ancestral point is labeled with a strictly decreasing finite sequence of 
natural numbers. Thus, we can identify the nodes of T with such strictly 
decreasing sequences, provided we also interpret the root of T as the 
empty sequence (draw a figure!). Such a finite sequence can be modeled 
as a function f: N -+ N with f(i) > f(i + 1) for all i E N such that 
f(i) -=I- 0: Such an f represents the sequence (f(O) -1, ... , f(£ -1) -1), 
where £ is the first number with f(£) = O. So the tree is the set 

T = {f E NN I Vi E N (f(i) -=I- 0 => f(i) > f(i + 1))} (2) 

and the order is given by 

f :::; g iff Vi E N (f(i) -=I- 0 => g(i) = f(i)). (3) 

In other words, f :::; g iff the finite sequence (f(O) - 1, ... , f(£ - 1) - 1) 
modeled by f is an initial segment of the finite sequence modeled by 
g. But clearly by the Mitchell-Benabou language, (2) and (3) define a 
partially ordered object in any topos with a natural numbers object N, 
and one easily verifies that in our given well-pointed topos [;, (2) and 
(3) define a tree representing a set N as required. 
Choice. In the language of set theory, the axiom of choice can be for
mulated as Vy(Vx E y (x -=I- 0) => ::Jf: y -+ U y(Vx E y(f(x) EX))), 
where "f: y -+ U y" is short for the set-theoretic formula stating 
that f is a function from y to the union U y. Let T be a tree rep
resenting a set y with the property "Ix E y (x -=I- ¢). This means 
that the sentence "for every point p of T there is a node t in T cov
ered by p", rewritten in the Mitchell-Benabou language of [;, is valid 
in [;. Let S = {t E T I there exists a point covering t }, and let 
A: S -+ P = points of T be the ancestor map. Then A is epi, so since 
we assume that [; satisfies the axiom of choice, the arrow A has a section 
(j: P -+ S. Then (j is an arrow from points of T to points of the tree U T 
representing the set U y, as described before. It is now straightforward 
to define from (j a tree representing a function from y to U y. (This 
depends on some model for the representation of the cartesian product 
of sets by trees; we omit the details.) 

This completes the verification of the set-theoretic axioms. We thus 
have back and forth constructions for models of RZC and well-pointed 
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topoi E with a natural numbers object and choice: 

S f-+ E, E f-+ S'. 

This gives the asserted equiconsistency of these theories. One can go 
further, and require, for example, that the constructions S f-+ E and 
E f-+ S', for a given model S of RZC, yield the same model S' = S (up 
to isomorphism). This is indeed possible, but only with added axioms. 
For example, to show that every honest set S in S appears as the set 
obtained from a tree, one needs the additional axiom of set theory stating 
that every set is contained in a (least) transitive set. (This axiom is a 
consequence of the replacement axiom of Zermelo---Frrenkel set theory, 
and is much weaker than that axiom. Details are given in [Mitchell]; 
indeed, Mitchell's formulation of this Mitchell-Benabou language was 
done precisely in order to make possible this and all the above argument.) 

Exercises 

1. Let N, with arrows 0: 1 -> Nand s: N -> N, be a natural 
numbers object in a topos E. 

(i) Prove the following form of recursion "in a parameter": for 
objects X and Y of E and maps g: X -> Y and h: YxX -> 

Y, there is a unique 1: N x X -> Y such that the following 
diagrams commute: 

(ii) 

1 x X 
Oxid sxid 

~l 
X ----::----+1 Y Y X X ----:----+1 Y. 

9 h 

[In Sets, this would mean that 1 is the function defined 
by 1(0, x) = g(x), 1(n + 1, x) = h(f(n, x), x).] 
Use this result to define both addition and multiplication 
as arrows N x N -> N in E; define a subobject R>--> N x N 
which represents the order <. 

Cop 

2. Prove that for a small category C, the presheaf topos Sets is 
Boolean iff C is a groupoid (that is, iff every arrow of C is an 
isomorphism) . 

3. For a Tl topological space X, show that the topos Sh(X) of 
sheaves on X is Boolean iff X is discrete. 

4. Let A be a distributive lattice with join V and meet /\, and let 
A be a filter in A; that is, A ~ A satisfies 1 E A, a ?: b E A ==> 
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a E A, and a, b E A =?- a 1\ b E A. The filter A is proper when 

A#A. 

(i) Show that if A is maximal (among all proper filters, or
dered by inclusion) then for any a, b E A, a V b E A iff 
either a E A or b E A. 

(ii) If A is a Boolean algebra, show A is maximal iff for any 
a E A, either a E A or -,a E A. 

5. Observe that a topos £ satisfies the (internal) axiom of choice iff 
every object of £ is (internally) projective, see Exercises 15 and 
16 of Chapter IV. Rephrase some of the statements proved there 
in terms of the (internal) axiom of choice. Notice that if £ is well
pointed then 1 is projective in £. Conclude from Exercise IV .16( c) 
that, for well-pointed topoi, lAC and AC are equivalent. Prove 
that if £ satisfies lAC, then so does £ / E for any object E of £. 
Is the same true for AC? 

6. Let £ be a nondegenerate elementary topos. 

(i) Show that £ is well-pointed iff for every object X of £ and 
every A E Sub(X), A = X iff every arrow 1 ----+ X factors 
through A. 

(ii) If £ is Boolean, show that £ is well-pointed iff for any 
object X of £, X s:! 0 iff there is no arrow 1 ----+ X. 

(iii) If £ is Boolean and satisfies AC, show that for any maximal 
filter A of subobjects of 1 in £, the filter-quotient topos 
£ / A is well-pointed and still satisfies AC. 

7. Improve on Theorem 2.1 by showing that there exists a well
pointed topos £ satisfying AC, with a natural numbers ob
ject N, in which there is an object X with N)-) X )-) PN but 
Epi(N, X) s:! 0 s:! Epi(X, PN). (Use the preceding exercise.) 

8. Give an "elementary" definition of Epi(X, Y) )-) Y x, without us
ing Hom-sets. 

9. Let £ be an elementary topos, with subobject classifier n. In §6, 
we proved the implication from right to left of the equivalence 
(15). Prove the implication from left to right. Also, give a more 
direct proof of the implication from right to left, by showing first 
that the subobjects {p I p} and {p I --,p} of n are, respectively, 
true: 1)-) n and false: 1)-) n. 

10. Prove that an arrow f: X ----+ Y in a topos £ is a monomorphism 
iff the sentence \Ix E X \Ix' E X (fx = fx' =} x = x') of the 
Mitchell-Benabou language holds in £. 
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11. Prove that the sentence 

Vx:3!y¢(x, y) ::::} :3f E yX Vx¢(x, f(x)), 

where x and y are variables of type X and Y, holds for any two 
objects X and Y in any top os E. [This formula expresses the 
"axiom of unique choice"; as usual, :3!y¢( x, y) is an abbreviation 
of :3y(¢(x, y) II Vz(¢(x, z) ::::} y = z)).] 

12. Let X be an object in a topos E, and let R be a subobject of 
X x X. The "axiom of dependent choice" is the formula . 

13. 

14. 

Vx:3yr(x, y) ::::} Vx:3f E XN (1(0) = x II Vnr(l(n), fen + 1))), 

where N is the natural numbers object of E, x, yare variables 
of type X, n is a variable of type N, and r is the characteristic 
function X x X ---+ n of R. 

(i) Prove that if E is a presheaf topos, then the axiom of 
dependent choice holds in E, for any X and R. 

(ii) Prove that in the topos Sh(NN) of sheaves on the Baire 
space NN, the axiom of dependent choice holds for any X 
and R. 

(iii) Give an example of a top os E for which the axiom of de
pendent choice fails, for some X and ReX x X. 

In (4) of §8, we gave a definition of the object Z£ of integers in a 
topos E. Define arrows 0, 1: 1 ---+ Z£ and +, .: Z£ x Z£ ---+ Z£, and 
prove the commutativity of the diagrams which express that Z£ 
with these operations is a ring object in E; do this is such a way 
that for the special case where E is the topos Sh(X) of sheaves 
on a space X, this ring structure coincides with the evident one 
on ZSh(X) = ~(Z). In a similar way, give a ring structure on 
Q£ [see (5) of §8] generalizing the obvious ring structure for the 
case E = Sh(X). Also define subobjects of Z£ x Z£ and Q£ x Q£ 
which give a linear order on Z£ and Q£, respectively. 

cop 
(a) Prove that in a presheaf topos E = Sets ,the object 

R£ of Dedekind reals is the constant presheaf ~(R). 
(b) Let G be a group acting on a space X, and let E = 

Sh(X, G) be the topos of equivariant sheaves on X (as 
in Exercise 11 of Chapter III). Prove that the sheaf R£ of 
Dedekind reals is the sheaf of those continuous real-valued 
functions which are constant along the orbits of G. 
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15. Let A be an open subspace of a topological space E. Let E+E = 
{ (e, i) leE E, i E {O, I} } be the disjoint sum, with inclusions T/o, 
T/I: E -+ E + E. Let Q be the quotient space of E + E obtained 
by identifying (a, 0) and (a, 1) if a E A, and let 7r be the quotient 
map. Show that A >--> E is the equalizer of 7rT/o and 7rT/I. Show 
that if 7r has a continuous cross-section, then A is also closed in 
E. 

16. The previous exercise was an introduction to this one; the aim is 
to show Diaconescu's result that if an elementary topos £ satisfies 
lAC, then £ is Boolean. Below, m: A>-->E is a mono in £, and 
T/o, T/I: E -+ E + E are the coproduct inclusions. 

(a) If £ satisfies lAC, show that for any epi p: B -+ C in 
£, there is an epi U ---» 1 in £ such that U*(B) ---» U*(C) 
has a section in £ /U. (Here U*: £ -+ £ /U is the usual 
change-of-base functor.) 

(b) If U ---» 1 is an epi in £ such that U*(A) V --,U* (A) = U* (E) 
in Sub(U*(E)) (in the topos £/U), then also A V --,A = E 
in £. 

( c) Let 7r: E + E -+ Q be the co equalizer of T/om and T/I m. 
Prove that m is the equalizer of 7rT/o and 7rT/I. 

(d) Suppose 7r has a section a: Q -+ E x E. Prove that m 
is also the equalizer of a7rT/o and a7rT/I, and (hence) also 
of ta7rT/o and ta7rT/I, where t: E + E -+ 1 + 1 is the map 
induced by !: E -+ 1. Conclude that A has a el~ment in 
Sub(E). 

(e) Wrap up by concluding that £ is Boolean if £ satisfies lAC. 



VII 
Geometric Morphisms 

In this chapter, we begin the study of the maps between topoi: the 
so-called geometric morphisms. The definition is modeled on the case of 
topological spaces, where a continuous map X ---+ Y gives rise to an ad
joint pair Sh(X) +=t Sh(Y) of functors between sheaf topoi. The first two 
sections of this chapter are concerned mainly with a number of examples, 
and with the construction of the necessary adjunctions by analogues of 
the @-Hom adjunction of module theory. In a third section, we consider 
two special types of geometric morphisms: the embed dings and the sur
jections. For these two types, there is a factorization theorem, parallel 
to the familiar factorization of a function as a surjection followed by 
an injection. Moreover, we prove that the embeddings F ---+ [ of topoi 
correspond to Lawvere-Tierney topologies in the codomain [, while sur
jections F""""* [ correspond to left exact comonads on the domain F. 

Again taking topological spaces as a model, one defines a "point" 
of a topos F to be a geometric morphism Sets ---+ F. In case F is 
the topos of sheaves on a site, say F = Sh(C, J), such points can be 
described in terms of set-valued functors on the category C and their 
tensor products, as shown in Section 5, where "flat" functors playa spe
cial role, comparable to the flat modules (those whose tensor products 
preserve exact sequences). In the next section we generalize this, replac
ing Sets by [ so as to describe geometric morphisms [ ---+ Sh(C, J) in 
terms of functors C ---+ [. As a consequence one obtains some explicit 
answers to the question: given sites (C, J) and (D, K), when does a 
functor C ---+ D induce a geometric morphism Sh(C, J) ---+ Sh(D, K), or 
perhaps Sh(D, K) ---+ Sh(C, J)? 

These ideas will also be used in the Appendix of the book, which 
deals with Giraud's theorem and its remarkable applications. This the
orem asks when a category [ is (equivalent to) a Grothendieck topos 
over some site; the answer is that [ must satisfy certain (infinite) exact
ness conditions and must have a set of generating objects. The proof of 
this theorem extends the methods used in the present chapter. 

347 
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1. Geometric Morphisms and Basic Examples 
The definition of a "map" between two topoi is based on the exam

ple of sheaves on topological spaces. We recall from Chapter II that 
a topological space X determines a topos Sh(X); namely, the category 
of sheaves on X. Moreover, a continuous function f: X --t Y between 
topological spaces gives rise to a pair of functors: an "inverse image" 
functor f* and a "direct image" functor f*, with f* left adjoint to f*, 
as follows: 

Sh(X) ( r ) Sh(Y), 
f. 

(1) 

Here the direct image functor f* was defined simply by composition 
with f-\ thus, if F: O(X)OP --t Sets is a sheaf on X and U is any 
open subset of Y, then f*(F)(U) = F(f-lU). On the other hand, the 
inverse image functor f* was most readily defined in terms of the etale 

p 
spaces corresponding to sheaves: if p: E --t Y is etale, then f* (E ----+ Y) 
is the etale space over X defined by pullback along f, as in the diagram 
of spaces 

f* (E) --------» E 

1 lp 
X-----+) Y. 

f 

(2) 

From this description, it follows that f* preserves finite limits; i.e., f* 
is left exact. 

Definition 1. A geometric morphism f: F --t E between topoi is a 
pair of functors f* : E --t F and f* : F --t E such that f* is left adjoint 
to f* and f* is left exact. Then f* is called the direct image part of f, 
and f* the inverse image part of the geometric morphism. 

Returning to the example of sheaves on topological spaces, we re
mark that any geometric morphism Sh(X) --t Sh(Y) in the sense of this 
definition necessarily comes from a unique continuous function X --t Y 
between the spaces, at least if Y is sufficiently separated. For instance, 
suppose that Y is Hausdorff. Since f*: Sh(Y) --t Sh(X) is left exact, it 
must send subobjects of 1 in Sh(Y) to subobjects of 1 in Sh(X). But 
such subobjects are in effect just open sets, so f* restricts to a function 
f*: O(Y) --t O(X) which preserves finite limits and (as a left adjoint) ar
bitrary colimits; in other words, finite intersections and arbitrary unions 
of open sets. Now define a function J: X --t Y on the points x of X by 
setting 

J(x) = y iff x E f*(V) for all neighborhoods V of y. (3) 
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Given the point x of X, there can be at most one point y satisfying 
the right-hand side of the condition (3); indeed, if points Yl -=I=- Y2 both 
do, choose disjoint neighborhoods V1 and V2 of Yl and Y2, so that x E 

f*(Vd n f*(V2 ) = f*(Vl n V2 ) = 0-a contradiction. Moreover, given 
x E X there is at least one Y E Y satisfying the right-hand side of (3); 
for if not, then any Y E Y has a neighborhood Vy with x rt f*(Vy), so 
x rt UYEY f* (Vy) = f* (Uy Vy ) = f* (Y) = X -again a contradiction. 

Therefore, (3) defines a function]: X ----+ Y such that ]-l(V) = f*(V) 
for every open set V in Y; it follows that] is continuous. Moreover, the 
geometric morphism induced by ] is the same as the original geometric 
morphism f, up to natural isomorphism. Indeed, for any sheaf E on X 
and any open set V ~ Y, 

and, by the given adjunction, this is isomorphic to Sh(Y) (V, f*E) C>' 

f*(E)(V). This proves that, up to natural isomorphism, every geometric 
morphism Sh(X) ----+ Sh(Y) comes from a continuous function f: X ----+ 

Y, at least if Y is Hausdorff. A weaker sufficient condition (Y sober) is 
indicated in Chapter IX. 

Earlier in the book, the reader has already met several other exam
ples of such geometric morphisms. For instance, any arrow k: B ----+ A 
in a topos E defines a change-of-base functor of comma categories 
k*: E I A ----+ E I B, by pullback. By IV.7.2, this functor k* has both a 
left adjoint L:k and a right adjoint rho It thus yields a geometric mor
phism (again denoted by k) 

k: EIB ----+ EIA (4) 

with k* = Ilk as direct image part and k* as inverse image part; the 
latter is indeed left exact by the existence of a further left adjoint L:k' 

As another example, recall that if j is a Lawvere-Tierney topology 
on a topos E, the inclusion functor Shj E ----+ E has a left exact left adjoint 
a, the associated sheaf functor (Theorem V.3.l). This gives a geometric 
morphism 

i: Shj E ----+ E, (5) 

where i* is the inclusion functor and i* = a is the associated sheaf 
functor. Geometric morphisms of this form are called embeddings, and 
will be considered in more detail in a subsequent section. 

A further example comes from a left exact comonad (G, 8, E) on a 
topos E. We proved in Theorem V.8.4 that the category Ec of G
coalgebras is a topos, and that the forgetful functor U: Ec ----+ E has 
a right adjoint, the cofree coalgebra functor. This functor U preserves 
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finite limits since G does (by construction of limits in Ee, see the proof 
of V.8.4), so this construction yields a geometric morphism 

p: E -t Ee, (6) 

for which p* is the forgetful functor which sends a coalgebra (E, k) to 
E, while p* sends each object E of E into the "cofree" coalgebra p*E = 
(G E, 8 E: G E -t G2 E), where 8 is the comultiplication of the given 
monad. 

The next example of geometric morphisms concerns cross-sections. 
Recall that a (global) cross-section of a space p: E -t X over X is a 
continuous map s: X -t E such that ps = 1, as in the diagram 

X' , 
in other words s is a map of the identity lover X into E over X. The 
set rE of global cross-sections of E is thus Hom(l, E). Now suppose 
that E is a topos which has all small colimits; for instance, E could be a 
Grothendieck topos. In this case the global sections functor 

r: E -t Sets, r E = Home(l, E) (7) 

has a left adjoint 

Ll: Sets -t E, (8) 

defined for each set S as the coproduct of S-many copies of the terminal 
object 1 of E. With this definition, morphisms LlS -t E in E clearly 
correspond to functions S -t r E of sets, so that this functor Ll is indeed 
left adjoint to r. To show that this adjunction is a geometric morphism, 
we need to check that the functor Ll commutes with finite limits. Now 
clearly, Ll1 = 1; i.e., Ll preserves the terminal object. To show that 
Ll preserves binary products, notice that in any topos E the functor 
Ex ( - ) preserves arbitrary sums, since it has a right adjoint ( - )E, for 
any object E in E. Thus if {Es }sES and {Pt hET are indexed families 
of objects from E, we have 

sES tET sES tET 

~ U U Es x E t 
sEStET 

U Es x Et . 
(s,t)ESxT 
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In particular, if Es = 1 = Ft for all indices 8 E Sand t E T, then 

D.S x D.T ~ D.(S x T); 

so binary products are indeed preserved by D.. To conclude the proof 
that the functor D. is left exact, we show that it preserves equalizers. To 

e a 
this end, take an equalizer R,...... S ~ T in Sets; we must show that the 

j3 
corresponding diagram 

D.R ~ D.S ~ D.T 
!1j3 

is an equalizer in E. So consider a map u: E ----+ D.S = Ill. Because, 
s 

in a topos, coproducts are stable under pullback, this map u gives a 
coproduct decomposition E = 11 E s, where the object Es is obtained by 

s 

pulling back along u the 8 th coproduct inclusion 1,...... III (a monic by 
s 

Corollary IV.1O.5). Then u is just the coproduct of the (unique) maps 
Es ----? 1. In other words, a map u: E ----? D.S is the same thing as a 
decomposition of E as an S-indexed sum 11 Es. Now suppose that u 
equalizes D.a and D.f3. Thus, (D.a)ou = (D.f3)ou: E ----? D.T corresponds 
to a coproduct decomposition E ~ Il t Et of E, indexed by t E T. Then 
for each 8 E S, we have Es <;;;; Ea(s) and Es <;;;; Ej3(s) , so that Es <;;;; 

Ea(s) nEj3(s) in the lattice of subobjects of E. But by Corollary IV.10.5, 
one has that Ea(s) n Ej3(s) = 0 whenever a(8) #- f3(8); hence Es = 0 
whenever a(8) #- f3(8), i.e., whenever 8 1- R. Therefore E ~ IlsEREs, 
and u: E ----? D.S factors through D.e: D.R ----? D.S. This factorization 
must be unique, since D.e is monic (again by Corollary IV.1O.5, since 
D.e maps D.R into one component of a coproduct decomposition of D.S). 
This shows that D. preserves equalizers. 

We have now proved that when E has all small colimits the functors 
rand D. of (7) and (8) constitute a geometric morphism 

r: E ----? Sets, 1* = r. (9) 

Notice that for a given topos E there can be, up to natural isomorphism, 
only one such geometric morphism to Sets. Indeed, if f: E ----+ Sets is 
any geometric morphism, then the fact that any set S has S ~ Sets(l, S) 
and the assumed adjunction 1* -I f* together give 

for any object E of E. In other words, there is a natural isomorphism 

f* ~ 1*, just as claimed. 
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Our definitions give rise to a category with topoi as objects and 
geometric morphisms as arrows, because if g: 9 ~ F and f: F ~ E are 
both geometric morphisms, one can construct the composite fog: 9 ~ E 
by (f 0 g)* = g* 0 f* and (f 0 g)* = f* 0 g* ("adjoints compose" [CWM, 
p. 101]). The identity geometric morphism 1: F ~ F is obviously a 
two-sided identity for this composition. 

Actually, the set Hom(F, E) of all geometric morphisms f: F ~ E 
can itself be made into a category: Given two geometric morphisms f, 
g: F ~ E, an arrow f ~ 9 is defined to be a natural transformation 
f* ~ g* (between the inverse image parts). One could equally well 
define a map from f to 9 to be a natural transformation g* ~ f*, since 
there is a bijective correspondence 

where a natural transformation a: f* ~ g* corresponds to (3: g* ~ f* 
as in the commutative square 

F(f* E, F) ---=""=---t) E(E, f*F) 

F(aE,F) I I t:(E,i3F) (10) 

F(g* E, F) "" ) E(E, g*F), 

where the horizontal arrows are the given adjunctions. Indeed (10) de
termines a in terms of (3, and vice versa, by the Yoneda lemma. 

This definition gives for any two topoi F and E a category 
Hom( F, E). Moreover, a geometric morphism g: 9 ~ F yields a functor 

Hom(g, £): Hom(F, £) ~ Hom(Q, £) (11) 

by composition with g, as follows: Hom(g, E) sends an object f of 
Hom(F,£) to fog, and a morphism a: fi ~ f2 of Hom(F, E) to 
the morphism g*a with components (g*a)E = g*(aE): (JIg)*(E) = 
g* fi E ~ g* f2 E = (f2g)*(E), for any object E of E. Similarly, a geo
metric morphism e: E ~ 1) induces a functor 

Hom(F, e): Hom(F, £) ~ Hom(F, 1)) (12) 

by "precomposing" with e. Moreover, these various compositions satisfy 
appropriate associativity and identity laws so as to yield a so-called 2-
category of topoi [CWM, p. 44]: The objects are topoi, the I-cells are 
geometric morphisms, and the 2-cells are natural transformations a as 
above. (Therefore, if JI, fz: F ~ E are geometric morphisms, one often 
writes 

(13) 
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to denote a 2-cell; i.e., a natural transformation fi -- f2') 
To give an example, recall that the points of a topological space X 

are partially ordered by 

x :::; x' iff every neighborhood of x contains x'. 

(The order is trivial if X is Hausdorff, or T1 , but is nontrivial and useful 
in algebraic geometry.) This definition thus induces a partial order on 
the set Cont(X, Y) of continuous functions X __ Y: 

f:::; 9 iff f(x):::; g(x) for all x E X 

iff rl(U) <;;:; g-l(U) for all open U in Y. 

So if f :::; g, then for any sheaf E on X, the restrictions E(g-lU) __ 
E(j-lU) for open subsets U <;;:; Y together constitute a natural trans
formation g* -- f*, or equivalently by (10), a natural transformation 
1* -- g*; that is, a map f ::::} 9 in Hom(Sh(X), Sh(Y)). Thus, if we 
view the poset Cont(X, Y) as a category in the usual way, we obtain a 
functor Cont(X, Y) -- Hom(Sh(X), Sh(Y)). 

For other examples, see the exercises. 

2. Tensor Products 

A next example of a geometric morphism is provided by sets with a 
group action; it depends on the adjunction constructed in Theorem 1.5.2. 
That adjunction is analogous to the familiar adjunction between "Hom" 
and "Tensor" for modules. This section will develop some notation re
flecting this analogy, to help calculations with the direct and inverse 
functors involved in such geometric morphisms. In particular, this will 
include a "tensor product" of set-valued functors, left adjoint to Hom. 
Recall the basic adjunction in Sets, with product left adjoint to expo
nent by the natural isomorphism 

Hom(X x Z, Y) ~ Hom(X, yZ), (1) 

which sends each function f: X x Z __ Y into t: X __ yZ with 

f(x, z) = (tx) (z), x E X, z E Z. 

However, this is not a geometric morphism Sets -- Sets, because the 
left adjoint - x Z is not left exact (it does not preserve products!). 

There is an analogous adjunction for modules. For rings Rand S 
consider three modules 

Xs, 
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(i.e., X is a right S-module, Z a left S-right R-module and Y is a right 
R-module). In this situation, there is a corresponding adjunction 

(2) 

here HomR denotes the set of R-maps, while HomR on the right is the 
S-module of R-maps Z --> Y. In this adjunction (2) (called "adjoint 
equivalence" in [Mac Lane, 1963, p. 192]), corresponding morphisms 
f: X @s Z --> Y and t: X --> HomR(Z, Y) are related by the equation 

f(x@z) = (tx)(z), x E X, z E Z; (3) 

this is essentially the same formula as in the adjunction (1). 
The next section will show how this "tensor-Hom" adjunction applies 

in many cases: to sets with a group action or with a continuous such 
action and to objects in a topos with an action by an internal group 
or an internal category. Each of these cases will involve the definition 
of an action on hom-sets and the construction of a tensor product as 
a left adjoint to such hom-sets. In particular, these constructions yield 
examples of geometric morphisms. 

In this section we will use this tensor product to construct a geo
metric morphism between presheaves. For this purpose Theorem 1.5.2 
provides a model adjunction. Given a small category C, a co com
plete category E and a functor A: C --> E, consider the "Hom-functor" 

cop 
R: E --> Sets defined by 

R(E)(C) = Home(A(C),E), C E C, E E E. (4) 

It has a left adjoint L which preserves colimits, 

cop L 
Sets ( ) E, 

R 
(5) 

and defined for each presheaf P as the colimit 

(6) 

where J P is the category of elements of P, as defined in §1.5. 
We will now explain that this LA(P) is much like a tensor product 

of the two functors 

P: cop --> Sets, A: C --> E, 

(i.e., P a right C-module, A a left C-module). First recall ([CWM, 
p. 109]) that all limits can be constructed from products and equalizers; 
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dually, all colimits can be constructed from coproducts and coequalizers, 
and this in a canonical way. For consider the colimit of any functor 
H: J -7 [; to [; from some index category, with the injections "'i: H(i) -7 

Ui H(i), i E J, into the coproduct. Then a morphism ¢: Ui H(i) -7 E 
from this coproduct is uniquely determined by the set of its components 
¢i = ¢"'i; however, these components ¢i will form a cocone over H to 
the vertex E only when the conditions 

(7) 

hold for all the arrows u: i -7 j of the index category J. So take the 
coproduct of all H (dom u) for all arrows u with its injections >'u and 
construct two arrows () and T and their coequalizer ¢ to fit in the diagram 

H(domu) H(i) 

Au 1 ~i 1 ""~:;~ (8) 

U H(domu) =? U H(i) --r-> E; 
u: i-+j 

here () and T are defined in terms of the injections >'u and "'i for each 
u: i -7 j by the conditions 

T>'u = "'jH(u): H(i) -7 H(j) -7 U H(i). (9) 

Then the equation ¢() = ¢T states exactly that the arrows ¢"'i form a 
co cone (8) over H to the vertex E, while the fact that ¢ is the coequalizer 
of () and T states that this co cone is the colimiting co cone for H. In other 
words, the colimit of the arbitrary functor H can always be presented 
as the following coequalizer: 

U H(dom u) =? U H(i) ~ ~H. (10) 
u: i-+j 

Now apply this presentation to the case when H is the functor Anp 
of (6). Then the second coproduct is taken over all the objects (C,p) 
with p E P(C) of the category J P, while the first coproduct is over 
the maps u: (C I , pi) -7 (C, p) of that category, so that u: C I -7 C and 
pu = pl. Therefore the colimit LA (P) in (6) can be presented as the 
following coequalizer: 

U A(C I )=? U A(C)~LA(P)=P0cA 
C,pEP(C) C,pEP(C) 

(11) 

u: C'-+C 
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in E. Here, as in (9), 0 is defined as the map which takes the summand 
A( C') indexed by (p, C', u) via 1: A( C') ----+ A( C') into the summand 
indexed by (C',p' = pu), while T sends this same summand A(C') via 
A(u): A(C') ----+ A(C) into A(C), indexed by (C,p). 

The "Hom-functor" RA of (4) thus has a left adjoint LA which is 
"like" a tensor product - 0c A. Next we illustrate this analogy by 
examples of this coequalizer. 

First take C = 1 and E = Sets. In this case both functors A and P 
are simply sets, and the co equalizer becomes 

UA~UA--+P0A. 
pEP pEP 

Here the coproduct Up A is just the set of all pairs (p, a) of elements 
pEP, a E A, so P 0 A is P x A, while the right adjoint R of (4) 
is just P 1-+ Hom(A, P). Thus in this case the adjunction (5) restates 
the familiar fact that the product - x A is left adjoint in Sets to the 
exponential ( )A = Hom(A, - ). 

Next, for any category C, take E = Sets. Then the data consists of 
two functors 

P: Cop ----+ Sets, A: C ----+ Sets. (12) 

In particular, if C is a group G (a category with one object, all arrows g 
invertible), P is a right G-set and A is a left G-set, while the co equalizer 
(11) is 

P x G x A~P x A-LP0cA, 
T 

where O(p,g,a) = (pg,a) and T(p,g,a) = (p,ga) for all elements pEP, 
g E G, and a E A. If we write each ¢(p, a) as p 0 a, this means that the 
set P 0c A consists of elements p 0 a subject to the equality 

pg0a =p0ga. 

This is just like the tensor product of G-modules Pc and cA, but with 
no additivity condition. 

Generally, for any category C the coproduct Up A(C) of sets in (11) 
is just the product P( C) x A( C) for C E C. The coequalizer (11) is thus 
the definition of a "tensor product" P 0 A of the set-valued functors 
(12): 

U P(C) x Hom(C', C) x A(C') ~ U P(C) x A(C) ~ P0c A, 
~~ c 

(13) 
where, for elements p E P(C), u: C' ----+ C and a' E A(C'), 

O(p, u, a') = (pu, a'), T(p, u, a') = (p, ua'). 
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This definition is symmetric in P and A. The elements of the set P I8lc A 
are then all of the form ¢(p, a). We write such an element as 

¢(p,a)=pl8la, forpEP(C), aEA(C). 

Then, in virtue of the definitions of () and T above, we have 

pu I8l a' = p I8l ua' , P E P(C), u: C' ---> C, a' E A(C'). (14) 

In other words, the set P I8lc A is the quotient of the set U e P( C) x A( C) 
by the equivalence relation generated by these equalities (14)-just as 
in the tensor product X I8ls Z in (2) of a right S-module X by a left 
S-module Z. 

Theorem 1 (Hom-I8l). For functors P and A as in (12) the functor 
cop 

RA: Sets ---> Sets defined for each set E and each object C of C, as 
in (4), by 

RA(E)(C) = Homsets(A(C), E) 

has a left adjoint LA defined for each presheaf P as the equalizer P l8le A 
of (13). 

This adjunction 

- I8lc A = LA: SetsCOP +===== Sets: RA = Hom(A -, ... ) 

is expressed by the isomorphism (where E is to be read as Sets) 

Home(Pl8lcA,E) ~ Natc(P(C), Home(A(C), E)), (15) 

natural in P and E; here Nate designates transformations natural in 
the object C. This isomorphism (15), and hence the adjunction, is a 
consequence of Theorem 1.5.2 and the representation above of the colimit 
there as a coequalizer. It can also be seen as a direct consequence of the 
coequalizer definition (13) of the tensor product I8lc· 

Indeed, specify that arrows 

f: Pl8lc A ---> E, te: P(C) ---> Home(A(C),E) 

correspond under the bijection (15) when they are related by 

fe(P, a) = tc(p) (a), C E C, P E P(C), a E A(C). (16) 

Here we regard f as a function on Ue P( C) x A( C) with components 
fe: P(C) x A(C) ---> E which satisfy 

fe/(pu,a) = fc(p,ua) (17) 
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in accord with the equivalence relation (14). It then follows formally 
that such an f does by (16) define a family te which is natural in C and 
conversely that such a te determines by (16) a family fe satisfying (17). 
This gives a direct proof of the Hom-0 adjunction (15) for £ = Sets. 

If the category Sets is replaced by any co complete category £, with 
A now a functor C ~ £, the co completeness of £ provides the same 
definition of 0c as a coequalizer and the same adjunction holds again as 
a special case of Theorem 1.5.2. The proof is essentially the same, when 
the element a in the set A(C) of (16) is replaced by a generalized element 
a: W ~ A( C) from some (parameter) object W of £. Then f is regarded 
as a function ile,pA(C) ~ E with components fe,p: A(C) ~ E for 
each p E P( C) which satisfy 

fe',pu = fe,p 0 A(u): A(C') ~ A(C) ~ E (17bis) 

for all arrows u: C' ~ C. The condition (16) defining the bijection then 
reads 

fe,p 0 a = te(P) 0 a: W ~ E. (16bis) 

This argument, like others using a "generalized element" a E 

Hom(W, A(C)), is natural in the object W. Hence, as in other uses of the 
Yoneda lemma, it is determined by setting W = A(C) with a the iden
tity map. This gives the bijection (16bis) the simpler form fe,p = te(p)· 
Since this correspondence (16) is formally like that for sets, as in (1) 
above, or that for modules, as in (3) , we call (15) the general "Hom-0 
adjunction", as follows. 

Theorem 1 [his]. The adjunction (15) holds for cocomplete £. 

Next, consider the case with two categories C and D, where A is 
a bifunctor A: C x DOP ~ Sets (here £ = Sets). The tensor product 
P 0c A is then not just a set but a contravariant functor on D to sets 
defined on objects D of D by 

(P0c A)(D) = P0c A( -, D), 

while the right action of any arrow h: D' -+ D is defined, in agree
ment with the identification (14), by (p0a)h = p0(ah). Similarly, any 
Q: DOP -+ Sets gives a functor Homn(A, Q): cop -+ Sets, where for 
each object C the set Homn(A, Q)(C) is the set of all natural trans
formations 8: A(C, - ) -+ Q of contravariant functors on D (i.e., mor
phisms of presheaves on D). [Observe that Homn( -, -) denotes a 
set while the underlined Homn( - , - ) denotes a functor-much as in 
the more elementary case (2) for bimodules. Recall that in §1 (11) 
Hom(F, £) is also "enriched" as a category.] For these three functors 

P: cop -+ Sets, A: C x DOP ~ Sets, Q: DOP ~ Sets 
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the Hom-® adjunction now reads 

Homn(P®cA,Q) ~ Homc(P,Homn(A,Q)). (18) 

Explicitly, morphisms 1jJ: P ®c A ~ Q of presheaves on D correspond 
in this bijection (18) to morphisms T: P ~ Homn(A, Q) of presheaves 
on C when they satisfy the familiar identity, rewritten from (16), 

1jJ(p® a) = T(p)(a), P E P(C), a E A(C, D) (19) 

for all objects C and D. Thus, the bifunctor A yields an adjunction 
cop DOP 

- ®c A: Sets ( ) Sets : Homn(A, - ). 

But this need not be a geometric morphism of topoi, because - ®c A 
need not be left exact-just as for an R-module A, the tensor product 
- ®R A is not always left exact. However, for R-modules, the identity 
functor - ®R R is left exact; a corresponding result holds in our case 
if we replace the ring R (a bimodule) by the category D, regarded as a 
bifunctor. 

Indeed, for any category D, the hom-sets, reversed, constitute a 
bifunctor, which we write as eDe, or sometimes as Mohn : 

eDe = Mohn: D x DOP ~ Sets; eDe(D, D') = Homn(D', D). 

For any presheaf Q: DOP ~ Sets there are then canonical isomorphisms 

(20) 

obtained from the identity 1: D ~ D just as for the familiar isomor
phisms X ®R R ~ X ~ HOillR(R, X) for an R-module X over a ring R. 
It is sometimes convenient to write the first isomorphism of (20) as 

Q®Mohn ~Q, Q ® Mohn( -, D) ~ Q(D), (21) 

where 

Mohn(D,D') = Homn(D',D), Mohn(D, - ) = y(D). 

If ¢: C ~ D is any functor, each presheaf Q: DOP ~ Sets on D deter
mines by composition a presheaf Qq, = Q 0 ¢oP: cop ~ DOP ~ Sets on 
C. Similarly, a functor B: D ~ Sets yields q,B = B 0 ¢: C ~ Sets; 
for instance, eDe yields q,De : C x DOP ~ Sets. Applying this to the 
canonical isomorphisms (20) above yields isomorphisms 

(22) 

Theorem 2. A functor ¢: C ~ D induces a geometric morphism 
Cop n op 

¢: Sets ~ Sets 

for which the inverse image ¢* takes each presheaf Q on D to the com
posite ¢*Q = Q 0 ¢op = Qq,. Moreover, ¢* has a left adjoint ¢!. 
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Proof: According to the canonical isomorphisms (22) the functor 
¢* is both a tensor product (with -Dq,) and a Hom-functor (from q,D-). 
Hence, by the basic Hom-® adjunction in these two representations of 
¢*, it has both right and left adjoints, which are respectively 

Therefore, ¢*, as a right adjoint of ¢!, must be left exact, so that ¢* 
has a left exact left adjoint ¢*, and thus is geometric. 

A geometric morphism with the special property that its inverse 
image part has a left adjoint (and hence is necessarily left exact) is 
called an essential geometric morphism. Thus we have shown that any 
functor ¢: C ----> D induces an essential geometric morphism on the 
corresponding categories of presheaves. Our argument for this result 
depended directly upon the Hom-® adjunction (15), which was used 
both to suggest the adjoints ¢* and ¢!, via (22), and then again to 
establish each of the corresponding adjunctions. 

In this theorem one may replace the category Sets (in Sets cop , 
etc.) by a topos E; then C and D are to be replaced by category objects 
(internal categories) in E. We will carry this replacement out in the next 
section only for group actions, that is, in the special case when C and 
D are replaced by group objects G and H in the topos E. 

For reference, we summarize the several cases of tensor products. 
For E co complete and C small there is a tensor product 

(R, A) f-+ R ®c A. (23) 

This will also appear in (7.12). For E = Sets, this specializes to 

®c: SetsCap x SetsC ----> Sets, (P, A) f-+ P ®c A, (24) 

as introduced in (11) above. This definition is not symmetric in P and 
A, but a symmetric form appears in (13). This includes the case when 
C is a group G. More generally, if K is a group object in the co complete 
category E, (3.1) below will define a tensor product 

(25) 

Finally, (18) above considers the case in which one factor is a bifunctor: 

cop c nap nap 
®c: Sets x Sets x ----> Sets , (P, A) f-+ P ®c A. (26) 

Of course there can be cases in which both factors are bifunctors, etc. 
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3. Group Actions 

Our objective is to show that a morphism ¢: G """"""* H of group objects 
induces an essential geometric morphism between the categories of right 
G- and right H-objects in a topos E. 

First, consider in the topos E a group object K, a right K-object X 
with its action-map O:x: X x K """"""* X and a left K-object Z with its 
action map {3z: K x Z""""""* Z. Their tensor product over K is defined to 
be the object X ®K Z specified by the following co equalizer in E, 

axxl 
X x K x Z l X x Z _--'e"-----+I X ®K Z. 

lxi3z 
(1) 

This is essentially just the set-theoretic definition; for a generalized el
ement of X x Z (an arrow from a "parameter" -object U """"""* X x Z) 
is just an ordered pair (x, z) of generalized elements x: U """"""* X and 
z: U""""""* Z. If we write x ® z for the element e(x, z): U """"""* X ®K Z, then 
the definition (1) amounts to the familiar identity 

xk0z = x®kz (2) 

for any generalized element k: U """"""* K of K; here we have written xk 
for o:x 0 (x, k), and kz analogously. Formally, the co equalizer definition 
(1) means that an arrow ¢: X ®K Z """"""* W to any object W can be 
uniquely defined by giving an arrow ¢': X x Z """"""* W such that for 
any generalized elements x, k, z defined over any U (i.e., x: U """"""* X, 
k: U""""""* K, z: U""""""* Z), the identity 

¢'(x, kz) = ¢'(xk, z) (3) 

holds, much as in (17) of §2. 
Now suppose in addition that G is another group object in E and 

that Z = KZG is both a left K- and a right G-object in E, with the 
right G-action O:K: Z x G """"""* Z commuting with the given left K-action. 
Then, much as for modules, the tensor product X ®K Z has a right G
action. To define it, observe that the functor - x G has a right adjoint in 
E (the exponential), hence preserves coequalizers, so that the top row in 
the following diagram is a co equalizer with bottom row the co equalizer 
definition (1) of ®G: 

axlxl Z G exl X x K x Z x G ====:::tl X x X ----'C..:.c..=...-+I (X ®K Z) x G 

lxlxaz 1 lxi3xl llxaz I 
la 
I 

v 

axl 
X x K x Z ========:4l X x Z ---e---+I X ®G z. 

1 xi3 

(4) 

Since both squares on the left evidently commute, a vertical action map 
0: is uniquely defined between the co equalizers , as shown dotted on the 
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right. One can exhibit a in terms of generalized elements as a( x ® z, g) = 
x ® zg; in other words, the action of 9 is given just as for modules by 

(x®z)g = x®zg (x: U -+ X, z: U -+ Z, g: U -+ G). 

The needed property for the action by a product g1g2 then follows; one 
may also observe that the two vertical maps in (4) make X x K x Z and 
X x Z into right G-objects. One may also show that this new tensor 
product is associative: (X ®K Z) ®c W ~ X ®K(Z ®c W) for suitable 
X, Z, and W. 

A Hom-object in E is defined similarly. For right G-objects Z and Y 
with actions az and ay, define the (enriched) Hom-object Homc(Z, Y) 
as the following equalizer 

Hom (Z Y) ----+ yZ ~ yzxC --c , w 
(5) 

in E, where v and ware the transposed maps of the following maps v 
and w, respectively: 

~ yZ Z G 1xaz yZ Z ev Y v: x x ---+ x ----+ , 

~ yZ Z G ev x 1 Y G ay Y w : x x ------+ x ------+ , 

(6) 

and "ev" is evaluation. More explicitly, for generalized elements t: U -+ 

yZ and z: U -+ Z we will write t[z] for the evaluation ev(t, z): U -+ 

yZ xZ -+ Y. Then the maps in (6) are given for g: U -+ G by vet, z, g) = 
t[z . g] and wet, z, g) = t[z] . g; in other words, a generalized element 
t: U -+ yZ lies in (factors through) Homc(Z, Y) exactly when t[zg] = 
t[z]g for all z and g, just as in the definition of a natural transformation 
t of functors of G. [Notice that the quantifier "for all z and g" should 
be read in the style of Kripke-Joyal semantics as: for all (3: V -+ U and 
all generalized elements z: V -+ Z, g: V -+ G, so that t[zg] stands for 
(t(3)[zg] = v(t(3, z, g): V -+ Y, and similarly for t[z]g.] 

If Z is also a left K-object, then a right K-action on Homc(Z, Y) 
can be defined in the expected way. Indeed, since the product func
tor - x K preserves equalizers ("limits commute with limits" [CWM, 
p. 210]), both rows of the following diagram on the definition (5) con
stitute equalizers, 

Homc(Z,Y) xK lYZ xK 
vx1 l yZxC x K 

al 

wx1 

lb 
I 

(7) I 
I 

Homc(Z,Y) ) yZ v 
l y zxC , 

w 
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where the vertical maps a and b are right K-actions defined, respectively, 
as the transposes of the maps 

a: yZ x K x Z ___ .::..1 x...:cf3.::.:z~_---+) yZ x Z __ ....:e..:...v_-+) y, 

b: y(ZxG) x K x Z x G 1Xf3zX1) y(zxG) x (Z x G) _..::.ev-,---+) Y. 

Both squares on the right in (7) commute. For example, to show that the 
square with v's commutes, first take the transpose; the left-bottom map 
isthenev o(ax1)o(lx1xaz) =a(lx1xaz) = ev(l x /3z)(1 x 1 x az), 
and this is equal to the top-right composite, using the definitions ofb and 
v. By this commutativity, there is, therefore, on the left a dotted vertical 
map as indicated; one checks that this makes the object HomG(Z, Y) a 
right K-object in E. [In fact the maps a and b make yZ and yzxG into 
right K-objects in (7), and v and ware maps of right K-objects.] This 
definition (7) of the action by K on Homa(Z, Y) can also be stated in 
terms of generalized elements t: U -+ Homa(Z, Y) and h: U -+ K, for 
then t·h is given by (t·h)[z] = t[h·z]' just as for functions in the familiar 
case where E = Sets. 

For group objects G and K in the topos E and objects in E with 
actions as indicated by X K , KZG, and YG, we now establish the basic 
Hom-tensor adjunction in the familiar form 

HomG(X ®K Z, Y) ~ HomK(X, Homa(Z, Y)), (8) 

natural in all three arguments. [Notice that (8) is an isomorphism of sets: 
HomG and HomK denote the sets of G-maps and K-maps, respectively, 
while HomG is the K-object as just defined.] If a G-map f: X ®K Z -+ 

Y corresponds to a K-map t: X -+ HomG(Z, Y) under the isomorphism 
(8), then f and t are related by the familiar formula in generalized 
elements x and z 

f(x®z) = (tox)[z]. (9) 

More explicitly, given t: X -+ Homa(Z, Y), (9) defines first f: X x Z-+ 
Y, and then f on X ®K Z, since the necessary property f(xk ® z) = 
f(x ® kz) follows because t is a K-homomorphism, while the fact that f 
is a G-map follows by the usual arguments, because each to x is in the 
sub object Homa(Z, Y) of yZ. This proof is thus essentially the same as 
that when G and H are category objects in Sets (Theorem 2.1). Note 
also that in the correspondence (8), the map f taken as X x Z -+ Y 
is indeed adjoint to t taken as X -+ Y z, so (8) is the restriction to 
the appropriate subsets of the familiar adjunction between product and 
exponential given with the very definition of a topos. 

Now, as for categories in Sets (Theorem 2.2), consider a morphism 
¢: G -+ H of group objects in E. The right G- and right H-objects in the 
topos E constitute topoi BEG and BEH respectively, by Theorem V.6;1. 
(We consider right actions here, so write BEG for EGoP .) 
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Theorem 1. A morphism ¢: G -+ H of group objects in a topos 
£ induces three functors on the topoi BeG and BeH of right G- and 
H -objects in £: 

¢*: BeH -+ BeG, 

with ¢* left adjoint to ¢* and ¢! left adjoint to ¢*. Therefore ¢ induces 
an essential geometric morphism 

(10) 

with direct image ¢* and inverse image ¢*. 

Proof: Each right H-object Y determines by ¢ a G-object ¢*Y; 
Ix</> 

namely, the same object Y with the right G-action Y x G ~ 
Y x H ~ Y; we also write ¢*Y = Y</>. In particular, the left H
right H-object H becomes a left H- right G-object H</>. Then, just as 
in (22) of §2, there are canonical isomorphisms of G-objects 

(11) 

Thus ¢* is both a Hom-functor HomH(</>H, - ) and a tensor product 
functor, so by the basic Hom-tensor adjunction (8) has both right and 
left adjoints 

(12) 

This completes the proof. 

This theorem applies in particular to a homomorphism ¢: G -+ H 
of discrete groups G and H (i.e., group objects in £ = Sets). It yields 
a geometric morphism ¢: BG -+ BH between the topoi of right G-sets 
and right H-sets. The latter result can be generalized in another way, 
by considering topological groups. Let G and H be topological groups, 
and let ¢: G -+ H be a continuous homomorphism. BG and BH then 
denote the categories of continuous right G-sets and right H-sets, as in 
§I.l and §III.9. One may still use ¢ to define a functor 

¢*: BH -+ BG 

exactly as before: for a continuous H -set Y, ¢* (Y) is the same set Y 
with the induced G-action 

YxG~YxH~Y, 

which is again continuous. This functor ¢* clearly preserves finite limits 
because finite limits in BG are computed as finite limits of the underlying 
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sets (more precisely, the forgetful functor BG ~ Sets creates finite 
limits). Defining the left and right adjoints of ¢* : BH ~ BG creates 
some problems, however, since simply adopting the above construction 
for discrete groups doesn't provide us with continuous H -sets. This 
problem can easily be circumvented in the case of the right adjoint ¢*' 
in the following way. Let GO and HO be the groups G and H equipped 
with the discrete topology. Then the inclusion 

BG "----+ BGo 

of continuous G-sets into arbitrary G-sets is full and faithful. On the 
other hand, for any right action e: X x G ~ X of the (discrete) group 
G on a set X, each point x E X determines its isotropy subgroup 

Ix = {g E G I xg = x } ~ G; 

moreover, as in §III.9(2), the given action e on X is continuous iff every 
Ix is open in G; equivalently, for any two points Xl and X2 of X, the set 
of all 9 E G with Xlg = X2 is open. Thus if one considers the subset 

p(X) = {x E X I Ix is open}, (13) 

then the action of G on X restricts to a continuous action on the subset 
p(X). Hence (13) defines a right adjoint p: BGo ~ BG to the inclu
sion BG '---* BGo above. Since this inclusion is readily seen to be left 
exact (pullbacks are preserved by inclusion) this adjoint pair is itself a 
geometric morphism 

Pc: BGo ~ BG (14) 

with direct image (pc)* = p and inverse image pc* the inclusion. 
It follows that ¢*: BH ~ BG has a right adjoint: write ¢o: GO ~ 

Hfi for the corresponding homomorphism of discrete groups. Then we 
have functors 

(15) 

and clearly (pc)* o¢* = (¢O)* O(PH)*' We define the desired right adjoint 

¢* as the composite 
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Then ¢* is indeed right adjoint to ¢*, since for a continuous C-set X 
and a continuous H -set Y we have 

HomH(Y, (PH )*(¢D)* (pa)* (X)) ~ HomHO (pH*(Y)' (¢D)*pa* (X)) 

~ Homao ((¢D)* PH*(Y)' pa*(X)) 

~ Homao (pa*¢*(Y), pa*(X)) 

~ Homa(¢*Y, X), 

the last isomorphism because the inclusion pa* is full and faithful. This 
shows that the continuous homomorphism ¢: C ---> H of topological 
groups gives rise to a geometric morphism 

¢: BC ---> BH (16) 

with ¢* and ¢* as just defined. 
Unlike the case of discrete groups, however, this geometric morphism 

need not be essential. In fact, the geometric morphism Pa: BCD ---> BC 
described in (14) above, which comes from the continuous homomor
phism Pa: CD ---> C given by the identity function, need not be essential 
(Exercise 7). 

4. Embeddings and Surjections 

A geometric morphism f: F ---> £ is said to be a surjection when its 
inverse image functor f* is faithful; f is said to be an embedding when 
the direct image functor f* is full and faithful (or equivalently, as for any 
adjunction, when the counit E: f* f* ---> 1 is an isomorphism; cf. [CWM, 
p. 88]). A typical example of a surjection is the geometric morphism 
p: F ---> Fa constructed from a left exact comonad C on F, as in (6) of 
§l. Here p* is the forgetful functor, evidently faithful. A typical example 
of an embedding is the geometric morphism i: Shj £ ---> £ for a Lawvere
Tierney topology on a topos t:, as in (5) of §l. Here i* is the inclusion 
of j-sheaves into £, clearly full and faithful since a morphism between 
j-sheaves is by definition just a morphism between the corresponding 
objects of £. 

In this section, we will prove that, up to equivalence of topoi, every 
embedding is of the form Shj t: ---> £ and every surjection is of the form 
F ---> Fa. We will also show that an arbitrary geometric morphism can 
be factored as a surjection followed by an embedding, in an essentially 
unique way. 

Here are some examples of surjections. If f: X ---> Y is a continuous 
function between Tl topological spaces, then f is a surjection (of spaces) 
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iff the corresponding geometric morphism f: Sh(X) ---> Sh(Y) is. For 
consider the commutative diagram 

r S h (Y) ------=-------->l S h ( X) 

J J (1) 

O(Y) r 1 l O(X), 

where the vertical inclusions come from the identification of open sets 
of Y with subobjects of the sheaf 1 E Sh(Y), and similarly for X. Now 
suppose that a point y E Y is not in the image of f. Since Y is assumed 
to be T 1 , this point y is a closed point, so Y -y is open and f-l(y -y) = 
f-l(y). Therefore, Y -y = Y since f- 1 is faithful, a contradiction. The 
converse proof does not need the T1-condition. For if f is onto, consider 
maps a, (3: E -7 F of sheaves on Y such that f*a = f* (3. Then for any 
point x E X we may take the stalk at x and conclude that (f*a)x = 

(f*(3)x: (f*E)x ---> (f*F)x' But (f*E)x = E fx and (f*a)x = af(x), etc. 
So if f is onto then a y = (3y: Ey ---> Fy for any point y E Y, so a = (3. 
(For a slightly different argument, see Proposition IX.5.5.) 

For a set S, a sheaf on the space S (with the discrete topology) is 
the same thing as an S-indexed family of sets, or (cf. §I.1) as a function 
E ---> S of sets, i.e., an object of Setsl S. So, as a special case of what 
we have just shown, a surjection of sets f: S ---> T induces a surjective 
geometric morphism Setsl S ---> SetslT (because f may be viewed as a 
surjective map of discrete topological spaces). 

More generally, any morphism k: B ---> A in a topos [ induces a 
geometric morphism k: [I B ---> [I A, as in (4) of § 1. The inverse image 
functor k* : [I A ---> [IBis given by pullback along k, and we will now 
verify that this pullback functor is faithful if k is an epimorphism in [. 
Indeed, if E ---> A and F ---> A are objects in [I A and f: E ---> F is a 
map between them in [lA, then one can construct the pullback squares 

I 

B XAE 
71'2 lE 

k* (f)=1 x f 1 if 

B XAF 
71'2 IF 

1 1 
B 

k 
llA, 

and the projections 7r2 and 7r~ are epi since k is, by Proposition IV.7.3. 
Thus, if g: E -7 F is another arrow in [IA such that k*(f) = k*(g), 
then f7r~ = 7r2k*(f) = 7r2k*(g) = g7r~, so f = 9 since 7r~ is epi. This 
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shows that k*: [I A ----> [IBis faithful if k is epi, as asserted. Thus, 
an epimorphism k: B ----> A induces a surjective geometric morphism 

[IB ----> [IA. 
There is a similar sequence of examples of embeddings. Consider 

first the injection i: Y >---> X of a subspace Y of a topological space X. 
Then for a sheaf E on the subspace Y the counit of the adjunction 
i*: Sh(Y);:::::: Sh(X) : i* can be calculated on the stalk of a point y E Y 
from the definition II.5(7) of the stalk in terms of germs as follows: 

[i*i*(E)]y = [i*(E)]i(y) 

~ lim i*(E)(U) 
-----+i(Y)EU 

~ lim E(i-1U) 
-----+i(Y)EU 

~ lim E(V) 
-----+yEV 

~Ey, 

(U open in X) 

(definition of i*) 

(V open in Y) 

where the second-but-last isomorphism comes form the fact that open 
sets V in the subspace Yare all of the form V = un Y = i-1 (U) for 
some U open in X. Thus, i*i* ~ 1, so i is an embedding. 

As before, the special case where X and Yare spaces with the dis
crete topology shows that an injection m: S >---> T between sets gives an 
embedding of topoi Setsl S ----> SetslT. 

More generally, we claim that a monomorphism k: B >---> A in a topos 
[ gives an embedding k: [I B ----> [I A of slice categories. To see this, 
recall first that there are adjoint functors 

[IB~[IA, 

as in Theorem IV.7.2. For an object E ----> B of [IB, the composition 
k*'E.k(f: E ----> B) is computed by first composing with k and then pulling 
back along k; in other words k*'E.k(E ----> B) is the left-hand arrow in the 
pullback square on the left below: 

• -------+) E 

1 
B 

lk 
B )A B IA. 

k k 

The top square on the right is always a pullback, but if k is mono, 
then the bottom square on the right also is a pullback, so clearly in 
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this case k*~k(E --+ B) ~ (E --+ B); that is, the unit 1]: 1 --+ k*~k 
is an isomorphism. By the following lemma, one sees that the counit 
k* k* --+ 1 is also an isomorphism. This proves that k: [; / B --+ [; / A is an 
embedding if k: B --+ A is mono. 

Lemma 1. Let 

be adjoint functors. Then the unit 1 --+ ¢* ¢! of the first adjunction is an 
isomorphism iff the counit ¢* ¢* --+ 1 of the other adjunction is. Hence, 
¢* is full and faithful iff ¢! is. 

Proof: For any objects D and E of [;, an arrow h: ¢!D --+ ¢*E has 
a transpose under the first adjunction (premultiply ¢* h by the unit m 
and also under the second adjunction (postmultiply by the counit E). 
Using both operations in either order gives a commutative square 

[;(D, E) ( (EEl. 

(TiD)' I 
[;(¢*¢!D, E) ~ F(¢!D, ¢*E), 

where the isomorphisms come from the adjunctions. It follows that (EE)* 

is an isomorphism for all D and E in [; iff ('iiD)* is. By the Yoneda 
lemma, we conclude that EE is an isomorphism for each object E iff'iiD 
is an isomorphism for each object D. This proves the first assertion of 
the lemma. Now for any adjunction, the right adjoint functor is full and 
faithful iff the counit is an isomorphism ([CWM, p. 88]). Dually, the 
left adjoint is full and faithful iff the unit is an isomorphism. Applying 
this to ¢* -j ¢* and to ¢! -j ¢* respectively yields the other assertion of 
the lemma. 

If j is a Lawvere-Tierney topology on a topos [; and i: Shj [; --+ [; 

is the corresponding embedding as above, then we say that a geometric 
morphism f: F --+ [; factors through Shj [; (or through i), when there 
exists a geometric morphism g: F --+ Shj [; such that the diagram 

(2) 

commutes up to natural isomorphism; that is, g*i* ~ 1*, or equivalently 
(by the uniqueness of adjoints, up to isomorphism, [CWM, p. 83]) that 
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is i*g* ~ f*. Notice that such a geometric morphism g is unique (again 
up to natural isomorphism) if it exists since i* is full and faithful. 

Now recall from §V.l that a topology j on [ may equivalently be 
given in terms of a closure operator Sub(E) --+ Sub(E), A t-> A, for all 
A <;;; E and natural in E; moreover, recall that A <;;; E is called dense in 
EwhenA=E. 

Proposition 2. Let f: F --+ [ be a geometric morphism while j is 
a topology on the codomain [. Then the following are equivalent: 

(i) f factors through Shj [; 

(ii) the direct image f* sends all objects of F to j-sheaves in [; 
(iii) the inverse image j* maps dense inclusions of subobjects in [ to 

isomorphisms in F. 

Proof: (i)=}(ii) If f factors through Shj [ by g in (2), then f* ~ 
i*g*, as stated above. Thus for any object F of F, f*F is in the image 
of i*, i.e., is a j-sheaf. 

(ii){:}(iii) For a monomorphism u: A >--+ E in [ and an object F of 
F, consider the commutative diagram expressing naturality 

[(E, f*F) --------t) F(J* E, F) 

£(u,!.F) 1 lFu' u ,F) 

[(A, f*F) ) F(f* A, F), 
with horizontal isomorphisms given by the adjunction. Now if f*F is a 
sheaffor all F in F and u is dense, then the induced map u* = [( u, f*F) 
is an isomorphism for all F in F [by the definition of a sheaf, V.2(2)]; 
hence so is the induced map F(f*u, F) for all F. By the Yoneda lemma, 
it follows that j*u is an isomorphism. And if j*u is an isomorphism for 
all dense u, then by the diagram again so is the induced map [( u, f*F) 
for all such u. But, by the definition V.2(2) again, this means exactly 
that f*F is a sheaf. 

(ii)=}(i) If f*F is a sheaf for all F, then f*F is isomorphic to its 
sheafification, so that the unit map f* --+ i*i* f* is a natural isomor
phism. Hence if we define a functor g*: F --+ Shj [ by g* = i* f*, 
then f* ~ i*g*. A functor in the opposite direction is then defined by 
g* = j*i*, clearly left exact. It is also left adjoint to g*, because, for all 
F E F and E E Shj [, 

F(g* E, F) = F(j*i*E, F) 

~ [(i*E, f*F) 

~ [(i*E, i*i* f*F) 

~ Shj [(E, i* f*F) 

~ Shj [(E,g*F) 

(by definition of g*) 

(since j* --1 f*) 

(since f*F is a sheaf) 

(since i* is full and faithful) 

(by definition of g*). 
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Thus g* --1 g* defines a geometric morphism g with ig ~ 1, as required. 

We now state several equivalent descriptions of surjections. 

Lemma 3. For a geometric morphism 1: :F --* [. the following are 
equivalent: 

(i) 1 is a surjection; i.e., f* is faithful; 
(ii) each unit E --* 1*f* E, (E E [.), of the adjunction is mono; 

(iii) f* reflects isomorphisms; 
(iv) for each o~Jcct E in £, f* induces an injective homomorphism of 

subobject lattices Sub(E) --* Sub(J* E); 
(v) f* reflects the order on subobjects, in the sense that for any two 

subobjects A, B of an object E in £, 

A ::; B in SUb(E) iff f* A ::; f* B in Sub(J* E). 

Proof: (i){:}(ii) This equivalence is a general property of adjoint 
functors, see [CWM, p. 88]. 

(i)=*(iv) Let A ~ E be a subobject with corresponding classifying 
map XA: E --* ne' By applying the left exact functor f* we get the 
following pullback in :F: 

f*A If*l 

I lrctrue) 

If u: B >---> E is another subobject of E with A ::; B, such that f* B = 
f* A, then f*(XA)of*(U) = f*(true)o!f'CB), where If'B: f* B --* 1 ~ f*1 
is the unique map. Since f* is faithful, also XA 0 u = (true)o!B; that is, 
B ::; A and hence B = A. 

(iv)=*(iii) Let a: E --* E' be an arrow in £ such that f*a is an 
isomorphism and let Im( a) ~ E' be its image in E'. Since f* is left and 
right exact, it preserves monos and epis and so takes the factorization 
of a into that of f* a : 

f* E - f* (1m a) r------+ f* E'. 

But, by assumption, f*a is iso, hence epi, so f*(lma) = f*(E'). By 
the assumption (iv) this gives 1m a = E', so a is epi. To see that a is 
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also mono, consider the kernel pair K s-;; E x E of 0: obtained by pulling 

back 0: along 0:, as in 

E--a----+' E'. 

Write D.E for the image of the diagonal map, so that D.E s-;; K s-;; Ex E. 
Now the left exact functor f* preserves pullbacks, so f* K is the kernel 
pair of f*o:. Since f*o: is mono, f* K = D.f*E = f*(D.E). Thus, by (iv) 
again, K = D.E; in other words, 0: is mono. 

(iii):::} (i) Consider two parallel arrows a, (3: E ----) E' in [; with f*o: = 
f* (3, and form their equalizer u: A,........, E ~ E' . Now f* is left exact, 
hence preserves equalizers, so f*u is the equalizer of f*o: = f* (3, and thus 
is an isomorphism. By the assumption that f* reflects isomorphisms, u 
must also be an isomorphism. In other words, 0: = (3. 

(v):::} (iv) If A, B E SUb(E) and f*(A) = f*(B), then by (v) both 
A :s; Band B :s; A, so A = B. 

(iv):::}(v) Clearly, if A :s; B in Sub(E), then f*(A) :s; f*(B) in 
Sub(f* E), since f is a functor. Conversely, if f*(A) :s; f*(B), then 
f*(A) = f*(A) 1\ f*(B) = f*(A 1\ B), the latter equality by the left 
exactness of f*. Then (iv) yields A = A 1\ B and hence A:S; B. 

Proposition 4. A geometric morphism f: F ----) [; is a surjection iff 
there exists a left exact comonad (G,E,8) on F and an equivalence of 
categories e such that the diagram 

Fe· 

commutes up to isomorphism, where p is the canonical surjection to the 
category Fe of G-coalgebras, as in (6) of §1. 

Proof: Since p is a surjection for any comonad G, the "only if" 
assertion is clear. Conversely, the given geometric morphism f is a pair 
of adjoint functors f* -1 f*, so induces a comonad (G,E,8) on F, with 
G = f* f* (as in the beginning of §V.8). Since f* is left exact, so is 
this comonad G. Now f* reflects isomorphisms by Lemma 3, while 
both F and [;, as topoi, have coequalizers. Therefore [; is equivalent 
to the category Fe of coalgebras for G (and under the equivalence f* 
corresponds to the forgetful functor of coalgebras), according to the 
dual of Beck's weak triple ability theorem, stated here explicitly for the 
convenience of the reader. 
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Lemma 5. Let L: C -+ D and R: D -+ C be functors, with L left 
adjoint to R with unit 'T/. Let (G, 8, E) be the induced comonad on D 
with G = LR, and let K: C -+ Dc be the comparison functor sending an 
object C of C to the coalgebra K (C) = (LC, L'T/c: LC -+ LRLC). If C 
has (reflexive) equalizers, and L preserves (these) equalizers and reflects 
isomorphisms, then K is an equivalence of categories. 

Note: This result holds without the qualification "reflexive", or 
with "reflexive equalizers" at both points; here a reflexive equalizer is 
an equalizer of a reflexive pair. 

Proof: This lemma is simply the dual of Corollary IV.4.3. 

The next two theorems will show that every geometric morphism 
can be factored as a surjection followed by an embedding, and this in 
an essentially unique way. 

Theorem 6 (Factorization Theorem; existence). Let f: :F-+ 
£ be a geometric morphism. Then there exists a topology j on £ for 
which f factors through the embedding i: Shj £ -+ £ by a surjection p: 

Proof: The given f determines a topology j on £ by way of the 
following natural closure operator ( - ) on £. For an object E E £ and 
a subobject U <:::; E, define U as the pullback in the diagram 

U ------;1 f* 1* U 

I I (3) 

where 'T/ is the unit of the adjunction J* -1 f*. This indeed defines a 
closure operator. First, U <:::; U holds by the diagram expressing the 
naturality of'T/. Moreover, since f*J* preserves pullbacks and pullbacks 
preserve intersections, U n V = U n V for two subobjects U ~nd V of 
E. Finally, (4) below shows for any subobject of U that J*(U) <:::; J*U 
and hence that J*(U) <:::; J*(U) <:::; J*(U). Then (4) again gives the 

last condition U <:::; U for a closure operator. The closure operator thus 
defined is clearly natural in E. Therefore it corresponds to a unique 
topology j on £, with corresponding embedding i: Shj £ -+ £. 
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Next, notice that the adjunction f* -1 f* and the universal property 
of the pullback square (3) imply that for any two subobjects U and V 
of E, 

V <;;; U iff f*V <;;; f*U. (4) 

Indeed, subobjects v: V >-----> E and u: U >-----> E give a commutative dia
gram 

v (5) 

with inner square a pullback as in (3). If f*V <;;; f*U, then also f*f*V <;;; 
f*f*U, so there exists a dotted arrow making the right-hand triangle 
commute. By the universal property of the pullback, it follows that there 
exists a dotted arrow V --. U making the left-hand triangle commute; 
i.e., V ::::: U. Conversely, given an arrow V --. U such that the left
hand triangle commutes, we get by composition with U --. f*f*U an 
arrow J1: V --. f*f*U such that f*f*(u) 0 J1 = TJE 0 v. Transposing this 
identity along the adjunction E(V, f*f* E) ~ F(f*V, f* E), we find that 
f*(u) 0 ji = f*(v), where ji: f*V --. f*U is the transpose of J1 and f*(v) 
is mono. Thus ji is mono and therefore f*(V) ::::: f*(U). 

To show that f: F --. E factors through the inclusion i: Shj E --. E 
for this topology j, it suffices, by Proposition 2, to check that f* sends 
j-dense subobjects U>-----> E in E to isomorphisms in F. But if U <;;; E is 
dense, then E = U; so by (4) above (with V = E) we get f* E = f*U, 
i.e., f* (U >-----> E) is an isomorphism. Thus f indeed factors through i, say 
as f ~ i 0 p: 

F f )E 
, , Ii , , 

P' (6) , 
,~ 

ShjE. 

It remains to be shown that the factor p is a surjection. To see that 
condition (iv) of Lemma 3 is satisfied, take subobjects U <;;; V <;;; E in 
Shj E and suppose that p*U ~ p*V. Then f*i*U = p*i*i*U = p*U = 

p*V = f*i*V, so i*U = i*V by (4), since subobjects in the image of 
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i* are closed (cf. Lemma V.2.4). But i* is just the inclusion functor, so 
U = V. This shows that p is a surjection, and completes the proof of 
the theorem. 

Next we state an analog of Proposition 4 and parts of Lemma 3. 

Corollary 7. For a geometric morphism f: F --+ £ the following 
are equivalent: 

(i) f is an embedding (i.e., the direct image functor f* is full and 
faithful); 

(ii) the counit fp: 1* f*F --+ F is an isomorphism, for each object F 
of F; 

(iii) there is a topology j on £ and an equivalence e: F -=. Shj £ such 
that the diagram of geometric morphisms 

(7) 

commutes up to a natural isomorphism e*i* ~ 1*. 

Proof: The equivalence (i){:}(ii) is a general fact about adjoint func
tors, see [CWM, p. 88]. 

(iii)=?(i) Suppose (7) is given, so f ~ ioe. Now i* is full and faithful 
and e* is an equivalence of categories, so i*e* is full and faithful, and 
therefore by the isomorphism i*e* ~ f*, so is f*· 

(i)=?(iii) By the theorem, f factors as in (6), where i is an embedding 
and p is a surjection. In particular, i* is full and faithful, as is f* by 
assumption. Hence so is p*. Therefore, by the equivalence (i){:}(ii) 
applied to p, the counit fp: p*p*F --+ F is an isomorphism for each F 
in F. By the triangle identity 

p*E 

we now see that p*'f]E must be an isomorphism. By Part (iii) of Lemma 3 
it follows by the surjectivity of p that 'f]E is an isomorphism, for each 
E E £. Thus, since each counit fp and each unit 'f]E is an isomorphism, 
p is an equivalence. 
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Theorem 8 (Factorization Theorem; uniqueness). 
p u 

Let f: :F ----> £, be a geometric morphism, while :F -+ A -+ £, and 

:F !..... B ~ £, are two factorizations of f, in the sense that the relevant 
triangles formed with f commute up to natural isomorphisms. If v is 
an embedding and p is a surjection, then there is a geometric morphism 
g, unique up to natural isomorphism, such that both triangles in the 
diagram 

(8) 

commute up to natural isomorphism. If also u is an embedding and q is 
a surjection, then 9 is an equivalence. 

Proof: By Corollary 7, we can assume that the embedding v is the 
inclusion i: Shj £, ----> £, for some topology j on £'. If U >---+ E is a j
dense monomorphism in £', then, as above just before (6), v*U ----> v* E 
is an isomorphism, and hence so is the left-hand vertical map in the 
commutative square 

q*v*U p*u*U 

I I 
q*v* E ~ p*u* E. 

Since p is a surjection, p* reflects isomorphisms (Lemma 3), and hence 
u*U ----> u* E must be an isomorphism. By Proposition 2 [(iii)=;.(ii)], it 
follows that u factors through v, so there is a g: A ----> B with vg ~ u 
(hence v*g* ~ u*). This 9 is unique up to isomorphism [as stated below 
(2)]. Moreover, v*g*p* ~ u*p* ~ v*q*, so, since v* is full and faithful, 
we conclude that g*p* ~ q*; in other words, the left-hand triangle in (8) 
also commutes up to isomorphism. 

Now suppose that u is an embedding and q is also a surjection. Then 
we find a similar factorization h: B ----> A. By the uniqueness part proved 
(for g), both go hand hog must be isomorphic to the identity, so each 
is an equivalence, and the theorem is proved. 

Sheaves on topological spaces provide an immediate example of this 
surjection-embedding factorization for geometric morphisms. Indeed, 
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for any continuous map J: X --+ Y between spaces, we can equip the 
image J(X) with the subspace topology from Y, so as to factor J as 

X~J(X)~Y, 

where p is a surjection and i is the inclusion of the subspace, both 
continuous. This gives a corresponding factorization of the geometric 
morphism J: Sh(X) --+ Sh(Y) as 

Sh(X) ~ Sh(f(X)) ~ Sh(Y), 

and, as observed in the beginning of this section, p is a surjective geo
metric morphism while i is an embedding. 

Similarly, if k: B --+ A is an arrow in an elementary topos £, one 
may factor k as an epimorphism followed by a monomorphism, as in 
§IV.6: 

A. 

For the corresponding slice categories, this gives a factorization of the 
e m 

geometric morphism k: £IB --+ £IA as £IB --+ £IJ(B) ---+ £IA, where 
the first morphism is a surjection and the second is an embedding, as 
proven at the start of this section. 

