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Introduction 

A conference on algebraic K-theory was held at the Battelle 

Seattle Research Center from August 28 to September 8, 1972, with the joint 

support of the National Science Foundation and the Battelle Memorial Institute, 

The present volume consists mainly of papers presented at, or stimulated by, 

that conference, plus some closely related papers by mathematicians who did 

not attend the conference but who have kindly consented to publish their work 

here. In addition there are several papers devoted to surveys of subjects 

treated at the conference, and to the formulation of open research problems. 

It was our intention thus to present a reasonably comprehensive documentation 

of the current research in algebraic K-theory, and, if possible, to give this 

research a greater coherence than it has heretofore enjoyed. It was particularly 

grati~fying to see the latter aim largely achieved already in the course of 

preparing these Proceedings. 

Algebraic K-theory has two quite different historical roots both 

in geometry, The first is concerned with certain topological obstruction 

groups, like the Whitehead groups, and the L-groups of surgery theory. Their 

computation, which is in principle an algebraic problem about group rings, 

is one of the original missions of algebraic K-theory. It remains a rich source 

of new problems and ideas, and an excellent proving ground for new techniques. 

The second historical source of algebraic K-theory, from which the 

subject draws its name, is Grothendieck's proof of the Riemann-Roch theorem, 

and the topological K-theory of Atiyah-Hirzebruch, which has the same point 

of departure, Starting from the analogy between projective modules and vector 

bundles one is led to seek a K-theory for rings analogous to that of 

Atiyah-Hirzebruch for spaces. This enterprise made, at first, only very 

limited progress. In the few years preceding this conference, however, several 

interesting definitions of higher K-groups were proposed; the relations 

between them were far from clear. 

Meanwhile the detailed study of K1 and K2 had revealed some beautiful 

arithmetic phenomena within the classical groups. This contact with algebraic 

number theory had become a major impulse in the subject as well as a theme for 
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conjectures about the significance of the higher K-groups. 

More recently there have appeared definitions and potential 

applications of higher K-theory in the framework of algebraic geometry. 

As this brief account suggests, a large number of mathematicians, 

with quite different motivations and technical backgrounds, had become 

interested in aspects of algebraic K-theory. It was not altogether apparent 

whether the assembling of these efforts under one rubric was litte more than 

an accident of nomenclature. In any case it seemed desireable to gather these 

mathematicians, some of whom had no other occasion for serious technical 

contact, in a congenial and relaxed setting, and to leave much of what would 

ensu.e to mathematical and human chemistry. A consensus of those who were 

present is that the experiment was enormously successful. Testimony to this 

is the fact that many of the important new results in these volumes were proved 

in the few months following the conference, growing out of collaborative 

efforts and discussions begun there. 

One major conclusion of this research is that all of the higher 

K-theories which give the "classical" Kn 1 s for n s; 2 coincide. Thus, in 

some sense, the subject of higher algebraic K-theory "exists'~ an assertion 

some had begun to depair of making. Moreover one now has, thanks largely to 

the extraordinary work of Quillen, some very effective tools for calculating 

higher K-groups in interesting cases. 

The papers that follow are somewhat loosely organized under the 

headings: I. Higher K-theories; I I. "Classical" algebraic K-theory, and 

connections with arithmetic; and Ill. Hermitian K-theories and geometric 

applications. Certain papers, as their titles indicate, contain collections 

of research problems. The reader should be warned, however, that because of 

the vigorous activity ensu.-'ing the conference, some of the research problems 

posed below are in fact resolved elsewhere in these volumes. The editional 

effort necessary to eliminate such instances would have cost an excessive 

delay in publication. 

I am extremely grateful to the following participants who contributed 



V 

to the preparation of the survey and research problem articles: 

S, Bloch, J. Coates, Keith Dennis, S. Gersten, M. Karoubi, M.P. Murthy, 

Ted Petrie, L. Roberts, J. Shaneson, M. Stein, and R. Swan. 

On behalf of the participants I express our thanks to the National 

Science Foundation and the Battelle Memorial Institute for their generous 

financial support. For the splendid facilities and setting of the Battelle 

Seattle Research Center, and for the efficient and considerate services of 

its staff, the conference participants were uniformly enthusiastic in their 

praise and gratitude. 

Finally, I wish to thank Kate March of Columbia University 
for her invaluable secretarial and administrative assistance 
in organizing the conference, and Robert Martin of Columbia 
University for his aid in editing these Proceedings. 

H. Bass 

Paris, April, 1973 
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A. THE FUNCTORS K0 AND K1 
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Some problems in "classical" 

algebraic K-theory 

Hyman Bass 

By "classical" we refer to questions about projective 

modules and their automorphism groups, and, in particular, 

about K
0 

and K
1

• In many instances the questions can naturally 

be posed for Kn for all n > 0.* When this was the case I have 

not hesitated t0 do so, with the result that the discussion below 

inevitably overlaps with the problem sections on K
2 

(Dennis-

Stein [D-S]) and on higher K-theory (Gersten [Ger l]). 

The problems are integrated into the text, which furnishes 

some relevant background. They are designated with Roman 

numerals, {I), (II), •• • , (XXV). 

I am greatly indebted to several people for their 

comments and criticisms in drafting this list of problems. 

I wish particularly to thank M. Pavaman Murthy, Leslie 

Roberts, Tony Geramita, and David Eisenbud. 

*Unless the contrary is indicated Kn here will always denote 

the functors Kn of Quillen [Q2]. 

3 



Contents 

Serre's problem 

§2 Homotopy properties of the 
functors Kn 

(2 .1) 

(2.2) 

Homotopy functors 

(Laurent) K -regular rings n 

§3 Free algebras and free products 

(3.1} Free algebras 

(3.2) Free products 

§4 Projective A[t]-modules 

(4.1) Extended A[t]-modules 

(4.2) The Horrocks criterion 

§5 Stability and indecomposable 
projective modules 

(5.1) Terminology 

( 5.2) The K
0
-stability thw rem 

(5.3) Indecomposable projective 
modules 

(5.4) Improved stability for 
polynomial rings 

(5.5) The use of bilinear forms 

(5.6) Lissner-Moore extensions 

§6 Kn-stability 

(6.1) Formulation of the problem 

(6.2) A comparison with topological 
stability 

4 

Problems 
(I) d ,r 

(II) n 

2 

(Ill), (IV), (V) , (VI) 
n 

(VII) 
n 

(VIII) 
n 

(IX) 

(X) 

(XI) d 

(XII) d' (XIII) 

(XIV) , (XV) 
n n 

(I I) 
3,r 

(XVI) . 
~ 



§7 Efficient generation of noetherian 
modules and ideals 

(7.1) Basic elements and stability 
theorems 

(7.2) Conjectural improvements 
for polynomial rings 

(7.3) Complete intersections 
in affine 3-space 

§8 Symmetric and affine algebras 

(8.1) cancellation for affine 
varieties 

(8.2) Invariance of coefficient 
algebras in polynomial 
algebras 

(8.3) Symmetric algebras 

§9 Finiteness questions 

(9.1) Rings of finite type 

(9.2) A PID with SK
1 
~ 0 

(9.3) Rational varieties 

5 

Problems 

(XVII) , (XVIII) 
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§1. Serre's problem 

Efforts to answer the following question of Serre, posed 

in his 1955 paper FAC ([Ser 1], p. 243) have generated many 

of the theorems and problems in algebraic K-theory. Because 

of its pedigree, and because much that follows consists of 

variations on the theme of Serre's problem, it seems a good 

place to begin. 

(I) Serre's problem (on projective modules over polynomial 

rings). k[t
1

, .•. ,td], a polynomial ring in d 

variables over a field k. ~ P be a finitely generated 

projective A-module of rank r. Is P free? I.e. is 

P isomorphic to Ar? 

The moral impulse behind this question arises from the 

interpretation of P as (the module of sections of) a vector 

bundle on affine n-space kn, which should behave like a 

"contractible" space, and hence have only trivial bundles. 

To the author's knowledge no confirmed example is yet known 

for.which the answer to (I) is negative.* On the other hand, 

few people seem willing to vouch with great conviction for an 

* See, however, the discussion in (7.3) below, in connection 
with Segre's paper [Seg]. 

6 
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affirmative response. Some have suggested that the answer 

may vary with k. 

The answer to (I) is known to be affirmative in the 

following cases: 

d < 1 (all r) -A is principal. 

d 2 ~all r} Seshadri's theorem [Sesh] . 

r = 1 ~all d} A is factorial 

r > d -This follows from a theorem of 

Grothendieck plus stability theorems 

(see [Ba 4], Cor. (22.4)). 

The first unsettled cases are d = 3, r = 2 or 3. We remark 

here that if d = 3 and r = 3 then P ~A ffi P' for some P' of 

rank 2 (see [Ba 2)]. The analogue of this is not known for 

d = 4, r = 4. 

Criteria for solving Serre's problem (sometimes in 

special cases) are discussed below in (4.1), problem {IX); 

in (4.2), Murthy's proposition; in (5.4), problem (XIV); 

in (5.5), both of the propositions; in (7.3), problem (XX); 

and in (8.2), problem (XXI)d • ,r 

7 
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§2 Homotopy properties of the functors Kn 

2.1. Homotopv functors 

Let F be any functor from rings to abelian groups. 

If A is a ring and t is an indeterminate then the inclusion 

A~ A[t] and retraction A[t] ~A (t~ O) induces a decomposition 

F(A[t]) F (A) 0 NF (A) • 

We call Fa homotopy functor if NF(A) 0 for all A. In 

general there is a largest quotient F of F which is a 

homotopy functor, defined by 

e -e 
F(A) = Coker(F(A[t]) 

1 ° F(A)) 

where e.: A[t] ~A is the retraction defined by e. (t) = i 
~ ~ 

(i = 0,1). All morphisms of F into a homotopy functor factor 

through F (see [Sw 1], Lem. (4.2)). 

K-V For example the functors Kn of Karoubi-Villamayor 

K-V [K-V] are homotopy functors for n ~ 1, whereas K0 = K0 is 

not a homotopy functor. Moreover Sharma and Strooker [S-S] 

K-V have shown, curiously enough, that the exact sequence of ~· 's 
n 

associated to a short exact sequence of rings (wihtout unit) 

does not remain exact in general if K
0 

is replaced by R0 • 

8 
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Let n be an integer ~ 1. 

(II) Does Gersten's spectral sequence ([Ger 2), Thm. 3.12) 
n 

- K-V induce an isomorphism K ----t K ? 
n n 

The answer to {II) is affirmative for n = 1 and, in certain 
n 

cases, for n = 2 (see Swan [Sw 1], Thm. 4.3). 

2.2 (Laurent) K -regular rings 
n 

Let F as above be a functor from rings to abelian 

groups. Let A be a ring and let t
1
,t2 , •.• ,tn,··· be 

indeterminantes. We say A is F-regular if NF(A[t1 , •.• ,tn]) 0 

for all n ~ 0. We say A is Laurent F-regular if 

-1 -1 * A[t1,t1 , •.• ,tntn] is F-regular for all n ~ 0. 

Motivation and examples 

(1) A ring A is called right regular if (i) A is 

right neotherian, and (ii) hdA(M) < oo for all finitely generated 

right A-modules M. {Here hdA(M) denotes the projective 

* This terminology relates to some others as follows: Karoubi's 
"K-regular" [Kl) is our "Laurent K0-regular," and Gersten's 
"K-semiregular" is our "K0-regular." Similarly, putting 

Pn(A) = t 1 ••• tn•A[t1 , ••• ,tn]' we would propose calling a 

ring homomorphism A ~ B a fibration 

GL(PnA) ~ GL(PnB) is surjective for 
. . . -1 -1 

f~brat~on ~f A[t1 ,t1 , ••• ,tn,tn] ~ 

a fibration for all n ~ 0. 

9 

if, as in Gersten [Ger 3], 

all n > 0, and a Laurent 
-1 -1 

B[t1 ,t1 , ..• ,tn,tn ] is 
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homological dimension of M.) Theorems of Hilbert (cf. [Ba 1], 

Ch XII, Thm. 2.2) imply that both conditions (i) and (ii) on 

A 
-1 

are inherited by A[t) and A[t,t ], t an indeterminate. 

Further, results of Quillen [Q2], Thm. 11 and [Q3] 

establish that a right regular ring is Laurent Kn-regular for 

all n. (The cases n = 0,1 are treated, for example, in 

[Ba 1), Ch. XII.] 

The essential point about right regularity, in deducing 

results of the above type, is that the category ~(A), of 

right A-modules having finite resolutions by finitely generated 

projective A-modules, be an abelian subcategory of the category 

of all A-modules, i.e. that it be stable under kernels, cokernels, 

etc. This condition, weaker than right regularity, is equivalent 

to the following: (i') A is right coherent (i.e. every finitely 

generated right ideal is finitely presented), and (ii') hd~ < ~ 

for all finitely presented right A-modules M. One might call 

such a ring (right) coherently regular (cf. [Wald], p. 3). 

Unfortunately the analogue of Hilbert's Basis Theorem fails 

for coherent rings. Soublin ([Soub], Prop. 18) has even given 

a commutative coherent A for which A[t] is not coherent, 

and whose global dimension is finite if one assumes a weak 

form of the continuum hypothesis. one might thus call a 

stably right 

10 
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coherent* if, (i") A[t
1

, ... ,tn] is right coherent for all 

n ~ 0, and stably (right} coherently regular if A[t
1

, ••• ,tn] 

is right coherent-regular for all n ~ o. The results of Quillen 

([Q 2] and [Q 3]) suggest that a stably right coherently 

regular ring is Kn-regular for all n ~ o. ** 

Interesting examples of such rings are furnished by 

[C-L-L], where it is shown that a free product A~ B is right 

coherent whenever R is right noetherian and A and B are 

"split" R-rings which are free as left R-modules. This implies 

the stable right coherence of the ring R[G) over R of a free 

group or monoid G. Since gl dim (R[G)} ~ gl dim (R) + 1, 

such rings will also be stably right coherently regular 

whenever gl dim (R} < ~. 

(2} Karoubi ([K 1], Part III} has shown that if A 

is Laurent K0-regular then so also are fA (the path ring}, 

nA (the loop ring), CA (the cone),and SA (the suspension}. 

(See [K 1] for these notations.) 

(3} That Laurent K
0
-regularity is stronger than 

Y0 regularity may be seen from the following example. Let 

A be a reduced commutative noetherian ring of dimension one 

whose integral closure A is a finitely generated A-module. 

Let C = annA(A/A), the conductor ideal. Consider the conditions 

* Gersten (Ger 1, Prob. 24] uses the term "super-coherent." 
** (Added in proof) : This has recently been established by 
Gersten, "Homology of the linear group of free algebras, " 
Theorem 2.10 (to appear). 

11 



10 

(a) A/C has zero nil radical 

and 

a commutative noetherian ring B we denote by h
0

(B) the number 

of connected components of spec(B). It follows from Bass-

Murthy ([B~], Thm. 8.1) that 

A is K0-regular ~ (a) holds 

and 

A is Laurent K0-regular <-==?(a) and (b) hold. 

In case A = Zn with n a finite abelian group of order m 

then ([B~], Thm. 8.10) (a) holds iff m is square free, and 

(b) holds iff m is a prime power. Thus if m is square free and 

not a prime the ring zn is KO -regular but not Laurent K0 -regular. 

(4) One has a natural decomposition 

K (A) 0 K 1 (A) ~ ?(A) 
n n-

for any ring A and n ~ 1 (cf. [Ger 3], Thm. (2.9)). From 

it one deduces a similar decomposition 

NK (A) ~ NK 1 (A) 0 N ? (A), 
n n-

In particular 

12 
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0 NKn-l (A) = 0, 

and so 

Laurent Kn-reqularity of A implies 

Laurent Kn_
1
-regularity of A. 

In connection with the term ?(A) above it is conjecturally 

explained in [Ger 1], Prob. 3. 

(5) If J is a nilpotent ideal in A then K
0

(A) ~ K
0

(A/J) 

is an isomorphism ([Ba 1], Ch. IX, Prop. 1.3) so NK0 (A) ~ NK
0

(A/J) 

is likewise an isomorphism. It follows easily that A is 

(Laurent) K0-regular if and only if A/J is so. The analogous 

assertions for K
1 

fail in general. In particular A = Z/4Z 

is Laurent K0-regular, but not K
1
-regular. Apparently no 

converse example is known, so we ask: 

(III) Does K1-regularity imply K
0
-regularity? 

More specifically does NK
1 

(A) = 0 imply 

NK
0

(A) = 0? 

This question can be formulated more precisely, as 

follows: -1 
Define f: KO(A[t]) ~ K1 (A[t,t ] ) by 

f[ PJ -1 
[P[t ] , t. [t-1]]. By considering localisation sequence 

13 
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(cf. [Ba 1], Ch. XII) we find that of[PJ = [P
0] E K0A, 

where p
0 

= [P/Pt]. Further f is compatible with the 

augmentations t ~ 1 on A[t, t- 11 and on A(t]. It follows that, 

in the decomposition 

the image of f lies in N+KlA ~ K
0

A and that f decomposes 

as 

whence a natural homomorphism 

Moreover f is injective if and only if f' is injective. 

In question (III) we may ask, more precisely, whether f' 

is injective. 

(6) MUrthy and Pedrini([M-P], cor. 3.4)) have shown that 

if A is an affine ring over a field k then A 

regular in each of the following cases: 

14 

is K-
0 
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{i) A = k[X,Y,Z]/{Xn - Y2) 

(ii) A is the homogeneous coordinate ring of an 

arithmetically normal embedding of ~~ in ~~. 

(iii) k is algebraically closed and A is the coordinate 

ring of a surface X birationally equivalent to a 

ruled surface of genus > 0, and such that X has 

only rational singularities. 

They conjecture that A might be K
0
-regular whenever A is 

the coordinate ring of an affine normal surface having only 

rational singularities. Further, Murthy has asked to: 

(IV) Find an example of a noetherian integral domain 

A which is factorial (or even only normal) for 

In a related vein he asks: 

(V) Suppose A = j_L A is a graded normal integral 
n 

n.<!.O 

domain finitely generated (as algebra) over a 

Murthy remarks that Pic(A) = 0 (cf [Mur 1], Lemma 5.1). Further, 

put A 
+ 

11
0 

A so that the question above asks whether 
n> n 

-1 -1 
Taking K

1 
of A ~A A0 [t,t ] = A[t,t ] we find 

0 

15 
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-1 -1 
K0 (A,A+) embedded in Kl (A[t,t ] , A+[t,t ]) • If 

char(k) = p > 0 it follows from [Ba 1], Ch.XII, Cor. 5.3 that 

the latter group is p-primary, and hence likewise for 

Conceivably it is reasonable in (V) to require only that 

A
0 

be regular, and then ask whether K
0

(A
0

) ~ K
0

(A) is an 

isomorphism. 

(7) Traverso [Trav] showed that a reduced commutative 

noetherian ring A is Pie-regular if and only if it is "semi-

normal." This, and criteria for Laurent Pie-regularity, are 

discussed in Pedrini's article [Ped]. 

The following question was raised by Sharma and Strooker 

in [S-S], in the case n = 0: 

(VI) 
n 

Does NK (A) = 0 imply that NK (A[t]) = 0? 
-- n n 

I.e., if K (A)~ K (A[t
1
]) is an isomor-

n n 

is an isomorphism? 

Affirming this (for all 

Kn-regularity of A. 

A) means that NK (A) 
n 

0 suffices for 

The analogous question for Pie (in place of Kn) of 

commutative noetherian rings has an affirmative response [Trav]. 

16 



§3 Free algebras and free products 

3.1 Free algebras (cf. Gersten [Ger 1], Prob. B) 

Here we formulate theorems of Gersten and Stallings 

about K0 and K
1

, and discuss analogues for Kn' 

Let R be a commutative ring. If R ~A is an R-algebra 

with augmentation A ~ R we denote its augmentation ideal by 

Aa. If F is a functor from rings to abelian groups the maps 

R~A furnish a natural decomposition F(A) = F(R) ~ Fa(A) 

for augmented R-algebras A. We shall discuss the functors 

14 

If M is an R-module its tensor algebra TR(M) is augmented 

via M~ 0. If M= R(X), the freeR-module on a set then 

TR(M) is R(X}, the free (i.e. non commutative polynomial) 

algebra on the set X. 

Let F be a functor as above. We say R is F-freely 

regular if Fa(R(X}) = 0 for all sets X. If F commutes ~th 

filtered inductive limits (as do all K 's) then the above 
n 

condition implies that Fa(TR(M)) 0 whenever M is a filtered 

inductive limit of free R-modules. According to D. Lazard 

[Laz] such inductive limits are precisely the flat R-modules. 

17 



15 

THEOREM (Gersten): If NK
1 

(R) = 0 ~ R ~ K
1
-freely regular. 

This can be found in [Ger 4] or [Ba 1], Ch.XII, Cor. (5.5). 

COROLLARY: Let M be a flat R-module. 

is an isomorphism and TR(M) is K
1
-reqular. 

(b) If R[ t, t -l] K1-reqular then Ki (R) ~ Ki (TR (M)) 

is an isomor.phism and TR (M) is Ki -regular for i 0, 1. 

(c) 11_ R is Laurent K
1
-reqular then TR(M) is Laurent 

Ki-regular for i = 0,1. 

The corollary follows by applying the theorem after the 

-1 base changes R ~ R[t] ~ R[t,t ], using the fact that the 

tensor algebra commutes with base change, and with the aid 

for any ring A. 

(VII) 
n 

Let R be a commutative regular ring. 

,!E. R ~ Kn-freely regular? *More 

generally, is it true that R ~ Kn-freely 

regular whenever R is Kn-regular? 

Gersten's theorem affirms this for n = 0,1. Further 

Gersten ([Ger 1], Prob. 8) has announced that {VII)n holds for 

all n when R = z. (Cf. the remarks in (2.2), example (1) 

*(Added in proof): This has recently been established by 
Gersten, "Homology of the linear group of free algebras," 

Theorem 2.10 (to appear). 

18 
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above.) 

~.2 Free products (cf.Gersten [Ger 1], Prob. 24) 

Let A and B be augmented R-algebras. In their 

free product A ~ B the subalgebra (with unit) generated by 

· a a 
A ®R B can be identified, as Stallings [Stal] has pointed 

a a out, with the tensor algebra TR (A ~ B ) (cf. [Ba 1], 

Ch. IV, §5). 

Let F be a functor from rings to abelian groups. The 

maps A~ A ~ B and B t:--2 A ~ B furnish a split epimorphism 

whose kernel contains the image of 

We shall say R is F-freely additive if the sequence 

is exact for all augmented R-algebras A, B. The following is 

immediate from the definitions. 

PROPOSITION: Suppose F commutes with filtered inductive 

limits and that R is F-freely regular and F-freely additive. 

~ A, B be augmented R-algebras such that A a ,~R Ba is a flat 

19 
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R-module. Then Fa(A R B) ~ Fa(A} ~ (B) is an isomorphism, 

THEOREM: (Stallings [ Stal] ; cf. also [Ba 1] , Ch. XII, Thm. 111. ) 

Every commutative ring R is F-freely additive for F = K
1

, 

and hence also for F = NK
1

, K
0

, NK
0

, ••• 

The last assertion follows from the first using the base 

-1 changes R ~ R[t] ~ R[t,t ] , the commutativity of free products 

with base change, and the usual decomposition of K
1 

(C[t,t-
1

]) 

for the various rings c above. 

COROLLARY: Let R be Laurent K
1
-regular (e.g. a regular ~ing). 

A, B be augmented R-algebras such that Aa ~R Ba is a flat 

R-module. ThenAR B is (Laurent) Ki-regular if and only if 

A~ B are (Laurent) Ki-regular, for i = 0,1. 

Indeed the hypotheses make available the theorem and 

proposition above, whence NK. (A R* B) = NK. (A) 8 NK. (B) and 
~ ~ . ~ 

similarly after the base changes R ~ R[t] ~ R[t,t-1], etc. 

(VIII) 
n 

Is every commutative ring R Kn-freely 

additive? If not is this at least true 

~ R is Kn-regular, or even regular? 

To allow f~r rings like group rings Z[G
1 

H G
2

] of amalga

mated free products (cf. [Wald]) one may allow the ring R to be 

non commutative, and require only that the augmentation A ... B be a 

homomorphism of R-bimodules.Then analogous questions canbeproved. 

20 



§4 Projective A[t]-modules 

4.1 Extended A[t]-modules 

Let A be a ring and t an indeterminate. Right 

A[t]-modules M which are isomorphic to modules of the 

18 

form M0 [t] = M0 0A A[t], for some A-module M0 , will be called 

extended; note then that M determines M
0 

because M
0 
~ M/Mt. 

Motivated by Serre's problem one is led to ask for general 

conditions on A which imply that every finitely generated 

projective right A[t]-module is extended. A necessary condition 

clearly is that K0 (A) ~ K
0

(A[t]) be an isomorphism, i.e. that 

NK
0

(A) = 0. This occurs, for example, if A is right regular. 

In the converse direction we ask: 

(IX) If A is a commutative regular ring 

is every finitely generated projective 

A[t]-module extended? 

Since an affirmative solution to this problem implies an 

affirmative solution to Serre's problem, it is perhaps most 

prudent to approach it by seeking a counterexample. 

The need for commutativity is illustrated by the following 

example, taken from Ojanguren and Sridharan ([0-S], Prop. 1). 

Let D be a non commutative division ring, or, more generally, 

21 
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any ring for which free modules have invariant basis number 

and which contains units a, b such that c = ab - ba is a unit. 

Let A= D[x,y], a polynomial ring in two variables. The 

homomorphism p: A
2 ~A, p(f,g) = (x + a)f- (y + b)g, sends 

a= (y + b, x + a) to p(a) 2 c, so A aA (1') P, where 

P = Ker(p). It is shown in [O-S] that P is not free. It 

projects isomorphically (in either coordinate) to a right ideal 

in A. On the other hand D[x] is a principal right ideal 

domain, so all projective right D[x]-modules are free. 

Examples. The following are examples where every finitely 

generated projective A[t]-module is known to be extended: 

(1) A is a Dedekind domain. More generally, let A 

* be a reduced commutative noetherian ring of dimension one 

whose integral closure A is finite over A. Let 

C = annA(A/A), the conductor. Then projective A[t]-modules are 

extended~ A/C is reduced. (Cf. [B-M], Cor. 9.2). 

(2) A is a regular local ring of dimension ~ 2 

(cf. [Har] and [Mur 2]). 

(3) A = k[n], the algebra over a field k of a free 

non commutative monoid on group n (cf. [Ba 3], or [Ba 1], 

Ch. IV, Cor. 6.4: to apply these results here one views 

* Recall that "reduced" means "with zero nil radical." This assump-
tion is not restrictive since, if J is a nilpotent ideal, the 
base change A ~ A/J induces a bijection on isomorphism classes 
of projective modules (cf. [Ba 1], Ch. III, Prop. 2.12). 

22 
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A[t] as k[t][TT]). 

4.2 The Horrocks criterion 

Let A be a ring. The Laurent polynomial ring A[t,t-
1

] 

-1 contains both A[t] and A[t ] • Let P be a finitely generated 

projective right, A[t]-module. We shall say that "P extends 

to a locally free sheaf on re 1 
(A) " if there is a finitely 

-1 generated projective right A[t ]-module P' and an isomorphism 

p ® 
A[ t] 

-1 of A[t,t ]-modules. In case P is extended, say P = P0 [t], 

-1 then one can use P
0
[t ] for P' above. Horrocks [Hor] studied 

the converse condition: 

Hor (A): 

If P Is a finitely generated 

projective right A[t]-module 

which extends to a locally 

free sheaf on f
1 (A) then 

P ~ P0 [t], where P
0 

= P/Pt. 

He established Hor(A) whenever A is a commutative noetherian 

local ring. This was used to show that projective A[t]-modules 

are free when A is regular local of dimension 2 (see [Hor], 

23 
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when A contains a field, and [Mur 2] for the general case). 

In [Ba 1], eh. XII, Cor. (7.6) it is shown that, for any ring 

A, Hor (A) is "stably" true, i.e. P and P
0

[t] in the 

definition must be "stably isomorphic." This implies they are 

isomorphic if A is commutative and P has rank 1 (cf. 

[B-M], Thm. (6.3)). 

{X) ~ Hor{A) hold for every 

commutative noetherian ring A? 

An affirmative response would solve Serre's problem, as 

the following new result communicated by Murthy, illustrates. 

PROPOSITION (Murthy): ~ k be a field and t an indeterminate. 

~ A be a k-algebra. Assume Hor(A) and that finitely generated 

projective (k(t) ~~A)-modules are free. Then finitely generated 

projective A[t]-modules are free. 

This follows immediately from the: 

LEMMA (Murthy): Let A be any ring, and let f be a central 

monic polynomial in A[t]. Let P .be a finitely generated 

projective right A[t]-module such that P[l/f] is free over 

A[t,l/f]. Then P 1 extends to a locally free sheaf on I (A) • 

24 



Proof of the Lemma. Let n = deg(f) 

22 

n -1 and write f(t) = t g(t ) • 

Since f -1 -1 is monic t and g(t ) generate the unit ideal in 

A[t-1
]. Moreover A[t,t-1 ,1/f] = A[t-1 ,t,l/g]. Since 

P[l/f] (= P ®A[t] P[t,l/f]) is A[t,l/f]-free we can "glue" 

P[t-1
] with a free A[t-1

,1/g]-module (they are isomorphic over 

-1 -1 A[t,t ,1/g]) to form a projective A[t ]-module P' such that 

- -1 P'[t] = P[t ], whence the lemma. 

25 
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§5 Stability and indecomposable projective modules 

5.1 Terminology 

* Let A be a commutative ring. The space spec(A) of 

prime ideals of A contains the subspace max(A) of maximal 

ideals: such spaces have dimensions measured by lengths of 

chains of irreducible closed sets, and we write dim(A) = dim spec(A). 

We have a (split) exact sequence 

where H
0

(A) is the ring of locally constant functions spec(A) 

~ Z, and Where, for a finitely generated projective module P, 

rk {P) sends ·~ € spec (A) to the rank of the free Ai/·· -module P"f • 

There is further a natural epimorphism 

det: 'K
0 

(A) Pie (A) 

induced by sending P th to the r exterior power of P, where 

r = rk (P). 

For each integer r G 0 let p (A) denote the set of 
=r 

isomorphism classes (P) of finitely generated projective A-modules 

* Many of the problems and results discussed below have interesting 
non commutative versions: we restrict attention to commutative 
rings only for ease of exposition. The references cited treat 
the more general setting. 
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P of constant rank r. Define 

and 

sr: ! r (A) --7 ~r+l (A) 

s (P) = (P El) A), 
r 

tr: ! r (A) -----7 'K0 (A) 

t (P) = [ P 1 - [A r 1 • 
r 

One checks easily that the maps t induce a bijection 
r 

lim (P (A) , s ) ~ 1<
0 

(A) 
---7 r r 
r 

24 

The following notions furnish a measure of the rapidity with 

which this limit is achieved. We define 

(i) surj K
0

-range (A) 

(ii) inj K
0
-range (A) 

(iii) stable K
0

-range(A) 

(iv) ind proj (A) 

(v) stable ind proj(A) 

to be the least integer n ~ 0, or oo if none such exists, 

such that 

(i) s is surjective for all r .:::. n 
r 

(ii) s is injective for all r > n 
r 

(iii) t is surjective for all r ~ n 
r 

27 
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(iv) Every finitely generated projective A-module 

is isomorphic to a direct sum of modules of 

rank s. n. 

(v) Every finitely generated projective A-module is 

stably isomorphic to a direct sum of modules of 

rank s. n, 

respectively. Recall that finitely generated projective A-

modules P and P' are called "stably isomorphic" if 

P ~Am;;:;p'~Amf 0 · ~ ~ or some m ~ , ~.e. if (P] = (P'] in K
0

(A) • 

Thus condition (v) is equivalent to 

(v') The image of tr additively generates 

K (A) for r ~ n. 
0 

We further put 

K0-range(A) = max (surj K
0
-range(A), inj K0-range(A}). 

The following inequalities are immediate. 

K
0
-range (A) 

0 ~ 
surj K

0
-range(A} inj K0 -range(A) 

0 -x\ 
stable K

0
-range(A} ind proj(A} 

~ ty 
stable ind proj(A) 

Remarks; (1) The choice of inequalities in the above 

definitions was made so that the K0-stability theorem (see 
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(5.2} below) reduces to the assertion that K0-range(A) ~ d 

when A is commutative and max(A) is a noetherian space of 

dimension d. 

(2) The quantity surj K0-range(A} was considered in 

[B-M] and in [ G -R], where it is called "Serre dim (A) , " and in 

[L-M], where it is called the "projective modulus of A." 

(3) Evidently the following are equivalent: 

(a) surj K0-range(A) = o. 

(b} Finitely generated projective A-modules of 

constant rank are free 

(c} K0-range(A) = o. 

(4) For dimension one we have the following equivalent 

conditions (cf. [Ba 1], Ch. IX, Prop. (3.7) and Cor (3.8)): 

(a) surj K0-range(A) ~ 1 

(b) (rk (P), det (P)) E H
0 

(A) x Pie (A) is a complete 

isomorphism invariant for finitely generated 

projective A-modules. 

(c) K0-range(A) ~ 1. 

Further, stable K0-range(A) s 1 if and only if deg: K0 (A) ~ Pic(A) 

is an isomorphism. 

5.2 The K0-stability theorem 

The basic K0-stability theorem (for commutative rings) 

is the following. 
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THEOREM (see [Ba 1] , Ch. IV, Cor, (2. 7) and Cor. (3. 5)) z 

!! max(A) is a finite union of noetherian spaces of dimensions 

.$. d ~ 

COROLLARY (cf. [B a 4], Them. 22 .1): ~ A be a commutative 

neotherian ring of dimension d. Suppose that A ~ 

K
0
-regular (e.g. that A is regular). If P is a finitely 

generated projective A[t1 , .• ,tn]-module of rank> d + n ~ 

P ~ P0 ~A A[t1 , ••• ,tn]' ~PO= P/(t1 , ••• ,tn)P. 

Since K
0

(A) ~ K
0

{A[t
1

, ..• ,tn]) is an isomorphism (by 

K0-regularity) P is stably isomorphic to P0 ~A A[t1 , ... ,tn]. 

Since dim max{A[t1 , ••. ,tn]) = d + n <rank P the theorem 

implies that inj K
0-range (A[t

1 , ••. ,tn]) <rank P, whence 

"stably isomorphic" implies "isomorphic." 

In case dim (A/rad A) < d it suffices, for the conclusion 

of the corollary, that rank P 2:. (d + n) (cf. [Ba 4], Cor, 22. 4) • 

COROLLARY: 1f k is a field then Erojective k[t1 , ••• ,tn]

modules of rank > n are free. 

These results suggest that, for fixed A, projective 

modules are easiest to handle when their ranks are large. 

This principle is born out by the fact that, if spec(A) is 
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connected and A has only finitely many minimal primes then 

every non finitely generated projective A-module is free! 

(cf. [Ba 5]). 

For a universal bound the d in the stability theorem is 

reasonably efficient, as the following examples show (see 

[G-R] and [Ger 2]): Given d a 
2 

part of K[t
0

, •.• ,td]/(t
0 

+ ••• + 

1 let Ad denote the even degree 

2 
td- 1), with respect to its 

natural grading mod 2. Then dim Ad= dim max (Ad) = gl. dim (Ad) 

= d. Interpreting Ad as the ring of polynomial functions 

d on real projective d-space ~K' there is an invertible Ad-module 

L corresponding to the canonical line bundle on z:. A simple 

consideration of Stiefel-Whitney classes shows that L $ ••• $ L 

(d terms) is not even stably isomorphic to a module of the form 

A 0 P. There is further 

to the tangent bundle to 

a projective Ad-module Td corresponding 

d 
~K' and Td is indecomposable for ~ 

d (see [Gera], Thm. 5). Thus ind proj(Ad) = d for even d. 

Further examples can be found in [Sw 2] • 

To my knowledge, however, the examples in the literature 

do not yet completely respond to the following problem. 

(XI) d ~ d a 2, exhibit a commutative 

noetherian ring A of dimension d, ~ 

a finitely generated projective A-module 
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P of rank d, such that P is not 

even stably isomorphic to a module 

of the form P' ""'P" ~ P' and P" 

of rank < d. In other words find 

an A as above such that stable 

ind proj (A) = d. 

29 

If A is an affine algebra over a field k the response to 

(XI)d might depend on k, for example by being different for 

k = ll or a:. 

The discussions that follow are concerned with possible 

strengthening of the inequalities implied by the stability 

theorem in special circumstances. 

5.3 Indecomposable projective modules 

A. Geramita has asked in [Gera] whether (ind proj (A), 

surj K0 -range(A)} can take any pair (i,s) of values for which 

1 ~ i ~ s (cf. also [G-R), §7). In particular he has asked: 

(XII) d ~ d ~ 2, does there exist a 

commutative noetherian ring A of 

global dimension d such that 

surj K0 -range (A) 

ind proj (A) < d? 

d and 
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Murthy [Mur 1] has investigated questions germane to 

this in the following special setting: Let k be an algebrai-

cally closed field. Let A be the affine ring of a non 

singular algebraic surface V over k. Thus A is a 

regular ring of dimension 2. Murthy asks (cf. [Mur 1], 

Remark 5.5): 

{XIII) ~ ind proj (A) ~ 1? 

The answer is negative if we drop the assumption that k is 

algebraically closed, as the familiar example 

A 2 2 2 
a[x,y,z]/(x + y + z l) and the indecomposable A-module 

p 3 A/A•(x,y,z) show. Murthy has remarked that if V is a 

product of two curves then stable ind proj (A) ~ 1, while the 

theorem below shows that stable K
0
-range (A) = 2 if both curves 

have genus > 0. Thus if (XIII) is affirmative in the latter 

case, one has the example sought by {XII)
2

• 

For rings A as above the stability theorem implies 

that K0 -range (A) ~ 2. Murthy ([Mur 1], Thm. (3.2)) shows that 

K0-range {A) ~ 1 if V is birationally equivalent to a ruled 

surface (= (a curve) X !
1

) . Results of Mumford [Mum] suggest 

that the converse may also be true. 
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5.4 Improved stability for polynomial rings 

The questions here were first raised in [B-M], §9. They 

have recently been reconsidered and generalized by Evans and 

Eisenbud [E-Ei] (see also §7 below). 

Let A be a commutative neotherian ring, and let n 

be an integer ~ 1. 

When A is a field this question is equivalent to Serre's 

problem (I). 

Then dim P 
n 

= dim max (P ) = d + n, even though one might well have n 

dim max (A) < d (e.g. when d > 0 and A is local). The question 

(XIV) naturally separates into two parts: 
n 

~IV) . 
n,surJ 

One can further ask the less stringent question 

(XV) n 

Murthy has even asked whether one might replace d by 1 when 

A is a local ring, in the above questions. 
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even in Murthy's strengthened form, has an affirmative response 

whenever A is K0 -regular, and the discussion in §2 describes 

an abundance of K0-regular rings. The results quoted below 

affirm (XIV) and (XV) in other interesting but still quite special n n 

cases. 

THEOREM: Suppose dim (A/rad A) < d. Then K
0
-range (P ) 

-- n 

.s_ d + n - 1. 

This affirms (XIV)
1 

and (XV)
1 

for A as in the theorem. 

The theorem is a corollary of the stability theorem since 

max(P ) is the union of the closed set F consisting of n 

maximal ideals containing rad A (so that F ~ max 

((A/rad) [t
1

, ... ,tn]) has dimension< d + n) and the open 

complement which also has dimension < d + n. (cf. [Ba 1], 

Ch. IV, Remark after Cor. 2.7.) This result has been generalized 

by Evans-Eisenbud in [E-E 1] • 

THEOREM ([B-M], Thms. 7.8 and 9.1). Suppose that d .s_ 1 ~ 

that the integral closure of A d= A/nil rad (A) is a finitely 
re 

generated A-module. 

-1 -1 
A[t1,t1 , ... ,tn,tn]. 

Let B denote either P or L 
n- n 

(a) stable K0-range (B) .s_ 1 

(b) We have K
0 -range (B) .s_ 1 if either n 1, or n = 2 

~ A is semi-local. 

Part (a) affirms (XV) , and part (b) affirms (XIV) for 
n n 
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A and n as in (a), resp. (b). It is very likely, but 

apparently not yet known, whether (XIV)
1 

has an affirmative 

response whenever d ~ l, i.e. without some assumption like 

the finite generation of the integral closure of A 
red 

5.5 The use of bilinear forms 

Let A be a commutative ring. Let P be a finitely 

generated projective A-module, and let L be an invertible 

A-module. It is observed in [Ba 2], Prop. 4.1, that if 

P ~ L admits a non singular alternating bilinear form then 

33 

P has a direct summand isomorphic to L* = HomA(L,A). It follows, 

in particular that 

PROPOSITION: - 2n - , , P e A = A = P = P ® A for some P • 

Combining this with the second corollary of the stability 

theorem above (in (5.2) ) we obtain: 

COROLLARY: 1! k is a field and if n ~ 1 is an integer then 

a projective k[t
1

, ••• ,t
2

n_
1

)-module of rank 2n-l has a free 

direct summand of rank 1, whence surj K
0
-range (k[t

1
, ••. ,t

2
n_

1
J) 

~ 2n - 2. 

To treat Serre's problem in three variables one can 

further use symplectic K-theory (see [Ba 6)) as follows. 
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PROPOSITION: ~ A be a commutative noetherian ring of 

dimension ~ 3. ll K
0 

(A) ~ Z is an isomorphism then 

(a) surj K0 -range (A) ~ 2: ~ 

(b) All finitely generated projective A-modules are 

self-dual. 

If further KSp
0 

(A) ~ 2Z is an isomorphism then 

(c) All finitely generated projective A-modules are 

free if and only if sp
4

(A) acts transitively on 

the set of unimodular elements in A
4

• 

See [Ba 6] for the notation. 

~: Let P be a projective A-module of rank r. Then 

hypotheses and the K0-stability theorem imply P is free if 

r > 3. The proposition above then implies, if r = 3, that 

p A~ P', whence (a). Suppose r 2. Then det(P) = A
2

P 

in Pic(A) is• trivial because K0 (A) 0. It foll~ws then from 

[Ba 2], Prop. 4.4 that P admits a non singular alternating 

form h. In particular P ~ P*, whence (b). The symplectic 

module (P,h} is stably hyperbolic if KSp
0

(A) ~ 2Z, so it 

follows from the symplectic stability theorem ([Ba 6] eh. IV, 

Cor. 4.1~ that (P,h} ~ H(A) ~ H(A2 ) = H(A) ~ H(A). If an 

element a of Sp4 (A) carries the orthogonal complement of 

(P,h) to a standard hyperbolic plane then (P,h) ~ H(A) so 

P ~ A2 • Such a a exists provided Sp
4

(A} acts transitively 
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4 
on unirnodular elements in A (Cf. [Ba 6], Ch. I, Cor. 5.6), 

whence one implication of (c). Conversely if A is any corn-

mutative ring for which all projective modules are free then 

all syrnplectic modules are hyperbolic, clearly, and so sp
2

n(A) 

acts transitively on unirnodular elements in A
2

n for all n. 

Thus the proposition is proved. 

The above proposition applies notably in the following 

case: Suppose A = B[t] where B is a regular ring of 

dimension 2 for which all projective modules are free. Then 

all syrnplectic B-rnodules are hyperbolic also. Further 

K
0

(B) ~ K
0

(A) and, according to Karoubi [K 2], if 2 is invertible 

in B, we also have KSp
0

(B) ~ KSp
0

(A). 

Thus, if k is a field of characteristic ~ 2 the special 

case (I)
3 

of Serre's problem is equivalent to the problem: 
,r 

(I') 
3,r 

transitively on unimodular elements 

. 4 
.!E. A ? 

Another influence of bilinear forms on the structure of 

projective modules is given by the following consequence of 

[Ba 2], Cor. 5.2. 

PROPOSITION: Let A be a factorial ring in which 2 is a 

square. Let P be a projective A-module of rank 2. Then 

38 



36 

P is free if and only if P supports a non singular symmetric 

bilinear form. 

This applies notably when A= k[t
1

, ..• ,tn) with k an 

algebraically closed field of characteristic ~ 2. 

5.6 Lissner~oore extensions 

There is another situation where the surj K
0
-range can 

be significantly improved. It is an algebraic analogue, 

discovered by Lissner and Moore [L-M], of the fact in topology 

that the stable range for complex vector bundles is half that 

for real vector bundles. We indicate here an abstraction of 

their arguments. (Another has been given by Simis [Sim] .) 

A Triple (A
0

,A,9) consisting of a commutative ring A0 , 

a commutative A0-algebra A, and an element 9 € A, will be 

called a Lissner-Moore extension of de9ree d 

(i) 

and 

(ii) 

l,e, •.. ,e d-1 is free basis of A as A0-module. a 

d-1 
If b = a 0 + a 1 e + •.• + ad_1 e with all ai e A0 , 

and if ad-l is invertible in A0 , then b is 

invertible in A. 

Example. If A= A
0

[e] is a field extension of degree d of 

a field A
0 

then (A
0

,A,9) is a Lissner-Moore extension of degree 
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d. We shall see less trivial examples below. 

THEOREM: Let (A
0

,A,9) be a Lissner~oore extension of degree 

d. Then 

COROLLARY. If surj K
0

-range (A
0

) < d then projective A-modules 

of constant rank are free. 

The pr~of ~f the theorem is based on the lemma below. 

If M, N are A-modules let M
0

, N
0 

denote the underlying 

A0-modules (restriction of scalars). Suppose £0 E HomA (M0 ,N
0

) • 
0 

Define f: M ~ N by 

f {m) 

i, j~O 
i+j.:::_d-1 

where the eh E A
0 

are defined by the equation 

whose existence (and uniqueness) results from (i) above. 

Allowing ourselves to put scalars on the right in N we have 

d-1 d-1-i 
" '" j i 

(*) f (m) L ci+j+l fo(e m})9 J 

i=O j=O 
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d-1 
so that the coefficient of e is just fo(m). 

LEMMA: Assuming only condition (i) above, the map f: M ~ N 

is A-linear. 

Evidently f is A
0
-1inear, so we need only check that 

f(em) = ef(m) for m € M. 

Similarly 

d-1 
Since E 

i=O 
d-1 

f 0 ( I: 
j=O 

Remark. 

" f (em) = }_, 
i, j~O 
i+j~d-1 

d-1 
" 

= L 
j=O 

Sf (m) = ~ 
i, j~O 
i+j~d-1 

d-1 

i fo <ej+lm} 
ci+j+le 

= (I ci+l ei+l fo(m)) + I cu+veu fo(Svm) 

i=O 

i+l 
ci+1 e t 0 (m) = -c0 £0 (m) = £0 (-c0m) 

c-l '+l 
E cj+

1
£

0
(eJ m) the lemma follows. 

j=O 

j+l 
cj+l e m) 

If £
0 

is already A-linear then one can check that 

41 
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Proof of theorem. Let P be a projective A-module of rank r, 

and suppose surj K
0
-range (A

0
) = n. 

n 
Assuming r > d we must 

show that there is an x e P and an A-linear map f: P ~ A such 

that f(x) is invertible. Since A is free of rank d over 

A0 the projective A0-module P
0 

has rank rd > n. By hypothesis 

therefore there is an X € p and an A0-linear map fo: PO ~ A
0 

c A 

such that f 0 (x) = l. Let f: p ~ A be the corresponding A-linear 

map constructed above. Since f 0 (P) c Ao the formula (*) above 

shows that 

f
0

(x) = 1, whence,by condition (ii) 

(in the definition of Lissner~oore extension), f(x) is 

invertible. 

Starting from a Lissner-Moore extension (A
0

,A,8) as above, 

we can (following the ideas of [L-M]) construct new ones as 

follows. Let s 0 be a commutative A
0
-algebra, and put 

d-1 A, so that 1,9, ... ,e is a s
0
-basis of 

X 

B. We 

If x EX and b E B write b(x) in place of the usual x(b). Fix 

any non empty subset Y of X and put 
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S = {b € Blb(y) is invertible in A for all y € Y) 

PROPOSITION: We have C = B[S~1 ] ~ (c
0

,c,e) is a Lissner-

Moore extension of degree d. 

For the first assertion we need only show that if b € S 

then b 
-1 

is invertible in B[s
0 

] . · [S-l . f s~nce B 
0 

~s a ree 

-1 d-1 
B

0
(s

0 
]-module with basis 1,9, .•. ,e the invertibility of 

that of its 

Now N(b) = NB/B (b) € B0 , and 
0 

if y € Y we have NB/B (b) (y) 
0 

= NA/A (b(y)) clearly. By the 
0 

assumption that b € s, the element b(y) is invertible in A, 

whence NA/A (b(y)) is 
0 

NB/B (b) € s 0 , whence 
0 

invertible in A
0 

(for ally € Y), whence 

-1 
N(b) is invertible in B

0
[s

0 
] , as claimed. 

We now show that (c0 ,C,9) is a Lissner~oore extension. 

Condition (i) has already been observed above. To verify (ii) 

suppose given c 

bd-l invertible in c
0

• We must show that c is invertible in 

C. After multiplying by an element of s
0 

we may further assume 
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all bi E B
0 

so c E B. If y E Y then c(y) = b
0

(y) 

d-1 + b 1 (y)e + .•• + bd-l (y)S and bd-l (y) is invertible in A0 . 

Hence c(y) is invertible in A by condition (ii) for (A0,A,8). 

Thus c E s, so c is invertible in C = B[S-1], whence the 

proposition. 

To illustrate how these results are applied (as in [L~] 

consider the case (A
0

,A,8) =(a,a,~l), and let B
0 

be the 

affine ring of some real algebraic variety, say of dimension 

n, whose real points may be identified with x. Then 

B =a ~R B
0 

maps to the ring a(X) of complex valued functions 

on X, and (taking Y above to be all of X) the set S 

consists of those b E B which vanish nowhere on X. It 

follows from the theorem and proposition above that surj K
0

-

-l n 1 
range (B[S ]} ~ 2' whereas dim max (B[S- ]) = n in general 

{cf. (L-M]). As a special case one_ may take B 

in which case S consists of real polynomials in n variables 

with no real zeros, e.g. 1 + {a sum of squares). 
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6.1 Formulation of the problem 

Our discussion here overlaps somewhat with Gersten's 

([ Ger 1], Prob. 2). 

Let A be a ring. Let n be an integer~ 3. Then 

the normal subgroup E {A) 
n 

of GL (A) generated by all elementary 
n 

matrices is perfect. Let f : BGL (A) ~ BGL+(N be the 
n n n 

acyclic map such that Ker nl (fn) = E' (A) , Then we have maps 
n 

s : BGL +(A) BG<+l (A) n n 
and 

t : BGL +(A) BGL+ (A) 
n n 

the latter inducing an isomorphism lim (BGL+(A) ,s ) ~ BGL+(A). 
-'l' n n 

In analogy with §5, we say 

if 

(i) surj Ki-range (A) s n 

(ii) inj K.-range (A) s n 
J. 

(iii) stable Ki-range (A) S n 

(i) Tl . ( s ) is surjective for 
J. r 

(ii) n. (s ) is injective for 
J. r 

(iii) rr.(t) is surjective for 
J. r 

n 

r a n 

r > n 

r an, 

respectively. By suitably modifying the above constructions 
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one should be able to extend these definitions to the cases 

n = 1 or 2 as well as n ~ 3. Then the least n for which the 

above condition holds defines the corresp:mding quantity, and 

we put 

K. -range (A) 
~ 

mas(surj K.-range (A), inj K.-range (A)) 
~ ~ 

The K
1
-stability theorem for commutative rings is: 

THEOREM (see [Ba 1], Ch. V , and Wasserstein [Was]): 

Let A be a commutative ring such that max (A) is a noetherian 

space. Then 

K
1
-range (A) ~dim max (A) + 1 

Moreover the surjective K
2
-stability theorem of Dennis implies: 

THEOREM (Dennis [Den]): With A as above we have 

(XVI) . 
~ 

surj K2-range (A) < dim max (A} + 2. 

It seems reasonable to conjecture, for i ~ 2: 

!£ A is a commutative noetherian 

ring dim max (A) d then 

If a theorem of this type can be established then it would be 

natural to seek refinements in special cases along the lines of 
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the discussion in §5 for i = o. At the moment (XVI). seems 
~ 

rather difficult for large i, though Quillen's results in 

44 

[Q 4) give some evidence for it in case A is a Dedekind ring. 

An alternative, and perhaps more natural, formulation of 

the stability problem for higher K-functors has been given by 

Wagoner in [Wag) • 

6.2 A comparison with topological stability 

In topology one has K-n(X) 
~o n 

= K (S X), so one deducee a 

K-n-stability theorem for X by applying the K
0
-stability 

theorem to S~. One can imitate this argument using the 

Nobile-Villamayor suspension SA of a ring A. It is defined 

by the cartesian square 

SA A[t] 

l lp 
A )-A X A 

A 

where A (a) = (a,a) and p (f) (f(O) ,f(l)). * Since p is 

surjective we can apply Milnor's fibre product theorem 

(cf. [ Ba 1] , Ch. IX, Thm. ( 5.1)) • It yields the following 

* In subsequent terminology this has become the "loop ring" 
OA, augmented by the "unit" A, 
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parametrization of the set Gn of isomorphism classes of 

projective SA-modules P such that P ®SA A ~ An and 

[ - n P ®SA At] = A(t] : Let GLn(A(t]) act on GLn(A) by 

~*a= ~(0) a ~(1)-l 

for a E GL (A) and ~ E GL (A[t]). Then there is a natural n n 

bijection 

G ---'7 GL (A) /GL (A( t]) n n n 

where the quotient is by the action * above. Note that this 

quotient factors through the quotient group 

GL (A)/U (A) 
n n 

where U (A) denotes the subgroup (which is normal) in GL (A) 
n n 

generated by all unipotent matrices I + v E GL (A) • (We 
n 

simply use ~ I + tv to see this.) Since U (A) contains 
n 

E (A) the sets above are quotients of the sets GL (A)/E (A) 
n n n 

which converge to K
1

(A). 

Suppose now that A is commutative. Since the inverse 

image of maximal ideals by p and ~ are again maximal it 

results from ([Ba 1], Ch. IX, Prop. 5.11) that 
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max (SA) rl{;---- max A[t] 

1 I 
max (A) .o,<;---- max (A X A) 

is cartesian in the category of topological spaces. It follows 

that max (SA) is noetherian, and that 

dim max(A[t]) =dim A[t] 1 + dim A. 

Thus we conclude from the K
0
-stability theorem for SA: 1£ 

A is noetherian of dimension d then the maps 

s : GL (A)/GL (A[t]) ~ GL +l(A)/GL 1 (A[t]) n n n n n+ 

are surjective for n ~ d + 1 and injective for n > d + 1. 

This is weaker than the known K
1
-stability theorem above 

in two respects: (i) the quotient GL (a)/GL (A[t]) is smaller n n 

than GL (A)/E (A); and (ii) d = dim A is larger, in general, n n 

than dim max (A). On the other hand the above arguments 

presumably give a stability theorem similar to that above 

for the higher K-functors of Karoubi-Villamayor. We have not 

attempted to articulate it precisely. 
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87 Efficient generation of noetherian modules and ideals 

7.1 Basic elements and stability theorems 

The stability theorems for projective modules have been 

extended in various ways to non projective modules. Recently 

Eisenbud and Evans [E-Ei] have given a coherent and systematic 

treatment of these results, and raised some questions analogous 

to some of those in §5 above. We shall summarize here some 

of these results and questions, referring the ~eader to 

Eisenbud-Evans for more details and references. 

Let A be a commutative noetherian ring. Let M be 

a finitely generated A-module. we define 

~(A,M) =the least cardinal of a generating set of M. 

If x E M and if 7f- e spec (A) we say x is y_ -basic in M 

if IJ. (Att , (M/Ax)if., ) < IJ. (A;g. ,MJ'F ) • By Nakayama 's lemma this 

is equivalent to the condition: x t ~ Mif • We call x ~ 

in M (resp., M-~) if x is c.p -basic for all r.l_ (resp., 
if (j" 

for all ~ E supp (M)). 

Remarks. 

(1) ([E-El], Lem. 1}. If M is projective then x 

is basic if and only if x is unimodular in M, i.e. x 
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generates a free direct summand of rank 1. 

(2) (cf [E-El) 1 proof of Cor. 7) • Suppose I is an 

ideal in A and M= I@ .•• $ I (n terms). Say 

x =(a
1

, ... ,an) EM and put I 0 = Aa
1 

+ ••. + Aan c I. Then 

(a) x is M-basic, 

is equivalent to, 

(b) I 0:/- rt :J I(f for all :f containing annA (I), 

and implies 

(c) /I;= ..[I: 

In view of (1) the following result generalizes Serre's 

theorem (that surj K
0
-range (A) ~dim max (A)}. 

THEOREM (Eisenbud-Evans (E-E 1), Thm. A): lf 1-J. (A(/ ,M~) > 

dim max (A) for all ~ then M contains a basic element. 

Actually a stronger result is proved, from which, among 

others, the following corollaries are deduced. 

COROLLARY 1 (Forster-swan) : 

1J. (A,M) 1- E s~: (M) (1-J. (A:; ,M}) + dim max (A/1)) 

COROLLARY 2: ~ I be an ideal of A. ~ d dim max(A/annA(I)). 

(a) 

(b) 

ll 1-J. (A~ ,If) ~m for all 1-~ 
1-J.(A,I) ~ max (d + 1, m+ dim max (A/I)) 

There exist (d+l) elements a 0 , ••• ,ad E I such that 
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putting I' = Aa0 + ••. + Aad' we have I~ rt. if I1' 

for all ~ containing annA (I) • In particular 

[I• =(I: 

Part (b) sharpens slightly a classical theorem of 

Kronecker. 

7.2 Conjectural improvements for polynomial rings 

49 

Let A be a commutative noetherian ring of dimension d. 

We assume that A is a polynomial ring over some other ring 

(in at least one variable). In (5.4) we have asked in 

particular: 

(XIV) l 

In view of their theorem above, Eisenbud-Evans strengthen the 

condition "surj K0-range (A) < d" part of (XIV) 1 in conjec-

turing [E-E 3] : 

(XVII) If M is a finitely generated 

A-module such that IJ. {A:f. ,M~ ) .2! d 

for all CJ. ~ M 

basic element. 

contains a 

The following corollary of (XVII) has been proved: 
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THEOREM ([E-E 2]: !f I is an ideal in A there exist d 

elements a 1 , •.• ,ad € I such that, putting I' = Aa
1
+ ••• + Aad, 

we have I~ i. IJ-- for all f containing annA (I). .!!l 

particular ji' = JI. 

Eisenbud-Evans further conjecture the following sharpening 

of the Forster-Swan Theorem (Cor. 1 above). 

(XVIII) Let M be a finitely 

generated A-module. Then 

~ ~ ranges over all primes 

for which dim max (A/ ;f ) < d. 

They show in [E-E 3] that (XVIII) is valid if M is a 

projective module of rank one. They also establish their 

conjectures in the following case, related to the theorem in 

(5.4) above. 

THEOREM ([E-E 3]) .: Suppose A= B[t
1

, •.. ,tn] ~ n > 0 ~ 

B semi-local of dimension> o. ~ (XIV)
1

, (XVII) ~ (XVIII) 

are all affirmed. 

In the case of ideals (XVIII) has the followingconsequence 
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as one checks easily. 

PROPOSITION: ~ I be an ideal in A. ~ m(I) 

~ (XVIII) for I implies that 

~ (A,I) ~ max (d,m(I) +dim max (A/I)). 

51 

If I is a maximal ideal then (XVIII) for I is equivalent to 

the condition ~(A,I) < max (d,m(I)). 

Some very interesting special cases of (XVIII) have been 

verified in a sharper form, by Murthy (cf. [Mur 3) and [Mur 1), 

Prop. (4.1)), 

THEOREM (Murthy): ~ A be a commutative noetherian ring of 

global dimension d. Assume either d = 2 and K
0
-range (A) ~ 1, 

££ d = 3 and K
0

(A) = o. Then an unmixed ideal of A locally 

generated by m elements can globally be generated by 

m + (d - 2) elements. 

Remarks. (1) Murthy's hypotheses are inherited by rings of 

fractions (of the same dimension as A) • 

(2) The case d = 2 applies notably when A = D[t] with 

D a Dedekind domain. In the case d = 2 the theorem implies 

that every prime ideal can be generated by~ 2 elements. 
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7.3 Complete intersections in affine 3-space 

Let a= k[t
1
,t

2
,t

3
], a polynomial ring in 3 variables 

over a field k. Let ~ be a prime ideal of A such that 

A/at is a Dedekind domain, and hence the affine ring of a 

non singular irreducible algebraic curve C in affine 3-space 

k3. 

According to Murthy's theorem in(7 .2) above,:/- can be 

generated by .:5. 3 elements. In general f/- cannot be generated 

by 2 elements, however, but the following classical problem is 

still open: 

(XIX) ~ ;F the radical of an ideal 

~ .:5. 2 generators, i.e. is C 

a set theoretic complete intersection 

i!! k3? 

We also have the related question posed by Serre (Ser 3] : 

(XX) Suppose k is algebraically closed 

and that C has genus 0 £[ 1. ~ 

~ then generated by two elements, 

i.e. is C then an ideal theoretic 

complete intersection? 

Serre points out that the answer to (XX) is affirmative provided 
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that all projective A-modules of rank 2 are free (in which case 

all projective A-modules are free, by the results quoted in 

§1). 

Segre in [Seg] claims to furnish a negative solution to 

(XX), and consequently also to Serre's problem (I)
3

,
2

• 

However, Abyankhar has indicated there are some serious 

deficiencies both in the statements of Segre's results, and in 

his method of proof. According to Abyankhar's testimony 

one should not regard [Seg] as essentially altering the open 

status of (XX) • 
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§8 Symmetric and affine alqebras 

8.1 Cancellation for affine varieties 

Murthy has raised the following general question about 

affine varieties X, Y over a field k: 

(1) Does X x k Y X k imply X - Y? 

He has obtained partial affirmative results when X is a 

non singular surface and k is algebraically closed of 

characteristic zero. 

The cases when Y is an affine space kr has some formal 

resemblance to Serre's problem (cf. (8.3) below). Murthy 

remarks that these cases would be solved affirmatively if k 

has the property: 

(2) 
s,r 

Any algebraic action of the 

torus (k*)s on the affine 

r-space kr is equivalent 

to a linear action. 

For then the variety of fixed points would again be an affine 

space. Since X x 0 is the variety of fixed points of the 

obvious action of k* on X x k we thus conclude that 
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X x k ~ kr+l • X~ kr, provided (2)
1 1 

holds. This approach 
,r+ 

to problem (l) is suggested by a result of Byalinicki-Birula 

[B-B] which establishes {2) for all r. 
r,r+l 

In case k = ~ and Y = ~2 a problem related to (l) has 

been treated by Ramanujam [Ram] . 

If in problem (1), we denote the affine algebras of X, 

Y by A,B, respectively, we can rephrase (l) as follows: 

(l') Does A[t] - B(t] imply A~ B? 

Here t is an indeterminate, and the isomorphisms are of 

k-algebras. Problem (l') motivates the notions discussed next 

in (8.2). 

8.2 Invariance of the coefficient algebras in polynomial 

algebras. 

Let k be a commutative ring. Let A be a k-algebra. 

We assume all k-algebras here to be commutative, though much 

of the discussion applies without this restriction (cf. [B-R], 

for example) • One says the k-algebra A is n-invariant if 

whenever B is a k-algebra. Here t
1

, •.. ,tn are indeterminates, 

and "=" signifies k-algebra isomorphism. 
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(XXI)d ,r Suppose k = k
0

[s
1

, ••• ,sd] is 

a polynomial algebra in d 

variables over a field k
0

• 

Let A= k[t
1

, .•• ,t] be a 
--- r ----

polynomial algebra in r 

variables over k. Is the 

k-algebra A n-invariant 

for all n > 0? 

56 

We shall see below in (8.3) Remark (2), that an affirmative 

solution to (XXI)d implies an affirmative solution to Serre's ,r 

problem (I)d • ,r 

Many interesting examples of k; A for which A is 

n-invariant for all n > 0 can be found in [A-H-E] as well as 

the several references cited in that paper. In most of their 

examples A has relative Krull dimension one over k. 

8,3 Symmetric alqebras (cf. [Hoch]) 

As above, let k be a commutative ring. Let P be 

a k-module and Sk{P) its symmetric algebra. The kernel of the 

augmentation ep: Sk(P) ~ k ep(P) = 0, will be denoted J(P). 

Evidently the module J{P)/J(P) 2 over Sk(P)/J(P) = k is canonically 

isomorphic to P itself. Let e: Sk(P) ~ k be any other 
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augmentation, and put J = Ker(e). The k-algebra endomorphism 

a of Sk(P) defined by a(p) = p - e (p) for p E p is an automor-

phis m (with inverse induced bypt+p+ e (p) for p E P) • Clearly 

a(J(P)) c J, whence a(J(P)) J. It follows that J/J2 and 

J(P)/J(P)
2 ~Pare isomorphic k-modules. This observation 

immediately implies: 

PROPOSITION: Let P and Q be k-modules. Then Sk(P) - Sk(Q) 

(~ k-algebras) ~ P ~ Q (~ k-modules) • 

Let P and F be k-modules. We have 

If F is free with basis t 1 , ... ,tn then Sk(F) = k[t1 , .•• ,tn], 

the polynomial algebra, and similarly Sk(P ~F) = Sk(P) [t
1 , ..• ,tn]. 

COROLLARY: Let P, Q be k-modules. Assume the k-algebra 

Sk(Q) is n-invariant. Then 

For in view of the above remarks an isomorphism 

p ~ kn ~ Q ~ kn leads to a k-algebra isomorphism Sk(P) [t1 , .•. ,tn] 

- Sk (Q) [ t 1 , ... , tn], whence Sk (P) ~ Sk (Q) if Sk (Q) is n

invariant, and so, by the Proposition, P ~ Q. 
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Remarks. (l) Suppose Q = kr and P e kn ~ kr+n whereas 

p ~ kr. Then the argument above shows that k[t
1

, ••. ,tr] 

58 

is ~ n-invariant. This is the observation used by Hochster 

[Hoch] to produce algebras which are not n-invariant. 

(2) Suppose k = k 0 [s1 , ... ,sd], Q = kr, and A= Sk(Q) 

= k[t1 , ... ,tr] as in (XXI)ct,r' Let P be a projective 

k-module of rank r. Then it follows from the results cited 

in (5.2) (Corollary to the K
0
-stability theorem) that 

P ~ kn ~ Q e kn if n > d - r. Thus it follows from the 

corollary above that P $ kr provided that A is n-invariant. 

This explains the relationship (XXI)d to Serre's problem ,r 

(I\ . a,r 
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§9 Finiteness questions 

9.1 Rings of finite type 

If A is a right noetherian ring then G (A) ~ K (Mod f(A)), 
n n 

fue Quillen Kn-group of the category Mod f(A) of finitely generated 

right A-modules (cf. [Q. 2] or [Q 3]). There is a canonical 

"Cartan" homomorphism K (A) -+ G (A) which is an isomorphism 
n n 

if A is right regular (loc. cit.) 

* We ask here whether the groups G (A) are finitely generated 
n 

under reasonable finiteness assumptions on A. 

(XXII) 
n ~ A be a finitely generated 

commutative Z-algebra. Is 

Gn(A) finitely generated? 

(XXIII) ~ G0 (A) finitely generated 

whenever A is a finitely 

generated commutative 

R-algebra, where R is 

either Z or a field finitely 

generated (as a field) over 

its prime field? 

* More generally, we might ask if they are "F-finitely generated," 
i.e. whether F ® Gn(A) is a finitely generated F-module, for 

F = IJ!,& ,:&: , ••• p p 
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(XXIV) 
m 

(XXV) n(>O) 

Remarks 

~ A be a (not necessarily 

commutative) ring finitely 

generated as a Z-module. Are 

G (A) and K (A) finitely 
n -- n 

generated? Is the kernel of 

K (A) ~ G (A) a torsion group? n n 

~ A be a finite ring. Is 

K (A) finite? 
n 

(1) Orders 

60 

The most far reaching result toward (XXII) and (XXIV) n n 

is Quillen's theorem that Gn(A) is finitely generated when A 

is the ring of integers in a number field [Q 4] • This relies 

on work of BOrel and Serre on the cohomology of arithmetic 

groups, which Borel earlier used to calculate m ~ K (A). 
n 

Analogues of the Borel-Serre results in characteristic p > 0 

would yield the analogue of Quillen's theorem for maximal 

orders in global fields of characteristic p, though one might 

here only expect finite generation module p-torsion. 

(2) Finite rings 

If A is a finite ring then Kn(A) is finite for n > 0 

when A is semi-simple. This reduces, using Morita theorems, 
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to the case of finite fields, where the finite group K (X ) n q 

are known explicitly [Q 1]. If A is not necessarily semi-

simple then Gn(A) is finite for n > 0, since Quillen's devissage 

theorem ({Q 2] 

= K {A/rad A) . 
n 

or [Q 3]) implies that G (A) ~ G (A/rad A) 
n n 

The finiteness of K (A) would follow if one 
n 

had reasonable stability theorems for K (cf. 86), as one does 
n 

for n ~ 2. Another approach would be to obtain good control 

of the kernel of K (A) ~ K (A/J) whenever J is a nilpotent ideal 
n n 

in a ring A. 

(3) Use of devissage and localization in (XXII) 
n 

Let A be a commutative finitely generated z-algebra. 

Quillen's devissage theorem implies that A~ Ared = A/{nil rad A) 

induces isomorphisms G (A d) ~ G (A) . Thus (for problem 
n re n 

(XXII)) we may assume A is reduced. We can then further find 

a non division of zero s in A such that A[l] is a finite 
s 

product of regular integral domains~ this follows from 

"Closedness of the singular locus." Quillen's localisation and 

devissage theorems then yield a long exact sequence 

1 
. . • -"- G (A/sA) -~G (A) -----7G (A[-]) -----) G l (A/sA) --~ 

7 n - 7 n n s n-

Since dim {A/sA) < dim A, and since the groups G (A) are 
n 

finitely generated when A is finite, we can argue by 

induction on dim (A) and so reduce (XXII} to the case where 
n 
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A is a regular integral domain. In this case we further have 

(XXII') 
n 

G (A). 
n 

Thus (XXII) is equivalent to: n 

~ Kn(A) finitely generated 

~ A is a regular integral 

domain finitely generated as 

~ z-algebra? 

(4) The Mordell-Weil Theorem (cf. [Roq]) 

It implies that if A is a normal integral domain 

finitely generated as a Z-algebra then Pic(A) is finitely 

generated. If further dim (A) ~ 1 then K
0

(A) - Z ~ Pic(A) 

is finitely generated. Combining this with the remarks in (3) 

above one deduces (cf. [Ba 1], Ch. XIII, Cor (3.2)) that 

(XXIII) has an affirmative solution if dim (A) < 1. A 
n -

procedure for attacking (XXIII} by induction on dim (A) 
n 

is suggested by Roquette's proof of the Mordel-Weil Theorem [Roq]. 

9.2 A PID with SK
1 
~ 0 

Examples showing why problem (XXIII} is formulated only 

for G
0

, and not Gn(n > O) or Kn(n a 0) are given in [Ba 1], 

Ch. XIII, §3. The constructions used there also furnish the 

following example of a principal ideal domain B ~ 

SK
1

(B) ~ 0 and not even finitely generated. This responds to 

a question raised by Swan [ (Sw 3], p. 203]. 
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Let k be a field finitely generated over its prime 

field. Let A be the coordinate ring of an absolutely 

irreducible anu smooth affine curve C of genus g > 0 over 

k. If k' is a k-algebra put~· =A ~k k'. Mordell-Weil 

implies that Pic(A) is finitely generated. Removing a finite 

number of points from C we may therefore further impose that 

Pic(A) = 0, so A is a PID. It follows then that B = ~(t) 

is likewise a PID, where t is an indeterminate. Now we have 

from [Ba l], Ch. XIII, Cor (3.4) an exact sequence 

SKl (B) -----:p l_lPic (~(x)) -io 0 
X 

where k(x) ranges over all residue class fields of k[t]. Since 

g > 0 the groups Pie (~(x)) are~ 0 for infinitely many 

* k(x) 's, whence SK
1

(B) is not finitely generated. 

(9.3} Rational varieties 

Let k be an algebraically closed field and A the 

* Pic(~(x}) is essentially J(k(x))/(J(k(x)) n r) where J(k') 

denotes k'-rational points on the Jacobian J of the complete 
non-singular curve containing c, and where r denotes the 
subgroup generated by the (finite number of)points at infinity. 
If k is the algebraic closure of k then the torsion of J(~) 
looks like that of(m/z)29 except for p-torsion (p = char(k)) 1 
thus J(k') effectively grows in size ask' approaches k. 
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coordinate ring of an affine variety X over k. It is 

unreasonable to expect K0 (A) to be finitely generated unless 

X is almost rational. Even this does not suffice, as the 

following example of Murthy shows (cf. [Mur 1], sec. 6). 

Example. Let f e B = k[t
1

, ... ,tn] define a non-singular 

hyper-surface in kn. Put A = B[x,y] = A[X,Y]/(XY-f). Then 

-1 -1 ~ 
A[x ] = B[x,x 1 (Laurent polynomials) and A/xA = (B/fB)[y], 

so A is regular and "birationally equivalent" to 

-1 -1 . 
B[x,x ] = k[t

1
, ••• ,tn,x,x ] • Moreover P~c (A) = 0, whereas 

K
0

(A) ~ K
0

(B/fB). For a suitable choice of f one can make 

K0 (B/fB) extremely large, whence likewise for K
0

(A). 

Presumably varieties admitting cell decomposition, 

e.g. linear algebraic groups, can be shown to have finitely 

generated K0 's, (cf. [J
0

]l • 

finiteness properties? 

Do their K 's have any similar n 
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COMPARISON OF ALGEBRAIC AND TOPOLOGICAL K-THEORY 

L. Roberts 

Let X be a quasiprojective algebraic variety over 

the complex numbers C , and let XC denote the closed 

points of X , with topology induced by the usual topology 
~ on C .(By variety over a field we mean scheme of finite 

type over F), To an algebraic vector bundle (locally 

free sheaf of finite type) on X we can associate a con-

tinuous complex vector bundle on Xc 

homomorphism 

This gives a ring 

where Ka denotes the Grothendieck group of algebraic 

vector bundles and exact sequences while K(XC) is the 

Grothendieck group of complex topological vector bundles 

on X The problem is to try to understand this homo-

morphism, with the hope that this will help in computing 

The homomorphism $X has been 

studied by J.P. Jouanolou in [6], [7], especially in the 

cases where X is the complement of a smooth complete 

intersection in , or an affine or projective quadric. 

It is not an isomorphism in general. 

The corresponding problem with real varieties does 
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not seem to have been studied as much. If X is a quasi

projective non-singular algebraic variety of dimension 

n over the real numbers R , then the set XR of real 

points is either empty or an n dimensional real manifold. 

In the latter case one can define a homomorphism 

If X is projective this homomorphism cannot be injective 

since on X there are line bundles of infinite order 

(under ® but on XR every line bundle is of order 2. 

If X is affine, say X = Spec A then ~X can be 

obtained as follows: restriction gives a homomorphism 

, where C = real valued continuous functions. 
R 

This gives a homomorphism Ka(X) = K
0

(A) ~ K
0

(CR(XR)) = KO(XR) 

Some examples are the following: If A= R[X
0

, ••• ,Xn]/ 

2 2 n <X0 + .•• +Xn-l) then XR = S Fossum has proved in (3] 

that ~X is surjective. It is known that ~X is an 

isomorphism for n < 4 but if n > 4 it is not known 

whether ~X is an isomorphism or not. If A : even part 

of 2 2 RPn and it R[X 0 , ••• ,Xn]/(X0+ .•• +Xn-l) then X = R 

proved in (5] that +x is an isomorphism for all n 

except if n: 6,7 or 8 mod 8 If n = 6,7 or 8 

~X is also an isomorphism, but the cases n > 13 

n = 6,7,8 are not known. 

is 

One can try complexifying the real case. For example, 

if X = Spec A is affine, then restriction gives a homo-
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morphism A 0R C + CC(XR) where CC = complex valued 

continuous functions. This gives a homomorphism 

2 2 K0(A3RC) + K(XR) If A= R[X0 , ••• ,Xn]/{X0+ ••• Xn-l) 

this was shown to be an isomorphism in [3] and if A= even 

2 2 part of R[X 0 , ••• ,Xn)/(X
0

+ ••• +Xn-l) it was shown to be an 

isomorphism in (5). However, in the first case (Spec A)C 

is of the same homotopy type as Sn and in the second 

{Spec A)C is of the same homotopy type as RPn , so 

both are reduced to a special case of the problem considered 

by Jouanolou. 

If one is allowed to change the algebraic ring much 

better results have been obtained. Again let X be an 

affine variety over the reals, X = Spec A In [2] it is 

proved that if XR is compact and S c A is the 

multiplicative set of all elements that vanish nowhere on 

XR , then the map K0 <As) + KO(XR) is a monomorphism but 

not necessarily a surjection. In [8] it is proved that if 

one starts with the compact real n-dimensional manifold M , 

then there exists a non-singular n-dimensional affine 

variety X = Spec A such that M is isomorphic to a connected 

component of XR and the homomorphisms K0 <As) + KO(M) and 

K0 <As~RC) ~ K(M) are isomorphisms. The rings As are no 

longer algebras of finite type over R and these results 

do not seem to help compute K0 (A) 

If the real variety X has no real points, K {X) 
a 

is still defined, but few examples seem to be known. One 

could try extending scalars to C , as in [12], but the 

2-torsion gets lost. 
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One can also consider the relationship between 

isomorphism classes of algebraic and topological vector 

bundles. This was done for s2 in [9]. It follows easily 

from [9] and [10] that the homomorphism 

~ : ~[X0 ,x1 ,x 2 J/(X~+xi+x;-l) + Cc<s 2> induces a bijection 

on isomorphism classes of projective modules of finite 

type, and from [9] that the homomorphism 

2 2 2 2 R[X 0 ,x1 ,x2 J/(X0+x
1

+x2-l) + CR(S ) induces a surjection on 

isomorphism classes. It does not seem to be known if the 

latter is a bijection. A similar problem for the L-holed 

torus is considered in [1], but the corresponding problem for 

other spaces such as Sn n > 3 does not seem to have 

been considered. 

In a similar vein, let T be the tangent bundle to 

Sn Then the maximum rank of a free direct summand of T 

is known topologically, and it is shown in [4] that this 

number arises algebraically, even over Z[X
0

, ••• ,Xn]/ 

Topological results are also used to 

obtain non-stable algebraic results in [11], where universal 

stably free projectives are discussed. 
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APPLICATIONS ALGEBRIQUES DU 

TORE DANS LA SPHERE ET DE sP X Sq DANS Sp+q 

par Jean-Louis LODAY 

La sph~re Sn est l'ensemble des elements x (x ,x
1

, ••• ,x ) de o n 
Ff1+1 lxl2 2 2 2 tels que = x

0 
+ x

1 
+ ••• + xn = 1 • Une application algebrique de 

gP X Sq dans est la donnee de p+q+1 polyn6mes en 

( p+.1) + ( q+ 1) variables et a coefficients reels tels 
p+q 

que E 
i=o 

2 P. (x,y) = 1 
J. 

des que lxl=1 et IYI=1. 
L'etude du cup-produit en K-theorie topologique (cf.[5)) nous 

amene tout naturellement a la question suivante : existe-t-il une applica

tion algebrique de S 1 x S 1 dans s 2 de degre un ? 

Le but de cet article est d'etudier plus generalement l'existence 

d' applications algebriques de gP X Sq dans gP+q ou de Tn = S 1 X ••• X S 1 

dans sn de degre donne. 

On rappelle que les classes d'homotopie d'applications continues 

d'une variete topologique orientable M de dimension n dans Sn sont clas~ 

sifiees par leur degre k E 'Z! (cf. [ 6]). 

Dans le paragraphe on montre que toute application algebrique de 

dans pour p et q impairs et de pour 

est homotope a une application constante. Ces resultats sont des applications 

de la K-theorie algebrique. Dans le paragraphe 2 on exhibe plusieurs applica

tions algebriques de sP X Sq dans Sp+q non homotopiquement triviales. Ces 

resul tats ont ete annonces partiellement dans [ 4 J • 
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1. - Soit X la variete algebrique affine de Rn+1 de£inie par les poly-

nomes R[x, ••• ,x]. 
o n 

On note Ci(X) l'anneau quotient de 

C[:x:
0

, ... ,xn] par l'ideal engendre par les polynomes P
0

, ... ,Pk. On desi

gnera par C(X) l'anneau des £onctions continues de£inies sur X a valeurs 

dans C • L 'homomorphisme d 'anneaux de Ci(X) dans C(X) qui, a la classe 

d'un polynome Q dans Ci(X) £ait correspondre sa £onction polynome, sera 

note w(X) ou w s'il n'y a pas d'ambiguite. 

THEOREME 1.- Toute application algebrique du tore Tn dans la sphere Sn 

est homotope a une application constante. 

DEMONSTRATION. - Soit £ une application algebrique de Tn dans sn. Elle 

induit deux homomorphismes d'anneaux : l'un 

l'autre £t de C(Sn) dans C(Tn). Le diagramme (1) est commutati£, 

(1) 

a)~ n pair (n=2p), Soit R un anneau unitaire. K
0

(R) est le groupe 

de Grothendieck de la categorie des R-modules projecti£s de type £ini. On pose 

Appliquons le foncteur K" au diagramme (1). On obtient le diagramme (2). 

rcs2P) * """ ( 2p) w 
Kt S 

a 1£: 
lf; (2) 

K0 (T2P) a K~(T2P) 

ou 1 'on a pose pour toute variete 
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algebrique X. Le groupe K~(X) est isomorphe au groupe de Grothendieck 

de la categorie des fibres vectoriels complexes sur l 'espace topologique X. 

Les lemmes 2 et 3 montreront que l'homomorphisme f* est nul. 
t 

On en deduira 

par le lemme 4 que le degre de f est nul. 

DEMONSTRATION. - Le groupe K0 (s2
P) est isomorphe a Z • Par consequent il 

t 

nous suffit d'exhiber un element de K0 (s2P) dont l'image est un generateur 
a 

de K~(s2 P). Soit cn+1 l 1algebre de Clifford de cn+1 muni de la forme 

quadrati que est isomorphe a une sous-algebre de 

1 'algebre des matrices d 'un certain espace vectoriel de dimension k. On 

note e
0

,e
1

, ••• ,en les images dans Cn+1 des vecteurs de base de Cn+
1

, On 

identifie a des k X k -matrices a coefficients complexes. 

Ainsi 

q = -2
1 

(e x + e
1 

x1 + ••• + e x -id) o o n n 

definit un projecteur ( l = q) d 'un G(Sn) -module libre de dimension k • 

L'image de q est un G(Sn)-module projectif de type fini qu'on note M(q). 

Le projecteur q peut aussi etre considere comme un endomorphisme d'un 

C(Sn)-module libre de dimension k. Il definit alors un C(Sn) -module pro

jectif de type fini M'(q) image de M(q) par w(Sn). 

Dans le cas de la sphere s2 on sai t (Cf. par exemple [ 2 ] ) que 

la classe dans K0 (S2 ) du projecteur 

' " t de ~K0 (S2 P) par un gen~ra eur q2P ~o( 2p+2 est un generateur de K S ), Le cal-

cul explicite du cup-produit par la formule donnee dans [5] theoreme 3, 
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permet de montrer que si on ecrit 

1 
q2 2 (e

0
x

0 
+ e1 x1 + e

2
x

2
-1), xE 

et q2p= l (e~x~ + elx;+ ••• + e2Px;P-1), x•Es
2

P 

et si on identifie s 2 
1\ s 2P avec s 2P+2 alors (cup-produit) 

s'ecrit 

1 
q2 uq2p=2 (e

0
® e~x~+ ••• +e2 ®e~x2 +1®e1'x3+ ... +1®e2px2P+2 -1) 

avec x" E s 2P+2 • D'ou le resultat par recurrence. 

REMARQUE. - R. FOSSUM a montre que W*(S2n) est aussi injecti£ et done un 

isomorphisme. (Cf. [3] Proposition 3.1.). 

( n /2 2 2 2 DEMONSTRATION.- CL T) est l'anneau C[x1,x2 , ... ,x2nJ (x1+x2-1, •.• ,~n-1 +~n-1) 
Posons uk=x2k_ 1 +ix2k pour k=1, ••• ,n; (i=F'f). CL(Tn) est alors cano-

[ -1 -1] niquement isomorphe a 1 'anneau c u1 ,u, , ••• ,un, un • R etant un anneau 

noetherien regulier K0
(R[t,t-1]) est isomorphe a K0 (R) d'apres un theo-

reme de Grothendieck (c£.[1] p.636). En appliquant n fois ce theoreme a 

l'anneau CL(Tn) on en deduit : 

LEMME 4. - Soi t X une variete topologique de dimension 2p £,! £ : X __ ..,. s 2P 

une application continue. Si l 'homomorphisme £* : K0 
(s2P) ---?> K0

(X) est nul, 

alors l'application f est de degre zero. 

DEMONSTRATION. - Dans le diagramme commutatif (3) Ch designe le caractere 

de Chern : 
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(3) 

_C:::..:h::..>(..::X;.L) __ ~? H pair (x,~) 

L'homomorphisme Ch(s2P) induit l'inclusion naturelle de X dans ~ et 

H(£) est la multiplication par le degre de£. L'homomorphisme £* etant nul 

par hypothese, on en deduit que le degre de £ est zero. 

