
INTRODUCTION TO EQUIVARIANT HOMOTOPY THEORY

DENIS NARDIN

In this brief note we will present the basics definitions of stable G-equivariant
homotopy theory for G a topological group, relative to its finite subgroup. We will
not cover the similar but more subtle case of G-equivariant homotopy theory for G
a compact Lie group, relative to all of its subgroups. Standard references for the
subject are [7] (but be wary of the model for G-spectra used there) and [5]. Good
introductory expositions can be found in [10] and [3].
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1. G-spaces

Let G a topological group. If X,Y are topological spaces with an action of G
we are interested in studying the homotopy classes of equivariant maps between X
and Y . But what do we mean by homotopies of equivariant maps? There are two
choices:

• A homotopy between f and g is just a homotopy H : X × [0, 1] → Y ,
without further conditions;

• A homotopy between f and g is a G-equivariant map H : X × [0, 1] →
Y , where [0, 1] is given the trivial action, such that H|X×{0} = f and
H|X×{1} = g.

We are interested in the latter case.
A G-CW-structure on a topological space X with an action of G is given by a

CW-structure where the cells are permuted by the action of G. That is to say,
the n-skeleton is obtained from the (n − 1)-skeleton by attaching I × Dn along
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I × Sn−1, where I is a G-set (and the action of G on Dn is trivial). Then the
following theorem is true

Theorem 1 (Bredon). A map f : X → Y between G-CW-complexes is a G-equivariant
homotopy equivalence iff fH : XH → Y H is a homotopy equivalence for all sub-
groups H.

Proof. This is [2, Cor. II.5.5]. �

Conforted by this example, we define f to be a G-weak equivalence iff fH : XH →
Y H is a weak equivalence for all H. Then the homotopy theory of G-topological
spaces up to G-weak equivalence has a very pleasant description. Let OG be the
orbit∞-category of G, that is to say the∞-category associated to the topological
category of transitive G-spaces.

Theorem 2 (Elmendorf). The functor
TopG → Fun(Oop

G ,Space)
sending X 7→ MapG(−, X) is a localization. That is, it induces an equivalence of the
right hand side with the ∞-category obtained by inverting the G-weak equivalences
on the left hand side.

Proof. See for example [4, Pr. 3.15]. �

We will call the right hand side the∞-category of G-spaces and we will write
SpaceG for it. If X is a G-space, we will often write XH for X(G/H) (guided by
this equivalence).

Now, this whole story works also for all topological groups, provided you define
OG to be the∞-category corresponding to the topological category of orbits. How-
ever, we will need a slight variation of it. If G is a topological group, we say that
a map is a (G,F)-weak equivalence if it induces a weak equivalence on all fixed
points for finite subgroups. Then, if OG,F is the subcategory of OG corresponding
to orbits with finite stabilizers, the corresponding variant of Elmendorf’s theorem
is still true: the functor

TopG → Fun(Oop
G,F ,Space)

is a localization at the (G,F)-weak equivalences.
Note that if G′ ⊆ G is a subgroup, there’s a functor

resGG′ : SpaceG,F → SpaceG′,F

simply given by the precomposition with the functor G×G′ − : OG′ → OG. That
is, this is defined so that

(resGG′ X)H = XH

for all H < G′. This functor has a left and right adjoint, called induction and
coinduction respectively that are given by left and right Kan extension. If G and
G′ are finite groups we can write them as

(indG
G′ X)H =

∐
g∈G/G′,g−1Hg⊆G′

Xg−1Hg

(coindG
G′ X)H =

∏
g∈G′\G/H

X

(morally: indG
G′ X = G×G′ X and coindG

G′ X = MapG′(G,X)).
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Finally, note that SpaceG and SpaceG,∗ have a symmetric monoidal structure
given by the pointwise cartesian product and smash product respectively.

The following theorem will often be useful

Theorem 3 (Illman). Let G be a compact Lie group. Then every G-manifold has
a G-CW-complex structure. In particular, every compact G-manifold has a finite
G-CW-complex structure.

Proof. This is [6, Cor. 7.2]. �

2. The definition of G-spectra

Recall that we can define the ∞-category of spectra as

Sp = lim(Space∗
Ω←− Space∗ ← Ω · · · ) .

In fact we can use a slightly different definition of spectra: this is the definition of
“coordinate-free” spectra. Let I be the ∞-category associated to the topological
category of finite dimensional real inner product spaces and isometric embeddings.
Then there is a functor

I → PrL

sending every object V to Space∗ and an isometric embedding f : V → W to the
functor SfV ⊥ ∧ − (where SW is the one-point compactification of the real vector
space W ).