As another example, consider a functor ¢: C --+ D between small 
categories C and D, and the induced essential geometric morphism 

Cop DOP 
¢: Sets ------+ Sets , 

of presheaf topoi, as described in §2. It readily follows that ¢* is faithful 
if every object of D is isomorphic to an object in the image of ¢. We 
claim that ¢* is full and faithful iff the original functor ¢: C --+ D is full 
and faithful. Indeed, if ¢ is full and faithful then for each object C in C 

cop 

and each presheaf P in Sets , 

¢*¢!(P)(C) = ¢!(P)(¢C) 

= P0c D (¢C,¢-) 

~ P0c C (C, -) 

~ P(C), 

(definition of ¢*) 

(definition of ¢!) 

(since ¢ is full and faithful) 

the latter isomorphism since as in §2.(22) the Hom-functor is the identity 
for the tensor product 0c. This isomorphism 1 ~ ¢* ¢! is the unit, so 
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by Lemma 1 above it follows that ¢* is full and faithful. Conversely, 
suppose ¢* is full and faithful, and consider the diagram 

Cc y 
I SetsCOP 

¢l l¢! 
Dc 

y I SetsDoP
• 

It easily follows from the tensor-product definition of ¢! that this dia
gram commutes (up to natural isomorphism). But ¢! is full and faithful 
since ¢* is (by Lemma 1), as are both Yoneda embeddings. So ¢ must 
be full and faithful as well. 

Now if 'l/J: B -+ D is any functor between small categories Band D, 
one may take C = 'l/J(B) to be that full subcategory of D whose objects 

fJ ¢ . 
are all the 'l/J(C), C E C. Then'l/J factors as B -----; C -----; D with ¢ full 
and faithful, and (3 surjective on objects. This yields a factorization 

(9) 

of the geometric morphism 'l/J: SetsBOP -+ SetsDoP
• We have just shown 

that since ¢ is full and faithful, so is ¢*; i.e., ¢: SetsCOP -+ SetsDOP 

is an embedding. Also, by an earlier remark, the geometric morphism 
(3 in (9) is a surjection since (3: B -+ C is surjective on objects. Thus 
(9) is the surjection-embedding factorization of the geometric morphism 

BOP DOP 
'l/J: Sets -+ Sets induced by 'l/J: B -+ D. 

5. Points 

A point of a topos E is a geometric morphism p: Sets -+ E. In 
particular, a point x of a topological space X can be considered as a 
( continuous) map from the one-point topological space 1 into X; as 
in §l this gives a geometric morphism x: Sets = Sh(l) -+ Sh(X), in 
other words, a "point" of the topos Sh(X). Explicitly, according to the 
description of 1* in §l, for a sheaf F on X the inverse image x* (F) is 
exactly the stalk of F at x (the pullback of F along x: 1 -+ X). In 
the opposite direction, the sheaves in Sh(l) are just the sets S, and the 
description of the direct image functor x* in §l shows for each open set 
U of X that 

x*(S)(U) = S if x E U; x*(S)(U) = 1 if x tJ- U. (1) 

This sheaf x*(S) on X is the "skyscraper" sheaf at x [Lemma 11.6(11)]. 
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On the other hand, there are topoi which do not have any points 
at all; for instance, the topos of sheaves on a complete Boolean algebra 
[as a special case of §III.2, Example (d)] is "pointless" if the Boolean 
algebra is atomless (Exercise 9). 

The points of a Grothendieck topos E will be analyzed in this section, 
beginning with the case of a presheaf topos on a small category C. 

Let f: Sets ----+ SetsCOP be a point of SetsCoP . Since every object 
of SetsCOP is a colimit of representables, and since the inverse image 
functor 1*: Sets cop ----+ Sets, as a left adjoint, must commute with 
colimits, this functor 1* is completely determined up to isomorphism 
by what it does to represent abIes. Or, in other words, 1* is determined 
up to isomorphism by its composite 1* 0 y: C ----+ Sets with the Yoneda 
embedding. Hence we will aim to describe points of SetsCOP -that is, 
geometric morphisms f: Sets ----+ SetsCOP -purely in terms of suitable 
(covariant) functors A: C ----+ Sets. 

By the Hom-tensor adjunction (15) of §2, each such functor A: C ----+ 

Sets yields a pair of adjoint functors Sets':::: SetsCOP , given for a set 8 
and a presheaf R as 

8 f---t Homc(A, 8): Sets ----+ setsCOP } 
cop 

R f---t R0c A: Sets ----+ Sets. 
(2) 

Here, as in §2, Homc(A, - ) is the presheaf defined for each set 8 by 

Homc(A, 8)(0) = Hom(A(O), 8); 

it is right adjoint to the tensor product - 0c A, as in (15) of §2. This 
tensor product, as there, is the set of pairs r 0 a of elements r E R( 0), 
a E A( 0), with the identifications rg 0 a' = r 0 ga' for each g: 0' ----+ 0 
and a' E A( 0'). Equivalently the tensor product was described as the 
co equalizer §2(13) of two maps into a coproduct 11c R( 0) x A( 0). If we 
regard the set-valued functor R as a set which is "indexed" by 0 E Co 
and thus as a set over Co, this coproduct can be written as a pullback 
R x CO A. The co equalizer then appears in the form 

R xCD XCl XCD A ====t R xCD A --+ R0c A. (3) 

Since the resulting functor - 0c A is a left adjoint, it commutes with 
colimits. Also the representable functors R = C( - ,0) = yO act (like 
the ground ring in the tensor product of modules) as left identities, in 
view of the canonical natural isomorphism [ef. §2(20) for the bifunctor 
description] 

y00c A = C( - ,0) 0c A ~ A(O). (4) 
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given for g: Cf ---> C and a E A( Cf ) by 

g0a f---> g. a E A(C). (5) 

In other words, the diagram of functors 

C ___ ----'A~ __ ___+) Sets 

~ /-CA (6) 

commutes up to natural isomorphism. This diagram states that the 
functor - 0c A is an extension of A along the embedding y. [In fact, 
Exercise 3, it is the (left) Kan extension of A along y; for the definition 
of Kan extensions, see [CWM, p. 236J.J 

In the special case where the functor A comes from a point f of 
cop 

Sets as the composite 

A =(C ~ SetsCOP L Sets), (7) 

there is for any presheaf R a canonical map of sets, 

(8) 

natural in R. To define this map for an object C of C, and elements 
a E A(C) and r E R(C), use the Yoneda lemma to regard r as a natural 
transformation r = C( -, C) ---> R and so as a morphism of presheaves. 
Now set 

as displayed in the diagram, describing the image of r 0 a, 

C __ ----'A~_--+) Sets 

\ J 
Sets cop 

C( - ,C) 

If 
R 

f*y(C) = A(C) 

IrCf) 
f*(R) 

(9) 

a 

1 
f*(r)(a). 

To justify this definition of the map eR by the definition of the tensor 
product, we must consider g: C f ---> C and af E A( C f ) and show that 

(10) 
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Indeed, this follows from the following computation, 

f*((r· g)·)(a') = f*(r 0 y(g))(a') 

= f* (r)f* (y(g)) (a'), 
= f*(r)A(g)(a'), 
= f*(r)(g· a'). 

f* is a functor, 

f*y = A, 
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In case R = C( - ,C) use (7) to show that the definition (9) reduces to 
the isomorphism (4), so that in this case eR as in (8) is an isomorphism. 
But in (8), both functors - 0 A and f* commute with colimits, and 
every presheaf is a colimit of representables. It thus follows that e R is 
an isomorphism for each presheaf R in SetsCoP

• So, up to isomorphism, 
the inverse image part f* of every point f: Sets --+ SetsCOP is given by 
tensoring with some functor A: C --+ Sets. 

Conversely, given such a functor A: C --+ Sets, the induced functor 
- 0c A: SetsCOP --+ Sets always has a right adjoint Homc(A, - ), as 
in (2). So A is a good candidate to define a geometric morphism 

Cop 
g: Sets --+ Sets , 

i.e., a point of SetsCOP
, by 

g*(R) = R0c A, (11) 

cop 
for any presheaf RESets and any set S. However, the functor g* 
thus defined is not necessarily left exact. 

Now recall that for abelian groups R and A (or for modules over a 
ring), the corresponding tensor product R f-+ R 0 A is not necessarily 
left exact because a short exact sequence 0 --+ R --+ S --+ T --+ 0 isn't 
necessarily turned into a short exact sequence 0 --+ R 0 A --+ S 0 A --+ 

T 0 A --+ O. For exactness, replace the left-hand zero by the so-called 
torsion product Tor(T, A); see [Mac Lane 1963, p. 151]. The mod
ule A is called flat when - 0 A does turn short exact sequences into 
short exact sequences. The corresponding convention in the context of 
presheaves is: 

Definition 1. A set-valued functor A: C --+ Sets is said to be fiat 
when the induced tensor product functor - 0c A is (left) exact. 

Notice that - 0c A is always right exact since it has a right adjoint. 
With this definition, we can summarize the preceding discussion by the 
following statement: 

cop 
Theorem 2. Points of the presheaf topos Sets correspond to 

fiat functors A: C --+ Sets. 
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More precisely, let Flat( C) be the category of fiat functors C -> 

Sets and natural transformations between them; furthermore, as in 
§1, write Hom(Sets, SetsCoP

) for the category of geometric morphisms 
Sets -> SetsCOP and natural transformations (between their inverse 
image parts). Then Theorem 2 can be formulated more explicitly as: 

Theorem 2 [his]. There is an equivalence of categories 

r cop 

Flat(C) ( p I Hom(Sets, Sets ) 

with the functors T and p defined, for flat functors A: C -> Sets and 
cop 

points I: Sets -> Sets ,by 

T(A)* = - 0c A, T(A)* = Hom(A, - ), 
cop 

p(J) = 1* 0 y: C -> Sets -> Sets. 

Proof: Clearly T(A) is functorial in A and p(J) is functorial in I· 
Furthermore, for each object C of C there is, by (4) above, an isomor
phism pT(A)(C) = y(C) 0c A ~ A(C) which is natural in A and C. 
Thus pT(A) ~ A, natural in A. In the other direction, for a geometric 
morphism I, there is an isomorphism - 0c p(J) ~ 1* as in (8) above, 
readily seen to be natural in I. Thus, pT ~ id and Tp ~ id, so T and p 
do form an equivalence of categories. 

We next study points of sheaf categories. First consider a 
Grothendieck topology J on C and the corresponding embedding 

Sh(C, J) ~ SetsCoP
• 

This geometric morphism is given by the inclusion functor 
i*: Sh(C, J),........ SetsCOP taking sheaves into presheaves (by definition 
i* is a full and faithful functor), and the associated sheaf functor 
i*: SetsCOP -> Sh(C, J). Since i* is full and faithful, the category 
Hom(Sets, Sh(C, J)) of points of the topos Sh(C, J) is equivalent to 
the full subcategory of Hom(Sets, SetsCoP

) consisting of those geomet
ric morphisms which factor through the embedding i. This leads to: 

Lemma 3. For a Grothendieck topology J on C and a point 
cop I: Sets -> Sets the following are equivalent: 

(i) I factors through the embedding i: Sh(C, J) -> SetsCOP
; 

(ii) the composite 1* 0 y: C -> Sets sends each covering sieve in C 
to a colimit diagram in Sets; 

(iii) 1* 0 y: C -> Sets sends each covering sieve to an epimorphic 
family of functions. 
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The meaning of the last two statements may need some clarification. 
Recall that a sieve S on an object C of C can equivalently be regarded 
as a subpresheaf S ~ y( C) or as a family S of arrows u: D --t C, all 
with the same codomain C, and closed under composition on the right 
(i.e., u E S implies u 0 v E S whenever the composition makes sense). 
The Yoneda embedding y: C --t SetsCOP sends such a family of arrows 
S to a cocone {y(u): y(D) --t y(C) I u E S} on y(C) in the category 
SetsCoP

• Notice that this co cone is the canonical representation of the 
presheaf S ~ y(C) as a colimit of representables (Proposition 1.5.1): 

lim y(D) ~ S>-------+ y(C). 
--+(u: D---+C)ES 

(12) 

Part (ii) of the above lemma for a covering sieve states that f* sends this 
co cone on y( C) to a colimit in Sets, and Part (iii) states that the family 
of functions {f*y( u): f*y(D) --t f*y( C) I u E S} is jointly surjective. 

Proof of Lemma: (i)::::}(ii) Let S be a covering sieve on C for the 
topology J, so that S>-+y(C) is a dense subpresheaf. By condition (iii) 
of Proposition 4.2, f* (S) >-+ f* (yC) is then an isomorphism. But f* 
preserves colimits, so by (12) we get an isomorphism 

lim f*y(D) ~ f*y(C); 
--+(u: D---+C)ES 

thus condition (ii) is satisfied. 
The next implication (ii)::::}(iii) is clear from the definition of a co

limit. 
(iii)::::}(i) By Proposition 4.2, Part (iii) again, it suffices to show that 

f* sends dense inclusions of subpresheaves to isomorphisms. So let B ~ 
P be dense, and write the presheaf P as a colimit of representables 
(Proposition 1.5.1), say as P ~ ~y(Ci)' For each index i, define the 

presheaf Bi by pullback as in 

B, )P 

I I 
Bi , ) y(Ci ). 

Then, since pullbacks preserve colimits (Theorem IV.7.2), B ~ ~Bi' 
Moreover Bi >-+y(Ci ) is dense. We may regard Bi as a subfunctor of 
y(Ci ), i.e., as a sieve on Ci ; then density means exactly that this sieve 
Bi is a cover for the topology J. Now consider for each arrow u: D --t Ci 
in Bi the diagram 
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Since the lower arrows f*y(u), for all u E Bi , form a surjective fam
ily [by assumption (iii)], it follows that f* (Bi) )--t f* (y ( Ci)) must also 
be a surjection of sets, hence an isomorphism. But f* preserves colim
its, so if f*(Bi)--t f*(y(Ci)) is an isomorphism for each i, then so is 
f* (B) )--t f* (P) since B ~ lim Bi and P ~ lim y( C i ). This proves the 

-----> -----> 
lemma. 

A functor A: C -> Sets is called continuous (for a Grothendieck 
topology J on C) if A sends covering sieves to colimit diagrams. If A 
is also flat, then it follows from Theorem 2 [bis] that up to isomorphism 

C S cop C • h' A is of the form f* 0 y: -> ets lor some geometnc morp Ism 
f: Sets -> SetsCoP • Thus, by Lemma 3, a flat functor A is continuous 
iff it sends covering sieves to epimorphic families. If we write 

ConFlat(C) 

for the full subcategory of Flat(C) given by the continuous flat functors, 
then Theorem 2 and Lemma 3 immediately yield the following result: 

Corollary 4. Let (C, J) be a site. Points of the topos Sh(C, J) 
correspond to continuous fIat functors C -> Sets by an equivalence of 
categories 

ConFlat(C) ( : ) Hom(Sets, Sh(C, J)) 
which is given by restricting the equivalence of Theorem 2. 

Proof: Consider the equivalence 
cop 

T: Flat(C) +===== Hom(Sets, Sets ):p 

of Theorem 2. The categories ConFlat(C) and Hom(Sets, Sh(C, J)) are 
full subcategories of those occurring in this equivalence. Now if a flat 
functor A: C -> Sets is continuous, i.e., if A transforms covering sieves 
into colimits, then so does pT(A) = T(A) 0 y: C -> SetsCOP -> Sets, 
by the isomorphism A ~ pT(A) of Theorem 2 . Thus, by Lemma 3, the 
geometric morphism T(A): Sets -> SetsCOP factors through the embed
ding Sh(C, J)--t SetsCoP • On the other hand, if a geometric morphism 

cop 
f: Sets -> Sets factors through Sh(C, J), then again by Lemma 3 
the flat functor p(f) = f* 0 y: C -> Sets is continuous. It follows that 
the equivalence of Theorem 2 [bis] restricts to an equivalence of these 
full subcategories, as stated in the corollary. 

6. Filtering Functors 

Theorem 5.2 and its Corollary 5.4 are not of much use to us without 
a more practical description of flatness directly in terms of the func
tor A: C -> Sets. The purpose of this section is to arrive at such a 
description. 
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Recall that a small category I is jiltering, alternatively jiltered, if it 
enjoys the following three properties: 

(i) I is nonempty; 
(ii) for any two objects i and j of I there is a diagram i +- k ---+ j in 

I, for some object k; 
(iii) for any two parallel maps i ~ j in I there exists a commutative 

diagram of the form k ---+ i ~ j in I. 

In other words, there are objects in I, any two can be "joined", and any 
two parallel arrows can be equalized. Recall also that limits taken over 
a filtering category are called filtered limits ([CWM, p. 208]). 

Lemma 1. A small category I is filtering iff for any finite diagram 
in I there exists a cone on that diagram. 

In particular, a category with an initial object is always filtering. 

Proof: A cone with vertex k on the diagram u, v: i ~ j in I consists 
of arrows 0:: k ---+ i and j3: k ---+ i such that uo: = j3 and vo: = j3. Next a 
cone with vertex k on the diagram i, j (of two objects and no arrows) 
is given by morphisms 0:: k ---+ i and j3: k ---+ j. Finally, a cone on the 
empty diagram simply consists of an object k-the vertex of the cone. 
Thus, if there is a cone on every finite diagram in I, then I is certainly 
filtering. 

Conversely, suppose I is filtering. We prove that there exists a cone 
on any diagram by induction on the number of (nonidentity) arrows in 
that diagram. If there are no arrows at all, then the diagram consists 
only of a finite set of objects, say h, ... , in, and repeated application 
of Part (ii) of the definition of "filtering" categories [or Part (i) in case 
n = 0] produces an object k in I with morphisms O:t: k ---+ it, for t = 
1, ... ,no 

For the inductive step, suppose we are given a cone consisting of 
morphisms O:j: k ---+ j on a finite diagram in I, and that one new arrow 
u: i ---+ j is to be added to the diagram, as lower left in the figure 

k' 
1 
1 

1 

v 

./ ./1 
i --u--> j -----+) J ---+ J . 

Then perhaps UO:i #- O:j, so this is not a cone. But by Part (iii) of the 
definition there exists an arrow j3: k' ---+ k from some object k' in J with 



386 VII. Geometric Morphisms 

uad3 = aj{3. This provides a new cone with vertex k' on the enlarged 
diagram. 

The category of elements of a contravariant functor defined in §I.5 
can be formulated also for a covariant functor A: C -+ Sets. Given 
such a functor A, construct a category Ie A of elements of A with as 
objects the pairs (a,C) where a E A(C) and C E C, and as arrows from 
one such pair (a, C) to another (b,D) those arrows u: C -+ D for which 
A(u)(a) = b; that is, with u . a = b. There is an evident projection 
functor 

7rA: LA-+C. (1) 

The category of elements Ie A is also called the Grothendieck con
struction on the functor A (or the diagram of A). For example, if 
A = Hom(C, - ) is a covariant representable functor, then Ie A is the 
category of all arrows in C from the object C, sometimes written as the 
comma category C IC. 

(The "Grothendieck construction" also has a more general form, for 
functors from a small category C not to sets but to the category of all 
small categories; the result is then a fibered category.) 

With this we now define filtering functors: 

Definition 2. A functor A: C -+ Sets is said to be filtering if its 
category of elements Ie A is a filtering category. 

Explicitly, this means that a functor A is filtering iff it satisfies the 
following conditions: 

(i) A is nonempty; i.e., A( C) =I- 0 for at least one object C of C. 
(ii) Given elements a E A(C) and b E A(D), there exist an object B, 

u v 
morphisms C ..- B ---7 D in C, and an element c E A(B) such 
that u . c = a and v . c = b. 

(iii) Given two parallel arrows u, v: C -+ D in C and an a E A( C) 
such that U· a = v . a, there are an arrow w: B -+ C in C and an 
element bE A(B) such that uw = vw and w· b = a. 

The desired explicit description of flatness can now be stated as 
follows: 

Theorem 3. A functor A: C -+ Sets is filtering iff A is fiat; that 
is, iff the functor - ®c A is left exact. 

Here the "only if" assertion is a generalized form of the categorical 
result that finite limits commute with filtered colimits [CWM, p. 212]. 

On our way to the proof of Theorem 3, let us consider again the 
e~ e~ 

functor - ®e A: Sets -+ Sets. For a presheaf RESets , the set 
R®e A is by definition [see (3) of §5] the quotient of the set R xeo A 
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by the smallest equivalence relation which identifies (rg, a) and (r, ga) 
for any g: G' -+ G in C, r E R( G), and a E A( G'). In the special case 
where A is filtering (as in Definition 2) this equivalence relation can be 
described in a more direct way: given pairs (r, a) E R( G) x A( G) and 
(r', a') E R(G') x A(G'), one has 

r Q9 a = r' Q9 a' 
u v 

iff there are arrows G +- D -+ G' and some 

bE A(D) such that ub = a, vb = a', and ru = r'v. (2) 

Indeed, if there are u, v, b as in (2), then r Q9 a = r Q9 ub = ru Q9 b = 
r'v Q9 b = r' Q9 a'. Thus it suffices to prove that the right-hand side of (2) 
defines an equivalence relation. It is clearly reflexive and symmetric. To 
see that it is also transitive, suppose we are given (r, a) and (r', a') related 
as in the right-hand side of (2), and (r", a") related to (r', a') in the same 

w t 
way; say r" E R( G"), a" E A( G"), and there are G' +- E -+ G" and 
e E A(E) such that we = a', te = a", and r'w = r"t. Now u, v, w, and t 
can be viewed as arrows in Ic A as in (3) below, and by Lemma 1 there 
exists a cone on the diagram formed by these arrows, say with vertex 
the object (I, F) E Ic A [i.e., f E A(F) and F E q, as in 

(a', G') (3) 

~ 
(e, E) 

~ 
(a", Gil). 

Thus, k and £ are arrows in Ic A and vk = we; or in other words, 
k: F -+ D and £: F -+ E are arrows in C such that k· f = band 
£. f = e, and vk = we: F -+ G' in C. But then (r,a) and (r",a") are 

uk ti " 
related as in the right-hand side of (2), namely, by G t--- F --+ G and 
f E A(F). This shows that the right-hand side of (2) indeed defines 
an equivalence relation, and hence that the quotient R Q9c A of the set 
R xCo A can indeed be described as asserted in (2). 

Proof of Theorem 3: ({::=) Suppose the given functor A: C -+ 

Sets is flat; i.e., that - Q9c A: SetsCOP -+ Sets is left exact. Then, 
first of all, the functor - Q9c A must preserve the terminal object, i.e., 
1 Q9c A is a one-point set. So in particular A must be nonempty, and the 
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condition (i) below Definition 2 holds. For condition (ii), the fact that 
_ ®c A preserves products shows, for any objects G and D from C, that 
the canonical map (y(G) x y(D)) ®c A -> (y(G) ®c A) x (y(D) ®c A) 
is an isomorphism. The isomorphism (4) of §5 for both objects G and 
D then shows that the map 

(yG x yD) ®c A -> A(G) x A(D), 

(B -.: G,B': D) ®c f-> (u· C,v· c) 
(4) 

is an isomorphism. Therefore, any pair (a, b) E A(G) x A(D) must 
be in the image of the map (4); this is precisely condition (ii) below 
Definition 2. Finally, to show that condition (iii) holds, consider u, 
v: G -> D and a E A(C) such that ua = va. Let 

y(u) 
P>----+ yC ====t y D 

y(v) 

be the equalizer in SetsCOP
; so P is the presheaf on C given for each 

object B by PCB) = {w: B -> G I uw = vw}. The left exact functor 
- ®c A now transforms this equalizer into an equalizer diagram of sets, 
which by the isomorphism (4) of §5, can be written as 

P®cA~A(C)~A(D), 
A(v) 

(5) 

where for wE PCB) and b E A(B) one has i(w ® b) = W· bE A(C). But 
A(u)(a) = A(v)(a) by hypothesis, so since (5) is an equalizer of sets, 
there must be some such wand b for which w . b = a. This shows that 
condition (iii) holds, completing the proof that A is filtering. 

( :::::} ) Assume that the functor A: C -> Sets is filtering, so that condi
tions (i)-(iii) below Definition 2 hold. Then the set 1 ®c A is nonempty 
by condition (i); and condition (ii) shows by the definition (2) of equiv
alence that any two elements of 1 ®c A are equivalent. Thus, 1 ®c A is 
a one-point set, so the functor - ®c A preserves the terminal object. 

It remains to be shown that - ®c A preserves pullbacks. Let 

R x p Q __ 71".=..2 ---» Q 

71"11 1¢ 

R-----+)P ,p 

be a pullback of presheaves on C, while C is an object of C. Since 
pullbacks of presheaves are pointwise, 

(RxpQ)(C) = {(r,q) IrE R(G), q E Q(C), and 7jJ(r) = ¢(q) E P(C)}. 
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Consider the map 

0:: (RxpQ)0eA-+ (R0e A ) X(P0c A ) (Q0eA) 

given, for GEe, r E R(G), q E Q(G), and a E A(G), by 

o:((r,q)0a) = (r0a,q0a). 
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It is clear that 0: is well-defined [i.e., respects the typical tensor product 
identities as in §2(14). We have to show that 0: is an isomorphism. 

First 0: is surjective: Consider (r 0 a, q 0 a') in the codomain of 0:, 

with q E Q(G), r E R(D), a E A(D), and a' E A(G). Since the codomain 
of 0: is a pullback of sets, we have 'lj;(r) 0 a = ¢(q) 0 a' in P 0e A. But 

u v 
A is filtering, so by (2), there are G +-- B -- D and some b E A(B) 
such that ¢(q) . u = 'lj;(r) . v in PCB) and U· b = a', v . b = a. But then 
¢(q. u) = 'lj;(r· v) by naturality of ¢ and 'lj;, so (rv, qu) E (R Xp Q)(B), 
and 

o:((rv,qu)0b) = (rv0b,qu0b) 

= (r0vb,q0ub) 

= (r0a,q0a'). 

Thus, the given element (r 0 a, q 0 a') is in the image of 0:, so 0: is 
surjective. 

Second, 0: is injective: Suppose that 

o:((r1,q1) 0ad = o:((r2,q2)0 a2), 

where ri E R(Gi), qi E Q(Gi), and ai E A(Gi), for i = 1, 2. Thus 

r1 0 a1 = r2 0 a2, q1 0 a1 = q2 0 a2· 
Ul U2 

By the definition (2) of the equivalence, there are G1 +-- B ~ G2 in 
VI V2 

C and bE A(B), and G1 f-- D ---+ G2 in C and dE A(D), such that 

Q1U1 = q2u2, 

r1 V1 = r2V2, 

Uib = ai, 

Vid = ai· 

Consider now the diagram in the category Ie A consisting of the solid 
arrows in (6) below: 

(6) 
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Since A is filtering, it follows by Lemma 3 that there exists a cone on this 
diagram in Ie A, say with vertex (c, K), where K is an object of C and 
c E A(K), as indicated by the dotted arrows in (6). Thus w: K --+ D 
and s: K --+ B are arrows in C such that 

wc=d, sc = b (i = 1,2). 

But then a direct calculation with the tensor identities §2(14) yields 

This shows that 0: is injective, and completes the proof of Theorem 3. 

Corollary 4. Let C be a small category with Enite limits. A functor 
A: C --+ Sets is Bat iff A is left exact. 

cop 
Proof: (=}) The Yoneda embedding y: C >--+ Sets preserves all 

those limits which exist in C. If A is fiat, then by definition 
- 0c A: Sets cop --+ Sets preserves finite limits. But then so does 
the composite ( - 0c A) 0 y: C --+ Sets. The latter functor is naturally 
isomorphic to A [ef. (4) and (6) of §5], so A itself preserves finite limits 
as well. 

( ~) It is easy to verify directly that a left exact functor A: C --+ 

Sets must satisfy conditions (i)-(iii) immediately below Definition 2. 
Indeed, the condition (i) holds because A(I) = 1; (ii) holds because 
A(C) x A(D) ~ A(C x D) for any two objects C and D in C, so we can 

7T'1 1i2 U v 
take C f-- C x D ---+ D as our arrows C ~ B ~ D in (ii). Finally, 
(iii) holds because A preserves equalizers [take B in condition (iii) to be 
the equalizer of u and v]. 

Corollary 5. Let D be a small category. Then the colimit functor 
lim: SetsD --+ Sets commutes with Enite limits iff DOP is Eltering. 
~ 

(The "if" assertion is familiar; e.g., [CWM, Theorem IX.2.1j.) 

Proof: Let C = DOP and let A: C --+ Sets be the constant functor 
1. Then for any P E SetsCOP = SetsD , condition (2) and the definition 
of colimits show that P 0c A ~ lim P. So by Theorem 3, the functor 

~ 

~: SetsD --+ Sets is left exact iff Ic A is filtering. But clearly Ic A is 
(equivalent to) C itself when A = 1. 

1. Morphisms into Grothendieck Topoi 

In this section we will study geometric morphisms from a topos £ 
into a Grothendieck topos Sh(C, J) of sheaves on some site (C, J). So 
compared with the Section 5, we have replaced Sets by a topos £. The 
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analysis will be parallel to that in a prior section. Again we will begin 
with the case of a presheaf top os SetsCOP , and establish a correspon
dence between geometric morphisms E -t SetsCOP and flat functors 
C -t E, analogous to Theorem 5.2. Next, as in Corollary 5.4., this corre
spondence restricts to one between geometric morphisms E -t Sh(C, J) 
and continuous flat functors C -t E. In a subsequent section we will 
also give a more explicit description of flatness, similar to Theorem 6.3. 

Suppose f: E -t SetsCOP is a geometric morphism. Its inverse image 
functor f*: SetsCOP -t E preserves colimits, and every presheaf R on C 
is a colimit of representable presheaves, so (up to natural isomorphism) 
the functor f* is completely determined by what it does to representa
bles. More explicitly, each presheaf R E SetsCOP is canonically a colimit 
lim H of representables. Indeed, R determines the category J R of its 
---> 
elements, with objects the pairs (C, r), where r E R( C) and C E C, 
while H: J R -t SetsCOP sends this object (C, r) to Hom( -, C) = yC. 
Exactly as in §2(1O) this colimit limH can be presented as a coequalizer, 

---> 
with coproducts over the arrows u: (C', r') -t (C, r) and then over the 
objects of J R. This gives the following coequalizer in SetsCop

: 

u y(C')~ U y(C)~R; 
u: 0'->0 OEC 
rER(O) rER(O) 

(1) 

specifically, if we write elements of Ilu r y( C') as triples (r, u, v) with 
r E R(C), u: C' -t C and v E y(C')(En = C(B, C') for some object 
B in C, and similarly write elements of Ilo,r y( C) as pairs (r, w) with 
wE C(B, C), then () and T in (1) are the maps given by 

()(r, u, v) = (r, u 0 v), T(r,u,v) = (ru,v). 

The functor f*: Sets cop -t E preserves colimits, so it sends this co
equalizer (1) to the following coequalizer in the topos E: 

U f*y(C') ====t U f*y(C) ~ f*(R). 
u': 0' ->0 OEC 

rER(O) rER(O) 

(2) 

Now suppose that E has all small colimits, let A: C -t E 
be any (covariant) functor and consider the tensor product functor 

cop S cop h b . t _ 0c A: Sets -t E. Explicitly, for any R E ets ,t e 0 Jec 
R 0c A of E is defined by the following coequalizer: 

U A(C')~ U A(C)~R0cA; 
u': 0' ->0 OEC 

rER(O) rER(O) 

(3) 
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the maps e and T are as described in §2(1l). 
The functor - ®c A: SetsCOP -+ E thus defined is an extension 

of the functor A: C -+ E, in the sense that, up to isomorphism, the 
diagram 

(4) 

commutes. Indeed, this is just the canonical isomorphism, like §2(20), 

y(C) ®c A = Hom( -, C) ®c A ~ A(C). (5) 

Moreover, the functor - ®c A is left adjoint to the functor 

Home (A, - ): E -+ Sets 
cop 

(6) 

defined, as in §2(4), for an object E in E and an object C in C, by 

Hom,d A, E) (C) = Hom,dA( C), E). (7) 

This adjunction (Theorem 2.1 [bis]) assumes that E is cocomplete. The 
co completeness hypothesis "E has all small colimits" may be replaced by 
"E is a topos over sets", provided the functor A: C -+ E is also replaced 
by a left ll(C) object (an "internal diagram") on the category object 
II (C) in E. See V. 7 (5). Here ll: Sets -+ E is the canonical functor, 
§1(8). 

Definition 1. A functor A: C -+ E is said to be flat if the corre
sponding tensor product functor - ®c A: Sets cop -+ E is left exact. 

This definition, like that for modules, is analogous to Definition 5.l. 
A fiat functor A: C -+ E induces a geometric morphism 

T(A): E -+ Sets 
cop 

with inverse image functor T(A)* = - ®c A and direct image func
tor T(A)* = Home(A, -); indeed, T(A)* is left exact since A is 
fiat, and left adjoint to T(A)* by Theorem 2.1 [bis]. FUrthermore, a 
natural transformation A: A -+ A' induces a natural transformation 
T(A): - ®c A -+ - ®c A' in the evident way, so one obtains a functor 

(8) 
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from the category of flat functors C -+ £ to the category of geometric 
cop 

morphisms £ -+ Sets . 
In the other direction, suppose we are given a geometric mor

phism I: £ -+ SetsCoP
• Composition of the inverse image functor 

1*: SetsCOP -+ £ with the Yoneda embedding y: C -+ SetsCOP yields a 
functor 

p(J) = 1* 0 y: C -+ £. 

A comparison of the coequalizers (2) and (3) for a presheaf R E SetsCOP 

immediately yields an isomorphism R®c p(J) = R®c(J* oy) ~ 1*(R), 
natural in R. This means that Tp(J) ~ Ii in particular, p(J) is flat. 
Moreover, the fact that (4) commutes up to isomorphism for any given 
A: C -+ Sets implies that pT(A) ~ A. We thus obtain the following 
analogue of Theorem 5.2. 

Theorem 2. Let £ be a topos with small colimits, and let C be any 
small category. Geometric morphisms £ -+ SetsCOP correspond to fiat 
functors C -+ £, by an equivalence of categories 

Hom(£,SetsCoP
) ( : ) Flat(C,£), 

as described above. 

Now let J be a Grothendieck topology on C, with the associated 
topos of sheaves Sh(C, J). In order to derive a similar correspondence 
for geometric morphisms £ -+ Sh(C, J), we first state the following 
analogue of Lemma 5.3. 

Lemma 3. Let I: £ -+ SetsCOP be a geometric morphism. The 
following are equivalent: 

(i) I factors through the embedding i: Sh( C, J) >--+ SetsCOP 
; 

(ii) 1* 0 y maps covering sieves in C to colimits in £; 
(iii) 1* 0 y maps covering sieves in C to epimorphic families in £. 

Proof: The proof for the case where £ = Sets (Lemma 5.3) applies 
almost literally to the case of an arbitrary topos £. 

In analogy with the case of functors A -+ Sets discussed in Section 5, 
a flat functor A: C -+ £ into a topos £ is said to be continuous for the 
topology J if A sends covering sieves to epimorphic families in £, or 
equivalently (by the lemma), to colimits in £. Let us write 

ConFlat((C, J), £) 

for the full subcategory of Flat(C, £) consisting of the continuous flat 
functors. By Lemma 3 above, the equivalence of Theorem 2 restricts to 
an equivalence of categories as in the following corollary. 
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Corollary 4. Let (C, J) be a site, and let E be a topos witb small 
colimits. Geometric morpbisms E --+ Sh(C, J) correspond to continuous 
Hat functors C --+ E, by an equivalence of categories restricting tbat of 

Tbeorem 2. 

We thus have a diagram of categories and functors, commutative up 
to natural isomorphisms, 

Hom(E, Sh(C, J)) =::::( ====:;) ConFlat((C, J), E) 

1 1 
Cop T 

Hom(E, Sets ) ::::( =====:::::;:) Flat(C, E) 
p 

in which the rows constitute equivalences of categories. 

8. Filtering Functors into a Topos 

(9) 

Our next aim is to describe flat functors from a small category C 
into a topos E in more elementary terms, analogous to Theorem 6.3 
which dealt with the case E = Sets. To begin with, we shall have to 
adjust the notion of a filtering functor so that it applies to a functor 
with values in any topos E. The definition of a "filtered" category I in 
§6 required at (ii) that any two objects i and j of I be "joined" by a 
pair of arrows from some object k of I. Now for a functor A: C --+ E 
we require instead that any two objects C and D of C be "joined" by 
a family of pairs of arrows which becomes in E an epimorphic family. 
Similarly, condition (iii) in §6 required that any two parallel arrows in I 
be equalized by some arrow. Now we require that the equalizing arrows 
yield in E a suitable epimorphic family. Here is the formal definition. 

Definition 1. A functor A: C --+ E from a small category C into a 
topos E is said to be filtering wben tbe following tbree conditions bold: 

(i) Tbe family of all maps A(C) --+ 1, for all C E C, is epimorpbic. 
(ii) For any two objects C, D in C, consider all objects B and all 

u v 
arrows C +-- B -+ D in C. Tben tbe resulting maps 

(A(u), A(v)): A(B) --+ A(C) x A(D) (1) 

constitute an epimorpbic family into A(C) x A(D). 
(iii) For any two parallel arrows u, v: C --+ D in C let Eu,v be tbe 

equalizer in E of A(u) and A(v). Consider all objects B of C 
and all arrows w: B --+ C witb uw = vw. Tben tbe arrows A(w) 
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factor through Eu,v to give an epimorphic family of maps (here 
dotted) into Eu,v: 

A( ) A(u) 
A(B) ~ A(C) =======tl A(D) 1 / A("l (2) 

These three conditions are simply diagrammatic versions of the con
ditions (i)-(iii) stated below Definition 6.2. For example, condition (iii) 
there states that any element a E A( C) which is in the set-equalizer Eu v 
lies in the image of some A(w). ' 

To manage these epimorphic families, we will need: 

Lemma 2. For any categories V and C, any functor L: V ---> C 
which has a right adjoint R takes epimorphic families in V to epimorphic 
families in C. 

Proof: Suppose that {ei: Ui ---> B} is an epimorphic family in V 
while s, t: LB ---> C are maps in C such that sL(ei) = tL(ei) for all i. 
Then by taking the transposed maps sand t along the adjunction we 
have 

sei = tei: Ui ---> B ---> RC 

for all i, by the naturality of the adjunction. Since the ei form an 
epimorphic family, this gives s = t and hence s = t, as required. 

In particular, this means that pullback along an arrow k: B ---> B' 
in a topos [ preserves epimorphic families { ei: Ui ---> B'}. Indeed, the 
pullback k*: [IB' ---> [IB has a right adjoint (§IV.7), hence sends {ei} 
to an epimorphic family {k*(ei) = ei xl: Ui XB' B ---> B' XB' B = B} in 
[I B. Since [I B ---> [ also has a right adjoint, this family is epimorphic 
in [ as well. 

Our purpose is to prove eventually that a functor A: C ---> [ from a 
small category C into a co complete topos [ is fiat iff it is filtering. But 
we will only achieve this towards the end of the next section. First, it 
will require several subtle but equivalent descriptions of filtering functors 
A: C ---> [. The first one, as stated in the following lemma, is essentially 
a translation of Definition 1 above into the language of "generalized 
elements" . 

Lemma 3. A functor A: C ---> [ is filtering iff it satisfies the fol

lowing three conditions: 

(i') For any object U E [ (that is, for any generalized element 
U ---> 1 of the terminal object 1) exists some eDimorphic family 
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{ ei: Ui --+ U} in E and for each index i an object Bi of C and a 
generalized element Ui --+ A(Bi) in E. 

(ii') For any two objects C and D in C and any generalized element 
(c,d): U --+ A(C) x A(D) in E, there is an epimorphic family 
{ ei: Ui --+ U} in E and for each index i an object Bi of C with 
arrows Ui: Bi --+ C and Vi: Bi --+ D in C and a generalized 
element bi : Ui --+ A( Bi) in E, all such that the following diagram 
commutes: 

Ui ei ) U 

hi 1 1 (c,d) (3) 

A(Bi) (A(Ui),A(Vi) ) A(C) x A(D). 

(iii') For any two parallel arrows u, v: C --+ Din C and any generalized 
element c: U --+ A(C) in E for which A(u)(c) = A(v)(c), there 
is an epimorphic family { ei: Ui --+ U} in E and for each index i 
an arrow Wi: Bi --+ C and a generalized element bi : Ui --+ A(Bi) 
such that the following diagrams commute in E, respectively in 
C: 

Ui 
ei )U Bi 

hi 1 l~ 1~ (4) 

A(Bi) A( ) A(C) ====t A(D), C~D. 
Wi A(v) V 

[In fact, (i') is equivalent to (i), (ii') to (ii), and (iii') to (iii).] 

Proof: (i)=?-(i') For U E E, construct for each object C E C the 
pullback 

Uc ----+) A(C) 

1 1 (5) 

U ) 1. 

By assumption, the family of maps on the right (indexed by C) is an 
epimorphic family, which by pullback gives the epimorphic family of 
arrows Uc --+ U on the left while each Uc --+ A(C) is a generalized 
element. 

(i')=?-(i) In (i'), take U = 1. The resulting epimorphic family {ei} is 
then expressed in terms of the generalized elements of A(Bi) as 

Hence the right-hand family of arrows A(Bi) --+ 1 is epimorphic, and (i) 
follows. 
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(ii)=;.(ii') The epimorphic family (1) given in (ii) pulls back along 
the given generalized element (c, d) to give an epimorphic family Ui ----+ 

A(Bi) with index i running over all diagrams C +- B -> D in C (where 
C and D are fixed), such that the squares of the form (3) commute. 

(ii')*(ii) Apply (ii') with U = A( C) x A(D) and (c, d) the iden
tity. Since the arrows ei in (3) form an epimorphic family, so do the 
bottom arrows in (3). Thus the family (1) which they form must also 
be epimorphic. 

The similar proof of the equivalence (iii){o}(iii') is left to the reader. 

In Section 6, we have shown that for a filtering functor A: C ----+ Sets, 
there is a cone on any finite diagram in the category Ie A of elements 
of A. There is an analogous fact for filtering functors A: C ----+ E into a 
topos E, but its statement is more involved and requires the construction 
of categories of generalized elements. Consider any functor A: C ----+ E, 
and let U be an object of E. By composition with Home(U, - ): E ----+ 

Sets, we obtain a functor 

HomdU, A): C ----+ Sets, Hom[(U, A)(C) = Home(U, A(C)). 

We can thus apply the Grothendieck construction of §6 to obtain the 
category of elements of this functor into sets~that is, the category of 
generalized elements defined over U of the functor A, denoted by AU: 

(6) 

In other words, the objects of AU are pairs (C, c: U ----+ A( C)), with C in 
C and c an arrow in E; a morphism (C, c) ----+ (C', c') in AU is an arrow 
u: C ----+ C' in C with the property that c' = A(u) 0 c: U ----+ A(C'). 

If e: U' ----+ U is an arrow in E, there is a functor 

(7) 

defined in the obvious way by composition with e. Explicitly, for an 
object (C,c: U ----+ A(C)) of AU, set 

e#(C, c) = (C,coe). (8) 

In particular each diagram D in the category AU yields, by applying 
, I 

the functor e# to D, a diagram e#(D) in AU . 

Lemma 4. A functor A: C ----+ E is filtering iff for each object U of 
E and each finite diagram D in AU, there exists an epimorphic family 
{ ei: Ui ----+ U} such that, for each index i, there is a cone on the induced 
diagram ei#(D) in AUi • 
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Proof: The proof is analogous to that of Lemma 6.1. 
( -¢=) Assume that A satisfies the condition on finite diagrams as 

stated in the lemma. We shall prove that conditions (i')-(iii') of 
Lemma 3 hold. First, consider for a given object U of E the empty 
diagram V in AV. For a map ei: Ui -t U, ei#(V) is the empty diagram 
in A Vi, and a cone on this diagram is simply an object of A Vi; i.e., a 
pair (Oi E C, Ci: Ui -t A( Oi)). So clearly condition (i') holds. 

To prove (ii') , take an object U of E, and arrows c: U -t A(O) 
and d: U -t A(D) in E. Consider the diagram V in AV consisting of 
just two objects, viz., (0, c) and (D, d). Then, by hypothesis, there is an 
epimorphic family { ei: Ui -t U } such that for each index i there exists a 
cone on the diagram et(V) in AVi. Now et(V) is the diagram consisting 
of just two objects (0, cei) and (D, dei), and a cone on it in AVi is given 
by arrows Ui: Bi -t 0 and Vi: Bi -t D in C, together with an arrow 
k Ui -t A(Bi) in E such that A(Ui)(bi ) = cei and A(Vi)(bi ) = dei, 
exactly as required in condition (ii') of Lemma 3. 

Finally, condition (iii') follows by a similar argument with diagrams 
in A V of the form • ~ •. 

('*) Now assume that the functor A: C -t E is filtering, so that 
conditions (i')-(iii') of Lemma 3 hold. The required cone will be then 
constructed much as in Lemma 6.1, by induction on the number of ar
rows in the given diagram V in A v. We will consider only the step 
in which a new arrow t: (0, c) -t (D, d) is to be added to V-where 
V already contains the objects (0, c) and (D, d). By the induction as
sumption, there is already an epimorphic family ei: Ui -t U in E and 
for each index i a cone on ei#(V) with a vertex (Bi' bi), as in the figure 
below in the category A Vi, 

(9) 

----)-1 (D", d" ei) ... 

where all the triangles commute, except the first one where perhaps 
tu =f. v: Bi -t D. Since both components were arrows in A Vi, one does 
have A(tu)bi = dei = A(v)(bi ). Condition (iii') of Lemma 3 therefore 
gives, for each i, an epimorphic family 

(10) 

in E, and for each index j an arrow Wij: Lij -t Bi in C and a generalized 
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element £ij : Vij ---+ A( Lij) such that the diagram 

A(tu) 
A(Lij) A(Wij)) A(Bi) ===A(=V)4~ A(D) 

commutes. Therefore we find, for each i and j, a cone on the diagram 
fi~ei#(V) in AVij , constructed by applying fij# to (9) and then putting 
Wij: (Lij , £ij) ---+ (Bi' bdij) on top of it. But for each i, the family 
{Vij ---+ Ui h of (10) is epimorphic, as is the family { Ui ---+ Uk There
fore, so is the family of composites {Vij ---+ Ui ---+ U hj. This completes 
the induction. 

9. Geometric Morphisms as Filtering Functors 

The main result of this chapter (Corollary 9.2 below) states for a 
topos with small colimits £ and a site (C, J) that geometric morphisms 
£ ---+ Sh(C, J) correspond to functors A: C ---+ £ which are continuous 
and filtering. [In the language ofthe next chapter, one says that Sh(C, J) 
"classifies" continuous filtering functors on C.] This result will be an 
immediate consequence of Corollary 7.4 and the following result which 
generalizes Theorem 6.3 from Sets to a topos: 

Theorem 1. Let £ be a tapas with small colimits, and let C be a 
small category. Then a functor A: C ---+ £ is flat iff it is filtering. 

The proof of this result is somewhat long and technical, and the 
reader may prefer to postpone its proof and study some of the applica
tions (e.g., in §§VIII.3-6) first. 

Proof: (*) Suppose that the given functor A: C ---+ £ is fiat, and 
so has the property that - 0c A: SetsOP ---+ £ preserves finite limits. 
We have to check that conditions (i)-(iii) of Definition 8.1 hold. Recall 
that for a presheaf R E Sets cop , the object R 0c A of £ is defined as 
the following co equalizer (1) in £ [identical to §7(3)] 

U A(C') ===F+ U A(C) ~R0cA. 
u': C'-->C CEC 

TER(C) TER(C) 

(1) 

In particular, since - 0c A preserves limits, we have 10c A ~ 1, so 
ilCEC A(C) ---+ 1 is epi; i.e., condition (i) of Definition 8.1 holds. To 
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check condition (ii), "join two objects", take two objects C and D of C, 
and consider the diagram 

U A(B') ~ U A(B) ---,--<1>--»11 (y(C) X y(D)) ®c A 

B-+C B-+C 

B-+D B-+D 
t 

"I 

a ~ (2) B'-+B 

A(C) X A(D) (f'~f' (yC®c A ) X (yD®c A). 

Here the upper row is the co equalizer defining (yC X Y D) ®c A, v is 
given on each summand A(B) as in (ii) of Definition 8.1, and a: is the 
canonical isomorphism which states that - ®c A preserves the product 
yC x y D; finally, the two f-t'S on the bottom are canonical isomorphisms 
of the type § 7 (5). By spelling out the definitions, one readily checks that 
the square on the right commutes. But ¢ is a coequalizer, hence epi, so 
v must be epi as well. This shows that (ii) of Definition 8.1 holds. 

Finally, one can verify in a similar way that condition (iii), "equalize 
two arrows" , follows from the fact that for any given arrows u, v: C ----+ D 
in C, the tensor product - ®c A must preserve the equalizer 

yu 
P>-----------+ yC ====+ y D 

yv 

in SetsCOP
, where the presheaf P is defined for each object B by PCB) = 

{ w I w: B ----+ C in C and uw = vw}. We leave the details to the reader. 
( ~) Let us now turn to the converse. Suppose that the given functor 

A: C ----+ £ satisfies (i)-(iii) of Definition 8.1, or equivalently (i')-(iii') 
of Lemma 8.3 for a filtering functor. We will prove that the functor 
- ®c A preserves the terminal object as well as all pullbacks. From 
this it follows that - ®c A preserves all finite limits ([CWM, p. 109]). 

In order to show that l®c A ~ 1, consider the diagram: 

U A(C') ~:~l U A(C) ~ l®c A 

C I C'-+C 

(3) 

U A(B) ~ U A(C) x A(D) :: l U A(C) ------+ 1. 
C,D C v 

C+-B-+D 

Here the top row is the coequalizer defining l®c A [so () sends the u 
summand A(C') to A(C) via A(u): A(C') ----+ A(C) and T sends it to 



9. Geometric Morphisms as Filtering Functors 401 

A(C') via the identity]. By assumption on A, the map 11c A(C) ----t 1 
is epi. Hence, by Theorem IV.7.8, it is a coequalizer of its kernel pair; 
i.e., of the two projections from (11c A( C)) x (11c A( C)). Distributing 
both these coproducts over the product, this means that the right-hand 
part of the bottom row in (3) is a coequalizer. Moreover, by assumption 
on A, as in (1) of Definition 8.1, the evident map v is an epimorphism. 
Thus, for any object E of the topos £ and any a: 11c A( C) ----t E in £, 
with components ac: A(C) ----t E, say, we have 

a8 = aT {==} for all u: C' ----t C, ac 0 A(u) = ac, 
u v 

{==} for all C +-- B ---+ D, acA(u) = aB = aDA(v) 

{==} a7r1V = a7r2V 

{==} a7r1 = a7r2 (since v is epi). 

It follows that (T, 8) and (71'1,71'2) have isomorphic coequalizers; and hence 
that 1 ®c A = 1. 

cop 
Next, we show that - ®c A: Sets ----t £ preserves pullbacks. The 

proof will use a suggestive notation for maps into tensor products. If 
R E SetsCOP is any presheaf, with associated tensor product as in (1) 
above, then for any Co E C and any TO E R(Co), we write 

TO® -: A(Co) ----t R®cA (4) 

for the composition of the coequalizer if>: 11 A( C) ----t R ®c A of (1) and 
the coproduct inclusion A( Co) ----t 11 A( C) to the summand indexed by TO 
and Co. Then if u: C1 ----t Co is any map in C, the usual tensor identity 
TOU ® - TO ® u - holds; or more precisely, TOU ® - = (TO ® - ) 0 

A(u): 

( 4') 

R®c A . 

Notice that the family of all such maps TO ® - [for all Co E C and 
all TO E R( Co)] is an epimorphic family into R ®c A-indeed, their 
coproduct is the epimorphism if> in the coequalizer definition (1) of ®c· 

The proof that ®cA preserves pullbacks will proceed in three steps. 
First, for a filtering Functor A, the following lemma provides a crite
rion for equality between such maps TO ® -, analogous to §6 (2). To 
state this criterion, consider two elements T E R(C) and T' E R(C') of 
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the presheaf R, and two arrows a: U ---; A( G) and a': U ---; A( G') in the 
topos £. These give two tensor products r ® a and r' ® a': U ---; R ®c A. 

Lemma A. The two arrows r ® a and r' ® a': U ---; R ®c A are 
identical iff there exists an epimorphic family {ei: Ui ---; U} in £, and 
for each i arrows Ui: Di ---; G and Vi: Di ---; G' in C and bi: Ui ---; A(Di) 
in £ such that, for each i, 

, 
r· Ui = r . Vi, 

A(Ui) 0 bi = a 0 ei, A(Vi) 0 bi = a' 0 ei. 

Observe that these identities are the same as those in §6 (2), except 
that they only hold "locally", on the cover {ei: Ui ---; U}. 

In the proof of this lemma, we will denote the covariant action by 
A simply by a dot, as for the case where £ = Sets, discussed in earlier 
sections. Thus, commutativity of (4') can be expressed by the identity 
ro· u®a = ro ®u· a, for each arrow a: U ---; A( G1) in £j similarly, the last 
two identities in the statement of the lemma are written Ui . bi = a 0 ei 

and Vi . bi = a' 0 ei. 

Proof: ( -¢=) For ei, Ui, Vi and bi as in the lemma, we have 

r ® a 0 ei 

r ® Ui . bi 

r· Ui ® bi 
r' . Vi ® bi 

r' ® Vi· bi 

(r' ® a') 0 ei. 

Since the arrows ei: Ui ---; U form an epimorphic family, it follows that 
r®a = r' ®a'. 

( =?) By comparison with the defining coequalizer (1) for R ®c A, it 
is readily seen that the following diagram is also a coequalizer: 

C'_D_G 

(r,r') 
l/ C 

rER(e) 

(5) 

Here the coproduct on the left is indexed by all diagrams G' ~ D ~ G 
in C and pairs r E R(G), r' E R(G'), such that r·u = r'·v in R(D). The 
map J1 sends a summand A(D) indexed by G' ~D~G and (r, r') to the 
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summand A(G) indexed by G and r via the map A(u): A(D) -+ A(G), 
while J.L similarly sends A(D) to A(G') via A(v). 

In this proof, let us write X for the coproduct in the middle of (5) 
and Y for the one on the left, so that ¢: X -+ R Q9c A is the coequalizer 
of the maps J.L, v: Y =4 X. We claim that the image I of the map (J.L, v): 
Y -+ X x X is an equivalence relation on X. Indeed, this follows from 
the fact that A is filtering by an argument similar to the one below §6 
(2). As there, symmetry and reflexivity are evident. For transitivity, it 
has to be shown t"h '\t the image of the map (WTrl, V1r2): Y X X Y -+ X x X 
is contained in the image I of (J.L, v): Y -+ X x X (here the pullback 
Y x x Y is along the map v on the left and J.L on the right). But pulling 
back in a top os preserves sums, so Y x x Y can be computed explicitly, 
as the coproduct of copies of A(E) XA(C') A(D), one for each diagram 

G ::- D ~ G' ~ E ...!.. G" 

in C, together with triples r,r',r" of elements of R(G),R(G'), and 
R(G"), respectively, so that r· u = r' . v while r' . w = r" . t. 

Now consider a similar coproduct 

Z= ilA(F), 

indexed by all commutative diagrams in C of the form 

G ; 
D 

y~ 
F G' 

~;Y 
E 

~ 
G" 

together with triples r, r', r" as before. Since A is filtering, the evi
dent map Z -+ Y Xx Y [which "forgets" the F, k, and £ in the index 
of a summand A(F) and sends this summand A(F) to the summand 
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A(E) XA(C') A(D) of Y Xx Y via (C, k)] is an epimorphism. Indeed, each 
summand V = A(E) XA(C') A(D) of Z gives rise to a diagram in the 
category of generalized elements AV, via the projections to A(D) and 
A(E): 

(V, 7rl: V -+ A(E)) f-- (V,w· 7rl = v· 7r2: V -+ A(G')) 

-+ (V, 7r2: V -+ A(D)). 

By Lemma 8.4, there is an epimorphic family {dj : Vi -+ V} so that for 
each j there is a cone over the induced diagram in A Vj. This means in 
this case a commutative square, 

T 
I 

l· : 
J I 

v 

t 
E---.... G' 

w 

and a map f: Vi -+ A(Fj) so that Cj . f = 7rl 0 dj and kj 0 f = 7r2 0 dj . 
Since the Vi form an epimorphic family to V, the family of all maps 
(Cj , kj ): A(Fj) -+ A(E) XA(C') A(D) must also be epimorphic. This 
shows that each summand of Y X x Y is covered by summands of Z, so 
that Z -+ Y x x Y must be epi. 

Now consider the map Z -+ Y sending a Z-summand A(F) with 
index as in (6) to the Y-summand A(F) with index G f-- F -+ G", by 
the identity. This map Z -+ Y yields a commutative square 

Z -------... ·Y 

I 
Y xxY -----... X x X. 

(/-t7r1o V7r2) 

This shows that in (7) the image of the lower map is contained in the 
image I of the right-hand map. This proves that the latter image I is a 
transitive relation on X, as claimed. 
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Since, by definition of an image, the map Y -> I is epi, the co equalizer 
R 0c A of Y :::::t X is also the co equalizer of this equivalence relation 
I :::::t X. But in a topos, every equivalence relation is the kernel pair of 
its coequalizer (cf. Appendix, Lemma 4.5, and the lines preceding it). 
Thus the map (It, v) from Y to the kernel pair of <p is epi: 

Y 

~ 
I ·X 

<p 
p.b. 

X----+
<p 

R0c A . 

Now the lemma is easily proved: For r, r' and a, a' as in the lemma, 

the two maps U ~ A( C) ~ X and U ~ A( C') ~ X, given by the 
coproduct inclusions A( C) ~ X for rand A( C') ~ X for r', yield 
identical maps r Q9 a = r' Q9 a': U -> R Q9c A when composed with 
<p, hence define a map U -> I into the kernel pair of <p. Now use the 
epi Y --* I, and construct for each coproduct inclusion A(D) ~ Y of 
the summand indexed by C' :.... D ~ C, r and r' as in (5), a pullback 
diagram 

A(D) 
i 

Uu,v,r,r' 

~ Y 
i 

~ U' 

(u,v) 

p.b. 

I 

i 
U 

(8) 

Since Y is the coproduct of the A(D) and since pulling back in a 
topos preserves epis and coproducts, these maps Uu v r r' -> U form the 
required epimorphic family. Indeed, for each such i~de~ i = (u,v,r,r'), 
the properties stated in the lemma hold for bi the left-hand map in (8), 
for Ui = u and Vi = v. This, finally, completes the proof of the lemma. 

Using Lemma A, it is fairly straightforward to show that the functor 

- Q9c A: SetsCOP -> t: preserves pullbacks. Indeed, consider a pullback 
of presheaves P, Q, and R, 
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'ljJ' 

P----.· R, r.p 

and the associated canonical map 

a: (P xR Q) Q9c A -t (P Q9c A) x(R0C A ) (Q Q9c A). (9) 

We first show that a is epi, then that it is mono. 

Lemma B. The map a of (9) is an epimorphism. 
Proof: Consider a generalized element of the pullback on the right 

of (9); i.e., an arbitrary map 

f: U ---+ (P Q9c A) X(R0cA) (Q Q9c A). 

Write f = (g, hI where g: U ---+ P Q9c A and h: U -t Q Q9c A are such 
that (r.p Q9 A) 0 9 = ('ljJ Q9 A) 0 h. By pulling back along 9 the epimorphic 
family {p Q9 - : A(C) -t P Q9c A}, given by all C E C and P E P(C), 
we find an epimorphic family {ei: Ui -t U} and for each i an object 
Ci, an element Pi E P(Ci), and an arrow ai: Ui -t A(Ci ), such that 
9 0 ei = Pi Q9 ai. For the map h we find a similar epimorphic family. By 
taking a common refinement of these two families, we may assume that 
the first family {ei: Ui -t U} is such that, in addition, for each i there is 
an object Di, an element qi E Q(Ci) and an arrow bi: Ui -t A(Di) such 
that h 0 ei = qi Q9 bi . By applying the presheaf maps r.p and 'ljJ to these 
elements Pi and qi, one finds, for each index i, that 

r.p(Pd Q9 ai (r.p Q9 A) 0 (pi Q9 ai) 

(r.p Q9 A) 0 go ei 

= ('ljJQ9A)oh o ei 

= ('ljJ Q9 A) 0 (qi Q9 bi ) 

'ljJ(qi) Q9 bi· 
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But now, for each index i, we can apply Lemma A to find an epimorphic 
family 

U' . v' . 
together with arrows Ci ~ Bi,j ~ Di in C and arrows Ci,j : Ui,j ----. 
A( Bi,j) in £, so that 

But then /~ .. U· . q' . V· .) E (P XR Q)(B- .) and the diagram \1-'1, 1,,)'?' 'l"j 'L,J , 

u· . ',J -----..... U 
(p . ·U" q' ·v' ,) Q9C" I 1. 'L,)' 't 2,) 1,,) .. II 

(P XR Q) Q9c A 
a 

---'-... (P Q9c A) X(R®C A) (Q Q9c A) 

commutes. Indeed, for the two projections 7fl and 7f2 from the lower 
right pullback, 

7fl 0 a 0 (/ ~, • u' , q . . v' .) 129 c' ,) \1"1, 1,,)' 'l. t,] Z,) 

and similarly 

(p ' . u' ,) 129 c' , t 2,) 2,) 

P, 129 (u' , . C' ,) 
1, 1,,) 1,,) 

Pi 129 (ai 0 di,j) 

(pi 129 ai) 0 di,j 

go ei 0 di,j , 

Thus, the arbitrary arrow I factors through a on an epimorphic family 
{Ui,j -+ U}. It follows that a must be epi. 

Lemma C. The map a in (9) is a monomorphism. 
Proof: Since (P Q9c A) X(R®C A) (Q Q9c A) is a subobject of the 

product, it suffices to show that the composition of a with the subobject 
inclusion, i.e., the map 

('IjJ' 129 A, <p' 129 A) : (P XR Q) Q9c A -+ (P Q9c A) x (Q Q9c A) (10) 

is monic. To this end, consider two arrows 

1,1': U -+ (P XR Q) Q9c A 
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that have identical composites with the maps in (10); i.e., 

(1jJ' 0 A) 0 f = (1jJ' 0 A) 0 1', (<p' 0 A) 0 f = (<p' 0 A) 0 1'. (11) 

As in the proof of Lemma B, we can find an epimorphic family {ei: 
Ui --+ U} over which f and f' are represented by tensor products, in the 
sense that for each i, there are objects Ci E C, arrows ai: Ui --+ A(Ci ), 
and elements (Pi, qi) E (P X R Q) ( Ci) so that f 0 ei = (Pi, qi) 0 ai; and 
similarly there are C:, a~: Ui --+ A(Cn and (P~, qD E (P XR Q)(Cn so 
that I' 0 ei = (P~, q:) 0 a~. 

By assumption (11), one finds 

1jJ' ( (Pi, qi) ) 0 ai 

(1jJ' 0 A) 0 (Pi, qi) 0 ai) 

(1jJ' 0 A) 0 f 0 ei 

(1jJ' 0 A) 0 I' 0 ei 

1jJ' ( (P~, qD) 0 a~ 

(by(l1)) 

and similarly qi 0 ai = q: 0 a~. Thus, for each i, by applying Lemma A 
twice one obtains an epimorphic family 

and for each j arrows ai,j: Ui,j --+ A(Bi,j) in £ and arrows Vi,j: Bi,j --+ Ci 

and v:,j: Bi,j --+ C: in C, so that for each index j, 

and 

But then 

f oe· 0 d· . 
1, 1-,3 ((Pi, qi) 0 ai) 0 di,j 

(Pi, qi) 0 (ai 0 di,j) 

(Pi, qi) 0 Vi,j . ai,j 

(Pi . Vi,j, qi . Vi,j) 0 ai,j 

(p~ . v:,j' q: . v:,j) 0 ai,j 

(P~, q:) 0 v:,j . ai,j 

(P~, qD 0 a~ 0 di,j 

f' 0 ei 0 di,j. 
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Since the family of all composites ei 0 di,j: Ui,j -+ Ui -+ U is epimorphic, 
this shows that f = 1', and Lemma C is proved. 

This concludes the proof of Theorem 1. It yields a main result as 
follows. 

Corollary 2. Let £ be a topos witb small colimits, and let (C, J) 
be a site. Tbere is an equivalence of categories between tbe category 
Hom(£, Sh(C, J)) of geometric morpbisms £ -+ Sh(C, J) and tbe cate
gory of continuous filtering functors C -+ £. 

Proof: Immediate from Theorem 1 and Corollary 7.4 which gave 
this result for continuous fiat functors. 

Corollary 3. Let C be a small category witb finite limits, and let 
£ be a topos witb small colimits. A functor A: C -+ £ is flat iff A is left 
exact. 

Proof: This follows from Theorem 1 by the same proof as that of 
Corollary 6.4 (of Theorem 6.3). 

Corollary 4. Let (C, J) be a site wbere C bas finite limits, and let 
£ be a topos witb small colimits. Tbere is an equivalence of categories 
between geometric morpbisms £ -+ Sh(C, J) and continuous left exact 
functors C -+ £. 

10. Morphisms Between Sites 

In the previous sections, we have considered morphisms from a topos 
£ into a Grothendieck topos Sh(C, J) of sheaves on a site (C, J): they 
were described in terms of continuous filtering functors C -+ £. If £ is 
itself a Grothendieck topos, say £ = SheD, K) for a site (D, K), then 
it suffices to consider objects U, Ui from D in using the conditions (i')~ 
(iii') of Lemma 8.3 for filtering functors. In this way, one obtains the 
following description of such geometric morphisms. (Observe that the 
two objects C, D of C in §8 here are written as C, C'.) 

Theorem 1. Let (D, K) be a site. Tbere is an equivalence between 
geometric morpbisms SheD, K) -+ Sh(C, J) , and functors A: C -+ 

SheD, K) wbicb bave tbe following four properties (tbe first tbree express 
tbe fact tbat A is filtering, tbe last one tbat A is continuous): 

(i) For any object D ofD, D is covered by tbe set of arrows described 
as {g: D' -+ D I for some C E c, A(C)(D') ¥ 0}. 

(ii) Consider objects C, C' of C and an object D of D. For eacb 
pair of elements a E A(C)(D) and a' E A(C')(D) tbe object Dis 
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covered by the set of those arrows g: D' -+ D which ''join'' a to 
a' in the sense that there are u, u', and b with 

c ~ B _--=u=--' ------+) Of and bE A(B)(D') 

such that 

A(u)b = a· 9 and A(u')(b) = a' . g. 

(iii) Consider arrows u, v: C -+ C' in C and an object D of D. For 
each element a E A(C)(D) with A(u)a = A(v)a, the object Dis 
covered by the set of those arrows g: D' -+ D for which there are 
wand b with 

w: B -+ C in C and bE A(B)(D') 

such that 

uw = vw and A(w)(b) = ago 

(iv) Given a cover S E J(C), an object D E D and an element a E 
A(C)(D), the object D is covered by the set of those arrows 
g: D' -+ D for which there are u and b with 

u: C' -+ C in Sand bE A(C')D' 

such that 
A(u)b = ago 

In condition (iii), observe that the last displayed equations insure 
that A(u)ag = A(v)ag. 

Proof: Again consider epimorphic families. Note that a family 
{ ei: Ui -+ U} of morphisms of sheaves Ui , U on (D, K) is an epi
morphic family (i.e., the induced map 11 Ui -+ U is an epimorphism of 
sheaves) iff, for every object D in D and every a E U(D), the object D 
is covered by the set of those arrows g: D' -+ D for which there are an 
index i and b with b E Ui(D') such that 

Indeed, this follows from Corollary III.7.6 in exactly the same way as 
Corollary III.7.7 there does. In particular, condition (iv) of the theorem 
now says exactly that for a covering sieve S of an object C in C, the 
family {A(u): A(C') -+ A(C) I u E S} of morphisms of sheaves on 
(D, K) is an epimorphic family. In other words, A satisfies (iv) iff A 
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is continuous. In a similar fashion, using the description of epimorphic 
families of sheaves just given, conditions (i)-(iii) of the theorem corre
spond exactly to the epimorphic family conditions (i)-(iii), respectively, 
of Definition 8.1 of a filtering functor to a topos £: for the special case 
where £: = Sh(D, K). 

We shall now consider several types of functors between sites, and 
the geometric morphisms these functors induce. 

Suppose (C, J) and (D, K) are two sites, and suppose C and Dare 
both closed under finite limits (given a Grothendieck topos, such a site 
always exists for this topos, see Giraud's theorem in the Appendix). 
Grothendieck & Co. call a functor ¢: C -+ D a morphism of sites if ¢ 
preserves finite limits as well as covers. Here ¢ preserves covers means 
that if S E J(C) is a covering sieve of C in C, then the sieve (¢(S)) 
generated by the set {¢( u) I u: C' -+ C is in S} is a covering sieve of 
¢(C) in D. 

Theorem 2. For categories C and D with finite limits, any 
such morphism of sites ¢: C -+ D induces a geometric morphism 
f: Sh(D, K) -+ Sh(C, J); the direct image functor f*: Sh(D, K) -+ 

Sh(C, J) sends a sheaf F on D to the composition f*(F) = F 0 ¢, and 
the inverse image 1*: Sh(C, J) -+ Sh(D, K) sends a sheaf G on C to 
the tensor product G Q9c A.p, where 

A.p = a 0 y 0 ¢: C ~ D Y ) SetsDOP _--!a~-+) Sh(D, K). 

Proof: The Yoneda embedding y: D -+ SetsDOP and the associated 
sheaf functor a are both left exact while ¢ is assumed to be left exact. 
Therefore, the composite functor A.p: C -+ Sh(D, K) defined above is 
left exact. By Corollary 9.3, A.p is flat. Moreover, by assumption, ¢ 
sends covers in C to covers in D, while aoy: D -+ Sh(D, K) then sends 
these to epimorphic families (cf. Corollary 111.7.7.). Hence, the functor 
A.p: C -+ Sh(D, K) is also continuous. By Corollary 7.4, it thus induces 
a geometric morphism f = T(A.p) with 1* = - Q9c A.p, as asserted in 
the theorem, and with f* = Homsh(D,K)(A.p, -). Thus, given a sheaf 
F on the site (D, K) and an object D in D one has 

f*(F)(D) = Homsh(D,K)(A.p(D),F) 

= HomSh(D,K) (ay¢(D), F) ~ (F 0 ¢)(D), 

the latter because the sheafification a is left adjoint to the inclusion 
DOP 

Sh(D, K) >--+ Sets and by the Yoneda lemma. Thus, up to a natural 
isomorphism, f* = F 0 ¢, as stated in the theorem. 

The example of a geometric morphism f: Sh(X) -+ Sh(Y) induced 
by a continuous map of topological spaces f: X -+ Y [Theorem 11.9.2 
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and §1(1)] can be seen as an instance of this Theorem 2. Indeed, the 
inverse image map f- 1 : O(Y) --+ O(X) preserves finite meets, which are 
the finite limits in the lattice O(Y) [resp. O(X)], and it preserves covers 
because these are just unions of open sets. We will encounter several 
other applications of Theorem 2 in the following chapters. 

If the sites (C, J) and (D, K) do not have finite limits, it can be 
quite cumbersome to check for a given functor cp: C --+ D whether the 
composite Aq, = aycp: C --+ Sh(D, K) is fiat. In principle, one should 
verify the conditions of Theorem 1, but in some cases one can simply 
apply the following lemma. Its statement requires the following defini
tions: A functor 7r: D --+ C is said to have the covering lifting property 
(clp) iffor any object D of D and any J-cover S of 7r(D), there exists a 
K-cover R of D such that 7r(R) = {7r(u) I U E R} <;:;; S. In other words, 
every cover of the image of an object D in D is refined by the image of a 
cover of D itself. (One also says that the functor 7r is "cocontinuous".) 

Lemma 3. Let (C, J) and (D, K) be sites, and suppose we are given 
two functors 7r: D --+ C and cp: C --+ D with 7r left adjoint to cp. Then 

(i) y 0 cp: C --+ D --+ SetsDOP is fIat [and a fortiori so is aycp 
Aq,: C --+ Sh(D, K)]; 

(ii) cp preserves covers iff 7r has the covering lifting property. 

Proof: (i) Notice first that the associated sheaffunctor a commutes 
with tensor products; explicitly, for any functor A: C --+ SetsDOP and 
any sheaf Ron (C, J), 

a(R0cA) ~ R0c(aA), (1) 

where the tensor product R 0c A on the left is taken in SetsDOP
, 

while the one on the right is in Sh(D, K). Indeed, this follows since 
the tensor product is defined as a coequalizer, and a-being a left 
adjoint-preserves coequalizers. In particular, applying this to the func
tor yocp: C --+ SetsDOP

, we find that if yocp is fiat then so is Aq, = aoyocp, 
by (1) and the left exactness of a. This explains the "a fortion"' in (i) 
of the lemma. 

Also, for a presheaf Ron C and an object D of D, there are natural 
isomorphisms 

(R0c(yocp))(D) ~ R0cD(D,cp-) 

~ R0c D(7rD, - ) 

~ R(7rD). 

(The first isomorphism holds because colimits in SetsDOP are computed 
pointwise, the second by the given adjunction 7r --1 cp, the third since 
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representables are units for the tensor product.) Thus, there is a natural 
isomorphism 

* cop n op - @c(y¢) ~ 7r : Sets -+ Sets , (2) 

where, as in §2, we write 7r* for the functor given by composition with 
7r: D -+ C. But clearly 7r* is left exact; so y¢ is flat. 