Terminons la demonstration du cas a) du theoreme 1. Dans le dia

gramme (2) le groupe K0 (T2P) est nul (Lemme 3), et l'homomorphisme w*(s
2

P) a 

est surjecti£ (Lemme 2), done £* =£* 
t 

est nul. Le degre de £ est alors nul 

(Lemme 4) et par le theoreme de Hop£ £ est homotope a une application cons-

tante. 

b) Cas n impair: On applique le foncteur K1 de Bass (Cf.[1]) 

au diagramme (1). On obtient le diagramme commutati£ (4) : 

r- 1(sn) 
a 

1£: 
K-1 (Tn) 
a 

Notons K-1(XJ = [X,GL(C)] 

-1( On a une surjection naturelle de Kt X) 

diagramme commutati£ (5) : 

r-1csn) 
* w 

a 

1 
K-1(Tn) 
a 

K-1(Sn) 

' l £: (4) 

K-1(Tn) 
t 

le groupe de K-theorie topologique. 

-1( dans K X) ; d'ou le nouveau 

K-1 (Sn) 

1,• (5) 

K-1(Tn) 
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Les lemmes 5 et 6 montreront que l'homomorphisme f* est nul. On en dedui-

ra par le lemme 7 que le degre de f est zero. 

LEMME 5. - L'homomorphisme 

-1 ( n DEMONSTRATION. - Si n est pair K S ) = 0 • 

est surjectif. 

est isomorphe a ~. Par consequent il nous suffit d'exhiber un element de 

K-1(Sn) dont l'image par w* soit un generateur de K- 1(sn). Soit en 
a 

l'algebre de elifford de Cn muni de la forme quadratique 

en est isomorphe a une sous-algebre de End(Ck). No tons les 

images dans en des vecteurs de base de Cn. On identifie e 1 , .•• en a des 

matrices a coefficients complexes. 

Notons a l'automorphisme d'un G(Sn)-module libre de dimension 
X 

k defini par 

a 
X 

eet automorphisme definit un element de 

le considerer comme une application continue : 

x ~a 
X 

On peut aussi 

La classe d'homotopie de a est un element [a] de [Sn,GL(CJ] = 

K- 1(sn). On montre que [a] engendre K- 1(sn) comme dans le lemme 2. 

LEMME 6.- L'homomorphisme f*: K- 1(Sn) -K-1(Tn) induit par l'applica

tion algebrique f : Tn --~ Sn(n;:, 2) est nul. 

DEMONSTRATION. - Le groupe -1( n-1 ~or,Jl-1 -1( 1 est isomorphe a K T )E!lK \1' )E!lK S) 
a a 

e•est une consequence immediate du theoreme suivant du a Bass, Heller et 

Swan: pour tout anneau regulier A, K
1
(A[t,t-1]) est isomorphe a 

K1(A) Ell K0 (A). De meme en K-theorie topologique le groupe K-1(Tn) est 
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On va montrer que f* est nul en prouvant la nullite des trois 

homomorphismes 

i) L'homomorphisme est la somme directe des 

homomorphismes 

(Cf. Bass [1] p.750 et 751). L'homomorphisme compose 

~o( n-1 se factorise a travers Ka T ), 

done l'homomorphisme compose 

Or on a vu que ce groupe est nul (lemme 3), 

(Sn) ---> K0 (Tn- 1) est nul. D'ou 

ii) L'homomorphisme compose K-1 (Sn) ---':!> K-\Tn) ---!!> K-\Tn-1) est nul 

caril est induit par l'application composee Tn- 1
c___;.. Tn~sn, qui est 

homotope a une application constante. 

car il est induit par l'application composee s 1~Tn sn qui est homo-

topiquement triviale si n:;o, 2 , 

Le theoreme 1 pour n impair resulte alors du lemme suivant 

LEMME 7. - Soi t f une application continue Tn _.,.. Sn (n 2p + 1) telle que 

l'homomorphisme induit K-\sn) --?K-\Tn) soit nul, alors f est homotope 

a une application constante. 

DEMONSTRATION. - Comme dans le lemme 4 on compare cet homomorphisme a celui 
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que f induit en cohomologie rationnelle. Ce qui donne le diagramme commuta-

tif ( 6) 

Ch 

(6) 

Ch 

La fleche horizontale superieure induit l'inclusion naturelle de 

:l dans 11), done l 'homomorphisme H(f) induit par f en cohomologie ra-

tionelle est nul. En dimension n cet homomorphisme est la multiplication 

par le degre de f ; on a done deg(f) 0 • 

Le theoreme 1 peut se generaliser partiellement 

THEOREME 8. - ~ X une variete algebrique affine sans singularites de Rk 

compacte et orientable en tant que variete topologigue. Si la dimension de 

X est impaire (dim X= 2n-1), alors toute application algebrique 

f : S 
1 x X --~ s2n est homotope a une application constante. 

DEMONSTRATION. - On considere le diagramme commutatif (7) 

Ko( 52n) 

a 1': 
Ko( 52n) 

l~ 
'K:(s1 xx) ~o( 1 

Kt S X X) 

(7) 

Le groupe 'K~(s 1 xx) est isomorphe a r;cs 1,\X) EB K~(X). Par un theoreme 

Grothendieck deja cite ([ 1] p.636) K0 (S 1 x X) est isomorphe a K0 (X) et a a 

l'homomorphisme w*(s 1 x X) est simplement 0 EB w*(x). 

Le diagramme (7) se decompose en les diagrammes commutatifs (8) 

et (9). 
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Ko(S2n) Ko(S2n) X:rl Ko(S2n) 
a t 

t 1 (91 

1 1 (8) 

'K:_(x) ~(X) 0 ~(s \u) 

;) , . -o( 2n) -o(X) • L homomorph~sme Kt S --~ K t est nul car il est induit par 

l'application homotopiquement triviale 

;;) 'h . -o(s2n) """( 1 ) .. •• L omomorph~sme Kt ---> Kt S /1 X est nul car sa compos~ t~on 

avec l'homomorphisme surjectif w*(s2n) est nulle. 

Done 

est nul et, par le lemme 4, f est de degre zero. 

THEOREME 9. - Si p et q sont impairs toute application algebrique de 

sP X Sq dans Sp+q est homotope a une application constante. 

DEMONSTRATION.- Elle est du m@me type que celle du theoreme 1 cas a). 

Soit f: sP x Sq --~ sp+q une application algebrique. Le diagramme (10) est 

commutati.f : 

phisme 

K0 (Sp+q) 
w*(sp+q) 

K0 (Sp+q) 

a 1 £; l (10) 

K0 (SP x Sq) 
a K0 (SPxsq) 

t 

Supposons que K
0 

( S P X S q) = 0 • On en de dui t alors que l 'homomora 

est nul. Comme p+q est pair w*(sp+q) 
I 

est sur-

jectif (Lemme 2) et done .f;:r~(sp+q) --~K~(sPxsq) est nul. Du lemme 4 
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on deduit que f est de degre zero. Il nous reste a demontrer le lemme 

suivant : 

LEMME 10. - Le groupe K0 (Sp x Sq) est nul lorsque p et q sont impairs. a 

DEMONSTRATION. - Ce lemme est un corollaire du resultat suivant dfi a 

Jouanolou [ 3] : soi t Q une quadrique lisse sur C ( ici Q = Sq) et X une 

variete quasi-projective lis se sur C ( ici X= sP) telle que 

soit un isomorphisme. 

Alors la suite 

est exacte, w*(Sq) est un isomorphisme par la proposition 3.1 de [3]. 

Dans notre cas particulier la fH~che 

morphisme de z dans z , d.'ou le resultat enonce. 

2. - Applications algebriques de sP X s 9 dans Sp+q non homotopiquement 

triviales. 

DEFINITION. - On appelle multiplication orthogonale toute application bi-

linea ire F: Rk X R'e, --?> ifl telle que IF(x,y) I 

Considerons la sphere 

de point-base (1,0, ... ,0). 

d'equation 

Si on pose x' 
0 

d . x'2 + 2 2 , ev~ent 
0 

x 1 + ••• + xn- 2 x
0 

= 0 • 

1- X 
0 

0 et 

son equation 

LEMME 11. - So it F : RP+ 1 X Rq ~ Rq une multiplication orthogonale, 

l' application algebrique £: fsP x sq ---> sP+9 

lCx,yJ r--? z 
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est de degre un. 

z' 
0 

z. 
J 

z . 
P+l. 

.l x• y' 
2 0 0 

_! X. y' 
2 ;l 0 

1 
= -

2 
F.(x' ,x

1
, ••• ,x ; y

1
, ••• ,y ) 

l. 0 p q 

j 1 ' ••• ,p • 

i 1' ••• ,q 

DEMONSTRATION. - L 1 application £ envoie sP V Sq sur le point-base de 

sP+q • De plus par restriction £ definit un homeomorphisme de 

sPxsq- sPvsq sur sp+q_{*}, carl'applicationbilineaire F est 

non degeneree. Un point quelconque de sp+q_ [*} a done un seul antece-

dent ; on en conclut que £ est une application de degre un. 

THEOREME 12. - Il existe une application algebrique de degre un de sP x sq 

sp+q pour tout couple d'entiers (p,q) tels que 

a b ( q = 2 .16 • 2c + 1) 

p s 2a + 8b -1 

DEMONSTRATION. - Grace au lemme precedent il nous suffit de montrer qu'il 

existe une multiplication orthogonale de RP+1 X Rq dans Rq • On sait 

qu'il en existe pour les couples d'entiers (p,q) satisfaisant aux condi-

tions du theoreme (Cf. par exemple [2] p.156). 

~~:~E~: : La multiplication dans C definit une forme de Hopf de 

R 
1

+
1 

x R
2 ---> R2 d'o\l une application algebrique de S 1 x s 2 dans s 3 , de 

degre un : 
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COROLLA IRE 13. - Si en plus des conditions du theoreme precedent p + q est 

impair il existe une application algebrique de sP x Sq dans sp+q de degre 

quelconque. 

DEMONSTRATION .- Etant donnee une application algebrique de degre un de 

sPxsq dans sp+q, il suffit de la composer avec une application algebrique 

de sp+q dans sp+q de degre n pour obtenir une application algebrique de 

sP x Sq dans sp+q de degre n • Or Wood a montre que si k est impair 

toute classe d'homotopie d'applications continues de sk dans lui-m@me peut 

@tre representee par une application algebrique (Cf. [7] ). 

THEOREME 14, - Si p (ou q) est pair, il existe une application de degre 

deux de gP X Sq dans Sp+q • 

DEMONSTRATION. - On considere l 'application algebrique £: sP x sq ~ sP+q 

definie par f(x , ••• ,x ; y , ••• ,y ) = (x y , x
1 

y , ••• ,x y , y
1

, ••• ,yq). 
o p o q oo o po 

L'image reciproque d'un point N de gP+q est, en general, composee de 

deux points M et M'. Il su££i t done (Confer par exemple Milnor [ 6 J) de 

regarder si £ conserve ou non !'orientation en M et en M'. Considerons 

le diagramme suivant : 

ou s(x
0

, ... ,xp; Y
0

, ... ,yq) = (-x
0

, ... ,-xp, -y
0

, +Y
1

, ••• ,+Yq)•Ce diagramme 

est commutati£. L'application s echange les points M et M' , et son 

d r , t (-1)q+2 • Done s1· t · £ 1 1 • t t" M eg e es q es pa1r conserve or1en a 1on en 
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et en M'. Le degre de f est done 1 + 1 = 2 • 

Ces deux theoremes d'existence et le theoreme 1 ne permettent pas 

de repondre dans tousles cas a la question posee dans l'introduction. 

Notamment on ne sait pas s 'il existe une application algebrique de s2 X s2 

dans s4 de degre un. 
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On the K
0 

of certain polynomial extensions ')';: 

by Claudio Pedrini 

Introduction 

It is a well known result of Grothendieck that,if A is a left regular ring and T a 

finetely generated free abelian monoid,then the inclusion K
0

(A) ~ K0 (A[T]) is an 

isomorphism. 

In this paper we give sufficient conditions for the isomorphism above for certain 

classes of non-regular commutative rings: in §2 we consider the case of a ring A 

which is gotten from a regular ring B 

(for the definition see §1) and prove 

by glueing two distinct prime ideals p
1 

and p
2 

that NK (A)-:::- NK (B/p n p ) (theorem 9).This 
0 1 1 2 

implies that,if V is an affine non-singular variety and W the variety obtained from 

V by glueing together two irreducible non-singular subvarieties, which meet transve£ 

sally at every point, then K
0

(A):::! K
0

(A[T}), where A= k[W].(Proposition 2). 

I §3 we state an analogous result in the case A is gotten from a regular ring B by 

glueing one prime to itself via an automorphism (theorem 10): as a consequence of"this 

theorem (Corollary 3) we see that if V is an affine non singular variety and W the 

variety obtained from V by glueing a non-singular curve to itself then K
0

(A)!::K0 (A(T]). 

§4 contains some results which have been obtained jointly with M.Pavaman Murthy.The 

main result of this section is Corollary 5: if A is a commutative ring containing an 

algebraically closed field k and K
0

(A) ~ K0 (k(t)~kA) then K
0

(A) = K
0
(A(t})• Using 

this we show that, if A= k[x,y,z], zn = xy, then K
0

(A) ~ K
0

(A[T])z-.Z • 

An interesting open problem is to find necessary and sufficient conditions for 

the isomorphism K0 (A) ~ K
0

(A[T])and relate these conditions,when A is the coordina-

te ring of an affine va riety V, with the singularities of V. The corres~on-

ding problem of the isomorphisms PicA= PicA(T] and PicA= PicA[T,T-
1
] has been 

considered by several authors : we record here some of the known results in this 

direction. C.Traverso (see [111) has given a definition of seminormal rings (see §1 

for more details) and has shown that a ring is seminormal iff PicA= PicA[T). In 
Ar.b case A satisfies (S

2
) then it is seminormal iff \( b b where b is the conductor 

from the integral closure A to A (see 3 ,Prop.7.12). Salmon (see[lO]) has proved 

that the coordinate ring of a simple algebraic plane curve C is seminormal iff C has 

at most nodes. His result can be extended to curves in 3-space:such a curve is semi-

(*) This research was supported by C.N.R. 
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normal iff it has at most nodes or triple points with linearly indipendent tangents. 

No general result of this to type is known in higher dimension; Bombieri ~npublished) 

has proved that a surface inW
3

,which has only ordinary singularities (i.e. it is a 

generic projection of a non singular surface in higher projective space) is semmormal. 

A different geometric characterization of "weakly normal" rings (a class containing 

the class of seminormal rings and equal to the latter when the base field has charac

teristic o) has been given by Andreotti-Bombieri (see[1]).A stronger condition than 

seminormality (but, in general,not equivalent to normality) is the isomorphism PicA~ 

PicA [T,T-
1
] • Bass-Murthy (see[3] ,th.8.1) proved necessary and sufficient condi-

tions for the isomorphism above,when dimA = 1. If A is the coordinate ring of an 

irreducible curve Cover on algebraically closed field then Pie A~Pic A[T,T-
1
] iff 

C is non singular (see[7},th.1). This theorem does not extend to higher dimensional 

varieties; in §1 (theorems 6 and 8) we recall some results on the isomorphism Pie A~ 

Pie A[T,T- 1],when A is obtained from a normal ring by glueing one or two primes. 

My thanks are due to H.Bass and M.Pavaman Murthy for many helpful suggestions. 

1. In this section we recall some definitions and results which will be used later on. 

Our notations will be consistent with those in ~].All rings will always be commutative 

with identity,and all modules unitary. 

Let A be a commutative ring, f(A) the category of finetely generated projective 

A-modules with"product" $(in the sense of 2 ,chap.VII),Pic A the category of finetely 

generated projective modules of rank 1, with product ®A: we will always denote 

K;(f(A))= K;A i= 0,1 and K (Pie A)= Pie A. By K A we will denote the Milnor' s group 
• • 0 = 2 

i.e. the kernel of the homomorphism St(A) ~ GL(A), where St(A) is the Steinberg 

group (cfr. [5] ,§5). 

Let t be an indeterminate over A,A[t] the polynomial ring.The augmentation A[~~A 

is a left inverse for the inclusion A <.A [t]. Therefore if F: (rings) ~(abelian groups) 

is a functor we have 

F(ACt])-:::. F(A) (!} Ker (F(A[t]) ----" F(A)) 

We will denote by NF the following functor.: 

NF(A) = Ker (F(A[t]) ~ F(A)) 

so that we have 

F(A[t]) -:::: F(A) @ NFA 
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Twill always denote a finetely generated free abelian monoid,A[T]the polynomial 

ring and A[T,T-1 the group ring AG, where G is the free abelian group on the genera-

tors of T. 

Now we state a result of Milnor on cartesian squares: 

Theorem 1 : Let 

A ---r"" A I 
2 2 

be a cartesian square of ring homomorphisms. Then 

is the following exact Mayer-Vietoris sequence 

a) if f
1 

or £
2 

is surjective th~re 

K A -+ K (A ) EB K (A ) ~ K (A') ~ K A ~ K (A ) $ K (A ) ~ K A' 
1 11 12 1 0 01 02 0 

b) if all the homomorphisms are surjective the exact sequence above can be extended 

to the following : 

K A- K (A ) ~ K (A )~ K (A 1 )~ K A - K (A ) $ K (A ) - ••• ~K A' • 
2 21 22 2 1 11 12 ° 

Moreover in case a) we ha~ an exact sequence 

and in case b). 

NK A ~ NK (A ) $ NK (A )--"' NK (A') - NK (A) ~ NK (A ) $ NK (A ) ~ •• .~ NK A' • 
2 21 ?.2 2 1 11 12 ° 

Proof :The first part of the theorem is proved in[5]pp.28 and 55: for the last part 

note that, if t is an indeterminate,then the diagram 

A[t}--~ A [t] 

j j ', 
1 

(c) 

A2[~~ A1 [t] 
2 

is again a cartesian square. Therefore we have an epimorphism of exact Mayer-Vietoris 

sequences 

K'J*ll~ Kl (A, ( c]) !"' <•,~ll .. K, T']H 'l,(t) >K, (A,(dl r· (Af<Jl-K, ( rc]l 

K (A) -'> K (A) $ K (A) _, K (A1 ) ~K (A) -7 K (A ) (i)K
0

(A
2

) ~K0(A') 1 11 1 1 ° 0 1 
E 

where the vertical arrows are induced by the argumentation A(t} ~A. Since £ i=id., 

where i= A4A[t] ,all the vertical arrows split and we get an exact sequence of 

kernels,i.e.of the groups NKi• In case b) both the Mayer-Vietoris sequences can be 

extended to the groups K
2 

and so does the sequence of kernels. 
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The following are known results on the vanishing of the groups NKi, 

Proposition 1 (see[~],Corollary 7.3): Let A be a ring and T a finetely generated 

free abelian monoid. Then the following conditions are equivalent,for i = 0,1 : 

(a) NKiA = 0 

(b) K.{A)::::. K.(A(T1) 
1 1 

(c) K. (A) ::. K. (A[X]) where X is an indeterminate over A. 
1 1 

The next is a well known result of Grothendieck for i = o, while the case i = is 

due to Bass-Heller-Swan : 

Theorem 2:(see[2],4.3 and 5.4) Let A be regular: then NKiA = 0 fori= 0,1 • 

Theorem 2 can be extended to K
2

, thanks to a recent result of D.Quillen (actually 

Quillen's result is valid for all his higher Kls) : 

']lheorem 3 : ([9) ): Let A be regular and T a finetely generated free abelian monoid • 

Then K (A)~ K (A(T}). 
-- 2 2 

The following definition of seminormality and the characterization given in theorem 4, 

are due to Traverso ( [11]). 

Let A ~ B be rings such that B is integral over A. We define the semi normalization 

of A in B to be 

(where 

the following ring : 

+A=(xEBjxtA+Rad(B ),V 
B l p p 

p EO SpecA} 
+ said to be seminormal in B; Rad means the Jacobson radical). If A = BA, A is 

+ if B caincideswilh the integral closure A of A in its total quotient ring and A = BA, 

then A is said to be seminormal. 

Theorem 4 : ( [11] ,3.6) : Let A be a reduced noetherian ring such that A is finite 

over A. Then the canonical homomorphism PicA ~PicA[T1 is an isomorphism if and 

only if A is sennnormal. 

Now we recall (see[8}) how given a ring Band two prime ideals P
1
,P

2 
we can define 

a ring A in such a way that the conductor from B to A is p
1
" p

2
,B is integral over A 

and A is seminormal in B. 

Let B be a ring p
1
,p

2 
two distinct primes of B, 'f :B/p

1 
-7 B/p

2 
an isomorphism 

such that 'f (p
1
-+pz'p

1
) = (p

1
+ P/P

2 
). Then ~ induces an automorphism 

'f :B/p 1-+p 2 ~ B/p
1
-tp

2
• Let A be the ring 

A=[xt:B/x(p
2

) = 'jl(x(p
1
)) 

where x(p
1

) in the image of x in B/pi (i=1,2). We say that A is gotten from B £y 

gluenig p
1 

and p
2

, via f • 
Theorem 5 : ([8},Teorema 1): Let B be a noetherian ring and A the ring gotten from 

95 



5 

B by g,lueing twodistinct prime ideals p
1
,p

2 
via an is isomorphism 'f such that '{' is 

the identity. Then : 

a) B A 

b) B =--=-==::.;:_.::..:...::~ 

c) A is noetherian 

e) (p
1

1"'1 p
2

)---'> B/pi is an isomorphism (i=1,2) 

Moreover if B is integrally closed and pi is of height :q 1 (i=1,2) then B coincides 

with the integral closure of A. 

The theorem above shows that, given an affine normal variety V and two irreducible 

subvarieties V 
1 

and V 
2 

of codimension ~ 1, isomorphic under an isomorphsm 'P which 

induces the identity on v
1
n v

2
, we can glue v

1 
and v

2 
together and get a variety W 

whose normalization is V • W is always seminormal, hence PicA~ PicA[T} if A is the 

coordinate ring of W. The following theorem gives a necessary and sufficient condi
-1 

tion for the isomorphism PicA::: PicA[T, T } • 

:theorem 6 :( [81 ,Teorema 6): B be a normal ring, and A the ring gotten from B .£¥ 

gluenig p
1 

and p
2 

wing conditions are equivalent! 
-1 

(i) Pic.A ~ PicA(T,T J 
(ii) P/ Pz f B 

On analogous construction can be given in the case of a prime p and an automorphism 

of B/p :more precisely if B is a ring, p a prime ideal of B, f an automorphism of 

B) p we define 

to be the ring gotten from B by glueing p via f . 
We say that ~ is if,for every xf.B/p, there exists a positive 

integer n(x) such 

Then we have the following result 

!heorem 7. ([8},prop.9) : Let B be a noetherian reduced ring, p a prime ideal of B 

of height Q 1, ~ a locally finite automorphism of B/p. Let A be the ring gotten from 

B by glueing P• Then 

a) B 

b) A is seminormal in B 

Horeover if B is integrally closed then B coincideswith the integral closure of A. 
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Theorem 8. ( [81, Teorema 7): k be a field, B a finitely generated normal k-algebra, 

p a prime ideal of height )71, 'f a locally finite k-automorphism of B/P• 

Let A be the ring gotten from B by glue'tng P• Then if Bjp is normal we have 

PicA~ PicA[T,T- 1]. 

2. In this section we give sufficient conditions for NK
0
A = 0 in the case A is gotten 

from a regular domain B by glueing two distin~t primes p
1
,p

2
• 

fheorem 9: ~ B be a noetherian regular ring and A the ring gotten from B ~~ 

two distinct primes p and p via an isomorphism I[) such that ";j; is the identity. 
1- 2 I I 

Then there is a canonical isomorphism : 

NK
0
A ~ NK

1
(B/p

1
n p

2
) 

Proof : By theorem S,B is integral and finite over A and the ideal b = p ·A p is the 
1 2 

conductor. Therefore the following diagram 

is a cartesian square and so we get an exact sequence (theorem 1) 

NK A~ NK (B) ~ NK (A! b)- NK (Bjb) ~NK (A) ~NK (B) dl NK (Ajb) ----7 NK (Bjb) 
1 1 1 1 0 0 0 0 

Since B is regular we have (cfr.th.2): NK
0
B NK B = 0. By theorem SO,e) Afb::::B/P. 

1 ~ 

and Bjpi is regular. This implies: NK0 (Afb)= NK
1

(AJb) = 0. 

So we get 

NK1(Bfb) ~ NKO(A) 

where the isomorphism is induced by the connecting homomorphism 

K
1 

(B/ b(T]) ~ K
0 

(A[T}) of the Mayer-Vietoris sequence. 

Corollary 1 : Under the same hY?othesis of theorem 9,assume either p
1
+p

2
= B or 

Bj(p
1
+ p

2
) is regular. Then NK

0
(A) = O, i.e. K

0
(A)·::! K

0
(A[T]) 

Proof : If p
1
+ p

2
= B, then B/(P{' p

2
) -~ Bjp

1 
dl Bjp

2
• Since B/Pi is regular (i=1,2), 

NK
1
(B/Pi) = 0 • Hence NK

1
(B/p

1
+ p

2
) = 0 • 

By theorem 9 we deduce NK
0

(A) = 0 • 

Now assume p
1
+ p

2 
f Band B/p

1
+ p

2 
regular. In the cartesian square: 

Bj(p l'l p ) --7 B/p 

11 2 11 
Bfpz __ ______, Bjp1+p2 

all the homomorphisms are surjective. There is the following exact sequence(theoran 1); 
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NK
2

(B/ P{' p
2

) ~NK2 (Bfp
1

) !9 NK
2 

(B/ p2 )~NK2 (B/p 1+p 2)?NKlB/p f'P 
2

)->NK
1 

(B/ p
1

) WNK
1 
(B/p 

2 
) 

Since E{pi is regular NK
1
(B/pi)= 0 (i=1,2), Moreover the regularity of B/Pi and 

Bjp
1
+ p

2 
implies (see theorem 3). 

NK
2

(Bjp
1

) = NK
2

(Bjp
2

) = NK
2

(Bjp
1
+p

2
) 0 

Therefore the exact sequence above yields 

NK
1

(Bfp
1
np

2
) = 0 

From theorem 9 we get NK
0

(A) = 0 • 

q.e.d. 

The following proposition gives a geometric application of corollary 1. 

Proposition 2 : Let V be an irreducible affine non singular variety, v
1 

and v
2 

two 

distinct irreducible non singular sub-varieties of V such that there exists an iso

morphism'() between v
1 

and v
2 

which induces the identity on v
1
nv

2
• Suppose either 

v
1
n v

2
= ~ £E V

1 
and v

2 
meet transversally atevery point of V

1
nv

2
• Then if A is the 

coordinate ring of the variety W obtained by gluenig v
1 

and v
2 

via f ,we have 

K
0

(A[T]) ~ K
0

(A) 

Proof: Let B = k[V] be the coordinate ring of V, p =J(V ),P
2
= J(V

2
). Then B,Bfp 

1 1 1 

and B/p
2 

are all regular. By theorem 9 : 

NK
0

(A) ~ NK
1

(B/p
1

n p
2

) 

If v
1

n v
2 

= ~ then p
1
+ p

2 
= B ,hence, by corollary 1, NK

0
(A) = o. 

If v
1
n v

2 
t ~and v

1
,v

2 
meet transversally at every point of v

1
nv

2
, then for 

every maximal ideal p of B containing p
1 

and p
2 

the local ring (BjP
1

+'fl
2
)p=BJp

1
+p

2
)Bp 

is regular. Hence Bfp + p is regular and by corollary 1, NK
0

(A) = 0 • q.e.d. 
1 2 

Examples : 1) Let k be a field, V the affine plane over k,V
1 

the X-axis and v
2 

the 

Y-axis. Define the isomorphism 'j> :V 1~ V 
2 

by sending (X,O) into (0, Y). Then the 

variety W obtained by glueing V and V is the following surface : 
3 2 1 2 

Y + Z - XYZ = 0 

The singular locus of W in the X-axis, i.e. the intersection with the plane Y = o. 

The coordinate ring of W is 

L- ]/( 3+ 2 ) [ J r. u2v] A= k X, Y,Z Y Z -XYZ = k x,y,z ;; kLu + v, uv, 

where u,v are indeterminates over k. We claim that 

KO (A) ::: KO (A T )-:::: z 
By proposition 2 it is enough to show that K0 (A)~~ • Since V is the normalization 

of W (cfr. th.S )we have A= k[u,v]and the ideal b = (uv,u
2

v)A = (uv)A is the con-

ductor. In the exact Mayer-Vietoris sequence: 
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K1A ~ K1 (A) $ K1 (A/b) ~ K/A/b)-7 KOA -;> KJA) $KO (A/b) ~KO <A/b) 

we have: 

K
0
(A)-;}_, K

0
(A/b) =Z. 

K
0

(A/b) = K
0
(k[u,v]/(uv)) =71. + Pic(A/b) =7J. 

K
1

(A) =K
1
(k[u,v]) =K

1
(k) =k* 

K
1 

(A/b) = k* 

Now we compute K
1
(i.jb) K

1
(k[u,v)/(uv)) • From the cartesian square of surjective 

homomorphi sms : 

k[u,v]/(uv) ----7 k[u] 

1 1 
k[v] ~ k 

we deduce the following exact sequence : 

Kik[u, v] I (uv) )7 K/k[u)) tB K
2 

(k [v ))~K2(k)7 K1 
(k[u, v] I (uv)7Kfk[u]) t9 K

1 
(k(v] )~ K

1 
(k) 

Since k is regular,by theorem 3!K
2
(k[u])= K

2
(k[v})= K

2
(k) • The exact sequence 

above yields 

0 ~ K (k[u,v11Cuv)) --7 k* $ k>~ -7' k>~ --7 0 
1 

Therefore K
1
Ck[u,v] /(uv})-:; k'~,and the Mayer-Vietoris sequence becomes 

K (A)-7 k* e k* -7'1<>~ -7 K (A) --'7~ <.I>] -71 1 0 

From this we get K
0 
(A)~ Z 

In the case k is algebraically closed it is actually possible to show that every 

projective A-module is free: this follows from[6}th.3o1 and from the fact that 

PicA O. 

2) The following example shows that proposition 2 fails if V and V don't meet 
1 2 2 

transversally. Let k be a field of characteristic 1= 2, B = k[X, Y] ,pl(Y-X ),p,
2
=(Y). 

Define the isomorphism\.(): B/p -7B/p by fCx)= x, VJ(y) = 0. Clearly 'f is the 
_1 1 

2 
2 r 

identity on Bjp + p = kLX,Y]/(Y,X ). The ring gotten from B by gluenig p
1 

and p
2 

via 
1 

2 
2 

2 2 f is A = k[X, Y(X -Y), Y (X -Y)]. We want to compute NK
1 

(B/p 
1 
n p 

2
) and show it does 

not vanishl this will imply,by theorem 9, NK
0
A 1= 0 • 

NK
2
(Bjp 

1
np

2 
)7NK:2 $fp l) $ NK

2 
(Bjp 

2 
)""tNKi,Bfp 

1 
+p

2 
)~NKlB/P !"' Pz )7NKlBfp

1
) $ NK

1
(Bjp 

2
) 

Bjp is regular (i=1,2),hence NK (B/p )= NK (B/P )= 0 (see th.3). Therefore 
i 1 i 2 i 

NK
1
(B/('fl{l p2 ))~NK/BJp 1+ p

2
). Now we compute NK

2
CBJri/ p

2
) :we have Bj(p 1+p 2 )~ 

k[X]I(X
2

) = k[~J ,with 1: 2
=0. By a result of Van der Kallen (see[12l),for any corn-

mutative ring R, such that 1/21: R,there is a canonical isomorphism: 

K (R[d) ~ K
2

(R) eD 1/ 
2 R 4 
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where 0~/.z denotes the module of differentials of A,as a 71. •algebra. 

Therefore we have, since K/k):: K
2

(k[T] )(see th.3) : 

K (k[l:J)~K (k) &>fU/ 
2 2 ki.il: 

- -1 f\1 (21 
K2(kLe][T])::: K2(klT ) EE>~Lk[T}t.? K2(k) $_ k[T1/l 

From the isomorphisms above we get: 

NK/k[~J) ::O~[T~k 
where J:l~(TJk is the module of differentials of k[T] as a k-algebra, i.e. the free 

abelian group on dt
1
, ••• ,dtn' if T is generated by t

1
, ••• ,tn• 

In conclusion 

We can actually compute K
0

(A) and show : 
. Ql 

Ko(A)::: 2 $ kfl • 

To do this observe that B=k[X,Y]is the integral closure of A, b=p
1
np

2 
the 

conductor and A/b = k[X], B/b = k[X,Y]/f Y (x
2
-Y)). 

Hence PicB = Pic(A/b) = O,Pic(B/b)=k (as an additive. group~and U(A/b)= U(B/b)= k*· 

Thes~ equalities imply PicA= 0. Moreover we have: K0 (B)= K0 (A/b) =~ , 

K (B)= k* and K (A/b) = k'~• Write 
1 1 

K0 (A)~ H0
(A) $K

0
(A) :::1,_ E&K

0
(A) 

where K
0

(A) is the kernel of the rank (see[2]p.459). Then we have the following 

commutative diagram with exact rows and columns (see[21,(5.12) : 
0 0 

~ t 
0 ------" SK (B/b) ~ 

il 
0- K/B/b) ~ 

SKO(A) ~ 0 

-~ KO (A) ----+ 0 

J. 
0 

So we are left prove SK (B/b)::. .flk
1 

• In the Mayer-Vietoris sequence: 
1 /2. 

K
2
(B/P{IP

2
)-)c K

2
(Bjp

1
) $ K2(Bjp 2 )~K2(Bjp 1+p 2 )~KFB/PtP2 )~KlB/P 1 ) fiKlBJP 2 )~ 

we have : 

K
2

(B/P 
1

) 

K
1 
(Bjp 

1
) 

K
2

(Bjp
2
)= K

2
(k) 

K
1

(Bjp
2
)= k* 

-'l'K (Bjp+p) ----" ... 
1 1 2 

K (Bjp + p ) = K (k Ct)) ::;: K (k) + ..(lkl 
2 1 2 2 2 /2 

K
1

(B/p
1
+ p

2
) = K

1
(k[f.)) = k>'< <&k, 

Hence we get the isomorphism 
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K (Bjb)!::. k"' $ .Q 1 

1 kfz 

which implies,since U(B/b) k>~, SK(B/b)zflk
1 

1 /Z 

3. In this section we compute NK
0

(A) in the case A is gotten from a regular domain 

B by glueing a non-zero prime ideal p via an automorphism 'f of B/p. 

We will always assume 'f is locally finite so that B is integral over A and A is 

seminormal in B (cfr. th.7) 

!heorem 10 : Let B be a noetherian regular ring ,p an non-zero prime ideal of B 

and 'f a locally finite automorphism of B/p , Assume B/p is regular. Then we have 

a canonical isomorphism 

where A is the ring gotten from B by gluei~ p via 'f • 
Proof: Since p is the conductor from B to A we have the following Cartesian square: 

A ______.,. B 

1 l 
A/ p -----" Bfp 

and so we get an exact sequence (theorem 1) 

NK A--,NK
1

(B) $ NK (A/p) -NK (B/p) --7NK A--7NK B (!J NK (Ajp) ~ NK
0

(B/p) 
1 1 1 0 0 0 

Since Band B/p are regular, NK.(B)= NK.(B/p) = 0; i = 0 1 1 • Therefore the exact 
1 1 

sequence above yields NK
0
A z NK

0
(A/p) 

q.e. d. 

Remark : Under the assumptions of theorem lO,A/P is not necessarly regular. 

Let B k[X,Y,Z}, p = (Z), f: k[X,Y}-" k[X,Y} defined by ~(X)= -X, fCY)= -Y • 

• 2 2 ] [2 2 ] Then A kLX ,Y ,X,Y,Z,XZ,YZ , A/p= k X ,Y ,XY : therefore A/P is not regular. 

Now we want to apply theorem 9 in the case p has codimension 1. To do this we 

need the following lemma : 

Lemma 1 : Let R be an integral domain, L its field of fractions, R the integral 

closure of R in L • Let G be a locally finite group of operators on R and let 

S = RG txe:R/g(x) = x, \7 g,;G~ • Then 

s = (R)G 

where S is the integral closure of S in its field of fractions. In particular, if 

R is normal, then S is also normal 

Proof: Let K be the field of fractions of S : then G acts on 

p.34). Let x t=K be integral over S: then x (i,K n R = (L)Gil R 
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x t(R)G then x is integral over R : since R is integral over S (cfr,[4},p.33), x is 

integral over S and x E: K. Therefore x E S • 

Corollary 3 : Let V be a non-singular affine variety and C an irreducible non•sing~

lar curve on v. Let f be an automorphism of finite order of C and let W ~-:~~= 

riety gotten from V by glueing C via r .Then NK
0
A = O,if A is the coordinate ring 

of W. 

Proof : Let B = k[v], p 
( . 2 n-12 

J (C), B' = B/p, A' = A/P• Let n ·be the order of If' and 
G 

Then the group G acts on B, is finite and A1 (B') • Sin-G=c1•~•f , ••• , 'f' j• 

ce B• is regular it is also normal. By lemma 1 A' is normal: therefore A' is the 

coordinate ring of a normal curve, hence non-singular. This implies A1 is regular 

By theorem 10 NK
0
A = 0 • 

Corollary 4 : Let k be a field of characteristic f- 2 and let A= k[x,y,z} 
2 2 

xy -z = 0. Then K
0 

(A) !::::: K
0 

(A[T])::: Z 

Proof .. 2 ] [ J Evidently A~kLX ,Y,XY • Let B = k X,Y , p = (Y) and define an automor~ 

phism 'f of B/p = k[X) by ~(X) = -X • Then A is the ring gotten from B by gluei.ng 

p via f and B is the integral closure of A. Thus we have the following exact Mayer

Vietoris sequence 

K A ~K (B) $K (Alp) -'l>K (Bjp) ~K (A) ~K (B) $K (Ajp) ~K (Bjp) 
1 1 ly 1 0 0 0 0 

where A/p = k[.x
2
] , B/p k(X), Computing K

0
(A) in the exact sequence above we get 

K
0

(A) ~ 2 • By corollary 3 NK
0

(A) = 0, hence K
0

(A)::: K
0

(A[T]) 

We conclude this section with an example of a glueing over a singular curve(a 

case where corollary 3 does not apply), such that K0 (A) f- K
0

(A[T]) • 

- 1 3 2 Let k be a field of characteristic not 2 and let B = klX,Y , p = (X ·Y ) : then 
2 3 

Bjp :: k[s ,s J where s is an indeterminate over k. Define an automorphism 'f of Bfp 

by fCs) = •s • The ring A gotten from B by glueing p is the following (cfr. [8},§3)): 

- 2 3 2 J A kLX,Y ,Y(X -Y ) 

and B is its normalization. A is the coordinate ring of a surface,whose singular 

locus is the curve Y x3 
of the plane Z = 0 , We claim NK

0
A f- 0 : more precisely 

we want to show 

NK
0
A ~ NK1 (k[s

2 ,s~) f- 0 • 

From the cartesian square : 
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A ~B 

l l 
Afp ~ B/p 

we get, as usual, the following exact sequence. 

NK1A ~NK1 (A/p) $ NK1B->NK1 (B/p) ~NKOA -> NKO (A/p) @ NKO (B) -"! NKO (B/p). 
2 2 3 

Now we have: A/p::: k[s J, B/p::. k[s, s ]• Thus 

NK.B NKi(A/p)=O i=O,l• 
l. 2 3 

So we have an isomorphism NK
0

A c:< NK
1 
(k[! , s ]) , and we are left to show NK 1R 1= 0, 

2 3 - 2 3 2-
where R = k[ s , s J, Let R k (s] be the integral closure of R, b ( s ,s )R= ( s )R 

the conductor. Consider the split epimorphism of exact sequences induced by the 

augmentation (see [5], §6) 

K
2
(R/b[T] )-"KlR [T], bR[T]) ~ KlR (T] )~ KlR /b[T]) __,K

0 
(R[T), bR[T] )- KO (R[T]) 

J~ J l t~ t J 
-} 

where the indicated isomorphisms are a consequence of the regularity of R/b (th.2 

and 3). 

Let G =Ker(K (RLT],bR[T]) -?K (R,b)): then from the diagram above 
1 1 

0 -i> G ---"' NK R 
1 

So if we show G 1= 0 we are done, In the commutative diagram 

K (R 'b) 
1 

the orizontal maps are epimorphisms. For since GL(R,b) and GL(R,b) both consist of 

matrices ""- 6o GL(R) such that I •0\ and I - d.. -
1 

have coordinates in b, we have 

GL(R,b) = GL(R,b), Thus the map 

G - Ker(K (R(T}, b R[T]) -i> K (R, b) = H 
1 1 

is an epimorphism, So it is enough to show the group H does not vanish. From the 

split epimorphism of exact sequences 

K2(RfT]) -7K2(I</b[T]) -K1(iHTl,b R[T]) -Kl(R[T]) 

J~ ~ t t~ 
K

2
(i:i) ----'}> K

2
(R/b) - K

1
(ii, b) --+ K

1
(R) ---7> ... 

we deduce,since R is regular (cfr.theorem 3) 
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NowR/b:::.k[.!:.) ,with t.
2
=o and ,by[12}, NK2 (k[t])::O~/.lfo. 

4. In this section we prove a sufficient condition (Corollary S),for NK
0
A = O,in the 

case A is a commutative ring containing an algebraically closed field. 

As a corollary of this result we prove (Proposition 5) K0 (A)~ K0 (A[T])=~ if 

A= k[x,y,z] ,zn= xy • Note that k[x,y,z} is normal but not regular,while all the 

examples considered in the previous sections were seminormal but not normal. The 

results of this section have been obtained jointly with M.P. Murthy. 

Lemma 2 Let A be a ring, t an indeterminate over A and a an element of A. Then the 

canonical homomorphism 

K
0
(A[t}) ~K0 (A[t,(t-a)-1) 

is injective 

Proof: Let s -1] - -1] t-a : then s is an indeterminate over A and A[t,(t-a) =ALs,s • 

Let T be the infinite cyclic group with generator s, T+ the submonoid generated by 

s-
1

• Then the inclusions f+: A[T+] CA[T] induce a homomorphism 

( f +'f-) 
f: K

0
(A[T)) iBK

0
(A[T_)) K

0
(A[T]) 

and the following sequence 

0--.:;. K
0

(A) ~ K
0

(A[T+j) $ K
0

(A(T)) ~ K
0

(A(T)) 

is exact ([2],Corollary 7.6). Thus f+ and f_ are both monomorphisms. 

Since A[T_;J = A[s} , A[T) = A[s,s-
1
] our assertion follows • 

Lemma 3 : Let k be a field, A a ring containing k and t an indeterminate over A: if 

. "' M is a A[t]-module such that g(t)M = o, g(t)" kLt},then there exist submodules 

M with the following properties 

1) M = N 
1 

$ • • • $ Nh 

2) g. ( t )N. = 0 
1 1 

where g, (t);; k[t] and g, (t)/g(t) • 
-- 1 - 1 

s 1 sh 
Proof: Let g(t)= p

1
(t) •••Ph(t) 

ducible factors in k[t]. Let 'Ni = 

Nis verify 2) with 
s . 

g,(t) = p,(t) 1 

1 1 

h 

(1!-i~h) 

be the decomposition of g(t) into distinct irre-·rr Sj f,(t)M, where f,(t)= p,(t) .Clearly the 
1 l 'fi J 

• Since g.c.d.(f ,f2 ,~ •• ,f) = 1 in k[t1 we have 
1 n 

L f. (t)A[t}= A[t] 
-- 1 

and 
i=1 
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N +N + ••• +N =M 
1 2 h 

Let x. Eo N
1
. be such that x + ••• +x = 0 ; multiplying by f. (t) we get f. (t)x.= O. 

1 1 h 1 1 1 

On the other hand,since x. E-N.,g.(t)x. = 0. Now g c d (f.,g.)= 1 in k[t}, hence 
]. ]. 1 1 1 1 

fi(t) and gi(t) generate the unit ideal in At • This implies : 

X = 0 o 
i 

Ann x = A[t] 
A (t] i · 

Proposition 3: Let k be a field, A a ring containing k and t an indeterminate over 

A • Set k(t) @ kA = k(t)A • Then the map,induced by A~ k( t )A : 

K
0

(A) ~ K
0
(k(t)A) 

is a monomorphism 

Proof:Let P, Q be elements of K
0

(A) such that :t<[P}) = ~ (LQ]). We want to 

show [P]= [Q] • We have :LP@ k(t)A}= Q ~ k(t)A in K
0
(k(t)A). Since P and Q are 

A A 
both finitely generated there exists a non-zero polynomial f(t) ( k[t) such that: 

l P ®AA[t, f•)J = l Q ~A[t, f -~] 
[ -11 in K

0
(A t,f ). Let n be a positive integer and let g(t)!;; k[t] be monic and such 

that g.c.d. (g,f) = 1. Then we have 

A[t, f-
1
]/(g) = A[t)j(g) 

Tensoring by A[t,f-
1
]/(g) gives: 

[ p ®AA[ t}/ (g)l = L Q ®AA [t}/ (g) 1 

Since A[t)/g(t) is a free A-module of rank n the equality above yields :n[P}= n[Q} 

in K
0

(A). But n is an arbitrary positive integer : hence[P]=[Q]. q.e. d. 

Theorem 10 : Let k be an algebraically closed field and let A be a ring containing 

ko Set k(t) A= k(t) ®kA,where t is an indeterminate over A. Then the homomorph~m 

K
0
(A[t]) ----? K

0
(k(t)A) 

is injective 

Proof: Let S = tf(t)/f(t) ~ k[t1- oj 

in A[t} and k(t)A:: A(t]s• 

S is a moltiplicative set of non-zero divisors 

The homomorphi sm A [t) ~A [t] induces the following exact sequence (see [31 , th. s 
4.4) : 

D. 
K

1
(k(t)A) ~K0 (~S(A(t)) 1)~ K

0
(A[t)) ~K0 (k(t)A) 

where H (A [t]) denotes the category of A [t}-modules which have a finite resolution 
=S · 1 

of length ~1 by modules in ~(A),and are annihilated by some element of S. We need 

to show Im A = o. 
Let M<O.~S (A[t])

1
,g(t)M = 0 with g(th k[t]-(0) monic. Since k is algebraically 
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51 

closed there exist a
1

, ••• ,ar distinct in k,such that g(t)= (t-a
1

) • 

By lemma 3 we can find submodules N , ••• ,N of M such that: 
1 r 5 . 

sr 
.(t-a ) , 

r 

M N $ ••• $ N (t-al..) 
1 

N = 0 1 r i 
(1 f,i ~r) 

Let eij ( 1 ~ j ~hi) be a set of generators of Ni ( l1>i ~ r) and let F be a free 

r 

module,of rank m= h.,on the set ie .. \.set P = Ker f 
l. lJ 

where f is the surjection 
i=1 

F ~M~ since hdAU:JM!: l,P is projective. No:-.r define Fi ( 1 ~i ~r) to be a free module 

one , ••• ,e , and let f.:F. -?N .• Then F = (!;) (Fl..), and P = Ker f =@ (Ker fl..). il ih. l. l. l. 
1 

This implies Pi= Ker fi is projective and 

0 ~ P ----" F -----'~ N --7 0 
i i i 

is a projective resolution of Ni. So N <;; H (A[tl) where S = L (t-a. )n/n ).OJ • 
i =si 1 . 1_ 1 _ 1 In the exact sequence,relative to the localization A[t]~ (Alt1)

5
_ A[t,(t-ai) ] 

~ 1 

K (A[t,(t- a.)-
1
]) _,.K (H (A[t})) ~K (A[t)) __,.K

0
(A[t,(t-a.)- 1

]) 
1 1 ° =Si 1 ° r 1 

we have :Im J.= 0 (lemma 2).So it is enough to show: /.'J (M)=_:;[ r ((N]) in K
0
(A[t1)• 

1 1 1 

S [N}is defined to be [.P]-[FJ (see [3},th.4.4) and we hav~=l i 1 1 . 
r 

A(tM1) = [P]-[F] = L([P).-[FJ) 
- 1 1 i=1 

No we put together proposition 3 and theorem 

r 

2._( J".CN.)) = o 
l. 1 

i=1 
10 to get our desired result on N K

0 A. 

Corollary 5 :Let k be an algebraically closed field,A a ring containing k and t an 

indeterminate over A. Assume K
0

(A) _,.K
0
(k(t)A) is surjective. Then NK

0
(A) = O. 

Proof: From the commutative triangle : 
f 

A k(t)A 

g\A{ h 
where g is the inclusion A c. A[t1 ,we get 

KO (f) 

By our hypothesis and prop.3 K
0 

of is an isomorphism. From theorem 10 we deduce 

K
0

(h) is injective. Since the qiagram above commutes, K
0

(g) is surjective
1

hence an 

isomorphism. 

q.e.d. 

Now we record a result in [6] (corollary 5.3),based upon a theorem of Bass-Murthy 
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(see [3},prop.9.6). 

Proposition 4. Let K be a field and let A - n 
KLx,y,z1 ,z = xy. Then any projective 

A-module is free. 

Proof : For any non-zero element a <:K
1

(y-a)A is an invertible prime ideal and 

A/(y-a)::::. K[z]. This implies (y-a) is a special prime ideal (see(6},§1 ;Aj(y-a) 

is generalized euclidean in the terminology of [2],p.197). LetS be the special 

multiplicative set of ideals generated by the primes ( y-a), a or, K* • Evidently 

s- 1
A ~ (K[Y,Z]) 

so 
where S0 is the multiplicative set of A generated by the elements (y-a). 

R=K[Y,Z} is regular of dimension 2 and every projective R-module is free :therefo
-1 

re every projective module over R = S A is free (see[3),1emma 9.8), 
so 

By a resylt of Bass-Murthy (which uses an argument of Seshadri)(see [31,prop.9.6) 

every projective A-module is a direct sum of a free A-module and a projective module 

of rank 1. Moreover A is normal and can be made into a graded ring by attaching sui 

table positive degrees to x and y : thus PicA= 0 (see [6],lemma 5.1). 

So every projective A-module is free. 

Proposition 5 - ] n Let k be an algebraically closed field and let A= kLx,y,z ,z =xy. 

Then, if T is a finetely generated free abelian monoid 

Proof : Let t be an indeterminate over A and let K = k(t) • 

Then 

k(t) @kA = k(t)A = k(t) [ x,y, 
n 

K(x,y,z}, z = xy 

By proposition 4, every projective A -module is free and every projective k(t)A-

module is free. Hence 

By Corollary 5, we have NK
0
A = 0 and this is equivalent to our statement (see 

prop.!). 
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K
0 

AND K
1 

OF POLYNOMIAL RINGS 

M. PAVAMAN MURTHY and CLAUDIO PEDRINI 

Introduction. Let A be a ring and £ € A[x] a monic polynomial with central 

coefficients. In§ 1, we show that the natural map K.(A[x]) -+ K.(A[x, 1/£]) is in-
1 1 

jective for i = 0, 1 (see Th. 1, 3), In§ 2, we apply this to obtain some information 

about K0 and K
1 

of affine algebras over 'big' algebraically closed fields. For 

example, we show that for such an algebra A, SK
1 

(A) is of finite rank implies 

that K0 (A) is a torsion group. In §3, using Th.l. 3, we produce examples of non-

In this paper, we consider only rings with unit element and finitely generated 

modules over them. We use freely the notation and results of [1], notably that of 

Ch.XII. For a ring A and f E centre (A), we denote by Af the ring of quotients 

2 
S = { 1, f, f , ••• } and U(A) denotes the group of units of A. 
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§ 1. Let F be a functor from rings to abelian groups with the following property: 

for any ring homomorphism i: A -+ B which makes B a free A-module of rank n, 

there exists a homomorphism ('norm') NB/ A: F(B)-+ F(A) such that NB/ A F(i) is 

multiplication by n. 

Lemma 1.1. Let F be as above and A a ring. Let he A[X] be a monic 

polynomial with coefficients in the centre of A. 

(a) The map F(i): F(A)-+ F(A[X, l;h]) is injective (i = inclusion A C A[X, l;h]). 

(b) Let F commute with direct limits, Let k be a field and A a k -algebra. 

Then the natural map F(A) -+ F(A ~ k(X)) is injective. 

Proof. (b) easily follows from (a). We prove (a). Let h be of degree n. 

Since A[X]/(h-1) and A[X]/(Xh-1) are A-free of rank n and n+l respectively, 

the natural maps A ~A[X, l;h] ~ A[X]/(h-1) and A ~A[X,l/h] ~ A[X]/(Xh-1) 

and the existence of 'norm' map for F implies that kerF(i) has both n-torsion 

and (n+l)-torsion, Hence ker F(i) = 0. 

Remark. The lemma above applies notably to Ki' i = 0,1, 2. 

Lemma 1. 2. Let A be a ring and a, b e A be non-zero-divisors contained 

in the center of A. Let Aa +Ab= A. Then the natural map 

is surjective. 

Proof. For r e Centre (A), let K
0
(]ir) denote the Grothendieck group of 

finitely generated A-modules M with finite projective resolutions by finitely 

generated projective A-modules and Mr = 0. Then by [1, p. 494, Th. 6, 3 ], we have 

the following commutative diagram with vertical rows exact. 
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Kot!a KO~ab 

r r 
KlAa Kl A ab 

r r 
K

1
A K

1
A 

The map Kl"!;fa .... Kl~ab is injective. In fact, since Aa +Ab= A, we have a split 

exact sequence 0 .... K0~a .... K
0

:j;!ab .... K
0

fjb ..... 0. Now the proof of the lemma 

is immediate. 

Theorem l. 3. Let A be a ring and f E A[X] a manic polynomial with 

coefficients in the centre of A • Then 

K.(A(X]) - K.(A(X, 11£]) 
1 1 

is injective for i = 0, l. 

Proof. Since K
1 

is a contracted functor with LK
1 

= K
0 

[1, Ch. XII], it is 

sufficient to prove the theorem for i = 1. Let f = Xn t an-lXn-l + ••. + a
0

• We 

-1 -n 1 -1 -n 
write f=g(X )•X , where g(X- )=1 tan_

1
x + ••• ta

0
X • Let 

a E ker(K
1 

(A[X]) - K
1 

(A[X, llf])) and a 1 the image of a under the natural map 

-1 . -1 -1 
K

1 
(A(X]) .... Kl (A(X, X ]). Clearly a 1 e ker(K

1 
(A(X, X ]) - K

1 
(A(X, X , 1/f]). 

But A(X,X-l, llf] = A(X-l, liX-lg(X-l)]. Also A(X- 1]X-l t A(X-l]g(X-l) = 

[ 
-1 -1 -1 -1 

A X ] and X , g(X ) are non-zero-divisors in A[X ]. Hence by Lemma 1. 2, 

-1 -1 I -1 -1 ker(K
1 

(A(X ]) .... K
1 

(A(X , 1 X g(X )]) 

-1 -1 I -1 -1 
.... ker(K

1 
(A[X , X]) - K

1 
(A(X , 1 X g(X )]) 

is surjective. Therefore there is a f3 E K
1 

(A[X-l]) such that {3' =a', where {3' 

-1 -1 
is the image of f3 under the natural map K

1 
(A[X ]) .... K

1 
(A[X , X]). Since K

1 

is a contracted functor this implies a E K
1 

(A) (we identify K
1 

(A) as a subgroup 
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of K
1 

(A[X]). Hence a£ ker(K
1 

(A) ..... K
1 

(A[X, 1/f])). Now by Lemma 1. 1, a= 0. 

This finishes the proof of Theorem 1. 3. 

Corollary 1.4. Let k be a field and A a k-algebra. The natural map 

K.(A[X
1

, ••• ,X ]) - K.(A® k(X
1

, ••• ,X )) is injective for i = 0,1. 
1 n 1 k n 

Proof. By induction, we are reduced to the case n = 1. Since 

K.(A ®kk(X)) = lim K.(A[X, 1/g]), the corollary follows from Theorem 1. 3. 
l f e k[X] 1 

Corollary 1. 5 Let k be a field and A a k-a1gebra and f e k[X]. Then 

K.(A[X, 1/f]) .... K.(A® k(X)) 
l 1 k 

is inj ective (i = 0, 1 ). 

Proof. It is sufficient to prove that for g e k[X], the map 

K.(A[X, 1/£]) - K.(A[X, 1/fg]) is injective. Also, we may assume f does not 
1 1 

divide g so that f, g generate the unit-ideal in A[X ]. Then by Lemma 1. 2, 

ker(K.(A[X)) - K.(A[X, 1/fg]))- ker(K.(A[X, 1/f))- K.(A[X, 1/fg])) 
l l 1 1 

is surjective, But by Theorem 1, 3, 

K.(A[X]) - K.(A[X,1/fg]) 
l 1 

is injective. This proves Corollary 1. 5. 

Remark 1.6. Let F be a functor from rings to abelian grotps. We write 

X~-+1 
NF{A) = ker(F(A[X]) F(A)) and LF(A) = Coker(F(A[X]) @ F(A[x- 1)) -

F(A[X, x-
1

])). Using the fact that LiNjK1 are contracted functors and L, N 

commute [1, p. 661, Prop. 7. 2], it is easy. to see by induction on i + j that Theorem 

1. 3 and its corollaries remain valid for functors L iNjK
1

• Also they remain valid 

rv rv rank 
for SK

1 
and K

0 
{K

0
(A) = ker(K

0
(A) ~ {continuous functions from Spec A 

to ZZ)). 
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Remark 1. 7. With the hypotheses and notation as in Theorem 1. 3 we do not know 

if the Im(K.(A[X])- K.(A[X,l/£])) is a direct summand of K.(A[X,l/f]) ( i = 0,1). 
l l l 

Also we do not know a good interpretation for Coker(K.(A[X])- K.(A[X,l/f])). But 
l l 

we have the following 

Proposition 1. 8. Let A be a ring and a
1

, ... , ar elements contained in the 

centre of A. Suppose that i I j implies 
r m. 

a.- a. is a unit in A. Let 
l J 

g = Tf (X- a.) J with m > 0 for all j. 
j = 1 J j 

Then there is a natural split exact 

sequence 

0- K.(A[X])) - K.(A[X, 1/g]) - (LK.(A))r ~ (NK.(A))r - 0 , 
l l l l 

so that 

K.(A[X,1/g]) ~ K.(A) al (NK.(A))r+
1 

@ (LK.(A))r • 
l l l l 

(Here i = 0 or 1). 

Proof. Again since K
1 

is a contracted functor with LK
1 

= K
0

, it is suf-

ficient to prove the proposition for i = 1. The hypothesis on ai means that X-ai 

and X-a generate a unit-ideal in A[X] for i I j. Hence 
j 

r 
K

0
(H (A[X]}) ~ :2::: K

0
(:t} (A[X]) • 

-g j = 1 -(x-aj) 

Since by [1,p.654, Prop.6.4]. K
0

{jj(X-a.)(A[X])) ~ K 0 (A) Ell nil(A), we have 

r J 
have, K0 (~ g(A[X])) ~ (K

0
(A) Ell nil{A)) • We have exact sequences 

K
1 

{A[X]} 

11 

K {H (A[X]}) ~ (K
0

A Ell nil A) r 
0 -g 

K (H {A[X]}) ~ K
0

A Ell nil A 
0 -x-a. 

J 

By [1,p, 666,Prop. 7.5] we have h.:K A Ell nil(A)- K
1
{A[X,1/X-a.]) such that 

J 0 J 

a.o h.= 
1
(K

0
A Ell nil{A)). Let p. denote the j-th projection (K

0
{A) Ell nil(A))r 

J J J 

K 0A ~nil A. Define h: (K
0

{A) Ell nil(A))r - K
1
A[X,l/g] by 

It is easy to Verify {writing explicitly the maps a and a.) that 
J 

This implies that a oh = identity. 
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h= 2:q>.oh.op .• 

j=1 J J J 

a.= p.oo•q> .• 
J J J 



Corollary 1. 9. Let k be an algebraically closed field and A a k -algebra. 

If f E k[X] has r distinct roots, then 

K
1 

(A(X, 1/£]) ~ K
1 

(A) q:) (ni1(A))r+l ~ (K
0

(A))r 

K
0

(A(X, 1/f]) ~ K
0

(A) $ {NK
0

(A})r+l $ (LK
0

(A))r • 

Remark 1.10. It is easy to see that with the hypothesis as in Corollary 1. 9, 

K.(A[X, 1/f]) is a direct summand of K.(A® k{X)), i = 0, 1. Also 
1 1 k 

K.(A@k(X)) = K.(A[X]) ~ 2:::: Ma 
1 1 

a ek 

where each M ~ NK.(A)@ LK.(A), (i = 0, 1). 
a 1 1 
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s2. K0~ K1 of affine algebras over big algebraica-llydosedfields 

Throughout this section k denotes an algebraically closed field of infinite 

transcendence degree over its prime field. We apply Theorem 1. 3 to obtain some 

information about K. (i = 0.1) of affine algebras over k, Let A be a finitely 
1 

generated commutative algebra over k. We write 

k[Tl, ••. , Tm] 

(fl' ... 'fr) 

Let K be the algebraic closure of k(X
1

, •.• , Xn) and let F be a sub-field of k, 

finitely generated field over the prime field containing all the coefficients of 

£1 , •.• , fr. Since k is of infinite transcendence degree over its prime field, there 

is an F -isomorphism er: k- K which clearly extends to an isom9rphism 

(T : 

K[T l,.,., Tm] 

(f1 , ••• , f r) 
~A® K. 

k 

"" Proposition 2. 1. Let A and k be as above, Let F denote SK
1

, K
0 

or 

LiNjK
1 

(i;:: 0, j.:?:. 0). If F(A) is of finite rank, then NF(A) and LF(A) are 

torsion groups, 

Proof, By Corollary 1. 5 and Remark L 6, 

F(A[X,X- 1]) -.. F(A® k(X)) 
k 

is injective. Let K denote the algebraic closure of k(X). Then 

ker(F(A~k(X)) .... F(A~K)) is torsion, (This is easily seen using the 'norm' 

map.) 
-1 

Hence ker(F(A[X, X )) .... F(A ~K)) is torsion, 

F(A) Gl NF{A) Gl NF(A)@ LF(A). Since A® K 1'<:1 A (see above) and F(A) is of 
k 

finite rank, we see that NF(A) and LF(A) are torsion groups. 

rv 
Taking F = SK

1 
and using LSK

1 
= K

0 
[l,p.673, Cor. 7.9] we get 

Corollary 2. 2. SK
1 

(A) finite rank implies K
0

(A) is a torsion group. 
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Corollary 2.3.* NK.(A) torsion :::=:::> 
1 

K.(A[X
1

, ... , X ]) 
1 n 

~ K.(A) ~torsion 
1 

Yn (i:::O,l). 

In particular, K.(A) ~ K.(A[X]) ~ K.(A[X
1

, ••• , X ]) ~ K.(A) EB torsion (i::: 0,1). 
1 1 1 n 1 

Proof. This follows from Proposition 2.1 immediately, since NK.(A) 0 
l 

and K.(A[X
1

, ... ,X])"' (1 +NtK.(A) [l,p.663, Cor. 7.3]. 
1 n 1 

Corollary 2. 4. 

Examples 2. 5. a) Let A ::: CI:[t
2

, t
3

]. It is well known that 'i<
0

(A) r:::; Pic(A) ""'a:. 

Hence by Corollary 2. 2, SK
1 

(A) is of infinite rank. This was first observed by 

M. I. Krusemeyer in his Utrecht-thesis. 

b) Let k be an algebraically closed field of infinite transcendence degree 

over its prime field. Let Char(k) I 2 and 

n even. It is well known that K
0

(An) ""' ~. 

n 2 
A ::: k[x

0
, ... , x ], L x. ::: 1, 

n n i=O 1 

Hence by Corollary 2. 2, SK
1 

(An) is 

of infinite rank. Using Q.lillen's localization exact sequence for higher K's, it is 

not hard to show that K.(A ) r:::; K.(k) EB K.(k) if n is even and K.(A ) ""'K.(k) if 
1n 1 1 1n 1 

n is odd, (for all i ~ 0). 

One can generalize the example a) into the following: 

Proposition 2. 5. Let A be the co-ordinate ring of a reduced irreducible 

affine curve C over an algebraically closed field k of infinite transcendence 

degree over m. Then the following conditions are equivalent. 

1. SK
1 

(A) = 0 • 

2) SK
1 

(A) is of finite rank . 

3) A r:::ik[X,l/f] for some fE k[X]. 

*This corollary was inspired by the following question of J.R.Strooker: 
If K0A 4::!r K0A [X], does it follow that K

0
A ~KOA [X1 , ••• ,Xn]? 

116 



Proof. 1) :::::;> 2) is trivial and 3) :::::;> 1) is well-known. We prove 

2) ::;::. 3). By Corollary 2. 2, 2) :=;:> Pic(A) is torsion. Let A be the integral 

closure of A and I the conductor between A and A. Then we have the exact 

sequence [l,p.481, Th.5.3] 

U(A) E9 U(A/I) - u(A/I) - Pie A - Pie A - 0 . 

Hence Pie A is torsion. This implies Pie A= 0 and A is the coordinate ring of 

a normal rational curve. Hence A ~ k[X, 1/f] for some f e k[X]. Also 

Pie A ~ Coker(U(A) E9 U(A/I) - U( A/I)). Since U( A)/k * is finitely generated and 

Pie A is of finite rank, it follows that U(A/I)/U(A/I) is of finite rank. It is easy 

to see that U( A/I)/U(A/I) has a finite filtration with successive quotients iso

morphic to k or k*. Hence U{ A/I )/U(A/I) is of infinite rank or zero. Hence 

U(A/I) = U(A/I). For a e A, there is a A. e k such that the class of A. +a is a 

unit in A/I. Thus A. +a and hence a e A, i.e. A= A. Hence A~ k[X, 1/f]. 
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§ 3. K
0 

of polynomial extensions 

Lemma 3. l. Let k be a field and A a k-algebra. If the map 

K.(A) .... K.(A ~ k(X
1

, ••• , X )) is an isomorphism, then K.(A) ~ K.(A[X
1

, .•• , X ]) 
1 1 ~ n 1 1 n 

(i = 0, l ). 

Proof. Let j:K.(A) -K.(A[X
1

, ... ,X]) and lj!:K.(A[X
1

, ••• ,X]) .... 
1 1 n 1 n 

K.(A ~ k(X , ••• , X )) denote the natural maps induced by corresponding inclu-
1 K l n 

sions. By Corollary 1.4, tjJ is injective. Hence lj!o j is an isomorphism implies 

that is an isomorphism. 

Proposition 3. 2. 1) Let k be a field and A= k[x, y, z], zn = xy. Then 

every projective A-module is free. 

2) Let k be a field and A the homogeneous coordira te ring of an arith-

metically normal embedding of JP~ n 
into some JP k, i.e. , A is a graded normal 

ring over k with Proj{A) ~ Proj(k[t
0

, t
1 

]). Then every projective A-module is 

free. 

3) Let A be the coordinate ring of a normal affine surface X (over an 

algebraically closed field k) birationally equivalent to C X JP
1

, where C is corn-

plete non-singular curve of positive genus. Suppose X has only rational singu-

larities, Then every projective A-module is a direct sum of a free module and an 

ideal. 

To prove Proposition 3.1, we need the following 

Lemma 3. 2. Let A be a Noetherian domain of dimension:::;. 2. Let 

F C Max{A) (Max(A) = maximal ideal spectrum of A) be a closed set of dimen-

sion:::;. 1. Suppose for every Me Max(A)- F, there exists an invertible prime ideal 

P C M such that A/P is a principal ideal domain with SL (A/P) = E (A/P) for n n 

all n. Then every projective A -module is a direct sum of a free A-module and an 

ideal. 

(For proof of Lemma 3. 2 see [5, Th. 3.1.) 
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Proof of Proposition 3. 2. l) This is essentially proved in [3, Cor. 5. 3]. 

We reproduce the proof for the sake of completeness, Take F = V(x) in 

Lemma 3. 2. Let M be a maximal ideal of A with xI M and Mf"\ k(x] = k(x]£, 

£ an irreducible polynomial in k[x]. Then A/fA l'::j k(a)[Y, Z]/(Z
2

- aY) l'::j k(a)[Y], 

where a is a root of f. Hence by Lemma 3. 2, every projective A-module is a 

direct sum of a free module and an ideal. Since A is a graded normal ring (with 

deg z = 1, deg x = 1, deg y = n-1) over k, we have Pie {A)= 0 [3, Lemma 5.1]. 

Hence every projective A-module is free. 

2) Let A = k(x
0

, ••• , xn] be a graded normal ring with 

Proj{A) l'::j Proj(k[t
0

, t
1 

]). In Lemma 3. 2, take F = V{x
0

). Let M be a maximal 

ideal such that x
0 

I M. Let M 1'"1 k[x
0

] = k[x
0

]£, £ being an irreducible poly

nomial in k[x
0

]. Then 

A/fA = 

where 
xl xn 

B = k[ , ••. , - ]. 
xo xo 

But Spec B = Proj{A) - V{x
0

) is an affine open sub-

l 
set of ll"k. Hence B l'::j k[t, 1/p] for some p E k(t]. Hence A/fA l'::j k{a)[t, 1/p]. 

The rest of the proof is as in 1 ). 

3) Let P 
1

, ••• , P r be the singular points of X. Since P 
1

, ••• , P r are 

rational singularities (for generalities on rational singularities see [2]) there is a 

non-singular surface X' and a proper birational morphism 1r:X' .... X such that 

all the components of "TT-l(P.) are rational curves and "TT induces an isomorphism 
r 1 

I -I -1 
X'-U 1r (P.)~::::X-{P1 , ••• ,P}. 

i = 1 l r 

..., 
Let X be a complete non-singular sur-

face containing X 1 as an open set. 
'V 1 

Since X is birationally equivalent to C X JP 

,....., 
Since genus C .2: 1, it is easy to see by considering the a1banese variety of X that 

we have a commutative diagram 
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C X n:> 1 __ f __ ,x 

~~ c 

where p is the projection on the first factor 9 is a surjective morphism and f 

a birational transformation. Since the components of 1T -l(P.) are rational curves, 
1 

we have 9(-rr-
1

(Pi)) = Qi' a point in C. Since f is birational, there is an open 

set VC C suchthat Q./V, 1 :=;.i:s;.r and e 
1
(v) R::VXJP

1
• 

1 

We identify X - {P 
1

, ... , P r} as an open subset of X and set 

-1 -1 -1 } r1 U=8 (v)n (X-{P
1

, ... ,Pr}). Since 9 (V)n-rr {P
1

, ... ,Pr =p, for every 

x e U, the curve r = e- 1
(9(x)) r. U is closed in X and does not pass through 

X 

1 P
1

, ••• , P r' Also r x is isomorphic to an open subset of JP • Hence taking 

F = X-U in Lemma 3. 1, we see that every projective A-module is a direct sum-

mand of a free module and an ideal. 

Remark 3. 3. 

change L :> k. 

It is easy to see that the arguments in 3) remain valid for any base 

Hence we get that every projective A ® L-module is isomorphic 
k 

to a direct sum of a free-module and an ideal. 

Corollary 3, 4. Let A be as in 1), 2) or 3) of Proposition 3. 2. Then 

K
0

(A) R:: K
0

(A[X
1
,,,., Xn]), for all n. 

Proof. By Proposition 3. 2 and Remark 3. 3, K
0

(A) R:l K
0

(A ®k L) for any 

field extension L/k. Hence Corollary 3. 4 follows from Lemma 3.1. 

Remark 3. 5, We do not know any example of a normal ring A such that 

K
0

(A) r:j: K
0

(A[X]). Corollary 3. 4 suggests the following conjecture, 

Conjecture: Let A be the coordinate ring of an affine normal surface having 

only rational singularities. Then K
0

(A) R:l K
0

(A[X
1

, •.• ,Xn]). 
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BASE CHANGE FOR KO OF ALGEBRAIC VARIETIES 

Leslie Roberts 

We consider the effect of a finite normal change of base 

field on the Grothendieck group K0 of an algebraic variety. This 

is first done in the affine case and generalized to schemes. I have 

tried to give proofs that are valid for K1 and other groups as 

well. The essential idea is that the group be defined in term of a 

category of modules and satisfy certain reasonable properties, rather 

than merely be a functor from rings to abelian groups. This approach 

works well with a normal separable extension, but with inseparable 

extension I had to use special properties of K0 and K1 
Some of the material here is contained in [13]. Throughout, 

Z = integers, R = real numbers, Q = rational numbers, C = complex 

numbers. All schemes are separated. 

l. Normal Separable Extensions 

Let F be a field, and A a commutative algebra over F 

If K is an extension field of F , set B = A ®F K and 

f: A + B the inclusion f(a) = a ~ 1 In this section we assume 

that K is a finite normal separable extension of F , and consider 

inseparable extensions later. Let G be the Galois group of K 

over F ' and [K:F] = n The group G acts on B by a( a®.\) = 

a ® aO) for a e: G A E K If M is a B-module, we define 

the B-module Ma(ae:G) by ( i) M = M as an abelian group a 
( ii) b•m = -l denotes the B-action M If a (b)m Here on a 
a denotes the ring homomorphism a: B + B defined above, then 

* -l * M = a (M) = (a )*M , where a denotes extension of scalars a 

by means of a 
' and (a-1 >* denotes restriction of scalars by 
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2 

-1 a This terminology agrees with that of Bourbaki [4], but not 

with that of Milnor [ll], p. 137. 

If N is an A-module, and M is a B-module, then we have 

the following: 

( l) * f*f (N) - nN (direct sum of n copies) 

( 2) f*f.(M) - $ae:G Ma 

The first is obvious. To prove (2) 
' let K = F(lJ) , where ll 

has minimal polynomial g We have B = A(X]/(g(X)) 
' and 

B tAB = B[X]/(g(X)) : IT G B[X]/(X-a(lJ)) = IT GB , where ae: ae: a 

Ba = B[X]/(X-a(lJ)) = B There are two homomorphisms f
1

: B + B SA B 

defined by f 1 Cb) = b@ l , and f 2 : B + B 8A B defined by 

f2(b) = 1 ® b 

th 
If ~a B ®A B + B denotes projection onto the 

* a factor, then 1r f = a a l • Therefore f f*(M)= 

* - (f ) (f ) (M) = $ M , as required. Note that both (1) and - 2 * 1 ae:G a 
(2) are natural. 

In order to prove (2), B need only be a commutative 

Galois extension of A 

Now let Xr be a scheme over F , and X = X x K F SpecF 
Spec K Let f: XK + XF be projection onto the first factor. 

Then G acts as a group of automorphism of XK ( a acting via 

1 x a). If M is a quasicoherent sheaf on XK , write 

This is consistent with the terminology of §1, 

Suppose XF = l)ie:I Xi where Xi = Spec Ri is an open covering 

of X Then XK = l)ie:I X~ , where X~ = Spec(Ri9FK) = f-l(Xi) 

is an open covering of XK by affines. Over each of the affine 

open sets Xi we have (2), with compatibility on overlaps by 

naturality of (2). Therefore we have 
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3 

for any quasicoherent sheaf M on XK 

Of course we have 

for N any quasicoherent sheaf on XF 

extension of degree n 

' ' 

for K any field 

The isomorphisms in ( 1 ) and ( 2 ) are natural so we have a 

* * natural equivalence between the functors f f* and Ea& G a , and 

* between f*f and n By the sum of two functors f 1 and f 2 

we mean (f1+f2 )(M) = f 1 (M) $ f 2 (M} for an object M , and 

Cf1+f2 )(8} = f 1 CS) $ f 2(8) for amorphism B 

If XF is projective over F 

holds for coherent sheaves on XF [2]. 
' 

the Krull-Schmidt Theorem 

If M and N are coherent 

* * ' sheaves on XF , and f M - f N then (1 ) implies that nM - nN 

* By the Krull-Schmidt theorem M : N Therefore f is an injection 

on isomorphism classes. 

2. The Grothendieck Groups 

Define an admissible subcategory C of an abelian category 

A as on page 388 of [3] (except that condition (d) might not be 

needed), Let K be a "functor" that assigns to C an abelian 
I 

group K(C) • That is, if f: C + C is an exact admissible functor 
I 

in the sense of [3] page 389, then a homomorphism r: fCf) + K{C 

is defined such that 1 = 1 and gr = g r (with equivalent 

functors inducing the same homomorphism). Furthermore, if f and 
I 

g are two exact admissible functors f~om C to C , so is f + g , 

and we assume that ~ = r + g 

will usually omit the 

To simplify the notation I 

Now let F be a field, K a normal separable extension of 

degree n XF a noetherian scheme over F and 
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4 

as in §1. Let A be the category of coherent sheaves 
I 

A the category of coherent sheaves on XK C the 
I 

category of locally free sheaves of finite type on XF , and C 

the category of locally free sheaves of finite type on XK Then 
R I 

f is an exact admissible functor from A to A that takes C 
I I 

to c , and f,.. is an exact admissible functor taking C into 

c Also the 
I 

to A mapping 

' 

... 
a 

c 
I 

I 
(acG) are exact admissible functors from A 

' into itself. If K is as above then (1 ) 

and (2 ) yield equalities 

' ' of endomorphisms of ~(~} (or K(C}) and K(A ) (or ~(£ )) 
respectively. I have written simply a instead of 

_ ... 
a G acts 

I I 

as a group of automorphisms of ~(~ ) and K(C ) 

In particular, K can be the Grothendieck groups K0 or 

K1 as defined in [3), page 389, and perhaps also the groups Ki as 

defined by Quillen in [12]. For example, K 0 (~) = K.(XF) 

and the homomorphisms f,..: K.(XK) + K.(XF) and 

• induced by the functors ft and f respectively 

satisfy (3) and (4) G If K.(XK) is the subgroup of K.(XK) 

consisting of elements fixed by G then 
... 

f maps K. (XF) into 
G K.(XK) Equations (3) and (4) say that the kernel and cokernel 

• of f are killed by n 
I I 

By using C and C in place of A and A we get 
I 

corresponding statementsabout K'(XF) = K0(£) and K'(XK) = K0<£ ) 
If XF = Spec A is affine, then 

K.(A) is denoted Gl..(A) in [3] , l. -

K. (C) 
l. -
i=O,l 
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5 

3. The inseparable case 

First assume that K is a purely inseparable extension of 

F of degree p that is char F = p > 0 , and K = F(S) where 

where S t F Let A and B be as in §1. Then 

and B 3A B = B[X]/(XP-a) = B[X]/(X-a)P. We have 

a homomorphism g: B ®A B + B defined by factoring out the nilpotent 

ideal (X-6) , and two homomorphisms f 1 ,f2 : B + B ~AB defined 

as before. If M is a projective B-module of finite type, then . ... 
f f*(M) = (f2>.<f1 ) (M) On the other hand gf1 = gf2 = 18 , so . ... . ... ... 
g Cf1 > = g Cf2 > But g is a bijection on isomorphism 

classes, by proposition 2.12, page 90 of [3]. Therefore . ... ... . ... 
(f1 ) (M) : (f2 ) (M) , so f f*(M) = Cf 2 ) ... (fl) (M) : (f2 )*(f2 ) (M) -

: pM This isomorphism is not natural (at least, not obviously 

• so) but we still have f f* = p on K0 CB) For the G. case 
~ 

Ci=O,l) we still have 
... ... 

f f* = (f2),..(fl) 

we get Cf1 )*g* 

[3], g*: Gi(B) 

(fl)* = (f2)* 

Gi (B)) 

= Cf2 )*g* = 1 By proposition 2.3, page 454 of 

+ Gi(B ®A B) is an isomorphism. Therefore 

... * and f f* = Cf1 ),..Cf1 ) = p (as endomorphisms of 

We can now put these results together to handle the case 

of an arbitrary normal extension FC K of degree n We can 

write Fe Hc.K where H is purely inseparable over F of 

degree d and K is a separable extension of H If p 

i: A + A ®F H and j: A ~F H +A 5F K are induced by the 

inclusions of fields and ... * f = ji then we have f f* = (ji) (ji)* = 
... .~ d ..... 

j Ci i,..)j,.. = p J J* in G
0 

and G
1 

cases (i*i* = pd 

since G 
th can be obtained by adjoining p roots, one at a time). 

d.*. (M) If M is projective of finite type then 
... 

f f*(M) - p J Jt. 

The field H is fixed under any automorphism of K over F and 

restriction gives an isomorphism G = Gal(K/F) + Gal(K/H) Thus 
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we have proved 

(5) 

( 6) 

6 

"' f f,(M) -

* d f f,. = p ~aeG a 

(M projective of 
finite type). 

The following example shows that (5) is false if M is 

not assumed to be projective. Let A = K , where K/F is purely 

inseparable with [K:F] = p Then B = K ®F K If M is a 

B-module, f,.(M) is a free A-module, since A is a field. There-

* * fore f f,.CM) is a free B-module. If f f,.(M) : pM then M is 

projective. But there are B-modules of finite type which are not 

projective. 

If the extension KIF is normal but not separable, the 
t 

proof of (6) seems to work in the scheme case for K0 C~ ) and 
t 

K1<~) , but I do not know if the analogues of (5) and (6) hold 

in the K' case, the problem being the lack of naturality in (5). 

4. Some examples 

Let S be a graded ring in positive degrees, and let 

X = Proj S A homogeneous ideal I C S defines a closed sub-

scheme Y = Proj(S/I) of X If I is generated by a homogeneous 

element f , then X - Y = D+(f) is affine, D+(f) = Spec S(f) 

where s(f) is the degree zero part of sf Proj and its 

properties are discussed in [9] , § 2. 

If n = 2r is even, write Pn 
K = Proj K[U1 ,v1 , ••• ,ur,vr,TJ 

and let WK (or wn 
K if it is necessary to specify n ) be the 

closed subscheme defined by ~~=l UiVi + T2 

WK = Proj K[U1 ,v1 , ••• U ,V ,T)/(k: l U.V.+T2) r r ~= ~ 1 
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7 

ui = Ui/Ul vi= V/Ul t = T/U1 The vl can be 

eliminated, so D+CU1 ) = Spec K[u2 ,v2 , ••• ur,vr,t] = ~-1 = affine 

space over K of dimension n - 1 If we let w. 
l. 

be the closed 

subscheme defined by the homogeneous ideal CU1 , ••• ,Ui) 

1 < i < r , then we have WK = w0 ::::> w1 ::::> w2 ::>... Wr-l? Wr 

As above it is seen that Wi-l - Wi = ~-i (l<i<r) The schemes 

Wi (D~i~r-1) are all integral, and Wr = Proj K[V 1 , ••• vr,T]/(T2> 

so (Wr)red = Proj K[v 1 , •.• ,Vr] = p~-l 

In a similar manner, if n = 2r - 1 is odd, write 

defined by Er=l uivi That is, WK = Proj S 

If we let 

, where 

S = K[U1 ,V1 , ••• Ur,V )/(E: l U.V.) r l.= l. l. 
w. 

l. 

subscheme of WK defined by the homogeneous ideal 

then we have We have 

l<i<r The schemes wi are all reduced, all are 

w and w Proj K[V1 , ... ,vr ] r-1 = = PK • r-1 r 

be the closed 

integral except 

Let X be a noetherian scheme over K with an ample 

invertible sheaf, and let Y be a closed subscheme such that 

X-Y=A~ Then we have an exact sequence 0 ~ K.(Y) ~ K.(X) ~ 

z ~ 0 This follows from the exact sequence in §5 of [12]. Part 

of this exact sequence is 

is a group defined by Quillen in [12]. G
1 

(X-Y) = 

* 
where G1 

n G1 (AK) = G1 (K) , and g is split by the homomorphism f : G
1

(K) ~ 

G1 (X) induced by the structure morphism f: X~ SpecK There-

fore g is onto, and since n K.(X-Y) = K.(AK) = Z we have the 

required short exact sequence. To get g onto, the field K 

could have been replaced by any commutative noetherian ring, as 
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long as X is of finite tor-dimension over K (this assumption is 

* necessary in order to define the homomorphism f ). We could also 

have used corollary 5.7, p. 428 of [3], as was done in [13]. The 

exact sequence 0 + K.(Y) + K.(X) + Z + 0 can be split by sending 

1 £ Z to [OX] , the class in K.(X) of the structure sheaf 

OX By proposition 3.3 p. 402 of [3], there is an isomorphism 

K.(W) d r re +K.(Wr) Therefore K.(WK) is free abelian of rank 

2r 
' 

with basis eo, ... er-1 ' fl' ... fr ' 
where e. = [ow. ] and l. l. r-1 f. corresponds to a linear sub space of codimension i - 1 in PK l. 

= (W ) 
r red 

Let VF (or vn 
F if it is necessary to specify n ) be a 

closed sub scheme of pn 
F which is defined by a homogeneous poly-

nomial g of degree 2 , and suppose that there exists a finite 

normal extension K of F such that VK = VFxFK is isomorphic to 

WK We have an exact sequence 

By the corollary p. 299 of [8], rank K.(P~-VF) = 1 

n + 1 Therefore rank K.(VF) > n Also, by (1 
I 

n Rank K. (PF) = 

rank K.(VF) 2 rank K.(VK) If n is even we have proved that 

rank K.(VK) = n Therefore rank K.(VF) = rank K.(VK) = n 

or equivalently, every element of G = Gal(K/F) acts trivially on 

Therefore we need consider only odd n If n is odd, 

rank K.(VK) = n + 1 , so rank K.(VF) = n if some element of 

G = Gal(K/F) acts non-trivially on K.(VK) and rank K.(VF) = n + 1 

otherwise. 