Now, using PrL ∼= (PrR)op we get a functor Iop → PrR. The functor N → I
sending n to Rn is cofinal1, so we can write

Sp = lim
Iop

Space∗

Let RepG be the category of orthogonal G-representations and isometric embed-
dings. Then we define

SpG
F = lim

V ∈Repop
G

SpaceG,F,∗

where the isometric embedding f : V → W induces the functor Map(SfV ⊥
,−) :

SpaceG,F,∗ → SpaceG,F,∗ (see in the appendix for a rigorous construction of this
functor). We will write Ω∞ : SpG

F → SpaceG,∗ for the projection on the component
corresponding to the 0-representation and Σ∞ : SpaceG,∗ → SpG

F for its left adjoint.
If G is a finite group, we can find a cofinal functor N → RepG by sending n to

nρ, where ρ is the regular representation of G, so

SpG = lim
(

SpaceG,∗
Ωρ

←−− SpaceG,∗
Ωρ

←−− · · ·
)

Hence by corollary 2.22 in [9] we know that SpG is the presentable symmetric
monoidal ∞-category obtained by SpaceG,∗ by inverting Sρ. In particular SV is
invertible for any G-representation V (since there is W and n such that SV ∧SW ∼=
Snρ). Moreover every G-spectrum X has the canonical presentation

X ∼= colim
n

S−nρ ∧ Ω∞(Snρ ∧X) .

Note that Σ∞ : SpaceG,∗ → SpG has a natural symmetric monoidal structure.

1This is just the contractibility of the infinite Stiefel manifolds, since the weak homotopy type
of N×I IV / is just colimn MapI(V,Rn).
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If G′ ⊆ G is a closed subgroup, there is a restriction functor

resGG′ : SpG
F → SpG′

F

given by

SpGF = lim
RepG

SpaceG,F,∗
lim resG

G′−−−−−−→ lim
RepG

SpaceG′,F,∗
∼= lim

Rep′
G

SpaceG′,F,∗ = SpG′

F ,

where we used that the restriction functor RepG → Rep′
G is cofinal. This functor

has a levelwise right adjoint obtained by applying levelwise coindG
G′ , so it has a

right adjoint that we will still denote coindG
G′ . Moreover, since the whole diagram

lives in PrR, the functor resGG′ has a left adjoint that we will denote indG
G′ . We can

give an explicit formula for indG
G′ given by

(indG
G′ X)V = colim

W∈RepG

Map(SW , indG
G′ XV⊕W ) .

We would like to use our understanding of SpG for a finite group G, to better
understand SpG

F for a compact Lie group G.

Proposition 4. Let G be a compact Lie group. Then the restriction maps induce
natural equivalences

SpaceG,F
∼= lim

G/H∈Oop
G,F

SpaceH ,

SpG
F
∼= lim

G/H∈Oop
G,F

SpH .

In particular, since the restriction functors are canonically symmetric monoidal
functors the left hand side inherits a presentable symmetric monoidal structure
where the spheres are invertible.

Proof. Let us do the first equivalence. If G/H ∈ OG,F , we claim that there is
a canonical equivalence OH

∼= (OG,F )/G/H , sending an H-orbit O to the G-orbit
G×HO → G×H ∗ ∼= G/H. The inverse is given by taking the fiber over eH ∈ G/H.
Then, using the equivalence I ∼= colimi∈Iop Ii/ applied to the ∞-category Oop

G,F we
have

Oop
G,F
∼= colim

G/H∈OG,F
(Oop

G,F )G/H /
∼= colim

G/H∈OG,F
Oop

H .

So, by applying Fun(−,Space) to the diagram
SpaceG,F = Fun(Oop

G,F ,Space) ∼= Fun( colim
G/H∈OG,F

Oop
H ,Space) ∼= lim

G/h∈Oop
G,F

Fun(Oop
H ,Space) .

Now, using that for every finite subgroup H < G the funcor RepG → RepH is
cofinal, we have

SpG
F
∼= lim

Repop
G

SpaceG,F,∗
∼= lim

Repop
G

lim
G/H∈Oop

G,F

SpaceH,∗
∼=

∼= lim
G/H∈Oop

G,F

lim
Repop

G

SpaceH,∗
∼= lim

G/H∈Oop
G,F

SpH .

�

If G is a general topological group, we will turn the above proposition into a
definition, and let

SpG
F := lim

G/H∈Oop
G,F

SpH .
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This has a symmetric monoidal structure and Σ∞ : SpaceG,F,∗ → SpG
F is a sym-

metric monoidal functor.