(ii) (=}) Assume that ¢ preserves covers. Let D be an object of 
D and let S E J(7rD) be a covering sieve in C. Consider the unit 
TID: D -+ ¢7r(D) of the adjunction 7r -1 ¢. By the assumption On ¢, 
the sieve (¢(S)) generated by {¢(u) I u E S} covers ¢7r(D), so by the 
stability axiom for Grothendieck topologies its pullback [see (3) below] 

TI~(¢(S)) = {g: D' -+ D 13u: C -+ 7r(D) in S such that 

TID 0 9 factors through ¢( u) } 

covers D. But if an arrow g: D' -+ D has the property that TID 0 9 
factors through ¢(u), then by transposing along the adjunction as in (3) 
below 7r(g) must factor through U; so 7r(g) E S: 

D' -------> ¢(C) 7r(D') --------, C 

91 11>( u) 17r (9 ) 1u (3) 

D 
7)D 

) ¢7r(D), 7r(D) = 7r(D). 

Thus, 7r(TI~(¢(S))) ~ S; i.e., TI~(¢(S)) is a cover of D whose 7r-image 
refines the given cover S of 7r(D). This shows that 7r has the clp. 

(<¢=) Assume that 7r has the clp, and let the sieve R E J( C) be a 
cover of C in C. Pulling back along the counit E: 7r¢( C) -+ C of the 
adjunction, we find that E# (R) is a cover of 7r¢( C). Hence, since 7r has 
the clp, there must exist a cover S of ¢(C) in D such that 7r(S) ~ E#(R). 
By transposing along the adjunction [as in (3)], one readily finds that 
7r(S) ~ E# R yields S ~ (¢(R)). Thus, (¢(R)) is a cover. This shows 
that ¢ preserves covers, and completes the proof of the lemma. 

By the results of §7, this lemma implies that an adjoint pair 
7r: D ~ C: ¢ satisfying the equivalent conditions of Lemma 3(ii) 
will induce a geometric morphism f: Sh(D, K) -+ Sh(C, J); indeed 
A1> = a 0 y 0 q;: C -+ Sh(D, K) is flat by Lemma 3(i), and continuous 
since ¢ preserves covers (as in the first part of the proof of Theorem 2). 
For future reference, we describe the inverse and direct image functors 
explicitly, as in the following two theorems, which we will apply in this 
form in Chapter IX. 
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Theorem 4. Let (C, J) and (D, K) be sites, and let 71": D -+ C 
and ¢: C -+ D be functors such that 71" is left adjoint to ¢. If 71" has 
the clp, or equivalently if ¢ preserves covers, then there is an induced 
geometric morphism I: Sh(D,K) -+ Sh(C,J), with inverse and direct 
image functors described, for sheaves F on (C, J) and G on (D, K), by 

f*(F) = a(F 0 71"), 

Proof: As before, consider the functor A.p = ay¢: C -+ Sh(D, K). 
As stated just above the theorem, A.p is flat and continuous, and hence 
it induces a geometric morphism I: Sh(D, K) -+ Sh( C, J) with f* = 
- ®c A.p and 1* = Hom(A.p, -). Thus, for a sheaf F on (C, J), 

f*(F) = F ®c A.p 

~ F®c a(y¢) 

~ a(F ®c(y¢)) 

~ a(7I"*(F)) 

~ a(F 0 71") 

[by (1) above] 

[by (2) above] 

(by definition of 71"*). 

Also, for a sheaf G on (D, K), since the associated sheaf functor a is left 
adjoint to the inclusion of sheaves in presheaves, we obtain the following 
isomorphism in Sh(C, J): 

where HomD denotes morphisms of presheaves on D. So for an object 
C in C, by the Yoneda lemma, 

I*(G)(C) = Homn(D( -, ¢C), G) ~ G(¢C). 

Thus I*(G) ~ Go ¢, as stated in the theorem. 

For completeness, we next observe that just the functor 71": D -+ C 
alone suffices to give a geometric morphism of sheaves, provided 71" has 
the covering lifting property. (But we have no simple description of the 
direct image functor in this case.) 

Theorem 5. Let 71": D -+ C be a functor having the covering lift
ing property. Then 71" induces a flat and continuous functor A7r: C -+ 

Sh(D, K), defined by A7r(C) = a 0 C(7I" -, C), and hence a geometric 
morphism I: Sh(D, K) -+ Sh(C, J) with inverse image f*(F) ~ a(Fo7l") 
for any sheaf F on C (as in Theorem 4). 
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Proof: For the continuity of A 7r , consider an object D E D, a cover 
8 of C, and any arrow g: 7r D ---> C in C. Then by properties of covers 
g#(8) is a cover of 7r(D) in C. Then since 7r has the clp, there is a cover 
R of D such that each v: D' ---> D in R fits into a commutative square 

7rD' -------> C' 

7r(V)l lu U E 8, v E R, 

7r D --g--+I C, 

for some u E 8. This result means that the following evident map III of 
a coproduct of presheaves on D 

Ill: u C(7r -, C') ---> C(7r -, C) 
(u: C'->C)ES 

is "locally surjective" in the sense described in Corollaries 5 and 6 of 
§III.7. Indeed, the diagram just before states that for each element 
in the codomain on the right (i.e., for each object D in D and each 
g: 7r D ---> C) there is a cover R of the object D such that g7r( r) is in 
the image of III for every r in the cover R. Then Corollary III.7.6 states 
that alll is an epimorphism of sheaves. By definition of continuity and 
of A7r = a 0 C (7r - , - ), this means that A7r is continuous. Moreover, as 
before [ef. (1)], we have for a sheaf F on C 

F ®c A7r = F ®c(aC(7r -, - )) 

= a( F ®c C (7r - , - )), 

where the last tensor product is taken in the presheaf category SetsDoP
• 

But for any object D in D, (F®c C(7r -, - ))(D) = F®c C(7rD, -) ~ 
F(7rD). So the functor - ®CA7r: Sh(C,J) ---> Sh(D,K) is isomorphic 

cop 1r* nop a 
to the composite a07r*: Sh(C, J) ~ Sets ------> Sets --+ Sh(D, K). 
Since a and 7r* are both left exact, this shows that A7r is flat, and that 
the inverse image 1* = - ®c A7r of the resulting geometric morphism 
indeed sends a sheaf F on C to a(F 0 7r), up to natural isomorphism. 

As a typical example, let T be a small category of topological spaces, 
closed under finite limits and open subspaces, and let X be a fixed object 
of T. There is a natural Grothendieck topology on T, whose basic covers 
are of the form 

{Ui '----* T} , 

where {Ud is a cover of the space T by open subspaces of T, and T is 
any object from T (see §III.2, Example b). The same construction gives 
a Grothendieck topology on the slice category T / X. 
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Now consider the inclusion functor 

i: O(X) <----+ TjX; (4) 

i sends an open set U r;: X to the inclusion map U >---t X, an object of 
TjX. Now O(X), with the usual open cover topology, is a site (the 
standard one) for the topos Sh(X) of sheaves on X. Clearly, the above 
functor i of sites is left exact, preserves covers, and has the covering 
lifting property. Consequently, according to Theorems 2 and 5, i induces 
two geometric morphisms in opposite directions 

Sh(X) ~ Sh(TjX). 
f 

(5) 

Here, according to the construction of f in Theorem 2, f* sends a sheaf 
F on TjX into the sheaf f*(F) = Foi: O(X)OP --+ Sets on X, while 
according to Theorem 5, j* sends F to j*(F) = aoFoi. But Foi = f*(F) 
is already a sheaf, so j* (F) = F 0 i. Thus, these are two successive 
adjunctions 

(6) 

It also follows that for the first adjunction the counit (j f) * ~ f* j* = 
£ 

f*f* ----> 1 gives an arrow jf --+ 1 in Hom(Sh(TjX), Sh(TjX)), while 
the counit (fj)* = f*j* = j*j* --+ 1 of the second adjunction gives an 
arrow 1 --+ fj in Hom(Sh(X), Sh(X») (the latter arrow 1 --+ fj is in fact 
an isomorphism-Exercise 11). 

These arrows j f --+ 1 and 1 --+ f j between geometric morphisms may 
be thought of as hamatapies. In this sense we have shown that Sh(X) 
and Sh(T j X) are "homotopy equivalent" topoi. (It follows immediately 
that they indeed have the same homotopy and cohomology groups, al
though we will not go into this here.) Notice also that Sh(T j X) is 
equivalent to the slice topos Sh(T)jy(X), ~here y(X) E Sh(T) is the 
representable sheaf corresponding to X (see Chapter III, Exercise 10). 
In the French school, one calls Sh(X) the petit (small) topos associated 
with the space X, and Sh(T) jy(X) the gras (large) topos associated 
with the same space. Thus the small and large topoi associated with 
X are homotopy equivalent. An analogous fact holds for the small and 
large topoi associated with a scheme X (for the etale topology, or the 
Zariski topology). 

Exercises 

1. For any object C in a category C let eve: SetsCOP --+ Sets be 
the functor which evaluates each presheaf P at C. Show that 
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evc has a left adjoint, sending each set X to the presheaf 
X X Hom( -, C) and a right adjoint, X t-4 XHom(C,-). Conclude 
that eVe is the inverse image functor of an (essential) geometric 
morphism Sets -+ Sets cop. 

2. For groups G and H, let Hom(G, H) be the category of homo
morphisms from G to H, where an arrow from the homomor
phism ¢: G -+ H to 'IjJ: G -+ H is an element h E H for which 
¢ = h-1'IjJh [i.e., for all 9 E G, ¢(g) = h'IjJ(g)h-1]. Thus, if G 
and H are each viewed as one-object categories, Hom(G, H) is 
exactly the category of functors from G to H, with arrows the 
natural transformations of functors. 

(a) Show that the construction (3.10) of a geometric morphism 
BG -+ BH from a homomorphism G -+ H of groups 
extends to give a functor Hom( G, H)OP -+ Hom(BG, BH) 
which is full and faithful. 

(b) Show that any geometric morphism BG -+ BH is iso
morphic to one induced in the above way from a group 
homomorphism G -+ H. Conclude that the functor 
Hom(G, H)OP -+ Hom(BG, BH) of part (a) is an equiv
alence of categories. 

(c) Conclude that every geometric morphism BG -+ BH is 
essential. 

3. ( a) For a functor A: C -+ Sets show that - 0c A: 
Sets cop -+Sets is the left Kan extension of A along y-see 
§5(6). (For the definition of Kan extension, see [CWM, 
p. 236].) 

(b) (Background) Regard a ring R with unit element as an 
(additive) category with one object and the elements of R 
as morphisms, while Ab is the category of abelian groups 
and ModR is the (additive) category of right R-modules. 
Then regarding R as a right R-module defines a func
tor z: R -+ ModR analogous to the Yoneda functor y. 
Observe that a left R-module L is an additive functor 
R -+ Ab and prove that - 0 R L: ModR -+ Ab is the 
left Kan extension of L along z. 

4. For a functor ¢: C -+ D between small categories, let 
,/,: SetsCOP -+ SetsDOP be the induced essential geometric mor-
'/-' cop 

Phism as in Theorem 2.2. Show that the functor ¢!: Sets -+ 
, I)0P 

SetsDOP is the left Kan extension of y 0 ¢: C -+ D >--> Sets 
DOP 

along y: C -+ Sets . 



418 VII. Geometric Morphisms 

Cop 

5. For ¢: C ....... D show that the geometric morphism ¢: Sets ....... 
SetsDOP is a surjection if every object in D is a retract of an 
object in C. (The converse is also true, but is harder to prove.) 

6. (A generalization to £ from Sets) Show that a functor ¢: C ....... 
D between internal categories in a topos £ induces a geometric 
morphism £c ....... £D between the categories of C- and D-objects 
(as described in Theorem V.7.1). 

7. Let G be a topological group while Gli is the same group with the 
discrete topology and p: BGli ....... BG is the geometric morphism 
of §3(14). 

(a) Show that the following conditions are equivalent: (i) p* 
preserves all small products; (ii) the intersection of any 
family of open subgroups in G is again open; (iii) there 
exists a nontrivial normal open subgroup U <;;; G such that 
the quotient homomorphism G ....... G jU induces an equiv
alence BG ~ B(GjU). 

(b) Use part (a) to conclude that for a continuous homomor
phism H ....... G between topological groups the induced 
geometric morphism BH ....... BG need not be essential. 

8. Let f: :F ....... £ be a geometric morphism with f = poi: :F ....... 
£j >---> £ its surjection-embedding factorization. Show that if f is 
essential, then so is p. 

9. For a complete Boolean algebra B, show that points of the topos 
of sheaves on B [ef. §III.2, Example (d)] are in bijective corre
spondence with atoms of B. Use this result to give an example 
of a nontrivial topos without points. 

10. Let N be the set of natural numbers with the usual ordering, 
and consider the topos SetsN of "sets through time" (§I.l). Ac
cording to Exercise 1, every natural number n gives a point 
Pn: Sets ....... SetsN where Pn * = evaluation at n E N. Show 
that SetsN also has a "point at infinity" and that the category 
of points of SetsN is (equivalent to) the ordered set N U { 00 }. 

11. For a topological space X, show that the small topos Sh(X) is a 
retract of the big one Sh(TjX), as asserted in the text (see §10). 

12. A non principal ultrafilter U on a set I can be viewed as a filter of 
subobjects of 1 in the topos SetsI . Show that there is no geomet
ric morphism from the filter-quotient SetsI jU (as constructed in 
Chapter V) into Sets. (Hint: Show that in SetsI jU the coprod
uct LSES 1 of a family of subobjects of 1 does not exist for all 
sets S.) 
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13. (a) For elementary topoi £ and F, show that the product cat-
egory £ x F is again a topos. [Objects of £ x F are pairs 
(E, F) where E is an object of £ and F one of F, and 
similarly for arrows of £ x F.] 

(b) For any other topos 9, show that there is an equivalence 
of categories 

Hom(£,9) x Hom(F, 9) ~Hom(£ x F,9) 

natural in all three arguments. (In other words, for topoi 
the product as categories yields the coproduct in the 2-
category of topoi and geometric morphisms.) 

14. (a) Similarly to Exercise 13(b) above, show that for small cat-
egories C and D and topoi £, there is a natural equivalence 
of categories 

Flat(C, £) x Flat(D, £) ~ Flat(C x D, £) 

(the equivalence sends a pair of functors A: C --> £ and 
B: D --> £ to the functor C x D --> £ given by (G, D) f--+ 

A(G) x B(D)). 
(b) Conclude that the presheaftopos Sets(CxD)OP is the prod-

cop DOP 
uct of the presheaf topoi Sets and Sets , in the sense 
that for any cocomplete topos £, there is a natural equiv
alence of categories 

15. (a) Given two Grothendieck topologies Jon C and J' on D, 
let J x J' be the smallest Grothendieck topology on the 
product category C x D such that for any G E C and D E 

D, and for any covering sieves 8 E J(G) and 8' E J'(D), 
the sieve 

{ (f, g) I f E 8 and g E 8' } 

is a (J x J')-covering sieve of (G, D). Show that the equiv
alence of Exercise 14(a) restricts to an equivalence of cat
egories 

ConFlat (C, £) x ConFlat (D, £) ~ ConFlat (C x D, £). 
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(b) Conclude that 

Hom(£, Sh(C, J)) x Hom(£, Sh(D, J')) ~ Hom(£, Sh(C x D, (J X J')). 

(Thus the 2-category of Grothendieck topoi has products.) 
16. Reorganize the material of §4 as a proof of the following. Any 

geometric morphism f: F ----t £ determines a comonad G on F, 
a topology j on £, and an equivalence of categories Fe ~ Shj £. 
Moreover, there is a surjection F ----t Fe and an embedding 
Shj £ ----t £ which, composed with the equivalence, yield the given 

f· 



VIII 
Classifying Topoi 

The idea of "classifying" geometric or algebraic structures or spaces 
by maps into a given space is familiar from topology. For example, 
for any abelian group 7f and any n, there is a classifying space K (7f, n) 
for cohomology: for each space X, cohomology classes a E Hn (X, 7f) 
correspond to ("are classified by") maps X ~ K (7f, n). After reviewing 
some of these topological examples in more detail, we introduce a similar 
notion of a classifying topos. Again, the idea is to classify structures 
over topoi by maps into one suitably constructed topos. For example, 
a topos R is said to be a classifying topos for commutative rings when 
for any topos £ there is a natural equivalence between ring objects in 
£ and geometric morphisms £ ~ R. An application of the results on 
continuous filtering functors from the previous chapter will construct 
such a classifying topos R; it will turn out to be the topos of set-valued 
functors on the familiar category of finitely presented commutative rings. 
This will follow from the fact that this category is "freely generated" by 
the polynomial ring Z[X], in a suitable sense to be formulated below 
(see Proposition 5.1). 

Instead of developing the general theory of classifying topoi, the main 
purpose of this chapter is to discuss a number of specific examples. The 
case of a classifying topos for principal G-bundles ("torsors") is closely 
related to the topological examples and will be discussed first in §2. 
After having formally introduced the concept of a classifying topos (§3), 
we will present the especially simple classifying topos for an object, and 
then that for commutative rings. In §6, we will prove that the Zariski 
topos is a classifying topos for local rings. In §7, we will describe the 
category of simplicial sets while §8 will show that it is a classifying topos. 

The discussion of classifying topoi will be continued in Chapter X, 
where we will prove a general existence theorem, giving a construction 
of a classifying topos for any type of structure which can be suitably 
axiomatized (essentially, the use of negation and universal quantification 
in the axioms is restricted). 

Some indications of the many uses of classifying topoi are given in 
the exercises here and in the Epilogue. 

421 
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1. Classifying Spaces in Topology 

The study of a classifying topos was motivated by examples from 
topology-the classifying spaces for cohomology, and for principal bun
dles for topological groups. The purpose of this section is to describe 
briefly some of these motivating examples from topology. 

For a topological space X the n-dimensional (singular) cohomology 
group Hn(x, 71') with coefficients in the abelian group 71' is defined for 
any natural number n. It is a covariant functor of 71' and a contravariant 
functor of X. Moreover, two continuous maps f, g: X ---+ Y which are 
homotopic (f C:::' g) induce the same group homomorphism in cohomology 

There is, in particular, a space K(7I', n) with cohomology 

In f-> 1: 71' ---+ 71', 
(1) 

with a cohomology class In in dimension n corresponding under (1) to 
the identity group homomorphism 71' ---+ 71'. It has the following prop
erty: For any n-dimensional cohomology class en E Hn(x,7I') in any 
paracompact space X there is a continuous map f: X ---+ K (71', n) with 
J*,n = en, and this map f is unique up to homotopy. When [X, YJ, as 
usual, denotes the set of homotopy classes of (continuous) maps X ---+ Y 
this means that there is a bijection 

en f-> f: X ---+ K(7I', n), 

(2) 

(3) 

In other words, every n-dimensional cohomology class in any space X 
arises by "pulling back" the "universal" cohomology class In along a 
map X ---+ K(7I',n), unique up to homotopy. The bijection (2) is natural 
in X and in 71', and this bijection determines the universal class as the 
preimage of the identity map of K(7I', n). 

The space K ( 71', n) is called the classifying space for cohomology or 
the Eilenberg-Mac Lane space of degree n and coefficients 71'. It may be 
constructed as a CW-complex in which 71' in dimension n is the only 
nontrivial homotopy group. Alternatively, it is a simplicial set whose 
q-simplices, for each dimension q, are the elements of zn (~q, 71'): the 
n-dimensional co cycles on the q-dimensional simplex ~ q. For n = 1 and 
the group Z of integers, the space K(Z, 1) is the circle 8 1 . 

This classifying space may be used to construct cohomology oper
ations. Thus, if (3n+i E Hn+i(K(7I', n), 71') is any cohomology class of 
dimension n + i in the space K (71', n), then each n-dimensional class Cn 
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in a space X determines f as in (3) and hence f* (3n+i E H n+i (X, 7r). 
One thus obtains an "operation" of degree i, 

(4) 

natural in X. For example, when 7r = Z2, the resulting operations are 
those of the well-known Steenrod algebra modulo 2. 

Another example is given by the classifying space for G-bundles, for 
G a topological group. We start with the example of the Grassmann 
manifold Gd,n, where points are the d-dimensional linear subspaces of 
an n-dimensional (real) vector space, with the evident topology on the 
"points". (For example, GI,n is the manifold of lines through the origin 
in n-space, so is just the real projective space of dimension n - 1.) 
Consider also the Stiefel manifold Sd,n whose "points" are all ordered 
d-frames (VI, ... , Vd) of d orthonormal vectors in Rn. Since each such 
frame spans a d-dimensional subspace, this gives an evident projection 

(5) 

Moreover, two such frames (VI, ... ,Vd) and (WI, ... ,Wd) span the same 
subspace in R n iff there is an orthogonal transformation carrying the 
first frame into the second. In other words, the d-dimensional orthogo
nal group acts transitively and continuously on each fiber (each inverse 
image of a point) of the map p of (5). 

This projection (5) is an often studied example of a principal bundle 
over the Grassmannian Gd,n. 

For any topological group G, a principal G-bundle over the topolog
ical space X is a space E equipped with a continuous map 

p: E -7 X 

together with a continuous left action of G on E 

W G x E -7 E, p,(g,y)=g.y, (6) 

for g E G, y E E, which preserves the fibers [i.e., is a map over X in 
the sense that pp,(g, y) = py for all g E G and y E E]. Moreover, one 
requires that p: E -7 X be locally the projection from a product, in the 
sense that there exists a covering of X by a family U a of open sets and 
for each index a a homeomorphism (a so-called "local trivialization") 

(7) 

which is a map over Ua and which respects the G-action, in that 

PcPa(g, x) = x, (8) 
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for all 9 E G, hE G, and x E Ua . From this definition it follows that p 
must be a surjection and that the action of 9 on each fiber p-l(x) must 
be both free: 

p,(g,y) = y implies 9 = e (= the unit of G), (9) 

and transitive: 

For y, y' E p-l(X) there exists 9 in G with gy = y'. (10) 

Under these two conditions (9) and (10) one says that the action of G 
on each fiber is a principal action. 

A principal G-bundle may thus be pictured in terms of the covering 
{Ua } as a collection of products G X Ua , pasted together on the overlaps 
Ua n U{3, much as in the description of a smooth manifold in terms 
of charts from an atlas (Chapter II); as in that case the choice of a 
particular covering Ua is irrelevant. Detailed formulas for the piecing 
together of the products G x Uo: may be found in one of the standard 
texts on fiber bundles ([Steenrod], [Husemoller]). In particular, the 
real (or complex) Stiefel manifolds described above constitute such a 
bundle. The frame bundle of the tangent bundle for a smooth manifold is 
a principal bundle for the linear group. A regular covering map p: E ---> X 
of topological spaces, with E connected and X pathwise connected and 
locally simply connected in the large, provides another example. Recall 
that regularity means that the image under p of the fundamental group 
7rl (E) is a normal subgroup N of 7rl (X). A standard construction (using 
covering transformations) shows that the quotient group G = 7rl(X)/N 
acts on E and makes E a principal bundle for the group G. In particular, 
the universal covering map of such an X is a principal bundle for the 
group 7rl(X). 

If p: E ---> X and q: F ---> X are two principal G-bundles for the 
same group G over the same space X, a map p ---> q of bundles is a 
continuous map f: E ---> F of spaces over X which respects the action 
of G. In other words, for all y E E and 9 E G, 

qf(y) = p(y), f(p,(g, y)) = p,(g, fy)· (11) 

Such a map f is necessarily a homeomorphism. Thus it is reasonable to 
call two principal G-bundles over the same space X equivalent iff there 
is in this sense a map f from one bundle to the other. 

If u: Y ---> X is a continuous map into the base space X of a principal 
G-bundle p: E ----> X then the pullback 7r2, along u, as in 

(12) 

y ----::u,-----+) X, 
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is a principal bundle over Y. Specifically, given local trivializations 
CPa: G X Ua ~ p-1Ua of E for a cover Ua of X will yield local trivi
alizations u*CPa given for the covering u-1Ua of Y by 

u*CPa(g, y) = (CPa(g, uy), y) E 7r2 -lu-1Ua 

for g E G and y E u-1Ua. 
The remarkable fact now is that for each topological group G and 

for each space Y, satisfying some mild conditions, there is a universal 
principal G-bundle, written 

Pc: EG ---* BG, (13) 

such that every principal G-bundle over Y is equivalent to a pullback as 
in (12) of this universal bundle along some continuous map u: Y ---* BG. 
This map u is unique up to homotopy; in other words, the homotopy 
classes [Y, BG] correspond-naturally in the space Y -to equivalence 
classes of principal G-bundles over Y. If ke(Y) is the set of those equiv
alence classes, the result may be stated as a natural bijection 

Cy: ke(Y) ~ [Y, BG]. (14) 

The general construction of this universal G-bundle is given in the 
texts mentioned above. (See also [Milnor], [Segal].) We note that in 
case the space Y is a polyhedron of sufficiently small dimension, then the 
Od-bundle given by the Stiefel manifold in (5) is the universal bundle 
for the real orthogonal group Od. 

2. Torsors 
When the group G is discrete the corresponding classifying space 

for principal G-bundles, as discussed in §1, has a more topos-theoretic 
aspect. Indeed, given a principal G-bundle p: E ---* X, take an open 
cover {Ua } of the space X for which there are local trivializations 
CPa: G X Ua ~ p-1Ua for each index Q. Since the group G is discrete, 
this homeomorphism CPa can also be written as a homeomorphic map 

CPa: 2..:Ua _p-l(ua) 
gEe 

(1) 

from the disjoint sum 2: U a of G copies of U a. Thus, it follows that 
the map p: E ---* X is a covering map in the sense described in §II.4: 
a map p: E ---* X for which each point x E X is contained in an open 
neighborhood U for which the inverse image p-l (U) is homeomorphic 
(over U) to a disjoint sum of copies of U. Since a covering map is 
a fortiori etale, this proves one direction of 



426 VIII. Classifying Topoi 

Theorem 1. A principal G-bundle on X for a discrete group G 
is ( equivalent to) an etale map p: E ----> X with a continuous action 
G x E ----> E over X such that 

(i) For each point x E X the fiber Ex = p-1({X}) is nonemptYi 
(ii) The action map G x Ex ----> Ex on each fiber Ex is both free and 

transitive. 

Conversely, start with an etale map p with these two properties. 
Since it is etale, there is for each point e E E a neighborhood U of pe = x 
and an open neighborhood V of e such that p induces a homeomorphism 
V ----> U. But each action map g: E ----> E has a two-sided inverse given 
by the group inverse g-l. Therefore, gV is an open neighborhood of 
ge with p(gV) = U. Moreover p-1(U) = UggV since the action on all 
the fibers is transitive, while 9 V n h V = 0 whenever 9 -I- h because the 
action is free. Hence the homeomorphisms 9 V ~ U combine to yield 
a local trivialization G x U ~ p- 1U of p. Therefore, p is a principal 
G-bundle. 

This leads to the introduction of a definition of a "torsor". 

Definition 2. A G-torsor over the space X for a discrete group G 
is an etale map E ----> X with the properties (i) and (ii) above. 

Here etale maps to X may be replaced by sheaves. Each etale map 
p: E ----> X is equivalent, as in §II.6, to a sheaf F of sets on X; to 
wit, the sheaf F for which each set F(U) is the set of all cross-sections 
s: U ----> E of p over the open set U. Moreover, the action G x E ----> E 
when composed with cross-sections yields a left action of the group G 
on the sheaf F in the following sense: A collection 

J.Lu: G x F(U) -----+ F(U), U open in X, (2) 

ofleft actions of the group G on the sets F(U) which are natural in U, in 
that each inclusion p: V ----> U of open sets gives a commutative diagram 

G x F (U) ----.:!L-=u----+l F (U) 

GxF(p) 1 IF(p) (3) 

G x F(V) !LV 1 F(V) 

of maps of sets. Now each such action of the discrete group G on the 
sheaf F induces a corresponding (left) action J.Lx of G on each stalk Fx 
of the sheaf. Explicitly, the stalk Fx at a point x is the colimit of the 
sets F(U) where U ranges over the open neighborhoods of x in X, so 
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that the natural action maps /-Lu of (3) induce maps /-Lx: G x Fx --t Fx 
on each colimit 

/lx: G x lim F(U) --+ lim F(U) = Fx. 
---+ ---+ 
xEU xEU 

(4) 

rhus, the definition of a torsor may be restated in terms of sheaves as 
follows. 

Corollary 3. A G-torsor over a space X is a sheaf F of sets on X 
together with a natural (left) action ofG on F, as in (2), such that 

(i) the stalk Fx at each point x E X is nonempty; 
(ii) each induced action /-Lx of (4) is free and transitive on Fx. 

The action map (2) transposed gives a map G --t F(U)F(U) of sets 
which sends each g E G to a map eu : F(U) --t F(U); by the natu
rality condition (3) these maps eu constitute a natural transformation 
e: F --t F of functors. Since Hom( F, F) is the set of all such natural 
transformations the maps /-Lu together give a function 

Ji: G ---+ Hom(F, F), (5) 

as an action of G this is a morphism of monoids. This means that the 
two diagrams 

1 id ) Hom(F,F) GxG /ix/i ) Hom(F, F) x Hom(F, F) 

el/ ml 1 composition 

G, G ) Hom(F, F) 
J.L (6) 

commute, where e designates the unit element and m the multiplication 
of the group G. Thus (5) and (6) give a definition of the action of the 
(discrete) group G on the sheaf F. 

With this, the above characterization of a G-torsor can be restated 
without explicitly using the stalks of the sheaf. For this, recall from 
§VII.l(7) the geometric morphism given by the global sections functor 
fas 

.6.: Sets ~ Sh(X) :f, (7) 

where the constant sheaf functor .6. is left adjoint to f and left exact. 
Moreover, any sheaf F' has global cross-sections f(F') = F'(X). In 
particular, for the exponential sheaf FF as described in equation §II.8(2), 
this gives 

f(FF) = FF (X) = Hom(F, F). 
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Therefore the monoid morphism 71 of (5) is 71: G -+ r(FF) or, by trans
position, a map ~(G) -+ FF of sheaves or, by transposition again, a 
map 

Ji: ~(G) x F --+ F. (8) 

The commutative diagrams (6) for the monoid homomorphism become 
by transposition along the adjunction between r and ~ the following 
commutative diagrams of sheaves: 

~(G) x ~(G) x F 

mX1l (9) 

~(G) x F, ~(G) x F ------,---~) F. 
J.L 

Here we have written e and m for the maps of sheaves induced by the 
respective structure maps e: 1 -+ G and m: G x G -+ G of the group 
G. Moreover, since ~ preserves finite limits, the constant sheaf ~(G) 
with the arrows e and m is itself a group-object in the category Sh(X) 
of sheaves. Thus the commutativity of (9) states that the map Ji of (8) 
satisfies the standard requirement for an action of the group object ~G 
on the sheaf F in the category Sh(X). In other words, an action (2), (3) 
of a discrete group G on a sheaf F is the same thing as an action of the 
group object ~(G) on the sheaf F. 

Lemma 4. For a discrete group G, a G-torsor on a space X is an 
action 11 of G on a sheaf F over X, as in (3), for which 

(i') F -+ 1 is an epimorphism of sheaves; 
(ii') the action Ji: ~(G) x F -+ F of (8) induces an isomorphism 

(Ji, 7r2): ~(G) x F ~ F x F of sheaves. 

Proof: The map F -+ 1 of sheaves, considered as a map of etale 
spaces over X, is epi iff each induced map Fx -+ Ix = 1 of stalks is a 
surjection of sets. Thus, condition (i') here is equivalent to condition (i) 
in the Definition 2 of a G-torsor. Moreover, the map (Ji, 7r2): ~(G) xF -+ 

F x F induces at each point x E X a map (Ji,7r2)x of stalks, as in the 
top row of the commutative diagram 

(~G x F)x C;?,7r 2 )x) (F x F)x 

III 
~(G)x x Fx (10) 

III 
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The identifications made by the vertical arrows of this diagram yield the 
dotted map G x Fx ~ Fx x Fx, readily identified as (f.-tx,7r2), where 
f.-tx is the action map on the stalk Fx, as described in (4). There
fore, the map of sheaves (Ii, 7r2): 6.(G) x F ~ F x F is an isomor
phism iff each map (1i,7r2)x of stalks is, or iff for each x E X the map 
(f.-tx, 7r2): G x Fx ~ Fx x Fx is an isomorphism. The latter isomorphism 
states exactly that the action of G on the stalk Fx is both free and 
transitive. Therefore, condition (iii) of the lemma is equivalent to the 
corresponding condition (ii) in the definition of a torsor. This proves 
the lemma. 

With this terminology and result, Theorem 1 may be restated as 

Theorem 5. For any space X and any discrete group G there is 
a natural bijective correspondence between principal G-bundles on X 
and G-torsors over X. This correspondence associates each G-torsor, 
regarded as a sheaf F with G-action as in Lemma 4, to the corresponding 
etale space over X with the corresponding G-action on the stalks. 

Now Lemma 4 describes G-torsors in Sh(X) purely in terms of the 
geometric morphism "(: Sh(X) ~ Sets with "(* = rand "(* = 6., as 
in (7). This description makes sense for any topos £ equipped with a 
geometric morphism "(: £ ~ Sets-and hence for any co complete topos 
£; in particular for any Grothendieck topos. This suggests the following 

Definition 6. Let G be a discrete group (in Sets) while "(: [; ~ 
Sets is a topos over Sets. A G-torsor over £ is an object T of £ equipped 
with a left action J.L: "(* (G) x T ~ T by the group object "(* (G) for which 

(i) the canonical map T ~ 1 is an epimorphism; 
(ii) the action f.-t induces an isomorphism in £ 

(11) 

In this connection, recall that the inverse image functor "(* preserves 
finite limits, so that "(* (G) is indeed a group-object in £. Thus, a G
torsor over £ is a special kind of object in the topos £,*CG) of objects 
with a "(*(G) action, as defined in §V.6. 

We have shown that every principal G-bundle over a space X can be 
viewed as a G-torsor in the sheaf topos Sh(X). A quite different example 
of a torsor is present in the topos BG of all right G-sets (which is to 
be sharply distinguished from the classifying space BG discussed in the 
previous section). Namely, there is a canonical G-torsor UG over BG, 
arising from the fact that G acts on itself both from the left and from 
the right. Thus, let UG be G itself viewed as a right G-set, that is, as an 
object of BG, with right action UG x G ~ UG given by multiplication. 
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To see that Ue has the structure of a G-torsor over BG, recall first 
that the inverse image of the geometric morphism ,: BG -t Sets is the 
functor 1*: Sets -t BG which sends a set S to the same set S with the 
trivial right G-action (so that s . 9 = s for all s E Sand 9 E G). Now 
the multiplication of G gives a map 

J.L: I*(G) X Ue -t Ue; J.L(g, h) = gh. (12) 

This is an arrow in BG, for G acts trivially on I*(G) and by right 
multiplication on Ue, and for g, h, kin G the identity J.L(g, hk) = J.L(g, h)k 
holds. Clearly J.L defines a left action of I*(G) on Ue, for which the map 
(J.L,7r2): I*(G) x Ue -t Ue x Ue is an isomorphism. [Indeed, if we 
forget the right G-action involved, then this is just the isomorphism 
G x G -t G x G sending a pair (g, h) to (gh, h).] Thus, by Definition 6, 
(Ue,J.L) is a G-torsor in BG. 

We claim that this torsor Ue is in some sense the universal G-torsor, 
or that the topos BG "classifies" G-torsors, analogous to the fact that 
the space BG classifies principal G-bundles. To state this in a more 
precise way, first observe that, for any topos £ over Sets, the G-torsors 
over £ form a category 

Tor(£,G) (13) 

in a natural way: for G-torsors (T, J.L) and (T', J.L') over £, a map 
f: (T, J.L) -t (T', J.L') is simply an arrow f: T -t T' of £ which re
spects the left action by I*(G). [So Tor(£, G) is a full subcategory 
of £,'Ce ).] It is not difficult to see that any such map between G
torsors over £ is necessarily an isomorphism (Exercise 3). The cat
egory Tor(£, G) depends functorially both on £ and on G. The de
pendence on G will not be discussed here. Tor(£, G) depends func
torially on £ in the following way: Let f: F -t £ be a geometric 
morphism of topoi over Sets; so if we denote the unique geometric 
morphisms into Sets by Ie: £ -t Sets and IF: F -t Sets, then 
by this uniqueness f must satisfy Ie 0 f ~ IF. If (T, J.L) is a G
torsor in £, then by applying the inverse image functor f* we obtain 
an object f*(T) of F; moreover, since f* is left exact, f*(T) comes 
equipped with an f*,e*(G)-action f*(J.L): f*,e*(G) x f*(T) -t f*(T) 
such that (f*(J.L),7r2): f*,e*(G) x f*(T) -t f*(T) x f*(T) is an iso
morphism. Since f*,e*(G) ~ IF*(G), it follows that these definitions 
make (f*(T), f*(J.L)) a G-torsor over F. Clearly, f* sends maps between 
G-torsors over £ to maps between G-torsors over F, and hence yields a 
functor 

f* : Tor(£, G) -------+ Tor(F, G) (from f: F -t E). (14) 

The claimed universality of the G-torsor Ue over BG can now be stated 
in the following way. 
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Theorem 7. For each discrete group G and each tapas E over Sets 
there is an equivalence of categories 

Hom(E, BG) ~ Tor(E, G) (15) 

between geometric morphisms E ----; BG and G-torsors over E; moreover 
this equivalence is natural in E, in the sense that, for any geometric 
morphism f: F ----; E over Sets, the diagram 

Hom(E, BG) ---+) Tor(E, G) 

Hom(f,BC) 1 11* (16) 

Hom(F, BG) ---+) Tor(F, G) 

commutes (up to natural isomorphism). 

Notice that, by naturality, the equivalence (15) is completely deter
mined by what it does to the identity on BG (for the case E = BG). It 
will appear from the proof that, under the equivalence (15), id: BG ----; 
BG corresponds to the torsor Uc over BG. By naturality, it then fol
lows that, under (15), an arbitrary geometric morphism f: E ----; BG 
corresponds to the G-torsor 1* (Uc ). Thus, Theorem 7 states that (up 
to isomorphism) any G-torsor over any topos E comes from applying 
the inverse image functor of a suitable geometric morphism f: E ----; BG 
to the torsor Uc over BG. It is in this sense that Uc is the universal 
G-torsor. 

Proof of Theorem 7: The starting point is the Theorem VII.7.2 
stating that, for any small category C and for any topos E, there is an 
equivalence of categories 

Cop 
Flat(C,E) ~ Hom(E, Sets ). (17) 

Under this equivalence, a geometric morphism f: E ----; SetsCOP corre
cop 

sponds to the flat functor 1* 0 y: C ----; Sets ----; E. In particular, for 
cop cop 

the case E = Sets ,the identity morphism on Sets corresponds 
cop 

to the Yoneda embedding y: C ----; Sets . 
In particular, a group G can be viewed as a category C with one 

object (call it *), while geometric morphisms E ----; BG = SetsCOP cor
respond to flat functors G ----; E by (17). To prove the theorem about 
torsors, it thus suffices to show that there is a natural equivalence of 
categories between flat functors G ----; E and G-torsors over E. 

Giving a functor A from a group G to Sets amounts to giving a set 
T = A( *) and a left action of G on this set T. A corresponding result 
holds for any topos E, over Sets by a geometric morphism '"'( = '"'(£ : E ----; 
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Sets. Indeed, a functor A: G ~ E determines an object T = A( *) of E, 
while the effect of A on arrows g EGis a homomorphism of monoids 

G ~ Hom£(T, T) ~ Hom£(l, TT) ~ Hom£ (-y* 1, TT) 

~ Homsets(1, ,*(TT)) ~ "h(TT); 

by successive adjunction, this amounts to maps 

,*(G) x T ~ T 

in E. The fact that G ~ Hom(T, T) is a morphism of monoids means 
simply that the corresponding map ,* (G) x T ~ T in E is an action 
[much as in the equivalence between the commutativity of (6) and of (9) 
above]. Therefore there is a bijection 

Functors(G,E) ~ E'Y*(C) (18) 

which is an isomorphism of categories and is natural in E, in the sense 
that each geometric morphism f: F ~ E yields a commutative diagram 

Functors ( G, E) 

compose with r 1 
Functors(G, F) ~ peF *(C). 

(19) 

Here the map !* on the right is defined in much the same way as the 
map !* of (14) between torsors. For this isomorphism (18) we wish to 
show that flat functors on the left correspond to torsors on the right. 

For the special case where E = BG, notice that the identity BG ~ 
BG corresponds under (17) with C = G to the Yoneda embedding 
y: G ~ BG, and then under (18) to the left ,*(G)-object y(*) = Uc 
in BG. Now suppose A: G ~ E is any flat functor. By (17), up to 
isomorphism A is of the form !* 0 y: G ~ BG ~ E, for some geometric 
morphism f: E ~ BG. Hence the left ,* (G)-object corresponding to 
A under (18) is isomorphic to !*(y(*)) = !*(Uc) [by naturality as in 
(19)]. But Uc is a G-torsor in BG, so !*(Uc) is a G-torsor in E. This 
proves that, under (18), a flat functor G ~ E yields a G-torsor in E. 

To complete the proof, it remains to show that if (T, J.L) is a G-torsor 
in E, then the corresponding functor A: G ~ E of (18) is flat. This 
functor A is described explicitly on objects by A( *) = T and on arrows 
g by A(g) = J.L(g): T ~ T, as in 

,* (G) x T --'---1-'---+) T 

'Y*(9) X11 11-'(9) 

,*(1) x T T. 
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To see that A is fiat, we apply Theorem VII.9.1 and Definition VII.S.1 
and verify the three conditions there for a filtering functor. Condition (i) 
states that A( *) = T ---> 1 is epi, which is part of the definition of a G
torSOL Condition (ii) states that the family of arrows 

{(ft(g),ft(h)): T ---> T X T}g,hEG (20) 

is an epimorphic family in E. To see that this is the case, first recall that ,* and - x T are both left adjoints, so both preserve the coproduct 
G = 2:kEG 1 in Sets. Thus ,*(G) x T is 2:kEG T. This leads to a 
commutative square 

L T === ,* (G) x T 

kEG 1 
T I ~ (p,7r2) 

L T (p(g),p(h) l TxT 
(g,h)EG 

(21) 

where T sends the summand with index kEG to the summand with 
index (k, e) via the identity map T ---> T. Since the right-hand map in 
(21) is an isomorphism, the bottom map must be epi, which means that 
(20) is indeed an epimorphic family. 

Finally, condition (iii) for a filtering functor states in this case that, 
for any two elements g, h E G with g -I h, the equalizer of 

T peg) T --I- h =====+, g r , 
p(h) 

(22) 

is the initial object O. (Indeed, when the empty family of arrows to an 
object E is epimorphic, that object E must be 0.) By precomposing 
the two arrows in (22) with ft(h- 1 ), it will suffice to show that, for any 
g E G with g -I e, the equalizer of ft(g) and id: T =4 Tis O. But consider 
the diagram 

0-----+1,*(1) x T --.:...::..--+) T 

1 l,*(e)Xl 1~ 
,*(l)xT 1,*(G)xT ~ II, ,'(')" ",.,) 

) T xT (23) 

II 
T ---------,-,---.,------------+) TxT. 

(p(g),id) 

Here ~ on the right is the diagonal map, so the upper square on the right 
is evidently a pullback, while the upper square on the left is a pullback 
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since ,* (G) x T = LhEC T and coproducts in a topos are disjoint (recall 
that g i= e, by assumption). By the vertical isomorphism, it follows 
that the outer rectangle in (23) is a pullback; that is, the equalizer of 
(p,(g),id): T=:;,T is zero, as was to be shown. 

This completes the proof of the theorem. 

3. Classifying Topoi 

There is an evident analogy between the equivalence of categories 

Tor(E, G) ~ Hom(E, BG) (1) 

of Theorem 2.7, and the bijection (14) of §1 for G-bundles: 

kc(Y) ~ [Y,BGj. (2) 

The first gives for each G-torsor over a topos E a classifying geometric 
morphism from E into the tapas BG, while the second gives for each 
principal G-bundle over a space Y a classifying map Y --+ BG to the 
classifying space. Moreover, the identity BG --+ BG on the right of 
(1) corresponds to the "universal" G-torsor Uc over BG, and any other 
G-torsor is an inverse image of this universal one, as explained below 
Theorem 2.7. Similarly, the identity BG --+ BG on the right of (2) 
corresponds to the universal principal G-bundle over BG [ef. (1.13)], 
and any other principal G-bundle is a pullback of this universal one. It 
is thus natural to call the topos BG a classifying tapas for G-torsors, 
just as the space BG is called a classifying space for G-bundles. 

In general, suppose we have a notion of a "structure" of a certain 
kind, such that for each topos E (or: for each topos E over Sets) there is 
a category of such structures in E. One says that a topos B is a classifying 
topos for these structures if there is an equivalence of categories between 
geometric morphisms E --+ B and such structures in E, and if, moreover, 
this equivalence is natural in E. 

A simple example of a possible type of structure is that of a ring
object in a topos E. We will see in §5 below that there exists a classifying 
topos B(rings) for ring-objects, in the sense that the category of ring 
objects in a topos E is equivalent to the category of geometric morphisms 
E --+ B(rings). 

To be more specific, let us collect the axioms for the structures of a 
certain kind (e.g., G-torsors or rings) into a "theory" T, and call these 
structures M in a category E the T-structures or the "T-models" in 
E. Let Mod(E, T) denote the set of all those models in E. Since each 
notion of a "structure" will also determine the notion of a morphism of 
that structure, with the usual composition of morphisms, this Mod( E, T) 
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will be a category. Moreover, we will suppose that the inverse image 
morphism of a geometric morphism f: F ---t E (over Sets) will carry 
any T-structure M in E to aT-structure f* M in F. Thus, Mod(E, T) 
for each such T will be a contravariant functor of E. These conditions 
clearly apply for the familiar algebraic theories T, such as the theory 
of rings. We will not pause here to examine more general notions of a 
"theory" . 

A classifying tapas for T-models is then a topos l3(T) over Sets with 
the property that for every co complete topos E there is an equivalence 
of categories 

C£: Mod(E,T) ~Hom(E,l3(T)) (3) 

which is natural in E. This naturality, of course, means for each geomet
ric morphism f that under the equivalence the operation M f-+ f*(M) 
corresponds to composition with fi i.e., 

C:F(f* M) ~ ce(M) 0 f. (4) 

In other words, each diagram 

Mod(E,T) -~-. Ce ) Hom(E, l3(T)) 

1*1 1 Hom(f,B(T)) (5) 

CF ) Hom(F, l3(T)) Mod(F, T) --=---. 

commutes up to natural isomorphism. As in the case of G-torsors, it 
follows that there exists a universal T -model (also called a generic T
model) UT in B(T), namely, the model corresponding to the identity on 
B(T) under the equivalence (3), for the special case where E = B(T). 
This universal T-model UT has the following characteristic property: for 
any topos E and any T-model M in E, there exists a geometric morphism 
f: E ---t B(T) (unique up to isomorphism), such that M ~ f*(UT). 

For example, for a given site (e, J), the previous chapter studied 
continuous filtering functors from e into a (cocomplete) topos E. For e 
fixed, such a continuous filtering functor A: e ---t E may be considered 
as a type of "structure" in E. Corollary VII.9.2 describing geometric 
morphisms to sheaf categories states that (among cocomplete topoi) the 
topos Sh(e, J) of sheaves on the given site (e, J) is a classifying topos 
for continuous filtering functors on e. This result is in some sense the 
"basic theorem" concerning classifying topoi and many other results are 
special instances of it. For example, Theorem 2.7 above states that the 
topos BG of right G-sets is a classifying topos for G-torsors. The proof 
of this theorem proceeded from the special case of this "basic thc:)rem" , 
stating that BG classifies filtering functors on the one-object category 
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G, by identifying such functors G ----* E into a topos E with G-torsors in 

E. 
The next sections will give a number of other examples of classify

ing topoi, using much the same strategy: Starting from the fact that 
Sh(C, J) classifies continuous filtering functors on C, we next describe 
such functors on C for special sites (C, J) in more familiar terms. This 
moreover will illustrate the flexible use of the notion of a site. 

4. The Object Classifier 

The simplest, and at the same time perhaps most basic example of a 
classifying topos is the so-called object classifier. This is a Grothendieck 
topos (usually denoted by S[U]), with the property: for any co complete 
topos E there is an equivalence between objects of E and geometric mor
phisms E ----* S[U]. In other words, there is an equivalence of categories, 
natural in E, 

(1) 

sending an object E of E to its "characteristic" geometric morphism E ----* 

S[U]. As in the previous section, the identity S[U] ----* S[U] corresponds 
to a "universal" object of S[U], which is usually denoted by U. The 
naturality of (1) then implies that 

cdE)*(U) ~ E (2) 

and that c£(E) is the unique geometric morphism (up to isomorphism) 
with this property. 

The notation S[U] and the universal property expressed by (1) and 
(2) are reminiscent of ring theory. There each "ground ring" k yields the 
polynomial ring k[x], while for any k-algebra A there is an isomorphism 

like (1), given for each a E A by cA(a)(x) = a, just as in (2). 
Now why does such a topos S[U] exist? The reason is simple enough, 

for if C is any small category with finite limits, then by the results in 
Chapter VII, geometric morphisms f: E ----* SetsCOP correspond to left
exact functors A: C ----* E. So if we let C be the category with finite 
limits which is "freely generated" by a single object G, then SetsCOP 

has the universal property (1) required of S[U]. We shall now describe 
this free category C explicitly in Lemma 2 below. But first, we consider 
the dual case, with finite limits replaced by finite colimits. 

For any two categories A and B with finite colimits, let us write 
Rex(A, B) for the category of right-exact functors from A to B (i.e., 
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those functors which commute with finite colimits), and natural trans
formations between them. A category F with finite colimits is said to be 
freely generated by a specific object G E F if for any other category l3 
with finite colimits the evaluation of a functor at G yields an equivalence 
of categories 

eVa: Rex(F, l3) ~ l3, (3) 

which is natural in l3. As usual, such a free category F, if it exists, is 
unique up to an equivalence of categories. 

Lemma 1. The category Fin of finite sets is the free category with 
finite colimits generated by the object G = {* } (a singleton set). 

Proof: Notice first that if a functor F: Fin --+ 8 into a category 8 
preserves finite coproducts, it preserves all finite colimits. Indeed, to see 
that F preserves coequalizers, consider in Fin any coequalizer of finite 
sets 

S~T---+R. (4) 

Here each set S in Fin is a coproduct USES G of one-point sets. Since 
the functor F preserves finite coproducts, it sends the co equalizer (4) to 
the following diagram in l3, where B = F(G): 

UB~UB---+) UB. (5) 
sES tET rER 

But by the universal property of coproducts, this diagram is a coequal
izer in 8 iff, for any object X E l3, the diagram 

Hom(R, l3(B, X)) ---+ Hom(T, l3(B, X)) ~ Hom(S, 8(B, X)) 

is an equalizer of sets. But this is indeed the case because (4) is a 
coequalizer. 

Now let l3 be any category with finite colimits, and consider the 
evaluation functor 

eVa: Rex(Fin, l3) ---+ 8, (6) 

which sends a right exact functor F: Fin --+ l3 to its value F( G) in 8 on 
the one-point set G. There is also a functor in the opposite direction, 

¢: l3 ---+ Rex(Fin, 8), (7) 

defined as follows. For an object B E l3, ¢(B) is the functor which sends 
a finite set S E Fin to the coproduct 

¢(B)(S) = U B 
sES 
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of S copies of B. For an arrow u: S -+ T in the category Fin of finite 
sets, ¢( B) (u): USES B -+ UtET B is the unique map for which all the 
diagrams of the form U B ¢(B)(u) U B 

sES tET 

B 

commute (for each s E S); here 'f/s and 'f/u(s) denote the coproduct in
clusions. The functor ¢(B) thus defined evidently preserves finite co
products, hence preserves all finite colimits as observed above. In the 
evident way, ¢(B) is a functor of B. 

Now the composite eve o¢: B -+ B is clearly isomorphic to the iden
tity functor. Also, for any right exact functor F: Fin -+ B, there is a 
natural isomorphism ¢ 0 eve(F) = ¢(F(G)) ~ F, precisely because F 
commutes with finite coproducts and any finite set S has S = US G. 
This proves the lemma. 

Since a left exact functor from Finop into a category B with finite 
limits is the same thing as a right exact functor Fin -+ BOP, Lemma 1 
yields: 

Lemma 2. The category FinoP is the free category with finite limits 
generated by the object G = {*}. 

In other words, for any category [; with finite limits, there is an 
equivalence between left exact functors FinoP -+ [; and objects of [;, 
again given by evaluation at the one-point G. In particular, when [; is 
a co complete topos, we may apply Corollary VII.9.4 to the special case 
where the site (C, J) is the category C = Finop equipped with the trivial 
Grothendieck topology (only maximal sieves cover). Then the topos 
Sh(C, J) of sheaves is the whole functor category SetsCOP = SetsFin. 
Thus, VII.9.4 yields an equivalence between geometric morphisms [; -+ 

SetsFin and left exact functors Finop -+ [;: 

(8) 

and hence by Lemma 2 an equivalence 

(9) 

For a geometric morphism f: [; -+ SetsFin , this equivalence (9) sends f 
first [by the equivalence (8) above from VII.9.4l to the left exact functor 
f* 0 y: Finop >----> SetsFin -+ [;, and then (by the equivalence of Lemma 2) 
to the object f*y( G) of [;. This shows that the topos SetsFin is the 
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desired object classifier. From now on we will also denote this topos 
SetsFin by S[U]. 

What is the universal object U of SetsFin ? To find this object 
U, we take £ = SetsFin and apply the equivalence (9) to the iden
tity map SetsFin -+ SetsFin. The resulting object on the right of 
(9) is then y(G) E SetsFin. But since G is a singleton set, y(G) = 
Fin(G, -): Fin -+ Sets is essentially the inclusion functor. 

For the record, we state: 

Theorem 3. The tapas S[U] = SetsFin is the object classifier, with 
universal object U E SetsFin the inclusion functor Fin>--> Sets. So for 
any cocomplete tapas £, there is an equivalence of categories, natural in 
£, 

Hom(£,S[U]) ----'==--+ £, f f-+ J*(U). (10) 

It is not difficult to describe explicitly the quasi-inverse of the functor 
(10), i.e., the functor c£ of (1); see Exercise 4. 

5. The Classifying Topos for Rings 

In this section and the next, "ring" will always mean commutative 
ring with unit element. Thus, if C is any category with finite limits, a 
ring-object in C (or briefly: a ring in C) is an object R of C equipped 
with morphisms 

l~R~RxR (1) 
1 • 

in C for which the usual identities for a commutative ring with unit 
(expressed by diagrams in C) hold. For example, a ring in Sets is an 
ordinary ring, while a ring in the category Sh(X) of sheaves on a space 
X is the same thing as a sheaf of rings on X (cf. §II. 7). With the evident 
notion of morphism, this defines a category 

Ring(C) (2) 

of rings in C, while each left exact functor F: C -+ C' be
tween categories with finite limits induces a functor Ring(C) -+ 

Ring(C'). Moreover, a natural transformation between such functors 
C ~ C' yields a natural transformation between the induced functors 
Ring(C) ~ Ring(C'). In this sense, the category Ring(C) is a functor 
ofC. --

In particular, for any topos £ there is a category Ring(£) ofrings in £, 
and for any geometric morphism f: F -+ £ between topoi £ and F, the 
(left exact) inverse image functor J* induces a functor J*: Ring(£) -+ 

Ring(F). We will now show that there exists a classifying topos for 
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rings; that is, a topos R with a ring object R in R, such that for each 
(cocomplete) topos E there is an equivalence of categories 

Hom(£, R) --==--+ Ring(E), (3) 

natural in E. To prove the existence of such a classifying topos R with 
a universal ring R, we will proceed much as in the previous section by 
first constructing a suitable free category and then applying the results 
of Chapter VII. 

A category A with finite limits with a ring object A is said to be 
freely generated for rings by A if, for any other category C with finite 
limits, the evaluation of left exact functors at A induces an equivalence 
of categories 

Lex(A, C) --==--+ Ring(C). (4) 

(Here, as before, Lex denotes the category of left exact functors and 
natural transformations between them; each such left exact functor takes 
ring objects to ring objects.) If A is freely generated by the ring A in 
this sense, then for any cocomplete topos E there are equivalences of 
categories, 

(5) 

both natural in E. The second equivalence is that of (4), while the 
first equivalence is a special case of Corollary VII.9.4. Thus, SetsAOP 

is a classifying topos for rings. Under the equivalences (5), a geometric 
morphism f: E --+ SetsAOP corresponds first to the left exact functor 
f* 0 y: A>---+ SetsAOP --+ E, and then [by the equivalence (4)] to the ring
object f*(y(A)) in E. Thus the "universal" ring-object, which is the ring 
in SetsAOP obtained by taking f to be the identity, is the representable 
ring-object y(A) E SetsAOP corresponding to the ring A which freely 
generates the category A. 

In order to produce a classifying topos for rings, it thus suffices to 
describe a category with finite limits A freely generated for rings by a 
ring A. We will show that the category 

A = (fp-rings)OP, (6) 

opposite to the familiar category of all finitely presented rings, is such 
a category with finite limits freely generated by a ring object A. More
over, A will be the ordinary polynomial ring Z[X]! This is essentially a 
formulation of standard properties of fp-rings. 

Recall that a ring is finitely presented (over the ring of integers Z), 
if it is isomorphic to a ring of the form 

(7) 
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where the Pi are polynomials in the indeterminates Xl, ... ,Xn . This 
category of finitely presented rings and all ring homomorphisms be
tween them has finite colimits: it has an initial object Z, while the 
coproduct of a finitely presented ring as in (7) and another such 
Z[Yl , ... , Ym]/(Ql, ... , Qc) is their tensor product, again finitely pre
sented since 

Z[Xl , ... ,Xn]/(Pl , ... , Pk ) 0 Z[Yl , ... , Ym]/(Ql, ... , Qc) ~ 

Z[X l , ... , X n, Yl , ... , Ym]/(Pl , ... , Qc). 

Coequalizers also exist: a map a from Z[X l , ... ,Xnl/(Pl , . .. , Pk ) into 
Z[Yl , ... , Ym]/(Ql, ... , Qc) is given by an n-tuple (al, ... , an) of poly
nomials in the indeterminates Yl , ... , Ym , where ai = a(Xi) and each 
Pj (aI, ... , an) == 0 (mod Q l, ... , Q £), while the co equalizer of anyone 
such homomorphism a and a second one !3 = (!3l, ... , !3n) is the finitely 
presented quotient ring 

To summarize: The category (fp-rings) has all finite colimits (with 
tensor products as coproducts and quotient rings as co equalizers ) and 
all the objects of the category are constructed using such colimits from 
the one polynomial ring Z[X]. We will observe below that the category 
(fp-rings) is indeed freely generated by these operations on the ring 
Z[X]. This we regard as a categorical formulation of the basic role of 
polynomial rings in algebra. 

The opposite category A = (fp-rings)OP is therefore a category 
with finite limits. Furthermore, the object A = Z[X] is a ring-object 

in this category A: the arrows 0, 1: 1 =4 A t= A x A in A giving 
+ 

A a ring-structure are the following arrows in the opposite category 
AOP = (fp-rings): 

o x+y 
Z ~ Z[X] =;::x.:;:;:y=tl Z[X, Y] ~ Z[X] 0 Z[X], (8) 

where X + Y and X . Y denote the unique homomorphisms sending the 
element X E Z[X] to X + Y and X . Y respectively, while similarly 0 
and 1 : Z[X] -+ Z send X to 0 E Z and 1 E Z, respectively. 

Proposition 1. The category A = (fp-rings)OP is a category with 
finite limits freely generated by the ring-object A = Z[X]. 

(Without using opposite categories, this proposition can also be 
phrased thus: the category of finitely presented rings is a category with 
finite colimits, freely generated by the "coring" Z[X].) 
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As explained above, this proposition asserts that for any category 
with finite limits C, the evaluation of a left exact functor F at Z[X] 
gives the following equivalence of categories 

eVZ[X]: Lex((fp-rings)OP, C) -+ Ring(C), 

F f-7 F(Z[X]). 
(9) 

(This correspondence is a well-defined functor, for if F is left exact, 
then it preserves ring-objects, hence sends the ring-object Z[X] of 
(fp-rings)OP into a ring-object of C.) 

To avoid possible confusion between the category (fp-rings) and its 
opposite, let us agree that any arrow or diagram written below is in the 
category (fp-rings); thus functors (fp-rings)OP -+ C will accordingly 
be viewed as contravariant functors from (fp-rings) to C. 

The proof of Proposition 1 will explicitly describe a quasi-inverse 
functor for the evaluation functor (9), to be denoted 

cP: Ring(C) -+ Lex((fp-rings)OP, C), 

R f-7 CPR. 
(10) 

For a given ring R in C, the left exact functor CPR: (fp-rings) op -+ C 
is defined in the unavoidable way: Since cP is to be an inverse to the 
evaluation (9), we set 

(11) 

Moreover, since CPR is to be left exact, it transforms coproducts in 
(fp-rings) (i.e., tensor products) into products in C. Hence, since the 
polynomial ring Z[XI , ... , Xn] ~ Z[XI ] ® ... ® Z[Xn] is the n-fold ten
sor product of copies of Z[X], we set 

(12) 

An arrow P: Z[YI , ... , Yk ] -+ Z[XI , ... , Xn] in (fp-rings) is given by 
a k-tuple of polynomials Pi(XI , ... , X n), where i = 1, ... , k; here Pi is 
the image of Y; under P. Each such polynomial Pi(XI , ... , Xn) yields 
an arrow in C, 

(13) 

defined from the ring structure of R by the familiar process of substi
tuting "elements" of R for the indeterminates X in the polynomial Pi. 

For example, the polynomial Xl . X 2 + X3 + 2 yields the following 
map (XIX2 + X3 + 2)(R) : R3 -+ R, given as the composite 

R x R x R~Rx R~R~ 1 x R~R x R~R, 
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(1,1) + 
where 2: 1 -+ R is the composite 1 ------+ R x R ~ R. 

The image under 1>R of the arrow P: Z[Y1 , ... , Ykl -+ Z[X1 ... , Xnl 
as above is the map 

To complete the definition of the functor 1> on any finitely presented 
ring B, choose an isomorphism (i.e., a presentation) 

for suitable polynomials Pi. This quotient ring, by its definition, fits 
into a coequalizer diagram 

where P(Yi) = Pi and O(Yi) = O. Hence we define the image under the 
contravariant functor 1> R of this quotient ring by the following equalizer 
diagram in C: 

Next, we define 1>R on a homomorphism h: B -+ C 

B _____________ h~ __________ _+) C 

OB III OC III 

between finitely presented rings. Here the L's are polynomials in the 
indeterminates W. Thus h is determined by the n elements ()cM;;/(Xi). 
Each is the equivalence class of a polynomial Hi in the indeterminates 
W, where, for each j, 

(17) 

As in (14), these n polynomials determine a homomorphism 
H(R): Rm _+ Rn. Now 1>R(B) and 1>R(C) fit into equalizer rows 

1>R(B) > I Rn 
p(R) 

l Rk 
A 

H(R)I 

o(R) 

<!>R(h) : 
I 

1>R(C) > IRm 
L(R) 

l Rt. 
a O(R) 
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The equalizer a lower left is determined by m arrows as: <P R (C) --+ R 
which satisfy Le(a1,.'" am) = O. Hence by (17) above the composite 
H(R) 0 a consists of n arrows to R which satisfy the conditions P = O. 
Therefore, by the definition of equalizers, there is a unique arrow <pR(h) 
as indicated on the left above; it is independent of the choice of the Hi 
in their equivalence classes, and makes <PR a functor, as required in (16). 

Note that the construction uses a choice of isomorphisms BB; this 
amounts (here and below) to observing that the category fp-rings is 
equivalent to the category of all such explicit presentations. 

We prove below that, for each ring R in C, the functor <PR thus 
defined is indeed a left exact functor (fp-rings)OP --+ C. Taking this for 
granted for the moment, we observe that <P is indeed a quasi-inverse for 
the evaluation functor (9). Indeed, one way around, each ring R in C 
may be written as 

(eVZ[X] o<p)(R) = <PR(Z[X]) = R 

[see (11)]; so eVZ[X] o<p is the identity functor on the category of 
rings in C. The other way around, consider any left exact functor 
F: (fp-rings)OP --+ C. We wish to construct an isomorphism 

T=Tp: <poevz[x](F)~F, 

natural in F. Write R = eVZ[X] (F) = F(Z[X]). Then, since 
F is left exact, it transforms an n-fold coproduct Z[X1"'" Xn] ~ 
Z[X] @ ... @ Z[X] of finitely presented rings into an n-fold product in 
C; so that there is for each n ::::: 1 an isomorphism 

T = Tn: Rn ~ F(Z[X]) @ ... @F(Z[X]) = F(Z[X1"'" Xn]) (18) 

(and these isomorphisms can be chosen to commute with the iso
morphisms Rn x Rm ~ Rn+m and Z[X1, ... ,Xn ]@Z[X1, ... ,Xm] ~ 
Z[X1, ... , Xn+m])' Now, by the definition of the evaluation functor (9), 
the ring-structure of R in C is the image under F of the ring-structure 
of Z[X] in (fp-rings)OP in the sense that all squares in the following 
diagram commute: 

1 ~ R I 
+ R2 

70 1~ 
0 

7'1~ 
• 

~172 
P(l) (19) 

F[Z] 
P(Xl +X2 ) 

P(O) 
~ F(Z[X]) I F(Z[X1, X2]), 

P(Xl ·X2 ) 

ZI Z[X] 
Xl +X2 

~ Z[X1,X2]' 
0 Xl ,X2 
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But these horizontal arrows generate all the ring operations. Each such 
operation is given by a polynomial P. It follows that for each polynomial 
P(X1, ... , Xn), the arrow p(R): Rn --t R obtained by "substitution" in 
P corresponds via T to the image under F of the arrow P: Z[Y] --t 

Z[Xl' ... ' Xn] with (Y ~ P(Xl' ... ' X n)), so that the square 

Rn p(R) 
)R 

Ti iT 
(20) 

F(Z[Xl' ... ' Xn]) F(P) 
) F(Z[Y]), 

Z[X1, ... ,Xn] ( P Z[Y], 

commutes. 
The construction (18) of T on Rn now extends easily to a natural 

isomorphism T: 1> R ~ F. Indeed, for a finitely presented ring of the 
form Z[X1 , ... , Xn]/(P1, ... , Pk), the contravariant functor F sends the 
coequalizer (15) into an equalizer in C, which we can compare to the 
equalizer (16) for the special case where R = F(Z[X]), via the isomor
phism T as in (18); this yields in C the following diagram (solid arrows): 

where the rows are equalizers. Both squares on the right commute, by 
the universal property of the product Rk and the commutativity of (20). 
Therefore, by the universal property of the equalizer rows in (21), there 
is a unique dotted isomorphism T, as indicated on the left of (21). 

This proves for each left exact functor F that there is a natural 

isomorphism T: 1>R = 1> 0 evz[xJ(F) ~ F. The construction is natural 
in F. 

To complete the proof of Proposition 1, it remains to show for any 
ring R in C that the functor 1>R: (fp-rings)OP --t C, as defined above, 
is left exact. 

Now 1>R(Z) is the empty product of copies of R [ef. (12) for n = 0]; 
i.e., 1>R(Z) = 1, so 1>R preserves the terminal object. 

Also, since the product of two equalizer diagrams is again an equal
izer ("interchange of limits"), one easily verifies from (16) that 1>R pre
serves binary products. Finally, to see that 1>R preserves equalizers, 
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consider a coequalizer constructed in the evident way from two maps 8 
and 8' in the category of finitely presented rings, 

Z[Y1 , . .. , Ym]/(Q) :4t Z[X1 , .•. , Xn]/(P) ---* Z[X1 , ... , Xn]/(P, 8 - 8'); 
5 (22) 

here Q = (Ql,"" QR) and P = (PI, ... , Pk), while the maps 8 and 
8' send Yi to polynomials 8 i (Xl , ... , Xn) and 8:(Xl , ... , Xn) for i = 
1, ... , m (which satisfy suitable conditions related to P and Q). We have 
to show that 1>R sends this coequalizer (22) to an equalizer diagram in 
C. First of all, if (22) is a coequalizer, then so is the diagram 

Z[Yl , ... , Ym] :4t Z[Xl , ... , Xnl/(P) ---* Z[Xl , ... , Xn]/(P, 8 - 8'), 
5 (23) 

obtained by precomposing (22) with the epimorphism 
Z[Yl , ... , Ym] ....... Z[Yl , ... , Ym]/(Q). Moreover, since 1>R sends the latter 
epimorphism to a monomorphism in C [in fact to an equalizer, as in 
(16)], 1>R sends (22) to an equalizer iff it does so for (23). So it suffices 
to show that 1>R sends co equalizers of the special form (23) to equalizers 
in C. Next, since (23) is a coequalizer, so is 

5-5' 
Z[Yl , ... , Ym] ==::t Z[Xl"'" Xn]/(P) ---* Z[Xl"'" Xn]/(P, 8 - 8'), 

a (24) 
and one readily checks that 1>R sends (23) to an equalizer in C iff it does 
so for (24). So by replacing 8 by 8 - 8' and 8' by 0 in (23), we see 
that it suffices to show that 1>R sends coequalizers of the form (23) with 
8' = 0 to equalizers in C. So, from the polynomials 8 and P and knew 
indeterminates Wi, ... , W k construct the diagram 

Z[Wl"",Wk] 

(S,P) °Up 
Z[Yl , ... , Ym, WI"'" Wk] ===t Z[Xl"'" Xn]---+-> Z[Xl , ... , X n]/(8, P) 

wi~ol a 1 II 
5 

Z[Yl , ... , Ym] ==~=tl Z[Xl , ... ,Xn]/(P) -+ Z[Xl'''' ,Xn]/(8, P) a 
consisting of three coequalizers, two ofthe form (15). By Definition (16), 
1>R sends both the vertical coequalizer and the upper horizontal coequal
izer to equalizers in C. It follows by diagram chasing that it also sends 
the lower horizontal coequalizer to an equalizer in C. 

This shows that 1> R: (fp-rings )OP ---.., C is a left exact functor and 
completes the proof of Proposition 1. 

As explained before the statement of Proposition 1, it follows that the 
presheaf topos Sets(fp-rings) is a classifying topos for rings, in which the 
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universal ring-object R in Sets(fp-rings) is the ring y(Z[X]) represented 
by Z[X]. But notice that a ring object in Sets(fp-rings) is nothing but a 
functor from (fp-rings) into the category ofrings; and that since Z[X] 
is the free ring on one generator X, the universal ring R = y(Z[X]) = 
Hom(Z[X], - ) is simply the inclusion functor from (fp-rings) to the 
category of rings. We can therefore summarize the result of this section 
as follows: 

Theorem 2. The presheaf tapas Sets(fp-rings) is a classifying tapas 
for rings, and the universal ring R is the ring-object in Sets(fp-rings) 
given by the inclusion functor from fp-rings into rings. Thus, for any 
cocomplete tapas E there is an equivalence of categories, natural in E: 

Hom(E, Sets(fp-rings)) ~ Ring(E), 

f f--* j*(R). 

6. The Zariski Topos Classifies Local Rings 

In this section we will show that the Zariski topos (over the ring of 
integers Z) is a classifying topos for local rings. 

Before proving this result, we should first explain what we mean by 
a local ring object in a topos. Recall that a ring R in Sets is called a 
local ring if it has a unique maximal ideal. This condition is equivalent 
to the condition that for any element a of the ring R, either a or 1 - a 

is invertible; that is, 

\;fa E R (3b E R (a· b = 1) V 3b E R (1 - a) . b = 1). (1) 

(For this equivalence, which uses the axiom of choice, see any book 
on commutative algebra, or regard it as an exercise.) The Mitchell
Benabou language, introduced in Chapter VI, enables us to define the 
notion of a local ring object in a topos E: it is a ring-object R in E such 
that the formula (1) of the Mitchell-Benabou language is valid in E. By 
definition of validity, this means that the union of the subobjects 

{ a E R I 3b (a . b = 1) } >--+ R, 

{a E R I 3b ((1 - a) . b = 1)} >--+ R 

of R is all of R. Equivalently, consider the two subobjects of the product 
R x R defined by 

u = {(a, b) E R x R I a· b = 1} >--+ R x R, } (2) 

V = {(a, b) E R x R I (1 - a) . b = 1} >--+ R x R; 
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71"1 

then R is a local ring iff the two composites U>---> R x R ---- Rand 

V >---> R x R ~ R form an epimorphic family in £. We recall that the 
objects U and V are constructed as the pullbacks 

U---------+) 1 V ----------+) 1 

I I 11 (3) 

R x R _-'e'-----+) R, R x R 'TXid) R x R _~e~--+) R, 

lxid -
where r: R --7 R is the composition R ~ 1 xR ---+ RxR ~ R, i.e., the 
map corresponding to the polynomial 1 - X. This gives a description of 
local ring-objects R in a topos £ which is motivated by (but circumvents) 
the Mitchell-Benabou language: The ring-object R in £ is local iff the 
two projections 7fl: U --7 Rand 7fl: V --7 R for U and V as described 
in (3) yield an epimorphism U + V --7 R. 