If char F # 2 , we may assume g = rrl.. __ 1 (a.S~+b.T~) l. l. l. l. 

(n+l=2r) , where ai,bi # 0 and the Si,Ti are n + 1 indetermin-

ants defining the homogeneous co-ordinate ring of Then we can 

obtain a suitable (separable) extension K by adjoining to F a 
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finite number of square roots CJ.. = {(-b.)/a. In K we can make 
l l l 

the change of variable U. = a. ( S. -a. T.) 
l l l l l 

and V. = S. + a.T. 
l l l l 

that The effect of an automorphism cr of K 

r is to interchange a. and 
]. 

subset of the integers from 1 

-a. 
l 

to 

for i E 

r That 

I 
' 

where I is 

is cr(Ui) = a. V. 
]. l 

so 

over 

some 

and 

cr(V.) = (1/a.)U. if i e; I The automorphism ].l of WK defined J.. J.. J.. 
by ].l(Ui) = aiUi ].J(Vi) = (1/ai)Vi induces the identity on 

K.(WK) because it leaves fixed the homogeneous ideals defining the 

basis for K.(WK) Therefore the automorphism of K.(WK) 

produced by cr is the same as that produced by interchanging u. J.. 
and V. J.. i E I 

If char F 2 r a.S~ + s.T. + b.T~ = ' 
we may assume g = l: i=l J.. J.. ]. J.. J.. J.. 

by [1] Then a suitable (separable) extension K can be 

obtained by adjoining to F the roots of the polynomials 

bi , and as above an automorphism of K over F will produce the 

same automorphism of K.(WK) as interchanging u. J.. and V. J.. for 

i E I I defined as above. 

Let tj be the automorphism of WK defined by interchanging 

·~ V. , and T. = t. , the automorphism induced by 
J J J 

on 

I claim that T.(e.) =e. O<i<r-1 , and J J.. J.. 
T.(f.) = fJ... 

J J.. 
2<i<r This was proved in [13] by using the ring 

structure on K.(WK) (=K'(WK)). However, one can also give the 

following more elementary proof. For 2<i<r , we have fi = [Oy1 , 

where Y is the closed subscheme defined by the homogeneous ideal 

cu1 , ... u ,V.,Vk_, ... vk ) , where the integers j,k2 , ... kJ..._2 r J -£ i-2 
are all distinct. The ideal is fixed by t. so T.(f.) = f. 

J J J.. J.. 
2<i<r Similarly T.(e.) = e. if i < j Write J J.. J.. 
S = K[U 1 ,v1 , ... ur,Vr]/(II=l UiVi) as before. If j ~ i , set 

I = ( U 1 , ... U i) J = ( U 1 , .. , , U j _1 , U j + 1 , ... , U i) , and 
'' I = <u1 , .•• u. 1 ,v.,u.+1 , ••• U.) We have the following exact ]- J J J.. 
sequences of graded S-modules: 
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0 - J - I-

I 

0 - J --+ I-+ 

u. 
o -s/J -l:.._ 

v. 
0 + S/J ---*--

From this it follows that in K.(WK) 

page 30), and therefore t.e. 
J 1. 

I = 

I/J ..,. 0 

I 

I /J ..,. 0 

I/J .... 0 

I 

I /J .... 0 

-' [I] = [I ] C 

Now we consider 

(Ul' ••• ,Ur) 

L = (U1 , .•• ,U ,V.) 
r J 

as in [9], 

and let 

Y1 ,Y 2 ,Y 3 ,Y 4 be the closed subschemes defined respectively by these 

homegeneous ideals. We have I () I' = J , and I + I' = L 

There is an exact sequence of graded S-modules 

• 
0 + S/J + S/I ~ S/I + S/L + 0 

and hence (applying -) an exact sequence 

0 

But [Oy ] = f 1 [Oy ] = t.(f1 ) [Oy ] = f 2 2 3 J 4 
, and an 

argument similar to that used to prove that t.(e.) =e. 
J 1. 1. 

shows that [Oy ] = e 
1 1 r-

Thus the T. 
J 

fore cr e: G = Gal(K/F) 

Therefore we have tj(f1 > = 
are all equal, say T. = T 

J 
acts trivially on K.(WK) if (J 

for 

er-1 

There-

acts as 

an even number of transpositions, and non-trivially if cr acts as 

an odd number of transpositions. 

As an example, let F = R and let VRC P~ be defined 

by x2 + ••• + x2 K = c so that G = Z/2Z We may make the 
0 n 

following table: 
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rank K. (W~) 

n even n 

n+l 

11 

number of 
transpositions 

odd 

action of 
G 

trivial 

non-trivial 

n 

n 

n::3 mod 4 n+l even trivial n+l 

We can also give some affine examples. Suppose that 

char F -t 2 2 2 
and that An= F[X 0 , ... ,Xn_ 1 J/Ca 0X0+ ... +an-lxn_1+an) 

where a. # 0 
~ 

E: F We can adjoin a finite number of square 

roots (including l=r ) to F to obtain K so that 

An er K = K[x 0 , ... ,xn_ 1 J/Cx~+ ... +x;_ 1-l) = Bn By [6] , p. 252, 

K0CBn) = Z e Z if n is odd and Z if n is even. Therefore, if 

n is even, rank K0CAn) = 1 , and if n is odd, rank K0 CAn) is 

either 1 or 2 Suppose n is odd. Spec An is the open subset 

D+ (Xn) of vn 
F = Proj 2 2 F[x 0 , ..• ,Xn]/(a0X0+ ... +anXn) Furthermore, 

Vnx K 
F F = vn 

K 
:: wn 
- K ' 

where wn 
K is as previously defined. If every 

element of G = Gal(K/F) produces an even number of transpositions, 

then G acts trivially on K.(V~) and hence also acts trivially 

If some element 

of G produces an odd number of transpositions, then G acts 

non-trivially K. (V~) n-1 2 
on If VF = Proj F[XO' • • • ,Xn-1 ]/(aOXO+ .. 

2 then n-1 ;; Hn-1 been made big enough) . . . +a lx 1) VK (if K has n- n- K 

G acts trivially on K. c v~- 1 > since n - 1 is even. Therefore 

we have an exact sequence of free abelian groups 

0 +image K.(VnK-l) + K (Vn) + K (B ) + 0 
• K 0 n 

The first homomorphism is obtained from the inclusion V~-lC: V~ 

The group G acts as an automorphism of this exact sequence, 

trivially on , and non-trivially on From 
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this, using the fact that G is finite and the groups are free 

abelian, it is readily seen that G acts non-trivially on K0 CBn) 

Therefore, in this case rank K0(An) = 1 

Some examples are as follows: 

(1) 2 2 Then rank Let A = R[X 0 , •.. ,Xn]I(X 0+ .•. +Xn +1) n 

KO (An) = 2 if n - 2 mod 4 
' 

and rank KO (An) = 1 otherwise. 

( 2) 2 2 rank Let A = R [X 0 , •.. , xn J I ( x 0 + ... + xn -1) Then n 

KO (An) = 2 if n - 0 mod 4 and rank Ko(An) = 1 otherwise. This 

proves that the homomorphism K 0 (An)~ KO(Sn) considered in [7] is 

an isomorphism mod torsion, since the groups have the same rank and 

Fossum has shown that the map is onto. (The kernel is of course 

killed by 2 ) . 

( 3) Let 

K0 CAn) = 1 for all 

2 2 An= Q[X0 , •. ,Xn]ICX 0+ ..• +Xn-2) Then rank 

n since the 2 always makes an odd number of 

transpositions possible. 

I have not been able to say anything in general about the 

2-torsion part of The cokernel of 

(VK:WK) also seems difficult to compute, but at least it is clearly 

finitely generated. Examples in [13] show that the cokernel can be 

non-zero. 

5. Further remarks on K1 

A Brauer-Severi variety is a variety over a field F which 

becomes isomorphic to after a finite separable extension 

KIF There is a bijection between Brauer-Severi varieties of 

dimension n - 1 and central simple algebras over F of rank n 2 

The quadrics considered in section 4 are examples, with n = 2 • 

In [13] I proved that 2 
Kl (F) $ K

1
(D) where D is the Kl (WF) = ' 

central simple algebra corresponding to w2 
F Quill en has obtained 

the same result, using the definition of Kl proposed in [ 12 J. 
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Gersten has shown, however, that if X is a complete elliptic 

curve over C , there is a naturally occuring homomorphism 

K1 CX) ~ K~(X) (Q denoting Quillen's definition) which is onto but 

not injective. 
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ON FREE PRODUCT OF RINGS AND THE COHERENCE PROPERTY 

K. G. Choo, K. Y. Lam and E. Luft 

§1. Introduction 

A unital ring R is said to be (right) coherent, if every homomorphism 

f: Rn + Rm of (right) R-modules has finitely generated kernel. Standard 

references for such rings. are Chase (3], Bourbaki [2] and Soublin [7]. Of 

course, any right Noetherian ring is right coherent, but there are important 

examples of coherent rings which are not Noetherian. Indeed the integral 

group ring of a non-cyclic free group is one such example. 

The importance of coherence in Algebraic K-theory can be traced back to 

the following (cf. [1]) : 

Proposition (1.1) If R is a coherent ring of finite right global 

dimension, then the inclusion map R ·* R[t] induces an isomorphism 

K1(R) ~ K1 (R[t]), where R[t] denotes the polynomial ring over R. 

This proposition has been used by various people [1], [5] in computing 

the K-groups of polynomial extensions. 

The purpose of this paper is, roughly, to establish the coherence property 

for the free product of two coherent rings. The precise statement is given in 

Theorem 2.1. This tLeorem can be applied to yield certain vanishing theorems 

of lfui tehead groups and projective class groups, see [ 4] • 

Supported by the National Research Council of Canada, Grant Nos. A7 562, Alt029. 
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It should be pointed out that Waldhausen in [9] established, among other 

things, that if two groups G and H have coherent group rings, then so 

does the almagamated product G *c H, where C is a common subgroup with 

Noetherian group ring, Waldhausen's proof depends heavily on his machinery 

of "surgeries" and "Mayer-Vietoris presentations" of chain complexes. Our 

proof of Theorem 2.1 is a drastic simplification of his ideas, and at the same 

time constitutes an extension of these ideas from group rings to arbitrary rings. 

§2. Statement of the Main Theorem 

Let R be a unital ring. By a R-ring we mean a unital ring A containing 

R as subring, such that there is an augmentation homomorphism eA : A+ R 

satisfying eA(r) = r for all r in R. We call A= Ker EA the augmentation 

ideal of A, and note th<> follo•·ring split exact sequence : 

A~ 0 --!> A -> <- R --!> 0 • 
i 

If A and B are R-rings, then we can form their free product over R, 

denoted by A *R B A good description of this free product can be found in 

Stallings [7]. We only record that, as bimodule over R, 

(1) 

v1here AB is an abbreviation for A ~R ii, etc. The multiplication in this 

free product can be illustrated by the following typical examples : if ai e A, 
sj e ii, then 

136 



-3-

The main purpose of this paper is to prove 

Theorem (2.1) Let R be a right Noetherian ring. Let A, B be right 

coherent R-rings such that the augmentation ideals A, B are free as left 

R-modules. Then the free product A *R B is right coherent. 

Corollary (2.2) If R is a right Noetherian ring and X is a set, then 

the free ring R{X} generated by X over R is right coherent. 

This corollary is an immediate consequence of Theorem 2.1 when X is a 

finite set. If X is infinite, we can use a direct limit argument to complete 

the proof. Compare [2, p.63]. 

§3, Some Technical Lemmas 

We begin with some notations and terminology. A homomorphism f: Rn 7 Rm 

of right R-modules can be represented by an associated m x n matrix Q over 

R, such that it maps a column vector x s Rn to Qx E Rm . We call Q a 

(right) coherent matrix if its "solution space" { x I Qx = 0 } is finitely 

generated as right R-module. If Q
1 (resp. Q2) is the matrix obtained from 

Q by an elementary row (resp. column) operation(*), and if Q
3 

is the 

extended matrix [-~-~-~-] , then the following lemma is easy to prove 
0 I 1 

I 

Lemma (3.1) For each i, Qi is coherent if and only if Q is coherent. 

k1other easy lemma is 

(*) In performing an elementary operation, lve multiply rows by scalars from 
the left, and coluiT~s by scalars from the right. 
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Lemma (3.2) Let A' be a ring containing A such that A' is free 

when considered as a left A-module. If Q is a right coherent matrix over 

A, then it is also right coherent when considered as a matrix over A' • 

Let A, B be R-rings as in Theorem 2.1. Let us fix left bases {ai}iEI' 

{Sj}jEJ for the (left) R-modules A and B • Then {ai 0 Sj}iEI,jEJ form 

a left bases of AB • 'In this way, we can assign a left basis to each direct 

summand of A *R B appearing in the right hand side of (1). Furthermore, each 

basis element w has an obviously defined length JwJ • For example, J1J = 0, 

lai 0 Bjl = 2, etc. If w = 1, or if w = ai a Bj Q ••• , then we say that 

w is a basis element of A-type. Similarly, we can define a basis element of 

B-type. 

Consider now the following diagram of natural inclusions of right modules: 

m m 
(A *R B) = D , 

where for brevity we have used D to denote the free product A *R B Our 

next lemma is the key step towards the proof of Theorem 2.1 : 

Lemma (3.3) Let MA be a submodule of Dm generated by certain elements 

in Am, and let ~ be another submodule of DID generated by certain elements 

in Bm. Let K (MA + ~) () RID. Then 

(2) (MA + K•D) () (~ + K.D) K·D , 

where K·D denotes the right D-module generated by K . 
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Proof : It suffices to show that an arbitrary element d in the left 

hand side of (2) belongs to the right hand side. Let 0 0 
MA (resp. Mji) be the 

A-submodule of Am (resp. B-submodule of Bm) generated by the same set of 

elements which by hypothesis generate MA (resp. ~). Then MA= M~·D and 

~ = ~·D • Considering d as an element in Dm = Rm QR D, we can express it 

uniquely as 

(3) 

with each m 
ci E R , and each wi a left basis element of D, satisfying 

On the other hand, by considering as 

or as m 
B GB D, we can express d uniquely in each case as 

(4) d 

or 

(5) d 

respectively, where is a basis element of 

B-type and vk is a basis element of A-type. 

We now assert ci E K for each i • Without loss of generality, we can 

suppose w1 is a basis element of B-type. Then, in the expression (4), there 

must be a j such that uj = w1 . Let's say j 1 so that 

claim that a1 . For this purpose, observe that so 

that one can write 

where ci, c~ E 
Rm and ai is a left basis element of A. for each L If 

c~ f. 0 for some "'· then c~ai', G wl must appear in the expression (3)' 

contradicting the fact that wl is of maximal length. Hence all c" 
.9. 

= 0 so 
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Since is 

already in Rm, this proves c
1 

c K • By repeating the same argument to 

d - c
1
w1 , we deduce inductively that c

1 
c K for all i. Hence d c K·D 

as is to be proved • 

§4. Proof of Theorem 2.1. 

It suffices to show that any rectangular matrix Q over D is (right) 

coherent. By Lemma 3.1, we can first change Q by elementary row and column 

operations, or by extensions of the type Q 1-> ~-~-~-~-1 , until finally Q 
lo ' 1 J 

takes the following form : 

where QA' QB are m x p and m x q matrices over A and B respectively, 

with p + q = n, for some integers m and n • (This procedure is known as 

"Higman's trick"). 

of 

Let 

QB • Let 

... , b } 
q 

be the column vectors of 

MA' ~ be D-submodules of Dm 

respectively. If f : Dn 7 Dm 

QA and b1 , 

generated by 

• •• ' b q 

{al' ... ' 

be those 

a } and 
p 

is the homomorphism associated 

with Q, then we have the following presentation of MA+ ~ 

(6) 

Our objective is to show that ker f is a finitely generated D-module. 

Let K = (MA + ~) fl Rm • Since R is right Noetherian, K is finitely 

generated over R, say, by elements He use these elements 

as column vectors to form an m x r matrix QR, and consider the m x (p+r+q) 

matrix 
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Notice that the two submatrices QA = [ QA QR ] and QB = [ QR j QB J of Q 

have entries entirely in A and B respectively, and are hence right coherent 

over D according to Lemma 3.2. 

Since K C:: MA+~· the column vectors of Q still generate MA+~ 

If f : Dn+r + Dm is the homomorphism associated with Q-
' 

then we have 

another presentation of MA + ~ : 

(7) 

Applying Schanuel's lemma [6, Theorem 3.41] to (6) and (7), we obtain 

so that ker f is finitely generated over D if and only if ker f is. To 

see the finite generation of ker f, let 

which is to say that xi' zk' yj are elments in D satisfying 

(8) +by 
q q 

Write Then (8) implies that d is an element in 

(HA+ K·D) tl (H8 + K·D), and so d c K·D by Lemma 3.3. Thus 

(9) 

for some zl' .•• , z~ in D. From (8) and (9), we easily obtain 
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(10) 

and 

(11) +by q q 

0 • 

0 • 

can be written as 

(12) (x1 , ••• , xp, z1-zi, ... , zr-z~, 0, •.. , 0) 

and since Q-A and Q
B 

+ (O, ... , 0, zi, ., ., z;, y1 , •.. , yq) ; 

are right coherent matrices over D , we easily conclude 

from (10), (11) and (12) that ker f is a finitely generated D-module, thereby 

completing the proof. 

University of British Columbia 

Vancouver 8, B. C. 

Canada 
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WHITEHEAD GROUPS OF FREE PRODUCTS 

WITH AMALGil.}lATIOU 

by A.J.Casson 

Introduction 

We use the notation of Milnor's survey l4]. Stallings l5] 

has shown that, if A and B are augmented algebras, then (under certain 

conditions) K1 (A*B) = K1 (A) $K1 (B). ile aim to generalise this result 

to deal with free products with amalgamation. 

Given rings A,B,C and homomorphisms a:C-+A, ~:C-B, we 

construct a group K1 (a,~) which fits into an exact sequence 

K1 (C)~ K1 (A)$K1 (13) ~K1 (a,~)--7K0 (C) ~K0(A)$K0 (B) 
We say that a subring C of A is pure if A admits a 

decomposition A= C~A' as C-bimodule. (For example, if A is a group 

ring ZlGJ and E is a subgroup of G, then ZLE] is pure in ZLG].) 

Suppose C is also pure in a ring B = CGBB'. Then one can form the 

amalgamated free product A*cB ; it contains the tensor algebra 

T = TC (b.'® 0B' ) of the C-bimodule A'® CB' • \le construct a homomorphism 

e:K1 (a,~)~K1 (A*cB) 
(where a:C-+A, ~:C-+B are the inclusions) and our main result 

(Theorem 2) states that 

K
1 
(T)~K1 (a,~)~ K1 

{M
0
B) 

is surjective. If A'®cB' is a "free" C-bimodule (that is, a direct 

sum of copies of C), then 

im ( K1 ( T) ) ~ im ( e ) 
so 6 is already surjective (Theorem 3). It would be interesting to 

know whether 6 is actually an isomorphism in this case. \ihen applied 

to a group ring A= ZLG*EH] ZLG]*z[B)ZLH] the freeness hypothesis 

in Theorem 3 is satisfied if G and H are generated by E together with 

the respective centralizers of E, but not apparently in general. One 
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can thus obtain (from Theorem 3) the vanishing of the Whitehead groups 

of groups built up from infinite cyclic groups by finitely many direct 

and free products (and even "central amalgamations", i.e. those of the 

type G*EH \vi th E central in G and in H.) 

I am very grateful to L.Siebenmann, F.Waldhausen and 

C.T.C.Wall for conversations which stimulated my interest in this 

question. 

g1. Generalities 

Let A,B,C be rings with 1 and let a:C~A, ~:C~B be ring 

homomorphisms respecting 1. Define a group K1 (a,~) as follows. 

A triple (P,X,Y) consists of a finitely generated projective right 

C-module P, an A-basis X= (x1 , ••• ,xn) of P~0A and aB-basis 

Y = (y1 , ••• ,yn) of P® 0B. Hote that X,Y are required to have the same 

number of elements. The ~ of two triples is defined by 

(P,X,Y)EB(P',X',Y') = (PEBP',XeX',Yca:lY'). 

For each integer n ~ 0 there is a standard triple 

S ( n n n ) n= C,Z®1A,Z®1B 

where Zn denotes the standard C-basis of On. 

Triples (P,X,Y),(P',X',Y') are equivalent if there exist 

a C-isomorphism Y:P~P' and elements M,N in the commutator subgroups 

of Aut A (P ® 0A) ,AutB(P® 0B) respectively such that 

X'= (Y~1A)MX, Y' = (Y®1B)llY. 

Triples (P,X,Y),(P' ,X' ,Y') are stably equivalent if there exist 

integers r,r' such that (P,X,Y)EBS is equivalent to (P',X' ,Y')~S , • r r 

It is easily checked that equivalence and stable equivalence are 

equivalence relations. Moreover, if 6,6' are the stable equivalence 

classes of (P,X,Y),(P' ,X' ,Y'), then the stable equivalence class 6+6' 

depends only on 6 and 6'. 
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Lemma 1 Stable equivalence classes of triples form an Abelian 

group K1 (a,~). 

£!QQi. Addition is clearly associative and commutative. All stannard 

triples are stably equivalent, and represent the zero element of 

K1(a,B). It remains to produce an inverse for the class (P,X,Y). There 

is a finitely generated projective C-module P' such that P~P' f:' Cm 

for some m. If X, Y each have n elements, then (P' ~Cn)® 0A, 

(P'$ en)~ Bare free on m generators, with bases X' ,Y'. Then 
c 

(P,X,Y)ffi(P'~Cn,X',Y') is equivalent to (Cr,X",Y") for some bases 

X",Y" and r =m+ n. Let M,N be the unique elements of AutA(Ar), 
r 

AutB(B ) such that 

X" • Y" 

Let 

then 

(er, X", Y") ffi (er, X*, Y*) = ( c2r, (MEBM-1 ) ( z2r ® 1 A) , ( N en-1 ) ( z2r®1 B)) 

But Mfi!::)M-1 , N$N-1 belong to the commutator subgroups of AutA(A2r), 

AutB(B2r) respectively, so (Cr,X",Y")$(Cr,X*,Y*) is equivalent to S2r. 

Therefore (P'Ell!Cn,X',Y')ffi(Cr,X*,Y*) represents an inverse to (P,X,Y), 

as required. 

Theorem 1 There is an exact sequence 

K1 (C)~K1 (A) ~K1 (B)~ K1 (o:,fl) ~ K0(C)~ K0 (A)~K0 (B). 
£!QQi. First we define the maps. For r = 0,1 let 

i = a*EBI3* : Kr(C) ----7Kr(A)~Kr(B) • 

If (P,X,Y) is a triple and X,Y each have n elements, let P - en 

represent o(P,X,Y). If p. E. K1 (A),l>E. K1(B), then for large n there 

exist M E. AutA(An), NE. AutB(Bn) representingp.,~ respectively. 

Let (Cn,M(Zn®1A),U(Zn®1B)) represent j(p.eu). It is not hard to 

show that j,o are well-defined homomorphisms, and that the composites 

iO , IQj, ji are zero. 
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Let a e K0 (e) be such that i(rr) = o, so a*(a) = 0 and 

~*(0') = 0. Then a is represented by P- en, where Pis a finitely 

generated projective e-module and n ~ 0. Since a*(cr) = 0 and ~*(0') = 0, 

there is an integer r such that (p(Ber)®
0

A, (PG'ler)®eB are both free 

on n+r generators. Let X,Y be bases of (Peler)® 0A, (P$er)®eB, each 

containing n+r elements. Then o(PEBer,X,Y) is represented by 

peer- en+r, so O'=O(Pffier,X,Y). This proves exactness at K
0

(e). 

If 8(P,X,Y) = 0 and X,Y each have n ele~ents, then there is 

an integer r such that P$ er :! en+r. Therefore (l' ,X, Y)Etl Sr is in the 

image of j, so the sequence is exact at K1 (a,~). 

Suppose 14e K
1 

(A), l.l e K1 (B) are such that j (t-<-EBl>) = 0. Let 

Me AutA(An), Ne AutB(Bn) represent~ ,l.l respectively. Then 

(en,M(Zn®1A),N(Zn®1B)) is stably equivalent to Sn' so there is an 

integer r such that ( en+r, (r-1 EBir) ( zn+r® 1 A), (N EBir) ( zn+r® 1 B)) is 

. ( n+r n+r n+r ) . 
equ~valent to e , Z ® 1 A, Z ® 1 B • There ex~st a e-isomorphism 

Y:en+r ~ en+r and elements :1<1' ,H' in the commutator subgroups of 

( n+r ( n+r AutA A ),AutB B ) respectively, such that 

(Mei )(zn+r®1 ) (YEI:l1 )W(zn+r®1 ) 
r A A A 

(Neir) (zn+r ® 1 B) (YEB1 B)H' (zn+r ®1 B) 

Therefore t-'- , ).) are represented by Y ® 11l., Y ® 1 B respectively, so p..EE!).) 

belongs to the image of i. 'i'his completes the proof of exactness. 

Suppose now that R is a ring with 1 and that cp:A ---')R, 

-.jl: B~ R are homomorphisms respecting 1 such that cpo: = "ljr~. Define a 

map O:K1 (a,~)~K1 (R) as follows. If (P,X,Y) is a triple, then X®1R 

is an R-basis of (P®eA)®AR = P®eR. Similarly, Y®1R is an R-basis 

of P~eR having the same number of elements as X®1R. Let e(P,X,Y) be 

represented by the m1ique automorphism of P ® 0R carrying X®1 R onto 

Y®1R. It is easy to check that e is a well-defined homoworphism. 
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Now we give a way of recognising elements in the image of e. 
Let us identify Cn® 0A, Cn®0B, Cn® 0R with An, Bn, Rn respectively 

by making the standard bases correspond. 

Lemma 2 1ti P,Q be right C-submodules of c 2n with c2n = PeQ. Let 

MA:An~ A2n, M13:Bn~B2n be monomorphisms such that im(MA) = P®0A, 

im(M13) Q ®
0

B. Then 

M (MA® 1 R) ffi (:r-113<591 R) : Rl'\B Rn ~ R2n 

represents an element in the image of e. 
n n () n () Proof. Define NA:A EBIA ------'> P® 0A 6:\A by NA u,v = HAu + v , and 

define N13 : (P® 0B) ffiBn -----4 B2n by N13 (x,y) = x + Jl113y. Then NA' NB are 

isomorphisms with r.1 = (N13 ® 1 R) (NA ® 1 R). Take X = HA ( z2n® 1 A) as basis 

of (P~Cn)® 0A and Y = N'i3 1 (z 2n~1 13 ) as basis of (PffiCn)® 0B. Then 

(N'i31
® 1 R) (n~\&l 1 R) is the automorphism taking X to Y ; but this 

( -1 ) ( -1 ) -1 represents the same element of K1 (R) as NA ® 1 R n13 ® 1 R = M • 

Therefore M represents -!:l(P~Cn,X,Y), and the lemma is proved. 

§2. Free products with amalgamation 

Let A be a ring with 1. A subring C of A is called pure 

if it contains 1A and there is a C-bimodule homomorphism £:A--40 

with elc = 1. Let A,B be rings with 1, each containing Cas a pure 

subring. Cohn L2] gives the following description of the free product 

with amalgamation A*0B • 

Let A' = ker(€:A .-C), 13' = ker(e:B-c), so A' and B' 

are C-bimodules. Following Stallingsl5], we consider the semigroup G 

on two generators a,b with relations a 2 = a, b2 =b. If Y € G, let 

IYI denote the number of symbols in the reduced word for Y. Define a 

C-bimodule Ry for each Y € G by R1 = C, Rya= Ry~cA' 

if I Yb I > I Y I • Let R = L Ry as a 
YE.G 

if IYal > IYI 

C-bimodule, so 

R = c ~A, EEl B' ffi ( B' ®eA' ) ~ (A, ®aB I ) ~ (A I ® cB, ® cA, ) El7 •••• 

To make R into a ring, it suffices to define associative and 
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distributive products Ky , 6 : Ry®0R6 ---+ R. We do this by induction 

on I Y I + 161 • 

If IY6! = IYI + 161, let nY, 6 be the inclusion map 

Ry® 0R6 = Ry 6CR. Define na,a: A'® eA'~ A= C<9A'CR by 

multiplication in A, and similarly define nb b. Suppose IY6j < IYI+I61 , 
soY= Y'x, 6 ~ x6' with x =a orb and IY' I< lrl, 16 1 I< 161. Then 

RY ® 0R6 = Ry 1 ® 0Rx ® 0Rx ® 0R61 , and ny 1 , 61 is already constructed, so 

we may define xY, 6 by the following diagram. 

1~y 6 
R 

l'"''r•,o• 
nY I xo I ~ (RY I® eRe I) 

Clearly xY,o is distributive; an inductive proof that ,.Y,o is 

associative is not too hard. One can also show that R has the 

universal mapping property which characterises free products with 

amalgamation. IfS is a ring and ~:A----"S, 'YpB~S are ring 

homomorphisms such that ~le = 1lc then there is a unique ring 

homomorphism ~:R-43 with~= ~~A, 1.= ~~B. We shall define A*0B to 

be R. 
CO 

Observe that R is a subring of R, isomorphic to the 
(ab)n 

tensor ring T(A'®cB') of the C-bimodule A'~cB'. Let V= 

W = ~ RYb ; these are both C-bimodules, and R CeV~W. 
yE.G 

We shall often use the relations 

AVCC~V , BV =V , avl W , BWCC~W • 

Observe also that 
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§3. Hain theorem 

Let A,B be rings vli th 1 , each containing C as a pure 

subring, and let a:c-A, ~:C-B be the inclusion naps. Then the 

inclusions <p:A~A*cB, \jt:D--7A*cB define a map 6:K1 (a,~)---'> K1 (A*0B). 

The inclusion >.:T(A'®cB')-A*cB induces a map 

>.*:K1(T(A'®cB'))--+ K1 (A*0B) • 

Theorem 2 K
1

(A*0B) is generated by the images of K1 (a,~) 
~ K1 (T(A'®cB')). 

Proof. Let~ be any element of K1 (A*0B). By Higman's trick (explained 

in [5,94]), "t is represented by some invertible (nx. n) matrix TA+ TB' 

where TA, TB have entries in A,B respectively. Now make the further 

simplification 

c·· TB ~ ){" ~ .. ~ )-t· ~:·) TA + TB "' 0 
n n n 1n 

Write MA' MB for the ( 2n X n) c·\ c··J matrices 
1 

/ 
1 

respectively, 
, n n 

and 

let ])1 = ( MA rifB ) . Then J'.1 is an invertible (2nX. 2n) matrix 

representing 1:, and J'.1A' r·1B have entries in A, B respectively. Let 

the inverse N of I-1 be partitioned as (:~) , where lJ 
1 

, n2 are (nX 2n) 

matrices. 

Recall that, in the notation of §2, 

Write 

ui i 
+ H~ + N~ ( i=1 , 2) ne ' 

where i i ui have entries in C,V,\1 respectively. Let ne, Nv, w 
1 

K = MANC + 
1 

MAIJV + 
2 

MBNV 
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Lemma 2 K,L have entries in C and 

K + 1 = K2 -. - K ' 12 1,IQ.=LK 0, 

lli.9.f. 
) ( N1) K + 1 = ( MA MB = 1 . u2 

1 1 2 2 2 1 MANC, MANV, MBNV have entries in C6)V, and r113N0 , M13NW, 111ANW have 

entries in CEeW. But K + 1 has entries in C, so K,L both have entries 

in C. 

The equation !U1 = 1 implies that 

N1MA = 1 , N1M13 = 0 , N2MA = 0 

Therefore 

NK = 

so N6K + N~ + N~K = Nb 
But K has entries in C ; it follows that 

N6K = Nb , N~K == N~ , N~X = 0 , 

2 N0K = 2 2 2 0 , NVK = UV , NWX = 0 • 

1 • 

Therefore NK2 

1 2 = 1 , K1 = 
= NK ; since N is invertible, K2 

LK = 0, as required. 

K. It follows that 

(i = 1 ,2). Now write V= A'Et'>(w® 0A') and n~ 
i i where NA' , NWA' have entries in A' , W~cA' respectively. Similarly 

write W B'Ei? (VQlcB'), N~ = N~, + N~B' Let 

( 1 1 2 2 E =MA NO+ NA,) 'l!' MB(l'J"C +NB,) 

1emJna 4 K - E 1 - F have entries in A' 

E2 = EK E KB K BMA 

LF 1 

B' respectively, and 

ErQQf. By definition of E, K - E has entries in A. But 
1 2 2 K - E = Iv!ANVIA, + M13N11A, + M13UA, , 

and all terms on the right have entries in A' EB (W® 0A') • Therefore 
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K-E has entries in A'. 

1 1 1 1 1 
(NC + NA' + NWA' + Hvl)r1A = H MA = 1. 

But N~MA, N:,MA have entries in C€9A', and lJ~ii.,MA, N~JIIA have entries 

in (W®
0
A') ~ W. Therefore 

(N~+Nl,)MA=1; 
2 it follows that EMA MA and E E. The argument used in Lemma 3 to 

prove N~K = N~ also proves Nl,K N1, so EK =E. Similarly, L - F 

has entries in B' and F2 l!'L = F , l!':f\1B = r-1B • It remains to prove 

that KE = K and LF = L. 

Observe that R = (C~W)® 0 (C\'Bil. 1 ) = (CQ:l\1)<& 0A. Thus 

R2n = (CEeW) 2n® 0A (as C-bimodule), and the columns of K- E are in 

c2
n® 0A' • The columns of MAN~A, + r.113n~A, + M13N!, are in H ~bA' , where 

H = M
13

CnEflMVI 2nc (CEBil) 2n 

Now LC 2nc H and KC 2nc MA en (f)r1V2n. But 

R2n MC2n$MV2nEB MW2n = .HA CnEflMBCn$ NV2n~:"H-1W2n' 

2n 2n 2 2 2 2n so KC nH {0}. Since C =KC nEBLC n, it follows that LO n = 0 r.H 

Moreover, H = LC 2nEB {H 11 (Xc 2nEB vl2n)}. So all the inclusion maps in the 

diagram 

are split; it follows that K 

(H® 0A•) n (c2n®cA') 

But LI 1R2n = 1 , so L(K- E) 

E has columns in 

(LC2n) ® A' CLR2n c 
K - E • Therefore KE E - LE K • 

Similarly LF = L, so Lemma 4 is proved. 

E 

Since EK = E and KE 

MA(N~ + Nl 1 ), imE = imMA 

K, kerE = kerK. Since EMA = MA and 

i:limilarly, kerl!' = kerL and imF = irni'113 • 
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Lemma 5 E + F is invertible, and represents an element in the image 

of K1(T(A'®cB')). 

Proof. Since (E + F)K = E , (E + F)L = F , 

(E + l!')R2n :>ER2n + l!'R2n = MARn + MBRn = R2n • 

If u € ker(E +F), then Eu + Fu = 0 with Eu € MARn, Fu € MBRn, It 

follows that Eu = Fu = 0, so u € kerE n kerF = kerK n kerL = { 0}. 

Therefore E + F is invertible. 

Now (1 + E- K)L = 1 and K(1 + E- K) = K, so 1 + E- K is an 

elementary matrix. Similarly + F - 1 is an elementary matrix. Since 

(E - K) 2 = (F - 1) 2 0 

E + F = (1 + E- K)(1 - (E- K)(F- 1))(1 + F- 1) • 

Therefore 1 + (E- K){F 1) is invertible; since its entries lie in 

T(A'~cB'), E + F represents an element in the image of K1 (T(A'~cB')), 
as required. (Recall that a similar trick was used in l5].) 

Now (E + F) ( MA MB ) = ( EMA l<'MB ) = M • 

Let P = Kc2n , Q = 1c2n ; then c2n = P~Q as right C-modules. Since 

(KMA)An = (KE)A2n = KA2n = p ®eA ' (LMB)Bn = Q ®CB ' 

Lemma 2 shows that ( 101A 1M.l:l ) represents an element in the image of 

K1 (a,~). Therefore the element z represented by M is in the group 

generated by the 

the proof of Theorem 2. 

Bass l1] has defined Uil(C) to be the cokernel of the map 

K1 (c)~K1 (c[t]) induced by inclusion. Stallings l5] uses a method 

of Gersten l3] to prove the following result. 

Theorem If A' ® 0n• is a direct limit of free C-bimodules, and Uil(C) = 0, 

then the map K1(c)---+K1(T(A'®cB')) is surjective. 

(Here, "free C-bimodule" means the direct sum of copies of C). 
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Theorem 3 If A'~cB' is a direct limit of free 0-bimodules, and 

Nil(C) = 0, then 6:K1 (a,p) ---4K1 (Ai!-0B) is surjective. 

~. Observe that the image of the map 

K1 (c) ---4 1:1 ( T (A • ® cB • ) ) -4- K1 (A* cB) 

is already contained in the image of e. Theorem 3 now follows 

immediately from Theorem 2 and the Theorem of Gersten and Stallings. 
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WHITEHEAD GROUPS OF GENERALIZED FREE PRODUCTS 

Friedhelm Waldhausen 

The purpose of these notes is to describe a splitting theorem for the White-

head group. Its application is in vanishing theorems of the sort that Wh(G) 

0 if G is a classical knot or link group. 

An example of such a link group is the group with generators a, b, c, 

and relators 

[a,[b,c- 1 ]] , [b,[c,a- 1 ]] , [c,[a,b- 1 ]] 

[ J -1 -1 where x,y denotes the commutator xyx y • This group may look complicated, 

but it happens to be the group of one of the simplest links (the 'Borromean 

rings'). 

It is not their presentations that make knot groups tractable. What 

makes them tractable is the fact that they can be built up out of nothing 

by iterating a construction that I call 'generalized free product'. As this 

construction (or at least the motivation to look at it) is of topological 

origin, I will start by giving the topology flavored description. 

Let X be a 'nice' topological space, e.g., a CW complex (or, if the 

reader prefers, a simplicial complex, or even a smooth manifold; all that 

matters for our purpose, is the global picture), and let Y be a closed 'nice' 

subspace, e.g., a subcomplex. We assume Y is bicollared in x, this means 

there exists an open embedding i: YxR ~ X (where R is the euclidean line) 

so that i(Yxo) = Y. We do not ask that Y be connected, in fact, Y may have 

infinitely many components. 
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A recipe says that in this situation, the fundamental groupoid of X 

can be calculated as the colimit of certain other groupoids. 

Now assume that for every component Y. of Y, the inclusion induced 
------ J 

homomorphism of fundamental groups, n
1

Yj ~ n
1
x, is a monomorphism. Then the 

diagram obtained is called a generalized free product (g.f.p.) structure 

Let us denote X., i E I, the components of X- Y, and Y. 1 j E J 1 the 
1 J 

components of Y. The groups n
1
xi are called the building ~ of the g.f.p. 

structure, and the groups n
1

Yj are called the amalgamations. For the sake of 

uniform notation, we write 

G 1\X' B = uiEI nlxi ' A= ujEJ nlyj I 

where •U• denotes the sum ('disjoint union') in the category of groupoids. 

As Y. locally dissects X, we may pick one of its sides (arbitrarily, 
J 

but forever) and denote it 'left', and the other one 'right'. There are in-

jections of groups (well-determined up to inner automorphisms) 

and 

Let F be a functor from groups to abelian groups which sends inner 

automorphisms to identities. Letting 

F(B) = ct.iEI F(TI1Xi) 

and similarly with F(A), we have well defined maps F(l): F(A) ~ F(B), 

F(r): F(A) ~ F(B), and F(t): F(B) ~ F(G), satisfying F(t)oF(l) = F(t)oF(r). 

Examples of such functors F are 

(1) H0 (G), the integral homology in dimension 0 

(2) K
0

(RG), the projective class group of the group algebra of G over R, 

and in particular, K
0

(G): = K
0

(ZG) 

(J) K
0

(G) = coker(H
0

(G) ~ K
0

(G)) 

(4) z
2 

EB H1(G) 

(5) K
1 

(RG) 

{6) Wh(G) = coker(z
2

$H
1

(G) ~ K
1

{G)) , this map being induced from 

GL(Z,l) X G ~ GL{ZG,1) 
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We can now formulate the splitting theorem. 

Proposition. There is an abelian group ~ and a map 0 so that the following 

sequence is exact 

Wh(A) 
6 --

There is a similar sequence for the unreduced functors; the one with 

integral coefficients maps onto the one given, and the kernel is the Mayer 

Vietoris sequence of homology (as indicated in (J) and (6)). One can continue 

the sequence to the right (by Bass' 'contracted functor' argument). 

The splitting theorem contains as special cases both the splitting 

theorem for a free product of groups, and the Klinneth formula for extensions 

of the integers. 

In order to deduce vanishing results from the splitting theorem, one 

uses the five lemma and some a priori information about the vanishing of the 

exotic term ~l. The trick here is not to work with an individual group G, but 

with the totality of groups G x F 1 where F is a free abelian group. One can 

thus exploit the fact that K
0

(G ><:F) is a direct summand of Wh(G >< F x Z) 

Wh(G x F 1 ). The trick works well since a g.f.p. structure on G (with building 

blocks Band amalgamation A, say) induces a g.f.p. structure on G xF (with 

building blocks B x F and amalgamation A x F, and the obvious maps). 

The next proposition describes such a vanishing result for the 

exotic term. 

Proposition. In order that ~ = 0 , it is sufficient that for any component 

Aj of A1 the group algebra ZAj be regular coherent. 

J 

Note that no condition is asked of the building blocks or the structure 

maps. In the case of the more general splitting theorem with R coefficients, 

one would correspondingly ask that RA. be regular coherent. 
J 

(A ring is called coherent if its finitely presented modules form an 

abelian category; it is called regular coherent if 1 in addition, each 

finitely presented module has a finite dimensional projective resolution). 
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The sort of arguments used in deriving the splitting theorem , also 

gives information on this type of structure of rings: 

Proposition. Let G have a g.f.p. structure with building blocks B and 

amalgamations A. For RG to be regular coherent, it is sufficient that the 

group algebras RBi be regular coherent and that the group algebras RAj be 

regular noetherian. 

The proposition says, for example, if G is a free group, or a 2-mani-

fold group, then ZG is regular coherent. 

I will now indicate how gof.p. structures occur in nature. This 

necessitates the notion of iterated g.f.p. structure. The main point in the 

definition is an appropriate transfinite recursion. 

Notationally, it is convenient to introduce classes of groups, C , 
m,n 

indexed by pairs of non-negative integers in lexicographical ordering. Each 

class contains the preceding ones. We abbreviate 

c ~ u c c ~ u c 
m n m,n m m 

Definition. (1) c
0 0 

contains only the trivial group 
• 

(2) G E C if and only if G has a g.f.p. structure with all building 

blocks, B, and all amalgamations, A, in Cm' for some fixed m 

(3) i:f G E C , then G E C i:f and only i:f 
m 

all Bi E cm,n' for some fixed n, and 

all Aj E cm_ 1 

(4) if G E C , then G E C if and only if all 
m m,n E cm,n- 1 (here cm,- 1 

is to be interpreted as cm_ 1 ) • 

Examples. ( 1) C is closed under taking subgroups. 
m1 n 

(2) C is closed under extensions. (Proof: Let 1 ~ ker(p) ~ F ~ G ~ 1 be 
p 

exact, with ker(p), G E c. Let G E C • The proof is by induction on (m,n). 
m,n 

Let G hav·e a g.f.p. 

Then F has a g.f.p. 

p-1(A.). 
J 

structure with 

structure with 

building 

building 
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Bi' and amalgamations Aj. 

p- 1 (B.) and amalgamations 
~ 
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(The assertions under (1) and (2) will be obvious from the definition of 

g.f.p. structure to be given in the next section). 

c1,0 is the class of free groups. 

(4) If M is a closed 2-manifold other than the projective plane, then 

rr
1
M E c

2 0
• 

' 
(5) There is a large class of J-dimensional manifolds (e.g., all compact 

submanifolds of the J-sphere) whose fundamental groups are in c
3 

(and even 

in c2 if the manifold has non-empty boundary), however, the 'n' may be quite 

large. 

(6) A one-relator-group is in c2 if (and only if) the relator is not a 

proper power. This can be checked from Magnus' analysis of these groups 

(note that the groups encountered on the way as building blocks, need not 

be one-relator-groups). Consequently, if G is a one-relator-group, and its 

relator is not a proper power, then Wh(G) = K
0

(G) = o. 

To conclude this section, we exploit the geometric picture to see 

that the general type of g.f.p. structure can be reduced, in a sense, to two 

rather special types. For, let X and Y be as in the beginning. We can break 

X at Y, and can then reconstruct X, by glueing, one by one, at the components 

of Y, and eventually taking a direct limit. 

Each of the steps in the above procedure corresponds to a g.f.p. 

structure in which (by abuse of the old notation) the subspace Y is connected. 

There are two cases left, according to whether X - Y is connected or not. 

Denote by G, A, B (resp. B
1

, B
2

) the fundamental groups of X, Y, and 

X-Y (or its components), respectively. 

In the case where X - Y has two components , G is the pushout in the 

diagram 

B2 ----:). G 
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In a classical terminology, G is the 'free product of B
1 

and B
2

, amalgamated 

at A ' , G = B1 *A B2 in customary notation. 

There is yet another description available, namely G is also the 

pushout in the category of groupoids in the diagram 

l l 
AXI----+ G 

Here •U• is the sum in the category of groupoids, and I is the connected 

groupoid with two vertices and trivial vertex groups. 

In the case where X- Y is connected, let a, a :A~ B denote the 

two inclusion maps. Then G is the pushout in the category of groupoids in 

the diagram 

A U A B 

1 l 
A x I G 

A classical terminology is not available for this construction. Logicians 

have used it to construct groups with weird properties (unsolvable word 

problem, etc.). They sometimes refer to it (and also to a more general con-

struction) as the 'Higman-Neumann-Neumann-Britton-extension', cf. Miller's 

book. It can be checked, incidentally, that for quite a few of the weird 

groups in this book, our method shows their Whitehead group is trivial. 

An explicit description of G is this. Let T be a free cyclic group, 

with generator t. Then G is isomorphic to the quotient of the free product 

B * T by the normal subgroup generated by 

ta(a)t- 1 (a(a))- 1 , aEA. 

In the next section, I will give the definition of g.f.p. structures 

which is the most useful one to actually work with. The subsequent section 

is mostly devoted to a discussion of the exotic term in the splitting 

theorem. In the final section, some indication of proof is given for the 
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splitting theorem itself. 

Up to reformulation of some parts, essentially all of the present ma-

terial has been taken from a preliminary report which was issued in fall '69 

in mimeographed form. I have not included here the full proof of the splitting 

theorem, as I doubt if those details have any relevance to the conjecture 

described in the appendix. 

2. Generalized free product structures, revisited. 

Let the spaces X and Y be as in the preceding section. Denote X the 

universal covering space of X, and Y the induced covering space over Y. 

Identify G (~ TI
1

X) to the covering translation group of X, acting from the 

right. 

The subspace Y induces on X a certain decomposition whose nerve is a 

graph, r, on which G acts. By a 'graph' we mean here a certain combinatorial 

device, consisting of its set of vertices, ro, set of segments, r 1
, and in-

cidence relations ('initial vertex' and 'terminal vertex• of a segment, de-

noted vi(s) and vt{s), respectively). The elements of r0 
correspond to the 

components of X- Y, and the orbits fD;G correspond to the components of 

X- Y. Similarly, the elements of r1 correspond to the components of Y, and 

the orbits r1/G correspond to the components of Y. 

As the realization /r/ of r can be embedded as a retract in X, r must 

be a tree (i.e., the 1-complex lrl is connected and simply connected). 

Another property is obtained from the •two-sidedness 1 of Y in X, 

namely the action of G on r preserves local orientations. By this we mean 

if g E G and s E r1 , then (s)g = s implies that g preserves the initial 

vertex of s. Consequently we can assume the segments of r are oriented in 

such a way that G preserves all orientations. We now define 
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Definition. A generalized free product structure on a group G consists of a 

tree rand an action (from the right) of G on r, preserving local orientat-

ions. 

Remarks. (1) This is of course equivalent to our original definition. To 

recover that one, we need only construct Eilenberg-MacLane spaces K(Gs 1 1) and 

K(Gv 1 1) (corresponding to the stability groups of segments and vertices, one 

for each orbit), construct mapping cylinders and glue as prescribed by the 

quotient graph rjG. Since for the component Y
0 

of Y, the map TI1Y
0 
~ n 1X 

is a monomorphism, n
1

Y
0 

is indeed detected as the stability group of a cer-

tain segment. 

(2) By our definition of g.f.p. structure, the 'set of g.f.p. structures on 

a group' is a certain contravariant functor, indeed a sum of representable 

ones. There is no corresponding assertion if we restrict attention to the two 

special types of g.f.p. structure considered at the end of the previous 

section. 

We will now analyse g.f.p. structures a bit. By a basic tree in r we 

shall mean a subtree with the property that its set of vertices contains one 

and only one representative of every orbit r
0
;G. A basic tree exists, e.g., 

one can lift a maximal tree from r;G. We choose a basic tree and keep it 

fixed henceforth, it will be denoted r$. 

A segment in r is called ~-recurrent if it is equivalent, under the 

action of G1 to a segment in r$ (this notion depends on the choice of the 

basic tree, in general). Otherwise, it will be called recurrent. There exists 

a basic set of recurrent segments, denoted r 1 • This means, r 1 contains one 
r r 

and only one representative of any orbit of recurrent segments, and if 

s E r;, then the initial vertex of s is in r$ (the terminal vertex of s is 

then necessarily not in r$). We fix a group element, denoted ts 1 with the 

-1 
property that ts carries the terminal vertex of s into r$. 

The element ts just described, acts necessarily without fixed points 

on r. This can easily be seen from the existence of the distance function 
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on r which associates to any pair of vertices the number of segments in a 

shortest path joining them. 

If X E r> or X E r 1 

' 
we let Gx denote the stability group of x, 

G l g E G I (x)g = x I • 
X 

The condition involved in the definition of a g.f.p. structure, is equivalent 

to: For any segment s, and its end points vi(s) and vt(s), we have the 

relation of stability groups 

We let r£ denote the tree whose set of segments is 

r 1 
= r 1 u r 1 u 1 < s > t -i 1 s E r 1 1 

£ $ r s r 1 • 

For any subtree ~ of r, and any vertex v of ~. we let ~1 (v) denote the set of 

those segments in ~ which are incident to v. Then clearly, for any v E ~' 

the set r
1

(v) is in one-one correspondence to the union of cosets 

U G \G , 
S S V 

From this follows by an inductive argument involving distance, that G 

is generated by 

G 
V v E ~ and t s 

s E r 1 
r 

3. Modules over generalized free product structures. 

The central notion is that of a certain diagram which I call a 

r-object, and which I will now describe, after some preliminaries. 

Following the notation set up before, we denote building ~ of the 

g.f.p. structure the groupo~d 

and amalgamation the groupoid 
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s Er~ u r; . 

Let ModRG be the category of modules over the group algebra RGv' 
V 

where R is some fixed ring with unit. We define ModB to be the restricted 

product 

and similarly 

Mod A Xs ModRG 
s 

s E r~ u r~ 

If M E ModB' then M ®B G is defined: If, say, M 

0 
v E I$ 1 thE!n 

10 

It is clear from the definition that, as an abelian group, M ®a G is a direct 

sum 1 indexed by!!! of rD, 
V E rD . 

If g E G is such that (v0 )g = v, where v
0 

E ~~ we can write 

M 
V 

We can also consider M as a module over RG • 
V V 

Similarly, if N E ModA' then N ®A G is defined, and there is a direct 

sum decomposition of abelian groups, 

EB N 
s s 

Definition. A r-object consists of modules N E ModA and M E ModB' and a map 

over G, 

satisfying: if (for any v and s) the restriction of > to Mv has a non-zero 

projection to Ns' then the segment s is incident to the vertex v. 

A map of r-objects is a pair of maps, one in ModB and one in }lodA' so 

that the obvious diagram commutes. The resulting category is abelian since 
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the functors ®aG and ®AG are exact. 

Dually, a f*-object consists of modules, and a map 

M ®a G 

satisfying the same sort of condition. The duality functor HomRG( ,RG) maps 

f-objects to f*-objects, and vice-versa (however, in order to stay with right 

modules, we may have to replace the coefficient ring by its opposite). 

We can be somewhat more explicit about the structure map 

in a f-object. Let us write 

\ v,s 

for the composition 

M __,. 
V 

__,. N 
s 

Then \ is of course determined by its components t , v E r?$, s E r;; and 
v,s a.. 

for fixed v, those components assemble to an (arbitrary) RGv-map 

Definition. A f-~ is a f-object \: M ®B G __,. N ®A G satisfying that is 

an isomorphism. The resulting category is denoted Modr; it is abelian. 

and 1 

A f-module is called elementary if N is finitely generated projective 

in addition, at most one of the component maps \ , v E r?$' s v,s 

not the zero map; this t must then itself be an isomorphism. 
v,s 

A f-module is called triangular if it has a finite filtration with 

elementary subquotients. 

We denote K0 (Modr,n) the class group of those objects in Modr which 

are made up of finitely generated projective modules, the relations coming 

from all exact sequences (not just split ones). Using elementary f-modules, 

we obtain a map 
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which is a split injection by an argument below (the construction o£ the 

modules denoted P(s 1 v)). The cokernel o£ j is denoted~. This is the~ that 

appears in the splitting theorem. The definition o£ ~ is related to maps 

which are 'nilpotent' i£ this term is taken in a suitable sense. The vanish-

ing theorem for ~ will come in in somewhat disguised form: under the hypo-

thesis that RA is regular coherent, the proposition below implies that the 

above map j is an isomorphism. 

We now proceed to the analysis o£ 1-modules. Let s be a segment of 1, 

and V a vertex incident to s. Define 1 to be the maximal subtree of 1 
s,v 

which contains v but not s. Given s, there are two such trees, 1 
s,vi(s) 

and 1 
s 1 vt(s) • 

Given M f Mod
8

, then M ®
8 

G, considered as a module over RGs' splits 

naturally as a direct sum 

where, as an abelian group, 

M(s,v. (s)) 
1 

Similarly, i£ N E ModA' then N ®A G, considered as a module over RGs' 

splits as 

N(s,v.(s)) $ N e N(s,vt(s)) ]. s 

where, as an abelian group, 

EB s• 
s• E 1 1 

s 1 vi (s) • 

I£ now t: M ®
8 

G ~ N ®A G is a 1-module, then 

t(i(s,v.(s))) c N(s,v.(s)) $ N 
1 ]. s 

and 

Whence the canonical splitting 

where 

Ns = P(s,vi(s)) a P(s,vt(s)) 

P(s,v
1
(s)) = Im(M(s,v

1
(s)) ~ N(s 1 vi(s)) ffi Ns ~ 

"'ker(M(s 1 v.(s))-> N(s,v.(s))) 1 1 1 
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and analogously with P(s,vt(s)). 

On the other hand, if v is a fixed vertex, and s a segment incident 

to v, let us denote r the maximal subtree of r which is incident to s, but v,s 

does not contain v. We have r r - where v is the other end point of s. v,s s,v 

As before, let us denote r
1

(v) the set of segments of r which are incident 

to v. Let r
1 

(v) denote a set of representatives for the quotient set rep 

r
1

(v)/Gvj e.g., if V E ~· then r~(v) is such a set of representatives. 

Given H E ModB' then M ®B G, considered as a module over RGv' splits 

naturally as a direct sum 

M CL ·(!:, M(v,s) , 
V S 

where, as RGv-module, 

s E r 1 
(v) 

rep 

RG 
V 

M(s,v) is defined as above, and v is the other end point of s. 

Similarly, if N E ModA' then N ®A G, considered as a module over RGv' 

splits as 

RG EB d7 N(s,v) ® 
v s RG 

s 
RG 

V 
s E r 1 

(v) • 
rep 

If again t: M ®B G ~ N ®A G is a r-module, we can write I as a map 

of RG -modules in the form 
V 

M 
V 

EP ffis M(s,v) ®RG 
s 

·RG 
V 

·er; N 
s s 

RG 
V 

RG 
V 

s E r 1 
< v > • rep 

Now the restriction to the second summand is of a type considered before. 

Hence we obtain a map 

M El' P(s,v) 0RG 
RG ~ d:, N ®RG RG 

V V s s V s s 

EB P(s,v) 0
RG 

RG 4' P(s,v) 0RG 
RG 

s V 
s s 

whose restriction to the second summand is the obvious identity. Therefore 

the restriction to the first summand is the sum of an isomorphism 

X. : M 
V V 
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and some map 

A : M 
V V 

RG 
V 

14 

For fixed s E r 1 
(v), the composition A oK - 1 induces an RGV-map rep v v 

P(s,v) 0RG 
s 

RG 
V 1 P(s' ,V:) 0RG 

s 
RG 

V 

which in turn is determined by the induced RGs-map 

1-ls,v: P(s,v) 1 P(s 1 ,v) 0RG 
s 

RG 
V 

s' E r 1 
(v) 

rep 

s • E 11 
(v ). 

rep 

The target of this latter map is in fact slightly smaller since the composit-

ion of 1-t with the projection to P(s,v) is zero (inspection of the defin-s,v 

itions shows that this composition can be factored through M(s,v)). 

The map now reads 

\) 
s,v 

P(s,v) P(s,v) 0RG 
s 

A 
RG 

V 
E+' EBS I p ( s I • V) 0RG 

s 

sI E r 1 (v) ' sI I s , rep 

RG 
V 

A 
where RGv(s) is the summand in the canonical splitting of RGs-bi-modules 

A 
RG RG ~ RG (s) 

V S V 

It is clear now that there is an (exact) functor 

F: 

which depends only on the 

on the choice of the sets 

assembles to a map 

ModA X Mod A --? 

g.l.p. structure 

rl (v)) so that 
rep 

\) 
s,v 

Mod A 

(in 

the 

\1: P ~ F(P) 

)( Mod A 

particular 

collection 

it does not 

of maps 

where the first component of PE ModAXModA is given by the collection 

( ( ) ) E r 1 u r 1
• P s,vi s , s $ r 

depend 

The original 1-module is determined by the pair (P,v). Conversely, 
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a necessary and sufficient condition for (P,~) to arise from a r-module 1 is 

that the map ~ be nilpotent in the following sense. 

Define a filtration 0 ••• c p by the rule 

Then we call ~ nilpotent if UP. 
J 

p • 

~· If the g.f.p. structure comes from a product with the integers (so 

that we are in the situation of the classical Klinneth formula) then a nil-

potent ~ in our sense is just a pair of nilpotent maps in the usual sense. 

We will not prove here that ~ is nilpotent as this follows directly 

from the lemma below. We note the following interpretation of ~. If x E P(s,v) 

then x E P
1 

(the first term of the filtration) if and only if there exists 

y E Mv so that t{y) = x. 

Given ~: Q ~ F(Q), it is convenient to consider a more general type of 

filtration, 0 c Q
1 

c ••• c Qj c ••• c Q1 which we call a nil-filtration if 

and U Q. = Q • 
J 

We say it is of ~ length, q 1 if Qq 

generated, if all the Qj are. 

Q1 and we say it is finitely 

The filtration originally derived from a r-module, denoted •• CP. c •• 
J 

above, will certainly be of finite length if N is finitely generated, but it 

need not itself be finitely generated. It is clear nevertheless that there 

exists some finitely generated nil-filtration which is a subfiltration of the 

original one, and is of the same length. 

We will now describe our resolution argument. Let c Q. c •• be a 
J 

finitely generated nilfiltration of length q 1 associated to a r-module. Pick 

finitely generated projectives Uj in ModAXModA' and surjections 

u. 
J 

Then we can find maps u.: 
J 

U. ~ F(U. 
1

) so that the diagrams 
J J-
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U. .... F(U. 
1

) 
J J-

~ ~ 
Q. .... F(Q. 1) 

J J-

commute. Define a filtration 0 c v
1 

c ••• c Vq 

It is a nil-filtration for the map 

v: V .... F(V) V 

v, by 

L:. u. • 
J J 

This map is associated to a certain triangular r-module in which the A-module 

is V, considered as an A-module via@: ModAX ModA. Furthermore there is a 

surjection of r-modules, compatible with the surjection of nil-filtrations, 

Vj -> Qj. Define •• c Wj C •• to be the kernel filtration, it is a nil

filtration for the map w = vjw, where W = Wq. If Q
1 

was projective to begin 

with, we could have chosen v
1 

= Q
1

, and the new filtration would be of 

shorter length. 

16 

Now assume the amalgamation A is coherent, and Q is finitely presented. 

Then, f.p.HodA is an abelian category, it follows that Qj and Wj 

finitely presented. Therefore we can repeat our construction using ~ 

as are 

filtration W .• 
J 

On iterating the procedure we are building up, in particular, a 

projective resolution of Q
1

• Therefore, if A is regular coherent, we can 

eventually reduce the length of the filtration, and so, by induction on 

this length, we have proved: 

Proposition. If A is regular coherent, then any finitely presented r-module 

has a resolution by triangular r-rnodules. 

(By abuse of language, we have called a r-module 'finitely presented' 

if the A-module involved is. Note that the main interest of the proposition 

is in the case where this A-module is actually projective)c 

Above we referred to the following lemma. The above application of the 
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lemma just exploits the obvious fact that a nil-filtration does exist for a 

triangular r-module. The lemma says that there are as many maps from triang-

ular r-modules as we can expect at all. 

Lemma. Let \; M ®B G ~ N ®A G be any r-object. 

(1) Let y EN , s E r
1

, and yE Im(l). Then y is in the image of some map 
s 

from a triangular r-module. 

(2) Let X EM • V E ro. Then X is in the image of some map from a triangular 
V 

r-module. 

z E M 
V V 

v E ~0 , where ~ is some 

17 

finite subtree of r. The sought for triangular r-module is made up of rank-one 

free modules over the appropriate rings. There is one basis element for each 

vertex and segment in ~. and there is an additional basis element for the 

segments. Each of the components of the structure map is an 'identity' (i.e., 

it sends the basis element to the basis element), and there is one such for 

each incidence relation in A, and one additional one into the extracomponent. 

The definition of the map is automatic. 

Ad (2). This follows from (1) by the same sort of splicing argument. 

~. Mayer Vietoris presentations of G-modules. 

Let L be a G-module (more precisely, an RG-module). A ~ Mayer 

Vietoris presentation of L is a short exact sequence 

0 ~ L 0 

the right part of which is a r-object, as defined in the previous section. 

Dually, a right Mayer Vietoris presentation is a short exact sequence 

0 M G L 0 

involving a r*-object. 
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A left or right Mayer Yietoris presentation is called f.g.p. if all 

the modules involved are finitely generated projective. F.g.p. left and right 

Mayer Yietoris presentations are interchanged by the duality map HomRG( ,RG) 

(with the usual proviso on the coefficient ring R). Hence it is sufficient to 

concentrate on either one. For us this will be the left Mayer Yietoris pre-

sentations, abbreviated MY presentations henceforth. 

~· The concept of MY presentation is an axiomatization of a Mayer 

Yietoris type situation that occurs if one looks at chain complexes in the 

universal cover of a pair X,Y as considered in the introductory section. 

Namely, if L is a chain complex over G ~ n1x, then 'subdividing at Y ' 

produces an MY presentation of chain complexes 

0 L -+ 
l 

0 • 

~ the subdivision, L will have been replaced (up to a dimension shift) by 

the mapping cone C(l). And the Mayer Yietoris sequence of chain complexes 

that one is accustomed to read off, now appears as the right Mayer Yietoris 

presentation which is the sequence of cones 

0 C( l) 0 

where t 1 is the trivial inclusion 0 -+ N @A G, and 

is the map whose components are ti and lt in the canonical sum decomposition 

of t. The B-structures on the two copies of N @A G come, respectively, from 

the two natural maps A-+ B. The proposition below is the 'subdivision lemma' 

that one would naturally expect. 

We will now verify that there exist quite a few MY presentations, and 

maps thereof. Our main tool will be certain 'standard' MY presentations, 

defined for a free G-module; part of the data will be a basis of the G-module, 

in the description we will assume that it has cardinality one. (Inspection 

shows that the construction below can actually be carried through for any 
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G-module equipped with a reduction to ModA). In describing free modules of 

the type M ®B G, it is sometimes convenient to use a basis which does not 

come from ModB. 

Definition. Let F be a free G-module, with basis element f. Let 6 be a 

finite subtree of r. Then the standard MV presentation of F,f, associated 

to 6, is the following 

(1) M ®B G is the free G-module on basis elements mv' V E 6° 

(2) N ®A G is the free G-module on basis elements ns' s E 61 

(J) the G-structure on M ®B G is such that mv generates a free RGv-module; 

similarly with N ®A G 

(~) the structure map K: F ~M ®B G 

(5) the structure map t: M ®B G 

t (; ) n v,s V s 

t (m ) -n s' v,s V 

(m ) 
v,s V 

0 
' 

is given by K(f) = ~v m 
V 

N ®A G is given in terms of its compo-

if V vi(s), the initial vertex 

if V vt(s), the terminal vertex 

if V is not incident to s 

(6) in order to describe the reduction of M ®B G to ModB' i.e., to define M, 

we must pick representatives of cosets for the various inclusions involved 

in the g.f.p. structure, so we assume this has been done once and forever. 

It is crucial here that we need only choose representatives of cosets for the 

inclusions of amalgamation groups in building block groups, and the elements 

denoted ts in section 2, and that this choice determines representatives of 

all the cosets in G (this statement is the general version of the existence 

of the usual normal form for an element of a free product with amalgamation, 

it is easily proved by the use of the distance function on r). In particular 

then, we have picked for every v an x 
V 

-1 ro E G so that (v)xv E $ 1 the 

basic tree. By definition now, M is the B-module whose component at v' E ~ 

19 

is the direct sum E8v Mv•xv- 1 , taken over those v E 6° for which (v)xv-
1 = v•. 

1n 



In terms of the basis elements 

now redefine X(f) = ~ m •x 
V V V 

m 
V 

iii •X 
V V 

-1 (which live in M), we could 

(7) the reduction of N ®A G to ModA is described similarly. 

Before preceding, let us note that for any MY presentation (or even 

r-object), there is a canonical decomposition 

where t. is defined so that its non-zero components are those t for which 
1 v,s 

v = vi(s), the initial vertex (this decomposition was used in the remark 

above). For the standard MY presentation just described, we have the import-

ant property 

t. (X( f)) 
]. 

n 
s 

s E 6.1 
• 

Proposition. Let 0 ~ L ~ M' ®B G ~ N 1 ~A G ~ 0 be any MY presentation. Let 

F be the free G-module on the basis element f, and let g: F ~ L be any G-map. 

Then for suitable D., the standard MV presentation of F,f, associated to D., 

admits a map of MV presentations, inducing g. Moreover, this map is uniquely 

determined by g. 

~· By definition, M' ®B G is a direct sum 

Let gv denote the projection of X1 og to M~ ®RG RG. Then we can write 
V 

a •X w w 

where aw ~ M~, xw E G is a representative of a coset Gv\G as chosen before, 

and w E r 0 runs through the vertices with (w)x - 1 
= v. From this formula 

w 

and the fact that 

X(f) = ~ m •X w w w 

it is clear that the required B-map can be defined as soon as the finite 

tree D. has been chosen so large that it contains all the vertices w for 

which aw I 0. 
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Next we define the required A-map, gA' directly, by decomposing 

similarly the map 

using 

t.(X.(f)) 
]. 

1: n 
s s 

F 

n •X 
s s 

The sum decompositions involved in our construction were canonical, and it is 

now easily seen that the maps g, gB' gA are compatible as required. We record 

the uniqueness part in a separate lemma. 

Lemma. If in the above proposition, g is the zero map, then gB and gA must 

be zero maps, too. 

~- It is enough to treat gA. Since the source MV presentation is stand-

ard, we have 

and on application to this element of the map gA 0 G, no cancellation is 

possible between the individual summands. 

I will now indicate how the splitting theorem can be obtained. Follow-

ing Whitehead's original treatment, a torsion element can be represented by 

a based free acyclic chain complex. The relations come from certain short 

exact sequences, called elementary expansions. 

Using our machinery of MV presentations, we can now say that any chain 

complex over G comes, via the forgetful map, from a chain complex of MV pre-

sentations (with bases suitably). And we can also say what, in the framework 

of MV presentations1 corresponds to elementary expansions. 

Technically, the analysis boils down to situations which are blown up 

versions of the following simple prototype. If we have a chain complex which 

on the G-level (i.e., apply the forgetful map to ModG) is acyclic, there is 

still no reason that it be acyclic on the A-level (a l-module is an example 

for this). So we can try to make it acyclic on the A-level as well, using 
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simple operations. The details are standard and there are no surprises: one 

just goes on killing homology groups, working up in dimension. It turns out 

that there is a global obstruction, and this gives the connecting map. 

To illustrate the technique, we prove 

Proposition. Let G have a g.f.p. structure with building blocks B and 

amalgamation A. 

(1) If gl.dim.ModA n-1, and gl.dim.ModB ~ n, then gl.dim.ModG S n. 

(2) If the building blocks are coherent, and the amalgamations noetherian, 

then G is coherent. 

Proof. Ad (1). Let L. be a free (n-1)-dimensional resolution of 

coker(L1 ~ L
0

). By the subdivision lemma, there is a complex of standard 

MY presentations over L., 

0 L. 0 

Since no conditions had to be met in dimension o, we can assume N
0 

o. Now 

the last lemma of the previous section tells us that we can add a triangular 

1-module (or maybe a big sum of such) to the 2-chains to kill 

Im(H
1

(M. ®B G) -> H
1 

(N. ®A G)) 

and hence H
1

(M. ®B G). Again it tells us that we can kill H
2

(N. ®A G)' and 

on. Bu.t once we killed Hn-2 (N. ®A G), we know that (using H0 (N. ®A G) "" 

H 0 (N.) ®A G, etc.) ker(Nn-l-> Nn_
2

) must be projective since we resolved 

H1 (N.). Similarly, ker(Mn-l-> Mn_
2

) is projective, and we are done. 

so 

22 

Ad (2). By a bit of diagram chasing, the assertion is reduced to proving 

that ker(L
1 

-> L
0

) is finitely generated once L
1 

and L
0 

are finitely generated 

free RG-modules. Again the subdivision lemma gives us a map of standard MY 

presentations over L
1 

-> L
0

• We regard it as a complex in dimensions 1 and o, 

and can assume as before that N
0 

= o. Arguing as before, we can introduce 

a big sum of triangular 1-modules into the 2-chains in order to kill 

Im(H 1 (M. ®s G) 
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This time we would like to have N
2 

finitely generated. But Im(N2 ~ N
1

) is 

finitely generated by the noetherian hypothesis. Therefore some finite part 

of the big sum is already sufficient for our purpose. We have achieved now 

that the sequence 

is short exact. But the base changes are exact. So the extreme terms can be 

rewritten H2 (N.) 0A G and H
1

(M.) 0B G, respectively. So they are finitely 

generated by the coherence hypothesis, and we are done. 

5. Appendix. 

Let !(C) denote Quillen's K-theory associated to the category-with

exact-sequences c. Here C is assumed to be equivalent to a small category, 

and, by definition, !(C)~ (homotopy equivalent to) 0 Q'(C), the loop space 

of the nerve of the category Q'(C), where Q'(C) is small and equivalent to 

Q(C), and Q(C) is constructed from certain diagrams in C1 involving the 

notions of 'admissible monomorphism' and 'admissible epimorphism'. 

If MV denotes the category of MV presentations over a g.f.p. structure 

(of a group G, with building blocks B, and amalgamations A), we define Q(MV) 

by the rule 

(1) an identity map is admissible if all the modules involved in the object 

are finitely generated projective 

{2) an epimorphism is admissible if its source and target are 

(3) a monomorphism is admissible if its source, target, and cokernel are. 

Similarly, we define Q(Mod1 ). 

There is a natural embedding 

23 

whose composition with the natural projection, induced from the forgetful map, 
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is trivial. 

There is evidence that the following should be true 

Conjecture 1. The sequence 

has the homotopy type of a fibration, or equivalently, the long sequence of 

homotopy groups is exact. 

(It is ~ conjectured that the map ~(MY) ~ ~(ModG) is locally fiber 

homotopy trivial: indeed this is almost certainly not the case. Similarly 

below). 

For the amalgamation A, define 

the restricted product (the direct limit over the finite products) over the 

component groups. Similarly with ~(ModB). 

There is a natural embedding 

so that the composition with the natural projection 

is trivial. The latter map has a section (in fact, there are three obvious 

such). 

Conjecture 2. The sequence 

is a homotopy fibration. Consequently 

From the retraction Modr -7 Mod A x Mod A, we can conclude that 
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defining N. (And n N = ~. our old exotic term). Combining conjectures 1 and 2, - o-
and noting that two terms cancel, we obtain 

Conjecture 3. There is a homotopy fibration 

Concerning the exotic space ~' there is the vanishing 

Conjecture 4. If A is regular coherent, then ~ is contractible. 

Conjecture 4 happens to be true, for under the regular coherence 

hypothesis, we can replace in the definitions of both ~(ModAKModA) and 

~(Modr), respectively, finitely generated projectives by finitely presented 

modules, and can then conclude that the two spaces are equivalent. This uses 

the resolution of r-modules by triangular ones, and Quillen's theorems on 

reduction by resolution and devissage, respectively. 
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2 

Introduction 

The theory of induced representations took its origin ~n the work of Frobenius on 

complex representationtheory as a tool to relate problems, concerning complex 

characters of a given group, e.g. their decomposition into irreducibel characters, 

with the corresponding question for one or several of its subgroups. A classical 

example for the utility of this approach is for instance the orginal proof of the 

Frobeniustheorem (see [38] ,§63), but of course there is a wide range of further good 

examples in that direction. Still a rather different point of view emerged from 

E.Artin 1 s idea, to consider induced representations on the level of virtual 

representations (i.e. generalized characters), where he was able to prove, that a 

certain multiple of any rational generalized character is a sum of characters, which 

are induced from generalized characters of cyclic subgroups, and to use this fact in 

an essential way in his study of generalized L-functions (cf. [1]). The next miles

tone in that direction was- no doubt- the paper of R. Brauer "On Artin's L-seri~s 

with general group characters" ([3]), which- based on an improvement of Artin's 

inductiontheorem- solved quite a number of classical problems in a surprisingly 

simple way and - at the same time - stimulated a series of further investigations 

in that direction by Roquette ([31]), Berman ([2]), Witt ([36]), probably several 

others and Brauer himself. The next essential step was probably taken by R. Swan, 

who - elaborating on the ideas and techniques of R-Brauer - used this technique 

very successfully in his study of Grothendieck- and classgroups of integral 

representations (e.g. [34] and [35}). The wide range of possible further exploitation 

of these ideas then led T.Y. Lam (see [28]) to a first attempt of an axiomatic 

formulation of the techniques, in which way induced representations, especially the 

Frobenius-reciprocity-law were used in the study of the structure of "virtual 

representations" in various situations, i.e. of various Grothendieckgroups and-rings. 

The usefullness of this axiomatic approach was demonstrated not only by a number of 

new and important examples (e.g. the Whiteheadgroup of a finite group) in T.Y. Lam's 

thesis itself and several other papers in that direction, but also for instance by 

its surprising use, made by W. Scharlau (cf. [32], [33]) to simplify considerably the 

proofs of several theorems concerning the structure of the Wittring of quadratic 

forms. 

Still further investigations in that direction and especially~he central r$le of 

the Mackey-theorems (cf.[7}, §44, p.323-27) in J.A. Greens study of modular 

representations (cf. [21] ,[22]) suggested a modification of T.Y. Lam's approach, 

taking into account not only the Frobenius-reciprocity-law, but also the Mackey

subgroup-theorem, which resulted in two rather similar approaches to an axiomatic 

treatment of induction-theory, one developed by J.A. Green in [23]and [24}, the 

other one by myself ([13], [14], [16}). 
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The first part of this paper now contains a new version of my own axiomatic 

theory: As before it is based on the notion of Mackey-functors, but whereas in U6l 
the approach took its bearing from the theory of Burnsiderings, this time I have 

tried to develop the theory using its close relations to ~ertain aspects of relative 

homological algebra. 

Thus §!9Rt~t8~t outline of some basic notions and constructions of relative homolo-

gicai algebra, put in a way, which is convenient for our later purposes. Especially 

we define a eo-, resp. contravariant functor M from a category A with finite products 

into an abelian category B to be X-projective, resp. X-injective for some object 

X in A, if the canonical natural transformation MX ~M: M(XxY) ~ M(Y), 

resp. M~ MX: M(Y) + M(YxX) is split-surjective, resp. split-injective(with 

MX(Y) ·= M(XxY) of course for any object Y in ~. which turns out to be the proper 

definition to understand the homological significance of the Amitsur-complex, 

associated with X (Prop. 1.2). Additionally-generalizin~oncept of J.A. Green -one 

can define vertices of such functors under appropriate assumptions on A. 

An example to have in mind is the following: Let G be a finite group and A the cate

gory G of finite G-sets. Let M be a ~G-module and define MM(S) = HomG(S,M) the 

set=abelian group of G-maps from S to M for any G-set S, thus 

MM(G/U) ~MU= {m~ Mlu·m m for any u ~ U} for U $ G, 

MM is in an obvious way a contravariant functor on G and one can show, that it is 

S-injective, if and only if M is relatively U-injective for U={U s GISU f ~} in the 

sense of ~2], i.e. M is a direct summand in EB ;!G ® M EB CMI )U ~ G 
u~u zu u~u u 

Moreover one can also make MM a covariant functor by associating to any G-map 

~: S ~ T between two G-sets S and T the map 

one has MM S-projective 

U-projective for U={U :s 
U-projectivity of M is 

as a covariant functor if 

Glsuf~} in the sense of 

L_
1 

f(s), t ~ T and again 
s~~ (t) 

and only if M is relatively 

~9.}. But by Gaschiitz-Higman 

equivalent to U-injectivity, To obtain something equivalent 

in the abstract theory we then define bi-functors in §2 as a pair of functors 

M=(M,·,,M''') from A to B, one contravariant, the other one covariant, which coincide 

on the objects: M;,(X) = i'cx) = M(X). 

To develop some relative homological algebra of bifunctors analogously to the theory 

of eo- or contravariant functors in §1, one has to restrict oneself to such- so to 

say "admissible" - bi-functors M, for which the family of maps 

MX ~ M: i' (XxY) ~ i' (Y) as well as the family of maps M ~ MX: M,, (Y) ~ M;, (XxY) are 

natural transformations of bi-functors. This is indeed the case, if M satisfies the 

"Mackey-property" for pull-back-diagramms as defined in the beginning of §2, i.e. if 

M is a "Pre-Mackey-functor", and for such bi -functors X-projectivity is indeed 
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equivalent to X-injectivity. 

Things get more interesting once one starts to consider also pairings of bi-functors, 

which allows to introduce an axiomatic formulation of the Frobenius-reciprocity-law. 

Especially considering such pre-Mackey-functors G with an "inner composition", i.e. 

a pairing G x G ~ G, such that G* becomes a contravariant functor into the category 

of rings with a unit, which I tend to call "pre-Green-functors" and which are 

studied in §3, one can articulate the basic formal connection between induction

theory· and the special form of relative homological algebra developed before: 

Theorem I: A pre-Green-functor G is X-projective, if and only if the covariant map 

c1
' (X) ~ c'~ (•) ("•" the final object in A) is surjective. 

This connects especially on a rather abstract leve~and in a surprisingly simple and 

obvious way the notions of defectbases and vertices, both introduced by J.A. Green 

(see [2.1] , ~'l.] and ~3]). 

Only in §4 we begin to put further restrictions on A, so as to be able to develop 

the theory of Burnsiderings and to connect it with the theory of"Mackey-functors'; 

i.e. pre-Mackey-functors, whose contravariant part transforms finite sums into 

products. More precisely it is shown, that for any "based category" A one can define 

the "Burnside-functor" ()-being a canonically defined Mackey-functor from A into the 

category of abelian groups-,which plays more or less the same role in the category 

of all such Mackey-functors as the integers in the category of abelian groups 

(actually this is just the special case one gets for A the (based} category of 

finite sets). 

Thus any information about (l imme(".iately implies corresponding and sometimes rather 

basic results for any Mackey-functor M, defined on A. This is illustrated in some 

detail in Theorem 2 and 3 and their Corollaries, which deal with the computation of 

the defect base (vertex) of certai~reen-functors (i.e. pre-Green-functors, whose 

underlying pre-Mackey-functor actually is a Mackey-functor}associated with (l. 

In §5 finally the relation with G-functors as defined and studied by J.A. Green in 

~3] and [:~.4] is explained and a number of consequences is stated. §5 and Part I 

closes with a reformulation of the transfer-theorem of J .A. Green (see ~3] , ImJ) in 

the language of pre-Mackey-functors. 

Part I altogether thus could be considered as a general framework for induction

theory, mainly concerned with the wealth of formal consequences, which can be drawn 

once some kind of induction-theorem is established. Consequently the second part of 

this paper is concerned with developing certain methods on how to prove induction

theorems in the framevwork of equivarianqK-Theory with a rather general type of 

"coefficients" (§6-§8), giving detailed applications for linear representations (§9), 

where the "coefficients" are just finitely generated, projective R-modules for some 

commutative ring R with a unit, and only prospects of further applications (§10), 

but leaving it mostly to the reader, to draw all the consequences explicitly, which 

can be drawn according to Part I. 
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There may be special interest in the way, composition in a category is defined in 

§61 and in further applications of the technique of "multiplicative induction", 

which play~ central r8le in §8. 

It just should be mentioned, that "equivariant K-Theories" and its derivatives are 

not the only field, in which the general abstract nonsense of Part I can make sense, 

but that relative cohomology of G-modules, equivariant Homology-theories (see [~, 

[2~, ~~~]), Galoiscohomology (see ~141) and perhaps still further theories can make 

profitable use of this language. 
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Part I 

Inductiontheory and Homological Algebra 

§I On relative homological algebra in functor-categories. 

The material of this section is basically well known. Indications of proofs, when 

given, are just for the convenience of the reader. Let A be a small category with 

finite products, especially a final object • £ !AI <!AI the class of objects in A) 

and let B be an abelian category. With [A0 ,B], resp, [A,B] we denote the abelian 

category of contravariant, resp. covariant functors from A to B. For an object 

X£ !AI and M e:l [A0 ,BJ !. resp. e:l [A,B}! define MX: A+ B: Y 1+ M (Y x X). One has an 

obvious natural transformation M +J1X' ~esp. MX +M, more 5enerally X~ MX defines a 

contravariant functor A _,.· [i\0 ,B], resp. a covariant functor A + [A,B]. A sequence 
41' <!>'' 

M' +· M + M'' 
<!>'' _,.X 

is said to X-split (at M) if the associated sequence 
<!>' 

Mi .:;_x MX M'' 
X 

splits (i.e. if their exist~·: MX + Mi and~'': Mi' + MX 

with <t>i ~· + ~·· <!>~' = IdM ), 
X 

Lemma I .I: (a) 0 +M+ MX (resp. MX +M+ O) is X-split. 

(b) If M'+ M+ M'' is X-split and Ye: !AI with Y<x (i.e. HomA(Y,x)+ 0), 

then it is Y-split (since My is a direct summand in MXxY = (MX)Y). 

Proposition 1.1: Let M £! [A0 ,BJ I and X e: lA!. Then the following statements are 

equivalent: (i) 0 +M+ MX splits 

(ii) There exists a contravariant functor N: A/X + B (A/X the category 

of objects over X, i.e. of morphisms into X), such that M is a 

direct summand in ~: A + A/X N B, where A + A/X is defined by 

Y » Y x X/X (right-adjoint to the forgetfull functor A/X+ A). 

(iii) For any diagramm 0 +M'+ M'' 
+ ~.:.·· 
M 

with an X-splLt line one has a 

morphism M''+ M, which makes the diagramm commutative. 

(iv) Any X-split sequence 0 +M+ M' splits. 

In this case we call M X-injective. One has corresponding statements for covariant 

functors, defining X-projectivity. 

Corollary 1: MX is X-injective (X-projective). 

Corollary 2: If M is X-injective (-projective) and Ye: !AI, X<Y, then M is Y-injec

tive (-projective). 

Corollary 3: If X,Y e: lA!, then M is X- and Y-injective(-projective), if and only if 

it is X x Y-injective (-projective). 

Esoecially if any set of+ -equivalence-classes (X+Y <=<> X< Y and Y< X) of objects 

in A contains minimal elements (i.e. if any sequence x 1 + x2 + in A finally 
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contains only~-equivalent objects), e.g. if there are only finitely many 

~-equivalence-classes, then there exists for any M an object X-unique up to 

~-equivalence-such that M is Y-injective (Y-projective) for some Y ciAI if and only 

if X < Y. Any such object may be called a vertex of M (cf. [2~, [2~, [-1~). Roughly 

speaking inductiontheory can be understood as one possibel method of computing verti

ces of various functors M by extending such functors to bi-functors as will be seen 

in the next sections, But before let us put together some basic facts on the homolo

gical algebra, associated to X-injectivity, resp. X-projectivity. 

By the above statements we have for any M cl [A0 ,8] I an X-split map int~-injective 
functor 0 +M+ MX and thus we can always construct resolutions, whose cohomology

"groups" are denoted by H~ (M), resp. by H~ (M,Y) if evaluated at some Y ciAI, 
(n ~ 0). 