3. Dualities

If M is a G-space equipped with an equivariant vector bundle V , we can define
the Thom spectrum MV as the suspension spectrum of the 1-point compactification
of V (or, equivalently, the cofiber of Σ∞

+ S(V )→ Σ∞
+ M). As in the nonequivariant

case, we can always realize V as a summand of a constant bundle2 and so we can
define Thom spectra for virtual bundles.
Theorem 5 (Atiyah duality). Let G be a compact Lie group and M be a G-manifold.
Then Σ∞

+ M is a dualizable G-spectrum, whose dual is given by M−TM . Precisely,
if ν is an equivariant vector bundle over M such that TM ⊕ ν ∼= V ×M for some
G-representation V , the composition

Mν ×M+ → SV ∧M+ → SV ,

where the first map is the Pontryagin-Thom collapse map associated to the diagonal
embedding M → ν ×M , is a perfect pairing.
Proof. The same proof as in the non-equivariant case works here, assuming known
that every G-manifold embeds equivariantly in a G-representation. For a detailed
treatment in the equivariant case, see section III.5 in [7]. �

If G is a finite group it is worth to analize the case M = G/H where H is a
subgroup. By choosing as ν the 0-vector bundle, we obtain that Σ∞

+ G/H is self-dual
and the pairing is given by

Σ∞
+ G/H ∧ Σ∞

+ G/H ∼= Σ∞
+ (G/H ×G/H)→ Σ∞

+ G/H → S0

induced by the map of pointed G-spaces (G/H × G/H)+ → G/H+ which is the
identity on the diagonal and collapses everything else on the basepoint.

4. Genuine fixed points

Let G be a compact Lie group and N < G be a normal finite subgroup. Then
there is a functor

(−)N : SpG
F → SpG/N

F
obtained as the composition

SpG
F = lim

Repop
G

SpaceG,F,∗ → lim
Repop

G/N

SpaceG,F,∗ → lim
Repop

G/N

SpaceG/N,F,∗

where the first functor is the projection onto the subcategory RepG/N ⊆ RepG of
those representations where N acts trivially, and the second functor is given by
taking N -fixed points levelwise.

If H < G is a finite, not necessarily normal, subgroup we can define

EH =
(
resGNGH E

)h ∈ SpWGH

where WGH = NGH/H is the Weyl group of H. We will denote by EH also the
“underlying spectrum” (restriction to 1 < WGH) of EH .
Lemma 6. The functor SpG

F → Sp given by X 7→ XH is corepresented by Σ∞
+ G/H

and the WGH-action on the spectrum is given by the right action on Σ∞
+ G/H.

2i.e. an equivariant bundle of the form M ×W → M for W a G-representation.
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Proof. Unwrapping the definitions (−)H sends a G-spectrum X to the spectrum
{(Ω∞ΣnX)H}n≥0, but this is easy to see to be exactly mapG(Σ

∞
+ G/H,−). �

Note that the functor (−)H : SpG
F → Sp commutes with both limits and col-

imits: limits because it comes from a diagram in PrR and colimits because it is
corepresented. In particular Σ∞

+ G/H is compact for each finite H.

Theorem 7. The functor (−)H : SpG
F → Sp commutes with both limits and colimits.

Moreover, the collection of functors {(−)H}H<G finite is jointly conservative.

Proof. The functor (−)H is obtained as the limit of a diagram of functors in PrRω , the
∞-category of compactly generated ∞-categories and filtered colimits preserving
right adjoint functors, so it is a filtered colimit preserving right adjoint functor.
In particular it commutes with limits and filtered colimits. But SpG

F is a stable
∞-category, and so (−)H is also exact, hence it commutes with all colimits.

To prove that the collection {(−)H}H<G is jointly conservative, we can restrict
to the case of G finite. Indeed if resGH X = 0 for all finite subgroups H, then X = 0

by proposition 4 we must have X = 0. Now, let C denote the subcategory of SpG

generated by suspension spectra of orbits under colimits and desuspensions. We
claim that C = SpG.