By way of an example, we consider the case of the topos of sheaves 
on a space X: 

Proposition 1. For any topological space X, a sheaf R of rings is 
a local ring in Sh( X) iff at each point x E X the stalk Rx is a local ring 
(in Sets). 

Proof: For any point x EX, the stalk functor Sh(X) --7 Sets, 
which sends each sheaf F to its stalk Fx at x, commutes with colimits 
and with finite limits. [In fact, it is the inverse image of the geometric 
morphism Sets = Sh(l) --7 Sh(X) induced by the map of spaces X: 1 --7 

X, see VII, §l.] In particular, the stalk functor (-)x preserves the 
construction of the sheaves U and V defined in Sh(X) by the pullbacks 
(3), so that 

Ux = {(a, b) E Rx I a· b = I}, 
Vx = {(a, b) E Rx I (1 - a) . b = I}. 

(4) 

Now R is a local ring in Sh(X) iff (11"1,11"2): U + V --7 R is an epi of 
sheaves. But a map of sheaves is epi iff it gives a surjective map of 
stalks at each point x E X (Proposition II.6.6). Hence, since the stalk
functor ( - )x commutes with sums, (11"1,11"2): U + V --7 R is epi in Sh(X) 
iff for each x E X the map (7fl' 7f2)x: Ux + Vx --7 Rx is a surjection of 
sets. By (4), this is the case precisely when Rx is a local ring for each 
point x E X. 

Thus, the sheaf of germs of smooth functions on a manifold is a local 
ring-object, because the ring of germs at each point is a local ring. (In 
fact, this is the motivation for the term "local".) 
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In the previous section, we have observed that there is an equiv
alence between ring-objects R in a topos E and left exact functors 
(fp-rings)OP -+ E. Explicitly, given such a left exact functor F, the 
corresponding ring-object R in E is F(Z[X]). This is indeed a ring in E, 
since F is left exact and Z[X], as in §5(8), is a ring in (fp-rings)OP, i.e., a 
co-ring in (fp-rings). Conversely, given a ring R in E, the corresponding 
functor 

sends the fp-ring A = Z[Xl , ... , Xn]/(Pl , ... , Pk ) to the following equal
izer in E: 

(P1 ,,,,,Pk) k 
cpR(A):>----+) R n l R . 

(0, ... ,0) 
(5) 

This description [as in (16) of §5] readily yields the corresponding def
inition of CPR on arrows. The following lemma gives a condition for a 
ring R in a top os E to be local, phrased in terms of this corresponding 
functor CPR. 

Lemma 2. Let E be a topos, let R be a ring in E, and let 
CPR: (fp-rings)OP -+ E be the corresponding left exact functor. The 
following are equivalent: 

(i) R is a local ring in E; 
(ii) CPR sends the pair of arrows in the category (fp-rings), 

Z[X, Y]/(XY - Y + 1) ~ Z[X]------+ Z[X, Yl!(X, Y -1), 

to an epimorphic family (of two arrows) in E; 
(iii) for any finitely presented ring A and any elements al, ... ,an E A 

such that al + ... + an = 1, CPR sends the family of arrows in 
(fp-rings) 

{A -+ A[ail] I i = 1, ... ,n } 

to an epimorphic family {CPR(A) f- CPR(A[ai l ]) I i = 1, ... , n } 
in E. 

Proof: (i)9(ii) This follows immediately from the explicit descrip
tion of the functor CPR; to wit, CPR by (5) sends the ring Z[X, Y]/(XY -1) 
to the equalizer U of (3). By §5(17) it thus sends the second arrow 

11'1 

Z[X] -+ Z[X, Y]/(X· Y -1) of (ii) into the composite U>-+ R x R ---+ R 
with U defined as in (3), and the arrow Z[X] -+ Z[X, Y]/(X·y -Y +1) = 
Z[X, Yl!((l - X) . Y - 1) into V >-+ R x R ~ R, again as in (3). So, 
by the definition of a local ring, (i) is equivalent to (ii). 

(iii)=;,(ii) is also clear since (ii) is the special case of (iii) in which 
A = Z[X] while n = 2, al = X, a2 = 1- X. 
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(ii)=?(iii) Assume that (ii) holds, and suppose given a finitely pre
sented ring A and elements al,' .. ,an E A with L ai = 1. Consider 
first the case n = 2, so that a2 = 1 - al' Form the pushouts of finitely 
presented rings along the map Z[X] ---+ A sending X to aI, as in 

Z[X, Yl!((l- X)· Y - 1) f--( -- Z[X]------» Z[X, Y]/(X· Y -1) 

1 all 1 
A[(l- ad-I] f-( ----- A ------+) A[aI 1], 

giving the indicated ring of quotients A[(l - ad-I] or A[aI 1]. These 
squares are pullbacks in (fp-rings )OP, hence they are sent by the left
exact functor <PR to pullbacks in E, as in 

But by assumption U ---+ R and V ---+ R form an epimorphic family in E, 
and hence so does the pullback of this family. This proves (iii) for the 
case n = 2. 

The general case follows by induction on n. For instance, if n = 3, 
we are given three elements aI, a2, a3 such that al + a2 + a3 = 1 in the 
ring A. Then, by the case n = 2 just proved, <PR sends (the duals of) 
A ---+ A[aI 1] and A ---+ A[(a2 + a3)-I] into an epimorphic family in E. 
Let a2 and a3 denote the images of a2 and a3 under A ---+ A [( a2 + a3) -1]. 
Then the inverse b E A[(a2 + a3)-I] gives (b· a2) + (b· a3) = 1. So by 
the case n = 2 again, the following two arrows in 

A[(a2 + a3)-I] ---+ A[(a2 + a3)-I][(b· a2)-I], 

A[(a2 + a3)-I] ---+ A[(a2 + a3)-I][(b. a3)-I] 

are sent to an epimorphic family in E by the functor <PR. Thus since the 
composition of epimorphic families is epimorphic, we conclude that <PR 
sends the three arrows in (fp-rings) 

(6) 

to an epimorphic family in E. Since A ---+ A[a;l] and A ---+ A[as 1] 

respectively factor through the second and the third arrows in (6), it 
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follows that {A ----> A[a;l] I i = 1,2,3} is also sent to an epimorphic 
family in E. Then induction in this way proves the lemma. 

Now recall from §3(4) of Chapter III that the duals of the cover
ing families in condition (iii) of this lemma form a Grothendieck topol
ogy J on the category (fp-rings )OP. The associated topos of sheaves 
Sh«fp-rings)OP, J) is the Zariski topos Z (over the ground ring k = Z). 
The results of Chapter VII will now yield the following theorem: 

Theorem 3. The Zariski topos Z (over the integers Z) is a classi
fying topos for local rings; i.e., for any cocomplete topos E there is an 
equivalence of categories 

Hom(E, Z) ~ LocRing(E), (7) 

where LocRing(£) is the category of local rings in E. The universal local 
ring is the structure sheaf 0 of the Zariski topos (cf. §III.4). 

Proof: As a special case of Corollary VII.9.4, there is an equiv
alence between Hom(E, Z) and the category of continuous left exact 
functors (fp-rings)OP ----> E. By the results of the previous section to
gether with Lemma 2, this category in turn is equivalent to the full 
subcategory of Ring( E) consisting of local rings. This proves the equiv
alence (7). The identification of the universal local ring proceeds as 
before: it is the object of the topos Z represented by the object Z[X] of 
the site (fp-rings)OP. Since Z[X] is simply the underlying-set functor 
(fp-rings) ----> Sets, this is exactly the structure sheaf 0 discussed in 
Chapter III. 

Notice that the Zariski topos Z is a subtopos of the classifying 
topos Sets(fp-rings) constructed in Theorem 5.2. The "universal mod
els" occurring in Theorem 3 above and in Theorem 5.2 are really 
the same object viewed in different topoi: the underlying-set functor 
R: (fp-rings) ----> Sets is an object of Sets(fp-rings), but also of the 
Zariski topos Z since it is a sheaf for the Grothendieck topology on 
(fp-rings)OP which is used to define the topos Z. But notice that, as an 
object of Sets(fp-rings), the functor R is not a local ring (of course, the 
universal ring is not local). Theorem 3 expresses the fact that Z is the 
largest subtopos of Sets(fp-rings) which turns R into a local ring; or in 
other words, that the Grothendieck topology J defining the topos Z is 
the smallest topology which forces R to be a local ring. At first thought, 
it is perhaps surprising that this "universal" way of making the ring R 
in the topos Sets(fp-rings) into a local ring does not involve changing R, 
but changing the topos in which it lives! 
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7. Simplicial Sets 

In algebraic topology the homology of a space X is often calculated 
by triangulating the space, forming "chains" as linear combinations of 
the resulting simplices (the "triangles") and using the boundary of these 
simplices to define a boundary for each chain and so to supply the homol
ogy groups of the space X. More generally, one may replace the simplices 
of a triangulation of X by all the "singular" simplices of X; that is, all 
the continuous maps T: to. n -+ X of the standard n-simplex to. n into 
X. It is essential that the vertices of to. n are ordered: ° < 1 < ... < n. 
Then the sets 

(1) 

for all n with suitable maps between them form a typical example of a 
simplicial set. We recall the definition from §I.1(10). 

The simplicial category to. is the category with objects all finite 
nonempty ordered sets of the form 

[n] = {0,1,2, ... ,n}, n 2': 0, (2) 

and with morphisms a: [n] -+ [m] all (weakly) increasing functions a, 
so that ° SiS j S n implies a(i) S a(j). One also says that such an a 
is monotonic. 

This category has a geometric interpretation, as follows. Choose for 
each n a "standard" affine n-simplex to. n, with its n + 1 vertices, say 
Vo, ... , Vn , in linear order. Recall that an affine map is defined to be one 
which preserves weighted averages, while every point of to. n is a suitable 
weighted average of its vertices. Hence each morphism a: [n] -+ [m] of 
to. determines a unique affine map to. n -+ to. m; namely, that sending each 
vertex Vi of to. n to the vertex Vai of to. m. This defines a canonical functor 

to.-: to. -+ (Spaces), (3) 

and indicates that the simplicial category to. is (isomorphic to) the cat
egory of standard affine simplices and affine maps. 

Among the affine maps, the ith face map 

i = 0, ... ,n, (4a) 

is that increasing monomorphism ti: [n - 1] -+ [n] which omits (only) 
the vertex i of to. n. The ith degeneracy 

i = 0, ... ,n, (4b) 

is that increasing epimorphism [n+ 1] -+ [n] which collapses (only) i + 1 
to i. One may readily show [CWM, pp. 172-173] that every increasing 
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monomorphism is a composite of E'S and every increasing epimorphism 
is a composite of u's. Hence every increasing 0: is a composite of E'S and 
u's. Thus ~ may be described in terms of "faces" and "degeneracies". 

A simplicial set 8 is a (contravariant) functor 

8: ~op ----+ Sets (5) 

on the category ~. One usually writes 8n for 8[n] and then 0:*: 8 m ----+ 

Sn for the action on 8 of a morphism 0:: [n] ----+ [m] of~. This includes in 
particular the "face" operators di = < and the "degeneracies" Si = u; , 

i = 0, .. . ,n. (6) 

They satisfy exactly the identities already listed in §1.1(16). Indeed, a 
simplicial set 8 can also be described (as in §I.1) as a family of sets 
8 n with operators di and Si as in (6) which satisfy the listed identities 
[II.1.(7)] [CWM, pp. 172-173], [Mac Lane, 1963, pp. 233-234], and 
[May, pp. 1-4]. One often visualizes a simplicial set 8 by the diagrams 
of face and degeneracy operators, 

(7) 

The category (Ssets) of all such functors 8 is the category of simplicial 
sets 

~op 

Ssets = Sets . (8) 

There are non-geometric examples. For instance, every category C 
determines a simplicial set C*, called its nerve, where each 

(n factors) 

is the set of composable strings of n arrows. The face maps are given 
as suitable compositions, while the degeneracies insert identity arrows 
(suggestion: complete this definition). 

Every natural number m gives a representable functor y[m] = 
Homd - , [m]) which is of course a simplicial set. We will need to use 
the case m = 1, to be written 

v = Hom~( -, [1]). (9) 

We outline the role of simplicial sets in homology. The elements of 
Sn are regarded as "n-cells"; an n-chain is a finite linear combination 
of elements Si E 8n with integral coefficients; these n-chains form an 
abelian group Cn. The alternating sum of the induced face operators 
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di : Cn --4 Cn - 1 is the "boundary" homomorphism (take the faces in 
order, with alternating signs) 

n 

a = ~) -l)idi : Cn --4 Cn - 1 , 

i=O 

n= 1, .... (10) 

This is an algebraic translation of the generalized "boundary" of a chain. 
By the identities for di , one has aa = O. Then the usual quotient 
"cycles modulo boundaries" defines the nth integral homology group of 
the simplicial set S as 

For a topological space X, the simplicial set S(X) = S(X) defined in (1) 
is the standard "singular complex" of X; it gives by (11) the classical 
"singular" homology groups of the topological spaces X. In this section, 
we write S(X) to distinguish this from other simplicial sets. An essential 
point of the approach is the use of simplices ~ n with ordered vertices; 
for example, this choice avoids earlier difficulties with the orientation of 
cells. This idea will reappear in the next section, where the category 
Ssets turns out to be the classifying topos for linear orders! 

The simplicial set S(X) also serves to define homology and coho
mology groups of the space X with "coefficients" in any abelian group. 
Simplicial formulas also yield the cup product (the cohomology rings) 
and the Eilenberg-Zilber theorem for the homology of a product of spaces 
(cf. [Massey], [Mac Lane, 1963], etc.). One may also use S(X) to con
struct the homotopy groups and the "homotopy type" of X. Extensive 
use of face and degeneracy operators was required in calculating ho
mology and cohomology of the Eilenberg-MacLane classifying spaces 
K (7f, n). Simplicial constructions are currently extensively used in K
theory and for simplicial sheaves. 

The standard n-simplex ~ n can be described by barycentric coor
dinates of its points or-more conveniently for our purposes-as the 
following subset of the unit n-dimensional cube In with coordinates ti: 

~n = {(h, ... , tn) 10:::; h :::; ... :::; tn :::; 1} ~ r. (12) 

Thus, ~O is a point, ~l is the unit interval I of the reals, ~2 is the 
"upper" triangle with vertices (0,0), (0,1), and (1,1) in the square J2, 
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and so on, as in 

(0,0,1) 

/~ 
(0,1) (1,1) (0,1,1) ---+---- (1,1,1) 

~ / 1/ 
(0,0) -------

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

(0,0,0) 

Thus, the ith vertex Vi of D.n is the point Vi = (0,0, ... ,1, ... ,1) with 
the first n - i coordinates zero. 

The linear order (12) will be used in the next section to construct 
classifying topoi for orders. To do this we need to describe more ex
plicitly the effect of the "standard simplex" functor D.. of (3) on ar
rows. For this, let us write Hom~ ([m], [n]) for the set of those arrows 
u: [m] -> [n] in D. which preserve both bottom and top elements [so 
u(O) = 0; u(m) = n]. There is a bijection 

Hom~([n], [m]) ~ Hom~([m + 1], [n + 1]), 

a f--+ a, 

(13) 

(14) 

where an arrow a: [n] -> [m] on the left of (13) corresponds to an arrow 
u on the right iff, for all 0 ::; i ::; n and all 0 ::; j ::; m + 1, 

j ::; a( i) iff u(j) ::; i. (15) 

This states that the bijection (15) is an adjunction between posets
more specifically, that it is a so-called Galois connection ([CWM, p. 93]). 
This bijection may be stated more explicitly. The "if" of (15) may be 
written as 

u-(i) = a(i) = max{j I u(j)::; i}. (16a) 

There always is at least one such j, to wit, j = o. The "only if" becomes 

_ . . { min{ i I j ::; a(i)} if i exists, 
a(J) = u(J) = 

n + 1 otherwise. 
(16b) 

These suffice to define a = u- from u or u = a from a, establishing 
the bijection. 
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The functor 6.-: 6. -+ (Spaces) then sends each arrow 0:: [n] -+ [m] 
of 6. to that map 6."": 6.n -+ 6.m of standard simplices which takes a 
point t = (t1, ... ,tn) E 6.n to the point 6.""(t) = (6.""(th,···,6.""(t)m) 
of 6. m with jth coordinate, for j = 1, ... , m, described as follows: 

6.""(t)j = { ~ 
t;;(j) 

if a(j) = 0, 

if a(j) = n + 1, 

otherwise. 

(17) 

In particular, one may verify that this 6."" does take the ith vertex 
(0,0, ... , 1, ... ,1) with n - i zeros in 6. n into the 0:( i)th vertex of 6. m; 
it thus has the intended effect upon vertices. 

For a given space X the singular complex SeX) E (Ssets) as defined 
above may now be described by applying the Hom-functor to the map 
6.-: 6. -+ (Spaces); in other words, 

SeX) = Hom(6.-,X). (18) 

On the other hand, each simplicial set 8 has a "geometric realization" , a 
space lSI. The intent is that each 8 E 8m is to be realized by a copy 6.;' 
of the standard m-simplex, with its points labelled as (8, t), for t E 6.m . 

Moreover, the realization 6.;;::;1 of the ith face of 8 is to be "pasted" to 
6.;' by the ith face map fi: 6.m- 1 -+ 6.m. Much the same is to apply 
to degeneracies. Both cases can be combined as follows. Given any 
increasing map 

0:: [n] -+ [m], (19) 

and any 8 E Sm, the copy 6.8("")8 is to be pasted to 6.;' by the continuous 
map 6. "". Thus, take 8m X 6. m, the disjoint union of copies of 6. m indexed 
by 8m , generate there an equivalence relation", by setting 

(8(0:)8, t) '" (8, 6.""(t)), 

for any 8 E Sm and any 0: as in (19), and define the geometric realization 
as the quotient space (in an appropriate category) 

lSI = (U 8m X 6.m )j '" . 
m~O 

Now this amounts exactly to defining the realization lSI as the following 
co equalizer of spaces 

U 6.n ~ U 6.m ---++ \8\ = 8®~6.-, 
8: [n] ..... [m] [m] (20) 

8ESrn sESrn 
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with the familiar maps () and T. But this is a "tensor product", just like 
the tensor product of functors defined by co equalizers in Chapter VII 
[see for example VII.2 (11)], except that the present functors take spaces 
and not sets as values. "Cut and paste" becomes a tensor! 

The usual Hom-tensor adjunction also applies to this context; so 
"singular complex" and "geometric realization" form an adjoint pair of 
functors 

I-I: (Ssets) ~ (Spaces) :S (21) 

with geometric realization I-I left adjoint to S. Moreover, if the geo
metric realization functor 8 f-+ 181 takes values in a category of spaces 
with good exactness properties (say in the category of compactly gener
ated spaces), then this realization functor can be shown to be left exact 
(see, e.g., [Gabriel, Zisman, p. 49-52] or [May, 1972, p. 57] for de
tails). Thus, if we interpret "spaces" as compactly generated spaces, the 
adjoint pair of functors (21) has the formal properties of a geometric 
morphism, except that the category of spaces is of course not a topos. 

8. Simplicial Sets Classify Linear Orders 

To explain how the category of simplicial sets is a classifying topos, 
we will now describe a top os-theoretic variant of "geometric realization" . 
This will apply to "linear orders" I with "bottom and top" -or "orders" 
for short. In the category Sets such an order, of course, is to be a set I 
together with a binary relation R <:: I x I which is a linear order with 
a smallest element b (for "bottom") and a largest element t (for "top") 
where b -=I- t; we may write I = (1, R, b, t) for such an order. Then a 
morphism of orders in Sets is defined to be a function which preserves 
the linear order as well as the bottom and top elements. This defines a 
category (Orders) with objects such linear orders in Sets. 

More generally, in any topos E, one can define an "order" in E to be 
an object I of E, with a subobject R'r-t I x I and two global elements 
b, t: 1 ~ I, all such that the sentence of the Mitchell-Benabou language 
which states that R is a linear order on I with bottom b and top t is 
valid in E. Explicitly, (1, R, b, t) is an order in the topos E, when the 
following sentences are valid in E, where "x :s: y" stands for (x, y) E R: 

(i) 't/x E I(x:S: x), 
(ii) 't/x, y, z E I (x :s: y 1\ Y :s: .z =} x :s: z), 

(iii) V x, Y E I (x :s: y 1\ Y :s: x =} x = y), 
(iv) Vx E I (b :s: x 1\ x :s: t), 
(v) -,(b=t), 

(vi) V x, Y E I (x :s: y V y :s: x). 

An equivalent definition of an order I = (1, R, b, t) in a topos E may be 
given, by spelling out what it means for (i)-(vi) to be valid in E, say by 
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using Kripke-Joyal semantics. To do this, notice first that the subobject 
R>--> I x I defines for each object E of the topos [ a binary relation ::; 
on the set Home (E, I) of arrows E --t I: for two such arrows f and g, 
say that 

f ::; 9 iff (j, g): E --t I x I factors through R. (1) 

Also, by composing with the unique map E --t 1, the arrows b, t: 1 --t I 
yield arrows bE, tE: E --t I. The conditions (i)-(vi) above on (1, R, b, t) 
are now equivalent to the following conditions on arrows f, g, h: E ----> I, 
for each object E E [: 

(i') f::; f; 
(ii') if f ::; 9 and 9 ::; h, then f ::; h; 

(iii') if f ::; 9 and 9 ::; f, then f = g; 
(iv') bE::; f and f ::; tE; 
(v') bE i- tE, unless E is isomorphic to the initial object 0; 

(vi') there are arrows p: C --t E and q: D --t E in [ such that 
(p, q): C + D --t E is epi, while fp::; gp and gq ::; fq. 

Conditions (i')-(v') are the familiar conditions for a partial order (with 
distinct smallest and largest elements) on the set of arrows E --t I. But 
notice that the familiar condition "f ::; 9 or 9 ::; f" for a total order holds 
only on an "epimorphic" cover of E, as in (vi'). We leave the equivalence 
of these conditions with those in (i)-(vi) as an exercise. Readers who 
wish to avoid the Mitchell-Benabou language at this point may take 
these last conditions (i')-(vi') as a definition of an order 1= (1, R, b, t) 
in a topos [. 

These conditions (i')-(vi') can be stated more directly in terms of 
the structures R>--> I x I and b, t: 1:4 I, as follows. 

Lemma 1. The elements (I, R, b, t) form an order in the tapas [ iff 
the following conditions hold: 

(i) the diagonal b..: I --t I x I factors through R >--> I xl; 
(ii) the subobject R * R = (I x R) n (R x 1) <;;; 13 has the property 

(11"1,11"3) 
that R * R >--> 13 l 12 factors through R >--> 12 ; 

(iii) the intersection of R >--> 12 and R >--> 12 ~ 12 is (contained in) the 
diagonal; here T = (7l"2' 7l"d is the twist map; 

(iv) b x I and t x I: 1 x I --t I x I factor through R; 
(v) the diagram 

0 l 1 

1 it 
1 

b 
II 

is a pullback; 
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(vi) the inclusion i: R >-+ 12 and the composition R >-+ 12 ~ 12 to
gether form an epimorphic family in £. 

Proof: The equivalence between (i)-(v) and (i')-(v') is an instance 
of the standard correspondence between a structure on an object 1, and 
a corresponding structure on each hom-set HomE (E, 1), as discussed in 
§IV.8. For example, condition (ii) of the lemma follows from condi
tion (ii') above, by taking E = R * R>-+ 13 , and f, g, h: E -+ 1 to be 
the compositions of the inclusion R * R>-+ 13 with the three projections 
13 -+ 1. And conversely, assume (ii) of the lemma, and suppose given 
f, g, h: E -+ 1 such that both (1,g) and (g,h) factor through R>-+12. 
Then (1, g, h): E -+ 13 factors through 1 x R and through R x 1, hence 
through R * R. Therefore, (1, h) = (1T"l' 1T"3) 0 (1, g, h) factors through R. 

To see that (vi) of the lemma implies (vi'), assume (vi) and suppose 
given f, g: E -+ 1. Let C and D be the pullbacks as in 

C----+) R D----+) R 

I Ii I Ii (2) 

Since (g, f) = TO (1, g), the arrows C -+ E, D -+ E are the pullbacks 
along (1,g) of the epimorphic family in (vi), hence are epimorphic. The 
converse implication (vi')::::}(vi) also readily follows, by taking E = R 

and f, g: E -+ 1 to be the composites R>-+12 ~ 1 (i = 1,2). 

Example 1 (Presheaf Topoi). Consider the presheaf topos 
SetsCOP associated with a small category C. Let 1 be an object of 
Sets cop , let R <;;;; 1 x 1 be a subobject, and let b, t: 1 ~ 1 be two arrows 
in Sets cop. Evaluation of these functors 1 and R at each object C E C 
yields a set 1(C) with a relation R(C) <;;;; 1(C) x 1(C) on this set and two 
elements be, te E 1(C). We claim that (1, R, b, t) is an order in the topos 
SetsCOP iff, for each object C E C, this structure (1(C),R(C),be ,te) 
is an order in Sets. Indeed, this follows from Lemma I, since limits 
and colimits in SetsCOP are computed pointwise (and, in particular, an 
arrow in SetsCOP is epi iff it is pointwise a surjection of sets). 

As a special case, consider as in §7(9), the representable object 

v = y([l]) = Hom( -, [1]) (3) 

t,.0P 
in the topos (Ssets) = Sets . For each n, the Hom-set Vn = 
Homt,.([n]' [1]) is simply the set of increasing sequences (0, ... ,0, 1, ... ,1) 
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of n + 1 numbers, all either ° or 1. This set Vn has an evident "point
wise" linear order, with smallest element bn = (0, ... ,0) and largest 
tn = (1, ... ,1). In other words, Vn for "vertices" is the ordered list of 
vertices of b.n+ l , so has the structure of an "order" in Sets. More
over, this structure is evidently natural in n, in the sense that an arrow 
0:: [n]--+ [m] in b. induces a morphism of orders 0:*: Vm --+ Vn· Thus, V 
for "vertices" is an order in the topos of simplicial sets. We will prove 
below that it is in fact the "universal" order. 

As noted above, one may visualize this simplicial set 

as the ordered list of the n + 2 vertices of the standard (affine) simplex 
b.n+l; then, in particular, the degeneracy maps ofthese (affine) simplices 
induce the face operators on the vertex sets, as in §7(4b) above, by 

i = 0, ... ,no 

Similarly the affine face maps induce the degeneracy operators 

i = 0, ... ,no 

The face and degeneracy identities then hold, so this gives a second 
description of the simplicial structure of V. 

Example 2. Consider the topos Sh(X) of sheaves on a space X. 
The sheaf C(O,l) of germs of continuous functions from X to the unit in
terval, with natural order ::;, satisfies Axioms (i)-(v) for an order-object 
in Sh(X), but not the last Axiom (vi): indeed, given two continuous 
functions f, g: U --+ [0, 1] on an open subset U <,;;: X, there is in general 
no open cover U = V U W such that f ::; g on V and g ::; f on W. How
ever, there is an evident cover of U by closed sets V and W for which this 
holds. Thus, we are led to consider the partial order of all closed subsets 
of X (ordered by inclusion), with the Grothendieck topology J on this 
category given by locally finite covers. This means that a family {F;} of 
closed subsets of a given closed set F defines such a cover {Fd E J(F) 
iff F = U Fi and each point in F has a neighborhood which meets only 
finitely many Fi'S. Then the continuous functions Cont(F, [0, 1]) form a 
sheaf on this site of closed subsets of X, with the natural structure of 
an order (in the topos of all such sheaves on the site of closed subsets of 
[0,1]). 

Having defined orders I = (I, R, b, t) in any topos [;, we define mor
phisms I --+ I' between such orders to be arrows ¢: I --+ I' in [; which 
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respect the order relation as well as the bottom and top elements; i.e., 
as arrows such that there are commutative diagrams 

R ----------, R' 

I I 
I x I -----» I' X I' q,xq, 

I 

/~ 
1 q, 1 

~/ 
I' 

This defines the category "Orders(t')" of orders in the topos t'. 

Lemma 2. Each geometric morphism i: F ---+ t' induces a functor 
f*: Orders( t') ---+ Orders( F) sending an order (I, R, b, t) in t' to the 
order (f*(I), f*(R), f*(b), f*(t)) in:F. 

Proof: We have to show that if (I, R, b, t) is an order in t', then 
f*(I) is an order in F, with order relation f*(R) >--> f*(I x I) ~ f*(I) x 
f*(I) and with bottom- and top-elements f*(b), f*(t): 1 ~ f*(1) ---+ 

f*(I). But this is clear from Lemma 1, since the inverse image f* (being 
a left exact left adjoint) preserves finite limits and arbitrary colimits 
(hence also epimorphic families), and thus f* preserves the conditions 
(i)-(vi) of Lemma 1. 

The standard simplices ~ n were constructed from the linear order 
of the real numbers in Sets. Similarly, an order (I, R, b, t) in a topos t' 
can be used to construct for t' a "standard simplex" functor there, 

~j: ~ ---+ t', (4) 

defined exactly as the standard simplex functor ~.: ~ ---+ (Spaces) 
considered in §7 [ef. (4), (8)]. More precisely, for each n the standard 
n-simplex for the order I is the subobject of the "cube" In 

defined from the relation R as the intersection of the subobjects 

(for k = 0, ... , n - 2). In other words, ~y >--> In is the unique subobject 
with the property that an arrow i = (iI, ... , in): E ---+ In from any 
object E factors through ~y iff iI :s; ... :s; in; or: 
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This defines the functor b.j of (4) on objects. For an arrow a: [n]-+ [m] 
in b., consider the function a: {O, ... , m + I} -+ {O, ... , n + I} as in 
§7(16b), and use it to define a map of "cubes" 

in terms of the m projections 7rj: 1m -+ I as the unique map with 
- b 

7rj 0 10. = 7r;;(j) if 0 < a(j) < n + 1 while 7rj 0 10. = P -+ 1 -+ I if 
- t 

a(j) = 0, and 7rj 0 10. = In -+ 1 -+ I if a(j) = n + 1. Then, since a is 
order-preserving, there is a factorization 

In I a 11m 

1 1 (7) 

b.I -------> b.I !::!J.o. I ' 

as follows readily from (6). This defines b.j: b. -+ £, on arrows; the 
definition is an exact copy of the construction of §7(3), §7(17) for spaces. 

Exactly as for spaces, this functor b. j: b. -+ £, gives rise to an ad
joint pair of functors by the general Hom-tensor adjunction of Theo
rem VI1.2.1 [bis]. The right adjoint is the "singular complex functor", 
S I, formed from the given order I: 

(8) 

defined for any object E E £, and any n ::::: 0 as in §7(18) by 

(9) 

with restriction maps a*: SI(E)m -+ SI(E)n for a: [n] -+ [m] given 
by composition with b.I as just defined in (7). The left adjoint is the 
"geometric realization functor", 

I-II: (Ssets) -+ £, (10) 

defined, for any order I and any simplicial set S, as the tensor product 

(11) 

Lemma 3. Geometric realization is natural in £', in the sense that 
for any order I in a co complete topos £, and for any geometric morphism 
f: F -+ £', there is for any simplicial set S a canonical isomorphism 
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Proof: First, since the inverse image functor 1* preserves limits, 
and hence the monomorphisms (5), and since 1* (1) is an order in :F, 
there is a natural isomorphism 

Furthermore, 1* preserves colimits, and therefore commutes with tensor 
products; so for any simplicial set S there is an isomorphism (natural 
in S) 

These two isomorphisms together yield the isomorphism required in the 
lemma, by the definition (10) of geometric realization. 

The following somewhat involved proposition shows that this adjoint 
pair offunctors (8), (10) constitutes a geometric morphism E --+ (Ssets). 

Proposition 4. For any order I in a cocompJete topos E, the geo
metric realization functor I-II: (Ssets) --+ E is left exact. 

Proof: By Theorem VII.9.1 (flat = filtering), it suffices to show that 
the functor ~j: ~ --+ E is filtering. So we'll check that conditions (i')
(iii') for a filtering functor of Lemma VII.8.3 hold. 

First, since the standard O-simplex ~~ is the terminal object 1 of E, 
condition (i') is clearly satisfied. 

Condition (ii'), "join any two objects" now refers to two objects [m] 
and [n] for the functor ~. and requires the join of any two generalized 
elements F and G of ~j( - ), given as maps 

Am F EGAn 
til +--- ---t til' 

from an object E E E. By the definition (6) of these arrows, F = 
(h, ... ,lm) and G = (91,···,9n), where Ii, 9j are arrows E --+ I in E 
such that h ::; ... ::; 1m and 91 ::; ... ::; 9n· Together they give an arrow 
(F, G): E --+ Im+n. To factor this through ~I(m + n) as in (6) we now 
have to interchange some of the Ii's and 91'S so as to put them back in 
the "right" order. Thus if we know that 9 ::; I we switch (f, 9) to (9, f) 
and so on to give a permuted sequence 

(12) 

of functions h: E --+ I with hI ::; ... ::; hn +m . We write 

9j = hv(j), i = 1, ... , m; j = 1, ... n. (13) 

Here the permutation is for convenience represented by functions 

u: [m] --+ [m + n], v: [n] --+ [m + n], (14) 
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where for later use we have also set u(O) = 0 and v(O) = O. 
But, hold on, we may not know that g :::; f! Condition (vi') states 

only that there is an epimorphic pair p: C ----> E, q: D ----> E such that 
gp :::; fp on C, while the opposite, fp :::; gq, holds in D. Iterating this 
for all pairs (f, g) will yield a finite epimorphic family 

so that we know the "right" order of all the composites fiPt;, gjPt;· For 
each ~ we now have the equations (12), (13), and (14) above, where u, 
v and h now depend on ~, while h: Et; ----> I and fi and gj in (13) are 
replaced by fi 0 Pt;, gj 0 Pt;· Now hI :::; ... :::; hn+rn holds in Hom(Et;, I), 
so these arrows collectively determine 

The arrow u = Ut; of (14) may be regarded as an arrow [m + 1] ----> 

[m + n + 1] sending m + 1 to m + n + 1; then it lies in the set Hom* 
defined in §7(13). Thus, u- = U for each ~, and similarly for v. Now 
the equations (13) just above yield the commutative diagram 

~j[m + n] _ )_~j[m] x ~j[n]. 
(Ll. u

, ,Ll. v ') 

Since the family Pt; is epimorphic, this is exactly the condition (ii') of 
Lemma VII.S.3-the condition "joining" by H the two given generalized 
elements F and G. 

Finally, for condition (iii'), "equalize any two parallel arrows" , sup
pose given arrows D, 13: [n] ----> [m] in~. Consider all F: E ----> ~j[n] 

in C, such that ~'f 0 F = ~~ 0 F. We are required to find a "cover" 
of E; now E = 0 is covered by the empty family, so we can assume 
that E '1- O. As in (6), F can be identified with a sequence of arrows 
fi: E ----> I, (i = 1, ... , n), for which it :::; ... :::; fn. Consider the 
functions a, 13: [m + 1] ----> [n + 1] leaving 0 fixed and sending m + 1 
to n + 1, corresponding to D, 13 as in §7(14) above. Then if we write 
fo = bE, fn+! = tE: E ----> 1 ----> I, for convenience, the assumed equality 
~ 'f 0 F = ~~ 0 F means that f;;(j) = f(3(j) for each j = 0, ... , m + 1. 

Thus if i E [n + 1] is such that a(j) :::; i :::; 13(j), or 13(j) :::; i :::; a(j), one 
must have 

(15) 
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by Axiom (iii') for orders. Now consider the finite linear order ob
tained from [n + 1] = {O, ... ,n + 1} by collapsing each of the intervals 
[a(j),,6(j)], or [,6(j),a(j)], to a point. This yields a new finite linear 
order L with an order-preserving quotient map 

7T: [n + 1] ---> L, 

such that 7Ta = 7T,6. Moreover, F yields the sequence of arrows (bE = 
fo, iI,···, fn, fn+l = tE), while each fi: E ---> I. This may be viewed as 
an order-preserving function f: [n + 1] ---> [(E, I), which by (15) must 
factor through the collapsed interval L by a map 9, as in the commutative 
diagram 

[m+1]~[n+1]~L 
~(3 / 

~ k //g (16) 

[(E,I). 

Notice that since E cp ° and since f factors through 7T: [n + 1]-* L, 
the order L must have at least two distinct points; for otherwise bE = 
fo = fn+l = tE, contradicting the axiom ....,(b = t) for orders. Thus, 
up to isomorphism, the linear order L must be of the form [£ + 1] = 
{ 0, ... ,£ + 1} for some integer £ 2': 0, so (16) yields a commutative 
diagram in [, 

E 

where 7T-: [£]---> [n] corresponds to 7T: [n+ 1] ---> [£+ 1] ~ L as in §7(14). 
In other words, 7T- serves to "equalize" the arrows given by a and {3, 
so that condition (iii') for a filtering functor is satisfied. This completes 
the proof of the proposition. 

Theorem 5. The topos (Ssets) of simplicial sets is a classifying 
topos for orders, with universal order V = Rombo ( - , [1]). More explic
itly, for any cocomplete topos [ there is an equivalence of categories 

Orders(£) ---> Rom(£, (Ssets)). 

This equivalence associates with an order I = (I, R, b, t) E [ the geomet
ric morphism £ ---> (Ssets) whose inverse image functor is the geometric 
realization functor I - I I: (Ssets) ---> £, while the direct image functor is 
the singular complex functor S I· 
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Proof: The representable object V is an order in (Ssets), as pointed 
out in Example 1 above. By Lemma 2, each geometric morphism f: E ----> 

(Ssets) yields an order f*V in E. Moreover, one readily sees that for two 
such geometric morphisms f and g, any natural transformation a: f* ----> 

g* yields a morphism of orders av: f* (I) ----> g* (1). Thus, one obtains a 
functor 

f 1-+ f*V, Hom(E, (Ssets)) ----> Orders(E). (17) 

In the other direction, an order I in a topos E yields a geometric mor
phism, call it RealI: E ----> (Ssets), as in the statement of the theorem: 
the inverse image functor Real; is the functor I-II, geometric realiza
tion w.r.t. I [ef. (10), (11)]; while the direct image functor (RealI)* is 
the singular complex functor, as in (8) and (9). This indeed defines a 
geometric morphism since realization is left exact (Proposition 4). No
tice also that a morphism of orders I ----> I' in E induces first a natural 
transformation ~j ----> ~j, between the corresponding functors ~ ----> E, 
and then, by functorality of the tensor product, a natural transformation 
RealI ----> RealI ' . Thus one obtains a functor 

Real: Orders(E) ----> Hom(E, (Ssets)). (18) 

We now show that these two functors (17) and (18) are mutually 
inverse, up to a natural isomorphism, and this for any order I in E. 
This will use a standard property of the tensor product-"the tensor 
product with the ground ring is the identity". More specifically, as in 
§VII. 7( 4), this states that the tensor product with Yoneda amounts to 
evaluation: 

y(C) 0 A ~ A(C). 

Now the given order I is by (5) the standard I-simplex of E, so that the 
functor ~j takes [1] E ~ to I. Moreover y[l] is by (3) of Example 1 the 
linear order V of (3) in Ssets. Therefore 

I = ~j([I]) ~ y[I]0ll ~j = V 0 ~j, 

so by the definition of the geometrical realization functor 

I ~ V 0 ~j = IVII = Real;(V). 

This shows that starting with an order I in E and producing first a 
geometric morphism by (18) and then a new order E by (17) gives back 
the same order I, up to isomorphism. 

For the other composite of (17) and (18) we use the isomorphism 

s: ~op ----> Sets (19) 
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for any simplicial set 8, with y the Yoneda embedding. For recall from 
Chapter VII that geometric morphisms f: £ ----t SetsCOP correspond to 
flat functors A: C ----t £ into any co complete top os £. Specifically, given 
such an f, the corresponding flat functor A is 

cop 
j* 0 y: C ----t Sets ----t £, 

while given an A, the inverse image functor 1* is the tensor product 
- ®c A. In pa:o-' '~ular, the identity geometric morphism SetsCOP ----t 

cop cop 
Sets corresponds to a Yoneda embedding y: C ----t Sets . There-
fore, for any presheaf R on C 

R = (id)* R ~ R®c y. 

This yields (19) for C = ~. 
Now return to the "other way around" in composing (17) and (18). 

We claim that in (19) the Yoneda embedding y is itself of the form of a 
"standard simplex" functor ~I: ~ ----t £ for the particular order I = V
as will be proved (Lemma 6 below) from the explicit description of V. 
Hence (19) with C = ~ becomes 

Therefore, by naturality of realization (Lemma 3), for any geometric 
f: £ ----t Ssets 

j*(8) ~ j*(18Iv) 

~ 18 If*(V)' 

This isomorphism is natural in the simplicial set 8, hence yields an 
isomorphism of geometric morphisms Realf*(V) ~ f. This shows that 
the functors (17) and (18) are mutually inverse up LO isomorphism; hence 
constitute an equivalence of categories. By Lemma 3, this equivalence is 
natural in £, so the following lemma finally completes the proof of the 
theorem: 

Lemma 6. If for lone takes the order V in the topos (Ssets), the 
standard simplex functor ~j: ~ ----t (Ssets) is naturally isomorphic to 
the Yoneda embedding. 

Proof: Recall that the simplicial set of "vertices" V: ~ op ----t Sets 
is the representable presheaf given for each n by 
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with its natural ("pointwise") linear order, as in Example 1 above. Un
der the bijection §7(12), there is thus an isomorphism, natural in n: 

Vn ~ Hom:;' ([2], [n + 1]) 
~ {O, ... , n + I}, 

(20) 

the latter isomorphism because an arrow u: [2] ---t [n+l] which preserves 
top and bottom is determined by its value u(l) E {O, ... ,n + I}. Thus, 
for the simplicial set ~ I = ~v, the isomorphism Vn ~ {O, ... , n + 1 } 
of (20) yields an isomorphism 

(~v)n = {(Xl, ... ,Xm ) I Xi E Vn and Xl::::; ... ::::; x m }, 

(via (20):) ~ {(Xl' ... ' Xm) I 0 ::::; Xl ::::; ... ::::; Xm ::::; n + I} 

~ Hom:;' ([m + 1], [n + 1]), 

(by §7(13):) ~ Hom.6.([n], [m]) 

= y[mJn. 

These isomorphisms are natural in m and n hence show that ~v ~ y[m] 
as simplicial sets, natural in n, or ~v ~ y: ~ ---t (Ssets), as asserted in 
the lemma. 

Exercises 

1. A subobject A ~ E in a topos E is called complemented if 
A V (--,A) = E (as subobjects of E). Prove that the topos 
Sets x Sets = Sets/ { 0, I} classifies complemented subobjects 
of the terminal object; i.e., that for any co complete topos, geo
metric morphisms E ---t Sets/ {O, 1 } correspond to complemented 
subobjects A ~ 1 in E. 

2. (a) The Sierpinski space ~ is the topological space with two 
points 0 and I, where {I} is open, but {O} is not. Show 
that for any topological space X, continuous maps X ---t ~ 

corr~spond to open subsets of X. 
(b) More generally, show that the topos Sh(~) of sheaves on 

the Sierpinski space classifies subobjects of I, in the sense 
that for any co complete topos E, there is a natural equiv
alence Hom(E, Sh(~)) ~ SUbc(I). 

3. Let G be a fixed group (in Sets). 

(a) Prove that any morphism of G-torsors f: T ---t T' in Sets 
is an isomorphism. 
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(b) Generalize (a) by replacing Sets with an arbitrary co com
plete topos. [Hint: one way to do this is to imitate an 
argument for Part (a) using generalized elements as well 

as the isomorphism llgEG T ~ TxT of §2(21).] 

4. By applying Lemma 4.2, give an explicit description of the quasi
inverse CE: £ --+ Hom(£,S[U]) for the functor (10) of Theo
rem 4.3. 

5. In §5 we have constructed a classifying topos R for rings. Show 
that R is unique, in the sense that any other topos R' for which 
there is a natural equivalence Hom(£, R') ~ Ring(£) as in §5(3) 
must be equivalent to R. (See Chapter X, Exercise 2 for a more 
general statement.) 

6. Let X be any object in a topos £, and let £ / X -7 £ be the 
canonical geometric morphism. Show that for any other topos 
f: F --+ £ over £, geometric morphisms F --+ £ / X over £ cor
respond to global sections 1 --+ f* (X). State and prove this 
correspondence in terms of an equivalence of categories. (One 
says: "£ / X classifies global sections of X, relative to £" .) 

Let I be the category of finite sets and monomorphisms, as in §III.9, 
and let J be the atomic topology on lOP (every nonempty sieve is a 
cover for J). Recall from §III.9 that the topos Sh(lOP, J) of sheaves is 
(equivalent to) the topos B(Aut(N)) of continuous Aut(N)-sets. In the 
following three exercises, we will investigate this topos as a classifying 
topos. 

7. (a) For each set S and each object K ofI, let Ms(K) be the set 
of monomorphisms K --+ S. Show that this defines a flat 
functor Ms: I --+ Sets, and hence (by the results of Chap
ter VII) a point ms: Sets --+ SetsI of the topos SetsI . 

Show that this in fact yields an equivalence of categories 

m: M ~ Hom(Sets,SetsI ), where M is the category of 
sets and monomorphisms. 

(b) Show that the functor Ms: rap --+ Sets is continu
ous for the atomic topology J iff S is infinite, so th~t 

m restricts to an equivalence of categories m: Moo ---* 

Hom(Sets, Sh(lOP, J)), where Moo is the category of infi
nite sets and monomorphisms. 
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8. Let £ be a cocomplete topos with the associated geometric mor
phism T £ ~ Sets [so that I'*(A) 9,! UaEA 1 for any set A]. An 
object S of E is said to be decidable if the diagonal I1s >-> S x S 
is a complemented subobject [i.e., S x S = I1s V ·(l1s) holds in 
the lattice of subobjects of S x S]. 

(a) Show that S is decidable iff for any pair of arrows f, 
g: E ~ S there is a (finite) epimorphic family Pi: Ei ~ E 
such that, for each i, either fpi = gPi or the equalizer of 
fPi and gPi is zero (the initial object). 

(b) Show that if M: lOP ~ £ is a flat functor then S = M(l) 
is a decidable object. 

(c) For an object S of £, let Ms: lOP ~ £ be the functor 
defined by 

Ms(K) = Mono(!'*(K),S), 

the object of monos 1'* (K) ~ S. [Thus, for each object 
E E £, an arrow E ~ Ms(K) is the same thing as a 
mono (a, 1[2): I'*(K) x E ~ S x E in £ / E.] Show that 
the functor Ms is flat whenever S is a decidable object. 

(d) Show that (b) and (c) yield an equivalence of categories 
between Hom(£, Setsl ) and the full subcategory of £ con
sisting of decidable objects. (Thus, Setsl classifies decid
able objects.) 

9. Call an object S of £ infinite if, given any object E E £ and 
n arrows (generalized elements) h, ... , f n: E ~ S, there is 
an epi p: E' --+> E and an arrow g: E' ~ S such that for each 
i = 1, ... ,n, the arrows 9 and fi op have equalizer zero. Using the 
previous exercise, show that there is an equivalence of categories 

lOP 
between Hom(£, Sets ) and the full subcategory of £ consist-
ing of infinite decidable objects. [Thus Sh(JDP, J) = B(Aut(N)) 
classifies infinite decidable objects.] 

10. Let 2N be the Cantor space, with (product) topology given by ba
sic open sets Vu = {x E 2N I xCi) = u(i) for 0 :::; i < n}, for each 
n ~ 0 and each finite binary sequence u = (u(O), ... , u(n - 1)). 
Let Sh(2N) be the topos of sheaves on the Cantor space. This ex
ercise is to show that Sh(2N) classifies arrows N ~ 2 = {O, 1 }, in 
the sense that for any co complete topos £, there is an equivalence 
of (discrete) categories 

where 1': £ ~ Sets is the canonical geometric morphism. 



Exercises 471 

(a) Write O(2N) for the complete Heyting algebra of open 
subsets of 2N, with the sup-topology; this is a site for 
Sh(2N). Show that the continuous left exact functors 
A: O(2N) --- £, into a cocomplete topos £, are exactly the 
functors A: O(2N) ___ Subc:(l) which preserve finite meets 
and arbitrary sups. Conclude that such functors A are 
determined by their values A(Vu) on all basic open sets 
Vu. 

(b) Show that such functors A: O(2N) --- SUbc:(l), preserving 
finite meets and arbitrary sups, correspond to sequences 
Ai (i = 0,1,2, ... ) of complemented subobjects Ai ~ 1 in 
£', as in Exercise 1. [Hint: given A, define Ai = A( {x E 
2N I x (i) = 0 } ); conversely, given the Ai, define A on each 
basic open set V, by A(v' ) = (A(u(O)) 1\ ... 1\ A(u(n-l))) 

u u 0 n-l' 

where A~k) = Ai if k = 0 and A~k) = -,Ai if k = 1.] 
(c) Show that such sequences {Ai} of complemented subob

jects correspond to arrows ,*(N) --- ,*(2) in £', and con
clude that there is an equivalence as stated in (*) above. 



IX 
Localic Topoi 

Among the Grothendieck topoi those of the form Sh(8) for some 
topological space 8 playa special (and motivating) role. In this chapter 
we consider a related class of topoi-those of the sheaves on a so-called 
"locale". In the case of a topological space 8, a sheaf is a suitable functor 
on the lattice 0(8) of open sets of 8, where the lattice order is defined 
by the inclusion relation between open sets. Thus the notion of a sheaf 
can be explained just in terms of the open sets of 8, without any use 
of its points. Any suitable such lattice (one which is complete, with an 
infinite distributive law) may be taken as defining a modified sort of 
topological space, a so-called "locale". The beginning sections of this 
chapter provide an introduction to the study of such locales, motivated 
by the topological examples. It will turn out that a topological space is 
essentially determined by its lattice of open sets when that space 8 has 
the property of "sobriety", but, beyond that point, spaces and locales 
diverge. 

Any continuous map 8 ---+ T of spaces factors as a surjection fol
lowed by an embedding (of a subspace into T). A corresponding but 
more subtle factorization holds for maps of locales; for this purpose 
(§3), a sublocale is described by an operator called a "nucleus", closely 
resembling a Lawvere-Tierney topology. 

A "localic" topos is one consisting of the sheaves on a locale. 
These topoi have a number of special properties. For example, any 
Grothendieck topos has such a localic reflection (§5). For topologi
cal spaces, one often studies those continuous maps 8 ---+ T which are 
"open". The open maps of locales and of topoi are defined in a related 
way (§6), in terms of the effect of a geometric morphism on subobject 
lattices and the corresponding left adjoint. 

For Grothendieck topoi, a functor between sites which "preserves 
covers" in a suitable sense can be used to construct an open geometric 
morphism of topoi. Next, the theorems of Barr and Diaconescu show 
that any Grothendieck topos is the image of a surjective geometric mor
phism from sheaves on a Boolean algebra or on a locale. A comparison 
of Barr's theorem with the Stone space of a Boolean algebra (§10) will 
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serve to prove Deligne's theorem (§11), stating that a coherent topos has 
"enough" points. 

1. Locales 

For a topological space S, the partially ordered set O(S) of all open 
subsets U ~ S is a lattice A with all finite meets and all joins (finite or 
infinite); moreover, this lattice A satisfies the infinite distributive law 

(1) 

for any element U in A and any family of elements Vi in A. Indeed, this 
identity (1) is immediate from the fact that finite meet 1\ and supremum 
Vi in A = O(S) are given by set-theoretic intersection and union. Ac
tually the lattice A = O(S) also has infinite meets, where the infinite 
meet /\ Vi is the sup of all those open sets U with U ~ Vi for all i, but 
this infinite meet is usually not the set-theoretic intersection of the Vi. 
[Moreover, the dual infinite distributive law U V /\ Vi = /\(U V Vi) need 
not hold for the lattice operations on the open subsets of the space S; 
cf. Exercise 1.] 

Any lattice A with all finite meets and all joins (finite and infinite) 
which satisfies the infinite distributive law (1) will be called a frame, 
while a morphism of frames <I>: B ---t A is defined to be a map of partially 
ordered sets which preserves both finite meets and infinite joins. Notice 
that any frame has a largest element 1 (the empty meet) and a smallest 
element 0 (the empty join); thus a morphism <I>: B ---t A of frames 
satisfies 

<I>(O) = 0, <I>(1) = 1, <I>(U I\V) = <I>(U)I\<I>(V), <I>(V Ui ) = V <I> (Ui ) , 

(2) 
for all elements Ui , U, and V of B. 

This definition of a morphism between frames is again modeled on 
properties of open subsets of a topological space: if f: S ---t T is a con
tinuous function between spaces, then the inverse image f- 1 : O(T) ---t 

O(S) (note the opposite direction!) is a morphism of frames. We remark 
that infinite meets do exist in any frame, but a morphism of frames is 
not required to preserve these infinite meets. [In fact, for spaces Sand 
T the morphism f- 1 : O(T) ---t O(S) need not preserve infinite meets, 
Exercise 1.] 

Lemma 1. A morphism <I>: B ---t A of frames considered as a map 
of posets has a right adjoint \II: A ---t B. 
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Proof: If there is such a right adjoint 'lI it must satisfy the definition 
of adjunction for all U E A and V E B: 

V :::; 'lI(U) iff cI>(V) :::; U. (3) 

This suggests that 'lI might be defined as 

'lI(U) = V {V E B I cI>(V) :::; U}; (4) 

this indeed satisfies (3) since cI> preserves all suprema. 

Notice that'll, as a right adjoint, preserves all meets: 

For a continuous map of topological spaces I: 8 -> T, the right 
adjoint to the frame-map 1-1 : OCT) -> 0(8) is denoted by 1*; it sends 
an open set U of 8 to the largest open set V = I*U of T such that 
1-1V:::; U, as in 

(4a) 

Notice that 1* need not be a morphism of frames (Exercise 1). 
As implied in the introduction, we wish to think of frames as general

ized spaces (geometry) rather than as special kinds of lattices (algebra). 
Therefore, we introduce the category of locales, defined to be the oppo
site of the category of frames: 

(Locales) = (Frames )OP. (5) 

In other words, a locale--i.e., an object of the category of locales
is the same thing as a frame, but an arrow between locales is a mor
phism between frames in the opposite direction. We denote locales by 
X, Y, Z,··· , and the corresponding frames by O(X), O(Y),.. .. This 
will make it clear whether we wish to think of a given object as sitting 
in the category of locales or in that of frames; this notation also em
phasizes the topological intuition behind frames and locales. Similarly, 
if I: X -> Y is a map of locales, the corresponding frame map is de
noted by 1-1 : O(Y) -> O(X) and its right adjoint (as in Lemma 1) by 
1* : O(X) -> O(Y). Thus in (6) below, the left and the right columns 
present the same data viewed in different categories: 

Locales Frames 

I: X -> Y 1-1 : O(Y) -> O(X) 
(6) 
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There is an obvious covariant functor "Loc" from topological spaces 
to locales: 

Loc: (Spaces) -+ (Locales), O(Loc(T)) = O(T); 
def 

(7) 

thus, for a topological space T, the locale Loc(T) of this space is given 
by the frame consisting of open subsets of T. For a map I: S -+ T of 
spaces, the locale-map Loc(f): Loc(S) -+ Loc(T) is given by the frame 
morphism 1-1: O(T) -+ O(S). 

It will turn out that this functor Loc has a right adjoint, sending 
each locale X to the "space" of its "points". However, this will not 
make (7) an equivalence of categories; for example, some spaces Scan 
not be recovered from their open sets (distinct points s i- t may belong 
to the same open sets). In §3 we will show that the functor Loc can 
be "cut down" to an equivalence of suitable subcategories; in the next 
section we will construct the "points" of a locale. 

Also, observe that a frame A is the same thing as a complete Heyting 
algebra (cHa). Indeed, much as §1.8, one can define implication and 
negation operators for elements U and V of any frame A, by setting 

thus 

U,* V = V {W E A I W 1\ U <5. V}, 

-,U = (U '* 0); 

W <5. (U '* V) iff W 1\ U <5. V, 
W <5. -,U iff W 1\ U = o. 

(8) 
(9) 

However, a morphism of frames is not required to preserve these Heyting 
algebra operations; in fact if I: S -+ T is a continuous map of topological 
spaces, I need not preserve '* or -, (Exercise 1). 

2. Points and Sober Spaces 

The one-point space is the terminal object in the category of topo
logical spaces, and a point of a topological space S is the same thing 
as a (continuous) map from the one-point space into S. Analogously, 
we define a point of a locale X to be a map of locales 1 -+ X, where 1 
denotes the terminal object in the category of locales. 

This can be formulated equivalently in terms of frames, as follows. 
The initial frame is the frame {O, 1 }, consisting of only a bottom element 
o and a top element 1. Indeed, if A is any other frame, there is evidently 
exactly one frame morphism {O, 1 } -+ A, and this morphism preserves 
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bottom and top. Thus, a point p: 1 ----. X of a locale X is the same thing 
as a frame morphism to the initial frame 

p-l: O(X) ----. {O, 1 }. (1) 

The map p-l can be conveniently presented in terms of its kernel K = 
{U I p-l(U) = O}, a subset of X with the following properties 

1 ¢. K, } 
iff U E K or V E K, 

iff Ui E K for all i. 

(2) 

Indeed, these three conditions simply state that p-l: O(X) ----. {O, 1 } 
preserves finite meets (Le., the empty meet and binary meets) as well 
as arbitrary joins, as in the definition of a frame-morphism. Conversely, 
any subset K ~ O(X) satisfying the conditions (2) determines a frame 
map p-l: O(X) ----. {0,1} by p-l(U) = ° if U E K, p-l(U) = 1 if 
U ¢. K, and hence a map 1 ----. X of locales; that is, a point of X. 

In turn, a subset K ~ O(X) satisfying (2) yields an element P of 
O(X), as follows 

P = V K = ( V U) E O(X). 
UEK 

By the third condition in (2), each U E O(X) has U ::; P iff U E K; 
that is, K = 1 ( P) is the downward closure of P. Consequently, the 
first two conditions on K can be translated into conditions on P: 

(3) 

An element P E O(X) satisfying the second condition of (3) is sometimes 
called a prime element of the frame O(X), and a proper prime element 
if also 1 i- P. Thus we have shown: 

Lemma 1. The points of a locale X may be described in any of the 
following three equivalent ways: 

(i) as maps of locales p: 1 ----. X; i.e., as frame morphisms 
p-l: O(X) ----. {O, 1 }; 

(ii) as subsets K ~ O(X) satisfying the three conditions of (2); 
(iii) as proper prime elements P E O(X); i.e., as elements P satisfying 

(3). 

The following identities serve to pass from one description to an equiv
alent one: 

P=VK; K=l(p)· 
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If S is a topological space, an actual point s E S determines an 
evident "point" of the corresponding locale Loc(S). This point can be 
described variously as a proper prime element S - {s} of 0 ( S), or as 
a subset Ks = {U E O(S) I s tJ. U} of O(S), or as a locale-map 
Ps: 1 -+ Loc(S), that is, as a frame map p;l : O(S) -+ {O, 1 } with 

Ps: 1 -+ Loc(S), (4) 

The space S is called sober when this map yields a bijection between 
the points s of the space S and the points p of the locale Loc( S). In 
terms of proper prime elements, this is 

Definition 2. A topological space S is said to be sober iff for any 
open subset P E O(S) such that 

(i) P =1= S, 
(ii) un V <:;;; P,* U <:;;; P or V <:;;; P (all open U, V <:;;; S), 

there is a unique point s E S with P = S - {s}. 

This definition is often phrased in terms of closed sets: a closed 
subset F <:;;; S is called irreducible if it can not be written as the union of 
two smaller closed subsets; that is, whenever Fl and F2 are closed sets 
with F = Fl U F2, then Fl = F or F2 = F. Clearly, if s is a point of S, 
then {s} is an irreducible closed set. Thus S is sober iff every nonempty 
irreducible closed set is the closure of a unique point [for observe that 
for any open set P <:;;; S and its closed complement F = S - P, the set 
P is proper prime, as in (i) and (ii), iff F is nonempty and irreducible]. 

The condition of sobriety relates to more familiar conditions: 

Theorem 3. Any Hausdorff space S is sober; any sober space is To. 

Proof: Consider the mapping s f--' {s} from points of S to irre-
ducible closed nonempty subsets of S. By the definition of sobriety, S 
is sober iff this mapping is a bijection. Clearly it is injective iff S is To. 
Also, if S is Hausdorff and F is nonempty, irreducible, and closed, then 
F must be a singleton subset of S. Indeed, if x, y E F were distinct 
points in F, then by choosing disjoint open neighborhoods Ux and Uy 

in X, we find F = (F - Ux ) U (F - Uy ), contradicting the irreducibility 
of F. 

For the relation between sobriety and the T1-axiom ("points are 
closed"), see Exercise 2. 

3. Spaces from Locales 

The previous sections have shown how each topological space S gives 
rise to a locale Loc(S) for which the corresponding frame O(Loc(S)) is 
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simply the frame (1.7) of all open subsets of S. This section considers 
the reverse process of obtaining a topological space from a locale. 

Given a locale X, write pt(X) for the set of points of X; that is, 
the set of locale maps p: 1 ---- X. This set of points carries a natural 
topology for which the open sets are the sets of the form 

pt(U) = {p E pt(X) I p-l(U) = I} ~ pt(X) (1) 

for some U E VeX). The subsets of pt(X) of this form do indeed 
constitute the open sets of a topology since, for U, V, Ui E V(X), the 
identities 

pt(U 1\ V) = pt(U) n Pt(V),} 

pt(V Ui ) = U pt(Ui) 
(2) 

hold, while for the top element Ix E VeX) clearly pt(lx) is the 
set of all points. The identities in (2) are a direct reflection of the 
fact that any point p: 1 ---- X is defined to be a morphism of frames 
p-l: VeX) ____ {O, 1 } and so commutes with finite meets and arbitrary 
sups. For example, the second identity in (2) holds since, for any such 
point p, one has p E pt(V Ui ) iff p-l (V Ui ) = 1 iff V p-l (Ui ) = I, and 
this is the case in the lattice {O, I} iff p-l(Ui ) = 1 for some i; that is, iff 
p E pt(Ui ) for some i. This shows for each locale X that the set pt(X) 
of its points is a topological space in a natural way. 

Observe also that a map of locales f: X ---- Y induces a function 
pt(f) from points of X to points of Y, simply by composition: 

pt(f): (p: 1 ---- X) 1-+ (f 0 p: 1 ---- X ---- Y). (3) 

This function is continuous for the topologies (1) on pt(X) and pt(Y); 
indeed, the inverse image of an open set pt(V) ~ pt(Y), where V E 
V(Y), is open in pt(X), as follows from the readily verified identity 

(4) 

Thus, these definitions constitute a functor 

pt: (Locales) ---- (Spaces). (5) 

Here is the essential property of this functor: 

Theorem 1. The functor pt: (Locales) ---- (Spaces) is right ad
joint to the functor Loc: (Spaces) ---- (Locales). 



3. Spaces from Locales 479 

Proof: For a topological space S and a locale X, the bijective corre
spondence between continuous functions g: S ~ pt(X) and locale maps 
I: Loc(S) ~ X, i.e., frame morphisms 1-1: O(X) ~ O(S), is described 
explicitly as follows. Given g we define 1-1 for each V E O(X) by 

rl(V) = {s E S I g(s)-l(V) = I} 

= g-l(pt(V)). 

This 1-1 is a frame morphism, because V f---> pt(V) sends finite meets 
and arbitrary sups in O(X) to finite intersections and arbitrary unions of 
open sets in pt(X) by (2), and these are in turn preserved by g-l because 
g is continuous. Conversely, given a locale map I: Loc( S) ~ X, define a 
function g: S ~ pt(X) as follows. For a point s E S, let g(s): 1 ~ X be 
the locale map given for V E O(X) by g(S)-l(V) = 1 if s E 1-1 (V), and 
g(S)-l(V) = 0 otherwise. This yields a continuous map g: S ~ pt(X), 
since the inverse image of an open set pt(V) under g is g-l pt(V) = 
{s E S I g(s) E pt(V)} = {s E S I g(s)-l(V) = I} = I-l(V), which is 
an open subset of S. It is now a straightforward matter of spelling out 
the definitions to verify that these operations g f---> I and I f---> g are mu
tually inverse bijections Hom(S, pt(X)) += Hom(Loc(S) , X). Since these 
bijections are natural, this proves the theorem. 

Next consider the unit and the counit of this adjunction. For a 
topological space S, the unit 

'T]: S ~ ptLoc(S) 

is the obvious map sending an element s E S (an "actual" point of S) 
to the corresponding point 'T]( s) = Ps: 1 ~ Loc( S) of the locale Loc( S), 
as described in (4) of the previous section. 

Proposition 2. For any topological space S, the following are 
equivalent: 

(i) S is sober; 
(ii) the unit of the adjunction 'T]: S ~ pt Loc( S) is a homeomorphism; 

(iii) there is a homeomorphism S ~ pt(X) for some locale X. 

Proof: (i)=;.Cii) By the remark before the definition, S is sober iff 
'T]: S ~ pt Loc( S) is a bijection of sets. But each open subset U c;;;; 

S is also an element of O(Loc(S)), hence gives an open set pt(U) C;;;; 

pt(Loc(S)), and 'T](s) E pt(U) iff 'T](S)-l(U) = 1 iff s E U. So if'T] is a 
bijection of sets, then 'T] is not only continuous but also an open map, 
since pt(U) is the image of U under 'T]. Thus 'T]-l is continuous and hence 
the bijection 'T] is a homeomorphism. 

(ii)=}(iii) is immediate. 
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(iii)=}(i) Let X be any locale. We need to show that its space of 
points pt(X) is sober. By definition, the open subsets of pt(X) are 
precisely the subsets ofthe form pt(V), where V E O(X). Suppose such 
an open subset pt(P), where P E O(X), is proper prime and so satisfies 

(a) pt(P) -1= pt(X), 
(b) for any U, V E O(X), 

pt(U) n pt(V) <:: pt(P) =} pt(U) <:: pt(P) or pt(V) <:: pt(P), 

as in Definition 2.2. We have to show that there exists a unique point 
¢: 1 --+ X of X such that pt(P) = pt(X) - {¢ }. This identity for ¢ 
means that an open subset of pt(X) is contained in pt(P) iff it does not 
contain the point ¢; in other words, for any V E O(X) we must have 

pt(V) <:: pt(P) iff ¢-1(V) = O. (6) 

Clearly, there can be at most one frame-morphism ¢-l : O(X) --+ {O, 1 } 
which satisfies (6). To see that there is at least one, regard (6) for each 
V as defining a function ¢-l: O(X) --+ {O, I}, and check that it is a 
morphism of frames. Indeed, for the top element 1 of O(X) we have 
pt(l) r£. pt(P) by (a) above, so ¢-l(l) = 1. Moreover, for any two el
ements U, V E O(X) one has by (2) that pt(U 1\ V) = pt(U) n pt(V), 
so (b) above states precisely that ¢-l(U 1\ V) = ¢-l(U) n ¢-1(V). Fi
nally, for a family Ui of elements of O(X), one has V ¢-l(Ud = 0 iff 
¢-l(Ui) = 0 for all indices i iff pt(Ui ) <:: pt(P) for all i, by (6), iff 
pt(V Ui ) = Upt(Ui) <:: pt(P) iff ¢-l(V Ui ) = 0; so ¢-l also commutes 
with suprema. This shows that ¢-l is a frame morphism, and so com
pletes the proof. 

The functor pt from locales to spaces is by no means faithful. In 
fact, there are many locales which have no points at all. (Some typical 
examples of "pointless locales" are given in the exercises.) A locale X 
is said to have enough points (or to be spatial) if elements of the lattice 
O(X) can be distinguished by points of X. Specifically, this means 
that for any two distinct elements U, V E O(X), there exists a point 
p: 1 --+ X such that p-l(U) -1= p-l(V). Equivalently, X has enough 
points iff, for any U, V E O(X), 

pt(U) = pt(V) =} U = v. (7) 

This property of a locale X of having enough points relates to the counit 
E: Loc pt(X) --+ X of the adjunction of Theorem 1. By the construction 
of the adjunction, this locale map E is defined, for U E O(X), by 

E-l(U) = pt(U) <:: pt(X). (8) 

Proposition 3. For any locale X, the following are equivalent: 
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(i) X has enough points; 
(ii) the counit E: Loc pt X -'; X is an isomorphism of locales; 

(iii) X ~ Loc(S) for some topological space S. 
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Proof: The implications (ii),*(iii),*(i) are clear. To prove (i),*(ii), 
notice that the frame homomorphism c 1 : O(X) -'; O(Locpt(X)) = 
O(pt(X)) is always surjective, since by definition the open sets in pt(X) 
are the sets pt(U) for U E O(X), hence are those in the image of E- 1 . 

But (7) shows that if X has enough points then c 1 is injective, hence 
an isomorphislljl of frames. Therefore in this case E is an isomorphism of 
locales. 

Corollary 4. The adjunction Loc: (Spaces) +=(Locales) : pt of 
Theorem 1 restricts to an equivalence of categories between the full 
subcategory of those locales with enough points and that of those spaces 
which are sober. 

Proof: By Proposition 2, the image of the functor pt is (contained 
in) the subcategory of sober spaces; and by Proposition 3, the image of 
the functor Loc is contained in the subcategory of locales with enough 
points. So the functors restrict to an adjunction on these smaller sub
categories. But again by Propositions 2 and 3, the unit and counit of 
this restricted adjunction are isomorphisms. So there is an equivalence, 
as asserted. 

The equivalence of categories stated in Corollary 4 and obtained from 
the adjunction of Theorem 1 is actually an application of the general 
process already described in Lemma II.6.4 of "cutting down" certain 
adjunctions to equivalences. 

This equivalence may also be regarded as a duality between spaces 
with enough points and certain frames (those "with enough points"). 
To see this, first write the adjunction of Theorem 1 in terms of frames 
as 

0: (Spaces) +===== (Frames)OP :pt (9) 

(left adjoint on the left). Now consider the two-element set 2 = {O, 1} as 
a space-the so-called Sierpinski space, with 1 as the only open point. 
Alternatively, consider the same two-element set {O, 1} as the initial 
frame-the two-point lattice. Next, any open set U in a space S may 
be regarded as a continuous map S -'; 2; namely, as that map with U 
the inverse image of the open point 1 of Sierpinski space. Since Loc(S) 
is the locale of open sets of S we can write O(S) as a hom-set 

O(S) = Homspaces(S, 2); (10) 

here 2 is regarded as a space in forming this hom-set, while the lattice 
structure on the hom-set is constructed by pointwise lattice operations, 
using the lattice structure of 2. 
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On the other hand, for a frame A, pt(A) consists of the frame mor
phisms to 2 

pt(A) = HomFrarnes(A, 2). (11) 

In this case the topology on the sets pt(A) comes from the topology 
of the Sierpinski space 2 by the familiar construction of the "compact 
open" topology on a function space 2A. Specifically, a subbase for the 
topology consists of the sets N = N(O, U) determined by a compact set 
o of A and an open set U of 2 as 

N = N(O,U) = {1 I 1(0) c U}. 

Here we use the discrete topology on the set A, so that a compact set 0 
might as well be a single element a E A, while the only nontrivial open 
set U in Sierpinski space 2 is {I}. Then the set N for A = {a} is exactly 
the set {f I f: A ----; 2, fa = I}, which is one of the sets already used 
to define the topology on pt(A) in (1) above. 

The duality of Corollary 4 between frames with "enough points" and 
spaces which are sober can then be constructed by two hom-sets (10) 
and (11) into the object 2, which is both a locale and a space (with the 
lattice operations continuous in the topology). It has been proposed 
to call such an object 2 a "schizophrenic" object for the two cate
gories. There are other well-known dualities arising from such objects 
which have two structures ("commuting" with each other). Here are two 
examples: 

• Pontrjagin duality between discrete and compact Hausdorff 
abelian groups; the schizophrenic object is the circle R/Z . 

• Stone duality between Boolean algebras and clopen sets in a to
tally disconnected compact Hausdorff space. Here the two-point 
set 2 is again schizophrenic: as a space with both points taken to 
be open, it is totally disconnected and compact Hausdorff. 

4. Embeddings and Surjections of Locales 

For topological spaces, subspaces and surjections of spaces are de
fined in terms of points. For locales, there may not be (enough) points 
at hand so that the descriptions of "sublocales" and of "surjections" of 
locales must be more subtle. Consider a map f: T ----; 8 of topologi
cal spaces, and the corresponding frame morphism f- 1 : 0(8) ----; O(T), 
given by the inverse image. If f is a surjective map, then for any open 
set U t::;; T we have ff-1(U) = U, so f- 1: 0(8) ----; O(T) is clearly 
an injective morphism of frames. The converse also holds, provided 8 
is a T1-space. Indeed, if 8 is T1 and f- 1: 0(8) ----; O(T) is injective, 
then for any point S E 8, the set 8 - {s} is open and distinct from 8; 
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hence 1-1(8 - {s}) #- 1-1(8) = T, so there must be a point t E T with 
l(t) = s. Thus the surjectivity of a map of topological spaces can (under 
mild separation conditions) be expressed in terms of the injectivity of 
the corresponding frame homomorphism. 

The fact that a map 1: T -+ 8 of topological spaces is an embedding 
can similarly be expressed in terms of the frame morphism 1-1: 0(8) -+ 

O(T). For an embedding 1: T>---+ 8 of a subspace T, the open subsets 
of T are exactly the sets of the form Tn U where U is open in 8; thus 
1-1: 0(8) -+ O(T) is a surjection of frames. The converse is again true 
under a separation condition: if T is a To-space (in particular, if T is 
sober) and 1-1: 0(8) -+ O(T) is onto, one easily shows that 1: T -+ 8 
must be an injective map of spaces such that a subset A ~ T is open 
iff A = I-IV for some open subset V ~ 8. In other words, if T is a 
To-space then a map 1: T -+ 8 is an embedding iff 1-1: 0(8) -+ O(T) 
is a surjective frame morphism. 