Correspondingly one has for any M c I [A,B] I homology-"groups" H! (M), resp. H! (M, Y). 

Canonical resolutions are given by 

Proposition 1.2 (Amitsur): For any X ciAI consider the semisimplicial complex in A: 

Am (X): X 

l 
po .... .... 
Pi 

X x X X x X x X (with Am (X) = Xn+l and Am (X,$): 
n 

Xn+l + Xm+l for any$: {0, ... ,m}+ {0, ... ,n} given by the comrnutativity of 

X 

TI the projection onto the ~-th factor,~= O, ... ,m). Applying M cl [A 0 ,B} I to this 
~ 

complex, one gets a complex of X-injective functors: 

n 
Am (X,M): 0 ,n ( 1 v) M ( n) h with an + .•• , a = ~v=O - pv toget er 

augmentation M+ MX' such that the augmented complex is X-split. Thus 
Hi (M) i + l I i . f . f X = Ke a Im a • One has correspond1ng statements or covar1ant unctors 

A + B. 

To prove, that the augmented complex is X-split, one has to observe that 

0 + MX + (MX)X + (Mxz)x + ••• is iust Am (X,M) with precisely the last face-operator 

missing everywhere. Thus one can use the corresponding degeneracy-operators, to con

struct a hornotopy from zero to the identity on this complex, which proves, that it is 

X-split everywhere. 

We give some applications 

Proposition 1.3: If M is X-injective, then 0 +M+ MX + Mxz + ••• is exact every

where. If M is X-projective, then ••. + Mxz + MX +M+ 0 is exact everywhere. 
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Corollary I: If 0 + M
1 

+ M
2 

+ M
3 

+ ... is a sequence of X-injective contravariant 

functors from A to B, which is exact at any Y<X, then it is exact. Correspondingly 

any sequence .•. + M3 + M
2 

+ M
1 

+ 0 of X-projective covariant functors, which is 

exact at any Y..t. X, is exact. 

Corollary 2: If M is X-injective, then M(e) is isomorphic to the difference kernel 

of the two maps from M(X) to M(XxX), thus it is determined by its behavior on X 

and XxX.(This is precisely the point, why one wants to prove X-injectivity: it 

allows to reduce the computation of M(e) to the computation of M(X), M(XxX) and the 

two maps from M(X) to M(XxX).) 

Proposition I • 4: Let 0 + M' + M + M' 1+ 0 be a sequence of functors from A to B, 

which is exact at every Y~X. Then one has a long exact sequence 

0 + H0 (M 1 
) + H0 (M) + H0 (M 1 1 

) + H 1 (M 1 ) + 
X X X X 

resp •... + HX (M'') + HX (M') + HX (M) + HX (M'') + 0. 
I o o o 

Remark: The general constructions of homological algebra would only give such long 

exact sequences for X-split exact sequences 0 +M' +M+ M' 1 + 0. 

Proposition 1.5: Let X,Y tiAI with Y..t.X and M tl [A0 ,B] I, resp. el [A,B] 1. Then one 

has a spectral sequence 

Proof: 

HXP CH{ (M)) ~ Hyp+q(M), resp. E2 
p,q 

Consider the diagramm 
X X Y 

tt 

X X y2 

ttt 

+-
+-

+ ... 

HX (Hy (M)) ~ HY (M). 
p q p+q 

x
2 x Y + 

+ 
+ 

tt 

x2 Yz + 
X + 

+ 

ttt 

Applying M one gets a double-complex. One of its two spectral sequences collapses by 

Prop. I .2, giving the (eo-) homology of the total complex, the other one is just the 

one mentioned. 

Corollary: If Y,X tiAI and a, B: Y +X two morphisms, then both induce the same ho-
. . y X 

momorphisms HX1 (M) + H~ (M) (resp. H. (M) +H. (M)), especially any endomorphism 
• 1 x1 

X+ X induces the identity on H1 (M), resp. H. (M) and any a: Y +X a canonical iso-
. i Xy X 1 

morphi sm H~ (M) + Hy (M) , resp. Hi (M) + Hi (M) , whenever Y ~X. 

Proposition 1.6: Let M, N, L tl [A 0 ,BJ I with B the category k-mod of k-left-modules 

for a commutative ring k with £ k (or any abelian category with an internal tensor-

product) and let <,>: M x N + L be a pairing, i.e. a family of k-bilinear maps 

<,>X: M(X) x N(X) + L(X) (X tiAI) such that for any a: Y +X one has 
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10 

<a(a) ,a(b)>y (a E M(X), b E N(X)), Then this pairinginduces pairings 

X Hq (N) ~ Hp+q(L) (p,q > O). 
X X 

Proof: <,> induces a map from the double-complex M(Xp+l) x N(Xq+l) into the double

complex L(Xp+l x Xq+l) and thus a pairing from H~(M) x Hi(N) into the cohomology of 

the associated total complex of the latter, which by prop. 1.4 is just H~+q(L), (An 

explicit isomorphism of course is induced by the usual map. 

~ L(Xp+l x Xq+l) ~ L(Xp+q+l), whose components come from mapping the first p+l 
p+q•n 

factors onto the first p+l factors and the last q+l factorsjonto the last q+l factors.) 

Remark: There is no equivalent statement for covariant functors in this setting. 
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§2 Homological algebra of bifunctors 

A bifunctor M: A ~ B from a category A to a category B is defined to be a pair of 

functors (M*,M*) from A to B, such that M* is contravariant, M* is covariant and 

both coincide on the objects: thus for any X £[AI we have one object 

M*(X) = M*(X) =: M(X) £[BI and for any morphism a:Y ~X in A we have two morphisms 
- -a~)t;---

M(Y) ~ M(X). A natural transformation 8: M~ N of bifunctors is a family of 
a* 

morph isms eX: M(X) _,. N(X), such that e is a natural transformation as well for M;, 

as for M;,. 

Obviously if A is small, then we have the category Bi(A,B) of bifunctors from A to 

B, which as~sual inherits most of thepsual formal properties of B, e.g. Bi(A,B) is 

abelian if B is so. 

Now assume A to be small and to contain finite products. For any X £[A[ and any 

M £ Bi(A,B) again one has MX £ Bi(A,B) (MX(Y) =:M(XxY)), and one can also define 

X-split sequences M' ~M~ M•' as sequences, for which MX ~ MX ~ Mx' splits, but 

since generally neither of the two families 
t> (Y) ;, 

p*: M~ MX: M(Y) .--+ M(YxX) 

and 

'" p (Y)"' 
p MX _,. M: M(XxY) ----->- M(Y) 

(p(Y): Y x X+ Y the projection) are natural transformations of bi-functors, we 

cannot develop a relative homological algebra of arbitrary bi-functors similarly to 

the above theory of eo- or contravariant functors. Thus we restrict ourselves to the 

more convenient class of pre-Mackey-functors: a bi-functor M: A_,. B is called a 

pre-Mackey-functor, if for any pull-back-diagramm 

in A the diagramm M(Y) 
q,;, 

_.,. M(Y2) commutes. 

'* t tlji;, 

M(Y 1) _cc"' M(X) 

A first consequence of this definition is 

Lemma 2.1: If a: Y-+ X is a monomorphism in A and M: A_,. B a pre-Mackey-functor, 

then M*(a) oM*(a): M(Y) ~ M(Y) is the identity. Especially if a is an isomorphism, 

then M*(a- 1) = M*(a). 
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Proof: Just apply M to the pull-back-diagramm Id 
y _,. y 

y _,. X 
a. 

Now for pre-Mackey-functors we have indeed natural transformations of bi-functors 

M~ MX' MX ~M or more generally: Any pre~ackey-functor M: A + B defines a pre
Mackey-functor from A into the full subcategory Bi'(A,B) of pre-Mackey-functors in 

Bi(A,B) by X>+ MX' (a.:Y +X) >+ (a.,.,: MX +My, a.;<:My + MX). 

Moreover for B abelian 0 + M + MX and MX + M ~ 0 are both X-split and any X-split 

sequence M'+ M~ M'' of pre-Mackey-functors is also Y-split for any Y EIAI with 

Y-<X, 

We can define M EIBi'(A,B) I to be X-injective, if 0 +M+ MX splits, and X-projec

tive, if MX +M+ 0 splits, and have- analogously to Prop. I .I -all the equivalent 

conditions· for X-inj ectivi ty, resp. X-proj ectivi ty now in the category of pre-Mackey

functors. Especially MX is both X-injective and X-projective for any M EIBi'(A,B) I. 

But then both x-injectivity and X-projectivity of M are equivalent to M being a di

rect summand in MX' thus a pre-Mackey-functor is X-injective if and only if it is 

X-proj ective, which generalizes a well known result of Gaschlitz·-Higman 

(see ~Ql , ~~ , ["t-] , @~) • 
Therefore we will only use the term "X-projective", but keep in mind, that for 

pre-Mackey-functors this means "X-injective" as well. 

As before we get, that any X-projective pre-Mackey-functor M is also Y-projective 

for any Y EIAI with X..(Y, and that M is X- and Y-projective, if and only if it is 

X x Y-projective. Especially we can again define the vertex of a pre-Mackey-functor 

as the smallest X E I A I - with respect to "-<" and thus up to+ -equivalence - such 

that M is X-projective, whenever such an X exists (e.g. A contains only finitely 

many+ -equivalence-classes). 

Again 0 +M+ MX + MX2 + •••• and ... + Mxz + MX ~M+ 0 are X-split and thus 

(without the augmentation) can be used to define (and perhaps compute) the 

(eo-) homology"groups" H~ (M) and H~ (M) for any M EIBi'(A,B) I. 

We have H~ (M)=H~ (M)=O (n > O) and H~ (M)=M=H~ (M) whenever M is X-projective. 

Moreover we can splice together the two complexes to just one doubly-infinite complex 

~ ••• 0 

with an (n ~ I) as in §I for M*, ao the composition MX +M+ MX and a-n (n ~ I) as 

on in §I for W<, We define A~ (M) = Ke an+! /Im an (nE 'I) to be the Tate-cobomology 
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of M. Obviously H~ (M) = H~ (M) and 

H-n-l(M) HX (M) for n > O, 
X n 

h f 0 • map HX (M) 
30 

H0 w eras or n = 0 the map a 1nduces a 
0 

~ X (M) and 

H~ 1 (M) = Ke(3°), H~ (M) =Coke (3°). 

One can characterize A~ (M) also as the cokernel of the natural map H~ (MX) ~ H~ (M) , 

since in the diagramm M ~ MX ~ Mxz 

t t t 

the lower left horizontal arrow maps MX isomorphically onto H~ (MX). 

Again any sequence 0 ~M'~ M~ M''+ 0 of pre-Mackey-functors from A to B, which is 

exact on any· Y~X, gives rise to a long exact sequence 

... ~ H~ (M') ~ H~ (M) + H~ (M) + H~+l (M') -+ .... and we have H~ (M) 

is X-projective. Thus if Me Bi'(A,B) and 

Ke(MX ~M)=: M': A-+ B: Y~ Ke(M (XxY) E! M(Y)), 

0 whenever M 

Coke (M~ Mx)=: M": A~ B: Y >+ Coke (M(Y) ~ M(XxY)), (p: X x Y + Y the projection) 

then H~ (M) H~+J(M') H~-J(M' '), i.e. we can shift dimensions as usal in Tate-co-

homology. 

The spectral sequences from §J of course now have pre-Mackey-functors as term when

ever applied to a pre-Mackey-functor M, and again any morphism a: X+ X induces the 

identity on H~ (M). 
Finally to define cup-products of pre-Mackey-functors we first have to define 

pairings: so assume B=~ (as in §I) and let M, N, L: A~ k-mod be three bi-func

tors. A pairing<,>: M x N ~Lis then a family: 

<,>X: M(X) X N(X) ~ L(X) (X e:: lA I) of k-bilinear maps, such that for any a: y ~X in 

A we hav~ 
(PI) (<a,b'jc) <a;,(a) ,a;,(bl>y (a e M(X), b e N(X)) , a,., 
(P2) a* ( <a,•, (a) ,b>y) <a,a>'<(b)>x (a t: M(X), b e N(Y)), 

(P3) a}'c (<a,a;,(b)>y) <a>': (a) , b> X (a E M(Y), b E N(X)). 

Remark: (P2) and (P3) can be considered as some kind of an axiomatic Frobenius-reci

procity-law (see i?SJ, [.2~ .... ). 
A straight-forward consequence of these definitions is 

Lemma 2.2 (cf.~]): Let<,>: M x N ~ L be a pairing of bi-functors M, N, L: A~~ 

and a: Y ~X amorphism in A. For any bi-functor X:A ~ k-mod write 

KaX Ke (a,~ X (X) ~ X (Y)) and laX = Im(a''': X (Y) -+ X (X). 
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Then one has: < KaM, N(X) >X ,; KaL' 

< M(X), KaN >X s; KaL, 

< laM' N(X) >x fi IaL, 

< M(X), IaN >X 6 IaL, 

< KaM, I N >x= < IaN, KM > = 0. 
(J. (J. X 

Now let M, N, L: A+ k-mod be pre-Mackey-functors and <,>:M x N +La pairing of 
---

bifunctors. 

Proposition 2. I : For any X £I A I one has an ind•.•.ced pairing of bifunctors 

M x NX +LX (and of course MX x N +LX) defined by M(Y) X N(YxX) + L(YxX): 

(a,b) ~ < p;.,(Y) (a) ,b >YxX with p(Y): YxX + Y the projection. For any morphism 

a: Z +X one has commutative diagramms: 

M x Nx + LX' 

lrdxa,., ta,., 
M x Nz + Lz 

Proof: direct verification. 

An immediate consequence is 

M X NZ+ Lz 

!rdxa"' la"' 
M x NX + LX 

Proposition 2.2: The induced pairings H~ (M*) x Hi (N*) + H~+q(L*) as defined in §I 

actually are pairings of bi-functors. 

Especially for p = 0 one gets pa~r1ngs H~ (M) x Hi (N) + Hi (L) and one checks 

easily, that there are corresponding well defined pairings H~ (M) x H~(N) + H! (L). 

(Just extend the obvious pairing M 2.-~~)~~ (L) to H~ (M)). 

But for a: X+ • and q f 0 we have Hi (NX) = Hq (NX) 0, thus 

Ka(Hi (N)) =Hi (N), Ka(H~ (N)) = H! (N) and therefore by Lemma 2.2 

< Ia(H~ (M)), Hi (N) > = < IaH~ (M), H~ (N) > = 0, i.e. the above pairing induces 

well defined pairings of I 
H~ (M)= H~ (M) Ia(H~ (M)) with Hi (N), resp.H~ (N) 

into Hi (L), resp. H~ (L). 

Using dimension-shifting together with Prop. 2.1 (or any other appropriate technique) 

this can be generalized to 

Proposition 2.3: Any pairing M x N + L of pre-Mackey-functors A+ k-mod induces 

pairins#ii (M) x Hi (N) + Hrq(L) (p,q £ Z), which have allpsual pro;:ties of 

cup-products for Tate-cohomology-groups, 
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Remark: It might be a usefull exercise for the reader to show, that already to get 

a well defined cup-product of zero-dimensional Tate-cohomology 

H~ (M) X R~ (N) ~ R~ (L) 

one is forced to define pairings of bi-functors using the properties (P2) and (P3) 

(together with (PI), the multiplicativity of the contravariant part of course) 

instead of postulating analogously to (PI) multiplicativity of the covariant part as 

well. 

197 



16 

§3 pre-Green-functors 

At first let A be an arbitrary category. Following T.Y. Lam (see ~) we define a 

Frobenius-functor F: A + k=mud to be a bi-functor together with a pairing 

F x F + F, such that for any X siAI the k-bilinea~(X) x F(X) + F(X)makes F(X) into 

a k-algebra with a unit IF(X) £ F(X) and with a;,(JF(X)) IF(Y) for any a:Y +X inA, 

A left, resp. right F-module M is a bi-functor A+ k=mud together with a pairing 

F x M+ M, resp. M x F +M, such that for any X siAI M(X) becomes a left, resp. 

right unitary F(X)-module. 

Lemma 3.1 (T.Y. Lam): Let F: A+ k=mod be a Frobenius-functor, M a left (or right) 

F-module and a: Y +X amorphism in A. 

(a) KaM and IaM are F(X)-submodules of M(X), especially IaF 

sided ideal in F(X). 

a*(F(Y)) is a two-

(b) If a*(F(Y)) = F(X), then a*: M(Y) + M(X) is split-surjective 

Especially 

(i) M(Y) = 0 => M(X) = 0 

(ii) If·e: M+ N is a natural transformation of F-modules(i.e. compatibel with 

the F-module-structure), then eX: M(X) + N(X) is surjective (resp. split

surjective, injective, split-injective or bijective) if ey is so. 

(iii) If M'+ M+ M'' is a sequence ofF-modules, then M'(X) + M(Xl +M' '(X) 

is (split-) exact, if M'(Y) + M(Y) + M''(Y) is so. 

Proof:(a) follows immediately from Lemma 2.2; a right inverse of a*: M(Y) + M(X) is 

given by;: M(X) + M(Y): x~ r·a*(x) with r s F(Y) such that a*(r) = IF(X)' since 

a*(&(x)) = a*(r.a;,(x)) = a1<(r)x = I• x=x. 

Now assume A to contain finite products. We define a pre-Green-functor G: A+ k-mod 

to be a Frobenius-functor, which is a pre-Mackey-functor as well. A G-module is then 

also supposed to be a pre-Mackey-functor, too. In this case we can interpret the 

surjectivity-condition in Lemma 3.1 (b), as~ llows: 

Theorem I: Let G: A+ k-mod be a pre-Green-functor and X siAI. Then the following 

statements are equivalent: 

(i) The natural map G(X) + G(t) ~ssociated to X+ I) is surjective 

(ii) G is X-projective 

(iii) Any G-module M is X-projective. 

Proof: (iii) + (ii) + (i) is trivial; for (i) + (iii), i.e. to construct a splitting 

map M + MX one just uses the maps ay: M(Y) + M(YxX) as defined in the proof of 

Lemma 3.1 with ay: Y X X + y the projection and with r = ry= Sy,•, (r I) for a fixed 

preimage r 1 of I £ G(') taken in G(X) and Sy: y x X + X the other projection. 

Remark: This theorem states the essential connection between inductiontheory and 

(relative) homological algebra and perhaps - in a rather formal way - the real motive 
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for proving induction-theorems: one just wants to prove X-injectivity of certain 

contravariant functors M: A0 ~~and ma, do so by I. extending M to a pre

Mackey-functor, 2. constructing a pre-Green-Functor G , wRich acts unitary on M, 
and 3. proving the surjectivity of G(X) ~ G(•), i.e. an inductiontheorem for G. 

Corollary I :Let G: A~ k-mod be a pre-Green-functor, M a G-module and XE]A[ with = ·n G(X) + G(t) surjective. Then HX (M) = 0 for all n g Z and the augmented Amitsur-com-

plexes 0 -+ M + MX + Mx2 + and •• ,-+ Mx2 -+ MX + M + 0 are split-exact. 

It should be remarked, that for G and M as in Cor, and X an arbitrary object in A 
one also has pairings H~ (G) x Hi (M) + Hi+q(M) (p,q >. 0) and 

RP(G) x Hq (M)+ Hi+q04), (n,q e Z) especially for M= G and p = q = 0 one gets, 

that H~(G) and R~(G) are pre-Green-functors, Hi(M) and Hi(M) are modules with respect 

to these pre-Green-functors respectively, and the natural transformations 
o •o G + HX(G) + HX(G) are natural transformations of pre-Green-functors and thus make 

H~(G) and H~(G) into "G-algebras", whenever G is commutative. 

Especially. all Hi (M) and Hi (M) are G-modules. Moreover the "grad:d cohomology-rings" 

Hi((G) and H~(G) are"graded pre-Green-functors" and H~(M), resp. Hi{(M) is a graded 

Hi{(G)-, resp. Hi{(G) -module. 

Corollary 2 (cf. Green, ~~) If G: A+ k-mod is a ore-Green-functor and X,Y eiA[, 
then G(X) + G(•) and G(Y) + G(•) are surjective if and only if G(XxY) + G(t) is sur

jective. 

A direct proof for this may also be based on considering the pull-back-diagramm 

<P 
XxY---+ Y 

and either using the argument: "cpi•: G(X) ._ G(t) surjective 

X g G(X) with <P*(x) = IG(•) ~ IG(Y)= W*(IG(•)) = w*($*(x)) 

there exists 

.pi:('!',., (x)) £ Im <P•'• ==> .pi:: G (XxY) -» G (Y) is sur jective" or the "Mackey-tensor-pro-

duct-theorem": 

Lemma 3.2: If <,>:M x N + L is a pairing of pre-Mackey-functors A+ k-mod, 

a pull back with cpoT = wo<P =a: Y +X, a E M(Y 1), b E N(Yz), then 
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Proof: <~*(a),~*(b)>X 

• a*(<T*(a),l*(b)>y). 

•*(<a,~*~*(b)>Y ) 
I 

18 

Remark: Lennna 3.2 shows, that "G(X) ~> G(e) and G(Y) ~> G(e) <=='> G(XxY) -n G(e)" 

holds already if G is a pre-Mackey-functor with an arbitrary inner composition 

G x G + G such that G(e) x G(e) + G(e) is surjective. 

Thus if any set of objects in A contains minimal objects with respect to~. one can 

again find for any such G an object X s!A! such that G(Y) +> G(e) is surjective for 

some y £!A I if and only if X-< y. Following Green, c~SJ we may call any such object a 

defect-object for G and get, that for a pre-Green-functor G defect-objects and 

vertices coincide, In the following we will follow Green, ~' (instead of Green,8~) 

and mainly use the term "defect-object" for pre-Green-functors. 
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§4 Mackey-functors 

Let A and Bat first be arbitrary categories. A Mackey-functor M: A+ B is a pre

Mackey-functor with the additional property, that M* transforms finite sum~ into 

finite products in B. Of course for a small A we have the full subcategory 

Mc(A,B) of Mackey-functors in Bi' (A,B) ~Bi(A,B) which again is abelian if B is. 

For B =~we define Green-functors G: A+ B to be pre-Green-functors, which are 

also Mackey-functors. 

We want to study Green- and Mackey-functors A + k=mQd on categories A sati~fying the 

following properties: 

(M1) A is small, contains finite sums ("XuY"), products ("XxY") and pullbacks, 

especially an initial object~ EIAI and a final object • EIAI. 

(M2) The two squares in a commutative diagramm X 1 -----+ Z' +-- Y' are 

l l l 
X --+XuY +--Y 

pull backs if and only if the upper line represents Z' as a sum of X' and Y'. 

Lemma 4.1: Let A satisfy (MI) and (M2). Then 

(a) x-M x and X+--~ are 

Id 1 1 1 1 
X-----+ XuY XuY+-Y 

pull-backs 

(b) The natural map (z x x) u (z x YJ + z 
is an isomorphism. 

X (XUY) 

(c) The category A/X of morphisms into X satisfies (M1) and (M2) for any 

X E lA I. 
Proof: (a): Choose X' 

(b): Choose X' 

Z' =X, Y' =~in (M2). 

ZxX, Y' ZxY, Z'=Zx(XuY) in 

(c): Direct verification. 

Next we have 

(M2). 

Lemma 4.2: If A satiesfies (M1) and (M2) and if M: A+ B is a Mackey-functor into an 

abelian category B, then M''' transforms finite sums into finite sums. 

Proof: Since M,., transforms finite sums into finite products, we have M(r/J) 

applying M to the diagramms in Lemma 4.1 we get a diagramm 

M(X)~ ~M(Y) 

l 
M(XvY) 

Id ~ 
M(x)"' '' ~ ~~~) 
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~ ~ 
with zero-diagonals )! .r Since B is abelian and 

M~, x M,~: M (XuY) -+ M(X) X M(Y) an isomorphism, this implies, that 

M•'• @ M* : M (X) @ M(Y) -+ M(XvY) is an isomorphism as well, 

Now let us observe, that because of Lemma 4.1, (b) the isomorphism-classes of ob
jects in A form a halfring ~+·(A) with respect to sum and product with 0 
representing 0 e: :;t (A) and • representing l £ rt (A). Let ~(A) be the associated 
Grothendieck-ring, Since by Lemma 4.1, (c) A/X satisfies (Ml) and (M2) for any 

X £\AI we can also define ~(X) =~(A/X). 

Since any morph ism ex: Y -+ X induces functors ex;,: A/X -+ A/Y: 

(Z 
(3 13 aB +X)~ (ZS X Y + Y) and ex*: A/Y-+ A/X: (Z-+ Y) ~ (Z-+ X), both of which are xa 

additive, the first one even multiplicative., we get induced maps 
ex,~: $'l(X) + ~(Y), a~•: ~(Y}..,. ~(X). 

One verifies easily: 

Proposition 4.1: The above definitions make~: A..,. i-mod and thus also 

~k = k ® ~: A-+ k-mod into a commutative Green-functor. 
2 

We call ~ the Burnside-functor, associated to A. Note that l~(e)= On(e) can happen, 
for instance if A is the category of at most countable sets. 

Still one can prove: 

Proposition 4.2: Any Mackey-functor M: A..,. k-mod is in a natural way a k®fl-module 
2 

and any Green-functor G: A ..,. k-mod a k li> Q-algebra. The action of k 0$1 on M is 
• 2 

induced by ~+(X) x M(X)-+ M(X):(Z X,a) 1+ i3'''(fl;,(a)). 

Especially the action of n on Q is just multiplication. 

Proof: Lemma 4.2 guarantees linearity with resprct to 13. (P2) follows just from 
functoriality, (PI}c.nd (P3) from the fact, that M is a pre-Mackey-functor, applied 
to the pullback 

YCI X 
13
z + Z 

+a,..(B) +B 

y ..,. X 
a 

In case 1G(•)= OG(e) this just says, that any Mackey-functor M: A+~ is 
identically zero. To make a more proper use of the Burnside-functor we have to 
impose some further restrictions on A, which allow to get some more information on 
n. 
For a start just let us observe, that for an indecomposable object Z ciAI, i.e. an 
object with "Z 

HomA(Z,X)\JH~mA(Z,Y)-+ HomA(Z,XvY) is an isomorphism by (Ml). Since anyway 

HomA(Z,X)xHomA(Z,Y) + HomA(Z,XxY) is an isomorphism, the assumption, that HomA(Z,X) 
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is finite for any X, implies, that we have a well defined ringhomomorphism: 

~z: Q(A) + Z: X~ [HomA(Z,X)[. 

Morover if Z' is another such object and ~ 2-~ 2 1 , then especially Z-< Z '-< Z (evaluate 

at Z and Z'!); thus if we assume that any endomorphism of Z and Z' is aqAutomorphism, 

we get Z ~ Z'. 

These considerations lead to the following definition: a category Afs a based cate-

gory, if it satisfies (Ml) and (M2) and moreover: 

(M3) There is precisely a finite number of isomorphismclasses of indecomposable ob

jects in A and any object in A is isomorphic to finite sum of indecomposable objects. 

(M4) If Z,Z' s[A[ are indecomposable, then HomA(Z,Z') is finite and 

EndA(Z) = AutA(Z). 

Any set T of representatives of the isomorphism-classes of indecomposable objects 

in A is called a basis of A. Observe that by (M4) z-<z'....(.Z for Z,Z'sT implies 

Z=Z', thus Z=Z', if T contains precisely one object out of any isomorphismclass of 

indecomposable obi ects. 

Moreover already by (M3) we have for any X,Y e:IA[: "X-<Y" <==> "Z-<X implies z-<y 

for all Z £ T", especially one has at most z[T -equivalence-classes in A. 

Thus any pre-Mackey-functor M: A + B has a vertex and especially any pre-Green

functor G: A+ k-mod a defect-object X. 

Moreover the-*"-equivalence-class of X LS uniquely determined by the finite set 

D(G) = {ZsTI,z-<X}, which is then also called the defect-set of G. 

Examples: The category of finite sets is based with basis just the final object. If 

A and A' is based, then also A x A'. If A is based with basis T and X s[A[, then 

A/X is based with basis T/X = {~: z + x[z ~ T,~ E HomA(Z,x» (modulo isomorphisms in 

A/X). For any finite group G the category G, of finite left G-sets is based with 

basis T {G/U[U ~ G} (modulo isomorphisms); more generally: if A is based and G 

finite, then the category of G-objects in A is based. 

Now let A be based with basis T. Let z[T~the free abelian group generated by T and 

z+ [T] ~2' [T] the free abelian semi group generated by T. Then one has a cormnutative 

diagrarmn: z+ - z[r] 

l l TT ~z 
Q+(A) --+ Q(A) ZsT 

------+ Z=Q(A) 

ZsT 

The vertical arrows are surjective by (M3). Since all ~2are different ringhomomor

phisms into 7 by (M4), they are linearly indepedent over l. Thus the image of 

TT ~Z has X-rank precis~ly [r[ = rk~(A) ,which implies, that all arrows must be 
ZET 

injective. 
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This proves 

Proposition 4.3: Let A be a based category with basis T. Then 

(a) Q+(A), resp. Q(A) is a free abelian semigroup, resp. group with basis repre-

sented by T and Q+(A) maps 

(b) 1T <Pz: ri(A) _,. lT z 
ZET ZET 

injectively into Q(A), i.e. XvY ~ X'vY = X 

~(A) is injective and has finite cokernel. 

(c) In other words: for x~ E n2 Z and x•~ E n~ Z we have 
ZsT ZET 

X~ X' <==9 ql 2 (X)=ql
2

(X') for all z s T <==9 n2=n~ for all Z s T. 

Remark: For A = G this last statement is a well known theorem of Burnside. 

x•. 

Since -rr ql 2 : ri(A)-+ ~(A) is injective, we may identify Q(A) with its image in Q(A), za 
which itsself can be identified with the integral closure of Q(A) in its total 

quotientring. Since Q(A) is finite, it has a well-defined exponent 0 A lfe: N, which we 

define to be the Artin-index of A; thus n·~(A)<;;.Q(A) <==>flAil divides n. 

Proposition 4.4: For a finite group Gone has Ucll = !GI. 

Proof: An easy inductionargument with respect to lul (UsG) shows, that for any U$G 

there exists~£ Q(G) with qlG/U(xu)=IGI, qlG/V(xu)=O for G/VfG/U, using the fact, 

that <pG/U(G/U)=!Aut(G/U) I=CNG(U) :U) divides <pG/V(G/U) for any VsG. Thus 

IGI· i'i(G) ~ Q(ch. On the other hand if x s Q(G) with <rG/U(x)=O for all U s G; U f E, 

then x=n· G/E for some n E: Z and <pG/E (x) =n ·I G I . Thus 11 G 11= I G I . 
For details see f!~, § 5 . More generally !AI is the smallest common multiple of 

IAut(Z) !, Z £ T, if all maps Z-+ Z'(Z,Z'sT) are surjective. 

Theorem 2: If A is a based category and M: A-+ k-mod a Mackey-functor, then IAI 

annihilates all cohomology-groups H~(M,Y) (X,Y e:IAI). Especially 

(I) !!All• M(Y) <;Ke(M(Y)-+ M(XxY))+Im(M(XxY)-+- M(Y)) and 

(2) IIAII·(Ke(M(Y) -+ M(XxY)) 1"\Im(M(XxY) -+ M(Y)))=O. 

Proof: Since the canonical map M(Y) -+ H~(M,Y) has kernel precisely the right side of 

(I) and since H~ 1 (M,Y)-+ M(Y) has image precisely Ke(M(Y)-+ M(XxY))nim(M(XxY)-+ M(Y~ 
(I) and (2) are indeed corollaries of IIAII·Rn(M) = 0. On the other hand by Prop. 4.2 

A X 
it is enough to show, that IIAII·l 0 in H~(rl,e), which of course follows from 

IIAII·Irl(e)E Ke(rl(e)-+ Q(X)) + Im(Q(X)-+ rl(•)). But obviously 

K = Ke(rl(t) -+ ri(X)) {x E: rl(tY!<r 2 (x) = 0 for all Z £ Twith Z-<X} and 

I = Im(Q(X) -+ rl(e)) { E n
2 

Z!n
2

s 2} {x E Q(e) lql 2 (x) 0 for all Z £ T with 
ZsT ,Z-<X 

Z -fi-X} (the last equation holds, since x = E n Z s rl C•) and qlz (x) 0 for all 
ZsT Z 

Z ET with Z-¥X implies n2 = 0 for all Z-I<X, -otherwise choose a z0 s T with 

Z0 -I<X, n = 0 and Z0 maximal with respect to-<, then qlz (x)=nz• <rz (Z) f 0, a z.., 0 0 0 ° 
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contradication). 

Now consider e = (ez) ii(A) with ez = o for z-+:x and ez = I for Z-< X, f = 1-e. 

Then jJAII-e, jjAJI·f e: rl(A) = rl(t) by definition of JJAi and thus j!A!I·e e: I, JIA!l·f e: K 

by the above remarks, which yields jjAjj•IG(e)= I!Afl·e + I!A[i-f E I+ K, q.e.d. 

Remark: As shown below, Theorem 2 can be considered as a generalization of Artin's 

inductiontheorem as well as of the fact, that jcj annihilates all cohomology-groups 

Hn(G,M), M a ZG-modu]-:.:J Now assume [JAI· lk to be invertibel ink. Then (I) and (2) in 

Thm 2 imply M= Ke(M ~ MX) $ Im(MX ~M), especially M(Y) f M(YxX) is injective for 

some Y e:jAj if and only if M(YxX) ~ M(Y) is surjective. 

As a first consequence we get 

Corollary I: If IIA!I·k k, G: A+ k-mod a Green-functor and M a G-module, such that 

M(e) is a faithful! G(e)-module. Then the following statements are equivalent: 

(i) M is X-projective 

(ii) M(X) ~> M(e) is surjective 

(iii)M(e) 4 M(X) is injective 

(iv) G(e) <+ G(X) is injective 

(v) G(X) ~> G(e) is surjective 

(vi) G is X-orojective 

Proof: (i) = (ii) (iii) = (iv) = (v) = 
This imolies especially that Qk/Ke(Qk + Q~) 

k k k (choose M= QX' G = Im(Q + QX)!). 

Thus we get: 

(vi) = (i). 

Im(Qk ~ Q~) is X-projective 

Corollary 2: If jjAjj.•k k and M: A+ l&::!!J.Qd a Mackey-functor, then the following 

statements are equivalent: 

(i) M is X-projective 

(ii) M(XxY) ~> M(Y) is surjective for allY s[A[ 

(iii) M(Y) C+ M(XxY) is injective for all Y E jA j. 

Especially any subfunctor and any quotient functor of an X-projective Mackey-functor 

M: A~ .k=mo_d_ is X-projective. 

Proof: (i) = (ii) (iii) is clear. (iii) = (i) holds, since (iii) implies, that 
k . k k k M as an n -module even 1s an n /Ke(Q + nX)-module, which is an X-projective 

Green-functor. (iii) hold~ny subfunctor of M, if it holds for M, (ii) holds for 

any quotient-functor of M, if it holds for M. 
Especially Im(N ~ NX) and H~(N) are X-projective as subfunctors of NX for any 

Mackey-functor N: A ~ l&::!!J.Qd and Im(NX + N) and H~(N) are X-projective as quotients 

of NX. Also a Green-functor G: A+ k=mod-is x-vrojective
1
if and only if the image of 

Qk in G is X-proiecthre, Fhich i11ml'inates- nerhaps a bit the role of permutation

representations (the image of nk in G!) in inductiontheory. 

Corollary 3 (cf Conlon ['1]): Assume IIAI[·k = k and let M: A+ a Mackey-
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functor. 

Let T be a bais of A and define t.fZ=: Im (11
2 

-> M)r\ (\ 

Z'E:T,z'fz 

for any Z s T. Then M=~ ~. 
ZsT 

Ji' can be characterized as the largest Z-proiective subfunctor of M, all of whose 

Z'-projective subfunctors are zero for Z'~Z(Z,Z'ET). 

For a Green-functor G: A -> k-mod one has G= 1f G2 as a direct product of Green

functors. ZET 

Proof: By definition of [[A [I and because [[A l[·k = k one has 

nk(A) = k® rl(A) ::: k~ Q(A) = k. 

Thus one has a set e
2

(ZE:T) of pairwise orthogonal idempotents in Qk(A)= rlk(•) 

with l: e2 = 1. The statements then follow from l12 (Y) = e2 Jy· M(Y) for any Y £[A I 
. ZsT2 (1.e. M = eiM). 

In the rest of this section we want to compute the defectset of Im(Qk + rl~)without 
any additional assumption of kand state some important consequences. For this 

purpose one has to consider primeideals p~rl(A) = Q(e). 

By Cohen-Seidenberg any p~ Q(A)can be lifted to some pr;;;Q(A)= TT Z and thus is of the 
ZcT 

form p=p(Z,p)={x £ n(A) [(JJ 2 (x)=cO mod p} for p=char Q(A)/p. (O or a prime). 

More explicitly let Z s T be a minimal element (w.r.t.~). such that Zip 
(since l=eip such minimal elements always exist!). 

Since Z x X::: qJ 2 (X)·Z + l: n
2

, Z' (apply qJZ to both sides) one gets 
Z'cT,Z'~Z 

Z x X= 'll 2 (X)·Z mod p,thus dividing by Zip: X= QJ 2 (X)•l mod p and p = p(Z,p) 

with p=char n/p. Moreover we have Z~X for all X with X i ·p, especially Z is the 

smallest object in T with Z ~ p and therefore uniquely determined by p. One can 

also characterize Z as the only element in T with p p(Z,p) and QJ 2 (Z) $ 0 mod p 

(p= char >2/p), since thes~wo properties at least hol~and on the other hand 

p=p(T,p) and '~'r(T) $ 0 mod p for some T e: T implies q~ 2 (T) = 'llr(T) $ 0 mod p and 

q>T (Z) = ~ (Z) $ 0 mod p, i.e. z_,T~Z and therfore Z=T. 

Thus for any T E: T and any characteristic p we have a unique element Tp £ T with 

p(T,p) and qJT (T) $ 0 mod p. Obviously p(T,p) = p(T',p) <~ T T' 
p p p p 

<~ qlT = qlT' mod p and T0 =T, since (JJT(T) f 0. 

Proposition 4.5: For a finite group G,A G and T G/U s T for some subgroup U~ G 
n 

one has T =G/V with V maximal such that U~V~G and vP s U for all vs V and an 
p 

appropriate power pn of p (e.g. the p-part of [c[). 
Proof (see also l~J and [_1~, § 5 ) : Since vPn s U for all v s V, we have a sequence 

of subgroups 
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p p p 
u = U

0 
1 u 1 s u2 1 with U _, normal in U w~th p-power-

\l"""'< )l 

index (Jl=l, •.. ,m). But this implies Pu (S) = Pu (S) mod p for all G-sets S, thus 
)l-1 )l 

p(U,p)=p (Ul ,p)= •.• =p(U 1 ,p)=p(V ,p). On the other hand 'Pv(G/V)=(NG(V) :V)fO(p), since 

nn p 
V is maximal with V· GU, thus g· £ V for some g £ NG (V) implies g £ V. 

Theorem 3: Let A be a based category with basis T, X e[A[, nk: A+ k=mad the Burn

side-functor. Then 

D(Im(0k->- 0~)) = {Tp[T £ T, T-<X, p•k f k} (where p runs through all possible 

characteristics). 
k k k k 

Proof: Let KX = Ke(0 (•) + n (X)) and Iy 

0k(•) =~+I~ if and only if Tp-<Y for all TP £ T with T..,_X and p•k f k. 

But nk(•) f ~+I~ if and only if there exists some maximal ideal mGnk(•) with 
k k () . . h . 1 KX + Iy 10 m. Let p £ 0 • be the pre~mage of m w~ th respect to t e canon~ca map 

n(e) ..,. 0k(•) and p=char 0k(•)/m=char n(e)/p, thus p·k + k. 

Now ~SOp if and only if p=p(T,p) for some T-<.X (even~= n p(T,O), see above) 
T..t.X 

and Iys;;p(T,p) if and only if Tp-fY. Thus~+ I~ f 0k(•) if and only if there exists 

T-< X and p with p•k f k, such that T ~ Y, q.e.d .. 
p 

Now define X(k) to be the sum 

defect-object of Im(0k + 0~). 

Then we have: 

of all T with T £ T, 
p 

T-< X and p•k f k, thus X(k) 

Corollary I: For any Mackey-functor M: A + j-mod we have 

is a 

a 
[[A[[k·M(e) s=Ke(M(e) + M(X)) + Im(M(X(k)) + M(e)) (with [[A[!k= TT pap if i[A[[=lT Pp) 

p·k=k 

I 
Proof: Let 2 1 = :z[p-[p•k=k ]s<ll and M'= 'll'eM. Then Thm 3 implies 

M' (e) = Ke(M' (e) +M' (X)) + Im(M' (X(k)) +M' (e)), since X(k) = X(i'). This together 

with Thm 2 implies the result. 

Corollary 2: Let G,G': A+ k-mod be Green-functors with G' X-projective, and 

8: G + G' a homomorphism (natural transformation) of Green-functors, such that 
k Ke(e.: G(e) + G' (•)) n Im(0 (•) + G(e)) ~Rad(G(e)) (e.g. k=l, G' ~· G and all 

torsion-elements in G(e) nilpotent), then G is X(k)-nrojective. 
k k k 

Proof: We have 0 (e)=KX+IX(k)' thus Ink(•)= 
. k k 

x+y w~th x £ KX• y £ IX(k) 

Applying the canonical map 0k + G we get IG(e)= x 1+y 1 with 

k x 1 £ Ke(G(e) + G(X)) n Im(0 (e) + G(e)) and y 1 £ Im(G(X(k)) + G(e)). 

But Ke(G(e) + G(X))~ Ke(G(e) + G' (•)), since G' is X-projective, thus x 1 £ Rad(G(e)) 

and y 1= I -x 1 is a unit in G(e), which implies the surjectivity of G(X(k)) ~ G(e), 

i.e. the X(k)-nrojectivity of G. 

I still want to give another application of our despriction of primeideals in 0(•): 
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so let p=p(T ,p) =< S"l(e) be a primeideal. 

Since any Mackey-functor M: A~ ~is an n-module, thus any M(X) an >2(•)-module 

via the canonical ring-homomorphism n(e) ~ n(X), we can form the localization Mp(X) 

and check easily, that this way we get a "localized" Mackey-functor A~ :i.-mod 
I ....E.__ 

(Zp= Z [~[q f p J), especially GP is a Green-functor for any Green-funct~ 

Proposition 4.6(cf. ~-J.~q]): Tp is a defect-object of "p• thus any MP is TP-pro

jective. 

Proof: We have np(X) ~ np(t) surjective 

<= there exists Y..( X with Y ~ p 

<=> there exists Y-< X with. tl'T (Y) 
p 

$ O(p) 

<=> Tp-<. X, q.e.d. 
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§5 Mackey-functors and G-functors 

In this section I want to discuss the relations of the above theory and J.A. Green's 

axiomatic representationtheory as given in [23}. So let G be a finite group and 

A= G the category of (left finite) G-sets. In ~~ Green defines the subgroup-cate

gory o(G) of G, whose objects are just the subgroups H,F, ... with morphisms 

{ I -1 
Homo(G) (H,F)= (H,g,F) g<:G,g Hg,;;.F}. 

One has a natural functor n: o(G) + G: H ~ G/H, (H,g,F) ~ (ng: G/H + G/F with 

ng(x·H)=x•g•F (which is well defined if g- 1Hgs:F!). 

Now let M: G + ~ be a Mackey-functor and consider M o n: 6 (G) +~. One checks 

easily, that Mo n satisfies the axioms Gl - G4 in ~~], p44 (with R = M,~o nand 

T M~' on), thus any Mackey-functor M determines a G-functor "with zero multipli-

cation11
• 

We note, that M is uniquely determined by Mo n, since any G-set S is a disjointunic:0 
n ~f 

transitive G-sets of type G/H: S" U G/H. and thus 
i=l 1 

n n m 
M(S) = (D M(G/H·) = M o n(Hi), and 

i=l 1 
any map \:J G/H. -+\:.)G/Fi 

i= I 1 j=J " 
m n m 

ng.: G/Hi 1+ G/F.(')~ VG/F., thus M(\)G/Hi) :;:M(\..:JG/Fj) 
L J L j= I J i= 1 j = 1 

M," n(H~,g~,F·c·)) and i' .. n(H.,g.,F.(.)) (i=l, ... ,n). 
l: LLJ]_ 11]1 

uniquely composed out ~ 

Gtaps 
uniquely determined by 

Now assume M is given together with a pairing M x M+ M which sati.§fies (P2) and 

(P3). Then M" n can be considered as a functor into "Ak" (the category of k-modules 

P together with a k-bilinear pairing P x P + P, see [:1.3], p.43)and (P2) and (P3) just 

assure the validity of GS, i.e. make M o n a G-functor in the sense of ~~, whereas 

additionally (PI) assures, that Mo n is a multiplicative G-functor. 

This leads to 

Proposition 5.1: Restricting Mackey-functors from G to o(G) via n(resp. Mackey-func

tors with an inner composition satisfying (P2) and (P3) [and (Pl)])sets up a one-one 

correspondence between isomorphy-classes of (such) Mackey-functorsand G-functors 

with zero-multiplication (resp. [multiplicative] G-functors). 

Proof: One just has to check, that any such G-functor is of the type M o n for some 

such Mackey-functor M, which follows easily from the axioms Gl - G4, resp. G5 along 

the same lines as the fact, that Mo n already determines M. 

As an application one gets from Prop.4.4, Prop.4.5, Thm 2 and 3: 

Theorem 4: Let G be a finite group, U a set of subgroups of G and M: 6(G) + Z=mud a 

G-functor. 

Then 

(A) le! •M(G)s l: Im(M(U) + M(G)) + (\ Ke(M(G) -+ M(U)). 
U<:U U<:U 
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(B) If TI is a set of primes, HTIU = {V~ G[ex N 1 V, U E U and p E n with V/N a 
G 

p-group and N ~ U} and [c[=[c[ • [c[ , the decomposition of [G[into its n-and 
TI TI 

n'-part, then [G[ 1 M(G) El: Im(M(V) _,. M(G)) + n Ke(M(G) _,. M(U)). 
11 

Ve:HnU Ue:U 

There is· a similar correspondence between triples of Mackey-functor M,N,L together 

with a pairing M x N _,.Land G-systems as defined by J.A. Green in ~~. §2. 

One can also identify Green-functors G: G _,. k-mod with such multiplicative G-func

tors G'=G on on o{G), for which multiplication makes the k-modules G' {H) (H s: G) 

into rings(even k-algebras!) with a unit, such that restriction sends units onto 

units. We call such G-functors also Green-functors, defined on o(G). 

For any G-functor G': o(G) _,. Ak with a surjective bilinear pairing 

G'(G) x C'(G)~C'(G) J.A. Green has defined its defect-basis as the smallest set 
-1 D(G') of subgroups of G, which is subconjugately closed (i.e. gV g S: U for some 

g £ G, VS: G, U £ D(G') implies V E D(C')), such that the inductionmap 

l: G' (U) + G' (G) is surjective. Thus if G'=G on for some Green-functor 
Ue:D(C') 

G: G + if X is a defect-object of G and T = {G/H[H ~ G} a basis of G 
(modulo isomorphisms), then D(G') = {U :;_ G[XU + 0} (with XU ={xe:X[u•x = x for all 

ue:U~ = {U ~ G[G/U e: V(G)}, D(G) = {G/UIU e: D{C')} and G is Y-projective for some 

Y e:[G[ if and only if YU + 0 for all U e: D(G'). 

Thus as an application of the results of §4 we get: 

--~~~~~~~Let C': oG _,. ~ be a Green-functor and assume 

(i) all torsionelements in G'(G) are nilpotent (e.g. G'(G) is torsionfree!). 

(ii) The product of the restriction-maps Q)® G' (G) + ~eG' (C) is injec-

tive. C:;G,C cyclic 

Then the defect-set of G' is contained in the set of hyperelementary subgroups, 

i.e. subgroups H with a cyclic normal subgroup C ~ Hand H/C a p-group for some p. 

More generally if 11 is a set of primes, Z =Z [ .!..[ q ~ TI] and if 
1T q 

(i)' all 11-torsionelements in G'{G) are nilpotent, 

(ii)' the product of the restriction-maps l!la~>G'{G) .... Tr C)® a· cc) is injective for 
Ce:C 

some set c of subgroups of G,then the defect-set of Z Ill G' is contained in 
1T G 

H C {H ::; G[ex. N -'1. H, p E 1T and c E C with H/N a p-group andN;SC}. 
1T 

Proof: By Cor. 1 to Thm. 2 the defect-set of l!l®G' is contained in 
G 

C={C' ::; G[ex. C e: C with C' ~ C}, thus by Cor. 2 to Thm. 3 and by Prop. 4.5 

2TI® G' has a defect-set contained in H11C. 

As an application one gets for instance Swan's induction-theorem: 

For a commutative ring A let X(G,A) be the Grothendieckring of finitely generated 
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A-projective AG-modules with respect to exact sequences. Then restriction and 
induction of modules defines a Green-functor-structure on X(-,A): oG + 2-mod and 
one has D(l]1aX(-,A))<;; {C:; G[C cyclic}, D(X(-,A))c {H ~ G[H hyperelementary}. 
Proof: Since X(-,A) is an X(-,2)-rnodule one may assume w.l.o.g. A= 2. 

But then all torsion-elements in X(G ,Z) are nilpotent (see [?~, ) and 

ills X(G,Z) " tll0 X(G,Ill) (see [)] ) , which maps injectively into lT QllllX(C,<Q), 
C,;.G ,C cyclic 

since a QlG-module is determined by its character, thus a fortiori by its restriction 
to cyclic subgroups. (Later we will come along still another proof of this last 
fact, which doesn't even use character-theory). 

Using Thm 4 we can also get the wellknown more precise statements on the cokernel of 
the induction map ~ X(C,A) + X(G,A): if A is a field, injectivity of the 

c.:;;G, c cyclic 

restriction maps X(G,A) + X(G,A) together with Thm 4, (A) immediately 
,c cyclic 

implies Artin's Inductiontheorem [G[·X(G,A)~ Im( ~ X(C,A) + X(G,A)). 
C.:;;G,C cyclic 

In general we may as well restrict again to A=Z, in which case we even know, that 
any two torsion-elements in X(G,Z) annihilate each other (see [3~, §11). Since 
n•l 8 Im( L X(C,Z) + X(G,Z)) for some n 8 N, we know that any element in 

C.:;;G,C cyclic 

r-\ Ke(X(G,Z) + X(C,Z)) is a torsion-element (annihilated by n). 
C~G ,C cyclic 

By Thm 4 we have [G[· l=x+y with x s Im( 1 X(C,a) + X(G,Z))=l and 
y s nKe(X(G,Z) + X(C,Z)) = K. 

Thus we get at first: 

[c[ 2·I=(x+y) (x+y)=x2+2xy £I ~ince y 2=q, which is due to Swan. 
Moreover we get, that any torsionelement z s X(G,&) is annihilated by 

[G[·g.c.m.{order of z[c in X(C,2) [c s G,C cyclic}, not only by [G[
2 

g.c.m. { ... }as 
would follow just from Swan's result. Especially if z is a virtual permutation
representation, i.e. in the image of ~(G) + X(G,Z), we have [G[· z=O. 
For G abelian I can show that even z=~lds; for arbitrary G its seems to be an 
interesting question as to wether or not the image ~(G) in X(G,Z) contains torsion
elements. 

With similar arguments one can show, that any element t in the projective class
group C0 (G,Z) is annihilated by [G[•g.c.m. {order of t[c in C

0
(C,Z) [c ~ G,C cyclic}. 

Moreover one always can replace [G[ by the Artinindex A(G) of G as defined by 
T. Y. Lam in \;8] in these considerations. 

To indicate just one further application let A=i, a field of characteristic p t 0. 

We know by Brauer, that X(G,i) is torsion-free and that X(G,f) + lT X(C,f) with 
C8Cp' 
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C , the set of p-regular cyclic subgroups is injective, thus the inductionmap 

PI z[t]®X(H,J')-+ z[~]BX(G,F) is surjective. But since !HI is prime top 
HsH 1 C 1 

p p 

for H s H 1 C 1 , the image of the inductionmap X(H,F) ->- X(G,F) is contained in the 
p p 

ideal of FG-projective modules (the image of the Cartan-map) thus the above formula 

implies, that the Cartan-map has a p-torsion-cokernel. 

Now let G: G ->- k-mod be an X-projective Green-functor and M: G ->- k=mod a G-module. 

Putting D = {H :> GIXH + 0} (O<D(G')) we know that restriction maps M(e) = Mo n(G) 

injectively into 1T M o n(H) • M( \:) G/H) and that the image is precisely the 
HsD HsD 

differencekernel of the two maps 

M( \:.)G/H) t M('VG/H x \:)G/H) defined by the two projections. In the 
HsD HsD HsD 

terminology of G-functors this is equivalent to 

Mon(G) = {(xH)HsD sTT Mon(HJin ... (xH )=xH whenever g-
1
H2 g~H 1 } 

HsD g-- 1 2 

where D stands for the full subcategory of 6G with objects just in D. 

1~ Mo T) 
D 

As an example let us consider G~A4 , the alternating group on 4 elements, with 

subgroups v4 s A4 , the Klein-four-group, A
3 

s A
4 

and E ,;; A4 . 

If M: G-+ k=mud is (G/V4uG/A3) projective, then we have a pull-back of restriction

maps 

i.e. the value of M o n on A4 is completely determined by the behaviour of M o T) on 

its proper subgroups. 

I want to point out, that this way -using not only an axiomatic formulation of the 

Frobenius-reciprocity-law(as T.Y. Lam did1 but also of the Mackey-subgroup-theorem 

~s already done by J.A. Green)as well -we do not only get "upperjhounds", i.e. 

conclusions like "M o n (G) is zero or finite or finitely generated, if all M o n (H), 

H £ D are so", but we get an explicit description of M o n (G) in terms of the 

Mo n(H), H £ D and the way, the subgroups in Dare imbedded into G. In some way this 

generalizes Brauer's characterization of generalized characters by their restric

tions to elementary subgroups. Thus our theory can be used for instance for the 

explicit calculation of the Whiteheadgroup or some Wallgroups of a finite group G, 

once these groups are known for all hyperelementary subgroups of G together with the 

way, they restrict to each other, and the way, G act~n them by conjugation. 

Let us just remark, that there is still another way to apply our techniques: if M is 

a covariant functor on the category of commutative rings (or any appropriate sub-
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category) into the category of abelian groups (or any abelian category), it may 

sometimes be possible to extend this functor to a bi-functor, defined on some sub

category (e.g. etale R-algebras with etale morphisms) by using some kind of norm- or 

trace-construction. Generally such a functor then turns out to be a Mackey-functor 

(on the dual category of affine spectrums,of course!) and proving it to be R1-pro

jective for some ~-algebra R1 can lead to rather interesting results on M, for 

instance its Galois-(or Amitsur-)cohomology. E.g. see [j~, App A & B and ~"!:] for the 

case of Wittrings. 

Finally let us shortly discuss the transfer-theorem of Green (cf~~, p 61). This can 

be done even in the context of pre-Mackey-functors: So let A be a categroy with fi

nite products and pull-backs and M: A ~ B a pre-Mackey-functor into an abelian cate

gory B. 
By Lemma 2.1 we have for any injective morphism u: Y ~X in A the formula 

u*u*=IdM(Y)' thus ifs: X~ Y is a left-inverse of u(i.e su=Idy), we get 

Especially if u: Y ~ X is any morphism and if we consider u 1=Idy x u: Y ~ Y x X, we 
'~ YxX T xT 

get u 1 cpY''' mod Ke u1* (with cpT~ 2 : T1 x T2 ~ Ti the projecti.on onto Ti) ,thus 

YxX i: Y X 1:~ YxX ;, YxX X Y '" YxX ;, 
applying cpx we get u*=QJx x • a"j=q>x • QJY ;, = cp• ,•: cp• mod QJX (Ke u 1 *): 

u 

~ 
Y ---+ YxX ---+ X YxX 

I~ 
QJX 

YxX 
''Py 

X :p • 

we have a commutative diagramm 

u'" G, Im cp~xx 
:.'{ 

Im ~ M(X) 

n1 + 

in other words 

M(X)---> M(•) - M(X)/cp~xx 
·:h 

(Ke u1,'<). 

Now let Z £!Aibe a further object with a map S: Z +X and consider the diagramm of 

pull-backs 
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/ 
~ 

YxX 

We claim 

/ 

/ 
YxZ 

~ 
~ 

~X 

YxXxZ 

( 

\)/ 

YxZ 

32 

YxZ 
X 

~ 
~ 

~ 
XxZ 

z 

( ;) X YxZ>'< YxX>'< XxZ''' 
~ <P.;,(<P• (Ke y,.)) ~ <Px (Ke ap) + q>X (Ke Bp) 

and 

( ; ;) , YxZ''' XxZ>'< 
~~ a" q> Y (Ke y,·J~ q>X (Ke Bp). 

YxZ 

~z 
~ 

YxZ XxZ YxXxZ 
Proof: (ii) follows immediately from a q>Y =q>x (q> XxZ a 2 ) and the above pull-back-

diagramm, 

( ;) X YxZ>'< 
~ from q>•"' (q>• (Ke y;:)) 

YxXxZ* YxXxZ(K YxXxZ* 
<Px q>YXZ''' e Y ,.) = <Px a~ (Ke y ;J modulo 

YxXxZ>'< 
q>x (Ke az;) . 

Yxxxz;, ·'· YxZ>'< ) XxZ1<(Ke s
1 

•• .) by (ii) and 
But q>X a; (Ke y,.,) = a;, q>Y (Ke y;, .;;,. q>X .. 

YxXxz;, YxX;, YxXxZ''' YxX;, 
CJlx (Ke a 2,.,) = <Px <PYxX (Ke a 2,)~ q>X (Ke a 1,.). Thus all together we get a 

commutative diagramm of well defined surjective maps: 
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{a'''(M(Y)) + B~'(M(l!))} 0xz~' YxZ~' 
~a''cp~ (Ke y,.,) + S'''cpz (Ke Y,,)} 

X1:" 
"cv• 

~ural 

{ cp~xX''' (M (YxX)) 

inclusion in M(X)" 

+ XxZ~' (M( X><Z))} 

~ 
YxX''' XxZ'' 

[cpx (Ke a 1 ,.,) + "'x (Ke 

Let us just note, that the surjectivity of these three maps implies, that all are 

isomorphisms in case the upper right map is. 

Especially for Y=Z, a=B symmetry implies, that ~n each term the summands conicide, 

thus one gets the simplified diagramm: 

x~':'' 
"c.p· 

,which for A=G, X=G/H, Y=G/D with D<H and G/D=Y ~ G/H=X the natural map gD + gH and 

M any Mackey-functor on G just is the first part of the transfertheorem of Green. 

The other parts deal with multiplication, which can always be replaced by pairings 

M x N + L (see also ~'1], §2). The results then are, that such a pairing induces 

pairings Mi x Ni + Li of the corresponding terms in the above triangel taken for 

M,N and L respectively, which are compatibel with the maps in the triangel (i.e. 

these maps are multiplicative), and that M1 x N1 + L1 vanishes on Ke ~! x N1 and 

M1 x Ke v 1, whereas M2 x N2 + L2 vanishes on Ke ~ 2 x N2 and M2 x Ke v2 . 
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Part II 

Representations of finite groups and KG-theories 

§6 Distributive categories 

In §4 we have considered categories A satisfying the properties (Ml) and (M2) and 

shown, that the isomorphism-classes of objects in such a category formircommutative 

half-ring n+(A), with addition and multiplication in n+(A) defined by categorical 

sum and product. If one wants to define something similar for - say - the category· 

P(k) of finitely generated, projective k-modules (k comm. with E k as above) of 

course one has to replace the categorical product, which in this case cnincides with 

the categorical sum, by the tensorproduct over k, to define multiplication. And in 

case one wants to consider the category L(k) of k-lattices, i.e.of finitely 

generated, projective k-modules }1 together with a nonsingular symmetric bilinear 

form f: M x M+ k, one has neither categorical sum nor product, but still can define 

a half-ring-structure on the set of isomorphism-classes of k-lattices using ortho

gonal sum and tensorproduct. 

To handle all three cases at the same time one may define the concept of a distri

butive category as a category C together with two "compositions", which behave-say

like direct sum and tensorproduct in P(k). 

Because later on we will have to take "sum" and "product" of any finite family 

(Xili E I) of objects in C, indexed by an arbitrary finite set I, it seems appropi~ 

ate to define such a "composition" as a covariant functor l:, (resp. 11) from the 

category F(C) of finite families (Xili E I) of objects in C (with morphisms 

(Xili £I)+ (Yjli E J)) pairs consisting of a bijective map \J: I+ J and a family 

(~i: Xi+ Y\.l(i) li £I) of morphisms in C and obvious compositions) bac~ into C, such 
that in case I contains exactly one element, e.g. I={i

0
}, X· =X one has 

~0 

l:(Xili £ I)=X indeoendent"l*f I, i.e. for 11:I + J,i
0 

>+ j
0 

and ~i 0"'IdX:Xi 0=X + 

Associativity then can be expressed as saying, that one has a natural equivalence 

between the two functors from F(F(C)) into C, defined by F(F(C)) + F(C) ~ C: 

((Xi I i £ I.) I j E J) \+ (x1 ll £ \.:)I. =L) >+ l: (X1 Il £ L) and 
J j cJ .1 

F(F(C))~ F(C) ~ C : ((X . I i E I. ) I j c J) >+ ( l: (X . I i c I. ) I j £ J) >+ l: ( L(X. I i £I. ) I j cJ) 
~ J ~ J ~ J 

Associativity especially implies, that for X0 =l:(Xili E W) one has a natural isomor

phism l:(X0 ,X) ~ l:(X,X0 ) ~X (X ciCI) (with l:(X,Y)=:l:(Xili £I) with 

I={l,2}, X1=X, X2=Y!), i.e. X0 is a "natural object" w.r.t. l:. 

Now we define a category C or rather a category C together with two associative 
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compositions I,IT: F(C) ~ C to be distributive, if we have a functorial isomorphism 

ll(I(X,Y),Z) ~ E(IT(X,Z),IT(Y,Z)). 

Here "functoriali ty" shall mean to imply, that for any finite family (X. I i s I) and 
1 

any map !J: I~ J (J finite set, 1J not necessarily bijective) we have a natural iso-
morphism ll(l:(Xili s ll-l(j))li s J) "l:(ll(\(j)lj s J)IY e: r) with r the (possibly 

empty!) set of sections (i.e. right-inverses) y:J ~I of !J:l ~ J. 

Of course any category A with (Ml) and (M2) as well as P(k) or L(k) are distributive 

as explained above. Moreover if C is distributive and A any small category, then the 

category of (covariant) functors from A to C is distributive as well. All our examp

les arise essentially that way from the above three cases, thus a reader who (as 

myself) does not like the above rather abstract and involved definitions might just 

restrict himself to those cases. 

category C with just one associative compositi-Anyway we can associate to any small 

on l: its "Grothendieckgroup" K(C) 

with the abelian semigroup K+(C) 

addition defined by I(i.e. [X]+ 

K(C,I): the universal abelian group associated 

of isomorphism-classes [x] of objects X in C with 

: [L: (X, Y)] ) • 

If moreover there exists a second associative composition IT on C, such C wi~h E and 

IT becomes a distributive category, then we can use IT to define a multiplication on 

K(C) by [x] • [Y]=: [rr(X,Y)], such that K(C)=K(C,l:,IT) becomes a commutative ring with 

a unit (represented by x1=li(Xili s ~) !) . 
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§7 Construction of KG-theories. 

Now let G be a finite group and S a finite G-set. To S we associate the category ~· 

whose objects are precisely the element in S with morphisms 

[s,s']
5 

= {(g,s,s') JgcG, gs=s'} (s,s'ES) and obvious composition of morphisms, 
"' 

e.g. !=GiG is just the category usually associated with the group G, Now let C be a 

small category at first with just one composition l: and consider the category ~,C] 

of covariant functors from g to C. An object~ El ~,C]I will also be called a 

"G-equivariant C-bundle over S", since it associates to any s £ S=lgl the fiber 

s(s) = s
5 

ciCI and to any g £ G amorphism's + sgs with compositions compatibel 

with the group-structure. 

Especially for S = • = G/G the category 

in C". 

C} is just the category of "G-objects 

For any G-map ~: S + T between finite G-sets we have obviously an associated functor 

lR: g +;); and thus a functor Gl,~: [l;,C] + [§,C], defined by 1; \+ s~· Horeover we can 

also define a functor ~"-:[g,C] + (J:,C], which maps any G-equivariant C-bundle 1;: over 

S onto the C-bundle Gl*(1;)=1; 1 overT with fibers 1; 1 = l:(1; Is E Gl-l(t)) (t ET) and 
t s 

correspondingly defined G-actions and so on. (In other words: Gl*: [§,C1 + [!,c] is 

defined as the composition of ~.C] + (l,F(C)}: 1; >+ (1;s Is E q>-
1 
(t)) tcT and the 

functor (l,F(C)] + (!,CI, induced by L It is easily checked, that this way one de

fines something like a Mackey-functor on G, the category of finite G-sets, wi·th va

lues in the "category of categories with an associative composition", especially 

"'* and Gl* commute (the latter one at least up to canonical isomorphisms) with the 

associative composition defined on [g,C] and [i,C] by L 

Thus taking Grothedieckgroups we get a Mackey-functor 

KG(-,C): G + Z=Q.d: S 1+ KG(S,C) :K([g,C}) which defines KG-theory on G with C-coeffi

cients. 

If moreover C is distributive with respect to l: and a further associative composi

tion IT, then IT induces a multiplicative structure, whic.h makes KG(S,C) to a 

commutative ring with a unit and KG(-,C) to a Green-functor. (Proofs for these facts 

are straight-forward and left to the reader), 

Now let H be another finite group and 6: H + G a group-homornorphism. Restricting the 

action of G on a G-set S, resp. on a G-equivariant C-bundle s over S to H via e de

fines a functor 6: G + H:, S ~ SI H; resp. a natural transformation of Green-functors 

from KG :G + z.::m.o.d. to ~· e: G + H + Z=rui. 

Especially if H ~ G, T an H-set and G x T the induced G-set (defined as set of 
'RJ ~ -1 

H-orbits (g,t) in G x T w.r.t. the H-action h(g,t)=(gh ,ht), hcH, gcG, t£T), we get 

a homom~r•hism KG(GxT,C) + ~(GxTjH,C) + ~(T,C), where the second map is defined by 
H H 

the H-map T + GxT: t + (e,t) (e the trivial element in G); e.g. for T= H/U for some 
H 
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U ~ H we have GxT = G/U and the above homomorphism is just the obvious map 
K 

KG(G/U,C) ~ ~(H/U,C), defined by restricting a C-bundle over G/U to H/U and the 

action of G to H at the same time, i.e. by the obvious functor H[[ ~ G/U 

Lemma 7.1: The above homomorphism KG(GxT,Cl ~ ~(T,C) is an isomorphism. 
H 

Proof: W.l.o.g. we may restrict to T=H/U a transitive G-set and because of the 

commutative triangel 

even to H = U. But in this case it is obvious, that llL[ ~~is an equivalence of 

categories (any object gU in~ is isomorphic to U E Im([U/U[ ~ [G/U[), which has 

the same endo- ( -auto-)morphisms in J.!..L!L and G..Ll.L!) , thus [ffi,C} ~ [!IL.!L,C] is an 

equivalence of categories. 

Remark: of course I~ GxT is always an equivalence of categories, thus 
_H._ 

[GxT,C[--+ [l,C[ as well for arbitrary H-sets T. Especially for C the category of 
H 

finite sets one can identify on the one hand ~,C] (S a G-set) with the category 

G/S of G-sets over S, on the other hand for S=G/U one has a natural equivalence of 

~.C} with [lllli,C} ~ U, thus we have also a natural equivalence between the cate

gory of G-sets over G/U and the category of U-sets. 

One may formalize the above considerations by introducing the concept of a universal 

family of (Mackey- or) Green-functors as a family of Green-functors GG:G ~ k-rood, 

one for each finite group G, together with natural transformations of Green-func-

tors: e8 : GG ~ 

Gid=Id, Gele2 

LU: U ~ G. 

G, such that 

for any e 1: H ~ G, 

In other words G is determined by its values G(U) = GU(U/U) together with the maps 

(;_,;(8): G(G) ~ G(H), defined for any e: H ~ G, and the maps G>''(LU): G(U) ~ G(G) de

fined for any injective homomorphism LU: U ~ G, which are such that G restricted to 

the subgroupcategory oG of any finite group G becomes a Green-fu~ctor on oG. 