Since SpaceG,∗ is generated by G/H+ under colimits and Σ∞ is a left adjoint
functor, it is clear that suspension spectra are contained in C. Now we claim that
C is closed under smash products. In fact, for all H, the collection of X such that
Σ∞

+ G/H ∧ X ∈ C is closed under colimits, desuspensions and contains all orbits,
so if X ∈ C, Σ∞

+ G/H ∧X ∈ C. Similarly, if we fix X ∈ C, the collection of Y such
that Y ∧X ∈ C is closed under colimits, desuspensions and contains all orbits, so it
contains C. Finally, since Σ∞

+ G/H are self-dual, the dual of Σ∞X for X a pointed
finite G-CW-complex is also in C. In particular S−nρ = D(Σ∞Snρ) is contained in
C for all n. But for every G-spectrum X we can write it as

X = colim
n

S−nρ ∧ Σ∞Ω∞(Snρ ∧X)

so X is also contained in C. �

Corollary 8. The collection {G/H}H<G for H varying across all finite subgroups
is a set of compact generators for SpG

F . In particular, if G is a compact Lie group,
SpG

F is rigidly-compactly generated in the sense of [1].

5. The Wirthmüller isomorphism

Let G be a finite group and H < G a subgroup. Then, we have a natural
isomorphism

resGH coindG
H X = F (Σ∞

+ G/H,X)

(remember that both functors are computed pointwise). Note that here Σ∞
+ G/H

is seen as a H-space and not as a G-space. In particular we have a splitting
G/H ∼= {eH} q I and so there is a canonical map G/H+ → S sending only eH to
the non-basepoint. This gives us a natural transformation

X → F (Σ∞
+ G/H,X) ∼= resH coindG

H X .

By adjunction, this provides us with a map
W : indG

H X → coindG
H X .
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Theorem 9 (Wirthmüller isomorphism). The map W is a natural equivalence.

Proof. Since SpH and SpG are rigidly compactly generated, we can apply theorem
3.3 in [1] to f∗ = resGH and observe that both sides commute with colimits. Hence
it suffices to prove that this map is an equivalence when X = Σ∞

+ H/K. But, from
3.3.(3.13) in [1] it follows that

coindG
H F (Σ∞

+ H/K, S) ∼= F (indG
H Σ∞

+ H/K, S) ∼= F (Σ∞
+ G/K, S)

and a careful study of the definitions proves that the map

indG
H Σ∞

+ H/K ∼= Σ∞
+ G/K → coindG

H Σ∞
+ H/K ∼= coindG

H F (Σ∞
+ H/K, S) ∼= F (Σ∞

+ G/K,S) ,

is precisely the map which is an equivalence by Atiyah duality. �

6. Borel G-spectra

Let us consider the functor u : SpG
F → SpBG given by mapSpG(Σ∞

+ G/e,−)
(“underlying spectrum”), where the action is induced by the right action of G on
Σ∞

+ G/e. We know it preserves limits and colimits, so it has a left and right adjoint,
which we will denote with f and b respectively. In fact we know what f is already:
by Morita theory

fE = Σ∞
+ G/e⊗S[G] E .

Proposition 10. The functors f and b are fully faithful.

Proof. To prove f is fully faitful, we need to prove the counit uf → 1 is an equiva-
lence. But, both uf and 1 commute with colimits, so it suffices to check it for S[G],
where it is clear since uΣ∞

+ G/e = S[G]. But then, to prove that b is fully faithful,
we need to check that the unit 1 → ub is an equivalence. But this is precisely the
adjoint natural transformation of uf → 1 and so it is an equivalence. �

Our goal is going to be to describe the essential image of f and b. We start by
b.

Let EG be the G-space given by

EGH =

{
∗ if H = 1

∅ otherwise
.

Note that for any G′ < G subgroup, resGG′ EG ∼= EG′.

Proposition 11. For a G-spectrum X the following properties are equivalent:
• The map X → F (Σ∞

+ EG,X) is an equivalence;
• For each H < G finite the natural map XH → XhH is an equivalence;
• X is in the essential image of b, that is X → buX is an equivalence.

We call such a spectrum a Borel complete G-spectrum or simply a Borel G-spectrum.

To prove the proposition we will need an important property of the space EG.
Note that a G-space X has a map to EG if and only if XH = ∅ for H 6= 1 and in
that case the space of maps is contractible.

Lemma 12. Let G act on the right on G/e in SpaceG,F . Then the canonical map
(G/e)hG → EG is an equivalence in SpaceG,F .
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Proof. Since (G/e)H = ∅ if H 6= 1, to prove the lemma we just need to show that
the underlying space of (G/e)hG is contractible. But this follows from a standard
extra degeneracy lemma. �

We can now proceed to the proof of the proposition.