These indications suggest the following definition for maps of locales: 

Definition 1. A map 1: Y -+ X of locales is an embedding 
(respectively a surjection) iff the corresponding morphism of frames 
1-1: O(X) -+ O(Y) is surjective (respectively, is injective, i.e., one
to-one). 

In brief, a surjection on the "open sets" means an embedding for the 
locales, etc. 

With this definition, the observations above can be rephrased as 
follows: a map 1: T -+ 8 of topological spaces is an embedding (respec
tively, a surjection) of spaces iff the map Loc(f): LocT -+ Loc8 is an 
embedding (respectively, a surjection) of locales, this provided 8 is Tl 
(respectively, T is To). 

Notice that it follows immediately from the definition that a map 
of locales which is both an embedding and a surjection is necessarily 
an isomorphism. Notice also that for maps of locales 1: Y -+ X and 
g: Z -+ Y, if 10 g is a surjection then so is 1, and if 1 0 g is an embedding 
then so is g. 

Recall that for a map 1: Y -+ X of locales, the corresponding frame 
map 1-1: O(X) -+ O(Y), considered as a map of posets, has a right 
adjoint 1*: O(Y) -+ O(X) (Lemma 1.1). The unit and counit of this 
adjunction between posets state that U ::::: 1*1-1U for any U E O(X), 
and that 1-11* V ::::: V for any V E O(Y). Moreover, the triangular 
identities for the adjunction reduce to the equalities 

(1) 

Lemma 2. Let 1: Y -+ X be a map of locales. The following three 
conditions are equivalent: 
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(a) I is a surjection of locales (i.e., 1-1 is one-to-one); 
(b) 1*1-1 = id: O(X) -+ O(X); 
(c) 1*: O(Y) -+ O(X) is a surjection of posets. 

Also, the following are equivalent: 

(a') I is an embedding of locales (i.e., 1-1 is onto); 
(b') 1-11* = id: O(Y) -+ O(Y); 
(c') 1*: O(Y) -+ O(X) is injective (one-to-one). 

By way of motivation, the reader may wish to check the results in 
the case of a continuous map T -+ S of spaces with suitable separation 
properties. 

Proof: (a)=?(b) If I is a surjection, then the first triangular identity 
in (1) implies that 1*1-1 = id. Next, (b)=?(c) is clear. Finally, if 1* is 
surjective then the second triangular identity in (1) yields 1*1-1 = id, 
hence 1-1 is injective; so (c) implies (a). The equivalence between (a'), 
(b/), and (c') is proved similarly. 

For the embedding I: S)--; T of a subspace S of a topological space 
T, the open sets U of the subspace S are usually described (in the "sub
space topology") as the intersections U = Tn V with open subsets V of 
T. For a given U C S there may be many such V, so U really corresponds 
to the union W of all such V. Now I*U, by its definition (1.4a), is the 
union of all V with 1-1 V ~ U, so the union W satisfies 1*1-1 W = W. 
In other words, open sets U of the subspace S are in bijection with the 
open sets W of T fixed under the operation 1*1-1: O(T) -+ O(T). It is 
this description of the subspace topology which carries over to locales. 

Consider an embedding I: Y -+ X of locales. Thus, by (c') above, 
1*: O(Y) -+ O(X) is injective, and again by (1) its image consists of 
precisely those elements U E O(X) which are fixed under the operator 
1*1-1: O(X) -+ O(X). This operator j = 1*1-1 is (the underlying 
functor of) the monad of the adjunction 1-1 -j 1*, while the unit and 
multiplication of this monad are maps which can be expressed by the 
following inequalities, for each U in the poset O(X): 

U::; jU, 

jjU ::; jU. 

(2) 

(3) 

Notice that by the functoriality of j = 1*1-1, (2) implies that jU ::; j 2 U, 
so that (3) is in fact an identity 

j 2U = jU. (3') 

Notice also that, since 1* and 1-1 both preserve finite meets (f* as 
a right adjoint and 1-1 as a frame morphism), we have for any U, 
U' E O(X), 

j(U 1\ U' ) = jU I\jU'. (4) 
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For the subspace topology, we noted above that the open subsets cor
respond to fixed points of such a j = 1*1-1 . An operator j: O(X) -+ 

o (X) satisfying the identities (2), (3'), (4) is called a nucleus on the lo
cale X. This nucleus determines the domain locale Y. Indeed, as stated 
at the start of this paragraph, if 1: Y -+ X is an embedding of locales, 
then O(Y) is isomorphic to the set of fixed points { U E O(X) I jU = U} 
of the nucleus j = 1*1-1 . The converse of this observation also holds: 

Proposition 3. Let j: O(X) -+ O(X) be a nucleus on a locale X. 
Then the poset of j-fixed points {U E O(X) I jU = U} is a frame, 
and j defines a surjective frame-morphism from O(X) into tbis frame of 
fixed points. 

The locale corresponding to this frame of fixed points { U E O(X) I 
jU = U} is usually denoted by Xj-so the corresponding frame is 

O(Xj) = {U E O(X) I jU = U}. (5) 

The proposition then states that the nucleus j on X determines an 
embedding of locales 

(6) 

given by the frame morphism i-I: O(X) -+ O(Xj) defined by i- 1U = 
jU. [Its right adjoint i*: O(Xj) -+ O(X) is simply the inclusion: i*U = 
U for all U E O(Xj).] Locales of the form Xj where j is a nucleus on X 
are called the sublocales of X. 

Proof of Proposition 3: By (4) above, the set O(Xj) ~ O(X) of 
fixed points of j is closed under finite meets. Moreover, if {Un} is a 
family of elements of O(Xj), their supremum in O(Xj) can clearly be 
computed as j(V Un), where V Un is the supremum in O(X). To show 
that O(Xj) is a frame we need to verify that finite meets commute with 
arbitrary sups [as in (1) of §1]; in other words, that for V and Un in 
O(Xj) the identity V A j(V Uo,) = j V(V A Un) holds. But 

V A j(V Un) = jV A j(V Un) 

=j(VAVUn ) 

=jV(V A Un) 

[since V E O(Xj), by (5)] 

[by (4)] 

[since O(X) is a frame], 

as required. Moreover, by (3') the operator j yields a surjective map 
from O(X) into O(Xj); this map preserves finite meets and arbitrary 
sups, as is evident from the description just given of such meets and sups 
in O(Xj). Thus j: O(X) -+ O(Xj) is a surjective frame morphism, and 
the proposition is proved. 
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There is clearly a formal similarity between the definition of a nucleus 
on a locale and that of a Lawvere-Tierney topology on a topos. This 
analogy will be pursued in more detail in §5 below. Here we state only 
a factorization theorem parallel to the one for geometric morphisms in 
§VII.4. As in Theorems 4.6 and 4.8, the theorem can be given in the 
following two parts. 

Theorem 4 (Factorization Theorem, existence). Let 1: Y ----> 

X be a map of locales. Then there exists a nucleus j on X for which 1 
factors through the embedding i: Xj ----> X via a surjection p: 

Y f lX 

~r 
Xj' 

The proof of this theorem uses the following lemma. 

Lemma 5. Let 1: Y ----> X be a map of locales, and let j be a 
nucleus on X with the corresponding embedding i: Xj ----> X. Then 1 
factors through i (necessarily uniquely) iff 1-10 j = 1-1. 

Proof: (=?) Suppose 1 factors as 1 = i 0 p for a map of locales 
p: Y ----> Xj (such a map p is necessarily unique since i-I = j is surjec
tive). Then for any U E O(X), because j is idempotent by (3'), we have 
1- 1U = p- 1i- 1 (U) = p-ljU = p-ljjU = I- 1 jU. 

(~) Suppose 1-1 jU = 1-1 U for every U E O(X), and consider the 
restriction p-l of 1-1 to O(Xj) ~ O(X), so that 

p-l: O(Xj) ----> O(Y), p-1u = r 1u. 
Since O(Xj) is closed under finite meets, and a sup in O(Xj) is computed 
by applying j to the sup in O(X), the identity 1-1 j = 1-1 implies that 
p-l is a frame morphism. Hencep-l defines a map oflocalesp: Y ----> Xj' 
Moreover, for U E O(X) we have p-1i- 1U = I-1jU = 1-1U, so that 
ip = 1, as required. 

Proof of Theorem 4: The given map 1: Y ----> X of locales yields 
adjoint functors 1-1: O(X);:::: O(Y) : 1*. Define j as the composite 
j = 1*1-1: O(X) ----> O(X); then j is a nucleus. As before, the unit id :::; 
1*1-1 of the adjunction proves that (2) holds, while (3') follows by the 
triangular identities, and (4) holds since 1-1 (as a frame morphism) and 
1* (as a right adjoint) both preserve finite meets. The resulting nucleus j 
defines a sublocale Xj and an embedding i: Xj >--+ X [where O(Xj) and 
i are as in (5) and (6) above]. Moreover, since 1-1 j = 1-11*1-1 = 1-1 
by the triangular identity (1), it follows from Lemma 5 that 1 factors as 
1 = poi where p-l: O(Xj) ----> O(Y) is the restriction of 1-1. But clearly 
this restriction of 1-1 to the set O(Xj) of fixed points of j = 1*1-1 is 
injective. So p: Y ----> Xj is a surjection of locales. 
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Theorem 6 (Factorization Theorem, uniqueness). Let 
p u q v 

f: Y -+ X be a map of locales, while Y ---+ A ---+ X and Y ---+ B ---+ X 
are two factorizations of f. If v is an embedding and p is a surjection, 
then there exists a unique map g: A -+ B of locales such that gp = q 
and vg = u, as in the commutative diagram 

Y q ) B 

pL/~//~ Iv 
A -"",u.,---+l X. 

Moreover, if u is also an embedding and q is also a surjection, then 9 is 
an isomorphism. 

Proof: Suppose the given map f: Y -+ X factors as vq = f = up, 
as in the statement of the theorem. Now first apply Theorem 4 to the 
map v to get a factorization v = i 0 r as in 

Xj, 

where r is a surjection, i is an embedding, and j is the corresponding 
nucleus on X. Since v is assumed to be an embedding, r is also an 
embedding, hence an isomorphism. Therefore we may without loss of 
generality assume that r is the identity so that v is the embedding of 
a sublocale v = i: Xj -+ X; thus, V-I = j. Since f = vq, f factors 
through X j ,........ X, so f-lj = f- 1 by Lemma 5. But also f = up, so 
p-lU -l j = p-lU -l, hence u-1 j = u-1 because p-l is injective. So, 
again by Lemma 5, u factors uniquely through v: Xj ,........ X, say as u = vg. 
Then also vgp = up = vq, hence gp = q since v is an embedding, so that 
v. is one-to-one. Notice that 9 is an embedding if u is since vg = u, 
and 9 is a surjection if q is since gp = q. In particular, 9 is iso if u is 
an embedding and q is a surjection; in other words, the factorization 
of u as a surjection followed by an embedding is then unique up to the 
isomorphism g. 

For a given map f: Y -+ X of locales, one usually writes f(X) for 
the sub locale of X occurring in the factorization of f as a surjection p 
followed by an embedding i (Theorem 4), to give the diagram 

(7) 

X, 
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By Theorem 6, f(X) is the smallest sublocale of X through which f 
factors. If f is an embedding then so is p, hence p is an isomorphism. 
Thus up to isomorphism every embedding is of the form Xj >-> X for 
some nucleus j on X. 

To conclude this section we consider some simple examples of subIa
cales which resemble open and closed subspaces of a topological space. 
For a given locale X and an element U E O(X), the set (the downward 
closure) lU = {W E O(X) I W ::; U} is clearly a frame, and there is 
an evident surjective frame morphism 

U A - : O(X) -t l( U), Wf-tUAW. (8) 

Let us also write U for the locale given by this frame lU; i.e., the locale 
U defined by the frame O(U) = lU. Then (8) describes an embedding 

f: U>->X, WE O(X). (9) 

By the definition of implication as an adjoint, the right adjoint f* of f~l 
is the map V f-t U * V, for V ::; U. It follows that U is isomorphic to 
the sub locale X j , for the nucleusj = f*f~l; i.e., jW = (U * (UAW)) = 
(U * W) for each W E O(X): 

U: f lX 

~l j = (U * ( - )). (10) 

Sublocales of this form are called open sublocales of X. In other words, 
any element U E O(X) defines a unique open sublocale of X, usually 
called U >-> X. 

Corresponding to each element U E O(X) there is also a closed sublo
cale of X, denoted by X - U, because it is like the (closed) complement 
of an open subset of a topological space. It is defined by the frame (the 
upward closure) 

O(X - U) = iU = {V E O(X) I U ::; V}. (11) 

The embedding g: (X - U) >-> X is given by the frame morphism 
g~l: O(X) -t O(X - U) defined by g~l(W) = W V U. The corre
sponding nucleus k on O(X) is described by k(W) = W V U for each 
WE O(X). Indeed, O(X - U) = T ( U) is exactly the set of fixed points 
of k: 

X k = (X - U) >-> X, k=(-)VU. (12) 
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As a final example, note that for any locale X the negation operator 
• of §1(9) gives a "double negation" nucleus 

-,-,: O(X) --> O(X). (13) 

Indeed, the defining properties U ::; •• U = •••• U and •• (U 1\ U') = 
•• U 1\ •• U' of a nucleus hold, as observed in §I.8. This gives a sublocale 

X~~,.......X, (14) 

with the property that the frame O(X~~) = { U E O(X) I •• U = U} 
is a complete Boolean algebra. 

Let us briefly consider this example in the special case where X is a 
locale with enough points, so that X is of the form Loc(T) for some topo
logical space T. Each subspace R ~ T gives rise to an evident sublocale 
Loc(R) ~ Loc(T). Indeed, by definition of the relative topology on R, 
the inverse image function i-I of the inclusion i: R,....... T is a surjection 
i-I: O(T) --* O(R). So Loc(i): Loc(R) --> Loc(T) is an embedding of 
locales. 

On the other hand, in general, not every sublocale of Loc(T) comes 
in this way from a subspace R ~ T. For example, if T is a Hausdorff 
space without isolated points, then the sublocale Loc(T)~~ of Loc(T) 
does not have any points at all. To see this, suppose to the contrary 
that p: 1 --> Loc(T)~~ is such a point, and write u: Loc(T)~~ --> Loc(T) 
for the embedding, so that u-I(W) = •• W for any open set W ~ T. 
Since T is sober (cf. Theorem 2.3), the composition u 0 p: 1 --> Loc(T) 
corresponds to a unique point t of T, in the sense that for any open 
subset W ~ T, one has (Up)-IW = 1 iff t E W. Thus, in particular, 
0= (up)-I(T - {t}) = p-I(u-I(T - {t})) = p-I( •• (T - {t})). But 
the point t is not isolated in the space T, so .(T - {t}) = 0, and hence 
•• (T - {t}) = T. Thus p-I( •• (T - {t})) = 1, a contradiction. 

5. Localic Topoi 
The definition (Chapter II) of sheaves on a topological space depends 

only on the lattice of open sets of that space, and so extends at once to 
define sheaves on a locale X. Thus an "open" U in O(X) is said to be 
covered by a family {Ui liE I} of opens of X with each Ui ::; U iff 
U = V Ui ; thus 

{ Ui --> U liE I} covers U iff V Ui = U. (1) 

Then sheaves are defined from these coverings to give the category 
Sh(X). More formally, these are the sheaves for the Grothendieck site 
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given by the base (1) on the category O(X), where there is an arrow 
V -+ U iff V ::; U. One may check that this is in fact the "canonical" 
topology on O(X); that is, the largest Grothendieck topology in which 
all representable presheaves are sheaves. 

A topos equivalent to one of the form Sh(X) for some locale X is 
called a localic topos. In particular, this includes the sheaves defined 
on any complete Heyting algebra, since such an algebra is a frame (§1). 
Such sheaves can thus be viewed algebraically (with Heyting) or topo
logically (on the locale). 

Using a result from the Appendix, one has 

Theorem 1. For a Grothendieck tapas E the following are equiva-
lent: 

(i) E is localic, 
(ii) there exists a site for E with a poset as underlying category, 

(iii) E is generated by the subobjects of its terminal object 1. 

Proof: Since a frame is a poset, (i) trivially implies (ii). 
(ii)*(iii) Suppose that E = Sh(P, J) where J is a Grothendieck 

topology on a poset P, and write ay: P -+ E for the process of 
sheafification a following the Yoneda embedding. Now for each pEP 
the map y(p) -+ 1 is necessarily monic in presheaves, while sheafification 
a is left exact, hence preserves monics. Thus every map ay(p) -+ 1 is 
monic, hence gives a subobject of 1. But §III.6(17) showed that the 
images of the ay generate the topos E. 

(iii)*(i) Let the topos E be generated by the subobjects of its 1. 
The category Sube(l) of these sub objects is a cHa by §III.8, so gives a 
locale X with O(X) = Sube(l). Corollary 4.1 of the Giraud theorem, 
to be proved in the Appendix, then shows that O(X) is a site for E and 
so provides the equivalence E ~ Sh(X). 

Next we show that maps X -+ Y of locales correspond to geometric 
morphisms Sh( X) -+ Sh(Y), much as in the case of spaces. First, observe 
that the locale X can be recovered from the topos Sh(X) of its sheaves. 
Just as for sheaves on a space, in §III.8(17) we observed that a subobject 
of 1 in Sh(X) is simply an element U of O(X) (i.e., simply the presheaf 
Hom( -, U)); in other words, 

O(X) ~ Subsh(x) (1). (2) 

Now consider geometric morphisms 

E -+ Sh(Y) (3) 

from a topos E with all small colimits. Corollary 4 of §VII.9 states 
that these geometric morphisms (3) correspond to continuous left exact 



5. Localic Topoi 491 

functors F: O(Y) -; E. Because F is left exact and because every 
object of O(Y) is a subobject of 1, the image of F lies in SUbe(l), which 
means that F is really a functor O(Y) -; SUb£(l). But SUb£(l) is a 
eRa and left exactness of F means that F preserves finite meets, while 
continuity means that F preserves sups. In particular, if the topos E is 
itselflocalic, say as E ~ Sh(X) for some locale X, then Sube(l) ~ O(X) 
by (2) above, so that F: O(Y) -; O(X) actually amounts to a map 
I: X -; Y of locales for which the corresponding frame map is 1-1 = F. 
Therefore geometric morphisms Sh(X) -; Sh(Y) correspond exactly to 
maps X -; Y of locales. 

More formally, define a category 

Maps(X,Y) (4) 

of maps from a locale X to a locale Y, with objects those maps 
I: X -; Y and with arrows 1 -; 9 the natural transformations of func
tors O(Y) -; O(X). In other words, the category Maps(X, Y) is a poset 
with objects I, 9 for which 1 :::; 9 precisely when 1-1 (U) :::; 9-1 (U) for 
all U E O(Y). Then the preceding discussion can be summarized thus, 
where Hom again denotes the category of geometric morphisms: 

Proposition 2. The functor X t-+ Sh(X) from locales to topoi in
duces for any two locales X and Y an equivalence of categories 

Maps(X, Y) ~ Hom(Sh(X), Sh(Y)). (5) 

More generally, start with an arbitrary co complete topos E (not nec
essarily Grothendieck). Then the poset Sube(l) of subobjects of 1 is a 
Heyting algebra by §IV.6 and §IV.8 and is complete because E has all 
small colimits. Thus E determines a locale Loc E by 

O(LocE) = SUb£(l). (6) 

As we have just observed, geometric morphisms E -; Sh(Y) as in (3) 
correspond to left exact continuous functors O(Y) -; Sub£(l) and hence 
by (6) to maps Loc E -; Y of locales. This shows that the functor 
Loc from co complete topoi to locales is left adjoint to the "inclusion" 
Y t-+ Sh(Y) of the category of locales into co complete topoi. That is 

Proposition 3. For E a cocomplete topos and Y a locale, there is 
a natural equivalence of categories 

Hom( E, Sh(Y)) ~ Maps(Loc E, Y). (7) 

Loc E-the locale of subobjects of 1 in E-is for this reason some
times called the "localic reflection" of E. 
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Next we consider the relation between sublocales and subtopoi. If 
I: E ---+ F is an embedding of topoi while {Gi liE I} is a family 
of objects of F which generate F, then {f* (Gi ) liE I} is a gener
ating family for E. For, I an embedding means that 1* is faithful, so 
0: =f. {3: E ---+ E' implies that 1*0: =f. 1*{3, so there is an index i and a 
map u: G i ---+ I*E with 1*(0:) 0 u =f. 1*({3) 0 u. Transposing along the 
adjunction f* --I 1* gives a map u: f*G i ---+ E for which o:u =f. {3u, so 
f*(Gi ) is indeed a generating family. In particular, if F is localic, and 
so by Theorem 1 generated by subobjects of 1, this shows that E, too, 
is so generated. By Theorem 1 again this proves 

Lemma 4. Any embedding I: E ---+ Sh(X) of a topos into a localic 
topos forces the domain E to be localic. 

This leads to a more explicit result: 

Proposition 5. Let I: X ---+ Y be a map of locales and 
I: Sh(X) ---+ Sh(Y) the corresponding geometric morphism. 

(i) The map I: X ---+ Y is a surjection of locales iff T Sh(X) ---+ 

Sh(Y) is a surjection of topoi. 

(ii) The map I: X ---+ Y is an embedding of locales iff I: Sh(X) ---+ 

Sh(Y) is an embedding of topoi. 

Proof: (-{=) The inverse image functor 1*: Sh(Y) ---+ Sh(X) re
stricts by the isomorphism (2) above to the ma~J-l : O(Y) ---+ O(X) of 

posets. The same applies to the right adjoint 1* and its restriction 1*. 
These restrictions provide a diagram 

O(Y) --'--------+) Sub(l) c Sh(Y) 

foUr i 1. UIO (8) 

O(X) -------;) Sub(l) cSh(X), 

in which both squares commute--one square consisting of the left-hand 
vertical arrows, and the other of the right-hand arrows. Now 1 a surjec
tion of topoi means that f* is faithful, so that 1-1 is one-to-one; thus, 
I is a surjection of locales, as explained in Definition 4.1; similarly, 1 an 
embedding of topoi means that J,. is full and faithful (§VII.4) and hence 
that 1* is injective; in other words, I is an embedding of locales. 

(=}) To prove ~he converse of either (i) or (ii), factor the given geo
metric morphism I by §VII.4, 

Sh(X) ---L Sh(Y) 

~ lu (9) 

E, 
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as a surjection 9 followed by an embedding u. Then Lemma 4 implies 
that the intermediate topos £ in (9) is localic and so of the form £ = 
Sh(Z) for some locale Z. Then, by Proposition 2, 9 and u correspond to 
maps 90 and Uo of locales, which form a commutative diagram (9 = go, 
u = uo) 

(10) 

Z 

of locales. Then by the first half (~) of this proof, 90 is a surjection of 
locales and Uo an embedding of locales. 

Now in case the original map f of locales is a surjection, then so is its 
factor uo, which is also an embedding, hence an isomorphism. But then 
u: £ = Sh( Z) ----+ Sh(Y) is an equivalence of topoi, so 1 is a surjection 
since 9 is. 

Correspondingly, if f is an embedding, then 90 is an isomorphism 
and hence 9 is an equivalence. Therefore 1 is an embedding since the 
second factor u is such. 

This completes the proof of both implications ( {:}) of the proposition. 
This result means also that the factorization Theorem 4.4 for locales 
corresponds exactly to the factorization Theorem VII.4.6 for geometric 
morphisms. 

Corollary 6. For any locale X, sublocales of X correspond exactly 
to subtopoi of Sh(X); or, equivalently, nuclei on the frame O(X) corre
spond exactly to Lawvere-Tierney topologies in the topos Sh(X). 

Proof: By Lemma 4, an embedding £)-) Sh(X) from some topos £ 
forces £ to be localic, hence of the form £ = Sh(Y) for some locale Y. 
The first part of the corollary now follows by Part (ii) of Proposition 5. 
The second part of the corollary also follows since, up to isomorphism, 
any embedding of locales Y ----+ X is of the form Y ~ Xj ----+ X for 
a (unique) nucleus j (see §4) while, up to equivalence of topoi, any 
embedding £ ----+ F into a topos F is of the form Shj(F) ----+ F for a 
(unique) Lawvere-Tierney topology j (see Corollary VII.4.7). 

6. Open Geometric Morphisms 

A continuous map between spaces is open when it carries open sets 
to open sets. A corresponding (but more subtle) notion of "open" ge
ometric morphism has many uses, in particular in its connection with 
"first-order" formulas of the language of a topos to be discussed in Chap
ter X. To arrive at an appropriate definition of such "open maps" be-
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tween topoi, we first take a closer look at open maps of spaces and their 
expression in terms of a suitable adjunction. 

Let 1: Y --t X be a continuous map between spaces, with the cor
responding inverse image map 1-1: O(X) --t O(Y) of open set lat
tices. For any two open subsets U ~ X and V ~ Y, one clearly has 
V ~ 1-1(U) iff 1(v) ~ U. Thus, if 1 is an open map, the functor 
V f-+ I(V) from open sets in Y to open sets in X yields a left adjoint 11 
to 1-1, both as maps of posets: 

11: O(Y) +====:! O(X) : 1-1, (1) 

This property is preserved under pulling back, as follows. 

Lemma 1. For an open map 1: Y --t X of spaces and an arbitrary 
map g: Z --t X of spaces, the pullback 1f2 of 1 along 9 is again open, 

YXx Z 71"2 lZ 

71"11 19 

Y 
f 

lX; 

moreover, the ad joints (1) and (1f2)1 -11f;-1 satisfy the Beck-Chevalley 
condition, in the sense that for each open subset V of Y, 

(2) 

Proof: For two open subsets V ~ Y and W ~ Z the subset 
V Xx W = {(y, z) lyE V, z E Wand ly = gz} is open in Y Xx Z, 
and open subsets of this form yield a basis for the "product" topology 
on Y X x Z. To show that 1f2 is open, it thus suffices to prove that 
1f2 takes such an open set V Xx W to an open set in Z. But clearly 
1f2(V Xx W) = W ng-1 I(V), which is indeed an open subset of Z since 
the map 1 is open. The Beck-Chevalley identity, (2), by definition of 
the shriek, becomes g-II(V) = 1f21fll(V), and is a special case of this 
last equality, for W = Z. 

Let 1: Y --t X be an open map of spaces, and consider now the 
induced geometric morphism for sheaves, 

1: Sh(Y) --t Sh(X). 

As shown in Proposition 11.2.4, the open subsets of X are exactly the 
subobjects of 1 in the topos Sh(X) (and similarly for Y). Also the inverse 
image 1* restricted to 1*: Subsh(x) (1) --t Subsh(y) (1) takes a subobject 
U ~ 1, i.e., an open subset U ~ X, to the open subset 1-1(U) ~ Y. 
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Thus (1) states that the restriction 1*: Subsh(x) (1) --+ Subsh(Y) (1) has 
a left adjoint. 

More generally, identifying sheaves with etale bundles (Corol
lary II.6.3), the inverse image functor 1*: Sh(X) --+ Sh(Y) sends an 
etale map p: E --+ X to the (etale) pullback 1* (E) = Y Xx E --+ Y, as 
in 

Y X x E = f* E _-=-!E=---+) E 

1 lp 
Y---..... ) x, 

I 

(3) 

where we have denoted the second projection Y Xx E --+ E by fE. By 
the lemma, this map fE is again an open map of spaces when f is, so 
determines a map (fE)' on open sets and yields an adjunction between 
posets 

(4a) 

But, under the equivalence between sheaves and etale bundles, open 
subspaces of the bundle E correspond exactly to subobjects of E in 
the category Sh(X) of sheaves [and similarly for f*(E)]. Thus one may 
rewrite (4a) as the following adjunction of posets: 

(IE),: Subsh(Y) (f* E) +==== Subsh(x) (E) : f*. (4b) 

The Beck-Chevalley condition of (2) states that this left adjoint (fE)' 
in (4b) is natural in E, in the following sense. If a: E' --+ E is a map 
of sheaves on X (again viewed as a map of etale bundles over X) while 
f: Y --+ X, then adding the vertical map a: E' --+ E above (3) gives a 
pullback of spaces 

rE' 

1* (Q) 1 
f* E ---:----+) E 

IE 

(5) 

for which both fE and fE' are open maps. Therefore by Lemma 1 the 
corresponding diagram obtained from the left adjoints (fE)' and (fE')' 
and the inverse image maps a-I and f*(a)-I, 

Sub(f* E) 

I*(Q)-11 

Sub(f* E') (fE')! ) Sub(E'), 

(6) 
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commutes. It is this property for the subobject posets which will lead to 
a suitable definition of an "open" geometric morphism between topoi. 

Let f: F -+ £ be an arbitrary geometric morphism. Its inverse image 
functor f* : £ -+ F is left exact, hence preserves monos, hence induces 
a functor 

f;;: Sub£(E) ----> SubF(f* E) (7) 

of posets, sending each subobject A >-+ E of an object E E £ to its inverse 
image in F: 

(8) 

Since f* is left exact, this functor must preserve meets. The functor f* 
also preserves sups. Indeed, for two subobjects A >-+ E and B>-+ E, their 
sup Au B is constructed, as in Chapter IV, by factoring A + B -+ E as 
an epi followed by a mono: 

A + B --;, A U B >-+ E. 

Thus, since the functor f* preserves sums as well as epis and monos, 
one has f*(A U B) = f*(A) U f*(B). Therefore the functor f;; of (7) is 
a functor of lattices. 

In fact, more is true: the functor f;; preserves all suprema which 
exist in Sube(E), because it has a right adjoint, to be denoted 

(fE)*: Sub(f* E) ----> Sub£(E). (9) 

This right adjoint (f E)* sends each subobject m: B>-+ f* E in the topos 
F to the pullback along the unit 'fiE: E -+ f*f* E of the subobject 
f*B >-+ f*f* E in the topos £: 

(fE)*(B) ---+) f*(B) 

I p.b. If*(m) (10) 

E --",---7) f*f*(E). 

To see that this indeed a right adjoint to the functor (7) between 
posets, consider any subobject A>-+ E in the topos £. By the uni
versal property of this pullback (10), one then has A ::; (fE)*(B) as 
subobjects of E iff the composition A>-+ E -+ f*f*(E) factors through 
f*(m): f*(B) >-+ f*f*(E), as in the left-hand square below: 

A --------, f*(B) f* (A) ---------> B 

I 1f * (m) I I 
E ) f*f*(E), f*(E) = f*(E). 
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By the adjunction 1* -l f*, such a factorization exists iff one exists as 
in the top line of the right-hand square above; i.e., iff fECA) ::; B as 
subobjects of 1*(E). Thus A ::; (fE)*(B) iff fE(A) ::; B, which states 
that (fE)* is right adjoint to fE' as asserted. 

In particular, if £ and :F are cocomplete topoi, then SUbf(E) 
and SubF(f* E) are complete Heyting algebras (or frames), and 
fE: Subc(E) -+ SubF(f* E) is a morphism of frames. 

Each morphism ex: E' -+ E in £ induces by pullback as in IV.S(10) 
a lattice homomorphism ex-1 : Subc(E) -+ Subc(E') (which we write as 
ex- 1 to suggest the inverse image in Sets). Since 1* preserves pullbacks, 
there is a corresponding commutative diagram of subobject lattices 

(11) 

Definition 2. A geometric morphism f: :F -+ £ is said to be open 
when for each object E in £, the induced map of subobject posets fE 
has a left adjoint (f E)! 

(fE)!: SubF(f* E) ~ Subf(E) : fE' 

which is a map of posets and is natural in E, the latter in the sense that 
each arrow ex: E' -+ E in £ yields a commutative diagram 

SubF(f* E) 

l*(a)-'1 

SubF(f* E') ---:-:----:---+) Subc(E'). 
(fE' ), 

(12) 

The latter diagram is of the same form as Diagram (6) for spaces 
above. Thus every open map of spaces Y -+ X yields an open geometric 
morphism Sh(Y) -+ Sh(X). (For the converse, see §7, below.) 

Next, recall from the discussion of quantifiers in Theorem 1.9.1 and in 
Chapter IV that, for any arrow ex: E' -+ E in a topos £, the correspond
ing inverse image ex- 1 : Subc(E) -+ Subc(E'), defined by pullback, has 
a left adjoint :la (Proposition IV .6.3) and a right adjoint Va (Proposi
tion IV.9.3), as in the following functors between posets: 

For a subobject A ::; E the corresponding subobject :la(A) of E' is the 
image obtained by factoring the composite A >---> E ---7 E' as an epi fol
lowed by a mono. Since the inverse image functor 1* of a geometric 
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morphism f: F --t {; preserves such epi-mono factorizations, it follows 
that this f* commutes with existential quantification, as in the commu-

tative diagram SubdE) I~ ) SubF(f* E) 

3"1 13 1*(<» 

SubdE') ---"7) SubF(f* E') 
I;', 

(14) 

for each arrow a: E' --t E in {;. However, the corresponding diagram 
with existential quantification :3a replaced by universal quantification Va 
does not commute in general. Indeed, for Va, there is just an inclusion. 
To see this, observe first that a subobject B :S E pulled back along an 
arrow a: E' --t E in {; gives the left-hand pullback below, which is then 
carried by f* to the pullback in F on the right: 

f*(a- I B):>------+) f* E' 

1 11* (a) (15) 

f* B )-) ----+) f* E. 

The second diagram implies that its upper left vertex is 

(16) 

In particular, each subobject A :S E' determines a subobject VaA :S E 
which [set B = VaA in (16)] satisfies 

the last inclusion by the counit a-IVa --t 1 of the adjunction a-I --1 Va. 
Since (f* (a)) -1 --1 V f* (a), the transpose of this result is 

(17) 

this is the announced inclusion. Our next result shows that this inclusion 
is an equality exactly when the geometric morphism f is open. 

It will follow from this result that a geometric morphism is open 
exactly when it preserves the interpretation of first-order logic (in par
ticular, quantifiers). A precise statement will be given in §X.3. 

Theorem 3. Let f: F --t {; be a geometric morphism. If f is 
open, then its inverse image f* preserves universal quantification, in the 

a 
sense that for each diagram A >--7 E' ~ E in {; the identity f*Va (A) = 
Vf*(a)(f* A) holds. And conversely, if {; is a cocomplete tapas and f* 
preserves universal quantification in this sense, then f is open. 
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Proof: (=}) The identity 1*Va(A) = Vf*(a)(f*A) for each A::::; E' 
can be expressed by the commutativity of the diagram of posets 

SubF(f* E') ( 
I;;, 

Sube(E') 

Vj*al lVa (18) 

SubF(f* E) ( 
Ii Sube(E). 

If i is open, the horizontal arrows in this diagram have left adjoints (fE')! 
and (fE)!, and the diagram (18) commutes iff the corresponding diagram 
(12), obtained by taking left adjoints of all arrows in (18), commutes. 
But (12) commutes by the definition of open geometric morphism. 

( <¢=) Suppose 1* preserves universal quantification, so that each dia
gram of the form (18) commutes. Then the corresponding diagram (12) 
of left adjoints commutes provided the left adjoints (fE)! and (fE')! ex
ist. To finish the proof of the theorem, we now show for any given object 
E in £ that the map iE: SUbe(E) -+ SubF(f* E) of Heyting algebras 
has a left adjoint. 

First observe that since by assumption all colimits exist in £, the 
set Sube(E) of subobjects of E is now a complete Heyting algebra. The 
crucial observation is that if {Ai liE I} is any family of subobjects of 
E, their infimum /\ Ai can be constructed from the universal quantifiers. 
For the subobjects Ai together determine, by Corollary IV.7.6, a single 
subobject II Ai of IIi E. For the map a: IIi E -+ E whose components 
are all the identity E -+ E we claim that 

Va(U Ai) = /\ A· (19) 
iEI iEI 

Indeed, if B ::::; E is any subobject of E, then by adjunction B ::::; 
Va (II Ai) iff a- 1 (B)::::; II Ai' But pulling back in a topos preserves co
products, so pullback of a along B >---+ E gives a< (B) = IIi B ::::; IIi E, 
so a-I (B) ::::; II Ai iff B ::::; Ai for each index i. 

Since the inverse image functor 1*: £ -+ F is a left adjoint, and so 
always preserves coproducts, this formula (19) also shows that if 1* pre
serves universal quantification, then i E: Subs(E) -+ SubF(f* E) pre
serves infima. Therefore, we can propose as the desired left adjoint for 
iE the map 

(fE)!: SubF(f* E) -+ SUbs(E) 

of posets, which is defined for each subobject C ::::; 1* (E) by 

(feMC) = /\{ U::::; E I C::::; j*(U)}. (20) 
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To show that this gives an adjunction we will construct the counit and 
the unit. For the counit, note that if C = fE(A) for some A :::; E, the 
subobject A occurs as one of these U, so that (fE)!(fE(A)) :::; A. And 
for the unit, we have for any C :::; f*(E) 

fE(fE!(C)) = 1\ {r(U) I U:::; E and C :::; r(U)}, 

since fE preserves infima as just shown; so clearly C :::; fE (f E)! (C). The 
triangular identities then follow trivially, as for any poset; indeed, for 
any functors F, U of posets, 1 :::; U F and FU :::; 1 imply F = FU F and 
dually U FU = U. This shows that (20) does define a left adjoint to fE' 
and thus completes the proof of the theorem. 

The definition of an open geometric morphism f: F --+ £ can be 
formulated in terms of suitable maps to the subobject classifiers 0.0 
and OF of the topoi £ and F; these are objects which are inter
nally partially ordered (in fact they are internal Heyting algebras). 
The universal monomorphism te = true: 1 --+ 0.0 in £ has an image 
f* (te ): 1 ~ f* (1) --+ f* (0.0); by left-exactness of f* , this is a monomor
phism in F and so has a classifying map T: rOe --+ OF, as in the 
pullback diagram 

r1-----+) 1 

r(t)l ltF (21) 

r(Oe) --=-r---7) OF· 

A subobject A :::; E is classified in £ by a map a as in the pullback 

E ---:a=---+) 0.0. 

The composite pullback (f* is left exact) 

rA ) r1 

I If*(tE) 

rE 
r(a) 

) rOe --:;:---+) OF r 

shows that f* (A) is classified in F by the composite map TO f* (a). Now 
denote the transpose of the map T of (21) by 

(22) 
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Then the transpose of the composite T 0 1* (a) is A 0 a. Thus, composi
tion A* with A corresponds (under classifying maps) to the action of 1* 
on subobjects A. This fact is expressed by the following commutative 
diagram, for each object E of [;: 

Sube(E) --------+1 [;(E, OE) 

r 1 lA. (23) 

Here the top and left bottom horizontal isomorphisms are given by tak
ing the characteristic maps of the subobjects in question. Since 1* pre
serves the partial order, so does A*. Therefore A as in (22) is a map of 
internal posets. 

Now suppose that I: F -+ [; is open. For each object E the left
hand vertical map 1*: Sube(E) -+ Sub;:-(f* E) in (23) then has a left 
adjoint (fE)!: Sub;:-(f* E) -+ Sube(E), natural in E. Via characteristic 
maps, (fE)! corresponds as on the right of (23) to a morphism 

(24) 

By the naturality (12) of the (fe)! this morphism (24) is again natural 
in E, so by the Yoneda lemma is given by composition with a uniquely 
determined map in [;, 

(25) 

This definition of JL, according to which composition with JL corresponds 
to (fE)! via characteristic maps (here written as "') means exactly that 
for each E E [; the diagram 

Sub;:-(f* E) -~I F(j* E, Od ~[;(E, 1*0;:-) 

C/E)j l~' (26) 

SUbe(E) ---------.1 [;(E, OE) 

commutes. Moreover, the adjunction of posets between IE and (fE)! 
in terms of the inclusions (fE)!(IE(A)) :s: A and IE((fE)!(B)) ~ B for 
A :s: E and B :s: j* E translates via (23) and (26) into the inequalities 

JL 0 A :s: id: OE -+ Of, 

A 0 JL ~ id: 1*(0;:-) -+ 1*(0;:-). 

They state that JL is an internal left adjoint to the map A of internal 
posets (cf. §IV.9). 

Conversely, if the map A: OE -+ 1*(0;:-) has such an internal left 
adjoint W 1* (0;:-) -+ OE, then composition JL* with JL determines maps 
(fe)! as in (26) which are natural in E and which are left adjoint to IE· 
We have now proved 
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Proposition 4. A geometric morphism f: :F ----- E is open iff the 
canonical map A: Oc: ----- f*(OF) of po set-objects in E [defined in (22) 
and (21)J has an internal left adjoint p,: f*(OF) ----- Oc:. 

Thus on both counts (Definition 2 and Proposition 4), "open" for a 
geometric morphism means the existence of suitable (external or inter
nal) left adjoints. 

7. Open Maps of Locales 

If a continuous map g: T _____ S of topological spaces is open, then 
each open set U of the domain T has an image g(U) = g!(U) which is 
open in S and which satisfies 

g! U ::::: V iff U ::::: 9 -1 V 

for all open sets V of the codomain S. Thus, just as in §6(1), if the 
posets OCT) and O(S) of open sets are considered as categories, g! is left 
adjoint to g-l. Moreover, this left adjoint g! evidently has the following 
additional property: 

(1) 

for all U E O(S) and V E OCT). This property (1) is often called the 
Frobenius identity or the projection formula (as in the case when 9 is 
the projection of a product, already considered in §I.9). 

This observation motivates the following definition of an open map 
between locales. 

Definition 1. A map f: Y ----- X of locales is open iff the corre
sponding map f- 1 : O(X) ----- O(Y) of posets has a left adjoint f! which 
satisfies the Frobenius identity 

f!(v 1\ r 1U) = I!(V) 1\ U for all U E O(X), V E O(Y). (2) 

This definition matches the notion of open geometric morphism, as 
defined in the previous section, in the following sense. 

Proposition 2. A map f: Y ----- X between locales is open iff the 
corresponding geometric morphism T Sh(Y) ----- Sh(X) is open. 

Proof: (-¢=) If i is open, we will exhibit the required left adjoint J.L 

of the canonical map A: OSh(X) ----- J.OSh(Y) of §6(22); here E and :F of 
§6 are the topoi Sh(X) and Sh(Y). Now, just as for topological spaces, 
the subobject classifier OSh(X) for each U E O(X) is given by the set of 
all open "subsets" (sublocales) of U, 

OSh(X)(U) = O(U) = {U' E O(X) I u' <;;;; U}. (3) 
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Indeed, one proves readily that OSh(X) so defined is a sheaf, while for 
any subsheaf S >-+ Fin Sh(X) one constructs the characteristic function 
F ---+ OSh(X) exactly as for spaces (§II.8). Moreover, the map 1 : :F ---+ E 
of sheaf topoi is defined from the given map 1 of locales by composition 
with 1-1. For the sheaf OSh(Y) this means by (3) that for each U E O(X) 

[1(OSh(Y))](U) = OSh(y)U-1U) = OU-1U) 

= {V E O(Y) I V:::; r 1U}. 

Now the map A: Oe ---+ I*OF in the present case is a map 

(4) 

of sheaves on the locale X and so has for each U E O(X) a component 

(5) 

Also, by §6(23), composition (of characteristic functions of subobjects) 
with A corresponds to the action of 1* on subobjects. Since 1* = 1-1, 
this means for each U' :::; U that 

(6) 

Recall that we are assuming that the given geometric morphism 1 is 
open. By definition, there is, therefore, an internal left adjoint 

J.l: OSh(Y) ---+ OSh(X) (7) 

for the map A of internal posets. Hence, by evaluation at U, there is for 
each U an (external) left adjoint 

(8) 

for Au; moreover, this J.lu is natural in U E O(X) in the sense that, for 
each U' s::; U and each V E O(Y), 

(9) 

Thus, (8) for U = X means that J.lx is left adjoint to Ax = 1-1; 
it remains to verify the Frobenius identity. But for V E O(Y) and 
U E O(X) we have 



504 

so (9) gives 

JLx(V 1\ rl(U)) = JLx(V 1\ rl(U)) 1\ U 

= JLu(V 1\ rl(U)) 

= JLx(V) 1\ U 

IX. Localic Topoi 

by (10), 

by (9), 

by (9) and U ~ X. 

This is the Frobenius condition (2) for the left adjoint f! = JLx, so 
completes the implication. 

(::::}) Conversely, suppose that the map f- l : O(X) -* O(Y) does 
have a left adjoint f! satisfying the Frobenius condition. We may then 
define the desired JL in terms of its components for each U E O(X) 

by setting for each V :::; f-l(U) 

(11) 

This does give the inclusion JLu(V) :::; U because V:::; f-l(U) and so by 
adjunction f! V :::; U. To show that the JL so defined is natural in U, take 
U' :::; U in O(X) and V:::; f-l(U) in O(V) and calculate 

JLu(V) 1\ U' = MV) 1\ U' 

= MV 1\ rlU') 

= JLu'(V 1\ rlU') 

by (11), 

by Frobenius, 

by (11). 

As in (9) above, this means that JLu is indeed natural in U. Moreover, 
since JLu is defined by (10) in terms of f! and since f! is left adjoint 
to f- l , it follows that JLu is left adjoint to Au for each U E O(X). 
Therefore, JL is an internal left adjoint for A. This completes the proof 
of Proposition 2. 

As for maps of topological spaces, open maps of locales can also 
be described by the condition that images of open sublocales are again 
open. Let f: Y -* X be a map of locales, and let Yk be a sublocale of 
Y defined by a nucleus k: O(Y) -* O(Y), as in §4. Recall from §4 that 
this locale Yk is given by the frame consisting of k-fixed points, 

O(Yk ) = { U E O(Y) I kU = U}, 

while the corresponding embedding i: Yk >--+ Y is the frame-morphism 

i-leV) = kV [all V E O(Y)]; 

its right adjoint i* : O(Yk ) -* O(Y) is simply the inclusion. 



7. Open Maps of Locales 505 

By Theorems 4.4 and 4.6 we can now factor the composition 
f 0 i: Yk >-+ Y --+ X in a unique way as a surjection p followed by an 
embedding u, as in 

Yk c IY 

pl if 
x. c 

J u IX, 

while, by the explicit description in §4, the sublocale Xj is given by 
the nucleus j = (J 0 i)*(J 0 i)-I = f*i*i- 1 f- 1 = f*kf- 1. For the 
given sublocale Yk of Y, this induced sublocale Xj given by the nucleus 
j = f*kf- 1 is called the image of Yk . One also writes 

Recall from §4(10) that the sublocale Yk of Y is called open if its 
nucleus k is of the form k = (V =} ( - )), for some (necessarily unique) 
V E O(Y). In this case we also denote Yk by V. 

Proposition 3. A map f: Y --+ X of locales is open iff for each 
open sublocale V ofY its image f(V) is an open sublocale of X. 

Proof: (=}) Suppose f is an open map of locales, and let V E O(Y). 
Thus V determines an open sub locale V = Yk >-+ Y whose nucleus k is 
given by k(W) = (V =} W), for all W E O(Y). The image-sublocale 
f(V) = f(Yk ) of X is thus given by the nucleus f*kf- 1 on X. But for 
any U, U' E O(X), 

U' ::; f*kr1(U) = f*(V =} f-1U) 

iff r 1 (U') ::; (V =} r 1 (U)) 

iff V 1\ r 1 (U') ::; r 1 (U) 

iff f!(V 1\ rl(U')) ::; U 

iff f! (V) 1\ U' ::; U 

iff U'::; f! (V) =} U 

[since k = (V =} -)] 

(since r 1 -1 f*) 

[by I.8(1) defining =}] 

(since f! -1 r1) 

(by Frobenius) 

[by I.8(1)]. 

Thus f*kf- 1 (U) = (J!(V) =} U) for all U E O(X), so the nucleus 
f*kf- 1 on O(X) determines an open sublocale of X, namely, that cor
responding to f!(v) E O(X). 

(~) Conversely, suppose that for each V E O(Y) the image f(V) 
is an open sublocale of X. By definition, this means that the nucleus 
f*(V =} (- ))f- 1 for this image f(V) >-+X is again of the form U =} 

( - ), for some U E O(X) depending on V. Write f!(v) for this U. We 
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claim that V ~ l!(V) gives a left adjoint to 1-1 which satisfies the 
Frobenius identity, as required in the definition of open map. Indeed, 
for each V E O(Y) one has by the definition just above of l!(V) the 
following identity of nuclei on O(X): 

U!(V):::} (-)) = 1* 0 (V:::} (-)) 0 r1. (12) 

Thus, for any U and U' E O(X), one has 

I! (V) 1\ U' ~ U iff U' ~ I! (V) :::} U 

iff U' ~ 1* (V :::} 1-1(U)) 

iff r 1(U') ~ V:::} r1(U) 

iff r 1(U') 1\ V ~ J-1 (U) 

[§I.8(1) defining :::}] 

[by (12)] 

(since r 1 -1/*) 

[§I.8(1)]. 

If we now replace U' by the top element 1 of O(X), we find that I!(V) ~ 
U iff V ~ 1-1 (U). Therefore I, is left adjoint to J- 1 . But then we can 
continue the sequence of iffs above one step further, as 1- 1 (U') 1\ V ~ 
1-1 (U) iff I, U-1 (U') 1\ V) ~ U by adjointness. Thus, I! (V) 1\ u' ~ U iff 
I!U-1(U') 1\ V) ~ U for all U, and hence I,(V) 1\ u' = I,U-1(U') 1\ V). 
This is the required Frobenius identity. 

Next, we compare and contrast subspaces and sublocales. Any subset 
R of a topological space T is itself a topological space with the usual 
relative topology. Moreover, this subspace R defines a nucleus jR on the 
locale O(T) of open sets of T and thus a sublocale of Loc(T) by 

jR(U) = U{V E O(T) I VnR ~ U} (13) 

= U{ V E O(T) I (V - U) n R = 0}; (14) 

in other words, jR(U) is the largest open subset V of T with V n R ~ U. 
However, it may be that different subsets R' and R of T give rise in 
this way to the same nucleus. But we may replace R by the following, 
possibly larger, set R, intended to be the largest such with jR = jii on 

O(T). This set R is defined by 

x E R iff every locally closed subset L in T which 

contains x has R n L i- 0. 

(Note that if the points of T are all closed, then R = R.) Here, by 
definition, a subset L of T is locally closed in T iff it is the intersection 
of a closed subset of T and an open subset of T, or (equivalently) iff it 
is the difference V - U of two open subsets of T. Therefore R is the 
largest subset of T such that, for all open U and V, 

R n (V - U) = 0 =} R n (V - U) = 0. (15) 

Then surely R ~ R so that the reverse implication in (15) also holds. 
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Proposition 4. In a topological space T, 

(i) for subsets R <;;; R' <;;; T, jR = jR' iff R' <;;; R, 
(ii) for each subset R, intersection gives an isomorphism of frames 

O(R) --+ O(R), (16) 

(iii) if the space T is sober, so is the space R for every R <;;; T. 

Proof: (i) First notice that by (14), for subsets Rand R' of T an 
inclusion R <;;; R' yields a reverse inclusion jR' :::; jR [i.e., jR' (U) <;;; jR(U) 
for all Uj. But by (14) and (15), R is the largest subset of T for which 
jR :::; iii· Thus jR :::; jR' implies R' <;;; R, while conversely R' <;;; R 
implies jii :::; jR', so surely since jR :::; iii also jR :::; jR'· 

(ii) By (15), Rn (V - U) = 0 iff Rn (V - U) = 0. But this amounts 
to the statement that R n V <;;; R n U iff R n V <;;; R n U, which implies 
that intersection with R is an isomorphism O(R) --+ O(R), as required. 

(iii) Suppose that T is sober and R <;;; T. To prove that R is sober, 
let P be a proper prime element of the lattice O(R) of open subsets of 
Ii. By the definition 2.2 of sobriety, we have to show the existence of 
a unique point x E R such that P = R - {x}. Since P is open in R, 
it must be of the form P = K n R for some open subset K <;;; T, and 
for this K we can take K = U{ U <;;; T I U open, and Un R <;;; P}. In 
other words, for any open U <;;; T, 

U<;;;K iffUnR<;;;p. (17) 

It follows from (17) that K is a proper prime element of O(T), since P 
is one in O(R). Since T is sober by assumption, there is a unique point 
x E T with K = T - {x}. It follows that P = K n R = (T - {x} ) n R = 
R - ({ x} n R). Now {x} n R is the closure of the point x in the subspace 
R, provided x E R. SO it remains to show that x E R. To this end, take 
any locally closed set L <;;; T with x E L; say L = U - V where U, V 
are open in T. Then x E U and x t/'. V, so since K = T - {x} we have 
U ~ K and V <;;; K; or by (17), un R ~ P and V n R <;;; P. Thus 
un R ~ V n R, and hence by Part (ii) of the lemma Un R ~ V n R. 
Thus R n (U - V) =1= 0. This holds for any locally closed set L = U - V 
containing x. So x E R by definition of R, as was to be shown. 

This completes the proof of Proposition 4. 

Finally, we can relate "open map" for spaces with "open map" for 
locales, as follows. 
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Proposition 5. Let f: T -+ S be a continuous map of topological 
spaces with S a T1-space. Then f is open iff the induced map of locales 
Loc(T) -+ Loc(S) is open. 

Proof: By Proposition 3 above, the map Loc(f): Loc(T) -+ Loc(S) 
of locales is open iff for each open sublocale of Loc(T) its image in 
Loc(S) is open. Since O(Loc(T)) is simply the lattice of open subsets 
in the space T, an open sublocale of Loc(T) is given by the nucleus 

k = (V =* ( - )) 

on O(T), for some open subset V ~ T. As before, the image-sublocale 
in Loc(S) is then given by the nucleus j = f*kf- 1 . Explicitly, for this 
V and each open U ~ S, 

j(U) = f*kr1(U) 

= U{ W ~ S I W open, rl(W) :s; krl(U)} (since r 1 --1 f*) 

= U{ W ~ S I W open, rl(W) n v:s; r1(U)} 

= U{W ~ S I W open, Wnf(V) ~ U} 

[the latter equality holds since f- 1 (W) n V :s; f- 1 (U) iff W n f (V) :s; U 
by a point-set calculation]. In other words, j is exactly the nucleus iJ(V) 

as in (13) above, corresponding to the point-set image f(V) ~ S. 
Now if f is an open map of spaces, then f(V) is an open subset 

of S and the nucleus j = iJ(V) = (f(V) =* ( - )) evidently determines 
an open sublocale of Loc(S). So by Proposition 3, Loc(f): Loc(T) -+ 

Loc(S) is an open map of locales. Conversely, if the latter map of locales 
is open, then for each open subset V ~ T this nucleus j = j f(V), which 
describes the image of Vasa sublocale of Loc(S), must be of the form 
(A =* ( - )) = jA: O(S) -+ 0(8) for some open subset A ~ S. Thus, the 

subsets A and f(V) determine the same nucleus, and hence 1{V) = A 
by part (i) of the preceding proposition. But 8 is a T1-space, so the 
points of S are closed, and hence R = R for any subset R ~ S as is 
evident from the definition of the operation R f--+ R. Therefore, from 

f{V) = A we conclude that f(V) = A; i.e., f(V) is open since A was 
open. This shows that f is an open map of spaces, and so completes the 
proof of the proposition. 

8. Open Maps and Sites 

Given two sites (D, K) and (C, J), each functor 11': D -+ C with a 
suitable property (the clp) induces a geometric morphism on the corre
sponding sheaf categories 

f: Sh(D,K) -+ Sh(C,J). (1) 
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This section will show that the added condition "71" preserves covers" 
will imply that this induced morphism f is open. The result will have 
an immediate application in the construction of the next section of the 
Diaconescu cover. 

First recall from §VIl.lO that 71": D --+ C has the covering lifting 
property (clp) for the given topologies iff, whenever a J-sieve S E J(7I"D) 
covers the image 71" D of an object D of D, there is a covering K -sieve 
T E K(D) with 7I"T c S. By Theorem VII.10.5 the geometric morphism 
f then exists and the inverse image functor j* for (1) is described, for 
any sheaf Eon C, by the formula 

j*(E) = a(E 0 71"); (2) 

here a(E 0 71") is the associated K-sheaf of the presheaf E 0 71" on D. 
Recall also from §VII.10 that the functor 71": D --+ C is said to pre

serve covers when for any covering sieve T E K(D) in D the sieve (7I"T) 
in C generated by its image {7I"(g) I gET} is a J-cover of 7I"(D) in C. 
The intended condition for f to be open now reads as follows 

Proposition 1. Let f: Sh(D, K) --+ Sh(C, J) be a geometric mor
phism induced as in (1) by a functor 71": D --+ C with the c1p. If 71" 
preserves covers, as above, and if for each object D E D the induced 
functor 71"/ D: D / D --+ C /71" D on the slice categories is surjective on 
objects, then f is an open geometric morphism. 

The proof starts with a J-sheaf E on C, the composite presheaf 
E 0 71": DOP --+ cop --+ Sets on D, its associated sheaf j* E = a( E 0 71") 
as in (2), and the lattices 

SubSh(f* E) and SubPr(E 0 71") 

of subsheaves and subpresheaves, respectively. It is helpful to observe 
that the first lattice can be described without using the sheafification 
a, but directly in terms of the presheaf E 0 71" and the closure opera
tion defined on presheaves by the given Grothendieck topology. Indeed, 
Corollary V.3.8 describes an isomorphism, induced by sheafification, 

ClSubpr(E 0 71") ~ SubSh(f* E) = SubSh(a(E 0 71")), (3) 

between the lattice of closed subpresheaves of E 0 71" and that of sub
sheaves of j* E. 

We need a characterization of closure in terms of covering sieves. In 
general, if P is a presheaf on a category D, each element dE P(D) and 
each subpresheaf A C P together determine a sieve Sd,A on D by 

Sd,A = {g: D' --+ Did· 9 E A(D')}, dE P(D), (4) 
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consisting of those 9 which "pull" d into A. Moreover, by (6) in §V.4, 
A ~ P is a closed subpresheaf iff for all objects D of D and all elements 
dE P(D), 

Sd,A covers D implies d E A(D). (5) 

Lemma 2. Under the assumptions of Proposition 1, with E a sheaf 
on C, the induced map IE: SubSh(E) --+ SubSh(f* E) is given by com
position with 71' followed by the isomorphism (3): 

B 

I 
~SUbSh(E)~ 

Q B 0 71' C1Subpr(E 0 71') ---,--,----+) SubSh(f* E). 
(3) 

(6) 

At the left of this diagram, B f---t B 0 71' and Q f---t Q displays an 
adjunction still to be constructed. 

Proof: Consider any subsheaf B ~ E in Sh(C, J). As in (2) above, 
its image f*(B) = a(B 071') under IE is the associated sheaf of the 
presheaf B 0 71' on D. Since the isomorphism (3) from closed presheaves 
is given by the sheafification operator a, it will suffice to show that the 
subpresheaf B 0 71' of Eo 71' is closed in Eo 71'. To this end, take any 
object D of D and consider an element d E (E 0 71')(D) for which the 
sieve Sd,Bo7r of D defined as in (4) is a cover of D. Since the functor 
71': D --+ C is assumed to preserve covers, this implies that the sieve on 
71'(D) generated by 71'(Sd,Bo7r) covers 71'(D) in C. But by (4) the arrows 
71'g: 71'D' --+ 71'D for 9 E Sd,Bo7r are those for which d· 9 E B(71'D'), so 
they are among the arrows h in the sieve 

Sd,B = {h: C' --+ 71'D = C I d· hE B(C')} 

on 71' D. Thus, the sieve Sd,B contains the given covering sieve 71'(Sd,Bo7r), 
so it must itself be a covering sieve on C = 71' D. But B ~ E is not only 
a subpresheaf, but is assumed to be a subsheaf, so by Lemma 1II.7.2 it 
is closed in E. Therefore, dE B(71'D). This shows that Bo71' is a closed 
subpresheaf of E 0 71', as required for (6). 

Proof of Proposition 1: According to the Definition 6.2 of an 
open geometric morphism, we have to construct for each J-sheaf E on 
C a map (fE)' of posets which is natural in E and left adjoint to the 
map 

IE: SubSh(E) --+ SubSh(f* E) 

displayed at the right of diagram (6). By the lemma, this map can be 
identified with the map 

SubSh(E) --+ C1Subpr(E 0 71'), BeE f---t B 0 71' cEo 71'. (7) 
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To construct an adjoint to this map, consider a closed subpresheaf Q c 
E07r. Given an object C, each element e E E(C) determines a sieve 
Te,Q on C by 

Te = Te,Q is generated by those h: 7r(D) ~ C with e· h E Q(D) (8) 

[since Q cEo 7r, we have Q(D) C E(7rD)]. Then define Q(C) C E(C) 
by 

e E Q(C) iff Te,Q covers C,e E E(C). (9) 

We intend to define the desired adjoint (fE),(Q) to be Q. But first 
observe that Q is a subpresheaf of E. Indeed, if e E Q( C) so that Te,Q 
covers C as in (9), while u: C' ~ C is any arrow in C, the stability 
axiom for the Grothendieck topology J on C states that the pullback 
u* (Te,Q) of Te,Q along u is a cover of C'. By definition, this pullback 
consists of those arrows k: C" ~ C' for which u 0 k E Te,Q; that is, of 
those arrows k for which [according to the definition (8) of Tel there is 
a commutative square 

C' --,u-------l) C 

in C with e . h E Q(D). The assumption that the slice functor 
7r/D: D/D ~ C/7rD is surjective on objects then implies that there 
is an arrow w: D' ~ D in D with 7r(w) = v and hence with 7rD' = C". 
By the definition of Te one then has e· u· k = (e· h)· v E Q(D'). There
fore each k E u*(Te) is in Teu, in other words, u*(Te) C Teu· Hence Teu, 
like u*Te, is a cover of C'. By the definition (9) of Q this means that 
eu E Q( C') for all u; in other words, Q is indeed a subpresheaf of E. 

To see that this subpresheaf Q is closed in E, we consider for each 
C and each e E E( C) the sieve Se,Q on C defined as in (4) by 

S Q~ = {u: C' ~ C with e· u E Q(C')}. 
e, 

By the definition (9) of Q this means that S is 

S Q~ = { u: C' ~ C I Te.u covers C' }. 
e, 

(10) 

As in the description (5) of closed subpresheaves, we wish to prove that 

Se,Q covers C implies e E Q(C). (11) 
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But Te.u is defined as the sieve generated by all those arrows h: 7r D ---+ C' 
with (eu)h E Q(D), while for these arrows u, (eu)h = e(uh), so uh E Te 
and thus h E u*Te, which means that Teu C u*Te' Now if S Q- covers e, 

C as in (11) then, for every u E S Q-' the sieve Teu covers C' and 
e, 

hence the pullback u*Te also covers C'. The transitivity axiom for a 
Grothendieck topology then states that Te covers C. Therefore, by (9), 
e E Q(C). Thus (11) holds, so that Q is a closed subpresheaf of E. 
By Lemma III.7.2 it is, therefore, a ~ubsheaf of E, so that we have 
constructed the desired functor Q ......., Q 

(fE)!: ClSubpr(E 0 7r) ---+ SubSh(E), (12) 

Finally, we verify that the functor (fE)! so constructed is indeed a 
left adjoint to the functor fE' as the latter was identified in (7) with the 
functor B ......., B 07r for BeE. First, we show for each such subsheaf B 
of the sheaf E that, under the map Q ......., Q, 

(13) 

Indeed, if e E E(C) is such that e E (B 0 7r)(C) then, by definition (9) 
of Q, the object C is covered by 

Te ,B07r = {h: 7rD ---+ C Ie· hE B(7rD)}, 

a sieve on C. But this sieve is contained in the following sieve on C 

Se,B = {g: C' ---+ C Ie· 9 E B(C')}; 

so, by the properties of coverings, this latter sieve also covers C. Since 
B is a subsheaf-that is, a closed subpresheaf--of E, the criterion (5) 
above for closure shows that e E B(C) and so proves (13). 

Second, take Q ~ E07r, any closed subpresheaf of E07r. Then for any 
DE D with C = 7rD and any e E Q(D) ~ E(7rD) = E(C) the identity 
arrow Iv belongs to Te,Q, a sieve on 7r D. Therefore Te,Q, as the maximal 

sieve, must cover 7rD = C. Hence, by (9), e E Q(C) = [(fE)!(Q)](C). 
Thus 

e E Q(C) = [(fE)!(Q)](C) = ([(fE)J(Q)] o7r)(D). 

This holds for all e E Q(D), so 

(14) 

But fE has been identified in (7) with - 07r. Thus, the first and 
second arguments above together yield the counit (13) and the unit (14) 
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for the desired adjunction (IE)! -1 IE; the triangular identities for unit 
and counit follow formally, as for any poset. 

To complete the proof, one must observe that the functor (IE)! of 
(12) is natural in E, in the sense that each arrow a: E' -7 E in Sh(C, J) 
makes the diagram (12) of §6 commute. But by the isomorphism (3) we 
may equivalently write this diagram as 

C1Subpr(E 0 11") 

(a- 1 )07r 1 
) SubSh(E) 

1a - 1 

C1Subpr(E' 011") (fE')!) SubSh(E'), 

and it follows from the explicit description (9) and (12) of (IE)! that 
this diagram indeed does commute. 

Remark 3. If in the situation of Proposition 1 we also assume that 
11" is surjective on objects, then clearly the functor (7) of lattices is injec
tive. Since by Lemma 2 this functor is, up to isomorphism, the functor 
IE: SUb(E) -7 Sub(I* E) of subobject lattices, it follows by Condi
tion (iv) of Lemma VII.4.3 that in this case the geometric morphism 
I: Sh(D, K) -7 Sh(C, J) of Proposition 1 is an open surjection. 

9. The Diaconescu Cover and Barr's Theorem 

The main result of this section is the following 

Theorem 1. For every Grothendieck tapas £ there exists a locale 
X and an open surjective geometric morphism 

Sh(X) --* £. (1) 

The locale X to be constructed in the proof is called the Diaconescu 
cover of £. 

Proof: The given Grothendieck topos £ is equivalent to the category 
Sh(C, J) of sheaves on some site (C, J). Now if we had a site (S, K) 
formed from a category S which is a poset, its sheaves by Theorem 5.1 
would form a localic topos. A suitable functor 11": S -7 C then might 
give an open geometric morphism in accord with Proposition 8.1 just 
above. Hence we search for a suitable poset S with a map 11" onto the 
given category C. 

We take this poset S to consist of strings of arrows of C, where a 
string is to be a sequence 

(2) 
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of composable arrows in C. These strings carry a natural partial order: 
for two strings sand t we write t s: s if t prolongs s to the left. [So for s 

an 
as in (2), t must have the form Cn +m -+ ... -+ Cn ---t ... -+ Co.J This 
defines a poset S = String(C) of strings in C. This poset is a category 
in the usual way, with an evident projection functor 

71": String( C) --+ C 

given on the objects s of (2) by 7I"(s) = Cn; on inclusions t s: s, 71" is 
defined as the evident composition. 

We now equip the poset String(C) with a Grothendieck topology K, 
by defining a sieve U on an element s E String( C) to be a K -cover of s 
iff for any t s: s in String(C), the set of arrows 7I"(t' s: t): 7I"(t') --+ 7I"(t) 
where t' E U form a J-cover of 7I"(t) in C. [Here we have identified the 
sieve U on s with a downward closed subset of {t' E String(C) It'S: s }.J 

This does indeed define a Grothendieck topology on String ( C) (the 
transitivity axiom follows from the transitivity axiom for the topol
ogy on C, and the stability axiom for K is "built into its defini
tion"). By Theorem 5.1, the resulting topos Sh(String(C), K) is localic. 
Thus to prove the present theorem, it suffices to show that the functor 
71": String(C) --+ C satisfies the conditions of Proposition 8.1 and Re
mark 8.3. It is evident that the functor 71" preserves covers and that, for 
each string s, the induced functor String(C)/s --+ C/7I"(s) is surjective 
on objects. 

an a1 

To see that 71" has the clp, consider a string s = (Cn ---t ... --+ Co) 
as in (2), and let R be a covering sieve on its image Cn = 7I"(s) in C. 
Define a sieve U on s by 

U = {t' I t' s: S, 7I"(t' s: s) E R} 

= {(an+m, ... , an,···, ad E String(C) I an+l 0 ···0 a n+m E R}. 

Then 7I"U ~ R, so it will be enough to show that U is a K-cover of s. To 
an+~ an 

this end, take any t s: s, say t = (Cn +m --- ... -+ Cn ---t ... -+ C) 
and write 9 = 7I"(t s: s) = an+l 0 ···0 a n +m . Let R' = g*(R). Then, 
by the axiom of stability for J, R' is a J-cover of Cn +m in C. Also 
7I"(U n {t' I t' s: t}) contains R', so is a J-cover. Thus, by the definition 
of K, this U is a K-cover of s. This shows that the functor 71" has the 
clp. 

Proposition 8.1 now implies that 71" induces an open geometric mor
phism 

Sh(String(C), K) --+ Sh(C, J). 

Since 71" is also surjective on objects, Remark 8.3 shows that this ge
ometric morphism is also surjective. This completes the proof of the 
theorem. 



9. The Diaconescu Cover and Barr's Theorem 515 

Theorem 2 (Barr's Theorem). For every Grothendieck topos E 
there exists a complete Boolean algebra B and a surjective geometric 
morphism Sh(B) -+ E. 

Recall that Sh(B) is the topos of sheaves on the Boolean algebra B 
with the usual sup topology [as defined for any cHa in Example III.2(d)]. 
The complete Boolean algebra B is a frame, and Sh(B) is the topos of 
sheaves on the corresponding locale [i.e., the unique locale Y specified 
by O(Y) = B] as defined in §5 above. 

Barr's theorem follows from Theorem 1 and the following result 
about locales. 

Lemma 3. For every locale X there exists a surjection Y -+ X of 
locales for which O(Y) is a complete Boolean algebra. 

Proof: Recall from §4(1l) that if X is a locale, we may for each 
U E O(X) define a closed sublocale X - U of X, with O(X - U) ~ 
{V E O(X) I V::::: U}. Also, the frame of -----fixed points of O(X - U) 
gives a "double negation" sublocale (X - U)~~, as in §4(14). Now set 

Y = U (X - U)~~. 
UEO(X) 

Here "11" is the coproduct in the category of locales. This coproduct 
is constructed as the product in the opposite category of frames. [So 
O(Y) is the product of the frames O(X - U)~~, with operations of 
supremum and infimum taken pointwise.] There is a canonical map of 
locales p: Y -+ X, defined on each summand (X -U)~~ as the composite 
embedding Pu: (X - U)~~ >---+(X - U) >---+ X. This map p is a surjection 
of locales; i.e., p-l: O(X) -+ O(Y) is an injective frame map. For if U, 
V E O(X) and U ::; V while U -=I V, thenpr:/(U) = 0 but Pu1(V) -=I 0 in 
O(X - U)~~. Furthermore, since each frame O(X - U)~~ is a complete 
Boolean algebra by §4(14), so is their product O(Y). This proves the 
lemma. 

Barr's theorem is useful for cohomology. In the study of sheaf coho
mology of a topological space X one employs the Godement resolution 
in the category of sheaves (of modules) by finding a surjective geometric 
morphism Sh(Y)....." Sh(X) so that epimorphisms e split in Sh(Y) [i.e., 
for each epimorphic e there is s with es = 1]. Such a space Y is easily 
found by taking the points of X with the discrete topology. The original 
purpose of Barr's theorem was to generalize this Godement resolution 
to the context of the cohomology of an arbitrary Grothendieck topos E 
by constructing another topos B in which epimorphisms split and with 
a surjection B....." E. For this B, recall that Proposition VI. 1.8 shows that 
epis split on the topos of sheaves on any complete Boolean algebra. 
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10. The Stone Space of a Complete Boolean Algebra 

We begin this section by reviewing the well-known construction of 
the Stone space of a Boolean algebra. This construction, discovered by 
Marshall Stone in 1936, shows that every abstract Boolean algebra is 
isomorphic to a suitable algebra of sets. His representation was explic
itly topological, by the closed-and-open subsets of a compact Hausdorff 
space, now called the Stone space of the Boolean algebra. Stone's origi
nal construction was formulated by regarding the Boolean algebra as a 
special type of ring (a Boolean ring), and then using the space of prime 
ideals (now called the spectrum) of this ring. In our presentation, we 
replace the prime ideals by the (essentially equivalent) maximal filters. 

Let B be a Boolean algebra; as usual, we shall write ::; for the par
tial order on the elements of B, 1 and 0 for the largest and the smallest 
element, and /I" V, -, for the operations of forming the infimum and 
supremum (of two elements) and the complement (of an element). Re
call that a subset F ~ B is called a filter if it has the following three 
properties: 

1 E F, 0 tf- F, 

if a ::; b and a E F, then b E F, 

if a E F and b E F, then a /\ b E F. 

(1) 

(2) 

(3) 

These filters are partially ordered by inclusion. A filter m is maximal if 
it is contained in no other filter; that is, for any filter F such that m ~ F 
one has m = F. We will use Zorn's lemma to prove that every filter is 
contained in a maximal one. 

Lemma 1. For a filter m in a Boolean algebra B, the following 
conditions are equivalent: 

(i) m is maximal; 
(ii) for each b E B, either b E m or -,b E m; 

(iii) for any a, b E B, if a V b E m then a E m or b E m. 