It should be remarked , that whereas the second description might be simpler to 

work with the first one is generally more easily verified, as in the case of 

KG-theories. Anyway we have 

219 



38 

~~~~~~~~Any small distributive category C defines a universal family of 

Green-functors KG(-,C): G-+ Z--mod, such that KG(G/G,C) : K(G,C) = K( [~,C}) is 

the Grothendieckring of G-objects in C. 

220 



39 

§8 Defect-groups of KG-functors. 

Again let C be a small distributive category. We want to determine the defect-basis 

of the associated Green-functors KG(-,C). Of course this will be impossible without 

additional assumptions on C. But still we can prove a general result on these defect 

bases, which will be rather helpfull in the explicit determination for various cate

gories C later on. 

At first we have 

Proposition 8.1: Let G be ~niversal family of Green-functors with values ink-mod 

(as defined in §7). Define D'(G) to be the class of all finite groups H, such that 

H/H is contained in the defect-set of GH(i.e. such that I GH(H/U) ~ GH(H/H) is not 
U~H 

surjective, resp. 

SH={se;Sihs=s for 

Tgen (i) D(GG) = 

U:;H<G}. 

such that GH(S) ~ GH(•) is surjective if and only if 

all hE H} + 0). 
G 

{G/Uiex.HED' (G) with U~H<G}, i.e. D(G~)={U<Giex.He;D'(G) with 

(ii) D'(G) is closed with respect to epimorphic images, i.e. if 8: H ~H' is sur-

jective and H e; D' (G), thenH' e; D' (G). 
G 

Proof: (i) To show D'(GG)~ {U::; Glex. He; D'(G) with U:; H s G}, 

i.e. I G(H) = I GG(G/H) ~ GG(G/G) = G(G) surjective, we use induc-
H:>G, He;D' (G) H::;G, He;D' (G) 

tion w.r.t. !cl: For IGI=I or more generally forGe; D'(G) surjectivity obviously 

holds. For G ~ D'(G) one has by definition of D'(G) a surjective map 

I G (U) ~ G (G) and for U ~ G, thus I U I < I G I one has I G (H) -» G (U) , thus 
U~G H:::.U,He;D'(G) 

we get I I G(H) -» G(G) which implies I G(H) 
U~G H$U,He;D' (G) H:::G,He;D' (G) 

On the other hand,if I GG(G/V) ~GG(G/G) is surjective for some set D of subgroups 
Ve;D 

o~ we have to show, that for any H 5 G with H e; D' (G) there exists V £ D with 
- G 
H:; V, i.e. G/VH f 0. 
But restricting the above formula to H via 8· we get a diagramm 

LH 

I GG(G/V) GG(\:JG/V) ---+ GG(G/G) 
Ve;D Ve;D 

1 1 
G H ( \.:} G /V I H) ___,_ 

Ve;D 
GH (H/H) 

Since eL maps the unit IG in Gc(G/G) onto the unit IH in GH(H/H) and the upper ar
·H 

row is surjective, we see, that IH is contained in the image of the lower arrow, 
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which on the other hand is an ideal, thus the lower arrow is surjective. 

By definition of D'(G) and because He D'(G) this implies (()G/V)H f 0, q.e.d. 
Vr.D 

(ii) For any e: H + H' and any H'-set S consider the diagramm 

GH, (S) 

lee 
GH(S IH> 

Gl!, (H' /H') 

Again surjectivity of the upper arrow implies surjectivity of the lower arrow. Thus 

if H £ D'(G) and 6 surjective we get: GH 1 (S) -bGH,(H'/H') ==-<> GH(S\H"'*GH(H/H)) 

H H' H' H = (S\H} f 0 = S f 0, since S =(S\H) by the surjectivity of e. 

We now define a universal family of Green-functors G to be saturated, if D'(G) is 

also closed with respect to subgroups. 

In this case the first part of Prop. 8.1. can be written even in the form 

D(GG) = {H ~ G\H £ D'(G)}, but what is more important: whenever we have an explicit 

inductiontheorem for one particular group G we immediately get induction theorems 

for all groups G' which contain Gas a "section" (i.e. G-=V/U for some U~V::;G'), e.g. 

if we can exhibit for G=V4 (the Klein 4-group) elements xU £ GG(G/U) for any 

U i v4 = G such that the sum of the induced elements 

4 ~G/U + G/G = 1, then we have an induction-theorem for any group with a non
U~v4 

cyclic 2-Sylow-subgroup. 

Unfortunately universal families of Green-functors are not nessarily saturated. Thus 

it is worthwhile to realize, that we still have: 

Theorem 5: Let C = (C,~,TI) be a distributive category and KG(-,C) the associated 

universal Green-functor. Then keKG(-,C) is saturated for any k. 

We write Dk(C) forD' (k®K(-.C)). 

Proof: For any universal Green-functor G define G(G) = G(G)/Im(~ G(U) + G(G)), thus 
U~G 

G(G) f 0 <='> G £ D'(G). Now consider G K(-,C). We have to show 

kQ~G(H) = k0G(H) f 0 = k~G(G) + 0 whenever H $ G and for that purpose it is 

enough to construct a ringhomomorphism G(H)-+ G(G). 

At first let us interpret G(H) ~(H/H,C) as KG(G/H,C) = K([G/H,C]). 

To the map Ql: G/H + G/G we have associated already two functors: Ql;,: ~C] + [2L.!i,C] 

and Ql"' = q~~: [G/H,C] -+ [.£L.£,C], for the second one using the composition~ in C. 

Thus we can as well define another functor wfi: [G/H,C} + (G/G,C], which asseciates 

to any G-equivariant C-bundle ~over G/H the G-object (i.e. G-equivariant C-bundle 

over G/G) TI(~) = TI(~ \x £ G/H) (note that ~ can be considered as a G-object in 
X 

F(C), that IT(~) is a G-object in C). 
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This functor defines a IT-multiplicative map from isomorphy-classes in [Qlli,C] into 

isomorphy-classes in [G/G,C], thus we get a diagramm 

~(H/H,C) + 
= KG(G/H,C) 

+ 
KG(G/G,C) 

l t 
~(H/H,C) KG(G/G,C) 

t i 
.. 

~(H/H,C) ..... ·: KG(G/G,C) .. 

Our claim now is, that the lower arrow exists as a ringhomomorphism. 

This follows obviously from 

Lemma 8.1: (a) 

(b) 

1 2 For any two bundles s and s over G/H we have 
1 2 _ 1 2 1 IT(E(~ ,~ )) = I(IT(s ),IT(s ))modulo Im(U~GKG(G/U,C) ~ KG(G G,C)). 

Whenever ~=~fCs) for some C-bundle ' over some G-set S with SH=~ 
with respect to some G-map ~: S + G/H (e.g. S=G/V + G/H with V~H<G), 

then IT(~) s Im(uic KG(G/U,C) + KG(G/G,C)). 

Proof: At first let us remark, that I(nt[tsT) El=Im(UZG KG(G/U,C) + KG(G/G,C)) 
-~ -----

whenever n is a G-equivariant C-bundle over T with TG=0. Now we have 

Il(I(sl ,~ 2 )) = TI(l:(i';l ,z,h [x E G/H) " I(IT(~a(x) lx E G/H) la E Hom(G/H,{I ,2})) with 
X X X 

Hom(G/H,{I,2}) the G-set of all maps from G/H into {1,2}- identified with the set 

of all sections of the projection G/H x {1,2} + G/H. Here we may consider 

Il(i';~(x) lx E G/H)a£Hom(G/H,{ 1, 2}) as a G-equivariant C-bundle over Hom(G/H,{I,2}). 

But Hom(G/H,{I,2}) is a disjoint union of T
1
=Hom(G/H,{1})"G/G, T

2
=Hom(G/H,{2})ooG/G 

and T={a E Hom(G/H,{I,2}) la not constant}, thus TG=~, and the above bundle restric

ted toT. has fiber just Il(i';i) (i=1,2). Thus E(IT(I;a(x) lx £ G/H) la E Hom(G/H,{1,2})) 
~ . X 

= I(IT(~; 1 ),IT(1; 2 )) mod I, since by TG=~ I(-) applied to any bundle overT is contained 

in I. 

(b) We have IT(~) = TI(~fCs)) " I(TI(i'; () [x E G/H) IY E r) with r the G-set of all 
y x H G 

sections y: G/H + S of ~: S + G/H. Since S =~we have r =~and thus TIC~fCs))si. 

Now to prove induction-theorems for k®KG(-,C) we just have to compute Dk(C) and we 

know, that this class of finite groups is closed with respect to epimorphic images 

and subgroups. In the next section we will show, how this fact can be used to 

reduce the proof of rather general inductiontheorems to the consideration of rather 

special and simple cases. 
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§9 Applications to linear representations 

We start with the purely group-theoretic 

Lemma 9.1: Let D be a class of finite groups, which is closed with respect to 

epimorphic images and subgroups, and let p be a prime. If the elementary abelian 

group of order p2• Z X • p z p and any nonabelian group of order p•q with qlp-1 another 

prime is not contained in D, then any group in D has a cyclic p-Sylow-subgroup and 

p-nilpotent. 

Proof: If G E D and GP a p-Sylowsubgroup of G, then any factorgroup of GP is in D. 

But Zp x Zp ~ D. Thus GP is cyclic. If G would not be p-nilpotent, then by a well

known transferargument there would exists an element g E G with g E NG(Gp), but 

itt 

g ~ CG(Gp); since the p-part of g is necessarily contained in GP• CG(Gp), we may 

even assume g to be p-regular and then as well gq s CG(Gp) for some prime q f p. 

But then with GP_= <h> the group <h,g>/<hp,gq> is non abelian of order p q with qlp-1 

a contradiction to: G E D ~ <h,g> s IJ ~ <h,g>/<hn,gq> s D. 

This Lemma will be used together with 

Lemma 9.2: If p•R=R for some prime p and some commutative ring R with l ER, then 

DQ(P(R))=:DQ(R) contains neiter Zp x Zp nor any non abelian group of order p•q with 

q I p-J. 

Proof: Let us first fix some notations: For U G and N an RU-module we write 

NU+G for the induced RG-module RGluN, i.e. the RG-module, which is induced from 

G-equivariant P(R}-bundle GijN over G/U; for a G-set S we write R for the asso-

ciated permutation representation, i.e. the RG-module which is induced from the 

trivial G-equivariant P(R)-bundle R x S/S over S. Thus R[G/U]:RU-+G, where R=R[U/UJ 

is the trivial RU-module, Now Lemma 9.2 is a more or less direct consequence of the 

more explicit 

Lemma 9.2~: a) If pR=R, G=Zpxz and if U
0

, ••• ,u are the p+l subgroups of otder pin 

G, then~ Ql R[G/E::f:T R[G/Ui}• P 
p t~mes ~=o 

(Here R of course means the trivial RG-module, representing I in K(G,R)) 
I th 

b) Let R=Z(p,s) with s s ~ a primitive p root of unity and let G be the semidirect 

product Zp ® A with A=Aut (Zp) cyclic of order p-1. 

Let R be R considered as a Zp-module with'zi~~r (r s R,i s rp and the 

z=zi E Zp indexed by the elements i E fp' such that 

R[G/A} ~ R Ql R2P-+ G 

z· ·z·=z· .) • Then 
~ J 1+J 

elements 

Lemma 9.2', a) shows directly, that p·IK(Z is induced from proper subgroup~ 
p x Zp,R) 

thus Zp X Zp ~ D~(R). 

To get also H=Zp@Z ~ Dm(R) whenever Z ~A Aut(Z ) , we restrict the RG-isomor-
q ~ I q P 

phism in Lemma 9.2, b) to R'H (R'=i[p], H=Zp®Zq s G=Zp®A), to get 
RI Q) •• I . Q) RI Q) NZq->-H " MZP+H 

p- for some appropriate R'Zq-module Nand R'Zp-module M, 
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which shows that in this case (p-I)·IK(H,R') is induced from proper subgroups,thus 

H ~ D~(R'). The same holds then for any R'-algebra, i.e. for any ring, in which pis 

invertibel. 

Proof of Lemma 9.2': a): Quite generally let us define for any finite group G,G-setS 

and ring R:IR[.s] = I[S] Ke(R[s]->- R), where R[sJ + R is defined by sr>- l(s £ S). 

Then p•R=R implies 

R [G/E] :;; R$I [G/E}, R [G/Ui] = R$I [G/UJ 

and it is enough to show 

An explicit isomorphism is given by first restricting the canonical maps 

R[G/E] + R[G/Ur]: g•E 1+ gUi to I[ ... ] and then taking their product, its inverse by 

the sum of the restriction to I[, .. ] of the maps R[G/Ui] ->- R[9/E]: 
I 

gUi » p E x•E, 
X£gUi 

b) We also index the elements in A by the elements in r;: a=aj(j£ip,jf0), such 
-I 

that a. zi aj = aj(zi) = zij' 
.1 

R[G/A] has an R-basis Xi = ziA(i £ lfp) such that zj xi = xi+j, aj Xi "' xi/j · 
-j i . 

Consider Yj = E s xi (J £ fp). 
idp 

since the determinant 1. ... 1 
p-1 z:; .... z:; 

p-I (p-1)2 s .... z; 

p-1 . 
invertibel in R(p= l'r (I-z:; 1

) is a unit in R!), the set {yj !j £ lfp} is also an 

i=l 
. t 

R-basis of R[G/A]. But ZtYj=sJ Yj•atyj=Yjt• thus Ry0 is a trivial RG-Module, where-

as the sub-R-modules Ryj(j £If~) are blocks of imprimitivity with Zp being the 

stabilizer-subgroup of the first (and being normal - of any) block and Ryl lz ~ R, 
p 

r, J -z ... G thus RLG/A ~ $ Ryj ~ R $RP , q,e.d. 
j t:l!'p 

As a consequence of Lemma 9.1, 9.2 and Theorem 5 we get 

Proposition 9.1(cf. [S],8~]): If any prime pis invertibel in R, i.e. if R is a 

~-algebra, then D~(R)$ C={HIH cyclic}. If any prime except one, say l, is invertibel 

in R, e.g. R is a local ring with residue-class-characteristic !, then 

D~(R)~ C1={H1H cyclic mod l}, where a group H is called cyclic mod t, if the l-Sylow

subgroup Ht is normal in Hand H/H1 cyclic. 

Proof: If p·R=R for any p, then any group in D~(R) is p-nilpotent and has a cyclic 

p-Sylow-subgroup for any p, thus it is nilpotent with only cyclic Sylow-subgroups, 

thus it is cyclic. 
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If p•R=R for any p t l, then any group H in D~(R) has a normal p-complement for any 

p t ~. thus the intersection of all these normal p-complements, i.e. the !-Sylow

subgroup H1 of His normal. Moreover H/H
1 

is p-nilpotent with a cyclic p-Sylow-sub

group for any p Jl H/Hl: I, thus by the above argument it is cyclic. 

To get also results for arbitrary R one has to use 

Lemma 9.3: If R is a Dedekindring, then Dk(R) = \(Dk(Rm), where m runs through all 

maximal ideals in R and k is an arbitrary commutative ring with e: k as above. 

Remark: Actually the proof below is valid for any Prliferring R, i.e. any ring, for 

which any finitely generated torsionfree R-module is projective. I do not know, 

wether the above statement is true for any R, but its analog with P(R) replaced by 

the also distributive category P'(R) if finitely presented R-modules is true, i.e. 

for D' (ks K(-,P' (R)), which is a bit more technical to prove. On the other hand - as 

we will see below- the computation of Dk(R) can anyway always more or less be redu

ced to Dedekindrings R. 

Proof: Obviously Dk(Rm)~ Dk(R) for any m, since KG(-,Rm) is a KG(-,R)-algebra. Now 

assume G e: Dk (R), but G ~ \1 Dk (Rm). For any m we thus have elements 

~ e: ke K(V ,Rm) (V ,;; G), such that lk K(G R ) = I 
ell ' m V~G 

V + G 
~ (with xv + G the image of 

x e: G(V) in G(G) with respect to the inductionmap: G(V) + G(G) (Vs G) for any uni-

versal Green-functor G). Since only finitely many RmV-modules and only finitely many 

isomorphisms are involved in this equation, it is obvious, that it can be realized 
already in a finite subextension of R in Rm' thus we can find an element sm e: R-m, 

such that the above situation can be realized already over 

R n1 = R , esoecially G ~ Dk(R ). Thus it is enough to show, that the set {sm;ne:M} sm · sm 

.6={s e: Rjs = 0 or G ~ Dk(R
8

)} is an ideal in R- since sm e: .6 would imply .6!\;m for 

all m, thus .6 = R ~I and G ~ Dk(R), a contradiction. So assume s,t e: .6. W.l.o.g. we 

may assume s + t t 0 and even s + t 
use 

I, since R .;;;, (R +t) s , Rt ~ (R t)t • Now we 
s s s+t s+ s+t 

Lemma 9.4: Let CE R be a multiplicatively closed subset of a Dedekindring R with 

0 ~ C and RC the associated ring of C-quotients of R. Let iC ~ ktil> K(G ,R) be the ideal, 

generated by {[M]-~J e: keK(G,R)\ there exists q>: M+ Nand ljJ: N +M with 

q>·~ c•IdN, ljJ•q> = c·I~ for some c e: C}. Then the canonical map 

kQJIK(G,R) + k0K(G,RG): [MJ + ~~M] induces an isomorphism 

kt& K(G,R) /iC !::>- k® K(G,RG). 

Proof: Obviously ic is in the kernel of k0K(G,R) -+ k®K(G,RC). To construct an in

verse of k® K(G,R) /ic + k<l!! K(G,Re) choose for any finitely generated Re-projective 

ReG-module M' a finitely generated R-projective RG-module M with Re~ M~ M', which 

is possible, since R is a Dedekindring, and define k® K(G,RC) + k® K(G,R) /ic by 

[M'] + [M] + iC, which is welldefined, since Re® M s Re®N easily implies 

[M]- [NJ e: ie, and obviously is an inverse. 
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Using this Lemma we get, that there exist elements ~·Yv Eke K(V,R) (V~ G) with 

V-+ G 
x=l - E xV E i{snlne:M} = is 

V~G 

and 

V -+ G 
Multiplying we get x•y = 1 - l: zv e: is • it for appropriate zV E k ® K(V ,R) and 

V~G 

thus our result (i.e. G ~ Dk(Rs)' G ~ Dk(Rt) and s + t = 1 implies G ~ Dk(R)) follows 

from 

Lemma 9.5: If c1, c 2~ Rare multiplicatively closed subsets of Rand c 1R+c2R=R for 

any c 1 e: c 1, c2 e: c 2 , then ic· ic =0. 
I 2 

Proof: If [M)-[N) E iC with maps cpv: Mv-+ Nv' ljJv: Nv _,. Mv, 
V 

'~'vWv = cv·IdNv' Wv'~'v = cv·I~v (cv£Cv) and r 1c 1+r2c2=1, then we have an isomorphism 

from M 1 ~ M2 ffi N1® N
2 

into M1® N
2 

ffi N1®M
2

, given by the matrix 

I~~ '~'z 
1 

whose inverse is given by 

As an application we get 

0, q.e.d. 

Proposition 9.2 (cf. [6], 00!>: For any commutative ring R with 1 e: R we have 

D~(R) = \J C!={HIH cyclic mod! for some characteristic ! with iR f R} 1). 
lRfR 

Proof: Define R1 = z[tlp•R=R]. Then R1 is a Dedekindring and Ran R1 -algebra, thus 

D 01 (R) E D ~ (R 1 
)s< ~D IQ (R 1 m) . 

Moreover DO)_(R I m)~ cl' l:=char R. /m by Prop. 9. 1 and l=char RI /m obviously implies 
1) C =C={ HjH cyclic }! 

0 
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lR' f R', thus 'tR f R, so we get D<i!(R).;;, \)Cl:. 
lRfR 

For the opposite inclusion, i.e. C
1

.;;,Dill(R) whenever l:•R + R choose a maximal ideal 

m~R with char R/m=l, resp. with arbitrary residue-class-characteristic if l=O. In 

any case we have D
41

(R/m)<:Dill(R) and thus it is enough to show C1<0 Dill(R), whenever R 

is a field of characteristic l:. So let G be cyclic mod l, G1 its l-Sylow-subgroup 

(resp. E, if l:=O) and G=G1 • <g> for some appropriate g £ G. We construct a non-zero 

linear map K(G,R) ~ C, which vanishes on Im( E K(V,R) ~ K(G,R)) (and thus proves 
V~G 

G~Dill(R)), by associating to any RG-module M with a direct decomposition 
n 

M=$ M. into indecomposable RG-modules t~'xM· (g) of the Brauer-characters1
) of g 

v=J 1 
1 

on those direct summands M., which have the vertex G1 in the sense of Green, ~~. i.e, 

are not a direct summand i~ any NU~ G with U ~ G
1

, N any RU-module. 

This is well defined and additive by the Krull-.Remak-Schmidt-Theorem, nonzero since 

the trivial RG-module R is mapped onto J and vanishes on any M, which is induced from 
. V ~ G . d a proper subgroup V: 1f M=N for some RV-module N, wh1ch w.l.o.g. may be assume 

to be indecomposable, then either the vertex of N and thus the vertex of any inde

composab~is properly contained in GP _a_nd thus O=E 'x,_
1

, (g), an empty sum, or 

G d 
. . . G ~v. '/ . 1 d 

1 ~V an N 1s a d1rect summand 1n N 1 ~ for some 1ndecomposable RG
1

-mo ule N1 
with vertex Gi and then any indecomposable summand M

1 
of M, restricted to G1 is iso

morphic to a direct sum of copies of G-conjugates of N
1 

and thus has vertex G11 too, 

in which case we get 
E'X' (g) = E ~.(g) = xM(g) = o, 

Mi 1 

since c1 ~V~ G implies g i V, 

To get results on Dk(R) for arbitrary k, especially k=Z, let us first observe 

Lemma 9.6(G. Segal): Let K be an arbitrary (i.e. not necessarily special) A-ring 

(l- 0 (x)=J,A. 1 (x) = x, ... ), 

Then any torsion-element inK is nilpotent. 

Proof: At first let us state: 

("•) If K is a A-ring and x £ K, 

then n 

where thensum is t~ken over all (n+l)-tupels (j
0

, ••• ,jn) of non negative integers· 

jv with E jv=m, E v jv=n. 
v=o v=o 

This is a straight-forward consequence n a b of the formula A (x+y) =l: A (x) A (y). 

Especially if m=n=pt 
1
) Taken w.r.t. some 
'!( .of R into 4: • 

f · · m! + ( ) 1' f or some pr1me p, then.--1--. IT 0 p 
.lo· • ·Jm· 

a+b=n 
and only if 

fixed imbeddin~of the roots of unity in some algebraic closure 
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t t 
j

0
=j

2
= ... =jm=O, j

1
=m, thus Ap (ptx)=xp + py for some appropriate y· £ K. Thus if 

ptx=O and if we assume by induction, that all z £ K with pt-!z=O are nil-

potent (t ~ 1), then 
Pt t pt+l pt+l t-1 pt+l n n 

O=x·>. (p x)=x + p x•y=x + z with p ·z=O, thus (x ) =(-z) =0 for some 

appropiate n £ m. But if any p-torsion-element in K is nilpotent for any p, then of 

course any torsion-element is nilpotent, too, q.e.d. 

Now it is not difficult to check, that exteriPr powers define a >.-ring-structure on 

any K(G,R) for any R (which isn't special unless IGI•R=R, by the way), thus as an 

application of the results of Part I together with Prop. 9.2 we get 

Proposition 9.3: Let k and R be two commutative rings with a unit. Then 

Dk(R)£. {RfH q-hyperelementary mod l for some q with qk + k and some l: with lR + R}, 

where H being q-hyperelementary mod i means, that there exists a normal series 

E ~ N1 s N2 s H with N1 an !-group, N2 1N 1 cyclic and H/N2 a q-group. 

It is natural to expect even better upper bounds for Dk(R), once one makes additional 

assumptions on the existence of roots of unity in R. The following result for in

stance generalizes Brauer' s classical inductiontheorem for complex characters·: 

Proposition 9.4: If R contains a primitive pth root of unity~ (i.e. R is z[~]-alge

bra with~£~ a primitive pth root of unity) and H £ Dk(R), then there exists a 

normal series E g N1 ~ N2 ~ H as in Prop. 9.3 with the additional condition, that 

H/N2 acts trivial on the p-part of N2/N 1. 

Proof: R is an R'-algebra now with R'=Z[~.}Ir·R=R, r £m], a Dedekind-ring. Thus 

H £ Dk (R) \; Dk (R 1 ) = \( Dk (R~) , so we may already assume R to be a local Dedekind-ring 

with residue-class-characteristic l (poffiibly 0). Thus H has a normal series 

E ~ N1 ~ N2 g H with N1 an l-group (i.e. N1=E for l=O), N2/N 1 cyclic and H/N2 a 

q-group for some q with qk + k. If l: = p or q = p, we may put any possible p-part 

of N2/N 1 into N1 or H/N2 and thus can assume N
2

/N 1 p-regular, in which case our 

statement is trivial. If l + p + q, we use, that Dk(R) is closed with respect to 

subgroups and quotients, so if H/N 2 does not act trivially on the p-part of N2/N 1 
we may even assume H to be nonabelian of order p•q with qlp-1. But the isomorphism 

in Lemma 9.2', b) of course holds for any Z(~.~)-algebra, thus especially· for a 

local ring R of residue-class-characteristic l + p, and restricting this isomorphism 

to H=ZP® zq :> ZP® A we get R[H/Zq] " R Ill ilzP. _,. H..,. ID •.• Ill RZP ->- H _, 

£2 times 
q 

thus I £ K(H,R) is induced from proper subgroups and H? D(R), a fortiori H? Dk(R), 

a contradiction. 

Proposition 9.4 implies, that for a finite group G and a ring R, which contains a 

pth root of unity for any prime p dividing IGI, k®KG(-,R) has a defect-basis con

tained in C~ (G) = {H,; GIH q-elementary mod l for some characteristic q with 
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q•k + k and some characteristic l with lR + R}, where a group His called 

q-elementary mod l, if the l-Sylow-subgroup H1 of H is normal and H/Ht a direct pro-

duct of a cyclic group and a q-group. For q 0 or l = 0 a q-group, resp. an l-group 

is always the trivial group. We show a little bit more precise: 

Proposition 9.5: Let G be a finite group and R a commutative ring with l £ R, such 

that for any prime p dividing [G[the ring R contains a primitive pth_root of unity. 

Then the defect-basis of k"" KG(-,R): G-+ l.;.:::mQd_ is precisely C~(G) (for any commuta

tive ring k with l £ k). 

Proof: We have to show, that for any subgroup H £ C~(G) of G we have 

k~K(H,R) + 0; thus if His q-elementary mod 1: with q•k + k, '!:R +Rand w.l.o.g. 

q + :1: unless q = 1 = 0 we may already assume k and R to be algebraically closed 

fields of characteristic q and l respectively and it will be enough, to-construct 

a nonzero linear map K(H,R) ~ k, which vanishes on Im( Z K(V,R) + K(H,R]. So let 

H1 be the l-Sylow-subgroup of H. By our assumption ~! S H and 

H/H1 ; Hq x <g> for some appropriate g £ H of order say n. Choose a fixed isomJrphism 

of the group of nth_roots of unity in R onto the same group ink ((n,q)=(n,l)=l !) , so 

that for any RH-module M we have a well defined Brauer character XM(g) with values 

ink. Now define again x(M) = Z'xM; (g), where M ID M- is a decomposition of M into 
..1... i 1 

indecomposable RH-modules and the sum Z'xM.(g) is taken over all Mi with vertex H1 . 
1 

x is nonzero, since it maps the trivial representation onto l, but it vanishes on 
V+ H . 

any M= $ Mi • N 1f V + H, since otherwise N must have vertex H1, especially 

Hi::; V,in which case all Mi have vertex H1 (as above, since H1 is normal in H!), 

thus Z'XM.(g) = xM(g) = 0 unless also g s V, in which case XM(g) (H:V)xN(g), since 
~ 

H acts trivial on <g>. But then again XM(g) = 0, since (H:V) is a power of q, thus 
q 

zero ink, unless H =V, which was excluded. 

One can also generalize the induction-theorems of Berman-Witt as follows·: 

For any pair of primes p and q consider the q-Sylow-subgroup Aq of A=Aut(Zp) 

= Gal(~(~p): Q) (sp £~a primitive pth root of unity). Since A is cyclic (of order 

p-1), we have A=AqxAq• with both factors cyclic. Thus for any ring R we have a 

unique smallest subgroup A(p,q,R) of Aq, such that there exists a ring-homomorphism 

Z(~p)A(p,q,R) x Aq' + R. We define a group H to be (R,q)-hyperelementary, if it is 

cyclic for q • 0, resp. has a cyclic normal subgroup N ~ H with H/N a q-group, such 

that for any p dividing [N[ the action of H/N on N/Np ; Zp defining a homomorphism 

H/N-+ Aq\ii A-maps H/N into A(p,q,R) for q + 0. 

We define H to be (R,q)-hyperelementary mod l for some characteristic l, if it has 

a normal l-group N1 S H (for l = 0 this means N1 =E), such that H/N 1 is (R,q) hyper

elementary . 

Then we have finally: 

Theorem 6: For Rand k commutative rings with a unit one has Dk(R)~{H[H (R,q)-hyper

elementary mod l for some characteristics q and l with !R + R, qk f k}. 
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Proof: Assume H s Dk(R), then H s Dk(~) for some maximal ideal m and thus we have 

a normal series E ~ NI ~ N2 1 H with NI an l-group for l=char R/m, N2 /NI cyclic, 

H/N2 a q-group for some characteristic q with qk + k and w.l.o.g. IN2/N 1 I prime to 

1 and q. Assume p divides IN2 /NI I. Then we have a homomorphism 
I A(p,q,R) x A , 

.a<;.z:p) q-+ Rm and thus H E Dk czc-},<:p)A(p,q,R) X Aq ')' so w·.l.o.g. 

R = M(~ )A(p,q,R) x A 1 
p'l;;p q 

Now if H/NI is not (R,q)-hyperelementary, it is easy to construct a surjective 

homomorphism H/N 1 ~ZP®Z i with Z i ~A lO.A=Aut(Z ), lz il=qi, but q q q p q 

ZqitA(p,q,R), thus ZqifA(p,q,R) x Aq,=Bs:A. Since Dk(R) is closed w.r.t. epimorphic 

images, we may therefore assume 

H = Z ®Z i ~ G = Z ®A,Z i4-B ~A and R"' ;ar~,1; lB. Now consider the isomorphism p q p q Lp p-1 
-z_.,.G I 

R'[G/A} =. R'SR' P as constructed in Lemma 9.2', b)wi~=zl.!..t-pl]:: .. with y·=IsB)\.. 
- ~- 0 Cl'!illJ) 

y.=a.e I s R' [G] Q R' (j s JFx) an R'-basis of R', resp. R' 2p this was given 
1 1 R' [zP] P 

explicitly by Yj ~ Z 
id 

p 

-ji r; J 1; · X; (j s lF ) with x. = z.• A s R' LG/A an R'-basis of 
~ p ~ ~ 

- Z -+ G R'[G/Aj. We now define an action of B on R'[G/Aj, R' and R' P· , which is compati-

bel with this isomorphism, commutes with the action of G and satisfies 

S(rm)=B(r)·B(m) for B £ B.;;;Aut(IQ(1; ): 01), r £ 
- Z _,. G p 

resp. £ R' P : for B £ B and m= E r·x· we 
• ~ l. 
~d'p 

R', m£ R'[G/A], resp. s R', 

define B(m) = L B(ri) xi, for 
id'p 

- Z G S(r)•y
0 

and for m = Z r. Yj £ R' P _,. finally 
jef~ J 

m= r•y
0 

s R' of course S(m) 

S (m) = E S (rj) y j, S (identifying B s B s; A with the corresponding element in 
jdp 

r; A), Then we get for the B-invariant elements an R'~J -, i.e. RG-isomorphism 

(R' [G/A])B .. (R')B al (R' 2P _..G) B. But obviously (R' @/A])B = R[G/A} and (R')B=R. 

Moreover (R' 2P 
4 

G)B={ .r rj YjiBCrj)=r.i•S'B s B} can be decomposed into blocks 
J er~ 

of imprimitivity 

(R' 2p _,. G)B = ~ { r rj Yj [SCrj)=rj.S'B s B}, such that the stabilizer
aBsA/B jsa~r 

p 

group of the first one is just ZPQPB ~ G, Thus (R' 2p _,. G)B is of the form 

M
2

P®B ... G for some R[ZP®B]-module M (actually M={ r r. Yj ls(r.) = r .• 
13
,s s B} is 

_ j sB J J J 

an R[Zpi£JB]-module isomorphic toR' considered as an R[Zp®B]-module by first 

restricting the R' [z~-action to RIJ:PI and then extending it to an R[Zp®B}-action 

by using the Galois-group-action of B on R', an explicit isomorphism being given by· 
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r-1 I+ l: j (r)•y·), thus we get: R[G/A] ~ R !!l MZP@B-+ G 
jE:B J 

Restricting this toR Zp®Zqi4Zp@B we get 

r, ·1 Z G> (Z i 0 B) -+ R . 
RLH/Zq~l "' R !!l N P q for some Zp®(Zq~ r.B)-module N, thus 

V+R 1 
l E l: K(V ,R) and H '1- D(R) £ Dk (R), a contradiction, which proves the theorem. 

V~H 

Remark: The inclusion in Thm 6 actually is an equality, if R is a field or a complete 

discrete valuation-ring, which can be proved, using similar idea~n the proofs of 

Prop. 9.2 and Prop. 9.5. But I do not know, wether it is an equality for arbitrary -

or, what is essentially the same, for any local-Dedekindring R. Even if this is not 

the most important question, it might give some more insight into the structure of 

RG-modules for R a local, but not necessarily complete Dedekindring, to try· to deter

mine Dk(R) precisely for such R. 

As a final application I want to prove a result, which I understand happens to be 

usefull in the study of conjugation of maximal tori in algebraic groups over not 

necessarily algebraically closed fields (see @<:f]): For any G-set S (G and S finite, 

of course) let r[s] = Ke(~[s] +a: s »- 1) and J[s] =Coke (Z + Z : 1 \+ l: s). 
ssS 

Proposition 9.6: For a finite group G the following statements are equivalent: 

(i) G is cyclic mod p for some prime p; 

(ii) G E D(/(2); 

(iii) The homomorphism rl(G) + K(G,:i!): S >+ a-[s] is injective; 

(iv) For any two G-sets S, T we have "a:[s] " a[T] <= S ;;; T" 

Tn; (v) For any two G-sets S,T we have "I[};]:=. I[T] <= S = 

(vi) For any two G-sets S, T we have "J [s J " J [TJ <=> S " T". 

Proof: (i) <=> (ii) is contained in Prop. 9.2; (ii) => (iii): Assume 

X = l:~G/U E 0(G) has image 0 in K(G,:i). He have to show rvv(x) 0 for all V s G. 

But restricting to V in case V f G we have w.l.o.g. V= G (using that any subgroup 

of G is again cyclic mod p, resp. contained in D~(a)). But nG=rpG(x) f 0 would imply 

nG•1K(G Z) El: K(U,i)U + c, thus G ~ D~(Z), q.e.d.,(iii) => (iv) is obvious, using 
' U«G 

the fact (Prop. 4.3),that two G-sets represent the same element in rl(G), if and only 

if they are isomorphic. 

(iv) => (ii): Assume G ~ D~(Z). By Cor.~o Thm 2 (§4) this implies 

G/G ~ D(Im(41~0 + 4!®KG(-,Z))), thus we haven Ell and G-sets Sand T with 

G G IIJ ··e-r f·J S = T = 0, such that ZLG~USJ and iLT represent the same element in 
n t~mes 

~ ®KG(-,Z). So the result follows from the wellknown 

Lemma 9.7: If two ZG-modules M and N represent the same element in ~®K(G,Z), then 

there exist natural numbers r and s with 

~!!l~ 
r-times s-times 

~ r+s t1mes 
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Proof: Since they represent the same element in l!lE>K(G,Z), they do so for any 

localization ~p of ~ :nd its 

Theorem then implies ~p~ M ~ 

completion~ . But over ~ the Krull-Remak -Schmidt 
h p p 
~ I& N and this in turn by a wellknown density-argument 

p 
~p® M : Zp ® N, thus for any p we have ZG-homomorphisms 'Pp: M + N, ljJP: N _,. M with 

rppljJp = cp• IdN' ljJprpp = cpi~ for some cp E ~ with (p,cp) = I. Moreover using the 

same density-argument with respect to a finite number of primes (i.e. some kind of 

weak approximation, resp. the chinese remainder theorem) we can make c relatively 
p 

prime to any given finite number of primes. Thus starting with some c = cp we can 

find some c' prime to c, so that there exists homomorphisms 

rp,rp': M+ N; ljJ,ljJ': ~ = c•IdN' rp 1 1jJ 1 = c'IdN, ljJrp = c·I~, ljJ'rp' = c'I~. 

But then the "diagonal" M-+ N fil N is split-injective, a left inverse being givert 
d1jJfild 1 1jJ 1 

by N fil N---+ M with de+ d'c' = I, thus we haveN fil N: M filM' for some ZG-module 

M'. But again the Krull-Remak -Schmidt-Theorem implies Ztp~ M' : ~p® M_ ~p®N, so 

using the same argument we can find M" with M fil M" "'-M' fil N and so on 
(r) . (r) (r-1) (r) M wHh M fil M ~ M fil N (r E ll) , thus ~ ~ ~ Ill M . 

r+l r 

h J d h . 1' (r) (r+s) f / 1 b But now t e or an-Zassen aus-Theorem 1mp 1es M "'-M orsome natura num ers 

r,s and 

~ 
r+s+l 

thus 

~ Mfil •.. filM fil M(r+s) _ 
~ r+s 

(r) 
~filM ~~Ill~ 

r s r+l 

Remark: Another way, to prove this implication would have been to consider only 

permutationrepresentations and their Grothendieck-rings with respect to various 

coefficient-rings R. Since all the basic constructions map permutationrepresentations 

allways onto permutationrepresentations and since the basic isomorphisms in Lemma 

9.2 are also those of permutationrespresentations (one has to check this for 

H = Zp® Zq: here one has the explicit isomorphism 

~fil 
p-1 

one gets again that the defectgroups of the Grothendieckring of permutationrepre

sentations over Z, tensored with l!l,are cyclic mod p, thus for any other group Gone 

allways has G-sets S,T,X with SG=TG=0, but 

z[G~C:,s..;x] ~ ~]]'.:...x] for some nE N. 
n 

(v) <= (vi) is obvious, since I[};] and J [};1 are ~-duals for each other. 

(v) = (iv): For any G-set S we have an isomorphism z[s]_:;_ I[§;_,c;c]: s \>- s-G/G. 

Thus il[SJ" ~(Jj = I{SuG/G};; I[T.:.G/G](~ SuG/G" T.:0G/G => S; T. 

(iv) = (v): By (iv) <='> (i) we know that G is cyclic mod p. We use induction on G, 

so for I[s] = I[T] we get slu _ Tlu for all U ~ G, especially rpu(S) = '~'u(T), U ~G. 

If morover rpG(S) = rpG(T) = 0, we get S ; T by Prop .• 43~frpG(S) + 0 + rpG(T), we have 
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s"' S'uG/f}_, T;;;; r•:...c/G and get z[s'] =- r[s] "'r[r}. a[r'l, thus s• oi T', s _ T. 

So there remains the case ~G(S) f 0, ~G(T) = 0. 

Since ~U(T) = ~U(S) ~ ~G(S) > 0 for any u ~ G, we get g.c.d. {(G:U) lruf~} = I un

less G is a p-group. But :i[T] + lil:t >+ I maps the G-invariant part of :i[T] onto 

the ideal, generated by (G:Gt) (t s 

{(G:U)!TU f ~}.Thus if G is not a 

i.e. we have z[r] "- Z«!I[T] "- :l«!I 

to ~G(T) = 0 f ~G(S). 

T,Gt = {g s Glgt = t}), which contains 

p-group, the map :l [r] + 1 is split-surjective, 
1,} (iv) ~ :ZLS ~ T = S, q.e.d., resp. a contradiction 

For Gap-group, let U be a maximal subgroup, thus U is normal of index p. We get 

0 < ~G(S) :::: ~U(S) ~U(T) - ~G(T) = O(p), thus ifS= S'uG/G, then ~G(S') > 0 and 

r[sJ .. :z[s'] contains a direct summand isomorphic to z. So it remains to show: 

If G is a p-group, TaG-set and ~G(T) = 0, then I[T] contains no direct summand 

isomorphic to Z. But this follows from pn-l · H0 (G,I[TJ> = 0 and 

H0 (G,Z) ~ Z/pnZ, if !cl pn, the first fact following from 

O=H-:I (G,:Z) + H0 (G,I _,_ H0 (G,Z >, H0 (G,Z )=l!J H0 (G,a[G/ua)"'!J H0 (Ui ,Z) 
1 1 

annihilated by pn-l if T = 't_ G/Ui and Ui t G(by ~G(T) = 0). 
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§10 Prospects of further applications 

In this last section of this paper I want to indicate several further possible 

applications of the above methods. Detailed versions will appear elsewhere. 

At first we may try to study the equivariant K-theory associated to the distributive 

category L(R) of "R-lattices": the objects in J,(R) are pairs (M, f), where M is a 

finitely generated, projective R-module and f: M x M+ R a nonsingular symmetric, 

bilinear form on M (where nonsingularity means, that the associated map 

f: M~ Ho~(M,R): f(m) (m')= f(m,m') is an isomorphism), the morphisms 

<P:(M,f) + (M' ,f') R-linear maps from M to M' with f(m 1 ,m2)=f'(<P(ml) ,(jl(m2)). As 

allready observed in §6 this category is distributive with respect to orthogonal 

sum and tensor product. 

Analogously to P(R) one has 

Theorem 7: a) D
111

(L(R)) [=: D'(l!l,zK(-,L(R)))] {H/H cyclic mod p for some character

istic p with pR f R} 

b) Dk(L(R)) ~{H/H q-hyperelementary mod p for some characteristics p and q with 

pR f R, qk f k}. 

Outline of proof: a) implies obviously b), since we may assume w.l.o.g. k~l!l and 

then use - as before in the linear case - the fact, that exterior powers of R-latti

ces define a A-ring-structure on K(G,L(R)), thus torsion-elements are nilpotent and 

we can use Prop. 5.2'. 

So it remains to prove a) and this is done just as in the linear case: At first one 

proves, that Z x Z and Z ®Z (Z s:_ Aut(Z )) are not contained in D"'(L(R)) whenever 
pp pqq p "' 

pR = R, using similar isomorphisms as in Lemma 9.2', which establishes the result 

for local rings. For arbitrary R again one can at first replace R by 

R'=l~/pR=R]~ Q, thus w.l.o.g. Rt;;IQ and then has to delocalize, which can be done 

essentially as in the linear case, only the isomorphism constructed in the proof of 

Lemma 9.5 has to be replaced by the following observation: 
V V V V • Lemma 10.1: Let (M
0

,f
0
), (M 1,f

1
) (v=l, .•• ,n) be RG-lattices (R any commutauve 

ring with I ER) and assume that for any v E{l, ..• ,n} there exists 

(jl v: Mv + Mv v. Mv + Mv, c E R and F with o o I' <PI . I o V EVE 2 

( V ( V V V)) V ( V V V V MV V V I) f
0 

m
0

,(jl 1 (m 1 = f 1 (jl
0

(m
0

),m
1
) for all m

0 
E 0 , m1 E M1, 

(2) V V 2 
<PI <P = c • Id_ ~v' 

0 V ~O 

n 2 
l: (-I) Ev CV I • 

v•l 
(3) 

V V 
(jJ (jJ 
0 

2 
c • IdMV, 

V I 

(An RG-lattice of course is a G-object in L(R) .) 

Then one has an RG-Isomorphism 

et 

M -+ 
et _l 

8 
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n 
a, resp" 8 runs through all maps a,8: {l, ... ,n} _,. flwith l: 

v=l n 
l: 8(v) = I and 

v=l 
M 

a 

n 

® 
v=l 

resp. n 
M = ~(Mv (-l)fl(v)~v f~(v)), 

6 v= 1 8 (v)' .., 

given by· 
1 n 

Ma '31 Xa(J)~ ••• ®XC!(n) 

e~(_v) = 0, 

n nk I k-1 k k k+l n 
k:l (-I) Xa(l)® ''. @Xa(k-l)lib Q)a(k) (Xa(k))®Xa(k+l)® '' .®Xa(n) 

E a(i) + a(k)Ek' 
i<k 

This together with the fact, that for R ~ ~ any element in R is a sum or difference 

of finitely many squares in R(R~r~ai+ ... +a~ - bi - ... -b~) allows then to 

delocalize (i.e. to prove D~(R) =\J DQ(Rm)), establishing the theorem. 

Remark: Especially for R~ ~ it may make sense, to consider the distributive subgate

gory L+(R) of positive definite R-lattices. 

Here one can show the perhaps surprising result DQ(L+(R)) = D~(L(R)), whenever 

R + a, whereas D~(L+(~)) is the class of all finite groups. 

Finally I want to discuss relative KG-theories: Let G be a fixed finite group and 

S and T G-sets. 

A sequence 0->- s1 _,. s2 + s
3

->- 0 of P(R)-bundles over S is called T-split, if the 

restricted sequence 0 + T x s1 + T x + T x ~ 3 + 0 over T x S is split. Define 

KG(S,R; T) = KG(S,R) J<r -r +' io + 0 T-split>. '>]'>2'>3 1;1+(;2+1;3+ 

One verifies easily, that restriction and induction are well-defined on KG(-,R;T), 

thus KG(-,R;T) is a Green-functor. Especially for T = G/E the ring 

KG(G/U,R;G/E) is just the Grothendieck-ring G
0

(R,U) of RU-modules as defined by 

Swan. One can apply the above methods to compute the defect-sets of KG(-,R;T) and 

this way get simple proofs (cf. 0fj) of the results announced in @1], 84] and Gs], 
which will be done in some detail and together with applications on the structure of 

the relative Grothendieckgroups in another paper. 

Finally one may also define relative KG-theories with coefficients in L(R). Of course 

one cannot use exact sequences. Instead- exploiting an idea of D.Quillen (cf. Do], 
§5) -one can define a "T-Quillenpair" (r;,t;) to be a G-equivariant L(R)-bundle r; 

over some G-set S together with an P(R)-subbundle t;, such that the exact sequence 

0 + t; + r; + t;/s + 0 of P(R)-bundles is T-split and furthermore any fiber of t: is an 
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isotropic submodule in the corresponding fiber in s, i.e.~~ ~l . One may then define 

UG(S,R;T) = KG(S,L(R))/IT with IT the ideal generated by 

<s-~/~-H·(~) I (s,~) a T-Quillenpair over S> with ~~~~ the obvious well defined (!) 

G-equivariant L(R)-bundle and H(~) the "hyperbolic" L(R)-bundle, associated to ~. 

It should be remarked, that in general even IG/Gfo, i.e.UG(S,R;G/G) f KG(S,L(R)), 

but IG/U=O if 2•R=R and (G:U)·R=R. 

I guess, that corresponding inductiontheorems hold as in the linear case. In the 

most important special case T=G/E, which especially applies to the computation of 

L-groups, they are allready proved and have been announced in ~~· 
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THE FUNCTOR K2 : A SURVEY OF COMPUTATIONS AND PROBLEMS 

R. Keith Dennis1 and Michael R. Stein2 

In the past few years there has been a great deal of research on 

the functor K2 and it would appear that now is an appropriate time 

to give a survey of these results. Several different definitions have 

been proposed for K2 and it is now known that those given by 

Gersten-Swan, Keune, Milnor, Strooker-Villa.mayor, and Quillen all 

agree (see [41] and [94]). It is also known that these agree with 

that of Karoubi-Villamayor if the ring in question is regular [73]. 

However, we give only Milnor 1 s definition as it easily adapts to 

define "unstable" K2
1 s and as many results of a computational nature 

have been derived with it. 

The first section of this paper gives a brief list of known 

properties and computations of K2 with references for further 

information. The second section gives a list of research problems, 

and the final section is a bibliography. We would like to take this 

opportunity to thank everyone who sent suggestions and research 

problems. Any changes or omissions in the problems reflect the 

interests and prejudices of the authors. 

l. Partially supported by NSF-GP-25600 

2. Partially supported by NSF-GP-28915 
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PROPERTIES AND COMPUTATIONS OF K2 

All rings are associative with 1. If R is a ring, R* denotes 

its group of units. If G is a group and cr, ~ E G, we write 

] -1 -1 
r~ ,a = ~a~ a 

If G is finite, IGI denotes its order. The rational integers 

are denoted by ~' the rational numbers by £, and a finite field 

with q elements by !q· (G) = Hi(G;~) will denote the i-th 

homology group of G with coefficients in ~ where G acts trivally 

on J;_. 

For n ~ 2 we denote by E(n,R) the subgroup of the general 

linear group GL(n, R) generated by the elementary matrices (r), 

r E R. The Steinberg group, St(n,R), is the group with generators 

xij(r), where rE Rand i,j are distinct integers between 1 and 

n, subject to the Steinberg relations 

(Rl) 

(R2) 

(R3) 

xij(r)xij(s) = (r+s) 

[:4(n) 
if i .;; ,t, j .;; k 

[ xij ( r ) , xkt ( s ) ] 

if i .;; .f,, j k 

wij(u)xji(r)wij(u)-
1 

where (u) 

xij(-uru) for any unit u 

xij(u)xji(-u-
1

)xij(u). 

It should be noted that for n = 2, (R2) is vacuous and for n ~ 3, 

(R3) is a consequence of (Rl) and (R2). As the generators Eij(r) 

of E(n,R) satisfy relations analogous to ) - (R3), there is a 

surjective homomorphism St(n,R) ~ E(n,R) defined by 

xij (r) ~ Eij (r). We define K2 (n, R) to be the kernel of this 

homomorphism. For every n ~ 2, there is a commutative diagram 

with exact rows 
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1--.;;:;;.,. K
2 

(n, R) 

t 
-~;:;;;.-.,.. St(n,R) 

l 
--.;;;:;;.-- E(n,R) ~ l 

~ 

where the vertical maps are defined by sending the generators xij(r) 

and Eij(r) in the top row to the element of the same name in the 

bottom row. Passing to the direct limit as n ~ oo yields the 

definitions 

st(R) lim St(n,R) 
~ 

E(R) lim E(n,R) 
~ 

It is clear from the definitions that the sequence 

is exact. It should be noted that St(n,R) and K2 (n,R) are 

denoted St(An_ 1 ,R) and L(An_ 1 ,R), respectively, in [88] and [89]. 

In the following a will denote a pair of indices ij, i ~ j, and 

-a, the reversed pair, ji. 

1. Central extensions and homology. 

In [69, §5] it is shown that K2 (R) is precisely the center of 

the Steinberg group St(R). The extension (*) above is a universal 

central extension and it follows that K2 (R);:;;; H2 (E(R)) ([56];[92]). 

2. The exact sequence of an ideal. 

Let I be a 2-sided ideal in the ring R. Then there is an 

exact sequence 

(see [69, §6] for a definition of K2 (I) and a proof). 
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3. The Mayer-Vietoris exact sequence. 

(a) If the commutative square of surjective ring homomorphisms 

R~R' 

~ J 
s ;::... 8' 

is Cartesian, there is an exact sequence 

(R)~ .•• 

[69, P· 55]· 

(b) Let R be a commutative noetherian regular ring and let 

(f ,g) = R. Then 

) ---;;;... K (R ) ~ • .. 1 fg 

is exact [41, Theorem 2.19]. 

(c) Let R -----:=:- R' = TI T i be an inclusion of rings with the maps 

R --:,;;- T. surjective. 
l 

If I is a 2-sided ideal of R' contained 

in R, the square of part (a) is cartesian for s R/I and 

S' = R' /I. Moreover, if the term K2 (R) is deleted, the sequence 

in part (a) is exact [1]. 

4. The exact sequence of a localization. 

If A is a Dedekind domain with fraction field F, then there 

is an exact sequence 

· · • --;;;- UK2 (A/m) ~ K2 (A) -:=-K2 (F) --==- UK1 (A/m) ~K1 (A)~·· • m m 

where m runs over the set of maximal ideals of A [73]. 

A simple example of the use of this sequence is mentioned in 

Problem 17 of the second section: If S is an set of 

rational primes and ~S is the localizati0n of ~ at the monoid 

generated by S, then 
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5. The product structure. 

5 

[±1} ffi u (~/p~)* 
pES 

If A is a commutative ring there are pairings (see [41, §2], 

[69, §8]) 

such that 

Ki (A) X Kj (A) ~ Ki+j (A) 

i+j 
X•Y = (-1) Y•X for X E Ki(A), In particular, 

under this product K0 (A) becomes a commutative ring and Ki(A) 

becomes a K0 (A)-module. It should be noted that the map is not 

surjective in general. 

6. The transfer homomorphism. 

If f: R ~ S is an inclusion of rings and S is a finitely 

generated projective module over R, there is a transfer homomorphism 

(see [69, §14] and [41, ~2]). Moreover, if the rings are commutative 

the projection formula 

f* (x.f* (y)) = (f* (x) )· y 

is valid for x E Ki(S), yE Kj(R). Here · denotes the product given 

in 5 and f* is the homomorphism from Ki(R) to Ki(S) induced by 

f. If S is a free R-module of rank n over R, then f*of* is 

multiplication by n. In case R and S are local fields, the 

transfer homomorphism is surjective for i = 2 [69, Corollary A.l5]. 

7. Differential "symbols". 

If A is a commutative ring and denotes the second exterior 

power of the module of absolute differentials OA/Z' there is a 
"" homomorphism 
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[40, Remark 6 in §7]. In case A is a field, this agrees with Tate's 

differential symbol 

[104, p. 202] (see 9 and ll below). 

8. Technical computations in St(n,R). 

A large number of formulas, normal forms and other computational 

conveniences are now available for the Steinberg group. We only give 

two examples and the reader is advised to consult [25], [27], 

[69, §§5, 9, 10, 12], [77, §1], [82], [86], [88], [89], [ioo], [105], 

and [107] for further information. 

(a) For any z E St(n,R) define I(z) to be the minimal number of 

indices involved in any expression for z. Assume I(z) ( n and 

the image of z in E(n,R) can be written as PD where P is a 

permutation matrix corresponding to the permutation ~ and 

D = diag(v1 , ... ,vn) is a diagonal matrix. Then 

z xij(r) 
-1 z = 

for any xij(r) E St(n,R) [25]. It easily follows that the image of 

K2 (n,R) in St(n+l,R) is central and hence that K2 (R) is in the 

center of St(R). 

(b) Let R be an arbitrary ring. Then every element of St(R) can 

be represented as a product LPL 1 U where L,L' are products of 

elements of the form xij(r) with i > j, U is a product of elements 

of the form xij(r) with i < j, and P is in the subgroup of St(R) 

generated by the elements wij(l). This was proved by R. Sharpe 

using an argument similar to that in [77, §5] (see Problem 25 below). 

9. Elements of K2 (n,R). 

(a) For units u,v of R, define 
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If' u and V commute then {u,v}a E K2 (n,R) and lies in the center 

of St(n,R) for any n. If n L 3, it follows from the formula in 

8 (a) that this element does not depend on a. Deleting the a, we 

obtain the Steinberg symbol {u,v}. If R is a commutative ring and 

n L 3, these symbols satisfy the identities listed below. For n = 2 

more complicated identities exist (see [67], [88]). 

(Sl) [ uv ,w} {u,w} {v,w} 

{ u,vw} {u,v} { u,w} 

(S2) {u,v} = {v,u}-1 

(S3) { u,-u} = 1 

(s4) {u,l-u} = 1 

(SS) 

(s6) 

(S7) 

[ v, l - pqv} 

)_ l - qr 1 - Eqr} r l _ p , 1 

k 

Yk = I ui' 
i=l 

- qv l - ~qvl 
p , 1 - J )_ l - pv 1 - ;qv} 

l_"l-q'l-

In all of the above identities, it is assumed that the elements 

involved are all defined (i.e. 1 - u, 1- pq, 1 + qyi, etc. 

1 

are all units). Proofs of (Sl) - (S4) can be found in [69, p. 74] 

and proofs of the others can be found in [27, §1]. These identities 

are not independent. For example, if u and l - u are both units, 

then (S3) is a consequence of (Sl) and (S4). In case R is local 
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all of the identities of (S7) are consequences of the identity where 

s t = 2 together with (Sl) - (S4) [27, Proposition 1.5]. 

(b) Let a, b E R be any two elements such that l+ab E R*. For 

each a, define 

x (-b(l+ab)-1 )x (a)x (b)x (-(l+ab)-1a) -a a -a a 

and set 

<a,b) = H (a,b)h (l+ab)-1 . a a a 

If a and b commute, then <a,b)a E K2 (n,R) for all n and for 

n ~ 3 <a,b)a is a central element that does not depend on a. We 

denote it simply <a,b). If R is a commutative ring and n ~ 3, the 

following identities hold: 

(Hl) <a,b) = <-b,-a)-1 

(H2) <a+b,c) = <a,c) <b,l~ai> f l+f!:~)c, l+ac} 

<a,b+c) =<a, b) <u~b,c) { l+ab, 
11!~:rc)} 

(H3) <a+b,c) = <a,c) <b,c) < 1+bbc'l!~~ {-l,l+ac} {l+f!t~)c, I!b~} 
2 

<a,b+c) = <a,b) <a,c) <i!a~' l+cai> {l+ab,-1} 

(H4) <a,bc) <b,ac) <c,ab) = 1 

<a,bc) <ab,c) <ac,b) 

J l+ab l+a(b+c)} L l+ac' l+ac 

As in part (a), it is assumed that the elements above are all 

defined. Proofs of these identities can be found in [90, 

Proposition 1.1]. 

(c) These elements of St(n,R) are related to each other and to 

other elements defined in the literature as follows: 

(i) <a,b) 

<a,b) 

{-a,l+ab} 

{ l+ab ,b} 

if a € R* 

if b € R* 
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(ii) If ab = 0, then <a,b) c(a,b) where c(a,b) was 

defined by Swan in [lOO, §6]. 

(iii) The generators given by Van der Kallen [105] are 

related to these elements as follows: 

fa (a , b ) = < a E , bE) = [ 1 +a E , 1+ b €} 

H (a,b) = <b,aE) h (l+abE) = the H (b,aE) defined above a a a 

(d) Cohn [18] and Silvester [83] defined the concepts "R is universal 

for GE n and "R is quasi-universal for n 

are statements that GEn(R) (the subgroup of 

!! These definitions 

GL(n,R) generated by 

E(n,R) together with the diagonal matrices) has a certain presentation. 

Let W(R) be the subgroup of R* generated by the elements of the 

form (l+ab)(l+ba)-l for l+ab ER*. Let Vn(R) be the subgroup of 

R* generated by all elements u ER* such that diag(u,l, ... ,1) is 

in E(n,R). It is shown in [25] that the definitions mentioned above 

are related to K2 (n,R) as follows: 

(i) If n) 2, R is universal for GE if and only if - n 

K2 (n,R) is contained in the subgroup of St(n,R) generated 

by the elements ha(u), u ER*, and Vn(R) = [R*,R*] 

(the commutator subgroup of R*). If R is commutative 

and n L 2, then R is universal for GEn if and only if 

K2 (n,R) is generated by the Steinberg symbols. 

(ii) If n L 3, R is quasi-universal for GEn if and 

only if K2 (n,R) is contained in the subgroup of St(n,R) 

generated by the elements Ha(a,b) and Vn(R) = W(R). If 

R is commutative and n L 3, then R is quasi-universal 

for GEn if and only if K2 (n,R) is generated by the 

elements <a,b). 
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10. Complete sets of generators for K2 (n,R). 

(a) (i) The Steinberg symbols generate K2 (n,R) for n L 3 if R 

is a commutative semi-local ring [90, Theorem 2.7]. 

(ii) The Steinberg symbol f-1,-l} generates K2 (n,~) for all 

n L 2 [69, §10]. 

(b) In this section only, if J is an ideal of R let K2 (n,J) be 

defined by the exact sequence 

l--=-

If J is an ideal contained in the Jacobson radical of the commutative 

ring R, then (n, J) is generated by the elements <a, q), a E R, 

q E J, for all n L 3 [90, Theorem 2.1]. Note that if R is 

additively generated by its units, then it follows from (H2) and 

(c) (i) of 9 that (n,J) is actually generated by Steinberg symbols 

of the form { u, , u ER*, q E J, a result proved earlier by Stein [89~ 

Let R w2 (gq) denote the ring of Witt vectors of length two 

over !q' q = The preceding result together with the techniques 

of [27] yield the following: K2 (R[X]) is an elementary abelian 

p-group of countably infinite rank. It should be noted that if p is 

odd all Steinberg symbols in K2 (R[X]) are trivial. This gives an 

example of a ring where K2 (R[X]) is not isomorphic to K2 (R) 

[90, Theorem 2.8]. 

11. K2 for fields. 

Matsumoto [67] (cf. [69, §§11, 12]) proved that of a field F 

is presented by the generators tu,v}, u,v EF*, subject to the 

relations (Sl) and (S4) (given in 9 (a) above). If a symbol is 

defined to be a bimultiplicative function 

(, ): F* ~ F* ~ C 
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taking values in an abelian group C and which satisfies (u,l-u) 1, 

then Matsumoto's theorem can be rephrased to say that the function 

f , } : F* X F* ---=:- K2 (F) 

is the universal symbol. Thus any symbol defines a homomorphism 

from K2 (F) 

[69, p. 98], 

to C. Examples of such symbols are the tame symbol 

the power norm residue symbol [69, §15], the norm 

residue symbol [69, p. 151], and the differential symbol of Tate 

[104,p. 202]. 

Matsumoto's presentation of K2 (F) yields many properties and 

computations of K2 (F): 

(i) K2 of a finite field is trivial [91, 3. 3] (cf. [69, p. 781). 

(ii) If Xm - a splits into linear factors for all a E F, 

then K2 (F) is uniquely divisible by m. Hence K2 of an 

algebraically closed field is a torsion free divisible group, 

K2 of a perfect field of characteristic p ) 0 is uniquely 

p-divisible, and the only torsion in K2 of the real numbers 

is 2-torsion (in fact, just {-1,-1}) [5, (1.2)]. 

(iii) 

(iv) 

[±1} Ef> j_J_(Z/pZ)* 
p 

[69, p. 101]. 

K2 (F) Ef> ll(F[X]/R)* 
R 

[69, p. 106] . 

(v) If F is a local field and ~F denotes the group of 

roots of unity in F, then Moore [70] (cf. [69, Theorem A.l4]) 

has proved that K2 (F) ~ D Ef> ~F where D is a divisible 

group. Let q be the order of the residue field of F. 

J. Carroll has proved that D is uniquely p-divisible if 

p does not divide q(q-1) (see Problem 12 in the next section). 

12. K2 for some local rings. 

If A is a discrete valuation ring or a homomorphic image thereof, 
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then K2 (A) and K2 (n,A) for n ~ 3 are presented by the generators 

[u,v}, u,v eA*, subject to the relations (Sl) - (S7) [27, Theorems 

2.3, 2.5]. 

If A is a discrete valuation ring with field of fractions F 

and residue field £, then there is an exact sequence 

[27, Theorem 2.2] which is split exact if A is complete. In case 

F is a local field and k has characteristic p, it follows that 

K2 (A) ~ D ~ ~p where D is the group given in 11 (v) and ~p is the 

p-component of the roots of unity in F. 

Let A be a discrete valuation ring with finite residue field 

of characteristic p and whose maximal ideal P is generated by 

the element ~. Write p w~e for some w e A* (let e = oo in 

case A has characteristic p). Then K2 (A/Pm) is a cyclic p-group 

of order pt where 

t=[: --T-r] [O,r] 

with pr denoting the order of the p-component of the roots of unity 

in the completion of A in the P-adic topology [27, Theorem 4.3]. 

(For any real number x and any integer r ~ 0, [x][O,r] denotes 

the nearest integer in the interval [O,r] to the largest integer 

~ x.) Moreover, K2 (A/Pm) is generated by any symbol of the form 

where .t, = ~ and 
p-1 

u 

[ -!.-1} l+u~, 1+~ 

is any unit of A 

solution z to the congruence 

u = wz + zP mod P. 

for which there is no 

In particular, any finite local principal ideal ring is the homomorphic 

image of a discrete valuation ring in a local field [27, §4] and hence 

its K2 can be computed by the above formula. For example, if 
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Wm(Eq) denotes the ring of Witt vectors of length m over !q' q pn, 

then 

(i) K2 (!q [X]/ (Xm)) 1 for all m~ 1 

(ii) K2 (Wm (£'q)) 1 if p is odd or if m= 1 

(iii) K2 (W (F )) = Z/2Z 
m •q ....., """ if p 2 and m~ 2. 

13. K2 for some radical ideals. 

Let A be a commutative ring and let A[e], e2 
= 0, denote 

the dual numbers over A. Then Van der Kallen [105] has given a 

presentation for the kernel of the map K2 (A[e]) ~ K2 (A) induced 

by E ~ 0. If 2 is an invertible eiement of A, then this kernel 

is isomorphic to the module of absolute differentials OA/~ (see [105] 

for a presentation in the general case). It should be noted that 

Van der Kallen's generators and relations are special consequences 

of those given in 9 above. 

Using Van der Kallen 1 s result together with a result of Stein 

(see 10 (b) above), it is possible to compute K2 of some other 

rings. For example, if F is a perfect field of characteristic 

p) 0 (including p = 2), then 

where F+ denotes the additive group of F. It then follows that 

k 
K2 (F[X1 , ... ,Xm]/(XiXji all i,j)) ~ K2 (F) ~ (F+) 

where k is the binomial coefficient (~) It should be noted that 

the generators not coming from K2 (F) are of the form [l+Xi,l+uXj}, 

i I j, u E F. If u I 0, these generators are non-trivial. Taking 

F a finite field, this answers a question of Swan [lOO, the end of §6]. 

14. Stability results. 

We now make a list of some of the properties of the groups K2 (n,R) 
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and St(n,R) and describe how they vary with n. 

(a) H1 (st(n,R)) is trivial if n ~ 3 or if n = 2 and the 

elements 2 u -1, u € R*, generate the unit ideal [88, (4.4)]. 

(b) is trivial if n ~ 5; if n = 4 2 and u -1, 

u € R*, generate the unit ideal; or if n = 2, 3 and R is a K 

algebra over a field K such that card(K) ) 5, card (K) ~ 9 

[88, (5.3) and following remarks]. 

(c) If R is a ring which satisfies the stable range condition SRm 

(see H. Bass, Algebraic K-Theory, p. 231), then 

(i) The homomorphisms K2 (n,R) -----==- K2 (nt-l,R) are surjective 

for all n ~ mt-1, 

(ii) K2 (n,R) is in the center of St(n,R) for all n ~ mt-2, 

(iii) The central extension 

1 ___,.... (n,R) ~ St(n,R) ~ E(n,R) ~ 1 

is a universal central extension for all n ~ max(mt-2,5), 

(iv) K2 (n,R) ~ H2 (E(n,R)) for all n ~ max(m+2,5). 

These results can be strengthened under special hypotheses on R 

(see [24), [25) and 15 below). These maps are known to be isomorphisms 

in only a few cases: 

(i) R=~ and n~ 3 [69, §lO). 

(ii) R is a field and n~3 (see 11 above). 

(iii) R is a discrete valuation ring or a homomorphic image 

thereof and n~3 (see 12 above). 

(iv) R is any semi-simple artinian ring or the polynomial ring 

in one indeterminant over such and n ~ 3 (see [24) and [25)). 

(v) A few other simple cases can be derived from Van der Kallen's 
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* 

Variations on Milnor's Computation of K2 ~ 
* J. E. Humphreys 

Milnor's computation of K2 Z [4, §10) yields an explicit finite 

presentation of SL(n,Z), n ~ 2. (Z denotes the rational integers, 

R the field of real numbers.) The method,based on a lemma of 

Silvester, involves finding the kernel of the c-anonical map 

St(n,Z) + SL(n,Z), where St(n,Z) is the Steinberg group. This is 

simpler than the earlier approach of Nielsen and Magnus [2], although 

the ideas are similar. The kernel in question is z (resp; Z/2Z) when 

n = 2 (resp. n > 2), and in fact arises from the restriction to 

SL(n,Z) of the universal topological covering St(n,R) + SL(n,R). 

In this note we sketch an analogous argument for arbitrary 

Chevalley groups other than G2 ; full details will appear elsewhere. 

In the case of Siegel's modular group Sp(2n,Z) (n ~ 2), the result 

is simpler than those obtained by Klingen and by Birman [1) (moreover, 

the latter author has pointed out that [1] rests in part on an erron-

eous argument in one of her sources). 

G will denote a simply connected Chevalley group scheme over Z 

of simple type, ~its (irreducible) root system (e.g., G SLn). For 

background material consult [5, §3] and [3, No. 2]. If A is any 

commutative ring with 1, E{~,A) denotes the elementary subgroup of 

G(A), generated by unipotents ea(t) (a E ~, tEA). When A= z or 

A= field, it is known that E{~,A) = G{A) {cf. [3, Thm. 12.7)). Let 

St{~,A) be the Steinberg group, generated by elements xa(t) (a E ~, 

tEA), subject to the usual relations, and let rrA: St(~,A) + E(~,A) 

be the canonical epimorphism. 

Theorem. Let ~ be not of type G2 . Ker rrz is central in 

4 St{~,Z), and is generated by the symbol {-1,-1} = (xa(l)x_a(-l)xa(l)) , 

Research supported by NSF-GP-28536. 
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where a is any fixed long root. Moreover, Ker nz = Z (resp. Z/2Z} 

when ~ is of symplectic type C£ , £ > 1 (resp. when ~ is non

symplectic) • 

Corollary. Let rank ~ > 2. Then G(Z} is generated by the 

ea (1} (a E ~} subject only to the commutator relations [5, (3. 7)] 

and the relation (e (1} e {1)-l e (1)) 4 = 1, a any fixed long root. a -a a 

{For ~ of type G2 , this is probably true, but some details 

remain to be checked.} 

As in the special case G SLn , the proof amounts to showing 

that the middle vertical arrow in the following diagram is injective: 

1 + Ker rrR + St{~,R) 

t t 
1 + Ker nz + St(~,Z) 

+ G(R) + 1 

t 

+ G{Z) + 1 

This in turn rests upon showing that Ker nz comes from the (general

ized) Weyl group, as Ker rrR does. Denote by W the subgroup of 

St(~,Z) generated by the elements xa{l) x_a(-1) xa(l) (a E ~). 

The proof of the theorem involves a reduction of rank, as 

follows. G has at least one "basic representation" [3, No. 2] (which 

in the case G SLn can be taken to be the standard representation) , 

containing an "admissible" lattice L on which G(Z) acts. Since the 

nonzero weights all occur with multiplicity one, there is an almost 

canonical basis for L, relative to which the action of ea(t) (t E Z) 

can be described very explicitly. Let the first basis vector v+ be 

of highest weight. The stabilizer of the line through v+ is a para

bolic subgroup P = (G
1
H)•U of G, with unipotent radical U, reductive 

part G'H, and semisimple part G'. The basic representation can be 

chosen so that G' is again of simple type (i.e., has irreducible root 

system~·), e.g., for G = SLn , G' = SLn-l· Since G' is in any case 

simply connected and of smaller rank than G, induction can be used, 
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starting either with the trivial group (rank 0) or the known case 

(rank 1). 

The action of G(Z) on L (written on the right for convenience) 

induces an action of St(<l>,Z), via 11Z. For v E L, let llvll be the sum 

of absolute values of the coordinates of v relative to our chosen 

basis, e.g., llv+ll = 1. Then the key lemma (analogous to Silvester's 

lemma [4, 10.6]) is the following: 

Lemma. Each g E St(<l>,Z) can be written as g 1 ···grw , where 

wE W, each gi is a generator xa(~ 1), 
+ + 

and llv ·g1 11 < llv ·g
1

g 2 11 

< < llv+·g ···g 11. 
- 1 r 

We apply this lemma to an element g E Ker 11Z , for which all 

terms become equal to 1 = llv+·gll. By further manipulation (using 

commutator relations) g can be forced, modulo a factor in W n Ker 11Z , 

into the canonical image of St(<l>' ,Z) in St(<l>,Z), where by induction 

we have an element of the image of the analogous group W', which in 

turn lies in W. From this we obtain Ker 11z c W; in particular, Ker 11z 

is central. The proof is now easily completed by means of [3, Thm. 

6. 3]. 

Problems. (1) Devise a more conceptual proof that the canoni-

cal map St(<l>,Z) ~ St(<l>,R) is injective. 

(2) Treat rings of algebraic integers other than Z. The fact 

(observed by Dennis and Stein) that K2 of such a ring need not be 

generated by symbols seems to present a serious obstacle. 

Remark. After formulating the above approach I learned of the 

1966 U.C.L.A. thesis written by W. P. Wardlaw, "Defining relations for 

integrally parametrized Chevalley groups," in which essentially the 

same presentations are obtained (in cases other than G2 ). However, in 

treating types B, C, F 4 , Wardlaw first reduces the problem to Sp(4,Z) 

and then appeals to the same faulty reference used by Birman [1]. 
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DECOMPOSITION FORMULA OF LAURENT EXTENSION 

IN ALGEBRAIC K-THEORY AND THE ROLE OF 

CODIMENSION 1 SUBMANIFOLD IN TOPOLOGY 

Wu-chung Hsiang 

Fine Hall 
Princeton University 

Princeton, N. J. 

r. Introduction. Let ~ be a ring with 1 . K ~ (n E Z) 
n 

was introduced in 

[1] [9] [16]. Suppose that t is an indeterminate. We have the ring of finite 

Laurent series ~ [t,t -ll Following [1] [10] [21], we have the decomposition 

formula (l) 

(1) KIll. [t,t-l] = KIll. + K l~ + Nil ll\. 
n n n- n 

K Ill. 
n-s 

is naturally embedded in as a direct summand and 

the original definition of K_s~' s=l,2 .... was gotten from this embedding [1]. 

Now, suppose that ~= zn
1

Mm with Mm a manifold. Let denote the 

circle and let ~ [t,t-1 ] be identified as identified to 

a preferred generator of There are geometric interpretations for K~ 
n 

for n=O, 1,2 [22] [14] [11] and there is also a geometric interpretation of the 

decomposition formula (1) for n=l [7]. 

In the first part( 2 ) of the note, we shall give a description of Nil2~ 
and identify this description with the geometric obstruction to a codim 1 isotopy 

problem. We recast a geometric version of a Quillen's theorem that Nil2A = 0 

for A left regular [17]. 
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-2-

In the second part, we discuss some joint work with Douglas R. Anderson( 3). 

Let X = SsMm be the s-fold suspension of a closed 

/1) s m s-1 
is not a homology sphere. Let v\ = s M -s 

manifold Mm (m~5) such that 

;}= ss-l be the regular 

set and the singular set respectively. suppose that ,
1
,,2 are two triangulations 

of X such that the induced triangulations on {J2 and !!{ are combinatorial. 

Let f:X ~X be a homeomorphism of X onto itself. We say that f is an 'isotopic 

isomorphism' from 'l to ,
2 

if f is (topologically) isotopic to a PL homeo-

morphism g We shall describe sequences of elements in 

K-£+1.!!!. I ••••••••••••••• ,Kll'A (Q,=t, t-1, ••• ,1, and t~s-1) 

as different level of obstructions to 'isotopic isomorphLsm'. In particular, if 

m 
~1M is a torsion-free solvable group, then Hauptvermutung for X is practically 

true. Roughly speaking, we view , T
2 

as combinatorial compa~ification of 

Rs x Mm and these sequences of elements are different level of obstructions to 

make f isotopically isomorphic when we add different pieces of 
s-1 s to 

The order of the sequence will exactly correspond to the iterated formula of (1) as 

we adjoin the indeterminates I • • • • • ,t_\', This result gives an explanation of 

the counter-examples to Hauptvermutung [15] [20]. 

IL Nil
2

lll. and Codim 1 Isotopy. 

In this section, we shall give an algebraic description of Nil2lll. and 

interpret it as the obstruction to a codim 1 isotopy problem. Let us first define 

a category \h_ il
2

J&. Let c~l) , c!2 ) be two chain complexes and let 

f:c!i) ~ c!2 ) be a degree-! chain map. We can form the mapping cylinder of f 

[4,p.l59] M(f) with M(f)i 

Suppose that --> c(i+ll 
* 

(i=O, 1, ••• , N-1) are degree 
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-1 chain maps with f(i+l). f(i) 0 In an obvious way, we can form the mapping 

tower M:M(f(o>, .•• , f(N-l)) 

over A 

An object in v~il2~ is an acyclic finite dimensional free chain complex 

d --> d 
• · • • --> Cl --> C

0 
--> 0 

satisfying the following conditions: 

(A) There is a filtration of subcomplexes 

0 C c(o) C 
* 

c c<Nl C 
* 

c<N+ll 
* 

(2) such that both c<i-1) 
* 

and (i=l, .•• ,N+l) are free 

chain complexes over l'A • 

(B) There are degree-1 chain maps 

f (il .. c<il --> c<i+ll (' ll * * ~=O, ... ,N-

such that f(i-H) • f(i) = 0 and the mapping tower M is acyclic. 

We can define morphisms and exact sequences in "fL i1
2

l'A in the usual way. A 'trivial 

object' in Cf( i1
2

1A is a chain complex 

(3) 

0 --> C fl! ___£____> C ~ l'A n --> 0 
2 ~ 2-1 

with 0 c 0 c 
c 

c 
(N+l) 

c* 

and f(j) = 0 (j=O, ••• ,N-1) 

An 'elementary object' in1til
2

1A is a chain complex 

o --> c(i+ll 
2+1 

c (i+2) ~ AA. 
2 

at 

~lA __ d_> c<il ~ 
fl! 2 
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d 
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~ 
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satisfying the following conditions: 

(A) 0 c 0 c c c(i+ll = {c(i+ll 
* g,+l 

(4) c(il e c(i+l) c(i+l)} C (i+2) 
= c* c c(i+3) C ..•. 

2 2 1 2-1 c* * 

c c(N) c (N+l) 
c* * c* 

(B) f (j) 0 for j 'f i and 

f (i) c(i) 2! 
::, c(i+l) 2! 

£ 
11\.----> 

£-1 11\. 

Let us denote the Grothendieck group of the isomorphism classes of the 

objects of1lil
2

ll\. with respect to the exact sequences modulo the subgroup 

generated by trivial objects and elementary objects by Nil 
2

11\. 

Theorem 2.1 ~ 11\. Zn be the integral ~roup ring of a finitely 

presented group n Then, 

(A) 
-1 

K
2

ll\. [t,t ] 

(B) for lA is (left) regular, Nil
2

ll\. = 0 [17] 

In particular, if 11\. z (Z 
2 

x n 3) , then Nil 
2 

(11\.) is not finitely generated. 
p 

Actually, we do not need the assumption that & is a group ring at all, 

but since we are only interested in the geometric interpretations of Theorem 2.1, 

we leave it in. Let us now consider an orientable closed manifold Mm (m~5) with 

Identify 

is a preferrred generator of n
1

s 1 ( 

-1 
interpretation of K

2
2A [t,t ] For 

the circle) with lA[t,t-1] such that t 

m l n
1

M x S Let us now follow the geometric 

-1 
t; t: K2A [t,t J , there is a generic map 

x s1 
x I x I --"-F--e,. I x I 
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satisfying the following conditions: 

(A) FIMm x S' x 3(I x !) has no critical point. 

(5) (B) FjMm x S' x 0 x I is the standard projection onto the last factor. 

(C) The graphic of F has no vertical tangent. 

We refer to [11] for details. F determines a pseudo-isotopy 

(6) f : ~ X Sl X I ---> ~ X X I 

id f induces a psuedo-isotopy of a codim l embedding 

(7) X I 

with giMm x p
0 

x 0 ; id where p
0 

denotes the base point of s 1 Then, the 

component n of E; in Nil2""· of the decomposition (l) has the following 

geometric interpretation: With possibly adding a second obstruction which is of 

order 2 (12], n is the obstruction to finding an embedding 

(8) X I 

isotopic to g of (7) such that 

(9) 

For such an embedding g , the corresponding object n s crcil2& 

(i.e., n is a representative of n) may be constructed as follows. Let 

(10) q : Mm x R x I ------> Mm x X I 

be the infinitely cyclic covering space of Mm X sl X I corresponding to the 

subgroup 1Tl z.F of m 1 
such that Mm x I is lifted to Mm x 0 X 1TlM X s po X 

Let us lift g(Mm X PO X I) into Mm X R X I such that 

I 

and g(Mm X p X I) () Mn X (0,1) X I f <j> 
0 

where t denotes the preferred generator of the covering transformation of (10) • 
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There is a large positive integer N such that tNg(Mm x p x I) ( Mm x (0,"') x I 
0 

but tN-lg(Jl x p X I) ([ Mm X (O,oo) X I Let 
0 

(11) Li = (~ X [O,oo] x I) () (tif (~ x (-oo,O] x I) 

for i 0,1, ••• , N (See Figure 1.) 

Figure 1. 

put 

(12) 

R = (L - tL ) V ~ X 0 X I 
N N N-1 

R = ~ X [0,1] X I 
N+l 

Let us now consider the chain complex 

(13) 

with the filtration 

{14) 

i = 0, .•.. , N+l (The chain complexes are gotten from the handles on Mm x 0 x I) • 
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Let us consider the composite map 

c<il t* 

(15) f(i) : 
* c* (Ri' M X 0 X I ill.) ~ 

~ 

c* (tRi' M X 1 X I ill.) ~ 

C*{Ri+l' M X 0 X I lA) 

i = O, .•• ,N-1 It is easy to see that the mapping tower is acyclic. Therefore, 

it is an object~ of 1( il
2

1A The trivial object is essentially represented by 

an h-cobordism on M x 0 x I inside of M x [0,1) x I The geometric model of 

an elementary object may be described as follows. Add a complementary pair of 

handles h(i+l) ' h (i) to Mm x 0 x I Drag h(i+l) in the direction of t 

and let it go across M x 1 xI such that the tip of h(i+l) is trivially embedded 

in a ball contained in the translated region of the cobordism. (See Figure 2). 

---~ 
t 

Figure 2. 

Using these geometric interpretations, we see that different representatives of n 

are gotten from isotopies of g with possibly adding elements of second ob-

structions of [12]. From these observations, we may deduce (A) of Theorem 2.1. 

Let us now indicate a geometric proof of (B) of Theorem 2.1. We can use 

the geometric models for trivial objects and elementary objects to perform isotopy 

of g After a finite number such isotopies with possibly adding second ob-

structions of [12], we may assume that Ri is gotten from Ri-l by adding k-1 

k , k+l handles. We may assume that 3 < k-1 and k+l << m/2 without loss of 

generality. We can actually write 
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(i=l, ••• ,N+l) where T. is a codim 1 submanifold of ~ x [0,1) x I separating 
~ 

(17) 

Put 

(18) 

from S. 
~ 

Set S R 
0 0 

R. s 
~ 

D(i) 
* 

E(i) 
* 

0 

We have 

UT sl UT s2 u .... 
1 2 

C*(Si s. n Mm X 0 X I 
~ 

C*(Ti T. n ~X 0 X I 
~ 

There are monomorphic chain mappings 

(i) (i) (i) 
p E* --> D* 

(19) 

>. (i) (i) (i-1) 
E* --> D* 

uT. S. 
~ 

~ 

11\ 

lA) 

We can use (i) 
p and '- (i) to form the Meyer-Vietoris sum of of degree 0 

0
(i-l) 

* 
and in the usual way, and becomes the repeated Meyer-Vietoris 

sum of 
(0) (i) 

D* I ••• • ,D* along 
(1) (i) 

E* , .••. ,E* • Under the assumption 3 < k-1 

k + 1 << m/2 , we may assume that the homomorphisms 

(20) 

(i=O, ••• ,N) 

(i) 
).1 

V 
(i) 

are monomorphic for 

--> H. (C~i-1)) 
J 

H (D(i) __ > H. (C;i)) 
j * J 

< m/2 where (i) (i) 
).1 'V 

inclusions. After some diagram chasing, we find that 

(A) H. (D~i)) 
J 

0 for m/2 > j f k-l,k 

where 0 < i < N and 3 ~ k-1, k+l << m/2 

(B) H (D(N)) 
k * 
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Let us now consider the following inclusion 

(22) K(i,j) ·. D(i) __ ~ (i) Ell tD(i-1) ti-jD(j) 
* / D* * Ell ...• Ell * 

(j < i) where o!i) Ell .... Ell ti-jo!j) denotes a suitable mapping tower which may 

be identified with the chain complex of 

(23) 
i-j m 

(Si U tSi-l U •••• U t Sj , Si (\ M X 0 X I). 

Consider the filtration 

(24) 0 ( ker K(i,i-l)( .... ( ker K(i,j) ( 

We can use the geometric model of the elementary object to exchange cycles 

of 
(i-1) 

D* to The effect is killing some element of ker K(i,i-l) at 

the expenses of possibly creating elements in and 
(i-1) 

Hk+l (D* ) . When 

we apply this procedure successively and carefully and denote the new chain 

complexes by 

(A) 

(B) 

(i) 
D' * , we would have 

where 0 < i < N 

H (D' (O)) 
k * 0 

for i > j + k,k+l 

and H (D' (N)) 
k+l * 

0 

(C) There is a filtrated free modules 

(25) 
0 ( F(i,i-1 ) ( ( F(i,j)( ... ( F 

with F(i,j) /F(i,j- 1 ) free and there are short exact sequences 
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0 0 0 

1 l l 
0 c Ker K' (i,i-1) (. ... ( Ker K'(i,j) ( •••• ( H (D' (i)) 

k * 
l l l 

0 c F(i,i-1) c .... c F(i,j) c ...... c F 

J l l 
0 c Ker K(i,i-1) (. ... ( Ker K(i,j) (. • .. • ( H (D(i)) 

k-1 * 
! l 1 
0 0 0 

where K' (i,j) is defined as K(i,j) Next, we observe that we may 

move the indices k , k+l back to k-1 , k with all the properties of (25) 

retained. 

Since !r. is (left) regular, we can finally eliminate all H (D(i)) 
* * 

Modifying by 'trivial objects' , we would have (B) of Theorem 2.1. 

Let us now indicate a geometric construction of the embedding 

C -1 
Nil2A Nil2!Jl. [t,t ] (It was pointed out to me by A. Hatcher that one can 

construct Nil.A ( Nil, 
1

JA [t,t-1] directly from [10]). Let !; be an element 
~ ~+ 

Following [10] [21], 

and let us denote its 

image by Using , there is a pseudo-isopotopy on such that 

are identified to the preferred generators of respectively. 

Using the geometric interpretation of Nil2 at the beginning of this section and the 

interpretation of Nil
1

[7], we see that !; has non-trivial component in 

By [3], lA is not generally 

finitely generated for 1& (commutative) Noetherian and lA = Z (2Z 2 x 2Z 
3

) (p odd) 
p 

is such an example. 
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I II • _K _ i::lli::___:a::nc::d=-o=b=s~t:=r~u::c::.:t=:~=:· o::n=s--.::t:::o:....!H.::a::.:u~p~t=v.::e;::r.::mo.::u::t::cu~n:!:g~o=f~i:..:t::e::;r::.:a=.t=.e=dc.....::s:.::u:,::s:.~P;:;e~n.!!s::~=.· o=n:::s:.....::o~f:......:a=. 

manifold. 

In this section, we shall discuss some joint work with Douglas R. Anderson. 

Let ~(m > 5) be a closed manifold which is not a homology sphere. Let X = SsMm 

Then, X is a topological (m ~ 5, s f 5) be the s-fold suspension of Mm 

stratified space with 2 strata : ~ = ss-l is the singular set and a s-1 = X - S 

is the regular set. For any triangulation of X 

it also induces an infinite triangulation on Of 
~ is always a subcomplex and 

We say that a triangulation 

T on X is 'admissible' if the induced triangulations of T on~ and ff are 

combinatorial. We shall only consider admissible triangulations and when we say 

'triangulation' we shall always mean 'admissible triangulation'. Let be 

two triangulations of X and let 

(26) f X---> X 

be a homeomorphism of X onto itself. We say that f is an 'isotopic isomorphism' 

from to if f is topologically isotopic to a PL homeomorphism g from 

to , i.e. g is an isomorphism from a subdivision of T , to a sub-

division of The obvious necessary conditions for f to be an 'isotopic 

isomorphism' are: 

(27) 
(A) The induced triangulations T I J) , T I-;) are isotopically 

1 2 

isomorphic. Since s + 5, this is always true. 

(B) The induced triangulations T
1
1 0(, T

2
1tl are E-isotopic. According 

to Kirby-Siebenmann, this depends on an obstruction in H
3 0f ;Z2) . 

We shall always assume that the obstruction of (27,B) vanishes. By (27,A), 

we shall also assume that f identifies the triangulation of I 
s-1 

Tl S with that 

of where 
s-1 'C> 

S = ..) , and f is PL from the induced (infinite) tri-

angulation T 1 1 J1. to that of T 
2

1 f.{ For notational simplicity, we shall 
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assume that T.lss-l t · 1 t d · ub · d f · 1' 
1 are r1angu a e 1nto c es 1nstea o s1mp 1ces. We shall 

study the obstructions to extending f to a isotopically isomorphic PL homeo

morphism of f I elL to ut_ U { 0 s-l} U • • • • u { 0 9.} assuming that we have the 

extension to f{u {Os-l} u .... u {DR-+l} where Di denotes an ith 

dimensional cube in the triangulation T
1

/ss So, the obstructions may 

be viewed as the obstacles to making f compatible with the fitting in of the 

cubes according to the triangulations Tl and T
2 

We shall discuss the 

obstruction to extending fl <1[ to Vi u { os-l} with a little detail but only 

sketch briefly the obstruction to extending f /Of U { 0 s-l} U . • • { 0 H 
1 } to 

We shall publish a detailed proof with further 

results in this direction on a future occasion. 

O s-1 