Proof. Let us prove (1) implies (2). Up to restricting to H we can assume G = H.
Then the map induced on fixed points

XG → F (Σ∞
+ EG,X)G ∼= mapSpG(Σ∞

+ (G/e)hG, X) ∼= XhG

is exactly the map we wanted to prove is an equivalence.
Now we will prove (2) implies (3). In fact the map on H-fixed poitns

XH → (buX)H ∼= mapSpG
F
(Σ∞

+ G/H, buX) ∼= mapSpBG(S[G/H], uX) ∼= XhH ,

is the map we claimed it was an equivalence.
Finally we will prove (3) implies (1). In fact, if X = bY , the map bY →

F (Σ∞
+ EG, bY ) induces for every Z ∈ SpG

F

mapSpG
F
(Z, bY ) ∼= mapSpBG(uZ, Y )→ mapSpG

F
(Z,F (Σ∞

+ EG, bY )) ∼= mapSpBG(u(Z∧Σ∞
+ EG), Y )

but the projection map Σ∞
+ EG ∧ Z → Z is an equivalence on underlying spectra

(this is true for suspension spectra and both directions commute with colimits). �

Lemma 13. Let G be a finite group. Then there is a natural equivalence of spectra

(Σ∞
+ EG ∧X)G ∼= XhG .

In particular, for any topological group G, the functor Σ∞
+ EG∧− sends equivalences

of underlying spectra to equivalences.

Proof.

(Σ∞
+ EG ∧X)G ∼= ((Σ∞

+ G/e)hG ∧X)G ∼= (Σ∞
+ G/e ∧X)GhG

∼= XhG

(where in the last step we used Atiyah duality; in the case of compact Lie group a
shift whould appear). �

Finally, to describe the essential image of f , we need to describe the natural
transformation fu→ 1.

Proposition 14. For X ∈ SpG
F the following are equivalent

• X is in the stable subcategory generated under colimits by Σ∞
+ G/e;

• X is in the essential image of f .
• Σ∞

+ EG ∧X → X is an equivalence
In particular, (fX)H ∼= XhH . Such spectra are called free spectra (because they
are built out of free cells).

Proof. We know (1) and (2) are equivalent because f is fully faithful, its essential
image is closed under colimits and SpBG is generated by S[G], which is such that
f(S[G]) = Σ∞

+ G/e.
To prove (1)⇒ (3) it suffices to prove it when X = Σ∞

+ G/e, which is obvious.
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To prove (3)⇒ (2) we consider the square

Σ∞
+ EG ∧ fu(X) fu(X)

Σ∞
+ EG ∧X X

.

We know that both horizontal arrows are equivalences and the left vertical arrow
is an equivalence because Σ∞

+ EG∧− sends equivalences on the underlying spectra
to equivalences. So the right vertical arrow is an equivalence too. �

7. The tom Dieck splitting

For this section, let G be a finite group and let X be a pointed G-space. Then,
for any finite subgroup H of G we can construct a natural map

Σ∞XH ∼= Σ∞ MapSpaceG,∗
(G/H+, X)→ mapSpG(Σ∞

+ G/H,Σ∞X) = (Σ∞X)H

adjoint to the map

MapSpaceG,∗
(G/H+, X)→ MapSpG

F
(Σ∞

+ G/H,Σ∞X) ∼= Ω∞ mapSpG(Σ∞
+ G/H,Σ∞X)

induced by Σ∞. Now, thanks to Atiyah duality, there is an equivalence

(Σ∞X)H ∼= F (Σ∞
+ G/H,Σ∞X)G ∼= (Σ∞

+ G/H ∧ Σ∞X)G .

So
(Σ∞X)HhWH

∼= (Σ∞
+ G/H ∧ Σ∞X)GhWH

∼=
(
Σ∞

+ G/HhWH ∧ Σ∞X
)G

.

For brevity, let DH = (G/H)hWH . Then, the map DH → ∗ induces a map

(Σ∞X)HhWH
∼= (Σ∞

+ DH ∧ Σ∞X)G → (Σ∞X)G .

We can put all of them together to get a map

ζX :
⊕
(H)

Σ∞XH
hWH →

⊕
(H)

(Σ∞X)HhWH → (Σ∞X)G

where the sum is indexed by the conjugacy classes of subgroups of G.

Theorem 15 (tom Dieck splitting). Let G be a finite group. Then for any G-space
X, the natural transformation ζX is an equivalence of spectra.

Remark 16. This theorem should be thought of as an equivariant version of Se-
gal’s formulation of the Barrat-Priddy-Quillen theorem. That is saying that for a
space X, Σ∞

+ X is the connective spectrum corresponding to the group completion
of the groupoid of finite sets with a map to X. This version is essentially saying
that, for a G-space X, (Σ∞

+ X)G is the connective spectrum corresponding to the
group-completion of the groupoid of finite G-sets with a map to X.