Proof: The implication (iii)*(ii) is clear, since b V -,b = 1. For 
(ii)*(i), suppose that m is a filter satisfying condition (ii). If F ~ m is 
a filter which properly contains m, then there exists abE F with b tf- m. 
Hence by condition (ii) for m, we have -,b E m. But m ~ F, so also 
-,b E F, and hence 0 = b /\ -,b E F since F is a filter. This contradicts 
condition (1) for filters. Finally, to prove (i)*(iii), suppose that a, b E B 
are two elements such that a V b belongs to a maximal filter m, while a 
does not belong to m. We will show that b E m. Construct from a the 
set 

F = { y E B I 3x E m (x /\ a ::; y)}. 
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One readily checks that F ::2 m, and that F satisfies all conditions (1)
(3) for a filter except perhaps the condition that 0 ~ F. But a E F 
while a ~ m, so F cannot be a filter by maximality of m. Thus 0 E F, so 
there is some x E m with x 1\ a = O. But then b ~ x 1\ b = (x 1\ b) V 0 = 
(x 1\ b) V (x 1\ a) = x 1\ (a V b), so bE m since both x E m and a V bE m. 
The proof is complete. 

For an element bE B, define a set D(b) of maximal filters by 

mED(b) iffbEm. 

Lemma 2. For any elements a, bE B: 

(i) D(a) n D(b) = D(a 1\ b); 
(ii) D(a) U D(b) = D(a V b); 

(iii) D( a) <;:; D(b) iff a ::; b. 

(4) 

Proof: By conditions (2) and (3) for any filter F, one has a 1\ b E F 
iff a E F and b E F, so (i) is clear. Next, part (ii) of the lemma 
follows directly from part (iii) of the previous lemma. It thus remains 
to prove (iii). Clearly a ::; b implies that D(a) <;:; D(b), by condition (2) 
on filters. For the converse, suppose that D(a) <;:; D(b), while a i b. 
Then a 1\ -,b i- 0, so the set F = {x E B I a 1\ -,b ::; x} is a filter 
in B. By Zorn's lemma, F is contained in some maximal filter m. In 
particular a 1\ -,b E m; whence a E m since (a 1\ -,b) ::; a, and b ~ m since 
b 1\ (a 1\ -,b) = O. This contradicts D(a) <;:; D(b). 

It follows from part (i) of this lemma that the sets D(a), for all a E B, 
form a basis for a topology on the set of all maximal filters in B. The 
resulting topological space is called the Stone space of B, in symbols, 
Stone(B). So the points of Stone(B) are the maximal filters in B, and 
a subset U <;:; Stone(B) is open iff for each maximal filter m E U, there 
exists abE B with m E D(b) <;:; U. It is well-known and not difficult to 
prove that Stone(B) is a compact Hausdorff space, and that the compact 
open subsets of Stone(B) are exactly the basic open sets D(b). Thus, 
the Boolean algebra B is isomorphic to the lattice of compact open 
subsets (equivalently, those subsets which are both closed and open) 
of the space Stone(B). This gives the so-called "Stone-duality". (For 
details, see, e.g., [Halmos] or [Johnstone, 1982].) Of course, the Stone 
space can equivalently be defined as the space of prime ideals p in the 
Boolean algebra B, with basic open sets of the form {p I b ~ p}, for 
each b E B. Indeed, each maximal filter m determines a prime ideal 
p = { b I -,b Em}, and conversely. 

Here we will be interested in a somewhat different aspect of the Stone 
space, for the special case where B is a complete Boolean algebra. In 
particular, B is then a frame (§1), and one can define a canonical map 

¢: O(Stone(B)) ---+ B (5) 
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from the frame of open subsets of the Stone space back to the complete 
Boolean algebra B, by setting 

¢(U) = V{b E B I D(b) ~ U} (6) 

for each open U ~ Stone(B). 

Proposition 3. For every complete Boolean algebra B. the map 
¢: O(Stone(B)) .-., B defined by (6) is a surjective homomorphism of 
frames. 

Proof: By part (iii) of Lemma 2, one has 

¢(D(b)) = b (7) 

for any element b E B, so ¢ is surely surjective. We have to show 
that ¢ preserves finite meets and arbitrary sups. Clearly ¢ preserves 
the top element, i.e., the empty meet. For binary meets, consider open 
subsets U and V of the Stone space. Clearly, ¢(U n V) ~ ¢(U) and 
¢(U n V) ~ ¢(V), so ¢(U n V) ~ ¢(U) 1\ ¢(V). For the converse we have 

¢(U) I\¢(V) = V{a E B I D(a) ~ U} 1\ V{b E B I D(b) <; V} 

= V { a 1\ biD (a) <; U and D (b) ~ V}, 

where the latter identity follows from the infinite distributive law [§l(l) ]. 
But for any such a and b with D(a) ~ U and D(b) <; V, also D(a 1\ b) = 
D(a)nD(b) <; unv, so al\b ~ ¢(UnV). Thus, ¢(U)I\¢(V) ~ ¢(UnV). 
This shows that ¢ preserves binary meets. 

For suprema, consider a family {Ui liE I} of open subsets of the 
Stone space. Clearly, ViEI ¢(Ui ) ~ ¢(UiEI Ui ). To prove the converse 
inequality, consider any element b E B such that D(b) ~ UiEI Ui . We 
will show that b ~ ViEI ¢(Ui ). Since the subsets of the form D(a), 
a E B form a basis for the topology, D(b) <; U Ui implies that D(b) ~ 
U~ D( a~), where { a~ } is a collection of elements from B such that, for 
each ~, the set D(a~) is contained in some Ui . It now suffices to show 
that b ~ V~ a~, for then also b ~ ViE I ¢(Ui ) since each a~ ~ ¢(Ui ) for 
some i. Suppose to the contrary that b 1:. V ~ a~. Then b 1\ -,(V ~ a~) i- 0, 
so just as in the proof of Lemma 2(iii), Zorn's lemma gives a maximal 
filter m with b 1\ -,(V ~ ad E m. So b E m but V ~ a~ ~ m. But for any 
particular ~o, we have a~o ~ V t; at;, hence also a~o ~ m; i.e., m ~ D( at;o)' 
Since this holds for any ~o, we find that m ~ U D (at;); this contradicts 
D(b) ~ U~ D(a~), and the proof is complete. 

Now compare the topos Sh(Stone(B)) of sheaves on the Stone space 
with the topos Sh(B) of sheaves on the given complete Boolean algebra 



10. The Stone Space of a Complete Boolean Algebra 519 

B. The surjection (5) of frames ¢: O(Stone(B)) --t B can be viewed in 
the opposite direction as an embedding of locales (Definition 4.1), and 
hence induces an embedding 

i: Sh(B) <-----t Sh(Stone(B)) (8) 

of topoi, as in Proposition 5.5(ii). As explained in §5, this geometric 
morphism i is induced by the left-exact and continuous functor obtained 
by composing ¢ with the Yoneda embedding 

O(Stone(B)) ~ B c....c ----,,--Y-----» Sh(B). 

By the explicit description given in Theorem VII.1O.2, the direct image 
functor 

i*: Sh(B) ---------t Sh(Stone(B)) 

is given by composition with ¢; so, for a sheaf F on B and any open 
subset U of the Stone space, 

i*(F)(U) = F(¢U). (9) 

Furthermore, the inverse image functor i*: Sh(Stone(B)) --t Sh(B) fits 
into a commutative square 

O(Stone(B)) c-c ---t) Sh(Stone(B)) 

¢ 1 ii' (10) 

B c....c ------t) Sh(B). 

[This is the same diagram as (8) in §5; the horizontal inclusions are the 
Yoneda embeddings; or alternatively, they come from identifying Band 
O(Stone(B)) with the lattices of subobjects of the terminal object 1 in 
the topoi Sh(B) and Sh(Stone(B)), respectively.] 

The embedding i: Sh(B) >---+ Sh(Stone(B)) of (8) has the following 
special property, which will playa crucial role in our proof in the next 
section of Deligne's theorem. 

Lemma 4. Tbe direct image functor i*: Sh(B) --t Sh(Stone(B)) of 
tbe embedding (8) preserves finite epimorpbic families. 

Proof: We are to consider a finite epimorphic family 

(11) 

of sheaves Fk and F in Sh(B). Now it follows from Corollary III.7.6 (in 
exactly the same way as Corollary III.7.7 does) that this family (11) is 
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locally surjective, in the expected sense: Given any element b E B [an 
object in the site for Sh(B)] together with an element x E F(b), there 
is a (possibly infinite) cover b = ViEI bi of b and for each index i E I of 
the cover some index ki E { 1, ... , n } together with an element Vi such 
that 

and 

Now the given family (11) is finite, and we will first show for each 
such x E F(b) that there is a finite list Cl, ... , Cn of elements of B, 
together with elements Zk E Fk(Ck) for k = 1, ... , n, such that 

b = Cl V··· V Cn and (12) 

First, we define Ck as 

Ck = V {bi liE I such that ki = k } (13) 

so that the first equation of (12) does hold. Next, introduce for each 
index k the following pullback Pk in Sh(B): 

Pk ----+) Fk 

~k1 10k (14) 

Here the bottom arrow Y(Ck) -+ F is the one corresponding by the 
Yoneda lemma to the element xick E F(Ck). This makes the sheaf Pk 
explicit: for each element a E B one has Pk(a) = 0 if a 1:. Ck, and 

(15) 

if a ::; Ck. 
Next, the left-hand map 13k: Pk -+ Y( Ck) in (14) is locally surjective. 

Indeed, take any element of Y(Ck) = Hom( -, Ck); that is, an element 
a ::; Ck in B. According to (13) this element of B has a cover 

a = a /\ Ck = V {a /\ bi liE I such that ki = k}. 

We wish to show that the element (a /\ Ck -+ Ck) is in the image of 
the map 13k in (14). But for each index i with ki = k we are given an 
element Vi E Fki(bi) for which Ok(Vi) = xlbi; its restriction to a/\bi thus 
is an element v: = vil(a /\ bi ) with o:dvD = xl(a /\ bi). Hence by (15) 
v: E Pk(a) is an element mapped by 13k to (a /\ Ck -+ Ck) in Y(Ck). This 
proves that 13k is indeed locally surjective, hence is an epimorphism in 
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Sh(B) [ef. Corollary IIL7.6]. But by Proposition VL1.8, epimorphisms 
split in Sh(B), so there is a section Uk: Y(Ck) --+ Pk of 13k. When we 
apply this section to the identity element (Ck --+ Ck) of Y(Ck) we obtain 
an element Zk E Fk(Ck) with (}:k(Zk) = XiCk, as desired for (12). 

We can now conclude the proof of the lemma by showing that 

is an epimorphism of sheaves on the Stone space of B. According to 
Proposition II.6.6 describing epimorphisms in sheaves it will suffice to 
show for each point (maximal filter) m of Stone(B) that the associated 
maps of stalks 

(k=1, ... ,n) (16) 

constitute an epimorphic family in Sets. To this end, pick an element in 
the image stalk (i* (F))m; it must have the form germm (x) for some x E 

i*(F)(D(b)), where D(b) for some b E B is a basic open neighborhood 
of m. But i*(F)D(b) = F(b) by the definition (9) of i*(F) and by the 
identity (7). Hence, we have x E F(b). Therefore by (12) there are 
elements Cl, ... ,Cn E B and for each k = 1, ... , n elements Zk E Fk (Ck) 
with (}:k(Zk) = XiCk' Then D(b) = D(cd U ... U D(cn ) by Lemma 2(ii), 
so since m E D(b) we must have m E D(cd for at least one index k. 
Then for this k, 

is in the image of the corresponding kth map i*(Fk) --+ i*(F). Thus, at 
each point m of the Stone space of B, the n maps of stalks in (16) are 
jointly surjective. This completes the proof of the lemma. 

11. Deligne's Theorem 

A coherent topos is a topos for which there is a site (C, K) where C 
is a category with finite limits and the Grothendieck topology is given 
by a basis K (De£. IIL2.2) which consists of finite covering families. Let 
us call such a site "of finite type". Many of the topoi arising in algebraic 
geometry are coherent; for example the Zariski topos is coherent since 
the site given for it in §III.3 is evidently of finite type. Also, the classify
ing topos of any geometric theory is coherent, since the "syntactic site" 
to be constructed for any such theory in §X.5 is of finite type. (Observe, 
however, that even if a topos E is coherent, there are many sites for E 
which are not of finite type, as will be apparent from Giraud's theorem; 
ef. in particular Corollary 4.1 of the Appendix.) 



522 IX. Localic Topoi 

Theorem 1. Let B be a complete Boolean algebra, with cor
responding embedding i: Sh(B) >---* Sh(Stone(B)) as in §1O(8) above. 
Then any geometric morphism from Sh(B) into a coherent topos can 
be extended to Sh(Stone(B)). 

This theorem asserts that for any geometric morphism f: Sh(B) ---+ 

E, where E is coherent, there exists a geometric morphism 9 such that 
the following diagram commutes, up to natural isomorphism: 

(1) 

Sh(Stone(B) ). 

Proof: Let E be a coherent topos, so that E = Sh(C, K) where 
C is a category with finite limits and K is a basis for a Grothendieck 
topology for which all covering families are finite. Let f: Sh(B) ---+ E be 
any geometric morphism. As in Corollary VII.9.4, f corresponds to a 
left exact continuous functor A: C ---+ Sh(B) for which there is a natural 
isomorphism 

f*(G)(C) ~ Hom(A(C), G) (2) 

for each sheaf G and each object C in C. Consider the composite functor 
A' = i* 0 A: C ---+ Sh(Stone(B)). Clearly A' is left exact since both i* 
and A are. Moreover since C is of finite type and i* preserves finite 
epimorphic families (Lemma 10.4), it follows that A' is continuous since 
A is. Thus, again by the results of Chapter VII, the functor A' defines 
a geometric morphism 

g: Sh(Stone(B)) ---+ E = Sh(C,K), (3) 

with the inverse image g* given by tensoring with A' while the direct 
image g* is given, for each sheaf F on the Stone space and each object 
C E C, as the Hom-functor 

g*(F)(C) ~ Hom(A'(C), F). (4) 

In particular, if G is any sheaf on Band i*G the corresponding sheaf 
on Stone(B), there are natural isomorphisms 

g*(i*G)(C) ~ Hom(A'(C),i*G) 

~ Hom(i* A'(C), G) 

~ Hom(i*i*A(C),G) 

~ Hom(A(C), G), 

(by (4)) 

(since i* -1 i*) 

(by definition of A') 



Exercises 523 

the latter since i is an embedding of topoi so that i*i* ~ id; cf. §VII.4. 
Hence by the description (2) above of f as a Hom-functor there is a 
natural isomorphism g* 0 i* ~ f*. This shows that the diagram (1) 
commutes, up to natural isomorphism, and so completes the proof of 
the theorem. 

Corollary 2. For any coherent topos c, there exists a complete 
Boolean algebra B and a surjective geometric morphism 

Sh(Stone(B)) ...... c. 

Proof: Given c, Barr's Theorem 9.2 provides a surjection 
f: Sh(B) ----+ C for a suitable complete Boolean algebra B. By the 
preceding theorem, this f can be extended as in (1) to a geometric 
morphism g: Sh(Stone(B)) ----+ c. By the commutativity of (1), 9 is 
surjective since f is. 

Now recall that a point of a topos c is a geometric morphism Sets ----+ 

c. A topos is said to have enough points if the collection of all points is 
"jointly surjective"; that is, for any two distinct arrows a, (3: E ~ D in 
c, there is some point p: Sets ----+ c such that p* (a) =1= p* ((3). This can be 
expressed in different but equivalent ways, analogous to Lemma VII.4.3 
characterizing surjections. For instance, the topos c has enough points 
iff for any two subobjects A and B of a given object E in c, 

A:::;B iff p*(A) ~ p*(B) for any point p of c. (5) 

Clearly the topos Sh(T) of sheaves on any topological space T has 
enough points. [Indeed, if a, (3: E ~ D are distinct arrows in Sh(T), 
then for some actual point t E T the stalk maps at, {3t: E t ~ D t must be 
distinct; but these are the inverse images of a and (3 under the geometric 
morphism Sets ----+ Sh(T) given by the point t.] Also if f: F ----+ c is a 
surjective geometric morphism and F has enough points, then so does 
c. From this remark and Corollary 2 we obtain: 

Corollary 3 ("Deligne's theorem"). A coherent topos has 
enough points. 

With classifying topoi based on Gentzen's rules as suggested at the 
end of §X.5, this corollary is essentially equivalent to G6del's Complete
ness Theorem for first-order logic. 

Exercises 

1. (a) For the lattice of open subsets of a topological space show 
that the infinite distributive law 
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U V 1\ v. = 1\ (U V v.) 

[which is the dual of §l(l) ] need not hold. 
(b) Give examples to show that for a map 1: 5 ----> T be

tween topological spaces, the homomorphism of frames 
1-1 : O(T) ----> 0(5) need not preserve infinite meets, nor 
implication or negation. Show that if 1: 5 ----> T is any 
open map between topological spaces, then 1-1 : O(T) ----> 

0(5) does preserve infinite meets and implication. 
(c) For a map 1: 5 ----> T between topological spaces, show that 

the map 1*: 0(5) ----> O(T) of §1(4a) (the right adjoint of 
1-1) can also be described by 

1*(U) = T - 1(5 - U), U open in 5. 

Give an example to show that this 1* need not preserve sups. 
2. Give examples to show that not every T1-space is sober, nor is 

every sober space T1 . 

3. An atom in a complete Boolean algebra B is a nonzero element 
a E B such that for each b E B, if b ::; a, then either b = 0 or 
a = b. Show that frame homomorphisms B ----> {O, 1 } correspond 
to atoms in B. [Thus every complete atomless Boolean algebra 
B defines a locale X without points by setting O(X) = B.] 

4. A completely prime filter G on a frame A is a subset G of A such 
that (i) 1 E G and 0 ~ G; (ii) a 1\ bEG iff a E G and bEG; (iii) 
if Vai E G, then ai E G for some index i. 

(a) If T is a topological space, check that the set of all open 
neighborhoods of any point t E T is a completely prime 
filter on the frame O(T). 

(b) For a locale X, show that the points of X correspond bijec
tively to the completely prime filters on the frame O(X). 

A topology on a set can be described by specifying only a basis for 
the open sets. In a similar way, one can define a locale by giving a 
presentation in terms of a poset equipped with a covering system, as in 
the following exercise. Examples are then provided by Exercises 6-8. 

5. Let P be a partially ordered set. A covering system on P is a 
function Cov which assigns to each pEP a family of subsets 
5 ~ {q E P I q ::; p}, the "covers of p", in such a way that the 
following stability condition holds: 
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if S E Cov(p) and q :::; p then there exists aTE Cov(q) 

with 'Vt E T3s E S (t :::; s). 

(a) A sieve on P is a subset U ~ P such that q :::; p E U 
implies q E U; such a sieve is called closed if for any subset 
S ~ U, S E Cov(p) implies p E U. Show that for any 
given covering system Cov, the closed sieves on P form a 
frame, and describe explicitly the operations V, :::}, and ---, 
of supremum, implication, and negation in this frame. 

(b) For every pEP let Bp be the smallest closed sieve con
taining p. Observe that these sieves Bp form a "basis", 
in the sense that every closed sieve S is a supremum of 
such basic sieves Bp. [If X is a locale such that VeX) is 
isomorphic to this frame of closed sieves, then (P, Cov) is 
called a presentation of X.] 

(c) For a locale X, contemplate the relation between presenta
tions (P, Cov) of X and sites for the topos Sh(X). (Hint: 
use Giraud's theorem from the Appendix.) 

6. Let P be the poset of finite sequences of zeros and ones, partially 
ordered by setting for u and v E P: 

u :::; v iff v is an initial segment of u. 

For u E P, let Cov( u) consist of a single family, namely the 
family {u~O, u~l}, where r--., denotes concatenation. Prove that 
this defines a covering system, and that (P, Cov) thus defined is 
a presentation of the Cantor space 2N [or more precisely, of the 
locale Loc(2N) corresponding to the space 2N]. 

7. Let P be the poset of rational intervals (p, q), where p < q, par
tially ordered by inclusion. For (p,q) E P, define Cov(p,q) to 
consist of two types of families: 

(i) {(p, r), (s, q) } E Cov(p, q), whenever p < s < r < q; 
(ii) {(Pn, qn) I n EN} E Cov(p, q), whenever (Pn) is a de

scending sequence converging to p and (qn) is an ascending 
sequence converging to q. 

Prove that this is a covering system on P, and that (P, Cov) 
thus defined is a presentation of the locale Loc(R) corresponding 
to the space of real numbers. 
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8. ("Killing points") Let T be a topological space. Define a covering 
system Cov on the poset OCT) by setting, for any family of open 
subsets Ui ~ U, 

{Ui liE I} E Cov(U) iff U - U Ui is finite. 
iEI 

(a) Check that this is indeed a covering system. 
(b) Write K(T) for the locale presented by (O(T), Cov), so 

that O(K(T)) is the frame of closed sieves for this covering 
system. Prove that O(K(T)) is isomorphic to the lattice 
of those open sets of T which have a perfect complement. 
(A closed set is called perfect if it has no isolated points.) 

(c) Show that K(T) is a sublocale of the locale Loc(T) corre
sponding to the space T. Show that K(T) is in fact the 
largest sublocale of Loc(T) which doesn't have any points. 

9. A map f: Y ---. X between locales is called a local homeomor
phism, or an etale map, if there is a family {Vi liE I} of 
elements of O(Y) such that V Vi = 1 [the top element of O(Y)] 
and such that for each i there is a Ui E O(X) such that f restricts 
to an isomorphism between open sublocales for each index i, as 
in 

Vi --_,::,_--> Ui 

1 1 
Y IX. 

Show that any etale map if open, and that the composition of 
two etale maps is again etale. Also show that if f: Y ---. X and 
g: Z ---. Yare maps such that f and fog are etale, then 9 must 
also be etale. 

The purpose of the next three exercises is to prove an equivalence of 
categories between etale bundles and sheaves in the context of locales, 
analogous to the case of spaces discussed in Chapter II. 

10. Let f: Y ---. X be a map of locales. For U E O( X), let Sf (U) be 
the set of sections of f; that is, if we view U as an open sublocale 
of X with embedding i: U >-> X, then Sf (U) is the set of maps 
s: U ---. Y with f 0 s = i. Prove that Sf is a sheaf on the locale 
X. 

11. Let F: O(X)DP ---. Sets be a sheaf on a locale X. Let P be the 
poset of pairs (U, s) where U E O(X) and s E F(U), partially 
ordered by 

CU, s) ::; (V, t) iff U ::; V and tlU = S; 
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in other words, P is the category of elements of F; cf. §I.5. Define 
a covering system Cov on P as follows: for a family { (Ui , Si) I 
i E I} with (Ui , Si) :s: (U, s) for all i 

{(Ui , Si) liE I} E Cov(U, s) iff U = V Ui . 

Check that this is indeed a covering system. Write E(F) for 
the locale of which (P, Cov) is a presentation. [So elements of 
O(E(S)) are closed sieves on P, as in Exercise 5.] Show that 
there is a canonical etale map 7r F: E (F) --+ X, with 7r F -1 (U) = 
{ (V, t) I V :s: U}. Also show that this is natural in F. 

12. With the notation of the preceding two exercises, prove that for 
any sheaf F on X, there is a natural isomorphism between F 
and the sheaf S(1rF) of sections of 7rF: E(F) --+ X. Also prove 
that for any etale map f: Y --+ X between locales, there is an 
isomorphism E(Sf) ~ Y of locales over X. Conclude that the 
category of sheaves on X is equivalent to the full subcategory of 
(Locales) / X consisting of etale maps into X. 

13. Let f: :F --+ E and g: Q --+ :F be geometric morphisms. Check 
that if f and g are open then so is their composite fog. Also 
show that if g is a surjection and fog is open, then f is open. 

14. For a co complete topos E and LocE as in §5(6), let TJ: E --+ 

Sh(Loc(E)) be the unit of the adjunction of Proposition 5.3. 

(a) Show that for any E E E and any U E O(Loc(E)) = 
Subd1), 

TJ*(E)(U) = HomdE, U). 

(b) Conclude that the canonical map 

A: D --+ TJ*(D&) 

is an isomorphism. [Here D& is the subobject classifier of 
E and D that of Sh(Loc(E)); A is the transpose of the map 
T of §6(21).] 

(c) Conclude that for each sheaf F on Loc(E), the inverse 
image functor TJ* induces an isomorphism 

Sub(F) ~ Sub(TJ* F) 

of subobject lattices. (Geometric morphisms with this 
property are sometimes called hyperconnected.) 

(d) Conclude that the geometric morphism TJ: E --+ 

Sh(Loc( E)) is an open surjection. 



X 
Geometric Logic and 
Classifying Topoi 

A first-order formula ¢( Xl, ... , x n ) is called "geometric" if it is built 
up from atomic formulas by using conjunction, disjunction, and exis
tential quantification. Geometric logic is the logic of the implications 
between geometric formulas: 

'<:Ix (¢(x) -> 'ljJ(x)) , (1) 

where the arrow here is for "implication" and ¢ and 'ljJ are geometric. 
Many mathematical structures can be axiomatized by formulas of this 
form (1). For instance, local rings are axiomatized by the usual equations 
for a commutative ring with unit, together with the axiom 

'<:Ix, y E R (x + y = 1 -> :3z (x· z = 1) v:3z (y. z = 1)) (2) 

which states that the ring is local; this axiom (2) is indeed of the form 
(1) . 

Much as for the Mitchell-Benabou language in Chapter VI, we will 
explain how geometric formulas can be interpreted in topoi: an inter
pretation M in a topos E is essentially a rule which assigns to each 
geometric formula ¢(x) an object in E, denoted by {x I ¢(x)}M. An 
axiom of the form (1) is "true" for an interpretation M if {x I ¢(x)}M 
is a subobject of {x I 'ljJ(x) }M. 

For instance, if one writes down the axioms for local rings in the 
form (1) with ¢ and 'ljJ geometric, then all these axioms are true for a 
given interpretation M in a topos E precisely when M defines a local 
ring-object in E. 

In Chapter VIII, we constructed a classifying topos for local rings. 
In this chapter, we will show that a classifying topos exists for any kind 
of structure which can be axiomatized by formulas of the form (1). This 
will be proved in §6. As an application of this existence of a classifying 
topos, we will show in Corollary 7.2 that Deligne's theorem from §IX.ll 
implies that a geometric formula is true in all topoi iff it is true in Sets. 
This means that suitable classical theorems automatically carryover 
from Sets to topoi. 

528 
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1. First-Order Theories 

In general, we start with a fixed first-order language L, possibly one 
with several sorts. Such a language is given by a collection of "sorts" 
(or "types") X, Y, ... , collections of relation symbols R, S, . .. and of 
function symbols f, g, ... , and possibly some constants c, d, . . .. The 
relation symbols may include properties (unary relations). Each relation 
symbol is given together with the sorts of its arguments. For instance, 
R = R( x, y) could be a binary relation taking an argument x of sort 
X and an argument y of sort Y, in which case we write "R <;;; X x Y". 
(This is purely suggestive; surely R is not really a subset of some product 
X x Y, since R, X and Yare just symbols of the language.) Similarly, 
each function symbol f of the language is given with the sorts of its 
arguments, and the sort of its output. We write suggestively 

f: Xl x ... X Xn --+ Y 

if f takes n arguments of sorts X I, ... , Xn respectively to a value of 
sort Y. Also, each constant c of the language is given with a specified 
sort. We write "e E X" or e: 1 --+ X to indicate that the constant c 
is of sort X. We also assume for each sort X that the language has 
infinitely many variables XI,X2,X3, ... (or x,y,z, ... ) of that sort and 
we sometimes write "x E X" to indicate that x is a variable of sort X. 

With such a language L one can build up terms and formulas in the 
usual way: 

Terms (of sort X): Each variable or constant of sort X is a term 
of sort X; if h, ... , tn are terms of sorts X I, ... , Xn respectively and 
f: Xl x ... X Xn --+ Y is a function symbol, then f(tl, ... , tn) is a term 
of sort Y. 

Atomic Formulas: If R <;;; Xl X ... X Xn is a relation symbol 
taking n arguments of sorts X I, ... , Xn while t l , ... , tn are terms of sorts 
Xl' ... ' Xn respectively, then R(h, .. . , tn) is an atomic formula; also if 
t and t' are terms of the same sort Y then t = t' is an atomic formula; 
finally, the symbols T and .l are atomic formulas (the identically true 
and false formulas). 

From such atomic formulas, one can build up more complicated for
mulas using connectives 1\, V, :=;., ..." and quantifiers for any sort X 
('tfx EX, :Jx E X). In the standard way, occurrences of variables gov
erned by quantifiers 'tf, :J are said to be bound; others are called free. 

An interpretation in Sets of such a first-order language L is a func
tion M which assigns to each sort X of L a set X(M); to each relation 
symbol R <;;; Xl X ... X Xn of L a subset R(M) of the cartesian product 
xiM ) x ... X X~M); to each function symbol f: X I X ... X Xn --+ Y 

a function j(M): xiM ) x ... X X~M) --+ y(M); and to each constant c 
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of sort X an element eCM) E XCM). In most texts on model theory an 
interpretation of L is usually called a (set-theoretic) L-strueture. 

Given such an interpretation M, one can define for each term 
t(Xl, . .. , xn) of sort Y, whose free variables are among the listed Xi 
of sort Xi, a corresponding function 

and for each formula ¢(Xl, ... , xn) with free variables among the Xi of 
sort Xi a corresponding subset 

(2) 

The definitions are given by induction on the construction of t (respec
tively of ¢) in the usual way, analogous to the treatment of the language 
of a topos in Chapter VI: For the case of a term t(Xl' ... ' xn), one sets 

• if t = Xi (a variable) then the function t M (Xl, ... , Xn) is the 
projection X}M) x ... X X~M) -+ XiCM); 

• ift = e (a constant of sort Y) then t M (Xl, ... , Xn) is the composite 
of xiM) x ... X X~M) -+ 1 with eM: 1 -+ yCM); 

• if t = f(tl, ... ,tk) then tM(Xl, ... ,Xn) is the composite of 
(t~M), ... , t~M»): xiM) x ... X X~M) -+ y lCM) x ... x ykCM) and 
jCM): ylCM) x ... x ykCM) -+ yCM). 

For the case of a formula ¢( xl, ... , xn) with free variables among 
those listed, one sets: 

• for ¢ an atomic formula of the form R(h, ... , tk), 

(al, ... ,an) E {(Xl, ... ,Xn ) I ¢}M iff 

(tfI (al, ... , an), ... , tf: (al, ... , an)) E RCM); 

• for ¢ an atomic formula of the form t = tf, 

(al, ... ,an) E {(Xl, ... ,Xn ) I ¢}M iff 

tM (al, .. . , an) = t'M (al, ... , an); 

• for ¢ the formula T or ..1, 

{(Xl, ... ,Xn) 1..1}M = 0 and 

{ (Xl, ... , Xn) I T}M = xiM) x ... X X~M); 

• for a conjunction ¢ 1\ 1f;, 

{(Xl, ... ,Xn) I ¢1\1f;}M = 

{(Xl, ... ,Xn) I ¢}M n{(Xl, ... ,Xn) 11f;}M; 
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• the cases of disjunction cP V 1/J, implication cP ::::} 1/J, and negation 
-'cP are treated analogously, using the corresponding operations 
on the Boolean algebra of subsets of xiM) x ... X X~M); 

• quantification: for a formula of the form Vx E X CP(XI, ... , Xn, x), 
(al, ... , an) E {(Xl, ... , Xn) I Vx E X CP(XI, ... , Xn, X)}M iff for 
all b EX, it holds that 

and similarly for any existential quantification such as 
:Jx E Xcp(XI, ... ,Xn,x). 

For each formula CP(XI, ... , xn) this defines by induction a subset 

{(Xl' ... ' Xn) I cp}M s;; xiM) x ... X X~M). Under permutation of the 
variables, the subset changes in the evident way. It should be noticed 
that this subset does not depend on the list Xl, ... , Xn of variables, once 
this list contains all the free variables occurring in cP, in the following 
sense: if one adds an element Xn+l to this list, the identity 

holds. Notice however that although the right-hand subset in (3) is de
fined in terms of {(XI, ... ,Xn) I cp}M by (3), one may not be able to 
recover the latter subset from { (Xl, ... ,xn+d I cP }M since the interpre

tations X~~{ of the sort X n +l may be empty. This observation also 
requires care in formulating "rules of inference" for such a language. 

The formula cP is said to be valid in the interpretation M in Sets if 
for any sequence Xl, ... , xn of variables (Xi of sort Xi) such that all the 
free variables of cP are contained in this sequence, one has 

{ ( ) I A.}M - X(M) . . . x(M) Xl, ... , Xn 'I' - I X X n . (4) 

[Notice that if cP is a closed formula (i.e., cP doet; not contain any free 
variables), then cP is interpreted as a subset of the empty product 1.] 

A theory T in the language L is just a set of formulas, then called 
the axioms of T. A model of T is an interpretation M of L in which all 
axioms of T are valid. 

For example, the theory of abelian groups can be formulated in the 
language L containing one sort (X say), no relation symbols, two func
tion symbols +: X X X -+ X and -: X -+ X, and one constant 0 EX. 
An interpretation M of this language is given by a set S = X(M) 
equipped with two functions +(M): S x S -+ Sand (- )(M): S -+ S, 
and one specified element O(M) E S. The theory T of abelian gr')ups is 
the collection of axioms for abelian groups: (x + y) + z = X + (y + z), 
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x + y = y + x, x + 0 = x, x + (-x) = O. Such an interpretation S is a 
model of the theory of abelian groups exactly when the operations +(M) 

and (- )(M) define a group structure on the set S, with neutral element 
OeM) E S. 

A homomorphism H: M --+ M' between two interpretations of a 
language L in Sets is given by functions 

(5) 

one for each sort X, such that the interpretation of relation symbols, 
function symbols, and constants is respected. Thus for each relation 
symbol R ~ Xl X ... X Xn in the language L, the map HXl x ... x HXn 

must send R(M) into R(M' ), as on the left in 

R (M) c..c __ ---+) X(M) x ... x X(M) 
I n 

1 HXl x···xHxn (6) 

( ') (M') (M') RM c..c __ -+)Xl x···xXn . 

Moreover, for each function symbol f: Xl X ... X Xn --+ Y and each 
constant c EX, the following diagrams should commute: 

X(M) x ... x X(M) 
f(M) 

) y(M) 1 I n 

HXl x",xHxn 1 jHY II 

C(M) ) X(M) 

j Hx (7) 

X(M') x ... x X(M' ) 
I n f(M ' ) 

) y(M' ) 1 

For a theory T in a language L, a homomorphism H: M --+ M' of 
T -models is a homomorphism of L-interpretations, where M and M' are 
both models of the theory T. This defines a category of T-models and 
homomorphisms between them. 

For example, for the theory T of abelian groups, a homomorphism 
of T-models is simply a group homomorphism. 

2. Models in Topoi 

For a first-order language L as in the previous section, there is an 
evident extension of the notion of an interpretation of L in Sets to that 
of an interpretation in any given topos [;. Such an interpretation M in 
[; is given by an object X(M) of [; for each sort X of L, a subobject 
R(M) ~ xiM ) x ... x XAM ) for each relation symbol R ~ Xl X ... X Xn 

of L, an arrow f(M) : xiM ) x ... x XAM ) --+ y(M) in [; for each function 
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symbol f: Xl X ... X Xn -+ Y of L, and an arrow cCM): 1 -+ XCM) (a 
global section) for each constant c of sort X in L. 

Given such an interpretation M of L in a topos £, one can define 
for each term t(XI, ... , xn) of sort Y, with free variables among the Xi 
of sort Xi, an arrow 

(1) 

exactly as in the case of sets treated in the previous section. Next, one 
defines for each formula cp(XI"'" xn) with free variables among the Xi 
(of sort Xi) a subobject in £: 

(2) 

by induction on cp, again much as in the case of sets, and similar to 
the treatment of the Mitchell-Benabou language in Chapter VI. If cp 
is atomic, say cp is the formula t(XI, ... , xn) = t'(Xl, ... , xn), then the 
subobject {(Xl"'" Xn) I t = t,}M is the equalizer of the arrows t CM) 
and t'CM) in £: 

{ ( ) I - t' }M X CM ) XCM) ---+ yCM) Xl,··· ,Xn t - >------+ I X··· X n ---+ . (3) 

If cp is R(h, ... , tk) for a relation symbol R and terms ti of sort Yi 
(each with free variables among Xl,"" xn of sorts Xl,"" Xn), then 
{ (Xl"'" Xn) I R(h, ... , tk)}M is the pullback of the given subobject 
RCM) along (t~M), ... , t~M)): 

(4) 

X CM ) x ... x XCM) -------4) y ICM) x ... x ¥:kCM ) . 
I n (tr, ... ,tf;1) 

Finally, {(XI,""Xn) 11-}CM) and ((XI,""Xn) I T}CM) are the top 
and bottom elements of the Heyting algebra of all the subobjects of 

xiM ) x··· x XAM ). 

The connectives /\, V, =?, -, are interpreted using the corresponding 
operations of that Heyting algebra; for instance, for /\ one defines 

{(XI,""Xn) Icp/\'ljJ}M 
= {(XI,""Xn) I cp}M /\{(XI, ... ,Xn) 1'ljJ}M. (5) 

Finally, as for the quantifiers, recall that for any arrow a: E' -+ E in 
a topos £, the "inverse image" a-I: Sub(E) -+ Sub(E') has left and 
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right adjoints 3a and Va: Sub(E') ---t Sub(E). Thus we can interpret 
the quantifiers of the language L by these adjoints: 

{(Xl, ... ,Xn) I Vx E X ¢(XI, ... ,Xn,X)}M 

=v',r({(XI, ... ,Xn,X) I ¢(XI, ... ,xn,x)}M), (6) 

where 7r: xiM) x ... x X$,M) x X(M) ---t xiM) x ... x X$,M) is the 

projection; and similarly for the existential quantification. 
This process defines for each formula ¢(XI, ... , xn) a subobject 

{ (Xl, ... , Xn) I ¢}M of the product xiM) x ... x X$,M). One eas
ily checks that it is again independent of the choice of the sequence 
Xl, ... , Xn which contains all the free variables in ¢, as expressed in one 
case by the identity (3) of §1. As before, a formula ¢ is said to be 
valid in the interpretation M (in the topos £) if { (Xl, ... , Xn) I ¢}M 
is the maximal subobject xiM) x ... x X$,M) itself, for every sequence 
Xl, ... , Xn containing the free variables of ¢. It is enough to test this for 
just a minimal such sequence. For a theory T in a language L, a model 
of T (or T-model) in a topos £ is an interpretation M of this language 
in £ such that all axioms of T are valid in M. For example, a model 
of the theory of abelian groups (see §1) in a topos £ is nothing but an 
abelian group object in £. 

As in the case of interpretations in Sets discussed in the previous sec
tion, there is an evident notion of homomorphism H: M ---t M' between 
two interpretations of a language L in a topos £; such a homomorphism 
is given by arrows Hx: X(M) ---t X(M') in E, one for each sort X, re
specting the interpretation of relation and function symbols as well as 
that of constants. [This is expressed by commutative diagrams in £, of 
the same form as the diagrams (6) and (7) of §l.] This definition yields 
a category of all the interpretations of L in £. Just as in the case of 
Sets, each theory T in the language L gives rise to a full subcategory of 
this category of interpretations: the category 

Mod(T,£) (7) 

of T-models in E. 
Notice that if F: £ ---t F is any left-exact functor, then each interpre

tation M of the language L in £ can be transported to an interpretation 
F(M) in F, defined on sorts by 

(for each sort X of L) (8) 

as follows. If R ~ Xl X ... X Xn is a relation symbol of L, its interpreta
tion in £ is a subobject R(M) ~ xiM) x ... x X$,M). Since F preserves 
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products and monomorphisms, one can thus define the interpretation 
R(F(M)) of R in the topos F simply by applying F to R(M): 

RF(M) = F(R(M)) ~ X[(M) x ... x X;(M). 

The same procedure works for function symbols j and constants 
C; thus for a function symbol j, its interpretation j(F(M)) in F is the 
unique horizontal arrow below such that the square 

F(XiM ) x ... X X~M)) F(f(M»)) F(y(M)) 

III 
F(XiM )) x ... X F(X~M)) 

II 
X1F(M) x ... X XnF(M) ) yF(M) 

j(F(M» 

commutes; and for a constant c EX, its interpretation cF(M): 1 ---+ 
F(c(M») 

X(F(M)) in F is defined via (8) as the composition 1 ~ F(1) ) 

F(X(M)) = X(F(M)). 

In this way, any left-exact functor F: [, ---+ F gives rise to a functor 
from the category of L-interpretations in [, to that of L-interpretations 
in F. But for a theory T in the language L, this functor does not in 
general restrict to a functor 

F: Mod(T, £) ---+ Mod(T, F); 

there is no reason why the validity of the axioms of T in the L-structure 
M in [, should imply their validity in the induced L-structure F(M) in 
F. In the next section, we will describe an important class of theories 
T with the property that, for any geometric morphism j: F ---+ [" the 
inverse image functor 1*: [, ---+ F does send T-models in [, to T-models 
in :F. 

3. Geometric Theories 

In this section L is a fixed first-order language. If j: F ---+ [, is a 
geometric morphism, then (as at the end of the previous section) the 
inverse image functor 1* yields for every interpretation M of L in the 
topos [, an interpretation 1* M of L in the topos F. For a formula 
¢(Xl, ... , xn) of the language L with free variables Xi of sorts Xi, there 
is thus a sub object in [, 

(1) 
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by applying the inverse image functor 1* to this subobject and using 
(f* M) (f* M) . 

§2(8) with F = 1*, we obtain a subobject of Xl x ... X Xn ill 

F: 
1*({ (XI, ... ,Xn) 1 </> }M) ~ 1*(XiM ) x ... x XAM») 

~ 1*(XiM ») x ... x 1* (XAM ») (2) 

= XV'M) x ... x XA!*M). 

On the other hand, one can also use the interpretation 1* M in F to 
obtain a possibly different subobject in F: 

!* M (f* M) (f* M) { (Xl, ... , xn) 1 </> } ~ Xl X ... X Xn . (3) 

Theorem 1. Let f: F ---- £ be a geometric morphism and let M be 
an interpretation of L in c, with induced interpretation 1* M in:F. 1£ f 
is open, then for any formula </>(XI, ... ,xn) as above, 

* M _ !*M f ({(XI,""Xn) I</>} )-{(xI, ... ,xn)I</>}· (4) 

[This is an equality of subobjects of xV' M) x ... x XA!* M) , isomorphic 

by §2(8) to 1* (XiM ») x .,. x 1*(XAM»).j 

Proof: The proof is by induction on the construction of the formula 
</>. First, consider a term t(XI, ... , xn) of sort Y with free variables 
among the listed Xi of sort Xi' Its interpretation in M is an arrow 
t(M): xiM) x ... X X~M) ____ y(M) in the top os c. Using the fact that 1* 
preserves products, an easy induction on the term t (that is, an induction 
on the construction of the term t from variables, constants, and function 
symbols) now shows that the square 

1*(XiM ) x ... x XAM») !*(t(M)\ 1*(y(M») 

~1 II 
XV'M) x·.· x XA!*M) ~ y(f*M) 

tU* M) 

commutes. Since 1* preserves pullbacks and equalizers, it then follows 
immediately from the definition that for atomic formulas R(t l , ... , tk) 
or t = t' (with free variables among Xl, ... , xn), the identities 

1*( {(Xl'"'' Xn) 1 R(tl, ... , tk) }M) = {(Xl, ... , Xn) 1 R(tl'"'' tk)}!* M, 

1*( { (Xl'"'' Xn) 1 t = t' }M) = {(Xl'"'' Xn) 1 t = t'}!* M 

both hold. Also, since 1* preserves the smallest and largest elements of 
the subobject lattice Sub(XiM ) x ... X X~M»), we have 

1*({ (Xl, ... ,Xn) 11- }M) = {(Xl,'" ,Xn 11- }!*(M), 

1*({(XI, ... ,Xn) 1 T}M) = {(XI, ... ,Xn 1 T}!*(M). 
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Thus, the theorem holds for all atomic formulas ¢. We now proceed 
by induction on ¢, according to the definition of the class of formulas. 
For example, if the theorem holds for formulas ¢ and 7jJ, then it also 
holds for their conjunction. This follows because f* preserves meets of 
subobjects; more precisely, for any two subobjects A and B of any object 
E of [;, one has 

f*(A 1\ B) = f*(A) 1\ f*(B), 

as subobjects of f*(E), because f* is left exact. Similarly, if the theorem 
is true for formulas ¢ and 7jJ, then it is also true for their disjunction 
¢ V 7jJ. This follows similarly since f* preserves suprema of subobjects 
of any object E: 

j*(A V B) = f*(A) V j*(B). 

Indeed, A V B S;;; E is defined as the image of A + B ---. E, and f* 
preserves coproducts as well as images. Furthermore, if the theorem 
holds for a formula ¢, then it also holds for the formula 3x E X ¢. In 
fact f* preserves existential quantification along any map; i.e., for any 
arrow 0:: E ---. E' in [; and any subobject A S;;; E, 

j*(3QA) = 3r (Q)f*(A) 

[ef. also IX.6(14)]. Indeed, by definition, 3Q A is the image of the com
posite A ---. E ---. E', and f* preserves images. 

So far, we have not used the assumption that the geometric mor
phism f: F ---. [; is open. This assumption is needed for the other 
inductive clauses, concerning implication ¢ ~ 7jJ, negation -'¢, and uni
versal quantification. Indeed, these follow in a similar way as in the 
cases of disjunction, conjunction, and existential quantification already 
treated from the following lemma, which thus completes the proof of 
Theorem 1. 

Lemma 2. For an open geometric morphism f: F ---. [;, and for 
any arrow 0:: E ---. E' in [; and any subobjects A and B of E: 

(i) f*(\:jQA) ~ \:jr(Q)(j* A); 
(ii) f*(A ~ B) ~ f*(A) ~ f*(B); 

(iii) f*(-,A) ~ -,f*(A). 

Proof: (i) holds by Theorem IX.6.3 and (ii) follows from (i), since 
the implication A ~ B can be expressed in terms of universal quantifi-

cation as 
(A ~ B) = \:jQ(A 1\ B), 

where 0:: A>---> E is the inclusion of the subobject A of E, and A 1\ B is 
viewed as a sub object of A. Indeed, for any other subobject C of E, one 

has 
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by the adjunction 0- 1 --\ Va. But 0-I(C) = A /\ C and A /\ C ::; A /\ B 
iff A /\ C ::; B iff C ::; (A =} B). Thus, for any subobject C we have 
C ::; Va(A /\ B) iff C ::; (A =} B), and hence Va(A /\ B) = A =} B, 
as claimed. Finally, (iii) follows from (ii) since -,A = (A =} 0) and f* 
preserves the initial object o. 

Remark 3. The converse of Theorem 1 also holds: if f: F ---> E is a 
geometric morphism with the property that, for any first-order language 
L, any interpretation M of L in E and any formula ¢(Xl, ... , x n ) with 
free variables among those listed, the identity (4) holds, then f must be 
open, at least when E is cocomplete. This follows from Theorem IX.6.3 
(open geometric morphisms preserve universal quantification). For con
sider a language with just two sorts X and Y, one function symbol 
g: X ---> Y and one unary relation symbol R <:;;; X. Then any dia-

a 
gram in E of the form A <:;;; E' -+ E is an interpretation in E of this 
special language, and Va(A) = {y I ¢(y) }M where ¢(y) is the formula 
'Ix (g( x) = y =} R( x)). The identity (4) for this formula ¢(y) then yields 
that f*(VaA) = Vfo(a)(f* A), so that Theorem IX.6.3 applies. 

By Theorem 1 a sentence ¢ which is valid in an interpretation M in 
the topos E remains valid in the induced interpretation f*(M) in:F. In 
particular, if M is a model of a theory T in the topos E, then f* (M) 
will be a model of T in F. Thus, 

Corollary 4. For any theory T in the language L, any open ge
ometric morphism f: F ---> E induces a functor between categories of 
T-models, 

1*: Mod(T, E) ---> Mod(T, F). 

Theorem 1 is not true for an arbitrary geometric morphism f: F ---> 

E; we will shortly give an example in (13) below. It will be useful, 
however, to select a class of formulas ¢, the so-called geometric formulas, 
such that equation (4) holds for any geometric morphism f, open or not. 

A formula ¢ of the first-order language L is said to be geometric if 
it can be obtained from atomic formulas by conjunction /\, disjunction 
V, and existential quantification ::Jx EX. More precisely, the collection 
of geometric formulas is the smallest collection of formulas such that 

(a) the atomic formulas R(h, ... , tn ), t = t', T, and 1- are all geo
metric formulas; 

(b) if ¢ and 1/; are geometric formulas, then so are ¢ V 1/; and ¢ /\ 1/;; 
(c) if ¢(Xl, ... ,Xn ) is a geometric formula, then so is the formula 

::Jx E X ¢(Xl, ... , x n ), where X is any sort and x is a variable of 
that sort. 
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Theorem 5. Let f: F -+ [ be any geometric morphism, let M be 
an interpretation of the language L in [, and let 1* M be the induced 
interpretation in F. Then for any geometric formula ¢(XI' ... ' xn), 

[where equality is that as subobjects of XV'M) x ... x XAj* M) ~ 
1*(XiM) x ... X XAM))J. 

Proof: The proof is by induction on the construction of the formula 
¢, and is identical to the first part of the proof of Theorem 1 (which did 
not use the assumption that f is open). 

A theory T in the language L is said to be a geometric theory if all 
its axioms are of the form 

(6) 

where ¢ and 'ljJ are geometric formulas, with free variables among the 
listed Xl, ... , X n . 

Corollary 6. For a geometric theory T, each geometric morphism 
f: F -+ [ induces a functor 1* : Mod(T, [) -+ Mod(T, F). 

Proof: Suppose that M is an L-structure in the topos [ such that 
all axioms of T are valid in M. We have to show that the axioms of T 
are again valid in the induced structure 1* M in F. Each such axiom is 
of the form (6), and such an axiom is valid in [ iff 

(7) 

as subobjects of Xl x ... X Xn (where Xi is the sort of the variable Xi). 
Since 1* preserves inclusions between subobjects, (7) gives 

And since ¢ and 'ljJ are geometric, Theorem 5 now yields 

j*M j*M {(XI, ... ,Xn ) I ¢} ::; {(XI, ... ,Xn ) 1'ljJ} . (9) 

Then \ixI ... \ixn (¢ =} 'ljJ) is valid in 1* M. This applies to each axiom 
of T, so 1* M is a model of Tin F whenever M is one in [. 

For example, consider the theory T of local rings. This theory can 
be formulated in a language L with one sort X, two function symbols + 
and .: X x X -+ X, and two constants 0 and 1. The axioms of Tare, 
first of all, the usual ring axioms such as 

\ix, y, z E X (x· (y + z) = X· Y + x . z), 
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etc., etc. These are all of the form: a stack of universal quantifiers, 
followed by an equation between two terms, i.e., axioms of the form 

for suitable terms t and t'. One can also write this axiom in an equivalent 
way as 

This is clearly a geometric formula. Furthermore, as in VIII.6.1, there 
is the following additional axiom for local rings: 

\:Ix E X (3y E X (x· y = 1) V 3y E X ((1 - x) . y = 1)). 

This formula is equivalent to \:Ix E X (T ==:::} 3y E X (x . y = 1) V 3y E 

X ((1 - x) . y = 1)), which is geometric. So the theory T of local rings 
is a geometric theory. The category of T-models in a topos £ is thus 
precisely the category LocRing(£) of local rings in £, as introduced in 
§VIII.6. Thus Corollary 6 above applied to this theory T implies for 
any geometric morphism f: F --+ £ that its inverse image 1* sends local 
rings R in £ to local rings 1* R in F, and this purely on the basis of the 
syntactic form of the axioms for local rings. 

As remarked, any "equational axiom" of the form (10) is equivalent 
to a geometric axiom (11). So any theory axiomatized by equations 
is a geometric theory. This includes the usual "algebraic" theories of 
monoids, commutative monoids, (abelian) groups, R-modules for a fixed 
ring R, chain complexes (use infinitely many sorts here), etc., etc. 

In Chapter VIII we considered (linear) orders. These can be described 
in a language with one sort l, one relation symbol :::::, and two constants 
band t, by the following geometric axioms [see (i)-(vi) of §VIII.8J: 

\:Ix E I (T ::::} x::::: x), 

\:Ix,y,z E l(x::::: yl\y::::: z::::} x::::: z), 

\:Ix, y E I (x::::: y 1\ Y ::::: x ::::} x = y), 

\:Ix E I (T ::::} b ::::: x 1\ x::::: t), 
(b = t) ::::} ..l, 

\:Ix, y E I (T ::::} x::::: y V y ::::: x). 

Thus as a special case of Corollary 6 we obtain Lemma 2 of §VIII.8, 
again purely on the basis of syntactic form of these axioms for orders. 

As a final example, consider the theory of fields; this theory can be 
formulated in the language used for commutative rings with unit, just as 
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the theory of local rings considered above. After the purely equational 
ring axioms, there are several possible ways to express the additional 
field axiom; for example, either of 

\/ x (x = 0 V 3y (xy = 1)), 

\/x (-,3y (xy = 1) ::::} x = 0). 

(12) 

(13) 

Of course, for a ring in Sets, these two axioms are equivalent and are 
true precisely when that ring is a field. Notice, however, that the first 
axiom (12) is of the form (6) required for geometric theories, at least 
when we rewrite it as the equivalent axiom 

\/x (T ::::} x = 0 V 3y (xy = 1)); (14) 

but the second one (13) is not. For ring objects in topoi, axioms (12) 
and (13) are not equivalent. For example, consider the topos Sh(X) of 
sheaves on a Hausdorff space X, and in it the sheaf Rx of germs of 
real-valued continuous functions on X. This sheaf Rx is a ring-object 
in the topos Sh(X). Any point x E X gives a point of the topos Sh(X), 
i.e., a geometric morphism x: Sets ---+ Sh(X), and the inverse image 
x*(Rx), which is the stalk of Rx at x, is the ring of germs of real
valued continuous functions at the point x. In general, this is a local 
ring but not a field. So (14) is not true for x*(Rx) in general. By 
Corollary 6 it cannot be true for the ring Rx in the topos Sh(X) [so 
neither is the equivalent axiom (12)]. 

On the other hand, axiom (13) does hold for the ring Rx in Sh(X). 
Indeed, the subsheaf {x I 3y (xy = 1) } (Rx) of Rx is the sheaf of con
tinuous functions into R - {O}, so A = {x I -,3y (xy = I)} (Rx) is the 
subsheaf of Rx given for each open set U of X and each continuous 
a: U ---+ R, by 

a E A(U) iff for no open subset V =I- 0 of U does it hold that 

a(x) =I- 0 for each point x E V 

iff a-I (0) is dense in U. 

Since X is assumed to be Hausdorff, it follows that a E A(U) iff the 
function a is identically zero on U. Thus A = {x I x = 0 }Rx, hence 
(13) holds for Rx. 

Thus, the theory of fields in topoi can be axiomatized in various 
nonequivalent ways, one as a geometric theory [as in (12) or (14)], but 
others not [e.g., by axiom (13)]. 

4. Categories of Definable Objects 
Bya "definable" object we wish to mean one of the form {x I cp(x)}M 

for some geometric cp. As a preliminary to the introduction of such 
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definable objects, we observe that the familiar correspondence between 
a function y = f(x) and its graph (in the plane) can be carried out in 
any topos [--or, for that matter, in any category [ with finite limits. 
Indeed, in the cartesian x-y plane the graph of f: X --+ Y is the subset 
of X x Y consisting of all the pairs (x, fX) for x E X. Similarly, given 
an arrow 8: A --+ B in a topos [ its graph is defined to be the subobject 
of the product A x B represented by the mono (1, 8): A --+ A x B. 
More generally, any factorization of the arrow 8 through an isomorphism 

a-I s' 
a: S ~ A as A --+ S ~ B shows that the graph of 8 is represented 
by the mono m = (a, 8'): S >--> A x B, as in the figure 

B~S 

~la 
(a,s' ) 

Graph(8): S ----+ A x B. (1) 

A 
Indeed, (1,8) is dearly isomorphic to (a,8'), as subobjects of Ax B. 

Under this correspondence between arrows 8: A --+ B and graphs 
S >--> A x B, the composition of arrows can be expressed as a pullback of 
graphs. More explicitly, given a graph S of 8 and a graph Toft: B --+ C, 
we can combine the diagram (1) for 8 with a corresponding diagram for 
t, with an iso (3, to get 

C~I~SP:( 
B ( s' S (2) 

~al 
A. 

Here the upper right-hand square is a pullback over B. But the map 
(3 is iso. Hence, the pullback (3' of (3 is iso and therefore the pullback 
S x B T, projected by the edges of (2) to A x C, is by (1) above the graph 
of the composite to 8. 

Now change notation and let T be a fixed geometric theory. Our 
aim is to associate with any model M of T in any topos [ a category 
Def(M) consisting of those objects and arrows in [ which are definable 
by geometric formulas. We will write 

X=Xl"",Xn 

for a finite list of sorts of the language. For each such list we have an 
object X(M) of [, 
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as part of the data which specify the model M. An object of Def(M) 
is to be a pair (A, X), where X is such a list of sorts, while A,........ XCM) 
is a subobject in £ (that is, an equivalence class of monomorphisms) 
for which there is a geometric formula ¢(XI, ... , x n ), with free variables 
among the Xl,"" X n , such that 

A = {x I ¢(X) }M, (3) 

as subobjects of XCM). Here, as usual, X stands for the sequence 
(Xl, ... , xn) of variables. 

If for a given subobject A,........ XCM) such a geometric formula ¢ exists 
such that (3) holds, we say briefly that A is a definable 8ubobject of X(M). 
Notice that there may be many different formulas each of which witnesses 
that a given subobject A,........ XCM) is definable: As a trivial example, if 
A is definable by the formula ¢(x) as in (3), then it is also definable 
by the formula ¢(x') = ¢(xi, ... ,x~) obtained from ¢ by replacing the 
variables Xl, ... ,Xn by others xi, ... , x~ of the same sorts, since, clearly, 

A = {x I ¢(X)}M = {x' I ¢(x') }M. (4) 

In such a case, one sometimes says that ¢(x') is an alphabetic variant of 
¢(x). 

Next we use graphs to introduce definable arrows between two such 
definable objects (A, X) and (B, Y), where X is as above and Y = 
YI , ... , Y m is another list of m sorts of the language. A definable arrow 

(8, X, Y): (A, X) ----> (B, Y) (5) 

[or briefly, 8: (A, X) ----> (B, Y)] is to be an arrow 8: A ----> B in the topos £ 
such that its graph S <;:; AxB, viewed as a subobject of XCM) xyCM), is a 
definable such subobject. In other words, there must be some geometric 
formula a(x, y) = a(xI, ... , Xn, YI,"" Ym) such that 

S = {(x, y) I a(x, y)}M (6) 

is an equality between sub objects of XCM) x yCM). 
With these objects (A, X) and these arrows 8 = (8, X, Y): (A, X) ----> 

(B, Y), one obtains a well-defined category Def(M), for which the 
identity-arrows and composition of arrows are given by identities and 
composition in the topos £. 

More explicitly, if (A, X) is an object of Def(M), so that A = {x I 
¢(x) }M as in (3), then the identity arrow 1: A ----> A in £ yields an arrow 

1 = (l,X,X): (A,X) ----> (A,X) 
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in Def(M), because its graph-the diagonal boA ~ A x A-is definable 
when viewed as a subobject of X(M) x X(M), as in 

boA = {(X,X') I ¢(x) 1\ ¢(X') 1\ Xl = x~ 1\ ... 1\ Xn = x~ }M, (7) 

where x~, ... ,x~ are new variables of the same sorts as Xl, ... , xn, re
spectively. To see that (7) holds, notice first that by §2(5) the right-hand 
side of (7) is 

{(x, x') I ¢(x)} 1\ {(x, x') I ¢(X')} 1\ {(x, x') I x = x'}, 

which by §2(3) is (A x X) 1\ (X x A) 1\ box = boA, as desired for (7). 
Composition of arrows in the category Def(M) is constructed in a 

similar way, using the composition in the topos E. Explicitly, for objects 
(A,X), (B, Y), and (C, Z) of Def(M) given by geometric formulas ¢(x), 
1/J(y), and X(z) respectively, the composite of two definable arrows 

(s,X,Y): (A,X) --> (B,Y) and (t,Y,Z): (B,Y) --> (C,Z) 

is the arrow 
(t 0 s, X, Z): (A, X) --> (C, Z) 

given by the composite in E of s: A --> Band t: B --> C, which is again 
definable: if the formula a(x, y) defines (the graph of) s while T(Y, z) 
defines t, then the formula 

3y (a(x, y) 1\ T(Y, z)), (8) 

which is again geometric if a and T are, defines the graph of t 0 s as a 
subobject of X(M) x Z(M). To see this in detail, write 

8 = {(x,y) I a(x,y)}M ~ A x B ~ X(M) X y(M) 

for the graph of s and similarly 

T = {(y, z) I T(Y, z)}M 

for that of t. Now introduce the definable subobject 

R = {(x, y, z) I a(x, y) 1\ T(Y, z)}M 

of Ax B x C S X(M) X y(M) x Z(M). By §2(5) ,this R is 

R = {(x, y, z) I a(x, y)}M 1\ {(x, y, z) I T(Y, z)}M 
= (8 x Z(M)) 1\ (X(M) x T), 

(9) 



4. Categories of Definable Objects 545 

as in the pullback 

R)-) ---------t) X(M) X T 

I 1 (10) 

s x Z(M) )-> --..... ) X(M) x y(M) x Z(M). 

This pullback R can also be constructed in the stages displayed by com
bining the descriptions of Sand T in the diagram 

R') ) Ax T> ) X(M) x T 

I p.b. 1 1 
S X 0) J A x B X 0> J X(M) x B x 0 (11) 

1 1 1 
S X Z(M) J A x B X Z(M» J X(M) x y(M) x Z(M) 

where the upper left vertex R' is defined as a pullback. Since the other 
three small squares are trivially pullbacks, the large outer square in 
(11) must also be a pullback. Thus, the pullback R' in (11) must be 
isomorphic to the pullback R in (10), so R also fits into the pullback 

R>)-----..... J A x T 

I (12) 

S X O>~-m-x:-l ..... J A x B x 0 

from the upper left square of (11). Here m and n are the given inclusions 
S ~ A x Band T ~ B x O. But now an easy "erasing identities" lemma 
shows that, for any diagram as on the left below, this diagram is a 
pullback iff the diagram on the right (obtained by erasing the identity 1 
in f xl) is a pullback: 

p------tJ UxM 

1 lf X1 (13) 

v ------;) W x M , v ------;) w. 

Applying this twice to (12) presents R finally as the pullback in the 
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square 

)T R---------t )C 

I 
p.b. BxC (14) 

1~1 
~2 

)B. A +-( --- S)>----+) A x B ---=---+ 

Therefore, by the construction §2(6) for the existential quantifier as an 
image, as in Proposition IV.6.3, the subobject 

R" = {(x, z) I :Jy (a(x, y) A r(y, z))}M <;;; A x C (15) 

is the image of R <;;; A x B x C under the projection A x B x C -t A x C 
indicated in (14), as in the factorization 

R: ) A x B x C 

1 1 
R"l ) A x C. 

But by the construction (2) of the graph of a composite above, the 
pullback R = S XB T of (14) is exactly the graph of the composite to s; 
in particular, R -t A x C is already monic, so that R ~ R". This shows 
that the formula (8) above does indeed define the graph R" in (15) of the 
composite. So the composition of two definable arrows is again definable 
in our sense, and thus gives the composition (evidently associative) in 
the category Def( M). 

To summarize, for a model M of a geometric theory T in E we have 
constructed a category Def(M) whose objects are given by a list of sorts 
X = Xl"'" Xn and a definable subobject A <;;; X(M), and whose arrows 
are the definable arrows of E between such subobjects; identity arrows 
and composition of arrows in Def(M) are defined just as identities and 
composition in E, since we have shown that identities are definable, and 
that compositions of definable arrows are definable. 

We emphasize that for each object (A, X) of Def(M) the list of 
sorts X I, ... ,Xn must be explicitly given; while a formula of the lan
guage defining the subobject A must exist but is not uniquely given. In 
particular, the category Def(M) consists of certain pairs (A, X) where 
A <;;; X(M) is a subobject. It is not strictly a "subcategory" of the 
topos E, although we will intuitively think of Def(M) as if it were the 
"subcategory" of E consisting of definable objects and arrows. 
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One may construct a suitable "forgetful" functor 

Def(M) -- E, 

547 

(16) 

defined on objects as follows. An object (A, X(M)) of Def(M) is given by 
a list X of sorts and a subobject of the corresponding X(M)-that is, by 
an equivalence class of monomorphisms A >---+ X(M). Choose a particular 
monomorphism in each such equivalence class and then take the chosen 
object A as the value (A, X(M)) under the functor (16). This "forgetful" 
functor is clearly faithful. We will now prove that the category Def(M) 
has finite limits, and that the forgetful functor (16) preserves these. 

Lemma 1. For any model M of a geometric theory T in a topos 
E, the category Def(M) of definable objects and arrows has a terminal 
object, preserved by the forgetful functor (16). 

Proof: Take X = Xl"'" Xn to be the empty sequence of sorts, for 
n = 0, so that X(M) is the empty product; i.e., the terminal object 1 
of the topos E. Then for this sequence X, the pair (1, X) is an object 
of Def(M); indeed, the identically true formula T is a formula without 
free variables, and {. I T}M is the terminal object 1 itself, so 1 is a 
definable subobject of itself. Furthermore, if (B, Y) is any other object 
of Def(M), where B >---+ y(M) is a definable subobject, then the unique 
arrow B -- 1 in E has a definable graph (this graph is the subobject B 
itself again). It follows that for the empty sequence X, the pair (1, X) 
is a terminal object of Def(M). 

Lemma 2. For any model M of a geometric theory T, the category 
Def(M) has pullbacks, and these pullbacks are preserved by the forgetful 
functor Def(M) -- E of (16). 

Proof: The proof is long, but is really a straightforward matter of 
constructing the appropriate diagrams for the evident formulas. 

Consider pullbacks for a diagram of the form 

(A, X) ---=8'-----+1 (C, Z) f-( -!:......- (B, Y) (17) 

in the category Def(M), where X = Xl,'" X n , Y = Yl ,· .. , Ym , and 
Z = Zl,"" Zc are sequences of sorts as before, while the monomor
phisms 

i: A >---+ X(M), j: B >---+ y(M), k: C>---+ Z(M) 

represent sub objects which are definable by geometric formulas, say 
¢(x), 1j;(y), and X(z). Moreover, in (17), 8 = (8, X, Z) and t = (t, Y, Z) 
are arrows in Def( M), so that the graphs of 8: A -- C and t: B -- C, 

A> (l,s) ) A X C> ixk ) X(M) x Z(M), 

(18) 

B> (l,t) ) B X C> jxk 1 y(M) x Z(M) 
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are definable, say by geometric formulas a(x, z) and T(Y, z). We claim 
that the pullback of (17) in Def(M) can be constructed as 

(A Xc B, (X, Y)) _11:=-2 -+1 (B, Y) 

11:11 1 t 
(19) 

(A,X) --s--+I (C,Z), 

where (X, Y) = (Xl, ... , X n , Y1 , ... , Yrrt ) is the concatenated list of sorts 
and A Xc B is the pullback of s: A -+ C and t: B -+ C in E and is to 
be regarded as a subobject of XCM) X yCM), as in 

A Xc B>-> ---+1 A X B) ixj 1 XCM) X yCM). (20) 

This result, once proved, shows that the forgetful functor Def(M) -+ E 
preserves pullbacks. 

To begin with, we prove that the square (19) is indeed a square in the 
category Def(M); in other words, that the subobject A Xc B and the 
projections are definable by geometric formulas. Consider the (evidently 
definable) subobject R of XCM) X yCM) given by 

R = {(x, y) I 3z (a(x, z) /\ T(Y, z)) }M. (21) 

We will prove the equality 

R = A Xc B (22) 

of subobjects of XCM) X yCM). First, since a(x, z) defines the graph 
of s as in (18), it follows that {(x, Y, z) I a(x, z)}M is the subobject 
A X yCM) >--+ XCM) X ZCM) x yCM) ~ XCM) x yCM) x ZCM), that is, 

(i x 1, kS7rd: A x yCM) >--+(XCM) x yCM») x ZCM). (23) 

And similarly, {(x, y, z) I T(Y, z)}M is the subobject 

(1 x j, kt7r2): XCM) x B >--+(XCM) x yCM») X ZCM). (24) 

Thus, by the rules of §2, the subobject {(x,y,z) I a(x,z) /\ T(y,z)}M 
is the meet P of the two subobjects (23) and (24) as displayed in the 
pullback (25) below: 

P ___ -'-Cp_,v-'-) __ --tl XCM) x B 

CU,Q)l 1CIXj,kt1l:2) 

A x yCM) -.,.-----,-+1 XCM) x yCM) x ZCM) c.X 1,kS1I:IJ 

(25) 
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[In this diagram, the arrows (p, v) and (u, q) denote the projections from 
the pullback P.] Thus the projection of P on the first two factors is 

(p, q): P -+ X(M) X y(M). 

Also the subobject R defined in (21) by the existential quantifier :3z is
according to the interpretation of such quantifiers--exactly the image of 
this map (p, q). 

We now "erase the identities" as in (13) above, erasing first the 
identity on X(M) and then the one on y(M) in (25) to find that the P, 
A, B, Z(MLsquare on the right below is a pullback: 

X(M) x y(M) 71"2 

~ 
(26) 

Since k: C -+ Z(M) is monic, it follows that the inner P, A, B, C
square (distorted) in (26) is also a pullback; in other words, there is an 
isomorphism 

( u, v) : P ---t A Xc B. (27) 

But by the commutativity of (25), p = iu and q = jv so that 

(p, q) = P ~ A x B ~ X(M) x y(M), 

and by (27) this is monic. 
Now by (21) the subobject R is the image of (p, q): P -+ X(M) X 

y(M); this shows first that P equals R as subobjects of X(M) x y(M), and 
second that P = R is identical to A Xc Bas subobjects of X(M) x y(M). 

This proves the desired equality (22). 
To finish the proof that (19) is a square in the category Def(M), 

we must show first of all that the projections 7f1: A Xc B -+ A and 
7f2: A Xc B -+ B in £ yield arrows in Def(M); that is, that the graph 

of 7f1, 

A Xc B> (l,71"d ) (A Xc B) x A> (iXj)Xi) (X(M) x y(M)) x X(M) (28) 
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is a definable subobject, and similarly for 7r2. For the case of 7r1, we 
see first that the following diagram is a pullback since i: A -+ X(M) is 
monic: (1,rrd A.xc B ---'---'---+) (A Xc B) X A 

1 (ixj) xi 

X(M) X y(M);>---:---:-+) (X(M) X y(M)) x X(M). 
(1,7rd 

(29) 

Therefore, the composite subobject (28) is the meet of the bottom and 
the right-hand subobjects of (X(M) X y(M)) X X(M) in (29). Each of 
these is definable, respectively, as 

{ (x, y, x') I x = x' }, 

{(x, y, x') I 3z (o-(x, z) II T(y, z)) II ¢(X')}, 

[the latter by (21) and (22)], so that the composite subobject (28) is 
definable by the conjunction of these formulas. This shows that the first 
projection 7r1 in (19) is a definable arrow. The case of 7f2 is, of course, 
identical. Thus (19) is a square in Def(M). 

To complete the proof of the lemma, we finally show that (19) has 
the required universal property for a pullback in Def(M). To this end, 
consider another object (E, W) of Def(M), where W = WI, ... , Wn 

is a list of sorts, while £: E >--> W(M) is a definable subobject, and let 
f: (E, W) -+ (A, X) and g: (E, W) -+ (B, Y) be arrows in Def(M) 
such that sf = tg there. Then in particular sf = tg: E -+ C as arrows 
in £, so that the universal property of the pullback in E gives a unique 
arrow (f, g) as in 

E 

.~ 
(30) 

A --8,-----7) C. 

The point is to show that (f, g) as constructed here represents an arrow 
(E, W) -+ (A Xc B, (X, Y)) in Def(M); that is, that the graph 

E; (j,g,1) (A Xc B) X E; iXjXC) X(M) x y(M) x W(M) (31) 

is a definable subobject. But the given arrows f: E -+ A and g: E -+ B 
have definable graphs, so that for suitable geometric formulas ¢(x, w) 



4. Categories of Definable Objects 551 

and 'IjJ(y, w) there are equalities as follows which hold between subobjects 
of XCM) x W CM ) or of yCM) x WCM): 

(E) (f,1) ) A x E)>--------,i-,-,-x-,---£ ---+) XCM) x W CM)) = {(x,w) I ¢(x,w) }M, 

(E) Cg,l) ) B x E) jx£ 
(32a) 

) yCM) x W CM)) = {(y,w) I 'IjJ(y,w)}M. 
(32b) 

We now claim that 

{(x, y, w) I ¢(x, w) 11 'IjJ(y, w)}M (33) 

is the graph of (j, g); i.e., that (31) and (33) are identical subobjects of 
X CM) x yCM) x W CM ). Indeed, one readily checks by elementary diagram 
arguments that all squares in the following commutative diagram are 
pullbacks in E: 

E )>-__ ....::(g::...:.,-'.l ) __ ---+) B x E )>-__ ---'--j X_1 __ --» y( M) X E 

(f,1) I 1(f7r2,7r1 ,7r2) 1(f7r2,7r1 ,7r2) 

A x E >-) -;----;----+) A X B x E )>----::--,--.,-------+) A x Y C M) X E 
C7rl,g7r2,7r2) 1 xj x 1 

iX11 liX1X1 
X CM) X E) ) X CM ) X B X E) . ) X(M) X yCM) x W CM ). 