Let be a cube of the top dimension of the triangulation 

I 
s-1 

Tl S 

I X 
1 

in I. 
1 

I 
s-1 

'2 s 

X I 
s-1 

by t. 
1 

in 

t. = o of Rs-l 
1 

Let us first identify 
s-1 with the standard cube 

Rs-l with ri = [-1, 1] (i=l, ..• ,s-1) 

Let us consider the hyperplanes defined by 

D s-1 
These hyperplanes together cut Int 

Denote 

t. 
1 

the variable 

£ 1 I . and 
j=l 2] 

into a lattice. 

(See Figure 3 for s-1 = 2). 

0 

Figure 3 
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standard We next identify the induced lattice structure of Int 0 s-l 

lattice structure of Rs-l by making to hyperplane defined by 

with the 
se 

t. = L: 
~ j=l 

corresponding to the standard hyperplane (t1 , ••• ,ti_1 ,2,ti+l'"""'ts-l) and the 

hyperplane t. 
~ 

0 to itself. Let be spindle neighborhoods of 

with respect to the triangulations ,
1 

, ,
2 

respectively. There are natural 

projections 

(28) 

N ---> os-1 p2 : 2 

gotten from 'l , T
2 

respectively. Let us call the inverse images of the hyper-

planes in O s-1 
hyperplanes in N

1 
, N

2 
and denote the inverse image of the 

hyperplane corresponding to 

(j=l,2) where M~(j=1,2) 
J 

t. 
~ 

. s-1 
(~=l, ... ,s-1) of R by 

denotes the link of in T. (j=l,2) 
J 

and the positive direction of R
1 corresponds to the compactification 

by See Figure 4 for s-1 1). 

Figure 4 

respectively, 

of I( 

D s-1 
We can also give sequences of hyperplanes in Nj (j=1,2) parallel to 

corresponding to See Figure 5 for s-1 • 1). 

320 



-14-

Figure 5 

Using these hyperplanes, we have sequences of spindle neighborhoods with respect to 

T. (i=l,2) 
l. 

(29) 

such that N~ ::> N~ for 
l. l. 

j < k , N. 
l. 

N~ 
l. 

(i=l,2) 

Using the fact that fl Jl is E-isotopic to a PL homeomorphism, we may assume 

that 

(A) fiJl is PL (with respect to the induced infinite triangulations 

T
1

1 d} and -r)l\ ) 

(30) (B) 
i i i+l '+l 

.•.... N2 c f(N1 ) c N
2 

c f(N~ ) c ..... . 

t. 1''' .,t 1) c l.+ s-

for < 9, < oo 

Let us now consider the opposite sides of os-1 as pairs of ideal points 

E (t
1

, .. , 1 ,'IP',ti+l' · · • ,ts-1) and E (tl, • • • ,-oo, • • • ,ts-1) There are (s-1) 

such pairs. There is also a pair E+' E corresponding to the direction 
1 

of R 
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D s-1 the compactification by and the sequence of embeddings of (30,B). 

Let us now apply the operation of "gluing" to these pairs of ideal points 

[19] [5]. We see that N~ (i=l,2) are glued together to give us manifolds PL 
1 

homeomorphic to (i=l,2 and j=l,2, ••••• ) By (30,B), 

f induces PL embeddings 

( ~ x Ts-l x (j ,oo) ( f (~ x Ts-l x (j ,"')) 

(31) C Mm x s-1 ( l T X (j+l,oo) m s-1 f (Ml X T x (j+l ,oo)) 

c 
for j=l,2, .•. , and the embeddings are proper in the direction toward So we 

have an h-cobordism 

(32) (Wj; M~ x Ts-l x (j4), f(M~ x Ts-l x (j+l4)) for j=l,2 ..•. 

The hyperplanes of (30,C) are glued together to become codimension l subtori of 

Their intersections give us 

nests of codim l subtori in M~ x Ts-l x (j4) and f(M~ x (j+l4) respectively. 

When we take a finite cover of Wj corresponding to a normal subgroup of n1wj 

which contains n 1~ = n1 (f(~)) , the nests of subtori lift to nests of subtori 

in the covering It is not all that difficult to see that the PL homeomorphism 

ltP ;0 u os-1 f vl may be isotopically extended to a PL homeomorp hism to L'l if 

and only if there is a finite cover of the above such that the lifted h-cobordism 

becomes an s-cobordism. 

Let us now recall the fundamental decomposition formula of [l,Chap.XII] • 

Set We have 

(33) 
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mod Nil groups 

t. means 'applying the projection operator L of [1] in the 
~2 

directions t. , ..• ,t. successively' 
~1 ~JI, 

If we consider Wh1 as a quotient 

group K
1 

, we have a decomposition formula corresponding to (33). But we shall 

abuse our language for simplicity and consider K
1 

as Wh
1 

Let us observe 

that are all equal for j=l,2, •.. Denote it by 

T(W), and decompose into the components 

(34) 

s-1 
a' + L 

i=l 
t.a~ + .... 
~ ~ 

s-1 
+ I 
il, •.• ,iJI, 

t ..... t. 
~1 ~JI, 

il+i2+· ·+iJI, 

according to (33). For different cubes of the top dimension, we take disjoint 

spindle neighborhoods and apply our procedure separately. The obstructions to 

extending to these different cubes are not independent, but actually satisfy a 

'cycle condition'. 

Now, suppose that we have extended our PL homeomorphism to 

(35) 

Let DJ/, 
be an Jl,-dim cube in We can find relative spindle neighbor-

hoods of DJ/, 
with respect to T

1 
, T

2 
and apply a relative version of the 

above construction. Then we may use a decomposition formula 

Jl, 

(36) K1A + iil ti K
0
A+ ....•.. + t 1 ..•. tJI, K-JI,+lA 

mod Nil groups 
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of [1, Chap.XII] again such that the total obstruction to extending f to 

(37) Jf2 os-1 09.+1 uLU{ }U .••• u{ }U 

isotopically is an element 

(38) 

corresponding to (37). For different 9.-dim cubes, the obstruction is again 

related by a 'cycle condition'. Let us summarize it into the following theorem. 

Theorem 3.1 Let T
1 

, T
2 

be two (admissible)triangulations of X and let 

f : X --> X be a homeomorphism of X onto itself such that f 1jf is a properly 

isotopic isomorJ2hism of T 1 1~ to T2ldt SUl2J20Se that f extends to an 

isotopic isomorEhism from T 
1

1 rJ\ U { D s-1} u e •• • u { DHl} to 

T21 ~ u { os-1} u .... u {OHl} Let 09, be an 9.-dim cube of s s-1 

Then, the obstruction to extending f to an isotopic isomorEhism to 

lP os-1 09.+1 vlu{ }u .... u{ }U 

is an element of the form of (38) in the decomposition (37). (Moreover, the 

obstructions to extending to different 9.-dim cubes satisfy a 'cycle condition'). 

Following from (6], we have the following corollary. 

Corollary 3.2 Suppose that is a torsion-free solvable grou.12. Let 

T
1 

, T
2 

be two (admissible) triangulations of X , and let f : X--> be a 

homeomorphism. Then, the only obstruction to making of f isotopically isomorphic 

lies in H
3 (~ ;Z

2
) 
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Footnotes 

(1) For n=l, we actually have '1 '1+ '1 Nl. 1 ~ = Nl. llil. E9 Nl. llil. with 

See [1] [6] for details. Cf. Theorem 2. 1. 

(2) I am grateful to R. Sharpe for many useful discussions about this part of 

the paper. 

(3) We are grateful to R. Edwards for many useful discussions about this part of 

the paper. 
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Pseudo-Isotopy and K2 

Allen E. Hatcher 

This paper is a brief expository account of an application of the 

functor K2 to a problem in differential topology, the so-called pseudo

isotopy problem. In fact, with a little hindsight one can see that the 

geometric problem completely determines ~· Attempting to turn hindsight to 

foresight, I propose at the end of the paper a definition of higher K 's 
n 

which may be suitable for higher-order pseudo-isotopy problems. 

Our starting point is the h-cobordism theorem for smooth manifolds. 

Recall that an h-cobordism is a (connected) compact manifold W whose boundary 

is the disjoint union of two closed manifolds M and M' such that each in-

elusion M cW and M' c W is a homotopy equivalence. Thus W looks homo-

topically like the product of M or M' with the closed interval I= [0,1]. 

Recall also the definition of the Whitehead group Wh1 (n1M) as K1~[n1M] 

modulo lX 1 matrices (er) for erE:!::. n1M c:Zl: [n1M]. 

h-Cobordism Theorem. Provided the dimension of W is at least six, W is 

diffeomorphic to M X I if and only if an obstruction ~(W,M) E Wh1 (n1M) 

vanishes. Moreover, for a given M of dimension at least five each 

~ E W~(n1M) is realized as the obstruction ~(W,M) for some h-cobordism w. 
Having settled the existence question for product structures on W, one 

asks about uniqueness: If F1,F2 : W ~M X I are two diffeomorphisms, can 

F1 be isotoped (i.e., connected by a path of such diff'eomorphisms) to F2? 

Since we are not interested in the internal structure of M we may as well assume 

(dif'feomorphisms F: M X I ---;:. M X I 

such that F [M X (0} = identity), the topological group of "pseudo-isoto:pies" 

on M, and the uniqueness problem becomes to compute n0#J(M). 

Pseudo-Isotopy Theorem. There is a homomorphism 
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which is surjective if dim M~ 5 and injective if dim M~ 7· 

To define Wh2(n) for a group .n we use the definition of K~[n) as the 

kernel of the natural map ~:St(Z [n]) --> GL(~[n]) which takes the Steinberg 

generator x~j to the elementary matrix e~j for a E ~[n] and i fo j. In 

St(~[n]) let Wn be the subgroup generated by the words 
-1 a a -cr a 

wij ~ xijx ji x1j,cr E + n. 

Definition. Wh2(n) 

If n is abelian, so that Milnor 's symbol pairing is defined, then K2~[ n) (1 Wn 

is just the subgroup of~~ [n] generated by the symbols (cr,~) for 

cr,'l" E + n. 

Here is a list of computations of~ groups: 

1t ~1t 

0 0 Milnor [Ml] 

free 0 Gersten [Ge] 

free abelian 0 Quill en [Q] 
GX~ Wh2G & Wh1G@ (?) Wagoner (Wl] 

finite finite Garland [Ga], Dennis [D] 

~0 at least 5 elements Milnor [M2] 

Recent work of Dennis and Stein should produce more examples like the last 

one. 

Although the rest of this paper will be about the Wh2 invariant, for 

completeness we will now give the definition of Wh1 ( n1 M;~ 2 X :n:2M) • Let 

the group :n: act on the abelian group r, denoted acr for a Er and cr E :n:. 

In the case at hand 1t :n:1M and r ~ z 2 x :n:2M with the usual action of 

:n:1 on :n:2 and the trivial action on~2 , the integers mod 2. Giving r trivial 

multiplication, form the group ring r[:n:]. This is an ideal in the twisted 

product r[:n:] X~ [:n:), with the twisting given by cr(a~) ~ acrcr'l"· 
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Definition-Corollary. ~(~;r) ~ r[~]/(acr-arrcrr- 1,b·l). Here (x,y,·· ·) 

denotes the additive subgroup generated by the elements x,y, ··· . 

Oddly enough, the ideal r[~] is of the sort concocted by Swan [S] to 

show the failure of excision for the relative K1 functor. Thus 

K1 (r[~] xZ.[l],r[~]) ~ r[~] may not equal K1(r[~] xz.[~],r[~]). 

Remarks. The pseudo-isotopy theorem was proved first when M is simply-connected 

by Cerf [C], who showed in fact that ~0I'(M) = 0 if dim M~ 5 and 

~1M = o. The~ obstruction was discovered independently by J, B. Wagoner 

[W2] and myself [Hl], after which I went on to compute the second obstruction. 

A write-up of the whole theorem will appear in [H-W] and [H2]. For an ex-

position of matters relating to the second obstruction, see [H3]· 

Defining the Wh2 Invariant 

An h-cobordism W is a product M X I if and only if there exists a smooth 

map (W,M,M') ---~ (I,O,l) having no critical points. This functional approach 

carries over to the pseudo-isotopy theorem. Let ~ (smooth maps 

(M X I,M X (O},M X (1)) -~ (I,O,l)} and lete: c :Ji'be the subspace of maps 

with no critical points. It is not hard to see that 

~k-lfP(M) ""~k-l€ ~ ~k(:J',C) fork?_ l. Thus, computing the homotopy groups 

of$)(M) is parametrized h-cobordism theory. 

The main technique for computing ~k(~~), as in so many other places 

in geometric topology, is "transversality" or "general position". One 

approximates a given problem by a "generic" problem, reads off some algebraic 

data from this generic problem, and then factors the data by the generic 

changes which result from passing from one generic approximation to another. 

(For example, an early application of this method was the identification of 

the stable homotopy groups of spheres with framed cobordism.) 

A single function f : W ---~ I is generic if and only if it is a morse 
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function, i.e., has only nondegenerate critical points. With the aid of a 

"gradient-like vector field" for f, the algebraic data one gets from f is a 

certain exact chain complex over~[n],n = n1w = n1M, which is free with a 

(finite) basis in one-to-one correspondence with the critical points of f. 

Moreover, after some preliminary geometric modification of f we can assume 

4. 

that this based exact chain complex is non-zero only in two dimensions i and 

i + l, and hence can be identified with an invertible matrix A over Z[n]. 

To get an invariant of W we must consider a different choice of f. 

This can always be connected to f by a generic path ft' 0 ~ t ~ l, which 

also involves only the two dimensions i and i + l, and so that the associated 

matrix A changes only in the following three ways: 

(l) Left (right) multiplication by an elementary matrix e~k' a~~ n, 

corresponding to a "handle addition", i.e., an isolated trajectory of the 

gradient-like vector field connecting two critical points of dimension i 

(respectively, i+l). 

(2) Stabilizing the standard way A--.;>(~~) , corresponding to the "birth" 

of a complementary pair of nondegenerate critical points of dimension i and 

i + l. 

(3) Destabilizing in a non-standard way by cancelling a row and column of A 

which consist of zeros except for an entry cr € ~ n where the row and column 

meet. This corresponds to the "death" of a critical point pair. 

A convenient way of visualizing a one-parameter family is by its graphic, 

which is the set 
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For example: 
i+l < birth 

i > death 

1 handle addition 
t 

In view of (l) and (2) we should first consider A as lying in 

K1~[n]. Then to account for (3) we should factor out further by matrices 

in PD1t =((permutation) X (diagonal with entries in+ 1t)} <: GL(Z:[1f]). The 

resulting quotient of K1~[1t] is just Wh1(1t), according to (a) of the following 

easy le=a· 

Le=a. (a) PD1t ~(W1t) X (~1t), where (~1t) denotes the set of l X l matrices 

(a) for a E + 1(. 

Thus the class of A in Wh1 (1t) is an invariant of the h-cobordism W. 

This is usually proved by identifying this class with the Whitehead torsion 

of the pair (W,M), which is an invariant of the underlying cell structure of 

W. However, with the present approach we are all set to define the Wh2 

invariant. 

If the generic path ft : M X I -;:> I has f 0 
and f 1 without critical 

points, then the product IT of the elementary matrices in (l) above, taken 

in order as t goes from 0 to 1, is a matrix in PD1f. (We can imagine all the 

stabilizations in (2) as occurring first, before the type (l) changes, and 

all the destabilizations in (3) as occurring last.) Part (b) of the preceding 

le=a implies that such representations of matrices in PD1t as products of 

elementary matrices, modulo the Steinberg relations and multiplication by 
-1 a -a a 

products ejkekj ejk for a E ~ 1!, form the group W~(1f). The element of 

Wh2(1t) determined by the product IT is by definition the Wh2 invariant of ft. 
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To show that this association gives rise to a well-defined map 

n1(~~) ---~ Wh2 (n) we look at a generic deformation of ft through a 

second parameter. Again we can do preliminary geometric work permitting 

us to restrict to critical points of dimension i and i+l throughout the 

two-parameter family, so it suffices to examine the possible changes 

in the product IT. These are of two types. 

(I) The Steinberg relations within rr. These correspond to cancelling or 

introducing a pair of consecutive handle additions (the relation 

6. 

a -a ejkejk ~ 1, which for an integral group ring is the only interesting case 

of the relation e~ke~k e~~b) and permuting two consecutive handle additions 

(the relation for a commutator [e~k,e~] when k I J, or j I m). Actually 

there is another kind of relation coming from an exchange of i/i handle 

additions for i+l/i+l handle additions. To state this for an arbitrary 
b 

ring R with identity, let (aJ.k) ~IT erns € E(R) have an entry atm ~ 0, 
n n n 

and let x € R. 

Lemma (Exchange Relation). The relation 

b 
IT e n 

r s 
n n n 

is a consequence of the Steinberg relations. 

This is a rather interesting relation. Taking (ajk) = I, for example, 

it shows that K2(R) is the center of St(R). Also, the Steinberg commutator 

relations are special cases of the exchange relation. 

(II) Multiplying IT by an element of cp(Wn). This corresponds directly to 

changes in the graphic of ft of the following sort: -- or 

and somewhat less directly to a change: ---------
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The geometric changes in (I) and (II) are the only changes in the 

one-parameter family ft which affect IT in any significant way. So we 

have in fact a well-defined map 1tl ({](,C) -;:> Wh2 (1t). 

Higher Kn's and More Parameters 

7· 

In the preceding, ~ appears as "1t
0

GL" and ~ as "1t1 GL." There is an 

easy way to make this precise which works for any ring R with identity. 

-l ( -l Consider the cover (apTp } of GL R) by cosets apTp where 

a € GL(R), T is the subgroup of (upper) triangular matrices having ones on 

the diagonal, and p ranges over the permutation matrices in GL(R). 

Define a simplicial structure GL(R) on GL(R) by saying that ann-simplex 

of GL(R) is a set of n+l elements of GL(R) lying in one of the cosets 

apTp-
1

. It is not hard to see that 1t0GL(R) ~~Rand 1t1GL(R) ~K2R· 

Tentatively then we make the following: 

Definition. K R = 1t 1GL(R) for n > l. 
n n-

I. A. Volodin [V] has also given a definition of algebraic K-theory 

which seems to be equivalent to this definition But the real precedence 

belongs to Cerf who in [C] considered a space homotopy equivalent to 

GL(Z) (the nerve of the cover (apTp-1}, in fact), although he did not call 

its homotopy groups the K-theory of ~ . For more on this K-theory see the 

paper of Wagoner in these proceedings. 

The definition of GL(R) is based on the behavior of k-parameter families 

of Morse functions f:M X I---;:> I (with gradient-like vector fields) for 

which "all the action is restricted to critical points of a single dimension 

i," for example by the requirement that f(x) equal a constant c. for each 
J 

critical point x of dimension j f i. I would consider the definition of Kn,s 

above less tentative if' dropping this "single dimension" restriction lead 
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8. 

to a space homotopy equivalent to GL(R). One would also like to drop 

the requirement that f have only nondegenerate critical points, since this 

is what must be done to compute nk(~~). This should correspond to 

passing from K*Z[n) to the as yet undefined groups "Wh*(n)." 
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SUSPENSION, AUTOMORPHISMS, AND DIVISION ALGEBRAS 

B. Harris and J. Stasheff 

Brown University, Temple University 

and 

The Institute for Advanced Study 

The Bott suspension map ni{GL(~)/GL(R)) + ni+l(GL(H}/GL(~)) 

and in fact all the suspension isomorphisms leading to the periodicity 

of order 8 in real K-theory can be obtained from the following data: 

let R CS C T be rings, a an automorphism of S which is the 

identity on R and is inner in T: i.e., cr{s) jsj-l for all 

s £ S, where j is an element of T in the centralizer of R. The 

Bott maps use Clifford algebras for R, S, T: for example RC~ CH, 

( ) . .-1 a z = z = JZJ 

For general R, S, T, a one would like to define homomorphisms 

E: Ki(S,R) + Ki+l{T,S), where Ki(S,R) for instance is the (i-1) 

homotopy group of the fibre of the map BGL(R)+ + BGL(S)+ so that 

these groups fit into a long exact sequence: 

We will give a somewhat weaker construction, namely homomorphisms 

Z,q* giving a commutative diagram 

..,. K. (R) + 
1 

such that az = a* - 1 (a the given automorphism). In the first 

part of this paper we construct L and give some examples of its non

triviality. In the second part, which is only rather loosely related 
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to the first, we make some computations involving K2 where R is a 

local field, T a central division algebra over R and S a splitt-

ing field. 

I. Construction of q* and E. 

For any ring R the space BGL(R)+ may be defined as 

QB ( lln BGLn (R)) , where n BGL (R) is a (topological) monoid under n!O n 
the "Whitney sum" operation induced by the inclusions GLm(R) 

denotes classifying space, Q denotes 

loop space. The groups Ki(R) are defined to be Tii(BGL(R)+) for 

i > 0. To define a map of BGL(R)+ it suffices to define a monoid 

homomorphism of 11 BGL (R) 
n n (with respect to the Whitney sum opera-

tion). We may also consider BGLn(R) as the classifying space of a 

category (the group GLn(R)), as in [3]. 

Denote by i the inclusion GLn(S) ~ GLn(T), cr the auto

morphism of GLn(S) induced by that of S, and J conjugation by 

. I 
J n in GLn(T) • We have a commutative diagram 

GLn(S) ~ GLn(T) 

~GLt~T) 
n 

which may be regarded as exhibiting jin as a natural transformation 

between the functors i and icr from GLn(S) to GLn(T). It is 

clear that these functors and transformations preserve Whitney sum. 

According to [3] we thus have an induced homotopy ht: BGLn(S) 

+ BGLn(T) which at t = 0 and t = 1 lies in BGLn(S). Because of 

the proper behavior for Whitney sums we also have a homotopy 

h~: BGL(S)+ + BGL(T)+, which has image in BGL(S)+ at t = 0,1; in 

fact h~ = i+ and hr = i+ocr+ (i+,cr+ induced by i,cr on BGL(S)+). 

Furthermore, the restrictions of to BGL(R)+ are just the 
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map BGL(R)+ + BGL(T}+ induced by the inclusion R + T. However, we 

have not shown that the homotopy is constant on BGL(R)+. We may 

form the space BGL(T}+/BGL(S)+ which fits into the fibration 

sequence 

.+ 
BGL(S)+ ~ BGL(T)+ ~ BGL(T)+/BGL(S)+ -->- B(li BGL (S)) 

n n 

--+ B(il BGL {T}). 
n n 

The homotopy h~ may be multiplied by the map + -1 x 1+ i (x) , as 

BGL(T}+ is an H-space: thus let ~t: BGL(S)+ + BGL(T)+ 

~t (x) h~(x)i+(x)-l 

then ~ 0 is a map into the base point and ~ 1 (x) is the map 

x ~ o+(x)x-l ~ i+(o+(x))i+(x)-1 . ~t gives us a map $: BGL(S)+ 

+ ~(BGL(T)+/BGL(S)+) which composed with the natural map 

is the map previously used by E. Cartan and S. Lang + -1 x 1--+ o {x)x 

BGL(S}+ into itself. ~t restricted to the image of BGL(R)+ de-

of 

fines a map of this space into The map + -1 x ~ cr (x}x 

of BGL{S)+ into itself takes the image of BGL(R)+ into a point and 

further factors through a map q: BGL(S)+/BGL(R)+ + BGL(S)+. (q may 

be described also by saying that a point in BGL{S)+/BGL(R)+ is a 

path w in B ([J BGL (S)) 
n n 

from the base point to a point in 

B(ll BGL (R)) if this latter is regarded as a subspace. Then q(w} n n 
is the closed path consisting of o(w) followed by the inverse of w). 

We now have the needed maps L,q* if we let L on Ki(S) be 

defined by $,and on Ki(R) by ~-
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As the first example consider finite fields 

Frobenius automorphism (J on ~ a (x) = xq. 
qr 

IF C ~ with 
q qr 

Let R = F C S q 

here G is the group generated by a, and F ·G r 
q 

is the "twisted group algebra" {E x·gj x E F , g E G} with multi
qr 

plication defined by gx = g(x) ·g. ~ r·G is a "trivial crossed 
q 

product" and is isomorphic to the ring Mr(Fq) of r x r matrices 

over F . 
q 

The homomorphism may be identified 

with the corestriction or transfer u*: K*(~ r) + K*(F ) , where 
q q 

u: ~ + ~ is the inclusion. The results of Quillen [2] on the q qr 

groups K*(Fq) show that we have exact rows in the diagram: 

0----" K2 1(~ ) n- q 

h 

___. 0 

0 K
2 

l (F ) --> 0 n- q 

Further, from Quillen's computation of the groups and the effect of 

cr*, we deduce that r is surjective and its kernel is Im u*. r 

thus induces an isomorphism E: K2n-l (Fqr'Fq) + K2n(Fq,Fqr) 

discussed in the introduction. 

as 

As another example (discussed in more detail in the second part 

of this paper), let R = F, a local field with residue field ~ and q 
p a prime distinct from the characteristic of F such that p q 
does not divide q - 1. Let r be a positive integer such that p 

divides qr - 1, and let E be the unramified extension of F of 

degree r. E is cyclic Galois over F with generating automorphism 

(J that induces a(x) = xq on F the residue field of 
qr' 

E. 

Finally, let S = E, T = a central division algebra of degree 2 
r 

over F. The groups K2F, K2E are the direct sum of a divisible 
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subgroup and the group of roots of unity ~(F), respectively ~(E). 

Now consider the p-primary subgroup ~(E) (p) 

summand of 

x ..,. xq-l 

K2E. The map o* - 1 on K2E 

on 11 (E) (p) (since (p,q-1) = l.) 

which is a direct 

induces the automorphism 

The factorization 

K
2 

(F) ----+ K
2 

(E) -->- K
2 

(E,F) -->- 0 

""' !E o*-1 !q* 

a~ 
K

3
(D,E)-----+ K

2
(E) 

shows that E maps ~(E) (p) isomorphically onto a direct summand of 

K
3 

(D,E). 

II. K2 of local division algebras. 

Let F be a local field, namely the completion of a global field 

with respect to a discrete valuation. Let D be a finite dimensional 

division algebra over F with center F - in short a central division 

algebra over F (see [4]). It is natural to compare K
2

(D) and 

K2 (F). We prove: 

Theorem. K2D has a direct summand isomorphic to K2F, under the 

following additional assumption: if F has characteristic 0 and 

residual characteristic p and if p divides 2 
[D: F] = n say 

n = pmn', (p,n') = 1 then we assume F contains the (pm)th roots of 

unity and also that if p = 2, F contains the 4th roots of unity. 

Proof. We will make considerable use of the transfer (or corestrict-

ion) homomorphism. Let u: F ~ D be the inclusion, and u* the 

corresponding homomorphism on K
2

. The inclusion v: D ..,. HomF(D,D) 

induces The composite 
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u V: D + Homp(D,D) + HomD(D 0 D, D 0 D) =M 2 (D) induces The 
F F n 

inclusion D + M 2 (D) is by means of the left action of D on the 
n 

right D-module D0 D; however, every 2-sided D module (or D 0 
F 

module) is a direct sum of copies of D, so that D 0 D = D 
n2 as 

F 
D 0 D0 -module, and so D +M 

2
(D) is equivalent to the diagonal 

n 

inclusion. Consequently, u*u* on K2D is multiplication by 

n 2 [D: F). Similarly u*u* on K2F is multiplication by n 2 . 

It is known that K2F = (divisible group) $ 1.1 (F) , 

Do 

I.!(F) =group of roots of unity in F (a finite abelian group). Con

sideration of u*,u* shows easily that the maximal divisible 

subgroups of K2F, K2D are isomorphic and K2D/(Max. div.) is a 

torsion group which differs from K2F/(Max. div.) at most for the 

primes dividing n. 

Next, we consider the class of D in the Brauer group of F: 
ml m 

this is an element of order If r then D 0 Di' n. n "' pl ... Pr 
2m. i=l 

D. central division 
l. 

algebras over F of degrees pi 
l. For each i, 

D = Di 0 Dj_, D! a 
l. 

central division algebra of degree (n!) 2 
l. 

relatively prime to pi. Let wi: Di + D be the inclusion. We 

claim w1wi* on K2 (Di) and wi*wi on K2 (D) are both multiplica

tion by (nil 2 which is prime to pi: in fact wi*w1 is given by 

the inclusions D + Hom
0

. (D,D) + Hom
0

(D 0~ D, D 0~ D). The 2-sided D 
l. l. l. 

module DD~ D 
l. 

'V 
D 0 D' 

F 
is the direct sum of [D': F] copies of 

which proves the statement about wi*wl, and the statement about 

w!wi* is proved in a similar way. 

D, 

Finally, let E be a Galois extension field of F of degree n, 

i: F + E the inclusion. Then i*i* is multiplication by n on 

is L a*, G being the Galois group of E 
OE:G 

over F: this follows from the fact that E 0 E + $ E ( G 
F 

copies 

of E) given by x 0 y 1-->- ( ••• ,o(x)y, .•. ) is an isomorphism of 
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2-sided E-modules, and the corresponding map of E into 

Ho~(E ~ E, E ~E) = Mn(E) is equivalent to x ~diagonal matrix 

{ ••• ,cr(x), ••• ). Suppose now that F C E CD and E is a maximal 

subfield of D; let j: E ~ D be the inclusion. Then the composite 

inclusion E ~ D ~ Ho~(D,D) = Mn(E) is the~ as the one just 

considered above, since D is isomorphic to E ® E 
F 

as 2-sided 

E-module. We thus have a commutative diagram (where NE/F denotes 

K
2

E K
2

D 

i*l \Ej~ lj* 
K 2F 7 K 2E 

We can now proceed to the proof of the theorem. We start by 

considering p-primary components of the groups K2/(Max. div.), which 

we will abbreviate as K2 { )/Div., where p is the residue 

characteristic and F has characteristic 0. By using the transfer 

to a division algebra factor, we may assume n = pm. The isomorphism 

K2F/Div. ~~(F) is given by the norm residue symbol. If E is a 

Galois extension of F, we will need the fact that the following 

diagram commutes if i denotes the inclusion F ~ E, and the vertical 

map is the norm residue symbol: 

.. * 
~*l. 

K2E K2E 

1 NE/F 
l 

~E ~E 

We will assume this (presumably well-known fact) without proof. In 

fact, although we do not need it, the following diagram commutes: 
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·* i* ~ 
K

2 
(E) K

2
F K

2
E 

t t t 
\11E/11F\ cp 

\.lE llF llE 

"---- NE/F 

_/ 

here !11E/11F\ is multiplication by the order of this group, this map 

together with NE/F determining cp. 

We assuming that the p-part of is cyclic of order h are ]lF p , 

h > m, [D: F) p 2m 
and , h > - 2 if p = 2. Let E be obtained from 

F by adjoining the h+m 
roots of unity. It is to show that p easy 

is a cyclic'Kummer extension of F of degree 
m and the p-part of p I 

E 

\l(E) has order m+h p ; if w generates it so that w 
pm 

1;; generates 

the p-part of Jl(F) then the Galois group of E over F has generator, 

h-m 
s, s(w) w~;;P Further NE/F(w) = s if p is odd, -1;; if p = 2. 

Thus on the p-parts, NE/F: (!lE) (p) + (UE) (p) has image (]lF) (p) and 

kernel generated by -1 s(w)w , thus the kernel of 

is the image of s* - 1 on K2E/(div.). Consider now the following 

commutative diagram, in which the rows are exact sequences of the 

pairs (E,F), (D,E): 

K2 (E) - K
2

(E,F) ___,. 0 

d 
"( 

l q* s -1 
*a~ 

j* 
K3 (D,E) K2E 
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We have j*(s*-1) = 0 since s is induced by an inner automorphism 

of D. It follows that j* maps the cokernel of s* - 1 (or of q*) 

isomorphically into K
2

D (considering p-primary parts of the groups 

K2/(Div.)) and j* maps this subgroup isomorphically onto ~(F) {p). 

This gives the desired direct summand in K
2

(D). 

The remaining case, that of p-primary components where p is 

distinct from the residue field characteristic, can be done in a 

similar way but without any assumption on roots of unity. We choose 

E to be the unramified extension of F 2 of degree n, [D: F] = n • 

the residue fields of F,E are 

IF. IF. 
q' n 

q 
such that W

qn-1 /q-l __ 

and [,, are generators of 

r,, the Frobenius automorphism is 

If 

s{w) = wq and N(w) = r,. The rest of the proof is the same as in the 

previous case, completing the proof of the theorem. 

Note that the assumption on roots of unity only was used for 

p-primary components if char. F = 0, residue characteristic p and 

p divides [D: F]. 

The theorem is also valid with D,F replaced by their maximal 

orders 6'
0

, 6'F, since K2 ( 6'F) is the direct summand of K2 (F) 

which is the kernel of the tame symbol, according to a theorem of 

Dennis and Stein. In other words, K
2

{ 6'F) = (Divisible group) 

(~(F)) (p) where p is the residue characteristic. The proof can 

now be extracted from the preceding calculations. 

It should be noted that the direct summand of K2 (D) isomorphic 

to K2 (F) is not necessarily the image of u*: K
2

F + K
2

D: in fact 

this homomorphism can be zero modulo divisible subgroups. 
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The Milnor ring of a global field 

H. Bass and J. Tate 

Introduction 

The Milnor ring K*F = 1l K F of a field F was introduced 
n>O n 

(but not so christened) by Milnor in [BJ. He showed there how 

a discrete valuation v on F with residue class field k(v) 

gives rise to a homomorphism av: K*F ~ K*k(v) of degree -1 of 

graded abelian groups. The basic result proved here is that if 

F is a global field then the kernel of 

K F n 

~ = <o) 
----~ Jl Kn-l k (v) , 

V 

where v ranges over all finite places of F, is a finitely 

generated abelian group. 

This "finiteness theorem" leads to a determination of 

- rl KnF for n ~ 3, viz. KnF = (Z/2Z) , where r
1 

is the number of 

real places of F. The main step in proving this is the deter-

mination of K F = K F/pK F for all primes p and all n ~ 2. 
n/P n n 

If p F char (F} and if F contains the group th 
"'"P of p roots 

of unity then K2/pF is known from results of Tate [14]. From 

this information one can compute K I F for n > 3 by the argument 
np -

reproduced for p = 2 in Milnor [8]. The cases when JJ. ~ F 
p 
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and when p = char(F) are then handled easily with the aid of 

so called "transfer maps," N: K*E ->- K*F defined for finite field 

extensions E/F. These have so far been defined only for Kn 

with n ~ 2. Such transfer maps, with the properties necessary 

for the above arguments, are constructed here for all n ~ 0. 

Concerning the finitely generated group Ker(K
2
F! ilK1k(v)), 

V 

the transfer arguments show that it is finite of order prime 

to p if char(F) = p > 0. Indeed its structure has been 

completely determined in this case by Tate (see [2) and [14]). 

When F is a number field its finiteness follows from results 

of Garland {5] and Dennis [4], and conjectures on its structure 

and order have been formulated by Birch and Tate (cf. (13] 

and [14]). These have been partially confirmed in special cases 

by Coates [3], and spectacularly generalized by Lichtenbaum [7]. 

This paper consists of two chapters, the second one being 

devoted to the finiteness theorem and its applications described 

above. The finiteness theorem for K2 was among the results 

announced in [1) and [13]. 

Chapter I contains some general remarks, partly of an 

expository nature, on the Milnor ring of a general field. Much 

of this is a review and retreatment of material in Milnor [8], 

in particular the construction of the maps o • In iS we use 
V 
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Milnor's description of K*k{t) (a rational function field) 

to construct the transfer maps. Some typical applications of 

them are derived. In an appendix by the second named author, 

Ker(A} is computed for the imaginary quadratic fields of 

discriminants -3, -4, -7, -8, -11, and -15. 
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Chapter I 

Some general remarks on the Mi1nor ring 

il. Definition and first properties of K*F (cf. [8]). 

Let F be a field, and F. its multiplicative group. 

In the tensor algebra T(F•) = lJL Tn(F•) of the 
n>O 

Z-module 

F• we denote the isomorphism F. ~ T1 (;.) by ar+ [a]. If 

~ [ 2 • a r 0,1 then r = a] '-b [1 - a] € T (F ) • a 
The two sided ideal 

R generated by such elements r is graded, and we put 
a 

K*F T(F.)/R = lJL KnF. 
n~O 

The image of [a] € T1 (F.} in K
1

F will be denoted L(a). Thus 

K*F is presented, as a ring, by generators t (a) (a € F.) subject 

to the relations: 

(R
2

) t(a)L(b) =0 if a+b= l. 

The identity -a = (1 - a)/(1 - a-1) implies that 

(1) 

for a ~ 0,1, whence 

for a € F., or, equivalently, 
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(Rj) .t(a)
2 

= .t(a).t(-1) 

The £ormula 

(2) [ab] ® [-ab] ([a]~[-a) + [b]®(-b]) + ([a]®[b} + [b)®[a]) 

then further implies that 

-.t (b) .t {a) • 

Since K1F generates the graded ring K*F it follows ([8], Lemma 

1.1) from (R
4

) that 

Further ([8], Lemma 1.3) we have 

if 1 or 0 

This is established by induction on n, the case n 2 being 

(1.1) Remark. Suppose d: p• ~A is a homomorphism into 

the additive group of a ring A, and we wish to show that d 

induces a homomorphism K*F ~A (.t(a) ~ d(a)). We must verify 

(R
2

) ford, i.e. d(a)d(l-a) = 0 for a~ 0,1. If we know (R
3

) 

for d then, by (1), we see that we are free to replace a by 

-1 a in verifying (R
2
), and also to replace a by 1- a, in 
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view of (R
4
). 

Further, if we have (R
4
), then to verify (R

3
) it suffices, 

by (2), to do so when a ranges over a set of generators of F'. 

Since R is generated by elements r of degree 2, we a 

have R = J1
2 

R with R n n E 
p+q=n-2 

for Tp(F'). It follows that 

"" 
Z ~ K

0
z and .e: F' ~ K

1
F 

are isomorphisms, and that, for n ~ 2, KnF is presented, as 

abelian group, by generators .t(a
1) •.• .e(an) (a

1
, ... ,an E F') 

subject to the relations: 

and 

a multilinear function 

F'x, .. x F' --7' K F1 
n 

for some i < n. 

Thus the homomorphisms from K F to a (multiplicative) 
n 

abelian group C are equivalent to multilinear functions 

f: F'x ••• x F ~ C of n variables on F' such that 

f(a1 , .•• ,an) = 1 if ai + ai+l = 1 for some i < n. Such a 

function f will be called a (C-valued) n-symbol on F. 

355 



8 

The relations in K*F derived above imply that f is anti-

symmetric and that f(a1 , ••. ,an) = 1 if ai+ ••. + aj = 1 or 0 for 

some 1 ~ i ~ j ~ n. 

(1.2) PROPOSITION. ~t m ~ ~ integer ~ 1. Assume 

~~polynomial xm - a (a E F) splits into linear factors 

i!!, F(X); ~F • .!!!, divisible .!:!¥. m. Then K F is uniquely 
-- n-

divisible.!:!¥. m 12£ n ~ 2. 

Consider the exact commutative diagram 

n n n m n 
where T = T (F.) and K = K F. If we show that (i) T ~ T is bi-

n n 
m 

jective for n~2, and (ii) R ~ R is surjective, then the bijectivity 
n n 

m 
K 7 K (for n>2) will follow from the Snake Lemma. 

n n -
Assertion 

(i) results from: 

!f A ~ B ~ abelian groups 

divisible EY m ~ A ~ B is 

uniouely divisible EY m. 

In fact let A 
m 

r u Ker(A ~A), 
r>l 

the "m-primary part of A." 

Clearly A ~ a=O (B is 
m 

divisible by m) so A ® B ~ (A/A ) ® B 
m 

is an isomorphism. Multiplication by m is an isomorphism 

on A/A , hence also on (A/A ) ~ B. 
m m 
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To prove (ii), i.e. that R = 
n :E 

p+q=n-2 

9 

by m it suffices to treat the case n = 2, and even to show 

that ra € mR2 for each a F 0,1. 

where each b. € F, and b~ = a. 
l. l. 

= E [a]®[l-b.) 
l. i 

proof of (1.2). 

m 

By hypothesis Xm - a .. TT (X-b i) 
J.=l 

Then r 
a 

m(E rb.>. 
i l. 

[a]®[ l-a] = [a]®l"JT(l-b.)] 
. l. 
l. 

This completes the 

(1.3) COROLLARY. 1! F ~algebraically closed ~ 

KnF ~ torsion ~ ~ divisible !.2£ n :::_ 2. 

(1.4) COROLLARY. l! F is~ perfect~ 2£ characteristic 

p > 0 ~ KnF ~uniquely divisible~ p ~ n ~ 2. 
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§2. ~-Algebras. 

The graded ring il is defined by ~n 
n.:::,O 

Z[X]/2XZ[X] Z[ e] 

10 

where X is an indeterminate with image e (of degree 1) 

in ~. Thus ~O = Z and ~ 
n 

is the ring 

of polynomials in a variable with constant term in Z 

and higher degree terms in r
2 

= Z/2Z. 

A graded ~-algebra is a graded ring A = lJL An equipped 
n?:_O 

with a homomorphism K ~ A of graded rings, defined by et->- eA E A
1

, 

such that 'A E Center (A) . We call A a ~-Algebra if further 

A
1 

generates A as a ~t-algebra and 

( 1) 2 a for all a E A
1

• 

(2.1) EXAMPLE. Let F be a field. Then ~ ~ K*F' 

e ~ t(-1), gives K*F the stzucture of a ~-Algebra. Indeed 

t(-1) is central because K*F is anticommutative and 2t(-l) 0, 

and (1) above follows from relation (Rj) in §1. 

Other examples include A= A(M), the exterior algebra 

of a Z-module M, with eA = 0. 
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(2.2) PROPOSITION. ~ A be~ ~-Algebra. 

(a) A is anticommutative. 

(b) lf sA = 0 ~ the inclusion A1 ~ A induces ~ 

epimorphism A(A
1

) ~A~~ exterior algebra of~ 

Z-module A
1

• 

(c) !f J ~ ~ finitely generated ideal contained in 

A+ = ~l An ~ ~ power of J lies in sAA. If further 

J c 2A+ then J is nilpotent. 
(d) A is a nil ideal, i.e. its + ------- -- -- elements ~ all nilpotent, 

if and only if e:A is nilpotent. 

To prove (a) it suffices to show that ab -ba for a,b E A
1

. 

This follows, using (1), from the calculation 

'A (a+b) (a+b)
2 

= cA(a+b) + (ab+ba). 

Assertion (b) is immediate from the definition of a 

~-Algebra. To prove the first part of (c) we may pass to 

A/cAA and then apply (b) in order to reduce to the case 

A= A(A
1
). To show then that a finitely generated ideal 

J c A+ is nilpotent it suffices to treat the case J = EA for 

some finitely generated subgroup E of A
1

, since any J as 

above is clearly contained in such an ideal EA. Since A is 

anticommutative we have(E·A)n = En·A. If E has< n generators 

then An(E) = 0 and so (EA)n = o. This proves the first part 
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of (c) • 

To prove the second part of (c) we first note (as just 

n Now 1· f J c 2A then proved) that J c cAA for some n > o. 

J n+l 2 A 0 
C CA = • This proves (c), and (d) is immediate from (c). 

Since 2A+ is a nil ideal, and since the ring A/2A+ is 

commutative it is natural to call an ideal of A prime if 

it is the inverse image of a prime ideal of A/2A+. In the 

graded r
2
-algebra A/2A the set of homogeneous prime ideals not 

containing (A/2A)+ is denoted Proj (A/2A). 

Since A/A 
+ 

A
0 

is a quotient of Z it is easy to determine 

the prime ideals of A containing A+. 

(2.3) PROPOSITION. 

~ graded prime ~ of A 

~ A be ~ 11.-Algebra. ~ 1 be 

~containing A+. ~ ~ = 2A 

+ ( ~ n A
1

) A, and A/1 ';;; 11./211. = :r
2 

[ e], ~ polynomial ring ~ 

r 2 in~ variable. The map ~ !-'? 1 /2A is ~ bijection .f!:E!!!. !b!:. 

~ of such prime ideals ~ to Proj (A/2A) • 

Passing to A/2A we may assume 2A+ = + 
0, whence A is 

commutative. We may further factor out {~ n A1
)A to achieve 

the condition 1 n Al = 0. Then the equation a{a - eA) = 0 

for a € Al implies that a - eA € ~ n Al = 0 for any a ~ 0 in 

A1 . Since A+ rt. ~ there exists an a ~ 0 in A
1

, whence 
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A
1 

= z2 e. It follows that x ~A is surjective, with kernel a 

graded ideal containing no power of c. It follows easily that 

A ~ x/2nx for some integer n. Since 2c = 0 we have 

2 € ~ ~ thus A/~ is a quotient of x/2x = z2 [c) by a graded 

ideal containing no power of e. Clearly the only such ideal 

is zero, so A/1 -;;;; :r2[c). 

Since all primes 1 as above contain 2A, they are precisely 

the inverse images of the elements of Proj (A/2A) • 

(2.4) PROPOSITION. ~ A ~ ~ x-Algebra ~ ~ 

A
0 

- z. The map p ~ (Ker(p) + 2A)/2A is~ bijection ~ 

Horn Al (A,x) ..!:.£ Proj (A/2A). The nil radical of A ~ given x- g 

.£:L, 

nil (A) = n Ker (p) 
p 

~ p varies over Horn Al (A,x). 
-- x- g 

If p: A~ x then A/(Ker(p) + 2A) -;;;; x/2x = :r
2

[e] is an 

integral domain, so Ker(p) + 2A is a graded-prime ideal of A 

not containing A+. Conversely if ~ is such a prime ideal then 

it follows easily from Prop. (2.3) and the fact that A
0 

= Z 

that A/ ( 1 n A+) ';;;; x. Moreover this isomorphism is unique 

since x has no non identity graded ring automorphisms. Therefore 

1 n A+= Ker(p) for a unique x-Algebra homomorphism p: A~ x, 

and <f = Ker(p} + 2A by Prop. (2.3). 
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The nil radical of the graded ring A is the intersection 

of the graded prime ideals. Those containing A+ intersect in 

A since A/A ~ z. The others we have seen to be of the form + + 

Ker(p) + 2A (p: A~ x), and (Ker(p} + 2A) n A+ 

follows that nil(A) =(\Ker(p). 
p 
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§3. Real fields. 

Let F be a field. An ordering of F is a subset P 

of F such that a,b € P = ab and a+ b € P, and such that F' 

is the disjoint union of P and -P. A field which admits an 

ordering is called formally ~· 

Let p: K*F ~ K be a homomorphism of K-Algebras (see §2). 

Put 

P = (a € F • I p ( .t (a) ) = 0} . 
p 

(3 .1) THEOREM. The map p ~ P is a bijection from 
- p -- - --

HomK-Alg(K*F,K) !£~~£!orderings£! F. 

In view of Prop. (2.4) this yields the: 

(3.2) COROLLARY. lf a € F' ~ .t(a) ~ nilpotent if~ 

only if a ~positive~ every ordering£! F. ~ 

(3. 3) Remark. It is known that the "totally positive" 

elements of F' are the sums of squares. In case 

2 b2 the nilpotence oft (a) directly a = b
1 

+ ... + one can prove n 

as follows (cf. {8], Thm. 1.4): From (R
5

) one has 

2 2 2 L(a).t(-b1) ••• .t(-bn) = 0. Since .t(-b) = .t(-1) + 2.t(b) one 

obtains the congruence modulo 2K*F, 0 = .t(a).t(-1) ..• .t(-1) 

n n+l n+2 n+l = .t(a).t(-1) = .t(a) , whence .t(a) = .t(a) .t(-1) = o. 
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(3.4) Remark. From Prop. (2.4) we have a bijection 

HomK-Alg(K*F,K) ~ Proj(K*F/2K*F). The latter has a natural 

topology in which closed sets consist of those primes containing 

a given subset S of K*F/2K*F. Since these primes are generated 

by their degree l components (c.f. Prop. (2.3)) one can restrict 

attention to sets S of elements of degree 1. Pulling this 

description back to Horn 
1 

(K*F,K) and then, via Thm. {3.1), 
K-A g 

to the set O(F) of orderings of F, we deduce a homeomorphism 

O(F) ~ Proj(K*F/2K*F), where closed sets in O(F) consist of all 

orderings containing a given subset T c F .. 

Proof of Thm. (3.1). Since the composite F. ! K
1

F a z
2

c 

is a surjection with kernel P = P and p(L(-1)) = c we see that 
p 

F. (± 1) X P (direct product). To see that P is an ordering 

it remains to show that if a,b E P then a + b = c E P. We 

have c # 0 for otherwise a = -b € P n -P = ~. From 

a b ; +; = l we conclude that (L(a) - L(c)) (t(b) - t(c)) = 0. 

2 Applying p we have p(L(c)) = 0, whence p (L(c)) = 0 since 

ni1(K) = 0. Thus c E P, as claimed. 

Suppose now that P is a given ordering of F. Define 

s: F. ~ K by s(a) 0 if a E P and s(a) = c if -a € P. By well 

known properties of orderings s is a homomorphism. Moreover 
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s(a)s(1-a) = 0 for a~ 0,1 since a and 1- a cannot both be 

negative for P1 otherwise 1 = a+ (l-a) E -P. Thus s induces 

a homomorphism p: K*F ~ x and evidently P = P • It is clear 
p 

that this construction is inverse to the map p ~ P above, thus 
p 

proving Theorem (3.1). 
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§4. Discrete valuations. 

(4.1) Constructions on ~t-Alqebras. Let A and B be 

~t-Algebras. Let A ~Z B denote the graded ring with JLj_ A ~Z B 
p+q=n p q 

in degree n, and with product defined by 

(a~ b) (a' ~ b') = (-l)deg(b)deg(a') aa' ~ bb' 

for homogeneous elements a,a' € A, b,b' € B. The elements 

acA ® b - a ® eBb, for homogeneous a E: A and b E: B, generate 

a graded ideal, modulo which we obtain a graded anticommutative 

ring 

with (A ® 
)t 

since A peA 

If c 

2 2 
c a ® 

where c 

B)n = E 
p+q=n 

A~ B 
K 

A ® B p q 

~ B =A (!!) cBBq is 
q p 

a ® 1 + l ® b E: (A 

The latter sum is not direct 

contained in (Ap+l5?l B ) 
q n (Ap® Bq+l), 

"?! B)l then 
X 

l + a ® b - a ® b + l ® b
2 = cAa ® l + 1 ® eBb = cc, 

eA ® l = l ® cB. Therefore putting cA® B = c gives 
K 

A ®x B the structure of a x-Algebra. We shall understand A ~B 

to denote this x-Algebra, called the tensor product of A and 

B. It is the coproduct of x-Algebras. 

The free x-Alqebra on a generator rr is the x-Algebra 

x(IT) = x[X]/(X2 - eX) 

where X is an indeterminate of degree 1 with image n module 
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X2 - X t • Evidently x(TI) is a free ~-module with basis 1, IT· 

For any ~-Algebra A we put 

A(TI) = A 6l! 
~ 

~<IT) 

This is a free left (or right} A-module with basis l,n: 

19 

A(TI) =A ~A 1n. If a + bll € A(il)p and c + dll E A(ll)q then p p p-

(a + bill (c + dU) 

-1 
ac + adn + (-l)q ben+ (-l)q bdn2 

ac + (ad+ (-l}qbc + bds)IT 

We shall consider below the map 0 : A (ll) ~A, 

o(a + bn) = b: it is an epimorphism of degree -1 of graded 

abelian groups. It is also an antiderivation, in the following 

sense: There are ~-Algebra,retractions A,p: A(ll) ~A defined 

by A(ll) = 0 and p(IT} = 8• Then for x,y € A(IT) we have 

o (xy) = A (x) o (y) + (-1) deg (y) 0 (x) p (y}. 

Writing x = a + bn and y = c + diT, this follows from the 

formula derived above for xy. 

(4.2) Discrete valuations. Let v be a discrete valuation 

on a field F, i.e. an epimorphism v: p• ~ Z such that, 

putting v(O) = ru, we have v(a +b)~ min(v(a) ,v(b)). Then 
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~ = ~ = (a I v(a) ~ 0) is a ring, the valuation ring of v. 
V 

Choose a local parameter n of v, i.e. n E F' and v(n) = 1. 

Then F' is the direct product of~· = Ker(v) and the infinite 

z 
cyclic group n • In particular all non zero ideals of ~ are 

of the form nn 0' (n > 0). The unique maximal ideal is n ~ 

and k = k(v) = ~ /n & is called the residue class field of v. 

The canonical map 0'7 k will be denoted a~ a. It induces an 

exact sequence of groups 

Define 

d = d : p· ~(K*k}(TI) 
n 

i -
d ( un } = 1, ( u} + i TI 

for u € &', i E :z. 

(4. 3) 

homomorphism 

PROPOSITION. The homomorphisrn d induces ~ 
n 

of x-Alqebras. ~ latter is surjective, and 

Ker(o ) 
n 

o (i,(u
1

) ... i,(u}} 
n n 
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a (.t (ul) ••• .t (u 1) .t (TT)) TT n-

We must verify 

(R2 ) d(a) d(l-a) 0 

for a F 0,1. If a e ~· then either 1 - a e ~· also and 

d (a) d (l-a) = .t (a) .t (l - a) = 0 or 1 - a /. ~ and a = 1 so 

d (a) .t<a> = o. Thus (R2) holds for a E ~ • For any a we 

have a e & or -1 
E 0", and if a e \o/ then E ~· 1 E 6" • a a or - a 

Hence, by Remark (1.1) , (R2) will follow once we verify 

(R
3

) d(a)d(-a) = 0. 

Since (K*k)(TI) is anticommutative it suffices to verify (R
3

) 

for generators of F', so we may assume a e &" or a = TT· If 

a e (9-' then d(a)d(-a) = .t(a).t(-a) = o. Finally d(TT)d(-TT) 

2 TI(.t(-1) + TI) = llc + TI = 0. Thus o exists, and the formulas TT 

in the Proposition are immediate since 0 is an 
TT 

algebra homomorphism. 

If a E 1 + TT & than a = 1 so 0 (.t (a)) = 0. Hence 
TT 

J = .t(l+ TT 6" ) K*F c Ker(o ) . 
TT 

To show that this is an equality 

-denote by x the class modulo J of x E K*F. Define 

s: (K*k) (TI) ~ K*F/J by .t(a) t+ .t(a) for a E (9-' and TIt-> .t(TT). Since 

n is a free K-Algebra generator we need only check, in order 

to show that the definition of s is legitimate, that 

s(.t(a))s(.t(I- a)) = 0 for a F 0,1 ink. If a E &' represents 
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a then 1- a e e'. and we have s(.t{a))s(.t(I- a)>= .&(a) .t(l-a} 

L (a) L (l-a) 0. The image of s contains L( ~·) and 7(;}~ 

the latter generate K*F/J, so s is surjective. Further it is 

clear that s(a (x)) 
TT 

x for x e J, ( ~·) or x = £(TT) !rhus s is 

an inverse to the map K*F/J ~ (K*k)(TI) induced by aTT. This 

proves that J Ker(a ) 
TT 

and so completes the proof of Prop. (4. 3) • 

We define maps 

0 
K*F ~K*k(v) OTT, a : 

V 

by 

a (x) 
TT 

0 ° (xj + a (x) n TT V 

(4.4) PROPOSITION. a
0 is~ epimorphism 2f K-Algebras 
TT 

with kernel Ker(a ) + L(TT)K*F. 
TT 

If u E er'~ 

0 o ( .t (a) ) 
UTT 

o 0 
(.t (a)) - v (a) L (u) 

TT 

.f2.E. a E F • • 

The first assertion is immediate from Prop. (4.3) and the 

fact that, for any K-Algebra A, a + brr ~ a is a x-Algebra 

i eipmorphism A(il) ~A with kernel ITA(fi). If a a 0 TT 

-i i 0 - 0 -i a 0 u (uTT) then 0 TT (L (~) = J. (a0 ) while auTT (L (a)) = J. (a0u ) 

L(a
0

) - iL(u). This completes the proof of Prop. (4.4). 

(4.5) PROPOSITION. 

(a) ov ~ ~ epirnorphisrn £! degree -1 of graded abelian 

groups. 
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(b) One has Ker(ov) = z [ .e ( er· ) J , ~ z [ .e ( ()-. ) J 

denotes~ subring of K*F generated~.£( cr·). 

(c) If u
1

, •.• ,u 
1 

E ~·and a E F. then 
- n-

o (L(u
1

) ••• t(u 
1
).t(a)) 

v n-

(d) ov depends only 2!! v and .!!£.!:. 2!! TT• 

(e) ~ following diagrams commute: 

a a 
K

1
F V) K

0
k K

2
F 

V 

·i 11 tXL 1 
) K

1
k 

" F. 
V ) z F·x F. 

( , )V 
~ k. 

-~ (a,b) = c where c 
V 

V (b) 
(-l)v(a)v(b) a 

b v (a) 

23 

(a) and (c) are immediate from Prop. (4.3) and the 

fact that o (.£ ( e-·)) = L (k ·) • Part (d) follows from (c) , which 
TT 

characterizes ov on generators t(u
1

) •.• t(un_
1
)t(a) of KnF in 

terms of v alone. 

It is clear from Prop.(4.3) that Ker(o) = Ker(o) + Z[£(~)]. 
V TT 

To prove (b) therefore it suffices to show that Ker(o
11

) 

= £ ( l+TT ) K*F is contained in Z [ £ (~)] . The elements 1 - UTT (uE (f) 

generate 1 +TT&. We have 0 £(1-un)£(uTT) = £(1-un)£(TT)+(l-uTT)£(u), 

whence the assertion. 

To prove (e) let a= a
0

na and b =·b
0

nS E p· with 

c
0
,b

0 
Et)". Then oTT(£(a)) = £(a

0
) +all so ov(£(a)) =a 

Further 
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o (L(a)t(b)) 
TT 

{see (4.1)). If c = (-1) aB 

24 

v(b) 
(-1) v(a)v(b) _a __ then 

b v(a) 

l(c) = l(c0)i3- al.(b0) + ai3L{-l), so (e) is established, thus 

completing the proof of Prop. {4.5). 

(4.6) Remarks. There are K-Algebra homomorphisms 

i i A,p: K*F ~ K*k defined by A{t(uTT )) = L(u) and p(l(uTT )) 

= L{u) + is for u € ~·. Indeed A o0 and p = o0 (Prop. 
1i -n 

(4.4)). It follows from the last part of (4.1) that 

ov (xy) = A (x) ov (y) + (-1) deg (y) ov (x) p (y) 

for x,y homogeneous elements of K*F. 

If there is a splitting s: k ~~of a~ a it induces a 

Suppose F is complete with respect to the topology 

defined by v. Then the exact sequence 

1 ---7 ( 1 + n er ) -7 o-· ~ k • --7 1 

splits. If char(k) = p > 0 moreover then 1 +TT~ is uniquely 

divisible by any integer m prime to p. It follows that 

Ker(o
11

) = 1.(1 +ne- )K*F is also divisible by m, whence: 
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(4.7) COROLLARY. Suppose F is complete~ char(k) 

p > 0. ~ if m i!!. prime .!:..£ p lli homomorphism 

induced .!:?1:. o is ~ isomorphism. 
rr 

E 

Let w be a discrete valuation on an extension field 

of F. Assume that ~ c 
V 

~ w' whence a homomorphism 

~ ~ k(w). Either (i) this is injective, or (ii) it induces 
V 

25 

a homomorphism jw/v: k(v) ~ k (w). Let TT be a local parameter 
V 

of V and put e = e(w/v) w (n ) • Thus w(a) = v(a)e for 
V 

a € p'. Then e = 0 in case (i) and e > 0 in case (ii) • 

(4.8) PROPOSITION. Suppose e e(w/v) > 0. ~the 

diagram 

is commutative. 

Then by Prop. (4. 5) 

part (c) we have ow(l-(ul) ... .e(un-l)l(a)) = l.(ul) ... l(un-l)w{a) 

= e t(u
1

) ••• .e(o 
1
lv(a) = e.j I o {t(u

1
) .•. .e(u 

1
)t(a)). 

n- w v v n-
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Since the elements t(u
1

) ... t(u 
1
)t(a} as above generate K F 

n- n 

this proves Prop. (4.8). 
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§5. Rational function fields; the transfer Nv: K*k(v) ~ K*k. 

Let F = k(t), the field of rational functions in a 

variable t over a field k. Then 

V (f) 
00 

-deg (f) 

is a discrete valuation of F, trivial on k, for which 1/t 

is a local parameter. For each remaining discrete valuation 

v on F, trivial on k, there is a unique monic irreducible 

polynomial nv€ k[t] which is a local parameter for v, and 

each monic irreducible polynomial so occurs. We have 

k (v) k[t]/(n ) , and we put deg(v) == [k(v) :k] 
V 

deg(n ) . For 
V 

f € F" we have, by unique factorization, 

( l) f <TT 
v~v 

00 

n v (f) ) · lead (f) , 
V 

where lead (f) is the leading coefficient of f if f € k[t], 

and lead (f/g) = lead (f)/lead (g) in general. 

( 5.1) THEOREM (thm. (2.3) of (8]). 

yield .!!_ split ~ seguence 

~ homomorphisms o 
V 

The proof shows, more precisely, the following: Let 

Ud denote the subgroup of p" generated by all non zero polynomials 
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of degree~ d and put Ld = Z[L(Ud)], the subring of K*F generated 

by L {U d) • Then oLd c I I K*k (v) and 0 induces' for each d > 0, 
~ 

00 

. ----.S!.~<J-i':'J~~/u· 
an ~somorphism from Ld/Ld-l to 

V V 
00 

deg(v)=d 

The proof uses the following useful fact (cf. Springer [12]): 

{5.2) LEMMA. Ld is generated~~ left (K*k)-module £y 

the elements L(n1) ... L(n) where then. are monic irreducible 
r ----- --- ~ --- -----

polynomials~ 0 < deg(n1)< ••• < deg(nr): in particular r ~d. 

It suffices to show that if n and n' are monic irreducible 

polynomials of degree d then 

(2) 

For then Ld-l + Z Ld_1L(n), where n ranges over monic irredu
n 

cible polYQomials of degree d, is a subring of K*F containing 

Ld-l and all such t(n), whence it equals Ld: the lemma then 

follows by induction on d. To prove (2) write n = n' + f with 

deg(f) <d. If f = 0 then L(n)t(n') = t(-l)t(n). If f F 0 

n' f then from 1 =--+-we have (L(f) - L(n)) (t(n') - L(n)) = 0, 
TT n 

whence L(n)L(n') = t(f)L(n') - t(f)t(n) + t(-l)L{n) 

Let X t(n1 ) ••• L{nr) be as in Lemma (5.2). Suppose 
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deg(v) =d. Then it is clear that 0v{x) = 0 unless nr = nv' 

in which case t(x) ~ l(n1) •.. t(nr-l). Since ovLd = K*k(v) 

we therefore obtain the: 

(5.3) COROLLARY. Suppose deg{v) = d. ~ a denote~ 

k{v) = k[t]/{n ) • ~ K*k(a) 
V 

~ ~ ni ~ ~ irreducible polynomial ~ 

generated ~ 

0 < deg(n 1)<···< deg(nr) <d. !£particular 'Jj_K.k(a) generates 
i<d ~ 

This is of particular interest when d = 2, in which case 

1 and K1k(a) generate the (K*k)-module K*k{a). For example 

each element of Krk(a) is then a sum of elements !(a
1

) ••• l(an_1)t(b) 

with a 1 , •.• ,an-l € k and b € k(a) •• 

(5.4) The transfer Nv:K*k(v) • K*k. The inclusions 

k • k(t) and k • k(v) induce homomorphisms j:K*k • K*k(t) and 

K*k(t) and K*k(v) as (left or right) (K*k)-modules. 

If c € k' then v(c) = 0 for all valuations v in Thm. 

(5.1). It follows that 0v: K*k(t) ~ K*k{v) is a homomorphism 

of degree- 1 of graded (K*k)-modules, and ov vanishes in 

jK*k. These remarks apply also to v~. Since 

377 



30 

is an isomorphism of (K*k)-modules it follows that there is a 

unique homomorphism N of degree 0 of graded (K*k)-modules making 

the following diagram commutative: 

(3) 

K*k(v
00

) ~--------]~. ----------K*k 
00 

We shall view j
00 

as an identification and put Nv = Id: 
00 

K*k(v
00

) ~ K*k. For v ~ V
00 

let Nv denote the v-component of N. 

Then the commutativity of (3) translates as follows: 

(4} \ N <a (x}} L V V 

V 

Moreover ~ homomorphisms Nv: Knk(v} ~ Knk ~uniquely 

characterized £y (4} and the ~ that Nv Id. The fact 
00 

that the Nv are (K*k}-linear translates into 

( 5} N (j (x}y} = XN (y} for X E K*k, yE K*k(v} 
V V V --

Taking y 1 E K
0
k(v} this yields: 
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Finally Theorem (5.1) and diagram (3) furnish an exact sequence 

(7) 
(N ) 

~K*k---70 

(5.5) PROPOSITION. Nv: K
0
k(v) = Z ~ K0k = Z is 

multiplication £Y deg(v) = [k(v) :k] = Nv(l). ~ 

Nv o jv: Knk ~ Knk is multiplication EY_ [k (v) :k] !.5:E. all n ~ 0. 

The last assertion follows from the first in view of (6) 

above. To prove the first assertion we recall from Prop. (4.5) 

part (e) that 0 (l, (f)) = v (f) for f E k (t) ·• In view of the 
V 

uniqueness of the N 's the first assertion is thus equivalent to: 
V 

(7) L deg (v) v (f) 

V 

0 for all f E k(t) · 

Sincev
00

(f) =-deg(f) and, by (1), E deg(v) v(f) 
vlv

00 

(7) is indeed valid. 

deg (f), 

COROLLARY. ~ j:k ~ L be~ finite~ extension of 

degree d of k. ~ Ker(j: K*k ~ K*L) ~annihilated £y d. 

m prime ..!:.£ d. If L is only ~ algebraic extension of k 

then Ker(j) is~ torsion~· 

The last assertion follows fromthe first one since K*L 
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is the direct limit of K*L' where L' varies over finite 

sub-extensions of k in L. 

If L = k(v) as in Prop (5.5) the first assertions follow 

from the last part of Prop (5.5). Any simple extension 

L = k(a) is isomorphic to some k(v), whence the corollary in 

this case. In general we write L/k as a finite tower of 

simple extensions and note that the conclusions follow formally 

for a tower if they hold in each layer. 

(5.6) THEOREM. The following diagram commutes: 

N 
K1 k (v) V K1k 

'i 1· 
k (v) • 

Nk(v)/k 
k' 

In view of Prop. (4.5) part (e) and the uniqueness property 

of the N 's Thm. (5.6) is equivalent to: 
V 

(5.6)' THEOREM (Weil, Cf. (11], Ch. III, n°4). l£ 

f,g € k(t)' then 

(8) 

The left side of (8) is bimultiplicative in (f,g), and 
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(f,f)v = (-l,f)v for all v. Hence it suffices to verify (8) 

when f and g are relatively prime polynomials in k[t]. 

In this case we have, since (f,g) = 1 whenever v(f) = v(g) 0, 
V 

where 

Let k be an algebraic closure of k. In k[t] we can 

write f 

{10) am Tr Tr 
j=l i=l 

(a. 
~ 

- tU· 
J 

The second equality is clear. To prove the first we may assume 

g is constant, in which case both terms equal 1, or g = TTv 

for some v. In the latter case we have 

where a is the image of t in k(v) = k[t]/(n ) • The images 
V V 

of a under the different embeddings of k(v) in k are 
V m 

13
1

, .•. ,13, whence Nk( )/k(f(a )) = TI f(J3.), as claimed. 
m av v j=l J 

m 
It follows from (10) that (£) (~f)-1 = (-l)nm ~. Since 

g bn 

381 



34 

-m 
v (f) =-nand v

00
(g) =-m we have (f,g)

00 
=(-l)nm !__ In 

oo b-n 

view of (9) this establishes (B), whence Thm. ( 5. 6) '. 

( 5. 7) An inductive formula for N • Say [k(v) :k] =d. 
V 

Then by Cor. (5.3) K*k(v) is generated as a (K*k)-module by 

elements x ~(n1 (a )) •.. ~(n 1 (a )) where avis the image of 
V r- V 

t in k(v) k[t]/(n ) and where the n. are monic irreducible 
V ~ 

polynomials, say ni = nv.' with 0 < deg(n1)< ..• < deg(nr-l) < O. 
~ 

Put nr = nv and y = ~(n 1 (t)) ..• t(nr(t)) ~then ov(y) = x. Hence 

N (x) is a term in the equation 
V 

We have 0 (y) = 0 unless w w 

(-l)r-i x. where 
~ 

(11) 

some vi or v 
00

, and o (y) 
V. 
~ 

and a. = u Since then. are all monic one has 
~ vi ~ 

r r-1 
o.,(Y) (-1) deg(n1) •.• deg(nr)£(-1) . It follows that 

(12) 

r-1 

-I r-1 
(-1) N (x.). v. ~ 

~ 
i=l 

Since deg(vi) < d for i l, ••• ,r-1 we can, in some sense, 
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regard N as known by induction on d. Note that v. 
L 

N Id if d = 1. If d 2 then (12) determines N since 
V V 

each xi € K1k(vi) and Nv. 
L 

Nk(v.)/k on K1k(vi) (Thm. (5.6)). 
l. 

35 

(5.8) Changing the constant field. Let L be an algebraic 

field extension of k, and put E = L(t). The valuations w 

of E which are trivial on L each "lie over" some such 

valuation v ofF= k(t), a condition we shall denote by 

writing w/v. -1 The valuation w with local parameter t lies 
CO 

over v • 
00 

(13) 

If V F V 
<XI 

then 

TT =n 
v w/v 

e (w/v) 
TTW 

is the factorization of TT € k[t] in L[t]. This yields the 
V 

embeddings j I : k(v) = k[t]/(TT ) ~ k(w) = L[t]/(TT ) • 
W V V W 

PROPOSITION. ~ following is ~ commutative ~ diagram 

jL (t) /k (t) lL (e (w/v). jw/v 
V 

The commutativitiy of the left hand square is just the 
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functionality of K*. That of the middle square follows from 

the commutativity of the diagrams 

for each w/v (Prop. (4.8)). The rows are the exact sequences 

of (7) above for L and k, respectively. It follows therefore 

that there is a unique homomorphism h:k*k ~ K*L which, in 
/: 

place of jL/k' will make the right hand square commute. 

particular, since W
00 

is the only w lying over V and 
"" 

e(w /v ) = 1 the diagram 
00 .. 

N 
w 

K*k(w) K*L "' K*L 

jw./•~ 1 lj~ 1h 
K*k (v .,> K*k N 

) K*k 
V 

00 

commutes. But Nv and Nw are the identity maps, whence 
00 00 

h = jL/k' This proves the proposition. 

In 

(5.9) A problem. One would like to be able to define 

a "transfer map" 
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for any finite field extension L/k. Beyond being a homomorphism 

of degree zero of graded groups it should satisfy the following 

conditions. 

Tr 1) • The projection formula: 

N(jx • y) = X • N(y) 

Here j = jL/k: K*k ~ K*L is induced by k ~ L, and Tr 1) can 

be read as saying that N is a homomorphism of (K*k)-modules. 

Taking y = 1 it implies that 

Tr 2) • Functoriality: Nk/k = Id and NL/k o NE/L = NE~~ 

if L/k and E/L are finite field extensions. 

In view of (5.4) we might further require: 

Tr 3). Reciprocity: 

L Nk (v) /k (ov (x)) o 
V 

for all x e K*k(t). 
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It would then follow from the uniqueness property of theN 's 
V 

that Nk(v)/k = Nv for all v. Conversely this suggests a 

method for defining the maps NL/k in general. 

First suppose L = k(a), a simple extension, and put 

n = Irr(t,a/k), the irreducible monic polynomial in k[t) of 

which a is a root. Then n = nv for some v, whence a 

k-isomorphism k(a) ~ k(v), and a map Na/k: K*k(a) ~ K*k obtained 

from Nv: ·K*k (v) ~ K*k. 

If L = k(a
1

, .•• ,a) we can put 1~. = k(a
1

, ••• ,a.J and 
n L l 

N 
a /k 1' n n-

Note ((5.4), formula (5)) that each Na/k satisfies Tr 1) 

so it follows that each N does likewise. Further-
(a1, •.. ,an) /k 

moreN( )/k=IdifL=k. 
al, • •• , an 

The eroblem in general of course is to show that 

N = N 
(al, •.• ,an)/1z 

depends only on L/1;: and not on the choice of 

generating sequence (al, .•. ,an). This is true on KO, where, 

by Prop. (5.5), N is multiplication by [L:k], and on K
1

, where 

by Theorem ( 5. 6) , N is the field norm NL/k' For K. (i > 2), 
L -

however, the invariance of N is not at all clear 
(a1 , ... ,an)/k 

already for n = 1. If this problem has an affirmative response 

then functoriality (Tr 2)) follows immediately. 
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TheN /k's have one naturality property which we may a , 

deduce from Prop. (5.8): Suppose k(a) is a simple algebraic 

extension of k and L/k is any algebraic extension. Then 

L -<>- k (a) modulo its radical is a product ·n L (a.) of simple 
k i ~ 

extensions L(a.) of L, where a. denotes the projection of a 
~ ~ 

into the factor L(a.). We have k(a) = k[t]/(n), where 
~ 

n = Irr(t,a/k) in L[t:), and L(a.) = L[t]/(rr.). 
~ ~ 

the diagram 

(15) 

Then 

commutes, where j = jL/k and j; = j /k • 
~ L (a.) ·(a) 

This furnishes 
~ 

a method for showing that Na/k is independent of a, by induction 

on degk (a) = [k (a) :k] • For supp:ise k (a) = k ( (3) and 

(L ~ k((3))/radical = n L((3.) as above. Then we have a diagram 
i ~ 

analogous to (15) for (3. If the degrees of the L (ail L ((3i) 

over L are < [k(a) :k] then we may assume inductively that 

N for all i. The commutativity of (15) and its 
(3i/L 

analogue for (3 then implies that Na/k- N(3/k maps K*k(a) 

into Ker(j:K*k ~ K*L). By the Corollary to Prop. (5.5) Ker(j) 

is a torsion group1 in fact it is killed by [L:k] when the latter 

387 



40 

is finite. Taking for L an algebraic closure of k we 

conclude: ll k(o:) = k(f3) ~ Na/k ~ Nf3/k agree modulo torsion. 

It therefore suffices to show that, for each prime p, 

the p-primary part of Im(Na/k - Nf3/k) is zero. To check this 

we can take for L the fixed field in k of a Sylow p-subgroup 

of Gal(k/k). Here we take k to be an algebraic closure of 

k if p ~ char(k) and a separable closure if p = char(k). 

Then L is a limit of finite extensions of k of degrees 

prime to p, so j:K*k ~ K*L is injective on p-torsion (Cor. 

to Prop. (5.5)), and all finite extensions of L have p-power 

degree. After replacing k by L therefore, and using (15), 

we reduce the problem to the following case: 

Every finite extension of k is of degree a power of p. 
/\ 

In particular every irreducible polynomial of degree < p is 

linear. It follows therefore from cor. (5.3) that if [k(o:) :k] p 

then K0k(a) and K1k(a) generate K*k(a) as a (K*k)-module. By 

Prop. (5.5) and Theorem (5.6) Na/k is characterized on KO and 

on K1 independently of a. Hence we conclude from the projection 

formula in this case that Na/k = Nf3/k if k(a) = k(f3). 

It is not yet clear how to handle the case [k(a) :k] 

with n > L 

n 
= p 

However the above arguments c~n be used to prove the following: 

If transfer maps NE/F (satisfying Tr 1) and Tr 2)) are defined so 

that NE/F(l) = [E:F] and K1E ~ K1F NE/F corresponds to the field 

theoretic norm E • ~ F • , then the N E/F • s are unique. 
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applications of the transfer maps. 

Let F be a field and k
0 

its prime field. The Kronecker 

dimension 6(F) of F is tr. degk (F) if k
0 

= zp (p > O) and 
0 

1 + tr degk (F) if k 0 = m. The following result was proved 
0 

more directly by Springer in {12]. 

( 5.10) PROPOSITION. .!i 1 .:s_ n .:s_ 6 (F) ~ ..t:..!l!! ~ £!_ ill 

abelian ~ K F n card (F) • 

We argue by induction on d = 6(F). If d = 0 then F 

is algebraic over a finite field, so K
1

F = F' is torsion, whence 

KnF is torsion for all n ~ 1. 

by Steinberg.) 

(In fact K F 
n 

0 for n ~ 2, 

If d 

Therefore F 

1 then F is algebraic over Fl =m or Ep(t). 

is countable, and F' contains F' which, modulo 
1 

torsion, is free abelian of infinite rank. (There are infinitely 

many primes (Euclid).) 

If d ~ 2 we can choose a subfield F
1 

of F of Kronecker 

dimension d - 1 and a t E F transcendental over F
1

, such that 

F is algebraic over F
1

(t). Then since F
1 

is infinite, it is 

easily seen that Card F
1 

=Card F
1

(t) =Card F. By Thm. (5.1) 

we have an epimorphism KnF1 (t) ~ lJL Kn_1F1 (v), and, by 
V 

induction, each Kn_
1
r

1
(v) has rank equal to card F1 (v)=Card F. 

Thus KnF
1

(t) has rank~ card F. According to the Corollary 
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to Prop. (5.5) the kernel of K F
1

(t) ~ K F is torsion, so 
n n 

rank KnF ~Card F. Finally the reverse inequality follows since 

K F is a ouotient ofF·~···® F' (n factors}. n 

Question. It is tempting to conjecture that K F is torsion 
n 

for n > 6(F). This is trivially so ford= 0. Ford= 1 it 

is also true, thanks to a theorem of Garland [5] in the number 

field case. 

(5.11) PROPOSITION. ~ m be~ integer~ 1. Suppose 

~ !2£ ill finite extensions E of 2. .Q.ill F :::!!i have 

F' = N (E') •F'm 
E/F ' ~ KnF is divisible E,y m ..t:.£;: ill n ~ 2. 

Suppose x,y E K*F. Let j: F ~ E be a finite extension. 

Let N: K*E 4 K*F be some transfer map as in (5.9). Suppose we 

can find x',y' E K*E such that 

jx mx' y Ny' 

Then we have x·y = x•Ny' N(jx·y') = N(mx'·y') = mN(x' ·y'), so 

We apply this now to x = 1 (a), y = t (b) with a,b E p'. 

We wish to show that l(a)t(b) E mK
2
F. Choose E 

m 
a = a. By hypothesis we can, after modifying 
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F(a) with 

th 
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power, which is harmless, solve b = NE/F (t3). Then the calculation 

above sh0ws that J,(a)J,(b) = mN(J,(a)J,(~)). This shows that 

K
2

F is divisible by m, so KnF is divisible by m for n > 2. 

( 5.12) COROLLARY. Lf ~ ~ is surjective .i!::, ill_=== 

extensions of F ~ K F ~ ~ divisible .9£2..1::!£ for ill n .2:. 2. n 

This applies notably to finite fields, where it yields 

Steinberg's theorem: 

K :t n q 

It also applies to c
1 

(quasi-algebracially closed) fields, 

examples of which are furnished by theorems of Tsen and Lang. 

d 
(5.13) PROPOSITION. Suppose char(F) = p > 0 ~ [F:Fpl = p • 

Then 12!:, n > d, 

d-l 
p KnF is divisible ~ p 

d 
p KnF is uniquely divisible ~ p. 

This proposition applies notably to an algebraic function 

field in d variables over a perfect field. 

transfer map for j as in (5.9). Since j: K*F ~ K*F is 
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multiplicati'on by p n on I<1F, it is multiplication by p on 

K F. On the other hand, N o j is multiplication by [F:jF] = pd n 

(see (14) in ( ~. 9)). Thus on KnF we have pd N P j = N o pn 

f d h
. . d I n > t ~s g~ves p = f o 

d n-d n-d p where f = M t> p = p o N. 

It follows that multiplication by p is invertible on pdKnF 

if n > d. 

To show that d-lK F · d' · 'bl by for n > d p n 1S ~V1S1 e p 

consider an element x = t(a
1

) ..• t(an) E 

show that d-1 n-1 1/p 
p X E p KnF. Put E = F 

K F. It suffices to 
n 

1/p and b. = a. e E. 
1 1 

Let N:K*E _,. K*F 
d 

be a transfer 
d-1 

map for j: F..,.. E. Then 

NE/F(bn) = b; aP 
n 

d-1 
p X 

so 

N ( j ( t ( a
1

) ... .t (a 
1

) ) .t (b ) ) 
n- n 

n-1 p N ( t (b
1

) .•• J, (b 
1 ) .t (b ) ) 

n- n 

This completes the proof of prop. ( 5.13) . 
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Chapter II 

The Milnor ring of a global field 

§1. A finiteness theorem. 

Let F be a global field, i.e. a finite extension of m 
(a number field) or a finitely generated extension of trans-

cendence degree 1 over a finite field (a function field). 

Let S
00 

denote the set or archimedean places of F. Thus 

s == !if if F is a ft·nction field~ if 

rl = r 1 + r 2 where K ~W F ~ I 

F is a number field then 

r2 
00 

x ~ ·A finite place can be Card S 
00 

identified with a discrete val~ion v of F. If S is a non empty 

set of places containing S
00 

we put 

A5 =(a € F I v(a) ~ 0 for all vIs}, 

the ring of "S-integers." It is a Dedekind ring,with field 

of fractions F, whose maximal ideals P correspond to the places 

vIS so that k(v) = A5/P. We shall put 

the subring of K*F 

generated by £(A~) 

If v I S the homomorphism ov: K*F ~ K*k(v) of Ch. I, Prop. 

s 
(4.5) vanishes on K*F since AS is contained in the valuation 
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ring of v. Thus we have a homomorphism 

The norm of a finite place v is defined to be N(v) 

Card k(v). We can list the finite places of F, 

so that N(vi) ~ N(vi+l) for all i. This done we put 

Our main objective is the following theorem 

(1.1) THEOREM. ~all sufficiently large m ~ 

homomorphism 

~ ~ isomorphism. 

This will be proved in §3-5. The reason for calling it 

a finiteness theorem is the next corollary, and its consequences 

drawn in §2. 

(1. 2) COROLLARY. 

K F 
n 

~ ~ n ~ 0 the kernel Hn of 
soo 

o = <o > 
V 

394 



is ~ finitely generated 

In fact H c L 
n n 

abeli an~· 

sm 
Ker(K F~JJL Kn-lk{v)), 

n vts 
m 

and Thm. (1.1) says L is the nth degree term of the ring 
n 

47 

Z[L(A~ )] • Hence Ln is a quotient of then-fold tensor product 
m 

of A. with itself. s m 
Since A~ is finitely generated (Dirichlet) 

m 

it follows that L and hence also H are finitely generated. 
n n 
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§2. Applications of the finiteness theorem. 

As in §1, F is a global field. Its completion at a 

place v is denoted F . 
V 

The group of roots of unity in F 

is denoted ~~o(F). 

We put 

for each n 2::. 0. By Cor. (1.4) H is a finitely generated 
n 

abelian group. Clearly a
0 

= K
0

F = z. If k is a finite 

field then K k = 0 for n ~ 2 (cf. cor. (5.12) of Ch. I). It n 

follows that H 
n 

(2 .1) THEOREM. 

1) (Dirichlet) a
1 

is ~ finitely generated ~ of 

~ r
1 

+ r
2

- 1 and torsion subgroup isomorphic~ ~~o(F). 

2) a
2 
~~finitely generated~· lf char(F) p > 0 

K F and the natural homomorphism n ---- -

K F 
n ll K F/2K F 

v real n n v 

is ~ isomorphism. ~ particular 

r 
K F - (Z/2Z) l 

n 
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Remark • It follows from results of Garland [51 and 

Dennis [4] that H
2 

is finite also in the number field case. 

Proof of 1). The map (a}: K1F ~ JLLK0k(v) is, by Prop. 
v vts 

(4.5) {part {e)} of Ch. I, equivalent to the map p·~JLL z. 
vtsoo 

The kernel is therefore A' in the number field case, and the s 
"' 

non zero constants, i.e. ~(F), in the function field case. The 

announced description of A~ follows from the Dirichlet Unit Theorem. 

(1) 

"' 
We next prove: 

ll char (F) = p > 0 and if 

n ~ 2 ~ Hn is finite ~ 2.f 

~prime to p. 

~'le knovJ that H is finitely generated (Cor. (1.4)) so it 
n 

suffices to show that Hn is divisible by p. Consider the 

exact sequence 

(2) 0 ---7' Hn ~ KnF ~ Jj_ Kn-l k (v) 
V 

Since k(v) is a finite field of characteristic p and n ~ 2 

the group K 1k(v) is finite of order prime to p (for this is 
n-

true of K
1
k(v) = k(v) '). Hence the right hand term of (2) is 

uniquely divisible by p. Since [F:Fp] = p it follows from 

Prop. (5,13) of Ch. I that K F is divisible by p. The exact 
n 
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sequence (2) thus implies H is divisible by p, whence (1}. 
n 

Note that (1) also completes the proof of part 2) of 

Theorem (2.1). 

put 

Proof of 3) . For any prime p and field E we shall 

K I E n p 
K ElpK E n n 

We propose to prove, for n ~ 3: 

a) 

b) 

If char (F) = p then K I F 
n p 

o. 

If p F 2 and p F char(F) then KIF 
n p 

o. 

c) If char (F) F 2 then KnF -'>- J.j_ Kni2F v is a 
v real 

split epimorphism inducing an isomorphism 

Since, as we noted above, Hn = KnF is a finitely generated 

group, it is clear that a), b), and c) imply 3). Furthermore 

a) follows from (1) above, so it remains only to prove b) and 

c). The proof below is an elaboration of the argument repro-

duced in the appendix of [8], which computes Kni
2
F. 

Suppose p F char(F). Let E F(~ ), the field obtained 
p 

by adjoining to F the th f . h group ~ of p roots o un1ty. T en 
p 

[E:F} = d ~ p - 1 so d is prime to p. It follows therefore 

from the corollary to Prop. (5.5) of Ch. I that KIF~ K I E 
n p n p 
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is injective. Therefore to prove b) we may assume !J. c F. 
p 

51 

In case p = 2 this is automatic. Thus to prove both b) and c) 

we may assume 

!J. c F p 

For each non complex place v of F let 

th 
( , ] : F' X F' ~ !J.p denote the p power norm residue symbol 

V V V 

in F (see, e.g., [9}, §15). Let d : K21 F ~ !J. denote the 
V V p V p 

corresponding homomorphism; it is an isomorphism (Moore [10]). 

The exactness of 

(3) K2/ F ~ll K2/pF v 
p v non 

complex 

{d ) 
V 

:> !J. ~0 p 

is classical, and can be deduced also from theorems of c. Moore 

[ 10} (see also Milnor [ 9}, Thm. A.l4 and Thm. 16.1) . In fact 

it follows further from [141 that 

(4) 0 ~ K2/pF ~ v-Un K2/pF v 

complex 

is exact. For Thm.2 of [14] permits one to replace K
2
/pE 

by Br (E) ® !J. for each field E above. Here Br (E) p p p 

is the kernel of multiplication by p on the Brauer group 

Br(E) of E. The exactness of (4) then results from the 

Hasse prinicple, i.e. the injectivity of Br(F) ~ Jl Br(F). 
V 

399 



52 

With the aid of the exact sequences (3) and (4) we shall 

now compute K
3
/pF. It suffices to describe all homomorphisms 

cp: ~F 1-lp· Put tp(a,b,c) = tp(E'(a),e(b)t(c)). For fixed c we 

obtain a 2-symbol (a, b). , ... cp (a, b, c) with values in \.J. • The 
p 

exact sequences above then permit us to write 

' ev (c) 
~(a,b,c) = llf [a,b]v 

V 

where 0 ~ cv(c) <pandIT' signifies that v ranges over non 

complex places. Further the c (c)'s are unique up to addition 
V 

of the same constant (modulo p) to each of them, i.e. modulo 

the product formula n• [a,b]v = 1. -1 Since ~(a,b,c) = ~(a,c,b) 
V 

we also have, for b and c fixed, 

whence 