We will prove the theorem in various steps.
Step 1 The natural transformation ζX is an equivalence for all X such that

XH = ∗ if H 6= G.
Note that almost all terms vanish, and we are reduced to proving that the map

Σ∞(XG)→ (Σ∞X)G
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is an equivalence. Using the definition of Σ∞ and of (−)G we see that we need to
prove

colim
V ∈J

Map∗(S
V , SV ∧XG)→ colim

V ∈RepG

MapSpaceG,F,∗
(SV , SV ∧X)

is an equivalence (where the map is induced by seeing an inner product space V as
a G-representation with trivial action). We will prove this by providing an explicit
inverse

colim
V ∈RepG

MapSpaceG,F,∗
(SV , SV ∧X)→ colim

V ∈J
Map∗(S

V , SV ∧XG)

sending a map of G-spaces f : SV → SV ∧ X to fG : SV G → SV G ∧ XG. it
is obvious that it is a left inverse, so we only need to show this new map is an
equivalence. This is provided by the following lemma. Note that since the map
RepG → J sending V to V G is cofinal, we only need to prove it is an equivalence
levelwise.

Lemma 17. Let X be a pointed G-space such that XH = ∗ for H 6= G. Then for
every G-space B the map

MapG(B,X)→ Map∗(B
N , XG)

is an equivalence.

Proof. Since the category of those B satisfying the thesis is closed under colimits,
it suffices to prove it for B = G/H. There are two cases

• H = G. Then the map is XH → XH , which is obviously an equivalence.
• H 6= G. Then (G/H)G = ∅, so the right hand side is contractible. The

left hand side is XH , which is also contractible by hypothesis.
�

Step 2 Let K < G be a subgroup of G. Then the natural transformation ζX

is an equivalence for all X such that XH = ∗ for H 6= K.
As before, all terms vanish except for the H = K term, so we need to prove the

map Σ∞XK
hWK → (Σ∞X)

G is an equivalence. This is the composition of two maps

Σ∞XK
hWK → (Σ∞X)

K
hWK

∼= Σ∞((DK)+ ∧X)G →
(
Σ∞

+ X
)G

The first map is an equivalence by step 1, so it suffices to prove the second map is
an equivalence. We claim

(DK)+ ∧X → X

is an equivalence of G-spaces. In fact it is obviously an equivalence on H-fixed
points for H 6= K (since in that case both sides are contractible) so it suffices to
check that DK

K = ∗. But
(DK)K = (G/K)KhWK = (NK/K)hWK = ∗ .

Step 3 The general case.
For any finite subgroup H < G let EG/H be the G-space defined by

(EG/H)K =

{
∗ if K ⊆ gHg−1

∅ otherwise
.

Note that the assignment G/H → EG/H forms a functor Oop
G → SpaceG whose

colimit is the point. Both sides of tom Dieck splitting commute with colimits in X,
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so it suffices to prove it holds for X ∧ EG/H+ for all H. We want to prove that
if the tom Dieck splitting is true for X ∧ EG/K+ for all K < H, then it is true
for X ∧ EG/H+. From there the general case will follow from an easy induction
on #H (the inductive hypothesis is vacously true for H = e). Let us consider the
cofiber sequence

colim
H/K∈Oop

H

H/K 6=∗

X ∧ EG/K+ → X ∧ EG/H+ → X ∧ CH .

Then we know the tom Dieck splitting holds for the first term in the sequence (since
it is a colimit of G-spaces for which the tom Dieck splitting holds). If we knew that
the tom Dieck splitting held for X ∧ CH we would be done. But since colimits in
SpaceG,∗ are computed levelwise on fixed points

CK
H =

{
S0 if K = H

∗ otherwise
.

Hence X ∧ CH is one of the spaces considered on step 2.

8. Geometric fixed points

The genuine fixed point functor is a nice fixed point functor, but it has some
puzzling behaviour, that differs from what we’d like. For example it is only lax
symmetric monoidal (since it is corepresented by a coalgebra object Σ∞

+ G/e) but
not symmetric monoidal. In this section we’ll see a different fixed point functor
that will fix this.

Let G be a topological group and N / G be a finite normal subgroup. The we
can define the G-space EPN by

(EPN )H =

{
∅ if N < K

∅ otherwise
.

Let ẼPN be the undreduced suspension of EPN , i.e. the cofiber in pointed spaces
of

(EPN )+ → S0 → ẼPN

Then we define the geometric fixed points functor

ΦN : SpG → SpG/N X 7→ (X ∧ Σ∞ẼPN )N .

From the tom Dieck splitting it is easy to see that

ΦNΣ∞X ∼= Σ∞(XN ) .