C7rl,g7r2, 7r2) lx)X£ (34) 

But, up to permutation of the product factors, the bottom compos
ite row is obtained by crossing (32b) with X(M) while the right-hand 
composite in (34) comes from crossing (32a) with y(M). So these 
composites are definable as {(x, y, w) I 'IjJ(y, w)}M and {(x, y, w) I 
¢(x, w)}M, respectively. Their meet (33) therefore is the pullback 
E>----> X(M) X yCM) x W(M) given by the outside square of (34), this is 
exactly (31). This shows that (31) is a definable subobject, as desired, 
and so, at last, completes the proof of the lemma. 

By Lemmas 1 and 2, the category Def(M) thus inherits from E all 
finite limits. It also inherits a (basis for a) Grothendieck topology. In 
E there is such a basis, where a cover is given by a finite epimorphic 
family. Thus, in Def(M) a finite family 

(35) 

is a cover of the object (B, Y) of Def(M) when this family gives an 
epimorphic family in E under the forgetful functor (16); that is, when 
the induced map U7:1 Ai ----t B is an epimorphism in E. It follows 
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readily that this indeed defines a basis for a Grothendieck topology on 
the category Def(M). For example, the stability axiom is satisfied on 
the basis of Lemma 2 and the fact (Chapter IV) that pulling back in a 
topos preserves epimorphisms and coproducts. 

One can make this more explicit as follows. Suppose for the ob
ject (B, Y) of Def(M) that the subobject B <:;;; yCM) is defined by some 
geometric formula 1j;(y) in the variables Y1, ... , Yk, while each of the sub
objects Ai <:;;; (XCi))CM) is defined by a formula ¢i(Xi ) = ¢i(xL·· .x~J, 
for i = 1, ... , m; furthermore, suppose that the graph 8 i of the given 
morphism 8i is defined by a formula (Ji(Xi,y). Then the condition that 
this family (35) of arrows forms a cover in Def(M) is also "definable" 
by a geometric formula. This is stated in the following lemma, which 
will be needed to prove Lemma 6.2 below. 

Lemma 3. The above family (35) of definable arrows (with 8i de
fined by (Ji and B by 1j;) is a cover of the object (B, Y) for the indicated 
topology on Def( M) iff the formula 

holds for the model M in the tapas E. 

Proof: The formula (36) holds in M iff the subobject 

is contained in the subobject 

Since the graph 8 1 of 81 is defined by 

we know by the formula (6) of §2 for the existential quantifier that 

is the image of the graph 8 1 <:;;; A1 X B under the projection A1 x B --+ B. 
But the following commutative diagram 

8 1 ) ) A1 X B 

~11~ 1 ~2 
A1 81 )B 
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shows that this image is exactly the image of the arrow 81 : Al ~ B. The 
corresponding result holds for the graphs 32, ... ,3m of the other given 
arrows 82, ... , 8 m . Therefore, by the interpretation of the disjunction 
from §2, the subobject (37) is exactly the supremum 

3 = Im(8d V··· V Im(8m ) ~ B 

of the images of the various arrows 8i. But this supremum 3 can also 
be presented as the image of the arrow Al + ... + Am ~ B induced on 
this coproduct by the given maps 8i. Now this arrow is epi iff its image 
3 contains all of B; that is, iff the geometric formula (36) of the lemma 
holds in the model M. 

Given a family of arrows {8i: Ai ~ B }~1 with a common codomain 
B in a topos [, one would like to construct an arrow f: B ~ E from 
any "matching" family of arrows fi: Ai ~ E. When this is uniquely 
possible, one says that the given family { 8i } is effective. In other words, 
the 8i form an effective family when, given fi: Ai ~ E for i = 1, ... , m 
for which all the elongated squares on pairs fi, fj 

(38) 

commute, there exists a unique f: B ~ E, as shown, with f 0 8i = fi 
for i = 1, ... ,m. 

Lemma 4. In a tapas [ any nnite epimorphic family is effective [in 
the sense of (38) above]. 

Proof: By definition, the arrows Si of the epimorphic family to
gether determine a single epimorphism 8: U: 1 Ai ~ B in [. Since 
pullback commutes with sums, first over i and then over j, in a topos 
(Chapter IV, Theorem 7.2), the kernel-pair of this epimorphism 8 is 
Ui U j Ai X B A j , with the resulting two maps to U Ai as in the diagram 

m m 

UU Ai xB Aj ====4 UAi ~B. (39) 
i=1 j=1 

But in any topos, an epimorphism is the coequalizer of its kernel pair 
(Theorem IV.7.8), so (39) is a coequalizer. The given atrows fi as in 
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(38) together yield an arrow g: U Ai ---> E on the coproduct, and the 
commutativity of the outer squares in (38), for each i and j, show that 
this arrow 9 equalizes the parallel arrows in (39). Therefore, 9 factors 
as 9 = los for a unique I: B ---> E. By composing with each of the 
coproduct inclusions Ai >-t U Ai the identity 9 = los yields the identity 

1 0 Si = Ii-
We will now show that the Grothendieck topology on Def(M) as 

described in Lemma 3 is sub canonical in the sense of Chapter III; 
i.e., that for any object (E, Z) of Def(M) the representable presheaf 
Hom ( - , (E, Z)) is a sheaf for this topology. 

Lemma 5. The Grothendieck topology on Def(M) is subcanonical. 

Proof: Let (E, Z) be any object from Def(M); so, as before, 
Z = Zl, ... , Zn is a sequence of sorts while E <:;; Z(M) is a subobject 
definable by a geometric formula, say as E = {z I X(z)}M. To show 
that Hom( -, (E, Z)) is a sheaf, we must consider any covering family 

(40) 

and show that a matching family of arrows Ii: (Ai, Xi) ---> (E, Z) deter
mines a unique arrow I: (B, Y) ---> (E, Z) in Def(M) with 1 0 Si = Ii
Applying the forgetful functor Def(M) ---> E, the covering family (40) 
yields an epimorphic family { si: Ai ---> B } in E, and the arrows Ii yield 
a matching family in E. Thus the previous lemma shows that there is a 
unique arrow I: B ---> E in E such that lSi = Ii for all i = 1, ... ,ffi. It 
remains to be verified that this I also gives an arrow (B, Y) ---> (E, Z) 
in Def(M); in other words, that the graph of I is a definable subobject 
of y(M) x Z(M). To this end, let Si, Ai, and B be defined by geometric 
formulas 

as before, and let Ii be defined by some formula Ti(Xi, z) for i = 1, ... ,ffi. 

We then claim that the unique arrow I is defined by the following for
mula, with free variables y, z: 

Indeed, for each index i = 1, ... ,m, consider the pullback 

Si XA i Fi I Fi IE 

1 11 
B< Si ) Ai 
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of the graphs Si and Fi of the given arrows Si and Ii- By the rule of §2 
for the existential quantifier, the subobject 

is the image of Si XA i Fi -+ B x E. But in the pullback square of the 
diagram just above, all the arrows are isomorphisms since Fi and Si are 
graphs. Hence the image above is the same as the image of (Si' fi): Ai -+ 

B x E suggested by the outer sides of the diagram. Moreover, for each 
index i the diagram 

lB 

1(1,1) 

BxE 

commutes, because fSi = fi, and this shows that Im(si, fi) ~ 

Graph(f) ((1, f): B >---* B x E). Since 11 Ai -+ B is epi, it follows 
that 

Im(Sl' h) v··· V Im(sm, fm) = Graph(f). 

This means that the formula (41) above, which defines the sup of the 
images Im(si' fi)' also defines the (graph of the) arrow f, as required. 

5. Syntactic Sites 

Let T be a fixed geometric theory in a language L. In this sec
tion, we will construct a "syntactic" category B(T) equipped with a 
Grothendieck topology J(T). This category B(T) will be analogous to 
the category Def(M) of definable objects and arrows which was con
structed in the previous section from a model M in a topos E, while the 
Grothendieck topology J(T) on this category B(T) will be analogous 
to the topology on Def(M) which was given by epimorphic families of 
definable arrows, as in Lemma 4.3. However, unlike the case of Def(M), 
the construction of the category B(T) will not depend on anyone specif
ically given model M in a topos E; rather, it will take all models M of 
T in all topoi E into account. (The meaning of "all" used here will be 
considered more closely in the remark at the end of this section.) 

An object of B(T) is thus given by sorts Xl, ... ,Xn of the language 
and an equivalence class of geometric formulas 

(1) 



556 x. Geometric Logic and Classifying Topoi 

where I/>(XI, ... , xn) is a geometric formula with free variables among 
the Xl, ... xn of sorts X I, ... , Xn, respectively. Two such formulas 
I/>(XI, ... ,Xn) and I/>'(x~, ... ,x~) are equivalent [i.e., they define the 
same object of B(T)] , when they both have their free variables among 
Xl, ... ,Xn respectively xi, ... , x~ from the same list of sorts X I, ... , X n , 

and, moreover, when for any model M of T in any topos £, they define 
the same subobject of xiM ) x ... X X~M); in other words, 

{x I l/>(x)}M = {xii I/>'(X')}M (2) 

must hold as an equality as subobjects of xiM ) x ... X X~M). We 
will denote such an object of B(T) by [I/>, X], where I/> is the geometric 
formula and X is the associated list of sorts. 

To define the arrows in B(T), suppose given two objects [I/>, X] and 
[~, Y] ofB(T). Here we may assume that all the free variables Xl,··· ,xn 

occurring in I/> are disjoint from all those YI, ... ,Ym occurring in ~, for 
I/>(XI, .. . , xn) can always be replaced by a suitable alphabetical variant 
I/>(x~, ... , x~). Now arrows [I/>, X] --+ [~, Y] are again equivalence classes 
[a; X, Y] of certain geometric formulas a(xI, ... , Xn , YI,···, Ym), with 
free variables among Xi of sort Xi and Yj of sort 1j. In each model M 
of the theory T in a topos £, such a formula a(x, y) defines a subobject 

{(X,y) I a(x,y)}M <;;; X(M) x y(M) (3) 

(where X(M) stands for xiM ) x··· XX~M), etc., as before). By definition, 
this formula a(x, y) represents an arrow [a; X, Y]: [I/>, X] --+ [~, Y] in 
B(T) when in every model M of T in any topos £, the subobject (3) is 
the graph of an arrow {x I 1/>( X)}M --+ {y I ~(y) }M. [So, in particular, 
this subobject {(x, y) I a(x, y)}M must be contained in the product 
subobject {x I l/>(x)}M X {y I ~(y)}M of X(M) x y(M).] Furthermore, 
two such formulas define the same arrow in B(T), when in each model 
M of T in a topos £, these formulas define the graph of the same arrow 
{x I l/>(x)}M --+ {y I ~(y)}M. 

To see that these definitions provide the objects and arrows of a cat
egory B(T), we must describe the identity arrows and the composition 
of arrows. For an object [I/>, X] of B(T), the identity arrow is represented 
by the formula 

p(X, x') = (I/>(x) 1\ I/>(X') 1\ Xl = x~ 1\ ... 1\ Xn = x~), (4) 

where x~, ... ,x~ are new variables of the same sorts as the Xi, exactly 
as in §4(7). For this p and any model M of T in a topos £, the object 
{(x, x') I p(x, X')}M is the graph of the identity arrow on {x I I/>(x) }M. 
Thus, p(x, x') of (4) does define an arrow [I/>, X] --+ [I/>, X'] = [I/>, X] in 
B(T). 
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As for composition, consider two arrows 

[a; X, Y]: [4>, X] -+ [1/J, Y], [T; Y, Z]: W, Y] -+ [X, Z] 

for which [1/J(y) , Y] = W(y'), Y]. Thus, in any model T the formulas 
1/J(Yl, ... ,Yn) and 1/J' (y~, ... ,y~) define the same subobject. After re
placing the variables in the sequence z occurring in T(Y', z) and X( z) by 
different ones, if necessary, all distinct from the variables in the sequence 
y, the formula T(Y, z) also defines an arrow [1/J, Y] = W, Y] -+ [X, Z]. 
Thus, in defining the composition of [a] and [T] we may assume that 1/J(Y) 
and 1/J' (Y') are actually identical. The composite arrow [4>, X] -+ [X, Z] 
is then defined to be that represented by the formula 

:3y (a(x, y) 1\ T(Y, z)), (5) 

exactly as in §4(8). Indeed, we showed there that for any model M 
of T in any topos E, if a(x, y) and T(Y, z) define the graphs of arrows 
{x I 4>(x)}M -+ {y 11/J(Y) }M and {y 11/J(y)}M -+ {z I X(z) }M, then 
the formula (5) = §4(8) defines their composition in E. It follows that 
this formula represents an arrow [4>, X] -+ [X, Z] in B(T), and that this 
arrow depends only on the equivalence classes [a] and [T], and not on the 
particular formulas a and T which represent them. This composition is 
clearly associative, so that B(T) is a well-defined category. 

It also follows immediately from the discussion in §4 for any specific 
model M of the theory T in a topos E that there is an evident functor 

FM : B(T) -+ Def(M), (6) 

defined on objects by 

(7) 

as for arrows, an arrow [a; X, Y]: [4>, Y] -+ [1/J, Y] in B(T) defines the 
graph {(x, y) I a(x, y) }M of an arrow {x I 4>(X)}M -+ {y I 1/J(y)}M 
in E, and we define FM([a(x, y)]) to be this arrow. Thus FM is indeed 
a functor; i.e., it preserves identities and composition, as is immediate 
from the explicit description above of identities and composition in B(T) 
and in §4 for the category Def( M). 

Notice also that these functors FM , for all models M of Tin topoi, 
are jointly injective, in the sense that [4>, X] = W, X'] as objects of B(T) 
iff for any model M of T in any topos, FM([4>, X]) = FM([4>', X']) (as 
subobjects of X(M)). The same applies to the arrows of B(T); so that 
the functors FM for all models M are jointly faithful. 

Lemma 1. The syntactic category B(T) has all finite limits; more
over, for each model M of T in a tapas E, the corresponding functor 
FM: B(T) -+ Def(M) is left exact. 
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Proof: The construction of limits in B(T) is the same as that of 
limits in Lemmas 4.1 and 4.2 in the category Def(M) of definable objects 
of a given model M. 

The terminal object of B(T) is given by the identically true formula 
T (with no free variables). Indeed, in any model M of T in a topos £, the 
definable object { . I T}M is the terminal object 1 of £; and for any other 
definable object [¢>, X] of B(T) represented by a formula ¢>(Xl, .. ·, x n ), 

the graph of the unique arrow {x I ¢>(x)}M -7 1 = {. I T}M in £ is 
definable by the same formula ¢>(x). So [¢>, X] is also the unique arrow 
[¢>, X] -7 [T] in B(T). 

As for pullbacks in B(T), given arrows 

[0-; X, Z]: [¢>, X] -7 [X, Z] <- [7P, Y] : [7; Y, Z] 

in B(T), their pullback is the object of B(T) represented by the formula 
¢>(x) 1\ 7P(y) l\:3z (o-(x, z) 1\ 7(Y, z)), and the projections are represented 
by the same formulas representing the projections 1rl and 1r2 in the proof 
of Lemma 4.2. Just as for the case of the terminal object, it follows that 
these formulas give the pullback in B(T), since for each model M of T 
in a topos £, the same formulas give the pullback in Def(M). 

Finally, it is evident from the descriptions of limits in B(T), and 
from the corresponding explicit descriptions oflimits in Def(M) given in 
the previous section, that each functor FM : B(T) -7 Def(M) preserves 
finite limits. 

We now define a basis for a Grothendieck topology J(T) on this syn
tactic category B(T), as follows. A finite family {Si: Ai -7 B }f=l of 
arrows in B(T) is said to be a cover in B(T) when, for any model M of 
the theory T in any topos £, the corresponding functor F M : B(T) -7 

Def(M) sends this family to a cover in Def(M) as described in §4; 
equivalently, when the functor B(T) -7 £ obtained by composing FM 
with the forgetful functor Def( M) -7 £ sends this family to an epimor
phic family in the topos £. We observe that J(T) is indeed a basis for a 
Grothendieck topology on B(T): the transitivity axiom holds since the 
composition of epimorphic families is again epimorphic, while the sta
bility axiom holds, since the functor B(T) -7 Def(M) -7 £ is left exact 
(Lemmas 4.1, 4.2, and 5.1), while the pullback of an epimorphic family 
in £ is again epimorphic (because pulling back in a topos preserves epis 
and sums, see Theorem IV.7.2). 

Observe that if for i = 1, ... , n the arrow Si: Ai -7 B in B(T) is 
represented by formulas o-i(Xi,y) for Si, ¢>i(Xi ) for Ai and 7P(y) for B, 
then by Lemma 4.3 the family {Si: Ai -7 B }~l is a cover in the basis 
for the Grothendieck topology J(T) on B(T) iff in any model M of the 
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theory T in any topos E, the formula 

n 

Vy ('IjJ(y) -7 V 3Xi (/Ji(xi, y)) 
i=l 

holds. 
The following lemma is immediate from the definitions of the covers 

in Def(M) and B(T): 

Lemma 2. For any model M of the theory T in a topos E, the 
corresponding left exact functor FM : B(T) -7 Def(M) preserves covers. 

By composing with the forgetful functor Def(M) -7 E, which is 
left-exact and sends covers to epimorphic families, we thus obtain: 

Corollary 3. The composite functor B(T) -7 Def(M) -7 E is left 
exact and continuous. 

Furthermore, analogous to Lemma 4.4, we have 

Lemma 4. The Grothendieck topology J(T) on the syntactic cat
egory B(T) is subcanonical. 

Proof: Consider any covering family in B(T), say 

(8) 

as above. For any given family of arrows 

(9) 

in B(T) which match, in the sense that for any i and j the diagram 

[<Pi,X i ] x[x,Z] [<pj,Xj]---+1 [<pj,xj] 

1 l[Tj;Xj ,Z] 

[<Pi, Xi] ---,--. --71 [X, Z] 
[r.;X',Z] 

(10) 

commutes, we have to show, as in §4(40), that there exists a unique 
arrow [Pi Y, Z]: ['IjJ, Y] -7 [X, Z] in B(T) such that [p] 0 [ail = h] for 
each i = 1, ... , n. Consider any model M of the theory T in a topos 
E. By definition of the Grothendieck topology on B(T), the functor 
FM : B(T) -7 Def(M) sends the covering family (8) to a covering family 

(i=I, ... ,n) (11) 
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in Def(M), where we have written Si for the arrow (whose graph is) 
defined by the formula ai. Furthermore, the same functor FM sends the 
matching family of arrows (9) to a matching family of arrows in Def(M), 

which again match, as shown by the commutative squares in Def( M) 
obtained by applying the functor FM to the squares in (10). Thus, by 
Lemma 4.4, there is a unique arrow in Def( M) (or in £), 

such that JlOSi = ti for each i = 1, ... ,n, and this arrow is defined by the 
formula (41) there. This formula is independent of the specific model M. 
Thus, if we let p(y, z) be this formula, it follows that [Pi Y, Zl: [7,/1, Yl -+ 

[X, Zl is the desired unique arrow in B(T) such that [pl 0 [ail = [Til for 
each i = 1, ... , n. 

Finally, we conclude this section with a remark concerning founda
tional aspects of our construction of the category B(T). Strictly con
strued, on the basis of the usual axioms for set theory, this construction 
does not produce a small category B(T), because it refers to all models 
in all topoi. This quantification should be replaced by some quantifica
tion restricted to a class. 

This can be arranged in several ways. 
For example, instead of considering all models M in all topoi £, 

one could restrict the consideration to those topoi defined in Zermelo
Frrenkel set theory by a formula with only set-parameters-no class pa
rameters. The indicated collection of all such topoi £ does contain all 
Grothendieck topoi since these are definable in terms of their sites, which 
can then be regarded as the set parameters. This collection also contains 
all other topoi that occur explicitly in this book or, indeed, that occur 
in ordinary mathematical practice. 

Another approach to foundational issues is to work in a set-theory 
with an adequate supply of "universes" , in the usage of Grothendieck & 
Co. Then our B(T) lives happily in some higher universe. 

For the category B(T), the equivalence relation on formulas used to 
define the objects and arrows can, in fact, be described by considering 
only the models of the theory T in Sets. This will be proved in Corol
lary 7.2 below. However, the proof of this theorem uses the more liberal 
construction given above for the sets B(T). 

There is a more constructive approach: axiomatize the notion of 
"truth" in all T-models in all topoi. Indeed, one may readily spec
ify Gentzen-style derivation rules, stating when a formula of the form 
"Ix (¢(x) -+ 7,/I(x)) as in §3(6) is provable in a geometric theory T. One 
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then constructs a category BG(T) like B(T), but with the equivalence 
relation used to define objects and arrows formulated in terms of prov
ability. Then "provable" replaces "true in all models in all topoi". A 
"soundness" theorem-provable implies true in each model-will then 
provide results for the BG(T) similar to Theorem 1 of §6 below. 

6. The Classifying Topos of a Geometric Theory 
Let T as before be any geometric theory in a language L. In this 

section, we will construct a classifying topos for T-models. The con
struction will use the category Mod(T, [) of T-models (§2) in any top os 
[, and the construction in the previous section of the syntactic cat
egory B(T), equipped with its Grothendieck topology J(T). Write 
B(T) = Sh(B(T), J(T)) for the topos of sheaves on B(T) with respect 
to this topology. 

Theorem 1. The topos B(T) is a classifying topos for models ofT. 

More explicitly, this theorem states that for any cocomplete topos 
[, there is an equivalence of categories 

Hom( [, B(T)) ~ Mod(T, [), (1) 

natural in [. 
The proof of this theorem will apply the results of Chapter VII. 

Since B(T) is a category with finite limits (as constructed in §5), ge
ometric morphisms f: [ ----t B(T) correspond to left-exact continuous 
functors A: B(T) ----t [, by Corollary VII.9.4. Thus, if ConLex(B(T), [) 
denotes the category of left-exact continuous functors, Theorem 1 may 
be rephrased as: For any cocomplete topos [, there is an equivalence of 
categories 

ConLex(B(T) , [) ~ Mod(T, £), (2) 

natural in [. We will prove this by giving an explicit construction of 
aT-model MA in the topos [ from any continuous left-exact functor 
A: B(T) ----t [, and conversely, of such a functor AM: B(T) ----t [ from 
any given T-model M in [. 

The second construction from M will use the category Def( M) 
of definable objects and arrows in [, as well as the canonical functor 
PM: B(T) ----t Def(M) from the previous section, and the forgetful func
tor Def(M) ----t [ of §4(16). Write 

A = AM: B(T) ----t Def(M) ----t [ (3) 

for the composite of these two functors. By Corollary 5.3, AM is left
exact and continuous. By this definition (3) any object [¢(x),X] of the 
syntactic category B(T), as given by a formula ¢(x), has 

A M([¢,X]) = {x I ¢(x) }M. (4) 
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Let H: M ---> M' be a homomorphism between two models M and 
M' of T in E. By induction on the construction of the geometric formula 
¢(x) one shows that this H: X(M) ---> X(M') maps {x I ¢(x)}M into 

{x I ¢(x) }M', as in the commutative diagram 

{x I ¢(x) }M>-: ---+1 xiM) x ... X X~M) = X(M) 

1 
{X I ¢(x) }M' )-> -----'>1 xiM') x ... X X~M') = X(M'). 

The dotted arrows on the left, present for all geometric formulas ¢, 
constitute a natural transformation AM ---> AM' of functors from B(T) 
to E. Thus, the assignment M 1-+ AM is a functor 

Mod(T, E) ---> ConLex(B(T), E). (5) 

This gives one direction of the desired equivalence (2) of categories. 
In the reverse direction, we are to associate with each continuous left

exact functor A: B(T) ---> E a suitable model M = MA of the theory T 
in the topos E. For each sort Xi of the language L we use the formula 
Xi = Xi for a variable Xi of the sort to define the object 

(6) 

of E. For each relation symbol R S;;; Xl X ... X Xn of L there is a corre
sponding formula R(x) = R(XI, ... , xn) and thus an object [R(x), X] in 
the syntactic category B(T); for the corresponding object in E we set 

R(MA) = A([R(x), X]). (7) 

For a sequence of variables x = (Xl, ... ,xn), the formula X = x is to 
be understood as an abbreviation of the conjunction Xl = XI/\· .. /\ Xn = 

Xn. If as before Xi denotes the sort of the variable Xi and X the sequence 
of sorts Xl' ... ' X n , then in the syntactic category B(T) the object 
[x = x, X] is the product of the various objects [Xi = Xi, Xi] [as follows 
from the explicit description of limits in B(T) from §5]; thus, 

[x = x, X] = [Xl = Xl /\ ... /\ Xn = Xn, X] 

~ [Xl = XI,XI] X ... X [Xn = Xn,Xn]. 

Thus for the left-exact functor A we have 

X(MA) = X(MA) x ... x X(MA) 
I n 

~ A([XI = Xl, Xl]) x ... x A([xn = Xn, Xn]) 

(by convention) 

[by definition (6)] 

(8) 

~ A([x = X, X]) (by left-exactness of A), 
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so the left-exactness of A with (7) yields a monomorphism 

(9) 

Finally, if f: Xl X ... X Xn -+ Y is a function symbol of the language L, 
then in any model M the graph of the corresponding arrow f(M): xiM ) x 

... x XAM ) -+ y(M) is defined by the formula "f(Xl,"" xn) = y", which 
we abbreviate as "f(x) = y". Thus in B(T) there is an arrow 

We define f(M A ) in E to be the image of this arrow under the functor A: 

This definition also includes the case of constants of L, which may be 
regarded as function symbols with no arguments. This completes the 
definition of the interpretation MA of the language L in the topos E. It 
is readily seen to be functorial in A. The following lemma will imply 
that this MA is indeed a model of the theory T. 

Lemma 2. Let MA be the model in E associated with a left
exact continuous functor A: B(T) -+ E. For any geometric formula 
¢(Xl, ... , x n ), with free variables x = (Xl, . .. , Xn) ofthe respective sorts 
Xl"'" X n , there is a natural isomorphism 

(11) 

of subobjects of XiMA ) x ... x XAMA ). 

Proof: The proof proceeds by induction on the construction of the 
geometric formula ¢, using both the left-exactness and the continuity of 
the functor A. 

First of all, since A preserves products, there is for each sequence 
X = (Xl . .. ,xn ) of variables of sorts Xl ... ,Xn an isomorphism, where 
"x = x" stands for "Xl = Xl 1\ ... 1\ Xn = xn": 

A([x = X, Xl) ~ A([XI = Xl, Xl]) x ... x A([xn = Xn , Xn]) 

~ XiMA ) x ... x XAMA ) , 
(12) 

as stated above. Now, if t(Xl,.'" xn) is a term of the language L of sort 
y, with free variables Xl, ... , Xn of sorts Xl, ... , X n , then for any model 

. (M) X(M) X(M) y(M) M many top os, the graph of the arrow t : 1 x ... X n - .. 

[see §2(1) 1 is defined by the formula t(Xl,.·· ,xn ) = y, or t(x) = y. So 
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this formula defines an arrow [t(x) = yl: [x = x, Xl ---+ [y = y, Yl in 
B(T), and one can prove the following equality of arrows in E: 

Indeed, if t is a single function symbol f(XI, ... , x n ), this holds by def
inition (10), and the general case follows readily by induction on the 
construction of the term t. 

Next consider the case where ¢ in (11) is an atomic formula of the 
form R( tl (x), ... , tm (x)) for terms h, ... ,tm and a relation symbol R. 
Notice first that, by definition, there is for any model M in any topos a 
description of { ... I R}M by pullback as in §2(4). From this it follows 
readily that 

[R(h(x), ... , tm(x)),Xl--------+) [R(y), Yl 

I I (14) 

[x = x, Xl ----c[:-t1""C"(X""C")-=-Y-l/\-.-•. /\-t-rn""C"(--:x)-=-Y-rn7"] --+) [y = y, Yl 

is a pullback in B(T). Since the functor A: B(T) ---+ E is left-exact, it 
sends this pullback (14) to a pullback in E. But by the definition of the 
model MA [as in (6)-(10)], we have A([x = xl) = Xi MA ) x ... x X$,MA) 
and A([y = yl) = yl(MA) x ... X y~MA), while A([R(y)]) = R(MA) = 
{y I R(y) }(MA). SO compare the pullback in E obtained by ap
plying A to (14) with the pullback §2(4) for the special case where 
M = MA. We then find that A([R(tl(x), ... , tm(x)), Xl) = {x I 
R(tl(X), ... ,tm(x))}(MA). This shows that the identity (11) holds for 
the atomic formula R(h(x), ... , tm(x)). Other types of atomic formulas, 
T ("true"), ..1 ("false"), and equalities t(x) = t'(x) between terms t = t', 
are treated similarly. 

Next, suppose the lemma holds for two formulas ¢(x) and 1jJ(x) , with 
free variables Xl, ... , Xn of sorts X I, ... , X n . We then wish to show that 
it holds for the conjunction ¢(x) /\ 1jJ(x). First, for any model M in any 
topos F, the definition of conjunction gives a pullback in that topos F 
of the form 

{x I ¢(x) /\ 1jJ(x)}M )-------+) {x I ¢(x) }M 

I p.b. I (15) 

{x 11jJ(x) }M>--) -----)) {x I x = X}M = (xiM) x ... x X$,M»). 

It then follows from the construction of limits in Lemma 5.1 that the 
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similar square in B(T) is a pullback: 

[¢(x) ;\ ~(x), Xl>--: ---» [¢(x), Xl 

I p.b. I (16) 

[~(x),Xl:>-------') [x = x,Xl. 

Since the functor A: B(T) ---. £ is left-exact, we thus obtain a pullback 
in £: 

A([¢(x) ;\ ~(x), Xl):>-----» A([¢(x), Xl) 

I p.b. I (17) 

A([~(x),Xl)>--: ----t) A([x = x,Xl). 

But by definition ofthe model MA, A([x = x, Xl) = XiMA ) x· .. xXS,MA) , 
while by induction hypotheses on ¢ and ~ there are isomorphisms 
A([¢(x), Xl) ~ {x I ¢(x) }(MA) for ¢ and similarly for ~. Thus by com
paring the pullback (17) with the special case of (15) where M = M A , 

we find that 

A([¢(x) ;\ ~(x), Xl) ~ {x I ¢(x) ;\ ~(x) }(MA), 

so the lemma holds for the conjunction ¢ ;\ ~. 
Next, still assuming that the lemma holds for the formulas ¢ and ~, 

consider their disjunction ¢(x) V ~(x). We will unwind the definitions 
to show that the two arrows 

[¢(x), Xl >-+[¢(x) V ~(x), Xl and [~(x), Xl >-+[¢(x) V ~(x), Xl 

form a cover for the topology Jon B(T). By the definition of J this is 
the case when for all M the arrows (in an alphabetic variant) 

{Xl I ¢(Xl)}M ---. {y I ¢(y) V ~(y)}M, 

{x2 I ~(X2)}M ---. {y I ¢(y) V ~(y)}M 

form a cover in the topology of Def( M). Here the first arrow is defined 
by a formula (notation as in Lemma 4.5) 

and similarly for the second. Now apply Lemma 4.3; these arrows cover 
if the formula 

\/y ([¢(y) V ~(Y)l ---. :3xl [xl = y;\ ¢(xl) ;\ (¢(y) V ~(Y))l 

V:3x2 [x2 = y;\ ¢(x2);\ (¢(y) V ~(y))]) 
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holds in M. Substituting y for the required Xl and x 2 , this is evident, 
so we have the asserted cover for J. 

Since the functor A is continuous for covers, it follows that 
A([¢(x), Xl) and A(['lj;(x) , Xl) form a cover of A([¢(x)V'lj;(x), Xl). Thus, 
as subobjects of X(MA), 

A([¢(x), Xl) V A(['lj;(x), Xl) = A([¢(x) V 'lj;(x) , Xl). 

But, by the induction hypothesis, A([¢(x), Xl) = {x I ¢(x) }(MA), and 
similarly for 'lj;, while by definition of the interpretation of disjunction 

{x I ¢(x) V 'lj;(x) }(MA) = {x I ¢(x) }(MA) V {x I 'lj;(x) }(MA). 

Thus, A([¢(x) V 'lj;(x) , Xl) = {x I ¢(x) V 'lj;(x) }(MA), and the lemma 
holds for the disjunction ¢ V 'lj;. 

Finally, the case of an existential quantifier follows in much the same 
way from the continuity of the functor A, noting that for a formula 
¢(x,y) the evident projection arrow [¢(x,y),X,Y]-+ [::Jy¢(x,y), X] in 
B(T) is a covering arrOw. 

Since every geometric formula is built up from atomic formulas using 
conjunction, disjunction, and existential quantification, it follows that 
(11) holds for all geometric formulas, so the lemma is proved. 

Lemma 3. For any geometric theory T and any continuous left
exact functor A: B(T) -+ E the associated interpretation MA of L in E 
is a model ofT. 

Proof: In a geometric theory T, each axiom has the form 

(\lx)(¢(x) -+ 'lj;(x» , 

where ¢ and 'lj; are geometric formulas. Hence in every model M of 
T we have an inclusion {x I ¢(x)}M <:;;; {x I 'lj;(x) }M, and hence a 
corresponding inclusion 

[¢, X] >--> ['lj;, X] 

by the definition of the syntactic category B(T). The left-exact functor 
A sends this monomorphism to an inclusion of subobjects 

A[¢,X]:::; A['lj;, X] 

of the object A([x = xl) = X(MA). By Lemma 2, this means that 

Hence the axiom \Ix (¢(x) -+ 'lj;(x») of T is valid in the model M A . 
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Lemma 4. The two constructions, M t-+ AM of a continuous left
exact functor AM: B(T) -+ E from a model M in E, and A t-+ MA of 
a model MA from a left-exact continuous functor A: B(T) -+ E, are 
mutually inverse up to natural isomorphism. 

Proof: One way around, start with a model M of the theory T in 
a topos E. There is then an associated functor A = AM: B(T) -+ E 
defined as in (4) above, and thus a new model MA associated with this 
functor A as in (6)-(10) above. Then for any sort X of the language L, 
and for a variable x of that sort X, 

X(MA) = A([x = x, Xl) 

~ {x I x = x}M 

~x. 

[by definition (6)] 

[by definition of A from M, (4)] 

And similarly, for a relation symbol R ~ Xl X ... X Xn of the language, 

R(MA) = AM([R(x), Xl) 

~ {x I R(x)}M 
~R(M) 

[by definition (7)] 

[by definition (4)] 

[by definition §2(4)]. 

Finally if f: Xl X ... X Xn -+ Y is a function symbol, 

Graph(f(MA)) = {(x, y) I f(x) = y}MA 

~ A([j(x) = y,X, Yl) 

~ {(x,y) I f(x) = y}M 

~ Graph(f(M)). 

(true in any model) 

(by Lemma 2) 

[by definition (4)] 

This shows that the new model MA is isomorphic to the old one M. 
The other way around, start with a left-exact continuous functor A, 

to get first a model M = MA in E and then a new functor AM' Then 
for an object [¢(x), X] of B(T), 

AM([¢(X), Xl) = {x I ¢(x) }(MA) 

~ A([¢(x), Xl) 

[by definition (4)] 

(Lemma 2). 

This isomorphism is natural, hence gives an isomorphism of functors 

A~AM' 

This proves the lemma. Now the construction M t-+ AM of a functor 
from a model (5) is functorial and the inverse construction A t-+ MA of 
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a model out of a functor is also functorial. It then follows that the two 
constructions establish an equivalence of categories 

Mod(T, £) ~ ConLex(B(T), £), 

as announced in (2) above. To complete the proof of Theorem 1, it now 
suffices to observe that both constructions are natural in E. Since they 
are mutually inverse by Lemma 4, it suffices in fact to show that one of 
them is natural in E. Consider for instance the construction of functor A 
from a model M in the topos E. Naturality requires, for any geometric 
morphism g: F --> E between topoi, that the square 

Mod(T, £) ---l» ConLex(B(T), E) 

gol 1 compose with gO (18) 

Mod(T, F) ---t) ConLex(B(T), F) 

commutes up to natural isomorphism. But for any model M of T in E 
and for any geometric formula ¢(x), we have 

g*(AM([¢(X),X])) ~ g*({x I ¢(x) }M) 

~ {x I ¢(x) pO(M) 

~ Ago(M)([¢(X),X]), 

[by definition (4) 1 

(Theorem 3.5) 

the latter by definition of the functor Ago (M) from the model g* (M). 
Thus the square (18) commutes up to natural isomorphism. Therefore 
Theorem 1 is established. 

7. Universal Models 

The previous section proved for an arbitrary geometric theory T that 
the topos l3(T) of sheaves on the syntactic category B(T) is a classifying 
topos for T-models. Therefore, for any co complete topos E, there is an 
equivalence of categories 

Mod(T, £) ~ Hom(E, l3(T)) (1) 

between T-models in E and geometric morphisms E --> B(T). As in 
Chapter VIII, this implies that there exists in B(T) a "universal" model 
of T, call it UT. It is that model in the topos B(T) which corre
sponds under the equivalence (1) to the identity geometric morphism 
l3(T) --> l3(T). It is universal, in the sense that any other T-model in 
any (cocomplete) topos E is an inverse image of this particular model. 
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Indeed, recall the argument from §VIII.3: By the naturality of (1) each 
geometric morphism f: E --t F gives by (1) a diagram of categories and 
functors 

Mod(T, F) +--1 ---t) Hom(F, 13(T)) 

r 1 1 Hom(f,B(T» (2) 

Mod(T,E) +-1 ---+) Hom(E,13(T)) 

which commutes up to isomorphism. 
Now any model M of T in E corresponds by the equivalence (1) 

to a geometric morphism CM: E --t 13(T); so by chasing the identity 
13(T) --t 13(T) in two ways from upper right to lower left around the 
square (2) for the special case F = 13(T) and f = CM, we find that there 
is an isomorphism of T-models c'M(UT ) ~ M in E. This shows that, 
up to isomorphism, the arbitrary model M is the inverse image of the 
universal model UT along a suitable geometric morphism, namely the 
morphism CM: E --t 13(T). 

Let us take a closer look at the equivalence (1). Take a geometric 
morphism f: E --t 13(T) as on the right of (1). Its inverse image func
tor f*, composed with the Yoneda embedding y of B(T) followed by 
sheafification a for the Grothendieck topology J(T) of §5, gives the left 
exact continuous functor 

A = f* 0 a 0 y: B(T) --t E 

as in the equivalence of Corollary VII.9.4. In turn, such functors 
A: B(T) --t E correspond to T-models MA in E, as described explic
itly in the previous section. For any geometric formula cj>(x) subobjects 
in such a model MA are related to the functor A by the natural isomor
phism 

{x I cj>(x) }(MA) ~ A([cj>, Xl) (3) 

of Lemma 5.2. But by Lemma 5.4, the topology on B(T) is sub canonical, 
which means that the Yoneda embedding already sends objects of B(T) 
to sheaves; so y = ay: B(T) >--+ 13(T). Thus, as a special case of the 
equivalence (1), the universal model UT in 13(T) corresponds initially to 
the identity 13(T) --t 13(T) and then, by the equivalence between models 
and left exact functors, to the Yoneda embedding y: B(T) --t 13(T) 
itself. Therefore, as a special case of (3), the universal model UT has 
the property 

(4) 

for every geometric formula cj>( x). 
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Theorem 1. Let T be a geometric theory. For any two geometric 
formulas ¢(x) and 'ljJ(x) , the formula 't/x (¢(x) ~ 'ljJ(x)) holds in the 
universal model UT in the classifying tapas B(T) iff this formula holds 
in every model M of T in every tapas E. 

Thus the universal model UT is in this sense a minimal model of the 
theory T. 

Proof: The "if" part of the theorem is, of course, clear. For the 
converse, suppose 't/x (¢(x) ~ 'ljJ(x)) holds in UT, so that we have an 
inclusion {x I ¢(x) }(UT) ~ {x I 'ljJ(x) }<UT) of subobjects in the topos 
B(T). So in that topos, there is an arrow (dotted below) for which the 
following diagram commutes 

{x I ¢(x) }(UT) ------------------------------7 {x I 'ljJ(x) }(UT) 

~ / (5) 

By (4) above, all the objects in this diagram are representable. Since the 
topology on B(T) is sub canonical (Lemma 5.4), the Yoneda embedding 
is a full and faithful functor y: B(T) >--+B(T). Thus, a dotted arrow in 
B(T) exists, as in (5), iff a dotted arrow exists which makes the following 
diagram commute in B(T): 

I¢( x), XI~---------71"(X)' Xl 

[x=x,X]. 

(6) 

But for any model M in any topos E (not necessarily cocomplete), the 
functor FM : B(T) ~ Def(M) of §5(6), (7) sends the diagram (6) above 
to a commutative diagram 

(7) 

of definable objects and arrows in E. Thus {x I ¢(x) }M ~ {x I 'ljJ(x)}M 
in E, and hence 't/x (¢(x) ~ 'ljJ(x)) holds for the model M in E. 

Combined with Deligne's theorem, this gives a surprising result: 
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Corollary 2. Let T be a geometric theory. A formula Vx (¢(x) -t 

'IjJ (x)) as above holds in all models of T in any topos, iff it holds in all 
models ofT in the topos Sets. 

Proof: The "only if" part is clear. For the converse, suppose 
Vx (¢(x) -t 'IjJ(x)) holds in any model M ofT in Sets. By Theorem 1, it 
suffices to show that it holds in the universal model UT in the classifying 
topos B(T). But the site (B(T), B(T)) for the topos B(T) is given by 
a category B(T) with finite limits and a Grothendieck topology given 
by finite covering families (§5); in other words, this site is of finite type, 
so that the classifying topos B(T) is a coherent topos (§IX.ll). By 
Deligne's theorem (Corollary IX.11.3), B(T) has enough points. Con
sider any such point p: Sets -t B(T). Then M = p*(UT) is a model of 
the theory T; hence, since Vx (¢(x) -t 'IjJ(x)) is assumed to hold in all 
models in Sets, we have {x I ¢(x)}M::; {x I 'IjJ(x) }M. By Theorem 3.5 
and the definition of M, this inclusion of subobjects may equivalently 
be written as 

Since this holds for any point p: Sets -t E, and since B(T) has enough 
points by Deligne's theorem, we conclude by IX.ll(5) that 

This shows that Vx (¢(x) -t 'IjJ(x)) holds in the universal model UT, as 
desired. 

Corollary 2 is very useful in practice. For example, many properties 
of rings and modules in homological algebra can be expressed in the form 
Vx (¢(x) -t 'IjJ(x)), where ¢ and 'IjJ are geometric formulas in a suitable 
language. Hence, to verify whether such properties hold for all rings, 
modules, etc., in a topos, it is enough to verify whether they hold for 
"ordinary" rings, modules, in the classical topos Sets. 

Exercises 

1. With the notation of §5, show that for any geometric theory T, 
the product of two objects [X; ¢(x)] and [Y; 'IjJ(y)] in the category 
Def(M) is given by [X, Y; ¢(x) A'IjJ(y)]. Also show that the equal
izer of two maps [8(x, y)] and [T(X, y)]: [X; ¢(x)] -t [Y; 'IjJ(y)] is 
given by [X; (¢(x) A 3y(8(x, y) AT(X, y))]. 

2. Show that classifying topoi are unique; that is, if for a geometric 
theory T both B(T) and B' (T) are topoi for which there is a 
natural equivalence as in §6(1), then B(T) is equivalent to B' (T). 
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3. Let B(T) be the classifying topos for a geometric theory T, with 
universal model UT in B(T) as in §6. Let ¢(x) be a geometric 
formula in variables x = (Xl, ... ,Xn) and A = {x I ¢(X)}UT 
the corresponding object of B(T). Show that the slice category 
B(T) / A is the classifying topos for the geometric theory obtained 
from T by adding a new sequence of constants C = (Cl, ... , cn) to 
the language (where Ci is of the same sort as a variable Xi in the 
sequence x), and one new axiom ¢(c). (Hint: see Exercise VIII.6.) 

4. Let [ = Sh(C, J) be a coherent topos, where (C, J) is a site of 
finite type, as in §IX.ll. Describe a geometric theory T such that 
for any topos F, there is a natural equivalence between models M 
of T in F and left exact (or flat) continuous functors A: C --+ F. 
(Hint: take a language with all objects of C as sorts and all 
arrows of C as function symbols.) Conclude that E is equivalent 
to the classifying topos B(T). (Thus, every coherent topos is the 
classifying topos of some geometric theory.) 

5. Let S be the Sierpinski space {O, I} (with { 1 } but not {O} an 
open subset of S). 

(a) Observe that the top os Sh(S) of sheaves is the functor 
category Sets2 (here 2 is the poset 0 :::; 1, viewed as a 
category). More generally, show that for any Grothendieck 
topos [, the product Sh(S) x E as in Exercise VII.13 is 
(equivalent to) the arrow-category [2. 

(b) For any geometric theory T, describe explicitly a new ge
ometric theory T' such that for any topos [, a model of 
T' in E is a homomorphism of T-models in E; observe also 
that this is the same thing as a model of T in [2. 

(c) Conclude that for any coherent topos F, the exponential 
topos FSh(S) exists, and is again coherent; formulate this 
as an equivalence of categories between geometric mor
phisms E --+ FSh(S) and Sh(S) x [ --+:F. (Use Exercise 4.) 

6. This exercise is related to Exercise VIII.S. Let T be the geometric 
theory, in the language with one binary relation symbol D (for 
"distinct"), given by the following axioms: (T --+ :3x (x = x)), 
\::Ix, y (x = y V D(x, y)), \::Ix, y (x = Y A D(x, y) --+ ..l), and for each 
n 2: 1 the axiom \::Ix 1 , ... \::IXn (T --+ :3y (D(Xl' y) A··· AD(xn, y))). 
Show that a model of T in a topos is exactly an infinite decidable 
object. Thus the classifying topos must be equivalent to the topos 
B(Aut(N)) of continuous Aut(N)-sets. Prove this equivalence 
directly, by using the Appendix and §III.9. 

7. A first-order language is said to be propositional if there are no 
sorts. Such a language only has relation symbols R (necessarily 
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taking zero arguments!). As an example, consider the language 
L which has for each finite sequence U of zeroes and ones such 
a relation symbol Ru. Let T be the geometric theory in this 
language L with the following axioms (for all binary sequences u, 
v): 

(AI) T ---> R0 (where 0 is the empty sequence); 
(A2) Ru ---> Ru---o V Ru- i (~ for concatenation); 
(A3) Ru ---> Rv, whenever v is an initial segment of U; 
(A4) Ru 1\ Rv ---> ..1, whenever u and v are incompatible. 

[Two sequences u = (UO, ... , Un-i) and v = (VO, ... , vm-d are 
said to be incompatible if Ui =I- Vi for some i < n, m.l Show that 
the classifying topos 8(T) is equivalent to the topos Sh(2N) of 
sheaves on the Cantor space. (You may wish to use the Appendix 
here.) Conclude from Exercise VULlO (or show directly) that 
8(T) classifies maps N ---> 2. 



Appendix: 
Sites for Topoi 

A Grothendieck topos was defined in Chapter III to be a category of 
sheaves on a small site---or a category equivalent to such a sheaf cate
gory. For a given Grothendieck topos [; there are many sites C for which 
[; will be equivalent to the category of sheaves on C. There is usually 
no way of selecting a best or canonical such site. This Appendix will 
prove a theorem by Giraud, which provides conditions characterizing 
a Grothendieck topos, without any reference to a particular site. Gi
raud's theorem depends on certain exactness properties which hold for 
colimits in any (cocomplete) topos, but not in more general co complete 
categories. Given these properties, the construction of a site for topos 
[; will use a generating set of objects and the Hom-tensor adjunction. 
The final section of this Appendix will apply Giraud's theorem to the 
comparison of different sites for a Grothendieck topos. 

1. Exactness Conditions 

In this section we consider a category [; which has all finite limits and 
all small colimits. As always, such colimits may be expressed in terms 
of coproducts and coequalizers. We first discuss some special properties 
enjoyed by colimits in a topos. 

Coproducts. Let E = It, Ea be a coproduct of a family of objects 
Ea in [;, with the coproduct inclusions ia: Ea -> E. This coproduct 
is said to be disjoint when every ia is mono and for every 0: =I- (3 the 
pullback Ea XE E{3 is the initial object in [;. Thus in the category Sets 
the coproduct, often described as the disjoint union, is disjoint in this 
sense. (On the other hand, in the category of commutative rings the 
coproduct is the tensor product which is not generally disjoint.) 

The coproduct E = IL Ea is said to be stable (under pullback) when 
for every map E' -> E in [; the pullbacks E' x EEa -> E' of the coproduct 
inclusions ia: Ea -> E yield an isomorphism lla(E' XE Ea) ~ E'. 
Hence, if every coproduct in [; is stable, then for each map u: E' -> E 
the pullback functor u* : [; / E -> [; / E' preserves coproducts. Thus, in 

574 
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this case every square of the form 

a a 

1 1 
(1) 

E'----------~)E 

is a pullback in f; or, equivalently, the pullback operation - XE E' is 
distributive over coproducts, as in 

(2) 
a a 

Equivalence Relations. An equivalence relation on an object E 
of f is a subobject R <;;;; Ex E satisfying the usual axioms for a reflexive, 
symmetric, and transitive relation, as expressed in the appropriate dia
grammatic way. If we write (80 , 81 ): R >---+ E x E for the monomorphism 
representing the sub object R, these axioms are 

(i) (reflexive) the diagonal D.: E -+ E x E factors through 
(80 ,8d: R>---+E x E; 

(ii) (symmetric) the map (81 ,80 ): R -+ E x E factors through 
(80 , 8d: R>---+ Ex E; 

(iii) if R * R denotes the following pullback 

R -----:----+) E, 
8 1 

then (80 71"1,8171"2): R * R -+ Ex E factors through R. 

(3) 

To explain the condition (iii), observe, in the case where f is the category 
of sets, that the pullback R * R is just the set of all those quadruples 
(x, y, z, w) with (x, y) E R, (z, w) E Rand y = z. So in this case, (iii) 
expresses the usual transitivity condition for an equivalence relation on 
a set. 

The quotient E / R of an equivalence relation R <;;;; E x E in f is 
defined, much as in Sets, to be the object E / R given by the following 
co equalizer diagram in f 

8 
R~E~E/R, 

8 1 

(4) 

provided such a coequalizer exists. The coequalizing map q, when it 
exists, is always an epimorphism. 



576 Appendix: Sites for Topoi 

If u: E -> D is any morphism in [;, the kernel pair of u is a parallel 
pair of arrows 80, 81 : R -> E, universal with the property that u80 = 
u81 ; thus the object R is the pullback of u along itself, as in the diagram 

(5) 

E ----:u.,---.... ) D. 

It follows readily that (80, 81): R -> E x E is a monomorphism, and 
an equivalence relation. Such an equivalence relation, arising as the 
kernel pair of some arrow u, is automatically also the kernel pair of its 
quotient map q: E -> E / R when the latter exists. However, the converse 
assertion (every equivalence relation is the kernel pair of some map, or 
equivalently, of its quotient map) holds in Sets, but not always; we will 
need it as a requirement for a Grothendieck topos. 

Similarly, the coequalizer of any parallel pair of arrows is necessarily 
also the co equalizer of its kernel pair, but we must require for a topos 
that every epi is the coequalizer of some parallel pair (or equivalently, 
of its kernel pair). 

A diagram of the form of a "fork" 

(6) 

is said to be exact if q is the coequalizer of 80 and 81 , while these form 
the kernel pair of q. This diagram (6) is stably exact if it remains exact 
after pulling back along any map Q' -> Q in [;. This means that the 
diagram 

R xQ Q' ====t E xQ Q' ~ (Q xQ Q') = Q', (7) 

obtained from (6) by pullback, is again exact. [As in the case of coprod
ucts, if every exact diagram (6) in [; is stably so, then for any arrow 
u: A -> B in [; the pullback functor u*: [; / B -> [; / A preserves exact 
forks.] 

A set of objects {Ci liE I} of [; is said to generate [; when, for 
any two parallel arrows u, v: E -> E' in [;, the identity uw = vw for all 
arrows w: C i -> E from any object C i implies u = v. Equivalently, this 
means that for each object E, the set of all arrows Ci -> E (for all i E I) 
is an epimorphic family. Again this means that whenever two parallel 
arrows u, v: E -> E' are different, there is an arrow w: C i -> E from 
some C i with uw =I- vw. 

We can now formulate the Giraud theorem for Grothendieck topoi. 
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Theorem 1 (Giraud). A category £ with small hom-sets and all 
finite limits is a Grothendieck topos iff it has the following properties: 

(i) £ has all small coproducts, and they are disjoint and stable under 
pullback; 

(ii) every epimorphism in £ is a coequalizer; 
(iii) every equivalence relation R =t E in £ is a kernel pair and has a 

quotient; 
(iv) every exact fork R =t E ......, Q is stably exact; 
(v) there is a small set of objects of £ which generate £. 

Note that (ii) and (iv) together state that for each epimorphism 
B ......, A, the fork B XA B =t B ......, A is stably exact. Also (iii) and (iv) 
together state that each equivalence relation R ~ E x E has a quotient 
E / R for which the resulting fork R =t E ......, E / R is stably exact. 

The necessity of these conditions for a Grothendieck topos is eas
ily established. Indeed, properties (i)-(iv) obviously hold for the cat-

cop 
egory of sets. Hence, they are true in the functor category Sets 
constructed from any given small category C because limits and col
imits in such a functor category are computed pointwise. Finally, 
if J is any Grothendieck topology on such a C, the inclusion func-

cop 
tor Sh(C, J) >-+ Sets from the category of all J-sheaves has, as in 
Chapter III, a left adjoint, the associated sheaf functor a: SetsCOP 

......, 

Sh(C, J). The sheaf category Sh(C, J) is closed under finite limits in 
SetsCOP , hence has all finite limits. The colimits in Sh(C, J) are com
puted, as in Chapter III, by first constructing the colimit in SetsCOP 

and then applying the associated sheaf functor a. Since this functor a is 
a left adjoint and is left exact, it must preserve colimits and finite lim
its. Hence, Sh(C, J) inherits the exactness properties (i)-(iv) from the 
presheaf category SetsCoP

• The property (v) requiring generators also 
holds for each Grothendieck topos £, as observed at the end of §III.6. 

The sufficiency of the conditions of Theorem 1 will be proved at the 
end of §3. 

2. Construction of Coequalizers 

In this short section we will prove 

Proposition 1. Any category £ with small hom-sets and all finite 
limits which satisfies conditions (i)-(iv) of the Giraud theorem has all 
coequalizers, hence is cocomplete. 

The following factorization lemma is a first step. 

Lemma 2. Every arrow u: E ......, A in £ can be factored as an epi 
followed by a mono, as in E --* B >-+ A. 
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The subobject B is then called the image of u. 

Proof: Take the kernel pair R = E x A E of u: E -t A, with its 
projections 1Tl and 1T2: E x A E -t E. Let p: E -t E / R be the coequal
izer of 1Tl and 1T2 [this co equalizer exists by condition (iii) of Giraud's 
theorem]. Since U1Tl = U1T2, we can factor U through this coequalizer p 
as in the commutative diagram 

(1) 

E/R. 

Since p is a coequalizer, it is epi. To prove that the other factor v is 
mono, we use the fact that epimorphisms in £ are stable under pullback 
[a consequence of conditions (ii) and (iv) of the theorem]. So, to show 
that v is mono, consider any two parallel arrows f, g: T -t E / R in £ 
for which vf = vg. Then the pair (f,g): T -t (E/R) x (E/R) factors 
through the pullback (E/R) XA (E/R). Now P x P is the composite of 
the following two pullbacks of p, 

p x p: E XA E ~ E XA (E/R) ~ (E/R) XA (E/R), 

hence is epi. Therefore so is the pullback q of p x p along (f,g), as in 
the diagram 

T' (f',g') 
) EXAE R 

7rl 

~E 

ql lpx p 
7r2 

(2) 

T 
(f,g) 

) (E/R) XA (E/R). 

The pullback T' -t E XA E of (f,g) has components l' and g' as indi
cated, so that 1Tl 0 (f', g') = l' and 1T2 0 (f', g') = g': T' -t E. Therefore 
PI' = P1Tl (f', g') = P1T2 (f', g') = pg' [the middle identity by commuta
tivity of (1)]. Thus, by commutativity of the pullback diagram (2), we 
also have fq = PI' = pg' = gq. Since q is epi, we conclude that f = g. 
This shows that v is mono, so that U = po v is the desired epi-mono 
factorization of u. 

One readily shows that this factorization is unique, up to isomor
phism. Hence the image of U is uniquely defined. 

In the category of sets, the co equalizer of an arbitrary pair u, 
v: B =4 A of parallel arrows can be constructed by first taking the equiv
alence relation R on the set A generated by u(b) Rv(b) (for all b E B), 
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and then taking the resulting quotient AIR. The same construction 
applies to our category [;: 

Proof of Proposition 1: We wish to construct the coequalizer 
of any parallel pair of arrows u, v: B ~ A in [;. Define a sequence of 
subobjects (80,81'): Rn >-> A x A (for n = 0,1,2, ... ), as follows. flo is 
the diagonal A>-> A x A. The subobject Rl is the image of 

B + B + A (u,v)+(v,u)+(l,l) I A x A; 

this image exists by Lemma 2. For n ::::: 1, Rn +l is the image of 
(807rl' 81'71"2): Rn * Rn -7 A x A, where Rn * Rn = Rn XA Rn is a 
pullback of the form (1.3) above. This gives an increasing sequence 
Ro ~ Rl ~ R2 ~ ... of sub objects of Ax A. Their union can be con
structed as the image of 11n>o Rn -7 A x A, call it (80 ,81): R>-> A x A. 
We claim that this R is an -equivalence relation, and that its coequal
izer q: A -7 AIR [which exists by condition (iii) of Giraud's theorem] is 
the co equalizer of the given maps u and v: B ~ A. Assuming, for the 
moment, that R is an equivalence relation, the second assertion follows 
because, for any arrow f: A -7 X in [;, one has fu = fv iff f80 = f8l . 

Indeed, if f80 = f8 l then surely fu = fv, since (u,v): B -7 A x A fac
tors through Rl >-> A x A, hence through R>-> A x A. And conversely, 
if fu = fv, then one easily shows by induction on n that f equalizes 80 
and 81': Rn -7 A, for each n. Thus 

B ===u==tl A -~q---+I AIR 
v 

is a coequalizer. It thus remains to be shown that R is an equivalence 
relation. By the definition of Ro, the diagonal A -7 A x A factors through 
Ro, hence through R; therefore, R is reflexive. Furthermore, Ro and Rl 
are clearly symmetric, while the symmetry of Rn readily implies the 
symmetry of Rn+ l ; hence R is symmetric. Finally, to prove that R is 
transitive, consider for m and n the following pullback diagram, built 
on the pullbacks like (1.3) for R * S: 

Rn*Rm I R*Rm IRm 

1 1 I 
Rn *R IR*R 

71"2 IR 

1 71"11 (1.3) 
1

80 

Rn)>--------+I R --.,.----..... 1 A. 
8 1 

For transitivity of R, we must show that (807rl' 8l7r2): R * R -7 A x A 
factors through R. Since 11 Rn -7 R is epi by construction, while pull
back in [; preserves coproducts and epis (by the Giraud conditions), it 
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follows that lIn m Rn *Rm -+ R*R is epi. Hence, since Rn *Rm <;;: Rk *Rk 
where k ~ m, ;" the map Ilk Rk * Rk -+ R * R is also epi. So it suffices 
to show for each k that the map (0071'1,0171'2): Rk * Rk -+ A x A fac
tors through R. But by construction, this map factors through Rk+l, 
hence also through R. We have now completed the proof that R is an 
equivalence relation, thus finishing the proof of Proposition 1. 

Corollary 3. For a category & satisfying the Giraud conditions (i)
(iv) as above, and for any category C, if a functor F: & -+ C preserves 
coproducts, finite limits and coequalizers of equivalence relations, then 
F preserves all coequalizers (and hence all colimits). 

Proof: By hypothesis and condition (ii) on &, the functor F will 
preserve epimorphisms. It follows that F preserves images. Thus F 
preserves all the constructions in the just completed reduction of arbi
trary co equalizers to coequalizers of equivalence relations. Therefore F 
preserves coequalizers. 

3. The Construction of Sites 

We return to the converse part of Giraud's theorem. By hypothe
sis (v), the category & has a small set of generators. Take C <;;: & to be 
the small full subcategory of & with these generators as objects. The 
inclusion functor A: C >-+ & then gives rise to a "Hom-tensor" adjunction 

Cop 
-@cA:Sets +=( ===:::) & : Homc;(A, - ) (1) 

as in Chapter VII, where the left adjoint is written on the left. Recall 
here that the right adjoint in (1) is defined, for each object E of &, as 
the presheaf on C given for each object C by 

Home (A, E)(C) = Home(A(C), E). (2) 

Also, the left adjoint in (1) is constructed, for each presheaf Ron C, as 
a coequalizer of the form [ef. VII.2(1l)] 

U A(C') ~ U A(C) ----t R@c A. 
u: C'....,c C (3) 
rER(C) rER(C) 

Here, as in Chapter VII, these coproducts are taken over the arrows and 
the objects, respectively, of the category of elements of R. 

We wish to show that the functor Homc;(A, - ) in (1) sends objects 
E in & not just into presheaves, but into sheaves for a suitable topology 
J on the small category C, so that the adjunction (1) will restrict to an 
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equivalence of categories Sh(C, J) ~ E. We define J by specifying that 
a sieve S on an object C of C is to be a cover of C when the arrows 
g: D ----+ C belonging to S together form an epimorphic family in E. 
Equivalently, take these arrows 9 to be the components of a map on the 
coproduct, 

PS: U D -----+1 C 
(g: D---+C)ES 

(4) 

over S; then S covers C when this map PS is an epi in E. In brief, covers 
are epimorphic families. 

This prescription does indeed define a Grothendieck topology on the 
category C. First, the maximal sieve on each object C includes the 
identity C ----+ C, hence is a cover in this sense. The transitivity axiom 
for these covers is evident. To verify the stability axiom, consider the 
pullback of such a covering sieve S along any arrow h: C' ----+ C in C. 
Then since epis and coproducts are preserved by pullbacks in E [by 
assumptions (i)-(iv) of the theorem]' the pullback of the epi (4) along h 
yields the following pullback diagram in E with the top map p epi: 

U D xcC' P IC' 
gES 

l' 1 
UD p IC. 
gES 

Moreover, the objects of C generate E, so there is for each arrow (g: D ----+ 

C) E S an epimorphic family of arrows {Bf ----+ D Xc c' h with each 
domain Bf an object of C. Thus the collection of all the composites 
B g ----+ D Xc C' ----+ C', for all 9 E S and all indices i, form an epimorphic 
fa~ily contained in the sieve h*(S). Therefore h*(S) is a cover, as 
required for stability. This proves that the J as defined above is indeed 
a Grothendieck topology on C. 

Lemma 1. For each object E of E the functor Home ( - , E): cop ----+ 

Sets is a sheaf for the Grothendieck topology Jon C. As a consequence, 
this topology is subcanonical. 

Proof: Consider an object C of C <;;; E and a covering sieve S on C 
with the associated epimorphism (4). By the exactness assumptions on 
E, this epi P is the co equalizer of its kernel pair; that is, the pullback of 
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p along p, as in 

( il D') Xc (il D) )il D 

g'ES gES gES 

1 lp 

il D' 
p )c. 

g'ES 

But since pullback in £ preserves coproducts (these are stable under 
pullback), one has 

(il D') Xc (il D) ~ il(D' Xc (il D)) ~ il D' Xc D, 
g' 9 g' 9 g' ,g 

so the coequalizer has the form 

il D' xeD ===:=: =t~ il D _...:p-..... ) C. (5) 
g' ,g 9 

Here 9 and g' range over all arrows g: D ---. C and g': D' ---. C in the 
sieve S, while 0'1 and 0'2 are the unique arrows from the big coproduct 
such that all squares of the form 

D' xeD: igl,g ) ilD' xeD ( 
igl,g ,D' xeD 

.. I 
9',9 

I"' a1lia2 
D': 

igl 
)ilD( 

ig 
:D 

9 

commute. In this figure the horizontal maps i are the various coproduct 
inclusions, while 7r1 and 7r2 are the projections of the pullback D' Xc D. 
Now the assumption that the objects of C generate £ enters again. It 
implies that for each pair of arrows g: D ---. C and g': D' ---. C in the 
sieve S there is an epimorphic family {B ---. D' xeD} in which each 
domain B is an object of C. Each element of this epimorphic family is 
thus represented by a commutative square in C of the form 

D' ---,---+) C. 
g' 

(6) 
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Composing this epimorphic family with the co equalizer (5) then yields 
a new coequalizer diagram 

U B ====;===tl U D ---,-P--+) C 
9ES 

(7) 

in which the first coproduct is indexed by all B in the commutative 
squares of (6), while for each such square the map 0: sends the summand 
B to the summand D indexed by 9 via h: B -> D, and similarly (3 sends 
B via k: B -> D' to the summand D' indexed by the map g' E S of (6). 

For each object E of £ the contravariant Hom-functor £( -, E) ap
plied to the co equalizer (7) in £ yields an equalizer 

II £(B,E) t:1 ==== II £(D,E) +-1 --£(C,E) 
B gES 

in Sets. This equalizer states exactly that the Hom-functor C f-7 

£ (C, E) on C satisfies the sheaf condition for the covering sieve S. Since 
this holds for every covering sieve of the topology J defined as in (4), it 
follows that C f-7 £ (C, E) is a J -sheaf. In particular, when E is itself 
an object of C, one has £(C,E) = C(C,E) for every object C since 
C <:;;; £ is a full subcategory; so the functor C f-7 £ (C, E) = C (C, E) is 
the representable functor cop -> Sets given by the object E. Thus all 
representable functors are sheaves, which means that the topology J is 
sub canonical. This proves the lemma. 

Now we will investigate the unit and the counit of the Hom-tensor 
adjunction (1) for the category C and the corresponding inclusion func-

cop 

tor A: C >-> £. For any presheaf Q E Sets ,the unit T/Q: Q -> 

HomE (A, Q Q9c A) has components 

(T/Q)c: Q(C) ------+ HomdA(C), Q Q9c A) (8) 

for each object C E C. Here the function (T/de sends each element 
q E Q(C) to the map 

q Q9 - : A( C) ------+ Q Q9c A (9) 

as defined in §VII.8(4). On the other hand, for each object E of £ the 
counit EE: Hom,c;(A, E) Q9c A -> E is the vertical map in the diagram 

C~A~~E A(C') ==i==t" R'i'_E A(C)~'~: 0c A 

(10) 

E. 
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Here the upper part is the coequalizer diagram defining the tensor prod
uct Hom£ (A, E) 0c A, while p is the map on the middle coproduct whose 
components are the given arrows r: A(C) -+ E, for all objects C E C. 

We already know, by Lemma 1, that the functor Hom£(A, - ) of (1) 
sends objects E of E to J-sheaves on C. Then, restricting the adjunction 
(1) to J-sheaves, we will prove Giraud's theorem by showing that the 
counit tE is an isomorphism for each object E E E, and that the unit T/Q 
is an isomorphism for each J -sheaf Q. This will mean that the restricted 
adjunction is an equivalence of categories. 

Lemma 2. The counit tE is an isomorphism for every object E of 
the category E. 

Proof: Given E, consider all the arrows r: D -+ E with domain D 
in the generating category C. Because C generates E these maps r form 
an epimorphic family. In other words, there is an epimorphism 

p: U D ----7 E, 
DEC 

r: D->E 

(11) 

where the component of p with index r sends D into E via r. This 
coproduct is indeed indexed by a small set, since by assumption C is 
small and E has small Hom-sets. Notice that the map p in (11) is the 
same as the map p in (10), because A was defined to be the inclusion 
functor C >-> E [except that we have changed the notation from C in (10) 
to D in (11)]. By exactly the same argument as in the proof of (7) for 
Lemma 1 (but with C there replaced by E) it follows that the present 
epimorphism p fits into a coequalizer diagram of the form 

UB~ U D~E, 
i j3 DEC (12) 

r: D->E 

where the first coproduct ranges over all the commutative squares i in 
E of the form 

~ : 

D' ------'0) E, 
r' 

(13) 

where the objects B, D, D' are in C, while the maps a and /3 of (12) 
are defined on the summand indexed by such a square by using the 
maps hand k, respectively. We claim that, for any object X of E, an 
arrow f: llD,r D -+ X co equalizes a and /3 in (12) iff it coequalizes () 
and T in (10). This claim, once verified, will show that a, /3, and (), T 
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have isomorphic coequalizers, so that the map EE of (10) is indeed an 
isomorphism, as stated in the lemma. 

To check this claim, take such an arrow f with its components 
f D, r: D ----> X for all DEC and all r: D ----> E in E. Now f 0 a = f 0 (3 
means that fD,r 0 h = fD' ,r' 0 k for each commutative square of the form 
(13). On the other hand, foB = f 0 T means that fD,r 0 U = fD',ru 
holds for every arrow u: D' ----> D in C and every r: D ----> E. Therefore 
fB = fT implies for every square (13) that 

fD,r 0 h = fB,rh = fB,r'k = fD',r' 0 k; (14) 

therefore, fa = f(3· Conversely, if fa = f(3, then for every u: D' ----> D 
in C and every r: D ----> E the square 

D' _--'u!:...---+) D 

II lr 
D' --=r.,,-u-----o\) E 

of the general form of (13) yields fD,r 0 U = fD' ,ru' Therefore, fB = fT. 
This completes the proof of Lemma 2. 

Lemma 3. The functor Hom£(A, - ): E ----> Sh(C, J) preserves epis. 

Proof: Consider an epimorphism u: E' ----> E in E and an element 
r: C ----> E of Hom£(A,E)(C) = HomdA(C), E). Because the objects 
of the category C generate E, the pullback E' x E C along u is covered 
by an epimorphic family of arrows B ----> E' x E C with each domain B 
in C, as in the (pullback) diagram 

B -----+) E' x E C -------0\) C 

1 ir (B E C). 

E' ---,u----+) E 

But u is epi, hence so is the pullback E' XE C ----> C, by the stability 
assumptions (iv) on E. Therefore the family of all composites B ----> 

E' x E C ----> C is again an epimorphic family. Thus we have constructed a 
cover of C in the site (C, J) by arrows h: B ----> C so that each composite 
r 0 h: B ----> E is in the image of the map 

u*: E(B, E') -----t E(B, E) 

given by composition with u: E' ----> E. In the terminology of §III. 7, 
this means that the natural transformation u*: E( - ,E') ----> E( - ,E) 
is "locally surjective"; hence, by Corollary III.7.5, it is an epimorphism 
between sheaves on C. Since u: E' ----> E was an arbitrary epi in E, this 
proves that the functor E f---t Hom£(A, E) = E(A( - ), E) preserves epis. 
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Lemma 4. The functor Hom£(A, - ): £ ----+ Sh(C, J) preserves co

limits. 

Proof: Since all colimits can be constructed from coproducts and 
coequalizers, it suffices to prove that the functor Hom£(A, - ) preserves 
these. Consider first an equivalence relation R <:;;; E x E in £ with its 
co equalizer 

R ====t E --++ E / R. 

By the exactness assumptions on E, R is the kernel pair of E ~ E / R. 
Hence, because Hom£(A, -) is left exact, the two left-hand parallel 
arrows in (15) below form the kernel pair of the right-hand arrow: 

But this right-hand arrow is epi by Lemma 3. All this takes place 
in the (Grothendieck) topos Sh(C, J) where we already know (by the 
first half of Giraud's theorem) that epis are co equalizers of their kernel 
pairs. Hence (15) is indeed a co equalizer diagram. Since we now know 
that Hom£(A, - ) preserves coequalizers of equivalence relations, Corol
lary 2.3 shows that Lemma 4 will be proved if we show that Hom£ (A, - ) 
also preserves small coproducts. 

First recall from Chapter III that for any (small) family {Fo} of 
sheaves in Sh(C, J), their sheaf coproduct Uo is constructed as 

where U(p) denotes the coproduct in SetsCOP (the pointwise disjoint 
cop 

sum), and a: Sets ----+ Sh(C, J) is the associated sheaf functor. 
Now consider any coproduct E = Uo Eo in the given category £, 

with its coproduct inclusions io: Eo ----+ E. By applying the functor 
Hom£(A, -) to these coproduct inclusions, we obtain the map cjJ of 
presheaves, as in the top row of (16) below, and from it the associated 
map acjJ of sheaves. In this diagram, 7] is the unit of the associated sheaf 
adjunction; it is an isomorphism on the right since Hom£(A, Uo Eo) 
upper right is a sheaf by Lemma 1. Here is the diagram (in the pre sheaf 
category): 

(16) 
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where we have written ¢ = 7]-1 0 a(</». We will now show that a</> is an 
isomorphism of sheaves. 