, -c (b) 
~(a,b,c) = Jrllra,c]v v 

TTI 

V 

[a,d ] = 1, 
V V 

V 

c (c) e (b) 
where d = b v c v 

V 
Thus the idele g = (dv) is orthogonal 

to all a € F' in the product formula. It follows therefore 

from Weil ([15], Ch. XIII, §5, Prop. 8) that d = d ep for some 
"' 

idele ~ and some d € F'. 

Put E = F(bl/p,cl/P), Then, since d 
c (c) c (b) 

: b V C V mod p·P 
V 

for all v, we see that d is a pth power everywhere locally, 
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and hence globally, in E. Kummer theory then implies that 

d = brcs mod p•P for some integers r,s. Then we have 

( 5) 

for all v. 

br-cv(c) cs-cv(b) € p·P 
V 

c (c) = c (c) for all finite v and w. 
V W ---- --

The fact that ~pc F implies that Card(F~F~2 ) ~ p
2 

for all finite v. Hence, given c, we can choose b outside 

the cyclic group generated by c modulo p·P and modulo p•P. 
V W 

Then the condition (5) above for v and w implies that 

c (c) = r = e (c) mod p, whence e (c) V W V 
= c (c), as claimed. w 

Now multiplying ~(a,b,c) by 1 = -r (IT'[a,b] ) we reduce 
V 

V 

to the case e (c) = 0 for all finite v. If all non complex 
V 

places are finite this shows that ~ = 1, so K3/ F = 0, and hence 
p 

KIF = 0 for n ;a 3. This applies notably when F is a function n p 

field and when F is a number field and p 2. 3; for in the latter 

case, since 1.1. )t: ll!., F 
p 

must be totally imaginary. Note that 

these conclusions imply b). They further imply in general that, 

for n 2. 3, K F is a finite 2-primary group. n 

It remains to treat the case when F is a number field 

and p = 2. The arguments above then show that 
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(6) K
312 

F --=,.Jj_ K
312

Fv is injective. 
v real 

Let v
1

, ... 1 v 
rl 

den~tG the real places of F and put F. = F • 
~ v. 

~ 

Choose e 11 ••• ,e 
rl 

€ F' so that ei is negative in F. and positive 
~ 

in F . for j F i. 
J 

Then F' is generated by e
1

, ••. ,e 
rl 

together 

with the totally positive elements of F'. Hence K F is 
n 

generated additively by elements x = ~(a1 ) •.. t(an) where each 

ai is either totally positive or equals some ej. It is then 

clear that X goes to zero in Kn/2Fh unless all a. 
~ 

equal eh, 

i.e. unless 
n n-1 follows t;1e~e-X = xh = ~(eh) = J., (-1) t (eh). It 

fore from ( 6) that for ne:. 3 the element X lies in 2K F unless 
n 

x = xh for some h. 

We have K;,.
12

Fh = :&:2 [ch] where sh = ~Fh (-1), and xh maps 

to s~· Since 2xh = 0 we obtain a section ~ Kn/2Fi ~ KnF' 
~ 

tn ~~ x 1 of K F ~ J.l K F It follows that 
h h n i n/2 i · 

K F ';;; Ul K 
12

F.) ii£, 2K F. Since K F is a finite 2-primary 
n . n ~ n n 

~ 

group for n 2:. 3 we must further have 2K F 
n 

o. This proves 

c), and so completes the proof of 3), and of Thm. (2 .1). 
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§3. Proof of the finiteness theorem: reduction to Lemma (3.5). 

Recall that F is a global field with archimedean places 

8
00 

and finiteplaces v
1
,v2 ,v

3
, ••• with N(vi) ::;, N(vi+l). We put 

sm 8
00 

u (v
1

, ••• ,vm} and K!m(F)= Z[t(A~ )] c K*F. It is clear 
m 

that Thm. (1.1) results from the following more precise statement. 

(3.1) THEOREM. ~!!! sufficiently large m 

s s 0v 
K*m+l(F)/K*m(F) m+l ') K*k(vm+l) 

is ~ isomorehism. 

To prove this we fix an m whose (large)size will be 

determined by the requirements of the arguments to follow. Put 

s s 
m 

S' = S = S u (v} m+l 

Note that, for any finite place w, 

Put 

we S ~N(w) ::;,N(v) 

w € S ~ N(w) < N(v) 

A 

u 

k k(v) A/P, 
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where P is the maximal ideal such that AP is the valuation ring 

-of v. The natural map AP ~ k will be denoted a•~ a. 

(3.2) LEMMA. ~ following conditions on A ~ v 

i! ~ isomorphism: 

a) ~ideal P is principal~ ~ :P = r;A. 

b) ~group (1 + P) • = Ker(U ~ k") is generated ]2y 

~elements 1 + a E U ~ ~ Aa = P. 

c) ~i!~ s11bset E 2.f u ~~ 

c
1

) ~map E x E x E ~ k" x k' sending 

(a,b,c) to (b/a,c/a) is surjective. 

- - -!f e
1
,e2 ,e

3 
E E and e 1 = e

2 
+ e

3 

~ el ~ e2 + e3. 

1 Condition a) clearly implies that A 1 = A(-] and that s Ti 

u• =A~, is the direct product of u with the cyclic group 

generated by r;. Since v(U) = 0 and v(n) = 1 it follows that 

v induces an isomo:r;phism U'/U ~ :t. B'1t (see Ch. I, Prop. (4. 5), 

s• s part e)) this last arrow is equivalent to ov: K
1 

F/K
1

F ~ K
0
k. 

We now treat 0 :K8 1 

F /K
8

F -"' K k for n > 1. Denote the v n n n-1 
s image modulo K*F of x E K*F by (x]. Then (Ch. I, Prop. (4.5), 

part c)) the following diagram commutes for each n > 1: 
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u x ... x U (n-1 factors) 

I \~· 
K 8 1 

F /K5F _!_v--------} K 
1

k 
n n n-

where a 1 (u1 , ... ,un-l) = (J,(u1) ... t(un-l)t(n)] and 

!3 1 (u1 , .•• , un-l) = t (u1) ••• t (un_1) • Both a 1 and !3 1 are evidently 

multilinear, so they induce homomorphisms a and !3 making the 

diagram 

;/ 
sI S 

K F/K F n n 

u 

11 
V K k 

n-1 

commutative. To prove that ov is an isomorphism it therefore 

suffices to show that: 

(i) a is surjective 

and 

(ii) !3 is surjective and Ker(!3) c Ker(a). 

Proof of (i). As noted above U 1 = U x TTZ where 

U 1 A~,. Since K*F is anticommutative and since t(n)
2 

= t(-l)t(n) 

S' S it follows that K* F = Z[t(U 1
)] is generated as a left (K*F)~moduue 

by 1 and Hn) . In particular K
81

F is generated additively by n 
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elements x = J(u
1

) ... J(un) and y = J(u
1

) •.. J(un_
1
)J(n) with 

u 1 , •.• ,un e u. Since [x] = 0 and [y] e Im(a) it follows that 

a is surjective,as claimed. 

Proof of (ii). Conditions b) and c
1

) imply the exactness 

of 

where u
1 

denotes the subgroup of u generated by all elements 

1 - un e U with u e u. It follows from this that ~ is 

surjective and that Ker U3) is generated by elements x "'u
1 
~ ... ~ un_

1 

of the following types: (I) u. = l - un with u e U for some 
1 

i ~ n-11 (II) ui + ui+l = I for some i ~ n .- 2. It remains 

to show that a(x) 0 in each of these two cases. 

y = 

Type (I): a(x) "'[J(u
1

) ... J(un_
1
)J(n)J. 

n-i+l 
(-1) J(u

1
) ... J(u. 

1
)J(u. 

1
) .•. J(u 

1
), 

1- 1+ n-

Put 

so that 

a(x) = [y J(u.)J(n)]. We have 0 = J{l- un)~(un) = J(1- un)J(u) 
1 

+ J(l- un)J(n) = J{u.)J(u) + J(u.)J(TT}. Hence a{x) = 
1 1 

-[y J(u.)J(u)] = 0 because y J(u.)J(u) e K
8
F. 

1 1 n 

(*) 

Now that a(x) = 0 for x of type (I) it follows that 

whenever u. 
J 

Type (II) : 

u~ (l:s_j:s_n-1) 
J 

I. 
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furnishes elements e
1
,e

2
,e

3 
E E such that ui = e

2
/el and 

ui+l = e 3/e1 • In view of (*) above there is no loss in 

assuming ui = e 2/e1 and ui+l = e 3;e1 . We have then 

- - -e
2 

+ e
3 

= e
1 

so 

condition c
2

) implies that e
2 

+ e
3 

= e
1

, i.e. that 

It follows that ~(u.)~(u. 
1

) = O, so x 
~ ~+ 

and a(x) = 0. 

This completes the proof of Lemma (3.2). 
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0 

(3.3) ~· Before going further we introduce some 

additional notation. Put 

A = 
"" 

if F is a number field 

(s
1 

= (v
1

}) if F is a function field 

We define a multiplicative function N(ot) E ~· for fractional 

A
00 
-ideals Ol of A

00 
so that, when OL.-c A

00
, N( Gt) = Card (Ac/otl. 

Thus if Pw is the prime ideal of A
00 

corresponding to a finite 

place w (~ v
1 

if F is a function field) then N(Pw) 

=Card k(w) = N(w). If a E p' we put N(a) = N(A
00
a). If F 

is a number field then N(a) = !NF/~(a) I· We agree to put 

N(O) = 0. 

(3.4) LEMMA. Suppose~~ given subsets D c A
00 
~ 

W c (Aoo n U) • Put 
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E (d- d' I d,d' E D, d ~ d'}. 

Then A,v, and E satisfy conditions b) and c) £!Lemma (3.2) 

provided that D and W satisfy the following conditi.:Jns: 

1) 
3 2 

(Card D) > N (v) . 

2) E c u. 

3) 1 E W and w senerates u. 

4) If el,e2,e3,e4 E E and w E W ~ 

(i) N(e
1 

+ e2 + e3) < N(v) 

(ii) N(e
1 

e
2 

- e e ) 
3 4 

< N(v)
2 

(iii) N(e
1

w - e
2

) 
2 

< N(v) . 

If A ~ A~ these conditions further ~ condition a) of 

Lemma (3.2) 

The proof will be carried out in several steps. 

4) (i) ~ c
2

) Since E = -E it follows from 4) (i) that 

for e
1
,e

2
,e

3 
E E we have N(e

1 
- e

2 
- e

3
) < N(v). But if 

- - -e 1 = e
2 

+ e
3 

we have e
1 

- e
2 

- e
3 

E Pv, so the inequality above 

is possible only if e
1 

- e
2 

- e
3 

= 0. 

1) and 2) ~ c
1

) Given x
2
,x

3 
E k. we must solve 

Xi ei/el (i = 2,3) for e 1 ,e2 ,e3 E E. Define 
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L: A
00 

X A
00 

X A
00 
~ k X k 

L(a,b,c) = (b - ax
2

, c - ax
3

) • 

Condition l) implies that L can't be injective on D x D x D, 

i.e. L(d) = L(d') for some d = (d1 ,d2 ,d3) ~ d' = (di, d2, d3) 

in D X D X D. Put e = d - d' = (e
1
,e

2
,e

3
) ~ (0,0,0). Since 

L is additive we have L(e) = L(d) - L(d') 

Since e ~ 0 some e.~ 0, so, by 2), some 
]. 

ei ~ 0. Since x2 ,x3 ~ 0 it then follows that ei ~ 0 for all i, 

whence e 1 ,e2 ,e3 € E. Clearly xj = ej/e1 (j = 2,3): this proves 

cl) • 

£!!!m l.Conditions 3) and c1) ~ 

~ (1 + P) • = Ker (U ~ ~·) i2, generated 

~ its elements 2£ lli following~: 

(I) 

(II) 

Let H be the subgroup of (1 + P)" generated by its 

elements of types (I) and (II). If x,y € u write x - y if 

x se y :nod H. We must show that 

(*) X 1 ~ x-1. 
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If x is of type I or II this follows from the definition of 

H. Condition c
1

) implies each element of k. is of the form 

€1;;;2 with el,e2 E E. If w E W and w = ;;1;€2 then w - e 1;e2 

since 
e

2
w 

E H. 
el 

generates u. 

Condition 

It follows 

3) asserts 

thatfor any 

e 
n 

e' 
n 

that 1 E w and w 

X E U we have 

for suitable ei,ej_ E E (1 !S. i .:s. n) • We claim we can even take 

n = l. For if n > 1 then cl) furnishes elements a,b,c E E 

such that el/ei = £;a: and e2/e2 =;;a:. Hence 

b 
because the first two factors are 

c 

be
3 
... e 

elements of type I in H. Thus x ~ 
n and we finish 

cej ••. e' 
n 

by induction on n. 

Now if X = el/ei and X r then x is of type I in H 

(with w = 1 E W) so x - 1, whence the claim. 

Let ul 

elements 1 + 

and ul ( 1) 

u n (1 + UTT) 

denote the subgroup of u generated by all 

a E U such that Aa = P. Note that u
1 

c (1 

unless p is principal. If P = An then 

generates ul. 

Claim 2. Suppose a,b E A
00 

n U 

2 
satisfy a = b and N(a-b) < N(v) . 
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We may assume a F b. Then A (a-b) = ot P for some ideal 
oo V 

61v with N( 00 < N(v). It follows that for all prime divisors 

P of Ot we have N (w) < N(v), whence w € S. Thus (J!A = A and w 

so A(a-b) = P A = P. 
V 

a a - b Finally b = 1 + ---b-- € u1 , as claimed. 

c1) ,3) ,4) (ii), and 4) (iii) =b). With the notation 

above condition b) says that u1 = (l + P) •• Using claim l 

above it suffices to show that u1 contains the elements of 

types I and !! in that claim. In view of claim 2 condition 4) 

(ii) implies this for type I and 4) (iii) does so for type !I. 

If A F A
00 

then b) • a). For A FA~= U is infinite= 

(1 + P) • F (1}. In this case b) implies u1 F (1} so there is 

an a € A such that Aa = P1 this is condition a). 

The implications proved above together establish Lemma (3.4). 

In view of Lemmas (3.2) and (3.4) we see that Theorem (3.1) 

follows from: 

(3. 5) LEMMA. ll m is sufficiently large ~ ~ ~ 

~ D ~ W satisfying conditions 1), 2), 3),~ 4) of 

~ (3.4). 

It will be convenient here to separate the arguments for 

number fields and for function fields. 
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84. Proof of Lemma (3.5) for number fields. 

(4.1) Absolute values. lve keep the notation of §3 and 

assume further that F is a number field, say [F:~] 

If w E 8
00 

then 1 lw denotes the usual absolute value on 

F li or a:. 
V 

If w is p-adic then I lw denotes the absolute 

value on F 
V 

narmalized so that J I -l p w = p We put 

n w [F : ~ ] if w lies over the place w
0 

in ~. 
W w

0 
For any t > 0 we put 

L = 
t (a E Aooj Ja!w .:5. t for all w E s } 

Clearly A u Lt. Further it is clear 
00 

t>O 

L Lt c Lst s 
{ 1) 

L + Lt c L 
s s+t 

for s,t > 0. If a E F then N(a) 

Since L: 
WES 

00 

{2) 

n 
w 

n we have 

n 
a E Lt ~ N (a) S, t • 

00 

that Lt - Lt and 

(4.2) PROPOSITION. There ~ constants C,y > 0 depending 

only on F such that if t > 0 satisfies 
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(3) 

~ D = Lt/2 ~ W = L 312 nU satisfy conditions 1), 2), 3) 
t 

~ 4) of Lemma (3.4). 

It is clear that this proposition implies Lemma (3.5). 

In fact making m large is equivalent to making N(v) large, 

66 

and, for sufficiently large values of t we have 3ntSn/4 < ytJn/2 

so that a t satisfying (3) can be found provided that N(v) 

is sufficiently large. 

The rest of this§ is devoted to fue proof of Prop. (4.2). 

(4.3) Parallelotopes: the constants C ~ v· We recall 

some classical facts (see Lang, [6], Ch, V). 

an idele of F we put 

O{(a) 1T 
w{a ) 

p w 
w 

If a = (a ) is w 

wtsoo 
w (a ) 

w 
a fractional A., -ideal of norm N ( t1t.(a)) = Tr N (w} 

w't!:.oo 

{4) !I all 
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where The parallelotope defined by 

is 

For example if s > 0 then L = L(a) where a s w s if 'll € s 

and a = 1 otherwise. w 

B 

In this case 11 aJJ = 

r r 
2 l (2TT) 2 

ldll/2 

n s • Put 

67 

a 

00 

where d is the discriminant of F. Then (Lang [6], Ch. V, 

§2, Thm. 1) 

( 5) 

as Jl a!l ...,. oo, Fix some constant c
1 

so that c
1

B > 1. Then ( 5) 

implies that there is a constant c
2 

> 0 such that 

( 6) 

Put 

(7) 

-1 Card L (a) > c1 11 aJI whenever 

11 all > c2. 1n. particular 

d -1 n .!,__. f n car L
8 

> c
1 

s s > c
2

• 

c
3 

= max (c
1
,c

2
) 

T = 8
00 

u [w t 8
00 

I N(w) ~ c
3

) 

UT = A~ 

Since UT is a finitely generated group there is an s
0 

> 0 

such that 
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(8) 

UT ~ contained in .!:.b!:, ~ 

generated bv L - (0}. _._ so 

68 

We can now introduce the constants C and y to be used 

for Prop. (4.2) : 

(9) 

(10) 

(4.4) LEMMA. ~ OLF 0 ~~ideal in A
00

• ~ 

t = (N(OL) ·c
3
)l/n. ~ ~ 12_ ~a F o in Lt n ()l. 

Writing A
00

a = ()L '/..r ,~ ~ f.y in A
00 

is .!.!2 ~ ~ class 

21 (}-L -1 ~ ~ .!l2!.!!l N < f..n .:s. c3. 

Choose an idele a such that a = t for w e S and w 00 

Ol_(a) OL. Then it is clear that Lt n OL = L (a). Moreover 

n -1 we have from (4) that l!a!l = t N(O(J = c 3 = max(c1 ,c2). It 

-1 follows therefore from ( 6) that Card (Lt n 01..- ) > !I o:Hcl 

-1 = c 3c 1 ~ 1, whence the existence of a F 0 in Lt n Ot . We 

then have, by (2) N(Ut) c
3 

= tn ~ N(a) N(0t)N( ~),whence the 

other assertions of the Lemma. 

Since every ideal class of A
00 

has an integral representative 

of norm$ c
3 

it follows that AT~ Erincipal,and hence A= A8 

is principal if S ~ T, for example if 
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(11) c
3 

< N(v). 

We record this conclusion 

(12) condition (11) implies 

~ A is principal. 

(4.5) LEMMA. Assume (ll) and 

(13) 
n 

s
0 

< N(v). 

~ t satisf:c 

(14) -1 t3n/2 N(v) :5. c
3 

L 
312 

nU contains 1 ~generates U. 
t 

n The non zero elements of L have norm~ s
0 

< N(v) and 
so 

3n/2 n hence belong to u. Since t ~ c
3

N(v) ~ N(v) > s
0 

we have 

t
3/ 2 so the > s 0 group V generated by 1.; contains that 

generated by L - [0} which, by construction of s
0

, contains 
so 

the group UT. Recall from above that AT is principal. Moreover 

condition (11) implies AT c A so that U is generated by UT 

together with generators nw of the principal ideals PwAT (w € S-T). 

It remains therefore to find such generators n in w. 
w 

Let w € S-Tand put r = (N(w)C )l/n. Then Lemma (4.4) 
3 

supplies an element nw -F 0 in Lr n P w' Tt1e claim nwAT, and hence 

nw € U. Once this is shown, the inequalities r :5. (N(v)c 3)l/n~ t 3/ 2 
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(see (13)) further imply that rr E w, so the proof of Lemma (4.5) 
w 

will be complete. 

as in 

Put rr A = P (}'L • 
w"" w 

n Since N(rr ) < r = N(w)c
3

, we have w -

n n 5/4 n Proof of Prop. (4.2). With C = Max(3 (2 c
2

) , c
3

, s
0

) 

n -3/2 (9), and y == (2 c
3

) as in (10), condition (3) of 

Prop. (4.2) implies the following inequalities: 

(a) C < N(v) 

(b) 3n tSn/4 < N(v) 

(c) N(v) < y t3n/2 

We shall prove Prop. (4.2) by deducing conditions 1), 2}, 3) 

and 4) of Lemma (3.4) from (a), (b), and (c). 

(a) and (e) ~ 1). We must show that (Card D) 3/ 2 > N(v) 

where D = Lt/2 • Conditions (a) and (c) easily imply that 

n -1 n (t/2) > c 2 • It follows therefore from (6} that Card D > c 1 (t/2) • 

. -1 n 2/3 n The latter dom~nates c 3 (t/2) = y t • Thus (a) and (c) 

imply (Card D) 3/ 2 > yt3n/2 > N(v), which proves 1). 

{b) ~ 2). "l'ie must show that E = (d- d' l d,d' E D, d ~ d'} 

is contained in u. It suffices to show that, for e E E, 

N(e) < N(v). In fact E c Lt/2 + Lt/2 c Lt so N(e) ~ tn which, 

by (b), is< N(v). 
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(a) and (c) = 3) • Condition 3) is just the conclusion of 

Lemma (4.5). The hypotheses of Lemma (4.5) are (11) and (13), 

which both result from (a), and (14), which is a consequence 

of (c). 

It follows that 

Condition 4) follows therefore if we know that 3ntn < N(v), 

2nt2n < N(v) 2 , and (t 5/ 2 + t)n < N(v) 2 • The first two 

inequalities are immediate from (b). Since (for t ~ 1) we have 

t 5/ 2 + t ~ (2t) S/2 the third inequality results also from (b). 
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85. Proof of Lemma (3.5) for function fields. 

(5.1) Degrees. Let F be a function field with finite 

constant ~ k = 

we put 

so that 

r ' and genus g. 
q 

For each place 

deg (w) [k (w) :k] 

N{w) 
deg(w) 

q Card k(w). 

w of F 

Changing notation slightly from §3 we shall write v
00 

in 

place of v
1

, so that 

A
00 

=(a E F I w(a) > 0 for all w F v
00

}. 

The place v
00 

has smallest possible degree. 

Thew's different from V
00 

correspond to the prime ideals Pw of 

A • We define deg(ot) for a fractorial A -ideal OL so that 
00 00 

N(~) = qdeg(Oi-) 

In particular this defines deg(aA
00

) for a E F'. If t E I we put 

( 1) (a E A
00 

1 a 0 or deg{aA.,) ~ td). 

Note that A = U Lt. 
oo t>O 

The notation S A A U =A' S' v, ' = s' s' 

retains the meaning given it in §3. 
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(5.2) PROPOSITION. ~is ~ integer s
0 

€ Z depending 

only 2!!. F ~that if 

~ if t E Z satisfies 

(3) 
d * td 00 - ~(g-1} + ; < deg (v) < 2(td - (g- 1)) 2 00 

~ D = Lt ~ w = Ls nU satisfy conditions 1), 2), 3) ~ 4) 

.21~(3.4},~ s defined £Y_ 

(4) sd = 2 td - ~(g-1) + d 
CO 2 CO 2 o:l• 

To deduce Lemma (3.5) from this proposition we need only 

verify that, when N(v), or, equivalently, deg(v}, is sufficiently 

large, then a t E Z satisfying (3) can be found. Condition (3} 

can be transformed into 

{ 5) 
2 3 deg(v) + (g - 1) < td < ~{4 deg(v) - 2d + (g- 1)) 

00 5 CO 

Putting deg (v} 6(g - 1) + 3d
00 

+ e condition (5) takes the form 

( 6) 
2 

5(g - 1) + 2d
00 

+ ~ < td < 
00 

4 
S(g - 1) + 2d

00 
+se 

Therefore there is a real solution for t as soon as e > 0, 

i.e. as soon as deg {v) > 6(g-l) + 3d
00

• To obtain an integer 
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solution, however, we require the difference, ~ 5 e, of the right 

and left sides of (6) to be~ d
00

, i.e. e ~ 1~ d
00

, i.e. 

(7) deg(v) ~ 6(g-l) + lld
00

• 

Thus Prop. (5.2) implies: 

(5.3) THEOREM. Assuming 

(2) 

and 

(7) deg(v) ~ 6(g-l) + lld
00 

~ homomorphism 

is ~ isomorphism. 

(5.4) Divisors and Riemann-Roch. The degree of a divisor 

D = !: nw of F is :E n deg (w). w ·w 
w w 

of an a € p" has degree zero. 

therefore that 

(B) 

For any divisor D = }:; nww 
w 

L (D) (a € p• 

The divisor (a) =}:; w(a)w 
w 

Since aA =lT Pw(a) we see 
00 

WFV<Xl 
w 

(a) ~ -D} U ( 0 } 

= (a e F l w(a) >-n for all w} 
- w 

is a k-module whose dimension 
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is finite, and zero if deg{D) < 0. Note that L{D) •L{D') 

c L{D + D'). 
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The Riemann-Roch Theorem {see, for example, Serre [11], 

Ch. II, n°J, Thm. 3) asserts that 

{9) t {D) - J, {K-D) deg(D) + 1 - g, 

where K is the canonical divisor of F. Setting D = 0, and 

noting that L (O) = 1~, one finds that J, (K) = g. Then taking 

D = K one finds thag deg{K) = 2g - 2. It follows that: 

( 10) 
~ ~ J,{D) ~ deg{D) + 1- g, 

~ equality if deg(D) > 2g - 2. 

It is known {cf. {15], XIII, 12, Cor. of Thm. 12) that there 

exists a divisor D of degree 1. Then J,(gD) ~ g + 1 - g = 1, 

so there is an a F 0 in L{gD). Then {a) + (gD) is a positive 

divisor of degree g, so there exists a place w (in its support) 

of degree ~ g. It follows that 

doo ~ g. 

Let t E ~ have integral part [t]. Then it follows from 

{1) and {8) that 
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(11) 

(a E A 
00 

= L ( [ t] V 00 ) 

Putting 

it follows therefore from (9) and (10) that 

(12) .tt ~ ( t] d
00 

+ 1 - g, .!'!l!:h 

equality if [t]d
00 

> 2(g-l). 
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( 5. 5) LEMMA. Let (}(_ F 0 be an ideal of A • ~ s be 
--- -- -- ----- -- 00 

~~integer such that sd > deg(Q() + g - 1. Then~ 
------ 00 

Clearly L n OL = L(D) where D = sv E n w with 
s 00 w 

WFVOO 

We have deg(D) = sd - deg(OL) > g - 1, so 
00 

.t(D) ~ deg(D) + 1 - g > 0, whence the existence of a. We 

then have sd
00 
~ -v

00
(a)d

00 
= deg(aA

00
) = deg(Ot) + deg(~), so 

deg(~) ~ sd
00

- deg(Ot) ~ g- 1 + d
00

• This proves the lemma. 

We now introduce 

T = (v) U (w F V 
00 

1 deg(w) ~ g - 1 + d
00

} 
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AT {a E F I w(a) ~ 0 for all wiT} 

The group UT is finitely generated so there is a constant 

s
0 

e Z such that 

(13) U is contained _in T-.;;:..::;===.=:. 

the ~ generated 

~ L - {0). 
so 
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This is the constant s
0 

which appears in Prop. (5.2) and Thm. (5.3). 

Lemma (5.5) implies that AT is principal, and hence that 

A is principal if T c S, for example if 

(14) g - 1 + d
00 

< deg(v). 

We record this conclusion: 

(15) Condition (14) implies 

~ A is principal. 

(5.6) LEMMA. Assume 

(2) 

and 

(14) g - 1 + d
00 

< deg(v) 

~ t e I satisfy 
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(16) deg(v) 
3 

(td - (g- 1)) .$.2 ()() 

and define s ~ 

(4) sd 
()() 

3 td 1 '2" 
00 

- 2(g - 1) + d
00

• 

~ W = Ls n U contains 1 and generates~~ U. 

Condition (14) implies that T c s, and AT is principal. 

Hence U is generated by UT together with elements rrw € AT 

such that rrw~ = PwAT one for each w € S - T. In view of (13) 

it suffices therefore to show that (i) L - (0) c W, and 
so 

(ii) the elements TT w 
above can be chosen from w. 

Proof of (i). If a EL - [0) then deg(aA
00

) .$. s
0

d
00 

< deg(v}, 
so 

by (14}, so a E u. It further follows from (16} and (4} that 

(17) sd 
"' 

3 
= 2(td

00
- (g- 1)) + (g- 1) + d

00 

~ deg(v) + g - 1 + d
00 
~ deg(v} 

Thus a E L n U 
s 

w. 

Proof of (ii}. Let w E S - T, and define sw E Z by the 

inequalities 

deg (w) + g - 1 < s d < deg (w} + g - 1 + d • woo- 00 

Then Lemma (5.5} furnishes an element TTW ~ 0 in Ls n PW, and 
w 
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nwA~ = Pwbt with deg(OL) ~ g - 1 + d
00

• The latter inequality 

implies that OLAT = A and so n A = P A • Since w € s we have T w T w T 

Finally deg(n A ) < s d ~ deg(w) + g - 1 + d woo-woo- 00 

S. deg(v) + g - 1 + d
00 
~ sd

00
, by (17). Thus "w € Ls nU = W, 

so (ii) is proved. 

Proof of Prop. (5.2). vle assume (2), that t € Z satisfies 

{3), and that s is defined by (4). Note that {3) is the 

c-:>njunction of 

{16) t 

and of 

(18) 

deg (v) 3 
(g - 1)) < 2{tdoo -

> 2. td 1 
d 

deg{v) 
00 

- -(g - 1) + 4 00 /!. 2 

Put D = Lt' E = (d - d' d,d' E D and d ~ d'} = L - (0), 
t 

and W = L n u. \'le must verify the c0ndi tions of Lemma (3. 5) : s 

1) 3 dim D > 2 deg(v) 

2) E c U 

3) 1 € W and W generates U. 

(i) N(e
1 + e2 + e3) < N(v) 

Uil N(e
1

e
2 e3e4) 

2 - < N(v) 

(iE) N(e
1

w e2) 
2 - < N(v) 

(10 ' • 1). We have dim D .et. By Riemann-Roch (see (12)) 
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tt ~ tdoo + l- g, since t E Z. Thus l) follows from (16) '• 

(3) ~ 2) • comparing (16) ' and (18) one obtains 

td.., > S(g - 1) + 2d
00

• This together with (18) yields 

(19) deg(v) > td
00 

+ g - 1 + d
00

• 

Let e e E c Lt. Then deg{eA
00

) ~ td
00 

so (19) implies deg(eA
00

) 

< deg{v). Thus e E U as claimed. 

{2) and (3) ~ 3). By Lemma (5.6) above 3) results from 

(2), (14), and (15). But (3) => (10) ' => (16), and (3) ~ (19), 

as we saw above, and (19) => (14) clearly. 

(3) = 4). Since e 1 + e2 + e 3 e Lt, e 1e2 - e 3e4 E L2 t, 

and e1w + e2 E it suffices, in order to prove 4), to verify 

(i) ' td.., < deg(v) 

(ii) I 

(iii). 

2td
00 

< 2 deg (v) 

(s+t)d
00 

< 2 deg(v). 

Now (i)' and (ii) 1 follow from (19) which, as we've seen, 

follows from (3). 
d 

+ 2
00

, and (18) asserts this is < deg (v). 

This the proof of Proposition (5.2), 
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Appendix 

by John Tate 

Al 

In this appendix we compute the "tame kernel" H2F, i.e., the 

kernel of the map 

( 0 ) 
V JJ k'(v), 

VlS"co 
for the first six imaginary quadratic fields F, i.e., those with 

discriminants d = -3,-4,-7,-8,-11, and -15. For these d's, the 

result is that H2F = 0 for d :i 1 (mod 8), and H
2

F is of order 2, 

generated by .t(-1)2, for d 1 (mod 8). 

The proof of finite generation of H2F given in Ch. II gives a 

method for computing generators for it in a finite number of steps, 

but the number of steps is quite large because the actual value of 

the m in Theorem 1.1 which one gets by the general methods of §4 is 

large. But for the fields considered here one can use Euclidean 

Algorithm type techniques to get a reasonably low value of m in 

Theorem 1.1. For whatever value of m is obtained, we have 

( 0 ) 
V 

and we can make a list of generators (approximately ~2 
of them) for 

s 
K2mF, and then try to find relations among them. If we find enough 

relations, we are done (using the "wild" 2-adic Hilbert symbol to 

show that .t(-1) 2 I 0 when 2 splits, i.e., when d; 1 (mod 8)). 

This is our approach, except that we quote a theoretical result, 

Proposition 3 below, which can be used to cut down on the amount of 

computation needed. However, except the last case, d = -15, we 
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include computations which make Proposition 3 superfluous. 

Our assumptions and notations are as in 83 of Ch. II. The first 

result concerns an arbitrary global field F. Suppose the ideal P 

is principal; say P = TIA. We can then consider (for n = 2) the 

commutative triangle on p. 58: 

where 
s 

a(u) = t(u)t(n) (mod K2(F)), and S(u) u(mod n) for u E u, 

the group of S-units. 

Let Ul denote the subgroup of U generated by (l+TIU) nU. 

Proposition 1: Suppose W, c, and G are subsets of U such 

that 

( 1) w c cu1 
( 2) cG c cu1 

and W generates u. 

and S(G) generates k". 

(3) 1 E c n Ker S c u
1

. 

Then cv is bijective. 

Since S(G) generates k", the map S is surjective. As proved 

on pp. 58, 59, the map a is surjective, and u
1 

c Ker a c Ker S. 

Hence it will suffice to show that u
1 

= Ker S. Since u
1 

c Ker S, 

condition (3) implies cu1 n Ker S c u1, and so we will be done if 

we show U = cu1. By (1) this will follow if cu1 is a subgroup of U. 

( ( ) -1 -1 
Hence we are reduced to proving cu1) cu1 c cu1, i.e., cc 

By induction from (2) we have CGn c CU 
1 

for n ~ o, hence we have 
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only to show that for any c E c there is ann such that c-l E G~1 • 

Let c E C. Choose g
1

, .•• ,gn E G such that ~(c)-l = ~(g1 )···~(gn). 
Choose c' E C such that cg ···g 

1 n 
E c•u

1
. Then by construction, 

c' E Ker S, so c' E u
1

, and so -l E as was to be shown. c gl· · ·gnul 

Now suppose F is an imaginary quadratic number field. Choose 

an embedding F c ~, and for each a E F, let a denote the conjugate 

of a, and Jal = (aa) 1/ 2 = (Na) 1/ 2 its absolute value. Recall that 

A00 denotes the lattice of integers in F. 

Lemma 1. a,b E u n A00 and Jal + Jbl < Nv. If 

~ (a ) = S (b) , then a a b (mod U 
1

) . 

This is just a special case of Claim 2 on p. 63. For each 

t 2:. o, let Bt =(a E A00 lial :::;_ t}. 

Proposition 2: Let r, s, t > 1. Suppose 

(a) B n u generates u. r 
(d) s + r < Nv. 

(b) S(B nu) k'. s 
(e) s + st < Nv. 

(c) S(Btnu) generates k'. 

Then Cl is bijective. 
V 

Let W = Br n U, C = Bs n U, G = Bt nU and apply Proposition 

1. Given wE w, choose c E c with S(c) = S(w). Then wE cu
1 

by Lemma 1, because I cl + lwl $.. s+r < Nv. Given c E c, g E G, choose 

c' E c with S( c I) S(cg). Then cg E c•u1 by Lemma 1, because 

JcgJ + le'! :::;_ st + s < Nv. Given c E c such that B(c) = 1, then 

c E u 1 by Lemma 1, because le I + 111 < s+l $.. s + st < Nv. 
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Let d be the discriminant of F. The ring of integers A a;, is 

a lattice in a: with ~-base l,Q, where 

f~ 
/TdT if d even, 

2 
s 

+{EL if d odd. 
2 

A point in a: at maximum distance from A 
ro is 

{~ 
+~ 1 + !Q if d 2 2 

even, 

y 

~ if d odd. + Q 

Let 5 denote the distance from Y to A
00

• Then 

if d even, 

if d odd. 

As the following table indicates, 

d -3 -4 -7 -8 -11 -15 -19 -20 

1 1 4 it 9 16 3 
3 2 7 11 15 2 

there are five fields for which 5 < 1. These are the imaginary 

quadratic fields in which the norm furnishes a Euclidean Algorithm, 

i.e., in which, for given a,b E A
00 

with b ~ o, there exists 

q E A00 such that lE- ql < 1, hence la- qbj < jbj. 
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Lemma 2. Suppose 5 < 1. Then dv is bijective if either one 

of the following ~ conditions holds 

(i) ( Nv ) l/ 2 > 1 + 5 and (Nv) 1/2 > 

(ii) (Nv) l/2 > 1 + 5 and 
1/2 

( Nv ) > ( 1 + I g I ) 5 for some 

primitive root g E A00 for v. 

Apply Proposition 2 with r = 
1/2 s = 5(Nv) , and with 

t = s (resp. t = lg[) in case (i) (resp. in case (ii)). Since F 

is Euclidean, A
00 

is a P.I.D. Let IT be a prime element in A00 

corresponding to the place v. Then lrrl = (Nv)
1

/
2

. Division by n 

with remainder of absolute value~ 5[rr[ = s shows that the residue 

classes {mod rr) are represented by elements of Bs, and any non-zero 

element of Bs is in u, because s < [rrl, Also, u is generated by 

roots of unity and by prime elements u. of A
00 

such that [u.[ < rr, 
~ ~ -

i.e., such that ui E Br. 

We are now ready to compute the tame kernel H
2

F for some 

imaginary quadratic fields F with low discriminant. In several 

cases, relatively little computation is needed to show that H
2

F 

has no elements of odd order, whereas to analyse the 2-primary part 

of H
2

F by the same direct methods is a more tedious job. Thus the 

following fact saves some computational effort. 
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Proposition 3: Suppose F is an imaginary quadratic field of 

discriminant d, with jdj < 35. If d t 1 (mod 8), then H2 (F) is 

of odd order. If d =. 1 (mod 8), then~ 2-primary part of H2 {F) 

is of order 2, generated by t(-1)
2

, and is mapped isomorphically 

onto the group (.±1) by the "wild" Hilbert symbol at ~ of the 

primes above 2. 

Every ideal class of F contains an ideal of norm ~ Vld173. 
Hence, if jdj < 27, or if d =. -1 (mod 3) and jdj < 75, then the 

primes above 2 generate the ideal class group of F. We now show 

that Proposition 3 holds even with the hypothesis jdj < 35 replaced 

by the hypothesis that the primes above 2 generate a subgroup of odd 

index in the ideal class group of F. 

An element of order 2 in K
2

F is of the form .t(-l)t(a), with 

a E F" , and the a's for which t(-l).t(a) = 0 form a subgroup t:. of 

F" in which (F" )2 is of index 
l+r2 2 , where r

2 
is the number of 

complex places of F. This much is true for any global field; for 

a discussion, unfortunately without complete proofs, see 

[14, pp. 209-211]. For t(-l)t(a) to be in the tame kernel is 

equivalent to v(a) being even at all finite places v not above 2, 

for at such a place we have o (t(-l)t(a)) 
V 

(-l)v(a). From our 

hypothesis on the ideal class group, it follows that if t(-l)t(a) 

is in the tame kernel, then a E UF" 2 , where U is the group of 

S(2)-units, S(2) denoting the set of primes above 2. Thus the map 

u ~ t(-l)t(u) is a homomorphism of uju2 
onto the group (H2F) 2 
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of elements of order 2 (or 1) in H
2
F, and its kernel is of order 

The order of u;u2 is 2rl+r2+m, where r
1 

is the number of 

real places above 2. Hence, under our hypothesis on the ideal class 

group, (H
2
F)

2 
is of order 

r +m-1 
2 1 , for any global F. 

In case of an imaginary quadratic F, this order is 2m-l and 

is 1 unless 2 splits, in which case it is 2. Suppose 2 splits 

(i.e., d ~ 1 {mod 8)). Then the completion of F at a prime above 

2 is isomorphic to a
2

, the field of 2-adic numbers, and the Hilbert 

symbol on a
2 

gives a homomorphism K
2
a

2 
~ {.±1) carrying .t(-1)

2 

to -1. Thus, .t{-1)
2 f o, and hence .t(-1)

2 
generates (H2F) 2 • 

Moreover, since 2K
2

F is killed by the 2-adic Hilbert symbol, there 

is no element x E K
2

F such that .t(-1)
2 = 2x; in particular, the 

2-primary part of H
2

F has no element of order 4. 

Remark: For d -35, the situation is definitely different. 

The elements -1,2,5 E F' are independent mod(F')
2 

so they cannot 

all belong to the group~, in which (F')
2 

is of index 4. Of course 

2 e 6. Hence, two of the three elements .t(-1)
2

, t(-l).t(5), and 

.t(-l).t(-5) are non-zero, and one of them is zero, in K
2
F. 

(Exercise: which one?). But those elements are in H
2
F. Hence 

H2F ~ 0 for d = -35, even though there is no wild local symbol 

showing this; a( is a field with an "exotic" symbol. The 

case d = -35 is almost certainly the first such case occurring among 

imaginary quadratic fields. 
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Let us now treat some individual imaginary quadratic fields, 

in order of increasing size of the discriminant, d. 

d = -3 

Here the smallest value of Nv is 3, and 5 = 1//3. By Lemma 2, 0 
V 

is therefore bijective for every v, because 

1 + 5 <13 and 5 13 
2 < (:3 

soo 
It follows that the tame kernel H

2 
is equal to K

2 
and is 

generated by t(()
2

, where ( is a primitive 6-th root of unity. 

Since (+(-l = l, we have o = L(()t((-
1 ) = -t(()

2 . Hence H
2 

= o. 

d = -4 

Here 5 1//2. By Lemma 2, o is bijective for Nv > 2, because 
V 

after 2 the smallest value of Nv is 5, and 

1 + 5 ~< lr V 5, 
12 

and 
5 

2 
1-5 

12<15. 

Hence the tame kernel H
2 

is generated by the following three 

elements, each of which is o . 

.t(i)L(l-i) = 0 

.t(l-i)
2 

t(-l)L(l-i) 2L(i)t(l-i) o. 

Thus H
2 

o. 
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d -7 

In ~(/=7) the primes 3 and 5 are undecomposed. Hence the smallest 

value of Nv after Nv 2 is Nv = 7. Trivial calculation with 

5 = 2//7 shows 1+5 < /7 and 5/(1-52 ) < J7, Hence, by Lemma 2, 

d is bijective for Nv > 2. There are two places v with Nv 2, 
V 

corresponding to the prime elements 

u = 
l+M 

2 
and u = 1-A 

2 
1-u . 

Hence the tame kernel H2 is generated by the elements t(a)t(b) for 

a and b running through the set [-l,u,u}. But t(u)t(u) = o, 

because u+u = 1, and 

2 .t(u) = .t(-l).t(u), and -2 -t(u) = .t(-l)t(u) 

are all killed by 2, since (-1) 2 = 1. This shows the tame kernel 

H2 is killed by 2, and is therefore of order 2, generated by .t(-1)~ 

by Proposition 3. Of course the fact that H
2 

is not trivial follows 

from the "wild" 2-adic Hilbert symbol; it is mainly to show that H
2 

is not of order greater than 2 that we are appealing to the 

Proposition 3. However in this case it is not too difficult to give 

a direct proof of the latter fact, as follows. 

The equation 1 = -u-u2 shows 

o = z(-u)t(-u
2

) = .t(-1) 2 
+ .t(u)z(-1) + 2t(-u)t(u) 

and since 21.(-u).t(u) 0, we conclude that 

2 .t( -1) = .t( u) .t( -1). 
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Since -1+2 = 1, we have 

0 t(-l)t(2) = t(-l)t(uu) t(-l)t(u) + t(-l)t(u) 

and consequently 

2 - -2 
.t(u) = 1(-l)i.{u) = 1(-l)t(u) = i.(u) 

and this element is equal to t(-1) 2 by the preceding relation. 

Thus, H
2 

is indeed generated by one element. 

d -8 

Here A
00 

= :;z[y':2]. A list of prime elements of A 00 in order 

of non-decreasing norm begins 

u = 1 - ;:2. 
3 

Since 5 and 7 are undecomposed, the next value of Nv is 

11 = N(3+ /=2). Using 5 _J2 - 2 , we find by Case (i) of Lemma 2 

that d is bijective for Nv > 12, and by Case (ii), with the 
V 

primitive root g = 2, that it is also bijective for Nv = 11. 

Using Proposition 1 with the sets 

w or 

c (1,-1} 

G = ( -1} 

one can show that d is also bijective for Nv 
V 

3. For example, 

if S consists of S
00 

together with the two finite places corres-

pending to the prime elements u1 and u2 , and if v is the place 
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corresponding to u
3 

= rr, then 

U is generated by -1, u
1

, and u
2

. 

The set u 1 contains u 1 = l+u
0

rr and -u
2 

generators for u are clearly in cul, if c 

l+u
0

u
1

rr. Hence, the 

[1,-1}. And with 

G = [-1} we have CG c cu
1 

(even CG cc). Also 

{Ker ~) n c = (1} c u1. 

It follows that H
2 

is generated by the elements t(-1) 2 
and 

Z(-l)L(u
1

). Consequently 2H
2 

= 0 and we can use Proposition 3 

to conclude that H
2 

= o. 

Of course, a direct proof can also be made, and we shall give 

one below. For such computations we have found it convenient to 

use a shorthand notation which we now explain. We let 

-1 = u ,u ,u ,u , .•. 
0 1 2 3 

be a sequence of elements such that, for each m, the set 

(ui)' 0 ~ i ~m, generates the group of Sm-units, where s m 

consists of the V. 
~ 

being a list of all finite 

places, with Nvi ~ Nvi+l as in §1. These generators ui determine 

elements t(u.)t(u.) in K
2

F which we abbreviate as follows. 
~ J 

( ij) Z(u.)Z(u.) 
~ J 

and 

(i) (ii) = £(u.)
2 = Z(-l)£(u.) 

~ ~ 
( oi). 

We shall use without comment the obvious relations 
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2(i) = 0 and (ji) = -(ij) • 

s 
Thus, for each m, K

2
m(F) is generated by the elements 

(ij) ls_i<js_m, 

and 

(i) os_is_m, 

the last m+l of which are of order 1 or 2. 

u 
0 

For example, in (I)( ;:8), with 

-1, u = /-2, 1 u = 1+/"72, 
2 

u = 1-
3 

Al2 

, ... , 
as above, we have shown via Propositions 1 and 2 that the tame 

kernel 
s 

is K
2
l(F) and is therefore generated by (o) and (1). 

From Proposition 3 we know that these elements are 0. We now prove 

this directly. 

u1 + u3 "" 1 (13) 0 

uoul + u2 = 1 ===="!> (2) + (12) o, i.e., ( 12) (2) 

2 
1 ===9 (o) + 2( 1) = o, i.e., I ( o l 0 J u + u u = 

0 0 1 

1 ===9 ( 0) + ( 3) + ( 2 ) + ( 23) + 2 ( 12) -2 ( 13 ) o. 

Combining this last relation with those previously obtained, we find 

( 23 ) = ( 2) + ( 3) . 

Finally, 

which, combined with what we had before, shows[ (1) = 0 ) . 
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Incidentally, the relations we have just obtained show that 

53 52 
K

2 
(F) is generated by (2) and (3) and that K

2 
(F) is generated by 

(2). This gives another proof of the fact that d is bijective for 
V 

V 

d -11 

Here we can take 

u = -1, ul 
1+ v'-11 

u2 l-u
1 ul' u = 2, u4 l+u1 , 

0 2 3 

us 2-u
1 u4, 

with 

Nu 1, Nu
1 

= 3 = Nu2 , Nu = 4, Nu
4 = 5 = Nu

5
. 

0 3 

We claim dv is bijective for every v! For Nv ~ 25 this follows from 

Case (i) of Lemma 2, because 5 = 3//ll and 5/(1-52 ) 19974 < s. 
The only values of Nv such that 5 < Nv < 25 are Nv 11 and Nv = 23. 

Case (ii) of Lemma 2 handles these cases, because 2 (resp. -2) is a 

primitive root for 11 (resp. 23) and 35 = f8l7IT < .jll. For 

V = V 
5 

with NV 5 we use Proposition 1 with 

w G 

We have W C CUl because the elements and 

u 4-u
0

u
1 

= 2+ (-11 have norms 5 and 15 whose prime factorizations 

involve only primes< 5 and one 5. Similarly, GC c cu, because 

2 
u 1 -u

0 
= u

0
u

5 
has the same property. For v v 4 we just conjugate 

the above, after dropping u
4 

from w. For v v
3 

we use 
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and have only to observe that For v = v
2

, we use 

Proposition 1 again, with 

{1,-1}, G = f-1} 

and for v v 1 the same, after dropping u
1 

from w. 

s 
It follows that the tame kernel H

2 
is K

2
00 (F) and is therefore 

generated by t(-1) 2 , the element which is denoted by (o) in our 

shorthand notation. Thus 2H
2 

= o, and, by Proposition 3, H
2 

o. 

To show (o) = o directly is tedious, but it can be done as 

follows: 

2(24) + (o) 4(24) = o 

u u4 
1 

0 
( 14) ( 4) +-~ 

ul ul 

1 
u2 u4 

(34) ( 24) - ( 23) + ( 3) - + 
u3 u3 

1 u + u3 ==9 (3) 0 
0 

1 2 ( 13) - 2 ( 12) + ( 0) + ( 2) + ( 3). 

Subtracting, we get 3(13) 2 ( 12 ) + ( 0) + ( 1) + ( 3 ) 
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Simplifying, we have 

(34) (24) -2(13) + (2) + (o) 4(24) 0 

( 4) ( 14) 2(24) + (o) 

(23) 2(13) 

(3) 0 

+ ( 2) + (o) 3 ( 13 ) = ( 1 ) + ( 0) 

2(2) = 0 

(12) 

Finally, 

1 = 

0 

2 
u3 

+- => 4(13) - 2(14) + 2(34) + (4) 
u4 

2( 1) = 0 

2(0) = 0 

o, 

is a relation which, together with those already obtained, implies 

(o) ., o. 

d = -15 

Here the class number is 2. We take 

u = 
1 

l+r-E 
2 

u = 
3 

3+/Ts 
2 

5+ !=iS 
2 

We claim that 4H
2

F = o, and hence, by Proposition 3, H
2

F is of 

order 2, generated by t(-1) 2 . Since 

-1 2 
u

1 
+ u 1 u 2 = 1 ~ (1) + 2(12) = 0 ? 4(12) o, 

we have 4K;F = 0 ifS consists of the two primes of norm 2. To 

prove our claim, by showing H
2

F c K
2
sF, we have only to show that 

o is bijective for Nv > 2. For Nv = 3, use Proposition 1 with 
V 

TT = u and 
3 
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w c G (u }. 
0 

For Nv 5, use rr = u
4 

and 

c 

After 5, the next values of Nv are 17,19,23,··· and we look 

for a general method to handle them. 

Lemma 15.1. 

NQ = 2 and {u
1

) 

q E Q ~that 

Let Q = (2,u
1 ) be the prime ideal ~ that 

o2
• Given any z E ~. there exists an element 

lz-q!
2 ~ 8/5. 

1 /-15 Indeed it is easy to see that the point + 
5 

is 

maximally distant from Q, and that its distance is /875. 

Lemma 15.2. If M is~ ~-principal ideal every residue 

~ (mod M) is represented by ~ integer c such ~ Ne < ( 4/5)NM. 

Let M= bQ, Let a E A
00

• Let q E Q such that 1£- qj
2 ~ 8/5. 

Then bq EM, and !a-bql
2 ~ (8/5) lbl

2 = (4/S)NM, so c = a-bq is the 

desired representative of the residue class of a. 

Using Proposition 2, with s 2 
(4/5)Nv and r 2 = 2Nv, we can 

now show o bijective for all v with Nv > 5 such that the 
V 

corresponding prime ideal P is non-principal. Indeed, U is 

generated by integers u such that 2 
lul < 2Nv, because as we choose 

generators u 1 ,u2 , · · · corresponding to primes P
1 

= Q, P
2 

= Q, P
3

,P4 ,••• 

we can take u. such that (u.) = P. if P. is principal and such that 
~ ~ ~ ~ 

(ui) = QPi if Pi is not pri~cipal. Condition {d) of Prop. 2 is 
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satisfied if (Nv) 1/ 2 > (4/s) 1/ 2 + 21/ 2 , so for Nv > 10. Condition 

(e) is satisfied with t = s for Nv > 20. For Nv 17, we can take 

t = 3, using the primitive root g = 3 for 17. 

To treat the v corresponding to principal P we use 

~ 15.3. If (b) is ~ principal ideal prime !£ Q, then 

every residue class (mod (b)) is represented ~ ~ element c E Q 

such that 

The proof is the same as for the preceding lemma, but starting 

with an a E Q. 

Suppose v corresponds to a prime ideal P which is principal 

in A , say P = (n). Let us try to apply Proposition 1 with 00 

W ( u E U n A m ~~ u 1
2 

.5_ 2Nv } 

c {ceajici
2

.::;_(8/S)Nv}. 

As discussed above, w generates u. We will have w c cu
1 

by 

Lemma 1, if ( ./2 + JWS) < yNv , so certainly if Nv > 16. 

Also by Lemma 1, we will have C n Ker ~ c u
1 

if 1 + /(8/S)Nv < Nv, 

which holds for Nv > 4. To continue, we need a slight generalization 

of Lemma 1. 

Lemma Ml. Let F be~ imaginary quadratic~· ~M be 

~ideal in the ring of integers ofF, the prime factorization of 

which involves only primes in S. Suppose a,b E u n M and 

lal + lbl < Nv(NM)
1

/
2

• If ~(a)= S(b), then a E bU
1 . 

445 



Al8 

Let P be the prime ideal corresponding to v. We have 

a-bE MP and N(a-b) ~ ( laJ+Ibl)
2 < (NP)

2
NM. Consequently 

(a-b) MPL where L is an ideal with NL < NP, whose prime factors 

are therefore ins. It follows that a-b= rru with u E u, hence 

(a/b) 1 + rr(u/b) E (l+ITU) nu c u
1

. 

Using Lemma Ml, we see that 

then gC c cu1; indeed, given any c E c we can choose a c' E C such 

that S(c') = S(gc), and then gc E c'U, by Lemma Ml because 

ge-e' E Q and !gel + le' I ~ ( lgJ+l) /(8/S)Nv < .j2 Nv. This 

takes care of the cases Nv = 19 and Nv = 31 because 2 (resp. 3) is 

a primitive root for 19 (resp. 31). The remaining principal prime 

ideals have Nv > 4o (the next two cases being Nv 49,61), and they 

are all taken care of by the fact that if Nv > 4o. Let 

c
1

,c
2 

E C. Choose c E c such that S(2)S(c) = S(c
1

c
2

). By 

L Ml 'th b 2 M - o2 1 d E 2 U emma , w~ a = c 1c
2

, = c, - , we cone u e c 1c 2 c 1 , 

if Nv > 4o; and we have seen just above (with g = 2), that 
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On the Quaternion Symbol Homomorphism 
gF: k2F ~ B(F) 

Richard Elman and T. Y. Lam1 

l. Introduction and terminology 

In this short note, several sufficient conditions are 

obtained for the map gF in the title to be injective. 

Throughout this work, F denotes a field of character

istic not 2; B(F) denotes the Brauer group of F, and k2F 

denotes Milnor's K~ modulo 2 (see [9]). The pairing 

(a, b) t---'l> the quaternion algebra (aj/) (a,b E F=F-{0}) 

is clearly a Steinberg symbol F x F ~B(F), so it induces a 

homomorphism gF: k2F~ B(F), by the universal property of 

k2F. The following question then arises naturally: 

Ql: Is gF ~monomorphism ? 

After a slight reformulation, it will turn out that 

Ql is completely equivalent to a question in the theory of 

quadratic forms over fields. Let W(F) be the Witt ring of 

(non-singular) quadratic forms over F, and IF be the ideal 

in W(F) consisting of all even-dimensional forms. In [9], 

Milnor has shown that there exists a natural isomorphism 

k2F I 2F/I3F. Under this isomorphism, a 'generator' 

1). Supported by NSF Grant GP-20532 and the Alfred P. Sloan 
Foundation. 
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J(a) ((b) E k2F (in the notation of [9]) corresponds to a coset 

<1,-a,-b,ab> + I3F. Here, the 4-dimensional form <1,-a,-b,ab> 

raF,b) ' is precisely the norm form of the quaternion algebra \ 

and is a'2-fold Pfister form' in the terminology of [5]. 

Recall that, in [5], we have introduced the notation <<a1 ,··,an>> 
n 

for the n-fold Pfister form ~ = ~ <l,ai>. This notation will 
i=l 

be used freely in the sequel (though only for n ~ 3). Also, 

following [2],[5], we shall always write ~ 1 for the 'pure sub-

form' of the Pfister form ~; it is the unique form for which 

From here on, we shall identify k2F with I 2F;I3F, using 

Milnor's isomorphism mentioned above. Under this identifica

tion, the map gF: I 2F/I3F- B(F) is easily checked to be just 

the 1Witt invariant' c in [10]. Thus, Ql is completely equi

valent to the following basic question investigated in [10]: 

Q2: If §: form q E I 2F has invariant c( q) = 1 E B(F), does 

it follow that q E I3F ? 

In this note, we obtain some evidence for the apparent 

truth of Ql and Q2. In Section 2, we establish a necessary 

and sufficient condition for the sum of four 2-fold Pfister 

forms to lie in I3F (Theorem 2.2). From this, we show that 

gF is injective if every element in k2F is §: sum of at most 

five generators (Theorem 2.6). A consequence of this result 

is Pfister's Satz 14 of (10] about Q2 (see Corollary 2.8). 

The theorem is also applicable to local, global, and c3-fields, 

as well as fields F with tr. d.R F ~ 3 (Proposition 2.9). In 

Section 3, we investigate the behaviour of the ideals In 

(mainly for n ~ 3) under a quadratic extension F c K = F(Va). 
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It is shown that I3F = 0 implies I3K = 0 (Corollary 3.5). This, 

together with an inductive argument, shows that if I3F = O, 

then gF is indeed injective (Theorem 3.10). It follows that, 

for a field F, quadratic forms are classified~ dimension, 

discriminant, and the Hasse invariant iff 13F = o, i.e. iff 

four-dimensional forms of determinant 1 are all universal over 

F (Theorem 3.11). In Section 4, we obtain some necessary con-
r 

ditions for a = .L f(ai)l(bi) to lie in ker (gF) namely, 
J.::l 

r-1 "' r+2 17( )t-2 we must have 2 .L. <<-ai'-bi>> E I F, and ~ -1 •a:=O E ktF, 

where t=2r (Theorem 4.1). In particular, if .i(-l)m: ~F~~+2F 
is injective for all m ~ 1, then gF is indeed a monomorphism 

(Corollary 4.2). 

The beginning point of our investigation is the follow

ing well-known result, which answers Ql affirmatively in case 

every element in k2F is a sum of three generators. Our theo

rems in Section 2 are, therefore, all generalizations of this 

result. 

Theorem 1.1. Suppose n~=l cxi;-yi) = lEB(F). Then, 

(1) The form q = <<x1 ,y1>> 1 Jl<-l><<x2 ,y2>>' is isotropic over F. 

( -xiF' -y i)' (2) l~i~3, have ~ common splitting field L such that 

[L:F] ~ 2. 

(3) 2::'~=1 .t'C-xi}f(-yi) = o E k2F. 

This result was first proved by Pfister [10, P.l24,Zusatz]. 

In [5,Theorem 6.1(2)], we gave a slightly different proof. 

Recently, a third proof using only the theory of algebras ap

peared in A.A. Albert's posthumous work [1]. For the sake of 

completeness, we sketch below a quick proof of 1.1. 
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Proof. Assume that q is anisotropic over F. Let K = F(Y-x3). 
. (-xl ,-yl) "' ( -x2 ~-y2) , qK S1nce K = is clearly hyperbolic over 

K (in particular, [K:F] = 2). By [ll,P.52J, we have q ~ 

<l,x3>·~, where ~ is a ternary form over F. Equating deter

minants, we get -1 "' det q = x3 E F /F2 , a contradiction to 

[K:F] = 2. This proves (1), and (2), (3) follow immediately. 

2. Sums of 4 or 5 Pfister forms 

In this Section, we shall 

(A) establish some criteria for the sum of four 2-fold Pfister 

forms to lie in I3F (Theorem 2.2). 

(B) show that, if every element in k 2F is a sum of five gener

ators, then gF is injective (Theorem 2.6). 

These results depend on the following lemma, which will 

also be crucial for Section 3. 

Lemma 2.1. If ~ and 1: are 2-fold Pfister forms over F such that 

q = ~' ..L <-a>-r 1 becomes isotropic over K = F(Va) , then there 

exist z,b,c,dEF such that ~...1..<-a>-r ~ <<-a,z>>..l<b><<c,d>>. 

Proof. CASE 1. q isotropic over F. 

In this case, ~~ and <a>-r' represent some common element 

c E F. Write ~ ;;; <<c,b>>, -r ~ <<ac,z>>, where b,z E F. Thus, 

~J..<-a>-r = <l,b,cb,-a,-az,-cz>.lH ( H=hyperbolic plane) 

~<1,-a,z,-az>JL<b,-z,cb ,-cz> 

~ <<-a,z>>J..<b><<c,d>> 

CASE 2. q is anisotropic over F. 

where d -bz. 

In this case, we must have [K:F] = 2, and, by [ll,P.52], 

q ~ <z><<-a>> .l q1 , where z E F, and q1 is a 4-dimensional form 
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over F. Since det q = -a, we have det q1 = 1, so we may write 

q1 ~ <b><<c ,d>>, where b ,c ,dE F. We now conclude that 

q>..L<-a>'T: ";;;; q.J..<<-a>> ;;:; <<-a,z>>l.<b><<c,d>>. Q.E.D. 

Theorem 2.2. Let <Pi = <<xi'yi>>, l<i~4, and <J=<P1 j_ <x3><P2 j_ 

<-l>q>3_L<y3>q>4 • Then, the following statements are equivalent: 

(1) o = <b>·l3 E W(F), where bE F, and 13 is ~ 3-fold Pfister 

form over F. 

( 2) <Pl +q>2+q>3+<P4 E I 3F • 

(3) n 4 e-x. ,-y.) -i=l , F , - 1 E B(F), i.e. 

(-x3;-y3)®(-x4;-y4) 

Proof. (1)==9 (2) is trivial, since <Pl+<P2+<P3+<P4 = o (mod I3F). 

(2)==9(3). Identifying k2F with r 2F/13F after Milnor [9], 

(2) implies that i(-x1)i(-y1) + t(-x2)i(-y2) = ~C-x3)~(-y3) + 

1C-x4)1(-y4)E k2F. Therefore, (3) follows by applying the 

homomorphism gF: k~ ~B(F). 

(3)==9(1). Let K = F(V-x3). Then, by (3), the K-algebra 

(-xl~-yl) 10. (-x2K'-y2).o.(-x4K'-y4) ~ ~ splits. By Theorem 1.1, this 

implies that, over K, <Pl' 1. <x3><P2 ' = <Pl' j_ <-l><P2 ' is isotropic. 

Therefore, by Lemma 2.1, there exists an F-isometry <P1 j_<x3><P2 
;;:; <<x3 ,z>>J..<b><<c,d>>, where z,b,c,d E F. We have then 

o = <b><<c,d>> + <<x3>>(<<z>> - <<y3>>) + <y3><<x4,y4>> 

= <b><<c,d>> + <y3>(<<x4 ,y4>>- <<x3 ,-y3z>>)EW(F). 

( -d) (-x4,-y4) r-x3,y3z) Applying gF and using ( 3) , we get -c ~ ® F 0 \ F 

= 1 E B(F). Therefore, again by 1.1, we can write 

<y3>(<<x4 ,y4>>- <<x3 ,-y3z>>) as <b 1><<c',d'>>, where b', 
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Cl 'dl ,.. F.. R t' th t h (-cF,-d) "'= ~ epea 1ng e same argumen , we ave 

(~C I F' -d ') ' \ - <<c,d>> ~ <<c 1 ,d'>>, so a= <b,b 1><<c,d>> = <b>·~ 

E Vl(F), where f3 = <<bbl ,c,d>>. Q.E.D. 

Theorem 2.3. Let ~i = <<xi,yi>>, l~i<5. and assume that 

n 5 (-x. ,-yi \ 
i=l 1F J = lE B(F). 'l'hen, there exists an equation 

~l.L <x3>~2 ..l <-l>~3 _l_ <y3>~4 .L <-b>~5 = <<x5»iJ. + q 

. 2 
in W(F), where b E F, q E I F, dim iJ. = even ~ 4 and dim q = 8. 

Proof. Let a = ~l j_ <x3>~2 j_ <-1>~3 j_ <y3>~4 (as in 2.2), and let 

L = F(V-x5). We haveffi=ltxi~-yi) =lE B(L), so, by 2.2, 

aL = <b>·l' where bEt, and f3 is a 3-fold Pfister form over L. 

Observe that dim aL = 16, and dim f3 = 8. By [ll,P.52J, we may 

then write a = <<x
5
>>y + q E W(F), where y ,q are forms over F, 

with dim q = 8, dim y ~ 4. We may assume that y is even-dimen

sional. [Indeed, suppose not (in particular dim y ~ 3). Write 

7. Then, in W(F), 

a = <<x5>>y + <a,ax5> + (<-ax5> + ql) 

<<x5»y + q ' 

where y y J..<a>, dim y ~ 4, and q = <-ax
5
>.Lq1 , dim q 8 ]. 

Write y = <b>.Ly1 , dim r 1 =odd, bE F. Then, in W(F), 

a - <b>~5 <<x5»C <b> .L yl) + q - <b><<x5,y5» 

<<x5>>iJ. + q ' 

where iJ. <-by
5
> _L y1 has even dimension $ 4. Since a, q>

5 
and 

<<x
5
»iJ. all belong to I 2F, it follows that qE r 2F. Q.E.D. 

Lemma 2.5. Suppose g 2n-dimensional form 11 lies in I 2F. Then, 
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there exist 2-fold Pfister forms ~ 1 , ••• ,~n-l and scalars 
n-I 

a1 ,. ··,an-lE F such that ~ = L:. <a.>'T] 4 E W(F). 
~=1 ~ .... 

Proof. Induction on n. We may assume n ~ 2, since the case 

n = 1 is trivial. Write ~ = <a, b , c> .1. -r , where a, b, c E F and 

dim -r = 2n - 3. Then ~ = '11 l.lH ;;; <a,b,c,abc> .1. ( <-abc> .L -r) in 

W(F). Since <a,b,c,abc> ~ <a><<ab,ac>>, and dim (<-abc>JL-r) 

= 2(n-l) , the induction proceeds. Q.E.D. 

Theorem 2.6. If ~ 

gF(~) = 1 <== B(F), then ~ = o. In particular, if every element 

in k~ is ~ sum of at most five generators,then gF is injective. 

Proof. Write~= l:~=l LC-x1)f(-yi)' ~i = <<xi,yi>>, l~i~5. 
Then, we can apply the conclusion of Theorem 2.3. The 8-dim

ensional form q there can be written as ~i .. 1 <ai><<bi,ci>>, 

according to Lemma 2.5. Reading the equation (2.4) in k~ ~ 

I 2F/I3F, we see that ~ = ~(-x5)t(z) + 2:~ .. 1~(-bi)~(-ci)E k2F 

for a suitable zEF. Since~ is now a sum of just four gen

erators, the desired conclusion follows from Theorem 2.2. Q.E.D. 

Proof. Every element of k2F is a sum of 5 generators, by 

[5,Corollary 5.?]. Q..E.D. 

Theorem 2.6 also includes the following result of Pfister: 

Corollary 2.8.( = [lO,Satz 14] ). Let q be ~form of dimension 

~ 12 ~ that q E I 2F , and q has Witt invariant c(q) = leB(F). 

Then q E I3F. 

Proof. Let~ be the element in k2F which corresponds to q under 
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the identification I 2F/I3F ~ k~. By Lemma 2.5, a is a sum of 

five generators in k2F. Since gF(a) = c(q) = 1, Theorem 2.6 

applies. Q.E.D. 

For non-real fields F, let u(F) denote the maximum dimen

sion of anisotropic (quadratic) forms over F. The above Cor

ollary, therefore, implies that gF is injective for any non

real field F with u(F) ~ 12. Explicit examples are: fields F 

such that tr.d.c F ~ 3, or tr.d.F F ~ 2 (both are c3-fields). 
q 

We note also that Theorem 2.6 applies to fields like F = 

~((t1))((t2))- every a E k~ is a sum of at most 4 generators. 

For more examples, we record: 

Proposition 2.9. Suppose F(Va) is ~non-real field such that 

u(F(Va)) ~ B. Then, gF is injective. (This applies,for 

instance,to §N field F with tr.d.lR F ~ 3, on taking a = -1). 

Proof. We claim that any anisotropic form q> E I 2F can be 

expressed as 

(2.10) 
m 

q> = L <xi>«-a,yi» J..IJ. E W(F) 
i=l 

where m ~ o, and 1J. is some form (clearly in I 2F) of dimension 

~ 8. By Lemma 2.5, this implies that any element in k2F is a 

sum of four generators, and hence Theorem 2.2 applies. Since 

u(F(Va)) ~ 8, we have an isometry q> ~ «-a»-r ..lf.l with dim 1.1. 

~ 8, by repeated applications of [ll,P.52]. We may assume, 

as in the proof of Theorem 2.3,that dim -r = even. This proves 

(2.10). Q.E.D. 

Proposition 2.11. Suppose F is ~ non-real field such that 

u(F) ~ 8. Then gF(Va) is in,jective for all a E :F. 
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Proof. By [7,Theorem 4.3], u(F(Va)) ~ ~·u(F) ~ 12. Therefore, 

the result follows from Corollary 2.8. 

3. Quadratic extensions 

In this Section, we study the behaviour of the ideals In 

under a quadratic extension K = F(Va) ::> F. Let r* denote the 

functorial map T'.f(F) ~ W(K), and let s* denote the transfer 

map W(K) ~ ~.v(F) induced by the F-linear functional s: K --r F 

where s(l) = o, s(Va) = 1. We record the following two known 

facts: 

Proposition 3.1 (see [8,P.201]) If q is ~anisotropic form 

~ F, then r*(q) is hyperbolic over K iff q ~ <<-a>>·q1 for 

some form q1 over F. If y is S!:ro' form ~ K, then s"'(y) is 

hyperbolic over F iff y ~ r*(q) for some form q over F. In 

particular, the following sequence is exact: 

* 0-----7 «-a>>·W(F) ~ W(F) ~ V.f(K) ~W(F). 

Theorem 3.2. (special case of [4,Theorem A2.9]) For ~ n ~ 1, 

s~(I~) c rrlp. 

Putting together these results, we shall prove 

Theorem 3o3. For any n ~ 1, we have ~ ~ sequence 

For n 

For n 

1,2, this sequence is exact (I°F = W(F) ~definition). 

3, it exact except possibly at r3K. 

Proof. The zero sequence is clear from 3.1 and 3.2 above. For 

n 1, the exactness follows trivially from 3.1. Suppose n = 2, 
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and, say, q is an anisotropic form in I 2F, r~(q) = 0. By 3.1, 

q ~ <<-a>>.q1 for some form q1 over F. If dim q1 is odd, then 

det q = det <<-a>>·q1 = -a, contradicting q E I 2F. Consequently, 

dim q1 is even, and qE<<-a>>·IF. Next, suppose yE I 2K and 

s*(y) 0. By 3.1, y ~ <al'". ,a2m> for suitable aj E F. Since 

det y = (-l)m over K, we must have (-l)ma1 ···a2m = 1 or a, 

up to square classes in F. In the first case, clearly 

yE r,., (I2F). In the second case, y ·~ r* ( <aa1 ,a2 , • • • ,a2m>) 

E r*(I2F). Suppose now n = 3, and q is an anisotropic form in 

r 3F, r*(q) 0. Then, q ~ <<-a>>·q1 where dim q1 = 2m for some 

m. Write q1 «(-l)md» + q2 in W(F), where d = det q1 and 

q2 E I 2F. Then q = <<-a,(-l)md>> + <<-a>>•q2 E I3F implies that 

<<-a,(-l)md>> ~ 2H, by the Hauptsatz of [2], Now we have q = 
2 <<-a>>·q2 E<<-a>>·I F. Q.E.D. 

Proposition 3.4. If yE I3K is 8-dimensional and s*(y) = o, 
then there exists q E I3F such that r"' ( q) = y. (In particular, 

if K is non-real and u(K) ~ 8, then the sequence in 3.3 is 

exact also for n = 3). 

Proof. By the proof of 3.3, there exists an 8-dimensional form 

q1 E I 2F such that r*(q1) ~ y. According to Lemma 2.5, we may 

write q1 = J-, <x.><<a. ,b.>>, x. ,a. ,b. E F, l~i~.3. Let q2 ~ ~ ~ ~ ~ ~ ~ 
<<al'b1>>..1..<-a><<a2 ,b2>>l_<e><<a3 ,b3>>, where e EF is to be 

specified. Since q2 = q1 (mod I3F), we have r*(q2) = r*(q1): 0 

(mod I3K). Therefore, the form <<a1 ,b1>> 1~<-a><<a2 ,b2>> 1 

must become isotropic over K, by Theorem 1.1. Using Lemma 2.1, 

we may write q2 i:: <<-a,z1>>l_<b><<c,d>>J..<e><<a3 ,b3>>, where 

z1 ,b,c,dEF. Let e =-ab. Then, as before, <<c,d>>'..L 

<-a><<a3 ,b3>> 1 becomes isotropic over K. Consequently, 
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This gives r*(q2 ) = <t>«u,v» in W(K). But r*(q2 ) E r3K, so 

<t><<u,v» = OEW(K), by [2]. In particular, r*(q2 ) = 0. 

Setting q q1 - q2 E r3F, we then have r*( q) = r*( q1 ) = y, as 

required. Q.E.D. 

Proof. If y is any 3-fold Pfister form over K, then, by Theo

rem 3.2, s*(y)E r3F = o. The Proposition above implies that 

y = 0 E W(K) • Q.E.D. 

Remark 3.6. Corollary 3.5 is peculiar to quadratic extensions. 

In fact, take two .fields F c F(a.) where F is quadratically 

closed but F(a.) is not quadratically closed. Let E = 

F((t1 ))((t2)) and L = F(a.)((t1 ))((t2 )) = E(a.). Then, I3E 0, 

but r3L * o. 

Proposition 3.7. The .following are equivalent: 

(1) 1(a)·k1F ~ k~~ k2K is exact. 

(2) r3F ~ I3K~I3F is exact. 

(If either condition holds, we shall say that the quadratic 

extension K = F(Va) ::> F is exact). 

Proof. (1)::::::;. (2). Suppose s*( y) 0 where yE I3K. Then there 

exists qE I 2F such that r*(q) = y, by 3.3. Identifying r 2;I3 

with k2 after Milnor, (1) implies that q E <<-a>>· IF + I3F. 

Therefore, y = r*(q) E r*(I3F). 

(2) ==;. (1). Suppose a. E k 2F and r*(a.) o. Let q E I 2F be such 

that its class in r 2F;r3F corresponds to a.. Then r*(q)E r3K. 

Since s*r*(q) = 0, (2) implies that r*(q) = r*(q1 ) where 
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q 1 EI3F. Thus, r*(q- q1 ) = 0, and so q- q1 G:<<-a>>·IF 

by Theorem 3.3. Going back to k 2 , we get ex<= i'(a)·k1F, since 

ql E I 3F. Q.E.D. 

Our interest in the notion of 1 exactness 1 stems from 

the following properties: 

Proposition 3.8. (1) If gF is injective, then ~ quadratic 

extension K = F(Va) :> F is exact. (2) Suppose K=F(fi) :> F is exact. 

Then, gK injective ~gF injective. (3) If all quadratic 

extensions of all fields are exact, then gF is injective for 

all fields F. 

Proof. (1) For ex 

A= ® (ai,bi'· 
i=l F J 

n 
i£ .t'(ai).t'(bi) E k 2F, consider the F-algebra 

By the Wedderburn theorems, A ~ lMm(D) for 

some integer m and some F-central division algebra D. Suppose 

r~(ex) = 0 E k 2K. Then, D splits over K. This implies that 

di~ D divides [K:FJ 2 = 4 (see, for instance, [12,Corollaire 2 

of Theoreme 10]). Therefore, either D ·~ F, or D ~ (ajj.b) for 

some bEF. If D; F, we have gF(ex) = 1. If D;;; (a;b), we 

gF(((a).t'(b)). Since gF is injective by hypothesis, 

we conclude, in either case, that ex E _f(a)·k1F. 

(2) Take ex E ker(gF). Then r"'(ex) E ker( gK) = o. Since K :::> F 

is exact, ex = f(a)f(b) for some bE F. But then clearly ex = 0 

(3) Suppose ex. E ker(gF), where ex is a sum of n generators in 

k 2F. '.'le shall show, by induction on n (for all fields F) 

that ex = 0 E k2F. The case n = 1 is trivial, so we proceed to 
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any n ~ 2. Write a. = .((a)f(b) + a.' E k2F, where a.' is a sum 

of n-1 generators. We may assume that K = F(Ya) is a quad

ratic extension of F. Since gK(r*(a.')) = 1, our inductive 

hypothesis implies that r*(a.') = 0 E k2K. But K::J F is exact 

(by hypothesis), so a.' = /(a)!( c) for some c E :F. We now have 

a.= f(a)f(bc), and clearly gF(a.) = 1 ~a.= o. Q.E.D. 

Corollary 3.9. If every element of k2F is ~ sum of ftve 

generators, then any quadratic extension K = F(Ya) ::> F is 

Proof. Under the given hypothesis, we know that gF is indeed 

injective, by Theorem 2.6. Thus, the desired conclusion 

follows from part (1) of the Proposition. Q.E.D. 

Theorem 3.10. (1) If I3F 

(2). ForK= F(fa),if I3K 

0, then gF is injective. 

o, then gF is injective. 

Proof. (1) By 3.5 and 3.7(2), all quadratic extensions K ::JF 

are exact, and share the common property that r3K = 0. Thus, 

(1) follows by repeating the same inductive proof in 3.8(3), 

for the class of fields with I3F = 0. After proving (1), 

(2) follows from 3.8(2). Q.E.D. 

Theorem 3.11. r3F = 0 iff quadratic forms over F are completely 

classified hY dimension, discriminant, and the Hasse invariant. 

(The Hasse invariant of a quadratic form <a1 , ••• ,an> 
r0o ( ai ,aj) is defined to be the algebra class ~ in the 
i<j F 

Brauer group B(F) ). 
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Proof. By [6,Theorem 2.15], dimension and 1:ilnor1 s total 

Stiefel-~~itney class w classify quadratic forms over F iff 

I3F is torsion-free. Assume that r 3F = O. Then, dimension, 

w1 and w2 classify quadratic forms (since wi = 0 fori ~ 3). 

By 3.10(1), w2 is equivalent to the Hasse invariant. This 

proves the •only if• part of the theorem. The •if 1 part is 

trivial and well-knovm. ~~.E.D. 

Corollary 3.12. If dimension, discriminant, and the Hasse 

invariant classify quadratic forms over F, then they also 

classify quadratic forms over any quadratic extension K :J F. 

Proof. Clear from 3.5 and 3.11. 

Remark 3.13. By 3.6, we see that the last corollary is peculiar 

to quadratic extensions. Vie also note the following example. 

Let F = R((t1))···((tn)), K = ~((t1 ))···((tn)) = F(i:I). Then, 

F is pythagorean; and, in particular, dimension and w classify 

quadratic forms over F. However, if n ~ 3, r3K :F 0 and W(K) 

is torsion, so dimension and w do not suffice to classify 

quadratic forms over K ! 

4. Necessary conditions for a. E ker(gF) 

In this Section, we shall provide further sufficient 

conditions for the map gF to be injective. The main result 

is as follows. 

(1) 

(2) 

r-1 "'r r+2 2 · L.. l <<-a. ,-b.>> E I F. 
~= ~ ~ 

'( )t-2 r -{. -1 •IX = 0 E ktF, where t = 2 • 
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Corollary 4.2. gF is injective if either of the following holds: 

(A) In W(F), 2x E rn+lF =9 x E I~ whenever n ? 3. 

(B) For all m ? 1, .f(-l)m: k2F ~ ~+2F is in,jective. 

The main work in this section will be to establish 4.1(1). 

This part (1) implies part (2), by the following argument with 

Stiefel-V:lhitney classes (see [9]). Lifting (1) to the Witt

Grothendieck ring V!(F), we have 

'\'r (<-1>- <l>)r-l.(<a4 >- l)(<b.>- 1) E Ir+2F, ~i=l ~ ~ 

where IF denotes the augmentation ideal of W(F). Applying the 

tth Stiefel-Whitney class, t = 2r, we obtain, according to 

[9,Corollary 3.2], the equation 

This is precisely 4.1(2). 

The proof of 4.1(1) will be based on the construction of 

a 'trace form' on an arbitrary central simple algebra. For 

any F-central simple algebra A, let Trd: A~ F denote the 

reduced trace on A (see [3, 12,No.3]). We define the trace 

form on A to be the pairing (a,b)~ Trd(ab), which is easily 

seen to be symmetric, bilinear, and non-degenerate. We shall 

denote this pairing by < , >A. 

Lemma 4.3. If A, B are F-central simple algebras, then 

< , > A®B is isometric to < , >A®< , >B • 

This follows easily by working over a common splitting 

field for A, B, and observing that, for square matrices X, Y, 

one has tr(X®Y) = tr(X)·tr(Y). 

Since we assume that F has characteristic not 2, the 

symmetric bilinear form < , >A may be identified with its 
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associated quadratic form x ~ <x,x>A. We shall need the 

explicit calculation of this quadratic form in two important 

cases, as follows. 

Lemma 4.4. (1) For A ( aF,b), "' 2 < , >A = < ><l,a,b,-ab> 

= <2>· ( 2 - «-a,-b» ) E W(F). 

(2) For A = lMn(F), < , >A ~ n<l>J.. n(~-l).lH = n<l> E W(F). 

The proofs are straightforward, and will be left to 

the reader. 

We are now ready to prove 

exists an F-algebra isomorphism 

4.1(1). By hypothesis, there 

~ ( aiF' bi) ':¥ llll (F), for some 
i=l n 

n. By a simple dimension count, we have 4r = n2 , hence n = 2r. 

Using the two preceding lemmas, we obtain an equation: 

r n. 
1 

(2 - «-a. ,-b.») = <2>r.2r<l> E W(F). 
~= ~ ~ 

The RHS is just 2r<l> since <2>·<1,1> ~ <1,1>. Therefore, in 

expanding this product, the first term 2r<l> cancels. The 

2r-l vr next term is ± • ~i=l <<-ai'-bi>>. If we multiply 

s factors of the form <<-ai,-bi>> and r-s factors of 2, the 

resulting form lies in (I2F)s·(IF)r-s = Ir+sFo Thus, 

r 
2r-l. L <<-a. ,-b.>> = ( ± terms with s ~ 2) E rr+2F. 

i=l ~ l. 

Q.E.D. 
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On The Torsion in K
2 

of Local Fields 

Joseph E. Carrell 

1 

For all that follows let us assume that F is a local 

field with finite residue field of order q. Moore has 

proved (c.f. Milnor, Introduction to Algebraic K-theory, 

p. 175} that K2F is the direct product of a cyclic group 

whose order is the same as the order of the group of roots 

of 1 in F, and a divisible group which is the kernel of the 

Hilbert symbol on F. John Tate has raised the question 

(c.f. Proceedings of the International Congress of Mathe

maticians, 1970, Vol. 1, p. 203} of whether or not the divi

sible group is torsion free. 

Let rr be a fixed prime of F. In this paper we prove 

that the map from the group of roots of 1 of order prime to 

q to the torsion in K
2F of order prime to q given by 

~ ~ (~,rrJ is an isomorphism onto. As an easy corollary, we 

prove that the tame kernel in K
2
F, which contains the kernel 

of the Hilbert symbol, has no non-trivial m-torsion for 

(m,q) = 1. 

I would like to thank Professor John Tate for making 

many suggestions for smoothing out my proofs. 
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Theorem 1: Let ~ be a q-1 root of 1 in F. Let x € F* 

and suppose (~,x)F = 1, where ( , )pdenotes the tame symbol on 

F. Then (~,x} = 1 in K2F. 

~: Let u
1 

denote the group of units in F congruent to 

1 (mod TT). 
n q-1 

Write X = TT 'U where U € U1 , ' = 1 

{ ~,x} 

n 
But u has a q-1 root in u1 and 1 = (~,x)F = ~ so, 

(~,x} ( n J ( } ( q-1 1/q-1} 
~ ,TT ~,, ~ 1 U 

So we must show that (~,,} 1 in K
2
F. To this end we prove: 

Lemma 1: Let E be any field and m a positive integer such 

that E contains the 
th 

roots of 1. Let A be the 
IJ.m' m 

subgroup of K
2

E generated by elements of the form (~1''1]2} 

where 11 1 ,'1] 2 € !-lm' Then if m is odd or 4jm, A= 0. 

A is generated by (-1,-1}. 

Otherwise 

~: Let m s is odd and let 'I] generate 

IJ.m' If ~ 1 ,'1] 2 € IJ.m we can write 'Ill = T]j, '1] 2 = 'Ilk 

. k 'k 
('1]

1
,'1]

2
} = (1J 3 ,T] } = (T],T]}J , so (T],T]} generates A. 

(~,~} = (~,-1} = (~,(-l)s} = (~s,-1} and 

s m 
If t = o, then ('!] ,-1} = (T] ,-1} = 1 
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If t = 1, then (~s,-1} (-1,-l} 

s 
If t ~ 2, then (~ ,-1} 

t-1 
[ s s )2 
l ~ , ~ 

t-1 
s }2 ( ~ , -1 

We apply Lemma 1 to F where m = q - 1. The only difficulty 
in deducing Theorem l 
arises when 2lq-l and 4~q-l. Suppose this is the case. If 

F is a local function field over a finite field k, (-1,-1} l 

1 in K
2
F. If F is a 

local number field, then we may assume F ~ mp where 

p e 3(mod 4). Therefore, to finish off Theorem l, the 

following lerm;1a, which was proved by Alan Waterman, suffices: 

Lemma 2 (Waterman): If p e 3 (mod 4), then (-1,-l} 1 in 

Proof: First we mimic the proof that K2Ep = 0. Since the 

norm map E ~) ~ E is surjective, we can find x,y E Z - (0} p p 

such that 

x
2 + y

2 
e -l(mod p) 

Let C be a p - 1 root of 1 in W such that C e x (mod p) • p 
2 2 Let y E ~ such that y = -1-C (by Hensel's Lemma there is p 

2 2 2 2 . 
such ay). Then -c - y = 1, so (-C ,-y } = l ~n K2ap. so, 

( 2 2 p-1/2 ( 2 p-l/2 2 2 . £=! 1 = _, ,-y} = (-') ,-y} = (-1,-y} s~nce 
2 

2 2 2 is odd. But (-1,y } = l, so (-1,-1} = (-1,-y }/(-l,y } = 1 
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Now let us fix some more notation. 

Let L be a fixed prime number with (.t,q) = l. 
Let u be the group of units of F. 

Let c be the group of roots of 1 of £.-power order in F. 

Let V be the product of ul and the group of roots of 1 in 

F whose order is prime to .e. 

If A is any abe1ian group and m is any positive integer, 

let be the kernel of the m th m A. A power map A_,. 
m 

00 

Let A(.t) U A.en' the £.-primary part of 
n=O 

A. 

Remark l: z we have F* = n CV~ Z x C x v. V is uniquely 

divisible by .e. Since CV= U, if x E F*, then x, 1 - x, or 

l - x-l E cv. 

Lemma 3: Let b E c, w E v. .e Then (l - bw ,w} 

E££2!: We divide the proof into three cases: 

case (i) , C ~ 0 and b does not generate C: 

Let c E C such that c.e 

root of l in c. Then 

.e-1 
!1 ( l 

i=O 

b. 
th 

Let ' be a primitive .e 

L-l i 
( rr ( l - ' cw) , w} 

i=O 

.e-l i i 
n {' c,l - ' cw} 

i=O 

This element is easily seen to be of the form (a,x) with 

a € C, x E p*, so to show that it is trivial, it suffices, by 
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Theorem 1, to show that its tame symbol is 1. But 

(1- bw~,w)F = 1, because wE U, and if 1- bw~ fo U, then 

w E u
1

• 

Case (ii), C F 0 and b generates C: 

Consider the extension field F(c) where c~ =b. Let 

5 

TrF(c)/F denote the transfer homomorphism :l<2F(c) ~ K
2
F. Then 

i, 
(1 - bw ,w} = (NF(c)/F(l - cw) ,w} = TrF(c)/F((l - cw,w}) 

TrF(c)/F((c,l - cw}) 

It is, then, enough to show that (c,l - cw} = 1 in K2F(c) and 

as in case (i) we need only show that (1 - cw,w)F(c) = 1, 

and the reasoning is the same as in case (i) . 

Case (iii), C = 0, and sob= 1: 

Consider the extension field F(') where ' is a primitive 

~th root of 1. 

1 by case (i). Therefore, in 

Tr )/ ((1 - w;, ,w)) 
F(( F 

~ ~ ~ ~ . But also, (1 - w ,w} = (1 - w ,w } = 1 ~n K
2

F and 

1 

~ Therefore, (l - w ,w} = l and this completes 

the proof of Lemma 3. 
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Theorem 2: Let M be the subgroup of K
2

F consisting of all 

elements of the form (a,x} where a E c and x € F *. Then 

6 

f!22!: First of all we wish to construct an endomorphism, ~~ 

th of K2F which is close to being an inverse of the t -power 

map. We treat the case of t 2 slightly differently from that 

of t odd. If x € F* we can, by Remark 1, write uniquely 

m 
x = TT av a E c, v E V 

Define B: F* X F*-+ K
2

F by 

B(nmav,n~w) = (n,(-l)mn(wm/vn)l/t}(v,w1/tl if t is odd 

We claim that B is a symbol. It is easy to see that B is 

bimultiplicative. -1 Also B(y,x) = (B(x,y)) because 

{ 1/t 1/t} t - ( 1/ t } - ( 1/ t l-1 w ,v - w ,v - v,w 

Since B is bimultiplicative, we have, for all x € F* 

-1 -1 1 - X 
B(l - x,x) ·B(l - x ,x ) = B(---=f,x) = B(-x,x) 

1-x 

Thus, by Remark 1, to show that B is a symbol we need only 

show: 

(a) B(l - bw,bw) = 1 for all b € C; w € V 

(b) B(-x,x) = 1 for all X € F* 

Let 1 - bw 
m = n av a € C, V € V 
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m 0 B(l - bw,bw) = B(n av,n bw) ( m/t) ( 1/.£} n,w v,w 

Now, by Theorem 1, ( 1/£} a,w = 1, so 

B(l - bw,bw) ( m 1/£}( 1/£} nv,w a,w m 1/£ ( n av ,w } 

1 by Lemma 3. 

Let X € F*. Write x 
m 

n av. 

7 

( m 1/t) n v,w 

Suppose, first, that t is odd. Then -1 e V, so we write 

B (-x,x) B(nma(-v) ,nmav) 

2 
(n,(-l)m (vm/(-v)m)l/t)(-v,vl/£} 

2 
(n, (-l)m +m}(-vl/t,vl/t}£ since t is odd 

= 1 

If t = 2, then -1 € C, so we write -x nm (-a) v and 

( 1/2 1/2}2 
V ,V 

1 

Thus B is a symbol, as claimed, and so induces a map ~' 
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We claim that for all a E K
2
F, 

(f3 • .t) (a) • a(mod M) 

Clearly it is enough to demonstrate the congruence for a an 

arbitrary generator of K
2
F. Let x = nmav, y = nnbw. Suppose, 

first, that .t is odd. 

.t m n.t .t .t f3 • J, ( ( x , y } ) = B ( ( x, y } ) = B ( n av , n b w ) 

(mod M) 

= (x,y} as claimed. 

If .t = 2, the argument is exactly the same except that we must 

use the fact that (n, (-l)mn} EM. 

In order to use all this to prove the theorEm we make 

one more observation, namely that M c ker f3, for if 

a,b E C, w E V we have 
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Now we shall finish up. Of course {K
2

F) tO = (1} c M. Assume 

inductively that (K2F) Lr cM, and let a E {K2F) Lr+l' Then 

aL E (K
2

F) tr' Modulo M we can write 

So a € M, and by mathematical induction (K
2

F) (L) c M. But 

M c (K2F) (t) trivially, so (K
2

F) (t) =M and Theorem 2 is 

proved. 

Now we shall examine M a little more closely. First, 

we claim that every element of M is actually of the form 

(a,n} where a E c. Let (b,x} € M where b € C, x € F*. Write 

x = 11nu with u E u. Then 

But (b,u} = 1 by Theorem 1. In fact, the proof of Theorem 1 

was essentially a proof that (b,u} = 1. So 

and, of course, bn E c. 

We have a map ~: c ~ M 

~:a f---7-(a,n} 

which is onto by the above reasoning. It is also one to one, 

since 

472 



10 

(a,n} = 1 ~ 1 = (a,n)F = a 

C is trivial for all t except those dividing q - 1, so by 

taking the direct sum over all L noting C = F*(L) and 

Theorem 3: The map 

given by 

is an isomorphism onto the torsion in K
2

F of order prime to q. 

Corollary 1: The tame kernel in K
2

F has no non-trivial torsion 

elements of order prime to q. 

~: Suppose a is tamely trivial and am = 1 where (m,q) = 1. 

Since am = 1, a m 
(~,rr} where ~ = 1, by Theorem 3, but then 

1 ~ so a = 1. 
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CONTINUOUS SYMBOLS ON FIELDS OF FORMAL POWER SERIES 

by 

Jimmie Graham 

1. Introduction 

Let F = k((t)) denote the field of formal power series in one 

indeterminant over an arbitrary field k, and let G be any abelian 

group. A symbol on ! with values in G is an antisymmetric, hi

multiplicative function, b: F*x F* ---> G, that satisfies the follow

ing identity 'V ro F 1 in F* = F {01 

o. 

It is well known that K2(F) is the value group of the universal 

~ bF on F, i.e. every symbol on F factors uniquely through 

bF: F* x F* --> K2 (F) 

a continuous symbol 

The purpose of this paper is to construct 

e k* e 
and to show that if char(k) = 0, then B is universal for a certain 

class of continuous symbols on F, where n k [[ tlJ denotes the group of 

formal power series over the module of absolute differentials on k. 

We first define symbols bk and bt on F with values in K2(k) 

(1) 

and k* respectively. For each integer n > 1, let U 1 + tn·k[[tJl. 
n 

Then F* k*·(t)·U
1

, where (t) denotes the subgroup of F* generated 

by t; and each ro E F* can be uniquely written as ro Xtnu with X 

in k*, nE Z and u E u1. We reserve the letters x,y and z for ele

ments of k* and u,v and w for elements of u
1

. One easily verifies 

that any symbol 

defining 

d on k can be extended to a symbol 

d(xtnu,ytmv) = d(x,y). 

on F by 

In particular, the universal symbol bk on k can be extended in this 

way to a symbol bk on F with values in K2(k). 