We’d like to establish a few properties of this functor

Lemma 18. Let X ∈ SpG
F . Then the following are equivalent

• The map X → X ∧ Σ∞ẼPN is an equivalence;
• For all H finite subgroups of G that do not contain N , XH = 0.

Proof. (1)⇒ (2) follows because

resGH(X ∧ Σ∞ẼPN ) ∼= resGH X ∧ Σ∞ resGH ẼPN = 0 .
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Let us now prove (2) ⇒ (1). First let us show that we can assume G finite. In
fact it is enough to show that, for every finite subgroup K of G, the map

resGK X → resGK X ∧ Σ∞ẼPN

is an equivalence. But if K does not contain N both sides are contractible (since
resGK X = 0), so it suffices to do the case G = K finite.

Now assume G finite and XH = 0 for all H not containing N . Then it suffices
to show X ∧Σ∞

+ EPN = 0. But EPN is3 a colimit of orbits of the form G/H where
H does not contain N . Hence the thesis will follow from the more general statment
X ∧Y = 0 for all Y in the stable subcategory generated under colimits by Σ∞

+ G/H
for H not containing N . Since smashing by X commutes with colimits it suffices
to prove

X ∧ Σ∞
+ G/H = 0

for all H not containing N . But for all subgroups K ⊆ G, using Atiyah duality for
finite G,

(X ∧ Σ∞
+ G/H)K ∼= mapG(Σ

∞
+ (G/H ×G/K)X) =

⊕
G/H′⊆G/H×G/K

XH′
,

but since N is not contained in the stabilizer of any point of G/H ×G/K, we are
done. �

Now, note that S → Σ∞ẼPn is an idempotent: the spectra described in the
lemma are the local objects for a smashing localization. Moreover ΦN is symmetric
monoidal: it is the composite of two lax symmetric monoidal functors, so it has a lax
symmetric monoidal structure and the map S→ ΦNS is an equivalence. Finally the
set of those X,Y such that the map ΦNX ∧ΦNY → ΦN (X ∧ Y ) is an equivalence
is closed under colimits and it contains the suspension spectra.

Theorem 19. The functor (−)N restricts to an equivalence between the subcategory
of SpG

F described in the lemma and SpG/N
F .

Proof. Let C be the subcategory of those spectra satisfying the equivalent condi-
tions of the lemma. Since ΦN coincides with (−)N on C, it commutes with all
limits and colimits. Moreover it is evidently conservative. So, if we show that its
left adjoint is fully faithful we have concluded (since conservativity implies that if
the unit is an equivalence, so is the counit).

Let us denote the left adjoint by LN . Then we need to prove that 1 → ΦNLN

is an equivalence. Since both sides are colimit-preserving functors it is enough to
show that it is an equivalence for the orbits of the form Σ∞

+ G/K ∈ SpG/N
F . But

LNΣ∞
+ G/K is the object of C that corepresents the functor X 7→ XK , that is

Σ∞ẼPN ∧ Σ∞
+ G/K, and its geometric fixed points are evidently Σ∞

+ G/K again,
by the description of the geometric fixed points of a suspension spectrum. �

Corollary 20. The functor ΦN : SpG
F → SpG/N

F has a fully faithful right adjoint,
with essential image those spectra X such that XH = 0 for all H not containing N .

3Since every presheaf is a colimit indexed by its category of points
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Let us now consider the case of G = Cp∞ . Then there is a diagram

X ∧ Σ∞
+ EG X X ∧ Σ∞ẼG

F (Σ∞
+ EG,X) ∧ Σ∞

+ EG F (Σ∞
+ EG,X) F (Σ∞

+ EG,X) ∧ Σ∞ẼG

The left vertical arrow is an equivalence since − ∧ Σ∞
+ EG sends equivalences of

underlying spectra to equivalences. Moreover, if we let n ≥ 1 and we take Cpn -fixed
points we obtain

XhCpn
XCpn

(
ΦCpX

)Cpn/Cp

XhCpn
XhCpn XtCpn

.

For X a Cp∞ -spectrum, we will denote the map XCpn →
(
ΦCpX

)Cpn/Cp by R and
call it the restriction map. Moreover, we will call the inclusion of fixed points
Frobenius and denote it by F .4

9. Cyclotomic spectra

Let p be a prime. Then a genuine p-cyclotomic spectrum is a Cp∞ -spectrum
X together with an equivalence

X
∼−→ ΦCpX

as Cp∞ -spectra. There is a canonical functor from genuine p-cyclotomic spectra to
p-cyclotomic spectra obtained by postcomposing the equivalence X → ΦCpX with
the natural map ΦCpX → XtCp .