First we prove that a</> is mono. To this end, consider at each object 
C of C the component </>0 of </>; since the functor A is the inclusion 
C ---> E, this component is the map of sets 

induced by the given coproduct inclusions ia: Ea >--+ 11 Ea. Let K de
note the kernel pair of </>, as a map of presheaves. In this category, limits 
such as kernel pairs are computed pointwise, so each K (C) is the kernel 
pair of </>0 in Sets. Thus, it consists of pairs of elements (0:, r: C ---> Ea) 
and ((3, s: C ---> E(3) with 

</>0(0:, r) = </>0((3, s); i.e., ia 0 r = i{3 0 s: C ---> U Ea. (18) 

[So these are just the usual pairs (0:, r) and ((3, s) used to test whether 
</>0 is monic.] Now by the exactness hypotheses of Giraud's theorem 
the coproducts in E are disjoint. Hence, by the second equation of (18), 
either 0: = (3 and r = s, or the pair (r, s) constitutes a map A( C) ---> 0 
since Ea xEE{3 is the initial object 0 of E whenever 0: i= (3. In other 
words, </>0 is injective except perhaps in the case when there is a map 
A( C) ---> O. But the initial object 0 is the coproduct of the empty family, 
hence the stability of coproducts in E implies that any map C ---> 0 
shows that C is also isomorphic to the coproduct of the empty family, 
so that C 9:: O. It follows that the kernel pair K of ¢--a subobject of 
(ll~) Hom£(A, Ea))2-is mapped by the unit 7] into the diagonal, as in 

lryXry (19) 

U Hom£(A, Ea);>----,~,---+) (U Hom£(A, Ea))2. 

Indeed, we have just shown that K (C) is already contained in the diag
onal of (llaE(C,Ea))2 unless C 9:: O. But in the case where C 9:: 0, the 
empty family is a cover of C in the chosen Grothendieck topology J on 
C. But then any sheaf on C must take C to a singleton set; in particu
lar this applies to the sheaf lla Hom£(A, Ea). Thus also for C 9:: 0, the 
component 7]0 x 7]0 sends K (C) into the diagonal. By applying the asso
ciated sheaf functor to the subobject K one concludes that the resulting 
subobject aK of (lla Hom£(A, Ea))2 is contained in the diagonal there. 
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But the associated sheaf functor a is left exact, so takes the kernel pair 
K of ¢ to the kernel pair aK of a¢. The fact that aK is contained in 
the diagonal ~ as pictured above means exactly that a¢ is mono. 

Finally, we show that the map a¢ in (16) is epi. By Corollary III.7.6 
it will be enough to prove that the map ¢ of presheaves is locally surjec
tive for the given topology J. To this end, consider again the component 
¢c at each object C of C, as in (17). For any arrow r: C ---> U Ea. con
struct for each inclusion ia. the pullback Pa , 

B ___ 'E ___ ) Pa. ' Ea. 

jn 1 lin (20) 

C r ,ilEa.. 
a. 

By the basic assumption that the objects B of C generate £., the indi
cated arrows B ---> Pa. with domain B in C form for each fixed 0: an 
epimorphic family into Pa.. Moreover, the assumption of the theorem 
that coproducts are stable under pullback implies that C in (20) is the 
coproduct C = U Pa. with coproduct inclusions ja.. In particular, these 
arrows ja.: Pa ---> C also constitute an epimorphic family in £.. There
fore, finally, the family of all composites 

(B E C) (21) 

is an epimorphic family, thus a covering sieve on C in the Grothendieck 
topology J (defined as in (4) above). 

But the restriction of r: C ---> U Ea. along any such composite (21)
that is, the composite rja. w: B ---> U Ea.-is by commutativity of (20) in 
the image of Hom£(B, Ea.) ---> Hom£(B, U Ea) and hence in the image 
of ¢B in (17). This shows that ¢ is locally surjective for the topology 
J; hence, by Corollary III.7.6, the map a¢ of associated sheaves is epi. 
This completes the proof that the functor Hom,dA, - ): £. ---> Sh(C, J) 
preserves coproducts, so Lemma 4 is proved . 

. 
The following result will now complete the proof of Giraud's theorem. 

Lemma 5. For every sheaf R on the generating category C the unit 
TJR: R ---> Homt;(A, R ®c A) of the adjunction 1 is an isomorphism. 

Proof: The functor R: cop ---> Sets can be written as a col
imit of representable functors y(B) = C( - ,B): cop ---> Sets, as in 
§I.5. According to Lemma 1 above, these representable functors are 
all sheaves. But for each such representable functor y(B), the unit 
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'TJy(B): y(B) --+ Hom£(A, y(B) 0c A) is easily seen to be an isomor
phism. Indeed, represent abies are units for the tensor product, as in 
VII.4(4). In particular, for each object B of C the map 

A(B) ~y(B)0cA, a f---710a, (22) 

for a E A(B), is an isomorphism. Furthermore, since the functor 
A: C --+ [; is simply the embedding of the full subcategory C into [;, 
there is an evident isomorphism of presheaves 

y(B) ~ HomdA, A(B)). (23) 

Thus one obtains a diagram 

y(B) ----".,~--------» Hom£(A, y(B) 0c A) 

~ ~ 
Hom£(A, A(B)) 

with the two isomorphisms of (22) and (23). By the explicit description 
of the unit 'TJ = 'TJy(B) in (8) [for the special case where Q is y(B)] 
this diagram is readily seen to commute, so that 'TJ must also be an 
isomorphism. 

To conclude the proof of the lemma, we observe that the functor 
R f---7 R 0c A preserves colimits since it is a left adjoint, while the func
tor Hom£(A, - ) preserves colimits by the preceding lemma. Therefore, 
so does their composite 'TJR: R f---7 Hom£ (A, R 0c A). Hence, since any 
sheaf R is a colimit of represent abies and 'TJR is an isomorphism for repre
sentable R, the naturality of the unit 'TJ yields that 'TJR is an isomorphism 
for any sheaf R. This completes the proof of the lemma. 

We have now shown that the adjoint pair offunctors (1) restricts (by 
Lemma 1) to an adjoint pair of functors Sh(C, J);:::: [;, and that the unit 
and counit of this restricted adjunction are isomorphisms (Lemmas 5 
and 2). Therefore, this restricted adjunction constitutes an equivalence 
of categories Sh(C, J) ~ [;, so that [; is indeed a Grothendieck topos, 
thus completing the proof of Giraud's theorem. 

4. Some Consequences of Giraud's Theorem 

The construction of the site (C, J) in the previous section may be 
formulated thus: 

Corollary 1. If C is a small full subcategory of a Grothendieck 
topos [; which generates [;, while J is the (subcanonical) topology on C 
in which the covering sieves on an object C are the epimorphic families 
to C, then [; is equivalent to Sh(C, J). 
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Moreover, the equivalence is given by the functor 

E -.:.. Sh(C, J), E 1---+ Home( - , E). (1) 

Corollary 2. Every Grothendieck topos E has a small site which is 
subcanonical and closed under (any subset of) the following operations: 
finite limits, exponentials, countable colimits, subobjects, quotients by 
equivalence relations. 

Proof: Take a small site (C, J) for E. We may assume that C is a 
full subcategory of E and, by Lemma 3.1, that the topology is sub canon
ical. Then take the full subcategory D of E which is the closure of C 
under all of (or any selection of) the operations listed in the statement of 
the corollary. This closure D is still (equivalent to) a small subcategory 
of E, and D generates E since C already generates E. By Corollary 1, the 
category D, equipped with the topology given by epimorphic families, 
is a sub canonical site for E. 

Since the site for a Grothendieck topos is not uniquely determined 
by the topos, it is useful to examine the relations between different sites. 

We now formulate a comparison between sheaves on a given site and 
those on a smaller related site. If (C, J) is a site and A is a subcategory 
of C, one says that a covering sieve 8 on an object C of C is a "cover 
by objects from A" when every arrow C' ~ C of the sieve 8 factors as 
C' ~ A ~ C for some object A of A. When such a sieve 8 exists, C 
is said to be covered by objects from A. The desired comparison may 
now be formulated as follows: 

Corollary 3 ("The Comparison Lemma"). For a subcanonical 
site (C, J), let A be a full subcategory ofC for which every object ofC 
has a cover by objects from A. Define a topology J' on A by specifying 
that a sieve 8 on A is a J'-cover of A iff the sieve (8) which it generates 
in C is a J-cover of A. Then the restriction functor SetsCOP ~ SetsAOP 

induces an equivalence of categories 

Sh(C, J) ~ Sh(A, J'). 

(There are sharper versions of this comparison lemma, for which J 
need not be sub canonical and A <;:;; C need not be full; see, e.g., [Kock, 
Moerdijk, 1991J.) 

Proof: Let E = Sh(C, J), and write as usual ay: C ~ E for the 
Yoneda embedding followed by sheafification. Recall that the topology 
J can be recovered from the category E of sheaves (Corollary III.7.7) 
by the statement that a family {Ii: Ci ~ C} covers C iff the induced 
family {ay( Ci ) ~ ay( C)} is an epimorphic family in the category of 
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sheaves. Moreover, since the topology J is subcanonical, the repre
sentable presheaves y(G) here are already sheaves, so ay(G) ~ y(G), 
for any object G E C. Consider now the subcategory A. The hypothesis 
on coverings by objects of A implies that for each object Gin C there is 
a set Ai of objects from A such that there is a family of maps y Ai ----+ yG 
which is epimorphic in the category of sheaves. Since C generates E, so 
does A. Now take the topology J' on A to consist of those sieves S 
which are epimorphic families in E. Then by Corollary 1 we have an 
equivalence E ~ Sh(A, J'). 

To see that this topology J' is as described in the statement of the 
corollary, consider such a sieve S on an object A of A for which the map 

U y(B) -----7 y(A) 
u 

is epi in E, where u ranges over the arrows u: B ----+ A in S. Then by 
Corollary III.7.5, there is a J-cover T on A in the site C for which every 
v: G ----+ A in T factors through some arrow u: B ----+ A in S. This means 
that T is contained in the sieve (S) generated in C by the arrows in S. 
In particular, (S) is also a J-cover in C. Conversely, consider a sieve S 
on an object A of A for which (S) is a J-cover in C; this means that 
there are arrows hi: Ai ----+ A of Sand k ij : G ij ----+ Ai such that the 
whole family hi 0 kij is an epimorphic family in E. It then follows that 
the hi yield an epimorphic family in E. In other words, (8) a J-cover 
implies that S is a J'-cover. It follows that the topology J' is indeed 
as described in the statement of the corollary. Moreover, the functor 
E = Sh( C, J) ----+ Sh( A, J') giving the equivalence of Corollary 1 is clearly 
the functor which restricts a sheaf on C to one on the subcategory A. 

The utility of this comparison lemma may now be illustrated in sev
eral cases: 

(a) If X is a topological space with the standard notion of open 
coverings, then any basis B ~ O(X) for the topology of X does satisfy 
the hypothesis of the comparison lemma, simply because any open set 
is the union of open sets of a basis. As a consequence, one obtains a 
new proof of Theorem I1.1.3, describing sheaves in terms of a basis. As 
stated there, it follows that a sheaf F on the space X may be defined 
(uniquely up to isomorphism) by specifying the values F(B) only for the 
open sets B of the basis. When the basis B is closed under intersections 
[which are pullbacks in O(X), regarded as a category], such a functor F 
is a sheaf iff 

F(B) -----7 II F(Bi) ====t II F(Bi n B j ) 

i,j 

is an equalizer, for any cover of an element B of B by basis elements Bi 
[as in §III.4(5)]. 
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(b) For a natural number n, let Mn be the category of all Coo_ 
manifolds of dimension n, equipped with the usual open cover topology 
described in §III.2. Since any n-manifold M is locally diffeomorphic to 
R n and since any M is covered by charts of this form, the comparison 
lemma implies that the category of sheaves on Mn is equivalent to the 
category of sheaves on the site with only one object, the Euclidean space 
Rn, and with all smooth functions Rn ____ Rn as arrows, in which the 
covers are simply families {Ii: Rn ____ Rn} of open embeddings which 
cover Rn, in the sense that Rn = Ui li(Rn). Notice that a sheaf on this 
site is a set, equipped with an action by the monoid of smooth functions 
Rn ____ R n, and satisfying a suitable sheaf condition. 

(c) Consider the double negation (or, the dense) topology on a poset 
P, as in §II1.2 example (e). The poset P is called "separative" ([Jech 
1978]) or "refined" ([Bell 1977]) if it has the following property 

(i) q 1:. p implies that there exists some r ::; p such that s ::; r implies 
s 1:. q. 

For such a poset one may prove (much as in the special case of the Cohen 
poset treated in §VI.2) that every representable functor P( _ ,p): pop ____ 

Sets is a sheaf; thus the topology is subcanonical. Now recall that an 
ideal U in a poset P is a subset U ~ P such that 

(ii) For p, q E P, p::; q E U implies p E U. 

Also an ideal U is closed when in addition 

(iii) For a set D ~ P dense below PEP, D ~ U implies p E U. 

(Recall that a subset D is said to be dense below p if for any q ::; p there 
exists an rED with r ::; q.) Any ideal U of P is contained in a smallest 
closed ideal U, defined by 

p E U iff { q I q ::; p and q E U} is dense below p. 

The intersection of two closed ideals is closed, while each family of closed 
ideals Ui has as a supremum, the closure of the union. In fact, one easily 
shows that the closed ideals in P form a complete Boolean algebra B(P). 
When P is separative, as in (i), every principal ideal (p) = {q I q E 
P, q ::; p} is closed. Hence there is an embedding 

i: P <-----+ B(P), p ~ (p). (2) 

Now on the category P take the dense topology, and on the complete 
Boolean algebra B(P) of closed ideals take the topology where a cover 
is a (possibly infinite) supremum, as for cHa's in §III.2 example (d). 
Then for any ideal U, 

U = V {(p) I p E U}, 



4. Some Consequences of Giraud's Theorem 593 

so every object of the large site B(P) of (2) is covered by images i(p) = 
(p) from the smaller site P. Moreover, any sieve U on p [that is, any 
ideal U ~ (p)] gives a cover V{ (q) I q E U} = (p) of i(p) in B(P) just 
when this sieve U is dense below p, that is, exactly when U covers p in 
the dense topology. Therefore, the topology on P induced by i is indeed 
the dense topology. The comparison lemma thus yields an equivalence 
of sheaf categories 

Sh(P) ~ Sh(B(P)). 

This states that any model of set theory constructed (as in the method 
of Cohen, Chapter VI) by sheaves on a separative poset can also be con
structed by sheaves on the associated complete Boolean algebra. Briefly, 
this means that forcing a la Cohen has the same content as Boolean
valued models. 

As another application of Giraud's theorem, one obtains the follow
ing result which compares the Grothendieck topoi of Chapter III with 
the elementary topoi of Chapter IV. (Recall that every Grothendieck 
topos is an elementary topos.) 

Proposition 4. An elementary tapas E is a Grothendieck tapas iff 
E has all small coproducts and a small set of generators. 

Proof: Clearly any Grothendieck topos is an elementary topos with 
coproducts and a set of generators [ef. the easy direction (::::}) of Giraud's 
theorem]. For the converse, suppose E is an elementary topos with small 
coproducts and a set of generators. We will check that E satisfies the 
conditions (i)-(v) of Giraud's theorem. Condition (v) is satisfied by as
sumption. E also satisfies condition (i), since coproducts in a topos are 
disjoint (Corollary IV.lO.5), and they are preserved under pullback since 
pullback functors have right adjoints (Theorem IV.7.2). Furthermore, 
in an elementary topos E every epimorphism B --+ A is the coequalizer 
of its kernel pair (Theorem IV.7.S), hence gives rise to an exact dia
gram B x A B ~ B --+ A. This diagram remains exact after pulling back 
because epis in a topos are stable under pullback (Proposition IV.7.3). 
This shows that E satisfies conditions (ii) and (iv) for Giraud's theo
rem. Finally, to verify condition (iii), consider any equivalence relation 
R ~ E x E in E. Since finite colimits exist in any topos (Chapter IV), 
the co equalizer E --+ E / R of R ~ E exists in E. It remains to show 
that R is the kernel pair of its coequalizer E --+ E / R. An easy diagram 
argument shows that if R is the kernel pair of any arrow E --+ D, then 
it must also be the kernel pair of its coequalizer E --+ E / R. Therefore, 
the following lemma completes the proof of the proposition. 

Lemma 5. In a tapas E, any equivalence relation R ~ E x E is the 
kernel pair of some arrow E --+ D. 
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Proof: Let (00, (1): R>--+ E x E be an equivalence relation, let 
XR: E x E ~ n be its characteristic map, and let </>: E ~ nE be the 
transpose of XR. We claim that R is the kernel pair of </>. (The reader 
may wish to check first that this is indeed the case when [; = Sets.) 
First we show </>00 = </>01' Since R is symmetric, there is the usual 
"twist-map" T: R ~ R which makes the diagram 

R T I R 

(OO'O~ /a,,00) 

ExE 

commute. Also recall the pullback (3) from the first section, repeated 
here as 

R------:::---+I E. 
00 

(3) 

Since R is transitive, the map (007r1' 017r2 ): R * R ~ E x E factors 
through R, and we denote this factor by p: R * R ~ R (so ooP = 

007r1,01P = 017r2). Now from the pullback (3), one readily deduces by 
elementary diagram-arguments that the following two squares are also 
pullbacks: 

R * R __ 7r.o...l --+) R 

(0071"1'71"2)1 1(00 ,0') 

E x R -------+) E x E, 
1 x 00 

R * R __ T:...:.71":.::.2_-+) R 

(0171"2,71"1) 1 1 (00,01) 

Ex R ------,------+) E x E. 
1 X 0, 

(4) 

But the two subobjects of E x R appearing on the left of these diagrams 
are isomorphic, as follows from the commutativity of 

(3 
R * R =:< ========::;) R * R 

(0071"1'71"~ a /"71"2'71"') 
ExR 

a = (7r2' Tp) 

(3 = (Tp, 7rd; 
(5) 

the notation on the right means that a: R*R ~ R*R is the unique arrow 
with 7r1a = 7r2 and 7r2a = TP, and similarly for (3. It then follows readily 
that the triangle (5) with a-and also that with (3-is commutative. To 
show that (3a is the identity, use 7rI((3a) = Tp(7r2 , Tp) and hence that 

00(7r1(3)a = 01P(7r2, Tp) = 01 7r2(7r2, Tp) 

= 01 TP = ooP = 007r1 , 

01 (7r1(3)a = 00P(7r2,Tp) = 007r1(7r2,Tp) = 007r2 = 017r1. 
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Therefore, by the pullback (3), 7rd3a = 7rl, while 7r2f3a = 7r2 is immedi
ate. Thus f3a = (7rl' 7r2) = 1, as desired. The proof that af3 = 1 is dual 
to this. 

It follows that these two isomorphic subobjects of E x R in (5) have 
identical characteristic maps. Juxtaposing both pullbacks in (4) with 
the pullback 

R ) 1 

(80 /h) 1 ltrue (6) 

ExE XR 
)0, 

we find that these characteristic maps are exactly XR 0 (1 x 80 ) and 
XR 0 (1 x 8d, respectively. But when these maps are equal, then so are 
their transposed maps cj;80 and cj;8l : R --* OE. 

Next, to show that (80 ,8d is the kernel pair of cj;: E --* OE, take 
any object X and any arrows f, g: X --* E such that cj;f = cj;g. We need 
to find an arrow h: X --* R such that 80 h = f and 8 l h = g. Such an h 
is necessarily unique since (80 , 8d: R --* E x E is monic. Consider the 
two pullbacks of R along 1 x f and 1 x g, as in the diagram 

ExX lxf ) ExE ( lxg 
ExX 

afl 1 (80 ,8,) lag (7) 

Pf bf )RI bg Pg. 

Juxtaposing each of these pullbacks with (6), taken upside down, one 
finds that the monos af and ag have the respective characteristic maps 
XR 0 (1 x 1) and XR 0 (1 x g): E x X --* O. The transpose X --* OE 
of these maps are cj; 0 f and cj; 0 g, respectively. Hence, since cj;f = cj;g 
by assumption, also XR 0 (1 x 1) = XR 0 (1 x g). So Pf and Pg are 
isomorphic as subobjects of E x X, say by an isomorphism e: Pf --* Pg 

with age = af. Now consider the map (f, 1): X --* E x X. Since 
(f, 1): (1 x 1) 0 (f, 1): X --* E x E factors through the diagonal b.: E --* 

Ex E, hence through R <::;;: Ex E by reflexivity, it follows from the left
hand pullback in (7) that (f, 1) factors through af, say as (f, 1) = afk. 
But then (f, g) = (1 xg)o(f, 1) = (1 xg )afk = (1 xg)agek = (80 , 8dbgek. 
So h = bgek is the arrow X --* R with the property that 80 h = f and 
81 h = g, as required. This proves the lemma, and so completes the proof 
of Proposition 4. 

Giraud's Theorem often enables one to recognize a certain category 
as a Grothendieck topos, even in cases where an explicit description of 
a site may not be immediately available. A typical example is t~le case 
of equivariant sheaves. 
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Let G be a topological group acting continuously on a topological 
space X, say from the left. Write 

p,: G x X --+ X, t-t(g,x)=g'x 

for the action map. A G-space over X is a space p: E --+ X over X with 
an action of G on E such that p respects this action, as in 

G x X --,/-'.,-----+) X. 

A map of G-spaces over X is simply a map of spaces over X which 
respects the G-action; thus, there is a category of G-spaces over X. 
Such a G-space over X is called etale if the map p: E --+ X is an etale 
map. 

Recall from Chapter II that sheaves on a space X may be identified 
with etale spaces p: E --+ X over X. We define a G-equivariant sheaf 
on X to be an etale G-space over X, and write 

She (X) 

for the category of such equivariant sheaves; it is a full subcategory of 
the category of G-spaces over X. 

Proposition 6. For any continuous action of a topological group G 
on a space X, the category She(X) of G-equivariant sheaves on X is a 
Grothendieck topos. 

Proof: Consider the faithful forgetful functor 

U: She (X) --+ (Etale / X) ~ Sh(X) 

("forget the G-action") from G-equivariant sheaves to etale spaces over 
X. If E --+ X and F --+ X are etale G-spaces over X, then their product 
in the category of etale spaces over X, i.e., their pullback E Xx F --+ X, 
has an obvious G-action which makes it into the product in the category 
She(X). In other words, the functor U creates products. In the same 
way, one shows that U creates all finite limits and all colimits. Conse
quently, She(X) inherits all the exactness properties from the category 
of etale spaces over X (i.e., of sheaves on X). So She(X) satisfies all 
the conditions of Giraud's theorem, except perhaps the last condition 
concerning generators. 

In order to show that She(X) has a set of generators, consider any 
etale G-space p: E --+ X. Then since p: E --+ X is etale, there is for each 
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point e E E a section s: U ---* E over some open set U ~ X such that e 
lies in the image of s. In other words, the set of all sections s: U ---* E 
of p is an epimorphic family to E. For each such section s: U ---* E, 
let G· s(U) = {g. s(x) I x E U,g E G} be the closure of the subset 
s(U) ~ E under the action of G on E. This set G· s(U) is an open subset 
of E because s(U) ~ E is open (any section of an etale space is an open 
map), and hence so is its translation g . s(U) = {g. s(x) I x E U} ~ E 

under any homeomorphism e f-+ g. e: E ~ E. Hence the union G· s(U) 
of all these translates g. s(U), for all g E G, is also open. It follows that 
the restriction pl(G· s(U)) of p: E ---* X to this open subspace is again 
etale. Thus, we get a commutative diagram 

G· s(U)r-) ---+) E 

Ple.S(~ ;. 
X 

in the category of etale G-spaces over X. Since G· s(U) ~ E contains 
the image of s: U ---* E, it follows that the collection of all these G-maps 
G· s(U) >---+ E, for all sections s on all open subsets U ~ X, form an 
epimorphic family in the category She(X). Therefore, the collection 
of all etale G-spaces of the form G· s(U) ---* X generates the category 
She (X). But there is only a set of such etale G-spaces, up to isomor
phism. For the surjection (g, x) f-+ g. s(x) displays G· s(U) as a quotient 
of G x U, and clearly, up to isomorphism, there is only a set of such 
quotient spaces G x U with U an open subset of X. This shows that 
She (X) has a set of generators. 

Notice that for the case where X is the one-point space, the category 
She(X) is the category of continuous left G-sets. The site produced for 
this category by Giraud's theorem is exactly the site constructed in §III.9 
(apart from the fact that we considered right actions there). 
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In this epilogue we will make some suggestions for further reading 
related to topos theory. We do not at all aim to provide an exhaustive 
description of the available literature, but only wish to mention some 
useful books and articles in each of the various directions described be
low. 

Background in Category Theory and Topology. In our book, 
we have assumed only a minimal acquaintance with category theory. 
Some of the authors mentioned below assume quite a bit more, so a 
reader might wish to deepen his understanding by consulting one of 
the several general texts available, such as Mac Lane ("CWM", 1971), 
Pareigis (1970), Schubert (1970), or Freyd, Scedrov (1990). Various 
texts on categorical topology and on categories as used in computer sci
ence are not really relevant, at least for our purposes. Fibrations-or the 
essentially equivalent notion of indexed categories-occur frequently in 
topos theory. Pare and Schumacher (1978) describe indexed categories; 
Gray (1966) has an extensive description of fibrations, while Benabou's 
article (1985) provides some controversy as well as a good list of ref
erences on fibrations. An early article (1967) of Benabou gives a good 
introduction to the useful notion of a bicategory. For closed categories 
(those with an internal hom-functor and the corresponding tensor prod
uct) one may consult Kelly (1982). The latter book also covers enriched 
categories (those where the hom-functor takes values in a closed cate
gory). For double categories, n-categories, and the newer w-categories, 
one may consult Kelly, Street (1974) or Street (1987). 

Categories arose originally in topology and have their first applica
tion in axiomatic homology theory, in the famous book by Eilenberg and 
Steenrod (1952). The connection with homotopy theory and simplicial 
sets is explored in Gabriel, Zisman (1967); the same source has a good 
description of categories of fractions. Two other useful introductions to 
the theory of simplicial sets are May (1967) and Lamotke (1968). Among 
general texts on topology, we mention Dold (1972), Adams (1972), and 
Massey (1991). For the history of algebraic topology, consult the com
prehensive book by Dieudonne (1989); for that of category theory see 
an article by Mac Lane (1988). 

Background in Sheaf Theory. Sheaf theory started in complex 
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analysis and was developed chiefly for its use in defining the cohomology 
of suitable spaces. Chapter II has described sheaves on spaces; we have 
omitted sheaf cohomology-but with great regrets. The short book by 
Tennison (1975) may serve as a good introduction. The earlier book by 
Swan (1964) is also short, more sophisticated, and clear, while the clas
sical text on sheaves in topology is still Godement (1958). Another com
prehensive introduction is Iverson (1986). The role of sheaves in homol
ogy (Borel-Moore homology) is described here and in Dieudonne (1989). 
J. Gray has an extensive article (1979) on the history of sheaves. Fa
mous papers by Serre (1955, 1956) pioneered the introduction of sheaves 
in algebraic geometry. 

Since much of sheaf theory (and of topos theory) is concerned with 
cohomology, many of the references in this direction require some back
ground in homological algebra. This is the title of the famous first 
book by Cart an and Eilenberg (1956). More accessible introductions are 
Hilton, Stammbach (1971) and Rotman (1979). The earlier introduction 
by Mac Lane (1963) is more encyclopedic (for its time). Grothendieck's 
fundamental paper (1957), usually cited as "Tohoku", is still well worth 
reading for its exciting discovery that abelian categories and homological 
algebra apply to sheaves. 

Algebraic Geometry. In the modern treatment of algebraic ge
ometry (since Grothendieck) sheaves and schemes playa central role. 
There is an introduction to schemes by MacDonald (1968), a leisurely 
presentation of algebraic geometry in Shafarevich (1977), and a more en
cyclopedic presentation in the text of Hartshorne (1977). Mumford's fa
mous introduction (The Red Book) has finally appeared in the Springer 
Lecture Notes. There is a more categorical description of schemes as 
given in the context of algebraic groups in Demazure, Gabriel (1970), 
and in SGA3. Grothendieck topoi arose in algebraic geometry as a way 
to define cohomology theories which would be suitable to solve the fa
mous Weil conjectures; etale cohomology and crystalline cohomology are 
two examples of such theories. The original, systematic and exhaustive 
treatment is that given in SGA4 by Grothendieck and his school, but 
many readers may well be discouraged to face the 1600 pages of this 
three-volume work, while subsequent books by Deligne and Milne man
age to thoroughly hide the categorical and topos-theoretic connections. 
Artin's early notes (1962) on Grothendieck topologies are more accessi
ble; Illusie (1972) is also a standard source. A more recent exposition 
of etale cohomology is given in the book (1988) by Freitag and Kiehl. 
Etale cohomology is the cohomology of the so-called etale topos associ
ated to a given scheme or variety. This cohomology does not function 
well for p-torsion abelian sheaves in case the prime p is also the char
acteristic of the variety; for recent attempts to deal with this case see, 
e.g., Ogus (1990). Among the Grothendieck topologies other than the 
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Zariski, etale, and crystalline ones, we mention the one recently intro
duced by Nisnevich (1989). The literature on nonabelian cohomology is 
also considerable; for the recent state of affairs as well as many references 
one may consult Breen (1990). 

General Reading on Elementary Topoi. A standard reference 
is Johnstone (1977); it contains most of the material on elementary topoi 
known at the time of its publication. The presentation is terse and re
quires some sophisticated category theory-it is not a book to read on 
the beach. Inevitably it does not include some of the more recent de
velopments, and so does not present the use of locales which now playa 
central role in topos theory. A more recent introduction to topos theory 
is the book by Barr and Wells (1985), which is chiefly written from the 
viewpoint of categories, rather than that of logic or geometry. It starts 
with a nice introduction to category theory, and an excellent descrip
tion of monads (there called triples) and their algebras. Ehresmann's 
"sketches" are also discussed, and good use is made of representation 
theorems, in the style pioneered by Freyd in his (1972), still well worth 
reading. The recent Freyd, Scedrov book (1990) contains many use
ful insights connected with topoi and with categories of relations. The 
rapid presentation is original in form and content. Older references are 
the good survey paper by Wraith (1975), and the earlier lecture notes by 
Kock and Wraith (1971), still available from Aarhus University. Only 
cognoscenti will be able to get at influential early notes-by Tierney at 
Varenna (1971), by Benabou in his seminar (1970), and the legendary 
Perugia-notes of Lawvere (1973). By all means look at the first presenta
tion of elementary topoi in Lawvere's paper at the 1970 Nice Congress. 

Among the many recent developments, we will mention literature in 
several directions in the paragraphs below. 

Topoi and Mathematical Logic. An elementary topos can be 
viewed as a model of some intuitionistic version of higher-order logic. 
This aspect is discussed in Boileau, Joyal (1981) and extensively in the 
book by Lambek and Scott (1986). The latter presentation is a little on 
the formal side, but it contains several nice applications of topos theory 
to the proof theory of intuitionistic higher-order logic. There is also a 
careful discussion of the intimate relation between cartesian closed cate
gories and the typed lambda-calculus, based on the observation that the 
adjunction between product and exponential is essentially an application 
of the lambda operator. 

A more recent book by J. L. Bell (1988) provides a systematic pre
sentation of topos theory from the point of formal logic. Thus, Bell 
introduces a version of the Mitchell-Benabou language very early, and 
then proceeds to prove the standard facts about an elementary topos 
(our Chapter IV) in a strictly formal style, with most inferencesexplic
itly exhibited, much as in the Gentzen calculus. This should be attrac-



Epilogue 601 

tive to those readers comfortable with such styles. Bell's last chapter 
discusses some of Lawvere's insights concerning the philosophy of our 
subject. 

In the direction of foundations we quote first of all Lawvere's 1964 
article "An elementary theory of the category of sets" which proposed 
a new and strictly categorical foundations for mathematics. The pro
posed axiomatics now takes the form of the axioms for a well-pointed 
topos, as presented in our Chapter VI. The relation of these axioms to 
those for (weak) Zermelo set theory was explored in Cole (1973) and 
Mitchell (1972) using trees as in our Chapter VI. Further foundational 
aspects are discussed in Mac Lane (1986) and in Mathias (1987); much 
remains to be clarified and extended. 

Cohen's (1963) use of forcing for independence proofs in set the
ory is intimately related to sheaf theory, as first observed by Law
vere and Tierney; see Tierney (1972). For the background in forcing 
there are now many texts on set theory available, of which we men
tion Jech (1978) and Kunen (1980), and, for Boolean valued models, 
Bell (1977). An earlier reference by Fitting (1969) also discusses the 
connections between forcing and Kripke semantics. Fourman's paper 
(1980) discusses the relation between sheaves and forcing, and gives a 
construction in any Grothendieck topos of (an intuitionistic version of) 
the standard set-theoretical hierarchy. This construction is also used by 
Freyd (1980) in his beautiful proof of the independence of the axiom of 
choice (presented in our Chapter VI). An exposition of Freyd's methods 
as well as a comparison to standard set-theoretical approaches appears 
in Blass, Scedrov (1989); Solovay, unpublished, has done related studies. 
M. Bunge (1974) describes the proof of the independence of the Souslin 
conjecture in topos-theoretic terms. 

In addition to the general connection with intuitionistic logic [as in 
Lambek, Scott (1986)] there are also applications of topos theory to spe
cific questions of consistency and independence in intuitionistic analysis, 
such as our discussion in Chapter VI of Brouwer's theorem on contin
uous functions. An exposition of some results in this direction can be 
obtained from Fourman, Hyland (1979); for a more elementary and ex
tensive exposition, one may consult Chapters 14 and 15 of Troelstra, 
Van Dalen (1988). The relation between topos theory and Kleene re
cursive realizability is discussed in Hyland (1982), where the "effective 
topos" is introduced. 

Another connection between topoi and logic is that between classify
ing topoi and geometric theories (our Chapter X). Early sources related 
to classifying topoi are Hakim (1972) and Tierney (1976). The mono
graph by Makkai and Reyes (1977), stimulated by work of Joyal, gives a 
presentation of the theory of classifying topoi, and the relation between 
a geometric theory and its category of models. 
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Locales and TopoL As we have noted, locales ("pointless spaces") 
play a central role in topos theory. An introduction to locales is pro
vided by Johnstone's book (1982), and by Joyal and Tierney in the first 
part of their (1984) paper, referred to as JT. But beware: what we and 
Johnstone call a frame and a locale is in JT called a locale and a space, 
respectively. The main result of JT is that every Grothendieck topos is 
equivalent to a topos Shc(X) of equivariant sheaves, as in our Appendix, 
§4, except that X is a locale rather than a topological space, and G is not 
a group acting on X, but (more generally) a groupoid in the category of 
locales, with X as locale of objects. Such a groupoid is also called a con
tinuous groupoid. This result is strengthened in Moerdijk (1988), where 
it is shown that topoi can be obtained by a calculus of fractions from 
continuous groupoids, and in Joyal, Moerdijk (1990), where it is shown 
that it suffices to consider continuous groupoids consisting of homotopy 
classes of paths (much like the fundamental groupoid of a space), and 
where cohomological aspects of this representation are considered. 

Geometric Morphisms. Special properties of geometric mor
phisms have been examined in a number of cases: (a) open geo
metric morphisms (also briefly discussed in our Chapter IX); (b) lo
cally connected (or "molecular") morphisms-generalizing those maps 
of spaces in which the fibers are locally connected; (c) atomic geomet
ric morphisms-those whose inverse image functor is a logical functor; 
(d) localic morphisms-a relative version of localic topoi; (e) local ge
ometric morphisms-generalizing the spectrum of a local ring. Useful 
references in this direction are: for (a), Johnstone (1980) and JT; for 
(b), Barr, Pare (1980) or the appendix of Moerdijk (1986); for (c), Barr, 
Diaconescu (1980) and JT; for (d), JT and Johnstone (1981); for (e), 
Johnstone, Moerdijk (1989). 

The category of Grothendieck topoi and geometric morphisms be
tween them has all small limits and colimits (in the appropriate 2-
categorical sense), but their constructions are quite involved: pullbacks 
are described in Giraud (1972) and Diaconescu (1975), while filtered 
inverse limits already occur in SGA4 and are further studied in Mo
erdijk (1986); the existence of all small colimits occurs in Moerdijk 
(1988), and, more systematically, in Makkai, Pare (1989). 

Topoi and Algebraic Topology. A topos, as a kind of general
ized space, is open to the methods of algebraic topology, for example, 
to simplicial methods. This intriguing area has not been developed sys
tematically, so we will just mention some suggestive sources. An early 
example is Artin, Mazur (1969), where the "etale" homotopy groups 
7r~t(E,p) are defined for a topos E with a base point p: Sets --+ E, using 
Verdier's "hypercovers" of E. For the topos of sheaves on a "good" space 
X, these etale homotopy groups are shown to coincide with the classical 
ones. The hypercovers used here are suitable contractible simplicial ob-



Epilogue 603 

jects in E, which Verdier used earlier to compute the cohomology of the 
topos E. A more "rigid" version of etale homotopy has been developed 
in the context of simplicial schemes by Friedlander (1982), with the aim 
of solving the Adams conjecture in classical homotopy theory by meth
ods from algebraic geometry ("in characteristic p"); in this context the 
papers by Quillen (1968) and Joshua (1987) are also relevant. 

Joyal and Wraith (1983) showed how the cohomology of a topos 
can be classified (in the sense of our Chapter VIII) by a suitable "Eilen
berg, Mac Lane" topos K( 7r, n). By simplicial methods they showed that 
this topos K( 7r, n) is cohomologically equivalent to the usual Eilenberg
Mac Lane space K (7r, n) of algebraic topology. 

The "closed model structures" of Quillen have been influential: in 
(1967) and (1969) he showed that much of homotopy theory can be 
developed on the basis of the axioms (for the "fibrations", "cofibrations" 
and "weak equivalences") of such a model structure. One reason that 
simplicial techniques apply well to topoi is that the simplicial objects in 
a Grothendieck topos have such a closed model structure, as shown by 
A. Joyal in an elegant, as yet unpublished, letter (1984) to Grothendieck. 
A related older paper is Brown (1973), which gives for simplicial objects 
in a sheaf topos a weaker "local" version of a Quillen model structure. 
These simplicial techniques apply also in the context of foliations of 
manifolds. Here the usual "quotient space", with points the leaves of 
the foliation, is usually too degenerate. A. Haefliger (1958), W. T. van 
Est (1984), and many others have proposed modified such "quotients". 
Moerdijk (1991) shows that the homotopy and cohomology groups of 
such a modified "quotient" can be realized as the corresponding groups of 
an appropriate topos of "foliation-invariant" sheaves. Homotopy theory 
of topoi is also implicit in the use of simplicial techniques in K-theory 
and in related topics; cf., e.g., Quillen (1973). Jardine's (1986) paper 
describes in more detail the methods from the letter by Joyal mentioned 
above, and applies these in the context of Suslin's computations for 
the K-groups of an algebraically closed field. Thomason (1985) uses 
simplicial techniques for topoi to compare algebraic and topological K
theory. 

Synthetic Differential Geometry (SDG). Several recent devel
opments have rigorously formulated the properties of infinitesimals-as 
they were once used informally in classical analysis and differential ge
ometry. Robinson's Non-Standard Analysis provides such a formulation 
for invertible infinitesimals. Synthetic Differential Geometry (SDG), on 
the other hand, provides a categorical approach to both nilpotent and 
invertible infinitesimals. It was initiated by Lawvere in 1967, while the 
first topos-theoretic models were constructed by Dubuc [the best ref
erence is Dubuc (1981)]). The early text by Kock (1981) presented 
both a naive (i.e., axiomatic) approach and a categorical model, while 
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Lavendhomme's book (1987) provides an extensive and elegant presen
tation from the naive, synthetic, point of view. Moerdijk, Reyes (1991) 
emphasize topos-theoretic models, as well as the relation to classical 
analysis and nonstandard analysis. 

These indications cover only a few of the possible lines of develop
ment of topos theory. Others may arise, with topoi as carriers of new 
cohomology theories, or as vehicles for the semantics of other logics, or 
as background for simplicial techniques. 
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Arrows 

----> morphism, functor, 
10 

>---+ monomorphism, 11 
-- epimorphism, 11 
~ isomorphism, 11 
"" isomorphism, 11 
...... effect of map on an 

element, 28 
{.}s singleton B ----> PB, 

166 

Logic 

A and, 48, 296ff 
V or, 48, 296ff 
=> implies, 48, 296ff 

not, negation, 48, 
296ff 

double negation, 272 
T identically true for-

mula, 529 
.1 identically false for-

mula, 529 
:3 there exist, 57 
V for all, 57 
If- forces, 303, 315 
{x I 'P(x)} 

all x with property 'P, 300 
{(Xl, ... ,Xn ) I 'P}M 

extension of 'P in model M, 
530,532 
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Operations for 
Categories 

TI 
TIi 

Jp 

ide 

adjoint (left .., right), 
17 

product, 9, 14 
pullback over A, 14, 

30 
product, 9, 14 

product over i E I, 
65 

coproduct, sum, 187 
coproduct, 17 

coproduct over i, 75 
terminal object, 14 
initial object, 17 
tensor product over 

e,355ff 
unique arrow 

B ----> 1,165 
pullback along /, 59, 

193 
left adjoint to r, 59, 

193 
right adjoint to r, 

59, 193 
pullback of subob

jects along k, 186 
left adjoint to k- 1 , 

58, 186 
right adjoint to k- 1 , 

58, 208 
category of elements 

of P, 41 
identity functor, 7 
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Sets and Order ConLex continuous left exact 
functors, 561 

0 empty set, 35 Def (M) definable objects for 
1 one-point set, 14 model M, 542ff 

{*} one-point set, 14,30 £ topos, large cate-
n intersection, 186 gory, 161 
U union, 187 £a G-objects for inter-

S partial order, 49 nal group G, 238 
1\ (internal) meet, 49, £a topos of coalgebras 

198 for comonad G, 
V (internal) join, 49, 251 

198 £j j-sheaves in £, 223 
T top element, 198 £00 filter quotient topos, 
..l bottom element, 198 260 
E member of, 299 £/U filter quotient topos, 
lp down segment, 258 261 

488 Fin category of finite 
jp up segment, 488 sets, 437 
(x,y) ordered pair, 14 fp-rings finitely presented 
< x,y > ordered pair, 298 rings, 441 

Flat category of flat func-
tors, 382ff 

Categories (Frames) category of frames, 
474 

Aa category of coalge- Hom category of geomet-
bras, 249 ric morphisms, 

AU category of general- 352 
ized elements, 397 Lex left exact functors, 

BM all right M-sets, 25 440, 442 
BG classifying topos for (Locales) category of locales, 

group G, 24, 434 474 
B(T) classifying topos for LocRing category of local 

theory T, 435 rings, 451 
B(T) sheaves on B(T), Maps(X, Y) all maps X ----t Y, 

561 491 
B(T) syntactic site for T, Mod category of models, 

555 434, 534 
C (small) category, 12 Open(£) open objects in £, 
cop opposite (dual) cate- 189 

gory, 12 (Orders) category of orders, 
C/O slice category, 12 457, 461 
C category of pre- Rex right exact functors, 

sheaves on C, 25 437 
CD functor category, 13 Ring(£) category of rings in 

Cat (£) internal categories £,439 
in £,240 Sepj category of 

ConFlat continuous flat func- separated objects, 

tors, 384, 393 223 
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Sets 

SetsCOP 

Sh(C, J) 
Shj (&) 
Sh(X) 
SimpSets 
(Spaces) 

Ssets 
S[U] 
Tor(&, G) 
Z 

category of sets, 24 

presheaves on C, 25 
J-sheaves on C, 127 
j-sheaves in &, 223 
sheaves on X, 67 
simplicial sets, 29 
category of spaces, 

452,481 
simplicial sets, 453 
object classifier, 439 
G-torsors in e, 430 
Zariski topos, 451 

Greek Letters 

D comultiplication for 
monad,247 

DB equality predicate 
B x B ---+ n, 166 

to counit of adjunction, 
19 

to counit of comonad, 
247 

'T/ unit of adjunction, 
18 

'T/ unit of monad, 176 
A exponential transpo-

sition, 299 
J.L multiplication of 

monad,176 
7r projection, 9 
T twist map, 458 
r <p -, name of <p, 165 
r global sections, 79, 

135,350 
~ constant (pre-) sheaf, 

135, 350 
~ diagonal map, 166 
~ n standard n-simplex, 

27, 454 
~ 'l n-simplex for order 

1,461 
A simplicial category, 

29,452 

A bundle of germs, 84 
II f right adjoint to p.b. 

along f, 59, 193 
Lf left adjoint to p.b. 

along f, 59, 193 
n subobject classifier, 

32 
nj subobject classifier 

for &j, 224 

Arabic Letters, 
lowercase 

a associated sheaf, 
128, 227 

b bottom element, 457 
cHa complete Heyting al-

gebra, 114 
char characteristic map, 

165 
clp covering lifting 

property, 412, 509 
e evaluation, 20 
ev evaluation, 20, 45 
f geometric 

morphism, 348 
r its inverse image, 

348 
f. its direct image, 348 
f! left adjoint of r, 

360 
id identity, 10 
inf infimum (g.l.b.), 49 
j Lawvere-Tierney 

topology, 219 
j nucleus (on a lo-

cale),485 
lim colimit, 22 

lim limit, 21 

n.n.o. natural numbers ob-
ject, 269 

pt(X) points of locale X, 
478 

sup supremum (l.u.b.), 
49 
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t top element, 457 O(X) open subsets of 

true: 1 ---t n universal mono, 32, space X, 65 
163 O(X) frame of locale X, 

trueB : B ---t n 165 474 

Y Yoneda embedding, p+ Grothendieck plus 
26 construction, 129 

PB power object of B, 
162 

Arabic Letters, Q rational numbers 

Capital object, 320 
R real numbers object, 

A closure of subobject 321 
A,220 (R) sieve generated by 

AC Axiom of Choice, R,112 
275 RZC restricted Zermelo 

Aut(N) automorphisms of with Choice, 332 
N,155 8 simplicial set, 453 

BG classifying space of 181 its realization, 456 
G,425 1811 its realization, for I, 

CH Continuum Hypoth- 462 
esis, 267 Sky skyscraper sheaf, 93 

ClSube(E) closed sub objects of Stone (B) Stone space of B, 
E,225 517 

ClSubpr closed subpre- S(X) singular complex, 
sheaves, 509 456 

Epi Object of epis, 286 Sub lattice of subobjects, 
(G,E,8) comonad, 247 11 
Hom(A,B) set of arrows SubPr subpresheaves, 509 

A ---t B, 12 SubSh subs heaves , 509 
I ideal, 116 (T, T/, J-L) monad,176 
I order in topos, 457 Ua universal G-torsor, 
Ix isotropy subgroup, 430 

62 UT universal T-model, 
lAC internal AC, 275 568 
J Grothendieck topol- Xj sublocale for nucleus 

ogy, 110 j,485 
K basis for such, 111 X(M) interpretation 
Loce localic reflection, of sort X in model 

491 M, 529, 532 
Loc(T) locale for space T, Z object of integers, 

475 320 
Match(R,P) matching families, ZF Zermelo-Fraenkel 

129 axioms, 267, 279 
Moh reverse Hom, 359 ZFC idem plus choice, 
N natural numbers ob- 279 

ject, 268 
Nat natural transforma-

tions, 42 



Index 

abelian group 
object, 95 
sheaf of -, 95 

action 
of an internal category, 

243, 354 
of a group, 24, 238, 361 

adjoint functor, 17 
left-, 17 
on the right, 181 
right-, 17 
to pullback, 58, 193 
unit an iso, 369 
counit an iso, 375 

affine 
map, 452 
simplex, 452 
space, 119 

algebra (for monad), 177 
finitely presented-, 119 
free-, 177, 249 

alphabetic variant, 543 
amalgamation, 121, 123 
analytic 

complex-manifold, 78 
continuation, 83 

ancestor (in a tree), 336 
antisymmetry (internal), 199 
arrow, 10 

category, 27 
conditions (for a topology), 110 
universal-, 18 

Artin glueing, 265 Ex. 9 
associated 

bundle, 82 
sheaf, 87, 128, 133, 227 

atlas, 74 
atom 

of a Boolean Algebra, 524 
Ex. 3 
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atomic 
Boolean algebra, 150 
formulas, 529 
topology, 115, 126, 152, 469 

atomless Boolean algebra, 379 
axiom 

of choice, 275, 291ff, 332, 
344 Ex. 5 

of infinity, 268, 332 
of a theory, 531 

Baire space, 345 Ex. 12 
balanced, 167 
Barr's theorem, 515 
barycentric coordinates, 454 
base, 26 

change of-, 59, 193, 349 
space, 79 

basis (for Grothendieck top.), 111 
Beck's theorem, 179, 372 
Beck-Chevalley Cond'n, 159 Ex. 15, 

174, 205, 494 
external-, 174 
internal-, 174, 206 

Benabou (language), 296ff 
Beth, E.W., 298 
Boolean 

algebra, 48, 50, 515, 592 
ring, 516 
topos, 270, 311 
valued models, 283, 593 

bottom element, 198 
bound variable, 529 
boundary, 454 
Bounded Zermelo, 332 
Brouwerian lattice, 50 
Brouwer's theorem, 324ff 
bundle, 79 

associated-, 82 
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etale-, 88 
G- -, 34, 81, 423 
induced-, 30 
vector-,80 

C-action, 243 
C-object, 243, 244 
C-module, 354 
canonical 

morphism, 170 
topology, 126, 490 

Cantor, 277 
space, 470 Ex.10, 525 Ex.6, 

573 Ex.7 
cardinal 

inequalities, 283 
number, 277 

cartesian closed, 20, 46, 167 
category, 10 

2-category of topoi, 352 
cartesian closed-, 20, 46, 167, 600 
comma-, 12, 26, 28 
discrete-, 27 
dual-, 12 
internal-, 240 
locally small-, 12 
of elements, 41, 386 
of fractions, 598, 602 
of generalized elements, 397 
object, 240 
opposite-, 12, 242 
simplicial-, 452 
slice-, 12, 26 
small-, 12 
syntactic-, 555ff 
well-powered-, 32 

chain, 453 
condition, 288 

change of base, 59, 193, 349 
chart, 74 
characteristic 

function, 31 
map, 163 

choice sequences, 325 
classifying 

bundle, 34 
map, 163 
space, 34, 422ff 

classifying topos, 434ff 

Index 

for decidable objects, 470 Ex. 8,9, 
572 Ex. 6 

for G-torsors, 434 
for geometric theory, 561ff 
for objects, 436ff 
for orders, 457ff 
for rings, 439, 447 
simplicial sets as a-, 457ff 
for T-models, 435, 561ff 

closed 
ideal, 592 
sieve, 140 
sublocale, 488 
subobjects, 221, 225 

closure 
downward-, 335 
of a sieve, 141 
of a subobject, 221 
operator, 220, 221 
upward-, 336 

coalgebra, 249 
cofree-, 251 

coarsest topology, 113 
cocomplete, 40, 577 
cocone, 22 
cocontinuous functor, 412 
codomain, 10 
coequalizer, 17 
Cohen, P., 277ff 

poset, 278 
topos, 278, 318 

coherent topos, 521 
cohomology, 422, 599, 603 
collate, 64 
collatable, 65, 104 Ex. 8 
collating, 64 
colimit, 22 

as coequalizer, 355 
filtered, 96 
internal, 256 Ex. 11 
of Grothendieck topoi, 

602 
of sheaves, 135 

comma category, 12, 26, 28 
comonad, 218, 247 

and surjections, 372 
comparison 

functor, 178 
lemma, 155, 590 
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complete 
Heyting algebra, 114, 146, 475, 

497 
lattice, 51 
poset, 56 

complement, 48, 50 
complemented subobject, 468 Ex. 1 
complex 

affine space, 116 
affine variety, 116 

component, 13 
composable pair (internal), 241 
composition, 10 

internal-, 170, 241 
of arrows, 10 
of functors, 13 

comprehension axiom, 332, 340 
restricted-, 332 

comultiplication, 247 
condition, 278 
cone, 21, 385 
constructive proof, 302, 304 
continuity of all functions, 325ff 
continuous 

functions, 324ff 
functor, 384, 393 
G-sets, 26, 150 

constructible set, 279 
continuum hypothesis, 277ff 
contravariant functor, 13, 26 
contravariant hom-functor, 26 
coproduct, 17 

disjoint-, 574 
inclusions, 17 
of topoi, 419 Ex. 13 
stable-, 574 

coreflective subcategory, 90 
coring, 441 
cotangent vector, 76 
cotriple, 247 
counit, 19, 247 
covariant functor, 13 
covariant hom-functor, 13 
cover 

an arrow, 110 
empty-, 149 

covering, 82, 108 
family, 109ff 
lifting property, 412, 509 

map, 82 
regular-, 107 
sieve, 70, 110 
system, 524 Ex. 5 
transformation, 107 
universal-, 82 

covers (in a tree), 336 
countable chain condition, 288 
creates limits, 72 
crible (=sieve), 37 
cross-section, 60, 78, 79 
cumulative hierarchy, 279, 292 
cut and paste, 457 
cycles, 454 

decidable, 470 Ex. 8, 572 Ex. 6 
Dedekind 

cut, 321 
reals, 318ff, 327 

definable 
arrow, 543 
object, 541 
subobject, 543 

degeneracy, 452 
Deligne's theorem, 523 
de Morgan laws, 50 
dense 

below, 115, 592 
subobject, 221 

dependent choice, 345 Ex. 12 
derivation rules, 560 
Diaconescu, R., 275 

cover, 513 
lAC = Boolean-, 346 Ex. 16 

diagonal 
argument, 277 
functor, 19, 20 
map, 166 

diagram, 20 
internal-, 243, 392 
of a functor, 386 

differential form, 78 
dinatural, 45, 164, 174 
direct 

image, 68, 99, 171, 348 
discrete category, 27 
disjoint 

coproduct, 574 
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sum, 17 
union, 17, 195 

distributive 
lattice, 49 
law, 49 
law, infinite, 114 

domain, 10 
of definition, 298 

down segment, 258, 488 
downward closure, 335, 488 
dual category, 12 
duality, 482, 517 

effective family, 553 
effective topos, 601 
Eilenberg-MacLane space, 422, 454 
Eilenberg-Moore Theorem, 248, 249 
Eilenberg-Zilber Theorem, 454 
elementary topos, 48, 161ff, 593 
elements (of a presheaf), 41 

category of-, 41, 386 
generalized-, 237, 397 

embedding 
of locales, 483 
of topoi, 366 

enough 
points, 480, 523 
projectives, 216 Ex. 15 

enriched hom, 362 
epi, 11 
epi-mono factorization, 40, 185 
epimorphic family, 382, 393ff 
epimorphism, 11 

object of-, 284ff 
of sheaves, 92, 143 

equality 
predicate, 166, 310 

equalizer, 16 
as a pullback, 30 

equivalence 
of categories, 14 
of G-bundles, 424 
relation, 575 

equivalent ( monomorphism), 11 
equivariant sheaf, 596, 602 
erasing identities, 545 
essential, 360 
etale, 88, 89 

G-space, 596 
map of locales, 526 Ex. 9 

evaluation, 20, 45 
map, 45,168 

exact fork, 576 
stably-, 576 

excluded middle, 302 
exponentiable object, 20 
exponential, 20, 45, 167 

for coalgebras, 251 
for G-objects, 239 
for presheaves, 46 
for sheaves, 97, 136, 224 
from power object, 167 

extension 
of a field, 106 
of predicate, 165 

extensionality, 165, 332, 337 
external, 200, 235 

axiom of choice, 291ff 
composition, 170 

face map, 452 
factorization (epi-mono), 185 

for locales, 486ff 
for topoi, 373, 376 

factors through sheaves, 370 
faisceau, 64 
faithful, 13 
fiber, 79 

Index 

fibered product, 14, 15, 29 
fibration (of categories), 44, 598 
field 

splitting-, 108 
filter, 257, 516 

completely prime-, 524 Ex. 4 
maximal-, 516 
principal-, 257 
proper-, 344 Ex. 4 
quotient, 256ff 

filtered 
category, 385 
colimit, 96, 390 
limit, 385 

filtering 
category, 385 
equals fiat, 386, 399 
functor, 386, 394, 395 



Index 

final object, 194 
finer topology, 113, 263 Ex. 2 
finite 

limit, 30 
states of knowledge, 283 

finitely presented 
algebra, 119 
ring, 440 

first order theories, 529ff 
flat, 381 

equals filtering, 386, 399 
equals left exact, 390 
functor, 381, 386, 392 
module, 381 

floppy (tree), 336 
forces, 303 
forcing, 115, 278, 304ff, 315ff 

condition, 278 
notion of-, 278 
relation, 304, 316 

forgetful functor, 31, 177 
fork,576 
formula (of language), 299 

geometric-, 538 
foundation (axiom of), 332, 340 
foundations, 331ff, 601 
Fourman, M., 279 
fp algebra, 119 
fp ring, 440 
frame, 473 
free 

category, 437 
G-action, 81, 422 
G-object, 239 
T -algebra, 177, 249 
variable, 531 

freely generated (for rings), 440 
Freyd, P., 291 
Frobenius identity, 204, 502 
full (functor), 13 
functor, 12 

adjoint-, 17 
category, 13 
comparison-, 178 
contravariant-, 13, 26 
covariant-, 13 
faithful-, 13 
flat-, 381, 386, 392 
forgetful-, 31, 177 

full-, 13 
identity-, 13 
internal-, 241 
opposite-, 180 
representable-, 26, 33 

G-action, 238 
G-bundle, 34, 81, 423 

principal-, 81, 423 
G-map, 238 
G-object, 238, 361ff 
G-set, 24, 26, 150ff 
G-space, 81 
G-torsor, 426, 429 

universal-, 430 
Galois group, 106ff 
generalized element, 162, 237 

over U, 397 
generate 

a category, 139, 275, 576 
a sieve, 112 
a topology, 112 

generators 
(category), 139, 576 
(sieve), 112 

generic 
element, 305 
set, 283 
T-model, 435 

Gentzen, G., 560, 600 
geometric formula, 538 
geometric morphism, 348 

direct image of-, 348 
essential-, 360 
inverse image of-, 348 
open-, 497ff, 536, 537, 602 
surjective-, 366 

geometric realization, 456, 462 
geometric theory, 539 

classifying topos for-, 561ff 
germ, 83 
Giraud Theorem, 577 
global 

element, 164, 236 
section, 47 
sections functor, 47, 135, 

350 
truth values, 274 
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Godel, K., 279 
completeness, 297, 523 

Godement resolution, 515 
graph (of arrow), 214, 227, 542 
Grassmann manifold, 34, 423 
gros topos, 325, 416 
Grothendieck 

construction, 44, 386 
topology, 110, 222, 233 
topology (arrow form), 110 
topos, 127, 143 

group 
action, 24,150, 238, 361 
internal-, 237 
object, 237 
proper action by-, 158 Ex. 10 

groupoid, 343 Ex. 2, 602 

Heyting algebra, 48, 50ff, 114 
complete-, 114, 146, 475, 497 
internal-, 199ff 
of subobjects, 146, 201 

Hilbert Nullstellensatz, 116 
holds (in E), 301 
holomorphic function, 78, 82 
Hom-functor, 13, 32 
Hom-set, 12 
hom-tensor adjunction, 357ff, 580 
homology groups, 454 
homomorphism 

of Heyting algebras (internal), 200 
of lattices (internal), 200 
of interpretations, 532, 534 
of models, 532, 534 

hypersurface, 117 

ideal, 116 
closed-, 592 
in a poset, 592 
maximal-, 117, 344 Ex. 4, 

Ex. 6 
prime-, 117 
principal, 592 
radical-, 117 

identity morphism, 10 
image, 184 

direct-, 68, 99, 171, 348 
inverse-, 33, 99, 147, 348 
of sublocale, 505 

Index 

implication, 48, 50, 114, 146, 199 
inclusion in coproduct, 17 
incompatible conditions, 290 
indeterminates, 441 
indexed 

family, 28 
set, 28 

indirect proof, 302 
induction, 269 
inference (rules of-), 296 
infima, 145 
infinite object, 470 Ex. 9 
infinity (axiom of), 268, 332, 341 
initial object, 17 

strict-, 194 
injective object, 210 
integers 

object of-, 321 
internal, 201, 235ff 

adjoint, 206 
axiom of choice, 275, 

291ff, 312 
category, 240 
colimit, 265 Ex. 11 
composition, 170 
diagram, 243, 392 
functor, 241 
group, 237 
hom, 98, 170 
lattice, 198 
meet, 189 
partial order, 199 
presheaf, 244 

interpretation 
of a term, 298 
of language, 529, 532 

intersection, 48, 186 
intuitionism, 48, 55, 318 
inverse (of an arrow), 11 
inverse image, 33, 101, 147, 348 
irreducible 

subset, 477 
variety, 11 7 

isomorphism, 11 
isotropy subgroup, 62 Ex. 6, 151, 
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join, 56, 198 
jointly surjective, 523 
Joyal, A. (semantics), 302, 318 

Kan extension, 380, 417 Ex. 3 
kernel,476 
kernel pair, 30, 197, 229, 576 
killing points, 526 Ex. 8 
Kripke, S., 298, 318 
Kripke-Joyal semantics, 302££ 
Kronecker delta, 166 

lambda calculus, 299, 600 
language 

first-order-, 529 
Mitchell-Benabou-, 296££ 

lattice, 49 
internal-, 198 
object, 198 

Lawvere-Tierney 
topology, 219££ 

left adjoint, 17 
internal-, 206 

limit, 21 
create-, 72, 178 
of Grothendieck topoi, 602 
of sheaves, 128 
pointwise-, 22 

limiting cone, 21 
linear order, 457££ 
local 

character (of forcing), 304, 316 
coordinates, 74 
geometric morphism, 602 
homeomorphism, 88, 526 Ex. 9 
ring, 118, 447, 528, 540 
trivialization, 423 

locale, 474, 602 
presentation of-, 525 Ex. 5 

localic 
reflection, 491 
topos, 472££, 490 

locally 
closed,506 
constant functions, 319 
constant sheaf, 104 Ex. 5 
small, 12 

surjective, 143 
logic, 267££ 

first-order-, 296, 529££ 
intuitionistic-, 268 

logical morphism, 170, 193 
manifold, 73££ 
smooth-, 75 

maps 
of locales, 491 
of sheaves, 127 

matching family, 121, 122 
maximal 

filter, 516 
ideal, 117, 344 Ex. 4, Ex. 6 
sieve, 38 

meet, 56, 198 
internal-, 189 
of subs heaves, 145 

membership 
predicate, 165 
relation, 171, 310 

minimal model, 570 
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Mitchell, W., 343 
Mitchell-Benabou language, 296££, 

600 
model 

of a theory, 531, 534 
universal-, 435, 568££ 

module, 354 
monad,176 

from adjunction, 177 
monadic functor, 178 
monic,30 

universal-, 32 
mono, 11 
monoid, 25, 27, 248 
monomorphism, 11 

in terms of p.b., 16 
monotonic, 452 
monotonicity (offorcing), 304, 316 
de Morgan laws, 50 
morphism, 10 

canonical, 170 
geometric-, 348 
logical-, 170, 193 
of C-objects, 243 
of frames, 473 
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of orders, 460 
of sheaves, 67, 92, 127 
of sites, 409 

name, 165 
natural 

isomorphism, 13 
numbers object, 268 
transformation, 13 

negation, 52 
double-, 272 

nerve 
of a category, 453 

node (of a tree), 336 
non-degenerate topos, 275 
notion of forcing, 278 
nucleus, 485 
null set, 332, 337 
Nullstellensatz, 116 

object, 10 
classifier, 436ff 

open 
cover, 65, 113 
cover topology, 113 
geometric morphism, 497ff, 536, 

537, 602 
map of locales, 502ff 
map of spaces, 493 
object, 189 
sublocale, 488 

opposite 
category, 12, 242 
functor, 180 

order (in a topos), 457ff 
orbit, 81 
orthogonal group, 34 

pair (axiom), 332, 338 
partial order, 49 

internal-, 199 
pasting, 456 

lemma, 16 
paths to truth, 39, 99 
perfect set, 526 Ex. 8 
petit topos, 416 
plus construction, 129, 227 

point 
of a locale, 475, 478 
of an object, 333 
of a topos, 378ff, 523 
of a tree, 336 

pointwise (limit), 22, 30 
Pontrjagin duality, 482 
poset, 49, 278ff 

complete, 56 
power object, 162 

as aHa, 201 
in slice, 190 

power set, 277, 332, 339 
predicate, 165 

calculus, 302 
membership-, 165 
of equality, 166 

preserves 
colimits, 22 
covers, 411, 509 
exponentials, 171 
limits, 22, 170 

presheaf, 25, 66, 121 
constant-, 48, 104 Ex. 7 
internal-, 244 
separated-, 67, 129 

prime 
element, 476 
ideal, 117 
proper-, 476 

principal 
action, 81, 424 
filter, 257 
G-bundle, 81, 423 
ideal,592 
sieve, 70, 220 

product, 14 
cartesian-, 14 
fibered-, 14, 15, 29 
of coalgebras, 251 

Index 

of topoi, 265 Ex. 8, 419 Ex. 14, 
15 

projection, 14 
formula, 204, 502 
functor, 386 
internal-formula, 206 
of product, 14 
of pullback, 15 

projective object, 216 Ex. 15 
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internally-, 216 Ex. 16, 344 Ex. 5 
proof, constructive, 302 
proper 

action, 103 Ex. 3, 158 Ex. 10 
filter, 344 Ex. 4 

property (in a topos), 165 
propositional 

calculus, 48ff 
connectives, 48, 296 
language, 572 Ex. 7 

pseudo-complement, 54 
pullback, 14, 29 
pushout, 17, 40 

quantifiers, 57ff, 296, 300 
restricted-, 332 

quasi-inverse, 14 
quotients, 577 

ring of-, 119 

radical (of an ideal), 116 
rational function, 117 
rationals, object of-, 320 
real number (in a topos), 318ff 
recursion, 269 
reduced product (of topoi), 

265 Ex. 10 
reductio ad absurdum, 302 
refine, 112, 412 
reflect 

isomorphisms, 179 
order, 371 

reflective subcategory, 90 
reflexive pair, 179, 373 
representable 

functor, 26, 33 
presheaf, 26 

restricted Zermelo, 332 
restriction, 25, 65 
Riemann surface, 82 
right adjoint, 17 
right C-objects, 244 
right ideal (in a monoid), 35 
rigid (tree), 335 
ring, 439 

fp-,440 
object, 439 

of fractions, 119 
polynomial-, 441 

ringed space, 78, 97 
root (of a tree), 335 

schemes, 599 
schizophrenic object, 482 
Scott, D., 283 
section, 60, 78, 79, 88 
semilattice (internal), 188 
semantics, 296ff 

Kripke-Joyal-, 302ff 
sheaf-, 315ff 

separated 
object, 223 
presheaf, 67, 129 

sets 
large-, 12 
small-, 12 
through time, 25 
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sheaf, 64, 66, 122, 223 
associated-, 87, 128, 133, 227 
condition, 122 
constant-, 135, 104 Ex. 7, 319 
equivariant-, 596, 602 
for a basis, 69 
locally constant-, 104 Ex. 5 
of cross-sections, 79, 526 Ex. 10 
of germs, 94 
of groups, 95 
of modules, 97 
semantics, 315ff 
structure-, 75, 125 

sheafification, 87, 227 
Sierpinski space, 468 Ex. 2, 481, 572 

Ex.5 
sieve, 37, 70, 109 

closed-, 140 
covering-, 70, 110 
maximal-, 38 
principal-, 70, 220 

simplex, 27,452 
singular-, 27, 452 
standard-, 452, 454, 461 

simplicial 
category, 452 
object, 26 
set, 27, 452ff 
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singleton arrow, 166 
singular 

cohomology, 422 
complex, 454, 456, 462 
homology, 454 
simplex, 27 

site, 110, 112 
construction of a-, 580 
for continuous G-sets, 152 
of finite type, 521 
syntactic-, 555 

sketches, 600 
skyscraper sheaf, 93 
slice category, 12, 26 

of a topos, 190ff 
small 

category, 12 
set, 12 

smooth 
function, 75 
manifold, 75 
map, 76 

sober space, 477 
Solovay, R.M., 283 
sort, 297, 529 
soundness theorem, 561 
source 

of a term, 298 
Souslin property, 288 
space 

affine-, 119 
ringed-,78 
sober-, 477 

spatial locale, 480 
split, 333 

coequalizer, 63 Ex. 11 
fork, 182 

stability axiom, 110, 112 
stable (under p. b.), 61 

coproduct, 574 
stalk, 84 

functor, 92, 93 
map, 92 

standard simplex, 452, 454, 461 
Steenrod algebra, 423 
Stiefel manifold, 34, 423 
Stone 

duality, 50, 181, 482, 517 
space, 517 

string (of arrows), 513 
structure sheaf, 75, 117, 125 
subfunctor, 36 
sublocale, 485 

closed-, 488 
open-, 488 

subobject, 11 
subobject classifier, 32, 162 

as Ha, 201 
for coalgebras, 254 
for G-objects, 240 
for M-sets, 35 
for presheaves, 38 
for sheaves, 98, 142, 225ff 

subsheaf, 67, 142, 145 
subspace topology, 484 
supremum, 145 
surjection 

of topoi, 366 
of locales, 483 

syntactic 
category, 555ff 
site, 555ff 

tangent 
bundle, 77 
vector, 76 

tensor-hom adjunction, 357ff 
tensor product, 356ff 

of group actions, 361 
of rings, 107 

term (of a sort), 529 
terms (of a language), 298 
terminal object, 14, 30 
tertium non datur, 5, 55 
theory 

algebraic-, 540 
geometric-, 539 
in a language, 531 

time till truth, 36 
top element, 198 
topoi,48 
topology, 219 

""''''''-, 115, 272 
atomic-, 115, 126, 152, 469 
canonical-, 126, 490 
coarsest-, 113 
dense-, 115, 272, 592 

Index 
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double negation-, 272 
finer-, 113, 263 Ex. 2 
Grothendieck-, 110, 222, 233 
open cover-, 113 
subcanonical-, 126, 554 
sup-, 115 
trivial-, 113 
Lawvere-Tierney-, 219ff 
Zariski-, 117 

topos, 48, 161 
Boolean-, 270, 311 
Cohen-, 278, 318 
coherent-, 521 
gros-, 325ff, 416 
Grothendieck-, 127 
localic-, 472ff, 490 
non-degenerate-, 275 
of coalgebras, 251 
over sets, 351, 392 
petit-, 416 
Zariski-, 447ff 

torsion product, 381 
torsor, 425ff 
transformation 

natural-, 13 
covering-, 107 

transitive G-action, 81, 424 
transitive set, 335 
transitivity 

axiom (for topology), 110, 112 
weak- -, 156 Ex. 2 

transpose, 163, 299 
tree, 335ff 
triangular identities, 19 
triple, 176 
tripleability theorem, 372 
true (arrow), 32, 163 
true in a topos, 301 
truth,301 

values, 31, 32 
twist map, 198, 458, 594 
two-valued topos, 256, 274 
types (of a language), 298, 529 

ultra-product (of topoi) , 265 Ex. 10 
union, 48, 187, 332, 338 
unit (of adjunction), 18 

universal, 14 
arrow, 18 
cohomology class, 422 
cone, 21 
G-bundle, 425 
G-torsor, 430 
model, 435, 568ff 
monic,32 
object, 439 
order, 465 
ring, 447 
validity, 301 
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universe (Grothendieck-), 12, 560 
upward closure, 336, 488 

validity, 301, 531, 534 
variables, 296 
variety 

affine-, 116 
vector 

bundle, 80 
field, 77 

vertex 
of a cone, 385 
of a simplex, 452ff 
sets, 460 

well-founded, 335 
well-powered, 32 
well-pointed topos, 236, 275, 333ff 
Wraith, G., 265 Ex. 9 

Yoneda 
embedding, 26, 109 
lemma, 26 

Zariski 
site, 116ff 
topology, 11 7 
topos, 447ff 

Zermelo-Fraenkel axioms, 268, 279, 
331 

Zorn's lemma, 276 
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Kostrikin: Introduction to Algebra 
Luecking/Rubel: Complex Analysis: A Functional Analysis Approach 
MacLane/Moerdijk: Sheaves in Geometry and Logic 
Marcus: Number Fields 
McCarthy: Introduction to Arithmetical Functions 
Meyer: Essential Mathematics for Applied Fields 
Mines/Richman/Ruitenburg: A Course in Constructive Algebra 
Moise: Introductory Problems Course in Analysis and Topology 
Morris: Introduction to Game Theory 
Poizat: A Course In Model Theory: An Introduction to Contemporary Mathematical Logic 
Polster: A Geometrical Picture Book 
PorterlWoods: Extensions and Absolutes of Hausdorff Spaces 
RadjavilRosenthal: Simultaneous Triangularization 
Ramsay/Richtmyer: Introduction to Hyperbolic Geometry 
Reisel: Elementary Theory of Metric Spaces 
Ribenboim: Classical Theory of Algebraic Numbers 
Rickart: Natural Function Algebras 
Rotman: Galois Theory 
Rubel/Colliander: Entire and Meromorphic Functions 
Sagan: Space-Filling Curves 
Samelson: Notes on Lie Algebras 
Schiff: Normal Families 
Shapiro: Composition Operators and Classical Function Theory 
Simon net: Measures and Probability 
Smith: Power Series From a Computational Point of View 
Smith/KahanplHi/KekaIainen/Traves: An Invitation to Algebraic Geometry 
Smoryski: Self-Reference and Modal Logic 
Stillwell: Geometry of Surfaces 
Stroock: An Introduction to the Theory of Large Deviations 
Sunder: An Invitation to von Neumann Algebras 
Tondeur: Foliations on Riemannian Manifolds 
Wong: Weyl Transforms 
Zhang: Matrix Theory: Basic Results and Techniques 
Zong: Sphere Packings 
Zong: Strange Phenomena in Convex and Discrete Geometry 
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