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Next we have the well known tame ~ on F, bt F* x F* ---> k* , 

defined by 
n m nm n -m 

bt(xt u,yt v) = (-1) y x . 

Definition 1. For any abelian group G and any symbol b on F with 

values in G define functions b
1

, b2 and b3 from F* x F* to G as 

follows: 

n m b
1

(xt u,yt v) 

n m b2(xt u,yt v) 

n m b
3

(xt u,yt v) 

b(x,y) 

b(t,(-l)nmynx-m) 

b(xtn,v) + b(u,ytm) + b(u,v) . 

It is easy to verify that each 

and that 

b. 
1 

is a symbol on F with values in G, 

And moreover, it is clear that b
1 

factors through bk (i.e. there 

exists g E Hom(K2(k), G) such that b
1 

= g•bk) and that b2 factors 

through bt; and these factorizations are unique because bk and bt 

generate their value groups. 

We have now proved that every symbol b on F is a sum of three 

symbols, b = b1 + b2 + b
3

, and that bk and bt completely determine 

b1 and b2 , respectively. The remaining symbol, b3 , lives on u1x F* 

by definition, and the problem of completely describing all such symbols 

on F has not yet been solved. In section 5 below we show that if b 

satisfies a certain continuity condition, then b3 is completely 

determined by some finite number of derivations on k. Then in section 

6 we apply these results to compute K
2 

of certain rings of truncated 

polynomials. 

2. Continuous Symbols 

(2) 

Put the valuation topology on F* (i.e. take the subgroups u1 ,u2 , ... 

as a system of basic open neighbourhoods of 1 in F*) and let G be 

any Hausdorff commutative topological group. We denote by 

group ~ continuous symbols on 

means that b: F*x F* ---> G 

F with values in G (i.e. 

is both a symbol on F and a contin-

uous function ) Let R/Z denote the circle group with its usual 

topology. It is well known that R/Z has no small subgroups, that is, 
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there is a neighbourhood (nbd.) N of 0 in R/Z such that N con-

tains only one subgroup of R/Z, the trivial subgroup. Clearly, discrete 

groups have no small subgroups. We show (lemma 1) that if b E SF(G) 

and G has no small subgroups, then b must vanish on some u x F*. m 
For this result we require the fact that V X E k* V n,m?l and V UEU 

To prove this write u = 1 + l3tn E U for some integra 1 element 13 
n 

in F (i.e. 

(1- xtmu)w-l 

m 1 + l3t E u
1 

) and set w = 1- xt E Urn. Then 

= (w+xl3tm+n)w-l = l+atm+n E U , where a= xl3w-l 
n+m 

is integral. As an application of (3), assume b(Um,l3) = \0} for some 

symbol b andsome I3EF*. Thenforall XEk,uEUm and l<i<m 

b(l- xtm- i ,13). 

Another useful consequence of (3) is 

m-1 U (1-xt )·Urn 
XEk 

From 

symbol 

(5) it follows that if b(Um,l3) = IOl for some 13 E F* and some 

b, and if b(l- xtm-l ,13) = 0 V x E k, then b(U 
1

,13) = \Ol. 
m-

Lennna 1. If G has no small subgroups and bE SF(G), then 3 m> 1 

such that b(Um,F*) = \ o I . 

Proof. Fix arbitrary b E SF(G) and choose a nbd. N of 0 in G 

such that N contains only one subgroup of G. We first find m such 

that b(Um,k*·(t)) = \0}. By continuity of b, there is a nbd. Ui x Uj 

of (1,1) in F*xF* such that b(Ui,Uj) c N since b(l,l) 

Fix arbitrary v0 E Uj and map Ui homomorphically into G via 

0. 

u r---> b(u,v0). Then b(Ui,v
0

) is a subgroup of G contained in N, 

so b(Ui,v0) = \0} = b(Ui,Uj). Let n = max(i,j), then b(Un,Un) = 101. 

Likewise, b(Ur,t) = IO} for some r>l since b(l,t) = 0. Take m= 

max(2n,r) and note that b(Um,(t)) \0}. 

Now choose any v E Urn and any x E k*. 

for some integral 13 € F and solve for u in 

. 1 -1 n 2n gett1.ng U = - 13X t + l3t E Un. We have 

b(l- xtnu,xtn) + b(l- xtnu,u) 
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1 - xtnu 
V = 

1- xtn 

0 = b(l- xtnu,xtnu) 

n 
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(5) 



4 

n 
b( 1- xt u , xtn) + 0 by (1) and fact that b(U ,U ) = \Ol 

n n 
1-

b(v,xtn) = b(v,x) + 0 since V E u c u m 

Hence, b(Um,k*) \0} , so b(Um,k*· (t)) IOl. 

It remains to descend from b(Um,Um) 

Choose any u E Urn and any x E k*. Then 

{0) to b(Um,Ul) = !Ol. 

m-1 m-1 m-1 m-1 m-1 
0 = b(l-xt u,xt u) b(l-xt u,xt ) + b(l-xt u,u) 

b( 

m-1 O+b(l-xt ,u) 

m-1 + b(l- xt ,u) by (1) and (4) 

by (3). 

r 

It follows from (5) that b(Um_ 1 ,u) = \0}. Keep u E U fixed and 
m 

repeat the computation: 

0 = b(l- xtm" 2u,xtm-Z) + b(l- xtm" 2u,u) 

b( by (1) and ( 4) 

m-2 
= 0 + b(l- xt ,u) by (3). 

Therefore, by (5), and it is clear that we can repeat 

this process until we arrive at b(U1 ,u) = \0}, because 

implies that 
1 - xtm- 1u m- i 

b ( . xt ) 
1- xtm- 1 

0 for 1 < i <m. 

Therefore, b(U1 ,um) = 101 since u E Urn was arbitrary. U 

We use this lemma in two ways. First, it guarantees that every 

continuous symbol on F with values in any discrete group or in R/Z 

must vanish on some Umx k*·(t) , and this will be explored in the next 

section. The second application is the following corollary that states 

that for certain symbols b on F, the action of b on u
1 

x F* is 

completely determined by the action of b on u
1 

x k*·(t). 

Corollary 1. If G is locally compact snd b E SF(G) vanishes on 

u1xk*·(t), then 

Proof. Suppose 

say b(u,~) p 0 

b(U
1 

,F*) = {O} . 

b E SF(G) vanishes on u1 x k*·(t) but not on u1 x F*, 

for some (u,~) E u1 x F*. We use the well known fact 

every locally compact group has enough characters, that is, there exists 
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a continuous homomorphism g: G -----> R/Z such that g(b(u,~)) F 0. 

Then g•b E SF(R/Z) vanishes on some Um" F* by the lemma, and we 

can descend from g•b(Um,Ul) = {0} to g•b(U
1 

,U
1

) = !Ol just as in 

the proof of the lemma because g•b(U1 ,k*·(t)) = {0). Hence, 

g•b(U
1

,F*) = {0}, contradicting the assumption that b(u,~) F 0. 
11 

3. Derivations On The Ground Field 

Let Qk denote the module of absolute differentials on k, that 

is, Qk is the k-module generated over k by elements dy V yE k 

subject to the relations d(x + y) = dx + dy and d(xy) = xdy + ydx 

V x,y E k. Let G be any abelian group and suppose that b is any 

symbol on F with values in G that vanishes on Um x F* for some m> 1. 

We find that the action of b on Um-l x k* is completely determined by 
m-1 

some derivation on k, and that the map xdy r--> b(l +xyt ,y) defines 

a homomorphism G. 

Keep b and m fixed, where b(Um,F*) = 101, and consider the homo-

morphism Um-l ®
2 

k* -----> G defined on generators by sending uey 

to b(u,y). By the condition on m, this map factors through 

(Um-l I Um) 0 2 
k* ,....... k+ ®

2 
k* (see (5)), where k +· denotes the 

additive group of k. We now have a homomorphism 

g · k + 0 k* --> G . z 

defined by g(xey) b(l+xtm-l,y). There is also a homomorphism 
+ -1 -1 h: k -----> G defined by h(x) = b(l+xt ,t ) , since b vanishes 

on um X (t) . Note that b(Ul ,-1) = \OJ because ul is 2-divisible 

unless char(k) = 2, in which case -1 = 1. Therefore, V x E k* we 

have 

0 b(l +xtm-l ,-xtm-l) = b(l +xtm-l ,xtm-l) 

m-1 m-1 m-1 
b(1+xt ,x) + b(l+xt ,t ) 

g(x 8 x) + h(x) . 

It follows that V x E k* 

g(x 8 x) = -h(x) 

From ( 7), we have V x , y E k* such that x + y E k* 

g((x+y) e(x+y)) = g(xex) + g(yey) 
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Definition 2. Let where J denotes the 

subgroup of the tensor product generated by all elements of the form 

(x+y)e(x+y)- (xex)- (yl!ly) 

such that x , y and x + y E k*. 

We denote generators of Dk by [x,y) and give this group a k-

module structure by defining z[x,y) = [zx,y) \;/ Z, X E k and y E k"'· 

We verify that this action of k on Dk is we 11 defined. If z f 0 

we have 

Lemma 2. 

Proof. 

z[x+y,x+y) 

[zx + zy,x+ y) zx + zy 
= [zx + zy, --

2
-) 

[zx + zy,zx + zy) - [zx + zy,z) 

[zx,zx) + [zy,zy) - [zx,z) - [zy,z) 

[zx,x) + [zy,y) 

The maps are 

z[x,x) + z[y,y) . 

(as k-modules) 

[x,y) .........__> x <!! 
y 

~dy 
y 

and xdy 1----> [ xy, y). 
I/ 

Let b and g be as in (6). Then g factors through Dk by (R) 

g~v~ng a homomorphism g: Dk---> G defined by sending [x,y) to 
m-1 

b(l +xt ,y). We therefore have a homomorphism 

defined by f(xdy) 

Suppose that 
m-1 

b(l+zt ,y) = 0 

by (5), and that 

f: nk--->G 
m-1 

b (1 + xyt , y) . 

f is trivial (for example, if 

\;/ z, y E k*. This implies that 

b(Um-l'tm-l) = {Ol by (5) and 

n k = O) so that 

b(Um-l'k*) = lOI 

(7). Suppose 

further that m- 1 is prime to the characteristic of k (for example, 

(9) 

if char(k) = 0 or if m-:=: char(k) ) . Then Um-l is (m- 1)- divisible, 

SO \;/ U E Um-l 3 V E Um-l SUCh that b(u,t) b(vm-l,t) = b(v,tm-l) = 
0. Hence, b(Um_ 1,t) = lO} in this case. 

Lemma 3. If b 

and on every pair 

U xk*·(tm-l). 
m-1 

n k 0 ' then b 

is any symbol on F that vanishes on Urn x k*· (t) 
m-1 

(l+xt ,y) E Um_
1

xk*, then b vanishes on 

Moreover, if m-1 is prime to char(k) or if 

vanishes on Um-l x k* · (t) . 

Proof. It remains to show that b(Um_
1
,t) = IO} in the case where 

char(k) = p > 0 , p divides m- l , and 0 k = 0. Then k is perfect 
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because nk 0. Write m-1 psn, where s>O and n is prime to p, 

and choose any x E k*. Then 3 y E k* such that yq x, where q = ps, 

and we have 

0 b(l- xtn,x) + b(l- xtn,tn) 

b((l xtn)q,y) + b(l- xtn,tn) 

(l + b(l- xtn,tn) 

This shows that b(l- xtn,t) has order dividing n, but its order also 

divides pq because (1-xtn)pq E U implies b((l-xtn)pq,t) = 0 
m 

by hypothesis. Therefore, b(l- xtn,t) = 0 't x E k* since pq and 

n are relatively prime. 
-1 q Now consider b(l- xt ,t) for arbitrary x E k*. Let y = x 

as above, and write b(l- xtrn-l ,t) b((l- ytn)q,t) = b(l- ytn,tq) 

whichequals 0 since b(l-ytn,t) =0 't yEk. Thus, 0 = 

b(l- xtm-l ,t) V x E k, so b(Um_
1
,t) \Ol by (5) · // 

4. Russell's Continuous Tate Symbol 

Let (! k[ [t]] denote the group of formal power series over (! k' 

Then 0 k[ [t]] is the projective limit of the discrete groups 

n k[ [tll I trn•O k[ (tJl . The purpose of this section is to construct a 

symbol e, E SF(nk([t]] ). We begin by extending the derivation 

d : k --> (! k to a derivation D: F --> (! k((t)) group of 

forma 1 Laurent series over n k ) via D( "' x. t i i 
'" J. Z ( dxi) t . 

Denote a typical element of n k((t)) by Z yjtj and give this group 

an F-rnodule structure by defining 

where on= zxiyn-i. 

For each element t3 = l:x.ti E F, let 
1 

the usual formal derivative of f3. Note that 

liesin t-l.nk[[tlJ C Ok((t)). Define 

t3' = Z ix.ti-l 
1 

't t3 ,a E F*, 

f.d:F*xF* --> t-
1
·nk[[tll 

by 

E F be 

t3' 
i3. (J 

The function &d is bimultiplicative because the maps t3' t3 ..-> F and 
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are homomorphisms from F* ; and P, d satisfies ( 1) 

because (1- t3)' =- t3' and D(l- t3) =- Dt3. 

& ESF( 11k[[t]] ), wewrite f,d = To obtain a symbol 

(~d)l + (~d)2 + (&d)3 

check that (I'. d) 
1 

0 

as in (2), and set ~ = (&d)
3

. It is easy to 

and that (&d)
2 

= fobt, where f is defined 

by f(x) 1 dx 
= &d(t,x) • =ex-

From the definition of f, , we have fr(xtnu,ytmv.) 

n 
&d(xt ,v) + m 

&d(u,yt ) + f,d(u,v) 

&(xtn,v) + &(u,ytm) + l'.(u,v). 

We compute &(xtn, v) as follows: write v = 1 + l: 

some r?l, and c
1 

E k for i = 1,2, ... , then 

n-1 nxt Dv .::_:. (dx)tn 

V V 

( ndc - re dx )tr-l + 
r r x 

Note that we have computed only the first coefficient of the power 

series &(xtn, v). For future reference, we take n = 0 and v = 1 + ztr 

in (10) to obtain 

&(1 + ztr ,x) rz dx tr-1 + 
X 

From (10) and the fact that &(u,v) E 

it follows that & takes values in 11k([tJJ ; and it is easy to show 

that C tm + r - l, 11 [ [ t JJ 
k 

so that e, is continuous, i.e. e. E SF( 11 k[ [tJ l ) . 

(10) 

(11) 

Assume for the moment that char(k) = 0 and choose any element m 

in 11k[ftll. From (11) it follows that there is an element "'t 
in Im(&) ( group generated by &(F* ,F*) ) such that 01 - 011 lies 

in tl· 11k[[t]) (i.e. m and 011 have the same first coefficient). 

By induction, 
n 

ot-(zm. 
i=l ~ 

'V n>l 3 011 , 01 2 , ••• , mn E Im(f.) such that 

E tn• 11k[[tJl. Therefore, g. generates 

topologically (i.e. generates a dense subgroup) when char(k) = 0. 

Let k be arbitrary again and define, for each positive m prime 

to char(k), the projection hm: nk[[t)J---> Ilk and the symbol 

as follows: 
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From the definition of & it follows that 
m 

lol 

and V z , x E k* 

& (l+zxtm,x) 
m 

zdx 

Remark. For any field E , the Tate symbol on E with values in 

!l E /\ !lE ( = alternating product) is defined by (x,y) ~> dx A dy 
X y 

(12) 

(13) 

In our case, F = k((t)) , we have a derivation F --> n k((t)) $ F 

defined by t) >--> (Dt),t)') , and Peter Russell constructed the symbol 

&d by wedging this "continuous Omega" ( n k((t)) $ F) with itself. 

5. Proofs Of Main Results 

Recall our notation: F = k((t)) with k arbitrary; for each top

ological group G, SF(G) denotes the group of continuous symbols on F 

with values in G; and Home( , ) denotes the group of continuous homo

morphisms. Define 

Then ~ is clearly a projective limit of discrete groups, and we have 

the symbol 
B 

Theorem 1. If char(k) = 0 and G is any projective limit of discrete 

groups, then there is a natural isomorphism 

Proof. We first prove this for arbitrary discrete group G . Fix 

arbitrary bE SF(G) and write b = b1 + b2 + b3 as in (2). Then 

b1 and b2 factor uniquely through bk and bt , respectively, by 

section 1 , so we must show that b
3 

factors uniquely through & . This 

factorization is unique if it exists because & generates a dense sub-

group of the Hausdorff topological group nk[[tll when char(k) = o. 
By lemma 1' 3 m>l such that b(Um,F*) = \0} ; and b3 = 0 if 

m=L Assume m>l and define f m-1 : nk ---:;:, c by f(xdy) 
m-1 b(l +xyt ,y) as in (9) By (13) we have V X' y E k* 
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m-1 
fm-1• t,m-1 (1+xyt ,y) fm_ 1 (xdy) . 

Therefore, fm_
1

• !.m_
1 

and b both vanish on Umx k*·(t) and agree 

on all pairs ( 1 + ztm-
1

, y) E um_
1 

x k* . It follows from lemma 3 that 

the symbol ( b - fm-l" t.m-l) vanishes on Um-l x k*·(t). If m>2 

we apply the same reasoning to the symbol (b - fm-l.r,m-l) E SF(G) 

and obtain a homomorphism fm_
2 

n k ---;> G such that the symbol 

( b - fm_ 1•6m-l - fm_ 2 •tm_ 2 ) vanishes on Um_ 2 x k*·(t). In this 

way we construct 

symbol 

b 
m-1 
z 

i=l 
f • r. 

i i 

vanishes on u
1 

x k*·(t). 

Set 

f 
m-1 
z 

i=l 
f .• h. 

1 1 

b 

€ 

f • h 
i i 

Then b- f•t. vanishes on u
1
xF* by corollary!, so b 3 =f•~. 

Now suppose that G is a projective limit of discrete groups 

i E I, the pro

b(i) = rr.•b 

{Gil i E I , and choose arbitrary b E SF(G). For each 

jection rri : G ----~ Gi determines a continuous symbol 

with values in the discrete group G.. Hence, V i E I 
1 

there exists 

b ( i) ~ 
gi E Home(~, Gi) such that gi"B. 

It is easy to verify that the following diagram commutes whenever 

i.? j in I. Hence, by the universa 1 

property of proiective limits, 3! g = 

such that for 

each i E I, gi = rri•g. To verify 

now that b g•B , we check that the 
. th 
1--

components of b(l3,a) and g•B(I3,a) agree V i E I, V 13, a E F*: 

rri(b(l3,a)) b(i)(l3,a) by definition of b(i) 

Therefore, b = g•B . 
11 

since 

since 

g .•B 
1 

In the first part of the proof of the theorem we needed char(k) = 0 

&. 
1 

in order to guarantee existence of the symbols 

b is any symbol on F that vanishes on 

char(k) > m will guarantee existence of 
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clear that we can again construct f nk -----~ G such that b
3 

f•!J. 

Also, it follows from the definition 

f = f•rr m-1 ' 
where f denotes the obvious map (see 

of h 1 , ... ,hm-l that 

m-1 ]] t • nk[[t , so that 

f vanishes on 
nk[ [tll 

'm-1 j 
f 

adjacent triangle). Therefore, b
3 

nk[[tll 1 tm-l. nk[[tll 

factors through 1lm-l·~ , where 11m-l 
denotes the natural projection. We record this in the following: 

Corollary 2. If 

and if m-schar(k) 

through 

b is any symbol on F that vanishes on Urn x F* 

or if char(k) = 0 , then b factors uniquely 

The next result is a generalization of a theorem of Calvin Moore [M] 

that states that SF(G) :::::::: Horn( k* , G) for every locally compact G 

in case k is finite (i.e. the tame symbol is universal in this case) 

In general, bk t= 0 and does not factor through bt. 

Theorem 2. 

Proof. If 

then &
1 

0 

by (13) . 

For every field k and every locally compact G 

e k* , G) < !> 

&1 E SF( n k) factors through (bk,bt) E SF( K
2

(k) G) k*) , 

since (1\,bt) vanishes on u1 x F*. Hence, nk = 0 

Conversely, suppose nk = 0. We first prove the assertion for 

G = R/Z. Fix arbitrary b E SF( R/Z) and choose smallest m>l such 

that b(Um,k*·(t)) = {Ol (see lemma 1). If m=l, then b factors 

through (bk,bt) bysectionl. Ontheotherhand,if m>l then b 

vanishes on Um-l x k*· (t) by lemma 3 since nk = 0 implies (see (9)) 
m-1 

that b vanishes on all pairs (1 +xt ,y) E Um-lx k>~. This contra-

dicts mimimality of m, so m= 1. Therefore, every b E SF( R/Z) must 

vanish on u
1 

x F* . 

Now let G be any locally compact group, and choose any bE SF(G). 

If b(u,i3) #' 0 for some (u,i3) E u
1 

x F'~, then 3 g E Home( R/Z, G) 

such that g(b(u,i3)) t= 0. But this contradicts the fact that the 

symbol gob E SF( R/Z) must vanish on u
1 

x F*. Therefore, b vanishes 

on u
1 

x F* , and if follows from section 1 that b factors through 

(bk,bt) . 
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i:.......!:
2 

Of Rings Of Truncated Polynomials 

Keith Dennis and Michael Stein have given presentations (i.e. gen

erators and relations) for K
2 

of the discrete valuation ring L = 

k[ [ tl1 and its homomorphic images L = k[ t] f tm• k[ t] , where m> 1 
m 

and k is arbitrary. They prove [D-S;~2] that the tame symbol on F 

k((t)) induces a split exact sequence 

1 K
2

(L) <:< ::> K
2

(F) --;> k* --;> 1 
a 

and that, for each m?l, there is a natural surjection 

defined by sending a typical generator 

{xu,yvlL to a generator {xu,yv}L of K
2

(Lm), where u denotes the 
m 

obvious truncated power series. 

Then dm 5m•a•bF is a symbol on F with values in K2(Lm); 

and d vanishes on k*· (t) x k~,. (t) bF 
m F*xF*---> K

2
(F) because the tame symbol induced the 

above split exact sequence. This means 

d 
m 

that (dm)Z 0, where 

(dm)l + (dm)2 + (dm)3 as in (2). 

5 la 
<-m- Kz(L) 

Also, dm(Um,k*·U1) !Oi by definition of 5m. We claim that dm 

must also vanish on Um+lx (t). To prove this, we choose arbitrary 

u = 1 + f3tm + 
1 

E Urn+ 1 and use the following identity due to Dennis 

and Stein (see the proof of Theorem 2.5 in [D-S] ) 

It follows from the defE. of 5m that d (u,t) = d (-(1- t)-
1 ,(1- t)- 1) 

m m 
since 1 + f3tm , u E U ; and it is not difficult to show that every symbol 

m 
vanishes on all pairs (-f3,f3) E F*xF*. Hence, dm(Um+

1
,(t)) = IOl. 

The following theorem was first proved in the case m= 2 by Wilberd 

Van Der Kallen [V). Dennis and Stein have also proved this result in this 

case. 

Theorem 3. If 1 ~m< char(k), or if char(k) = 0, then 

m-1 J Proof. For brevity, we set A nk(t]/ t • Qk[t , and b = 

(bk,rrm-lot,) € SF(K2(k) ~A) since m is now fixed. From the above 
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arguments it follows that d 
m 

vanishes on and on 

Then dm(Um,k*·(t)) 

uniquely through b 

\0} by lemma 3. Now, ' so d factors 
m 

by corollary 2, say dm = fob , where 

f: K2(k) EEl A ---~ K
2

(Lm). We will show that f is an isomorphism. 

Next we define a map K
2

(L) ---? K
2

(k) EB A by sending a 

typical generator {xu,yv}L to b(xu,yv). It follows from the above 

exact sequence that this map is a homomorphism. To define a map 

g: K2(Lm) ---~ K2(k) EEl A , we choose any generator 

K2(Lm) and lift it to a generator \xu,yv}L E K2(L) 

and define g(\xu,yV}L) b(xu,yv). The choice of 
m 

u and v E u
1 

doesn't matter because b vanishes on Urn x F* . Therefore, g is a 

homomorphism. 

To check that 

and compute: 

f and g are inverses, choose any {xu,yV!L 
m 

fog((xu,yV}L ) f(b(xu,yv)) 
m 

Now K2(k) EEl A 

and we have 

is clearly generated by elements b(xu,yv) (see (13)), 

gof( b(xu,yv)) g( dm(xu,yv)) 

b(xu, yv) 

Therefore, f and g are inverses. ~ 

g((xli,yV}L) 
m 

Acknowledgements I wish to thank George Whaples for suggesting the 
problem of computing continuous K2 of the quasi-finite field C((t)), and 
John Labute for many helpful suggestions, including the identification 
Dk ~ nk. 
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Values of zeta-functions, etale cohomology, 
and algebraic K-theory 

by Stephen Lichtenbaum 

In this paper we give various conjectures expressing values of 

zeta-functions in terms of the orders of etale cohomology groups and 

algebraic K-groups, together with a description of the relationships 

between the conjectures and some indication of why one might believe 

them to be true. In order partly to make up for the great profusion 

of conjectures that will occur at the end of this paper, we begin with 

some results that are well-known and undeniably true. 

Let F be an algebraic number field of finite degree n over 

the rationals, with ring of integers {1F. We define the zeta-function 

of F, ~ (F,s), to be 2: 
07. 

1 
(NOZ)s· 

This series converges if Re(s) ) 1, 

and can be extended to a function meromorphic in the whole plane, and 

satisfying a simple functional equation which we shall now describe. 

As usual, let r 1 be the number of real places of F, r 2 thenum

ber of complex places ofF, d the discriminantof F, and define 

r r 
~(F,s) = r(s/2) 1 r(s) 2 

Then 

~(F,s) = ~(F,l-s). 

Also, the zeta-function is analytic except when s 

simple pole with residue given by 

lim ( s -1) ~ ( F , s ) 
S-71 

hR 
w 

1, and has a 

where h is the class number of F, w is the number of roots of 

(1) 

unity in F, and R is the regulator of F. For the purposes of com

parison with analogues of the regulator which will occur in later 
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conjectures, we recall its definition. Let t = r 1 + r 2 - 1. Then 

the group of units of F is, by the Dirichlet unit theorem, a 

finitely-generated abelian group U of rank t, and we choose a 

basis ul, ... ut for u modulo torsion. Pick any t infinite places 

vl ... vt' and define R to be /det(luilv. ) J. Then R is independent 
J 

of the choice of basis and of the one omitted infinite place. 

We also recall a result of Siegel, [13, v.I, p. 545-546] to the 

effect that if F is totally real and m is an odd positive integer, 

then rr-n(m+l) Id I C ,m+l) is a rational number. 

It is an immediate and well-known consequence of applying the 

functional equation to Siegel's result that C(F,-m) is a non-zero 

rational number if F is totally real and m is odd and positive. 

It is only slightly less immediate that if we apply the functional 

equation to the formula for the residue of the zeta-function at s 1 

we obtain the following result: 

Proposition 1. The zeta-function C (F ,s) has a zero of order 

0, and we have the formula 

lim C 
s->O 

The details of the will appear in [9]. 

We are now faced with the problem of giving an interpretation of 

the rational numbers C(F,-m). We begin with the special case m 1. 

In this case Birch and Tate ([1], [14]) have made a very 

conjecture. We with some notation. 

Let w denote the group of roots of unity in the algebraic 

closure p of F, and G the Galois group of F over F. Then G 

acts on w through an abelian quotient, and so we may define for any 

integer m a new action of G on w by cr * X 
(m) 

a~, where 
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juxtaposition denotes the usual action. We define Wm to be W to-

gether with this G-action, to be and to be the 

order of Wm(F). We can then state the Birch-Tate conjecture as 

follows: 

We should observe here that this is not the original form of the 

conjecture; in the original version ( [ 1], [14]) K2 (aF) is replaced 
~ * 

by Ker A, where A:K2 (~p) Jl (Fv) is the map induced by the 

tame symbols. However, Quillen ([11]) has recently shown that for 

Dedekind domains A with quotient field L there exists an exact 

sequence 

... ll K. (L ) -* 
l V 

In view of the fact that of a finite field is zero this estab-

lishes the isomorphism of Ker A with K2 (op). 

We now want to restate Conjecture 2 in cohomological terms, mak-

ing use of the following theorem of Tate [15]: 

Theorem 3. Let F be a totally real number field. Then K2 (F) is 

naturally isomorphic to H1 (G,W2 ). 

This is only a special case of the actual theorem of Tate, which 

gives a cohomological characterization of valid for all num-

ber fields F, but it will suffice for our purposes. 

Now let t be a fixed prime number, and S the set of primes of 

F lying over t. Let C"F ,s be the set of S-integers of 

F, xs = Spec 6"F ,s and j the natural inclusion of Space F in xs. 

If we endow F and xs with the etale topology, then, for each m, 

Wm amy be viewed as a sheaf on Spec F, and we may take the direct 

image sheaves Rqj* Wm on 

ing commutative diagram: 

We then ([8], [15]) have the follow-
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0-)> Ker -> 0 

where a and ~ are isomorphisms and the top row is the exact 

sequence of terms of low degree coming from the Leray spectral 

sequence for the map j* and the sheaf w2 , namely: 

and that 

H2
(Xs,j*W2 ) = 0. In view of this, the t-part of the Birch-Tate con

jecture may be restated as 

Conjecture 1.4. If F is totally real, then the ~-part of s(F,-1) 

is equal to 

more general conjecture ([8]): 

Conjecture 1.5. If F is totally real and m is any odd positive 

integer, then the t-part of s(F,-m) is equal to 

j H1
(Xs,j* Wm+ 1 )/*H0

(Xs,j*Wm+l). Also, Hp(Xs,j*Wm+l) = 0 for p ~ 2. 

This conjecture has been verified in many special cases, by the 

use of the theory of p-adic L-functions developed by Leopoldt and 

Kubota ([7]) and extended by Iwasawa ([6]) and Coates ([5]). The 

strongest positive result is as follows: 

Let F0 be the field obtained from F by adjoining the t-th 

roots of unity, and F~ the maximal real subfield of F0 . Let A0 

be the t-component of the class group of F0 , and A0= [xEA0 : crx = -x}, 

where cr denotes complex conjugation. Let TI be the Galois group of 

F0 over ~. 
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Theorem 1.6 ] . Assume (i) that t is odd, 

(ii) rr is abelian of order prime to .(, 

(iii) no prime of F+ 
0 lying over t splits in Fo 

(iv) A-
0 is a cyclic fl [rr] -module. 

Then Conjecture 1.5 is trtte for F,t and any m. 

We remark here that it is almost certain that the methods of [8] 

would prove Theorem 1. 6 for any real subfield of the field obtained 

by adjoining the t-power roots of unity to F, if F satisfies the 

hypotheses of Theorem 1.6. Also, if t is regular or properly irreg

ular (the second factor of the class number of ~O is not divisible 

by t), then any subfield of satisfies the hypotheses of Theorem 

1.6. 

We next wish to point out that Conjecture 1.5 of course impJ.ies 

the following result: 

Conjecture 1.7. (Serre, p. 164]). If F is totally real and m 

is an odd negative integer, then wm+ 1 (F) C(F,-m) is an integer. 

Serre has proved Conjecture 1.7 in [12] for the case m= 1, and, 

more generally, has shown there that the product over the first k 

odd integers m of (F)C(F,-m) is an integer for any k. 

Extensions of Conjecture 1.6 to L-functions are discussed and special 

cases are proved in [5] and (9]. 

493 



-6-

2. Algebraic K-theory. 

We now return to the point of view of algebraic K-theory, which 

was left aside in Section l with the interpretation of K2 (crF) as 

an etale cohomology group. We begin by discussing finite fields. 

First recall that if k is a finite field with q elements, then the 

( ) ( -s)-1 zeta function of k is defined by C k,s = l - q . The 

Quillen [10] has proved the following suggestive result: 

Theorem 2.1. Let k be a finite field, and i a positive integer. 

Then K2 i(k) is equal to zero, and K2i_1 (k) is a finite group of 

order equal to JC(k,-i)J-1 . 

In the number field case, Quillen has recently proved that 

Ki(e-F) is a finitely-generated abelian group for any i and any num

ber field F. The ranks of these groups are determined by the follow-

ing theorem of Borel: 

Theorem 2.2. (Borel [2]). For any non-negative integer i, the rank 

of K2i(crF) is equal to zero, and the rank of K2i+l(~F) is equal to 

if i if i is even, and positive, and to 

r 1+r2-l if i = o. 

The significance of this result for us is that it can be stated 

more simply as follows: 

Corollary 2.3. The rank of K2i+l(~F) is equal to the order of the 

zero of C(F,s) at s -i. 

(The order of the zero of the zeta-function at s = -i may easily 

be computed from the functional equation, together with a knowledge of 

the poles of the gamma function. ) 

Now that we have seen that some connection exists between alge-

braic K-groups and zeta-functions, we state the following conjecture: 
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Conjecture 2.4. Let F be a totally real number field, and m an odd 

positive integer. Then IC (F ,-m) I "" 1fK2m(IYF)/IfK2m+l (6F), up to 

2-torsion. 

We note that the groups involved in the conjecture are finite by 

the theorems of Borel and Quillen referred to above. It is clear that 

there ought to be a relation between Conjectures 1.5 and 2.4; the 

missing link is provided by a conjecture of Quillen which we will pro-

ceed to describe. 

Let ~ be an odd prime, as in Section l, and m a 

integer. Let W~n) be the kernel of the map from Wm to 

sisting of multiplication by ~n (in additive relation). 

con-

F again 

be an arbitrary number field, and let S be a finite set of primes of 

F which contain all primes of F lying over ~. Let ~S be the 

ring of S-integers of F. Then Quillen conjectures: 

a) K (fJ') 0 z ::: (lim H2(X . W(n) ) 
2m s t n s'J* m+l 

b) (()) 0 l7, ::: <lim Hl(X J. w(n)) 
s t n s' * m+l ' 

with the isomorphisms being given by a generalized Chern character. 

H m 1, a) is equivalent to the theorem of Tate referred to 

earlier, and proved in his talk at this conference. If is re-

placed by a finite field k, and Xs by Spec k, then the analogue 

to Conjecture 2.5 follows easily from the computation of the K-groups 

of a finite field, done by Quillen in [10]. 

We now suppose again that m is odd positive and F is totally 

real. Then K2m(&F) and K2m+l \OF) are finite, by Theorem 2. 2. It 

follows from the exact sequence of a localization that K2m(~s) and 

K2m+ 1 (~) are finite for any finite set of primes S. If we assume 
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in addition Conjecture 1.5, then Hi(Xs,j*Wm) is finite for all i, 

which implies that ( 1~m Hi+l (Xs,j*,w~l) ~ (Xs,j*Wm+1 ). In view 

of this isomorphism, we see that Conjecture 2.5 and Conjecture 1.5 

imply Conjecture 2.4. 

2.6. There does not seem to be any a priori reason why Conjecture 2.4 

should not also include 2-torsion, but this does not seem to be the 

case. Using his Hermitian K-theory, Karoubi has indicated an argu-

ment which shows that the 2-torsion part of (tz) is not equal to 

tz/SE, as would be predicted by the extended form of Conjecture 2.4, 

but is at least big enough to map surjectively onto E/8Z@ !Z/~. It 

would be very desirable to have an exact description of the whole of 

2.7. It seems also likely that the strange-looking quantity 

#K2i+l(~p)/#K2i(~) should also be interpreted as an Euler character

istic. Namely, if we let Kn (brF) be the sheaf associated to the 

obvious etale presheaf defined by the functor Kn' then it seems pos-

sible that K2i+l ) "'H
0

(Spec ,K2i+l(c:rF)) andK2i(CYF)::.::: (Specc;tF' 
~ . p ~ 

K2i+l (CIF)) nth H (Spec o-F,K2i+l (C7F)) == 0 for p ) l. These isomorphisms 

would come from the degeneration of a fourth-quadrant spectral s:;quencegpjng 

(approximately) from the cohomology of the sheaves Ki to the groups 

Ki, which would be the analogue for the etale topology of the Zarirud

topology spectral sequences described by Bloch and Gersten elsewhere 

in this volume. The possibility of the existence of such a spectral 

sequence has been investigated (in the case of a field) by K. Brown, 

among others. 
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3. The case when F = ~-

There is some additional evidence for the conjectures in the case 

when F = ~ and ()F = ~- Let i be a positive integer of the form 

4n-l. Quillen has shown that there is always a map from the stable 

i-stem to Ki(~), which is injective when restricted to the image of 

the J-homomorphism and whose image when so restricted is a direct 

summand of K. (.Z). 
l 

Furthermore the order of this image is then (by 

results of Adams, Quillen and Sullivan) equal to twice the denominator 

a(2n) of the Bernoulli number B2~2n, where we fix our notation by 

the formula 

00 

X 
--= 
ex-1 

It is also well-known that C(l- 2n) = -B2n/2n. 

Furthermore, for a fixed prime ~, the order of H
0

(Xs,j*Wm+ 1 ) 

may be computed if X= Spec~, by using Von-Staudt's Theorem and 

Kummer's Congruence ([3], pp. 384-385) to be also equal to the 

~-part of a(2n) if m= 2n-l. So at least K2m+ 1 (£ ) ( ~ ) contains a 

cyclic direct summand whose order is equal to the order of the cyclic 

group HO(Xs,j*Wm+l)' in support of Conjecture 2.5. 

497 



-10-

4. Generalizations of the regulator. 

We conclude with some guesses as to what might happen in the 

cases where the zeta-function does have a zero. We must first define 

analogues of the regulator. 

Let i be an odd integer ) 1. Let F be any number field. If 

i - 1 (mod 4) we are going to define rl + r2 maps i 
tpj' 

j 1, ... + r2 of Ki (<YF) to !R. If i =i 3 (mod Ll-) , there will 

be such maps. Let g = gi be the rank of (eF) and note that 

by Theorem 2.2, gi is also equal to rl + if i l (mod 4), and 

to if i = 3 (mod 4). Let f3l ... f3g be a basis for Ki (6F). 

Then, 

We define the m-th regulator of F, Rm(F), to be 

as j and k both range from 1 to g = g2m+l' 

by the classical Proposition 1.1, we ask the following 

question. 

Question 4.2. When is it true that 

It remains for us to define the cri's. We proceed as follows: 

By a result of Quillen's [10] ' Ki(~F)®rl), is naturally isomorphic to 

the space of primitive elements in Hi (GL(t7p) ,<Ti,). If i > l this is 

the same as Hi (SL(:J"F) ,Q)prim' Now, Hi (SL{&F) ,rl),)prim 0 IR 

H. (SL(crF)' IR) . , which by a result of Borel [2], is naturally iso-l prlm 
r2 rl 

morphic to H.((SU) x (SU/SO) IR) . . We have the natural projec-l prlm 

tion maps to Hi(SU,!R)prim' and Hi(SU/80, IR)prim' If i is odd, 

~i(SU) ~ ~ (mod torsion) by the Bottperiodicity theorem, and the 

image of a generator by the Hurewicz map gives a primitive homology 

class in Hi(SU,IR). We then use this element to give us a natural 

identification of Hi(SU,IR)prim with IR. Similarly, if 
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i ~ 1 (mod 4), ~i(SU/SO) Z (mod torsion) and we get a canonical iden-

tification of Hi(SU/SO, ~)prim with ~- Putting all these isomor

phisms together, we get the desired maps cpi. 

Since these higher regulators have not been computed in any 

single example, it is not at all clear that we have chosen the correct 

normalization of the cpi's. We may, for instance, want to take a 

generator of H (S U E) instead of a spherical class to get the 
i ' prim 

identification of Hi(SU, R)prim with ~- Also, the identifications 

themselves might need to be adjusted by suitable powers of ~, pre

sumably depending only on i and not on the field F. 

Finally, I should say that the definition of the cp.! s 
~ 

is essen-

tially due to Borel, with some modifications by Bott and Milnor, 

although the actual words here, and the responsibility for any er~ors 

in my interpretation of their work, are my own. 

499 



-12-

References 

1. B.J. Birch, K2 of global fields, Proc. Sympos. Pure Math., 

vol. 20, Amer. Math. Soc., Providence, R.I. 1970. 

2. A Borel, Cohomologie reelle stable de groupes S-arithmetiques 

classiques, Comptes Rendus de l 1 Academie des Sciences, 

vol. 274 (1972),1700-1703. 

3. Z.I. Borevich - I.R. Shafarevich, Number theory (translated by 

N. Greenleaf), Academic Press, New York, 1966. 

4. J. Coates, On K2 and some classical conjectures in algebraic 

number theory, Ann. of Math. 95 (1972), 99-116. 

5. J. Coates and S. Lichtenbaum, On t-adic zeta functions 

(to appear). 

6. K. Iwasawa, On p-adic L-functions, Ann. of Math. 89 (1969), 

198-205. 

7. T. Kubota and H.W. Leopoldt, Eine p-adische Theorie der Zetawerte, 

J. Reine Angew. Math. 213 (1964), 328-339. 

8. S. Lichtenbaum, On the values of zeta and L-functions: I, 

Ann. of Math. 96 (1972), 338-360. 

9. S. Lichtenbaum, On the values of zeta and L-functions: II 

(to appear). 

10. D. Quillen, Cohomology of groups, Proceedings of International 

Congress at Nice (1970). 

11. D. Quillen, Higher K-theory for categories with exact sequences, 

To appear in the proceedings of the symposium 11 New 

developments in topology 11
, Oxford, June 1972. 

500 



-13-

12. J.-P. Serre, Cohomologie des groups discrets, in Prospects in 

Mathematics, Annals of Mathematics Studies (70), Princeton 

University Press, Princeton 1971. 

13. C.-L. Siegel, Gesammelte Abhandlungen, Springer-Verlag 1966. 

14. J. Tate, Symbols in arithmetic, Proceedings of International 

Congress at Nice (1970). 

15. J. Tate, (Unpublished letter to Iwasawa, Jan. 20, 1971). 

501 



"K-Theory and Iwasawa's Analogue of the Jacobian" 

by 

Jolm Coates 

Introduction. Following the initial idea of Birch and Tate, Lichtenbaum 

has made a remarkable conjecture relating the values of the zeta function of a 

totally real number field F at the odd negative integers to the orders of certain 

K-groups of the ring of integers of F (see [11] and his article in this volume). 

In the present paper, we begin by indicating the connection between this conjecture 

and Iwasawa's theory of 2~-extensions of number fields, and, in particular, his pro

posed analogue of the Jacobian for F (most of what we say is already contained in 

[2] and [11]). It turns out that Lichtenbaum's conjecture is very closely related 

to the assertion that the characteristic polynomial of the r-module in Iwasawa's 

analogue is essentially the £-adic zeta function of F as constructed by Leopoldt-

Kubota [10] when F is abelian over Q and by Serre [15] for all F . Unfortu-

nately, this latter fact is still only known for a very restricted class of fields. 

Nevertheless, by employing some of Iwasawa's ideas, one can prove it, and thereby 

also Lichtenbaum's conjecture, for a class of abelian extensions of Q . We indi-

cate some of the main points involved in such a proof. The reader interested in 

the full details of the proof, as well as some related material, is referred to [3] 

and [11]. In conclusion, it is a pleasure to express my thanks to J. Tate, both for 

introducing me to the subject, and for many helpful suggestions. 

Notation. Throughout we use the following notation. We write Q , ~ , Q~ , 

Z~ for the rational field, the complex field, the field of ~-adic numbers 

(~a prime), and the ring of ~-adic integers, respectively. A will denote the ring 

of formal power series in an indeterminate T with coefficients in Z~ , and W(~) 
the group of all ~-power roots of unity. If m is an integer ~ 1 llm will sig-

nify the group of mth roots of unity, The cardinality of a finite set M will be 

denoted by ~(M) Finally, if E/F is a Galois extension of fields, G(E/F) 

will denote the Galois group of E over F 
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1. Iwasawa's Analogue. In this section, we briefly describe Iwasawa's 

proposed analogue of the Jacobian for totally real number fields, and indicate its 

connection with one form of Lichtenbaum's conjecture about the values of the corn-

plex zeta function of the field at the odd negative integers. 

Let F be a totally real number field of finite degree over Q . Let 1 

be an odd prime number, and let F
0 

= F(~t) , Then, of course, 

f = G(FoofF
0

) is non-canonically isomorphic to the additive group of Zt For 

each n ~ 0 , let Fn be the unique sub-extension of FoofF
0 

of degree ln over 

F
0 

, and let An be the 1-primary subgroup of the ideal class group of Fn If 

n $m , the natural inclusion of the divisor group of Fn in the divisor group of 

Fm induces a homomorphism An +Am , and we let A lim A 
+ n 

Let J denote com-

plex conjugation. Since F is totally real, there is a natural action of J on 

A , which is easily seen to be independent of the particular embedding of 

If B is any Zt-module on which J 
. + 

operates, we put B ( 1 +J )B , 

F into 
00 

(1-J)B Now, for reasons which will become clear in the next paragraph, we 

shall only be concerned with the G(FoofF)-module A- Let x be the character of 

G(F
00

/F) with values in the group of units of Zt, defined by a(~)= ~x(a) for 

Plainly, G(F /F) = H x r , where H is canonically isomorphic to 
0 

G(F
00

/F) . We denote the restriction of x to H by 8 , and the restriction of 

X to r by K • Since d = [F 
0 

F] is prime to 1 the orthogonal idempotent 

e . associated with each power of 8 
e~ 

lies in the group ring 

iA = e .A- , so that 
e-~ 

For each 

odd integer i with 1 $ i $ d-1 , put 

d-1 . 
A- EB ~A 

i=l 
i odd 

Let 
./.'... . i 
~A = Horn (~A,. Qt/Zt) be the Pontrjagin dual of the discrete group A We 

~ 

r on 1A by specifying that (a$)(a) = ~(aa) for all define an action of 
/.'. 

a E r , $ E ~A , and a E iA . Fix a topological generator Yo of r . Then as 
~ 

is well known, the r-structure on ~A gives rise to a unique A-module structure on 
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0 
(l+T)~ for all ~ E 

1A Iwasawa [9] has proven the following 

basic facts about this h-structure, by using arguments from class field theory. 
~ ~ 

Firstly, 1A is a finitely generated h-torsion h-module, and secondly, A has no 

A-submodule of finite cardinality. Thus the structure theory of finitely generated 

A-modules implies that there exists an integer ri ~ 1 and non-zero power series 

f 1i(T), .•• , f .(T) in h such that we have an exact sequence 
ri1 

0 ri 
(l) Q+ 1A+(B h/(f..(T))+D. +Q, 

j =l J 1 1 

where D. 
1 

is a h-module of finite cardinality. Moreover, assuming the choice of 
~ 

fixed, the power series are uniquely determined by 1A up to units 

in h . We often call, by a slight abuse of language, fi(T) IT j=l fji(T) the 

characteristic polynomial of y -1 
0 

acting on iA . 

Let C be a complete, non-singular curve of genus ~ 1 defined over a 

finite field k , and let t be the Jacobian variety of C • Assume that 1 is 

distinct from the characteristic of k , and let ~~ be the 1-primary subgroup of 

the group of points of 1 defined over the algebraic closure k of k . The 

Frobenius automorphism of k/k induces an endomorphism of ~~ , and a fundamental 

theorem of Weil asserts that the characteristic polynomial of this endomorphism is 

essentially the zeta function of the curve C . Iwasawa has proposed that, in the 

number field case 1 the G( F .,/F )-module A- should provide an analogue of ~ ~ . The 

basic conjecture underlying such an analogy is that the characteristic polynomials 
/.'. 

fi(T) of the 1A (1 ~ i s d-1 , i odd) should be very closely related to the 

1-adic zeta functions of F in the sense of Leopoldt-Kubota [10], thereby giving 

a result for number fields parallel to Weil's theorem. From our point of view, the 

most natural way to formulate this conjecture precisely is in terms of the 

G(F
00
/F)-invariants of certain twisted versions of A- Let 'J denote the 

G(F
00

/F)-module u n If B is a discrete 1-primary G(F
00

/F)-module, and n 
.9. 

is a positive integer, B(n) will denote the tensor product of B over ~£ with 

the n-fold tensor product of J with itself over Z ~ . Of course, since J is a 
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free Z~-module of rank 1 , B(n) is isomorphic to B as an abelian group. 

However, they are definitely not isomorphic as G(FoofF)-modules, since we shall 

always view B(n) as a G(F00/F)-module via the diagonal action on the tensor product. 

For each integer r ~ 1 , let wr(F) denote the largest integer m such that 

G(F(~m)/F) is annihilated by r . Finally, let s(F,s) be the complex zeta func-

tion of F We recall that Siegel [16] has proven that, for each odd positive 

integer n , s(F,-n) is a non-zero rational number. 

G(FoofF) 
Conjecture 1. _Fo_r _ea_c_h _od_d .._;;..;.;..;;..;.;....;;..integer n , (A-(n)) is finite, and 

of wn+l(F)s(F,-n) . 

Special cases of this conjecture have already been proven. We discuss these, 

as well as other evidence for the conjecture, in §2 and §J, For the moment, we 

simply translate the conjecture into several equivalent forms. If B is a 

f-module, let (B)r denote B/(Y
0
-l)B . Also, let I 1£ be the valuation of Q~ , 

normalized as usual so that Ill£ 1-l . 

Lemma 2. For ~ n ~ 0 , 

i) (iA(n)l is finite, 

ii) (iA(n))r = o, 

iii) fi(K(y
0

)-n-1) t 0 

If these assertions do 

following assertions~ equivalent: 

-
order of (iA(n)l is If ( ( rn 1)1-l i K Yo - ~ · 

This lemma is quite elementary, and we refer the reader to §7 of [JJ for 

its proof. 

Proposition J, Let i be a odd integer with 1 ,; i ,; d-1 . Then, for all 

integers n ~ 0 with n = 
G(F:7F'J 

i mod d , .!::. ~ 

i) (A-(n)) is 
G(F ffJ 

ii) if (A-(n)) "' 

and only if f.(K(y )-n-1) t 0 , and 
---- l 0 -

~ ~ ~ ~ lfi(K(yo)-n-1)1~1 
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Recall that the action of H on J is given by ot = e(o)t for a EH, 

whence it is easily seen that (A-(n))R iA(n) for all integers n with 

n = i mod d . Thus Proposition 3 follows immediately from Lemma 2. Note that the 

finite A-modules Di do not appear in Proposition J, 

In view of Proposition J, we see that Conjecture l is equivalent to the fol-

lowing statement. Fix an odd integer i with l ~ i ~ d-1 . Then, for all posi-

tive integers n with n = i mod d , we have 

This suggests that the power series fi(T) are very closely related to the 1-adic 

zeta functions of F constructed by Leopoldt-Kubota [10] when F is abelian over 

Q , and recently by Serre [15] for all totally real F . However, we cannot be 
..-:"'. 

more precise at this point because the lA do not provide us with a canonical 

ehoice of the undetermined unit in A , which is implicit in our definition of the 

Finally, following Lichtenbaum [11], we give an equivalent form of Conjec-

ture l in terms of etale cohomology. We refer the reader to [l] for the basic facts 

about etale cohomology. Let 0 be the ring of integers of F , and X the spec-

trum of the ringOCfJ . Let j 

denote the algebraic closure of F 

Spec (F)->- X be the natural inclusion. Let F 

For each n ~ 0 , we can view the G(F/F)-mod-

ule W(~)(n) as a sheaf for the etale topology of Spec (F), and we may take its 

direct image j*W(~ )(n) on X . By definition, H0(X,j*W(~ )(n)) = (W(~ )(n))G(F/F), 

and it is easily seen that the order of this latter group is the 1-part of wn+l(F). 

Proposition 4. For all odd positive integers n , we have 
- --- - -- G(F /F) 
i) H1(X,j*W(~ )(n)) is canonically isomorphic to (A-(n)) oo , and 

ii) H1(X,j*W(~ )(n)) is finite if and only if Hi(X,j*W(~ )(n)) = 0 for all 

i ~ 2 • 

The proposition follows from Lemma 2 on noting that, on the one hand, it is 

shown in § 9 of [ll] that we have canonical isomorphisms 
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for all n with n = i mod d , and, on the other hand, that we always have 

~(X,j*W(£)(n)) = 0 for k ~ 3 , by a general theorem on cohomological dimension. 

We conclude from Proposition 4 that Conjecture 1 is valid if and only if 

~(X,j*W(£)(n)) = 0 for all k ~ 2 , and 

=#=(H1(X,j*W(£)(n))) 

~(H0(X,j*W(£)(n))) 

The beauty of this formulation of the conjecture is that it gives some indication 

of why the factor wn+l(F) arises naturally in the theory. 

2. ~Analytic Theory. In this section, we indicate a proof of Conjec

ture 1 for a class of abelian extensions of Q . We only sketch some of the argu-

ments involved, and the reader is referred to [3] and [11] for full details. The 

method of proof is based on the important ideas introduced by Iwasawa in [8]. 

These, in turn, have their origins in a classical theorem of Stickelberger [17], 

and the classical analytic class number formula [6]. 

We use the notation of §1, the prime number 1 being odd, as before. Also, 

F: will denote the maximal totally real subfield of F
0 

, so that [F
0 

: F:] 2 . 

We assume throughout this section that F is an abelian extension of Q . We 

first establish the following rather weak consequence of Conjecture 1. 

Theorem 5. ~~(i) 1 does not divide 

lying above 1 splits in F 
-- ""Gt'ie/F) o 
(A-(n)) 

00 = 0 if 1 does not divide 

Then, !£! each odd positive integer 

The special role that the primes 1 not satisfying (ii) play in the theory 

will be explained in §3. For the present, we simply note that (ii) excludes only 

finitely many primes since 1 must certainly ramify in F if (ii) is not valid. 
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Theorem 5 is quite useful for studying particular fields, For example, if we take 

the two quadratic fields F1 = Q(/[[) , F2 = Q(/19) , it is easily seen that (i) 

and (ii) exclude no primes 1 (except 1 2) . Since w2(F1 ) = w2(F2 ) = 23·3 

and ~(F1 ,-l) = : 7/(2.3) , ~(F2,-l) = + 19/(2.3) , we conclude from Theorem 5 that 

G(F /F) 
(A-(1)) "" = 0 for all primes 1 f 7 for F1 , and for all primes 1 f 19 for 

F2 • 

~2£ Theorem 5. Let X be a primitive Dirichlet character satisfying x(-1) = 

-1 We view the values of X as lying in the algebraic closure of Qt , and let 

crx be the ring generated over Zt by the values of X . Let AX be the ring of 

formal power series in T with coefficients in CJr • In [8], Iwasawa has associ
X 

ated with X an element g(T;x) of the quotient field of A Define f(T;x) 
X 

g(T;x) (T-l)g(T;x) t~ 
~ 

to be either or 
' according as X or X = w ; here w 

is the Dirichlet character modulo 1 satisfying ~(a) :: a mod 1 Zt for all inte-

gers a . We shall only consider those x which have order prime to 1 , and, in 

this case, is an element of A 
X 

Also, it is not difficult to see 

(cf. [7]) that f(T;~) is in fact a unit in A. Finally, for each positive 

integer n , let 

of Leopoldt [12]. 

Bn be the nth Bernoulli number associated with X in the sense 
X 

Now F
0 

= F(~t) is abelian over Q • Thus we can associate with each abso

lutely irreducible character ~ of G(F
0

/Q) a primitive Dirichlet character $ 

in the usual way. In particular 1 if w is the character of G( Q( llt)/Q) given by 

cr~ = ~w(cr) for all ~ E ~t 1 then w is just the character described in the last 

paragraph. If ~ is the character of a representation of G(F
0

/Q) irreducible 

over Qt , let e~ be the associated orthogonal idempotent in the group ring 

Zt[G(F
0

/Q)J • Let I denote the set of characters of representations of 

G(F/Q) which are irreducible over Q2 . Fix, for the rest of the proof, an odd 

positive integer n . Then, with H defined as in §11 we see easily that 
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( 2) 

For each ~ E I , put ~* = ~w-n . Note that, since ~ is real and n is odd, 

~* is imaginary. Let ~ be an absolutely irreducible component of ~ , and 

~* = ~w-n the corresponding component of ~* . Then, if q
0 

denotes the least 

common multiple of * 1 and the. conductor of ~ , it is shown in [8] that 

We denote by 9- the set of absolutely irreducible charac·ters of G(F/Q) which 

are distinct from wn+l (observe that wn+l is a character of G(F/Q) if and 

only if [F
0

:F] divides n+l) . Now assume that ~ is any element of ~ Since 

,. n+l 
~ r w , we have * /"if ~ t w , and thus g(T;~ ) is in A~ . 

~ 
Consequently, g( 0;~ ) :: 

g((l+q )-n-1; ~*) 
0 

mod l'r, and both values lie in ~ Further, it is easy 

+ to see using class field theory that our hypothesis that no prime of F above 1 
1 0 

splits in F
0 

implies that ;r(l) t 1 , whence 1 - ~*- (1) is a unit in CJ~ 

because (1, [F
0

;QJ) = 1 . Thus we conclude that 

Bn+l 

( 3) ~ 
u n+l mod 1 ~, 

where u is a unit in ~ 

Next we show that 

(4) 

where V is a unit in z~ . For, by the decomposition of s(F,s) into a product 

of 1-series, we have s(F,n) = + IT Bn+l/n+l , where the product is taken over all 
- ~ '=1 

~ 
absolutely irreducible characters ~ of G(F/Q) . The proof of (4) divides into 

two cases according as n+l w is not or is a character of G(F/Q) . 

not a character of G(F/Q) , (4) is clear because ~ contains all characters of 

G(F/Q) and wn+l(F) is not divisible by 1 since [F
0

:F] does not divide n+l 
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On the other hand, if ~ 
n+l 

w is a character of G(F,Q) , then ~* = w , and, as 

(T-l)g(T;~) is a unit in A , it follows that its value at (1+£)-n-l , namely, 

{(l+f)-n- (l+~)}B~:(n+l)/(n+l) , is a unit in Z£ 
w 

But then, since [F :F] 
0 

divides n+l , it is not difficult to prove (see §6 of [ll]) that the power of l 

dividing both (l+l)-(n+l)_l and w (F) 
n+l is the same, as required. 

Now assume that l does not divide w 
1

(F)<,;(F,-n) . Since each term in n+ 

the product on the right of (4) is integral at 1 , it follows that Bn+l/(n+l) 
----1 
~-

is a unit in CJ~ for all ~ E ~. We then conclude from (3) that B1 is a unit 
'I' '* ~ 

in G; for all ~ E S--. Let ~ be any element of ,g- , and let K be the fixed 

field of the kernel of $* We write ~ for the character of G(K/Q) induced 

by ~* Let ~ * , '!' be the sum of the conjugates of ~ * , ~ over Q£ , and let 

e'!' be the orthogonal idempotent corresponding to '!' in the group ring 

Now, if f denotes the conductor of ~ , let a be the element 

of Qt[G(K/Q)J defined by 

1 
f 

f 

2: 
a=l 

(a,f)=l 

here (~) is the restriction to K of the automorphism of Q(~f) , which raises 

each element of ~f to the ath power. It is easily seen that e'!'a is in R , 

and it is plain that e'!'a is mapped to B1 under the ring isomorphism e~ ~ ~ 
~ 

which is induced by the map g ~~(g) . Thus e'!'a is a unit in the ring e~ . 

But, by a classical theorem of Stickelberger [17], annihilates 

~denotes the 1-primary subgroup of the ideal class group of K , whence we con

clude that e'!'Ol= 0 • Now, on the one hand,, the natural map from en, to A
0 

induces an isomorphism eU!Ct~ e A because (1, [F
0

:KJ) = 1 , and, on the other 
r ~w-n o 

hand, it can be shown (see §2 of [JJ),that our hypothesis that no prime of F: 

- ( -l Hence lying above 1 splits in F implies that e A = e A . 
0 ~w-n o <l>w-n 

( e -nA- )r 0 , whence, by a basic property of discrete r-modules, e A- 0 • 
<l>w <l>w-n 
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This argument applies to all characters ~ of G(F
0
/Q) , which are irreducible 

over Q~ , except 
n+l 

~ = w • However, a similar argument to the above, using the 

fact that (T-l)g(T;~) is a unit in A shows that we always have 
G(F /F) 

Thus, in view of (2), we have certainly shown that (A-(n)) 
00 

eA- 0 . 
w 

0 if 1 

does not divide wn+l(F)~(F,-n) . 

Much of the above proof is classical and well known. In particular, the 

congruence (3) was pointed out several years ago in letters of Iwasawa and Brumer 

to Tate, and special cases of it are probably very old. The reader should also 

note that the above argument could be considerably simplified, and the conclusion 

of Theorem 5 strengthened, if the following unknown assertion could be proven in 

general. For each character ~ t wn+l of an imaginary representation of G(F
0
/Q) 

irreducible over Q£ , the order of e~A~ is the exact power of 1 dividing 

1 
IT B~ , where the product is taken over all absolutely irreducible components ~ 

~ ~ 
of ~ 

We next discuss a general conjecture, in the spirit of the proof of Theo-

rem 5, from which we can derive the full conclusion of Conjecture 1. Let F be 

a totally real abelian extension of Q , and let 1 be an odd prime number which 

does not divide [F:Q] Let ~ be the character of an imaginary representation 

of G(F
0

/Q) irreducible over Qt , ~ an absolutely irreducible component of ~ 

and let f(T;~) be the associated power series in A~ , which is defined at the 
A 

beginning of the proof of Theorem 5. Let ~ = e~A- , and let A~ = 

Horn (~, QtiZt) be the Pontrjagin dual of A~ , endowed with a f-module structure 

in the same way as described in §1. Let qo( <P) be the least common multiple of 

1 and the conductor of ~ ' and let yo be the unique topological generator of 

r such that K(yo) = 1 + qo(<P) . 

Conjecture 6. ~ ~ character ~ ;;,£ .:::::!. imaginary representation 5::£. G( F 
0
/Q) , 

irreducible ~ Q£ , there is .:::::!. exact sequence A-modules 
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/\ 

0 ~A~~ A~/(f(T;~)) ~ D~ ~ 0 , 

where D~ is ~ finite A-module. 

Theorem 7. If Conjecture 6 is~~ F and 1 , ~Conjecture 1 is valid 

for F , 1 , ~all odd positive integers n . 

Proof. By (2) above, we have 

( 5) 
G(F /F) 

(A-(n)) "" EE> (A (n)l -n 
h:I ~w 

where, as before, I denotes the set of characters of representatiGns of G(F/Q) 

which are irreducible over Q£ . To compute the order of the f-invariants on the 

right, we first note the following facts about f-modules. If B is a discrete 

f-module, and C = Horn (B, Q£/2£) is its Pontrjagin dual, we always assume that 

the f-structure on C is given by (Yc)(b) = c(Yb) , where Y E r , c E C , and 

b E B . Thus, in particular, it follows that (B)r is dual to (C)r Also, let 

B[nJ denote the f-module having the same underlying group as B , but with a new 

action of r given by yob = K(y)llyb , the latter action being the original one. 

We define C[nJ in the same way. It is therefore clear that C[n] can be iden-

tified with the Pontrjagin dual of B[nJ Note also that B[n] is non-canoni-

cally f-isomorphic to B(n) . Now, applying these remarks to our particular situ-

r "' ation, we conclude that (A *(n)) is dual to (A *[nJ)r, where, as before, 

~* = ~w-n Further, if C~= A~/(f(T;~*)) , then ~t is easily seen that C[n] is 

A-isomorphic to 

/'. 
Writing E = A 

~* 
exact sequence 

(6) 

f (T;~*) = f((l+q (~*))-n(l+T)-1) 
n o 

D D * , the validity of Conjecture 6 implies that we have an 
~ 

0 ~ E[nJ ~ C[n] ~ D[n] ~ 0 . 
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Note that, in view of the explicit formula for derived in [8], we have 

fn(O;~*) i 0 . It follows easily that (C[nJ)r = 0 and (C[nJ)r is finite of 

order jfn(O;~*)j~1 Hence, applying the snake lemma to (6), we obtain the exact 

sequence 

But, as D[nJ 

and 

o + (D[nJ)r + (E[nJ)r + (C[nJ)r + (DCnJ)r + o . 

r 
is finite, (D[nJ) and (D[nJ)r have the same order, whence 

(C[nJ)r also have the same order, namely jfn(0;~*)/~1 . Recalling 

that we always have Aw = 0 , the conclusion of Conjecture 1 follows from (4) 

and (5). 

By using Iwasawa's methods [7], we have been able to prove Conjecture 6 in 

some cases. 

Theorem 8. 1 does not divide 

[F:QJ , (ii) no prime of F+ lying above 1 splits in F , and (iii) A- is 
----- 0 ------ ---- 0 -- 0 -

cyclic ~~module~ ZR.[G(F
0
/Q)J . Then Conjecture 2 is~ for F and 1 

For the proof of Theorem 8, which involves similar ideas to those given 

above in the proof of Theorem 5, we refer the reader to [3]. Unfortunately, hypo-

thesis (iii) is very restrictive, and difficult to verify for any particular field. 

Nevertheless, it can sometimes be verified by using tables of class numbers [13]. 

For example, if we take F1 = Q(/.[[) , 1 = 7 , or F2 = Q(/r9) , 1 = 19 , we 

conclude easily from the tables [13] that (iii) is valid. Hence, in view of the 
G(F /F) 

remarks after Theorem 5, we see that (A-(1)) 
00 

has order 7 in the first 

example, and order 19 in the second. 

3. Divisibility Assertions. Let F be any totally real finite extension 

of Q A particular consequence of Conjecture 1 would be that, for each odd 

positive integer n, wn+l(F)~(F,-n) is integral at 1 for all primes 1 
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(although l = 2 has been excluded in our discussion, it can be included if one 

uses a different formulation of Conjecture 1, cf. [11]). Such an integrality 

result was first conjectured by Serre [14], who proved it for n = l . It is still 

unknown for n > l . However, it is shown in [JJ that the validity of Conjecture l 

would imply an even stronger result than this integrality assertion. Assume again 

that l is odd. If ~ is a prime of F , let F~ denote the completion of 

at ~ 
Also, if K is any field, let w( t)(K) be the largest power of l ' n 

lr , such that G(K(lJ )/K) 
tr 

has exponent n. 

Theorem 9 (Lichtenbaum). 

G(F /F) 
(A-(n)) 

00 

is finite. 

~ n be ~odd positive integer, 

G(F /F) 
Then the order of (A- ( n) ) oo 

and assume that -------
is divisible by 

IT w( t)(F ) , where the product is taken ~~primes !?.:> of F lying 
6"/R- n &" o 

above l . 

Note that, since n is odd, the term IT w(t)(F ) 
tp/t n (f' 

is greater than l 

F 

say 

for some n > l if and only if at least one prime of lying above l splits 

in F 
0 

Conjecture 10. Let n be~ odd positive integer. ~ wn+l(F)z;;(F,-n) is an 

1-integer, which is divisible by IT w~t)(F&") , ~the product is~~ 
--- - Q->/t 

all primes l)'> of F lying above l . 

It is not difficult to see that Theorem 9 and Conjecture 10 are very closely 

related to the existence of a zero at T = 0 of a certain order for the various 

power series discussed in §l and §2. For example, using the existenae of this zero 

for certain of the Iwasawa power series g(T;x) , the following result is proven 

in [3]. 

Theorem 11. Assume that F is ~ totally real abelian extension of Q • Then 

Conjecture 10 is ~ ~ 
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On the other hand, Theorem 9 implies the following result about the power 

series fi(T) (l s i s d-1 , i odd, d = [F
0

:FJ) introduced in §1. 

Theorem 12. ~ 2! F is ~ totally real ~ extension Q 

££!:.each~ integer i with l s i s d-1 , fi(T) has a zero at T = 0 of 

~ greater ~ ~ equal to s( i) , ~ s( i) denotes ~ ~ £!:. primes 

r§' £!:. F lying above 1 ~ that [F&"( 11.1'.) : F&" J divides i . 

Proof. Let (? be any prime of F lying above 1 such that [F&'( IJ.I'.) : Fd" J 

divides i It is plain that, for all integers m 2: 0, [F6"( IJ tm+l) ~] 

divides lmi , or equivalently that w(.I'.)(F' ) 
~mi 6' 

is divisible by 1m+l Now, since 

d divides 1-1 ' it is also clear that the integers (m = 0,1, ... ) are all 

congruent modulo d Further, as fi(T) has only finitely many zeros, we have 

9.,m. 
f.(K(Y )- 1 -1) i 0 for all sufficiently large m 

1 0 
It then follows from Propo-

G( F,/F) 
sition 3 that (A-(lmi)) is finite for all sufficiently large m , whence, 

.I'-m. 
again by Proposition 3 and Theorem 9, we conclude that f.(K(y )- 1 -l) is divis-

1 0 

ible by l(m+l)s(i) Letting m tend to infinity, we easily see that fi(T) 

must have a zero at T = 0 of order <: s(i) . 

Recently, R. Greenberg [5] has shown that, when F is a totally real 

abelian extension of Q , and 1 is any odd prime number, then the order of the 

zero of fi(T) at T 0 is exactly s(i) for all odd i with 1 si s d-1 . 

His proof makes essential use of the p-adic analogue of Baker's theorem on linear 

forms in the logarithms of algebraic numbers. 

So far, no proof of Conjecture 10 has been found for non-abelian extensions 

F of Q , although we have verified special cases of it for many particular fields 

by direct computations. We mention two examples. Let F1 = Q(e1 ) , F2 = Q(82 ) , 

where e1 is a root of x3 - 9X + 1 , and e2 is a root of x3 - 6X + 2 • The 

discriminant of F1 is 3.107 and that of F2 is 22·33·7 It is readily 
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w4(F2 )~(F2 ,-3) should be integers divisibly by 3 , 32 , and 7 , respectively. 

This is indeed the case, because direct computations show that w2(F1 ) = 23·3 , 

4 w4(F1 ) = w
4

(F2 ) 2 ·3·5 , and ~(F1,-l) = ~ 1 , ~(F1 ,-3) = ~ (3•5'37)/2 , 

2 
~(F2,-3) = ~ (7 ·3589)/(2·3·5) • 

4. Connection ~ K-theory. In this last section, we briefly discuss the 

relationship of Conjecture 1 with K-theory. We use the notation of §1. Thus F 

is any totally real finite extension of Q , 1 is an odd prime number, 

F(~~) , etc. Let ()denote the ring of algebraic integers in F . 

Theorem 13. ~ 1-primary subgroup 2£. K20" ~ canonically isomorphic to 

G(F /F) 
(A-(1)) oo 

F 
0 

Conjecture 14. ~~~positive integer n , ~ 1-primary subgroup 2£. 
G(F /F) 

K2n0 is canonically isomorphic to (A-(n)) 
00 

Note the following consequences of Theorem 13 and our earlier results. 

G(F /F) 
Corollary 15. (A-(1)) "" is finite, ~equivalently f 1(K(y

0
)-1-l) i 0 

For, by Garland's theorem [4], K2() is a finite group. 

Corollary 16. !!:! F ~! totally ~ abelian extension of Q . ~ r;J ~ ~ 

~ ~ of rational primes consisting of 1 = 2 , ~ ::ll l ~ ~ either 

1 divides [F:Q] , ~ ::.1 ~~prime 2£. F: lying~ l ~ ~ F
0 

• 

Then, if 1 i ~, 1 divides the order of K20" only if 1 w2(F)~(F,-l) 
Further, .!£ 1 I.<:;§, ~ A~ is cyclic~~ group ring Z~[G(F/Q)J, ~ ~ 

~ ~ 1-primary subgroup~ K2CT is~~~~ 1 dividing w2(Fk(F,-l). 

This is clear from Theorem 13 and Theorems 5 and 8. In particular, if we 

consider the two examples mentioned before, namely F1 = Q(/il) , F2 = Q(/19) , 

then, in both cases, ~ = {2} 1 and we conclude that (writing crl '~ for the 
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rings of integers of F1 , F2 ) ~ (K2Cl) = 4·7 , ~(K2~) = 4·19, except perhaps 

for the 2-primary subgroups. In fact, a simple direct argument enables us to 

verify that the above orders are correct even for the 2-primary subgroup. 

~ 9£ ~ proof 9£ Theorem 13. We first remark that, by Quill en's long exact 

sequence [18], the inclusion of 0 in F induces an isomorphism from K
2

CT onto 

Ker AF , where 
X 

AF : K2F + ~kt;> is the homomorphism induced by the tame symbols 

(here tf runs over all finite primes of 
X 

F , and k~ denotes the multiplicative 

group of the residue field of {f ) Let I~ be the free abelian group generated 

by the non-archimedean primes of F00 which do not lie above 1 . Since only the 

primes above 1 are ramified in the extension F00 /F and since there are only 

finitely many primes of F00 lying above each finite rational prime, we have the 
X 

natural map from F
00 

to I~ which associates to a field element its divisor out-
X 

side 1 . This gives rise to a homomorphism ( Qt/Z t) ® F 
00 

+ ( Q t/Z t) ® I~ , and 
z z 

we define '60b to be the kernel of this homomorphism. Now m is a discrete 

1-primary G(F
00

/F)-module, and so, in particular, it has the decomposition~= 

~@'1ll("". It is shown in [2] (see Theorems 6 and 11) or [11] (see §7), and we 

do not repeat the arguments here, that Tate's cohomological description of K2F 

(see his article in this volume) implies that, since F is totally real, the 
G(F /F) 

1-primary subgroup of Ker AF is canonically isomorphic to (a;i"( 1) oo 

Theorem 13 then follows immediately from this result and the corollary of the 

following lemma. Let c:roo be the ring of algebraic integers in F00 , and let Eco 

be the group of units of C/oo (note that we are not taking the group of units of 

the ring C/
00

[1/1]) • It is very easy to see that the inclusion of E00 in 

induces an injection ( Qt/Zt )QJ Eco +Oil&. 
z 

Lemma 17. There a canonical G(F
00

/F)-homomorphism such that ----
sequence 
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is exact. ----
Corollary. W(; is canonically isomorphic !:£ A- ~ .!:, G( F

00
/F )-~. 

To deduce the corollary from the lemma, let F+ be the maximal totally n 
real subfield of Fn ' E units 

+ 
the units of 

+ n the of F 
n ' 

E Fn , and n n n 
the group of roots of unity of F Then it is well known that n E+ is a sub-n nn 
group of E of index at most 2 Hence, n 

we deduce easily that ((Q~/Z~)~ E
00

)- = 0 . 
z 

since 1 is odd and E 
00 u~=O En ' 

~ of Lemma 17. The proof is entirely elementary, and is based on the fact 

that there exists an integer n
0 

~ 0 such that the extension F
00

/Fn is 

totally ramified at all primes of F 
no 

lying above 

0 

1 (we do not include a proof 

of this since it is both easy to prove and very well known). Let s denote the 

number of primes of F
00 

lying above 1 , and, for each n ~ n
0 

, let ~j(n) 

(1 ~ j ~ s) denote the primes of Fn lying above 1 , our notation being chosen 

so that, for m ~ n , we have &'j(n) = 6Pj(m)~m-n when 8Vj(n) is viewed as an 

ideal of F m Now let X be any element of m, say X a® (l-a mod Z~) 

so large ' ~a with ov• E I' (here Choose n ~ n that a " F and ao- = ov 
0 n n n n n 

o-• n denotes the ring generated by the algebraic integers of F and 1/£., and n 
I' n denotes the free abelian group generated by the primes of () ~) Now, if 

~ denotes the ring of algebraic integers of Fn, we have aC6= 

~a jl js 
~ &'1(n) ·· ·~s(n) , for certain integers j 1 , .•• , js (of course, 

j 1 , •.. , js are not necessarily divisible by la) Now a~+a 

j j ~a A ( ~~&i ( n+a) 1 · · · tfs( n+a) s) , where 'V"~ is the image of Ul.~ under the natural 

inclusion of I' in I~+a . We define if>(x) to be the image in A under the n 
1 jl js canonical map A _,. A of the class of '~(n+a) ... ~ (n+a) in An+a · n+a n 1 s 

It is trivial to verify that if> does not depend on any of the choices made in 
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the above definition, that it is a G(F
00

/F)-homomorphism, and that its kernel is 

( QR./Z.~) ® E
00 

• To prove $ surjective, let t; be any element of A , and pick 
z 

an integer n ~ n
0 

such that is the image under the canonical map A +A 
n 

of the class of an ideal :J- of F 
n Thus there exists an integer b ~ 0 such 

R,b 
that ~ 13~ for some f3 in Fn and it is then plain that t; 

$( f3 ® 1-b mod Z~) This completes the proof. 

Finally, as was remarked by Tate several years ago, Theorem 13 shows that 

the divisibility assertion of Theorem 9 for n =-1 has a simple interpretation 

in terms of K-theory. For each finite or real prime SO of F , let ~8' be the 

group of all roots of unity in the completion of F at 6P , and let v~ : K2F + 

~ ~ be the homomorphism induced by the Hilbert norm residue symbol relative to the 

whole of ~6' . By using Moore' s theorem, a simple computation shows that the ker-

nel of 

index 

the homomorphism vF = €El vi? : K2F +® 11 0'> is a subgroup of 

r -1 
2 1 IT IT w(~)(F ) , where the product is taken over all primes 

~ ff/~ 1 tf 1 ' 

including 1 = 2 . Granted Conjecture 14, Theorem 9 presumably has a similar 

interpretation for all odd n > 1 . 
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Research Problems: Arithmetic Questions in K-theory 

J. Coates 

Throughout F will denote a finite extension of the rational 

field ~' CJ will be the rinc of integers of F,l will be any 

prime number,and,for each integer m ~ 1, ~~ will be the 

group of m-th roots of unity. 

1. Is the natural map from K~ CY to K~F injective for all 

odd positive integers n ? (If n is even,it is injective,as 

is immediately seen by looking at the lone exact sequence of 

localization and using the fact that K~ of a finite field 

is zero for n even). 

2. Assume F is totally real. Then K~ CJ is finite for all 

positive integers n with n ~ 1 mod 4. Determine the orders 

of these groups. What relation do these orders have to the 

values of the zeta function of F at the negative integers ? 

(See Lichtenbaum's article in this volume for some more 

detailed possibilities on this subject). In particular,determine 

the order (and structure,if possible) of K~ ~ • 

----3. Let ~ be a finite prime of F,and let Fr be the 

Henselization of F at ~ (the algebraic closure of F in 

the completion ofF at ~ ). What is K~CF;) ? In particular, 

is K~CF; ) naturally isomorphic to the group of roots of 
/'-

unity in F~ • 

4. Assume 1 is odd,and let F~ be the field obtained by 

adjoining to F all 1-power roots of unity. Let K~F(l),KaF~(l) 
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denote the 1-primary subgroups of K~F,K~F~ ,respectively,and 

let j:K~F(l) ~ KaF~(l) be the natural map. Determine the 

kernel of j. (If F is totally real,j is injective; on the 

other hand,examples are known where j is not injective,e.g. 

l = 3,and F = ~(J257 ,l-3 ) or ~( J993 ,M)). In particular, 

determine the kernel of j when F = Q(fL~). (If the class 

number of the maximal real subfield of Q(~~) is prime to 1, 

j is injective,e.g. for 1 ~ ~001). 

5. Assume that f-1. c: F,and let F"' denote the multiplicative 

group of F. Let be the kernel of the map from 

to Kii..F given by S~a ~ {S,a} • If S<a>a is in b. 

and a is not an 1-th power in F~ ,is it true that F(~~) 

is always the first layer of a Z~ -extension above F in 

the sense of Iwasawa (if F is totally real,whence l = 2,this 

is true) ' Note that,by a result of Tate (see his article in 

this volume) ,the order of !::::,. 'is 1 1+~ ,where r.ot. is the 

number of pairs of complex conjugate embeddin[s of F in t • 

6. Let F be the algebraic closure of F ,and let G F be the 

Galois group ofF over F. Let T = ~ fL~~ ,and write Te~ 

for the tensor product of T with itself over ZL ,viewed as 

a GF -module via the diagonal action. EXcluding perhaps the 

prime 1 = 2 ,is it true that K~F ~ Z.l. is isomorphic to 

H 1 (G~,T·il..),the latter cohomology group being formed with 

continuous cochains ? (See Tate's article in this volume). 
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7. If X = Spec(A) is a non-singular affine curve defined over 

a finite field,and n is greater than 2,is K~A finite ? (It 

does not even seem to be known that K~A is finitely generated). 

By results of Bass and Tate,K•A is finite. 

8. Let L be any field,and l a prime,distinct from the 

characteristic of L,such that ~L c= L. Is it true that every 

element of K.:~.L of order l is of the form { S ,a) with 

SE; fA-t. and a e L ? (When L is a global field, this has been 

proven by Tate; see his article in this volume). Also,do there 

exist fields of ·characteristic l such that their Koil. ~ have 

non-trivial 1-primary subgroups ? 
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Letter from Tate to Iwasawa on a relation between 

~2 and Galois cohomology 

The text below is a copy of a letter I wrote Iwasawa in January 1971. It contains a 

sketch of the proof of what is called the "Main Conjecture" on page 210 of my talk in the 

Proceedings of the International Congress of Mathematicians at Nice. The letter below and 

the Nice talk, taken together, provide an outline of the proof for number fields of the 

fundamental isomorphism between K
2 

and Galois cohomology (formula (42) on page 210 of 

the Nice talk). I hope to publish the details sometime soon. 

The notes of Iwasawa referred to below will appear shortly as a paper in the Annals. 

Dear Iwasawa, 

Thank you for sending me the notes of your course. They have been very helpful to me. 

I am enclosing a copy of the manuscript which I am submitting to the Nice volume, 

because I think that now I can prove what I there called the Main Conjecture, and this result 

is equivalent to the following statement about your r-module X= Gal (M/K) , by your 

r 
theorem that X/X ~ 11 2 

tors 

THEOREM: The character 
2 x does not occur in X ; more precisely, the module 

(-2) (2) . . 
T ® X= Horn :;{I; (T , X) contams no non -zero element flxed by r 

1/:.t .t 

Here I am using without explanations notations from your notes (except I use X instead 

of your )() and also the notation T(r) from my manuscript. In order that this combination 
' 

of documents (i.e. my Nice talk and this letter) will be self-contained, let me review your 

notation: 

.t is a prime number • 

k is a finite extension of q> containing the .t-th roots 

of unity, and containing A if .t= 2 • 
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(1) 

K = k(W), where W is the group of .en -th roots of 1, 

all n , in some algebraic closure of k • 

r= Gal (K/k) 

){: r-7\).. ~; via Y(~)= z: X(Y) for /;'E w' YE r. 
(In other words, Yt = X(Y)t for t E T.) 

M the maximal abelian .t -extension of K which is 

unramified outside .t • 

X = Gal (M/K) • 

I' = the group of t -ideals of K = free abelian group 

generated by discrete valuations of K (i .e, by the 

non -archimedean valuations not dividing J,) • 

m is defined by the exactness of the sequence • 

By Kummer theory we have your theorem 2 , namely 

X Horn ('tl\., W) 

and the resulting pairing X x '?l'l.--7 W is a r-pairing, i.e. satisfies 

<}1(, Yrn> = Y<x, m> ' for YE r' X E X ' m E"n't.. Hence 

so our theorem is equivalent to 
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Tensoring the exact sequence (1) with T , and then passing to cohomology, we get an 

exact sequence 

(2) 

So our theorem is now reduced to two statements: 

PROPOSITION : The map ~ in (2) is surjective , and 

The lemma is trivial. In fact, if N is any discrete module on which I" operates 

continuously, then H\r, W®N) = 0 • 

Proof. N = l!,m NIX , NIX finitely generated, so we can assume N is finitely generated 

1P 
and fixed by y

0 
for some n ( since N is discrete, a finitely generated r-module is a 

finitely generated abelian group). Now W ®N is a quotient of the finite-dimensional 

<Q.t -vector space V ®N, where V= T ® <Q.t • The eigenvalues of y
0 

on <Q ~, ®N are 
JR; 

.tn -th roots of unity, so on V® N , y
0 

his eigenvalues which are not roots of unity (since 

x(y
0

) is not a root of unity). Thus y
0
-1 operates bijectively on V ®N, hence surjec

tively on W®N, Q.E .D. 

To prove the proposition we use non-trivial facts from K
2

-theory, namely Moore's 

theorem on Coker X, Garland's theorem that Ker X is finite, and Matsumoto's theorem 

that a symbol gives a homomorphism of Kl . Garland's theorem implies that K2k is a 

torsion group. This, the discussion on pages 208,209 of my Nice talk (with F = k), and the 

isomorphisms 

give a diagram 
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.tPP(K
2

k) ~ H2
(k, T(

2
)) = (W®K'{/((W®K'F)d. 

tors IV 

J "tame 

JPP J1 (J.' ) 
V 

v(.t"" 

where .tPP denotes .t-primary part. 

l induced by a of (2) 

<w ®r'F 

Local considerations show that the diagram commutes, and that the loweT 

horizontal arrow is bijective. The arrowed marked X is surjective by Moore's 
tame 

theorem. The map h is defined via Matstnnoto's theorem and has values in the torsion 

2 
subgroup of H by Garland's theorem. Hence a is surjective. 

Best regards, 

1 .Tate 
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