Now, if X is a genuine p-cyclotomic spectrum, the diagram of the previous section
induces a commutative square

XCpn (ΦCpX)Cpn/Cp ∼= XCpn−1

XCpn−1 (ΦCpX)Cpn−1/Cp ∼= XCpn−2

R

F F

R

And, passing to the limit in R we have

TR(X; p) := lim
R

XCpn

4These names originate from the fact that when X = THH(k) for some ring k, the maps in-
duced on π0THH(k)Cpn = Wpnk are the classical restriction and Frobenius map for rings of Witt
vectors. Similarly, the map induced on fixed points by the transfer Σ∞

+ S1/Cpn → Σ∞
+ S1/Cpn+1

is called the Verschiebung.
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equipped with an endomorphism F . Finally we define

TC(X; p) := TR(X; p)hF = Eq
(
TR(X; p)

1
⇒
F
TR(X; p)

)
It is possible (although nontrivial) to assemble all endofunctors ΦCn : SpS1

F →
SpS1

F into an action of the multiplicative monoid of natural numbers N× on the
∞-category SpS1

F . A genuine cyclotomic spectrum is a homotopy fixed point
for this action. As before, there is a functor from genuine cyclotomic spectra to
cyclotomic spectra.

10. The cyclotomic structure on THH

To see that THH(R) has a Cn-structure for each n, let us consider the map

sdn : ∆→ ∆

that sends I to I × {1 < · · · < n} with the lexicographic order. Then we claim

sdnB
cyc(R) ∼= Bcyc(R⊗n, R⊗n)

where R⊗n is a bimodule with the standard left action, but the twisted right action

(x1 ⊗ · · · ⊗ xn) · (r1 ⊗ · · · ⊗ rn) = xnr1 ⊗ x1r2 ⊗ · · ·xn−1rn .

So if we define the Cn-spectrum

THH(R) = |Bcyc(NCnR,NCnR)

(where NCnR is a bimodule over itself with the standard left action and the twisted
right action), its underlying spectrum is THH(R). It is possible (although non
obvious) to prove that this Cn-spectra are compatible with the various restrictions
and so induce an element of SpS1

F . Moreover, since ΦCn commutes with colimits
and tensor products, it is clear that there is an equivalence

ΦCnTHH(R) = |Bcyc(ΦCnNCnR,ΦCnNCnR))| ∼= |Bcyc(R,R)| = THH(R) .

Appendix A. Constructing SpG

Let G be a compact Lie group. In this section we will construct a presentable
fibration E → RepG such

• For every V ∈ RepG the fiber over V is equivalent to SpaceG,∗;
• For every f : V →W is a G-equivariant isometric embedding, the pullback

functor f∗ : SpaceG,∗ → SpaceG,∗ is given by Map(SfV ⊥
,−).

We will construct E as the simplicial nerve of a simplicial category E defined as
follows

• Objects are pairs (V,X) where V is an orthogonal G-representation and X
is a well-pointed G-topological space;

• An n-simplex in Map((X,V ), (X ′, V ′)) is given by a pair (h, ξ) where h :
V × ∆n → V ′ is a ∆n-family of G-equivariant isometric embeddings (i.e.
a continous map such that for each t ∈ ∆n, h|V×{t} is a G-equivariant
isometric embedding) and

ξ : Th(∆n) ∧X → X ′



INTRODUCTION TO EQUIVARIANT HOMOTOPY THEORY 15

is a G-equivariant map, where Th(∆n) is the Thom space for the vector
bundle on ∆n with total space

{(t, x) ∈ ∆n × V ′ | x ⊥ h(V × {t})} .

(ξ should be thought of as a continously variying family of maps SV ⊥ ∧X → X ′).
There is an obvious projection of simplicial categories E→ RepG that remembers
only .

Theorem 21. The simplicial nerve N∆(−) turns the projection E → RepG into
an inner fibration where an edge (f : V → V ′, ξ : SV ⊥ ∧X → X ′) is cocartesian if
and only if ξ is an equivalence.

Proof. This follows from [8, 2.4.1.10], after we verify that the projection induces a
Kan fibration on mapping spaces. But this follows from Th(Λn

i ) ⊆ Th(∆n) being a
trivial cofibration in the model structure on G-spaces and X being a well-pointed
G-space. �

Since the fibers of p : E → RepG are presentable ∞-categories and the push-
forward f! is given by SfV ⊥ ∧ −, which is evidently left adjoint to the functor
Map(SfV ⊥

,−), our construction is concluded.
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